Science.gov

Sample records for alpha inverse agonist

  1. Kaempferol is an estrogen-related receptor alpha and gamma inverse agonist.

    PubMed

    Wang, Junjian; Fang, Fang; Huang, Zhiyan; Wang, Yanfei; Wong, Chiwai

    2009-02-18

    Kaempferol is a dietary flavonoid that is thought to function as a selective estrogen receptor modulator. In this study, we established that kaempferol also functions as an inverse agonist for estrogen-related receptors alpha and gamma (ERRalpha and ERRgamma). We demonstrated that kaempferol binds to ERRalpha and ERRgamma and blocks their interaction with coactivator peroxisome proliferator-activated receptor gamma coactivator-1alpha (PGC-1alpha). Kaempferol also suppressed the expressions of ERR-target genes pyruvate dehydrogenase kinase 2 and 4 (PDK2 and PDK4). This evidence suggests that kaempferol may exert some of its biological effect through both estrogen receptors and estrogen-related receptors. PMID:19171140

  2. Mechanisms of inverse agonist action at D2 dopamine receptors.

    PubMed

    Roberts, David J; Strange, Philip G

    2005-05-01

    Mechanisms of inverse agonist action at the D2(short) dopamine receptor have been examined. Discrimination of G-protein-coupled and -uncoupled forms of the receptor by inverse agonists was examined in competition ligand-binding studies versus the agonist [3H]NPA at a concentration labelling both G-protein-coupled and -uncoupled receptors. Competition of inverse agonists versus [3H]NPA gave data that were fitted best by a two-binding site model in the absence of GTP but by a one-binding site model in the presence of GTP. K(i) values were derived from the competition data for binding of the inverse agonists to G-protein-uncoupled and -coupled receptors. K(coupled) and K(uncoupled) were statistically different for the set of compounds tested (ANOVA) but the individual values were different in a post hoc test only for (+)-butaclamol. These observations were supported by simulations of these competition experiments according to the extended ternary complex model. Inverse agonist efficacy of the ligands was assessed from their ability to reduce agonist-independent [35S]GTP gamma S binding to varying degrees in concentration-response curves. Inverse agonism by (+)-butaclamol and spiperone occurred at higher potency when GDP was added to assays, whereas the potency of (-)-sulpiride was unaffected. These data show that some inverse agonists ((+)-butaclamol, spiperone) achieve inverse agonism by stabilising the uncoupled form of the receptor at the expense of the coupled form. For other compounds tested, we were unable to define the mechanism. PMID:15735658

  3. Alpha-2 agonists as pain therapy in horses.

    PubMed

    Valverde, Alexander

    2010-12-01

    Alpha-2 agonists, such as xylazine, clonidine, romifidine, detomidine, medetomidine, and dexmedetomidine, are potent analgesic drugs that also induce physiologic and behavioral changes, such as hypertension, bradycardia, atrioventricular block, excessive sedation and ataxia, all of which can potentially limit their systemic use as analgesics in some clinical cases. The use of medetomidine and dexmetomidine has been introduced for equine anesthesia/analgesia, and although not approved in this species, their increased specificity for alpha-2 receptors may offer some potential advantages over the traditional alpha-2 agonists. Similarly, other routes of administration and benefits of alpha-2 agonists are recognized in the human and laboratory animal literature, which may prove useful in the equine patient if validated in the near future. This review presents this relevant information. PMID:21056297

  4. [Alpha-2 adrenoreceptor agonists in anaesthesia and intensive care medicine].

    PubMed

    Mavropoulos, G; Minguet, G; Brichant, J F

    2014-02-01

    Alpha-2 adrenoreceptor agonists have long been used in the treatment of arterial hypertension. However, in that indication they have progressively been replaced by antihypertensive drugs with a more interesting therapeutic profile. Nonetheless, pharmacological activation of alpha-2 adrenoreceptors leads to a variety of clinical effects that are of major interest for anaesthesia and intensive care practice. Indeed, the sedative and analgesic properties of alpha-2 adrenoreceptor agonists allow a reduction of hypnotic and opioid needs during general anaesthesia. In addition, they induce a down-regulation of the level of consciousness comparable to that of natural slow-wave sleep during post-anaesthesia and intensive care unit stay. These drugs may also prevent some deleterious effects of the sympathetic discharge in response to surgical stress. Furthermore, alpha-2 adrenoreceptor agonists are potent adjuncts for locoregional anaesthesia. In this article, we will summarize the most frequent applications of alpha-2 adrenoreceptor agonists in anaesthesia and intensive care medicine. We will focus on the clinical data available for the two most representative molecules of this pharmacological class: clonidine and dexmedetomidine. PMID:24683831

  5. Discovery of Tertiary Amine and Indole Derivatives as Potent RORγt Inverse Agonists.

    PubMed

    Yang, Ting; Liu, Qian; Cheng, Yaobang; Cai, Wei; Ma, Yingli; Yang, Liuqing; Wu, Qianqian; Orband-Miller, Lisa A; Zhou, Ling; Xiang, Zhijun; Huxdorf, Melanie; Zhang, Wei; Zhang, Jing; Xiang, Jia-Ning; Leung, Stewart; Qiu, Yang; Zhong, Zhong; Elliott, John D; Lin, Xichen; Wang, Yonghui

    2014-01-01

    A novel series of tertiary amines as retinoid-related orphan receptor gamma-t (RORγt) inverse agonists was discovered through agonist/inverse agonist conversion. The level of RORγt inhibition can be enhanced by modulating the conformational disruption of H12 in RORγt LBD. Linker exploration and rational design led to the discovery of more potent indole-based RORγt inverse agonists. PMID:24900774

  6. Cannabinoid withdrawal in mice: inverse agonist vs neutral antagonist

    PubMed Central

    Tai, Sherrica; Nikas, Spyros P.; Shukla, Vidyanand G.; Vemuri, Kiran; Makriyannis, Alexandros; Järbe, Torbjörn U.C.

    2015-01-01

    Rationale Previous reports shows rimonabant's inverse properties may be a limiting factor for treating cannabinoid dependence. To overcome this limitation neutral antagonists were developed, to address mechanisms by which an inverse agonist and neutral antagonist elicit withdrawal. Objective Introduces an animal model to study cannabinoid dependence by incorporating traditional methodologies and profiling novel cannabinoid ligands with distinct pharmacological properties/modes of action by evaluating their pharmacological effects on CB1-receptor (CB1R) related physiological/behavioral endpoints. Methods The cannabinergic AM2389 was acutely characterized in the tetrad (locomotor activity, analgesia, inverted screen/catalepsy bar test and temperature); with some comparisons made to Δ9-tetrahydrocannabinol (THC). Tolerance was measured in mice repeatedly administered AM2389. Antagonist-precipitated withdrawal was characterized in cannabinoid-adapted mice induced by either centrally acting antagonists, rimonabant and AM4113, or an antagonist with limited brain penetration, AM6545. Results In the tetrad, AM2389 was more potent and longer acting than THC, suggesting a novel approach for inducing dependence. Repeated administration of AM2389 led to tolerance by attenuating hypothermia that was induced by acute AM2389 administration. Antagonist-precipitated withdrawal signs were induced by rimonabant or AM4113, but not by AM6545. Antagonist-precipitated withdrawal was reversed by reinstating AM2389 or THC. Conclusions These findings suggest cannabinoid-precipitated withdrawal may not be ascribed to the inverse properties of rimonabant, but rather to rapid competition with the agonist at the CB1R. This withdrawal syndrome is likely centrally-mediated, since only the centrally acting CB1R antagonists elicited withdrawal, i.e., such responses were absent after the purported peripherally selective CB1R antagonist AM6545. PMID:25772338

  7. Constitutive precoupling to G(i) and increased agonist potency in the alpha(2B)-adrenoceptor.

    PubMed

    Ge, Huifang; Scheinin, Mika; Kallio, Jaana

    2003-07-11

    The human alpha(2B)-adrenoceptor (alpha(2B)-AR) was mutated by substituting the D(3.49) aspartate in position 109 with an alanine (alpha(2B)-D109A) in the conserved DRY sequence at the cytoplasmic face of TM3. We studied the effects of the mutation on agonist binding and on receptor activation in CHO cells, including possible inverse agonism monitored by measuring intracellular Ca(2+) concentrations ([Ca(2+)](i)). The mutated receptor had increased binding affinity for agonists, especially dexmedetomidine (3.8-fold). The increased affinity was abolished by pretreatment of the cells with pertussis toxin. The mutation produced constitutive receptor activity evidenced as increased basal [Ca(2+)](i) and increased potency and efficacy of agonists to elicit Ca(2+) responses. The imidazoline derivative RX821002 functioned as an inverse agonist only through the alpha(2B)-D109A, reducing [Ca(2+)](i). The results thus indicate that this mutation causes constitutive receptor-G(i)-protein precoupling, and that the D(3.49) aspartate residue of the DRY motif is involved in controlling coupled and uncoupled conformations of alpha(2B)-AR. PMID:12821136

  8. Identification of Determinants Required for Agonistic and Inverse Agonistic Ligand Properties at the ADP Receptor P2Y12

    PubMed Central

    Schmidt, Philipp; Ritscher, Lars; Dong, Elizabeth N.; Hermsdorf, Thomas; Cöster, Maxi; Wittkopf, Doreen; Meiler, Jens

    2013-01-01

    The ADP receptor P2Y12 belongs to the superfamily of G protein–coupled receptors (GPCRs), and its activation triggers platelet aggregation. Therefore, potent antagonists, such as clopidogrel, are of high clinical relevance in prophylaxis and treatment of thromboembolic events. P2Y12 displays an elevated basal activity in vitro, and as such, inverse agonists may be therapeutically beneficial compared with antagonists. Only a few inverse agonists of P2Y12 have been described. To expand this limited chemical space and improve understanding of structural determinants of inverse agonist-receptor interaction, this study screened a purine compound library for lead structures using wild-type (WT) human P2Y12 and 28 constitutively active mutants. Results showed that ATP and ATP derivatives are agonists at P2Y12. The potency at P2Y12 was 2-(methylthio)-ADP > 2-(methylthio)-ATP > ADP > ATP. Determinants required for agonistic ligand activity were identified. Molecular docking studies revealed a binding pocket for the ATP derivatives that is bordered by transmembrane helices 3, 5, 6, and 7 in human P2Y12, with Y105, E188, R256, Y259, and K280 playing a particularly important role in ligand interaction. N-Methyl-anthraniloyl modification at the 3′-OH of the 2′-deoxyribose leads to ligands (mant-deoxy-ATP [dATP], mant-deoxy-ADP) with inverse agonist activity. Inverse agonist activity of mant-dATP was found at the WT human P2Y12 and half of the constitutive active P2Y12 mutants. This study showed that, in addition to ADP and ATP, other ATP derivatives are not only ligands of P2Y12 but also agonists. Modification of the ribose within ATP can result in inverse activity of ATP-derived ligands. PMID:23093496

  9. Alpha-adrenoceptor agonistic activity of oxymetazoline and xylometazoline.

    PubMed

    Haenisch, Britta; Walstab, Jutta; Herberhold, Stephan; Bootz, Friedrich; Tschaikin, Marion; Ramseger, René; Bönisch, Heinz

    2010-12-01

    Oxymetazoline and xylometazoline are both used as nasal mucosa decongesting α-adrenoceptor agonists during a common cold. However, it is largely unknown which of the six α-adrenoceptor subtypes are actually present in human nasal mucosa, which are activated by the two alpha-adrenoceptor agonists and to what extent. Therefore, mRNA expression in human nasal mucosa of the six α-adrenoceptor subtypes was studied. Furthermore, the affinity and potency of the imidazolines oxymetazoline and xylometazoline at these α-adrenoceptor subtypes were examined in transfected HEK293 cells. The rank order of mRNA levels of α-adrenoceptor subtypes in human nasal mucosa was: α(2A) > α(1A) ≥ α(2B) > α(1D) ≥ α(2C) > α(1B) . Oxymetazoline and xylometazoline exhibited in radioligand competition studies higher affinities than the catecholamines adrenaline and noradrenaline at most α-adrenoceptor subtypes. Compared to xylometazoline, oxymetazoline exhibited a significantly higher affinity at α(1A) - but a lower affinity at α(2B) -adrenoceptors. In functional studies in which adrenoceptor-mediated Ca(2+) signals were measured, both, oxymetazoline and xylometazoline behaved at α(2B) -adrenoceptors as full agonists but oxymetazoline was significantly more potent than xylometazoline. Furthermore, oxymetazoline was also a partial agonist at α(1A) -adrenoceptors; however, its potency was relatively low and it was much lower than its affinity. The higher potency at α(2B) -adrenoceptors, i.e. at receptors highly expressed at the mRNA level in human nasal mucosa, could eventually explain why in nasal decongestants oxymetazoline can be used in lower concentrations than xylometazoline. PMID:20030735

  10. 2-Aminoalkyl nicotinamide derivatives as pure inverse agonists of the ghrelin receptor.

    PubMed

    Takahashi, Bitoku; Funami, Hideaki; Iwaki, Takehiko; Maruoka, Hiroshi; Nagahira, Asako; Koyama, Makoto; Kamiide, Yoshiyuki; Matsuo, Tsuyoshi; Muto, Tsuyoshi; Annoura, Hirokazu

    2015-07-01

    New inverse agonists of the ghrelin receptor (ghrelinR) were obtained through high-throughput screening and subsequent structural modification of 2-aminoalkyl nicotinamide derivatives. The key structural feature to improve in vitro activity was the introduction of a diazabicyclo ring at the 5-position of the pyridine ring. The final product showed potent inverse agonist activity and, despite its low brain permeability, reduced food intake in both normal and obese mice. These results implied that peripheral ghrelinR activity is important for appetite control and that a peripheral ghrelinR inverse agonist could be an anti-obesity drug with reduced risk of central nervous system (CNS)-related side effects. PMID:25981690

  11. Changing Patterns of Alpha Agonist Medication Use in Children and Adolescents 2009–2011

    PubMed Central

    Mayne, Stephanie L.; Song, Lihai; Steffes, Jennifer; Liu, Weiwei; McCarn, Banita; Margolis, Benyamin; Grimes, Alan; Gotlieb, Edward; Localio, Russell; Ross, Michelle E.; Grundmeier, Robert W.; Wasserman, Richard; Leslie, Laurel K.

    2015-01-01

    Abstract Objectives: The purpose of this study was to describe rates and patterns of long- and short-acting alpha agonist use for behavioral problems in a primary care population following Food and Drug Administration (FDA) approval of the long-acting alpha agonists guanfacine and clonidine. Methods: Children and adolescents 4–18 years of age, who received an alpha agonist prescription between 2009 and 2011, were identified from a sample of 45 United States primary care practices in two electronic health record-based research networks. Alpha agonist receipt was identified using National Drug Codes and medication names. The proportion of subjects receiving long- and short-acting prescriptions in each year was calculated and examined with respect to reported mental health diagnoses, and whether indications for use were on-label, had evidence from clinical trials, or had no trial evidence. Results: In a cohort of 282,875 subjects, 27,671 (10%) received any psychotropic medication and only 4,227 subjects (1.5%) received at least one prescription for an alpha agonist, most commonly a short-acting formulation (83%). Only 20% of alpha agonist use was on-label (use of long-acting formulations for attention-deficit/hyperactivity disorder [ADHD]). Most subjects (68%) received alpha agonists for indications with evidence of efficacy from clinical trials but no FDA approval, primarily short-acting formulations for ADHD and autism; 12% received alpha agonists for diagnoses lacking randomized clinical trial evidence in children, including sleep disorders and anxiety, or for which there was no documented mental health diagnosis. Rates of long-acting alpha agonist use increased more than 20-fold from 0.2% to 4%, whereas rates of short-acting alpha agonist use grew only slightly between 2009 and 2011 from 10.6% to 11.3%. Conclusions: Alpha agonist use was uncommon in this population, and most subjects received short-acting forms for conditions that were off-label, but with

  12. Discovery of biaryls as RORγ inverse agonists by using structure-based design.

    PubMed

    Enyedy, Istvan J; Powell, Noel A; Caravella, Justin; van Vloten, Kurt; Chao, Jianhua; Banerjee, Daliya; Marcotte, Douglas; Silvian, Laura; McKenzie, Andres; Hong, Victor Sukbong; Fontenot, Jason D

    2016-05-15

    RORγ plays a critical role in controlling a pro-inflammatory gene expression program in several lymphocyte lineages including T cells, γδ T cells, and innate lymphoid cells. RORγ-mediated inflammation has been linked to susceptibility to Crohn's disease, arthritis, and psoriasis. Thus inverse agonists of RORγ have the potential of modulating inflammation. Our goal was to optimize two RORγ inverse agonists: T0901317 from literature and 1 that we obtained from internal screening. We used information from internal X-ray structures to design two libraries that led to a new biaryl series. PMID:27080181

  13. Meclizine is an agonist ligand for mouse constitutive androstane receptor (CAR) and an inverse agonist for human CAR.

    PubMed

    Huang, Wendong; Zhang, Jun; Wei, Ping; Schrader, William T; Moore, David D

    2004-10-01

    The constitutive androstane receptor (CAR, NR1I3) is a key regulator of xenobiotic and endobiotic metabolism. The ligand-binding domains of murine (m) and human (h) CAR are divergent relative to other nuclear hormone receptors, resulting in species-specific differences in xenobiotic responses. Here we identify the widely used antiemetic meclizine (Antivert; Bonine) as both an agonist ligand for mCAR and an inverse agonist for hCAR. Meclizine increases mCAR transactivation in a dose-dependent manner. Like the mCAR agonist 1,4-bis[2-(3,5-dichloropyridyloxy)]benzene, meclizine stimulates binding of steroid receptor coactivator 1 to the murine receptor in vitro. Meclizine administration to mice increases expression of CAR target genes in a CAR-dependent manner. In contrast, meclizine suppresses hCAR transactivation and inhibits the phenobarbital-induced expression of the CAR target genes, cytochrome p450 monooxygenase (CYP)2B10, CYP3A11, and CYP1A2, in primary hepatocytes derived from mice expressing hCAR, but not mCAR. The inhibitory effect of meclizine also suppresses acetaminophen-induced liver toxicity in humanized CAR mice. These results demonstrate that a single compound can induce opposite xenobiotic responses via orthologous receptors in rodents and humans. PMID:15272053

  14. Alpha/sub 1/ receptor coupling events initiated by methoxy-substituted tolazoline partial agonists

    SciTech Connect

    Wick, P.; Keung, A.; Deth, R.

    1986-03-01

    A series of mono- and dimethyoxy substituted tolazoline derivatives, known to be partial agonists at the alpha/sub 1/ receptor, were compared with the ..cap alpha../sub 1/ selective full agonist phenylephrine (PE) on isolated strips of rabbit aorta Agonist activity was evaluated in contraction, /sup 45/Ca influx, /sup 45/Ca efflux, and /sup 32/P-Phospholipid labelling studies. Maximum contractile responses for the 2-, 3-, and 3, 5- methoxy substituted tolazoline derivatives (10/sup -5/M) were 53.8, 67.6 and 99.7% of the PE (10/sup -5/M) response respectively. These same partial agonists caused a stimulation of /sup 45/Ca influx to the extent of 64, 86, and 95% of the PE response respectively. In /sup 45/Ca efflux studies, (a measure of the intracellular Ca/sup +2/ release) the tolazolines caused: 30%, 63%, and 78% of the PE stimulated level. /sup 32/P-Phosphatidic acid (PA) labelling was measured as an index of PI turnover after ..cap alpha../sub 1/ receptor stimulation. Compared to PE, the 2-, 3-, and 3,5- methoxy substituted tolazoline derivatives caused 22, 46, and 72% PA labelling. The above values are all in reasonable accord with the rank order or agonist activity shown in maximum contractile responses. The results of this investigation suggest that partial agonists stimulate ..cap alpha.. receptor coupling events at a level which is quantitatively comparable to their potencies in causing contraction of arterial smooth muscle.

  15. Preclinical evaluation of SMM-189, a cannabinoid receptor 2-specific inverse agonist

    PubMed Central

    Presley, Chaela; Abidi, Ammaar; Suryawanshi, Satyendra; Mustafa, Suni; Meibohm, Bernd; Moore, Bob M

    2015-01-01

    Cannabinoid receptor 2 agonists and inverse agonists are emerging as new therapeutic options for a spectrum of autoimmune-related disease. Of particular interest, is the ability of CB2 ligands to regulate microglia function in neurodegenerative diseases and traumatic brain injury. We have previously reported the receptor affinity of 3′,5′-dichloro-2,6-dihydroxy-biphenyl-4-yl)-phenyl-methanone (SMM-189) and the characterization of the beneficial effects of SMM-189 in the mouse model of mild traumatic brain injury. Herein, we report the further characterization of SMM-189 as a potent and selective CB2 inverse agonist, which acts as a noncompetitive inhibitor of CP 55,940. The ability of SMM-189 to regulate microglial activation, in terms of chemokine expression and cell morphology, has been determined. Finally, we have determined that SMM-189 possesses acceptable biopharmaceutical properties indicating that the triaryl class of CB2 inverse agonists are viable compounds for continued preclinical development for the treatment of neurodegenerative disorders and traumatic brain injury. PMID:26196013

  16. Alpha2-adrenoreceptors profile modulation. 4. From antagonist to agonist behavior.

    PubMed

    Gentili, Francesco; Cardinaletti, Claudia; Vesprini, Cristian; Carrieri, Antonio; Ghelfi, Francesca; Farande, Aniket; Giannella, Mario; Piergentili, Alessandro; Quaglia, Wilma; Laurila, Jonne M; Huhtinen, Anna; Scheinin, Mika; Pigini, Maria

    2008-07-24

    The goal of the present study was to modulate the receptor interaction properties of known alpha 2-adrenoreceptor (AR) antagonists to obtain novel alpha 2-AR agonists with desirable subtype selectivity. Therefore, a phenyl group or one of its bioisosteres or aliphatic moieties with similar steric hindrance were introduced into the aromatic ring of the antagonist lead basic structure. The functional properties of the novel compounds allowed our previous observations to be confirmed. The high efficacy of 7, 12, and 13 as alpha 2-AR agonists and the significant alpha 2C-AR subtype selective activation displayed by 11 and 15 demonstrated that favorable interactions to induce alpha 2-AR activation were formed between the pendant groups of the ligands and the aromatic cluster present in transmembrane domain 6 of the binding site cavity of the receptors. PMID:18578476

  17. PPAR{alpha} agonists up-regulate organic cation transporters in rat liver cells

    SciTech Connect

    Luci, Sebastian; Geissler, Stefanie; Koenig, Bettina; Koch, Alexander; Stangl, Gabriele I.; Hirche, Frank; Eder, Klaus . E-mail: klaus.eder@landw.uni-halle.de

    2006-11-24

    It has been shown that clofibrate treatment increases the carnitine concentration in the liver of rats. However, the molecular mechanism is still unknown. In this study, we observed for the first time that treatment of rats with the peroxisome proliferator activated receptor (PPAR)-{alpha} agonist clofibrate increases hepatic mRNA concentrations of organic cation transporters (OCTNs)-1 and -2 which act as transporters of carnitine into the cell. In rat hepatoma (Fao) cells, treatment with WY-14,643 also increased the mRNA concentration of OCTN-2. mRNA concentrations of enzymes involved in carnitine biosynthesis were not altered by treatment with the PPAR{alpha} agonists in livers of rats and in Fao cells. We conclude that PPAR{alpha} agonists increase carnitine concentrations in livers of rats and cells by an increased uptake of carnitine into the cell but not by an increased carnitine biosynthesis.

  18. A combined ligand and structure based approach to design potent PPAR-alpha agonists

    NASA Astrophysics Data System (ADS)

    Dhoke, Gaurao V.; Gangwal, Rahul P.; Sangamwar, Abhay T.

    2012-11-01

    A combined ligand and structure based pharmacophore modeling approach was employed to reveal structural and chemical features necessary for PPAR-alpha agonistic activity. The best HypoGen pharmacophore model Hypo1 for PPAR-alpha agonists contains two hydrogen-bond acceptor (HBA), two general hydrophobic (H), and one negative ionizable (NI) feature. In addition, one structure based pharmacophore model was developed using LigandScout3.0, which has identified additional three hydrophobic features. Further, molecular docking studies of all agonists showed hydrogen bond interactions with important amino acids (Ser280, Tyr314 and Tyr464) and these interactions were compared with Hypo1, which shows that the Hypo1 has a good predictive ability. The screened virtual hits from Hypo1 were subjected to the Lipinski's rule of five, structure based pharmacophore screening and molecular docking analysis. Finally, three novel compounds with diverse scaffolds were selected as possible candidates for the designing of potent PPAR-alpha agonists. Combination of these two approaches results in designing an ideal pharmacophore model, which provides a powerful tool for the discovery of novel PPAR-alpha agonists.

  19. Development of flavonoid-based inverse agonists of the key signaling receptor US28 of human cytomegalovirus.

    PubMed

    Kralj, Ana; Nguyen, Mai-Thao; Tschammer, Nuska; Ocampo, Nicolette; Gesiotto, Quinto; Heinrich, Markus R; Phanstiel, Otto

    2013-06-27

    A series of 31 chalcone- and flavonoid-based derivatives were synthesized in good overall yields and screened for their inverse agonist activity on the US28 receptor of human cytomegalovirus (HCMV). With one exception (e.g., 2-(5-bromo-2-methoxyphenyl)-3-hydroxy-4H-chromen-4-one), halogen-substituted flavonoids were typically more potent inverse agonists than their related hydro derivatives. While toxicity could be used to partially explain the inverse agonist activity of some members of the series, 5-(benzyloxy)-2-(5-bromo-2-methoxyphenyl)-4H-chromen-4-one (11b) acted on the US28 receptor as a nontoxic, inverse agonist. The full inverse agonism (efficacy, -89%) and potency (EC50 = 3.5 μM) observed with flavonoid 11b is especially important as it provides both a new tool to study US28 signaling and a potential platform for the future development of HCMV-targeting drugs. PMID:23768434

  20. Use of alpha-agonists for management of anaphylaxis occurring under anaesthesia: case studies and review.

    PubMed

    Heytman, M; Rainbird, A

    2004-12-01

    Anaphylaxis is an uncommon but serious complication of anaesthesia. Most current guidelines for the management of anaphylaxis list only epinephrine as a vasopressor to use in the event of cardiovascular collapse. We present two cases of anaphylaxis under anaesthesia where return of spontaneous circulation was refractory to epinephrine, but occurred following the administration of the alpha-agonist metaraminol. Potential advantages and disadvantages of using epinephrine in this setting, the role of alpha-agonists and some potential mechanisms accounting for their role in successful management are reviewed. PMID:15549981

  1. Treating enhanced GABAergic inhibition in Down syndrome: use of GABA α5-selective inverse agonists.

    PubMed

    Martínez-Cué, Carmen; Delatour, Benoît; Potier, Marie-Claude

    2014-10-01

    Excess inhibition in the brain of individuals carrying an extra copy of chromosome 21 could be responsible for cognitive deficits observed throughout their lives. A change in the excitatory/inhibitory balance in adulthood would alter synaptic plasticity, potentially triggering learning and memory deficits. γ-Aminobutyric acid (GABA) is the major inhibitory neurotransmitter in the mature central nervous system and binds to GABAA receptors, opens a chloride channel, and reduces neuronal excitability. In this review we discuss methods to alleviate neuronal inhibition in a mouse model of Down syndrome, the Ts65Dn mouse, using either an antagonist (pentylenetetrazol) or two different inverse agonists selective for the α5-subunit containing receptor. Both inverse agonists, which reduce inhibitory GABAergic transmission, could rescue learning and memory deficits in Ts65Dn mice. We also discuss safety issues since modulation of the excitatory-inhibitory balance to improve cognition without inducing seizures remains particularly difficult when using GABA antagonists. PMID:24412222

  2. Human fat cell alpha-2 adrenoceptors. I. Functional exploration and pharmacological definition with selected alpha-2 agonists and antagonists

    SciTech Connect

    Galitzky, J.; Mauriege, P.; Berlan, M.; Lafontan, M.

    1989-05-01

    This study was undertaken to investigate more fully the pharmacological characteristics of the human fat cell alpha-2 adrenoceptor. Biological assays were performed on intact isolated fat cells while radioligand binding studies were carried out with (/sup 3/H)yohimbine in membranes. These pharmacological studies brought: (1) a critical definition of the limits of the experimental conditions required for the exploration of alpha-2 adrenergic responsiveness on human fat cells and membranes; (2) an improvement in the pharmacological definition of the human fat cell postsynaptic alpha-2 adrenoceptor. Among alpha-2 agonists, UK-14,304 was the most potent and the relative order of potency was: UK-14,304 greater than p-aminoclonidine greater than clonidine = B-HT 920 greater than rilmenidine. For alpha-2 antagonists, the potency order was: yohimbine greater than idazoxan greater than SK F-86,466 much greater than benextramine; (3) a description of the impact of benextramine (irreversible alpha-1/alpha-2 antagonist) on human fat cell alpha-2 adrenergic receptors and on human fat cell function; the drug inactivates the alpha-2 adrenergic receptors with a minor impact on beta adrenergic receptors and without noticeable alterations of fat cell function as assessed by preservation of beta adrenergic and Al-adenosine receptor-mediated lipolytic responses; and (4) a definition of the relationship existing between alpha-2 adrenergic receptor occupancy, inhibition of adenylate cyclase activity and antilipolysis with full and partial agonists. The existence of a receptor reserve must be taken into account when evaluating alpha-2 adrenergic receptor distribution and regulation of human fat cells.

  3. Identification of SR3335 (ML176): a Synthetic RORα Selective Inverse Agonist

    PubMed Central

    Kumar, Naresh; Kojetin, Douglas J.; Solt, Laura A.; Kumar, K. Ganesh; Nuhant, Philippe; Duckett, Derek R.; Cameron, Michael D.; Butler, Andrew A.; Roush, William R.; Griffin, Patrick R.; Burris, Thomas P.

    2010-01-01

    Several nuclear receptors (NRs) are still characterized as orphan receptors since ligands have not yet been identified for these proteins. The retinoic acid receptor-related receptors (RORs) have no well-defined physiological ligands. Here, we describe the identification of a selective RORα synthetic ligand, SR3335 (ML-176). SR3335 directly binds to RORα, but not other RORs, and functions as a selective partial inverse agonist of RORα in cell-based assays. Furthermore, SR3335 suppresses the expression of endogenous RORα target genes in HepG2 involved in hepatic gluconeogenesis including glucose-6-phosphatase and phosphoenolpyruvate carboxykinase. Pharmacokinetic studies indicate that SR3335 displays reasonable exposure following an i.p. injection into mice. We assess the ability of SR3335 to suppress gluconeogenesis in vivo using a diet induced obesity (DIO) mouse model where the mice where treated with 15 mg/kg b.i.d., i.p. for 6-days followed by a pyruvate tolerance test. SR3335 treated mice displayed lower plasma glucose levels following the pyruvate challenge consistent with suppression of gluconeogenesis. Thus, we have identified the first selective synthetic RORα inverse agonist and this compound can be utilized as a chemical tool to probe the function of this receptor both in vitro and in vivo. Additionally, our data suggests that RORα inverse agonists may hold utility for suppression of elevated hepatic glucose production in type 2 diabetics. PMID:21090593

  4. Agonist binding and function at the human alpha(2A)-adrenoceptor: allosteric modulation by amilorides.

    PubMed

    Leppik, R A; Birdsall, N J

    2000-11-01

    It has been found previously that amilorides act via an allosteric site on the alpha(2A)-adrenergic receptor to strongly inhibit antagonist binding. In this study, allosteric modulation of agonist binding and function at the alpha(2A)-adrenergic receptor was explored. The dissociation rate of the agonist [(3)H]UK14304 from alpha(2A)-receptors was decreased by the amilorides in a concentration-dependent manner. This contrasts with the increases in (3)H-antagonist dissociation rate found previously. The agonist-amiloride analog interaction data could be fitted to equations derived from the ternary complex allosteric model. The calculated log affinities of the amilorides at the [(3)H]UK14304-occupied receptor increased with the size of the 5-N-alkyl side chain and ranged from 2.4 for amiloride to 4.2 for 5-(N,N-hexamethylene)-amiloride. The calculated negative cooperativities cover a narrow range, in sharp contrast to the broad range found for antagonist-amiloride analog interactions. The effects of the amilorides on the agonist actions of UK14304, epinephrine, and norepinephrine were explored using a [(35)S]GTPgammaS functional assay, and the parameters calculated for the cooperativities and affinities of the UK14304-amiloride analog interactions, using the equation derived from the ternary complex allosteric model, were in good agreement with those derived from the kinetic studies. Therefore both the binding and functional data provide further support for the existence of a well defined allosteric site on the human alpha(2A)-adrenergic receptor. The binding mode of the amilorides at the agonist-occupied and antagonist-occupied receptor differs markedly but, within each group, the structure of either the agonist or the antagonist examined has only a slight effect on the allosteric interactions. PMID:11040058

  5. Alpha-tocopherol inhibits agonist-induced monocytic cell adhesion to cultured human endothelial cells.

    PubMed Central

    Faruqi, R; de la Motte, C; DiCorleto, P E

    1994-01-01

    Antioxidants have been proposed to be anti-atherosclerotic agents; however, the mechanisms underlying their beneficial effects are poorly understood. We have examined the effect of alpha-tocopherol (alpha-tcp) on one cellular event in atherosclerotic plaque development, monocyte adhesion to stimulated endothelial cells (ECs). Human umbilical vein ECs were pretreated with alpha-tcp before stimulation with known agonists of monocyte adhesion: IL-1 (10 ng/ml), LPS (10 ng/ml), thrombin (30 U/ml), or PMA (10 nM). Agonist-induced monocytic cell adhesion, but not basal adhesion, was inhibited in a time- and concentration-dependent manner by alpha-tcp. The IC50 of alpha-tcp on an IL-1-induced response was 45 microM. The inhibition correlated with a decrease in steady state levels of E-selectin mRNA and cell surface expression of E-selectin which is consistent with the ability of a monoclonal antibody to E-selectin to inhibit monocytic cell adhesion in this system. Probucol (50 microM) and N-acetylcysteine (20 mM) also inhibited agonist-induced monocytic cell adhesion; whereas, several other antioxidants had no significant effect. Protein kinase C (PKC) does not appear to play a role in the alpha-tcp effect since no suppression of phosphorylation of PKC substrates was observed. Activation of the transcription factor NF-kappa B is reported to be necessary but not sufficient for E-selectin expression in EC. Electrophoretic mobility shift assays failed to show an alpha-tcp-induced decrease in activation of this transcription factor after cytokine stimulation. It has been hypothesized that alpha-tcp acts as an anti-atherosclerotic molecule by inhibiting generation of oxidized LDL--a putative triggering molecule in the atherosclerotic process. Our results point to a novel alternative mechanism of action of alpha-tcp. Images PMID:7518838

  6. Comparative gene expression profiles induced by PPAR{gamma} and PPAR{alpha}/{gamma} agonists in rat hepatocytes

    SciTech Connect

    Rogue, Alexandra; Renaud, Marie Pierre; Claude, Nancy; Guillouzo, Andre; Spire, Catherine

    2011-07-01

    Species-differential toxic effects have been described with PPAR{alpha} and PPAR{gamma} agonists between rodent and human liver. PPAR{alpha} agonists (fibrates) are potent hypocholesterolemic agents in humans while they induce peroxisome proliferation and tumors in rodent liver. By contrast, PPAR{gamma} agonists (glitazones) and even dual PPAR{alpha}/{gamma} agonists (glitazars) have caused idiosyncratic hepatic and nonhepatic toxicities in human without evidence of any damage in rodent during preclinical studies. The mechanisms involved in such differences remain largely unknown. Several studies have identified the major target genes of PPAR{alpha} agonists in rodent liver while no comprehensive analysis has been performed on gene expression changes induced by PPAR{gamma} and dual PPAR{alpha}/{gamma} agonists. Here, we investigated transcriptomes of rat hepatocytes after 24 h treatment with two PPAR{gamma} (troglitazone and rosiglitazone) and two PPAR{alpha}/{gamma} (muraglitazar and tesaglitazar) agonists. Although, hierarchical clustering revealed a gene expression profile characteristic of each PPAR agonist class, only a limited number of genes was specifically deregulated by glitazars. Functional analyses showed that many genes known as PPAR{alpha} targets were also modulated by both PPAR{gamma} and PPAR{alpha}/{gamma} agonists and quantitative differences in gene expression profiles were observed between these two classes. Moreover, most major genes modulated in rat hepatocytes were also found to be deregulated in rat liver after tesaglitazar treatment. Taken altogether, these results support the conclusion that differential toxic effects of PPAR{alpha} and PPAR{gamma} agonists in rodent liver do not result from transcriptional deregulation of major PPAR target genes but rather from qualitative and/or quantitative differential responses of a small subset of genes.

  7. Structural insights into Resveratrol’s antagonist and partial agonist actions on estrogen receptor alpha

    PubMed Central

    2013-01-01

    Background Resveratrol, a naturally occurring stilbene, has been categorized as a phytoestrogen due to its ability to compete with natural estrogens for binding to estrogen receptor alpha (ERα) and modulate the biological responses exerted by the receptor. Biological effects of resveratrol (RES) on estrogen receptor alpha (ERα) remain highly controversial, since both estrogenic and anti-estrogenic properties were observed. Results Here, we provide insight into the structural basis of the agonist/antagonist effects of RES on ERα ligand binding domain (LBD). Using atomistic simulation, we found that RES bound ERα monomer in antagonist conformation, where Helix 12 moves away from the ligand pocket and orients into the co-activator binding groove of LBD, is more stable than RES bound ERα in agonist conformation, where Helix 12 lays over the ligand binding pocket. Upon dimerization, the agonistic conformation of RES-ERα dimer becomes more stable compared to the corresponding monomer but still remains less stable compared to the corresponding dimer in antagonist conformation. Interestingly, while the binding pocket and the binding contacts of RES to ERα are similar to those of pure agonist diethylstilbestrol (DES), the binding energy is much less and the hydrogen bonding contacts also differ providing clues for the partial agonistic character of RES on ERα. Conclusions Our Molecular Dynamics simulation of RES-ERα structures with agonist and antagonist orientations of Helix 12 suggests RES action is more similar to Selective Estrogen Receptor Modulator (SERM) opening up the importance of cellular environment and active roles of co-regulator proteins in a given system. Our study reveals that potential co-activators must compete with the Helix 12 and displace it away from the activator binding groove to enhance the agonistic activity. PMID:24160181

  8. Nigramide J is a novel potent inverse agonist of the human constitutive androstane receptor.

    PubMed

    Kanno, Yuichiro; Tanuma, Nobuaki; Yatsu, Tomofumi; Li, Wei; Koike, Kazuo; Inouye, Yoshio

    2014-02-01

    The constitutive androstane receptor (CAR, NR1I3) is very important for drug development and for understanding pharmacokinetic drug-drug interactions. We screened by mammalian one hybrid assay among natural compounds to discover novel ligands of human constitutive androstane receptor (hCAR). hCAR transcriptional activity was measured by luciferase assay and mRNA levels of CYP2B6 and CYP3A4 in HepTR-hCAR cells and human primary hepatocytes were measured by real-time RT-PCR. Nigramide J (NJ) whose efficacy is comparable to those of hitherto known inverse agonists such as clotrimazole, PK11195, and ethinylestradiol. NJ is a naturally occurring cyclohexane-type amide alkaloid that was isolated from the roots of Piper nigrum. The suppressive effect of NJ on the CAR-dependent transcriptional activity was found to be species specific, in the descending order of hCAR, rat CAR, and mouse CAR. The unliganded hCAR-dependent transactivation of reporter and endogenous genes was suppressed by NJ at concentrations higher than 5 μmol/L. The ligand-binding cavity of hCAR was shared by NJ and CITCO, because they were competitive in the binding to hCAR. NJ interfered with the interaction of hCAR with coactivator SRC-1, but not with its interaction with the corepressor NCoR1. Furthermore, NJ is agonist of human pregnane X receptor (hPXR). NJ is a dual ligand of hCAR and hPXR, being an agonist of hPXR and an inverse agonist of hCAR. PMID:25505573

  9. The human 5-HT7 serotonin receptor splice variants: constitutive activity and inverse agonist effects

    PubMed Central

    Krobert, Kurt A; Levy, Finn Olav

    2002-01-01

    Using membranes from stably or transiently transfected HEK293 cells cultured in 5-HT-free medium and expressing the recombinant human 5-HT7 receptor splice variants (h5-HT7(a), h5-HT7(b) and h5-HT7(d)), we compared their abilities to constitutively activate adenylyl cyclase (AC).All h5-HT7 splice variants elevated basal and forskolin-stimulated AC. The basal AC activity was reduced by the 5-HT7 antagonist methiothepin and this effect was blocked by mesulergine (neutral 5-HT7 antagonist) indicating that the inhibitory effect of methiothepin is inverse agonism at the 5-HT7 receptor.Receptor density correlated poorly with constitutive AC activity in stable clonal cell lines and transiently transfected cells. Mean constitutive AC activity as a percentage of forskolin-stimulated AC was significantly higher for the h5-HT7(b) splice variant compared to the h5-HT7(a) and h5-HT7(d) splice variants but only in stable cell lines.All eight 5-HT antagonists tested inhibited constitutive AC activity of all splice variants in a concentration-dependent manner. No differences in inverse agonist potencies (pIC50) were observed between the splice variants. The rank order of potencies was in agreement and highly correlated with antagonist potencies (pKb) determined by antagonism of 5-HT-stimulated AC activity (methiothepin>metergoline>mesulergine⩾clozapine⩾spiperone⩾ritanserin>methysergide>ketanserin).The efficacy of inverse agonism was not receptor level dependent and varied for several 5-HT antagonists between membrane preparations of transiently and stably transfected cells.It is concluded that the h5-HT7 splice variants display similar constitutive activity and inverse agonist properties. PMID:11906971

  10. Alpha-2 receptor agonists for the treatment of posttraumatic stress disorder

    PubMed Central

    Belkin, Molly R; Schwartz, Thomas L

    2015-01-01

    Clonidine and guanfacine are alpha-2 receptor agonists that decrease sympathetic outflow from the central nervous system. Posttraumatic stress disorder (PTSD) is an anxiety disorder that is theorized to be related to a hyperactive sympathetic nervous system. Currently, the only US Food and Drug Administration (FDA)-approved medications for PTSD are the selective serotonin reuptake inhibitors (SSRIs) sertraline and paroxetine. Sometimes use of the SSRIs may not lead to full remission and symptoms of hyperarousal often persist. This article specifically reviews the literature on alpha-2 receptor agonist use for the treatment of PTSD and concludes that while the evidence base is limited, these agents might be considered useful when SSRIs fail to treat symptoms of agitation and hyperarousal in patients with PTSD. PMID:26322115

  11. Alpha-2 receptor agonists for the treatment of posttraumatic stress disorder.

    PubMed

    Belkin, Molly R; Schwartz, Thomas L

    2015-01-01

    Clonidine and guanfacine are alpha-2 receptor agonists that decrease sympathetic outflow from the central nervous system. Posttraumatic stress disorder (PTSD) is an anxiety disorder that is theorized to be related to a hyperactive sympathetic nervous system. Currently, the only US Food and Drug Administration (FDA)-approved medications for PTSD are the selective serotonin reuptake inhibitors (SSRIs) sertraline and paroxetine. Sometimes use of the SSRIs may not lead to full remission and symptoms of hyperarousal often persist. This article specifically reviews the literature on alpha-2 receptor agonist use for the treatment of PTSD and concludes that while the evidence base is limited, these agents might be considered useful when SSRIs fail to treat symptoms of agitation and hyperarousal in patients with PTSD. PMID:26322115

  12. Oleoylethanolamide, an endogenous PPAR-alpha agonist, lowers body weight and hyperlipidemia in obese rats.

    PubMed

    Fu, Jin; Oveisi, Fariba; Gaetani, Silvana; Lin, Edward; Piomelli, Daniele

    2005-06-01

    The fatty-acid ethanolamide, oleoylethanolamide (OEA), is a naturally occurring lipid that regulates feeding and body weight [Rodriguez de Fonseca, F., Navarro, M., Gomez, R., Escuredo, L., Nava, F., Fu, J., Murillo-Rodriguez, E., Giuffrida, A., LoVerme, J., Gaetani, S., Kathuria, S., Gall, C., Piomelli, D., 2001. An anorexic lipid mediator regulated by feeding. Nature 414, 209-212], and serves as an endogenous agonist of peroxisome proliferator-activated receptor-alpha (PPAR-alpha) [Fu, J., Gaetani, S., Oveisi, F., Lo Verme, J., Serrano, A., Rodriguez De Fonseca, F., Rosengarth., A., Luecke, H., Di Giacomo, B., Tarzia, G., Piomelli, D., 2003. Oleoylethanolamide regulates feeding and body weight through activation of the nuclear receptor PPAR-alpha. Nature 425, 90-93], a ligand-activated transcription factor that regulates several aspects of lipid metabolism [. Peroxisome proliferator-activated receptors: nuclear control of metabolism. Endocr. Rev. 20, 649-688]). OEA reduces food intake in wild-type mice, but not in mice deficient in PPAR-alpha (PPAR-alpha(-/-)), an effect that is also observed with the PPAR-alpha agonists Wy-14643 and GW7647 [Brown, P.J., Chapman, J.M., Oplinger, J.A., Stuart, L.W., Willson, T.M. and Wu, Z., 2000. Chemical compounds as selective activators of PPAR-alpha. PCT Int. Appl., 32; . The PPARs: from orphan receptors to drug discovery. J. Med. Chem. 43, 527-550]. By contrast, specific agonists of PPAR-delta/beta (GW501516) or PPAR-gamma (ciglitazone) have no such effect. In obese Zucker rats, which lack functional leptin receptors, OEA reduces food intake and lowers body-weight gain along with plasma lipid levels. Similar effects are seen in diet-induced obese rats and mice. In the present study, we report that subchronic OEA treatment (5mgkg(-1), intraperitoneally, i.p., once daily for two weeks) in Zucker rats initiates transcription of PPAR-alpha and other PPAR-alpha target genes, including fatty-acid translocase (FAT/CD36), liver fatty

  13. Catalposide is a natural agonistic ligand of peroxisome proliferator-activated receptor-{alpha}

    SciTech Connect

    Lee, Ji Hae; Jun, Hee-jin; Hoang, Minh-Hien; Jia, Yaoyao; Han, Xiang Hua; Lee, Dong-Ho; Lee, Hak-Ju; Hwang, Bang Yeon; Lee, Sung-Joon

    2012-06-15

    Highlights: Black-Right-Pointing-Pointer Catalposide is a novel ligand for PPAR{alpha}. Black-Right-Pointing-Pointer Cell stimulated with catalposide improved fatty acid uptake, regulated target genes in fatty acid {beta}-oxidation and synthesis. Black-Right-Pointing-Pointer Catalposdie reduces hepatic triacylglycerides. Black-Right-Pointing-Pointer Theses demonstrate catalposide could ameliorate hyperlipidemia and hepatic steatosis. -- Abstract: Peroxisome proliferator-activated receptor-alpha (PPAR{alpha}) is a nuclear receptor that regulates the expression of genes related to cellular lipid uptake and oxidation. Thus, PPAR{alpha} agonists may be important in the treatment of hypertriglyceridemia and hepatic steatosis. In this study, we demonstrated that catalposide is a novel natural PPAR{alpha} agonist, identified from reporter gene assay-based activity screening with approximately 900 natural plant and seaweed extracts. Results of time-resolved fluorescence resonance energy transfer analyses suggested that the compound interacted directly with the ligand-binding domain of PPAR{alpha}. Cultured hepatocytes stimulated with catalposide exhibited significantly reduced cellular triglyceride concentrations, by 21%, while cellular uptake of fatty acids was increased, by 70% (P < 0.05). Quantitative PCR analysis revealed that the increase in cellular fatty acid uptake was due to upregulation of fatty acid transporter protein-4 (+19% vs. the control) in cells stimulated with catalposide. Additionally, expression of genes related to fatty acid oxidation and high-density lipoprotein metabolism were upregulated, while that of genes related to fatty acid synthesis were suppressed. In conclusion, catalposide is hypolipidemic by activation of PPAR{alpha} via a ligand-mediated mechanism that modulates the expression of in lipid metabolism genes in hepatocytes.

  14. Matrix metalloproteinase-12 gene regulation by a PPAR alpha agonist in human monocyte-derived macrophages

    SciTech Connect

    Souissi, Imen Jguirim; Billiet, Ludivine; Cuaz-Perolin, Clarisse; Rouis, Mustapha

    2008-11-01

    MMP-12, a macrophage-specific matrix metalloproteinase with large substrate specificity, has been reported to be highly expressed in mice, rabbits and human atherosclerotic lesions. Increased MMP-12 from inflammatory macrophages is associated with several degenerative diseases such as atherosclerosis. In this manuscript, we show that IL-1{beta}, a proinflammatory cytokine found in atherosclerotic plaques, increases both mRNA and protein levels of MMP-12 in human monocyte-derived macrophages (HMDM). Since peroxisome proliferator-activated receptors (PPARs), such as PPAR{alpha} and PPAR{gamma}, are expressed in macrophages and because PPAR activation exerts an anti-inflammatory effect on vascular cells, we have investigated the effect of PPAR{alpha} and {gamma} isoforms on MMP-12 regulation in HMDM. Our results show that MMP-12 expression (mRNA and protein) is down regulated in IL-1{beta}-treated macrophages only in the presence of a specific PPAR{alpha} agonist, GW647, in a dose-dependent manner. In contrast, this inhibitory effect was abolished in IL-1{beta}-stimulated peritoneal macrophages isolated from PPAR{alpha}{sup -/-} mice and treated with the PPAR{alpha} agonist, GW647. Moreover, reporter gene transfection experiments using different MMP-12 promoter constructs showed a reduction of the promoter activities by {approx} 50% in IL-1{beta}-stimulated PPAR{alpha}-pre-treated cells. However, MMP-12 promoter analysis did not reveal the presence of a PPRE response element. The IL-1{beta} effect is known to be mediated through the AP-1 binding site. Mutation of the AP-1 site, located at - 81 in the MMP-12 promoter region relative to the transcription start site, followed by transfection analysis, gel shift and ChIP experiments revealed that the inhibitory effect was the consequence of the protein-protein interaction between GW 647-activated PPAR{alpha} and c-Fos or c-Jun transcription factors, leading to inhibition of their binding to the AP-1 motif. These studies

  15. Inverse agonist and pharmacochaperone properties of MK-0524 on the prostanoid DP1 receptor.

    PubMed

    Labrecque, Pascale; Roy, Sébastien J; Fréchette, Louis; Iorio-Morin, Christian; Gallant, Maxime A; Parent, Jean-Luc

    2013-01-01

    Prostaglandin D₂ (PGD₂) acts through two G protein-coupled receptors (GPCRs), the prostanoid DP receptor and CRTH2 also known as DP1 and DP2, respectively. Several previously characterized GPCR antagonists are now classified as inverse agonists and a number of GPCR ligands are known to display pharmacochaperone activity towards a given receptor. Here, we demonstrate that a DP1 specific antagonist, MK-0524 (also known as laropiprant), decreased basal levels of intracellular cAMP produced by DP1, a Gα(s)-coupled receptor, in HEK293 cells. This reduction in cAMP levels was not altered by pertussis toxin treatment, indicating that MK-0524 did not induce coupling of DP1 to Gα(i/o) proteins and that this ligand is a DP1 inverse agonist. Basal ERK1/2 activation by DP1 was not modulated by MK-0524. Interestingly, treatment of HEK293 cells expressing Flag-tagged DP1 with MK-0524 promoted DP1 cell surface expression time-dependently to reach a maximum increase of 50% compared to control after 24 h. In contrast, PGD₂ induced the internalization of 75% of cell surface DP1 after the same time of stimulation. The increase in DP1 cell surface targeting by MK-0524 was inhibited by Brefeldin A, an inhibitor of transport from the endoplasmic reticulum-Golgi to the plasma membrane. Confocal microscopy confirmed that a large population of DP1 remained trapped intracellularly and co-localized with calnexin, an endoplasmic reticulum marker. Redistribution of DP1 from intracellular compartments to the plasma membrane was observed following treatment with MK-0524 for 24 h. Furthermore, MK-0524 promoted the interaction between DP1 and the ANKRD13C protein, which we showed previously to display chaperone-like effects towards the receptor. We thus report that MK-0524 is an inverse agonist and a pharmacochaperone of DP1. Our findings may have important implications during therapeutic treatments with MK-0524 and for the development of new molecules targeting DP1. PMID:23762421

  16. Discovery of oxa-sultams as RORc inverse agonists showing reduced lipophilicity, improved selectivity and favorable ADME properties.

    PubMed

    René, Olivier; Fauber, Benjamin P; Barnard, Adrian; Chapman, Kerry; Deng, Yuzhong; Eidenschenk, Céline; Everett, Christine; Gobbi, Alberto; Johnson, Adam R; La, Hank; Norman, Maxine; Salmon, Gary; Summerhill, Susan; Wong, Harvey

    2016-09-15

    Modification of the δ-sultam ring of RORc inverse agonist 2 led to the discovery of more polar oxa-sultam 65. The less lipophilic inverse agonist (65) displayed high potency in a biochemical assay, which translated into inhibition of IL-17 production in human peripheral blood mononuclear cells. The successful reduction of lipophilicity of this new analog gave rise to additional improvements in ROR selectivity and aqueous kinetic solubility, as well as reduction in plasma protein binding, while maintaining high cellular permeability. PMID:27524313

  17. Agouti signalling protein is an inverse agonist to the wildtype and agonist to the melanic variant of the melanocortin-1 receptor in the grey squirrel (Sciurus carolinensis).

    PubMed

    McRobie, Helen R; King, Linda M; Fanutti, Cristina; Symmons, Martyn F; Coussons, Peter J

    2014-06-27

    The melanocortin-1 receptor (MC1R) is a key regulator of mammalian pigmentation. Melanism in the grey squirrel is associated with an eight amino acid deletion in the mutant melanocortin-1 receptor with 24 base pair deletion (MC1RΔ24) variant. We demonstrate that the MC1RΔ24 exhibits a higher basal activity than the wildtype MC1R (MC1R-wt). We demonstrate that agouti signalling protein (ASIP) is an inverse agonist to the MC1R-wt but is an agonist to the MC1RΔ24. We conclude that the deletion in the MC1RΔ24 leads to a receptor with a high basal activity which is further activated by ASIP. This is the first report of ASIP acting as an agonist to MC1R. PMID:24879893

  18. Agonist and antagonist effects of nicotine on chick neuronal nicotinic receptors are defined by alpha and beta subunits.

    PubMed

    Hussy, N; Ballivet, M; Bertrand, D

    1994-09-01

    1. Functional neuronal nicotinic receptors were reconstituted in Xenopus oocytes by the nuclear injection of different combinations of chick and rat cDNAs encoding alpha and beta subunits. The pharmacology of these nicotinic receptors was investigated using two-electrode voltage clamp. 2. The sensitivity of the chick alpha 3/beta 2, alpha 3/beta 4, and alpha 4/beta 2 receptors to acetylcholine (ACh) and neuronal bungarotoxin differed markedly, indicating that both subunits contribute to the pharmacological properties of the receptors. 3. Nicotine acted as an agonist on the chick alpha 3/beta 4 and alpha 4/beta 2 receptors and rat alpha 3/beta 2 receptor. In contrast, nicotine (at concentrations > 3 microM) was only a weak partial agonist of the chick alpha 3/beta 2 receptor. Moreover, nicotine coapplied with 3 microM ACh on the chick alpha 3/beta 2 receptor acted as a potent competitive antagonist, with an IC50 of 0.43 microM. No antagonist effect of nicotine could be revealed on the other nicotinic receptors. 4. The effect of nicotine was tested on hybrid receptors obtained by coinjection of chick and rat cDNAs encoding the alpha 3 and beta 2 subunits (yielding the rat alpha 3/chick beta 2 and chick alpha 3/rat beta 2 receptors). Nicotine (10 microM) strongly inhibited both hybrid receptors. 5. Chimeric subunits were constructed by exchanging a segment located in the extracellular N-termini of chick alpha 3 and alpha 4 subunits and chick alpha 3 and rat alpha 3 subunits. These subunits were coexpressed in oocytes with chick or rat beta 2 subunits. The effect of nicotine on these receptors pointed to the importance of a 15 amino acid stretch located 3' of the first transmembrane segment in the determination of the agonist and antagonist action of nicotine. 6. Within this 15 amino acid segment, a single residue differs in chick and rat alpha 3 subunits, at position 198, within the ligand binding site of alpha subunits. Gln198 of the rat alpha 3 subunit was replaced

  19. Use of alpha 2 adrenoreceptor agonists and antagonists in the functional assessment of the sympathetic nervous system.

    PubMed Central

    Robertson, D; Goldberg, M R; Tung, C S; Hollister, A S; Robertson, R M

    1986-01-01

    We studied the effects of clonidine, an alpha 2-adrenoreceptor agonist, and yohimbine, an alpha 2-adrenoreceptor antagonist, on blood pressure, heart rate, and plasma catecholamines in 12 patients with autonomic dysfunction. Clonidine (0.1 mg, orally) lowered blood pressure 18 +/- 3 torr in six subjects and raised it 5 +/- 1 torr in six. The change in blood pressure in response to this dose of clonidine was inversely proportional to the supine level of norepinephrine (P less than 0.05). Yohimbine (4-64 micrograms/kg) raised plasma norepinephrine and blood pressure in six patients with degenerative autonomic dysfunction. Yohimbine also attenuated by 50% (P less than 0.05) the hypotensive response to head-up tilt of patients with degenerative autonomic dysfunction. Clonidine depends upon postjunctional hypersensitivity and the degree of autonomic insufficiency to elicit its pressor response. In contrast, the pressor response to yohimbine is related to the capacity of the sympathetic nervous system to be activated and release norepinephrine. If plasma norepinephrine levels following yohimbine administration are monitored, the biochemical and hemodynamic response to the drug may provide a sensitive indication of the capacity of the sympathetic nervous system to be activated in patients with autonomic dysfunction. Images PMID:3734105

  20. Synthesis and evaluation of novel [alpha]-heteroaryl-phenylpropanoic acid derivatives as PPAR[alpha/gamma] dual agonists

    SciTech Connect

    Casimiro-Garcia, Agustin; Bigge, Christopher F.; Davis, Jo Ann; Padalino, Teresa; Pulaski, James; Ohren, Jeffrey F.; McConnell, Patrick; Kane, Christopher D.; Royer, Lori J.; Stevens, Kimberly A.; Auerbach, Bruce; Collard, Wendy; McGregor, Christine; Song, Kun; Pfizer

    2010-09-27

    The synthesis of a new series of phenylpropanoic acid derivatives incorporating an heteroaryl group at the {alpha}-position and their evaluation for binding and activation of PPAR{alpha} and PPAR{gamma} are presented in this report. Among the new compounds, (S)-3-{l_brace}4-[3-(5-methyl-2-phenyl-oxazol-4-yl)-propyl]-phenyl{r_brace}-2-1,2,3-triazol-2-yl-propionic acid (17j), was identified as a potent human PPAR{alpha}/{gamma} dual agonist (EC{sub 50} = 0.013 and 0.061 {micro}M, respectively) with demonstrated oral bioavailability in rat and dog. 17j was shown to decrease insulin levels, plasma glucose, and triglycerides in the ZDF female rat model. In the human apolipoprotein A-1/CETP transgenic mouse model 17j produced increases in hApoA1 and HDL-C and decreases in plasma triglycerides. The increased potency for binding and activation of both PPAR subtypes observed with 17j when compared to previous analogs in this series was explained based on results derived from crystallographic and modeling studies.

  1. Comparison of the effect of alpha1- and alpha2-adrenoceptor agonists and antagonists on muscle contractility of the rabbit abdominal aorta in vitro.

    PubMed

    Gnus, Jan; Rusiecka, Agnieszka; Czerski, Albert; Zawadzki, Wojciech; Witkiewicz, Wojciech; Hauzer, Willy

    2013-01-01

    The aim of the study was to demonstrate the effect of selected agonists and antagonists of alpha-adrenergic receptors on muscle contractility of the rabbit abdominal aorta in vitro with particular emphasis on alpha2-adrenergic receptor subtypes. The study was conducted on 30 New Zealand breed rabbits from which specimens of the abdominal aorta were collected. The sections were set up in an automatic water bath in a Krebs-Henseleit buffer at 37 degrees C. The experiments showed that alpha1-adrenergic receptors played the main role in the contractile response ofthe rabbit abdominal aorta. Stimulation of alpha1-adrenergic receptor by administration ofphenylephrine resulted in an increase in smooth muscle tonus ofthe rabbit abdominal aorta by an average of 4.75 mN. The reaction after stimulation of alpha2-adrenergic receptors by similar doses of their agonists was much weaker. Prolonged tissue response time and time needed to reach maximum tonus for alpha2-adrenergic receptor agonists were observed. The obtained results confirm the thesis that the alpha1-adrenergic receptor is the most important factor controlling the contractility of the rabbit abdominal aorta, but the alpha2-adrenergic receptor is also involved in maintaining muscle tissue tonus. PMID:23767297

  2. Identification of N-phenyl-2-(N-phenylphenylsulfonamido)acetamides as new RORγ inverse agonists: Virtual screening, structure-based optimization, and biological evaluation.

    PubMed

    Song, Yu; Xue, Xiaoqian; Wu, Xishan; Wang, Rui; Xing, Yanli; Yan, Weiqun; Zhou, Yulai; Qian, Chao-Nan; Zhang, Yan; Xu, Yong

    2016-06-30

    Retinoic acid receptor-related orphan receptors (RORs) are ligand-dependent transcriptional factors and members of the nuclear receptor superfamily. RORs regulate inflammation, metabolic disorders and circadian rhythm. RORγ is a promising therapeutic drug target for treating Th17-mediated autoimmune diseases. In our study, we performed structure-based virtual screening and ligand-based virtual screening targeting the RORγ ligand-binding domain and successfully identified N-phenyl-2-(N-phenylphenylsulfonamido) acetamides as a type of RORγ inverse agonist. Among the 28 purchased compounds, C11 was confirmed to be active with micromolar IC50 values in both an AlphaScreen assay (62.58 μM) and a cell-based reporter gene assay (4.54 μM). Structure-guided optimization of the compound C11 led to the identification of compound 39, which significantly enhanced RORγ inhibition with an IC50 value of 630 nM. The RORγ antagonism of 39 was 7-fold higher than that of hit compound C11. These results represent a promising starting point for developing potent small molecule RORγ inverse agonists for the treatment of autoimmune diseases, such as rheumatoid arthritis, psoriasis, and multiple sclerosis. PMID:27043267

  3. γ-Aminobutyric acid type A (GABA(A)) receptor subtype inverse agonists as therapeutic agents in cognition.

    PubMed

    Gabriella, Guerrini; Giovanna, Ciciani

    2010-01-01

    The gabaergic system has been identified as a relevant regulator of cognitive and emotional processing. In fact, the discovery that negative allosteric regulators (or inverse agonists) at GABA(A) (γ-aminobutyric acid) α5 subtype receptors improve learning and memory tasks, has further validated this concept. The localization of these extrasynaptic subtype receptors, mainly in the hippocampus, has suggested that they play a key role in the three stages of memory: acquisition, consolidation, and retrieval. The "α5 inverse agonist" binds to an allosteric site at GABA(A) receptor, provoking a reduction of chlorine current, but to elicit this effect, the necessary condition is the binding of agonist neurotransmitter (γ-amino butyric acid) at its orthosteric site. In this case, the GABA(A) receptor is not a "constitutively active receptor" and, however, the presence of spontaneous opening channels for native GABA(A) receptors is rare. Here, we present various classes of nonselective and α5 selective GABA(A) receptor ligands, and the in vitro and in vivo tests to elucidate their affinity and activity. The study of the GABA(A) α5 inverse agonists is one of the important tools, although not the only one, for the development of clinical strategies for treatment of Alzheimer disease and mild cognitive impairment. PMID:21050918

  4. Reconstitution of high affinity. cap alpha. /sub 2/ adrenergic agonist binding by fusion with a pertussis toxin substrate

    SciTech Connect

    Kim, M.H.; Neubig, R.R.

    1986-03-05

    High affinity ..cap alpha../sub 2/ adrenergic agonist binding is thought to occur via a coupling of the ..cap alpha../sub 2/ receptor with N/sub i/, the inhibitory guanyl nucleotide binding protein. Human platelet membranes pretreated at pH 11.5 exhibit a selective inactivation of agonist binding and N/sub i/. To further study the mechanism of agonist binding, alkali treated membranes (ATM) were mixed with membranes pretreated with 10 ..mu..M phenoxybenzamine to block ..cap alpha../sub 2/ receptors (POB-M). The combined membrane pellet was incubated in 50% polyethylene glycol (PEG) to promote membrane-membrane fusion and assayed for binding to the ..cap alpha../sub 2/ agonist (/sup 3/H)UK 14,304 (UK) and the antagonist (/sup 3/H) yohimbine. PEG treatment resulted in a 2-4 fold enhancement of UK binding whereas yohimbine binding was unchanged. No enhancement of UK binding was observed in the absence of PEG treatment. The reconstitution was dependent on the addition of POB-M. They found that a 1:1 ratio of POB-M:ATM was optimal. Reconstituted binding was inhibited by GppNHp. Fusion of rat C6 glioma cell membranes, which do not contain ..cap alpha../sub 2/ receptors, also enhanced agonist binding to ATM. Fusion of C6 membranes from cells treated with pertussis toxin did not enhance (/sup 3/H) UK binding. These data show that a pertussis toxin sensitive membrane component, possibly N/sub i/, can reconstitute high affinity ..cap alpha../sub 2/ agonist binding.

  5. Benzodioxoles: novel cannabinoid-1 receptor inverse agonists for the treatment of obesity.

    PubMed

    Alig, Leo; Alsenz, Jochem; Andjelkovic, Mirjana; Bendels, Stefanie; Bénardeau, Agnès; Bleicher, Konrad; Bourson, Anne; David-Pierson, Pascale; Guba, Wolfgang; Hildbrand, Stefan; Kube, Dagmar; Lübbers, Thomas; Mayweg, Alexander V; Narquizian, Robert; Neidhart, Werner; Nettekoven, Matthias; Plancher, Jean-Marc; Rocha, Cynthia; Rogers-Evans, Mark; Röver, Stephan; Schneider, Gisbert; Taylor, Sven; Waldmeier, Pius

    2008-04-10

    The application of the evolutionary fragment-based de novo design tool TOPology Assigning System (TOPAS), starting from a known CB1R (CB-1 receptor) ligand, followed by further refinement principles, including pharmacophore compliance, chemical tractability, and drug likeness, allowed the identification of benzodioxoles as a novel CB1R inverse agonist series. Extensive multidimensional optimization was rewarded by the identification of promising lead compounds, showing in vivo activity. These compounds reversed the CP-55940-induced hypothermia in Naval Medical Research Institute (NMRI) mice and reduced body-weight gain, as well as fat mass, in diet-induced obese Sprague-Dawley rats. Herein, we disclose the tools and strategies that were employed for rapid hit identification, synthesis and generation of structure-activity relationships, ultimately leading to the identification of (+)-[( R)-2-(2,4-dichloride-phenyl)-6-fluoro-2-(4-fluoro-phenyl)-benzo[1,3]dioxol-5-yl]-morpholin-4-yl-methanone ( R)-14g . Biochemical, pharmacokinetic, and pharmacodynamic characteristics of ( R)-14g are discussed. PMID:18335976

  6. The discovery of taranabant, a selective cannabinoid-1 receptor inverse agonist for the treatment of obesity.

    PubMed

    Hagmann, William K

    2008-07-01

    The cannabinoid-1 receptor (CB1R) has emerged as one of the most important targets for the treatment of obesity. Pioneering studies with rimonabant helped to validate animal models of food intake reduction and weight loss and made the connection to weight loss in the clinic. A novel, acyclic amide was identified from a high throughput screen (HTS) of the Merck sample collection and found to be a potent and selective CB1R inhibitor. Further optimization led to more potent compounds that were orally active in reducing food intake and weight loss in diet-induced obese (DIO) rats. However, many of these analogues exhibited a high potential for bioactivation and the formation of reactive intermediates and covalent protein binding. Identification of the products of oxidative metabolism guided medicinal chemistry efforts to minimize the formation of these unwanted products. These efforts resulted in the identification of the CB1R inverse agonist, taranabant, which is currently in Phase-III clinical studies for the treatment of obesity. This mini-review will describe some of the medicinal chemistry strategies that were followed from the original high throughput screen hit to the discovery of taranabant. PMID:18574849

  7. Inverse agonist of nuclear receptor ERRγ mediates antidiabetic effect through inhibition of hepatic gluconeogenesis.

    PubMed

    Kim, Don-Kyu; Gang, Gil-Tae; Ryu, Dongryeol; Koh, Minseob; Kim, Yo-Na; Kim, Su Sung; Park, Jinyoung; Kim, Yong-Hoon; Sim, Taebo; Lee, In-Kyu; Choi, Cheol Soo; Park, Seung Bum; Lee, Chul-Ho; Koo, Seung-Hoi; Choi, Hueng-Sik

    2013-09-01

    Type 2 diabetes mellitus (T2DM) is a progressive metabolic disorder with diverse pathological manifestations and is often associated with abnormal regulation of hepatic glucose production. Many nuclear receptors known to control the hepatic gluconeogenic program are potential targets for the treatment of T2DM and its complications. Nevertheless, the therapeutic potential of the estrogen-related receptor γ (ERRγ) in T2DM remains unknown. In this study, we show that the nuclear receptor ERRγ is a major contributor to hyperglycemia under diabetic conditions by controlling hepatic glucose production. Hepatic ERRγ expression induced by fasting and diabetic conditions resulted in elevated levels of gluconeogenic gene expression and blood glucose in wild-type mice. Conversely, ablation of hepatic ERRγ gene expression reduced the expression of gluconeogenic genes and normalized blood glucose levels in mouse models of T2DM: db/db and diet-induced obesity (DIO) mice. In addition, a hyperinsulinemic-euglycemic clamp study and long-term studies of the antidiabetic effects of GSK5182, the ERRγ-specific inverse agonist, in db/db and DIO mice demonstrated that GSK5182 normalizes hyperglycemia mainly through inhibition of hepatic glucose production. Our findings suggest that the ability of GSK5182 to control hepatic glucose production can be used as a novel therapeutic approach for the treatment of T2DM. PMID:23775767

  8. Inverse Agonist of Nuclear Receptor ERRγ Mediates Antidiabetic Effect Through Inhibition of Hepatic Gluconeogenesis

    PubMed Central

    Kim, Don-Kyu; Gang, Gil-Tae; Ryu, Dongryeol; Koh, Minseob; Kim, Yo-Na; Kim, Su Sung; Park, Jinyoung; Kim, Yong-Hoon; Sim, Taebo; Lee, In-Kyu; Choi, Cheol Soo; Park, Seung Bum; Lee, Chul-Ho; Koo, Seung-Hoi; Choi, Hueng-Sik

    2013-01-01

    Type 2 diabetes mellitus (T2DM) is a progressive metabolic disorder with diverse pathological manifestations and is often associated with abnormal regulation of hepatic glucose production. Many nuclear receptors known to control the hepatic gluconeogenic program are potential targets for the treatment of T2DM and its complications. Nevertheless, the therapeutic potential of the estrogen-related receptor γ (ERRγ) in T2DM remains unknown. In this study, we show that the nuclear receptor ERRγ is a major contributor to hyperglycemia under diabetic conditions by controlling hepatic glucose production. Hepatic ERRγ expression induced by fasting and diabetic conditions resulted in elevated levels of gluconeogenic gene expression and blood glucose in wild-type mice. Conversely, ablation of hepatic ERRγ gene expression reduced the expression of gluconeogenic genes and normalized blood glucose levels in mouse models of T2DM: db/db and diet-induced obesity (DIO) mice. In addition, a hyperinsulinemic-euglycemic clamp study and long-term studies of the antidiabetic effects of GSK5182, the ERRγ-specific inverse agonist, in db/db and DIO mice demonstrated that GSK5182 normalizes hyperglycemia mainly through inhibition of hepatic glucose production. Our findings suggest that the ability of GSK5182 to control hepatic glucose production can be used as a novel therapeutic approach for the treatment of T2DM. PMID:23775767

  9. Modification of certain pharmacological effects of ethanol by lipophilic alpha-1 adrenergic agonists

    SciTech Connect

    Menon, M.K.; Dinovo, E.C.; Haddox, V.G.

    1987-09-28

    The influence of four centrally-acting alpha-1 adrenoceptor agonists, namely, 2(2-chloro-5-trifluoromethylphenylimino) imidazolidine (St 587), cirazoline, (-) 1,2,3,4-tetrahydro-8-methoxy-5-methylthio-2-naphthalenamine ((-)SKF 89748A) and 2-(2-methylindazol-4-imino)imidazolidine (Sgd 101/75) on the pharmacological effects of ethanol was investigated. All four drugs reduced the duration of ethanol-induced hypnosis in C57B1/6 mice, this effect being proportional to their relative potencies to exert central alpha-1 agonism. In prazosin-pretreated mice, St 587 failed to reduce the hypnotic effect of ethanol, which provided strong evidence for the role of alpha-1 agonism for the hypnosis reducing effect of St 587. Hyperactivity induced in C57B1/6 mice by a subhypnotic dose of ethanol and St 587 was reported earlier. In the present study, St 587, cirazoline and (-)SKF 89748A produced similar response, but no correlation between this effect and ethanol hypnosis blockade could be established. 19 references, 8 figures, 2 tables.

  10. Neuroprotective and memory-related actions of novel alpha-7 nicotinic agents with different mixed agonist/antagonist properties.

    PubMed

    Meyer, E M; Tay, E T; Zoltewicz, J A; Meyers, C; King, M A; Papke, R L; De Fiebre, C M

    1998-03-01

    The goals of this study were to develop compounds that were selective and highly efficacious agonists at alpha-7 receptors, while varying in antagonist activity; and to test the hypothesis that these compounds had memory-related and neuroprotective actions associated with both agonist and antagonist alpha-7 receptor activities. Three compounds were identified; E,E-3-(cinnamylidene)anabaseine (3-CA), E,E-3-(2-methoxycinnamylidene) anabaseine (2-MeOCA) and E,E-3-(4-methoxycinnamylidene) anabaseine (4-MeOCA) each displaced [125I]alpha-bungarotoxin binding from rat brain membranes and activated rat alpha-7 receptors in a Xenopus oocyte expression system fully efficaciously. The potency series for binding and receptor activation was 2-MeOCA > 4-MeOCA = 3-CA and 2-MeOCA = 3-CA > 4-MeOCA, respectively. No compound significantly activated oocyte-expressed alpha-4beta-2 receptors. Although each cinnamylidene-anabaseine caused a long-term inhibition of alpha-7 receptors, as measured by ACh-application 5 min later, this inhibition ranged considerably, from less than 20% (3-CA) to 90% (2-MeOCA) at an identical concentration (10 microM). These compounds improved passive avoidance behavior in nucleus basalis lesioned rats, with 2-MeOCA most potent in this respect. In contrast, only 3-CA was neuroprotective against neurite loss during nerve growth factor deprivation in differentiated rat pheochromocytoma (PC12) cells. Choline, an efficacious alpha-7 agonist without antagonist activity, was also protective in this model. These results suggest that the neurite-protective action of alpha-7 receptor agonists may be more sensitive to potential long-term antagonist properties than acute behavioral actions are. PMID:9495863

  11. Reduction in lipophilicity improved the solubility, plasma-protein binding, and permeability of tertiary sulfonamide RORc inverse agonists.

    PubMed

    Fauber, Benjamin P; René, Olivier; de Leon Boenig, Gladys; Burton, Brenda; Deng, Yuzhong; Eidenschenk, Céline; Everett, Christine; Gobbi, Alberto; Hymowitz, Sarah G; Johnson, Adam R; La, Hank; Liimatta, Marya; Lockey, Peter; Norman, Maxine; Ouyang, Wenjun; Wang, Weiru; Wong, Harvey

    2014-08-15

    Using structure-based drug design principles, we identified opportunities to reduce the lipophilicity of our tertiary sulfonamide RORc inverse agonists. The new analogs possessed improved RORc cellular potencies with >77-fold selectivity for RORc over other nuclear receptors in our cell assay suite. The reduction in lipophilicity also led to an increased plasma-protein unbound fraction and improvements in cellular permeability and aqueous solubility. PMID:25017032

  12. Structural Optimization of Ghrelin Receptor Inverse Agonists to Improve Lipophilicity and Avoid Mechanism-Based CYP3A4 Inactivation.

    PubMed

    Takahashi, Bitoku; Funami, Hideaki; Shibata, Makoto; Maruoka, Hiroshi; Koyama, Makoto; Kanki, Satomi; Muto, Tsuyoshi

    2015-01-01

    Structural optimization of 2-aminonicotinamide derivatives as ghrelin receptor inverse agonists is reported. So as to avoid mechanism-based inactivation (MBI) of CYP3A4, 1,3-benzodioxol ring of the lead compound was modified. Improvement of the main activity and lipophilicity was achieved simultaneously, leading to compound 18a, which showed high lipophilic ligand efficiency (LLE) and low MBI activity. PMID:26423040

  13. IFN-alpha/beta-dependent cross-priming induced by specific toll-like receptor agonists.

    PubMed

    Durand, Vanessa; Wong, Simon Y C; Tough, David F; Le Bon, Agnes

    2006-04-12

    Toll-like receptors (TLR) are pattern recognition receptors that have been identified as crucial in the initiation of innate immune responses against pathogens. They are thought to be involved in shaping appropriate adaptive immune responses, although their precise contribution has not yet been fully characterised. Our aim was to investigate in vivo the effect of different TLR stimuli on cellular immune responses. We examined the ability of a range of TLR stimuli to induce CD8+ T cell responses against a model soluble protein antigen, ovalbumin (OVA). We found that TLR 3, TLR 4, and TLR 9 agonists induced functional cross-priming, and that this process was dependent on IFN-alpha/beta signalling pathway. PMID:16823911

  14. Berberine is a potent agonist of peroxisome proliferator activated receptor alpha.

    PubMed

    Yu, Huarong; Li, Changqing; Yang, Junqing; Zhang, Tao; Zhou, Qixin

    2016-01-01

    Although berberine has hypolipidemic effects with a high affinity to nuclear proteins, the underlying molecular mechanism for this effect remains unclear. Here, we determine whether berberine is an agonist of peroxisome proliferator-activated receptor alpha (PPARalpha), with a lipid-lowering effect. The cell-based reporter gene analysis showed that berberine selectively activates PPARalpha (EC50 =0.58 mM, Emax =102.4). The radioligand binding assay shows that berberine binds directly to the ligand-binding domain of PPARalpha (Ki=0.73 mM) with similar affinity to fenofibrate. The mRNA and protein levels of CPT-Ialpha gene from HepG2 cells and hyperlipidemic rat liver are remarkably up-regulated by berberine, and this effect can be blocked by MK886, a non-competitive antagonist of PPARalpha. A comparison assay in which berberine and fenofibrate were used to treat hyperlipidaemic rats for three months shows that these drugs produce similar lipid-lowering effects, except that berberine increases high-density lipoprotein cholesterol more effectively than fenofibrate. These findings provide the first evidence that berberine is a potent agonist of PPARalpha and seems to be superior to fenofibrate for treating hyperlipidemia. PMID:27100490

  15. Synthesis and biological evaluation of novel 4-hydroxytamoxifen analogs as estrogen-related receptor gamma inverse agonists.

    PubMed

    Kim, Jina; Chin, Jungwook; Im, Chun Young; Yoo, Eun Kyung; Woo, Seoyeon; Hwang, Hee Jong; Cho, Joong-Heui; Seo, Kyung-Ah; Song, Jaeyoung; Hwang, Hayoung; Kim, Kyung-Hee; Kim, Nam Doo; Yoon, Suk Kyoon; Jeon, Jae-Han; Yoon, Seung-Yun; Jeon, Yong Hyun; Choi, Hueng-Sik; Lee, In-Kyu; Kim, Seong Heon; Cho, Sung Jin

    2016-09-14

    Estrogen-related receptor gamma (ERRγ) has recently been recognized as an attractive target for treating inflammation, cancer, and metabolic disorders. Herein, we discovered and demonstrated the in vitro pharmacology as well as the absorption, distribution, metabolism, excretion, and toxicity (ADMET) properties of chemical entities that could act as highly selective inverse agonists for ERRγ. The results were comparable to those for GSK5182 (4), a leading ERRγ inverse agonist ligand. Briefly, the half-maximal inhibitory concentration (IC50) range of the synthesized compounds for ERRγ was 0.1-10 μM. Impressively, compound 24e exhibited potency comparable to 4 but was more selective for ERRγ over three other subtypes: ERRα, ERRβ, and estrogen receptor α. Furthermore, compound 24e exhibited a superior in vitro ADMET profile compared to the other compounds. Thus, the newly synthesized class of ERRγ inverse agonists could be lead candidates for developing clinical therapies for ERRγ-related disorders. PMID:27236015

  16. Efficacy of inverse agonists in cells overexpressing a constitutively active β2-adrenoceptor and type II adenylyl cyclase

    PubMed Central

    Stevens, Patricia A; Milligan, Graeme

    1998-01-01

    Maximal stimulant output from the adenylyl cyclase cascade in neuroblastoma × glioma hybrid, NG108-15, cells is limited by the levels of expression of isoforms of adenylyl cyclase. Stable expression in these cells of a constitutively active mutant (CAM) version of the human β2-adrenoceptor resulted in higher basal adenylyl cyclase activity than following expression of the human wild type β2-adrenoceptor. Isoprenaline acted as a full agonist in membranes from both wild type and CAM β2-adrenoceptor expressing clones.Expression of type II adenylyl cyclase resulted in a substantially elevated capacity of isoprenaline to stimulate [3H]-forskolin binding, whereas in CAM β2-adrenoceptor expressing cells the basal high affinity [3H]-forskolin binding represented a markedly greater % of the maximal effect which could be produced by addition of isoprenaline, and the EC50 for isoprenaline was some 10 fold lower than in cells expressing the wild type β2-adrenoceptor.Further transfection of the CAM β2-adrenoceptor expressing cells with type II adenylyl cyclase greatly increased both absolute basal and agonist-stimulated levels of adenylyl cyclase activity.Betaxolol, ICI 118,551, sotalol and timolol acted as inverse agonists with varying degrees of efficacy, whereas propranolol functioned as a neutral antagonist and alprenolol as a partial agonist.Pretreatment of the CAM β2-adrenoceptor and type II adenylyl cyclase expressing clones with the irreversible alkylating agent BAAM (1 μM) did not reduce the efficacy of isoprenaline but eliminated efficacy from all the inverse agonist ligands. This effect was dependent upon the concentration of BAAM employed, with half-maximal effects being produced between 10 nM and 100 nM of the alkylating agent, which is similar to the concentrations required to prevent subsequent ligand access to some 50% of the CAM β2-adrenoceptor population.These data demonstrate that inverse agonist efficacy can be modulated by receptor

  17. The inverse agonist of CB1 receptor SR141716 blocks compulsive eating of palatable food.

    PubMed

    Dore, Riccardo; Valenza, Marta; Wang, Xiaofan; Rice, Kenner C; Sabino, Valentina; Cottone, Pietro

    2014-09-01

    Dieting and the increased availability of highly palatable food are considered major contributing factors to the large incidence of eating disorders and obesity. This study was aimed at investigating the role of the cannabinoid (CB) system in a novel animal model of compulsive eating, based on a rapid palatable diet cycling protocol. Male Wistar rats were fed either continuously a regular chow diet (Chow/Chow, control group) or intermittently a regular chow diet for 2 days and a palatable, high-sucrose diet for 1 day (Chow/Palatable). Chow/Palatable rats showed spontaneous and progressively increasing hypophagia and body weight loss when fed the regular chow diet, and excessive food intake and body weight gain when fed the palatable diet. Diet-cycled rats dramatically escalated the intake of the palatable diet during the first hour of renewed access (7.5-fold compared to controls), and after withdrawal, they showed compulsive eating and heightened risk-taking behavior. The inverse agonist of the CB1 receptor, SR141716 reduced the excessive intake of palatable food with higher potency and the body weight with greater efficacy in Chow/Palatable rats, compared to controls. Moreover, SR141716 reduced compulsive eating and risk-taking behavior in Chow/Palatable rats. Finally, consistent with the behavioral and pharmacological observations, withdrawal from the palatable diet decreased the gene expression of the enzyme fatty acid amide hydrolase in the ventromedial hypothalamus while increasing that of CB1 receptors in the dorsal striatum in Chow/Palatable rats, compared to controls. These findings will help understand the role of the CB system in compulsive eating. PMID:23587012

  18. Electrophysiological studies in cultured mouse CNS neurones of the actions of an agonist and an inverse agonist at the benzodiazepine receptor.

    PubMed Central

    Jensen, M. S.; Lambert, J. D.

    1986-01-01

    The action of agents which bind with the benzodiazepine (BZ) receptor has been investigated by use of intracellular recordings from dissociated mouse neurones grown in tissue culture. The agents tested were midazolam (an agonist at the BZ receptor) and methyl 6,7-dimethoxy-4-ethyl-beta-carboline-3-carboxylate (DMCM-an inverse agonist at the BZ receptor). These were applied to the neurone under study by one of the following methods: iontophoresis; pressure application of known concentrations from blunt pipettes; directly in the perfusing medium. On only very few occasions did midazolam or DMCM have a direct effect on the membrane potential (EM) or conductance (GM) of the impaled neurone. For the neurones where direct effects were present, there was no consistent pattern of response. Neither substance affected the threshold for action potential generation. The effect of midazolam and DMCM on responses evoked by iontophoretic application of gamma-aminobutyric acid (GABA) was also investigated. Three parameters were used to quantify GABA responses: the depolarization (VGABA); the increase in GM (gGABA) measured with constant current pulses; using voltage clamp, the GABA current (IGABA). The GABA response should be quantified by a parameter which is linearly related to the number of GABA-operated channels which are conducting at any instant. VGABA does not fulfil this criterion. gGABA is an appropriate parameter, but is difficult to determine for large responses where the membrane is nearly short circuited. IGABA measured during voltage clamp fulfils this criterion. Midazolam (greater than 10(-6) M) reliably potentiated GABA responses with a parallel shift to the left of the dose-response curve. This is in agreement with biochemical studies where BZs increase the affinity of the GABA receptor for its ligand. The effect of DMCM on GABA responses was more variable. In the majority of cases GABA responses were reduced by DMCM. The threshold dose for this depression was

  19. Synergistic acceleration of thyroid hormone degradation by phenobarbital and the PPAR{alpha} agonist WY14643 in rat hepatocytes

    SciTech Connect

    Wieneke, N.; Neuschaefer-Rube, F.; Bode, L.M.; Kuna, M.; Andres, J.; Carnevali, L.C.; Hirsch-Ernst, K.I.; Pueschel, G.P.

    2009-10-01

    Energy balance is maintained by controlling both energy intake and energy expenditure. Thyroid hormones play a crucial role in regulating energy expenditure. Their levels are adjusted by a tight feedback-controlled regulation of thyroid hormone production/incretion and by their hepatic metabolism. Thyroid hormone degradation has previously been shown to be enhanced by treatment with phenobarbital or other antiepileptic drugs due to a CAR-dependent induction of phase II enzymes of xenobiotic metabolism. We have recently shown, that PPAR{alpha} agonists synergize with phenobarbital to induce another prototypical CAR target gene, CYP2B1. Therefore, it was tested whether a PPAR{alpha} agonist could enhance the phenobarbital-dependent acceleration of thyroid hormone elimination. In primary cultures of rat hepatocytes the apparent half-life of T3 was reduced after induction with a combination of phenobarbital and the PPAR{alpha} agonist WY14643 to a larger extent than after induction with either compound alone. The synergistic reduction of the half-life could be attributed to a synergistic induction of CAR and the CAR target genes that code for enzymes and transporters involved in the hepatic elimination of T3, such as OATP1A1, OATP1A3, UGT1A3 and UGT1A10. The PPAR{alpha}-dependent CAR induction and the subsequent induction of T3-eliminating enzymes might be of physiological significance for the fasting-induced reduction in energy expenditure by fatty acids as natural PPAR{alpha} ligands. The synergism of the PPAR{alpha} agonist WY14643 and phenobarbital in inducing thyroid hormone breakdown might serve as a paradigm for the synergistic disruption of endocrine control by other combinations of xenobiotics.

  20. Identification and molecular docking studies for novel inverse agonists of SREB, super conserved receptor expressed in brain.

    PubMed

    Yanai, Toshihiro; Kurosawa, Aya; Nikaido, Yoshiaki; Nakajima, Nozomi; Saito, Tamio; Osada, Hiroyuki; Konno, Ayumu; Hirai, Hirokazu; Takeda, Shigeki

    2016-07-01

    The identification of novel synthetic ligands for G protein-coupled receptors (GPCRs) is important not only for understanding human physiology, but also for the development of novel drugs, especially for orphan GPCRs for which endogenous ligands are unknown. One of the orphan GPCR subfamilies, Super conserved Receptor Expressed in Brain (SREB), consists of GPR27, GPR85 and GPR173 and is expressed in the central nervous system. We report herein the identification of inverse agonists for the SREB family without their agonists. We carried out an in vitro screening of 5472 chemical compounds from the RIKEN NPDepo chemical library. The binding of [(35) S]GTPγS to the GPR173-Gsα fusion protein expressed in Sf9 cells was measured and resulted in the identification of 8 novel GPR173 inverse agonists. The most potent compound showed an IC50 of approximately 8 μm. The identified compounds were also antagonists for other SREB members, GPR27 and GPR85. These results indicated that the SREB family could couple Gs-type G proteins, and SREB-Gsα fusion proteins showed significant constitutive activities. Moreover, a molecular model of GPR173 was constructed using the screening results. The combination of computational and biological methods will provide a unique approach to ligand identification for orphan GPCRs and brain research. PMID:27184081

  1. Agonist-independent internalization of metabotropic glutamate receptor 1a is arrestin- and clathrin-dependent and is suppressed by receptor inverse agonists.

    PubMed

    Pula, Giordano; Mundell, Stuart J; Roberts, Peter J; Kelly, Eamonn

    2004-05-01

    Three group I mGluR antagonists CPCCOEt, LY367385 and BAY36-7620, were analyzed for their effect on cell surface expression of metabotropic glutamate receptor 1a and 1b. All three antagonists inhibited glutamate-induced internalization of mGluR1a and mGluR1b. However, when added alone, either LY367385 or BAY36-7620 increased the cell surface expression of mGluR1a but not mGluR1b. Both LY367385 and BAY36-7620 displayed inverse agonist activity as judged by their ability to inhibit basal inositol phosphate accumulation in cells expressing the constitutively active mGluR1a. Interestingly, mGluR1a but not mGluR1b was constitutively internalized in HEK293 cells and both LY367385 and BAY36-7620 inhibited the constitutive internalization of this splice variant. Furthermore, coexpression of dominant negative mutant constructs of arrestin-2 [arrestin-2-(319-418)] or Eps15 [Eps15(E Delta 95-295)] increased cell surface expression of mGluR1a and blocked constitutive receptor internalization. In the presence of these dominant negative mutants, incubation of cells with LY367385 and BAY36-7620 produced no further increase in cell surface expression of mGluR1a. Taken together, these results suggest that the constitutive activity of mGluR1a triggers the internalization of the receptor through an arrestin- and clathrin-dependent pathway, and that inverse agonists increase the cell surface expression of mGluR1a by promoting an inactive form of mGluR1a, which does not undergo constitutive internalization. PMID:15140199

  2. The inhibitory effects of alpha(2)-adrenoceptor agonists on gastrointestinal transit during croton oil-induced intestinal inflammation.

    PubMed Central

    Pol, O.; Valle, L.; Ferrer, I.; Puig, M. M.

    1996-01-01

    1. The peripheral effects of alpha(2)-adrenoceptor agonists were investigated in a model of intestinal inflammation induced by intragastric administration of croton oil (CO). Our hypothesis was that inflammation would 'sensitize' adrenoceptors in peripheral and/or central terminals of myenteric and submucous plexus neurones, and enhance systemic effects of alpha(2)-adrenoceptor agonists. 2. Male swiss CD-1 mice, received intragastrically CO (0.05 ml), castor oil (CA, 0.1 ml) or saline (SS) 3 h before the study: gastrointestinal transit (GIT) was evaluated 20 min afterwards with a charcoal meal. The presence of inflammation was assessed by electron microscopy. 3. The intragastric administration of CA or CO caused an increase in GIT and weight loss, but only CO induced an inflammatory response. Both clonidine (imidazoline1/alpha(2)-agonist) and UK-14304 (alpha(2)-agonist) produced dose-related inhibitions of GIT in all groups. During inflammatory diarrhoea (CO), potencies of systemic (s.c.) clonidine and UK-14304 were significantly increased 3.5 and 2.1 times, respectively, while potencies remained unaltered in the presence of diarrhoea without inflammation (CA). The effects were reversed by administration (s.c.) of receptor-specific adrenoceptor antagonists, but not by naloxone. 4. Clonidine was 8.3 (SS) and 2.8 (CO) times more potent when administered intracerebroventricularly (i.c.v.), than when administered s.c. Inflammation of the gut did not alter the potency of i.c.v. clonidine, demonstrating that enhanced effects of s.c. clonidine are mediated by peripheral receptors. During inflammation, i.c.v. efaroxan did not antagonize low doses of s.c. clonidine (ED20 and ED50S), but partially reversed ED80S, further supporting the peripheral effects of the agonists in CO treated animals. 5. The results demonstrate that inflammation of the gut enhances the potency of alpha(2)-adrenoceptor agonists by a peripheral mechanism. The results also suggest that the inflammatory

  3. Agonist-promoted desensitization and phosphorylation of. cap alpha. /sub 1/-adrenergic receptors coupled to stimulation of phosphatidylinositol metabolism

    SciTech Connect

    Leeb-Lundberg, L.M.F.; Cotecchia, S.; Caron, M.G.; Lefkowitz, R.J.

    1986-03-05

    In the DDT/sub 1/ MF-2 hamster vas deferens smooth muscle cell line the ..cap alpha../sub 1/-adrenergic receptor (..cap alpha../sub 1/-AR) agonist norepinephrine (NE) promotes rapid attenuation of ..cap alpha../sub 1/-AR-mediated phosphatidylinositol (PI) metabolism which is paralleled by rapid phosphorylation of the ..cap alpha../sub 1/-AR. Cells were labeled by incubation with /sup 32/P/sub i/. Coincubation with NE (100 ..mu..M) significantly increases the rate of /sup 32/P-labeling of both PI and phosphatidic acid. Pretreatment of cells with 100 ..mu..M NE (in the presence of 1 ..mu..M propranolol to prevent ..beta..-AR interactions) results in a drastic attenuation of the NE response on PI metabolism. ..cap alpha../sub 1/-AR from labeled cells can be solubilized and purified by affinity chromatography on Affigel-A55414 and wheat germ agglutinin agarose chromatography. SDS-PAGE of purified ..cap alpha../sub 1/-AR shows a NE-promoted increase in phosphorylation of the M/sub r/ 80K ligand binding peptide. Stoichiometry of phosphorylation increases from approx. 1 mol phosphate/mol ..cap alpha../sub 1/-AR in the basal condition to approx. 2.5 after NE treatment. Both desensitization and phosphorylation are rapid being maximal within 10-20 min of agonist exposure. These results together with previous findings that phorbol esters promote rapid ..cap alpha../sub 1/-AR uncoupling and phosphorylation suggest that receptor phosphorylation is an important mechanism of regulation of ..cap alpha../sub 1/-AR receptor responsiveness.

  4. Alpha-2 agonists for sedation of mechanically ventilated adults in intensive care units: a systematic review.

    PubMed Central

    Cruickshank, Moira; Henderson, Lorna; MacLennan, Graeme; Fraser, Cynthia; Campbell, Marion; Blackwood, Bronagh; Gordon, Anthony; Brazzelli, Miriam

    2016-01-01

    BACKGROUND Care of critically ill patients in intensive care units (ICUs) often requires potentially invasive or uncomfortable procedures, such as mechanical ventilation (MV). Sedation can alleviate pain and discomfort, provide protection from stressful or harmful events, prevent anxiety and promote sleep. Various sedative agents are available for use in ICUs. In the UK, the most commonly used sedatives are propofol (Diprivan(®), AstraZeneca), benzodiazepines [e.g. midazolam (Hypnovel(®), Roche) and lorazepam (Ativan(®), Pfizer)] and alpha-2 adrenergic receptor agonists [e.g. dexmedetomidine (Dexdor(®), Orion Corporation) and clonidine (Catapres(®), Boehringer Ingelheim)]. Sedative agents vary in onset/duration of effects and in their side effects. The pattern of sedation of alpha-2 agonists is quite different from that of other sedatives in that patients can be aroused readily and their cognitive performance on psychometric tests is usually preserved. Moreover, respiratory depression is less frequent after alpha-2 agonists than after other sedative agents. OBJECTIVES To conduct a systematic review to evaluate the comparative effects of alpha-2 agonists (dexmedetomidine and clonidine) and propofol or benzodiazepines (midazolam and lorazepam) in mechanically ventilated adults admitted to ICUs. DATA SOURCES We searched major electronic databases (e.g. MEDLINE without revisions, MEDLINE In-Process & Other Non-Indexed Citations, EMBASE and Cochrane Central Register of Controlled Trials) from 1999 to 2014. METHODS Evidence was considered from randomised controlled trials (RCTs) comparing dexmedetomidine with clonidine or dexmedetomidine or clonidine with propofol or benzodiazepines such as midazolam, lorazepam and diazepam (Diazemuls(®), Actavis UK Limited). Primary outcomes included mortality, duration of MV, length of ICU stay and adverse events. One reviewer extracted data and assessed the risk of bias of included trials. A second reviewer cross-checked all the

  5. Epidural anesthesia and postoperatory analgesia with alpha-2 adrenergic agonists and lidocaine for ovariohysterectomy in bitches

    PubMed Central

    Pohl, Virgínia H.; Carregaro, Adriano B.; Lopes, Carlize; Gehrcke, Martielo I.; Muller, Daniel C.M.; Garlet, Clarissa D.

    2012-01-01

    The aim of this study was to determine the viability and cardiorespiratory effects of the association of epidural alpha-2 adrenergic agonists and lidocaine for ovariohysterectomy (OH) in bitches. Forty-two bitches were spayed under epidural anesthesia with 2.5 mg/kg body weight (BW) of 1% lidocaine with adrenaline (CON) or in association with 0.25 mg/kg BW of xylazine (XYL), 10 μg/kg BW of romifidine (ROM), 30 μg/kg BW of detomidine (DET), 2 μg/kg BW of dexmedetomidine (DEX), or 5 μg/kg BW of clonidine (CLO). Heart rate (HR), respiratory rate (fR) and arterial pressures were monitored immediately before and every 10 min after the epidural procedure. Blood gas and pH analysis were done before, and at 30 and 60 min after the epidural procedure. Animals were submitted to isoflurane anesthesia if they presented a slightest sign of discomfort during the procedure. Time of sensory epidural block and postoperative analgesia were evaluated. All animals in CON and DEX, 5 animals in ROM and CLO, 4 animals in XYL, and 3 in DET required supplementary isoflurane. All groups, except CLO, showed a decrease in HR. There was an increase in arterial pressures in all groups. Postoperative analgesia lasted the longest in XYL. None of the protocols were totally efficient to perform the complete procedure of OH; however, xylazine provided longer postoperative analgesia than the others. PMID:23277701

  6. p-( sup 125 I)iodoclonidine, a novel radiolabeled agonist for studying central alpha 2-adrenergic receptors

    SciTech Connect

    Baron, B.M.; Siegel, B.W. )

    1990-09-01

    Unlabeled p-iodoclonidine was efficacious in attenuating forskolin-stimulated cAMP accumulation in SK-N-SH neuroblastoma cells. Maximal attenuation was 76 +/- 3%, with an EC50 of 347 +/- 60 nM. Comparable values of epinephrine were 72 +/- 3% and 122 +/- 22 nM. Responses to both agonists were abolished by 10 microM phentolamine. Therefore, p-iodoclonidine is an agonist in a cell culture model system of the neuronal alpha 2-adrenergic receptor. p-(125I)Iodoclonidine binding to membranes were measured using various regions of the rat brain. The agonist labeled a single population of sites present on cerebral cortical membranes, which was saturable (Bmax = 230 fmol/mg of protein) and possessed high affinity for the ligand (Kd = 0.6 nM). Binding was largely specific (93% at 0.6 nM). A variety of alpha 2-adrenergic agonists and antagonists were shown to compete for the binding of the radioligand. The binding of p-(125I)iodoclonidine was much less sensitive to agents that interact with alpha 1-adrenergic, serotonergic, and dopaminergic receptors. Approximately 65% of the binding was sensitive to guanine nucleotides. Association kinetics using 0.4 nM radioligand were biphasic (37% associate rapidly, with kobs = 0.96 min-1, with the remainder binding more slowly, with kobs = 0.031 min-1) and reached a plateau by 90 min at 25 degrees. Dissociation kinetics were also biphasic, with 30% of the binding dissociating rapidly (k1 = 0.32 min-1) and the remainder dissociating 50-fold more slowly (k2 = 0.006 min-1). Agonist binding is, therefore, uniquely complex and probably reflects the conformational changes that accompany receptor activation.

  7. Different contractile effects of alpha1- and alpha2-adrenergic agonists on horse isolated common digital artery smooth muscle ring preparations in vitro.

    PubMed

    Cavalli, M; Carcano, R; Beretta, C

    2002-10-01

    Despite assays on ring preparations in vitro confirmed that the vasoconstrictor sympathetic control in the horse common digital artery mainly depends on alpha(1)-adrenoceptors stimulation, selective alpha(2)-adrenoceptor agonists were investigated under the same experimental conditions. Both detomidine (DET) and UK 14304 differed from noradrenaline (NA) and phenylephrine (PHE) in provoking contractile effects which were slowly onsetting, concentrations-unrelated and unremovable by repeated washings. While prazosin (PRA) clearly antagonized the effects of NA and PHE, neither pre- nor post-treatments of the preparations with alpha(2)-antagonists succeeded in antagonizing or removing the effects of the two alpha(2)-agonists tested, which moreover were unaffectable either by lowering the organ bath temperature or by depriving the nutritive medium of Ca(2+). To explain this unusual behavior of alpha(2)-adrenoceptors stimulation it has been hypothesized that a Ca(2+) mobilization from the endoplasmic reticulum of the smooth muscle cell occurs which is followed by a hindered reuptake of them. PMID:12361691

  8. Effect of peroxisome proliferator-activated receptor-alpha agonist (bezafibrate) on gastric secretion and gastric cytoprotection in rats.

    PubMed

    Pathak, Rahul; Asad, Mohammed; Hrishikeshavan, H Jagannath; Prasad, Satya

    2007-06-01

    The effect of peroxisome proliferator-activated receptor-alpha (PPAR-alpha) on gastric secretion and gastric cytoprotection was evaluated using five different models of gastric ulcers: acetic acid-induced chronic gastric ulcers, pylorus ligation, ethanol-induced, indomethacin-induced and ischemia-reperfusion-induced gastric ulcers. Bezafibrate, a PPAR-alpha agonist was administered at two different doses of 10 and 100 mg/kg body weight intraperitoneanally. Both doses of bezafibrate showed significant antiulcer effect in ethanol-induced, indomethacin-induced and pylorus ligation-induced gastric ulcers. Bezafibrate increased healing of ulcer in acetic acid-induced chronic gastric ulcer model. Both doses were also effective in preventing gastric lesions induced by ischemia-reperfusion. It was concluded that PPAR-alpha activation increases healing of gastric ulcers and also prevents development of gastric ulcers in rats. PMID:17521298

  9. Recognition of base pair inversions in duplex by chimeric (alpha,beta) triplex-forming oligonucleotides.

    PubMed

    Timofeev, Edward N; Goryaeva, Baira V; Florentiev, Vladimir L

    2006-10-01

    DNA recognition by triplex-forming oligonucleotides (TFOs) is usually limited by homopurine-homopyrimidine sequence in duplexes. Modifications of the third strand may overcome this limitation. Chimeric alpha-beta TFOs are expected to form triplex DNA upon binding to non-regular sequence duplexes. In the present study we describe binding properties of chimeric alpha-beta oligodeoxynucleotides in the respect to short DNA duplexes with one, three, and five base pair inversions. Non-natural chimeric TFO's contained alpha-thymidine residues inside (GT) or (GA) core sequences. Modified residues were addressed to AT/TA inversions in duplexes. It was found in the non-denaturing gel-electrophoresis experiments that single or five adjacent base pair inversions in duplexes may be recognized by chimeric alpha-beta TFO's at 10 degrees C and pH 7.8. Three dispersed base pair inversions in the double stranded DNA prevented triplex formation by either (GT) or (GA) chimeras. Estimation of thermal stability of chimeric alpha-beta triplexes showed decrease in T(m) values as compared with unmodified complexes. PMID:16928141

  10. Inverse agonist of estrogen-related receptor γ controls Salmonella typhimurium infection by modulating host iron homeostasis.

    PubMed

    Kim, Don-Kyu; Jeong, Jae-Ho; Lee, Ji-Min; Kim, Kwang Soo; Park, Seung-Hwan; Kim, Yong Deuk; Koh, Minseob; Shin, Minsang; Jung, Yoon Seok; Kim, Hyung-Seok; Lee, Tae-Hoon; Oh, Byung-Chul; Kim, Jae Il; Park, Hwan Tae; Jeong, Won-Il; Lee, Chul-Ho; Park, Seung Bum; Min, Jung-Joon; Jung, Sook-In; Choi, Seok-Yong; Choy, Hyon E; Choi, Hueng-Sik

    2014-04-01

    In response to microbial infection, expression of the defensin-like peptide hepcidin (encoded by Hamp) is induced in hepatocytes to decrease iron release from macrophages. To elucidate the mechanism by which Salmonella enterica var. Typhimurium (S. typhimurium), an intramacrophage bacterium, alters host iron metabolism for its own survival, we examined the role of nuclear receptor family members belonging to the NR3B subfamily in mouse hepatocytes. Here, we report that estrogen-related receptor γ (ERRγ, encoded by Esrrg) modulates the intramacrophage proliferation of S. typhimurium by altering host iron homeostasis, and we demonstrate an antimicrobial effect of an ERRγ inverse agonist. Hepatic ERRγ expression was induced by S. typhimurium-stimulated interleukin-6 signaling, resulting in an induction of hepcidin and eventual hypoferremia in mice. Conversely, ablation of ERRγ mRNA expression in liver attenuated the S. typhimurium-mediated induction of hepcidin and normalized the hypoferremia caused by S. typhimurium infection. An inverse agonist of ERRγ ameliorated S. typhimurium-mediated hypoferremia through reduction of ERRγ-mediated hepcidin mRNA expression and exerted a potent antimicrobial effect on the S. typhimurium infection, thereby improving host survival. Taken together, these findings suggest an alternative approach to control multidrug-resistant intracellular bacteria by modulating host iron homeostasis. PMID:24658075

  11. Synthesis and biological activities of indolizine derivatives as alpha-7 nAChR agonists.

    PubMed

    Xue, Yu; Tang, Jingshu; Ma, Xiaozhuo; Li, Qing; Xie, Bingxue; Hao, Yuchen; Jin, Hongwei; Wang, Kewei; Zhang, Guisen; Zhang, Liangren; Zhang, Lihe

    2016-06-10

    Human α7 nicotinic acetylcholine receptor (nAChR) is a promising therapeutic target for the treatment of schizophrenia accompanied with cognitive impairment. Herein, we report the synthesis and agonistic activities of a series of indolizine derivatives targeting to α7 nAChR. The results show that all synthesized compounds have affinity to α7 nAChR and some give strong agonistic activity, particularly most active agonists show higher potency than control EVP-6124. The docking and structure-activity relationship studies provide insights to develop more potent novel α7 nAChR agonists. PMID:26994846

  12. Exploring clustering in alpha-conjugate nuclei using the thick target inverse kinematic technique for multiple alpha emission

    NASA Astrophysics Data System (ADS)

    Barbui, M.; Hagel, K.; Gauthier, J.; Wuenschel, S.; Goldberg, V. Z.; Zheng, H.; Giuliani, G.; Rapisarda, G.; Kim, E.-J.; Liu, X.; Natowitz, J. B.; Desouza, R. T.; Hudan, S.; Fang, D.

    2015-10-01

    Searching for alpha cluster states analogous to the 12C Hoyle state in heavier alpha-conjugate nuclei can provide tests of the existence of alpha condensates in nuclear matter. Such states are predicted for 16O, 20Ne, 24Mg, etc. at excitation energies slightly above the decay threshold. The Thick Target Inverse Kinematics (TTIK) technique can be successfully used to study the breakup of excited self-conjugate nuclei into many alpha particles. The reaction 20Ne + α at 11 and 13 AMeV was studied at Cyclotron Institute at Texas A&M University. Here the TTIK method was used to study both single α-particle emission and multiple α-particle decays. Due to the limited statistics, only events with alpha multiplicity up to three were analyzed. The analysis of the three α-particle emission data allowed the identification of the Hoyle state and other 12C excited states decaying into three alpha particles. The results will be shown and compared with other data available in the literature. Another experiment is planned in August 2015 to study the system 28Si + α at 15 AMeV. Preliminary results will be shown. Supported by the U.S. DOE and the Robert A. Welch Foundation, Grant No. A0330.

  13. Benzodiazepine recognition site inverse agonists Ro-15-4513 and FG 7142 both antagonize the EEG effects of ethanol in the rat

    SciTech Connect

    Marrosu, F.; Mereu, G.; Giorgi, O.; Corda, M.G.

    1988-01-01

    The aim of the present study was to compare the ability of Ro 15-4513 and FG 7142, two inverse agonists for benzodiazepine recognition sites, to antagonize the EEG effects of ethanol in freely moving rats. Ethanol induced sedation and ataxia associated with a progressive suppression of the fast cortical activities and an enhancement of low frequencies in both cortical and hippocampal tracings. In contrast, Ro 15-4513 and FG 7142 both caused a state of alertness associated with desynchronized cortical activity and theta hippocampal rhythm as well as spiking activity which was predominantly observed in the cortical tracings. When rats were treated with FG 7142 or Ro 15-4513 either before or after ethanol, a reciprocal antagonism of the behavioral and EEG effects of ethanol and of the partial inverse agonists was observed. These data support the view that the anti-ethanol effects of Ro 15-4513 may be related to its partial inverse agonist properties.

  14. The conjugated linoleic acid isomer trans-9,trans-11 is a dietary occurring agonist of liver X receptor {alpha}

    SciTech Connect

    Ecker, Josef; Liebisch, Gerhard; Patsch, Wolfgang; Schmitz, Gerd

    2009-10-30

    Conjugated linoleic acid (CLA) isomers are dietary fatty acids that modulate gene expression in many cell types. We have previously reported that specifically trans-9,trans-11 (t9,t11)-CLA induces expression of genes involved in lipid metabolism of human macrophages. To elucidate the molecular mechanism underlying this transcriptional activation, we asked whether t9,t11-CLA affects activity of liver X receptor (LXR) {alpha}, a major regulator of macrophage lipid metabolism. Here we show that t9,t11-CLA is a regulator of LXR{alpha}. We further demonstrate that the CLA isomer induces expression of direct LXR{alpha} target genes in human primary macrophages. Knockdown of LXR{alpha} with RNA interference in THP-1 cells inhibited t9,t11-CLA mediated activation of LXR{alpha} including its target genes. To evaluate the effective concentration range of t9,t11-CLA, human primary macrophages were treated with various doses of CLA and well known natural and synthetic LXR agonists and mRNA expression of ABCA1 and ABCG1 was analyzed. Incubation of human macrophages with 10 {mu}M t9,t11-CLA led to a significant modulation of ABCA1 and ABCG1 transcription and caused enhanced cholesterol efflux to high density lipoproteins and apolipoprotein AI. In summary, these data show that t9,t11-CLA is an agonist of LXR{alpha} in human macrophages and that its effects on macrophage lipid metabolism can be attributed to transcriptional regulations associated with this nuclear receptor.

  15. Scientific Rationale for the Use of Alpha-Adrenergic Agonists and Glucocorticoids in the Therapy of Pediatric Stridor

    PubMed Central

    Nino, Gustavo; Baloglu, Orkun; Gutierrez, Maria J.; Schwartz, Michael

    2011-01-01

    Purpose. The most common pharmacological therapies used in the treatment of stridor in children are glucocorticosteroids (GC) and alpha-adrenergic (αAR) agonists. Despite the long-standing reported efficacy of these medications, there is a paucity of data relating to their actual mechanisms of action in the upper airway. Summary. There is compelling scientific evidence supporting the use of αAR-agonists and GCs in pediatric stridor. αAR signaling and GCs regulate the vasomotor tone in the upper airway mucosa. The latter translates into better airflow dynamics, as delineated by human and nonhuman upper airway physiological models. In turn, clinical trials have demonstrated that GCs and the nonselective αAR agonist, epinephrine, improve respiratory distress scores and reduce the need for further medical care in children with stridor. Future research is needed to investigate the role of selective αAR agonists and the potential synergism of GCs and αAR-signaling in the treatment of upper airway obstruction and stridor. PMID:22220172

  16. Regulation of ingestive behaviors in the rat by GSK1521498, a novel micro-opioid receptor-selective inverse agonist.

    PubMed

    Ignar, Diane M; Goetz, Aaron S; Noble, Kimberly Nichols; Carballo, Luz Helena; Stroup, Andrea E; Fisher, Julie C; Boucheron, Joyce A; Brainard, Tracy A; Larkin, Andrew L; Epperly, Andrea H; Shearer, Todd W; Sorensen, Scott D; Speake, Jason D; Hommel, Jonathan D

    2011-10-01

    μ-Opioid receptor (MOR) agonism induces palatable food consumption principally through modulation of the rewarding properties of food. N-{[3,5-difluoro-3'-(1H-1,2,4-triazol-3-yl)-4-biphenylyl]methyl}-2,3-dihydro-1H-inden-2-amine (GSK1521498) is a novel opioid receptor inverse agonist that, on the basis of in vitro affinity assays, is greater than 10- or 50-fold selective for human or rat MOR, respectively, compared with κ-opioid receptors (KOR) and δ-opioid receptors (DOR). Likewise, preferential MOR occupancy versus KOR and DOR was observed by autoradiography in brain slices from Long Evans rats dosed orally with the drug. GSK1521498 suppressed nocturnal food consumption of standard or palatable chow in lean and diet-induced obese (DIO) Long Evans rats. Both the dose-response relationship and time course of efficacy in lean rats fed palatable chow correlated with μ receptor occupancy and the plasma concentration profile of the drug. Chronic oral administration of GSK1521498 induced body weight loss in DIO rats, which comprised fat mass reduction. The reduction in body weight was equivalent to the cumulative reduction in food consumption; thus, the effect of GSK1521498 on body weight is related to inhibition of food consumption. GSK1521498 suppressed the preference for sucrose-containing solutions in lean rats. In operant response models also using lean rats, GSK1521498 reduced the reinforcement efficacy of palatable food reward and enhanced satiety. In conclusion, GSK1521498 is a potent, MOR-selective inverse agonist that modulates the hedonic aspects of ingestion and, therefore, could represent a pharmacological treatment for obesity and binge-eating disorders. PMID:21712426

  17. The Use of the LanthaScreen TR-FRET CAR Coactivator Assay in the Characterization of Constitutive Androstane Receptor (CAR) Inverse Agonists

    PubMed Central

    Carazo, Alejandro; Pávek, Petr

    2015-01-01

    The constitutive androstane receptor (CAR) is a critical nuclear receptor in the gene regulation of xenobiotic and endobiotic metabolism. The LanthaScreenTM TR-FRET CAR coactivator assay provides a simple and reliable method to analyze the affinity of a ligand to the human CAR ligand-binding domain (LBD) with no need to use cellular models. This in silico assay thus enables the study of direct CAR ligands and the ability to distinguish them from the indirect CAR activators that affect the receptor via the cell signaling-dependent phosphorylation of CAR in cells. For the current paper we characterized the pharmacodynamic interactions of three known CAR inverse agonists/antagonists—PK11195, clotrimazole and androstenol—with the prototype agonist CITCO (6-(4-chlorophenyl)imidazo[2,1-b][1,3]thiazole-5-carbaldehyde-O-(3,4-dichlorobenzyl)oxime) using the TR-FRET LanthaScreenTM assay. We have confirmed that all three compounds are inverse agonists of human CAR, with IC50 0.51, 0.005, and 0.35 μM, respectively. All the compounds also antagonize the CITCO-mediated activation of CAR, but only clotrimazole was capable to completely reverse the effect of CITCO in the tested concentrations. Thus this method allows identifying not only agonists, but also antagonists and inverse agonists for human CAR as well as to investigate the nature of the pharmacodynamic interactions of CAR ligands. PMID:25905697

  18. The Use of the LanthaScreen TR-FRET CAR Coactivator Assay in the Characterization of Constitutive Androstane Receptor (CAR) Inverse Agonists.

    PubMed

    Carazo, Alejandro; Pávek, Petr

    2015-01-01

    The constitutive androstane receptor (CAR) is a critical nuclear receptor in the gene regulation of xenobiotic and endobiotic metabolism. The LanthaScreen(TM) TR-FRET CAR coactivator assay provides a simple and reliable method to analyze the affinity of a ligand to the human CAR ligand-binding domain (LBD) with no need to use cellular models. This in silico assay thus enables the study of direct CAR ligands and the ability to distinguish them from the indirect CAR activators that affect the receptor via the cell signaling-dependent phosphorylation of CAR in cells. For the current paper we characterized the pharmacodynamic interactions of three known CAR inverse agonists/antagonists-PK11195, clotrimazole and androstenol-with the prototype agonist CITCO (6-(4-chlorophenyl)imidazo[2,1-b][1,3] thiazole-5-carbaldehyde-O-(3,4-dichlorobenzyl)oxime) using the TR-FRET LanthaScreen(TM) assay. We have confirmed that all three compounds are inverse agonists of human CAR, with IC50 0.51, 0.005, and 0.35 μM, respectively. All the compounds also antagonize the CITCO-mediated activation of CAR, but only clotrimazole was capable to completely reverse the effect of CITCO in the tested concentrations. Thus this method allows identifying not only agonists, but also antagonists and inverse agonists for human CAR as well as to investigate the nature of the pharmacodynamic interactions of CAR ligands. PMID:25905697

  19. Agonist-dependent single channel current and gating in alpha4beta2delta and alpha1beta2gamma2S GABAA receptors.

    PubMed

    Keramidas, Angelo; Harrison, Neil L

    2008-02-01

    The family of gamma-aminobutyric acid type A receptors (GABA(A)Rs) mediates two types of inhibition in the mammalian brain. Phasic inhibition is mediated by synaptic GABA(A)Rs that are mainly comprised of alpha(1), beta(2), and gamma(2) subunits, whereas tonic inhibition is mediated by extrasynaptic GABA(A)Rs comprised of alpha(4/6), beta(2), and delta subunits. We investigated the activation properties of recombinant alpha(4)beta(2)delta and alpha(1)beta(2)gamma(2S) GABA(A)Rs in response to GABA and 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3(2H)-one (THIP) using electrophysiological recordings from outside-out membrane patches. Rapid agonist application experiments indicated that THIP produced faster opening rates at alpha(4)beta(2)delta GABA(A)Rs (beta approximately 1600 s(-1)) than at alpha(1)beta(2)gamma(2S) GABA(A)Rs (beta approximately 460 s(-1)), whereas GABA activated alpha(1)beta(2)gamma(2S) GABA(A)Rs more rapidly (beta approximately 1800 s(-1)) than alpha(4)beta(2)delta GABA(A)Rs (beta < 440 s(-1)). Single channel recordings of alpha(1)beta(2)gamma(2S) and alpha(4)beta(2)delta GABA(A)Rs showed that both channels open to a main conductance state of approximately 25 pS at -70 mV when activated by GABA and low concentrations of THIP, whereas saturating concentrations of THIP elicited approximately 36 pS openings at both channels. Saturating concentrations of GABA elicited brief (<10 ms) openings with low intraburst open probability (P(O) approximately 0.3) at alpha(4)beta(2)delta GABA(A)Rs and at least two "modes" of single channel bursting activity, lasting approximately 100 ms at alpha(1)beta(2)gamma(2S) GABA(A)Rs. The most prevalent bursting mode had a P(O) of approximately 0.7 and was described by a reaction scheme with three open and three shut states, whereas the "high" P(O) mode ( approximately 0.9) was characterized by two shut and three open states. Single channel activity elicited by THIP in alpha(4)beta(2)delta and alpha(1)beta(2)gamma(2S) GABA

  20. Co-crystal structure guided array synthesis of PPAR[gamma] inverse agonists

    SciTech Connect

    Trump, Ryan P.; Cobb, Jeffrey E.; Shearer, Barry G.; Lambert, Millard H.; Nolte, Robert T.; Willson, Timothy M.; Buckholz, Richard G.; Zhao, Sumin M.; Leesnitzer, Lisa M.; Iannone, Marie A.; Pearce, Kenneth H.; Billin, Andrew N.; Hoekstra, William J.

    2008-10-02

    PPAR{gamma}-activating thiazolidinediones and carboxylic acids such as farglitazar exert their anti-diabetic effects in part in PPAR{gamma} rich adipose. Both pro- and anti-adipogenic PPAR{gamma} ligands promote glucose and lipid lowering in animal models of diabetes. Herein, we disclose representatives of an array of 160 farglitazar analogues with atypical inverse agonism of PPAR{gamma} in mature adipocytes.

  1. Alpha Ridge: Oceanic or Continental Crust? Constraints from Crustal Thickness Mapping using Gravity Inversion

    NASA Astrophysics Data System (ADS)

    Kusznir, N. J.; Alvey, A.

    2010-12-01

    The ocean basins of the Arctic formed during the Late Jurassic, Cretaceous and Tertiary as a series of small distinct ocean basins leading to a complex distribution of oceanic crust, thinned continental crust and rifted continental margins. The structure and origin of the Alpha and Mendeleev Ridges within the Amerasia Basin are contentious; possibilities include thick oceanic crust formed by ocean ridge - mantle plume interaction, micro-continents or thinned continental crust with mantle plume volcanic addition. We use gravity inversion, incorporating a lithosphere thermal gravity anomaly correction, to map Moho depth, crustal thickness and continental lithosphere thinning factor for the Amerasia Basin in order to determine the distribution of oceanic and continental lithosphere and the ocean-continent transition location. Data used in the gravity inversion are gravity data from the NGA (U) Arctic Gravity Project, IBCAO bathymetry and sediment thickness from Laske et al. (1997). Our gravity inversion predicts thin crust (5-10 km thickness) and high continental lithosphere thinning factors in the Makarov, Podvodnikov, Nautilus and Canada Basins consistent with these basins being oceanic or highly thinned continental crust. Larger crustal thicknesses, in the range 20-30 km, are predicted for the Alpha, Mendeleev and Lomonosov Ridges. Moho depths predicted by gravity inversion compare well with estimates from the TransArctica-Arctica seismic profiles. Moho depths from the gravity inversion are dependent on the age of oceanic lithosphere and continental breakup because of the lithosphere thermal gravity anomaly correction; these ages are uncertain for the Amerasia Basin. Gravity inversion sensitivities to break-up ages between 150 Ma (late Jurassic Triassic) and 60 Ma (early Tertiary) have been examined. Alpha Ridge has in its centre a crustal thickness of 25-30 km and possesses sharp angular edges. While Alpha Ridge has been compared with Iceland for structure and

  2. Virtual screening studies of Chinese medicine Coptidis Rhizoma as alpha7 nicotinic acetylcholine receptor agonists for treatment of Alzheimer's disease

    NASA Astrophysics Data System (ADS)

    Xiang, Li; Xu, Youdong; Zhang, Yan; Meng, Xianli; Wang, Ping

    2015-04-01

    Alzheimer's disease (AD) is an age-related neurodegenerative disease. Extensive in vitro and in vivo experiments have proved that the decreased activity of the cholinergic neuron is responsible for the memory and cognition deterioration. The alpha7 nicotinic acetylcholine receptor (α7-nAChR) is proposed to a drug target of AD, and compounds which acting as α7-nAChR agonists are considered as candidates in AD treatment. Chinese medicine CoptidisRhizoma and its compounds are reported in various anti-AD effects. In this study, virtual screening, docking approaches and hydrogen bond analyses were applied to screen potential α7-nAChR agonists from CoptidisRhizome. The 3D structure of the protein was obtained from PDB database. 87 reported compounds were included in this research and their structures were accessed by NCBI Pubchem. Docking analysis of the compounds was performed using AutoDock 4.2 and AutoDock Vina. The images of the binding modes hydrogen bonds and the hydrophobic interaction were rendered with PyMOL1.5.0.4. and LigPlot+ respectively. Finally, N-tran-feruloyltyramine, isolariciresinol, flavanone, secoisolariciresinol, (+)-lariciresinol and dihydrochalcone, exhibited the lowest docking energy of protein-ligand complex. The results indicate these 6 compounds are potential α7 nAChR agonists, and expected to be effective in AD treatment.

  3. Statins and PPAR{alpha} agonists induce myotoxicity in differentiated rat skeletal muscle cultures but do not exhibit synergy with co-treatment

    SciTech Connect

    Johnson, Timothy E. . E-mail: Timothy_Johnson@merck.com; Zhang, Xiaohua; Shi, Shu; Umbenhauer, Diane R.

    2005-11-01

    Statins and fibrates (weak PPAR{alpha} agonists) are prescribed for the treatment of lipid disorders. Both drugs cause myopathy, but with a low incidence, 0.1-0.5%. However, combined statin and fibrate therapy can enhance myopathy risk. We tested the myotoxic potential of PPAR subtype selective agonists alone and in combination with statins in a differentiated rat myotube model. A pharmacologically potent experimental PPAR{alpha} agonist, Compound A, induced myotoxicity as assessed by TUNEL staining at a minimum concentration of 1 nM, while other weaker PPAR{alpha} compounds, for example, WY-14643, Gemfibrozil and Bezafibrate increased the percentage of TUNEL-positive nuclei at micromolar concentrations. In contrast, the PPAR{gamma} agonist Rosiglitazone caused little or no cell death at up to 10 {mu}M and the PPAR{delta} ligand GW-501516 exhibited comparatively less myotoxicity than that seen with Compound A. An experimental statin (Compound B) and Atorvastatin also increased the percentage of TUNEL-positive nuclei and co-treatment with WY-14643, Gemfibrozil or Bezafibrate had less than a full additive effect on statin-induced cell killing. The mechanism of PPAR{alpha} agonist-induced cell death was different from that of statins. Unlike statins, Compound A and WY-14643 did not activate caspase 3/7. In addition, mevalonate and geranylgeraniol reversed the toxicity caused by statins, but did not prevent the cell killing induced by WY-14643. Furthermore, unlike statins, Compound A did not inhibit the isoprenylation of rab4 or rap1a. Interestingly, Compound A and Compound B had differential effects on ATP levels. Taken together, these observations support the hypothesis that in rat myotube cultures, PPAR{alpha} agonism mediates in part the toxicity response to PPAR{alpha} compounds. Furthermore, PPAR{alpha} agonists and statins cause myotoxicity through distinct and independent pathways.

  4. The Novel, Nicotinic Alpha7 Receptor Partial Agonist, BMS-933043, Improves Cognition and Sensory Processing in Preclinical Models of Schizophrenia.

    PubMed

    Bristow, Linda J; Easton, Amy E; Li, Yu-Wen; Sivarao, Digavalli V; Lidge, Regina; Jones, Kelli M; Post-Munson, Debra; Daly, Christopher; Lodge, Nicholas J; Gallagher, Lizbeth; Molski, Thaddeus; Pieschl, Richard; Chen, Ping; Hendricson, Adam; Westphal, Ryan; Cook, James; Iwuagwu, Christiana; Morgan, Daniel; Benitex, Yulia; King, Dalton; Macor, John E; Zaczek, Robert; Olson, Richard

    2016-01-01

    The development of alpha7 nicotinic acetylcholine receptor agonists is considered a promising approach for the treatment of cognitive symptoms in schizophrenia patients. In the present studies we characterized the novel agent, (2R)-N-(6-(1H-imidazol-1-yl)-4-pyrimidinyl)-4'H-spiro[4-azabicyclo[2.2.2]octane-2,5'-[1,3]oxazol]-2'-amine (BMS-933043), in vitro and in rodent models of schizophrenia-like deficits in cognition and sensory processing. BMS-933043 showed potent binding affinity to native rat (Ki = 3.3 nM) and recombinant human alpha7 nicotinic acetylcholine receptors (Ki = 8.1 nM) and agonist activity in a calcium fluorescence assay (EC50 = 23.4 nM) and whole cell voltage clamp electrophysiology (EC50 = 0.14 micromolar (rat) and 0.29 micromolar (human)). BMS-933043 exhibited a partial agonist profile relative to acetylcholine; the relative efficacy for net charge crossing the cell membrane was 67% and 78% at rat and human alpha7 nicotinic acetylcholine receptors respectively. BMS-933043 showed no agonist or antagonist activity at other nicotinic acetylcholine receptor subtypes and was at least 300 fold weaker at binding to and antagonizing human 5-HT3A receptors (Ki = 2,451 nM; IC50 = 8,066 nM). BMS-933043 treatment i) improved 24 hour novel object recognition memory in mice (0.1-10 mg/kg, sc), ii) reversed MK-801-induced deficits in Y maze performance in mice (1-10 mg/kg, sc) and set shift performance in rats (1-10 mg/kg, po) and iii) reduced the number of trials required to complete the extradimensional shift discrimination in neonatal PCP treated rats performing the intra-dimensional/extradimensional set shifting task (0.1-3 mg/kg, po). BMS-933043 also improved auditory gating (0.56-3 mg/kg, sc) and mismatch negativity (0.03-3 mg/kg, sc) in rats treated with S(+)ketamine or neonatal phencyclidine respectively. Given this favorable preclinical profile BMS-933043 was selected for further development to support clinical evaluation in humans. PMID:27467081

  5. The Novel, Nicotinic Alpha7 Receptor Partial Agonist, BMS-933043, Improves Cognition and Sensory Processing in Preclinical Models of Schizophrenia

    PubMed Central

    Bristow, Linda J.; Easton, Amy E.; Li, Yu-Wen; Sivarao, Digavalli V.; Lidge, Regina; Jones, Kelli M.; Post-Munson, Debra; Daly, Christopher; Lodge, Nicholas J.; Gallagher, Lizbeth; Molski, Thaddeus; Pieschl, Richard; Chen, Ping; Hendricson, Adam; Westphal, Ryan; Cook, James; Iwuagwu, Christiana; Morgan, Daniel; Benitex, Yulia; King, Dalton; Macor, John E.; Zaczek, Robert; Olson, Richard

    2016-01-01

    The development of alpha7 nicotinic acetylcholine receptor agonists is considered a promising approach for the treatment of cognitive symptoms in schizophrenia patients. In the present studies we characterized the novel agent, (2R)-N-(6-(1H-imidazol-1-yl)-4-pyrimidinyl)-4'H-spiro[4-azabicyclo[2.2.2]octane-2,5'-[1,3]oxazol]-2'-amine (BMS-933043), in vitro and in rodent models of schizophrenia-like deficits in cognition and sensory processing. BMS-933043 showed potent binding affinity to native rat (Ki = 3.3 nM) and recombinant human alpha7 nicotinic acetylcholine receptors (Ki = 8.1 nM) and agonist activity in a calcium fluorescence assay (EC50 = 23.4 nM) and whole cell voltage clamp electrophysiology (EC50 = 0.14 micromolar (rat) and 0.29 micromolar (human)). BMS-933043 exhibited a partial agonist profile relative to acetylcholine; the relative efficacy for net charge crossing the cell membrane was 67% and 78% at rat and human alpha7 nicotinic acetylcholine receptors respectively. BMS-933043 showed no agonist or antagonist activity at other nicotinic acetylcholine receptor subtypes and was at least 300 fold weaker at binding to and antagonizing human 5-HT3A receptors (Ki = 2,451 nM; IC50 = 8,066 nM). BMS-933043 treatment i) improved 24 hour novel object recognition memory in mice (0.1–10 mg/kg, sc), ii) reversed MK-801-induced deficits in Y maze performance in mice (1–10 mg/kg, sc) and set shift performance in rats (1–10 mg/kg, po) and iii) reduced the number of trials required to complete the extradimensional shift discrimination in neonatal PCP treated rats performing the intra-dimensional/extradimensional set shifting task (0.1–3 mg/kg, po). BMS-933043 also improved auditory gating (0.56–3 mg/kg, sc) and mismatch negativity (0.03–3 mg/kg, sc) in rats treated with S(+)ketamine or neonatal phencyclidine respectively. Given this favorable preclinical profile BMS-933043 was selected for further development to support clinical evaluation in humans. PMID

  6. The effect of ionophore A23187 on calcium ion fluxes and alpha-adrenergic-agonist action in perfused rat liver.

    PubMed Central

    Reinhart, P H; Taylor, W M; Bygrave, F L

    1983-01-01

    The effect of ionophore A23187 on cellular Ca2+ fluxes, glycogenolysis and respiration was examined in perfused liver. At low extracellular Ca2+ concentrations (less than 4 microM), A23187 induced the mobilization of intracellular Ca2+ and stimulated the rate of glycogenolysis and respiration. As the extracellular Ca2+ concentration was elevated, biphasic cellular Ca2+ fluxes were observed, with Ca2+ uptake preceding Ca2+ efflux. Under these conditions, both the glycogenolytic response and the respiratory response also became biphasic, allowing the differentiation between the effects of extracellular and intracellular Ca2+. Under all conditions examined the rate of Ca2+ efflux induced by A23187 was much slower than the rate of phenylephrine-induced Ca2+ efflux, although the net amounts of Ca2+ effluxed were similar for both agents. The effect of A23187 on phenylephrine-induced Ca2+ fluxes, glycogenolysis and respiration is dependent on the extracellular Ca2+ concentration. At concentrations of less than 50 microM-Ca2+, A23187 only partially inhibited alpha-agonist action, whereas at 1.3 mM-Ca2+ almost total inhibition was observed. The action of A23187 at the cellular level is complex, dependent on the experimental conditions used, and shows both differences from and similarities to the hepatic action of alpha-adrenergic agonists. PMID:6412701

  7. Different affinity states of alpha-1 adrenergic receptors defined by agonists and antagonists in bovine aorta plasma membranes

    SciTech Connect

    Jagadeesh, G.; Deth, R.C.

    1987-11-01

    Evidence for a nonlinear relationship between alpha-1 adrenergic receptor occupancy and tissue responses, together with the finding of different affinity states for agonist binding, has raised the possibility of functional heterogeneity of alpha-1 adrenergic receptors. We have conducted studies to examine: 1) binding characteristics of (/sup 3/H)prazosin, 2) competition of antagonists at these sites and 3) different affinity states of the receptor for agonists and modulation of these states by 5'-guanylylimidodiphosphate (Gpp(NH)p). A plasma membrane-enriched vesicular fraction (F2; 15%/33% sucrose interphase) was prepared from the muscular medial layer of bovine thoracic aorta. (/sup 3/H)Prazosin binding was characterized by a monophasic saturation isotherm (KD = 0.116 nM, Bmax = 112 fmol/mg of protein). Antagonist displacement studies yielded a relative potency order of prazosin greater than or equal to WB4104 much greater than phentolamine greater than corynanthine greater than yohimbine greater than or equal to idazoxan greater than rauwolscine. Competition curves for unlabeled prazosin, WB4101 (2-(2,6-dimethoxyphenoxyethyl)-aminomethyl-1,4 benzodioxane) and phentolamine were shallow and were best modeled to two binding sites with picomolar and nanomolar KD values. Gpp(NH)p was without effect on antagonist affinity. Agonist (epinephrine, norepinephrine and phenylephrine) competition with (/sup 3/H)prazosin binding was biphasic with pseudo-Hill slopes less than 1.0. Binding was best described by a two-site model in which the average contribution of high affinity sites was 23% of total binding. KD values for the high affinity site ranged from 2.9 to 18 nM, and 3.9 to 5.0 microM for the low affinity site.

  8. A quantitative analysis of antagonism and inverse agonism at wild-type and constitutively active hamster alpha1B-adrenoceptors.

    PubMed

    Hein, P; Goepel, M; Cotecchia, S; Michel, M C

    2001-01-01

    In order to characterize inverse agonism at alpha1B-adrenoceptors, we have compared the concentration-response relationships of several quinazoline and non-quinazoline alpha1-adrenoceptor antagonists at cloned hamster wild-type (WT) alpha1B-adrenoceptors and a constitutively active mutant (CAM) thereof upon stable expression in Rat-1 fibroblasts. Receptor activation or inhibition thereof was assessed as [3H]inositol phosphate (IP) accumulation. Quinazoline (alfuzosin, doxazosin, prazosin, terazosin) and non-quinazoline alpha1-adrenoceptor antagonists (BE 2254, SB 216,469, tamsulosin) concentration-dependently inhibited phenylephrine-stimulated IP formation at both WT and CAM with Ki values similar to those previously found in radioligand binding studies. At CAM in the absence of phenylephrine, the quinazolines produced concentration-dependent inhibition of basal IP formation; the maximum inhibition was approximately 55%, and the corresponding EC50 values were slightly smaller than the Ki values. In contrast, BE 2254 produced much less inhibition of basal IP formation, SB 216,469 was close to being a neutral antagonist, and tamsulosin even weakly stimulated IP formation. The inhibitory effects of the quinazolines and BE 2254 as well as the stimulatory effect of tamsulosin were equally blocked by SB 216,469 at CAM. At WT in the absence of phenylephrine, tamsulosin did not cause significant stimulation and none of the other compounds caused significant inhibition of basal IP formation. We conclude that alpha1-adrenoceptor antagonsits with a quinazoline structure exhibit greater efficacy as inverse agonists than those without. PMID:11191834

  9. Diabetes or peroxisome proliferator-activated receptor alpha agonist increases mitochondrial thioesterase I activity in heart

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Peroxisome proliferator-activated receptor alpha (PPAR alpha) is a transcriptional regulator of the expression of mitochondrial thioesterase I (MTE-I) and uncoupling protein 3 (UCP3), which are induced in the heart at the mRNA level in response to diabetes. Little is known about the regulation of pr...

  10. Shaping of adaptive immune responses to soluble proteins by TLR agonists: a role for IFN-alpha/beta.

    PubMed

    Durand, Vanessa; Wong, Simon Yc; Tough, David F; Le Bon, Agnes

    2004-12-01

    Toll-like receptors (TLR) are believed to play a major role in the recognition of invading organisms, although their ability to shape immune responses is not completely understood. Our aim was to investigate in vivo the effect of different TLR stimuli on the generation of antibody responses and the induction of CD8+ T-cell cross-priming after immunization with soluble protein antigens. While all TLR agonists tested elicited the production of immunomodulatory cytokines, marked differences were observed in their ability to stimulate antigen-specific immune responses. Zymosan, poly(I:C) and CpG DNA, which signal through TLR2/6, 3 and 9, respectively, were found to strongly induce the production of IgG2a antibodies, whereas R-848 (TLR7) and LPS (TLR4) did so much more weakly. In contrast, LPS, poly(I:C) and CpG DNA, but not zymosan, induced functional CD8+ T-cell responses against OVA; peptidoglycan (TLR2/?) and R-848 were also ineffective in stimulating cross-priming. Experiments using IFN-alpha/beta R-deficient mice showed that the induction of cross-priming by LPS and poly(I:C) was abrogated in the absence of IFN-alpha/beta signalling, and induction by CpG DNA was greatly reduced. Overall, our results identify LPS as another TLR agonist that is able to generate functional cross-priming against a soluble protein antigen. In addition, our results demonstrate that the ability of TLR stimuli to initiate CD8+ T-cell responses against soluble protein antigens is largely dependent on the IFN-alpha/beta signalling pathway. PMID:15550117

  11. The PPAR alpha agonist gemfibrozil is an ineffective treatment for spinal cord injured mice.

    PubMed

    Almad, Akshata; Lash, A Todd; Wei, Ping; Lovett-Racke, Amy E; McTigue, Dana M

    2011-12-01

    Peroxisome Proliferator Activated Receptor (PPAR)-α is a key regulator of lipid metabolism and recent studies reveal it also regulates inflammation in several different disease models. Gemfibrozil, an agonist of PPAR-α, is a FDA approved drug for hyperlipidemia and has been shown to inhibit clinical signs in a rodent model of multiple sclerosis. Since many studies have shown improved outcome from spinal cord injury (SCI) by anti-inflammatory and neuroprotective agents, we tested the efficacy of oral gemfibrozil given before or after SCI for promoting tissue preservation and behavioral recovery after spinal contusion injury in mice. Unfortunately, the results were contrary to our hypothesis; in our first attempt, gemfibrozil treatment exacerbated locomotor deficits and increased tissue pathology after SCI. In subsequent experiments, the behavioral effects were not replicated but histological outcomes again were worse. We also tested the efficacy of a different PPAR-α agonist, fenofibrate, which also modulates immune responses and is beneficial in several neurodegenerative disease models. Fenofibrate treatment did not improve recovery, although there was a slight trend for a modest increase in histological tissue sparing. Based on our results, we conclude that PPAR-α agonists yield either no effect or worsen recovery from spinal cord injury, at least at the doses and the time points of drug delivery tested here. Further, patients sustaining spinal cord injury while taking gemfibrozil might be prone to exacerbated tissue damage. PMID:21963672

  12. Treating ADHD in Prison: Focus on Alpha-2 Agonists (Clonidine and Guanfacine).

    PubMed

    Mattes, Jeffrey A

    2016-06-01

    Attention deficit/hyperactivity disorder (ADHD) is prevalent in prison populations, but optimal treatment recommendations in prison are uncertain. Stimulants are problematic because of the potential for abuse. This article is a review of medication options for ADHD, focusing on the α2 agonists clonidine and guanfacine, which, in their extended-release (ER) forms, are U.S. Food and Drug Administration (FDA) approved for the treatment of ADHD, although they are probably less efficacious, overall, than stimulants. Advantages of α2 agonists in prison include: they are not controlled substances and have no known abuse potential; they may be particularly helpful for ADHD with associated aggression and other features of conduct disorder; they may reduce anxiety and symptoms of posttraumatic stress disorder; and they are somewhat sedating. The pharmacology of these agents and the presumed mechanism of action are discussed, including the fact that guanfacine more specifically affects α2A receptors, which are postsynaptic in the frontal cortex. Other differences between clonidine and guanfacine and between the generic immediate-release (IR) forms and the ER forms are also discussed. The IR forms, while themselves not FDA approved for ADHD, may, with dosage adjustment, be reasonable alternatives (with considerable cost savings). Overall, given the FDA-accepted evidence of efficacy, the lack of abuse potential, and the favorable side effect profile, α agonists may be the treatment of choice for prison inmates with ADHD. PMID:27236168

  13. Inverse agonist of estrogen-related receptor α suppresses the growth of triple negative breast cancer cells through ROS generation and interaction with multiple cell signaling pathways

    PubMed Central

    Jiang, Guan-Min; Zhang, Kun-Shui; Liu, Qiao; Liang, Shu-Wei; Zhou, Yan; Huang, Hong-Bin; Du, Jun; Wang, Hong-Sheng

    2016-01-01

    There is an urgent clinical need for targeted therapy approaches for triple-negative breast cancer (TNBC) patients. Increasing evidences suggested that the expression of estrogen-related receptor alpha (ERRα) was correlate with unfavorable clinical outcomes of breast cancer patients. We here show that inhibition of ERRα by its inverse agonist XCT-790 can suppress the proliferation, decrease G2/M phases, and induce mitochondrial-related apoptosis of TNBC cells. XCT-790 elevates the proteins related to endoplasmic reticulum (ER) stress such as ATF4/6, XBT-1 and CHOP. It also increases the expression of growth inhibition related proteins such as p53 and p21. Further, XCT-790 can increase the generation of reactive oxygen species (ROS) in TNBC cells mainly through inhibition of SOD1/2. While ROS scavenger NAC abolishes XCT-790 induced ER-stress and growth arrest. XCT-790 treatment can rapidly activate the signal molecules including ERK1/2, p38-MAPK, JNK, Akt, p65, and IκBα, while NAC attenuates effects of XCT-790 induced phosphorylation of ERK1/2, p38-MAPK and Akt. Further, the inhibitors of ERK1/2, JNK, Akt, and NF-κB attenuate XCT-790 induced ROS generation. These data suggest that AKT/ROS and ERK/ROS positive feedback loops, NF-κB/ROS, and ROS/p38-MAPK, are activated in XCT-790 treated TNBC cells. In vivo experiments show that XCT-790 significantly suppresses the growth of MDA-MB-231 xenograft tumors, which is associated with up regulation of p53, p21, ER-stress related proteins while down regulation of bcl-2. The present discovery makes XCT-790 a promising candidate drug and lays the foundation for future development of ERRα-based therapies for TNBC patients. PMID:26871469

  14. Attenuation of phencyclidine-induced object recognition deficits by the combination of atypical antipsychotic drugs and pimavanserin (ACP 103), a 5-hydroxytryptamine(2A) receptor inverse agonist.

    PubMed

    Snigdha, S; Horiguchi, M; Huang, M; Li, Z; Shahid, M; Neill, J C; Meltzer, H Y

    2010-02-01

    Subchronic administration of the N-methyl-d-aspartate receptor antagonist, phencyclidine (PCP), in rodents has been shown to produce impairment in novel object recognition (NOR), a model of visual learning and memory. We tested the hypothesis that the selective 5-HT(2A) inverse agonists, pimavanserin and (R)-(+)-alpha-(2,3-dimethoxyphenyl)-1-[2-(4-fluorophenylethyl]-4-piperidinemethanol (M100907), would potentiate subeffective doses of atypical antipsychotic drugs (APDs) to reverse the NOR deficits. Female rats received vehicle or PCP (2 mg/kg b.i.d.) for 7 days, followed by a 7-day washout. Pimavanserin (3 mg/kg) or M100907 (1 mg/kg) alone, or four atypicial APDs, risperidone (0.05-0.1 mg/kg), melperone (1-3 mg/kg), olanzapine (1-2 mg/kg), or N-desmethylclozapine (1-2 mg/kg), and the typical APD, haloperidol (0.05-0.1 mg/kg), were administered alone, or in combination with pimavanserin or M100907, before NOR testing. The exploration times of objects during 3-min acquisition and retention trials, separated by a 1-min interval, were compared by analysis of variance. Vehicle-, but not PCP-treated, animals, explored the novel object significantly more than the familiar in the retention trial (p < 0.05-0.01). Pretreatment with the higher doses of the atypical APDs, but not pimavanserin, M100907, or haloperidol alone, reversed the effects of PCP. The effect of risperidone was blocked by haloperidol pretreatment. Coadministration of pimavanserin or M100907, with ineffective doses of the atypical APDs, but not haloperidol, also reversed the PCP-induced deficit in NOR. These results support the importance of 5-hydroxytryptamine(2A) receptor blockade relative to D(2) receptor blockade in the ability of atypicals to ameliorate the effect of subchronic PCP, a putative measure of cognitive dysfunction in schizophrenia. PMID:19864614

  15. (1R, 3S)-(−)-Trans-PAT: A novel full-efficacy serotonin 5-HT2C receptor agonist with 5-HT2A and 5-HT2B receptor inverse agonist/antagonist activity

    PubMed Central

    Booth, Raymond G.; Fang, Lijuan; Huang, Yingsu; Wilczynski, Andrzej; Sivendran, Sashikala

    2009-01-01

    The serotonin 5-HT2A, 5-HT2B, and 5-HT2C G protein-coupled receptors signal primarily through Gαq to activate phospholipase C (PLC) and formation of inositol phosphates (IP) and diacylglycerol. The human 5-HT2C receptor, expressed exclusively in the central nervous system, is involved in several physiological and psychological processes. Development of 5-HT2C agonists that do not also activate 5-HT2A or 5-HT2B receptors is challenging because transmembrane domain identity is about 75% among 5-HT2 subtypes. This paper reports 5-HT2 receptor affinity and function of (1R,3S)-(−)-trans-1-phenyl-3-dimethylamino-1,2,3,4-tetrahydronaphthalene (PAT), a small molecule that produces anorexia and weight-loss after peripheral administration to mice. (−)-Trans-PAT is a stereoselective full-efficacy agonist at human 5-HT2C receptors, plus, it is a 5-HT2A/5-HT2B inverse agonist and competitive antagonist. The Ki of (−)-trans-PAT at 5-HT2A, 5-HT2B, and 5-HT2C receptors is 410, 1200, and 37 nM, respectively. Functional studies measured activation of PLC/[3H]-IP formation in clonal cells expressing human 5-HT2 receptors. At 5-HT2C receptors, (−)-trans-PAT is an agonist (EC50 = 20 nM) comparable to serotonin in potency and efficacy. At 5-HT2A and 5-HT2B receptors, (−)-trans-PAT is an inverse agonist (IC50 = 490 and 1,000 nM, respectively) and competitive antagonist (KB = 460 and 1400 nM, respectively) of serotonin. Experimental results are interpreted in light of molecular modeling studies indicating the (−)-trans-PAT protonated amine can form an ionic bond with D3.32 of 5-HT2A and 5-HT2C receptors, but, not with 5-HT2B receptors. In addition to probing 5-HT2 receptor structure and function, (−)-trans-PAT is a novel lead regarding 5-HT2C agonist/5-HT2A inverse agonist drug development for obesity and neuropsychiatric disorders. PMID:19397907

  16. Administration of the inverse benzodiazepine agonist MRK-016 rescues acquisition and memory consolidation following peripheral administration of bacterial endotoxin.

    PubMed

    Eimerbrink, M J; White, J D; Pendry, R J; Hodges, S L; Sadler, L N; Wiles, J D; Weintraub, M K; Chumley, M J; Boehm, G W

    2015-07-15

    Recent evidence suggests that inflammation-induced decrements in cognitive function can be mitigated via manipulation of excitatory or inhibitory transmission. We tested the ability of the inverse benzodiazepine agonist, MRK-016 (MRK) to protect against LPS-induced deficits in memory acquisition and consolidation, using a contextual fear conditioning (CFC) paradigm. In Experiment One, mice received lipopolysaccharide (LPS) and/or MRK injections prior to CFC training, and were then tested 24h after training. In Experiment Two, animals received similar treatment injections immediately after training, and were tested 24h later. Additionally, hippocampal samples were collected 4h after LPS injections and immediately after testing, to evaluate brain-derived neurotrophic factor (BDNF) and insulin-like growth factor 1 (IGF-1) mRNA expression. Results indicate that MRK can protect against LPS-induced learning/memory decrements in both paradigms. We also found, in both paradigms, that animals treated with LPS/Saline expressed significantly less BDNF mRNA when compared to Saline/Saline-treated animals 4h after LPS administration, but that MRK did not restore BDNF expression levels. Further, treatment administrations had no effect on IGF-1 mRNA expression at any collection time-point. In summary, MRK-016 can protect against LPS-induced deficits in memory acquisition and consolidation, in this hippocampus-dependent paradigm, though this protection occurs independently of recovery of BDNF expression. PMID:25823763

  17. Inverse agonist-like action of cadmium on G-protein-gated inward-rectifier K{sup +} channels

    SciTech Connect

    Inanobe, Atsushi; Matsuura, Takanori; Nakagawa, Atsushi; Kurachi, Yoshihisa

    2011-04-08

    Highlights: {yields} We examined allosteric control of K{sup +} channel gating. {yields} We identified a high-affinity site for Cd{sup 2+} to inhibit Kir3.2 activity. {yields} The 6-coordination geometry supports the binding. {yields} Cd{sup 2+} inhibits Kir3.2 by trapping the conformation in the closed state. -- Abstract: The gate at the pore-forming domain of potassium channels is allosterically controlled by a stimulus-sensing domain. Using Cd{sup 2+} as a probe, we examined the structural elements responsible for gating in an inward-rectifier K{sup +} channel (Kir3.2). One of four endogenous cysteines facing the cytoplasm contributes to a high-affinity site for inhibition by internal Cd{sup 2+}. Crystal structure of its cytoplasmic domain in complex with Cd{sup 2+} reveals that octahedral coordination geometry supports the high-affinity binding. This mode of action causes the tethering of the N-terminus to CD loop in the stimulus-sensing domain, suggesting that their conformational changes participate in gating and Cd{sup 2+} inhibits Kir3.2 by trapping the conformation in the closed state like 'inverse agonist'.

  18. Acetylcholinesterase activity in regions of mouse brain following acute and chronic treatment with a benzodiazepine inverse agonist.

    PubMed Central

    Appleyard, M. E.; Taylor, S. C.; Little, H. J.

    1990-01-01

    1. Chronic administration of the benzodiazepine inverse agonist FG 7142 has previously been shown to induce seizure activity in mice. In the present study we have investigated the effects of acute and chronic treatment with FG 7142 in mice on the levels of acetylcholinesterase activity in cortex, hippocampus, midbrain and striatum. We have also investigated the effects of acute and chronic stress in the form of handling (vehicle-injection) on acetylcholinesterase levels. 2. A single dose of FG 7142 produced a marked elevation of total acetylcholinesterase activities in the hippocampus and midbrain when compared with vehicle-injected control levels, but the levels were not different from those in unhandled animals. 3. Acute stress, in the form of vehicle-injection produced decreases in cortical and hippocampal soluble acetylcholinesterase activity but FG 7142 had no effect upon these stress-induced changes. 4. Total cortical and hippocampal acetylcholinesterase activities were increased by 56% and 16% respectively in the chronic FG 7142-treated mice that exhibited seizure activity (compared with vehicle-injected controls). 5. Soluble acetylcholinesterase activity in the midbrain was decreased to 82% of control levels only in animals that had undergone FG 7142-induced kindling. Smaller or no changes in acetylcholinesterase activity in the midbrain were observed in chronically FG 7142-treated animals that exhibited no seizure activity. 6. Mice that did not demonstrate seizure activity in response to chronic FG 7142 treatment showed alterations in the soluble acetylcholinesterase activities of the hippocampus and midbrain.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1963800

  19. Peroxisome proliferator-activated receptor alpha (PPARalpha) agonists down-regulate alpha2-macroglobulin expression by a PPARalpha-dependent mechanism.

    PubMed

    González, María del Carmen; Corton, J Christopher; Cattley, Russell C; Herrera, Emilio; Bocos, Carlos

    2009-08-01

    Fibrates are peroxisome proliferator-activated receptor alpha (PPARalpha) ligands used to normalize lipid and glucose parameters and exert anti-inflammatory effects. The acute-phase response (APR) is an important inflammatory process. One of the most important acute-phase proteins in rats is alpha2-macroglobulin (A2Mg). Whereas normal adult rats present low serum levels, pregnant rats display high amounts. Therefore, we used pregnant rats to detect the effect of fenofibrate on hepatic A2Mg expression by RT-PCR and Northern blot. Virgin rats were used as controls. The expression of other APR genes, a known fibrate-responder gene, gamma-chain fibrinogen (gamma-Fib), and one gene from the same family as A2Mg, complement component 3 (C3), were also measured in liver. In order to determine whether the fibrate-effects were mediated by PPARalpha, wild-type mice and PPARalpha-null mice were also used and treated with WY-14,643 (WY) or di-2-ethylhexyl phthalate (DEHP). Fenofibrate depressed A2Mg expression in virgin rats, but expression was decreased more sharply in pregnant rats. Expression of C3 and gamma-Fib was diminished after treatment only in pregnant rats. On the other hand, WY, but not DEHP, reduced A2Mg and gamma-Fib expression in the livers of wild-type mice, without any effect in PPARalpha-null mice. WY or DEHP did not affect C3 expression. Therefore, A2Mg expression is modified by PPARalpha agonists not only in pregnant rats under augmented APR protein synthesis, but also in virgin rats and mice under basal conditions. Interestingly, our results also identify A2Mg as a novel PPARalpha agonist-regulated gene. PMID:19497347

  20. Alpha-2A Adrenoceptor Agonist Guanfacine Restores Diuretic Efficiency in Experimental Cirrhotic Ascites: Comparison with Clonidine

    PubMed Central

    Sansoè, Giovanni; Aragno, Manuela; Mastrocola, Raffaella; Mengozzi, Giulio; Parola, Maurizio

    2016-01-01

    Background In human cirrhosis, adrenergic hyperfunction causes proximal tubular fluid retention and contributes to diuretic-resistant ascites, and clonidine, a sympatholytic drug, improves natriuresis in difficult-to-treat ascites. Aim To compare clonidine (aspecific α2-adrenoceptor agonist) to SSP-002021R (prodrug of guanfacine, specific α2A-receptor agonist), both associated with diuretics, in experimental cirrhotic ascites. Methods and Results Six groups of 12 rats were studied: controls (G1); controls receiving furosemide and potassium canrenoate (G2); rats with ascitic cirrhosis due to 14-week CCl4 treatment (G3); cirrhotic rats treated (over the 11th-14th CCl4 weeks) with furosemide and canrenoate (G4), furosemide, canrenoate and clonidine (G5), or diuretics and SSP002021R (G6). Three rats of each group had their hormonal status and renal function assessed at the end of 11th, 12th, 13th, and 14th weeks of respective treatments.Cirrhotic rats in G3 and G4 gained weight over the 12th-14th CCl4 weeks. In G4, brief increase in sodium excretion over the 11th-12th weeks preceded worsening of inulin clearance and natriuresis (diuretic resistance). In comparison with G4, the addition of clonidine (G5) or guanfacine (G6) to diuretics improved, respectively, sodium excretion over the 11th-12th CCl4 weeks, or GFR and electrolytes excretion over the 13th-14th CCl4 weeks. Natriuretic responses in G5 and G6 were accompanied by reduced catecholamine serum levels. Conclusions α2A-receptor agonists restore glomerular filtration rate and natriuresis, and delay diuretic-resistant ascites in experimental advanced cirrhosis. Clonidine ameliorates diuretic-dependent natriuresis just for a short time. PMID:27384184

  1. Commentary: Are alpha-2 agonist really effective in children with tics with comorbid ADHD? A commentary on Whittington et al. (2016).

    PubMed

    Bloch, Michael H

    2016-09-01

    In this issue, Whittington et al. (2016) present a systematic review that reports the efficacy of three primary treatments for children with Tourette syndrome (TS) - (a) α2-adrenergic receptor agonists; (b) antipsychotic medications; and (c) habit reversal training/comprehensive behavioral intervention. In this commentary, we highlight the large degree of heterogeneity observed in the meta-analysis of trials involving alpha-2 agonist medications and present possible explanations for the observed heterogeneity. Among these possible explanations is the possibility that presence of comorbid ADHD may moderate the efficacy of alpha-2 agonists in the treatment of tic disorder with the medications being more effective in patients with both conditions. The commentary reviews the evidence supporting this possible moderating effect of ADHD and discusses the implications for such a relationship. PMID:27535650

  2. Novel Retinoic Acid Receptor Alpha Agonists for Treatment of Kidney Disease

    PubMed Central

    Liu, Ruijie; Li, Zhengzhe; Chen, Yibang; Evans, Todd; Chuang, Peter; Das, Bhaskar; He, John Cijiang

    2011-01-01

    Development of pharmacologic agents that protect podocytes from injury is a critical strategy for the treatment of kidney glomerular diseases. Retinoic acid reduces proteinuria and glomerulosclerosis in multiple animal models of kidney diseases. However, clinical studies are limited because of significant side effects of retinoic acid. Animal studies suggest that all trans retinoic acid (ATRA) attenuates proteinuria by protecting podocytes from injury. The physiological actions of ATRA are mediated by binding to all three isoforms of the nuclear retinoic acid receptors (RARs): RARα, RARβ, and RARγ. We have previously shown that ATRA exerts its renal protective effects mainly through the agonism of RARα. Here, we designed and synthesized a novel boron-containing derivative of the RARα-specific agonist Am580. This new derivative, BD4, binds to RARα receptor specifically and is predicted to have less toxicity based on its structure. We confirmed experimentally that BD4 binds to RARα with a higher affinity and exhibits less cellular toxicity than Am580 and ATRA. BD4 induces the expression of podocyte differentiation markers (synaptopodin, nephrin, and WT-1) in cultured podocytes. Finally, we confirmed that BD4 reduces proteinuria and improves kidney injury in HIV-1 transgenic mice, a model for HIV-associated nephropathy (HIVAN). Mice treated with BD4 did not develop any obvious toxicity or side effect. Our data suggest that BD4 is a novel RARα agonist, which could be used as a potential therapy for patients with kidney disease such as HIVAN. PMID:22125642

  3. Molecular interactions of agonist and inverse agonist ligands at serotonin 5-HT2C G protein-coupled receptors: computational ligand docking and molecular dynamics studies validated by experimental mutagenesis results

    NASA Astrophysics Data System (ADS)

    Córdova-Sintjago, Tania C.; Liu, Yue; Booth, Raymond G.

    2015-02-01

    To understand molecular determinants for ligand activation of the serotonin 5-HT2C G protein-coupled receptor (GPCR), a drug target for obesity and neuropsychiatric disorders, a 5-HT2C homology model was built according to an adrenergic β2 GPCR (β2AR) structure and validated using a 5-HT2B GPCR crystal structure. The models were equilibrated in a simulated phosphatidyl choline membrane for ligand docking and molecular dynamics studies. Ligands included (2S, 4R)-(-)-trans-4-(3'-bromo- and trifluoro-phenyl)-N,N-dimethyl-1,2,3,4-tetrahydronaphthalene-2-amine (3'-Br-PAT and 3'-CF3-PAT), a 5-HT2C agonist and inverse agonist, respectively. Distinct interactions of 3'-Br-PAT and 3'-CF3-PAT at the wild-type (WT) 5-HT2C receptor model were observed and experimental 5-HT2C receptor mutagenesis studies were undertaken to validate the modelling results. For example, the inverse agonist 3'-CF3-PAT docked deeper in the WT 5-HT2C binding pocket and altered the orientation of transmembrane helices (TM) 6 in comparison to the agonist 3'-Br-PAT, suggesting that changes in TM orientation that result from ligand binding impact function. For both PATs, mutation of 5-HT2C residues S3.36, T3.37, and F5.47 to alanine resulted in significantly decreased affinity, as predicted from modelling results. It was concluded that upon PAT binding, 5-HT2C residues T3.37 and F5.47 in TMs 3 and 5, respectively, engage in inter-helical interactions with TMs 4 and 6, respectively. The movement of TMs 5 and 6 upon agonist and inverse agonist ligand binding observed in the 5-HT2C receptor modelling studies was similar to movements reported for the activation and deactivation of the β2AR, suggesting common mechanisms among aminergic neurotransmitter GPCRs.

  4. Motor, Visual and Emotional Deficits in Mice after Closed-Head Mild Traumatic Brain Injury Are Alleviated by the Novel CB2 Inverse Agonist SMM-189

    PubMed Central

    Reiner, Anton; Heldt, Scott A.; Presley, Chaela S.; Guley, Natalie H.; Elberger, Andrea J.; Deng, Yunping; D’Surney, Lauren; Rogers, Joshua T.; Ferrell, Jessica; Bu, Wei; Del Mar, Nobel; Honig, Marcia G.; Gurley, Steven N.; Moore, Bob M.

    2014-01-01

    We have developed a focal blast model of closed-head mild traumatic brain injury (TBI) in mice. As true for individuals that have experienced mild TBI, mice subjected to 50–60 psi blast show motor, visual and emotional deficits, diffuse axonal injury and microglial activation, but no overt neuron loss. Because microglial activation can worsen brain damage after a concussive event and because microglia can be modulated by their cannabinoid type 2 receptors (CB2), we evaluated the effectiveness of the novel CB2 receptor inverse agonist SMM-189 in altering microglial activation and mitigating deficits after mild TBI. In vitro analysis indicated that SMM-189 converted human microglia from the pro-inflammatory M1 phenotype to the pro-healing M2 phenotype. Studies in mice showed that daily administration of SMM-189 for two weeks beginning shortly after blast greatly reduced the motor, visual, and emotional deficits otherwise evident after 50–60 psi blasts, and prevented brain injury that may contribute to these deficits. Our results suggest that treatment with the CB2 inverse agonist SMM-189 after a mild TBI event can reduce its adverse consequences by beneficially modulating microglial activation. These findings recommend further evaluation of CB2 inverse agonists as a novel therapeutic approach for treating mild TBI. PMID:25561230

  5. Specific targeting of the GABA-A receptor α5 subtype by a selective inverse agonist restores cognitive deficits in Down syndrome mice

    PubMed Central

    Braudeau, J; Delatour, B; Duchon, A; Pereira, P Lopes; Dauphinot, L; de Chaumont, F; Olivo-Marin, J-C; Dodd, RH; Hérault, Y; Potier, M-C

    2011-01-01

    An imbalance between inhibitory and excitatory neurotransmission has been proposed to contribute to altered brain function in individuals with Down syndrome (DS). Gamma-aminobutyric acid (GABA) is the major inhibitory neurotransmitter in the central nervous system and accordingly treatment with GABA-A antagonists can efficiently restore cognitive functions of Ts65Dn mice, a genetic model for DS. However, GABA-A antagonists are also convulsant which preclude their use for therapeutic intervention in DS individuals. Here, we have evaluated safer strategies to release GABAergic inhibition using a GABA-A-benzodiazepine receptor inverse agonist selective for the α5-subtype (α5IA). We demonstrate that α5IA restores learning and memory functions of Ts65Dn mice in the novel-object recognition and in the Morris water maze tasks. Furthermore, we show that following behavioural stimulation, α5IA enhances learning-evoked immediate early gene products in specific brain regions involved in cognition. Importantly, acute and chronic treatments with α5IA do not induce any convulsant or anxiogenic effects that are associated with GABA-A antagonists or non-selective inverse agonists of the GABA-A-benzodiazepine receptors. Finally, chronic treatment with α5IA did not induce histological alterations in the brain, liver and kidney of mice. Our results suggest that non-convulsant α5-selective GABA-A inverse agonists could improve learning and memory deficits in DS individuals. PMID:21693554

  6. Structural Basis for Iloprost as a Dual Peroxisome Proliferator-activated Receptor [alpha/delta] Agonist

    SciTech Connect

    Jin, Lihua; Lin, Shengchen; Rong, Hui; Zheng, Songyang; Jin, Shikan; Wang, Rui; Li, Yong

    2012-03-15

    Iloprost is a prostacyclin analog that has been used to treat many vascular conditions. Peroxisome proliferator-activated receptors (PPARs) are ligand-regulated transcription factors with various important biological effects such as metabolic and cardiovascular physiology. Here, we report the crystal structures of the PPAR{alpha} ligand-binding domain and PPAR{delta} ligand-binding domain bound to iloprost, thus providing unambiguous evidence for the direct interaction between iloprost and PPARs and a structural basis for the recognition of PPAR{alpha}/{delta} by this prostacyclin analog. In addition to conserved contacts for all PPAR{alpha} ligands, iloprost also initiates several specific interactions with PPARs using its unique structural groups. Structural and functional studies of receptor-ligand interactions reveal strong functional correlations of the iloprost-PPAR{alpha}/{delta} interactions as well as the molecular basis of PPAR subtype selectivity toward iloprost ligand. As such, the structural mechanism may provide a more rational template for designing novel compounds targeting PPARs with more favorable pharmacologic impact based on existing iloprost drugs.

  7. APD125, a Selective Serotonin 5-HT2A Receptor Inverse Agonist, Significantly Improves Sleep Maintenance in Primary Insomnia

    PubMed Central

    Rosenberg, Russell; Seiden, David J.; Hull, Steven G.; Erman, Milton; Schwartz, Howard; Anderson, Christen; Prosser, Warren; Shanahan, William; Sanchez, Matilde; Chuang, Emil; Roth, Thomas

    2008-01-01

    Introduction: Insomnia is a condition affecting 10% to 15% of the adult population and is characterized by difficulty falling asleep, difficulty staying asleep, or nonrestorative sleep, accompanied by daytime impairment or distress. This study evaluates APD125, a selective inverse agonist of the 5-HT2A receptor, for treatment of chronic insomnia, with particular emphasis on sleep maintenance. In phase 1 studies, APD125 improved sleep maintenance and was well tolerated. Methodology: Adult subjects (n = 173) with DSM-IV defined primary insomnia were randomized into a multicenter, double-blind, placebo-controlled, 3-way crossover study to compare 2 doses of APD125 (10 mg and 40 mg) with placebo. Each treatment period was 7 days with a 7- to 9-day washout period between treatments. Polysomnographic recordings were performed at the initial 2 screening nights and at nights (N) 1/2 and N 6/7 of each treatment period. Results: APD125 was associated with significant improvements in key sleep maintenance parameters measured by PSG. Wake time after sleep onset decreased (SEM) by 52.5 (3.2) min (10 mg) and 53.5 (3.5) min (40 mg) from baseline to N 1/2 vs. 37.8 (3.4) min for placebo, (P < 0.0001 for both doses vs placebo), and by 51.7 (3.4) min (P = 0.01) and 48.0 (3.6) min (P = 0.2) at N 6/7 vs. 44.0 (3.8) min for placebo. Significant APD125 effects on wake time during sleep were also seen (P < 0.0001 N 1/2, P < 0.001 N 6/7). The number of arousals and number of awakenings decreased significantly with APD125 treatment compared to placebo. Slow wave sleep showed a statistically significant dose-dependent increase. There was no significant decrease in latency to persistent sleep. No serious adverse events were reported, and no meaningful differences in adverse event profiles were observed between either dose of APD125 and placebo. APD125 was not associated with next-day psychomotor impairment as measured by Digit Span, Digit Symbol Copy, and Digit Symbol Coding Tests

  8. Alpha7 nicotinic acetylcholine receptor agonists and PAMs as adjunctive treatment in schizophrenia. An experimental study.

    PubMed

    Marcus, Monica M; Björkholm, Carl; Malmerfelt, Anna; Möller, Annie; Påhlsson, Ninni; Konradsson-Geuken, Åsa; Feltmann, Kristin; Jardemark, Kent; Schilström, Björn; Svensson, Torgny H

    2016-09-01

    Nicotine has been found to improve cognition and reduce negative symptoms in schizophrenia and a genetic and pathophysiological link between the α7 nicotinic acetylcholine receptors (nAChRs) and schizophrenia has been demonstrated. Therefore, there has been a large interest in developing drugs affecting the α7 nAChRs for schizophrenia. In the present study we investigated, in rats, the effects of a selective α7 agonist (PNU282987) and a α7 positive allosteric modulator (PAM; NS1738) alone and in combination with the atypical antipsychotic drug risperidone for their utility as adjunct treatment in schizophrenia. Moreover we also investigated their utility as adjunct treatment in depression in combination with the SSRI citalopram. We found that NS1738 and to some extent also PNU282987, potentiated a subeffective dose of risperidone in the conditioned avoidance response test. Both drugs also potentiated the effect of a sub-effective concentration of risperidone on NMDA-induced currents in pyramidal cells of the medial prefrontal cortex. Moreover, NS1738 and PNU282987 enhanced recognition memory in the novel object recognition test, when given separately. Both drugs also potentiated accumbal but not prefrontal risperidone-induced dopamine release. Finally, PNU282987 reduced immobility in the forced swim test, indicating an antidepressant-like effect. Taken together, our data support the utility of drugs targeting the α7 nAChRs, perhaps especially α7 PAMs, to potentiate the effect of atypical antipsychotic drugs. Moreover, our data suggest that α7 agonists and PAMs can be used to ameliorate cognitive symptoms in schizophrenia and depression. PMID:27474687

  9. Inverse regulation of human ERBB2 and epidermal growth factor receptors by tumor necrosis factor alpha.

    PubMed Central

    Kalthoff, H; Roeder, C; Gieseking, J; Humburg, I; Schmiegel, W

    1993-01-01

    Recombinant human tumor necrosis factor (TNF) alpha decreased the expression of ERBB2 mRNA by stimulating p55 TNF receptors of pancreatic tumor cells. This decrease contrasts with an increase in epidermal growth factor receptor (EGFR) mRNA. Both effects were selectively achieved by TNF-alpha or -beta, whereas interferon alpha or gamma or transforming growth factor beta showed no such effects. The inverse regulatory effects of TNF on ERBB2 and EGFR mRNA levels were evoked by different signaling pathways of p55 TNF receptors. The TNF-mediated ERBB2 mRNA decrease was followed by a reduction in protein. Four of five pancreatic tumor cell lines exhibited this down-regulation. This decrease of ERBB2 is a singular example of a modulation of this growth factor receptor by TNF. Overexpression of ERBB2 has been reported to cause resistance to TNF and other cytotoxic cytokines. In our study we show that the TNF-mediated down-regulation of ERBB2 in pancreatic tumor cells is accompanied by an increase in growth inhibition at low doses of TNF. The simultaneous alteration of the ERBB2/EGFR balance by TNF represents a striking model of cytokine receptor transregulation in the growth control of malignant pancreatic epithelial cells. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:8105469

  10. Large Band Gap of alpha-RuCl3 Probed by Photoemission and Inverse Photoemission Spectroscopy

    NASA Astrophysics Data System (ADS)

    Sinn, Soobin; Kim, Choong Hyun; Sandilands, Luke; Lee, Kyungdong; Won, Choongjae; Oh, Ji Seop; Han, Moonsup; Chang, Young Jun; Hur, Namjung; Sato, Hitoshi; Park, Byeong-Gyu; Kim, Changyoung; Kim, Hyeong-Do; Noh, Tae Won

    The Kitaev honeycomb lattice model has attracted great attention because of its possibility to stabilize a quantum spin liquid ground state. Recently, it was proposed that alpha-RuCl3 is its material realization and the first 4 d relativistic Mott insulator from an optical spectrum and LDA + U + SO calculations. Here, we present photoemission and inverse photoemission spectra of alpha-RuCl3. The observed band gap is about 1.8 eV, which suggests that the previously assigned optical gap of 0.3 eV is misinterpreted, and that the strong peak at about 1.2 eV in the optical spectrum may be associated with an actual optical gap. Assuming a strong excitonic effect of 0.6 eV in the optical spectrum, all the structures except for the peak at 0.3 eV are consistent with our electronic spectra. When compared with LDA + U + SO calculations, the value of U should be considerably larger than the previous one, which implies that the spin-orbit coupling is not a necessary ingredient for the insulating mechanism of alpha-RuCl3. We also present angle-resolved photoemission spectra to be compared with LDA + U + SO and LDA +DMFT calculations.

  11. (4-(Bis(4-Fluorophenyl)Methyl)Piperazin-1-yl)(Cyclohexyl)Methanone Hydrochloride (LDK1229): A New Cannabinoid CB1 Receptor Inverse Agonist from the Class of Benzhydryl Piperazine Analogs

    PubMed Central

    Mahmoud, Mariam M.; Olszewska, Teresa; Liu, Hui; Shore, Derek M.; Hurst, Dow P.; Reggio, Patricia H.; Lu, Dai

    2015-01-01

    Some inverse agonists of cannabinoid receptor type 1 (CB1) have been demonstrated to be anorectic antiobesity drug candidates. However, the first generation of CB1 inverse agonists, represented by rimonabant (SR141716A), otenabant, and taranabant, are centrally active, with a high level of psychiatric side effects. Hence, the discovery of CB1 inverse agonists with a chemical scaffold distinct from these holds promise for developing peripherally active CB1 inverse agonists with fewer side effects. We generated a new CB1 inverse agonist, (4-(bis(4-fluorophenyl)methyl)piperazin-1-yl)(cyclohexyl)methanone hydrochloride (LDK1229), from the class of benzhydryl piperazine analogs. This compound binds to CB1 more selectively than cannabinoid receptor type 2, with a Ki value of 220 nM. Comparable CB1 binding was also observed by analogs 1-[bis(4-fluorophenyl)methyl]-4-cinnamylpiperazine dihydrochloride (LDK1203) and 1-[bis(4-fluorophenyl)methyl]-4-tosylpiperazine hydrochloride (LDK1222), which differed by the substitution on the piperazine ring where the piperazine of LDK1203 and LDK1222 are substituted by an alkyl group and a tosyl group, respectively. LDK1229 exhibits efficacy comparable with SR141716A in antagonizing the basal G protein coupling activity of CB1, as indicated by a reduction in guanosine 5′-O-(3-thio)triphosphate binding. Consistent with inverse agonist behavior, increased cell surface localization of CB1 upon treatment with LDK1229 was also observed. Although docking and mutational analysis showed that LDK1229 forms similar interactions with the receptor as SR141716A does, the benzhydryl piperazine scaffold is structurally distinct from the first-generation CB1 inverse agonists. It offers new opportunities for developing novel CB1 inverse agonists through the optimization of molecular properties, such as the polar surface area and hydrophilicity, to reduce the central activity observed with SR141716A. PMID:25411367

  12. A novel aminotetralin-type serotonin (5-HT) 2C receptor-specific agonist and 5-HT2A competitive antagonist/5-HT2B inverse agonist with preclinical efficacy for psychoses.

    PubMed

    Canal, Clinton E; Morgan, Drake; Felsing, Daniel; Kondabolu, Krishnakanth; Rowland, Neil E; Robertson, Kimberly L; Sakhuja, Rajeev; Booth, Raymond G

    2014-05-01

    Development of 5-HT2C agonists for treatment of neuropsychiatric disorders, including psychoses, substance abuse, and obesity, has been fraught with difficulties, because the vast majority of reported 5-HT2C selective agonists also activate 5-HT2A and/or 5-HT2B receptors, potentially causing hallucinations and/or cardiac valvulopathy. Herein is described a novel, potent, and efficacious human 5-HT2C receptor agonist, (-)-trans-(2S,4R)-4-(3'[meta]-bromophenyl)-N,N-dimethyl-1,2,3,4-tetrahydronaphthalen-2-amine (-)-MBP), that is a competitive antagonist and inverse agonist at human 5-HT2A and 5-HT2B receptors, respectively. (-)-MBP has efficacy comparable to the prototypical second-generation antipsychotic drug clozapine in three C57Bl/6 mouse models of drug-induced psychoses: the head-twitch response elicited by [2,5]-dimethoxy-4-iodoamphetamine; hyperlocomotion induced by MK-801 [(5R,10S)-(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine hydrogen maleate (dizocilpine maleate)]; and hyperlocomotion induced by amphetamine. (-)-MBP, however, does not alter locomotion when administered alone, distinguishing it from clozapine, which suppresses locomotion. Finally, consumption of highly palatable food by mice was not increased by (-)-MBP at a dose that produced at least 50% maximal efficacy in the psychoses models. Compared with (-)-MBP, the enantiomer (+)-MBP was much less active across in vitro affinity and functional assays using mouse and human receptors and also translated in vivo with comparably lower potency and efficacy. Results indicate a 5-HT2C receptor-specific agonist, such as (-)-MBP, may be pharmacotherapeutic for psychoses, without liability for obesity, hallucinations, heart disease, sedation, or motoric disorders. PMID:24563531

  13. A Novel Aminotetralin-Type Serotonin (5-HT) 2C Receptor-Specific Agonist and 5-HT2A Competitive Antagonist/5-HT2B Inverse Agonist with Preclinical Efficacy for Psychoses

    PubMed Central

    Morgan, Drake; Felsing, Daniel; Kondabolu, Krishnakanth; Rowland, Neil E.; Robertson, Kimberly L.; Sakhuja, Rajeev; Booth, Raymond G.

    2014-01-01

    Development of 5-HT2C agonists for treatment of neuropsychiatric disorders, including psychoses, substance abuse, and obesity, has been fraught with difficulties, because the vast majority of reported 5-HT2C selective agonists also activate 5-HT2A and/or 5-HT2B receptors, potentially causing hallucinations and/or cardiac valvulopathy. Herein is described a novel, potent, and efficacious human 5-HT2C receptor agonist, (−)-trans-(2S,4R)-4-(3′[meta]-bromophenyl)-N,N-dimethyl-1,2,3,4-tetrahydronaphthalen-2-amine (−)-MBP), that is a competitive antagonist and inverse agonist at human 5-HT2A and 5-HT2B receptors, respectively. (−)-MBP has efficacy comparable to the prototypical second-generation antipsychotic drug clozapine in three C57Bl/6 mouse models of drug-induced psychoses: the head-twitch response elicited by [2,5]-dimethoxy-4-iodoamphetamine; hyperlocomotion induced by MK-801 [(5R,10S)-(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine hydrogen maleate (dizocilpine maleate)]; and hyperlocomotion induced by amphetamine. (−)-MBP, however, does not alter locomotion when administered alone, distinguishing it from clozapine, which suppresses locomotion. Finally, consumption of highly palatable food by mice was not increased by (−)-MBP at a dose that produced at least 50% maximal efficacy in the psychoses models. Compared with (−)-MBP, the enantiomer (+)-MBP was much less active across in vitro affinity and functional assays using mouse and human receptors and also translated in vivo with comparably lower potency and efficacy. Results indicate a 5-HT2C receptor-specific agonist, such as (−)-MBP, may be pharmacotherapeutic for psychoses, without liability for obesity, hallucinations, heart disease, sedation, or motoric disorders. PMID:24563531

  14. Timed artificial insemination in beef cattle using GnRH agonist, PGF2alpha and estradiol benzoate (EB).

    PubMed

    Fernandes, P; Teixeira, A B; Crocci, A J; Barros, C M

    2001-04-15

    The present work evaluated low-cost protocols for timed artificial insemination (TAI) in beef cattle. In Experiment 1, cycling nonlactating Nelore cows (Bos indicus, n=98) were assigned to the following groups: GnRH-PGF (GP) and GnRH-PGF-GnRH (GPG), whereas cycling (n=328, Experiment 2) or anestrus (n = 225, Experiment 3) lactating (L) cows were divided into 3 groups: GP-L, GPG-L and GnRH-PGF-Estradiol benzoate (GPE-L). In Experiment 4, lactating cows (n=201) were separated into 3 groups: GP-L, GPE-L and G/2PE-L. Animals from Experiment 1, 3 and 4 were treated (Day 0), at random stages of the estrous cycle, with 8 microg of buserelin acetate (GnRH agonist) intramuscularly (i.m.), whereas in Experiment 2 half of the cows received 8 and the other half 12 microg of GnRH (i.m.). Seven days later (D 7) all animals were treated with 25 mg of dinoprost trometamine (PGF2alpha, i.m.) except those cows from the G/2PE-L group which received only 1/2 dose of PGF2alpha (12.5 mg) via intravulvo-submucosa (i.v.s.m.). After PGF2alpha injection the animals from the control groups (GP and GP-L) were observed twice daily to detect estrus and AI was performed 12 h afterwards. The cows from the other groups received a second GnRH injection (D 8 in GPG-L and d9 in GPG groups) or one injection of estradiol benzoate (EB, 1.0 mg, D 8 in GPE-L group). All cows from GPG and GPG-L or GPE-L groups were AI 20 to 24 or 30 to 34 h, respectively, after the last hormonal injection. Pregnancy was determined by ultrasonography or rectal palpation 30 to 50 days after AI. In the control groups (GP and GP-L) percentage of animals detected in heat (44.5 to 70.3%) and pregnancy rate (20 to 42%) varied according to the number of animals with corpus luteum (CL) at the beginning of treatment. The administration of a second dose of GnRH either 24 (Experiment 2) or 48 h (Experiment 1) after PGF2alpha resulted in 47.7 and 44.9% pregnancy rates, respectively, after TAI in cycling animals. However, in anestrus

  15. Influence of peroxisome proliferator-activated receptor alpha agonists on the intracellular turnover and secretion of apolipoprotein (Apo) B-100 and ApoB-48.

    PubMed

    Lindén, Daniel; Lindberg, Karin; Oscarsson, Jan; Claesson, Catharina; Asp, Lennart; Li, Lu; Gustafsson, Maria; Borén, Jan; Olofsson, Sven-Olof

    2002-06-21

    The peroxisome proliferator-activated receptor (PPAR) alpha agonist WY 14,643 increased the secretion of apolipoprotein (apo) B-100, but not that of apoB-48, and decreased triglyceride biosynthesis and secretion from primary rat hepatocytes. These effects resulted in decreased secretion of apoB-100-very low density lipoprotein (VLDL) and an increased secretion of apoB-100 on low density lipoproteins/intermediate density lipoproteins. ApoB-48-VLDL was also replaced by more dense particles. The proteasomal inhibitor lactacystin did not influence the recovery of apoB-100 or apoB-48 in primary rat hepatocytes, indicating that co-translational (proteasomal) degradation is of less importance in these cells. Treatment with WY 14,643 made the recovery of apoB-100 sensitive to lactacystin, most likely reflecting the decreased biosynthesis of triglycerides. The PPAR alpha agonist induced a significant increase in the accumulation of pulse-labeled apoB-100 even after a short pulse (2-5 min). There was also an increase in apoB-100 nascent polypeptides, indicating that the co-translational degradation of apoB-100 was inhibited. However, a minor influence on an early posttranslation degradation cannot be excluded. This decreased co-translational degradation of apoB-100 explained the increased secretion of the protein. The levels of apoB-48 remained unchanged during these pulse-chase experiments, and albumin production was not affected, indicating a specific effect of PPAR alpha agonists on the co-translational degradation of apoB-100. These findings explain the difference in the rate of secretion of the two apoB proteins seen after PPAR alpha activation. PPAR alpha agonists increased the expression and biosynthesis of liver fatty acid-binding protein (LFABP). Increased expression of LFABP by transfection of McA-RH7777 cells increased the secretion of apoB-100, decreased triglyceride biosynthesis and secretion, and increased PPAR alpha mRNA levels. These findings suggest that

  16. Cyclic alpha-conotoxin peptidomimetic chimeras as potent GLP-1R agonists.

    PubMed

    Swedberg, Joakim E; Schroeder, Christina I; Mitchell, Justin M; Durek, Thomas; Fairlie, David P; Edmonds, David J; Griffith, David A; Ruggeri, Roger B; Derksen, David R; Loria, Paula M; Liras, Spiros; Price, David A; Craik, David J

    2015-10-20

    Type 2 diabetes mellitus (T2DM) results from compromised pancreatic β-cell function, reduced insulin production, and lowered insulin sensitivity in target organs resulting in hyperglycemia. The GLP-1 hormone has two biologically active forms, GLP-1-(7-37) and GLP-1-(7-36)amide, which are equipotent at the glucagon-like peptide-1 receptor (GLP-1R). These peptides are central both to normal glucose metabolism and dysregulation in T2DM. Several structurally modified GLP-1 analogues are now approved drugs, and a number of other analogues are in clinical trials. None of these compounds is orally bioavailable and all require parenteral delivery. Recently, a number of smaller peptidomimetics containing 11-12 natural and unnatural amino acids have been identified that have similar insulin regulating profiles as GLP-1. The α-conotoxins are a class of disulfide rich peptide venoms isolated from cone snails, and are known for their highly constrained structures and resistance to enzymatic degradation. In this study, we examined whether 11-residue peptidomimetics incorporated into α-conotoxin scaffolds, forming monocyclic or bicyclic compounds constrained by disulfide bonds and/or backbone cyclization, could activate the GLP-1 receptor (GLP-1R). Several compounds showed potent (nanomolar) agonist activity at GLP-1R, as evaluated via cAMP signaling. In addition, HPLC retention times and in silico calculations suggested that mono- and bicyclic compounds had more favorable n-octanol/water partition coefficients according to the virtual partition coefficient model (vLogP), while maintaining a smaller radius of gyration compared to corresponding uncyclized peptidomimetics. Our findings suggest that cyclic peptidomimetics provide a potential avenue for future design of potent, compact ligands targeting GLP-1R and possessing improved physicochemical properties. PMID:26352676

  17. Duodenal mucosal bicarbonate secretion in man. Stimulation by acid and inhibition by the alpha 2-adrenoceptor agonist clonidine.

    PubMed Central

    Knutson, L; Flemström, G

    1989-01-01

    A multi-channel small diameter tube was used to study the secretion of bicarbonate by 3 cm long segments of the proximal duodenum isolated between balloons. The tube had an outer diameter of 5.3 mm and two central and four smaller, peripheral channels. Measurements of infused phenol red, 14C-PEG and vitamin B12 and of trypsin activity were performed to rule out contamination of the perfusate by gastric and pancreatic secretions. Basal secretion of bicarbonate by the duodenal mucosa in healthy subjects varied between 135 and 220 mumol/cm of intestine per hour. Perfusion of the lumen with acid (100 mM HCl for five minutes) increased the secretion to greater than 400 mumol/cm/h and the alpha 2-adrenoreceptor agonist clonidine (150 micrograms iv) decreased the HCO3- secretion by 70 mumol/cm/h. Clonidine simultaneously reduced the mean arterial blood pressure and plasma noradrenaline concentration, but did not affect the plasma glucose or adrenaline concentration. Duodenal bicarbonate secretion is important in the protection of this mucosa against acid discharged from the stomach. Increased sympathetic activity may, by inhibiting the bicarbonate secretion, decrease the protection in proximal duodenum in man and facilitate ulceration. Images Fig. 2 PMID:2558985

  18. Involvement of opioid system in antidepressant-like effect of the cannabinoid CB1 receptor inverse agonist AM-251 after physical stress in mice.

    PubMed

    Ostadhadi, Sattar; Haj-Mirzaian, Arya; Nikoui, Vahid; Kordjazy, Nastaran; Dehpour, Ahmad-Reza

    2016-02-01

    Cannabinoid inverse agonists possess antidepressant-like properties, but the mechanism of this action is unknown. Numerous studies have reported the interaction between opioid and cannabinoid pathways. In this study, acute foot-shock stress was used in mice to investigate the involvement of the opioid pathway in the antidepressant-like effect of the cannabinoid CB1 receptor inverse agonist AM-251. Stress was induced by intermittent foot-shock stimulation for 30 min. Then, using the forced swimming test (FST) and tail suspension test (TST), the immobility time was measured. Results show that the immobility time was significantly prolonged in animals subjected to foot-shock stress, compared with non-stressed controls (P < 0.01). Also, the serum corticosterone level was significantly increased after stress induction (P < 0.001). Administration of AM-251 (0.5 and 0.3 mg/kg, intraperitoneally (i.p.)), significantly decreased the immobility time of stressed mice in the FST (P < 0.001 and P < 0.01, respectively) and TST (P < 0.01 and P < 0.05, respectively). The lowest dose of AM-251 (0.1 mg/kg), naltrexone (0.3 mg/kg), and morphine (1.0 mg/kg) did not show any significant effect on stressed animals (P > 0.05). Co-administration of AM-251 with sub-effective dose of naltrexone decreased the effective dose of this cannabinoid inverse agonist, to 0.1 mg/kg (P < 0.01). On the other hand, administration of the sub-effective dose of morphine reversed the anti-immobility effect of AM-251 (0.5 mg/kg; P < 0.001). In conclusion, the present study for the first time reveals the possible role of opioid signalling in the antidepressant-like properties of AM-251 in a foot-shock stress model. PMID:26609670

  19. Antagonistic effects of selective alpha1-adrenoceptor antagonists MDL73005EF and tamsulosin and partial agonists clonidine and tizanidine in rat thoracic aorta and rabbit iliac artery.

    PubMed

    Satoh, M; Enomoto, K; Koike, K

    2001-01-01

    The antagonistic effects of MDL73005EF and tamsulosin and partial agonists clonidine and tizanidine at rat thoracic aorta and rabbit iliac artery alpha1-adrenoceptors were investigated in this study. Selective alpha1-adrenoceptor antagonists MDL73005EF and tamsulosin dose-dependently shifted the concentration-response curves for noradrenaline to the right. Schild plots of the results obtained from the inhibition by MDL73005EF (pA2 8.30 +/- 0.04) and tamsulosin (pA2 10.51 +/- 0.06) of noradrenaline yielded a straight line with a slope of unity in rat thoracic aorta. The slopes of Schild plots obtained from the inhibition by MDL73005EF and tamsulosin of noradrenaline were significantly different from unity in rabbit iliac artery. Schild plots of the results obtained from the inhibition by clonidine and tizanidine of noradrenaline yielded a straight line with a slope of unity in rat thoracic aorta (pA2 7.08 +/- 0.04 and 7.32 +/- 0.04, respectively). These results suggest that alpha1D-adrenoceptors play a significant role in the alpha1-adrenoceptor-agonist-induced contraction of rat thoracic aorta and rabbit iliac artery, and that clonidine and tizanidine interact with the alpha1D-adrenoceptor subtype as competitive antagonists in rat thoracic aorta. PMID:11206183

  20. Mutations within the agonist-binding site convert the homomeric alpha1 glycine receptor into a Zn2+-activated chloride channel.

    PubMed

    Grudzinska, Joanna; Schumann, Tanja; Schemm, Rudolf; Betz, Heinrich; Laube, Bodo

    2008-01-01

    The divalent cation Zn2+ has been shown to regulate inhibitory neurotransmission in the mammalian CNS by affecting the activation of the strychnine-sensitive glycine receptor (GlyR). In spinal neurons and cells expressing recombinant GlyRs, low micromolar (<10 microM) concentrations of Zn2+ enhance glycine currents, whereas higher concentrations (>10 microM) have an inhibitory effect. Mutational studies have localized the Zn2+ binding sites mediating allosteric potentiation and inhibition of GlyRs in distinct regions of the N-terminal extracellular domain of the GlyR alpha-subunits. Here, we examined the Zn2+ sensitivity of different mutations within the agonist binding site of the homomeric alpha(1)-subunit GlyR upon heterologous expression in Xenopus oocytes. This revealed that six substitutions within the ligand-binding pocket result in a total loss of Zn2+ inhibition. Furthermore, substitution of the positively charged residues arginine 65 and arginine 131 by alanine (alpha(1)(R65A), alpha(1)(R131A), or of the aromatic residue phenylalanine 207 by histidine (alpha(1)(F207H)), converted the alpha(1) GlyR into a chloride channel that was activated by Zn2+ alone. Dose-response analysis of the alpha(1)(F207H) GlyR disclosed an EC(50) value of 1.2 microM for Zn2+ activation; concomitantly the apparent glycine affinity was 1000-fold reduced. Thus, single point mutations within the agonist-binding site of the alpha(1) subunit convert the inhibitory GlyR from a glycine-gated into a selectively Zn2+-activated chloride channel. This might be exploited for the design of metal-specific biosensors by modeling-assisted mutagenesis. PMID:18690053

  1. Inversions

    ERIC Educational Resources Information Center

    Brown, Malcolm

    2009-01-01

    Inversions are fascinating phenomena. They are reversals of the normal or expected order. They occur across a wide variety of contexts. What do inversions have to do with learning spaces? The author suggests that they are a useful metaphor for the process that is unfolding in higher education with respect to education. On the basis of…

  2. Synthesis and structure activity relationship investigation of triazolo[1,5-a]pyrimidines as CB2 cannabinoid receptor inverse agonists.

    PubMed

    Aghazadeh Tabrizi, Mojgan; Baraldi, Pier Giovanni; Ruggiero, Emanuela; Saponaro, Giulia; Baraldi, Stefania; Poli, Giulio; Tuccinardi, Tiziano; Ravani, Annalisa; Vincenzi, Fabrizio; Borea, Pier Andrea; Varani, Katia

    2016-05-01

    CB2 cannabinoid receptor ligands are known to be therapeutically important for the treatment of numerous diseases. Recently, we have identified the heteroaryl-4-oxopyridine/7-oxopyrimidine derivatives as highly potent and selective CB2 receptor ligands, showing that the pharmakodynamics of the new compounds was controlled by the nature of the heterocycle core. In this paper we describe the synthesis and biological evaluation of 7-oxo-4-pentyl-4,7-dihydro-[1,2,4]triazolo[1,5-a]pyrimidine-6-carboxamide derivatives that led to the identification of novel CB2 receptor inverse agonists. Cyclic AMP experiments on CB2 receptors expressed in CHO cells revealed that introduction of structural modifications at position 2 of triazolopyrimidine template changes the functional activity from partial to inverse agonism. The molecular docking analysis of the novel structures is reported. PMID:26922225

  3. Histamine H3 receptor antagonists/inverse agonists on cognitive and motor processes: relevance to Alzheimer's disease, ADHD, schizophrenia, and drug abuse

    PubMed Central

    Vohora, Divya; Bhowmik, Malay

    2012-01-01

    Histamine H3 receptor (H3R) antagonists/inverse agonists possess potential to treat diverse disease states of the central nervous system (CNS). Cognitive dysfunction and motor impairments are the hallmark of multifarious neurodegenerative and/or psychiatric disorders. This review presents the various neurobiological/neurochemical evidences available so far following H3R antagonists in the pathophysiology of Alzheimer's disease (AD), attention-deficit hyperactivity disorder (ADHD), schizophrenia, and drug abuse each of which is accompanied by deficits of some aspects of cognitive and/or motor functions. Whether the H3R inverse agonism modulates the neurochemical basis underlying the disease condition or affects only the cognitive/motor component of the disease process is discussed with the aim to provide a rationale for their use in diverse disease states that are interlinked and are accompanied by some common motor, cognitive and attentional deficits. PMID:23109919

  4. TC-5619: An alpha7 neuronal nicotinic receptor-selective agonist that demonstrates efficacy in animal models of the positive and negative symptoms and cognitive dysfunction of schizophrenia

    PubMed Central

    Hauser, T.A.; Kucinski, A.; Jordan, K.G.; Gatto, G.J.; Wersinger, S.R.; Hesse, R.A.; Stachowiak, E.K.; Stachowiak, M.K.; Papke, R.L.; Lippiello, P.M.; Bencherif, M.

    2010-01-01

    A growing body of evidence suggests that the alpha7 neuronal nicotinic receptor (NNR) subtype is an important target for the development of novel therapies to treat schizophrenia, offering the possibility to address not only the positive but also the cognitive and negative symptoms associated with the disease. In order to probe the relationship of alpha7 function to relevant behavioral correlates we employed TC-5619, a novel selective agonist for the alpha7 NNR subtype. TC-5619 binds with very high affinity to the alpha7 subtype and is a potent full agonist. TC-5619 has little or no activity at other nicotinic receptors, including the α4β2, ganglionic (α3β4) and muscle subtypes. The transgenic th(tk−)/th(tk−) mouse model that reflects many of the developmental, anatomical, and multi-transmitter biochemical aspects of schizophrenia was used to assess the antipsychotic effects of TC-5619. In these mice TC-5619 acted both alone and synergistically with the antipsychotic clozapine to correct impaired pre-pulse inhibition (PPI) and social behavior which model positive and negative symptoms, respectively. Antipsychotic and cognitive effects of TC-5619 were also assessed in rats. Similar to the results in the transgenic mice, TC-5619 significantly reversed apomorphine-induced PPI deficits. In a novel object recognition paradigm in rats TC-5619 demonstrated long-lasting enhancement of memory over a wide dose range. These results suggest that alpha7-selective agonists such as TC-5619, either alone or in combination with antipsychotics, could offer a new approach to treating the constellation of symptoms associated with schizophrenia, including cognitive dysfunction. PMID:19482012

  5. Studies in the primate on the analgetic effects associated with intrathecal actions of opiates, alpha-adrenergic agonists and baclofen.

    PubMed

    Yaksh, T L; Reddy, S V

    1981-06-01

    The effects of intrathecally administered opiates (morphine sulfate and meperidine), alpha-adrenergic agonists (clonidine and ST-91) and baclofen were examined on the shock titration threshold of macaque monkeys chronically prepared with intrathecal (I) or epidural (E) catheters. Spinal opiates produced a long-lasting analgesia which was antagonized by naloxone. The order of potency was I morphine greater than I meperidine greater than E meperidine greater than E morphine. Clonidine and ST-91, also produced a dose-dependent, long-lasting elevation in the shock titration threshold, antagonized by phentolamine, but not naloxone. L-baclofen, but not D-baclofen, resulted in a dose-dependent elevation of shock titration threshold, which was not antagonized by naloxone. Repeated administration at 24-h intervals over a 7-day period of morphine, clonidine or baclofen, resulted in a significant reduction in the analgetic effects of each drug. Cross tolerance between the three classes of agents was not observed. Intrathecal co-administration of inactive doses of ST-91 and morphine resulted in a near maximal increase in the shock titration threshold, which failed to show any significant tolerance over 21 days. Intrathecal ST-91 and morphine produced no change in either muscle strength, tendon reflexes, respiratory rate, urine formation, or the ability to locomote. Baclofen, in contrast, produced a dose-dependent decrease in muscle strength. That the intrathecal drugs did not produce anesthesia was demonstrated by their failure to block the avoidance response to ensuing ear shock cued by a light tactile stimulus applied to the hind paw. These results clearly indicate that a powerful analgesia can be produced by selectively activating adrenergic, opiate, and baclofenergic receptor systems in the spinal cord. PMID:6112935

  6. A novel D2-dopaminergic and alpha2-adrenoceptor receptor agonist induces substantial and prolonged IOP decrease in normotensive rabbits.

    PubMed

    Savolainen, Jouko; Rautio, Jarkko; Razzetti, Roberta; Järvinen, Tomi

    2003-06-01

    The effects of a novel and selective D2-dopaminergic/alpha2-adrenoceptor agonist, CHF1035, and its metabolite CHF1024 on intraocular pressure (IOP) were determined in rabbits. Because CHF1035 is a mixture of two enantiomers, CHF1800 (+) and CHF1810 (-), pure enantiomers were also studied to determine possible differences in IOP-decreasing ability depending on the stereochemistry of the molecule. CHF1035, CHF1800 (+), CHF1810 (-), CHF1024, brimonidine and 0.9% NaCl were administered topically to rabbits and IOP was then measured at fixed time intervals. The dose-response profile (0.01-1.0% w/v) was determined for CHF1035. CHF1035 and its metabolite CHF1024 significantly lowered IOP in the treated eyes. CHF1035 showed a maximum IOP decrease (7.6 +/- 1.5 mmHg) 5 h post-dosing, whereas the metabolite CHF1024 showed a maximum decrease in IOP (7.0 +/- 0.8 mmHg) 3 h post-dosing. The maximum IOP decrease produced by CHF1035 in the treated eye was comparable with that produced by brimonidine (7.8 +/- 0.9 mmHg), but CHF1035 had a significantly longer duration of action. Unlike brimonidine, CHF1035 and CHF1024 did not decrease IOP in the untreated eye. CHF1810 (-) lowered the IOP more than CHF1800 (+). No irritation, evaluated as eyelid closure, was observed after topical administration of any of the compounds. Only in the case of CHF1035 1% solution, two rabbits out of six closed the eye for 30-45 s. In conclusion, CHF1035 and its metabolite CHF1024 significantly decreased the IOP in rabbits, and are potential novel IOP lowering agents. Especially, CHF1035 produced a substantial decrease in IOP for a prolonged period of time, and thus may prove useful in glaucoma therapy. PMID:12841939

  7. Differential effects of K+ channel blockers on antinociception induced by alpha 2-adrenoceptor, GABAB and kappa-opioid receptor agonists.

    PubMed Central

    Ocaña, M.; Baeyens, J. M.

    1993-01-01

    1. The effects of several K+ channel blockers (sulphonylureas, 4-aminopyridine and tetraethylammonium) on the antinociception induced by clonidine, baclofen and U50,488H were evaluated by use of a tail flick test in mice. 2. Clonidine (0.125-2 mg kg-1, s.c.) induced a dose-dependent antinociceptive effect. The ATP-dependent K+ (KATP) channel blocker gliquidone (4-8 micrograms/mouse, i.c.v.) produced a dose-dependent displacement to the right of the clonidine dose-response line, but neither 4-aminopyridine (4-AP) (25-250 ng/mouse, i.c.v.) nor tetraethylammonium (TEA) (10-20 micrograms/mouse, i.c.v.) significantly modified clonidine-induced antinociception. 3. The order of potency of sulphonylureas in antagonizing clonidine-induced antinociception was gliquidone > glipizide > glibenclamide > tolbutamide, which is the same order of potency as these drugs block KATP channels in neurones of the CNS. 4. Baclofen (2-16 mg kg-1, s.c.) also induced a dose-dependent antinociceptive effect. Both 4-AP (2.5-25 ng/mouse, i.c.v.) and TEA (10-20 micrograms/mouse, i.c.v.) dose-dependently antagonized baclofen antinociception, producing a displacement to the right of the baclofen dose-response line. However, gliquidone (8-16 micrograms/mouse, i.c.v.) did not significantly modify the baclofen effect. 5. None of the K+ channel blockers tested (gliquidone, 8-16 micrograms/mouse; 4-AP, 25-250 ng/mouse and TEA, 10-20 micrograms/mouse, i.c.v.), significantly modified the antinociception induced by U50,488H (8 mg kg-1, s.c.). 6. These results suggest that the opening of K+ channels is involved in the antinociceptive effect of alpha 2 and GABAB, but not kappa-opioid, receptor agonists.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7905339

  8. Peroxisome proliferator-activated receptor {alpha} agonists modulate Th1 and Th2 chemokine secretion in normal thyrocytes and Graves' disease

    SciTech Connect

    Antonelli, Alessandro; Ferrari, Silvia Martina; Frascerra, Silvia; Corrado, Alda; Pupilli, Cinzia; Bernini, Giampaolo; Benvenga, Salvatore; Ferrannini, Ele; Fallahi, Poupak

    2011-07-01

    Until now, no data are present about the effect of peroxisome proliferator-activated receptor (PPAR){alpha} activation on the prototype Th1 [chemokine (C-X-C motif) ligand (CXCL)10] (CXCL10) and Th2 [chemokine (C-C motif) ligand 2] (CCL2) chemokines secretion in thyroid cells. The role of PPAR{alpha} and PPAR{gamma} activation on CXCL10 and CCL2 secretion was tested in Graves' disease (GD) and control primary thyrocytes stimulated with interferon (IFN){gamma} and tumor necrosis factor (TNF){alpha}. IFN{gamma} stimulated both CXCL10 and CCL2 secretion in primary GD and control thyrocytes. TNF{alpha} alone stimulated CCL2 secretion, while had no effect on CXCL10. The combination of IFN{gamma} and TNF{alpha} had a synergistic effect both on CXCL10 and CCL2 chemokines in GD thyrocytes at levels comparable to those of controls. PPAR{alpha} activators inhibited the secretion of both chemokines (stimulated with IFN{gamma} and TNF{alpha}) at a level higher (for CXCL10, about 60-72%) than PPAR{gamma} agonists (about 25-35%), which were confirmed to inhibit CXCL10, but not CCL2. Our data show that CCL2 is modulated by IFN{gamma} and TNF{alpha} in GD and normal thyrocytes. Furthermore we first show that PPAR{alpha} activators inhibit the secretion of CXCL10 and CCL2 in thyrocytes, suggesting that PPAR{alpha} may be involved in the modulation of the immune response in the thyroid.

  9. SSR591813, a novel selective and partial alpha4beta2 nicotinic receptor agonist with potential as an aid to smoking cessation.

    PubMed

    Cohen, C; Bergis, O E; Galli, F; Lochead, A W; Jegham, S; Biton, B; Leonardon, J; Avenet, P; Sgard, F; Besnard, F; Graham, D; Coste, A; Oblin, A; Curet, O; Voltz, C; Gardes, A; Caille, D; Perrault, G; George, P; Soubrie, P; Scatton, B

    2003-07-01

    (5aS,8S,10aR)-5a,6,9,10-Tetrahydro,7H,11H-8,10a-methanopyrido[2',3':5,6]pyrano[2,3-d]azepine (SSR591813) is a novel compound that binds with high affinity to the rat and human alpha4beta2 nicotinic acetylcholine receptor (nAChR) subtypes (Ki = 107 and 36 nM, respectively) and displays selectivity for the alpha4beta2 nAChR (Ki, human alpha3beta4 > 1000, alpha3beta2 = 116; alpha1beta1deltagamma > 6000 nM and rat alpha7 > 6000 nM). Electrophysiological experiments indicate that SSR591813 is a partial agonist at the human alpha4beta2 nAChR subtype (EC50 = 1.3 micro M, IA =19% compared with the full agonist 1,1-dimethyl-4-phenyl-piperazinium). In vivo findings from microdialysis and drug discrimination studies confirm the partial intrinsic activity of SSR591813. The drug increases dopamine release in the nucleus accumbens shell (30 mg/kg i.p.) and generalizes to nicotine or amphetamine (10-20 mg/kg i.p.) in rats, with an efficacy approximately 2-fold lower than that of nicotine. Pretreatment with SSR591813 (10 mg/kg i.p.) reduces the dopamine-releasing and discriminative effects of nicotine. SSR591813 shows activity in animal models of nicotine dependence at doses devoid of unwanted side effects typically observed with nicotine (hypothermia and cardiovascular effects). The compound (10 mg/kg i.p.) also prevents withdrawal signs precipitated by mecamylamine in nicotine-dependent rats and partially blocks the discriminative cue of an acute precipitated withdrawal. SSR591813 (20 mg/kg i.p.) reduces i.v. nicotine self-administration and antagonizes nicotine-induced behavioral sensitization in rats. The present results confirm important role for alpha4beta2 nAChRs in mediating nicotine dependence and suggest that SSR591813, a partial agonist at this particular nAChR subtype, may have therapeutic potential in the clinical management of smoking cessation. PMID:12682217

  10. Visualization of distinct patterns of subcellular redistribution of the thyrotropin-releasing hormone receptor-1 and gqalpha /G11alpha induced by agonist stimulation.

    PubMed Central

    Drmota, T; Novotny, J; Gould, G W; Svoboda, P; Milligan, G

    1999-01-01

    The rat thyrotropin-releasing hormone receptor-1 (TRHR-1) was modified by the addition of green fluorescent protein (GFP) and expressed stably in HEK293 cells. Extensive overlap of plasma membrane distribution of autofluorescent TRHR-1-GFP with that of the phosphoinositidase C-linked G-proteins Gqalpha/G11alpha, identified by indirect immunofluorescence, was monitored concurrently. Addition of thyrotropin-releasing hormone resulted in rapid separation of TRHR-1-GFP and Gqalpha/G11alpha signals as the receptor was internalized. This situation persisted for more than an hour. At longer time periods a fraction of the cellular Gqalpha/G11alpha was also internalized, although much of the Gqalpha/G11alpha immunoreactivity remained associated with the plasma membrane. Parallel experiments, in which the cellular distribution of TRHR-1-GFP and Gqalpha/G11alpha immunoreactivity were monitored in sucrose-gradient fractions following cell disruption, also demonstrated a rapid, agonist-induced movement of TRHR-1-GFP away from the plasma membrane to low-density vesicular fractions. At later time points, a fraction of the cellular Gqalpha/G11alpha immunoreactivity was also redistributed to overlapping, but non-identical, low-density-vesicle-containing fractions. Pretreatment of the cells with cytochalasin D or nocodazole prevented agonist-induced redistribution of G-protein but not TRHR-1-GFP, further indicating resolution of the mechanics of these two processes. The combination of a GFP-modified receptor and immunostaining of the G-proteins activated by that receptor allows, for the first time, concurrent analysis of the varying dynamics and bases of internalization and redistribution of two elements of the same signal-transduction cascade. PMID:10333499

  11. Muscarinic receptor antagonist and an alpha-adrenergic agonist are required in combination to provide stable mydriasis following intravitreal injection in mice

    PubMed Central

    Mojumder, Deb Kumar

    2010-01-01

    Tropicamide (muscarinic receptor antagonist) and phenylephrine (α-adrenergic receptor agonist) are commonly used to dilate the pupils by topical application. These two eye drops are often used, singly or in combination, to dilate the pupil and perform acute light-evoked physiological experiments (electroretinography, for example), before and after intravitreal injections of pharmacological agents, as an assay for their affect on retinal activity. This study wanted to determine whether treatment with one of these drugs, or with both, is most effective in maintaining mydriasis after intravitreal injections. Changes in pupillary dilation before and after intravitreal injection of balanced salt solution (0.5 µl) were recorded. Phenylephrine (α-adrenergic agonist) and tropicamide (muscarinic agonist) when combined, but not singly, produced full and stable pupillary dilation following intravitreal injections. Re-instillation of topical mydriatics after intravitreal injections was required for maximal pupillary dilation. A combination of a muscarinic receptor antagonist and an alpha-adrenergic agonist is required for stable mydriasis following intravitreal injection. PMID:20852745

  12. Comparison of prostaglandin F2alpha, bimatoprost (prostamide), and butaprost (EP2 agonist) on Cyr61 and connective tissue growth factor gene expression.

    PubMed

    Liang, Yanbin; Li, Chen; Guzman, Victor M; Evinger, Albert J; Protzman, Charles E; Krauss, Achim H-P; Woodward, David F

    2003-07-18

    Connective tissue growth factor (CTGF) and Cyr61 (cysteine-rich angiogenic protein 61) are members of the CCN gene family that encode multifunctional, extracellular matrix-associated signaling proteins. Because the mechanism of action of certain anti-glaucoma drugs involves extracellular matrix remodeling of ocular ciliary muscle, with a resultant increase in drainage of aqueous humor from the eye, we compared the effects of three pharmacologically distinct ocular hypotensive agents on Cyr61 and CTGF gene expression. Thus, prostaglandin F2alpha (PGF2alpha) (FP receptor agonist), Butaprost (EP2 receptor agonist), and Bimatoprost (a prostamide) were compared. Using Affymetrix gene chip technology, we first identified that PGF2alpha dramatically up-regulated Cyr61 and CTGF mRNA expression in HEK 293/EBNA cells (hFP-HEK 293/EBNA). Northern blot further confirmed the Cyr61 and CTGF up-regulation is in a dose- and time-dependent manner. PGF2alpha-induced up-regulation of Cyr61 appeared to exclusively involve the Rho pathway, and up-regulation of CTGF was via multiple intracellular pathways. Because prostamide receptors are, to date, defined only at the pharmacological level, Bimatoprost effects on Cyr61 and CTGF were studied in the isolated feline iris sphincter preparation, a tissue highly responsive to prostamides. Both PGF2alpha and Bimatoprost up-regulated Cyr61 mRNA expression in the cat iris tissue. Only PGF2alpha up-regulated CTGF mRNA expression in the cat iris. Therefore, PGF2alpha and Bimatoprost appear to interact with different receptors populations in the cat iris, according to their markedly different effects on CTGF. Activation of prostaglandin EP2 receptors (Gs-coupled) also up-regulated Cyr61 but not CTGF mRNA expression in the isolated cat iris. Similar data were observed in human primary ciliary smooth muscle cells. Thus, despite quite different signal transduction pathways, FP receptor stimulation up-regulates CTGF and Cyr61. The prostamide analog

  13. In vivo pharmacological characterization of a novel selective alpha7 neuronal nicotinic acetylcholine receptor agonist ABT-107: preclinical considerations in Alzheimer's disease.

    PubMed

    Bitner, R Scott; Bunnelle, William H; Decker, Michael W; Drescher, Karla U; Kohlhaas, Kathy L; Markosyan, Stella; Marsh, Kennan C; Nikkel, Arthur L; Browman, Kaitlin; Radek, Rich; Anderson, David J; Buccafusco, Jerry; Gopalakrishnan, Murali

    2010-09-01

    We previously reported that alpha7 nicotinic acetylcholine receptor (nAChR) agonism produces efficacy in preclinical cognition models correlating with activation of cognitive and neuroprotective signaling pathways associated with Alzheimer's disease (AD) pathology. In the present studies, the selective and potent alpha7 nAChR agonist 5-(6-[(3R)-1-azabicyclo[2.2.2]oct-3-yloxy] pyridazin-3-yl)-1H-indole (ABT-107) was evaluated in behavioral assays representing distinct cognitive domains. Studies were also conducted to address potential issues that may be associated with the clinical development of an alpha7 nAChR agonist. Specifically, ABT-107 improved cognition in monkey delayed matching to sample, rat social recognition, and mouse two-trial inhibitory avoidance, and continued to improve cognitive performance at injection times when exposure levels continued to decline. Rats concurrently infused with ABT-107 and donepezil at steady-state levels consistent with clinical exposure showed improved short-term recognition memory. Compared with nicotine, ABT-107 did not produce behavioral sensitization in rats or exhibit psychomotor stimulant activity in mice. Repeated (3 days) daily dosing of ABT-107 increased extracellular cortical acetylcholine in rats, whereas acute administration increased cortical extracellular signal-regulated kinase and cAMP response element-binding protein phosphorylation in mice, neurochemical and biochemical events germane to cognitive function. ABT-107 increased cortical phosphorylation of the inhibitory residue (Ser9) of glycogen synthase kinase-3, a primary tau kinase associated with AD pathology. In addition, continuous infusion of ABT-107 in tau/amyloid precursor protein transgenic AD mice reduced spinal tau hyperphosphorylation. These findings show that targeting alpha7 nAChRs may have potential utility for symptomatic alleviation and slowing of disease progression in the treatment AD, and expand the understanding of the potential

  14. Might adrenergic alpha2C-agonists/alpha2A-antagonists become novel therapeutic tools for pain treatment with morphine?

    PubMed

    Cardinaletti, Claudia; Mattioli, Laura; Ghelfi, Francesca; Del Bello, Fabio; Giannella, Mario; Bruzzone, Ariana; Paris, Hervé; Perfumi, Marina; Piergentili, Alessandro; Quaglia, Wilma; Pigini, Maria

    2009-11-26

    The imidazoline nucleus linked in position 2 via an oxyethylene bridge to a phenyl ring carrying an ortho substituent of moderate steric bulk provided alpha(2)-adrenergic (AR) ligands endowed with significant alpha(2C)-agonism/alpha(2A)-antagonism. Similar behavior was displayed by cirazoline (12). For their positive morphine analgesia modulation (due to alpha(2C)-AR stimulation) and sedation overcoming (due to alpha(2A)-AR antagonism), 8 and 11 might be useful as adjuvant agents in the management of pain with morphine. PMID:19886609

  15. Blockade of Nicotine and Cannabinoid Reinforcement and Relapse by a Cannabinoid CB1-Receptor Neutral Antagonist AM4113 and Inverse Agonist Rimonabant in Squirrel Monkeys.

    PubMed

    Schindler, Charles W; Redhi, Godfrey H; Vemuri, Kiran; Makriyannis, Alexandros; Le Foll, Bernard; Bergman, Jack; Goldberg, Steven R; Justinova, Zuzana

    2016-08-01

    Nicotine, the main psychoactive component of tobacco, and (-)-Δ(9)-tetrahydrocannabinol (THC), the main psychoactive ingredient in cannabis, play major roles in tobacco and marijuana dependence as reinforcers of drug-seeking and drug-taking behavior. Drugs that act as inverse agonists of cannabinoid CB1 receptors in the brain can attenuate the rewarding and abuse-related effects of nicotine and THC, but their clinical use is hindered by potentially serious side effects. The recently developed CB1-receptor neutral antagonists may provide an alternative therapeutic approach to nicotine and cannabinoid dependence. Here we compare attenuation of nicotine and THC reinforcement and reinstatement in squirrel monkeys by the CB1-receptor inverse agonist rimonabant and by the recently developed CB1-receptor neutral antagonist AM4113. Both rimonabant and AM4113 reduced two effects of nicotine and THC that play major roles in tobacco and marijuana dependence: (1) maintenance of high rates of drug-taking behavior, and (2) priming- or cue-induced reinstatement of drug-seeking behavior in abstinent subjects (models of relapse). In contrast, neither rimonabant nor AM4113 modified cocaine-reinforced or food-reinforced operant behavior under similar experimental conditions. However, both rimonabant and AM4113 reduced cue-induced reinstatement in monkeys trained to self-administer cocaine, suggesting the involvement of a common cannabinoid-mediated mechanism in the cue-induced reinstatement for different drugs of abuse. These findings point to CB1-receptor neutral antagonists as a new class of medications for treatment of both tobacco dependence and cannabis dependence. PMID:26888056

  16. Insights into docking and scoring neuronal alpha4beta2 nicotinic receptor agonists using molecular dynamics simulations and QM/MM calculations.

    PubMed

    Sgrignani, Jacopo; Bonaccini, Claudia; Grazioso, Giovanni; Chioccioli, Matteo; Cavalli, Andrea; Gratteri, Paola

    2009-11-30

    A combined quantum mechanical (QM)-polarized docking and molecular dynamics approach to study the binding mode and to predict the binding affinity of ligands acting at the alpha4beta2-nAChR is presented. The results obtained in this study indicate that the quantum mechanical/molecular mechanics docking protocol well describes the charge-driven interactions occurring in the binding of nicotinic agonists, and it is able to represent the polarization effects on the ligand exerted by the surrounding atoms of the receptor at the binding site. This makes it possible to properly score agonists of alpha4beta2-nAChR and to reproduce the experimental binding affinity data with good accuracy, within a mean error of 2.2 kcal/mol. Moreover, applying the QM-polarized docking to an ensemble of nAChR conformations obtained from MD simulations enabled us to accurately capture nAChR-ligand induced-fit effects. PMID:19360794

  17. Alpha2-adrenoreceptors profile modulation. 3.1 (R)-(+)-m-nitrobiphenyline, a new efficient and alpha2C-subtype selective agonist.

    PubMed

    Crassous, Pierre-Antoine; Cardinaletti, Claudia; Carrieri, Antonio; Bruni, Bruno; Di Vaira, Massimo; Gentili, Francesco; Ghelfi, Francesca; Giannella, Mario; Paris, Hervé; Piergentili, Alessandro; Quaglia, Wilma; Schaak, Stéphane; Vesprini, Cristian; Pigini, Maria

    2007-08-01

    To assess the stereochemical requirements for efficient alpha2C-adrenoreceptor activation, the enantiomeric forms of m-nitrobiphenyline [(+/-)-5] were prepared and tested on cells expressing the human alpha2-adrenoreceptor subtypes. The importance of chirality was confirmed, since the enantiomer (R)-(+)-5 was much more efficient than (S)-(-)-5 in producing alpha2C-activation. Surprising reversal of enantioselectivity was observed with respect to structurally similar biphenyline [(+/-)-1] whose (S)-(-)-form proved the preferred alpha2C-configuration. PMID:17630725

  18. Anticonvulsant activity of a mGlu(4alpha) receptor selective agonist, (1S,3R,4S)-1-aminocyclopentane-1,2,4-tricarboxylic acid.

    PubMed

    Chapman, A G; Talebi, A; Yip, P K; Meldrum, B S

    2001-07-20

    The metabotropic Group III agonist, (1S,3R,4S)-1-aminocyclopentane-1,2,4-tricarboxylic acid (ACPT-1), selective for the mGlu(4alpha) receptor, suppresses sound-induced seizures in DBA/2 mice following its intracerebroventricular (i.c.v.) administration (ED(50) 5.6 [2.9-10.7], nmol i.c.v., 15 min, clonic phase) and in genetically epilepsy-prone (GEP) rats following focal administration into the inferior colliculus (ED(50) 0.08 [0.01-0.50], nmol, 60 min, clonic phase). ACPT-1 also protects against clonic seizures induced in DBA/2 mice by the Group I agonist, (RS)-3,5-dihydroxyphenylglycine (3,5-DHPG) (ED(50) 0.60 [0.29-1.2], nmol i.c.v.) and by the Group III antagonist, (RS)-alpha-methylserine-O-phosphate (MSOP) (ED(50) 49.3 [37.9-64.1], nmol i.c.v.). Another Group III agonist, (RS)-4-phosphonophenyl-glycine (PPG), preferentially activating the mGlu(8) receptor, previously shown to protect against sound-induced seizures in DBA/2 mice and GEP rats, also protects against seizures induced in DBA/2 by 3,5-DHPG (ED(50) 3.7 [2.4-5.7], nmol i.c.v.) and by the Group III antagonist, MSOP (ED(50) 40.2 [21.0-77.0], nmol i.c.v.). At very high doses (500 nmol i.c.v. and above), Group III antagonists have pro-convulsant and convulsant activity. The anticonvulsant protection against sound-induced seizures in DBA/2 mice provided by a fully protective dose (20 nmol, i.c.v.) of the mGlu(4) receptor agonist ACPT-1, is partially reversed by the co-administration of the Group III antagonists, MSOP, (RS)-alpha-methyl-4-phosphonophenylglycine (MPPG) or (S)-2-amino-2-methyl-4-phosphonobutanoic acid (MAP4), in the 20-50 nmol dose range. At doses of 50-200 nmol, MPPG and MAP4 cause further reversal of the ACPT-1 anticonvulsant protection, while the MSOP effect on ACPT-1 protection is abolished at higher doses. In contrast, the anticonvulsant protection against sound-induced seizures in DBA/2 mice provided by a fully protective dose (20 nmol, i.c.v.) of the mGlu(8) receptor agonist PPG, is not

  19. CB2 cannabinoid receptor agonist enantiomers HU-433 and HU-308: An inverse relationship between binding affinity and biological potency

    PubMed Central

    Smoum, Reem; Baraghithy, Saja; Chourasia, Mukesh; Breuer, Aviva; Mussai, Naama; Attar-Namdar, Malka; Kogan, Natalya M.; Raphael, Bitya; Bolognini, Daniele; Cascio, Maria G.; Marini, Pietro; Pertwee, Roger G.; Shurki, Avital; Mechoulam, Raphael; Bab, Itai

    2015-01-01

    Activation of the CB2 receptor is apparently an endogenous protective mechanism. Thus, it restrains inflammation and protects the skeleton against age-related bone loss. However, the endogenous cannabinoids, as well as Δ9-tetrahydrocannabinol, the main plant psychoactive constituent, activate both cannabinoid receptors, CB1 and CB2. HU-308 was among the first synthetic, selective CB2 agonists. HU-308 is antiosteoporotic and antiinflammatory. Here we show that the HU-308 enantiomer, designated HU-433, is 3–4 orders of magnitude more potent in osteoblast proliferation and osteoclast differentiation culture systems, as well as in mouse models, for the rescue of ovariectomy-induced bone loss and ear inflammation. HU-433 retains the HU-308 specificity for CB2, as shown by its failure to bind to the CB1 cannabinoid receptor, and has no activity in CB2-deficient cells and animals. Surprisingly, the CB2 binding affinity of HU-433 in terms of [3H]CP55,940 displacement and its effect on [35S]GTPγS accumulation is substantially lower compared with HU-308. A molecular-modeling analysis suggests that HU-433 and -308 have two different binding conformations within CB2, with one of them possibly responsible for the affinity difference, involving [35S]GTPγS and cAMP synthesis. Hence, different ligands may have different orientations relative to the same binding site. This situation questions the usefulness of universal radioligands for comparative binding studies. Moreover, orientation-targeted ligands have promising potential for the pharmacological activation of distinct processes. PMID:26124120

  20. CB2 cannabinoid receptor agonist enantiomers HU-433 and HU-308: An inverse relationship between binding affinity and biological potency.

    PubMed

    Smoum, Reem; Baraghithy, Saja; Chourasia, Mukesh; Breuer, Aviva; Mussai, Naama; Attar-Namdar, Malka; Kogan, Natalya M; Raphael, Bitya; Bolognini, Daniele; Cascio, Maria G; Marini, Pietro; Pertwee, Roger G; Shurki, Avital; Mechoulam, Raphael; Bab, Itai

    2015-07-14

    Activation of the CB2 receptor is apparently an endogenous protective mechanism. Thus, it restrains inflammation and protects the skeleton against age-related bone loss. However, the endogenous cannabinoids, as well as Δ(9)-tetrahydrocannabinol, the main plant psychoactive constituent, activate both cannabinoid receptors, CB1 and CB2. HU-308 was among the first synthetic, selective CB2 agonists. HU-308 is antiosteoporotic and antiinflammatory. Here we show that the HU-308 enantiomer, designated HU-433, is 3-4 orders of magnitude more potent in osteoblast proliferation and osteoclast differentiation culture systems, as well as in mouse models, for the rescue of ovariectomy-induced bone loss and ear inflammation. HU-433 retains the HU-308 specificity for CB2, as shown by its failure to bind to the CB1 cannabinoid receptor, and has no activity in CB2-deficient cells and animals. Surprisingly, the CB2 binding affinity of HU-433 in terms of [(3)H]CP55,940 displacement and its effect on [(35)S]GTPγS accumulation is substantially lower compared with HU-308. A molecular-modeling analysis suggests that HU-433 and -308 have two different binding conformations within CB2, with one of them possibly responsible for the affinity difference, involving [(35)S]GTPγS and cAMP synthesis. Hence, different ligands may have different orientations relative to the same binding site. This situation questions the usefulness of universal radioligands for comparative binding studies. Moreover, orientation-targeted ligands have promising potential for the pharmacological activation of distinct processes. PMID:26124120

  1. Differential Adjuvant Activities of TLR7 and TLR9 Agonists Inversely Correlate with Nitric Oxide and PGE2 Production

    PubMed Central

    Lee, Jinhee; Martinez, Nuria; West, Kim; Kornfeld, Hardy

    2015-01-01

    Activation of different pattern recognition receptors causes distinct profiles of innate immune responses, which in turn dictate the adaptive immune response. We found that mice had higher CD4+ T cell expansion to an immunogen, ovalbumin, when coadministered with CpG than with CL097 in vivo. To account for this differential adjuvanticity, we assessed the activities of CpG and CL097 on antigen-specific CD4+ T cell expansion in vitro using an OT-II CD4+ T cell/bone marrow-derived dendritic cell (DC) co-culture system. Unexpectedly, ovalbumin-stimulated expansion of OT-II CD4+ T cells in vitro was potently suppressed by both TLR agonists, with CL097 being stronger than CpG. The suppression was synergistically reversed by co-inhibition of cyclooxygenases 1 and 2, and inducible nitric oxide (NO) synthase. In addition, stimulation of OT-II CD4+ T cell/DC cultures with CL097 induced higher levels of CD4+ T cell death than stimulation with CpG, and this CD4+ T cell turnover was reversed by NO and PGE2 inhibition. Consistently, the co-cultures stimulated with CL097 produced higher levels of prostaglandin E2 (PGE2) and NO than stimulation with CpG. CL097 induced higher PGE2 production in DC cultures and higher IFN-γ in the OT-II CD4+ T cell/DC cultures, accounting for the high levels of PGE2 and NO. This study demonstrates that the adjuvant activities of immunostimulatory molecules may be determined by differential induction of negative regulators, including NO and PGE2 suppressing clonal expansion and promoting cell death of CD4+ T cells. PMID:25875128

  2. Peroxisome proliferator-activated receptor alpha (PPARalpha) agonists down-regulate alpha2-macroglobulin expression by a PPARalpha-dependent mechanism.

    EPA Science Inventory

    Peroxisome proliferator-activated receptor alpha (PPARα) regulates transcription of genes involved both in lipid and glucose metabolism as well as inflammation. Fibrates are PPARα ligands used to normalize lipid and glucose parameters and exert anti-inflammatory effects. Fibrates...

  3. The alpha-2A-adrenoceptor agonist, guanfacine, increases regional cerebral blood flow in dorsolateral prefrontal cortex of monkeys performing a spatial working memory task.

    PubMed

    Avery, R A; Franowicz, J S; Studholme, C; van Dyck, C H; Arnsten, A F

    2000-09-01

    Research indicates that norepinephrine enhances the working memory functions of the prefrontal cortex (PFC) through actions at post-synaptic, alpha-2A adrenoceptors. The current study examined the effects of the alpha-2A adrenoreceptor agonist, guanfacine (0.7 mg/kg, i.m.), compared to saline on SPECT measures of regional cerebral blood flow (rCBF) in monkeys performing a spatial working memory task. Animals were infused with the SPECT blood flow tracer, Tcm-99m ECD, through an indwelling intravenous catheter while performing the working memory task. Guanfacine treatment significantly improved cognitive performance of the working memory task, and significantly increased rCBF values in the dorsolateral PFC, the brain region most tightly associated with performance of spatial working memory tasks. In contrast, guanfacine had no significant effect on rCBF in the superior temporal cortex, an auditory association area unrelated to task performance. These data are consistent with the hypothesis that alpha-2A adrenoceptor stimulation preferentially enhances functioning of the PFC. PMID:10942848

  4. Peroxisome proliferator-activated receptor {alpha} agonist-induced down-regulation of hepatic glucocorticoid receptor expression in SD rats

    SciTech Connect

    Chen Xiang; Li Ming; Sun Weiping; Bi Yan; Cai Mengyin; Liang Hua; Yu Qiuqiong; He Xiaoying; Weng Jianping

    2008-04-18

    It was reported that glucocorticoid production was inhibited by fenofibrate through suppression of type-1 11{beta}-hydroxysteroid dehydrogenase gene expression in liver. The inhibition might be a negative-feedback regulation of glucocorticoid receptor (GR) activity by peroxisome proliferator-activated receptor alpha (PPAR{alpha}), which is quickly induced by glucocorticoid in the liver. However, it is not clear if GR expression is changed by fenofibrate-induced PPAR{alpha} activation. In this study, we tested this possibility in the liver of Sprague-Dawley rats. GR expression was reduced by fenofibrate in a time- and does-dependent manner. The inhibition was observed in liver, but not in fat and muscle. The corticosterone level in the blood was increased significantly by fenofibrate. These effects of fenofibrate were abolished by PPAR{alpha} inhibitor MK886, suggesting that fenofibrate activated through PPAR{alpha}. In conclusion, inhibition of GR expression may represent a new molecular mechanism for the negative feedback regulation of GR activity by PPAR{alpha}.

  5. Effect of Alpha-1-Adrenergic Agonist, Midodrine for the Management of Long-Standing Neurogenic Shock in Patient with Cervical Spinal Cord Injury: A Case Report

    PubMed Central

    Kim, Taikwan

    2015-01-01

    We report a rare case of a 71-year-old male patient who had suffered from long-lasting neurogenic shock for 13 weeks after cervical spinal cord injury (SCI) caused by a bicycle accident. The neurogenic shock was resolved dramatically 2 weeks after the administration of alpha-1-adrenergic agonist, midodrine hydrochloride. In usual cases, neurogenic shock tends to improve between 2 and 6 weeks after SCI; however, in a few cases, the shock lasts for several months. In our case, spinal shock lasted for 13 weeks and exhibited very sensitive decline of blood pressure for even a slight decrease of dopamine despite recovered bulbospongiosus reflex. Three days after midodrine hydrochloride was added, hypotension improved dramatically. We discuss our rare case with pertinent literatures. PMID:27169082

  6. Alternative Agents in Type 1 Diabetes in Addition to Insulin Therapy: Metformin, Alpha-Glucosidase Inhibitors, Pioglitazone, GLP-1 Agonists, DPP-IV Inhibitors, and SGLT-2 Inhibitors.

    PubMed

    DeGeeter, Michelle; Williamson, Bobbie

    2016-04-01

    Insulin is the mainstay of current treatment for patients with type 1 diabetes mellitus (T1DM). Due to increasing insulin resistance, insulin doses are often continually increased, which may result in weight gain for patients. Medications currently approved for the treatment of type 2 diabetes offer varying mechanisms of action that can help to reduce insulin resistance and prevent or deter weight gain. A MEDLINE search was conducted to review literature evaluating the use of metformin, alpha-glucosidase inhibitors, pioglitazone, glucagon-like peptide 1 agonists, dipeptidyl peptidase, and sodium-dependent glucose transporter 2 inhibitors, in patients with T1DM. Varying results were found with some benefits including reductions in hemoglobin A1c, decreased insulin doses, and favorable effects on weight. Of significance, a common fear of utilizing multiple therapies for diabetes treatment is the risk of hypoglycemia, and this review displayed limited evidence of hypoglycemia with multiple agents. PMID:25312263

  7. Effect of Alpha-1-Adrenergic Agonist, Midodrine for the Management of Long-Standing Neurogenic Shock in Patient with Cervical Spinal Cord Injury: A Case Report.

    PubMed

    Kim, Taikwan; Jwa, Cheol Su

    2015-10-01

    We report a rare case of a 71-year-old male patient who had suffered from long-lasting neurogenic shock for 13 weeks after cervical spinal cord injury (SCI) caused by a bicycle accident. The neurogenic shock was resolved dramatically 2 weeks after the administration of alpha-1-adrenergic agonist, midodrine hydrochloride. In usual cases, neurogenic shock tends to improve between 2 and 6 weeks after SCI; however, in a few cases, the shock lasts for several months. In our case, spinal shock lasted for 13 weeks and exhibited very sensitive decline of blood pressure for even a slight decrease of dopamine despite recovered bulbospongiosus reflex. Three days after midodrine hydrochloride was added, hypotension improved dramatically. We discuss our rare case with pertinent literatures. PMID:27169082

  8. Multifunctional D2/D3 agonist D-520 with high in vivo efficacy: modulator of toxicity of alpha-synuclein aggregates.

    PubMed

    Modi, Gyan; Voshavar, Chandrashekhar; Gogoi, Sanjib; Shah, Mrudang; Antonio, Tamara; Reith, Maarten E A; Dutta, Aloke K

    2014-08-20

    We have developed a series of dihydroxy compounds and related analogues based on our hybrid D2/D3 agonist molecular template to develop multifunctional drugs for symptomatic and neuroprotective treatment for Parkinson's disease (PD). The lead compound (-)-24b (D-520) exhibited high agonist potency at D2/D3 receptors and produced efficacious activity in the animal models for PD. The data from thioflavin T (ThT) assay and from transmission electron microscopy (TEM) analysis demonstrate that D-520 is able to modulate aggregation of alpha-synuclein (αSN). Additionally, coincubation of D-520 with αSN is able to reduce toxicity of preformed aggregates of αSN compared to control αSN alone. Finally, in a neuroprotection study with dopaminergic MN9D cells, D-520 clearly demonstrated the effect of neuroprotection from toxicity of 6-hydroxydopamine. Thus, compound D-520 possesses properties characteristic of multifunctionality conducive to symptomatic and neuroprotective treatment of PD. PMID:24960209

  9. Acute alertness-promoting effects of a novel histamine subtype-3 receptor inverse agonist in healthy sleep-deprived male volunteers.

    PubMed

    Iannone, R; Palcza, J; Renger, J J; Calder, N; Cerchio, K; Gottesdiener, K; Hargreaves, R; Dijk, D J; Boyle, J; Murphy, M G

    2010-12-01

    The alertness-promoting effect of MK-0249 (10 or 50 mg), a histamine subtype-3 receptor (HRH3) inverse agonist (IA), was evaluated in the stimulant reference sleep deprivation model (SRSDM) using a double-blind, double-dummy, placebo- and modafinil- (200 mg) controlled, four-period crossover design in 24 healthy young men. The two primary hypotheses were related to sleep latency (first appearance of one epoch of stage 2, 3, or 4 or REM sleep, as detected using polysomnography (PSG)) at 8:00 AM on day 2. Statistically significant increases in sleep latency were observed in association with the use of modafinil 200 mg (9.07 min; P < 0.0001), MK-0249 50 mg (5.17 min; P = 0.008), and MK-0249 10 mg (5.45 min; P = 0.005) at the maintenance of wakefulness test (MWT) at 8:00 AM. Sleep latency was higher when averaged over all MWT time points (P < 0.0001 for modafinil and for both doses of MK-0249). The alertness-promoting effect with the use of MK-0249 in the SRSDM suggests that HRH3 IAs may be effective in disorders involving excessive somnolence. PMID:20981000

  10. Double di oxygenation by mouse 8S-lipoxygenase: Specific formation of a potent peroxisome proliferator-activated receptor {alpha} agonist

    SciTech Connect

    Jisaka, Mitsuo . E-mail: jisaka@life.shimane-u.ac.jp; Iwanaga, Chitose; Takahashi, Nobuyuki; Goto, Tsuyoshi; Kawada, Teruo; Yamamoto, Tatsuyuki; Ikeda, Izumi; Nishimura, Kohji; Nagaya, Tsutomu; Fushiki, Tohru; Yokota, Kazushige

    2005-12-09

    Mouse 8S-lipoxygenase (8-LOX) metabolizes arachidonic acid (AA) specifically to 8S-hydroperoxyeicosatetraenoic acid (8S-HPETE), which will be readily reduced under physiological circumstances to 8S-hydroxyeicosatetraenoic acid (8S-HETE), a natural agonist of peroxisome proliferator-activated receptor {alpha} (PPAR{alpha}). Here, we investigated whether 8-LOX could further oxygenate AA and whether the products could activate PPARs. The purified recombinant 8-LOX converted AA exclusively to 8S-HPETE and then to (8S,15S)-dihydroperoxy-5Z,9E,11Z,13E-eicosatetraenoic acid (8S,15S-diHPETE). The k {sub cat}/K {sub m} values for 8S-HPETE and AA were 3.3 x 10{sup 3} and 2.7 x 10{sup 4} M{sup -1} s{sup -1}, respectively. 8-LOX also dioxygenated 8S-HETE and 15S-H(P)ETE specifically to the corresponding 8S,15S-disubstituted derivatives. By contrast, 15-LOX-2, a human homologue of 8-LOX, produced 8S,15S-diH(P)ETE from 8S-H(P)ETE but not from AA nor 15S-H(P)ETE. 8S,15S-diHETE activated PPAR{alpha} more strongly than 8S-HETE did. The present results suggest that 8S,15S-diH(P)ETE as well as 8S-H(P)ETE would contribute to the physiological function of 8-LOX and also that 8-LOX can function as a potential 15-LOX.

  11. In vitro screening of 200 pesticides for agonistic activity via mouse peroxisome proliferator-activated receptor (PPAR){alpha} and PPAR{gamma} and quantitative analysis of in vivo induction pathway

    SciTech Connect

    Takeuchi, Shinji; Matsuda, Tadashi; Kobayashi, Satoshi; Takahashi, Tetsuo; Kojima, Hiroyuki . E-mail: kojima@iph.pref.hokkaido.jp

    2006-12-15

    Peroxisome proliferator-activated receptors (PPARs) are ligand-dependent transcription factors and key regulators of lipid metabolism and cell differentiation. However, there have been few studies reporting on a variety of environmental chemicals, which may interact with these receptors. In the present study, we characterized mouse PPAR{alpha} and PPAR{gamma} agonistic activities of 200 pesticides (29 organochlorines, 11 diphenyl ethers, 56 organophosphorus pesticides, 12 pyrethroids, 22 carbamates, 11 acid amides, 7 triazines, 8 ureas and 44 others) by in vitro reporter gene assays using CV-1 monkey kidney cells. Three of the 200 pesticides, diclofop-methyl, pyrethrins and imazalil, which have different chemical structures, showed PPAR{alpha}-mediated transcriptional activities in a dose-dependent manner. On the other hand, none of the 200 pesticides showed PPAR{gamma} agonistic activity at concentrations {<=} 10{sup -5} M. To investigate the in vivo effects of diclofop-methyl, pyrethrins and imazalil, we examined the gene expression of PPAR{alpha}-inducible cytochrome P450 4As (CYP4As) in the liver of female mice intraperitoneally injected with these compounds ({<=} 300 mg/kg). RT-PCR revealed significantly high induction levels of CYP4A10 and CYP4A14 mRNAs in diclofop-methyl- and pyrethrins-treated mice, whereas imazalil induced almost no gene expressions of CYP4As. In particular, diclofop-methyl induced as high levels of CYP4A mRNAs as WY-14643, a potent PPAR{alpha} agonist. Thus, most of the 200 pesticides tested do not activate PPAR{alpha} or PPAR{gamma} in in vitro assays, but only diclofop-methyl and pyrethrins induce PPAR{alpha} agonistic activity in vivo as well as in vitro.

  12. Indanylacetic acid derivatives carrying 4-thiazolyl-phenoxy tail groups, a new class of potent PPAR alpha/gamma/delta pan agonists: synthesis, structure-activity relationship, and in vivo efficacy.

    PubMed

    Rudolph, Joachim; Chen, Libing; Majumdar, Dyuti; Bullock, William H; Burns, Michael; Claus, Thomas; Dela Cruz, Fernando E; Daly, Michelle; Ehrgott, Frederick J; Johnson, Jeffrey S; Livingston, James N; Schoenleber, Robert W; Shapiro, Jeffrey; Yang, Ling; Tsutsumi, Manami; Ma, Xin

    2007-03-01

    Compounds that simultaneously activate the three peroxisome proliferator-activated receptor (PPAR) subtypes alpha, gamma, and delta hold potential to address the adverse metabolic and cardiovascular conditions associated with diabetes and the metabolic syndrome. We recently identified the indanylacetic acid moiety as a well-tunable PPAR agonist head group. Here we report the synthesis and structure-activity relationship (SAR) studies of novel aryl tail group derivatives that led to a new class of potent PPAR pan agonists. While most of the tail group modifications imparted potent PPAR delta agonist activity, improvement of PPAR alpha and gamma activity required the introduction of new heterocyclic substituents that were not known in the PPAR literature. Systematic optimization led to the discovery of 4-thiazolyl-phenyl derivatives with potent PPAR alpha/gamma/delta pan agonistic activity. The lead candidate from this series was found to exhibit excellent ADME properties and superior therapeutic potential compared to known PPAR gamma activating agents by favorably modulating lipid levels in hApoA1 mice and hyperlipidemic hamsters, while normalizing glucose levels in diabetic rodent models. PMID:17274610

  13. Alpha-particle capture reactions in inverse kinematics relevant to p-process nucleosynthesis

    NASA Astrophysics Data System (ADS)

    Ujić, P.; Lagoyannis, A.; Mertzimekis, T. J.; de Oliveira Santos, F.; Harissopulos, S.; Demetriou, P.; Perrot, L.; Stodel, Ch.; Saint-Laurent, M.-G.; Kamalou, O.; Lefebvre-Schuhl, A.; Spyrou, A.; Amthor, M. A.; Grevy, S.; Caceres, L.; Koivisto, H.; Laitinen, M.; Uusitalo, J.; Julin, R.

    2011-10-01

    The first feasibility study of an α-particle capture reaction in inverse kinematics at energies relevant to the p process was performed at the Wien Filter of the LISE spectrometer at GANIL. Hereby, the 4He(78Kr,γ)82Sr reaction was investigated using as target an 4He-implanted thin Al foil. The analysis of the data has shown that the determination of (α,γ) reaction cross sections at rather low energies around 2 MeV/u in inverse kinematics is indeed feasible regarding the high rejection rate of the primary beam, which in the present work was better than a factor of 109. However, the expected position of the recoils of interest was completely masked by particles of currently unknown origin that could hardly be attributed to scattering of the primary beam. The most probable explanation for the origin of these "pollutants" could be microscopic dust particles of 10 μm diameter and less, that are extremely difficult to avoid in standard experimental conditions. Hence, the use of a gas-jet target instead of a solid one is compulsory.

  14. A Phase 3 Placebo-Controlled, Double Blind, Multi-Site Trial of the alpha-2-adrenergic Agonist, Lofexidine, for Opioid Withdrawal

    PubMed Central

    Yu, Elmer; Miotto, Karen; Akerele, Evaristo; Montgomery, Ann; Elkashef, Ahmed; Walsh, Robert; Montoya, Ivan; Fischman, Marian W.; Collins, Joseph; McSherry, Frances; Boardman, Kathy; Davies, David K.; O’Brien, Charles P.; Ling, Walter; Kleber, Herbert; Herman, Barbara H.

    2008-01-01

    Context Lofexidine is an alpha-2-A noradrenergic receptor agonist that is approved in the United Kingdom for the treatment of opioid withdrawal symptoms. Lofexidine has been reported to have more significant effects on decreasing opioid withdrawal symptoms with less hypotension than clonidine. Objective To demonstrate that lofexidine is well tolerated and effective in the alleviation of observationally-defined opioid withdrawal symptoms in opioid dependent individuals undergoing medically supervised opioid detoxification as compared to placebo. Design An inpatient, Phase 3, placebo-controlled, double blind, randomized multi-site trial with three phases: (1) Opioid Agonist Stabilization Phase (days 1–3), (2) Detoxification/Medication or Placebo Phase (days 4–8), and (3) Post Detoxification/Medication Phase (days 9–11). Subjects Sixty-eight opioid dependent subjects were enrolled at three sites with 35 randomized to lofexidine and 33 to placebo. Main Outcome Measure Modified Himmelsbach Opiate Withdrawal Scale (MHOWS) on study day 5 (2nd opioid detoxification treatment day). Results Due to significant findings, the study was terminated early. On the study day 5 MHOWS, subjects treated with lofexidine had significantly lower scores (equating to fewer/less severe withdrawal symptoms) than placebo subjects (Least squares means 19.5 ± 2.1 versus 30.9 ± 2.7; p=0.0019). Lofexidine subjects had significantly better retention in treatment than placebo subjects (38.2% versus 15.2%; Log rank test p=0.01). Conclusions Lofexidine is well tolerated and more efficacious than placebo for reducing opioid withdrawal symptoms in inpatients undergoing medically supervised opioid detoxification. Trial Registration trial registry name A Phase 3 Placebo-Controlled, Double-Blind Multi-Site Trial of Lofexidine for Opiate Withdrawal, registration number NCT00032942, URL for the registry http://clinicaltrials.gov/ct/show/NCT00032942?order=4. PMID:18508207

  15. Synthesis and biological evaluation of phenolic 4,5-dihydroisoxazoles and 3-hydroxy ketones as estrogen receptor alpha and beta agonists.

    PubMed

    Poutiainen, Pekka K; Venäläinen, Tuomas A; Peräkylä, Mikael; Matilainen, Juha M; Väisänen, Sami; Honkakoski, Paavo; Laatikainen, Reino; Pulkkinen, Juha T

    2010-05-15

    In this work, 52 diphenyl-4,5-dihydroisoxazoles and -3-hydroxy ketones were prepared and their estrogen receptor alpha (ERalpha) and estrogen receptor beta (ERbeta) activities were explored in order to systematize and maximize their biological activity. The biological activity was firstly screened by using ERE reporter assay to find out how aromatic hydroxylation and methylation of the chiral centers of the compounds affect the ability of ER to mediate biological responses. For selected 19 compounds, the relative binding affinities (RBA, relative to 3,17beta-estradiol) and ability to induce transcription of primary E2 target gene pS2 in human MCF-7 breast cancer cells were determined. In the reporter assay, many compounds showed even stronger activity than E2 and some of them showed RBA larger than 1%. The highest RBAs were determined for the enantiomers of 1-hydroxy-6-(4-hydroxy-phenyl)-1-phenyl-hexan-3-one (50a and 50b). Isomer 50a showed high binding affinity both to ERalpha (with RBA approximately 200%) and ERbeta (with RBA approximately 60%), while the RBAs of 50b were ca. 40% of those. Some of the other compounds (with RBA approximately 1-16%) showed also notable ERalpha binding selectivity. When four most promising ligands (50a, 50b, 45a, and 45b) were studied with respect to their ability to induce the transcription of primary E2 target gene pS2, the compounds acted as agonists or partial agonists. Computer modeling was used to predict receptor binding conformations and to rationalize the RBA differences of the compounds. PMID:20430632

  16. Chlordecone, a mixed pregnane X receptor (PXR) and estrogen receptor alpha (ER{alpha}) agonist, alters cholesterol homeostasis and lipoprotein metabolism in C57BL/6 mice

    SciTech Connect

    Lee, Junga; Scheri, Richard C.; Zhang Yuan; Curtis, Lawrence R.

    2008-12-01

    Chlordecone (CD) is one of many banned organochlorine (OC) insecticides that are widespread persistent organic pollutants. OC insecticides alter lipid homeostasis in rodents at doses that are not neurotoxic or carcinogenic. Pretreatment of mice or rats with CD altered tissue distribution of a subsequent dose of [{sup 14}C]CD or [{sup 14}C]cholesterol (CH). Nuclear receptors regulate expression of genes important in the homeostasis of CH and other lipids. In this study, we report that CD suppresses in vitro reporter systems for human liver X receptors (LXRs) and activates those for human farnesoid X receptor (FXR), pregnane X receptor (PXR) and estrogen receptor {alpha} (ER{alpha}) in a concentration-dependent manner (0-50 {mu}M). Consistent with human PXR activation in vitro, three days after a single dose of CD (15 mg/kg) hepatic microsomal CYP3A11 protein increases in C57BL/6 mice. CD decreases hepatic CH ester content without altering total CH concentration. Apolipoprotein A-I (apoA-I) contents of hepatic lipoprotein-rich and microsomal fractions of CD-treated mice are higher than controls. There is a significant reduction in non-high density lipoprotein CH but not apolipoprotein B-48/100 (apoB-48/100) in plasma from CD-treated mice after a 4 h fast. At 14 days after 15 mg CD/kg apoA-I and apoB-100 proteins but not CYP3A11 protein in hepatic microsomes are similar to controls. This work indicates that altered CH homeostasis is a mode of OC insecticide action of relevance after a single dose. This at least partially explains altered CH tissue distribution in CD-pretreated mice.

  17. Effects of alpha1-adrenoceptor antagonists on agonist and tilt-induced changes in blood pressure: relationships to uroselectivity.

    PubMed

    Hieble, J P; Kolpak, D C; McCafferty, G P; Ruffolo, R R; Testa, R; Leonardi, A

    1999-05-28

    We evaluated the uroselectivity of a series of alpha1-adrenoceptor antagonists by comparing their potency against phenylephrine-induced increases in urethral perfusion pressure and diastolic blood pressure in the anesthetized rabbit and pithed rat. In the rabbit, Rec 15/2739 (N-[3-[4-(2-methoxyphenyl)-1-piperazinyl]propyl]-3-methyl-4-oxo-2-phenyl -4H-1-benzopyran-8-carboxamide) as well as analogs with a chlorine substituent on the methoxyphenyl ring (Rec 15/2869) or this substituent combined with the replacement of the phenyl substituent on the pyran ring by cyclohexyl (Rec 15/3011) were 2-6-fold more potent against the urethral vs. vascular response to phenylephrine. Rec 15/2841 (N-[3-[4-(2-methoxyphenyl)-1-piperazinyl]propyl]-3-methyl-4-oxo-2-cyc lohexy-4H-1-benzopyran-8-carboxamide) was only 1.5-fold more potent against the urethral response. SL 89.0591 and tamsulosin also showed selectivity for the urethral response (2-2.5-fold), while the quinazolines produced equipotent blockade of urethral and vascular responses (selectivity ratio = 0.9-1.1). The urethral selectivities of Rec 15/2739 and its derivatives were confirmed by evaluation of the response to tilt in sedated, hypovolemic rabbits. Phenylephrine challenge assays did not show any of the antagonists, with the exception of terazosin at 300 microg kg(-1), to be uroselective in the rat (selectivity ratios = 0.2-1.5); potentiation of tilt-induced hypotension in the anesthetized rat showed substantial differences from the rabbit, with Rec 15/2739, but not Rec 15/3011 and Rec 15/2841 showing orthostatic effects equivalent to that observed for prazosin. Hence, Rec 15/2739 was uroselective in the rabbit, but not in the rat, while two of its close structural analogs were highly uroselective in both species. An assay for orthostatic activity in the conscious rat yielded different results, showing prazosin and terazosin, but not Rec 15/2739, to cause a reversal of the pressor response to tilt. Hence, the apparent

  18. Tricyclic pyrazoles. Part 8. Synthesis, biological evaluation and modelling of tricyclic pyrazole carboxamides as potential CB2 receptor ligands with antagonist/inverse agonist properties.

    PubMed

    Deiana, Valeria; Gómez-Cañas, María; Pazos, M Ruth; Fernández-Ruiz, Javier; Asproni, Battistina; Cichero, Elena; Fossa, Paola; Muñoz, Eduardo; Deligia, Francesco; Murineddu, Gabriele; García-Arencibia, Moisés; Pinna, Gerard A

    2016-04-13

    Previous studies have investigated the relevance and structure-activity relationships (SARs) of pyrazole derivatives in relation with cannabinoid receptors, and the series of tricyclic 1,4-dihydroindeno[1,2-c]pyrazoles emerged as potent CB2 receptor ligands. In the present study, novel 1,4-dihydroindeno[1,2-c]pyrazole and 1H-benzo[g]indazole carboxamides containing a cyclopropyl or a cyclohexyl substituent were designed and synthesized to evaluate the influence of these structural modifications towards CB1 and CB2 receptor affinities. Among these derivatives, compound 15 (6-cyclopropyl-1-(2,4-dichlorophenyl)-N-(adamantan-1-yl)-1,4-dihydroindeno[1,2-c]pyrazole-3-carboxamide) showed the highest CB2 receptor affinity (Ki = 4 nM) and remarkable selectivity (KiCB1/KiCB2 = 2232), whereas a similar affinity, within the nM range, was seen for the fenchyl derivative (compound 10: Ki = 6 nM), for the bornyl analogue (compound 14: Ki = 38 nM) and, to a lesser extent, for the aminopiperidine derivative (compound 6: Ki = 69 nM). Compounds 10 and 14 were also highly selective for the CB2 receptor (KiCB1/KiCB2 > 1000), whereas compound 6 was relatively selective (KiCB1/KiCB2 = 27). The four compounds were also subjected to GTPγS binding analysis showing antagonist/inverse agonist properties (IC50 for compound 14 = 27 nM, for 15 = 51 nM, for 10 = 80 nM and for 6 = 294 nM), and this activity was confirmed for the three more active compounds in a CB2 receptor-specific in vitro bioassay consisting in the quantification of prostaglandin E2 release by LPS-stimulated BV2 cells, in the presence and absence of WIN55,212-2 and/or the investigated compounds. Modelling studies were also conducted with the four compounds, which conformed with the structural requirements stated for the binding of antagonist compounds to the human CB2 receptor. PMID:26890113

  19. Differential actions of antiparkinson agents at multiple classes of monoaminergic receptor. II. Agonist and antagonist properties at subtypes of dopamine D(2)-like receptor and alpha(1)/alpha(2)-adrenoceptor.

    PubMed

    Newman-Tancredi, Adrian; Cussac, Didier; Audinot, Valérie; Nicolas, Jean-Paul; De Ceuninck, Frédéric; Boutin, Jean-A; Millan, Mark J

    2002-11-01

    The accompanying multivariate analysis of the binding profiles of antiparkinson agents revealed contrasting patterns of affinities at diverse classes of monoaminergic receptor. Herein, we characterized efficacies at human (h)D(2SHORT(S)), hD(2LONG(L)), hD(3), and hD(4.4) receptors and at halpha(2A)-, halpha(2B)-, halpha(2C)-, and halpha(1A)-adrenoceptors (ARs). As determined by guanosine 5'-O-(3-[(35)S]thio)triphosphate ([(35)S]GTPgammaS) binding, no ligand displayed "full" efficacy relative to dopamine (100%) at all "D(2)-like" sites. However, at hD(2S) receptors quinpirole, pramipexole, ropinirole, quinerolane, pergolide, and cabergoline were as efficacious as dopamine (E(max)100%); TL99, talipexole, and apomorphine were highly efficacious (79-92%); piribedil, lisuride, bromocriptine, and terguride showed intermediate efficacy (40-55%); and roxindole displayed low efficacy (11%). For all drugs, efficacies were lower at hD(2L) receptors, with terguride and roxindole acting as antagonists. At hD(3) receptors, efficacies ranged from 33% (roxindole) to 94% (TL99), whereas, for hD(4) receptors, highest efficacies (approximately 70%) were seen for quinerolane, quinpirole, and TL99, whereas piribedil and terguride behaved as antagonists and bromocriptine was inactive. Although efficacies at hD(2S) versus hD(2L) sites were highly correlated (r = 0.79), they correlated only modestly to hD(3)/hD(4) sites (r = 0.44-0.59). In [(35)S]GTPgammaS studies of halpha(2A)-ARs, TL99 (108%), pramipexole (52%), talipexole (51%), pergolide (31%), apomorphine (16%), and quinerolane (11%) were agonists and ropinirole and roxindole were inactive, whereas piribedil and other agents were antagonists. Similar findings were obtained at halpha(2B)- and halpha(2C)-ARs. Using [(3)H]phosphatidylinositol depletion, roxindole, bromocriptine, lisuride, and terguride displayed potent antagonist properties at halpha(1A)-ARs. In conclusion, antiparkinson agents display diverse agonist and antagonist

  20. Clonidine, an alpha-2 adrenoceptor agonist relieves mechanical allodynia in oxaliplatin-induced neuropathic mice; potentiation by spinal p38 MAPK inhibition without motor dysfunction and hypotension.

    PubMed

    Yeo, Ji-Hee; Yoon, Seo-Yeon; Kim, Sol-Ji; Oh, Seog-Bae; Lee, Jang-Hern; Beitz, Alvin J; Roh, Dae-Hyun

    2016-05-15

    Cancer chemotherapy with platinum-based antineoplastic agents including oxaliplatin frequently results in a debilitating and painful peripheral neuropathy. We evaluated the antinociceptive effects of the alpha-2 adrenoceptor agonist, clonidine on oxaliplatin-induced neuropathic pain. Specifically, we determined if (i) the intraperitoneal (i.p.) injection of clonidine reduces mechanical allodynia in mice with an oxaliplatin-induced neuropathy and (ii) concurrent inhibition of p38 mitogen-activated protein kinase (MAPK) activity by the p38 MAPK inhibitor SB203580 enhances clonidine's antiallodynic effect. Clonidine (0.01-0.1 mg kg(-1), i.p.), with or without SB203580(1-10 nmol, intrathecal) was administered two weeks after oxaliplatin injection(10 mg kg(-1), i.p.) to mice. Mechanical withdrawal threshold, motor coordination and blood pressure were measured. Postmortem expression of p38 MAPK and ERK as well as their phosphorylated forms(p-p38 and p-ERK) were quantified 30 min or 4 hr after drug injection in the spinal cord dorsal horn of treated and control mice. Clonidine dose-dependently reduced oxaliplatin-induced mechanical allodynia and spinal p-p38 MAPK expression, but not p-ERK. At 0.1 mg kg(-1), clonidine also impaired motor coordination and decreased blood pressure. A 10 nmol dose of SB203580 alone significantly reduced mechanical allodynia and p-p38 MAPK expression, while a subeffective dose(3 nmol) potentiated the antiallodynic effect of 0.03 mg kg(-1) clonidine and reduced the increased p-p38 MAPK. Coadministration of SB203580 and 0.03 mg kg(-1) clonidine decreased allodynia similar to that of 0.10 mg kg(-1) clonidine, but without significant motor or vascular effects. These findings demonstrate that clonidine treatment reduces oxaliplatin-induced mechanical allodynia. The concurrent administration of SB203580 reduces the dosage requirements for clonidine, thereby alleviating allodynia without producing undesirable motor or cardiovascular effects. PMID

  1. The dual peroxisome proliferator-activated receptor alpha/delta agonist GFT505 exerts anti-diabetic effects in db/db mice without peroxisome proliferator-activated receptor gamma-associated adverse cardiac effects.

    PubMed

    Hanf, Rémy; Millatt, Lesley J; Cariou, Bertrand; Noel, Benoit; Rigou, Géraldine; Delataille, Philippe; Daix, Valérie; Hum, Dean W; Staels, Bart

    2014-11-01

    We report here the efficacy and safety of GFT505, a novel liver-targeted peroxisome proliferator-activated receptor alpha/delta (PPARα/δ) agonist, in the db/db mouse model of diabetes. Mice were treated with vehicle, GFT505, PPARγ agonist rosiglitazone or dual-PPARα/γ agonist aleglitazar for up to 8 weeks. All compounds comparably reduced fasting glycaemia and HbA1c and improved insulin sensitivity. The glucose-lowering effect of GFT505 was associated with decreased hepatic gluconeogenesis, correlating with reduced expression of gluconeogenic genes. In contrast with the PPARγ-activating drugs, treatment with GFT505 did not affect heart weight and did not increase plasma adiponectin concentrations. This absence of cardiac effects of GFT505 was confirmed after 12 months of administration in cynomolgus monkeys, by the absence of echocardiographic and histological findings. Moreover, long-term GFT505 administration to monkeys induced no change in haematological parameters or in bone marrow differential cell counts. Compared to PPARγ-activating drugs, the dual-PPARα/δ agonist GFT505 therefore shows an improved benefit/risk ratio, treating multiple features of type 2 diabetes without inducing the cardiac side-effects associated with PPARγ activation. PMID:25212694

  2. Involvement of medial prefrontal cortex alpha-2 adrenoceptors on memory acquisition deficit induced by arachidonylcyclopropylamide, a cannabinoid CB1 receptor agonist, in rats; possible involvement of Ca2+ channels.

    PubMed

    Beiranvand, Afsaneh; Nasehi, Mohammad; Zarrindast, Mohammad-Reza; Moghaddasi, Mehrnoush

    2016-09-01

    Functional interactions between cannabinoid and alpha-2 adrenergic systems in cognitive control in the medial prefrontal cortex (mPFC) seem possible. The present study evaluated the possible role of alpha-2 adrenoceptors of the prefrontal cortex on effect of arachidonylcyclopropylamide (ACPA), a cannabinoid CB1 receptor (CB1R) agonist, in adult male Wistar rats. The animals were bilaterally implanted with chronic cannulae in the mPFC, trained in a step-through task, and tested 24 h after training to measure step-through latency. Results indicate that pre-training microinjection of ACPA (0.05 and 0.5 μg/rat) and clonidine (alpha-2 adrenoceptor agonist; 1 and 2 μg/rat) reduce memory acquisition. Pre-training subthreshold dose of clonidine (0.5 µg/rat) restored memory-impairing effect of ACPA (0.05 and 0.5 µg/rat). On the other hand, pre-training administration of the alpha-2 adrenoceptor antagonist yohimbine in all doses used (0.5, 1, and 2 μg/rat) did not affect memory acquisition by itself, while a subthreshold dose of yohimbine (2 µg/rat) potentiated memory impairment induced by ACPA (0.005 µg/rat). Finally, a subthreshold dose of SKF96365 (a Ca(2+) channel blocker) blocked clonidine and yohimbine effect of memory responses induced by ACPA. In conclusion, these data indicate that mPFC alpha-2 adrenoceptors play an important role in ACPA-induced amnesia and Ca(2+) channels have a critical role this phenomenon. PMID:27317021

  3. Control of the efficiency of agonist-induced information transfer and stability of the ternary complex containing the delta opioid receptor and the alpha subunit of G(i1) by mutation of a receptor/G protein contact interface.

    PubMed

    Moon, H E; Bahia, D S; Cavalli, A; Hoffmann, M; Milligan, G

    2001-09-01

    Fusion proteins were constructed between the delta opioid receptor and forms of the alpha subunit of G(i1) in which cysteine(351) was mutated to a range of amino acids. GDP reduced the binding of the agonist [(3)H]DADLE but not the antagonist [(3)H]naltrindole to both the receptor alone and all the delta opioid receptor-Cys(351)XaaG(i1)alpha fusion proteins. For the fusion proteins the pEC(50) for GDP was strongly correlated with the n-octanol/H(2)O partition co-efficient of G protein residue(351). Fusion proteins in which this residue was either isoleucine or glycine had similar observed binding kinetics for [(3)H]DADLE. However, the rate of dissociation of [(3)H]DADLE was substantially greater for the glycine-containing fusion protein than that containing isoleucine, indicating that more hydrophobic residues imbued greater stability to the agonist-receptor-G protein ternary complex. This resulted in a higher affinity of binding of [(3)H]DADLE to the fusion protein containing isoleucine(351). In expectation with the binding data, maximal DADLE-stimulated GTP hydrolysis by the isoleucine(351)-containing fusion protein was two-fold greater and the potency of DADLE seven-fold higher than for the version containing glycine. These results demonstrate that the stability of the ternary complex between delta opioid receptor, G(i1)alpha and an agonist (but not antagonist) ligand is dependent upon the nature of residue(351) of the G protein and that this determines the effectiveness of information flow from the receptor to the G protein. PMID:11522323

  4. Benzodiazepine receptor ligands. 8: synthesis and pharmacological evaluation of new pyrazolo[5,1-c] [1,2,4]benzotriazine 5-oxide 3- and 8-disubstituted: high affinity ligands endowed with inverse-agonist pharmacological efficacy.

    PubMed

    Guerrini, Gabriella; Costanzo, Annarella; Ciciani, Giovanna; Bruni, Fabrizio; Selleri, Silvia; Costagli, Camilla; Besnard, François; Costa, Barbara; Martini, Claudia; De Siena, Gaetano; Malmberg-Aiello, Petra

    2006-02-01

    The synthesis and the binding study of new 3-arylesters and 3-heteroarylpyrazolo[5,1-c][1,2,4]benzotriazine 5-oxide 8-substituted are reported. The nature of these substituents (in terms of lipophilic and electronic features) seems to influence the binding affinity. High-affinity ligands were studied in mice in vivo for their pharmacological effects, considering six potential benzodiazepine actions: anxiolytic-like effects, muscle relaxant effects, motor coordination, anticonvulsant action, spontaneous motor activity, and ethanol-potentiating action. Compounds 4d and 6d showed an inverse-agonist profile. These compounds were evaluated also for their binding at benzodiazepine site on GABAA receptor complex (GABAA/BzR complex) subtype to evaluate their subtype selectivity. PMID:16214350

  5. A novel peroxisome proliferator-activated receptor alpha/gamma agonist, BPR1H0101, inhibits topoisomerase II catalytic activity in human cancer cells.

    PubMed

    Kao, Yu-Hsun; Hsieh, Hsing-Pang; Chitlimalla, Santhosh Kumar; Pan, Wen-Yu; Kuo, Ching-Chuan; Tsai, Yuan-Chin; Lin, Wen-Hsing; Chuang, Shuang-En; Chang, Jang-Yang

    2008-02-01

    Peroxisome proliferator-activated receptor (PPAR) gamma agonists are used clinically for treating diabetes mellitus and cancer. 2-Methyl-2[(1-{3-phenyl-7-propylbenzol[d]isoxazol-6-yl}oxy)propyl]-1H-4-indolyl) oxy]propanoic acid (BPR1H0101) is a novel synthetic indole-based compound, discovered through research to identify new PPARgamma agonists, and it acts as a dual agonist for PPARgamma and PPARalpha. Isobologram analysis demonstrated that BPR1H0101 is capable of antagonistic interaction with the topoisomerase (topo) II poison, VP16. A study of its mechanism showed that BPR1H0101 could inhibit the catalytic activity of topo II in vitro, but did not produce detectable topo II-mediated DNA strand breaks in human oral cancer KB cells. Furthermore, BPR1H0101 could inhibit VP16-induced topo II-mediated DNA cleavage and ataxia-telangiectasia-mutated phosphorylation in KB cells. The results suggest that BPR1H0101 can interfere with the topo II reaction by inhibiting catalytic activity before the formation of the intermediate cleavable complex; consequently, it can impede VP16-induced topo II-mediated DNA cleavage and cell death. This is the first identified PPARalpha/gamma agonist that can serve as a topo II catalytic inhibitor, to interfere with VP16-induced cell death. The result might have relevance to the clinical use of the PPARalpha/gamma agonist in combination chemotherapy. PMID:18176111

  6. Discovery of an Oxybenzylglycine Based Peroxisome Proliferator Activated Receptor [alpha] Selective Agonist 2-((3-((2-(4-Chlorophenyl)-5-methyloxazol-4-yl)methoxy)benzyl)(methoxycarbonyl)amino)acetic Acid (BMS-687453)

    SciTech Connect

    Li, Jun; Kennedy, Lawrence J.; Shi, Yan; Tao, Shiwei; Ye, Xiang-Yang; Chen, Stephanie Y.; Wang, Ying; Hernndez, Andrs S.; Wang, Wei; Devasthale, Pratik V.; Chen, Sean; Lai, Zhi; Zhang, Hao; Wu, Shung; Smirk, Rebecca A.; Bolton, Scott A.; Ryono, Denis E.; Zhang, Huiping; Lim, Ngiap-Kie; Chen, Bang-Chi; Locke, Kenneth T.; O’Malley, Kevin M.; Zhang, Litao; Srivastava, Rai Ajit; Miao, Bowman; Meyers, Daniel S.; Monshizadegan, Hossain; Search, Debra; Grimm, Denise; Zhang, Rongan; Harrity, Thomas; Kunselman, Lori K.; Cap, Michael; Kadiyala, Pathanjali; Hosagrahara, Vinayak; Zhang, Lisa; Xu, Carrie; Li, Yi-Xin; Muckelbauer, Jodi K.; Chang, Chiehying; An, Yongmi; Krystek, Stanley R.; Blanar, Michael A.; Zahler, Robert; Mukherjee, Ranjan; Cheng, Peter T.W.; Tino, Joseph A.

    2010-04-12

    An 1,3-oxybenzylglycine based compound 2 (BMS-687453) was discovered to be a potent and selective peroxisome proliferator activated receptor (PPAR) {alpha} agonist, with an EC{sub 50} of 10 nM for human PPAR{alpha} and 410-fold selectivity vs human PPAR{gamma} in PPAR-GAL4 transactivation assays. Similar potencies and selectivity were also observed in the full length receptor co-transfection assays. Compound 2 has negligible cross-reactivity against a panel of human nuclear hormone receptors including PPAR{delta}. Compound 2 demonstrated an excellent pharmacological and safety profile in preclinical studies and thus was chosen as a development candidate for the treatment of atherosclerosis and dyslipidemia. The X-ray cocrystal structures of the early lead compound 12 and compound 2 in complex with PPAR{alpha} ligand binding domain (LBD) were determined. The role of the crystal structure of compound 12 with PPAR{alpha} in the development of the SAR that ultimately resulted in the discovery of compound 2 is discussed.

  7. Isoproterenol acts as a biased agonist of the alpha-1A-adrenoceptor that selectively activates the MAPK/ERK pathway.

    PubMed

    Copik, Alicja J; Baldys, Aleksander; Nguyen, Khanh; Sahdeo, Sunil; Ho, Hoangdung; Kosaka, Alan; Dietrich, Paul J; Fitch, Bill; Raymond, John R; Ford, Anthony P D W; Button, Donald; Milla, Marcos E

    2015-01-01

    The α1A-AR is thought to couple predominantly to the Gαq/PLC pathway and lead to phosphoinositide hydrolysis and calcium mobilization, although certain agonists acting at this receptor have been reported to trigger activation of arachidonic acid formation and MAPK pathways. For several G protein-coupled receptors (GPCRs) agonists can manifest a bias for activation of particular effector signaling output, i.e., not all agonists of a given GPCR generate responses through utilization of the same signaling cascade(s). Previous work with Gαq coupling-defective variants of α1A-AR, as well as a combination of Ca2+ channel blockers, uncovered cross-talk between α1A-AR and β2-AR that leads to potentiation of a Gαq-independent signaling cascade in response to α1A-AR activation. We hypothesized that molecules exist that act as biased agonists to selectively activate this pathway. In this report, isoproterenol (Iso), typically viewed as β-AR-selective agonist, was examined with respect to activation of α1A-AR. α1A-AR selective antagonists were used to specifically block Iso evoked signaling in different cellular backgrounds and confirm its action at α1A-AR. Iso induced signaling at α1A-AR was further interrogated by probing steps along the Gαq /PLC, Gαs and MAPK/ERK pathways. In HEK-293/EBNA cells transiently transduced with α1A-AR, and CHO_α1A-AR stable cells, Iso evoked low potency ERK activity as well as Ca2+ mobilization that could be blocked by α1A-AR selective antagonists. The kinetics of Iso induced Ca2+ transients differed from typical Gαq- mediated Ca2+ mobilization, lacking both the fast IP3R mediated response and the sustained phase of Ca2+ re-entry. Moreover, no inositol phosphate (IP) accumulation could be detected in either cell line after stimulation with Iso, but activation was accompanied by receptor internalization. Data are presented that indicate that Iso represents a novel type of α1A-AR partial agonist with signaling bias toward MAPK

  8. Isoproterenol Acts as a Biased Agonist of the Alpha-1A-Adrenoceptor that Selectively Activates the MAPK/ERK Pathway

    PubMed Central

    Copik, Alicja. J.; Baldys, Aleksander; Nguyen, Khanh; Sahdeo, Sunil; Ho, Hoangdung; Kosaka, Alan; Dietrich, Paul J.; Fitch, Bill; Raymond, John R.; Ford, Anthony P. D. W.; Button, Donald; Milla, Marcos E.

    2015-01-01

    The α1A-AR is thought to couple predominantly to the Gαq/PLC pathway and lead to phosphoinositide hydrolysis and calcium mobilization, although certain agonists acting at this receptor have been reported to trigger activation of arachidonic acid formation and MAPK pathways. For several G protein-coupled receptors (GPCRs) agonists can manifest a bias for activation of particular effector signaling output, i.e. not all agonists of a given GPCR generate responses through utilization of the same signaling cascade(s). Previous work with Gαq coupling-defective variants of α1A-AR, as well as a combination of Ca2+ channel blockers, uncovered cross-talk between α1A-AR and β2-AR that leads to potentiation of a Gαq-independent signaling cascade in response to α1A-AR activation. We hypothesized that molecules exist that act as biased agonists to selectively activate this pathway. In this report, isoproterenol (Iso), typically viewed as β-AR-selective agonist, was examined with respect to activation of α1A-AR. α1A-AR selective antagonists were used to specifically block Iso evoked signaling in different cellular backgrounds and confirm its action at α1A-AR. Iso induced signaling at α1A-AR was further interrogated by probing steps along the Gαq /PLC, Gαs and MAPK/ERK pathways. In HEK-293/EBNA cells transiently transduced with α1A-AR, and CHO_α1A-AR stable cells, Iso evoked low potency ERK activity as well as Ca2+ mobilization that could be blocked by α1A-AR selective antagonists. The kinetics of Iso induced Ca2+ transients differed from typical Gαq- mediated Ca2+ mobilization, lacking both the fast IP3R mediated response and the sustained phase of Ca2+ re-entry. Moreover, no inositol phosphate (IP) accumulation could be detected in either cell line after stimulation with Iso, but activation was accompanied by receptor internalization. Data are presented that indicate that Iso represents a novel type of α1A-AR partial agonist with signaling bias toward MAPK

  9. Alpha1a-Adrenoceptor Genetic Variant Triggers Vascular Smooth Muscle Cell Hyperproliferation and Agonist Induced Hypertrophy via EGFR Transactivation Pathway

    PubMed Central

    Schwinn, Debra A.; Oganesian, Anush

    2015-01-01

    α1a Adrenergic receptors (α1aARs) are the predominant AR subtype in human vascular smooth muscle cells (SMCs). α1aARs in resistance vessels are crucial in the control of blood pressure, yet the impact of naturally occurring human α1aAR genetic variants in cardiovascular disorders remains poorly understood. To this end, we present novel findings demonstrating that 3D cultures of vascular SMCs expressing human α1aAR-247R (247R) genetic variant demonstrate significantly increased SMC contractility compared with cells expressing the α1aAR-WT (WT) receptor. Stable expression of 247R genetic variant also triggers MMP/EGFR-transactivation dependent serum- and agonist-independent (constitutive) hyperproliferation and agonist-dependent hypertrophy of SMCs. Agonist stimulation reduces contractility Using pathway-specific inhibitors we determined that the observed hyperproliferation of 247R-expressing cells is triggered via β-arrestin1/Src/MMP-2/EGFR/ERK-dependent mechanism. MMP-2-specific siRNA inhibited 247R-triggered hyperproliferation indicating MMP-2 involvement in 247R-triggered hyperproliferation in SMCs. β-arrestin1-specific shRNA also inhibited 247R-triggered hyperproliferation but did not affect hypertrophy in 247R-expressing SMCs, indicating that agonist-dependent hypertrophy is independent of β-arrestin1. Our data reveal that in different cardiovascular cells the same human receptor genetic variant can activate alternative modulators of the same signaling pathway. Thus, our findings in SMCs demonstrate that depending on the type of cells expressing the same receptor (or receptor variant), different target-specific inhibitors could be used to modulate aberrant hyperproliferative or hypertrophic pathways in order to restore normal phenotype. PMID:26571308

  10. Dendritic cells and NK cells stimulate bystander T cell activation in response to TLR agonists through secretion of IFN-alpha beta and IFN-gamma.

    PubMed

    Kamath, Arun T; Sheasby, Christopher E; Tough, David F

    2005-01-15

    Recognition of conserved features of infectious agents by innate pathogen receptors plays an important role in initiating the adaptive immune response. We have investigated early changes occurring among T cells after injection of TLR agonists into mice. Widespread, transient phenotypic activation of both naive and memory T cells was observed rapidly after injection of molecules acting through TLR3, -4, -7, and -9, but not TLR2. T cell activation was shown to be mediated by a combination of IFN-alphabeta, secreted by dendritic cells (DCs), and IFN-gamma, secreted by NK cells; notably, IFN-gamma-secreting NK cells expressed CD11c and copurified with DCs. Production of IFN-gamma by NK cells could be stimulated by DCs from TLR agonist-injected mice, and although soluble factors secreted by LPS-stimulated DCs were sufficient to induce IFN-gamma, maximal IFN-gamma production required both direct contact of NK cells with DCs and DC-secreted cytokines. In vitro, IFN-alphabeta, IL-18, and IL-12 all contributed to DC stimulation of NK cell IFN-gamma, whereas IFN-alphabeta was shown to be important for induction of T cell bystander activation and NK cell IFN-gamma production in vivo. The results delineate a pathway involving innate immune mediators through which TLR agonists trigger bystander activation of T cells. PMID:15634897

  11. 3-(1'-Cyclobutylspiro[4H-1,3-benzodioxine-2,4'-piperidine]-6-yl)-5,5-dimethyl-1,4-dihydropyridazin-6-one (CEP-32215), a new wake-promoting histamine H3 antagonist/inverse agonist.

    PubMed

    Hudkins, Robert L; Gruner, John A; Raddatz, Rita; Mathiasen, Joanne R; Aimone, Lisa D; Marino, Michael J; Bacon, Edward R; Williams, Michael; Ator, Mark A

    2016-07-01

    CEP-32215 is a new, potent, selective, and orally bioavailable inverse agonist of the histamine H3 receptor (H3R) with drug-like properties. High affinity in human (hH3R Ki = 2.0 ± 0.2 nM) and rat (rH3R Ki = 3.6 ± 0.7 nM) H3R radioligand binding assays was demonstrated. Potent functional antagonism (Kb = 0.3 ± 0.1 nM) and inverse agonism (EC50 = 0.6 ± 0.2 nM) were demonstrated in [(35)S]guanosine 5(')-O-(γ-thio)-triphosphate binding assays. Oral bioavailability and dose-related exposure was consistent among rat, dog, and monkey. After oral dosing, occupancy of H3R by CEP-32215 was estimated by the inhibition of ex vivo binding in rat cortical slices (ED50 = 0.1 mg/kg p.o.). Functional antagonism in brain was demonstrated by the inhibition of R-α-methylhistamine-induced drinking in the rat dipsogenia model (ED50 = 0.92 mg/kg). CEP-32215 significantly increased wake duration in the rat EEG model at 3-30 mg/kg p.o. Increased motor activity, sleep rebound or undesirable events (such as spike wave or seizure activity) was not observed following doses up to 100 mg/kg p.o., indicating an acceptable therapeutic index. CEP-32215 may have potential utility in the treatment of a variety of sleep disorders. This article is part of the Special Issue entitled 'Histamine Receptors'. PMID:26400408

  12. Alpha 2A adrenergic receptor agonist, guanfacine, attenuates cocaine-related impairments of inhibitory response control and working memory in animal models.

    PubMed

    Terry, Alvin V; Callahan, Patrick M; Schade, Rosann; Kille, Nancy J; Plagenhoef, Marc

    2014-11-01

    There is considerable evidence that centrally acting α2A adrenergic receptor agonists can attenuate impairments in executive function that result from dysfunction of the prefrontal cortex. Such positive effects resulted in the recent approval by the United States Food and Drug Administration (FDA) of the α2A agonists clonidine and guanfacine for the treatment of Attention-Deficit/Hyperactivity Disorder (ADHD), but also suggest that they could have beneficial effects in substance abuse disorders and other neuropsychiatric conditions. The purpose of this study was to evaluate guanfacine for its ability to attenuate behavioral alterations associated with acute cocaine exposure in rats trained to perform a task of sustained attention, the five choice serial reaction time task (5C-SRTT) and monkeys trained to perform a task of working/short term memory, the delayed match to sample (DMTS) task. In the rodent 5C-SRTT acute intraperitoneal (i.p.) administration of cocaine (3.5-15.0mg/kg) did not affect accuracy, but was associated with dose-dependent increases in premature responses and timeout responses. Guanfacine (0.1-1.0mg/kgi.p.) dose-dependently decreased premature responses and timeout responses associated with cocaine and it attenuated similar deficits in inhibitory response control observed in a variable ITI version of the 5C-SRTT. In the DMTS task in monkeys, acute intramuscular (i.m.) administration of cocaine (4.0mg/kg) was associated with impairments in accuracy at long delay intervals, an effect that was attenuated by guanfacine (0.4mg/kg). These animal studies suggest that guanfacine may have therapeutic potential for treating impairments of executive function that are associated with the abuse of cocaine. PMID:25242808

  13. Alpha 2A adrenergic receptor agonist, guanfacine, attenuates cocaine-related impairments of inhibitory response control and working memory in animal models

    PubMed Central

    Terry, Alvin V.; Callahan, Patrick M.; Schade, Rosann; Kille, Nancy J.; Plagenhoef, Marc

    2014-01-01

    There is considerable evidence that centrally acting α2A adrenergic receptor agonists can attenuate impairments in executive function that result from dysfunction of the prefrontal cortex. Such positive effects resulted in the recent approval by the United States Food and Drug Administration (FDA) of the α2A agonists clonidine and guanfacine for the treatment of Attention-Deficit/Hyperactivity Disorder (ADHD), but also suggest that they could have beneficial effects in substance abuse disorders and other neuropsychiatric conditions. The purpose of this study was to evaluate guanfacine for its ability to attenuate behavioral alterations associated with acute cocaine exposure in rats trained to perform a task of sustained attention, the five choice serial reaction time task (5C-SRTT) and monkeys trained to perform a task of working/short term memory, the delayed match to sample task (DMTS). In the rodent 5C-SRTT acute intraperitoneal (i.p.) administration of cocaine (3.5–15.0 mg/kg) did not affect accuracy, but was associated with dose-dependent increases in premature responses and timeout responses. Guanfacine (0.1–1.0 mg/kg i.p.) dose-dependently decreased premature responses and timeout responses associated with cocaine and it attenuated similar deficits in inhibitory response control observed in a variable ITI version of the 5C-SRTT. In the DMTS task in monkeys, acute intramuscular (i.m.) administration of cocaine (4.0 mg/kg) was associated with impairments in accuracy at long delay intervals, an effect that was attenuated by guanfacine (0.4 mg/kg). These animal studies suggest that guanfacine may have therapeutic potential for treating impairments of executive function that are associated with the abuse of cocaine. PMID:25242808

  14. PPAR{alpha} agonist fenofibrate protects the kidney from hypertensive injury in spontaneously hypertensive rats via inhibition of oxidative stress and MAPK activity

    SciTech Connect

    Hou, Xiaoyang; Shen, Ying H.; Li, Chuanbao; Wang, Fei; Zhang, Cheng; Bu, Peili; Zhang, Yun

    2010-04-09

    Oxidative stress has been shown to play an important role in the development of hypertensive renal injury. Peroxisome proliferator-activated receptors {alpha} (PPAR{alpha}) has antioxidant effect. In this study, we demonstrated that fenofibrate significantly reduced proteinuria, inflammatory cell recruitment and extracellular matrix (ECM) proteins deposition in the kidney of SHRs without apparent effect on blood pressure. To investigate the mechanisms involved, we found that fenofibrate treatment markedly reduced oxidative stress accompanied by reduced activity of renal NAD(P)H oxidase, increased activity of Cu/Zn SOD, and decreased phosphorylation of p38MAPK and JNK in the kidney of SHRs. Taken together, fenofibrate treatment can protect against hypertensive renal injury without affecting blood pressure by inhibiting inflammation and fibrosis via suppression of oxidative stress and MAPK activity.

  15. Contrasting effects of the imidazol(in)e alpha 2-adrenoceptor agonists, medetomidine, clonidine and UK 14,304 on extraneuronal levels of noradrenaline in the rat frontal cortex: evaluation using in vivo microdialysis and synaptosomal uptake studies.

    PubMed Central

    Dalley, J W; Stanford, S C

    1995-01-01

    1. In vivo microdialysis in halothane-anaesthetized rats and synaptosomal [3H]-noradrenaline uptake studies in vitro were used to evaluate the effects of imidazole (medetomidine) and imidazoline (clonidine and UK 14,304) alpha 2-adrenoceptor agonists on extraneuronal levels of noradrenaline in the frontal cortex. 2. Levels of noradrenaline in the dialysate were increased by a depolarizing concentration of K+ (60 mM for 20 min) and substantially attenuated by reducing Ca2+ supply in the perfusate. These results suggest that spontaneous efflux of noradrenaline in the cortex is regulated predominantly by cation-dependent exocytotic mechanisms. 3. At a low perfusion concentration (0.5 microM), medetomidine, clonidine and UK 14,304 all reduced the level of noradrenaline in cortical dialysates. Continuous perfusion of the selective alpha 2-adrenoceptor antagonist, atipamezole (0.5 microM) caused a sustained increase in noradrenaline efflux and reversed the inhibitory effects of medetomidine. All these changes are consistent with drug actions at presynaptic alpha 2-adrenoceptors. 4. Higher concentrations of medetomidine (5-50 microM), but not clonidine or UK 14,304, evoked a non-desensitizing increase in noradrenaline efflux. This effect was not antagonized by 0.5 microM atipamezole. 5. The tricyclic noradrenaline reuptake inhibitor, desmethylimipramine (0.5-50 microM), increased noradrenaline efflux in a concentration-dependent manner. 6. The specific uptake of [3H]-noradrenaline into cortical synaptosomes was inhibited by medetomidine and desmethylimipramine with IC50 values of approximately 7 microM and 8 microM respectively. Neither clonidine nor UK 14,304 inhibited [3H]-noradrenaline uptake.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7599940

  16. Alpha-linolenic acid (ALA) is inversely related to development of adiposity in school-age children

    PubMed Central

    Perng, Wei; Villamor, Eduardo; Mora-Plazas, Mercedes; Marin, Constanza; Baylin, Ana

    2015-01-01

    Background/Objectives Studies in adults indicate that dietary polyunsaturated fatty acid (PUFA) composition may play a role in development of adiposity. Because adipocyte quantity is established between late childhood and early adolescence, understanding the impact of PUFAs on weight gain during the school-age years is crucial to developing effective interventions. Subjects/Methods We quantified N-3 and N-6 PUFAs in serum samples of 668 Colombian schoolchildren aged 5–12 years at the time of recruitment into a cohort study, using gas-liquid chromatography. Serum concentrations of N-3 (ALA, EPA, DHA) and N-6 PUFAs (LA, GLA, DGLA, AA) were determined as % total fatty acids. Children’s anthropometry was measured annually for a median of 30 months. We used mixed-effects models with restricted cubic splines to construct population body mass index-for-age z-score (BAZ) growth curves for age-and sex-specific quartiles of each PUFA. Results N-3 ALA was inversely related to BAZ gain after adjustment for sex, baseline age and weight status, and household socioeconomic level. Estimated BAZ change between 6 and 14 years among children in the highest quartile of ALA compared to those in the lowest quartile was 0.45 (95% CI: 0.07, 0.83) lower (P-trend=0.006). Conclusions N-3 ALA may be protective against weight gain in school-age children. Whether improvement in PUFA status reduces adiposity in pediatric populations deserves evaluation in randomized trials. PMID:25271016

  17. Development and Validation of an UPLC-MS/MS Assay for Quantitative Analysis of the Ghrelin Receptor Inverse Agonist PF-5190457 in Human or Rat Plasma and Rat Brain

    PubMed Central

    Ghareeb, Mwlod; Leggio, Lorenzo; El-Kattan, Ayman; Akhlaghi, Fatemeh

    2015-01-01

    PF-5190457 is a ghrelin receptor inverse agonist that is currently undergoing clinical development for the treatment of alcoholism. Our aim was to develop and validate a simple and sensitive assay for quantitative analysis of PF-5190457 in human or rat plasma and rat brain using liquid chromatography-tandem mass spectrometry. The analyte and stable isotope internal standard were extracted from 50 μL plasma or rat brain homogenate by protein precipitation using 0.1% formic acid in acetonitrile. Chromatography was carried on an Acquity UPLC BEH C18 (2.1 mm X 50 mm) with 1.7 μm particle size and 130Å pore size. Flow rate was 0.5 mL/min and total chromatographic run time was 2.2 minutes. Mobile phase consisted of gradient mixture of water: acetonitrile 95:5% (v/v) containing 0.1% formic acid (Solvent A), and 100% acetonitrile containing 0.1% formic acid (Solvent B). Multiple reaction monitoring was carried out in positive electro-spray ionization mode using m/z 513.35 → 209.30 for PF-5190457 and m/z 518.47 → 214.43 for the internal standard. The recovery ranged from 102-118% with CV less than 6% for all matrices. The calibration curves for all matrices were linear over the studied concentration range (R2 ≥ 0.998, n = 3). Lower limit of quantification was 1 ng/mL in rat or human plasma and 0.75 ng/g in rat brain. Intra- and inter-run mean percent accuracy were between 85–115% and percent imprecision was ≤ 15%. The assays were successfully utilized to measure the concentration of PF-5190457 in pre-clinical and clinical pharmacology studies of the compound. PMID:25943263

  18. Development and validation of an UPLC-MS/MS assay for quantitative analysis of the ghrelin receptor inverse agonist PF-5190457 in human or rat plasma and rat brain.

    PubMed

    Ghareeb, Mwlod; Leggio, Lorenzo; El-Kattan, Ayman; Akhlaghi, Fatemeh

    2015-07-01

    PF-5190457 is a ghrelin receptor inverse agonist that is currently undergoing clinical development for the treatment of alcoholism. Our aim was to develop and validate a simple and sensitive assay for quantitative analysis of PF-5190457 in human or rat plasma and rat brain using liquid chromatography-tandem mass spectrometry. The analyte and stable isotope internal standard were extracted from 50 μL plasma or rat brain homogenate by protein precipitation using 0.1% formic acid in acetonitrile. Chromatography was carried out on an Acquity UPLC BEH C18 (2.1 mm × 50 mm) column with 1.7 μm particle size and 130 Å pore size. The flow rate was 0.5 mL/min and total chromatographic run time was 2.2 min. The mobile phase consisted of a gradient mixture of water: acetonitrile 95:5% (v/v) containing 0.1% formic acid (solvent A) and 100% acetonitrile containing 0.1% formic acid (solvent B). Multiple reaction monitoring was carried out in positive electro-spray ionization mode using m/z 513.35 → 209.30 for PF-5190457 and m/z 518.47 → 214.43 for the internal standard. The recovery ranged from 102 to 118% with coefficient of variation (CV) less than 6% for all matrices. The calibration curves for all matrices were linear over the studied concentration range (R(2) ≥ 0.998, n = 3). The lower limit of quantification was 1 ng/mL in rat or human plasma and 0.75 ng/g in rat brain. Intra- and inter-run mean percent accuracies were between 85 and 115% and percent imprecision was ≤15%. The assays were successfully utilized to measure the concentration of PF-5190457 in pre-clinical and clinical pharmacology studies of the compound. PMID:25943263

  19. Quantitative image analysis in adipose tissue using an automated image analysis system: differential effects of peroxisome proliferator-activated receptor-alpha and -gamma agonist on white and brown adipose tissue morphology in AKR obese and db/db diabetic mice.

    PubMed

    Okamoto, Yuji; Higashiyama, Hiroyuki; Inoue, Hiroki; Kanematsu, Masahiro; Kinoshita, Mine; Asano, Satoshi

    2007-06-01

    Morphometric analysis of adipocytes is widely used to demonstrate the effects of antiobesity drugs or anti-diabetic drugs on adipose tissues. However, adipocyte morphometry has been quantitatively performed by manual object extraction using conventional image analysis systems. The authors have developed an automated quantitative image analysis method for adipose tissues using an innovative object-based quantitative image analysis system (eCognition). Using this system, it has been shown quantitatively that morphological features of adipose tissues of mice treated with peroxisome proliferator-activated receptor (PPAR) agonists differ dramatically depending on the type of PPAR agonist. Marked alteration of morphological characteristics of brown adipose tissue (BAT) treated with GI259578A, a PPAR-alpha agonist, was observed in AKR/J (AKR) obese mice. Furthermore, there was a 22.8% decrease in the mean size of adipocytes in white adipose tissue (WAT) compared with vehicle. In diabetic db/db mice, the PPAR-gamma agonist GW347845X decreased the mean size of adipocytes in WAT by 15.4% compared with vehicle. In contrast to changes in WAT, GW347845X increased the mean size of adipocytes in BAT greatly by 96.1% compared with vehicle. These findings suggest that GI259578A may activate fatty acid oxidation in BAT and that GW347845X may cause adipocyte differentiation in WAT and enhancement of lipid storage in BAT. PMID:17539968

  20. Temperature-induced inversion of the elution order of enantiomers in gas chromatography: N-ethoxycarbonyl propylamides and N-trifluoroacetyl ethyl esters of alpha-amino acids on Chirasil-Val-C11 and Chirasil-Dex stationary phases.

    PubMed

    Levkin, Pavel A; Levkina, Anna; Czesla, Harri; Schurig, Volker

    2007-06-15

    Inversion of the elution order of enantiomers caused by enthalpy-entropy compensation at the isoenantioselective temperature (Tiso) was experimentally observed by gas chromatography on the diamide-type chiral stationary phase (CSP), Chirasil-L-Val-C11, with N-ethoxycarbonyl propylamide (ECPA) derivatives of a number of alpha-amino acids. For the first time, a clear visual representation of the increase of the apparent enantioseparation factor alpha app from 1.00 to 1.08 as the temperature is raised from 120 to 170 degrees C is presented. The increase of alpha app is accompanied by a concomitant reduction of the retention factors of the enantiomers. The Tiso values were in the range from 110 to 130 degrees C depending on the nature of the alpha-amino acid. On the contrary, the Tiso values of the N(O)-trifluoroacetyl ethyl ester derivatives (TFA-Et) of the same alpha-amino acids were approximately 80 degrees higher than that of ECPA derivatives. The comprehensive thermodynamic investigation of the enantioseparation of ECPA and TFA-Et derivatives of valine and alanine using the retention increment method showed that the Delta L,D(DeltaH) difference between the diastereomeric selector-selectand associates was almost the same for ECPA and TFA-Et derivatives despite a much stronger bonded selector-selectand association taking place for the ECPA derivatives. On the other hand, the Delta L,D(DeltaS) values were found to be more negative in the case of ECPA derivatives, resulting in the unusually low values of Tiso. A temperature-dependent inversion of the elution order of enantiomers was also observed on the cyclodextrin-type CSP, Chirasil-Dex, with TFA-Et derivatives of several alpha-amino acids. The Tiso values were in the range from 20 to 170 degrees C depending on the nature of the alpha-amino acid. The results obtained demonstrate the necessity to conduct temperature-dependent studies in order to optimize the enantiomeric separation of single racemates isothermally or

  1. Synthesis and SAR of potent LXR agonists containing an indole pharmacophore

    SciTech Connect

    Washburn, David G.; Hoang, Tram H.; Campobasso, Nino; Smallwood, Angela; Parks, Derek J.; Webb, Christine L.; Frank, Kelly A.; Nord, Melanie; Duraiswami, Chaya; Evans, Christopher; Jaye, Michael; Thompson, Scott K.

    2009-03-27

    A novel series of 1H-indol-1-yl tertiary amine LXR agonists has been designed. Compounds from this series were potent agonists with good rat pharmacokinetic parameters. In addition, the crystal structure of an LXR agonist bound to LXR{alpha} will be disclosed.

  2. 5-Amino-6-chloro-N-[(1-isobutylpiperidin-4-yl)methyl]-2-methylimidazo[1,2-alpha]pyridine-8-carboxamide (CJ-033,466), a novel and selective 5-hydroxytryptamine4 receptor partial agonist: pharmacological profile in vitro and gastroprokinetic effect in conscious dogs.

    PubMed

    Mikami, Tadayoshi; Ochi, Yasuo; Suzuki, Keiko; Saito, Toshiyuki; Sugie, Yutaka; Sakakibara, Minoru

    2008-04-01

    5-Hydroxytryptamine (5-HT) receptors and dopamine(2) (D(2)) receptor modulate gastrointestinal motility. Gastroprokinetic agents that act on several 5-HT receptor subtypes and/or D(2) receptors are used clinically. Although the 5-HT(4) receptor is known to mediate the gastroprokinetic effects of these agents, the absence of highly selective 5-HT(4) receptor agonists has made it difficult to confirm the physiological consequences of selective 5-HT(4) receptor stimulation. In this study, we report the in vitro pharmacological profiles and the in vivo gastroprokinetic effects of 5-amino-6-chloro-N-[(1-isobutylpiperidin-4-yl)methyl]-2-methylimidazo[1,2-alpha]pyridine-8-carboxamide (CJ-033,466), a novel, potent, and selective 5-HT(4) partial agonist. Compared with preceding 5-HT(4) agonists such as cisapride, mosapride, and tegaserod, CJ-033,466 had a superior in vitro profile, with nanomolar agonistic activities for the 5-HT(4) receptor and 1000-fold greater selectivity for the 5-HT(4) receptor over other 5-HT and D(2) receptors. In vivo studies in conscious dogs showed that CJ-033,466 dose-dependently stimulated gastric antral motility in both the fasted and postprandial states at the same dose range and that it was 30 times more potent than cisapride. Furthermore, CJ-033,466 accelerated the gastric emptying rate in a gastroparesis dog model at the minimally effective dose established in the gastric motility study. In conclusion, CJ-033,466 is a potent and highly selective 5-HT(4) agonist that stimulates physiologically coordinated gastric motility, and it has no activity on other 5-HT receptor subtypes and D(2) receptors. Therefore, CJ-033,466 could be used to treat gastroparesis, providing better gastroprokinetics and reduced side effects mediated by the other receptors. PMID:18198343

  3. (19)F(alpha,n)(22)Na, (22)Ne(p,n)(22)Na, and the Role of their Inverses in the Destruction of (22)Na

    NASA Astrophysics Data System (ADS)

    Wrean, Patricia Rose

    The inverses of the 19F(α,n)22Na and 22Ne(p,n)22Na reactions may be important destruction mechanisms for 22Na in neutron-rich, high-temperature or explosive nucleosynthesis. I have measured the cross sections for the 19F(α,n)22Na and 22Ne(p,n)22Na reactions from threshold to 3.1 and 5.4 MeV, respectively. The absolute efficiency of the 4π neutron detector was determined by Monte Carlo calculations and calibrated using two standard sources and two nuclear reactions. Cross sections for the inverse reactions have been calculated using the principle of detailed balance, and reaction rates for both the reactions and their inverses determined for temperatures between 0.01 and 10 GK for 19F(α,n)22Na and between 0.1 and 10 GK for 22Ne(p,n)22Na.

  4. Inverse agonism and its therapeutic significance

    PubMed Central

    Khilnani, Gurudas; Khilnani, Ajeet Kumar

    2011-01-01

    A large number of G-protein-coupled receptors (GPCRs) show varying degrees of basal or constitutive activity. This constitutive activity is usually minimal in natural receptors but is markedly observed in wild type and mutated (naturally or induced) receptors. According to conventional two-state drug receptor interaction model, binding of a ligand may initiate activity (agonist with varying degrees of positive intrinsic activity) or prevent the effect of an agonist (antagonist with zero intrinsic activity). Inverse agonists bind with the constitutively active receptors, stabilize them, and thus reduce the activity (negative intrinsic activity). Receptors of many classes (α-and β-adrenergic, histaminergic, GABAergic, serotoninergic, opiate, and angiotensin receptors) have shown basal activity in suitable in vitro models. Several drugs that have been conventionally classified as antagonists (β-blockers, antihistaminics) have shown inverse agonist effects on corresponding constitutively active receptors. Nearly all H1 and H2 antihistaminics (antagonists) have been shown to be inverse agonists. Among the β-blockers, carvedilol and bucindolol demonstrate low level of inverse agonism as compared to propranolol and nadolol. Several antipsychotic drugs (D2 receptors antagonist), antihypertensive (AT1 receptor antagonists), antiserotoninergic drugs and opioid antagonists have significant inverse agonistic activity that contributes partly or wholly to their therapeutic value. Inverse agonism may also help explain the underlying mechanism of beneficial effects of carvedilol in congestive failure, naloxone-induced withdrawal syndrome in opioid dependence, clozapine in psychosis, and candesartan in cardiac hypertrophy. Understanding inverse agonisms has paved a way for newer drug development. It is now possible to develop agents, which have only desired therapeutic value and are devoid of unwanted adverse effect. Pimavanserin (ACP-103), a highly selective 5-HT2A inverse

  5. Role of receptor reserve in the inhibition of alpha-1 adrenoceptor-mediated pressor responses by calcium antagonists in the pithed rat.

    PubMed

    Jim, K F; Macia, R A; Matthews, W D

    1986-07-01

    The effect of the calcium channel antagonists nifedipine and FR 34235 on the vasopressor response to alpha-1 adrenoceptor stimulation in the pithed normotensive rat was investigated. The maximal pressor response elicited by the full alpha-1 adrenoceptor agonist SK&F l-89748 was slightly but significantly reduced by 1-mg/kg doses of nifedipine (21 +/- 2%) and FR 34235 (34 +/- 4%). In comparison, the maximal pressor response to alpha-1 adrenoceptor stimulation by the partial alpha-1 agonist SK&F 88444 was markedly inhibited by nifedipine (51 +/- 1%) and FR 34235 (65 +/- 3%). Partial inactivation of the postsynaptic alpha-1 adrenoceptors with phenoxybenzamine (0.1 mg/kg) resulted in a maximal increase in diastolic pressure to alpha-1 adrenoceptor activation by SK&F l-89748 less than that induced by SK&F 88444. After phenoxybenzamine treatment, nifedipine and FR 34235 produced even greater reductions in the maximal vasopressor response to alpha-1 adrenoceptor stimulation by SK&F l-89748 (77 +/- 8 and 85 +/- 1%, respectively). Moreover, an inverse linear correlation (r = 1.00) was observed between the sensitivity of the maximal vasopressor response to nifedipine and FR 34235 and the magnitude of the maximal pressor response. The data suggest that the sensitivity of the alpha-1 adrenoceptor-mediated pressor response to inhibition by calcium antagonists in the pithed rat is inversely related to the magnitude of the pressor response, and they are consistent with the notion that the presence of "spare" alpha-1 adrenoceptors may determine the sensitivity of the pressor response to calcium antagonists. PMID:3014124

  6. Toxicological Evaluation of a Potential Immunosensitizer for Use as a Mucosal Adjuvant—Bacillus thuringiensis Cry1Ac Spore-Crystals: A Possible Inverse Agonist that Deserves Further Investigation

    PubMed Central

    Mezzomo, Bélin Poletto; Miranda-Vilela, Ana Luisa; Grisolia, Cesar Koppe

    2015-01-01

    In addition to their applicability as biopesticides, Bacillus thuringiensis (Bt) Cry1Ac spore-crystals are being researched in the immunology field for their potential as adjuvants in mucosal and parenteral immunizations. We aimed to investigate the hematotoxicity and genotoxicity of Bt spore-crystals genetically modified to express Cry1Ac individually, administered orally (p.o.) or with a single intraperitoneal (i.p.) injection 24 h before euthanasia, to simulate the routes of mucosal and parenteral immunizations in Swiss mice. Blood samples were used to perform hemogram, and bone marrow was used for the micronucleus test. Cry1Ac presented cytotoxic effects on erythroid lineage in both routes, being more severe in the i.p. route, which also showed genotoxic effects. The greater severity noted in this route, mainly at 6.75 mg/kg, as well as the intermediate effects at 13.5 mg/kg, and the very low hematotoxicity at 27 mg/kg, suggested a possible inverse agonism. The higher immunogenicity for the p.o. route, particularly at 27 mg/kg, suggested that at this dose, Cry 1Ac could potentially be used as a mucosal adjuvant (but not in parenteral immunizations, due to the genotoxic effects observed). This potential should be investigated further, including making an evaluation of the proposed inverse agonism and carrying out cytokine profiling. PMID:26690217

  7. The Pharmacological Management of Oppositional Behaviour, Conduct Problems, and Aggression in Children and Adolescents With Attention-Deficit Hyperactivity Disorder, Oppositional Defiant Disorder, and Conduct Disorder: A Systematic Review and Meta-Analysis. Part 1: Psychostimulants, Alpha-2 Agonists, and Atomoxetine

    PubMed Central

    Pringsheim, Tamara; Hirsch, Lauren; Gardner, David; Gorman, Daniel A

    2015-01-01

    Objective: Children with attention-deficit hyperactivity disorder (ADHD) may have oppositional behaviour, conduct problems, and aggression. These symptoms vary in severity, and may be related to a comorbid diagnosis of oppositional defiant disorder (ODD) or conduct disorder (CD). Critical evaluation of the efficacy of ADHD medications may guide the clinician regarding the usefulness of medications for these symptoms. Method: We performed a systematic review and meta-analysis of psychostimulants, alpha-2 agonists, and atomoxetine for oppositional behaviour, conduct problems, and aggression in youth with ADHD, ODD, and CD. The quality of evidence for medications was rated using the Grading of Recommendations Assessment, Development and Evaluation approach. Results: Two systematic reviews and 20 randomized controlled trials were included. There is high-quality evidence that psychostimulants have a moderate-to-large effect on oppositional behaviour, conduct problems, and aggression in youth with ADHD, with and without ODD or CD. There is very-low-quality evidence that clonidine has a small effect on oppositional behaviour and conduct problems in youth with ADHD, with and without ODD or CD. There is moderate-quality evidence that guanfacine has a small-to-moderate effect on oppositional behaviour in youth with ADHD, with and without ODD. There is high-quality evidence that atomoxetine has a small effect on oppositional behaviour in youth with ADHD, with and without ODD or CD. Conclusions: Evidence indicates that psychostimulants, alpha-2 agonists, and atomoxetine can be beneficial for disruptive and aggressive behaviours in addition to core ADHD symptoms; however, psychostimulants generally provide the most benefit. PMID:25886655

  8. The effect of urapidil, an alpha-1 adrenoceptor antagonist and a 5-HT1A agonist, on the vascular tone of the porcine coronary and pulmonary arteries, the rat aorta and the human pulmonary artery.

    PubMed

    Bopp, Claire; Auger, Cyril; Diemunsch, Pierre; Schini-Kerth, Valérie

    2016-05-15

    Urapidil (Eupressyl(®)) an antihypertensive drug acting as an α1 antagonist and a 5-HT1A agonist, may be of special interest in the treatment of hypertension associated with preeclamptic toxaemia and hypoxia-induced pulmonary arterial vasoconstriction. However, the effect of urapidil on vascular tone has been poorly investigated. Vascular reactivity was evaluated using pulmonary and coronary arteries from 36 pigs, aortae from 22 rats and 9 human pulmonary artery samples suspended in organ chambers. Concentration-relaxation curves either to urapidil, 5-HT, or the 5-HT1A receptor agonist 8-OH-DPAT were constructed after pre-contraction of rings. Pig pulmonary and coronary artery rings were contracted with U46619, a thromboxane mimetic, rat aortic rings with either endothelin-1 or phenylephrine, and human pulmonary artery rings with U46619 or phenylephrine. Urapidil markedly inhibited phenylephrine-induced contractions in rat aortic rings with and without endothelium with a more pronounced effect observed in rings without endothelium. Both 5-HT and 8-OH-DPAT failed to induce relaxation in rat aortic rings with an intact endothelium. 5-HT, but not urapidil and 8-OH-DPAT, induced a concentration-dependent relaxation in the porcine coronary and pulmonary artery rings with an intact endothelium (P<0.05). 5-HT and phenylephrine but not urapidil caused concentration-dependent contractions in human pulmonary artery rings. The present findings, while confirming that urapidil is a potent inhibitor of α1-adrenoceptor-induced contraction, do not support the role of 5-HT1A receptor activation in the control of the vascular tone of the different types of arteries tested in response to urapidil. In addition, they indicate that urapidil seems to preferentially target arteries with endothelial dysfunction. PMID:26957055

  9. The cardiovascular effects of peroxisome proliferator-activated receptor agonists.

    PubMed

    Friedland, Sayuri N; Leong, Aaron; Filion, Kristian B; Genest, Jacques; Lega, Iliana C; Mottillo, Salvatore; Poirier, Paul; Reoch, Jennifer; Eisenberg, Mark J

    2012-02-01

    Although peroxisome proliferator-activated receptor agonists are prescribed to improve cardiovascular risk factors, their cardiovascular safety is controversial. We therefore reviewed the literature to identify landmark randomized controlled trials evaluating the effect of peroxisome proliferator-activated receptor gamma agonists (pioglitazone and rosiglitazone), alpha agonists (fenofibrate and gemfibrozil), and pan agonists (bezafibrate, muraglitazar, ragaglitazar, tesaglitazar, and aleglitazar) on cardiovascular outcomes. Pioglitazone may modestly reduce cardiovascular events but also may increase the risk of bladder cancer. Rosiglitazone increases the risk of myocardial infarction and has been withdrawn in European and restricted in the United States. Fibrates improve cardiovascular outcomes only in select subgroups: fenofibrate in diabetic patients with metabolic syndrome, gemfibrozil in patients with dyslipidemia, and bezafibrate in patients with diabetes or metabolic syndrome. The cardiovascular safety of the new pan agonist aleglitazar, currently in phase II trials, remains to be determined. The heterogenous effects of peroxisome proliferator-activated receptor agonists to date highlight the importance of postmarketing surveillance. The critical question of why peroxisome proliferator-activated receptor agonists seem to improve cardiovascular risk factors without significantly improving cardiovascular outcomes requires further investigation. PMID:22269613

  10. [beta]1-Adrenoceptor or [alpha]1-Adrenoceptor Activation Initiates Early Odor Preference Learning in Rat Pups: Support for the Mitral Cell/cAMP Model of Odor Preference Learning

    ERIC Educational Resources Information Center

    Harley, Carolyn W.; Darby-King, Andrea; McCann, Jennifer; McLean, John H.

    2006-01-01

    We proposed that mitral cell [beta]1-adrenoceptor activation mediates rat pup odor preference learning. Here we evaluate [beta]1-, [beta]2-, [alpha]1-, and [alpha]2-adrenoceptor agonists in such learning. The [beta]1-adrenoceptor agonist, dobutamine, and the [alpha]1-adrenoceptor agonist, phenylephrine, induced learning, and both exhibited an…

  11. Mapping the agonist binding site of the nicotinic acetylcholine receptor. Orientation requirements for activation by covalent agonist.

    PubMed

    Sullivan, D A; Cohen, J B

    2000-04-28

    To characterize the structural requirements for ligand orientation compatible with activation of the Torpedo nicotinic acetylcholine receptor (nAChR), we used Cys mutagenesis in conjunction with sulfhydryl-reactive reagents to tether primary or quaternary amines at defined positions within the agonist binding site of nAChRs containing mutant alpha- or gamma-subunits expressed in Xenopus oocytes. 4-(N-Maleimido)benzyltrimethylammonium and 2-aminoethylmethanethiosulfonate acted as irreversible antagonists when tethered at alphaY93C, alphaY198C, or gammaE57C, as well as at alphaN94C (2-aminoethylmethanethiosulfonate only). [2-(Trimethylammonium)-ethyl]-methanethiosulfonate (MTSET), which attaches thiocholine to binding site Cys, also acted as an irreversible antagonist when tethered at alphaY93C, alphaN94C, or gammaE57C. However, MTSET modification of alphaY198C resulted in prolonged activation of the nAChR not reversible by washing but inhibitable by subsequent exposure to non-competitive antagonists. Modification of alphaY198C (or any of the other positions tested) by [(trimethylammonium)methyl]methanethiosulfonate resulted only in irreversible inhibition, while modification of alphaY198C by [3-(trimethylammonium)propyl]methanethiosulfonate resulted in irreversible activation of nAChR, but at lower efficacy than by MTSET. Thus changing the length of the tethering arm by less than 1 A in either direction markedly effects the ability of the covalent trimethylammonium to activate the nAChR, and agonist activation depends on a very selective orientation of the quaternary ammonium within the agonist binding site. PMID:10777557

  12. Novel drugs that target the estrogen-related receptor alpha: their therapeutic potential in breast cancer

    PubMed Central

    May, Felicity EB

    2014-01-01

    The incidence of breast cancer continues to rise: 1.7 million women were diagnosed with and 521,000 women died from breast cancer in 2012. This review considers first current treatment options: surgery; radiotherapy; and systemic endocrine, anti-biological, and cytotoxic therapies. Clinical management includes prevention, early detection by screening, treatment with curative intent, management of chronic disease, and palliative control of advanced breast cancer. Next, the potential of novel drugs that target DNA repair, growth factor dependence, intracellular and intercellular signal transduction, and cell cycle are considered. Estrogen-related receptor alpha has attracted attention as a therapeutic target in triple-negative breast cancers with de novo resistance to, and in breast cancers with acquired resistance to, endocrine therapies such as antiestrogens and aromatase inhibitors. Estrogen-related receptor alpha is an orphan receptor and transcription factor. Its activity is regulated by coregulator proteins and posttranslational modification. It is an energy sensor that controls adaptation to energy demand and may facilitate glycolytic metabolism and mitochondrial oxidative respiration in breast cancer cells. Estrogen-related receptor alpha increases breast cancer cell migration, proliferation, and tumor development. It is expressed at high levels in estrogen receptor-negative tumors, and is proposed to activate estrogen-responsive genes in endocrine-resistant tumors. The structures and functions of the ligand-binding domains of estrogen receptor alpha and estrogen-related receptor alpha, their ability to bind estrogens, phytoestrogens, and synthetic ligands, and the effects of ligand agonists, antagonists, and inverse agonists on biological activity, are evaluated. Synthetic ligands of estrogen-related receptor alpha have activity in preclinical models of metabolic disorders, diabetes, osteoporosis, and oncology. The clinical settings in which these novel

  13. Identification of a novel selective peroxisome proliferator-activated receptor alpha agonist, 2-methyl-2-(4-{3-[1-(4-methylbenzyl)-5-oxo-4,5-dihydro-1H-1,2,4-triazol-3-yl]propyl}phenoxy)propanoic acid (LY518674), that produces marked changes in serum lipids and apolipoprotein A-1 expression.

    PubMed

    Singh, Jai Pal; Kauffman, Raymond; Bensch, William; Wang, Guoming; McClelland, Pam; Bean, James; Montrose, Chahrzad; Mantlo, Nathan; Wagle, Asavari

    2005-09-01

    Low high-density lipoprotein-cholesterol (HDL-c) is an important risk factor of coronary artery disease (CAD). Optimum therapy for raising HDL-c is still not available. Identification of novel HDL-raising agents would produce a major impact on CAD. In this study, we have identified a potent (IC50 approximately 24 nM) and selective peroxisome proliferator-activated receptor alpha (PPARalpha) agonist, 2-methyl-2-(4-{3-[1-(4-methylbenzyl)-5-oxo-4,5-dihydro-1H-1,2,4-triazol-3-yl]propyl}phenoxy)propanoic acid (LY518674). In human apolipoprotein A-1 (apoA-1) transgenic mice, LY518674 produced a dose-dependent increase in serum HDL-c, resulting in 208 +/- 15% elevation at optimum dose. A new synthesis of apoA-1 contributed to the increase in HDL-c. LY518674 increased apoA-1 mRNA levels in liver. Moreover, liver slices from animals treated with LY518674 secreted 3- to 6-fold more apoA-1 than control liver slices. In cultured hepatocytes, LY518674 produced 50% higher apoA-1 secretion, which was associated with increase in radiolabeled methionine incorporation in apoA-1. Thus, LY518674 is a potent and selective PPARalpha agonist that produced a much greater increase in serum HDL-c than the known fibrate drugs. The increase in HDL-c was associated with de novo synthesis of apoA-1. PMID:15933217

  14. Beta-Adrenergic Agonists

    PubMed Central

    Barisione, Giovanni; Baroffio, Michele; Crimi, Emanuele; Brusasco, Vito

    2010-01-01

    Inhaled β2-adrenoceptor (β2-AR) agonists are considered essential bronchodilator drugs in the treatment of bronchial asthma, both as symptoms-relievers and, in combination with inhaled corticosteroids, as disease-controllers. In this article, we first review the basic mechanisms by which the β2-adrenergic system contributes to the control of airway smooth muscle tone. Then, we go on describing the structural characteristics of β2-AR and the molecular basis of G-protein-coupled receptor signaling and mechanisms of its desensitization/ dysfunction. In particular, phosphorylation mediated by protein kinase A and β-adrenergic receptor kinase are examined in detail. Finally, we discuss the pivotal role of inhaled β2-AR agonists in the treatment of asthma and the concerns about their safety that have been recently raised.

  15. The PPAR alpha gene is associated with triglyceride, low-density cholesterol and inflammation marker response to fenofibrate intervention: the GOLDN study

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As a peroxisome proliferator-activated receptor alpha (PPAR Alpha) agonist, fenofibrate favorably modulates dyslipidemia and inflammation markers, which are associated with cardiovascular risk. To determine whether variation in the PPAR Alpha receptor gene was associated with lipid and inflammatory ...

  16. Identification of a novel agonist of peroxisome proliferator-activated receptors alpha and gamma that may contribute to the anti-diabetic activity of guggulipid in Lep(ob)/Lep(ob) mice.

    PubMed

    Cornick, Claire L; Strongitharm, Barbara H; Sassano, Gary; Rawlins, Christopher; Mayes, Andrew E; Joseph, Alison N; O'Dowd, Jacqueline; Stocker, Claire; Wargent, Ed; Cawthorne, Michael A; Brown, A Louise; Arch, Jonathan R S

    2009-10-01

    The ethyl acetate extract of the gum of the guggul tree, Commiphora mukul (guggulipid), is marketed for the treatment of dyslipidaemia and obesity. We have found that it protects Lep(ob)/Lep(ob) mice from diabetes and have investigated possible molecular mechanisms for its metabolic effects, in particular those due to a newly identified component, commipheric acid. Both guggulipid (EC(50)=0.82 microg/ml) and commipheric acid (EC(50)=0.26 microg/ml) activated human peroxisome proliferator-activated receptor alpha (PPARalpha) in COS-7 cells transiently transfected with the receptor and a reporter gene construct. Similarly, both guggulipid (EC(50)=2.3 microg/ml) and commipheric acid (EC(50)=0.3 microg/ml) activated PPARgamma and both promoted the differentiation of 3T3 L1 preadipocytes to adipocytes. Guggulipid (EC(50)=0.66 microg/ml), but not commipheric acid, activated liver X receptor alpha (LXRalpha). E- and Z-guggulsterones, which are largely responsible for guggulipid's hypocholesterolaemic effect, had no effects in these assays. Guggulipid (20 g/kg diet) improved glucose tolerance in female Lep(ob)/Lep(ob) mice. Pure commipheric acid, given orally (960 mg/kg body weight, once daily), increased liver weight but did not affect body weight or glucose tolerance. However, the ethyl ester of commipheric acid (150 mg/kg, twice daily) lowered fasting blood glucose and plasma insulin, and plasma triglycerides without affecting food intake or body weight. These results raise the possibility that guggulipid has anti-diabetic activity due partly to commipheric acid's PPARalpha/gamma agonism, but the systemic bioavailability of orally dosed, pure commipheric acid appears poor. Another component may contribute to guggulipid's anti-diabetic and hypocholesterolaemic activity by stimulating LXRalpha. PMID:18926687

  17. The peptide LSARLAF causes platelet secretion and aggregation by directly activating the integrin alphaIIbbeta3.

    PubMed Central

    Derrick, J M; Taylor, D B; Loudon, R G; Gartner, T K

    1997-01-01

    A novel peptide (designed to bind to alphaIIbbeta3) caused platelet aggregation and aggregation-independent secretion of the contents of alpha-granules in an alphaIIbbeta3-dependent fashion. The agonist peptide induced secretion in the presence of prostaglandin E1. In cell-free assays, alphaIIbbeta3 bound specifically to immobilized agonist peptide and the peptide enhanced the binding of fibrinogen to immobilized alphaIIbbeta3. The agonist peptide apparently activates alphaIIbbeta3 by directly inducing a conformational change in the receptor. This change activates the platelets and causes secretion in a manner independent of fibrinogen binding. PMID:9230107

  18. Meperidine, remifentanil and tramadol but not sufentanil interact with alpha(2)-adrenoceptors in alpha(2A)-, alpha(2B)- and alpha(2C)-adrenoceptor knock out mice brain.

    PubMed

    Höcker, Jan; Weber, Bernd; Tonner, Peter H; Scholz, Jens; Brand, Philipp-Alexander; Ohnesorge, Henning; Bein, Berthold

    2008-03-17

    alpha(2)-adrenoceptor agonists like clonidine or dexmedetomidine increase the sedative and analgesic actions of opioids. Furthermore opioids like meperidine show potent anti-shivering effects like alpha(2)-adrenoceptor agonists. The underlying molecular mechanisms of these effects are still poorly defined. The authors therefore studied the ability of four different opioids (meperidine, remifentanil, sufentanil and tramadol) to interact with different alpha(2)-adrenoceptor subtypes in mice lacking individual alpha(2A)-, alpha(2B)- or alpha(2C)-adrenoceptors (alpha(2)-adrenoceptor knock out (alpha(2)-AR KO) mice)). The interaction of opioids with alpha(2)-adrenoceptors was investigated by quantitative receptor autoradiography in brain slices of alpha(2A)-, alpha(2B)- or alpha(2C)-adrenoceptor deficient mice. Displacement of the radiolabelled alpha(2)-adrenoceptor agonist [(125)I]-paraiodoclonidine ([(125)I]-PIC) from alpha(2)-adrenoceptors in different brain regions by increasing opioid concentrations was measured, and binding affinity of the analysed opioids to alpha(2)-adrenoceptor subtypes in different brain regions was quantified. Meperidine, remifentanil and tramadol but not sufentanil provoked dose dependent displacement of specifically bound [(125)I]-PIC from all alpha(2)-adrenoceptor subtypes in cortex, cerebellum, medulla oblongata, thalamus, hippocampus and pons. Required concentrations of meperidine and remifentanil for [(125)I]-PIC displacement from alpha(2B)- and alpha(2C)-adrenoceptors were lower than from alpha(2A)-adrenoceptors, indicating higher binding affinity for alpha(2B)- and alpha(2C)-adrenoceptors. In contrast, [(125)I]-PIC displacement by tramadol indicated higher binding affinity to alpha(2A)-adrenoceptors than to alpha(2B)- and alpha(2C)-adrenoceptors. Our results indicate that meperidine, remifentanil and tramadol interact with alpha(2)-adrenoceptors in mouse brain showing different affinity for alpha(2A)-, alpha(2B)- and alpha(2C

  19. Labeled ALPHA4BETA2 ligands and methods therefor

    DOEpatents

    Mukherjee, Jogeshwar; Pichika, Ramaiah; Potkin, Steven; Leslie, Frances; Chattopadhyay, Sankha

    2013-02-19

    Contemplated compositions and methods are employed to bind in vitro and in vivo to an .alpha.4.beta.2 nicotinic acetylcholine receptor in a highly selective manner. Where such compounds are labeled, compositions and methods employing such compounds can be used for PET and SPECT analysis. Alternatively, and/or additionally contemplated compounds can be used as antagonists, partial agonists or agonists in the treatment of diseases or conditions associated with .alpha.4.beta..beta.2 dysfunction.

  20. Characterization of the specificities of human blood group H gene-specified alpha 1,2-L-fucosyltransferase toward sulfated/sialylated/fucosylated acceptors: evidence for an inverse relationship between alpha 1,2-L-fucosylation of Gal and alpha 1,6-L-fucosylation of asparagine-linked GlcNAc.

    PubMed

    Chandrasekaran, E V; Jain, R K; Larsen, R D; Wlasichuk, K; Matta, K L

    1996-07-01

    The assembly of complex structures bearing the H determinant was examined by characterizing the specificities of a cloned blood group H gene-specified alpha 1,2-L-fucosyltransferase (FT) toward a variety of sulfated, sialylated, or fucosylated Gal beta 1,3/4GlcNAc beta- or Gal beta 1,3GalNAc alpha-based acceptor structures. (a) As compared to the basic type 2, Gal beta 1,4GlcNAc beta-(K(m) = 1.67 mM), the basic type 1 was 137% active (K(m) = 0.83 mM). (b) On C-6 sulfation of Gal, type 1 became 142.1% active and type 2 became 223.0% active (K(m) = 0.45 mM). (c) On C-6 sulfation of GlcNAc, type 2 showed 33.7% activity. (d) On C-3 or C-4 fucosylation of GlcNAc, both types 1 and 2 lost activity. (e) Type 1 showed 70.8% and 5.8% activity, respectively, on C-6 and C-4 O-methylation of GlcNAc. (f) Type 1 retained 18.8% activity on alpha 2,6-sialylation of GlcNAc. (g) Terminal type 1 or 2 of extended chain had lower activity. (h) With Gal in place of GlcNAc in type 1, the activity became 43.2%. (i) Compounds with terminal alpha 1,3-linked Gal were inactive. (j) Gal beta 1,3GalNAc alpha- (the T-hapten) was approximately 0.4-fold as active as Gal beta 1,4GlcNAc beta-. (k) C-6 sulfation of Gal on the T-hapten did not affect the acceptor activity. (l) C-6 sulfation of GalNAc decreased the activity to 70%, whereas on C-6 sulfation of both Gal and GalNAc the T-hapten lost the acceptor ability. (m) C-6 sialylation of GalNAc also led to inactivity. (n) beta 1,6 branching from GalNAc of the T-hapten by a GlcNAc residue or by units such as Gal beta 1, 4GlcNAc-, Gal beta 1,4(Fuc alpha 1,3)GlcNAc-, or 3-sulfoGal beta 1,4GlcNAc- resulted in 111.9%, 282.8%, 48.3%, and 75.3% activities, respectively. (o) The enhancement of enzyme affinity by a sulfo group on C-6 of Gal was demonstrated by an increase (approximately 5-fold) in the K(m) for Gal beta 1,4GlcNAc beta 1,6(Gal beta 1,3)GalNAc alpha-O-Bn in presence of 6-sulfoGal beta 1,- 4GlcNAc beta-O-Me (3.0 mM). (p) Among the two sites in

  1. Retinal dynamics underlie its switch from inverse agonist to agonist during rhodopsin activation.

    PubMed

    Struts, Andrey V; Salgado, Gilmar F J; Martínez-Mayorga, Karina; Brown, Michael F

    2011-03-01

    X-ray and magnetic resonance approaches, though central to studies of G protein-coupled receptor (GPCR)-mediated signaling, cannot address GPCR protein dynamics or plasticity. Here we show that solid-state (2)H NMR relaxation elucidates picosecond-to-nanosecond-timescale motions of the retinal ligand that influence larger-scale functional dynamics of rhodopsin in membranes. We propose a multiscale activation mechanism whereby retinal initiates collective helix fluctuations in the meta I-meta II equilibrium on the microsecond-to-millisecond timescale. PMID:21278756

  2. Discovery of Azetidinone Acids as Conformationally-Constrained Dual PPARalpha/gamma Agonists

    SciTech Connect

    Wang, W.; Devasthale, P; Farrelly, D; Gu, L; Harrity, T; Cap, M; Chu, C; Kunselman, L; Morgan, N; et. al.

    2008-01-01

    A novel class of azetidinone acid-derived dual PPAR{alpha}/{gamma} agonists has been synthesized for the treatment of diabetes and dyslipidemia. The preferred stereochemistry in this series for binding and functional agonist activity against both PPARa and PPAR? receptors was shown to be 3S,4S. Synthesis, in vitro and in vivo activities of compounds in this series are described. A high-yielding method for N-arylation of azetidinone esters is also described.

  3. Synthesis and characterization of arylamine derivatives of rauwolscine as molecular probes for alpha 2-adrenergic receptors

    SciTech Connect

    Lanier, S.M.; Graham, R.M.; Hess, H.J.; Grodski, A.; Repaske, M.G.; Nunnari, J.M.; Limbird, L.E.; Homcy, C.J.

    1987-06-01

    The selective alpha 2-adrenergic receptor antagonist rauwolscine was structurally modified to yield a series of arylamine carboxamide derivatives, which were investigated as potential molecular probes for the localization and structural characterization of alpha 2-adrenergic receptors. The arylamine carboxamides differ in the number of carbon atoms separating the reactive phenyl moiety from the fused ring structure of the parent compound, rauwolscine carboxylate. Competitive inhibition studies with (/sup 3/H)rauwolscine in rat kidney membranes indicate that the affinity for the carboxamide derivatives is inversely related to the length of the carbon spacer arm with rauwolscine 4-aminophenyl carboxamide exhibiting the highest affinity (Kd = 2.3 +/- 0.2 nM). Radioiodination of rau-AMPC yields a ligand, /sup 125/I-rau-AMPC, which binds to rat kidney alpha 2-adrenergic receptors with high affinity, as determined by both kinetic analysis (Kd = k2/k1 = 0.016 min-1/2.1 X 10(7) M-1 min-1 = 0.76 nM) and equilibrium binding studies (Kd = 0.78 +/- 0.16 nM). /sup 125/I-rau-AMPC was quantitatively converted to the photolabile arylazide derivative 17 alpha-hydroxy-20 alpha-yohimban-16 beta-(N-4-azido-3-(/sup 125/I)iodophenyl) carboxamide (/sup 125/I-rau-AZPC). In a partially purified receptor preparation from porcine brain, this compound photolabels a major (Mr = 62,000) peptide. The labeling of this peptide is inhibited by adrenergic agonists and antagonists with a rank order of potency consistent with an alpha 2-adrenergic receptor binding site. Both /sup 125/I-rau-AMPC and the photolabile arylazide derivative, /sup 125/I-rau-AZPC, should prove useful as molecular probes for the structural and biochemical characterization of alpha 2-adrenergic receptors.

  4. Estrogen receptor beta agonists in neurobehavioral investigations.

    PubMed

    Choleris, Elena; Clipperton, Amy E; Phan, Anna; Kavaliers, Martin

    2008-07-01

    Neurobehavioral investigations into the functions of estrogen receptor (ER)alpha and ERbeta have utilized 'knockout' mice, phytoestrogens and, more recently, ER-specific agonists. Feeding, sexual, aggressive and social behavior, anxiety, depression, drug abuse, pain perception, and learning (and associated synaptic plasticity) are affected by ERalpha and ERbeta in a manner that is dependent upon the specific behavior studied, gender and developmental stage. Overall, ERalpha and ERbeta appear to function together to foster sociosexual behavior while inhibiting behaviors that, if occurring at the time of behavioral estrous, may compete with reproduction (eg, feeding). Recently developed pharmacological tools have limited selectivity and availability to the research community at large, as they are not commercially available. The development of highly selective, commercially available ERbeta-specific antagonists would greatly benefit preclinical and applied research. PMID:18600582

  5. Indirect inversions

    NASA Astrophysics Data System (ADS)

    Sergienko, Olga

    2013-04-01

    Since Doug MacAyeal's pioneering studies of the ice-stream basal traction optimizations by control methods, inversions for unknown parameters (e.g., basal traction, accumulation patterns, etc) have become a hallmark of the present-day ice-sheet modeling. The common feature of such inversion exercises is a direct relationship between optimized parameters and observations used in the optimization procedure. For instance, in the standard optimization for basal traction by the control method, ice-stream surface velocities constitute the control data. The optimized basal traction parameters explicitly appear in the momentum equations for the ice-stream velocities (compared to the control data). The inversion for basal traction is carried out by minimization of the cost (or objective, misfit) function that includes the momentum equations facilitated by the Lagrange multipliers. Here, we build upon this idea, and demonstrate how to optimize for parameters indirectly related to observed data using a suite of nested constraints (like Russian dolls) with additional sets of Lagrange multipliers in the cost function. This method opens the opportunity to use data from a variety of sources and types (e.g., velocities, radar layers, surface elevation changes, etc.) in the same optimization process.

  6. Influence of idazoxan on the dopamine D2 receptor agonist-induced behavioural effects in rats.

    PubMed

    Ferrari, F; Giuliani, D

    1993-11-30

    The behavioural effects in rats of the dopamine D2 receptor agonists, lisuride, B-HT 920 and SND 919, were variously influenced by pre-treatment with the selective alpha 2-adrenoceptor antagonist, idazoxan (2 mg/kg), depending on the nature of the effect in question and the doses of agonist employed. The influence of idazoxan on drug-induced stretching-yawning, penile erection, sedation, stereotyped behaviour, aggressiveness and mounting is described and tentatively interpreted in neurochemical terms, account being taken of the activity of respective alpha 2-adrenoceptor antagonist and dopamine receptor agonists used, at alpha 2-adrenoceptors and at different dopamine D2 receptor subtypes, pre- and postsynaptically located. PMID:7907024

  7. Extrinsic factors regulate partial agonist efficacy of strychnine-sensitive glycine receptors

    PubMed Central

    Farroni, Jeffrey S; McCool, Brian A

    2004-01-01

    Background Strychnine-sensitive glycine receptors in many adult forebrain regions consist of alpha2 + beta heteromeric channels. This subunit composition is distinct from the alpha1 + beta channels found throughout the adult spinal cord. Unfortunately, the pharmacology of forebrain alpha2beta receptors are poorly defined compared to 'neonatal' alpha2 homomeric channels or 'spinal' alpha1beta heteromers. In addition, the pharmacologic properties of native alpha2beta glycine receptors have been generally distinct from receptors produced by heterologous expression. To identify subtype-specific pharmacologic tools for the forebrain alpha2beta receptors, it is important to identify a heterologous expression system that closely resembles these native glycine-gated chloride channels. Results While exploring pharmacological properties of alpha2beta glycine receptors compared to alpha2-homomers, we found that distinct heterologous expression systems appeared to differentially influence partial agonist pharmacology. The β-amino acid taurine possessed 30–50% efficacy for alpha2-containing receptor isoforms when expressed in HEK 293 cells. However, taurine efficacy was dramatically reduced in L-cell fibroblasts. Similar results were obtained for β-alanine. The efficacy of these partial agonists was also strongly reduced by the beta subunit. There were no significant differences in apparent strychnine affinity values calculated from concentration-response data between expression systems or subunit combinations. Nor did relative levels of expression correlate with partial agonist efficacy when compared within or between several different expression systems. Finally, disruption of the tubulin cytoskeleton reduced the efficacy of partial agonists in a subunit-dependent, but system-independent, fashion. Conclusions Our results suggest that different heterologous expression systems can dramatically influence the agonist pharmacology of strychnine-sensitive glycine receptors. In

  8. Alpha Particle

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    Term that is sometimes used to describe a helium nucleus, a positively charged particle that consists of two protons and two neutrons, bound together. Alpha particles, which were discovered by Ernest Rutherford (1871-1937) in 1898, are emitted by atomic nuclei that are undergoing alpha radioactivity. During this process, an unstable heavy nucleus spontaneously emits an alpha particle and transmut...

  9. Conformational mobility of immobilized alpha3beta2, alpha3beta4, alpha4beta2, and alpha4beta4 nicotinic acetylcholine receptors.

    PubMed

    Moaddel, Ruin; Jozwiak, Krzysztof; Whittington, Kevin; Wainer, Irving W

    2005-02-01

    Four affinity chromatography stationary phases have been developed based upon immobilized nicotinic acetylcholine receptor (nAChR) subtypes, the alpha3beta2, alpha3beta4, alpha4beta2, and alpha4beta4 nAChRs. The stationary phases were created using membranes from cell lines expressing the subtypes and an immobilized artificial membrane stationary phase. The immobilized nAChRs were characterized using frontal chromatography with the agonist epibatidine as the marker. The observed binding affinities for the agonists epibatidine, nicotine, and cytisine were consistent with reported values, indicating that the nAChRs retained their ability to bind agonists. The noncompetitive inhibitors (NCIs) of the nAChR (R)- and (S)-mecamylamine, phencylcidine, dextromethoprphan, and levomethorphan were also chromatographed on the columns using nonlinear chromatography techniques. The studies were carried out before and after exposure of the columns to epibatidine. The NCI retention times increased after exposure to epibtatidine as did the enantioselective separation of mecamylamine and methorphan. The results indicate that the immobilized nAChRs retained their ability to undergo agonist-induced conformational change from the resting to the desensitized states. The columns provide a unique ability to study the interactions of NCIs with both of these conformational states. PMID:15679359

  10. Behavioral models in mice. Implication of the alpha noradrenergic system.

    PubMed

    Hascoët, M; Bourin, M; Bradwejn, J

    1991-01-01

    1. The mechanism of action of drugs might change according to the test used. Several noradrenergic drugs were tested in order to understand their implication in the mobility tests. 2. It was found that clonidine, an Alpha 2 agonist, acted differently according to the test used. It provoked sedation in spontaneous activity test, and anti-immobility effects in the other tests. 3. Tail suspension test is able to show the double acting of clonidine. 4. Idazoxan might act either as an alpha 2 antagonist or as partial alpha 2 agonist. TST shown the unexpected partial alpha agonist effect of the molecule. 5. Forced swimming test is more specific for predicting antidepressant activity than tail suspension test which is close to a spontaneous activity model. PMID:1684874

  11. Influence of prostaglandins and adrenoceptor agonists on contractile activity in the human cervix at term.

    PubMed

    Bryman, I; Norström, A; Lindblom, B

    1986-04-01

    The influence of prostaglandins as well as adrenoceptor agonists and antagonists on contractile activity of isolated cervical smooth muscle from term pregnant women was studied. Prostaglandin E2 had an inhibitory effect at extremely low concentrations. Inhibition also was induced by prostaglandin F2 alpha, prostaglandin I2, and 6-keto-prostaglandin F1 alpha, but at considerably higher concentrations. Contractions evoked by noradrenaline or phenylephrine were blocked by the alpha-adrenoceptor antagonist phenoxybenzamine. The beta-adrenoceptor agonist terbutaline acted as an inhibitor, whereas isoprenaline in most cases stimulated contractile activity. The inhibitory action of prostaglandins and especially the high sensitivity to prostaglandin E2 point to a physiologic role of these compounds for cervical dilatation and retraction. A predominance of alpha-adrenoceptors might be of importance for the maintenance of cervical competence during pregnancy. PMID:2870450

  12. Amphetamine- type reinforcement by dopaminergic agonists in the rat.

    PubMed

    Yokel, R A; Wise, R A

    1978-07-19

    Intravenous self-administration of d-amphetamine (0.25 mg/kg/injection) decreased in a dose-related fashion after injections of the dopaminergic agonists apomorphine and piribedil. The dopaminergic agonists appear to suppress amphetamine intake in the same way as do 'free' amphetamine injections, by extending drug satiation in a given interresponse period. Clonidine, an alpha noradrenergic agonist, did not have similar effects. Apomorphine and piribedil did not increase 14C-amphetamine levels in rat brains, nor did they retard disappearance of 14C-amphetamine; thus their amphetamine-like effects are not due to alterations of amphetamine metabolism. Rats responding for amphetamine continued to respond for apomorphine or peribedil when the latter drugs were substituted for the former. Rats experienced in amphetamine self-administration readily initiated and maintained responding for apomorphine and piribedil. The dopaminergic blocker (+)-butaclamol disrupted responding for apomorphine and piribedil, although it produced no marked increase in responding for the dopaminergic agonists, as it does for amphetamine. These data add to the evidence that actions in the dopaminergic synapse account for amphetamine's reinforcing properties. PMID:98800

  13. Agonist-trafficking and hallucinogens.

    PubMed

    González-Maeso, Javier; Sealfon, Stuart C

    2009-01-01

    Seven transmembrane domain receptors, also termed G protein-coupled receptors (GPCRs), represent the most common molecular target for therapeutic drugs. The generally accepted pharmacological model for GPCR activation is the ternary complex model, in which GPCRs exist in a dynamic equilibrium between the active and inactive conformational states. However, the demonstration that different agonists sometimes elicit a different relative activation of two signaling pathways downstream of the same receptor has led to a revision of the ternary complex model. According to this agonist- trafficking model, agonists stabilize distinct activated receptor conformations that preferentially activate specific signaling pathways. Hallucinogenic drugs and non-hallucinogenic drugs represent an attractive experimental system with which to study agonist-trafficking of receptor signaling. Thus many of the behavioral responses induced by hallucinogenic drugs, such as lysergic acid diethylamide (LSD), psilocybin or mescaline, depend on activation of serotonin 5-HT(2A) receptors (5-HT2ARs). In contrast, this neuropsychological state in humans is not induced by closely related chemicals, such as lisuride or ergotamine, despite their similar in vitro activity at the 5-HT2AR. In this review, we summarize the current knowledge, as well as unresolved questions, regarding agonist-trafficking and the mechanism of action of hallucinogenic drugs. PMID:19275609

  14. SENESCENCE-ASSOCIATED DECLINE IN HEPATIC PEROXISOMAL ENZYME ACTIVITIES CORRESPONDS WITH DIMINISHED LEVELS OF RETINOID X RECEPTOR ALPHA, BUT NOT PEROXISOME PROLIFERATOR-ACTIVATED RECEPTOR ALPHA1

    EPA Science Inventory

    Abstract

    Aging is associated with alterations in hepatic peroxisomal metabolism and susceptibility to hepatocarcinogenecity produced by agonists of peroxisome proliferator-activated receptor alpha (PPARa). Mechanisms involved in these effects are not well understood. Howev...

  15. Evaluation of tocolytic efficacy of selective beta2 adrenoceptor agonists on buffalo uterus.

    PubMed

    Garg, Satish K; Garg, K M; Sabir, M

    2004-09-01

    Present study was conducted on prostaglandin F2alpha (PGF2alpha), oxytocin, (OT), potassium chloride (KCI) and barium chloride (BaCl2) pre-contracted perimetrial uterine strips of dioestrus and pregnant buffaloes to evaluate the tocolytic efficacy of selective beta2 adrenoceptor agonists-albuterol (salbutamol) and terbutaline. Cumulative concentration-response curves of both the beta2 adrenoceptor agonists were constructed and the mean effective concentration (EC50) values determined and compared statistically. Based on the comparative EC50 values in relaxing the pre-contracted uterine strips with different spasmogens, the rank order potency of albuterol was found to be--PGF2alpha > BaCl2 > OT > KCl on uterine strips from dioestrus animals, while OT> BaCl2> PGF2alpha >KCl on the uterine strips of pregnant buffaloes. The rank order potency of terbutaline on uterine strips from dioestrus stage animals was- BaCl2 > OT > KCl > PGF2alpha, while BaCl2 > PGF2alpha > KCl > OT on uterine tissues of pregnant animals. Thus, irrespective of the state of uterus, whether gravid or non-gravid, KCl-depolarized uterine tissues required comparatively higher concentrations of albuterol or terbutaline to produce tocolytic effect. High concentrations of K+ in biophase may have interfered with the beta2 adrenoceptor agonists-induced outward K+ current and hyperpolarization. From the results of present study, it was evident that selective beta2 adrenergic agonists had good tocolytic efficacy on the uterus of buffaloes. Further, indirectly the possibility of existence and activation of K(Ca) channels by selective beta2 adrenoceptor agonists in mediating tocolysis of buffalo myometrium can not be ruled out, however, detailed studies using specific K(Ca) channel blockers are required for characterizing the nature of such channels in buffalo uterus. PMID:15462186

  16. Alpha adrenoceptor subtypes involved in the emetic action in dogs.

    PubMed

    Hikasa, Y; Ogasawara, S; Takase, K

    1992-05-01

    In order to assess the involvement of alpha-1 and alpha-2 adrenoceptors in emesis, the emetic effect of eight alpha agonists was studied in dogs. The i.m. administration of each agonist elicited dose-dependent emesis. The order of potency in inducing emesis was: clonidine greater than oxymetazoline greater than tramazoline greater than naphazoline greater than xylazine greater than epinephrine greater than methoxamine = phenylephrine. The clonidine-induced emesis was antagonized by adrenoceptor antagonists showing alpha-2 blocking activity, yohimbine, tolazoline and phentolamine. Among these antagonists, yohimbine was the most effective. The alpha-1 and beta adrenergic, cholinergic, dopaminergic, histaminergic, serotonergic and opioid receptor antagonists did not prevent the clonidine-induced emesis. The emesis induced by oxymetazoline, tramazoline, xylazine, naphazoline and epinephrine was also antagonized by a selective alpha-2 adrenoceptor antagonist, yohimbine, but not by a selective alpha-1 adrenoceptor antagonist, prazosin. In contrast, methoxamine and phenylephrine-induced emesis was antagonized by prazosin, but not by yohimbine. Neither yohimbine nor prazosin prevented the morphine- and histamine-induced emesis. These results indicate that alpha-2 adrenoceptors are involved in the mediation of emetic action, and that the alpha adrenoceptor-mediated emesis does not involve beta adrenergic, cholinergic, dopaminergic, histaminergic, serotonergic and opioid receptors in the emetic pathway. This study further suggests that alpha adrenoceptors involved in the emesis are mainly of the alpha-2 type, although the involvement of alpha-1 adrenoceptors cannot be ruled out. PMID:1349647

  17. Inverse Floatation

    NASA Astrophysics Data System (ADS)

    Nath, Saurabh; Mukherjee, Anish; Chatterjee, Souvick; Ganguly, Ranjan; Sen, Swarnendu; Mukhopadhyay, Achintya; Boreyko, Jonathan

    2014-11-01

    We have observed that capillarity forces may cause floatation in a few non-intuitive configurations. These may be divided into 2 categories: i) floatation of heavier liquid droplets on lighter immiscible ones and ii) fully submerged floatation of lighter liquid droplets in a heavier immiscible medium. We call these counter-intuitive because of the inverse floatation configuration. For case (i) we have identified and studied in detail the several factors affecting the shape and maximum volume of the floating drop. We used water and vegetable oil combinations as test fluids and established the relation between Bond Number and maximum volume contained in a floating drop (in the order of μL). For case (ii), we injected vegetable oil drop-wise into a pool of water. The fully submerged configuration of the drop is not stable and a slight perturbation to the system causes the droplet to burst and float in partially submerged condition. Temporal variation of a characteristic length of the droplet is analyzed using MATLAB image processing. The constraint of small Bond Number establishes the assumption of lubrication regime in the thin gap. A brief theoretical formulation also shows the temporal variation of the gap thickness. Jadavpur University, Jagadis Bose Centre of Excellence, Virginia Tech.

  18. Allosteric coupling from G protein to the agonist-binding pocket in GPCRs.

    PubMed

    DeVree, Brian T; Mahoney, Jacob P; Vélez-Ruiz, Gisselle A; Rasmussen, Soren G F; Kuszak, Adam J; Edwald, Elin; Fung, Juan-Jose; Manglik, Aashish; Masureel, Matthieu; Du, Yang; Matt, Rachel A; Pardon, Els; Steyaert, Jan; Kobilka, Brian K; Sunahara, Roger K

    2016-07-01

    G-protein-coupled receptors (GPCRs) remain the primary conduit by which cells detect environmental stimuli and communicate with each other. Upon activation by extracellular agonists, these seven-transmembrane-domain-containing receptors interact with heterotrimeric G proteins to regulate downstream second messenger and/or protein kinase cascades. Crystallographic evidence from a prototypic GPCR, the β2-adrenergic receptor (β2AR), in complex with its cognate G protein, Gs, has provided a model for how agonist binding promotes conformational changes that propagate through the GPCR and into the nucleotide-binding pocket of the G protein α-subunit to catalyse GDP release, the key step required for GTP binding and activation of G proteins. The structure also offers hints about how G-protein binding may, in turn, allosterically influence ligand binding. Here we provide functional evidence that G-protein coupling to the β2AR stabilizes a ‘closed’ receptor conformation characterized by restricted access to and egress from the hormone-binding site. Surprisingly, the effects of G protein on the hormone-binding site can be observed in the absence of a bound agonist, where G-protein coupling driven by basal receptor activity impedes the association of agonists, partial agonists, antagonists and inverse agonists. The ability of bound ligands to dissociate from the receptor is also hindered, providing a structural explanation for the G-protein-mediated enhancement of agonist affinity, which has been observed for many GPCR–G-protein pairs. Our data also indicate that, in contrast to agonist binding alone, coupling of a G protein in the absence of an agonist stabilizes large structural changes in a GPCR. The effects of nucleotide-free G protein on ligand-binding kinetics are shared by other members of the superfamily of GPCRs, suggesting that a common mechanism may underlie G-protein-mediated enhancement of agonist affinity. PMID:27362234

  19. Different agonist- and antagonist-induced conformational changes in retinoic acid receptors analyzed by protease mapping.

    PubMed Central

    Keidel, S; LeMotte, P; Apfel, C

    1994-01-01

    The pleiotropic effects of retinoic acid on cell differentiation and proliferation are mediated by two subfamilies of nuclear receptors, the retinoic acid receptors (RARs) and the retinoid X receptors (RXRs). Recently the synthetic retinoid Ro 41-5253 was identified as a selective RAR alpha antagonist. As demonstrated by gel retardation assays, Ro 41-5253 and two related new RAR alpha antagonists do not influence RAR alpha/RXR alpha heterodimerization and DNA binding. In a limited trypsin digestion assay, complexation of RAR alpha with retinoic acid or several other agonistic retinoids altered the degradation of the receptor such that a 30-kDa proteolytic fragment became resistant to proteolysis. This suggests a ligand-induced conformational change, which may be necessary for the interaction of the DNA-bound RAR alpha/RXR alpha heterodimer with other transcription factors. Our results demonstrate that antagonists compete with agonists for binding to RAR alpha and may induce a different structural alteration, suggested by the tryptic resistance of a shorter 25-kDa protein fragment in the digestion assay. This RAR alpha conformation seems to allow RAR alpha/RXR alpha binding to DNA but not the subsequent transactivation of target genes. Protease mapping with C-terminally truncated receptors revealed that the proposed conformational changes mainly occur in the DE regions of RAR alpha. Complexation of RAR beta, RAR gamma, and RXR alpha, as well as the vitamin D3 receptor, with their natural ligands resulted in a similar resistance of fragments to proteolytic digestion. This could mean that ligand-induced conformational changes are a general feature in the hormonal activation of vitamin D3 and retinoid receptors. Images PMID:8264595

  20. New metabolically stabilized analogues of lysophosphatidic acid: agonists, antagonists and enzyme inhibitors.

    PubMed

    Prestwich, G D; Xu, Y; Qian, L; Gajewiak, J; Jiang, G

    2005-12-01

    Lysophosphatidic acid (LPA) is a metabolically labile natural phospholipid with a bewildering array of physiological effects. We describe herein a variety of long-lived receptor-specific agonists and antagonists for LPA receptors. Several LPA and PA (phosphatidic acid) analogues also inhibit LPP (lipid phosphate phosphatase). The sn-1 or sn-2 hydroxy groups have been replaced by fluorine, difluoromethyl, difluoroethyl, O-methyl or O-hydroxyethoxy groups to give non-migrating LPA analogues that resist acyltransferases. Alkyl ether replacement of acyl esters produced lipase and acyltransferase-resistant analogues. Replacement of the bridging oxygen in the monophosphate by an alpha-monofluoromethylene-, alpha-bromomethylene- or alpha,alpha-difluoromethylenephosphonate gave phosphatase-resistant analogues. Phosphorothioate analogues with O-acyl and O-alkyl chains are potent, long-lived agonists for LPA1 and LPA3 receptors. Most recently, we have (i) prepared stabilized O-alkyl analogues of lysobisphosphatidic acid, (ii) explored the structure-activity relationship of stabilized cyclic LPA analogues and (iii) synthesized neutral head group trifluoromethylsulphonamide analogues of LPA. Through collaborative studies, we have collected data for these stabilized analogues as selective LPA receptor (ant)agonists, LPP inhibitors, TREK (transmembrane calcium channel) K+ channel agonists, activators of the nuclear transcription factor PPAR-gamma (peroxisome-proliferator-activated receptor-gamma), promoters of cell motility and survival, and radioprotectants for human B-cells. PMID:16246118

  1. Direct Measurement of {sup 21}Na+{alpha} Stellar Reaction

    SciTech Connect

    Binh, D. N.; Kubono, S.; Yamaguchi, H.; Hayakawa, S.; Hashimoto, T.; Kahl, D.; Teranishi, T.; Iwasa, N.; Kume, N.; Kato, S.; Khiem, L. H.; Tho, N. T.; Wakabayashi, Y.

    2010-08-12

    The measurement of the resonant alpha scattering and the {sup 21}Na({alpha}, p) reaction were performed for the first time in inverse kinematics with the thick target method using a {sup 21}Na radioisotope (RI) beam. This paper reports the current result of alpha scattering measurement and its astrophysics implication.

  2. Use of a gonadotropin-releasing hormone agonist or human chorionic gonadotropin for timed insemination in cattle.

    PubMed

    Schmitt, E J; Diaz, T; Drost, M; Thatcher, W W

    1996-05-01

    Three experiments were conducted to evaluate a synchronization protocol with AI at a predetermined time. In Exp. 1, 169 dairy heifers were assigned randomly to two groups: 1) timed AI (TAI), consisting of GnRH agonist injection (d 0, 1700), PGF2 alpha injection (d 7, 1700), GnRH agonist injection (d 8, 1700), and AI (d 9, 0800); and 2) AI at estrus (AIE), consisting of GnRH agonist injection (d 0, 1700), PGF2 alpha injection (d 7, 1700), and AI at detected estrus. Pregnancy rate was 25.8% for TAI (n = 89) compared with 48.7% for AIE (n = 80; P < .001). Experiment 2 was comparable to Exp. 1, but the second GnRH agonist injection in TAI was given 48 h after injection of PGF2 alpha. Heifers in TAI (n = 187) were inseminated at detected estrus if estrus occurred within 39 h after administration of PGF2 alpha (n = 47). Pregnancy rates were 45.5% for TAI and 48.0% for AIE (n = 177). Conception rate was reduced for TAI (45.5 [85/187] < 61.2% [85/139]; P < .005). In Exp. 3, the second injection of GnRH agonist, given at 48 h after injection of PGF2 alpha, was replaced with hCG (3,000 IU, i.m.). No differences in pregnancy rate were detected for TAI (52.9% [54/102]) vs AIE (56.1% [55/98]). Conception rate was reduced for TAI (52.9 [54/102] < 72.3% [55/76]; P < .005). Delaying the second GnRH agonist injection by 24 h improved pregnancy rate, but replacing the second injection of GnRH agonist with an injection of hCG did not prevent a reduction in conception rate. PMID:8726741

  3. Alpha Thalassemia

    MedlinePlus

    ... an apparently normal individual has a child with hemoglobin H disease or alpha thalassemia minor. It can ... gene on one chromosome 25% 25% 25% 25% hemoglobin H disease there is a 25% chance with ...

  4. Structure-Activity Relationship and Signaling of New Chimeric CXCR4 Agonists.

    PubMed

    Mona, Christine E; Besserer-Offroy, Élie; Cabana, Jérôme; Lefrançois, Marilou; Boulais, Philip E; Lefebvre, Marie-Reine; Leduc, Richard; Lavigne, Pierre; Heveker, Nikolaus; Marsault, Éric; Escher, Emanuel

    2016-08-25

    The CXCR4 receptor binds with meaningful affinities only CXCL12 and synthetic antagonists/inverse agonists. We recently described high affinity synthetic agonists for this chemokine receptor, obtained by grafting the CXCL12 N-terminus onto the inverse agonist T140. While those chimeric molecules behave as agonists for CXCR4, their binding and activation mode are unknown. The present SAR of those CXCL12-oligopeptide grafts reveals the key determinants involved in CXCR4 activation. Position 3 (Val) controls affinity, whereas position 7 (Tyr) acts as an efficacy switch. Chimeric molecules bearing aromatic residues in position 3 possess high binding affinities for CXCR4 and are Gαi full agonists with robust chemotactic properties. Fine-tuning of electron-poor aromatic rings in position 7 enhances receptor activation. To rationalize these results, a homology model of a receptor-ligand complex was built using the published crystal structures of CXCR4. Molecular dynamics simulations reveal further details accounting for the observed SAR for this series. PMID:27434274

  5. cap alpha. -2 adrenergic receptor: a radiohistochemical study

    SciTech Connect

    Unnerstall, J.R.

    1984-01-01

    ..cap alpha..-2 adrenergic agents have been shown to influence blood pressure, heart rate and other physiological and behavioral functions through interactions with adrenergic pathways within the central nervous system. Pharmacologically relevant ..cap alpha..-1 adrenergic receptors were biochemically characterized and radiohistochemically analyzed in intact tissue sections of the rat and human central nervous system. The anatomical distribution of the ..cap alpha..-2 receptors, labeled with the agonist (/sup 3/H)para-aminoclonidine, verified the concept that ..cap alpha..-2 receptors are closely associated with adrenergic nerve terminals and that ..cap alpha..-2 agents can influence autonomic and endocrine function through an action in the central nervous system. Since ..cap alpha..-2 agonists can influence sympathetic outflow, ..cap alpha..-2 binding sites were closely analyzed in the intermediolateral cell column of the thoracic spinal cord. The transport of putative presynaptic ..cap alpha..-2 binding sites in the rat sciatic nerve was analyzed by light microscopic radiohistochemical techniques. Finally, in intact tissue section of the rat central nervous system, the biochemical characteristics of (/sup 3/H)rauwolscine binding were analyzed. Data were also shown which indicates that the synthetic ..cap alpha..-2 antagonist (/sup 3/H)RX781094 also binds to ..cap alpha..-2 receptors with high-affinity. Further, the distribution of (/sup 3/H)RX781094 binding sites in the rat central nervous system was identical to the distribution seen when using (/sup 3/H)para-aminoclonidine.

  6. A study of presynaptic alpha2-autoreceptors in alpha2A/D-, alpha2B- and alpha2C-adrenoceptor-deficient mice.

    PubMed

    Trendelenburg, A U; Klebroff, W; Hein, L; Starke, K

    2001-08-01

    The function of presynaptic alpha2-autoreceptors was studied in the hippocampus, occipito-parietal cortex, atria and vas deferens of NMRI mice, mice in which the alpha2A/D-, the alpha2B- or alpha2c-adrenoceptor gene had been disrupted (alpha2A/DKO, alpha2BKO and alpha2CKO, respectively), and the wildtype mice from which the knockout animals had been generated. Tissue pieces were preincubated with 3H-noradrenaline and then superfused and stimulated electrically. The alpha2-adrenoceptor agonist medetomidine reduced the electrically evoked overflow of tritium in all tissues from all mouse strains (stimulation with single pulses or single high-frequency pulse trains, called POPs, i.e. pulse patterns leading to minimal autoinhibition). The effects of medetomidine did not differ in NMRI, wildtype, alpha2BKO and alpha2CKO mice but were greatly reduced in alpha2A/DKO brain preparations and to a lesser extent in alpha2A/DKO atria and vasa deferentia. Six drugs were tested as antagonists against medetomidine. Their pKd values indicated that the hippocampal and occipito-parietal alpha2-autoreceptors in NMRI and wildtype mice were alpha2D (the rodent variant of the alpha2A/D-adrenoceptor) whereas the atrial and vas deferens alpha2-autoreceptors in NMRI and wildtype mice could not be identified with a single alpha2 subtype. Deletion of the alpha2A/D gene changed the pKd values in all tissues so that they now reflected alpha2C properties, whereas deletion of the alpha2C gene changed the pKd values in atria and vasa deferentia so that they now had alpha2D properties (as they had in NMRI and wildtype brain preparations). Autoinhibition by released noradrenaline was created using trains of up to 64 pulses or up to 4 POPs, and the overflow-enhancing effect of the alpha2 antagonist rauwolscine was determined. Results did not differ, irrespective of whether preparations were obtained from NMRI, wildtype, alpha2BKO or alpha2CKO mice: the overflow of tritium elicited by p pulses or POPs

  7. Agonist self-inhibition at the nicotinic acetylcholine receptor a nonspecific action

    SciTech Connect

    Forman, S.A.; Firestone, L.L.; Miller, K.W.

    1987-05-19

    Agonist concentration-response relationships at nicotinic postsynaptic receptors were established by measuring /sup 86/Rb/sup +/ efflux from acetylcholine receptor rich native Torpedo membrane vesicles under three different conditions: (1) integrated net ion efflux (in 10 s) from untreated vesicles, (2) integrated net efflux from vesicles in which most acetylcholine sites were irreversibly blocked with ..cap alpha..-bungarotoxin, and (3) initial rates of efflux (5-100 ms) from vesicles that were partially blocked with ..cap alpha..-bungarotoxin. Exposure to acetylcholine, carbamylcholine, suberyldicholine, phenyltrimethylammonium, or (-)-nicotine over 10/sup 8/-fold concentration ranges results in bell-shaped ion flux response curves due to stimulation of acetylcholine receptor channel opening at low concentrations and inhibition of channel function at 60-2000 times higher concentrations. Concentrations of agonists that inhibit their own maximum /sup 86/Rb/sup +/ efflux by 50% (K/sub B/ values) are 110, 211, 3.0, 39, and 8.9 mM, respectively, for the agonists listed above. For acetylcholine and carbamylcholine, K/sub B/ values determined from both 10-s and 15-ms efflux measurements are the same, indicating that the rate of agonist-induced desensitization increases to maximum at concentrations lower than those causing self-inhibition. For all partial and full agonists studied, Hill coefficients for self-inhibition are close to 1.0. Concentrations of agonists up to 8 times K/sub B/ did not change the order parameter reported by a spin-labeled fatty acid incorporated in Torpedo membranes. The authors conclude that agonist self-inhibition cannot be attributed to a general nonspecific membrane perturbation. Instead, these results are consistent with a saturable site of action either at the lipid-protein interface or on the acetylcholine receptor protein itself.

  8. PPARα-Independent Arterial Smooth Muscle Relaxant Effects of PPARα Agonists

    PubMed Central

    Silswal, Neerupma; Parelkar, Nikhil K.; Wacker, Michael J.; Badr, Mostafa; Andresen, Jon

    2012-01-01

    We sought to determine direct vascular effects of peroxisome proliferator-activated receptor alpha (PPARα) agonists using isolated mouse aortas and middle cerebral arteries (MCAs). The PPARα agonists GW7647, WY14643, and gemfibrozil acutely relaxed aortas held under isometric tension and dilated pressurized MCAs with the following order of potency: GW7647≫WY14643>gemfibrozil. Responses were endothelium-independent, and the use of PPARα deficient mice demonstrated that responses were also PPARα-independent. Pretreating arteries with high extracellular K+ attenuated PPARα agonist-mediated relaxations in the aorta, but not in the MCA. In the aorta, the ATP sensitive potassium (KATP) channel blocker glibenclamide also impaired relaxations whereas the other K+ channel inhibitors, 4-aminopyridine and Iberiotoxin, had no effect. In aortas, GW7647 and WY14643 elevated cGMP levels by stimulating soluble guanylyl cyclase (sGC), and inhibition of sGC with ODQ blunted relaxations to PPARα agonists. In the MCA, dilations were inhibited by the protein kinase C (PKC) activator, phorbol 12,13-dibutyrate, and also by ODQ. Our results demonstrated acute, nonreceptor-mediated relaxant effects of PPARα agonists on smooth muscle of mouse arteries. Responses to PPARα agonists in the aorta involved KATP channels and sGC, whereas in the MCA the PKC and sGC pathways also appeared to contribute to the response. PMID:23008696

  9. Kappa Opioid Receptor Agonist and Brain Ischemia

    PubMed Central

    Chunhua, Chen; Chunhua, Xi; Megumi, Sugita; Renyu, Liu

    2014-01-01

    Opioid receptors, especially Kappa opioid receptor (KOR) play an important role in the pathophysiological process of cerebral ischemia reperfusion injury. Previously accepted KOR agonists activity has included anti-nociception, cardiovascular, anti-pruritic, diuretic, and antitussive effects, while compelling evidence from various ischemic animal models indicate that KOR agonist have neuroprotective effects through various mechanisms. In this review, we aimed to demonstrate the property of KOR agonist and its role in global and focal cerebral ischemia. Based on current preclinical research, the KOR agonists may be useful as a neuroprotective agent. The recent discovery of salvinorin A, highly selective non-opioid KOR agonist, offers a new tool to study the role of KOR in brain HI injury and the protective effects of KOR agonist. The unique pharmacological profile of salvinorin A along with the long history of human usage provides its high candidacy as a potential alternative medication for brain HI injury. PMID:25574482

  10. Alpha-1 Antitrypsin Deficiency

    MedlinePlus

    ... Liver Disease Information > Alpha-1 Antitrypsin Deficiency Alpha-1 Antitrypsin Deficiency Explore this section to learn more about alpha-1 antitrypsin deficiency, including a description of the disorder ...

  11. The Alpha-1A Adrenergic Receptor in the Rabbit Heart

    PubMed Central

    Myagmar, Bat-Erdene; Swigart, Philip M.; Baker, Anthony J.; Simpson, Paul C.

    2016-01-01

    The alpha-1A-adrenergic receptor (AR) subtype is associated with cardioprotective signaling in the mouse and human heart. The rabbit is useful for cardiac disease modeling, but data on the alpha-1A in the rabbit heart are limited. Our objective was to test for expression and function of the alpha-1A in rabbit heart. By quantitative real-time reverse transcription PCR (qPCR) on mRNA from ventricular myocardium of adult male New Zealand White rabbits, the alpha-1B was 99% of total alpha-1-AR mRNA, with <1% alpha-1A and alpha-1D, whereas alpha-1A mRNA was over 50% of total in brain and liver. Saturation radioligand binding identified ~4 fmol total alpha-1-ARs per mg myocardial protein, with 17% alpha-1A by competition with the selective antagonist 5-methylurapidil. The alpha-1D was not detected by competition with BMY-7378, indicating that 83% of alpha-1-ARs were alpha-1B. In isolated left ventricle and right ventricle, the selective alpha-1A agonist A61603 stimulated a negative inotropic effect, versus a positive inotropic effect with the nonselective alpha-1-agonist phenylephrine and the beta-agonist isoproterenol. Blood pressure assay in conscious rabbits using an indwelling aortic telemeter showed that A61603 by bolus intravenous dosing increased mean arterial pressure by 20 mm Hg at 0.14 μg/kg, 10-fold lower than norepinephrine, and chronic A61603 infusion by iPRECIO programmable micro Infusion pump did not increase BP at 22 μg/kg/d. A myocardial slice model useful in human myocardium and an anthracycline cardiotoxicity model useful in mouse were both problematic in rabbit. We conclude that alpha-1A mRNA is very low in rabbit heart, but the receptor is present by binding and mediates a negative inotropic response. Expression and function of the alpha-1A in rabbit heart differ from mouse and human, but the vasopressor response is similar to mouse. PMID:27258143

  12. The Alpha-1A Adrenergic Receptor in the Rabbit Heart.

    PubMed

    Thomas, R Croft; Cowley, Patrick M; Singh, Abhishek; Myagmar, Bat-Erdene; Swigart, Philip M; Baker, Anthony J; Simpson, Paul C

    2016-01-01

    The alpha-1A-adrenergic receptor (AR) subtype is associated with cardioprotective signaling in the mouse and human heart. The rabbit is useful for cardiac disease modeling, but data on the alpha-1A in the rabbit heart are limited. Our objective was to test for expression and function of the alpha-1A in rabbit heart. By quantitative real-time reverse transcription PCR (qPCR) on mRNA from ventricular myocardium of adult male New Zealand White rabbits, the alpha-1B was 99% of total alpha-1-AR mRNA, with <1% alpha-1A and alpha-1D, whereas alpha-1A mRNA was over 50% of total in brain and liver. Saturation radioligand binding identified ~4 fmol total alpha-1-ARs per mg myocardial protein, with 17% alpha-1A by competition with the selective antagonist 5-methylurapidil. The alpha-1D was not detected by competition with BMY-7378, indicating that 83% of alpha-1-ARs were alpha-1B. In isolated left ventricle and right ventricle, the selective alpha-1A agonist A61603 stimulated a negative inotropic effect, versus a positive inotropic effect with the nonselective alpha-1-agonist phenylephrine and the beta-agonist isoproterenol. Blood pressure assay in conscious rabbits using an indwelling aortic telemeter showed that A61603 by bolus intravenous dosing increased mean arterial pressure by 20 mm Hg at 0.14 μg/kg, 10-fold lower than norepinephrine, and chronic A61603 infusion by iPRECIO programmable micro Infusion pump did not increase BP at 22 μg/kg/d. A myocardial slice model useful in human myocardium and an anthracycline cardiotoxicity model useful in mouse were both problematic in rabbit. We conclude that alpha-1A mRNA is very low in rabbit heart, but the receptor is present by binding and mediates a negative inotropic response. Expression and function of the alpha-1A in rabbit heart differ from mouse and human, but the vasopressor response is similar to mouse. PMID:27258143

  13. Mechanisms of alpha-adrenergic regulation of the renal sodium/proton antiporter

    SciTech Connect

    Gesek, F.A.

    1988-01-01

    Some controversy exists concerning the relative roles of the {alpha}-adrenoceptor subtypes which mediate proximal tubular Na reabsorption. We hypothesized both {alpha}{sub 1} and {alpha}{sub 2} adrenoceptors may act to stimulate Na transport. We improved upon existing isolation techniques to obtain a highly enriched fraction of rat proximal tubule segments with which to test our hypothesis. Oxygen consumption measurements were first used to monitor alterations in transcellular transport stimulated by selective {alpha}{sub 1} and {alpha}{sub 2} adrenergic agonists and demonstrated both adrenoceptor subtypes increased transcellular Na transport. To examine if the enhancement of Na transport by {alpha}-adrenergic agonists were through a luminal Na//H exchange mechanism, the uptake of {sup 22}Na which was suppressible by the Na/H inhibitor, ethylisopropyl amiloride was utilized. The final sequence of experiments were designed to examine why {alpha}{sub 2} specific adrenoceptor agonists produced a range of stimulation extending from 22% with guanabenz to 98% with B-HT 933. After inhibition of a guanine nucleotide binding protein with pertussis toxin pretreatment, we were able to attenuate the {alpha}{sub 2} agonists responses. However, when a phorbol ester was used to stimulate Na/H exchange directly by activation of protein kinase C, the uptake of {sup 22}Na was inhibited by guanabenz.

  14. Beta-agonists and animal welfare

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The use of beta-agonists in animal feed is a high profile topic within the U.S. as consumers and activist groups continue to question its safety. The only beta-agonist currently available for use in swine is ractopamine hydrochloride (RAC). This is available as Paylean™ (Elanco Animal Health – FDA a...

  15. The Benzenesulfoamide T0901317 [N-(2,2,2-Trifluoroethyl)-N-[4-[2,2,2-trifluoro-1-hydroxy-1-(trifluoromethyl)ethyl]phenyl]-benzenesulfonamide] Is a Novel Retinoic Acid Receptor-Related Orphan Receptor-α/γ Inverse Agonist

    PubMed Central

    Kumar, Naresh; Solt, Laura A.; Conkright, Juliana J.; Wang, Yongjun; Istrate, Monica A.; Busby, Scott A.; Garcia-Ordonez, Ruben D.; Burris, Thomas P.

    2010-01-01

    Retinoic acid receptor-related orphan receptors (RORs) regulate a variety of physiological processes including hepatic gluconeogenesis, lipid metabolism, circadian rhythm, and immune function. Here we present the first high-affinity synthetic ligand for both RORα and RORγ. In a screen against all 48 human nuclear receptors, the benzenesulfonamide liver X receptor (LXR) agonist N-(2,2,2-trifluoroethyl)-N-[4-[2,2,2-trifluoro-1-hydroxy-1-(trifluoromethyl)ethyl]phenyl]-benzenesulfonamide (T0901317) inhibited transactivation activity of RORα and RORγ but not RORβ. T0901317 was found to directly bind to RORα and RORγ with high affinity (Ki = 132 and 51 nM, respectively), resulting in the modulation of the receptor's ability to interact with transcriptional cofactor proteins. T0901317 repressed RORα/γ-dependent transactivation of ROR-responsive reporter genes and in HepG2 cells reduced recruitment of steroid receptor coactivator-2 by RORα at an endogenous ROR target gene (G6Pase). Using small interference RNA, we demonstrate that repression of the gluconeogenic enzyme glucose-6-phosphatase in HepG2 cells by T0901317 is ROR-dependent and is not due to the compound's LXR activity. In summary, T0901317 represents a novel chemical probe to examine RORα/γ function and an excellent starting point for the development of ROR selective modulators. More importantly, our results demonstrate that small molecules can be used to target the RORs for therapeutic intervention in metabolic and immune disorders. PMID:19887649

  16. β2-agonist therapy in lung disease.

    PubMed

    Cazzola, Mario; Page, Clive P; Rogliani, Paola; Matera, M Gabriella

    2013-04-01

    β2-Agonists are effective bronchodilators due primarily to their ability to relax airway smooth muscle (ASM). They exert their effects via their binding to the active site of β2-adrenoceptors on ASM, which triggers a signaling cascade that results in a number of events, all of which contribute to relaxation of ASM. There are some differences between β2-agonists. Traditional inhaled short-acting β2-agonists albuterol, fenoterol, and terbutaline provide rapid as-needed symptom relief and short-term prophylactic protection against bronchoconstriction induced by exercise or other stimuli. The twice-daily β2-agonists formoterol and salmeterol represent important advances. Their effective bronchodilating properties and long-term improvement in lung function offer considerable clinical benefits to patients. More recently, a newer β2-agonist (indacaterol) with a longer pharmacodynamic half-life has been discovered, with the hopes of achieving once-daily dosing. In general, β2-agonists have an acceptable safety profile, although there is still controversy as to whether long-acting β2-agonists may increase the risk of asthma mortality. In any case, they can induce adverse effects, such as increased heart rate, palpitations, transient decrease in PaO2, and tremor. Desensitization of β2-adrenoceptors that occurs during the first few days of regular use of β2-agonist treatment may account for the commonly observed resolution of the majority of these adverse events after the first few doses. Nevertheless, it can also induce tolerance to bronchoprotective effects of β2-agonists and has the potential to reduce bronchodilator sensitivity to them. Some novel once-daily β2-agonists (olodaterol, vilanterol, abediterol) are under development, mainly in combination with an inhaled corticosteroid or a long-acting antimuscarinic agent. PMID:23348973

  17. Stimulation of prostaglandin E2-synthesis by noradrenaline in primary cell cultures from rabbit splenic pulpa is mediated by atypical alpha-adrenoceptors.

    PubMed

    Brückner-Schmidt, R; Jackisch, R; Hertting, G

    1981-02-01

    In primary cell cultures originating from rabbit splenic pulpa the effects of various adrenoceptor agonists on prostaglandin (PG)-synthesis were studied. The cells - microscopically identified as fibroblasts - released PGs into the medium: especially PGE2 besides small amounts of PGF2alpha and PGD2. Noradrenaline increased dose-dependently the amount of PGs released into the medium. Besides noradrenaline, only the catecholamines adrenaline and alpha-methylnoradrenaline strongly activated PG-synthesis. Other alpha-adrenoceptor agonists like the phenylethylamine and imidazoline derivatives were only weak agonists or completely ineffective. All adrenoceptor agonists without intrinsic activity in these cells antagonized the noradrenaline effect on PG-synthesis, the imidazolines being more potent antagonists than the phenylethylamines. The beta-adrenoceptor agonist isoprenaline stimulated PG-synthesis at high concentration only. The effects of both noradrenaline and isoprenaline were inhibited by low concentrations of phentolamine phenoxybenzamine, but not by propranolol. The preferential alpha2-adrenoceptor antagonists yohimbine and rauwolscine were about 50 times more potent in blocking the noradrenaline effect on PG-synthesis than the more alpha1-specific antagonist corynanthine. However, prazosin, another alpha1-adrenoceptor antagonist, was about equipotent with yohimbine. It is concluded that noradrenaline elicits PG-synthesis in rabbit splenic fibroblasts via alpha-adrenoceptor stimulation. The alpha-adrenoceptor involved has properties which are different from those reported so far for alpha1- or alpha2-adrenoceptors. PMID:6268994

  18. Metabotropic glutamate receptor agonists modify the pyloric output of the crustacean stomatogastric ganglion.

    PubMed

    Pérez-Acevedo, Nivia L; Krenz, Wulf D

    2005-11-16

    We have studied the effects of groups I, II, and III metabotropic glutamate receptor (mGluR) agonists and antagonists on pyloric activity in the stomatogastric ganglion (STG) of the Caribbean spiny lobster Panulirus argus. We have found that agonists for all three groups of mGluRs modify the pyloric output. The group I agonist, l-quisqualic acid (l-QA), activated the pyloric central pattern generator (CPG). When the pyloric rhythm was partially suppressed by sucrose-block of input fibers in the stomatogastric nerve (stn), l-QA accelerated the rhythmic activity. In addition, the number of spike discharges was increased in pyloric motoneurons: pyloric (PY), and lateral pyloric (LP). In completely blocked preparations, a slow pyloric rhythm was initiated by l-QA. Groups II and III agonists exerted an inhibitory effect on pyloric activity. The group II agonist, (2S,1'S,2'S)-2-(Carboxycyclopropyl)glycine (L-CCG-I), decreased both the frequency of the pyloric rhythm and the number of spike discharges in the motoneurons: ventricular dilator (VD), PY, and LP. The effects of L-CCG-I were dose-dependent. The group III agonist, l-(+)-2-Amino-4-phosphonobutyric acid (l-AP4), slightly decreased the frequency of the pyloric rhythm and suppressed spike discharges in the VD neuron. All effects of mGluR agonists were reversible. The effect of l-QA was blocked by the broad spectrum mGluR antagonist (S)-Methyl-4-carboxyphenylglycine (MCPG). The inhibitory effect of L-CCG-I was prevented by MCPG and by the group II/III mGluR antagonist (RS)-alpha-Methyl-4-phosphonophenylglycine (MPPG), and was partially blocked by the group II mGluR antagonist (RS)-1-amino-5-phosphonoindan-1-carboxylic acid (APICA). The inhibitory effect of l-AP4 was blocked by MPPG and partially blocked by APICA. PMID:16256086

  19. CAR and PXR agonists stimulate hepatic bile acid and bilirubin detoxification and elimination pathways in mice.

    PubMed

    Wagner, Martin; Halilbasic, Emina; Marschall, Hanns-Ulrich; Zollner, Gernot; Fickert, Peter; Langner, Cord; Zatloukal, Kurt; Denk, Helmut; Trauner, Michael

    2005-08-01

    Induction of hepatic phase I/II detoxification enzymes and alternative excretory pumps may limit hepatocellular accumulation of toxic biliary compounds in cholestasis. Because the nuclear xenobiotic receptors constitutive androstane receptor (CAR) and pregnane X receptor (PXR) regulate involved enzymes and transporters, we aimed to induce adaptive alternative pathways with different CAR and PXR agonists in vivo. Mice were treated with the CAR agonists phenobarbital and 1,4-bis-[2-(3,5-dichlorpyridyloxy)]benzene, as well as the PXR agonists atorvastatin and pregnenolone-16alpha-carbonitrile. Hepatic bile acid and bilirubin-metabolizing/detoxifying enzymes (Cyp2b10, Cyp3a11, Ugt1a1, Sult2a1), their regulatory nuclear receptors (CAR, PXR, farnesoid X receptor), and bile acid/organic anion and lipid transporters (Ntcp, Oatp1,2,4, Bsep, Mrp2-4, Mdr2, Abcg5/8, Asbt) in the liver and kidney were analyzed via reverse-transcriptase polymerase chain reaction and Western blotting. Potential functional relevance was tested in common bile duct ligation (CBDL). CAR agonists induced Mrp2-4 and Oatp2; PXR agonists induced only Mrp3 and Oatp2. Both PXR and CAR agonists profoundly stimulated bile acid-hydroxylating/detoxifying enzymes Cyp3a11 and Cyp2b10. In addition, CAR agonists upregulated bile acid-sulfating Sult2a1 and bilirubin-glucuronidating Ugt1a1. These changes were accompanied by reduced serum levels of bilirubin and bile acids in healthy and CBDL mice and by increased levels of polyhydroxylated bile acids in serum and urine of cholestatic mice. Atorvastatin significantly increased Oatp2, Mdr2, and Asbt, while other transporters and enzymes were moderately affected. In conclusion, administration of specific CAR or PXR ligands results in coordinated stimulation of major hepatic bile acid/bilirubin metabolizing and detoxifying enzymes and hepatic key alternative efflux systems, effects that are predicted to counteract cholestasis. PMID:15986414

  20. GABA(A) receptors containing (alpha)5 subunits in the CA1 and CA3 hippocampal fields regulate ethanol-motivated behaviors: an extended ethanol reward circuitry.

    PubMed

    June, H L; Harvey, S C; Foster, K L; McKay, P F; Cummings, R; Garcia, M; Mason, D; Grey, C; McCane, S; Williams, L S; Johnson, T B; He, X; Rock, S; Cook, J M

    2001-03-15

    GABA receptors within the mesolimbic circuitry have been proposed to play a role in regulating alcohol-seeking behaviors in the alcohol-preferring (P) rat. However, the precise GABA(A) receptor subunit(s) mediating the reinforcing properties of EtOH remains unknown. We examined the capacity of intrahippocampal infusions of an alpha5 subunit-selective ( approximately 75-fold) benzodiazepine (BDZ) inverse agonist [i.e., RY 023 (RY) (tert-butyl 8-(trimethylsilyl) acetylene-5,6-dihydro-5-methyl-6-oxo-4H-imidazo [1,5a] [1,4] benzodiazepine-3-carboxylate)] to alter lever pressing maintained by concurrent presentation of EtOH (10% v/v) and a saccharin solution (0.05% w/v). Bilateral (1.5-20 microgram) and unilateral (0.01-40 microgram) RY dose-dependently reduced EtOH-maintained responding, with saccharin-maintained responding being reduced only with the highest doses (e.g., 20 and 40 microgram). The competitive BDZ antagonist ZK 93426 (ZK) (7 microgram) reversed the RY-induced suppression on EtOH-maintained responding, confirming that the effect was mediated via the BDZ site on the GABA(A) receptor complex. Intrahippocampal modulation of the EtOH-maintained responding was site-specific; no antagonism by RY after intra-accumbens [nucleus accumbens (NACC)] and intraventral tegmental [ventral tegmental area (VTA)] infusions was observed. Because the VTA and NACC contain very high densities of alpha1 and alpha2 subunits, respectively, we determined whether RY exhibited a "negative" or "neutral" pharmacological profile at recombinant alpha1beta3gamma2, alpha2beta3gamma2, and alpha5beta3gamma2 receptors expressed in Xenopus oocytes. RY produced "classic" inverse agonism at all alpha receptor subtypes; thus, a neutral efficacy was not sufficient to explain the failure of RY to alter EtOH responding in the NACC or VTA. The results provide the first demonstration that the alpha5-containing GABA(A) receptors in the hippocampus play an important role in regulating Et

  1. A "voice inversion effect?".

    PubMed

    Bédard, Catherine; Belin, Pascal

    2004-07-01

    Voice is the carrier of speech but is also an "auditory face" rich in information on the speaker's identity and affective state. Three experiments explored the possibility of a "voice inversion effect," by analogy to the classical "face inversion effect," which could support the hypothesis of a voice-specific module. Experiment 1 consisted of a gender identification task on two syllables pronounced by 90 speakers (boys, girls, men, and women). Experiment 2 consisted of a speaker discrimination task on pairs of syllables (8 men and 8 women). Experiment 3 consisted of an instrument discrimination task on pairs of melodies (8 string and 8 wind instruments). In all three experiments, stimuli were presented in 4 conditions: (1) no inversion; (2) temporal inversion (e.g., backwards speech); (3) frequency inversion centered around 4000 Hz; and (4) around 2500 Hz. Results indicated a significant decrease in performance caused by sound inversion, with a much stronger effect for frequency than for temporal inversion. Interestingly, although frequency inversion markedly affected timbre for both voices and instruments, subjects' performance was still above chance. However, performance at instrument discrimination was much higher than for voices, preventing comparison of inversion effects for voices vs. non-vocal stimuli. Additional experiments will be necessary to conclude on the existence of a possible "voice inversion effect." PMID:15177788

  2. Olfactory Bulb [alpha][subscript 2]-Adrenoceptor Activation Promotes Rat Pup Odor-Preference Learning via a cAMP-Independent Mechanism

    ERIC Educational Resources Information Center

    Shakhawat, Amin MD.; Harley, Carolyn W.; Yuan, Qi

    2012-01-01

    In this study, three lines of evidence suggest a role for [alpha][subscript 2]-adrenoreceptors in rat pup odor-preference learning: olfactory bulb infusions of the [alpha][subscript 2]-antagonist, yohimbine, prevents learning; the [alpha][subscript 2]-agonist, clonidine, paired with odor, induces learning; and subthreshold clonidine paired with…

  3. Pharmacological properties of acid N-thiazolylamide FFA2 agonists

    PubMed Central

    Brown, Andrew J; Tsoulou, Christina; Ward, Emma; Gower, Elaine; Bhudia, Nisha; Chowdhury, Forhad; Dean, Tony W; Faucher, Nicolas; Gangar, Akanksha; Dowell, Simon J

    2015-01-01

    FFA2 is a receptor for short-chain fatty acids. Propionate (C3) and 4-chloro-α-(1-methylethyl)-N-2-thiazolyl-benzeneacetamide (4-CMTB), the prototypical synthetic FFA2 agonist, evoke calcium mobilization in neutrophils and inhibit lipolysis in adipocytes via this G-protein-coupled receptor. 4-CMTB contains an N-thiazolylamide motif but no acid group, and 4-CMTB and C3 bind to different sites on FFA2 and show allosteric cooperativity. Recently, FFA2 agonists have been described that contain both N-thiazolylamide and carboxylate groups, reminiscent of bitopic ligands. These are thought to engage the carboxylate-binding site on FFA2, but preliminary evidence suggests they do not bind to the same site as 4-CMTB even though both contain N-thiazolylamide. Here, we describe the characterization of four FFA2 ligands containing both N-thiazolylamide and carboxylate. (R)-3-benzyl-4-((4-(2-chlorophenyl)thiazol-2-yl)(methyl)amino)-4-oxobutanoic acid (compound 14) exhibits allosteric agonism with 4-CMTB but not C3. Three other compounds agonize FFA2 in [35S]GTPγS-incorporation or cAMP assays but behave as inverse agonists in yeast-based gene-reporter assays, showing orthosteric antagonism of C3 responses but allosteric antagonism of 4-CMTB responses. Thus, the bitopic-like FFA2 ligands engage the orthosteric site but do not compete at the site of 4-CMTB binding on an FFA2 receptor molecule. Compound 14 activates FFA2 on human neutrophils and mouse adipocytes, but appears not to inhibit lipolysis upon treatment of human primary adipocytes in spite of the presence of a functional FFA2 receptor in these cells. Hence, these new ligands may reveal differences in coupling of FFA2 between human and rodent adipose tissues. PMID:26236484

  4. Relationship between alpha/sub 1/-adrenergic receptor occupancy and regulation of intracellular Ca/sup + +/ in BC3H-1 muscle cells

    SciTech Connect

    Brown, R.D.; Berger, K.D.; Button, D.; Taylor, P.

    1986-05-01

    The relationship between ..cap alpha../sub 1/-adrenergic receptor occupancy by agonists or antagonists and functional response was examined. Receptor occupancy was measured using the antagonist (/sup 3/H)prazosin, and correlated with agonist-elicited unidirectional /sup 45/Ca/sup + +/ efflux. The agonists epinephrine (E), norepinephrine (NE), and phenylephrine (PE) activated /sup 45/Ca/sup + +/ efflux with the order of potency expected for ..cap alpha../sub 1/ receptors (E greater than or equal to NE > PE). A parabolic relationship suggesting the presence of a modest receptor reserve was observed between the number of activatable receptors after equilibration with specified (/sup 3/H)prazosin concentrations and residual /sup 45/Ca/sup + +/ efflux responses elicited by E or NE. A linear relationship was previously observed for PE. Agonist occupancy was independently measured by competition with the initial rate of (/sup 3/H)prazosin association. Both E and NE inhibited (/sup 3/H)prazosin binding over higher concentration ranges than those required to elicit /sup 45/Ca/sup + +/ efflux. Equilibration of cultures with agonist prior to measurement of (/sup 3/H)prazosin binding resulted in small decreases in apparent agonist affinities. These results indicate that BC3H-1 cells possess a small ..cap alpha../sub 1/-receptor reserve for agonist-elicited /sup 45/Ca/sup + +/ efflux which is reflected in the catecholamine agonists, and that exposure to agonist converts receptors to a state of reduced agonist affinity.

  5. Modification of TLR-induced activation of human dendritic cells by type I IFN: synergistic interaction with TLR4 but not TLR3 agonists.

    PubMed

    Walker, Josef; Tough, David F

    2006-07-01

    Upon detection of direct and indirect signs of infection, dendritic cells (DC) undergo functional changes that modify their ability to elicit immune responses. Type I interferon (IFN-alpha/beta), which includes a large family of closely related infection-inducible cytokines, represents one indirect signal that can act as a DC stimulus. We have investigated the ability of IFN-alpha/beta subtypes to affect DC function and to influence DC responses to Toll-like receptor (TLR) agonists (i.e., direct infection-associated signals). Subtle differences were observed among 15 subtypes of IFN-alpha/beta in the ability to stimulate expression of maturation markers and chemokines by human monocyte-derived DC, with IFN-omega being the most unique in its effects. Pre-treatment with IFN-alpha/beta did not alter the ability of DC to mature in response to subsequent contact with TLR agonists, but did modulate their secretion of chemokines. Conversely, IFN-alpha/beta was shown to act synergistically with TLR4 but not TLR3 agonists for the induction of maturation and chemokine production when DC were exposed to IFN-alpha/beta and TLR ligands simultaneously. Taken together, these results indicate a complex role for IFN-alpha/beta in regulating DC function during the course an infection, which varies according to IFN-alpha/beta subtype and the timing of exposure to other stimuli. PMID:16783851

  6. Disease Modification of Breast Cancer–Induced Bone Remodeling by Cannabinoid 2 Receptor Agonists

    PubMed Central

    Symons-Liguori, Ashley M; Largent-Milnes, Tally M; Havelin, Josh J; Ferland, Henry L; Chandramouli, Anupama; Owusu-Ankomah, Mabel; Nikolich-Zugich, Tijana; Bloom, Aaron P; Jimenez-Andrade, Juan Miguel; King, Tamara; Porreca, Frank; Nelson, Mark A; Mantyh, Patrick W; Vanderah, Todd W

    2015-01-01

    Most commonly originating from breast malignancies, metastatic bone cancer causes bone destruction and severe pain. Although novel chemotherapeutic agents have increased life expectancy, patients are experiencing higher incidences of fracture, pain, and drug-induced side effects; furthermore, recent findings suggest that patients are severely undertreated for their cancer pain. Strong analgesics, namely opiates, are first-line therapy in alleviating cancer-related pain despite the severe side effects, including enhanced bone destruction with sustained administration. Bone resorption is primarily treated with bisphosphonates, which are associated with highly undesirable side effects, including nephrotoxicity and osteonecrosis of the jaw. In contrast, cannabinoid receptor 2 (CB2) receptor-specific agonists have been shown to reduce bone loss and stimulate bone formation in a model of osteoporosis. CB2 agonists produce analgesia in both inflammatory and neuropathic pain models. Notably, mixed CB1/CB2 agonists also demonstrate a reduction in ErbB2-driven breast cancer progression. Here we demonstrate for the first time that CB2 agonists reduce breast cancer–induced bone pain, bone loss, and breast cancer proliferation via cytokine/chemokine suppression. Studies used the spontaneously-occurring murine mammary cell line (66.1) implanted into the femur intramedullary space; measurements of spontaneous pain, bone loss, and cancer proliferation were made. The systemic administration of a CB2 agonist, JWH015, for 7 days significantly attenuated bone remodeling, assuaged spontaneous pain, and decreased primary tumor burden. CB2-mediated effects in vivo were reversed by concurrent treatment with a CB2 antagonist/inverse agonist but not with a CB1 antagonist/inverse agonist. In vitro, JWH015 reduced cancer cell proliferation and inflammatory mediators that have been shown to promote pain, bone loss, and proliferation. Taken together, these results suggest CB2 agonists as a

  7. Aspirin metabolites are GPR35 agonists.

    PubMed

    Deng, Huayun; Fang, Ye

    2012-07-01

    Aspirin is widely used as an anti-inflammatory, anti-platelet, anti-pyretic, and cancer-preventive agent; however, the molecular mode of action is unlikely due entirely to the inhibition of cyclooxygenases. Here, we report the agonist activity of several aspirin metabolites at GPR35, a poorly characterized orphan G protein-coupled receptor. 2,3,5-Trihydroxybenzoic acid, an aspirin catabolite, was found to be the most potent GPR35 agonist among aspirin metabolites. Salicyluric acid, the main metabolite of aspirin, was also active. These results suggest that the GPR35 agonist activity of certain aspirin metabolites may contribute to the clinical features of aspirin. PMID:22526472

  8. Alpha9 nicotinic acetylcholine receptors and the treatment of pain.

    PubMed

    McIntosh, J Michael; Absalom, Nathan; Chebib, Mary; Elgoyhen, Ana Belén; Vincler, Michelle

    2009-10-01

    Chronic pain is a vexing worldwide problem that causes substantial disability and consumes significant medical resources. Although there are numerous analgesic medications, these work through a small set of molecular mechanisms. Even when these medications are used in combination, substantial amounts of pain often remain. It is therefore highly desirable to develop treatments that work through distinct mechanisms of action. While agonists of nicotinic acetylcholine receptors (nAChRs) have been intensively studied, new data suggest a role for selective antagonists of nAChRs. alpha-Conotoxins are small peptides used offensively by carnivorous marine snails known as Conus. A subset of these peptides known as alpha-conotoxins RgIA and Vc1.1 produces both acute and long lasting analgesia. In addition, these peptides appear to accelerate the recovery of function after nerve injury, possibly through immune mediated mechanisms. Pharmacological analysis indicates that RgIA and Vc1.1 are selective antagonists of alpha9alpha10 nAChRs. A recent study also reported that these alpha9alpha10 antagonists are also potent GABA-B agonists. In the current study, we were unable to detect RgIA or Vc1.1 binding to or action on cloned GABA-B receptors expressed in HEK cells or Xenopus oocytes. We review the background, findings and implications of use of compounds that act on alpha9* nAChRs.(1). PMID:19477168

  9. Relationship between alpha 1-adrenergic receptor occupancy and response in BC3H-1 muscle cells

    SciTech Connect

    Brown, R.D.; Berger, K.D.; Taylor, P.

    1987-07-01

    The relationship between alpha 1-adrenergic receptor occupancy by agonists or antagonists and the regulation of intracellular Ca/sup 2 +/ was examined. Receptor occupancy was measured using the antagonist (/sup 3/H)prazosin and correlated with agonist-elicited /sup 45/Ca/sup 2 +/ fluxes. The agonists epinephrine (E), norepinephrine (NE), and phenylephrine (PE) coordinately activated Ca/sup 2 +/ efflux, reflecting a substantial mobilization of intracellular Ca/sup 2 +/, as well as a smaller /sup 45/Ca/sup 2 +/ influx. The agonist concentration dependences for influx and efflux were similar, with the order of potency expected for alpha 1 receptors (E greater than or equal to NE greater than PE). To determine the relationship between receptor occupancy and response, the slowly dissociating antagonist prazosin was used to inactivate specified fractions of the receptor population. A linear relationship was observed between the remaining activatable receptors and residual /sup 45/Ca/sup 2 +/ efflux elicited by E or NE, except at saturating agonist concentrations where some curvature was observed. Moreover, the concentration dependence for agonist-elicited /sup 45/Ca/sup 2 +/ efflux was shifted toward slightly higher concentrations of E or NE following prazosin inactivation. These results suggest the presence of a modest receptor reserve which is revealed by E or NE, but not by PE. Agonist occupation was measured over the same interval as receptor activation by competition with the initial rate of (/sup 3/H)prazosin association. All three agonists exhibited the major fraction of receptor occupation over the same concentration ranges required for the functional response. Exposure of receptors to specified agonist concentrations for 30 min had little effect on the number of receptors or their ligand affinities, whereas a 2.5-hr exposure to agonist decreased apparent agonist affinity as well as the number of receptors recognized by (/sup 3/H)prazosin.

  10. PGC-1{beta} regulates mouse carnitine-acylcarnitine translocase through estrogen-related receptor {alpha}

    SciTech Connect

    Gacias, Mar; Perez-Marti, Albert; Pujol-Vidal, Magdalena; Marrero, Pedro F.; Haro, Diego; Relat, Joana

    2012-07-13

    Highlights: Black-Right-Pointing-Pointer The Cact gene is induced in mouse skeletal muscle after 24 h of fasting. Black-Right-Pointing-Pointer The Cact gene contains a functional consensus sequence for ERR. Black-Right-Pointing-Pointer This sequence binds ERR{alpha} both in vivo and in vitro. Black-Right-Pointing-Pointer This ERRE is required for the activation of Cact expression by the PGC-1/ERR axis. Black-Right-Pointing-Pointer Our results add Cact as a genuine gene target of these transcriptional regulators. -- Abstract: Carnitine/acylcarnitine translocase (CACT) is a mitochondrial-membrane carrier proteins that mediates the transport of acylcarnitines into the mitochondrial matrix for their oxidation by the mitochondrial fatty acid-oxidation pathway. CACT deficiency causes a variety of pathological conditions, such as hypoketotic hypoglycemia, cardiac arrest, hepatomegaly, hepatic dysfunction and muscle weakness, and it can be fatal in newborns and infants. Here we report that expression of the Cact gene is induced in mouse skeletal muscle after 24 h of fasting. To gain insight into the control of Cact gene expression, we examine the transcriptional regulation of the mouse Cact gene. We show that the 5 Prime -flanking region of this gene is transcriptionally active and contains a consensus sequence for the estrogen-related receptor (ERR), a member of the nuclear receptor family of transcription factors. This sequence binds ERR{alpha}in vivo and in vitro and is required for the activation of Cact expression by the peroxisome proliferator-activated receptor gamma coactivator (PGC)-1/ERR axis. We also demonstrate that XTC790, the inverse agonist of ERR{alpha}, specifically blocks Cact activation by PGC-1{beta} in C2C12 cells.