Science.gov

Sample records for alpha motifs regulate

  1. Calreticulin-independent regulation of the platelet integrin alphaIIbbeta3 by the KVGFFKR alphaIIb-cytoplasmic motif.

    PubMed

    Reilly, Dermot; Larkin, Deirdre; Devocelle, Marc; Fitzgerald, Desmond J; Moran, Niamh

    2004-02-01

    The platelet integrin alphaIIbbeta3 alters conformation in response to platelet activation and ligand binding, although the molecular mechanisms involved are not known. We previously showed that a lipid modified peptide, corresponding to the membrane proximal 989KVGFFKR995 portion of the alphaIIb cytoplasmic tail, independently activates platelet alphaIIbbeta3. Calreticulin (CRT) is a potential integrin regulatory protein based on its interaction with the highly conserved alpha-integrin sequence KxGFFKR. We therefore examined the possible interaction of calreticulin and alphaIIbbeta3 in human platelets. We demonstrate that calreticulin in platelets is localised to the granulomere. In contrast, the known integrin-binding protein talin accumulates at the periphery of spreading platelets and colocalises with alphaIIbbeta3 during the process of adhesion. An interaction between calreticulin and alphaIIbbeta3 could not be demonstrated using co-immunoprecipitation techniques under various platelet activation states, even in the presence of covalent chemical crosslinkers. Thus, calreticulin does not functionally interact with the major integrin in human platelets. In order to identify proteins that interact with the integrin KVGFFKR motif we then used a peptide 'pull-down' assay from platelet lysates with biotinylated peptides and demonstrate that only the alphaIIb and beta3 subunits selectively and individually interact with this sequence. This interaction is divalent cation-dependent, has high-affinity, and occurs both with purified alphaIIbbeta3 complex and with electroeluted alpha and beta subunits. Thus, our data show that the conserved integrin KVGFFKR domain interacts primarily with the alpha and beta cytoplasmic tails and not with CRT in human platelets. PMID:14985176

  2. Phosphorylation-dependent sumoylation regulates estrogen-related receptor-alpha and -gamma transcriptional activity through a synergy control motif.

    PubMed

    Tremblay, Annie M; Wilson, Brian J; Yang, Xiang-Jiao; Giguère, Vincent

    2008-03-01

    Interplay between different posttranslational modifications of transcription factors is an important mechanism to achieve an integrated regulation of gene expression. For the estrogen-related receptors (ERRs) alpha and gamma, regulation by posttranslational modifications is still poorly documented. Here we show that transcriptional repression associated with the ERR amino-terminal domains is mediated through sumoylation at a conserved phospho-sumoyl switch, psiKxEPxSP, that exists within a larger synergy control motif. Arginine substitution of the sumoylatable lysine residue or alanine substitution of a nearby phosphorylatable serine residue (serine 19 in ERRalpha) increased the transcriptional activity of both ERRalpha and -gamma. In addition, phospho-mimetic substitution of the serine residue with aspartate restored the sumoylation and transcriptional repression activity. The increased transcriptional activity of the sumoylation-deficient mutants was more pronounced in the presence of multiple adjacent ERR response elements. We also identified protein inhibitor of activated signal transducer and activator of transcription y as an interacting partner and a small ubiquitin-related modifier E3 ligase for ERRalpha. Importantly, analysis with a phospho-specific antibody revealed that sumoylation of ERRalpha in mouse liver requires phosphorylation of serine 19. Taken together, these results show that the interplay of phosphorylation and sumoylation in the amino-terminal domain provides an additional mechanism to regulate the transcriptional activity of ERRalpha and -gamma. PMID:18063693

  3. Genomic Analysis Identifies a Transcription Factor Binding Motif Regulating Expression of the Alpha C Protein in Group B Streptococcus

    PubMed Central

    Klinzing, David C.; Madoff, Lawrence C.; Puopolo, Karen M.

    2009-01-01

    The virulence-associated alpha C protein (ACP) of Group B Streptococcus (GBS) facilitates the bacterial interaction with host epithelial cells. We previously demonstrated that phase-variable expression of ACP is controlled by variation in short-sequence repeat sequences present upstream of the promoter of bca, the gene encoding ACP. To determine if trans-acting transcriptional control also influences ACP expression, we developed an in silico prediction algorithm that identified a potential transcription-factor binding motif (TTT-N6-ATAT) in the bca upstream region. In vitro reporter gene expression studies confirmed that this motif is required for full ACP expression, and DNA-binding assays with a GBS protein extract demonstrated that the predicted site is bound by a protein. This approach demonstrates the utility of in silico genomic predictive methods in the study of GBS regulatory mechanisms. PMID:19328843

  4. Human sterile alpha motif domain 9, a novel gene identified as down-regulated in aggressive fibromatosis, is absent in the mouse

    PubMed Central

    Li, Catherine F; MacDonald, Jeffrey R; Wei, Robert Y; Ray, Jocelyn; Lau, Kimberly; Kandel, Christopher; Koffman, Rachel; Bell, Sherilyn; Scherer, Stephen W; Alman, Benjamin A

    2007-01-01

    Background Neoplasia can be driven by mutations resulting in dysregulation of transcription. In the mesenchymal neoplasm, aggressive fibromatosis, subtractive hybridization identified sterile alpha motif domain 9 (SAMD9) as a substantially down regulated gene in neoplasia. SAMD9 was recently found to be mutated in normophosphatemic familial tumoral calcinosis. In this study, we studied the gene structure and function of SAMD9, and its paralogous gene, SAMD9L, and examined these in a variety of species. Results SAMD9 is located on human chromosome 7q21.2 with a paralogous gene sterile alpha motif domain 9 like (SAMD9L) in the head-to-tail orientation. Although both genes are present in a variety of species, the orthologue for SAMD9 is lost in the mouse lineage due to a unique genomic rearrangement. Both SAMD9 and SAMD9L are ubiquitously expressed in human tissues. SAMD9 is expressed at a lower level in a variety of neoplasms associated with β-catenin stabilization, such as aggressive fibromatosis, breast, and colon cancers. SAMD9 and SAMD9L contain an amino-terminal SAM domain, but the remainder of the predicted protein structure does not exhibit substantial homology to other known protein motifs. The putative protein product of SAMD9 localizes to the cytoplasm. In vitro data shows that SAMD9 negatively regulates cell proliferation. Over expression of SAMD9 in the colon cancer cell line, SW480, reduces the volume of tumors formed when transplanted into immune-deficient mice. Conclusion SAMD9 and SAMD9L are a novel family of genes, which play a role regulating cell proliferation and suppressing the neoplastic phenotype. This is the first report as far as we know about a human gene that exists in rat, but is lost in mouse, due to a mouse specific rearrangement, resulting in the loss of the SAMD9 gene. PMID:17407603

  5. Litopenaeus vannamei sterile-alpha and armadillo motif containing protein (LvSARM) is involved in regulation of Penaeidins and antilipopolysaccharide factors.

    PubMed

    Wang, Pei-Hui; Gu, Zhi-Hua; Wan, Ding-Hui; Zhu, Wei-Bin; Qiu, Wei; Weng, Shao-Ping; Yu, Xiao-Qiang; He, Jian-Guo

    2013-01-01

    The Toll-like receptor (TLR)-mediated NF-κB pathway is tightly controlled because overactivation may result in severe damage to the host, such as in the case of chronic inflammatory diseases and cancer. In mammals, sterile-alpha and armadillo motif-containing protein (SARM) plays an important role in negatively regulating this pathway. While Caenorhabditis elegans SARM is crucial for an efficient immune response against bacterial and fungal infections, it is still unknown whether Drosophila SARM participates in immune responses. Here, Litopenaeus vannamei SARM (LvSARM) was cloned and functionally characterized. LvSARM shared signature domains with and exhibited significant similarities to mammalian SARM. Real-time quantitative PCR analysis indicated that the expression of LvSARM was responsive to Vibrio alginolyticus and white spot syndrome virus (WSSV) infections in the hemocyte, gill, hepatopancreas and intestine. In Drosophila S2 cells, LvSARM was widely distributed in the cytoplasm and could significantly inhibit the promoters of the NF-κB pathway-controlled antimicrobial peptide genes (AMPs). Silencing of LvSARM using dsRNA-mediated RNA interference increased the expression levels of Penaeidins and antilipopolysaccharide factors, which are L.vannamei AMPs, and increased the mortality rate after V. alginolyticus infection. Taken together, our results reveal that LvSARM may be a novel component of the shrimp Toll pathway that negatively regulates shrimp AMPs, particularly Penaeidins and antilipopolysaccharide factors. PMID:23405063

  6. Multiple Binding Modes between HNF4[alpha] and the LXXLL Motifs of PGC-1[alpha] Lead to Full Activation

    SciTech Connect

    Rha, Geun Bae; Wu, Guangteng; Shoelson, Steven E.; Chi, Young-In

    2010-04-15

    Hepatocyte nuclear factor 4{alpha} (HNF4{alpha}) is a novel nuclear receptor that participates in a hierarchical network of transcription factors regulating the development and physiology of such vital organs as the liver, pancreas, and kidney. Among the various transcriptional coregulators with which HNF4{alpha} interacts, peroxisome proliferation-activated receptor {gamma} (PPAR{gamma}) coactivator 1{alpha} (PGC-1{alpha}) represents a novel coactivator whose activation is unusually robust and whose binding mode appears to be distinct from that of canonical coactivators such as NCoA/SRC/p160 family members. To elucidate the potentially unique molecular mechanism of PGC-1{alpha} recruitment, we have determined the crystal structure of HNF4{alpha} in complex with a fragment of PGC-1{alpha} containing all three of its LXXLL motifs. Despite the presence of all three LXXLL motifs available for interactions, only one is bound at the canonical binding site, with no additional contacts observed between the two proteins. However, a close inspection of the electron density map indicates that the bound LXXLL motif is not a selected one but an averaged structure of more than one LXXLL motif. Further biochemical and functional studies show that the individual LXXLL motifs can bind but drive only minimal transactivation. Only when more than one LXXLL motif is involved can significant transcriptional activity be measured, and full activation requires all three LXXLL motifs. These findings led us to propose a model wherein each LXXLL motif has an additive effect, and the multiple binding modes by HNF4{alpha} toward the LXXLL motifs of PGC-1{alpha} could account for the apparent robust activation by providing a flexible mechanism for combinatorial recruitment of additional coactivators and mediators.

  7. Modulation of RGD sequence motifs regulates disintegrin recognition of alphaIIb beta3 and alpha5 beta1 integrin complexes. Replacement of elegantin alanine-50 with proline, N-terminal to the RGD sequence, diminishes recognition of the alpha5 beta1 complex with restoration induced by Mn2+ cation.

    PubMed Central

    Rahman, S; Aitken, A; Flynn, G; Formstone, C; Savidge, G F

    1998-01-01

    Several recent studies have demonstrated that the amino acid residues flanking the RGD sequence of high-affinity ligands modulate their specificity of interaction with integrin complexes. The present study has addressed the role of the residues flanking the RGD sequence in regulating the recognition by disintegrin of the alphaIIb beta3 and alpha5beta1 complexes by construction of a panel of recombinant molecules of Elegantin (the platelet aggregation inhibitor from the venom of Trimerasurus elegans) expressing specific RGD sequence motifs. Wild-type Elegantin (ARGDNP) and several variants including Eleg. AM (ARGDMP), Eleg. PM (PRGDMP) and Eleg. PN (PRGDNP) were expressed as glutathione S-transferase (GST) fusion proteins in Escherichia coli. The inhibitory efficacies of the panel of Elegantin variants were analysed in platelet adhesion assays with substrates immobilized with fibrinogen and fibronectin. Elegantin molecules containing an Ala residue N-terminal to the RGD sequence (wild-type Elegantin and Eleg. AM) showed strong inhibitory activity towards alphaIIbbeta3-dependent platelet adhesion on fibronectin, whereas a Pro residue in this position (Eleg. PM and Kistrin, the inhibitor from the venom of Calloselasma rhodostoma) engendered lower activity. The decreased activity could not be attributed to a decrease in the affinity of the disintegrin for the alphaIIb beta3 complex because both Eleg. AM and Eleg. PM had similar Kd (app) values. In contrast, Elegantin molecules into which a Met residue was introduced in place of the Asn residue C-terminal to the RGD sequence showed 10-13-fold elevated inhibitory activity towards platelet adhesion on fibrinogen and this was maintained with either a Pro or Ala residue N-terminal to the RGD sequence. In experiments with the alpha5 beta1 complex on K562 cells, the inhibitory efficacies of the panel of Elegantin molecules were analysed under two different cation conditions. First, in the presence of Ca2+/Mg2+, K562 cell

  8. Human podocytes adhere to the KRGDS motif of the alpha3alpha4alpha5 collagen IV network.

    PubMed

    Borza, Corina M; Borza, Dorin-Bogdan; Pedchenko, Vadim; Saleem, Moin A; Mathieson, Peter W; Sado, Yoshikazu; Hudson, Heather M; Pozzi, Ambra; Saus, Juan; Abrahamson, Dale R; Zent, Roy; Hudson, Billy G

    2008-04-01

    Podocyte adhesion to the glomerular basement membrane is required for proper function of the glomerular filtration barrier. However, the mechanism whereby podocytes adhere to collagen IV networks, a major component of the glomerular basement membrane, is poorly understood. The predominant collagen IV network is composed of triple helical protomers containing the alpha3alpha4alpha5 chains. The protomers connect via the trimeric noncollagenous (NC1) domains to form hexamers at the interface. Because the NC1 domains of this network can potentially support integrin-dependent cell adhesion, it was determined whether individual NC1 monomers or alpha3alpha4alpha5 hexamers support podocyte adhesion. It was found that, although human podocytes did not adhere to NC1 domains proper, they did adhere via integrin alphavbeta3 to a KRGDS motif located adjacent to alpha3NC1 domains. Because the KRGDS motif is a site of phosphorylation, its interactions with integrin alphavbeta3 may play a critical role in cell signaling in physiologic and pathologic states. PMID:18235087

  9. Dynamic charge interactions create surprising rigidity in the ER/K [alpha]-helical protein motif

    SciTech Connect

    Sivaramakrishnan, Sivaraj; Spink, Benjamin J.; Sim, Adelene Y.L.; Doniach, Sebastian; Spudich, James A.

    2009-06-30

    Protein {alpha}-helices are ubiquitous secondary structural elements, seldom considered to be stable without tertiary contacts. However, amino acid sequences in proteins that are based on alternating repeats of four glutamic acid (E) residues and four positively charged residues, a combination of arginine (R) and lysine (K), have been shown to form stable {alpha}-helices in a few proteins, in the absence of tertiary interactions. Here, we find that this ER/K motif is more prevalent than previously reported, being represented in proteins of diverse function from archaea to humans. By using molecular dynamics (MD) simulations, we characterize a dynamic pattern of side-chain interactions that extends along the backbone of ER/K {alpha}-helices. A simplified model predicts that side-chain interactions alone contribute substantial bending rigidity (0.5 pN/nm) to ER/K {alpha}-helices. Results of small-angle x-ray scattering (SAXS) and single-molecule optical-trap analyses are consistent with the high bending rigidity predicted by our model. Thus, the ER/K {alpha}-helix is an isolated secondary structural element that can efficiently span long distances in proteins, making it a promising tool in designing synthetic proteins. We propose that the significant rigidity of the ER/K {alpha}-helix can help regulate protein function, as a force transducer between protein subdomains.

  10. Cofunctional Subpathways Were Regulated by Transcription Factor with Common Motif, Common Family, or Common Tissue

    PubMed Central

    Su, Fei; Shang, Desi; Xu, Yanjun; Feng, Li; Yang, Haixiu; Liu, Baoquan; Su, Shengyang; Chen, Lina; Li, Xia

    2015-01-01

    Dissecting the characteristics of the transcription factor (TF) regulatory subpathway is helpful for understanding the TF underlying regulatory function in complex biological systems. To gain insight into the influence of TFs on their regulatory subpathways, we constructed a global TF-subpathways network (TSN) to analyze systematically the regulatory effect of common-motif, common-family, or common-tissue TFs on subpathways. We performed cluster analysis to show that the common-motif, common-family, or common-tissue TFs that regulated the same pathway classes tended to cluster together and contribute to the same biological function that led to disease initiation and progression. We analyzed the Jaccard coefficient to show that the functional consistency of subpathways regulated by the TF pairs with common motif, common family, or common tissue was significantly greater than the random TF pairs at the subpathway level, pathway level, and pathway class level. For example, HNF4A (hepatocyte nuclear factor 4, alpha) and NR1I3 (nuclear receptor subfamily 1, group I, member 3) were a pair of TFs with common motif, common family, and common tissue. They were involved in drug metabolism pathways and were liver-specific factors required for physiological transcription. In short, we inferred that the cofunctional subpathways were regulated by common-motif, common-family, or common-tissue TFs. PMID:26688819

  11. A high throughput fluorescence polarization assay for inhibitors of the GoLoco motif/G-alpha interaction.

    PubMed

    Kimple, Adam J; Yasgar, Adam; Hughes, Mark; Jadhav, Ajit; Willard, Francis S; Muller, Robin E; Austin, Christopher P; Inglese, James; Ibeanu, Gordon C; Siderovski, David P; Simeonov, Anton

    2008-06-01

    The GoLoco motif is a short Galpha-binding polypeptide sequence. It is often found in proteins that regulate cell-surface receptor signaling, such as RGS12, as well as in proteins that regulate mitotic spindle orientation and force generation during cell division, such as GPSM2/LGN. Here, we describe a high throughput fluorescence polarization (FP) assay using fluorophore-labeled GoLoco motif peptides for identifying inhibitors of the GoLoco motif interaction with the G-protein alpha subunit Galpha (i1). The assay exhibits considerable stability over time and is tolerant to DMSO up to 5%. The Z'-factors for robustness of the GPSM2 and RGS12 GoLoco motif assays in a 96-well plate format were determined to be 0.81 and 0.84, respectively; the latter assay was run in a 384-well plate format and produced a Z'-factor of 0.80. To determine the screening factor window (Z-factor) of the RGS12 GoLoco motif screen using a small molecule library, the NCI Diversity Set was screened. The Z-factor was determined to be 0.66, suggesting that this FP assay would perform well when developed for 1,536-well format and scaled up to larger libraries. We then miniaturized to a 4 microL final volume a pair of FP assays utilizing fluorescein- (green) and rhodamine- (red) labeled RGS12 GoLoco motif peptides. In a fully-automated run, the Sigma-Aldrich LOPAC(1280) collection was screened three times with every library compound being tested over a range of concentrations following the quantitative high throughput screening (qHTS) paradigm; excellent assay performance was noted with average Z-factors of 0.84 and 0.66 for the green- and red-label assays, respectively. PMID:18537560

  12. The PPFLMLLKGSTR motif in globular domain 3 of the human laminin-5 {alpha}3 chain is crucial for integrin {alpha}3{beta}1 binding and cell adhesion

    SciTech Connect

    Kim, Jin-Man; Park, Won Ho; Min, Byung-Moo . E-mail: bmmin@snu.ac.kr

    2005-03-10

    Laminin-5 regulates various cellular functions, including cell adhesion, spreading, and motility. Here, we expressed the five human laminin {alpha}3 chain globular (LG) domains as monomeric, soluble fusion proteins, and examined their biological functions and signaling. Recombinant LG3 (rLG3) protein, unlike rLG1, rLG2, rLG4, and rLG5, played roles in cell adhesion, spreading, and integrin {alpha}3{beta}1 binding. More significantly, we identified a novel motif (PPFLMLLKGSTR) in the LG3 domain that is crucial for these responses. Studies with the synthetic peptides delineated the PPFLMLLKGSTR peptide within LG3 domain as a major site for both integrin {alpha}3{beta}1 binding and cell adhesion. Substitution mutation experiments suggest that the Arg residue is important for these activities. rLG3 protein- and PPFLMLLKGSTR peptide-induced keratinocyte adhesion triggered cell signaling through FAK phosphorylation at tyrosine-397 and -577. To our knowledge, this is the first report demonstrating that the PPFLMLLKGSTR peptide within the LG3 domain is a novel motif that is capable of supporting integrin {alpha}3{beta}1-dependent cell adhesion and spreading.

  13. Identifying combinatorial regulation of transcription factors and binding motifs

    PubMed Central

    Kato, Mamoru; Hata, Naoya; Banerjee, Nilanjana; Futcher, Bruce; Zhang, Michael Q

    2004-01-01

    Background Combinatorial interaction of transcription factors (TFs) is important for gene regulation. Although various genomic datasets are relevant to this issue, each dataset provides relatively weak evidence on its own. Developing methods that can integrate different sequence, expression and localization data have become important. Results Here we use a novel method that integrates chromatin immunoprecipitation (ChIP) data with microarray expression data and with combinatorial TF-motif analysis. We systematically identify combinations of transcription factors and of motifs. The various combinations of TFs involved multiple binding mechanisms. We reconstruct a new combinatorial regulatory map of the yeast cell cycle in which cell-cycle regulation can be drawn as a chain of extended TF modules. We find that the pairwise combination of a TF for an early cell-cycle phase and a TF for a later phase is often used to control gene expression at intermediate times. Thus the number of distinct times of gene expression is greater than the number of transcription factors. We also see that some TF modules control branch points (cell-cycle entry and exit), and in the presence of appropriate signals they can allow progress along alternative pathways. Conclusions Combining different data sources can increase statistical power as demonstrated by detecting TF interactions and composite TF-binding motifs. The original picture of a chain of simple cell-cycle regulators can be extended to a chain of composite regulatory modules: different modules may share a common TF component in the same pathway or a TF component cross-talking to other pathways. PMID:15287978

  14. RGS12 and RGS14 GoLoco motifs are G alpha(i) interaction sites with guanine nucleotide dissociation inhibitor Activity.

    PubMed

    Kimple, R J; De Vries, L; Tronchère, H; Behe, C I; Morris, R A; Gist Farquhar, M; Siderovski, D P

    2001-08-01

    The regulators of G-protein signaling (RGS) proteins accelerate the intrinsic guanosine triphosphatase activity of heterotrimeric G-protein alpha subunits and are thus recognized as key modulators of G-protein-coupled receptor signaling. RGS12 and RGS14 contain not only the hallmark RGS box responsible for GTPase-accelerating activity but also a single G alpha(i/o)-Loco (GoLoco) motif predicted to represent a second G alpha interaction site. Here, we describe functional characterization of the GoLoco motif regions of RGS12 and RGS14. Both regions interact exclusively with G alpha(i1), G alpha(i2), and G alpha(i3) in their GDP-bound forms. In GTP gamma S binding assays, both regions exhibit guanine nucleotide dissociation inhibitor (GDI) activity, inhibiting the rate of exchange of GDP for GTP by G alpha(i1). Both regions also stabilize G alpha(i1) in its GDP-bound form, inhibiting the increase in intrinsic tryptophan fluorescence stimulated by AlF(4)(-). Our results indicate that both RGS12 and RGS14 harbor two distinctly different G alpha interaction sites: a previously recognized N-terminal RGS box possessing G alpha(i/o) GAP activity and a C-terminal GoLoco region exhibiting G alpha(i) GDI activity. The presence of two, independent G alpha interaction sites suggests that RGS12 and RGS14 participate in a complex coordination of G-protein signaling beyond simple G alpha GAP activity. PMID:11387333

  15. Use of synthetic peptides to locate novel integrin alpha2beta1-binding motifs in human collagen III.

    PubMed

    Raynal, Nicolas; Hamaia, Samir W; Siljander, Pia R-M; Maddox, Ben; Peachey, Anthony R; Fernandez, Rafael; Foley, Loraine J; Slatter, David A; Jarvis, Gavin E; Farndale, Richard W

    2006-02-17

    A set of 57 synthetic peptides encompassing the entire triplehelical domain of human collagen III was used to locate binding sites for the collagen-binding integrin alpha(2)beta(1). The capacity of the peptides to support Mg(2+)-dependent binding of several integrin preparations was examined. Wild-type integrins (recombinant alpha(2) I-domain, alpha(2)beta(1) purified from platelet membranes, and recombinant soluble alpha(2)beta(1) expressed as an alpha(2)-Fos/beta(1)-Jun heterodimer) bound well to only three peptides, two containing GXX'GER motifs (GROGER and GMOGER, where O is hydroxyproline) and one containing two adjacent GXX'GEN motifs (GLKGEN and GLOGEN). Two mutant alpha(2) I-domains were tested: the inactive T221A mutant, which recognized no peptides, and the constitutively active E318W mutant, which bound a larger subset of peptides. Adhesion of activated human platelets to GER-containing peptides was greater than that of resting platelets, and HT1080 cells bound well to more of the peptides compared with platelets. Binding of cells and recombinant proteins was abolished by anti-alpha(2) monoclonal antibody 6F1 and by chelation of Mg(2+). We describe two novel high affinity integrin-binding motifs in human collagen III (GROGER and GLOGEN) and a third motif (GLKGEN) that displays intermediate activity. Each motif was verified using shorter synthetic peptides. PMID:16326707

  16. Different motifs regulate trafficking of SorCS1 isoforms.

    PubMed

    Nielsen, Morten S; Keat, Sady J; Hamati, Jida W; Madsen, Peder; Gutzmann, Jakob J; Engelsberg, Arne; Pedersen, Karen M; Gustafsen, Camilla; Nykjaer, Anders; Gliemann, Jørgen; Hermans-Borgmeyer, Irm; Kuhl, Dietmar; Petersen, Claus M; Hermey, Guido

    2008-06-01

    The type I transmembrane protein SorCS1 is a member of the Vps10p-domain receptor family comprised of Sortilin, SorLA and SorCS1, -2 and -3. Current information indicates that Sortilin and SorLA mediate intracellular protein trafficking and sorting, but little is known about the cellular functions of the SorCS subgroup. SorCS1 binds platelet-derived growth factor-BB (PDGF-BB) and is expressed in isoforms differing only in their cytoplasmic domains. Here, we identify two novel isoforms of mouse SorCS1 designated m-SorCS1c and -d. In situ hybridization revealed a combinatorial expression pattern of the variants in brain and embryonic tissues. We demonstrate that among the mouse variants, only SorCS1c mediates internalization and that the highly conserved SorCS1c is internalized through a canonical tyrosine-based motif. In contrast, human SorCS1a, whose cytoplasmic domain is completely different from mouse SorCS1a, is internalized through a DXXLL motif. We report that the human SorCS1a cytoplasmic domain interacts with the alphaC/sigma2 subunits of the adaptor protein (AP)-2 complex, and internalization of human SorCS1a and -c is mediated by AP-2. Our results suggest that the endocytic isoforms target internalized cargo to lysosomes but are not engaged in Golgi-endosomal transport to a significant degree. PMID:18315530

  17. Analysis of Genomic Sequence Motifs for Deciphering Transcription Factor Binding and Transcriptional Regulation in Eukaryotic Cells

    PubMed Central

    Boeva, Valentina

    2016-01-01

    Eukaryotic genomes contain a variety of structured patterns: repetitive elements, binding sites of DNA and RNA associated proteins, splice sites, and so on. Often, these structured patterns can be formalized as motifs and described using a proper mathematical model such as position weight matrix and IUPAC consensus. Two key tasks are typically carried out for motifs in the context of the analysis of genomic sequences. These are: identification in a set of DNA regions of over-represented motifs from a particular motif database, and de novo discovery of over-represented motifs. Here we describe existing methodology to perform these two tasks for motifs characterizing transcription factor binding. When applied to the output of ChIP-seq and ChIP-exo experiments, or to promoter regions of co-modulated genes, motif analysis techniques allow for the prediction of transcription factor binding events and enable identification of transcriptional regulators and co-regulators. The usefulness of motif analysis is further exemplified in this review by how motif discovery improves peak calling in ChIP-seq and ChIP-exo experiments and, when coupled with information on gene expression, allows insights into physical mechanisms of transcriptional modulation. PMID:26941778

  18. Analysis of Genomic Sequence Motifs for Deciphering Transcription Factor Binding and Transcriptional Regulation in Eukaryotic Cells.

    PubMed

    Boeva, Valentina

    2016-01-01

    Eukaryotic genomes contain a variety of structured patterns: repetitive elements, binding sites of DNA and RNA associated proteins, splice sites, and so on. Often, these structured patterns can be formalized as motifs and described using a proper mathematical model such as position weight matrix and IUPAC consensus. Two key tasks are typically carried out for motifs in the context of the analysis of genomic sequences. These are: identification in a set of DNA regions of over-represented motifs from a particular motif database, and de novo discovery of over-represented motifs. Here we describe existing methodology to perform these two tasks for motifs characterizing transcription factor binding. When applied to the output of ChIP-seq and ChIP-exo experiments, or to promoter regions of co-modulated genes, motif analysis techniques allow for the prediction of transcription factor binding events and enable identification of transcriptional regulators and co-regulators. The usefulness of motif analysis is further exemplified in this review by how motif discovery improves peak calling in ChIP-seq and ChIP-exo experiments and, when coupled with information on gene expression, allows insights into physical mechanisms of transcriptional modulation. PMID:26941778

  19. Transcription factor and microRNA-regulated network motifs for cancer and signal transduction networks

    PubMed Central

    2015-01-01

    Abstract Background Molecular networks are the basis of biological processes. Such networks can be decomposed into smaller modules, also known as network motifs. These motifs show interesting dynamical behaviors, in which co-operativity effects between the motif components play a critical role in human diseases. We have developed a motif-searching algorithm, which is able to identify common motif types from the cancer networks and signal transduction networks (STNs). Some of the network motifs are interconnected which can be merged together and form more complex structures, the so-called coupled motif structures (CMS). These structures exhibit mixed dynamical behavior, which may lead biological organisms to perform specific functions. Results In this study, we integrate transcription factors (TFs), microRNAs (miRNAs), miRNA targets and network motifs information to build the cancer-related TF-miRNA-motif networks (TMMN). This allows us to examine the role of network motifs in cancer formation at different levels of regulation, i.e. transcription initiation (TF → miRNA), gene-gene interaction (CMS), and post-transcriptional regulation (miRNA → target genes). Among the cancer networks and STNs we considered, it is found that there is a substantial amount of crosstalking through motif interconnections, in particular, the crosstalk between prostate cancer network and PI3K-Akt STN. Conclusions To validate the role of network motifs in cancer formation, several examples are presented which demonstrated the effectiveness of the present approach. A web-based platform has been set up which can be accessed at: http://ppi.bioinfo.asia.edu.tw/pathway/. It is very likely that our results can supply very specific CMS missing information for certain cancer types, it is an indispensable tool for cancer biology research. PMID:25707690

  20. Two Di-Leucine Motifs Regulate Trafficking of Mucolipin-1 to Lysosomes

    PubMed Central

    Vergarajauregui, Silvia; Puertollano, Rosa

    2006-01-01

    Mutations in the mucolipin-1 gene have been linked to mucolipidosis type IV, a lysosomal storage disorder characterized by severe neurological and ophthalmologic abnormalities. Mucolipin-1 is a membrane protein containing six putative transmembrane domains with both its N- and C-termini localized facing the cytosol. To gain information on the sorting motifs that mediate the trafficking of this protein to lysosomes, we have generated chimeras in which the N- and C- terminal tail portions of mucolipin-1 were fused to a reporter gene. In this article, we report the identification of two separate di-leucine-type motifs that co-operate to regulate the transport of mucolipin-1 to lysosomes. One di-leucine motif is positioned at the N-terminal cytosolic tail and mediates direct transport to lysosomes, whereas the other di-leucine motif is found at the C-terminal tail and functions as an adaptor protein 2-dependent internalization motif. We have also found that the C-terminal tail of mucolipin-1 is palmitoylated and that this modification might regulate the efficiency of endocytosis. Finally, the mutagenesis of both di-leucine motifs abrogated lysosomal accumulation and resulted in cell-surface redistribution of mucolipin-1. Taken together, these results reveal novel information regarding the motifs that regulate mucolipin-1 trafficking and suggest a role for palmitoylation in protein sorting. PMID:16497227

  1. The PXDLS linear motif regulates circadian rhythmicity through protein–protein interactions

    PubMed Central

    Shalev, Moran; Aviram, Rona; Adamovich, Yaarit; Kraut-Cohen, Judith; Shamia, Tal; Ben-Dor, Shifra; Golik, Marina; Asher, Gad

    2014-01-01

    The circadian core clock circuitry relies on interlocked transcription-translation feedback loops that largely count on multiple protein interactions. The molecular mechanisms implicated in the assembly of these protein complexes are relatively unknown. Our bioinformatics analysis of short linear motifs, implicated in protein interactions, reveals an enrichment of the Pro-X-Asp-Leu-Ser (PXDLS) motif within circadian transcripts. We show that the PXDLS motif can bind to BMAL1/CLOCK and disrupt circadian oscillations in a cell-autonomous manner. Remarkably, the motif is evolutionary conserved in the core clock protein REV-ERBα, and additional proteins implicated in the clock's function (NRIP1, CBP). In this conjuncture, we uncover a novel cross talk between the two principal core clock feedback loops and show that BMAL/CLOCK and REV-ERBα interact and that the PXDLS motif of REV-ERBα participates in their binding. Furthermore, we demonstrate that the PXDLS motifs of NRIP1 and CBP are involved in circadian rhythmicity. Our findings suggest that the PXDLS motif plays an important role in circadian rhythmicity through regulation of protein interactions within the clock circuitry and that short linear motifs can be employed to modulate circadian oscillations. PMID:25260595

  2. Single-molecule study of thymidine glycol and i-motif through the alpha-hemolysin ion channel

    NASA Astrophysics Data System (ADS)

    He, Lidong

    Nanopore-based devices have emerged as a single-molecule detection and analysis tool for a wide range of applications. Through electrophoretically driving DNA molecules across a nanosized pore, a lot of information can be received, including unfolding kinetics and DNA-protein interactions. This single-molecule method has the potential to sequence kilobase length DNA polymers without amplification or labeling, approaching "the third generation" genome sequencing for around $1000 within 24 hours. alpha-Hemolysin biological nanopores have the advantages of excellent stability, low-noise level, and precise site-directed mutagenesis for engineering this protein nanopore. The first work presented in this thesis established the current signal of the thymidine glycol lesion in DNA oligomers through an immobilization experiment. The thymidine glycol enantiomers were differentiated from each other by different current blockage levels. Also, the effect of bulky hydrophobic adducts to the current blockage was investigated. Secondly, the alpha-hemolysin nanopore was used to study the human telomere i-motif and RET oncogene i-motif at a single-molecule level. In Chapter 3, it was demonstrated that the alpha-hemolysin nanopore can differentiate an i-motif form and single-strand DNA form at different pH values based on the same sequence. In addition, it shows potential to differentiate the folding topologies generated from the same DNA sequence.

  3. G alpha selectivity and inhibitor function of the multiple GoLoco motif protein GPSM2/LGN.

    PubMed

    McCudden, Christopher R; Willard, Francis S; Kimple, Randall J; Johnston, Christopher A; Hains, Melinda D; Jones, Miller B; Siderovski, David P

    2005-09-10

    GPSM2 (G-protein signalling modulator 2; also known as LGN or mammalian Pins) is a protein that regulates mitotic spindle organization and cell division. GPSM2 contains seven tetratricopeptide repeats (TPR) and four Galpha(i/o)-Loco (GoLoco) motifs. GPSM2 has guanine nucleotide dissociation inhibitor (GDI) activity towards both Galpha(o)- and Galpha(i)-subunits; however, a systematic analysis of its individual GoLoco motifs has not been described. We analyzed each of the four individual GoLoco motifs from GPSM2, assessing their relative binding affinities and GDI potencies for Galpha(i1), Galpha(i2), and Galpha(i3) and Galpha(o). Each of the four GPSM2 GoLoco motifs (36-43 amino acids in length) was expressed in bacteria as a GST-fusion protein and purified to homogeneity. The binding of each of the four GST-GoLoco motifs to Galpha(i1)-, Galpha(o)-, and Galpha(s)-subunits was assessed by surface plasmon resonance; all of the motifs bound Galpha(i1), but exhibited low affinity towards Galpha(o). GDI activity was assessed by a fluorescence-based nucleotide-binding assay, revealing that all four GoLoco motifs are functional as GDIs for Galpha(i1), Galpha(i2), and Galpha(i3). Consistent with our binding studies, the GDI activity of GPSM2 GoLoco motifs on Galpha(o) was significantly lower than that toward Galpha(i1), suggesting that the in vivo targets of GPSM2 are most likely to be Galpha(i)-subunits. PMID:15946753

  4. Structural characterization of a capping protein interaction motif defines a family of actin filament regulators

    PubMed Central

    Hernandez-Valladares, Maria; Kim, Taekyung; Kannan, Balakrishnan; Tung, Alvin; Aguda, Adeleke H; Larsson, Mårten; Cooper, John A; Robinson, Robert C

    2011-01-01

    Capping protein (CP) regulates actin dynamics by binding the barbed ends of actin filaments. Removal of CP may be one means to harness actin polymerization for processes such as cell movement and endocytosis. Here we structurally and biochemically investigated a CP interaction (CPI) motif present in the otherwise unrelated proteins CARMIL and CD2AP. The CPI motif wraps around the stalk of the mushroom-shaped CP at a site distant from the actin-binding interface, which lies on the top of the mushroom cap. We propose that the CPI motif may act as an allosteric modulator, restricting CP to a low-affinity, filament-binding conformation. Structure-based sequence alignments extend the CPI motif–containing family to include CIN85, CKIP-1, CapZIP and a relatively uncharacterized protein, WASHCAP (FAM21). Peptides comprising these CPI motifs are able to inhibit CP and to uncap CP-bound actin filaments. PMID:20357771

  5. A Conserved alpha-helical motif mediates the binding of diverse nuclear proteins to the SRC1 interaction domain of CBP.

    PubMed

    Matsuda, Sachiko; Harries, Janet C; Viskaduraki, Maria; Troke, Philip J F; Kindle, Karin B; Ryan, Colm; Heery, David M

    2004-04-01

    CREB-binding protein (CBP) and p300 contain modular domains that mediate protein-protein interactions with a wide variety of nuclear factors. A C-terminal domain of CBP (referred to as the SID) is responsible for interaction with the alpha-helical AD1 domain of p160 coactivators such as the steroid receptor coactivator (SRC1), and also other transcriptional regulators such as E1A, Ets-2, IRF3, and p53. Here we show that the pointed (PNT) domain of Ets-2 mediates its interaction with the CBP SID, and describe the effects of mutations in the SID on binding of Ets-2, E1A, and SRC1. In vitro binding studies indicate that SRC1, Ets-2 and E1A display mutually exclusive binding to the CBP SID. Consistent with this, we observed negative cross-talk between ERalpha/SRC1, Ets-2, and E1A proteins in reporter assays in transiently transfected cells. Transcriptional inhibition of Ets-2 or GAL4-AD1 activity by E1A was rescued by co-transfection with a CBP expression plasmid, consistent with the hypothesis that the observed inhibition was due to competition for CBP in vivo. Sequence comparisons revealed that SID-binding proteins contain a leucine-rich motif similar to the alpha-helix Aalpha1 of the SRC1 AD1 domain. Deletion mutants of E1A and Ets-2 lacking the conserved motif were unable to bind the CBP SID. Moreover, a peptide corresponding to this sequence competed the binding of full-length SRC1, Ets-2, and E1A proteins to the CBP SID. Thus, a leucine-rich amphipathic alpha-helix mediates mutually exclusive interactions of functionally diverse nuclear proteins with CBP. PMID:14722092

  6. The alpha aneurism: a structural motif revealed in an insertion mutant of staphylococcal nuclease.

    PubMed Central

    Keefe, L J; Sondek, J; Shortle, D; Lattman, E E

    1993-01-01

    The x-ray crystal structure of a mutant of staphylococcal nuclease that contains a single glycine residue inserted in the C-terminal alpha-helix has been solved to 1.67 A resolution and refined to a crystallographic R value of 0.170. This inserted glycine residue is accommodated in the alpha-helix by formation of a previously uncharacterized bulge, which we term the alpha aneurism. A conformational search of known protein structures has identified the alpha aneurism in a number of protein families, including the histocompatibility antigens and hemoglobins. Images Fig. 1 Fig. 2 Fig. 3 Fig. 5 Fig. 6 PMID:8475069

  7. Cellular microRNAs up-regulate transcription via interaction with promoter TATA-box motifs

    PubMed Central

    Zhang, Yijun; Fan, Miaomiao; Zhang, Xue; Huang, Feng; Wu, Kang; Zhang, Junsong; Liu, Jun; Huang, Zhuoqiong; Luo, Haihua; Tao, Liang; Zhang, Hui

    2014-01-01

    The TATA box represents one of the most prevalent core promoters where the pre-initiation complexes (PICs) for gene transcription are assembled. This assembly is crucial for transcription initiation and well regulated. Here we show that some cellular microRNAs (miRNAs) are associated with RNA polymerase II (Pol II) and TATA box-binding protein (TBP) in human peripheral blood mononuclear cells (PBMCs). Among them, let-7i sequence specifically binds to the TATA-box motif of interleukin-2 (IL-2) gene and elevates IL-2 mRNA and protein production in CD4+ T-lymphocytes in vitro and in vivo. Through direct interaction with the TATA-box motif, let-7i facilitates the PIC assembly and transcription initiation of IL-2 promoter. Several other cellular miRNAs, such as mir-138, mir-92a or mir-181d, also enhance the promoter activities via binding to the TATA-box motifs of insulin, calcitonin or c-myc, respectively. In agreement with the finding that an HIV-1–encoded miRNA could enhance viral replication through targeting the viral promoter TATA-box motif, our data demonstrate that the interaction with core transcription machinery is a novel mechanism for miRNAs to regulate gene expression. PMID:25336585

  8. An ATF/CREB binding motif is required for aberrant constitutive expression of the MHC class II DR alpha promoter and activation by SV40 T-antigen.

    PubMed Central

    Cox, P M; Goding, C R

    1992-01-01

    Constitutive expression of major histocompatibility complex class II (MHC II) antigens normally occurs in B-lymphocytes and antigen presenting cells of the monocyte/macrophage lineage. However, many malignant tumours and transformed cells express these proteins aberrantly. We demonstrate here that the MHC II DR alpha promoter is constitutively active both in the SV40 large T antigen transformed cell line, COS, and in CV1 cells from which they are derived. As an approach to understanding the molecular mechanisms underlying aberrant DR alpha expression we have examined the cis- and trans-acting requirements for DR alpha transcription in these cell types. Electrophoretic mobility shift assays showed that the region immediately 3' to the X-box was bound by a member of the ATF/CREB family of transcription factors. Using deletions and point mutations in the DR alpha promoter we demonstrate that, in contrast to B-cells, the octamer motif and conserved X- and Y-boxes make only a minor contribution to promoter function while single point mutations in the ATF/CREB motif reduced transcription up to 20-fold. In addition, we show that the DR alpha promoter is activated by SV40 large T-antigen and that activation requires an intact ATF/CREB motif. Similar data were obtained using B16 melanoma cells. These results suggest that the ATF/CREB motif may be a target for transcription deregulation in several transformed cell types. Images PMID:1329030

  9. Folate receptor {alpha} regulates cell proliferation in mouse gonadotroph {alpha}T3-1 cells

    SciTech Connect

    Yao, Congjun; Evans, Chheng-Orn; Stevens, Victoria L.; Owens, Timothy R.; Oyesiku, Nelson M.

    2009-11-01

    We have previously found that the mRNA and protein levels of the folate receptor alpha (FR{alpha}) are uniquely over-expressed in clinically human nonfunctional (NF) pituitary adenomas, but the mechanistic role of FR{alpha} has not fully been determined. We investigated the effect of FR{alpha} over-expression in the mouse gonadotroph {alpha}T3-1 cell line as a model for NF pituitary adenomas. We found that the expression and function of FR{alpha} were strongly up-regulated, by Western blotting and folic acid binding assay. Furthermore, we found a higher cell growth rate, an enhanced percentage of cells in S-phase by BrdU assay, and a higher PCNA staining. These observations indicate that over-expression of FR{alpha} promotes cell proliferation. These effects were abrogated in the same {alpha}T3-1 cells when transfected with a mutant FR{alpha} cDNA that confers a dominant-negative phenotype by inhibiting folic acid binding. Finally, by real-time quantitative PCR, we found that mRNA expression of NOTCH3 was up-regulated in FR{alpha} over-expressing cells. In summary, our data suggests that FR{alpha} regulates pituitary tumor cell proliferation and mechanistically may involve the NOTCH pathway. Potentially, this finding could be exploited to develop new, innovative molecular targeted treatment for human NF pituitary adenomas.

  10. Regulation of Airway Inflammation by G-protein Regulatory Motif Peptides of AGS3 protein

    PubMed Central

    Choi, IL-Whan; Ahn, Do Whan; Choi, Jang-Kyu; Cha, Hee-Jae; Ock, Mee Sun; You, EunAe; Rhee, SangMyung; Kim, Kwang Chul; Choi, Yung Hyun; Song, Kyoung Seob

    2016-01-01

    Respiratory diseases such as asthma, chronic obstructive pulmonary disease (COPD), and lung infections have critical consequences on mortality and morbidity in humans. The aims of the present study were to examine the mechanisms by which CXCL12 affects MUC1 transcription and airway inflammation, which depend on activator of G-protein signaling (AGS) 3 and to identify specific molecules that suppress CXCL12-induced airway inflammation by acting on G-protein-coupled receptors. Herein, AGS3 suppresses CXCL12-mediated upregulation of MUC1 and TNFα by regulating Gαi. We found that the G-protein regulatory (GPR) motif peptide in AGS3 binds to Gαi and downregulates MUC1 expression; in contrast, this motif upregulates TNFα expression. Mutated GPR Q34A peptide increased the expression of MUC1 and TGFβ but decreased the expression of TNFα and IL-6. Moreover, CXCR4-induced dendritic extensions in 2D and 3D matrix cultures were inhibited by the GPR Q34A peptide compared with a wild-type GPR peptide. The GPR Q34A peptide also inhibited CXCL12-induced morphological changes and inflammatory cell infiltration in the mouse lung, and production of inflammatory cytokines in bronchoalveolar lavage (BAL) fluid and the lungs. Our data indicate that the GPR motif of AGS3 is critical for regulating MUC1/Muc1 expression and cytokine production in the inflammatory microenvironment. PMID:27270970

  11. TCR-induced Akt serine 473 phosphorylation is regulated by protein kinase C-alpha

    SciTech Connect

    Yang, Lifen; Qiao, Guilin; Ying, Haiyan; Zhang, Jian; Yin, Fei

    2010-09-10

    Research highlights: {yields} Conventional PKC positively regulates TCR-induced phosphorylation of Akt. {yields} PKC-alpha is the PDK-2 responsible for phosphorylating Akt at Ser{sup 473} upon TCR stimulation. {yields} Knockdown of PKC-alpha decreases TCR-induced Akt phosphorylation. -- Abstract: Akt signaling plays a central role in T cell functions, such as proliferation, apoptosis, and regulatory T cell development. Phosphorylation at Ser{sup 473} in the hydrophobic motif, along with Thr{sup 308} in its activation loop, is considered necessary for Akt function. It is widely accepted that phosphoinositide-dependent kinase 1 (PDK-1) phosphorylates Akt at Thr{sup 308}, but the kinase(s) responsible for phosphorylating Akt at Ser{sup 473} (PDK-2) remains elusive. The existence of PDK-2 is considered to be specific to cell type and stimulus. PDK-2 in T cells in response to TCR stimulation has not been clearly defined. In this study, we found that conventional PKC positively regulated TCR-induced Akt Ser{sup 473} phosphorylation. PKC-alpha purified from T cells can phosphorylate Akt at Ser{sup 473} in vitro upon TCR stimulation. Knockdown of PKC-alpha in T-cell-line Jurkat cells reduced TCR-induced phosphorylation of Akt as well as its downstream targets. Thus our results suggest that PKC-alpha is a candidate for PDK-2 in T cells upon TCR stimulation.

  12. Identification of a pKa-regulating motif stabilizing imidazole-modified double-stranded DNA

    PubMed Central

    Buyst, Dieter; Gheerardijn, Vicky; Fehér, Krisztina; Van Gasse, Bjorn; Van Den Begin, Jos; Martins, José C.; Madder, Annemieke

    2015-01-01

    The predictable 3D structure of double-stranded DNA renders it ideally suited as a template for the bottom-up design of functionalized nucleic acid-based active sites. We here explore the use of a 14mer DNA duplex as a scaffold for the precise and predictable positioning of catalytic functionalities. Given the ubiquitous participation of the histidine-based imidazole group in protein recognition and catalysis events, single histidine-like modified duplexes were investigated. Tethering histamine to the C5 of the thymine base via an amide bond, allows the flexible positioning of the imidazole function in the major groove. The mutual interactions between the imidazole and the duplex and its influence on the imidazolium pKaH are investigated by placing a single modified thymine at four different positions in the center of the 14mer double helix. Using NMR and unrestrained molecular dynamics, a structural motif involving the formation of a hydrogen bond between the imidazole and the Hoogsteen side of the guanine bases of two neighboring GC base pairs is established. The motif contributes to a stabilization against thermal melting of 6°C and is key in modulating the pKaH of the imidazolium group. The general features, prerequisites and generic character of the new pKaH-regulating motif are described. PMID:25520197

  13. The vitronectin RGD motif regulates TGF-β-induced alveolar epithelial cell apoptosis.

    PubMed

    Wheaton, Amanda K; Velikoff, Miranda; Agarwal, Manisha; Loo, Tiffany T; Horowitz, Jeffrey C; Sisson, Thomas H; Kim, Kevin K

    2016-06-01

    Transforming growth factor-β (TGF-β) is a critical driver of acute lung injury and fibrosis. Injury leads to activation of TGF-β, which regulates changes in the cellular and matrix makeup of the lung during the repair and fibrosis phase. TGF-β can also initiate alveolar epithelial cell (AEC) apoptosis. Injury leads to destruction of the laminin-rich basement membrane, which is replaced by a provisional matrix composed of arginine-glycine-aspartate (RGD) motif-containing plasma matrix proteins, including vitronectin and fibronectin. To determine the role of specific matrix proteins on TGF-β-induced apoptosis, we studied primary AECs cultured on different matrix conditions and utilized mice with deletion of vitronectin (Vtn(-/-)) or mice in which the vitronectin RGD motif is mutated to nonintegrin-binding arginine-glycine-glutamate (RGE) (Vtn(RGE/RGE)). We found that AECs cultured on fibronectin and vitronectin or in wild-type mouse serum are resistant to TGF-β-induced apoptosis. In contrast, AECs cultured on laminin or in serum from Vtn(-/-) or Vtn(RGE/RGE) mice undergo robust TGF-β-induced apoptosis. Plasminogen activator inhibitor-1 (PAI-1) sensitizes AECs to greater apoptosis by disrupting AEC engagement to vitronectin. Inhibition of integrin-associated signaling proteins augments AEC apoptosis. Mice with transgenic deletion of PAI-1 have less apoptosis after bleomycin, but deletion of vitronectin or disruption of the vitronectin RGD motif reverses this protection, suggesting that the proapoptotic function of PAI-1 is mediated through vitronectin inhibition. Collectively, these data suggest that integrin-matrix signaling is an important regulator of TGF-β-mediated AEC apoptosis and that PAI-1 functions as a natural regulator of this interaction. PMID:27106291

  14. Regulation of innate immune signalling pathways by the tripartite motif (TRIM) family proteins

    PubMed Central

    Kawai, Taro; Akira, Shizuo

    2011-01-01

    The innate immune system recognizes microbial components through pattern-recognition receptors (PRRs), including membrane-bound Toll-like receptors and cytosolic receptors such as RIG-I-like receptors and deoxyribonucleic acid (DNA) sensors. These PRRs trigger distinct signal transduction pathways that culminate in induction of an array of cytokines and other mediators required for host defense. The tripartite motif (TRIM) family is a diverse family of RING finger domain-containing proteins, which are involved in a variety of cellular functions. Importantly, recent studies have shown that they are also involved in the regulation of innate immune responses through the modulation of PRR signalling pathways. PMID:21826793

  15. A G-protein subunit translocation embedded network motif underlies GPCR regulation of calcium oscillations.

    PubMed

    Giri, Lopamudra; Patel, Anilkumar K; Karunarathne, W K Ajith; Kalyanaraman, Vani; Venkatesh, K V; Gautam, N

    2014-07-01

    G-protein βγ subunits translocate reversibly from the plasma membrane to internal membranes on receptor activation. Translocation rates differ depending on the γ subunit type. There is limited understanding of the role of the differential rates of Gβγ translocation in modulating signaling dynamics in a cell. Bifurcation analysis of the calcium oscillatory network structure predicts that the translocation rate of a signaling protein can regulate the damping of system oscillation. Here, we examined whether the Gβγ translocation rate regulates calcium oscillations induced by G-protein-coupled receptor activation. Oscillations in HeLa cells expressing γ subunit types with different translocation rates were imaged and quantitated. The results show that differential Gβγ translocation rates can underlie the diversity in damping characteristics of calcium oscillations among cells. Mathematical modeling shows that a translocation embedded motif regulates damping of G-protein-mediated calcium oscillations consistent with experimental data. The current study indicates that such a motif may act as a tuning mechanism to design oscillations with varying damping patterns by using intracellular translocation of a signaling component. PMID:24988358

  16. Alpha1 and Alpha2 Integrins Mediate Invasive Activity of Mouse Mammary Carcinoma Cells through Regulation of Stromelysin-1 Expression

    SciTech Connect

    Lochter, Andre; Navre, Marc; Werb, Zena; Bissell, Mina J

    1998-06-29

    Tumor cell invasion relies on cell migration and extracellular matrix proteolysis. We investigated the contribution of different integrins to the invasive activity of mouse mammary carcinoma cells. Antibodies against integrin subunits {alpha}6 and {beta}1, but not against {alpha}1 and {alpha}2, inhibited cell locomotion on a reconstituted basement membrane in two-dimensional cell migration assays, whereas antibodies against {beta}1, but not against a6 or {alpha}2, interfered with cell adhesion to basement membrane constituents. Blocking antibodies against {alpha}1 integrins impaired only cell adhesion to type IV collagen. Antibodies against {alpha}1, {alpha}2, {alpha}6, and {beta}1, but not {alpha}5, integrin subunits reduced invasion of a reconstituted basement membrane. Integrins {alpha}1 and {alpha}2, which contributed only marginally to motility and adhesion, regulated proteinase production. Antibodies against {alpha}1 and {alpha}2, but not {alpha}6 and {beta}1, integrin subunits inhibited both transcription and protein expression of the matrix metalloproteinase stromelysin-1. Inhibition of tumor cell invasion by antibodies against {alpha}1 and {alpha}2 was reversed by addition of recombinant stromelysin-1. In contrast, stromelysin-1 could not rescue invasion inhibited by anti-{alpha}6 antibodies. Our data indicate that {alpha}1 and {alpha}2 integrins confer invasive behavior by regulating stromelysin-1 expression, whereas {alpha}6 integrins regulate cell motility. These results provide new insights into the specific functions of integrins during tumor cell invasion.

  17. Mitogen-activated protein kinase 4-like carrying an MEY motif instead of a TXY motif is involved in ozone tolerance and regulation of stomatal closure in tobacco.

    PubMed

    Yanagawa, Yuki; Yoda, Hiroshi; Osaki, Kohei; Amano, Yuta; Aono, Mitsuko; Seo, Shigemi; Kuchitsu, Kazuyuki; Mitsuhara, Ichiro

    2016-05-01

    The mitogen-activated protein kinases (MAPKs/MPKs) are important factors in the regulation of signal transduction in response to biotic and abiotic stresses. Previously, we characterized a MAPK from tobacco, Nicotiana tabacum MPK4 (NtMPK4). Here, we found a highly homologous gene, NtMPK4-like (NtMPK4L), in tobacco as well as other species in Solanaceae and Gramineae. Deduced amino acid sequences of their translation products carried MEY motifs instead of conserved TXY motifs of the MAPK family. We isolated the full length NtMPK4L gene and examined the physiological functions of NtMPK4L. We revealed that NtMPK4L was activated by wounding, like NtMPK4. However, a constitutively active salicylic acid-induced protein kinase kinase (SIPKK(EE)), which phosphorylates NtMPK4, did not phosphorylate NtMPK4L. Moreover, a tyrosine residue in the MEY motif was not involved in NtMPK4L activation. We also found that NtMPK4L-silenced plants showed rapid transpiration caused by remarkably open stomata. In addition, NtMPK4L-silenced plants completely lost the ability to close stomata upon ozone treatment and were highly sensitive to ozone, suggesting that this atypical MAPK plays a role in ozone tolerance through stomatal regulation. PMID:27126796

  18. Mitogen-activated protein kinase 4-like carrying an MEY motif instead of a TXY motif is involved in ozone tolerance and regulation of stomatal closure in tobacco

    PubMed Central

    Yanagawa, Yuki; Yoda, Hiroshi; Osaki, Kohei; Amano, Yuta; Aono, Mitsuko; Seo, Shigemi; Kuchitsu, Kazuyuki; Mitsuhara, Ichiro

    2016-01-01

    The mitogen-activated protein kinases (MAPKs/MPKs) are important factors in the regulation of signal transduction in response to biotic and abiotic stresses. Previously, we characterized a MAPK from tobacco, Nicotiana tabacum MPK4 (NtMPK4). Here, we found a highly homologous gene, NtMPK4-like (NtMPK4L), in tobacco as well as other species in Solanaceae and Gramineae. Deduced amino acid sequences of their translation products carried MEY motifs instead of conserved TXY motifs of the MAPK family. We isolated the full length NtMPK4L gene and examined the physiological functions of NtMPK4L. We revealed that NtMPK4L was activated by wounding, like NtMPK4. However, a constitutively active salicylic acid-induced protein kinase kinase (SIPKKEE), which phosphorylates NtMPK4, did not phosphorylate NtMPK4L. Moreover, a tyrosine residue in the MEY motif was not involved in NtMPK4L activation. We also found that NtMPK4L-silenced plants showed rapid transpiration caused by remarkably open stomata. In addition, NtMPK4L-silenced plants completely lost the ability to close stomata upon ozone treatment and were highly sensitive to ozone, suggesting that this atypical MAPK plays a role in ozone tolerance through stomatal regulation. PMID:27126796

  19. Regulation of alpha o expression by the 5'-flanking region of the alpha o gene.

    PubMed

    Li, Y; Mortensen, R; Neer, E J

    1994-11-01

    Many responses of cells to external signals require activation of the heterotrimeric G proteins. These responses depend on the type and amount of G proteins that are expressed. Each cell has a characteristic complement of G protein subunits. For example, the alpha o subunit is very abundant in neural tissues. Very little is known about the mechanisms that determine cellular levels of G proteins. In the present study, we have isolated a genomic clone for mouse alpha o gene and identified the promoter region. There are multiple transcription initiation sites located about 750 base pairs upstream of the translational start site. The promoter region is GC-rich and contains neither a TATA-box nor a CAAT box. Transient expression assays using a series of constructs containing various lengths of the 5'-flanking region of the alpha o promoter demonstrated that the region 300-700 base pairs upstream of the transcription initiation sites is responsible for the basic promoter activity. The relative activity of alpha o promoter is 8-12-fold higher in cells expressing alpha o than in cells lacking alpha o. The level of alpha o in cells may also be regulated at the level of protein translation because deletions in the 5'-noncoding region of alpha o gene increase reporter enzyme expression without a corresponding increase in reporter enzyme mRNA level. Our results suggest that both transcriptional and post-transcriptional mechanisms are involved in regulating the expression of alpha o in vivo. Transcriptional regulation probably is important for control of tissue-specific expression, while posttranscriptional mechanisms may be used to regulate the alpha o level in cells. PMID:7961675

  20. A search for small noncoding RNAs in Staphylococcus aureus reveals a conserved sequence motif for regulation

    PubMed Central

    Geissmann, Thomas; Chevalier, Clément; Cros, Marie-Josée; Boisset, Sandrine; Fechter, Pierre; Noirot, Céline; Schrenzel, Jacques; François, Patrice; Vandenesch, François; Gaspin, Christine; Romby, Pascale

    2009-01-01

    Bioinformatic analysis of the intergenic regions of Staphylococcus aureus predicted multiple regulatory regions. From this analysis, we characterized 11 novel noncoding RNAs (RsaA‐K) that are expressed in several S. aureus strains under different experimental conditions. Many of them accumulate in the late-exponential phase of growth. All ncRNAs are stable and their expression is Hfq-independent. The transcription of several of them is regulated by the alternative sigma B factor (RsaA, D and F) while the expression of RsaE is agrA-dependent. Six of these ncRNAs are specific to S. aureus, four are conserved in other Staphylococci, and RsaE is also present in Bacillaceae. Transcriptomic and proteomic analysis indicated that RsaE regulates the synthesis of proteins involved in various metabolic pathways. Phylogenetic analysis combined with RNA structure probing, searches for RsaE‐mRNA base pairing, and toeprinting assays indicate that a conserved and unpaired UCCC sequence motif of RsaE binds to target mRNAs and prevents the formation of the ribosomal initiation complex. This study unexpectedly shows that most of the novel ncRNAs carry the conserved C−rich motif, suggesting that they are members of a class of ncRNAs that target mRNAs by a shared mechanism. PMID:19786493

  1. An Alpha Motif at Tas3C Terminus Mediates RITS Cis Spreading and Promotes Heterochromatic Gene Silencing

    SciTech Connect

    Li, H.; Motamedi, M; Yip, C; Wang, Z; Walz, T; Patel, D; Moazed, D

    2009-01-01

    RNA interference (RNAi) plays a pivotal role in the formation of heterochromatin at the fission yeast centromeres. The RNA-induced transcriptional silencing (RITS) complex, composed of heterochromatic small interfering RNAs (siRNAs), the siRNA-binding protein Ago1, the chromodomain protein Chp1, and the Ago1/Chp1-interacting protein Tas3, provides a physical tether between the RNAi and heterochromatin assembly pathways. Here, we report the structural and functional characterization of a C-terminal Tas3 {alpha}-helical motif (TAM), which self-associates into a helical polymer and is required for cis spreading of RITS in centromeric DNA regions. Site-directed mutations of key residues within the hydrophobic monomer-monomer interface disrupt Tas3-TAM polymeric self-association in vitro and result in loss of gene silencing, spreading of RITS, and a dramatic reduction in centromeric siRNAs in vivo. These results demonstrate that, in addition to the chromodomain of Chp1 and siRNA-loaded Ago1, Tas3 self-association is required for RITS spreading and efficient heterochromatic gene silencing at centromeric repeat regions.

  2. Development of monoclonal antibodies specifically recognizing the endogenous sterile alpha motif and HD domain 1 protein in porcine cell lines.

    PubMed

    Yang, Shen; Zhou, Yan-Jun; Zhan, Yuan; Yu, Ling-Xue; Jiang, Yi-Feng; Tong, Wu; Tong, Guang-Zhi

    2014-10-01

    The sterile alpha motif and HD domain 1 (SAMHD1) protein has been identified as a novel innate immunity restriction factor that participates in processes crucial to the viral life cycle. In the present study, we describe a procedure to generate monoclonal antibodies (MAbs) against porcine SAMHD1 and investigate its characteristics to analyze the expression of endogenous SAMHD1. The open reading frame of porcine SAMHD1 was cloned into the prokaryotic expression vector pCold-TF DNA to construct a recombinant plasmid pcold-pSAMHD1 and induce expression of recombinant porcine SAMHD1 protein by IPTG in Escherichia coli Rosetta. The purified recombinant porcine SAMHD1 protein was used to prepare MAbs of SAMHD1. After subcloning five times hybridoma cell clones expressing SAMHD1, MAbs were generated. Western blot analysis and indirect immunofluorescence assay showed that the overexpressed porcine SAMHD1 in 293T cells and endogenous SAMHD1 protein in porcine cell lines could be specifically recognized by the MAbs produced in this study. In conclusion, specific MAbs of porcine SAMHD1 are reported, and these MAbs provide a valuable tool for further studies of SAMHD1-mediated signaling in virus-infected cells to elucidate the underlying antiviral mechanism. PMID:25358004

  3. Development of Monoclonal Antibodies Specifically Recognizing the Endogenous Sterile Alpha Motif and HD Domain 1 Protein in Porcine Cell Lines

    PubMed Central

    Yang, Shen; Zhou, Yan-jun; Zhan, Yuan; Yu, Ling-xue; Jiang, Yi-feng; Tong, Wu

    2014-01-01

    The sterile alpha motif and HD domain 1 (SAMHD1) protein has been identified as a novel innate immunity restriction factor that participates in processes crucial to the viral life cycle. In the present study, we describe a procedure to generate monoclonal antibodies (MAbs) against porcine SAMHD1 and investigate its characteristics to analyze the expression of endogenous SAMHD1. The open reading frame of porcine SAMHD1 was cloned into the prokaryotic expression vector pCold-TF DNA to construct a recombinant plasmid pcold-pSAMHD1 and induce expression of recombinant porcine SAMHD1 protein by IPTG in Escherichia coli Rosetta. The purified recombinant porcine SAMHD1 protein was used to prepare MAbs of SAMHD1. After subcloning five times hybridoma cell clones expressing SAMHD1, MAbs were generated. Western blot analysis and indirect immunofluorescence assay showed that the overexpressed porcine SAMHD1 in 293T cells and endogenous SAMHD1 protein in porcine cell lines could be specifically recognized by the MAbs produced in this study. In conclusion, specific MAbs of porcine SAMHD1 are reported, and these MAbs provide a valuable tool for further studies of SAMHD1-mediated signaling in virus-infected cells to elucidate the underlying antiviral mechanism. PMID:25358004

  4. Mutation of FVS1, encoding a protein with a sterile alpha motif domain, affects asexual reproduction in the fungal plant pathogen Fusarium oxysporum.

    PubMed

    Iida, Yuichiro; Fujiwara, Kazuki; Yoshioka, Yosuke; Tsuge, Takashi

    2014-02-01

    Fusarium oxysporum produces three kinds of asexual spores: microconidia, macroconidia and chlamydospores. We previously analysed expressed sequence tags during vegetative growth and conidiation in F. oxysporum and found 42 genes that were markedly upregulated during conidiation compared to vegetative growth. One of the genes, FVS1, encodes a protein with a sterile alpha motif (SAM) domain, which functions in protein-protein interactions that are involved in transcriptional or post-transcriptional regulation and signal transduction. Here, we made FVS1-disrupted mutants from the melon wilt pathogen F. oxysporum f. sp. melonis. Although the mutants produced all three kinds of asexual spores with normal morphology, they formed markedly fewer microconidia and macroconidia than the wild type. The mutants appeared to have a defect in the development of the conidiogenesis cells, conidiophores and phialides, required for the formation of microconidia and macroconidia. In contrast, chlamydospore formation was dramatically promoted in the mutants. The growth rates of the mutants on media were slightly reduced, indicating that FVS1 is also involved in, but not essential for, vegetative growth. We also observed that mutation of FVS1 caused defects in conidial germination and virulence, suggesting that the Fvs1 has pleiotropic functions in F. oxysporum. PMID:24330129

  5. The growth-suppressive function of the polycomb group protein polyhomeotic is mediated by polymerization of its sterile alpha motif (SAM) domain.

    PubMed

    Robinson, Angela K; Leal, Belinda Z; Chadwell, Linda V; Wang, Renjing; Ilangovan, Udayar; Kaur, Yogeet; Junco, Sarah E; Schirf, Virgil; Osmulski, Pawel A; Gaczynska, Maria; Hinck, Andrew P; Demeler, Borries; McEwen, Donald G; Kim, Chongwoo A

    2012-03-16

    Polyhomeotic (Ph), a member of the Polycomb Group (PcG), is a gene silencer critical for proper development. We present a previously unrecognized way of controlling Ph function through modulation of its sterile alpha motif (SAM) polymerization leading to the identification of a novel target for tuning the activities of proteins. SAM domain containing proteins have been shown to require SAM polymerization for proper function. However, the role of the Ph SAM polymer in PcG-mediated gene silencing was uncertain. Here, we first show that Ph SAM polymerization is indeed required for its gene silencing function. Interestingly, the unstructured linker sequence N-terminal to Ph SAM can shorten the length of polymers compared with when Ph SAM is individually isolated. Substituting the native linker with a random, unstructured sequence (RLink) can still limit polymerization, but not as well as the native linker. Consequently, the increased polymeric Ph RLink exhibits better gene silencing ability. In the Drosophila wing disc, Ph RLink expression suppresses growth compared with no effect for wild-type Ph, and opposite to the overgrowth phenotype observed for polymer-deficient Ph mutants. These data provide the first demonstration that the inherent activity of a protein containing a polymeric SAM can be enhanced by increasing SAM polymerization. Because the SAM linker had not been previously considered important for the function of SAM-containing proteins, our finding opens numerous opportunities to manipulate linker sequences of hundreds of polymeric SAM proteins to regulate a diverse array of intracellular functions. PMID:22275371

  6. CDR3β sequence motifs regulate autoreactivity of human invariant NKT cell receptors.

    PubMed

    Chamoto, Kenji; Guo, Tingxi; Imataki, Osamu; Tanaka, Makito; Nakatsugawa, Munehide; Ochi, Toshiki; Yamashita, Yuki; Saito, Akiko M; Saito, Toshiki I; Butler, Marcus O; Hirano, Naoto

    2016-04-01

    Invariant natural killer T (iNKT) cells are a subset of T lymphocytes that recognize lipid ligands presented by monomorphic CD1d. Human iNKT T cell receptor (TCR) is largely composed of invariant Vα24 (Vα24i) TCRα chain and semi-variant Vβ11 TCRβ chain, where complementarity-determining region (CDR)3β is the sole variable region. One of the characteristic features of iNKT cells is that they retain autoreactivity even after the thymic selection. However, the molecular features of human iNKT TCR CDR3β sequences that regulate autoreactivity remain unknown. Since the numbers of iNKT cells with detectable autoreactivity in peripheral blood is limited, we introduced the Vα24i gene into peripheral T cells and generated a de novo human iNKT TCR repertoire. By stimulating the transfected T cells with artificial antigen presenting cells (aAPCs) presenting self-ligands, we enriched strongly autoreactive iNKT TCRs and isolated a large panel of human iNKT TCRs with a broad range autoreactivity. From this panel of unique iNKT TCRs, we deciphered three CDR3β sequence motifs frequently encoded by strongly-autoreactive iNKT TCRs: a VD region with 2 or more acidic amino acids, usage of the Jβ2-5 allele, and a CDR3β region of 13 amino acids in length. iNKT TCRs encoding 2 or 3 sequence motifs also exhibit higher autoreactivity than those encoding 0 or 1 motifs. These data facilitate our understanding of the molecular basis for human iNKT cell autoreactivity involved in immune responses associated with human disease. PMID:26748722

  7. Regulation of PPAR{gamma} function by TNF-{alpha}

    SciTech Connect

    Ye Jianping

    2008-09-26

    The nuclear receptor PPAR{gamma} is a lipid sensor that regulates lipid metabolism through gene transcription. Inhibition of PPAR{gamma} activity by TNF-{alpha} is involved in pathogenesis of insulin resistance, atherosclerosis, inflammation, and cancer cachexia. PPAR{gamma} activity is regulated by TNF-{alpha} at pre-translational and post-translational levels. Activation of serine kinases including IKK, ERK, JNK, and p38 may be involved in the TNF-regulation of PPAR{gamma}. Of the four kinases, IKK is a dominant signaling molecule in the TNF-regulation of PPAR{gamma}. IKK acts through at least two mechanisms: inhibition of PPAR{gamma} expression and activation of PPAR{gamma} corepressor. In this review article, literature is reviewed with a focus on the mechanisms of PPAR{gamma} inhibition by TNF-{alpha}.

  8. The ABBA motif binds APC/C activators and is shared by APC/C substrates and regulators

    PubMed Central

    Hagting, Anja; Izawa, Daisuke; Mansfeld, Jörg; Gibson, Toby J.; Pines, Jonathon

    2016-01-01

    The APC/C is the ubiquitin ligase that regulates mitosis by targeting specific proteins for degradation at specific times under the control of the Spindle Assembly Checkpoint (SAC). How the APC/C recognises its different substrates is a key problem in the control of cell division. Here, we have identified the ABBA motif in Cyclin A, BUBR1, BUB1 and Acm1, and show that it binds to the APC/C co-activator CDC20. The ABBA motif in Cyclin A is required for its proper degradation in prometaphase through competing with BUBR1 for the same site on CDC20. Moreover, the ABBA motifs in BUBR1 and BUB1 are necessary for the SAC to work at full strength and to recruit CDC20 to kinetochores. Thus, we have identified a conserved motif integral to the proper control of mitosis that connects APC/C substrate recognition with the SAC. PMID:25669885

  9. Characterization of evolutionarily conserved motifs involved in activity and regulation of the ABA-INSENSITIVE (ABI) 4 transcription factor.

    PubMed

    Gregorio, Josefat; Hernández-Bernal, Alma Fabiola; Cordoba, Elizabeth; León, Patricia

    2014-02-01

    In recent years, the transcription factor ABI4 has emerged as an important node of integration for external and internal signals such as nutrient status and hormone signaling that modulates critical transitions during the growth and development of plants. For this reason, understanding the mechanism of action and regulation of this protein represents an important step towards the elucidation of crosstalk mechanisms in plants. However, this understanding has been hindered due to the negligible levels of this protein as a result of multiple posttranscriptional regulations. To better understand the function and regulation of the ABI4 protein in this work, we performed a functional analysis of several evolutionarily conserved motifs. Based on these conserved motifs, we identified ortholog genes of ABI4 in different plant species. The functionality of the putative ortholog from Theobroma cacao was demonstrated in transient expression assays and in complementation studies in plants. The function of the highly conserved motifs was analyzed after their deletion or mutagenesis in the Arabidopsis ABI4 sequence using mesophyll protoplasts. This approach permitted us to immunologically detect the ABI4 protein and identify some of the mechanisms involved in its regulation. We identified sequences required for the nuclear localization (AP2-associated motif) as well as those for transcriptional activation function (LRP motif). Moreover, this approach showed that the protein stability of this transcription factor is controlled through protein degradation and subcellular localization and involves the AP2-associated and the PEST motifs. We demonstrated that the degradation of ABI4 protein through the PEST motif is mediated by the 26S proteasome in response to changes in the sugar levels. PMID:24046063

  10. ANF-RGC gene motif 669WTAPELL675 is vital for blood pressure regulation: Biochemical mechanism

    PubMed Central

    Duda, Teresa; Pertzev, Alexandre; Sharma, Rameshwar K.

    2013-01-01

    ANF-RGC is the prototype membrane guanylate cyclase, both the receptor and the signal transducer of the hormones ANF and BNP. After binding them at the extracellular domain it, at its intracellular domain, signals activation of the C-terminal catalytic module and accelerates production of the second messenger, cyclic GMP. This, in turn, controls the physiological processes of blood pressure, cardiovascular function, and fluid secretion, and others: metabolic syndrome, obesity and apoptosis. What is the biochemical mechanism by which this single molecule controls these diverse processes, explicitly of the blood pressure regulation is the subject of the present study. In line with the concept that the structural modules of ANF-RGC are designed to respond to more than one, yet distinctive signals, the study demonstrates the construction of a novel ANF-RGC-In-gene-669WTAPELL675 mouse model. Through this model, the study establishes that 669WTAPELL675 is a vital ANF signal transducer motif of the guanylate cyclase. Its striking physiological features linked with their biochemistry are that (1) it controls the hormonally-dependent cyclic GMP production in the kidney and the adrenal gland; (3) its deletion causes hypertension, and (3) cardiac hypertrophy; and (4) these mice show higher levels of the plasma aldosterone. For the first time, a mere 7-amino acid encoded motif of the mouse gene has been directly linked with the physiological control of the blood pressure regulation, a detailed biochemistry of this linkage has been established and a model for this linkage has been offered. PMID:23464624

  11. Intragenic motifs regulate the transcriptional complexity of Pkhd1/PKHD1

    PubMed Central

    Boddu, Ravindra; Yang, Chaozhe; O’Connor, Amber K.; Hendrickson, Robert Curtis; Boone, Braden; Cui, Xiangqin; Garcia-Gonzalez, Miguel; Igarashi, Peter; Onuchic, Luiz F.; Germino, Gregory G.

    2014-01-01

    Autosomal recessive polycystic kidney disease (ARPKD) results from mutations in the human PKHD1 gene. Both this gene, and its mouse ortholog, Pkhd1, are primarily expressed in renal and biliary ductal structures. The mouse protein product, fibrocystin/polyductin complex (FPC), is a 445-kDa protein encoded by a 67-exon transcript that spans >500 kb of genomic DNA. In the current study, we observed multiple alternatively spliced Pkhd1 transcripts that varied in size and exon composition in embryonic mouse kidney, liver, and placenta samples, as well as among adult mouse pancreas, brain, heart, lung, testes, liver, and kidney. Using reverse transcription PCR and RNASeq, we identified 22 novel Pkhd1 kidney transcripts with unique exon junctions. Various mechanisms of alternative splicing were observed, including exon skipping, use of alternate acceptor/donor splice sites, and inclusion of novel exons. Bioinformatic analyses identified, and exon-trapping minigene experiments validated, consensus binding sites for serine/arginine-rich proteins that modulate alternative splicing. Using site-directed mutagenesis, we examined the functional importance of selected splice enhancers. In addition, we demonstrated that many of the novel transcripts were polysome bound, thus likely translated. Finally, we determined that the human PKHD1 R760H missense variant alters a splice enhancer motif that disrupts exon splicing in vitro and is predicted to truncate the protein. Taken together, these data provide evidence of the complex transcriptional regulation of Pkhd1/PKHD1 and identified motifs that regulate its splicing. Our studies indicate that Pkhd1/PKHD1 transcription is modulated, in part by intragenic factors, suggesting that aberrant PKHD1 splicing represents an unappreciated pathogenic mechanism in ARPKD. PMID:24984783

  12. Hepatocyte nuclear factor-4alpha and bile acids regulate human concentrative nucleoside transporter-1 gene expression.

    PubMed

    Klein, Kerstin; Kullak-Ublick, Gerd A; Wagner, Martin; Trauner, Michael; Eloranta, Jyrki J

    2009-04-01

    The concentrative nucleoside transporter-1 (CNT1) is a member of the solute carrier 28 (SLC28) gene family and is expressed in the liver, intestine, and kidneys. CNT1 mediates the uptake of naturally occurring pyrimidine nucleosides, but also nucleoside analogs used in anticancer and antiviral therapy. Thus expression levels of CNT1 may affect the pharmacokinetics of these drugs and the outcome of drug therapy. Because little is known about the transcriptional regulation of human CNT1 gene expression, we have characterized the CNT1 promoter with respect to DNA response elements and their binding factors. The transcriptional start site of the CNT1 gene was determined by 5'-RACE. In silico analysis revealed the existence of three putative binding sites for the nuclear receptor hepatocyte nuclear factor-4alpha (HNF-4alpha) within the CNT1 promoter. A luciferase reporter gene construct containing the CNT1 promoter region was transactivated by HNF-4alpha in human cell lines derived from the liver, intestine, and kidneys. Consistent with this, we showed in electromobility shift assays that HNF-4alpha specifically binds to two conserved direct repeat-1 motifs within the proximal CNT1 promoter. In cotransfection experiments, the transcriptional coactivator peroxisome proliferator-activated receptor-gamma coactivator-1alpha further increased, whereas the bile acid-inducible corepressor small heterodimer partner reduced, HNF-4alpha-dependent CNT1 promoter activity. Consistent with the latter phenomenon, CNT1 mRNA expression levels were suppressed in primary human hepatocytes upon bile acid treatment. Supporting the physiological relevance and species conservation of this effect, ileal Cnt1 mRNA expression was decreased upon bile acid feeding and increased upon bile duct ligation in mice. PMID:19228884

  13. G alpha12 interaction with alphaSNAP induces VE-cadherin localization at endothelial junctions and regulates barrier function.

    PubMed

    Andreeva, Alexandra V; Kutuzov, Mikhail A; Vaiskunaite, Rita; Profirovic, Jasmina; Meigs, Thomas E; Predescu, Sanda; Malik, Asrar B; Voyno-Yasenetskaya, Tatyana

    2005-08-26

    The involvement of heterotrimeric G proteins in the regulation of adherens junction function is unclear. We identified alphaSNAP as an interactive partner of G alpha12 using yeast two-hybrid screening. Glutathione S-transferase pull-down assays showed the selective interaction of alphaSNAP with G alpha12 in COS-7 as well as in human umbilical vein endothelial cells. Using domain swapping experiments, we demonstrated that the N-terminal region of G alpha12 (1-37 amino acids) was necessary and sufficient for its interaction with alphaSNAP. G alpha13 with its N-terminal extension replaced by that of G alpha12 acquired the ability to bind to alphaSNAP, whereas G alpha12 with its N terminus replaced by that of G alpha13 lost this ability. Using four point mutants of alphaSNAP, which alter its ability to bind to the SNARE complex, we determined that the convex rather than the concave surface of alphaSNAP was involved in its interaction with G alpha12. Co-transfection of human umbilical vein endothelial cells with G alpha12 and alphaSNAP stabilized VE-cadherin at the plasma membrane, whereas down-regulation of alphaSNAP with siRNA resulted in the loss of VE-cadherin from the cell surface and, when used in conjunction with G alpha12 overexpression, decreased endothelial barrier function. Our results demonstrate a direct link between the alpha subunit of G12 and alphaSNAP, an essential component of the membrane fusion machinery, and implicate a role for this interaction in regulating the membrane localization of VE-cadherin and endothelial barrier function. PMID:15980433

  14. A Conserved Ectodomain-Transmembrane Domain Linker Motif Tunes the Allosteric Regulation of Cell Surface Receptors.

    PubMed

    Schmidt, Thomas; Ye, Feng; Situ, Alan J; An, Woojin; Ginsberg, Mark H; Ulmer, Tobias S

    2016-08-19

    In many families of cell surface receptors, a single transmembrane (TM) α-helix separates ecto- and cytosolic domains. A defined coupling of ecto- and TM domains must be essential to allosteric receptor regulation but remains little understood. Here, we characterize the linker structure, dynamics, and resulting ecto-TM domain coupling of integrin αIIb in model constructs and relate it to other integrin α subunits by mutagenesis. Cellular integrin activation assays subsequently validate the findings in intact receptors. Our results indicate a flexible yet carefully tuned ecto-TM coupling that modulates the signaling threshold of integrin receptors. Interestingly, a proline at the N-terminal TM helix border, termed NBP, is critical to linker flexibility in integrins. NBP is further predicted in 21% of human single-pass TM proteins and validated in cytokine receptors by the TM domain structure of the cytokine receptor common subunit β and its P441A-substituted variant. Thus, NBP is a conserved uncoupling motif of the ecto-TM domain transition and the degree of ecto-TM domain coupling represents an important parameter in the allosteric regulation of diverse cell surface receptors. PMID:27365391

  15. Binding motifs in bacterial gene promoters modulate transcriptional effect of global regulators

    SciTech Connect

    Leuze, Michael Rex; Karpinets, Tatiana V; Syed, Mustafa H; Beliaev, Alexander S; Uberbacher, Edward C

    2012-01-01

    Bacterial gene regulation involves transcription factors (TFs) that influence the expression of many genes. Global regulators, including CRP (cAMP Receptor Protein), ArcA, and FNR, can modulate the transcriptional activity of multiple operons. The similarity of a regulatory element s sequence to a TF s consensus binding site (BS) and the position of the regulatory element in an operon promoter are considered the most important determinants of this TF s regulatory influence. In this study we explore the hypothesis that the number of TFBS half-sites (where a half-site is one half of the palindromic BS consensus sequence, which we shall refer to as a binding motif or a BM) of a global regulator in an operon s promoter plays an important role in the operon s transcriptional regulation. We examine empirical data from transcriptional profiling of the CRP regulon in Shewanella oneidenses MR 1 and Escherichia coli, and of the ArcA regulon in S. oneidenses MR 1. We compare the power of CRP BM counts and of full, symmetrical CRP TFBS characteristics, namely similarity to consensus and location, to predict CRP-induced transcriptional activity. We find that CRP BM counts have a nonlinear effect on CRP-dependent transcriptional activity and predict this activity better than full-length TFBS quality or location. Regression analysis indicates that IHF (Integration Host Factor) and ArcA have synergistic effects on CRP-induced gene transcription, positive and negative, respectively. Based on these results, we propose that the fine-tuning of bacterial transcriptional activity by CRP may involves not only the bending of the operon promoter, facilitated by CRP in cooperation with the histone-like protein IHF, but also the cumulative binding affinity of multiple weak BMs.

  16. Regulation of expression of venom toxins: silencing of prothrombin activator trocarin D by AG-rich motifs.

    PubMed

    Han, Summer Xia; Kwong, Shiyang; Ge, Ruowen; Kolatkar, Prasanna R; Woods, Anthony E; Blanchet, Guillaume; Kini, R Manjunatha

    2016-06-01

    Trocarin D (TroD), a venom prothrombin activator from Tropidechis carinatus, shares similar structure and function with blood coagulation factor Xa [Tropidechis carinatus FX (TrFX) a]. Their distinct physiologic roles are due to their distinct expression patterns. The genes of TroD and TrFX are highly similar, except for promoter and intron 1, indicating that TroD has probably evolved by duplication of FX, the plasma counterpart. The promoter insertion in TroD accounts for the elevated but not venom gland-specific expression. Here we examined the roles of 3 insertions and 2 deletions in intron 1 of TroD in the regulation of expression using luciferase as a reporter. By systematic deletions, we showed that a 209 bp region within the second insertion silences expression in mammalian and unmilked venom gland cells. Through bioinformatics analysis, we identified 5 AG-rich motifs in this region. All except the 5th motif are important for silencing function. YY1, Sp3 and HMGB2 were identified to bind these AG-rich motifs and silence gene expression in mammalian cells. Similar AG-rich motif clusters are also found in other toxin genes but not in their physiologic counterparts. Thus, AG-rich motifs contribute to regulation of expression of TroD, and probably other toxin genes.-Han, S. X., Kwong, S., Ge, R., Kolatkar, P. R., Woods, A. E., Blanchet, G., Kini, R. M. Regulation of expression of venom toxins: silencing of prothrombin activator trocarin D by AG-rich motifs. PMID:26985007

  17. Matrix metalloproteinase-12 gene regulation by a PPAR alpha agonist in human monocyte-derived macrophages

    SciTech Connect

    Souissi, Imen Jguirim; Billiet, Ludivine; Cuaz-Perolin, Clarisse; Rouis, Mustapha

    2008-11-01

    MMP-12, a macrophage-specific matrix metalloproteinase with large substrate specificity, has been reported to be highly expressed in mice, rabbits and human atherosclerotic lesions. Increased MMP-12 from inflammatory macrophages is associated with several degenerative diseases such as atherosclerosis. In this manuscript, we show that IL-1{beta}, a proinflammatory cytokine found in atherosclerotic plaques, increases both mRNA and protein levels of MMP-12 in human monocyte-derived macrophages (HMDM). Since peroxisome proliferator-activated receptors (PPARs), such as PPAR{alpha} and PPAR{gamma}, are expressed in macrophages and because PPAR activation exerts an anti-inflammatory effect on vascular cells, we have investigated the effect of PPAR{alpha} and {gamma} isoforms on MMP-12 regulation in HMDM. Our results show that MMP-12 expression (mRNA and protein) is down regulated in IL-1{beta}-treated macrophages only in the presence of a specific PPAR{alpha} agonist, GW647, in a dose-dependent manner. In contrast, this inhibitory effect was abolished in IL-1{beta}-stimulated peritoneal macrophages isolated from PPAR{alpha}{sup -/-} mice and treated with the PPAR{alpha} agonist, GW647. Moreover, reporter gene transfection experiments using different MMP-12 promoter constructs showed a reduction of the promoter activities by {approx} 50% in IL-1{beta}-stimulated PPAR{alpha}-pre-treated cells. However, MMP-12 promoter analysis did not reveal the presence of a PPRE response element. The IL-1{beta} effect is known to be mediated through the AP-1 binding site. Mutation of the AP-1 site, located at - 81 in the MMP-12 promoter region relative to the transcription start site, followed by transfection analysis, gel shift and ChIP experiments revealed that the inhibitory effect was the consequence of the protein-protein interaction between GW 647-activated PPAR{alpha} and c-Fos or c-Jun transcription factors, leading to inhibition of their binding to the AP-1 motif. These studies

  18. Signaling function of alpha-catenin in microtubule regulation.

    PubMed

    Shtutman, Michael; Chausovsky, Alexander; Prager-Khoutorsky, Masha; Schiefermeier, Natalia; Boguslavsky, Shlomit; Kam, Zvi; Fuchs, Elaine; Geiger, Benjamin; Borisy, Gary G; Bershadsky, Alexander D

    2008-08-01

    Centrosomes control microtubule dynamics in many cell types, and their removal from the cytoplasm leads to a shift from dynamic instability to treadmilling behavior and to a dramatic decrease of microtubule mass (Rodionov et al., 1999; PNAS 96:115). In cadherin-expressing cells, these effects can be reversed:non-centrosomal cytoplasts that form cadherin-mediated adherens junctions display dense arrays of microtubules (Chausovsky et al., 2000; Nature Cell Biol 2:797). In adherens junctions, cadherin's cytoplasmic domain binds p120 catenin and beta-catenin, which in turn binds alpha-catenin. To elucidate the roles of the cadherin-associated proteins in regulating microtubule dynamics, we prepared GFP-tagged, plasma membrane targeted or untargeted p120 catenin, alpha-catenin and beta-catenin and tested their ability to rescue the loss of microtubule mass caused by centrosomal removal in the poorly adhesive cell line CHO-K1. Only membrane targeting of alpha-catenin led to a significant increase in microtubule length and density in centrosome-free cytoplasts. Expression of non-membrane-targeted alpha-catenin produced only a slight effect, while both membrane-targeted and non-targeted p120 and beta-catenin were ineffective in this assay. Together, these findings suggest that alpha-catenin is able to regulate microtubule dynamics in a centrosome-independent manner. PMID:18677116

  19. HDAC6 Regulates Mutant SOD1 Aggregation through Two SMIR Motifs and Tubulin Acetylation*

    PubMed Central

    Gal, Jozsef; Chen, Jing; Barnett, Kelly R.; Yang, Liuqing; Brumley, Erin; Zhu, Haining

    2013-01-01

    Histone deacetylase 6 (HDAC6) is a tubulin deacetylase that regulates protein aggregation and turnover. Mutations in Cu/Zn superoxide dismutase (SOD1) linked to familial amyotrophic lateral sclerosis (ALS) make the mutant protein prone to aggregation. However, the role of HDAC6 in mutant SOD1 aggregation and the ALS etiology is unclear. Here we report that HDAC6 knockdown increased mutant SOD1 aggregation in cultured cells. Different from its known role in mediating the degradation of poly-ubiquitinated proteins, HDAC6 selectively interacted with mutant SOD1 via two motifs similar to the SOD1 mutant interaction region (SMIR) that we identified previously in p62/sequestosome 1. Expression of the aggregation-prone mutant SOD1 increased α-tubulin acetylation, and the acetylation-mimicking K40Q α-tubulin mutant promoted mutant SOD1 aggregation. Our results suggest that ALS-linked mutant SOD1 can modulate HDAC6 activity and increase tubulin acetylation, which, in turn, facilitates the microtubule- and retrograde transport-dependent mutant SOD1 aggregation. HDAC6 impairment might be a common feature in various subtypes of ALS. PMID:23580651

  20. Tumor Necrosis Factor alpha (TNF{alpha}) regulates CD40 expression through SMAR1 phosphorylation

    SciTech Connect

    Singh, Kamini; Sinha, Surajit; Malonia, Sunil Kumar; Chattopadhyay, Samit

    2010-01-08

    CD40 plays an important role in mediating inflammatory response and is mainly induced by JAK/STAT phosphorylation cascade. TNF{alpha} is the key cytokine that activates CD40 during inflammation and tumorigenesis. We have earlier shown that SMAR1 can repress the transcription of Cyclin D1 promoter by forming a HDAC1 dependent repressor complex. In this study, we show that SMAR1 regulates the transcription of NF-{kappa}B target gene CD40. SMAR1 recruits HDAC1 and forms a repressor complex on CD40 promoter and keeps its basal transcription in check. Further, we show that TNF{alpha} stimulation induces SMAR1 phosphorylation at Ser-347 and promotes its cytoplasmic translocation, thus releasing its negative effect. Concomitantly, TNF{alpha} induced phosphorylation of STAT1 at Tyr-701 by JAK1 facilitates its nuclear translocation and activation of CD40 through p300 recruitment and core Histone-3 acetylation. Thus, TNF{alpha} mediated regulation of CD40 expression occurs by dual phosphorylation of SMAR1 and STAT1.

  1. Structural determinants of affinity enhancement between GoLoco motifs and G-protein alpha subunit mutants.

    PubMed

    Bosch, Dustin E; Kimple, Adam J; Sammond, Deanne W; Muller, Robin E; Miley, Michael J; Machius, Mischa; Kuhlman, Brian; Willard, Francis S; Siderovski, David P

    2011-02-01

    GoLoco motif proteins bind to the inhibitory G(i) subclass of G-protein α subunits and slow the release of bound GDP; this interaction is considered critical to asymmetric cell division and neuro-epithelium and epithelial progenitor differentiation. To provide protein tools for interrogating the precise cellular role(s) of GoLoco motif/Gα(i) complexes, we have employed structure-based protein design strategies to predict gain-of-function mutations that increase GoLoco motif binding affinity. Here, we describe fluorescence polarization and isothermal titration calorimetry measurements showing three predicted Gα(i1) point mutations, E116L, Q147L, and E245L; each increases affinity for multiple GoLoco motifs. A component of this affinity enhancement results from a decreased rate of dissociation between the Gα mutants and GoLoco motifs. For Gα(i1)(Q147L), affinity enhancement was seen to be driven by favorable changes in binding enthalpy, despite reduced contributions from binding entropy. The crystal structure of Gα(i1)(Q147L) bound to the RGS14 GoLoco motif revealed disorder among three peptide residues surrounding a well defined Leu-147 side chain. Monte Carlo simulations of the peptide in this region showed a sampling of multiple backbone conformations in contrast to the wild-type complex. We conclude that mutation of Glu-147 to leucine creates a hydrophobic surface favorably buried upon GoLoco peptide binding, yet the hydrophobic Leu-147 also promotes flexibility among residues 511-513 of the RGS14 GoLoco peptide. PMID:21115486

  2. Motif analysis unveils the possible co-regulation of chloroplast genes and nuclear genes encoding chloroplast proteins.

    PubMed

    Wang, Ying; Ding, Jun; Daniell, Henry; Hu, Haiyan; Li, Xiaoman

    2012-09-01

    Chloroplasts play critical roles in land plant cells. Despite their importance and the availability of at least 200 sequenced chloroplast genomes, the number of known DNA regulatory sequences in chloroplast genomes are limited. In this paper, we designed computational methods to systematically study putative DNA regulatory sequences in intergenic regions near chloroplast genes in seven plant species and in promoter sequences of nuclear genes in Arabidopsis and rice. We found that -35/-10 elements alone cannot explain the transcriptional regulation of chloroplast genes. We also concluded that there are unlikely motifs shared by intergenic sequences of most of chloroplast genes, indicating that these genes are regulated differently. Finally and surprisingly, we found five conserved motifs, each of which occurs in no more than six chloroplast intergenic sequences, are significantly shared by promoters of nuclear-genes encoding chloroplast proteins. By integrating information from gene function annotation, protein subcellular localization analyses, protein-protein interaction data, and gene expression data, we further showed support of the functionality of these conserved motifs. Our study implies the existence of unknown nuclear-encoded transcription factors that regulate both chloroplast genes and nuclear genes encoding chloroplast protein, which sheds light on the understanding of the transcriptional regulation of chloroplast genes. PMID:22733202

  3. The ABBA motif binds APC/C activators and is shared by APC/C substrates and regulators.

    PubMed

    Di Fiore, Barbara; Davey, Norman E; Hagting, Anja; Izawa, Daisuke; Mansfeld, Jörg; Gibson, Toby J; Pines, Jonathon

    2015-02-01

    The anaphase-promoting complex or cyclosome (APC/C) is the ubiquitin ligase that regulates mitosis by targeting specific proteins for degradation at specific times under the control of the spindle assembly checkpoint (SAC). How the APC/C recognizes its different substrates is a key problem in the control of cell division. Here, we have identified the ABBA motif in cyclin A, BUBR1, BUB1, and Acm1, and we show that it binds to the APC/C coactivator CDC20. The ABBA motif in cyclin A is required for its proper degradation in prometaphase through competing with BUBR1 for the same site on CDC20. Moreover, the ABBA motifs in BUBR1 and BUB1 are necessary for the SAC to work at full strength and to recruit CDC20 to kinetochores. Thus, we have identified a conserved motif integral to the proper control of mitosis that connects APC/C substrate recognition with the SAC. PMID:25669885

  4. Imogene: identification of motifs and cis-regulatory modules underlying gene co-regulation

    PubMed Central

    Rouault, Hervé; Santolini, Marc; Schweisguth, François; Hakim, Vincent

    2014-01-01

    Cis-regulatory modules (CRMs) and motifs play a central role in tissue and condition-specific gene expression. Here we present Imogene, an ensemble of statistical tools that we have developed to facilitate their identification and implemented in a publicly available software. Starting from a small training set of mammalian or fly CRMs that drive similar gene expression profiles, Imogene determines de novo cis-regulatory motifs that underlie this co-expression. It can then predict on a genome-wide scale other CRMs with a regulatory potential similar to the training set. Imogene bypasses the need of large datasets for statistical analyses by making central use of the information provided by the sequenced genomes of multiple species, based on the developed statistical tools and explicit models for transcription factor binding site evolution. We test Imogene on characterized tissue-specific mouse developmental CRMs. Its ability to identify CRMs with the same specificity based on its de novo created motifs is comparable to that of previously evaluated ‘motif-blind’ methods. We further show, both in flies and in mammals, that Imogene de novo generated motifs are sufficient to discriminate CRMs related to different developmental programs. Notably, purely relying on sequence data, Imogene performs as well in this discrimination task as a previously reported learning algorithm based on Chromatin Immunoprecipitation (ChIP) data for multiple transcription factors at multiple developmental stages. PMID:24682824

  5. Mutagenesis of GATA motifs controlling the endoderm regulator elt-2 reveals distinct dominant and secondary cis-regulatory elements.

    PubMed

    Du, Lawrence; Tracy, Sharon; Rifkin, Scott A

    2016-04-01

    Cis-regulatory elements (CREs) are crucial links in developmental gene regulatory networks, but in many cases, it can be difficult to discern whether similar CREs are functionally equivalent. We found that despite similar conservation and binding capability to upstream activators, different GATA cis-regulatory motifs within the promoter of the C. elegans endoderm regulator elt-2 play distinctive roles in activating and modulating gene expression throughout development. We fused wild-type and mutant versions of the elt-2 promoter to a gfp reporter and inserted these constructs as single copies into the C. elegans genome. We then counted early embryonic gfp transcripts using single-molecule RNA FISH (smFISH) and quantified gut GFP fluorescence. We determined that a single primary dominant GATA motif located 527bp upstream of the elt-2 start codon was necessary for both embryonic activation and later maintenance of transcription, while nearby secondary GATA motifs played largely subtle roles in modulating postembryonic levels of elt-2. Mutation of the primary activating site increased low-level spatiotemporally ectopic stochastic transcription, indicating that this site acts repressively in non-endoderm cells. Our results reveal that CREs with similar GATA factor binding affinities in close proximity can play very divergent context-dependent roles in regulating the expression of a developmentally critical gene in vivo. PMID:26896592

  6. Transcription Factor Tfe3 Directly Regulates Pgc-1alpha in Muscle

    PubMed Central

    SALMA, NUNCIADA; SONG, JUN S.; ARANY, ZOLTAN; FISHER, DAVID E.

    2015-01-01

    The microphthalmia (MiT) family of transcription factors is an important mediator of metabolism. Family members Mitf and Tfeb directly regulate the expression of the master regulator of metabolism, peroxisome-proliferator activated receptor gamma coactivator-1 alpha (Pgc-1alpha), in melanomas and in the liver, respectively. Pgc-1alpha is enriched in tissues with high oxidative capacity and plays an important role in the regulation of mitochondrial biogenesis and cellular metabolism. In skeletal muscle, Pgc-1alpha affects many aspects of muscle functionally such as endurance, fiber-type switching, and insulin sensitivity. Tfe3 also regulates muscle metabolic genes that enhance insulin sensitivity in skeletal muscle. Tfe3 has not yet been shown to regulate Pgc-1alpha expression. Our results reported here show that Tfe3 directly regulates Pgc-1alpha expression in myotubes. Tfe3 ectopic expression induces Pgc-1alpha, and Tfe3 silencing suppresses Pgc-1alpha expression. This regulation is direct, as shown by Tfe3’s binding to E-boxes on the Pgc-1alpha proximal promoter. We conclude that Tfe3 is a critical transcription factor that regulates Pgc-1alpha gene expression in myotubes. Since Pgc-1alpha coactivates numerous biological programs in diverse tissues, the regulation of its expression by upstream transcription factors such Tfe3 implies potential opportunities for the treatment of diseases where modulation of Pgc-1alpha expression may have important clinical outcomes. PMID:25736533

  7. The MRE11 GAR motif regulates DNA double-strand break processing and ATR activation

    PubMed Central

    Yu, Zhenbao; Vogel, Gillian; Coulombe, Yan; Dubeau, Danielle; Spehalski, Elizabeth; Hébert, Josée; Ferguson, David O; Masson, Jean Yves; Richard, Stéphane

    2012-01-01

    The MRE11/RAD50/NBS1 complex is the primary sensor rapidly recruited to DNA double-strand breaks (DSBs). MRE11 is known to be arginine methylated by PRMT1 within its glycine-arginine-rich (GAR) motif. In this study, we report a mouse knock-in allele of Mre11 that substitutes the arginines with lysines in the GAR motif and generates the MRE11RK protein devoid of methylated arginines. The Mre11RK/RK mice were hypersensitive to γ-irradiation (IR) and the cells from these mice displayed cell cycle checkpoint defects and chromosome instability. Moreover, the Mre11RK/RK MEFs exhibited ATR/CHK1 signaling defects and impairment in the recruitment of RPA and RAD51 to the damaged sites. The MRKRN complex formed and localized to the sites of DNA damage and normally activated the ATM pathway in response to IR. The MRKRN complex exhibited exonuclease and DNA-binding defects in vitro responsible for the impaired DNA end resection and ATR activation observed in vivo in response to IR. Our findings provide genetic evidence for the critical role of the MRE11 GAR motif in DSB repair, and demonstrate a mechanistic link between post-translational modifications at the MRE11 GAR motif and DSB processing, as well as the ATR/CHK1 checkpoint signaling. PMID:21826105

  8. Analysis of T cell antigen receptors of myelin basic protein specific T cells in SJL/J mice demonstrates an alpha chain CDR3 motif associated with encephalitogenic T cells.

    PubMed

    Yamamura, T; Kondo, T; Sakanaka, S; Kozovska, M; Geng, T C; Takahashi, K; Tabira, T

    1994-07-01

    Experimental autoimmune encephalomyelitis (EAE) is an animal autoimmune disease mediated by CD4+ T cells. Analysis of TCR expression revealed that limited TCR elements (V beta 8.2, V alpha 2 or 4) were utilized by myelin basic protein (MBP) specific T cells in mice with H-2u haplotype and Lewis rats. The usage of a particular beta chain complementarity determining region 3 (CDR3) motif has also been shown. However, it remains unclear to what extent these observations can be extrapolated. Here we studied the TCR sequences of MBP 89-101/I-A(s) specific T cell clones derived from SJL/J mice, using the polymerase chain reaction on reverse transcribed mRNA. Although the V beta usage was less restricted than in H-2u mice, they predominantly utilized V beta 17a and expressed LGG or related motifs in the V beta-D beta-J beta junctions. Furthermore, a single alpha chain rearrangement between V alpha 1.1 and J alpha BBM142 with no N region diversity was preferentially used. Concordantly, immunization with a peptide corresponding to the alpha chain CDR3 was found to significantly alter the clinical course of EAE. Comparison of the published TCR junctional regions demonstrates that the CDR3 motifs (LGG in beta chain, CA*R*NY motif in alpha chains) are expressed by other encephalitogenic clones. Notably, the CA*R*NY was conserved in PL/J mice clones that recognize a distinct MBP-MHC determinant. It suggests that an antigen-independent mechanism may contribute to conserving the alpha chain motif. The implications of these observations are discussed. PMID:7524642

  9. Binding motifs in bacterial gene promoters modulate transcriptional effects of global regulators CRP and ArcA

    SciTech Connect

    Leuze, Mike; Karpinets, Tatiana V.; Syed, Mustafa H.; Beliaev, Alex S.; Uberbacher, Edward

    2012-05-30

    Bacterial gene regulation involves transcription factors (TF) that bind to DNA recognition sequences in operon promoters. These recognition sequences, many of which are palindromic, are known as regulatory elements or transcription factor binding sites (TFBS). Some TFs are global regulators that can modulate the expression of hundreds of genes. In this study we examine global regulator half-sites, where a half-site, which we shall call a binding motif (BM), is one half of a palindromic TFBS. We explore the hypothesis that the number of BMs plays an important role in transcriptional regulation, examining empirical data from transcriptional profiling of the CRP and ArcA regulons. We compare the power of BM counts and of full TFBS characteristics to predict induced transcriptional activity. We find that CRP BM counts have a nonlinear effect on CRP-dependent transcriptional activity and predict this activity better than full TFBS quality or location.

  10. Inhibition of GDP/GTP exchange on G alpha subunits by proteins containing G-protein regulatory motifs.

    PubMed

    Natochin, M; Gasimov, K G; Artemyev, N O

    2001-05-01

    A novel Galpha binding consensus sequence, termed G-protein regulatory (GPR) or GoLoco motif, has been identified in a growing number of proteins, which are thought to modulate G-protein signaling. Alternative roles of GPR proteins as nucleotide exchange factors or as GDP dissociation inhibitors for Galpha have been proposed. We investigated the modulation of the GDP/GTP exchange of Gialpha(1), Goalpha, and Gsalpha by three proteins containing GPR motifs (GPR proteins), LGN-585-642, Pcp2, and RapIGAPII-23-131, to elucidate the mechanisms of GPR protein function. The GPR proteins displayed similar patterns of interaction with Gialpha(1) with the following order of affinities: Gialpha(1)GDP > Gialpha(1)GDPAlF(4)(-) > or = Gialpha(1)GTPgammaS. No detectable binding of the GPR proteins to Gsalpha was observed. LGN-585-642, Pcp2, and RapIGAPII-23-131 inhibited the rates of spontaneous GTPgammaS binding and blocked GDP release from Gialpha(1) and Goalpha. The inhibitory effects of the GPR proteins on Gialpha(1) were significantly more potent, indicating that Gi might be a preferred target for these modulators. Our results suggest that GPR proteins are potent GDP dissociation inhibitors for Gialpha-like Galpha subunits in vitro, and in this capacity they may inhibit GPCR/Gi protein signaling in vivo. PMID:11318657

  11. Regulation of α2B-Adrenerigc Receptor Export Trafficking by Specific Motifs

    PubMed Central

    Wu, Guangyu; Davis, Jason E.; Zhang, Maoxiang

    2016-01-01

    Intracellular trafficking and precise targeting to specific locations of G protein-coupled receptors (GPCRs) control the physiological functions of the receptors. Compared to the extensive efforts dedicated to understanding the events involved in the endocytic and recycling pathways, the molecular mechanisms underlying the transport of the GPCR superfamily from the endoplasmic reticulum (ER) through the Golgi to the plasma membrane are relatively less well defined. Over the past years, we have used α2B-adrenergic receptor (α2B-AR) as a model to define the factors that control GPCR export trafficking. In this chapter, we will review specific motifs identified to mediate the export of nascent α2B-AR from the ER and the Golgi and discuss the possible underlying mechanisms. As these motifs are highly conserved among GPCRs, they may provide common mechanisms for export trafficking of these receptors. PMID:26055061

  12. HOXB9 induction of mesenchymal-to-epithelial transition in gastric carcinoma is negatively regulated by its hexapeptide motif

    PubMed Central

    He, Changyu; Zhang, Baogui; Zhang, Jun; Liu, Bingya; Zeng, Naiyan; Zhu, Zhenggang

    2015-01-01

    HOXB9, a transcription factor, plays an important role in development. While HOXB9 has been implicated in tumorigenesis and metastasis, its mechanisms are variable and its role in gastric carcinoma (GC) remains unclear. In the present study, we demonstrated that the expression of HOXB9 decreased in gastric carcinoma and was associated with malignancy and metastasis. Re-expression of HOXB9 in gastric cell lines resulted in the suppression of cell proliferation, migration, and invasion, which was accompanied by the induction of mesenchymal-to-epithelial transition (MET). Comparative sequence analysis and examination of a HOXB9 structural model indicated that three sites might possibly be involved in MET regulation. The in vitro study of HOXB9 mutants showed that these were unable to inhibit MET induction. However, when overexpressing a HOXB9 mutant lacking the hexapeptide motif, a more potent MET induction and tumor suppression was observed compared to that of the wild-type, indicating that the presence of the hexapeptide motif reduced HOXB9 MET induction and tumor suppression activity. Therefore, the results of the present study suggested that HOXB9 is a tumor suppressor in gastric carcinoma, and its activity was controlled by different regulatory mechanisms such as the hexapeptide motif as a “brake” in this case. The results of these regulatory effects could lead to either oncogenic or tumor suppressive roles of HOXB9, depending on the context of the particular type of cancer involved. PMID:26536658

  13. Neural differentiation regulated by biomimetic surfaces presenting motifs of extracellular matrix proteins.

    PubMed

    Cooke, M J; Zahir, T; Phillips, S R; Shah, D S H; Athey, D; Lakey, J H; Shoichet, M S; Przyborski, S A

    2010-06-01

    The interaction between cells and the extracellular matrix (ECM) is essential during development. To elucidate the function of ECM proteins on cell differentiation, we developed biomimetic surfaces that display specific ECM peptide motifs in a controlled manner. Presentation of ECM domains for collagen, fibronectin, and laminin influenced the formation of neurites by differentiating PC12 cells. The effect of these peptide sequences was also tested on the development of adult neural stem/progenitor cells. In this system, collagen I and fibronectin induced the formation of beta-III-tubulin positive cells, whereas collagen IV reduced such differentiation. Biomimetic surfaces composed of multiple peptide types enabled the combinatorial effects of various ECM motifs to be studied. Surfaces displaying combined motifs were often predictable as a result of the synergistic effects of ECM peptides studied in isolation. For example, the additive effects of fibronectin and laminin resulted in greater expression of beta-III-tubulin positive cells, whereas the negative effect of the collagen IV domain was canceled out by coexpression of collagen I. However, simultaneous expression of certain ECM domains was less predictable. These data highlight the complexity of the cellular response to combined ECM signals and the need to study the function of ECM domains individually and in combination. PMID:19653304

  14. Hypomethylation of proximal CpG motif of interleukin-10 promoter regulates its expression in human rheumatoid arthritis

    PubMed Central

    Fu, Li-hong; Ma, Chun-ling; Cong, Bin; Li, Shu-jin; Chen, Hai-ying; Zhang, Jing-ge

    2011-01-01

    Aim: The promoter of human interleukin-10 (IL10), a cytokine crucial for suppressing inflammation and regulating immune responses, contains an interspecies-conserved sequence with CpG motifs. The aim of this study was to investigate whether methylation of CpG motifs could regulate the expression of IL10 in rheumatoid arthritis (RA). Methods: Bioinformatic analysis was conducted to identify the interspecies-conserved sequence in human, macaque and mouse IL10 genes. Peripheral blood mononuclear cells (PBMCs) from 20 RA patients and 20 health controls were collected. The PBMCs from 6 patients were cultured in the presence or absence of 5-azacytidine (5 μmol/L). The mRNA and protein levels of IL10 were examined using RT-PCR and ELISA, respectively. The methylation of CpGs in the IL10 promoter was determined by pyrosequencing. Chromatin immunoprecipitation (ChIP) assays were performed to detect the cyclic AMP response element-binding protein (CREB)-DNA interactions. Results: One interspecies-conserved sequence was found within the IL10 promoter. The upstream CpGs at −408, −387, −385, and −355 bp were hypermethylated in PBMCs from both the RA patients and healthy controls. In contrast, the proximal CpG at −145 was hypomethylated to much more extent in the RA patients than in the healthy controls (P=0.016), which was correlated with higher IL10 mRNA and serum levels. In the 5-azacytidine-treated PBMCs, the CpG motifs were demethylated, and the expression levels of IL10 mRNA and protein was significantly increased. CHIP assays revealed increased phospho-CREB binding to the IL10 promoter. Conclusion: The methylation of the proximal CpGs in the IL10 promoter may regulate gene transcription in RA. PMID:21986577

  15. Opposing Effects of a Tyrosine-Based Sorting Motif and a PDZ-Binding Motif Regulate Human T-Lymphotropic Virus Type 1 Envelope Trafficking▿

    PubMed Central

    Ilinskaya, Anna; Heidecker, Gisela; Derse, David

    2010-01-01

    Human T-lymphotropic virus type 1 (HTLV-1) envelope (Env) glycoprotein mediates binding of the virus to its receptor on the surface of target cells and subsequent fusion of virus and cell membranes. To better understand the mechanisms that control HTLV-1 Env trafficking and activity, we have examined two protein-protein interaction motifs in the cytoplasmic domain of Env. One is the sequence YSLI, which matches the consensus YXXΦ motifs that are known to interact with various adaptor protein complexes; the other is the sequence ESSL at the C terminus of Env, which matches the consensus PDZ-binding motif. We show here that mutations that destroy the YXXΦ motif increased Env expression on the cell surface and increased cell-cell fusion activity. In contrast, mutation of the PDZ-binding motif greatly diminished Env expression in cells, which could be restored to wild-type levels either by mutating the YXXΦ motif or by silencing AP2 and AP3, suggesting that interactions with PDZ proteins oppose an Env degradation pathway mediated by AP2 and AP3. Silencing of the PDZ protein hDlg1 did not affect Env expression, suggesting that hDlg1 is not a binding partner for Env. Substitution of the YSLI sequence in HTLV-1 Env with YXXΦ elements from other cell or virus membrane-spanning proteins resulted in alterations in Env accumulation in cells, incorporation into virions, and virion infectivity. Env variants containing YXXΦ motifs that are predicted to have high-affinity interaction with AP2 accumulated to lower steady-state levels. Interestingly, mutations that destroy the YXXΦ motif resulted in viruses that were not infectious by cell-free or cell-associated routes of infection. Unlike YXXΦ, the function of the PDZ-binding motif manifests itself only in the producer cells; AP2 silencing restored the incorporation of PDZ-deficient Env into virus-like particles (VLPs) and the infectivity of these VLPs to wild-type levels. PMID:20463077

  16. alpha-Ketobutyrate metabolism in perfused rat liver: regulation of alpha-ketobutyrate decarboxylation and effects of alpha-ketobutyrate on pyruvate dehydrogenase

    SciTech Connect

    Lapointe, D.S.; Olson, M.S.

    1985-11-01

    The oxidative decarboxylation and subsequent production of glucose from alpha-ketobutyrate were studied using perfused livers from fasted rats. The production of /sup 14/CO/sub 2/ from alpha-keto-(1-/sup 14/C)butyrate increased monotonically while the production of glucose from alpha-ketobutyrate was biphasic as the perfusate concentration of alpha-ketobutyrate was increased. The biphasic gluconeogenic response using alpha-ketobutyrate as the gluconeogenic precursor was similar to that observed with propionate. The effects of alpha-ketobutyrate infusion on pyruvate decarboxylation were tested and it was found that at low perfusate pyruvate concentrations increasing alpha-ketobutyrate led to increasing inhibition of pyruvate decarboxylation, while at high perfusate pyruvate concentrations an initial inhibition was apparent which did not increase substantially with increasing alpha-ketobutyrate concentrations. The results obtained indicate that the regulation of alpha-ketobutyrate metabolism by oxidative decarboxylation differs significantly from that of pyruvate. In addition, while the rate of gluconeogenesis using alpha-ketobutyrate as a precursor was remarkably similar to that using propionate as a gluconeogenic precursor, the effects of alpha-ketobutyrate on the oxidative decarboxylation of pyruvate were qualitatively different from the effects of propionate on pyruvate metabolism.

  17. The Ig-ITIM superfamily member PECAM-1 regulates the "outside-in" signaling properties of integrin alpha(IIb)beta3 in platelets.

    PubMed

    Wee, Janet L; Jackson, Denise E

    2005-12-01

    Previous studies have implicated the immunoglobulin (Ig)-immunoreceptor tyrosine-based inhibitory motif (ITIM) superfamily member platelet endothelial cell adhesion molecule-1 (PECAM-1) in the regulation of integrin function. While PECAM-1 has been demonstrated to play a role as an inhibitory coreceptor of immunoreceptor tyrosine-based activation motif (ITAM)-associated Fcgamma receptor IIa (FcgammaRIIa) and glycoprotein VI (GPVI)/FcR gamma-chain signaling pathways in platelets, its physiologic role in integrin alpha(IIb)beta3-mediated platelet function is unclear. In this study, we investigate the functional importance of PECAM-1 in murine platelets. Using PECAM-1-deficient mice, we show that the platelets have impaired "outside-in" integrin alpha(IIb)beta3 signaling with impaired platelet spreading on fibrinogen, failure to retract fibrin clots in vitro, and reduced tyrosine phosphorylation of focal adhesion kinase p125 (125FAK) following integrin alpha(IIb)beta3-mediated platelet aggregation. This functional integrin alpha(IIb)beta3 defect could not be attributed to altered expression of integrin alpha(IIb)beta3. PECAM-1-/- platelets displayed normal platelet alpha granule secretion, normal platelet aggregation to protease-activated receptor-4 (PAR-4), adenosine diphosphate (ADP), and calcium ionophore, and static platelet adhesion. In addition, PECAM-1-/- platelets displayed normal "inside-out" integrin alpha(IIb)beta3 signaling properties as demonstrated by normal agonist-induced binding of soluble fluoroscein isothiocyanate (FITC)-fibrinogen, JON/A antibody binding, and increases in cytosolic-free calcium and inositol (1,4,5)P3 triphosphate (IP3) levels. This study provides direct evidence that PECAM-1 is essential for normal integrin alpha(IIb)beta3-mediated platelet function and that disruption of PECAM-1 induced a moderate "outsidein" integrin alpha(IIb)beta3 signaling defect. PMID:16081692

  18. Rim1 and rabphilin-3 bind Rab3-GTP by composite determinants partially related through N-terminal alpha -helix motifs.

    PubMed

    Wang, X; Hu, B; Zimmermann, B; Kilimann, M W

    2001-08-31

    Rim1 is a protein of the presynaptic active zone, the area of the plasma membrane specialized for neurotransmitter exocytosis, and interacts with Rab3, a small GTPase implicated in neurotransmitter vesicle dynamics. Here, we have studied the molecular determinants of Rim1 that are responsible for Rab3 binding, employing surface plasmon resonance and recombinant, bacterially expressed Rab3 and Rim1 proteins. A site that binds GTP- but not GDP-saturated Rab3 was localized to a short alpha-helical sequence near the Rim1 N terminus (amino acids 19-55). Rab3 isoforms A, C, and D were bound with similar affinities (K(d) = 1-2 microm). Low affinity binding of Rab6A-GTP was also observed (K(d) = 16 microm), whereas Rab1B, -5, -7, -8, or -11A did not bind. Adjacent sequences up to amino acid 387, encompassing differentially spliced sequences, the zinc finger module, and the SGAWFF motif of Rim1, did not significantly contribute to the strength or the specificity of Rab3 binding, whereas a point mutation within the helix (R33G) abolished binding. This Rab3 binding site of Rim1 is reminiscent of the N-terminal alpha-helix that is part of the Rab3-binding region of rabphilin-3, and indeed we observed low affinity, specific binding of Rab3A (K(d) on the order of magnitude of 10-100 microm) to this region of rabphilin-3 alone (amino acids 40-88), whereas additional sequences up to amino acid 178 are needed for high affinity Rab3A binding to rabphilin-3 (K(d) = 10-20 nm). In contrast, an N-terminal alpha-helix motif in aczonin, with sequence similarity to the Rab3-binding site of Rim1, did not bind Rab3A, -C, or -D or several other Rab proteins. These results were qualitatively confirmed in pull-down experiments with native, prenylated Rab3 from brain lysate in Triton X-100. Munc13 bound to the zinc finger domain of Rim1 but not to the rabphilin-3 or aczonin zinc fingers. Pull-down experiments from brain lysate in the presence of cholate as detergent detected binding to

  19. Talin-bound NPLY motif recruits integrin-signaling adapters to regulate cell spreading and mechanosensing

    PubMed Central

    Pinon, Perrine; Pärssinen, Jenita; Vazquez, Patricia; Bachmann, Michael; Rahikainen, Rolle; Jacquier, Marie-Claude; Azizi, Latifeh; Määttä, Juha A.; Bastmeyer, Martin; Hytönen, Vesa P.

    2014-01-01

    Integrin-dependent cell adhesion and spreading are critical for morphogenesis, tissue regeneration, and immune defense but also tumor growth. However, the mechanisms that induce integrin-mediated cell spreading and provide mechanosensing on different extracellular matrix conditions are not fully understood. By expressing β3-GFP-integrins with enhanced talin-binding affinity, we experimentally uncoupled integrin activation, clustering, and substrate binding from its function in cell spreading. Mutational analysis revealed Tyr747, located in the first cytoplasmic NPLY747 motif, to induce spreading and paxillin adapter recruitment to substrate- and talin-bound integrins. In addition, integrin-mediated spreading, but not focal adhesion localization, was affected by mutating adjacent sequence motifs known to be involved in kindlin binding. On soft, spreading-repellent fibronectin substrates, high-affinity talin-binding integrins formed adhesions, but normal spreading was only possible with integrins competent to recruit the signaling adapter protein paxillin. This proposes that integrin-dependent cell–matrix adhesion and cell spreading are independently controlled, offering new therapeutic strategies to modify cell behavior in normal and pathological conditions. PMID:24778313

  20. Directional Phosphorylation and Nuclear Transport of the Splicing Factor SRSF1 Is Regulated by an RNA Recognition Motif.

    PubMed

    Serrano, Pedro; Aubol, Brandon E; Keshwani, Malik M; Forli, Stefano; Ma, Chen-Ting; Dutta, Samit K; Geralt, Michael; Wüthrich, Kurt; Adams, Joseph A

    2016-06-01

    Multisite phosphorylation is required for the biological function of serine-arginine (SR) proteins, a family of essential regulators of mRNA splicing. These modifications are catalyzed by serine-arginine protein kinases (SRPKs) that phosphorylate numerous serines in arginine-serine-rich (RS) domains of SR proteins using a directional, C-to-N-terminal mechanism. The present studies explore how SRPKs govern this highly biased phosphorylation reaction and investigate biological roles of the observed directional phosphorylation mechanism. Using NMR spectroscopy with two separately expressed domains of SRSF1, we showed that several residues in the RNA-binding motif 2 interact with the N-terminal region of the RS domain (RS1). These contacts provide a structural framework that balances the activities of SRPK1 and the protein phosphatase PP1, thereby regulating the phosphoryl content of the RS domain. Disruption of the implicated intramolecular RNA-binding motif 2-RS domain interaction impairs both the directional phosphorylation mechanism and the nuclear translocation of SRSF1 demonstrating that the intrinsic phosphorylation bias is obligatory for SR protein biological function. PMID:27091468

  1. Distinct Pathways Regulate Syk Protein Activation Downstream of Immune Tyrosine Activation Motif (ITAM) and hemITAM Receptors in Platelets*

    PubMed Central

    Manne, Bhanu Kanth; Badolia, Rachit; Dangelmaier, Carol; Eble, Johannes A.; Ellmeier, Wilfried; Kahn, Mark; Kunapuli, Satya P.

    2015-01-01

    Tyrosine kinase pathways are known to play an important role in the activation of platelets. In particular, the GPVI and CLEC-2 receptors are known to activate Syk upon tyrosine phosphorylation of an immune tyrosine activation motif (ITAM) and hemITAM, respectively. However, unlike GPVI, the CLEC-2 receptor contains only one tyrosine motif in the intracellular domain. The mechanisms by which this receptor activates Syk are not completely understood. In this study, we identified a novel signaling mechanism in CLEC-2-mediated Syk activation. CLEC-2-mediated, but not GPVI-mediated, platelet activation and Syk phosphorylation were abolished by inhibition of PI3K, which demonstrates that PI3K regulates Syk downstream of CLEC-2. Ibrutinib, a Tec family kinase inhibitor, also completely abolished CLEC-2-mediated aggregation and Syk phosphorylation in human and murine platelets. Furthermore, embryos lacking both Btk and Tec exhibited cutaneous edema associated with blood-filled vessels in a typical lymphatic pattern similar to CLEC-2 or Syk-deficient embryos. Thus, our data show, for the first time, that PI3K and Tec family kinases play a crucial role in the regulation of platelet activation and Syk phosphorylation downstream of the CLEC-2 receptor. PMID:25767114

  2. N-Alpha-Acetyltransferases and Regulation of CFTR Expression

    PubMed Central

    Patrick, Anna E.; Hudson, Henry; Thomas, Philip J.

    2016-01-01

    The majority of cystic fibrosis (CF)-causing mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) lead to the misfolding, mistrafficking, and degradation of the mutant protein. Inhibition of degradation does not effectively increase the amount of trafficking competent CFTR, but typically leads to increased ER retention of misfolded forms. Thus, the initial off pathway steps occur early in the processing of the protein. To identify proteins that interact with these early forms of CFTR, in vitro crosslink experiments identified cotranslational partners of the nascent chain of the severe misfolded mutant, G85E CFTR. The mutant preferentially interacts with a subunit of an N-alpha-acetyltransferase A. Based on recent reports that acetylation of the N-termini of some N-end rule substrates control their ubiquitination and subsequent degradation, a potential role for this modification in regulation of CFTR expression was assessed. Knockdown experiments identified two complexes, which affect G85E CFTR proteins levels, NatA and NatB. Effects of the knockdowns on mRNA levels, translation rates, and degradation rates established that the two complexes regulate G85E CFTR through two separate mechanisms. NatA acts indirectly by regulating transcription levels and NatB acts through a previously identified, but incompletely understood posttranslational mechanism. This regulation did not effect trafficking of G85E CFTR, which remains retained in the ER, nor did it alter the degradation rate of CFTR. A mutation predicted to inhibit N-terminal acetylation of CFTR, Q2P, was without effect, suggesting neither system acts directly on CFTR. These results contradict the prediction that N-terminal acetylation of CFTR determines its fitness as a proteasome substrate, but rather NatB plays a role in the conformational maturation of CFTR in the ER through actions on an unidentified protein. PMID:27182737

  3. N-Alpha-Acetyltransferases and Regulation of CFTR Expression.

    PubMed

    Vetter, Ali J; Karamyshev, Andrey L; Patrick, Anna E; Hudson, Henry; Thomas, Philip J

    2016-01-01

    The majority of cystic fibrosis (CF)-causing mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) lead to the misfolding, mistrafficking, and degradation of the mutant protein. Inhibition of degradation does not effectively increase the amount of trafficking competent CFTR, but typically leads to increased ER retention of misfolded forms. Thus, the initial off pathway steps occur early in the processing of the protein. To identify proteins that interact with these early forms of CFTR, in vitro crosslink experiments identified cotranslational partners of the nascent chain of the severe misfolded mutant, G85E CFTR. The mutant preferentially interacts with a subunit of an N-alpha-acetyltransferase A. Based on recent reports that acetylation of the N-termini of some N-end rule substrates control their ubiquitination and subsequent degradation, a potential role for this modification in regulation of CFTR expression was assessed. Knockdown experiments identified two complexes, which affect G85E CFTR proteins levels, NatA and NatB. Effects of the knockdowns on mRNA levels, translation rates, and degradation rates established that the two complexes regulate G85E CFTR through two separate mechanisms. NatA acts indirectly by regulating transcription levels and NatB acts through a previously identified, but incompletely understood posttranslational mechanism. This regulation did not effect trafficking of G85E CFTR, which remains retained in the ER, nor did it alter the degradation rate of CFTR. A mutation predicted to inhibit N-terminal acetylation of CFTR, Q2P, was without effect, suggesting neither system acts directly on CFTR. These results contradict the prediction that N-terminal acetylation of CFTR determines its fitness as a proteasome substrate, but rather NatB plays a role in the conformational maturation of CFTR in the ER through actions on an unidentified protein. PMID:27182737

  4. Characterization of a conserved C-terminal motif (RSPRR) in ribosomal protein S6 kinase 1 required for its mammalian target of rapamycin-dependent regulation.

    PubMed

    Schalm, Stefanie S; Tee, Andrew R; Blenis, John

    2005-03-25

    The mammalian target of rapamycin, mTOR, is a Ser/Thr kinase that promotes cell growth and proliferation by activating ribosomal protein S6 kinase 1 (S6K1). We previously identified a conserved TOR signaling (TOS) motif in the N terminus of S6K1 that is required for its mTOR-dependent activation. Furthermore, our data suggested that the TOS motif suppresses an inhibitory function associated with the C terminus of S6K1. Here, we have characterized the mTOR-regulated inhibitory region within the C terminus. We have identified a conserved C-terminal "RSPRR" sequence that is responsible for an mTOR-dependent suppression of S6K1 activation. Deletion or mutations within this RSPRR motif partially rescue the kinase activity of the S6K1 TOS motif mutant (S6K1-F5A), and this rescued activity is rapamycin resistant. Furthermore, we have shown that the RSPRR motif significantly suppresses S6K1 phosphorylation at two phosphorylation sites (Thr-389 and Thr-229) that are crucial for S6K1 activation. Importantly, introducing both the Thr-389 phosphomimetic and RSPRR motif mutations into the catalytically inactive S6K1 mutant S6K1-F5A completely rescues its activity and renders it fully rapamycin resistant. These data show that the N-terminal TOS motif suppresses an inhibitory function mediated by the C-terminal RSPRR motif. We propose that the RSPRR motif interacts with a negative regulator of S6K1 that is normally suppressed by mTOR. PMID:15659381

  5. Hepatocyte nuclear factor-3 alpha (HNF-3{alpha}) negatively regulates androgen receptor transactivation in prostate cancer cells

    SciTech Connect

    Lee, Hyun Joo; Hwang, Miok; Chattopadhyay, Soma; Choi, Hueng-Sik; Lee, Keesook

    2008-03-07

    The androgen receptor (AR) is involved in the development and progression of prostate cancers. However, the mechanisms by which this occurs remain incompletely understood. In previous reports, hepatocyte nuclear factor-3{alpha} (HNF-3{alpha}) has been shown to be expressed in the epithelia of the prostate gland, and has been determined to regulate the transcription of prostate-specific genes. In this study, we report that HNF-3{alpha} functions as a novel corepressor of AR in prostatic cells. HNF-3{alpha} represses AR transactivation on target promoters containing the androgen response element (ARE) in a dose-dependent manner. HNF-3{alpha} interacts physically with AR, and negatively regulates AR transactivation via competition with AR coactivators, including GRIP1. Furthermore, HNF-3{alpha} overexpression reduces the androgen-induced expression of prostate-specific antigen (PSA) in LNCaP cells. Taken together, our findings indicate that HNF-3{alpha} is a novel corepressor of AR, and predict its effects on the proliferation of prostate cancer cells.

  6. Expression of POEM, a positive regulator of osteoblast differentiation, is suppressed by TNF-{alpha}

    SciTech Connect

    Tsukasaki, Masayuki; Yamada, Atsushi; Suzuki, Dai; Aizawa, Ryo; Miyazono, Agasa; Miyamoto, Yoichi; Suzawa, Tetsuo; Takami, Masamichi; Yoshimura, Kentaro; Morimura, Naoko; Yamamoto, Matsuo; Kamijo, Ryutaro

    2011-07-15

    Highlights: {yields} TNF-{alpha} inhibits POEM gene expression. {yields} Inhibition of POEM gene expression is caused by NF-{kappa}B activation by TNF-{alpha}. {yields} Over-expression of POEM recovers inhibition of osteoblast differentiation by TNF-{alpha}. -- Abstract: POEM, also known as nephronectin, is an extracellular matrix protein considered to be a positive regulator of osteoblast differentiation. In the present study, we found that tumor necrosis factor-{alpha} (TNF-{alpha}), a key regulator of bone matrix properties and composition that also inhibits terminal osteoblast differentiation, strongly inhibited POEM expression in the mouse osteoblastic cell line MC3T3-E1. TNF-{alpha}-induced down-regulation of POEM gene expression occurred in both time- and dose-dependent manners through the nuclear factor kappa B (NF-{kappa}B) pathway. In addition, expressions of marker genes in differentiated osteoblasts were down-regulated by TNF-{alpha} in a manner consistent with our findings for POEM, while over-expression of POEM recovered TNF-{alpha}-induced inhibition of osteoblast differentiation. These results suggest that TNF-{alpha} inhibits POEM expression through the NF-{kappa}B signaling pathway and down-regulation of POEM influences the inhibition of osteoblast differentiation by TNF-{alpha}.

  7. Distal NF-kB binding motif functions as an enhancer for nontypeable H. influenzae-induced DEFB4 regulation in epithelial cells

    PubMed Central

    Woo, Jeong-Im; Kil, Sung-Hee; Pan, Huiqi; Lee, Yoo Jin; Lim, David J.; Moon, Sung K.

    2014-01-01

    Among the antimicrobial molecules produced by epithelial cells, DEFB4 is inducible in response to proinflammatory signals such as cytokines and bacterial molecules. Nontypeable Haemophilus influenzae (NTHi) is an important human pathogen that exacerbates chronic obstructive pulmonary disease in adult and causes otitis media and sinusitis in children. Previously, we have demonstrated that DEFB4 effectively kills NTHi and is induced by NTHi via TLR2 signaling. The 5′-flanking region of DEFB4 contains several NF-κB binding motifs, but their NTHi-specific activity remains unclear. In this study, we aimed to elucidate molecular mechanism involved in DEFB4 regulation, focusing on the role of the distal NF-κB binding motif of DEFB4 responding to NTHi. Here, we show that the human middle ear epithelial cells up-regulate DEFB4 expression in response to NTHi via NF-κB activation mediated by IκKα/β–IκBα signaling. Deletion of the distal NF-κB binding motif led to a significant reduction in NTHi-induced DEFB4 up-regulation. A heterologous construct containing the distal NF-κB binding motif was found to increase the promoter activity in response to NTHi, indicating a NTHi-responding enhancer activity of the distal NF-κB binding motif. Furthermore, electrophoretic mobility shift assays and chromatin immunoprecipitation assays showed that the p65 domain of NF-κB binds to the distal NF-κB binding motif in response to NTHi. Taken together, our results suggest that NTHi-induced binding of p65 NF-κB to the distal NF-κB binding motif of DEFB4 enhances NTHi-induced DEFB4 regulation in epithelial cells. PMID:24368180

  8. Identification of Promoter Motifs Involved in the Network of Phytochrome A-Regulated Gene Expression by Combined Analysis of Genomic Sequence and Microarray Data1[w

    PubMed Central

    Hudson, Matthew E.; Quail, Peter H.

    2003-01-01

    Several hundred Arabidopsis genes, transcriptionally regulated by phytochrome A (phyA), were previously identified using an oligonucleotide microarray. We have now identified, in silico, conserved sequence motifs in the promoters of these genes by comparing the promoter sequences to those of all the genes present on the microarray from which they were sampled. This was done using a Perl script (called Sift) that identifies over-represented motifs using an enumerative approach. The utility of Sift was verified by analysis of circadian-regulated promoters known to contain a biologically significant motif. Several elements were then identified in phyA-responsive promoters by their over-representation. Five previously undescribed motifs were detected in the promoters of phyA-induced genes. Four novel motifs were found in phyA-repressed promoters, plus a motif that strongly resembles the DE1 element. The G-box, CACGTG, was a prominent hit in both induced and repressed phyA-responsive promoters. Intriguingly, two distinct flanking consensus sequences were observed adjacent to the G-box core sequence: one predominating in phyA-induced promoters, the other in phyA-repressed promoters. Such different conserved flanking nucleotides around the core motif in these two sets of promoters may indicate that different members of the same family of DNA-binding proteins mediate phyA induction and repression. An increased abundance of G-box sequences was observed in the most rapidly phyA-responsive genes and in the promoters of phyA-regulated transcription factors, indicating that G-box-binding transcription factors are upstream components in a transcriptional cascade that mediates phyA-regulated development. PMID:14681527

  9. Role of the PFXFATG[G/Y] Motif in the Activation of SdrG, a Response Regulator Involved in the Alphaproteobacterial General Stress Response.

    PubMed

    Campagne, Sébastien; Dintner, Sebastian; Gottschlich, Lisa; Thibault, Maxence; Bortfeld-Miller, Miriam; Kaczmarczyk, Andreas; Francez-Charlot, Anne; Allain, Frédéric H-T; Vorholt, Julia A

    2016-08-01

    Two-component systems are major signal transduction pathways, which consist of histidine kinases and response regulators that communicate through phosphorylation. Here, we highlight a distinct class of single-domain response regulators containing the PFXFATG[G/Y] motif that are activated by a mechanism distinct from the Y-T coupling described for prototypical receiver domains. We first solved the structures of inactive and active SdrG, a representative of the FAT GUY family, and then biochemically and genetically characterized variants in which residues in this motif were mutated. Our results support a model of activation mainly driven by a conserved lysine and reveal that the rotation of the threonine induces the reorganization of several aromatic residues in and around the PFXFATG[G/Y] motif to generate intermediates resembling those occurring during classical Y-T coupling. Overall, this helps define a new subfamily of response regulators that emerge as important players in physiological adaptation. PMID:27396826

  10. A G-Box-Like Motif Is Necessary for Transcriptional Regulation by Circadian Pseudo-Response Regulators in Arabidopsis1[OPEN

    PubMed Central

    Newton, Linsey; Liu, Ming-Jung

    2016-01-01

    PSEUDO-RESPONSE REGULATORs (PRRs) play overlapping and distinct roles in maintaining circadian rhythms and regulating diverse biological processes, including the photoperiodic control of flowering, growth, and abiotic stress responses. PRRs act as transcriptional repressors and associate with chromatin via their conserved C-terminal CCT (CONSTANS, CONSTANS-like, and TIMING OF CAB EXPRESSION 1 [TOC1/PRR1]) domains by a still-poorly understood mechanism. Here, we identified genome-wide targets of PRR9 using chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq) and compared them with PRR7, PRR5, and TOC1/PRR1 ChIP-seq data. We found that PRR binding sites are located within genomic regions of low nucleosome occupancy and high DNase I hypersensitivity. Moreover, conserved noncoding regions among Brassicaceae species are enriched around PRR binding sites, indicating that PRRs associate with functionally relevant cis-regulatory regions. The PRRs shared a significant number of binding regions, and our results indicate that they coordinately restrict the expression of target genes to around dawn. A G-box-like motif was overrepresented at PRR binding regions, and we showed that this motif is necessary for mediating transcriptional regulation of CIRCADIAN CLOCK ASSOCIATED 1 and PRR9 by the PRRs. Our results further our understanding of how PRRs target specific promoters and provide an extensive resource for studying circadian regulatory networks in plants. PMID:26586835

  11. A Pyranose-2-Phosphate Motif Is Responsible for Both Antibiotic Import and Quorum-Sensing Regulation in Agrobacterium tumefaciens

    PubMed Central

    El Sahili, Abbas; Li, Si-Zhe; Lang, Julien; Virus, Cornelia; Planamente, Sara; Ahmar, Mohammed; Guimaraes, Beatriz G.; Aumont-Nicaise, Magali; Vigouroux, Armelle; Soulère, Laurent; Reader, John; Queneau, Yves; Faure, Denis; Moréra, Solange

    2015-01-01

    Periplasmic binding proteins (PBPs) in association with ABC transporters select and import a wide variety of ligands into bacterial cytoplasm. They can also take up toxic molecules, as observed in the case of the phytopathogen Agrobacterium tumefaciens strain C58. This organism contains a PBP called AccA that mediates the import of the antibiotic agrocin 84, as well as the opine agrocinopine A that acts as both a nutrient and a signalling molecule for the dissemination of virulence genes through quorum-sensing. Here, we characterized the binding mode of AccA using purified agrocin 84 and synthetic agrocinopine A by X-ray crystallography at very high resolution and performed affinity measurements. Structural and affinity analyses revealed that AccA recognizes an uncommon and specific motif, a pyranose-2-phosphate moiety which is present in both imported molecules via the L-arabinopyranose moiety in agrocinopine A and the D-glucopyranose moiety in agrocin 84. We hypothesized that AccA is a gateway allowing the import of any compound possessing a pyranose-2-phosphate motif at one end. This was structurally and functionally confirmed by experiments using four synthetic compounds: agrocinopine 3’-O-benzoate, L-arabinose-2-isopropylphosphate, L-arabinose-2-phosphate and D-glucose-2-phosphate. By combining affinity measurements and in vivo assays, we demonstrated that both L-arabinose-2-phosphate and D-glucose-2-phosphate, which are the AccF mediated degradation products of agrocinopine A and agrocin 84 respectively, interact with the master transcriptional regulator AccR and activate the quorum-sensing signal synthesis and Ti plasmid transfer in A. tumefaciens C58. Our findings shed light on the role of agrocinopine and antibiotic agrocin 84 on quorum-sensing regulation in A. tumefaciens and reveal how the PBP AccA acts as vehicle for the importation of both molecules by means of a key-recognition motif. It also opens future possibilities for the rational design of

  12. The inter-alpha-inhibitor family: from structure to regulation.

    PubMed Central

    Salier, J P; Rouet, P; Raguenez, G; Daveau, M

    1996-01-01

    Inter-alpha-inhibitor (IalphaI) and related molecules, collectively referred to as the IalphaI family, are a group of plasma protease inhibitors. They display attractive features such as precursor polypeptides that give rise to mature chains with quite distinct fates and functions, and inter-chain glycosaminoglycan bonds within the various molecules. The discovery of an ever growing number of such molecules has raised pertinent questions about their pathophysiological functions. The knowledge of this family has long been structure-oriented, whereas the structure/function and structure/regulation relationships of the family members and their genes have been largely ignored. These relationships are now being elucidated in events such as gene transcription, precursor processing, changes in plasma protein levels in health and disease and binding capacities that involve hyaluronan as well as other plasma proteins as ligands. This review presents some recent progress made in these fields that paves the way for an understanding of the functions of IalphaI family members in vivo. Finally, given the wealth of heterogeneous, complicated and sometimes contradictory nomenclatures and acronyms currently in use for this family, a new, uniform, nomenclature is proposed for IalphaI family genes, precursor polypeptides and assembled proteins. PMID:8670091

  13. Alpha-melanocyte-stimulating hormone down-regulates CXC receptors through activation of neutrophil elastase.

    PubMed

    Manna, Sunil K; Sarkar, Abira; Sreenivasan, Yashin

    2006-03-01

    Considering the role of interleukin-8 (IL-8) in a large number of acute and chronic inflammatory diseases, the regulation of IL-8-mediated biological responses is important. Alpha-melanocyte-stimulating hormone (alpha-MSH), a tridecapeptide, inhibits most forms of inflammation by an unknown mechanism. In the present study, we have found that alpha-MSH interacts predominantly with melanocortin-1 receptors and inhibits several IL-8-induced biological responses in macrophages and neutrophils. It down-regulated receptors for IL-8 but not for TNF, IL-4, IL-13 or TNF-related apoptosis-inducing ligand (TRAIL) in neutrophils. It down-regulated CXCR type 1 and 2 but not mRNA levels. alpha-MSH did not inhibit IL-8 binding in purified cell membrane or affinity-purified CXCR. IL-8 or anti-CXCR Ab protected against alpha-MSH-mediated inhibition of IL-8 binding. The level of neutrophil elastase, a specific serine protease, but not cathepsin G or proteinase 3 increased in alpha-MSH-treated cells, and restoration of CXCR by specific neutrophil elastase or serine protease inhibitors indicates the involvement of elastase in alpha-MSH-induced down-regulation of CXCR. These studies suggest that alpha-MSH inhibits IL-8-mediated biological responses by down-regulating CXCR through induction of serine protease and that alpha-MSH acts as a potent immunomodulator in neutrophil-driven inflammatory distress. PMID:16479540

  14. Genome-wide study predicts promoter-G4 DNA motifs regulate selective functions in bacteria: radioresistance of D. radiodurans involves G4 DNA-mediated regulation

    PubMed Central

    Beaume, Nicolas; Pathak, Rajiv; Yadav, Vinod Kumar; Kota, Swathi; Misra, Hari S.; Gautam, Hemant K.; Chowdhury, Shantanu

    2013-01-01

    A remarkable number of guanine-rich sequences with potential to adopt non-canonical secondary structures called G-quadruplexes (or G4 DNA) are found within gene promoters. Despite growing interest, regulatory role of quadruplex DNA motifs in intrinsic cellular function remains poorly understood. Herein, we asked whether occurrence of potential G4 (PG4) DNA in promoters is associated with specific function(s) in bacteria. Using a normalized promoter-PG4-content (PG4P) index we analysed >60 000 promoters in 19 well-annotated species for (a) function class(es) and (b) gene(s) with enriched PG4P. Unexpectedly, PG4-associated functional classes were organism specific, suggesting that PG4 motifs may impart specific function to organisms. As a case study, we analysed radioresistance. Interestingly, unsupervised clustering using PG4P of 21 genes, crucial for radioresistance, grouped three radioresistant microorganisms including Deinococcus radiodurans. Based on these predictions we tested and found that in presence of nanomolar amounts of the intracellular quadruplex-binding ligand N-methyl mesoporphyrin (NMM), radioresistance of D. radiodurans was attenuated by ∼60%. In addition, important components of the RecF recombinational repair pathway recA, recF, recO, recR and recQ genes were found to harbour promoter-PG4 motifs and were also down-regulated in presence of NMM. Together these results provide first evidence that radioresistance may involve G4 DNA-mediated regulation and support the rationale that promoter-PG4s influence selective functions. PMID:23161683

  15. Condensin II Regulates Interphase Chromatin Organization Through the Mrg-Binding Motif of Cap-H2

    PubMed Central

    Wallace, Heather A.; Klebba, Joseph E.; Kusch, Thomas; Rogers, Gregory C.; Bosco, Giovanni

    2015-01-01

    The spatial organization of the genome within the eukaryotic nucleus is a dynamic process that plays a central role in cellular processes such as gene expression, DNA replication, and chromosome segregation. Condensins are conserved multi-subunit protein complexes that contribute to chromosome organization by regulating chromosome compaction and homolog pairing. Previous work in our laboratory has shown that the Cap-H2 subunit of condensin II physically and genetically interacts with the Drosophila homolog of human MORF4-related gene on chromosome 15 (MRG15). Like Cap-H2, Mrg15 is required for interphase chromosome compaction and homolog pairing. However, the mechanism by which Mrg15 and Cap-H2 cooperate to maintain interphase chromatin organization remains unclear. Here, we show that Cap-H2 localizes to interband regions on polytene chromosomes and co-localizes with Mrg15 at regions of active transcription across the genome. We show that co-localization of Cap-H2 on polytene chromosomes is partially dependent on Mrg15. We have identified a binding motif within Cap-H2 that is essential for its interaction with Mrg15, and have found that mutation of this motif results in loss of localization of Cap-H2 on polytene chromosomes and results in partial suppression of Cap-H2-mediated compaction and homolog unpairing. Our data are consistent with a model in which Mrg15 acts as a loading factor to facilitate Cap-H2 binding to chromatin and mediate changes in chromatin organization. PMID:25758823

  16. Characterization of Promoter Motifs Regulated by ECF Sigma Factors of Pseudomonas syringae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pseudomanads are renowned for their capacity to adapt to diverse environments, a fact that is reflected by the proportion of their genomes dedicated to encoding transcription regulators. Members of the Pseudomonas genus include species that are adapted to pathogenic and symbiotic lifestyles in asso...

  17. Identification of novel NRF2-regulated genes by ChIP-Seq: influence on retinoid X receptor alpha

    PubMed Central

    Chorley, Brian N.; Campbell, Michelle R.; Wang, Xuting; Karaca, Mehmet; Sambandan, Deepa; Bangura, Fatu; Xue, Peng; Pi, Jingbo; Kleeberger, Steven R.; Bell, Douglas A.

    2012-01-01

    Cellular oxidative and electrophilic stress triggers a protective response in mammals regulated by NRF2 (nuclear factor (erythroid-derived) 2-like; NFE2L2) binding to deoxyribonucleic acid-regulatory sequences near stress-responsive genes. Studies using Nrf2-deficient mice suggest that hundreds of genes may be regulated by NRF2. To identify human NRF2-regulated genes, we conducted chromatin immunoprecipitation (ChIP)-sequencing experiments in lymphoid cells treated with the dietary isothiocyanate, sulforaphane (SFN) and carried out follow-up biological experiments on candidates. We found 242 high confidence, NRF2-bound genomic regions and 96% of these regions contained NRF2-regulatory sequence motifs. The majority of binding sites were near potential novel members of the NRF2 pathway. Validation of selected candidate genes using parallel ChIP techniques and in NRF2-silenced cell lines indicated that the expression of about two-thirds of the candidates are likely to be directly NRF2-dependent including retinoid X receptor alpha (RXRA). NRF2 regulation of RXRA has implications for response to retinoid treatments and adipogenesis. In mouse, 3T3-L1 cells’ SFN treatment affected Rxra expression early in adipogenesis, and knockdown of Nrf2-delayed Rxra expression, both leading to impaired adipogenesis. PMID:22581777

  18. Role of PDZ Proteins in Regulating Trafficking, Signaling, and Function of GPCRs: Means, Motif, and Opportunity

    PubMed Central

    Romero, Guillermo; von Zastrow, Mark; Friedman, Peter A.

    2016-01-01

    PDZ proteins, named for the common structural domain shared by the postsynaptic density protein (PSD95), Drosophila disc large tumor suppressor (DlgA), and zonula occludens-1 protein (ZO-1), constitute a family of 200–300 recognized members. These cytoplasmic adapter proteins are capable of assembling a variety of membrane-associated proteins and signaling molecules in short-lived functional units. Here, we review PDZ proteins that participate in the regulation of signaling, trafficking, and function of G protein-coupled receptors. Salient structural features of PDZ proteins that allow them to recognize targeted GPCRs are considered. Scaffolding proteins harboring PDZ domains may contain single or multiple PDZ modules and may also include other protein–protein interaction modules. PDZ proteins may impact receptor signaling by diverse mechanisms that include retaining the receptor at the cell membrane, thereby increasing the duration of ligand binding, as well as importantly influencing GPCR internalization, trafficking, recycling, and intracellular sorting. PDZ proteins are also capable of modifying the assembled complex of accessory proteins such as β-arrestins that themselves regulate GPCR signaling. Additionally, PDZ proteins may modulate GPCR signaling by altering the G protein to which the receptor binds, or affect other regulatory proteins that impact GTPase activity, protein kinase A, phospholipase C, or modify downstream signaling events. Small molecules targeting the PDZ protein-GPCR interaction are being developed and may become important and selective drug candidates. PMID:21907913

  19. DNA Repair, Redox Regulation and Modulation of Estrogen Receptor Alpha Mediated Transcription

    ERIC Educational Resources Information Center

    Curtis-Ducey, Carol Dianne

    2009-01-01

    Interaction of estrogen receptor [alpha] (ER[alpha]) with 17[beta]-estradiol (E[subscript 2]) facilitates binding of the receptor to estrogen response elements (EREs) in target genes, which in turn leads to recruitment of coregulatory proteins. To better understand how estrogen-responsive genes are regulated, our laboratory identified a number of…

  20. Cloning of a yeast alpha-amylase promoter and its regulated heterologous expression

    DOEpatents

    Gao, Johnway [Richland, WA; Skeen, Rodney S [Pendleton, OR; Hooker, Brian S [Kennewick, WA; Anderson, Daniel B [Pasco, WA

    2003-04-01

    The present invention provides the promoter clone discovery of an alpha-amylase gene of a starch utilizing yeast strain Schwanniomyces castellii. The isolated alpha-amylase promoter is an inducible promoter, which can regulate strong gene expression in starch culture medium.

  1. Isoform-specific regulation of adipocyte differentiation by Akt/protein kinase B{alpha}

    SciTech Connect

    Yun, Sung-Ji; Kim, Eun-Kyoung; Tucker, David F.; Kim, Chi Dae; Birnbaum, Morris J.; Bae, Sun Sik

    2008-06-20

    The phosphatidylinositol 3-kinase (PI3K)/Akt pathway tightly regulates adipose cell differentiation. Here we show that loss of Akt1/PKB{alpha} in primary mouse embryo fibroblast (MEF) cells results in a defect of adipocyte differentiation. Adipocyte differentiation in vitro and ex vivo was restored in cells lacking both Akt1/PKB{alpha} and Akt2/PKB{beta} by ectopic expression of Akt1/PKB{alpha} but not Akt2/PKB{beta}. Akt1/PKB{alpha} was found to be the major regulator of phosphorylation and nuclear export of FoxO1, whose presence in the nucleus strongly attenuates adipocyte differentiation. Differentiation-induced cell division was significantly abrogated in Akt1/PKB{alpha}-deficient cells, but was restored after forced expression of Akt1/PKB{alpha}. Moreover, expression of p27{sup Kip1}, an inhibitor of the cell cycle, was down regulated in an Akt1/PKB{alpha}-specific manner during adipocyte differentiation. Based on these data, we suggest that the Akt1/PKB{alpha} isoform plays a major role in adipocyte differentiation by regulating FoxO1 and p27{sup Kip1}.

  2. Binding and Transcriptional Regulation by 14-3-3 (Bmh) Proteins Requires Residues Outside of the Canonical Motif

    PubMed Central

    Parua, Pabitra K.

    2014-01-01

    Evolutionarily conserved 14-3-3 proteins have important functions as dimers in numerous cellular signaling processes, including regulation of transcription. Yeast 14-3-3 proteins, known as Bmh, inhibit a post-DNA binding step in transcription activation by Adr1, a glucose-regulated transcription factor, by binding to its regulatory domain, residues 226 to 240. The domain was originally defined by regulatory mutations, ADR1c alleles that alter activator-dependent gene expression. Here, we report that ADR1c alleles and other mutations in the regulatory domain impair Bmh binding and abolish Bmh-dependent regulation both directly and indirectly. The indirect effect is caused by mutations that inhibit phosphorylation of Ser230 and thus inhibit Bmh binding, which requires phosphorylated Ser230. However, several mutations inhibit Bmh binding without inhibiting phosphorylation and thus define residues that provide important interaction sites between Adr1 and Bmh. Our proposed model of the Adr1 regulatory domain bound to Bmh suggests that residues Ser238 and Tyr239 could provide cross-dimer contacts to stabilize the complex and that this might explain the failure of a dimerization-deficient Bmh mutant to bind Adr1 and to inhibit its activity. A bioinformatics analysis of Bmh-interacting proteins suggests that residues outside the canonical 14-3-3 motif might be a general property of Bmh target proteins and might help explain the ability of 14-3-3 to distinguish target and nontarget proteins. Bmh binding to the Adr1 regulatory domain, and its failure to bind when mutations are present, explains at a molecular level the transcriptional phenotype of ADR1c mutants. PMID:24142105

  3. Transcriptional regulation of human retinoic acid receptor-alpha (RAR-{alpha}) by Wilms` tumour gene product

    SciTech Connect

    Goodyer, P.R.; Torban, E.; Dehbi, M.

    1994-09-01

    The Wilms` tumor gene encodes a 47-49 kDa transcription factor expressed in kidney, gonads and mesothelium during embryogenesis. Inherited mutations of WT1 lead to aberrant urogenital development and Wilms` tumor, but the role of WT1 in development is not fully understood. Since the human RAR-{alpha} gene contains a potential WT1 binding site at its 5{prime} end, we studied the effect of WT1 co-transfection on expression of an RAR-{alpha} promoter/CAT reporter construct in COS cells. COS cells were plated at 5X10{sup 5} cells/dish in DMEM with 10% FBS and transfected by the Ca/PO4 method with an expression plasmid containing the full-length WT1 (-/-) cDNA under the control of the CMV promoter, plasmid containing the RAR-{alpha} promoter (-519 to +36)/CAT reporter and TK/growth hormone plasmid to control for efficiency of transfection. CAT/GH activity at 48 hours was inhibited by co-transfection with increasing amounts of WT1 (-/-); maximum inhibition = 5% of control. WT1 co-transfection did not affect expression of TKGH, nor of a CMV-CAT vector. Expression of WT1 protein in tranfected COS cells was demonstrated by Western blotting. Minimal inhibiton of RAR-{alpha}/CAT activity was seen when cells were co-transfected with vectors containing WT1 deletion mutants, alternate WT1 splicing variants, or WT1 (-/-) cDNA bearing a mutation identified in a patient with Drash syndrome. Gel shift assays indicated binding of WT1 to RAR-{alpha} cDNA but not to an RAR-{alpha} deletion mutant lacking the GCGGGGGGCG site. These observations suggest that WT1 may function to regulate RAR-{alpha} expression during normal development.

  4. Drosophila EYA regulates the immune response against DNA through an evolutionarily conserved threonine phosphatase motif.

    PubMed

    Liu, Xi; Sano, Teruyuki; Guan, Yongsheng; Nagata, Shigekazu; Hoffmann, Jules A; Fukuyama, Hidehiro

    2012-01-01

    Innate immune responses against DNA are essential to counter both pathogen infections and tissue damages. Mammalian EYAs were recently shown to play a role in regulating the innate immune responses against DNA. Here, we demonstrate that the unique Drosophila eya gene is also involved in the response specific to DNA. Haploinsufficiency of eya in mutants deficient for lysosomal DNase activity (DNaseII) reduces antimicrobial peptide gene expression, a hallmark for immune responses in flies. Like the mammalian orthologues, Drosophila EYA features a N-terminal threonine and C-terminal tyrosine phosphatase domain. Through the generation of a series of mutant EYA fly strains, we show that the threonine phosphatase domain, but not the tyrosine phosphatase domain, is responsible for the innate immune response against DNA. A similar role for the threonine phosphatase domain in mammalian EYA4 had been surmised on the basis of in vitro studies. Furthermore EYA associates with IKKβ and full-length RELISH, and the induction of the IMD pathway-dependent antimicrobial peptide gene is independent of SO. Our data provide the first in vivo demonstration for the immune function of EYA and point to their conserved immune function in response to endogenous DNA, throughout evolution. PMID:22916150

  5. Crystal Structure of the N-Terminal RNA Recognition Motif of mRNA Decay Regulator AUF1.

    PubMed

    Choi, Young Jun; Yoon, Je-Hyun; Chang, Jeong Ho

    2016-01-01

    AU-rich element binding/degradation factor 1 (AUF1) plays a role in destabilizing mRNAs by forming complexes with AU-rich elements (ARE) in the 3'-untranslated regions. Multiple AUF1-ARE complexes regulate the translation of encoded products related to the cell cycle, apoptosis, and inflammation. AUF1 contains two tandem RNA recognition motifs (RRM) and a Gln- (Q-) rich domain in their C-terminal region. To observe how the two RRMs are involved in recognizing ARE, we obtained the AUF1-p37 protein covering the two RRMs. However, only N-terminal RRM (RRM1) was crystallized and its structure was determined at 1.7 Å resolution. It appears that the RRM1 and RRM2 separated before crystallization. To demonstrate which factors affect the separate RRM1-2, we performed limited proteolysis using trypsin. The results indicated that the intact proteins were cleaved by unknown proteases that were associated with them prior to crystallization. In comparison with each of the monomers, the conformations of the β2-β3 loops were highly variable. Furthermore, a comparison with the RRM1-2 structures of HuR and hnRNP A1 revealed that a dimer of RRM1 could be one of the possible conformations of RRM1-2. Our data may provide a guidance for further structural investigations of AUF1 tandem RRM repeat and its mode of ARE binding. PMID:27437398

  6. IQ Motif-Containing GTPase-Activating Protein 2 (IQGAP2) Is a Novel Regulator of Colonic Inflammation in Mice

    PubMed Central

    Ghaleb, Amr M.; Bialkowska, Agnieszka B.; Snider, Ashley J.; Gnatenko, Dmitri V.; Hannun, Yusuf A.; Yang, Vincent W.; Schmidt, Valentina A.

    2015-01-01

    IQ motif-containing GTPase-activating protein 2 (IQGAP2) is a multidomain scaffolding protein that plays a role in cytoskeleton regulation by juxtaposing Rho GTPase and Ca2+/calmodulin signals. While IQGAP2 suppresses tumorigenesis in liver, its role in pathophysiology of the gastrointestinal tract remains unexplored. Here we report that IQGAP2 is required for the inflammatory response in colon. Mice lacking Iqgap2 gene (Iqgap2-/- mice) were resistant to chemically-induced colitis. Unlike wild-type controls, Iqgap2-/- mice treated with 3% dextran sulfate sodium (DSS) in water for 13 days displayed no injury to colonic epithelium. Mechanistically, resistance to colitis was associated with suppression of colonic NF-κB signaling and IL-6 synthesis, along with diminished neutrophil and macrophage production and recruitment in Iqgap2-/- mice. Finally, alterations in IQGAP2 expression were found in colons of patients with inflammatory bowel disease (IBD). Our findings indicate that IQGAP2 promotes inflammatory response at two distinct levels; locally, in colonic epithelium through TLR4/NF-κB signaling pathway, and systemically, via control of maturation and recruitment of myeloid immune cells. This work identifies a novel mechanism of colonic inflammation mediated by signal transducing scaffolding protein IQGAP2. IQGAP2 domain-specific blocking agents may represent a conceptually novel strategy for therapy of IBD and other inflammation-associated disorders, including cancer. PMID:26047140

  7. The quorum-sensing regulator ComA from Bacillus subtilis activates transcription using topologically distinct DNA motifs

    PubMed Central

    Wolf, Diana; Rippa, Valentina; Mobarec, Juan Carlos; Sauer, Patricia; Adlung, Lorenz; Kolb, Peter; Bischofs, Ilka B.

    2016-01-01

    ComA-like transcription factors regulate the quorum response in numerous Gram-positive bacteria. ComA proteins belong to the tetrahelical helix-turn-helix superfamily of transcriptional activators, which bind as homodimers to inverted sequence repeats in the DNA. Here, we report that ComA from Bacillus subtilis recognizes a topologically distinct motif, in which the binding elements form a direct repeat. We provide in vitro and in vivo evidence that the canonical and non-canonical site play an important role in facilitating type I and type II promoter activation, respectively, by interacting with different subunits of RNA polymerase. We furthermore show that there is a variety of contexts in which the non-canonical site can occur and identify new direct target genes that are located within the integrative and conjugative element ICEBs1. We therefore suggest that ComA acts as a multifunctional transcriptional activator and provides a striking example for complexity in protein–DNA interactions that evolved in the context of quorum sensing. PMID:26582911

  8. Crystal Structure of the N-Terminal RNA Recognition Motif of mRNA Decay Regulator AUF1

    PubMed Central

    Choi, Young Jun

    2016-01-01

    AU-rich element binding/degradation factor 1 (AUF1) plays a role in destabilizing mRNAs by forming complexes with AU-rich elements (ARE) in the 3′-untranslated regions. Multiple AUF1-ARE complexes regulate the translation of encoded products related to the cell cycle, apoptosis, and inflammation. AUF1 contains two tandem RNA recognition motifs (RRM) and a Gln- (Q-) rich domain in their C-terminal region. To observe how the two RRMs are involved in recognizing ARE, we obtained the AUF1-p37 protein covering the two RRMs. However, only N-terminal RRM (RRM1) was crystallized and its structure was determined at 1.7 Å resolution. It appears that the RRM1 and RRM2 separated before crystallization. To demonstrate which factors affect the separate RRM1-2, we performed limited proteolysis using trypsin. The results indicated that the intact proteins were cleaved by unknown proteases that were associated with them prior to crystallization. In comparison with each of the monomers, the conformations of the β2-β3 loops were highly variable. Furthermore, a comparison with the RRM1-2 structures of HuR and hnRNP A1 revealed that a dimer of RRM1 could be one of the possible conformations of RRM1-2. Our data may provide a guidance for further structural investigations of AUF1 tandem RRM repeat and its mode of ARE binding. PMID:27437398

  9. The quorum-sensing regulator ComA from Bacillus subtilis activates transcription using topologically distinct DNA motifs.

    PubMed

    Wolf, Diana; Rippa, Valentina; Mobarec, Juan Carlos; Sauer, Patricia; Adlung, Lorenz; Kolb, Peter; Bischofs, Ilka B

    2016-03-18

    ComA-like transcription factors regulate the quorum response in numerous Gram-positive bacteria. ComA proteins belong to the tetrahelical helix-turn-helix superfamily of transcriptional activators, which bind as homodimers to inverted sequence repeats in the DNA. Here, we report that ComA from Bacillus subtilis recognizes a topologically distinct motif, in which the binding elements form a direct repeat. We provide in vitro and in vivo evidence that the canonical and non-canonical site play an important role in facilitating type I and type II promoter activation, respectively, by interacting with different subunits of RNA polymerase. We furthermore show that there is a variety of contexts in which the non-canonical site can occur and identify new direct target genes that are located within the integrative and conjugative element ICEBs1. We therefore suggest that ComA acts as a multifunctional transcriptional activator and provides a striking example for complexity in protein-DNA interactions that evolved in the context of quorum sensing. PMID:26582911

  10. PPAR{alpha} is a key regulator of hepatic FGF21

    SciTech Connect

    Lundasen, Thomas; Hunt, Mary C.; Nilsson, Lisa-Mari; Sanyal, Sabyasachi; Angelin, Bo; Alexson, Stefan E.H.; Rudling, Mats . E-mail: mats.rudling@cnt.ki.se

    2007-08-24

    The metabolic regulator fibroblast growth factor 21 (FGF21) has antidiabetic properties in animal models of diabetes and obesity. Using quantitative RT-PCR, we here show that the hepatic gene expression of FGF21 is regulated by the peroxisome proliferator-activated receptor alpha (PPAR{alpha}). Fasting or treatment of mice with the PPAR{alpha} agonist Wy-14,643 induced FGF21 mRNA by 10-fold and 8-fold, respectively. In contrast, FGF21 mRNA was low in PPAR{alpha} deficient mice, and fasting or treatment with Wy-14,643 did not induce FGF21. Obese ob/ob mice, known to have increased PPAR{alpha} levels, displayed 12-fold increased hepatic FGF21 mRNA levels. The potential importance of PPAR{alpha} for FGF21 expression also in human liver was shown by Wy-14,643 induction of FGF21 mRNA in human primary hepatocytes, and PPAR{alpha} response elements were identified in both the human and mouse FGF21 promoters. Further studies on the mechanisms of regulation of FGF21 by PPAR{alpha} in humans will be of great interest.

  11. Integrin {alpha}{beta}1, {alpha}{sub v}{beta}, {alpha}{sub 6}{beta} effectors p130Cas, Src and talin regulate carcinoma invasion and chemoresistance

    SciTech Connect

    Sansing, Hope A.; Sarkeshik, Ali; Yates, John R.; Patel, Vyomesh; Gutkind, J. Silvio; Yamada, Kenneth M.; Berrier, Allison L.

    2011-03-11

    Research highlights: {yields} Proteomics of clustered integrin {alpha}{beta}1, {alpha}{sub v}{beta}, {alpha}{sub 6}{beta} receptors in oral carcinoma. {yields} p130Cas, Dek, Src and talin regulate oral carcinoma invasion. {yields} p130Cas, talin, Src and zyxin regulate oral carcinoma resistance to cisplatin. -- Abstract: Ligand engagement by integrins induces receptor clustering and formation of complexes at the integrin cytoplasmic face that controls cell signaling and cytoskeletal dynamics critical for adhesion-dependent processes. This study searches for a subset of integrin effectors that coordinates both tumor cell invasion and resistance to the chemotherapeutic drug cisplatin in oral carcinomas. Candidate integrin effectors were identified in a proteomics screen of proteins recruited to clustered integrin {alpha}{beta}1, {alpha}{sub v}{beta} or {alpha}{sub 6}{beta} receptors in oral carcinomas. Proteins with diverse functions including microtubule and actin binding proteins, and factors involved in trafficking, transcription and translation were identified in oral carcinoma integrin complexes. Knockdown of effectors in the oral carcinoma HN12 cells revealed that p130Cas, Dek, Src and talin were required for invasion through Matrigel. Disruption of talin or p130Cas by RNA interference increased resistance to cisplatin, whereas targeting Dek, Src or zyxin reduced HN12 resistance to cisplatin. Analysis of the spreading of HN12 cells on collagen I and laminin I revealed that a decrease in p130Cas or talin expression inhibited spreading on both matrices. Interestingly, a reduction in zyxin expression enhanced spreading on laminin I and inhibited spreading on collagen I. Reduction of Dek, Src, talin or zyxin expression reduced HN12 proliferation by 30%. Proliferation was not affected by a reduction in p130Cas expression. We conclude that p130Cas, Src and talin function in both oral carcinoma invasion and resistance to cisplatin.

  12. c-Ha-ras down regulates the alpha-fetoprotein gene but not the albumin gene in human hepatoma cells.

    PubMed Central

    Nakao, K; Lawless, D; Ohe, Y; Miyao, Y; Nakabayashi, H; Kamiya, H; Miura, K; Ohtsuka, E; Tamaoki, T

    1990-01-01

    We studied the effects of transfection of the normal c-Ha-ras gene, rasGly-12, and its oncogenic mutant, rasVal-12, on expression of the alpha-fetoprotein (AFP) and albumin genes in a human hepatoma cell line, HuH-7. The mutant and, to a lesser extent, the normal ras gene caused reduction of the AFP mRNA but not the albumin mRNA level in transfected HuH-7 cells. Cotransfection experiments with a rasVal-12 expression plasmid and a chloramphenicol acetyltransferase reporter gene fused to AFP regulatory sequences showed that rasVal-12 suppressed the activity of enhancer and promoter regions containing A + T-rich sequences (AT motif). In contrast, rasVal-12 did not affect the promoter activity of the albumin and human hepatitis B virus pre-S1 genes even though these promoters contain homologous A + T-rich elements. ras transfection appeared to induce phosphorylation of nuclear proteins that interact with the AFP AT motif, since gel mobility analysis revealed the formation of slow-moving complexes which was reversed by phosphatase treatment. However, similar changes in complex formation were observed with the albumin and hepatitis B surface antigen pre-S1 promoters. Therefore, this effect alone cannot explain the specific down regulation of the AFP promoter and enhancer activity. ras-mediated suppression of the AFP gene may reflect the process of developmental gene regulation in which AFP gene transcription is controlled by a G-protein-linked signal transduction cascade triggered by external growth stimuli. Images PMID:1690841

  13. Juvenile hormone regulates Aedes aegypti Krüppel homolog 1 through a conserved E box motif.

    PubMed

    Cui, Yingjun; Sui, Yipeng; Xu, Jingjing; Zhu, Fang; Palli, Subba Reddy

    2014-09-01

    Juvenile hormone (JH) plays important roles in regulation of many physiological processes including development, reproduction and metabolism in insects. However, the molecular mechanisms of JH signaling pathway are not completely understood. To elucidate the molecular mechanisms of JH regulation of Krüppel homolog 1 gene (Kr-h1) in Aedes aegypti, we employed JH-sensitive Aag-2 cells developed from the embryos of this insect. In Aag-2 cells, AaKr-h1 gene is induced by nanomolar concentration of JH III, its expression peaked at 1.5 h after treatment with JH III. RNAi studies showed that JH induction of this gene requires the presence of Ae. aegypti methoprene-tolerant (AaMet). A conserved 13 nucleotide JH response element (JHRE, TGCCTCCACGTGC) containing canonical E box motif (underlined) identified in the promoter of AaKr-h1 is required for JH induction of this gene. Critical nucleotides in the JHRE required for JH action were identified by employing mutagenesis and reporter assays. Reporter assays also showed that basic helix loop helix (bHLH) domain of AaMet is required for JH induction of AaKr-h1. 5' rapid amplification of cDNA ends method identified two isoforms of AaKr-h1, AaKr-h1α and AaKr-h1β, the expression of both isoforms is induced by JH III, but AaKr-h1α is the predominant isoform in both Aag-2 cells and Ae. aegypti larvae. PMID:24931431

  14. Chemokine (C-X-C Motif) Receptor 4 and Atypical Chemokine Receptor 3 Regulate Vascular α1-Adrenergic Receptor Function

    PubMed Central

    Bach, Harold H; Wong, Yee M; Tripathi, Abhishek; Nevins, Amanda M; Gamelli, Richard L; Volkman, Brian F; Byron, Kenneth L; Majetschak, Matthias

    2014-01-01

    Chemokine (C-X-C motif) receptor (CXCR) 4 and atypical chemokine receptor (ACKR) 3 ligands have been reported to modulate cardiovascular function in various disease models. The underlying mechanisms, however, remain unknown. Thus, it was the aim of the present study to determine how pharmacological modulation of CXCR4 and ACKR3 regulate cardiovascular function. In vivo administration of TC14012, a CXCR4 antagonist and ACKR3 agonist, caused cardiovascular collapse in normal animals. During the cardiovascular stress response to hemorrhagic shock, ubiquitin, a CXCR4 agonist, stabilized blood pressure, whereas coactivation of CXCR4 and ACKR3 with CXC chemokine ligand 12 (CXCL12), or blockade of CXCR4 with AMD3100 showed opposite effects. While CXCR4 and ACKR3 ligands did not affect myocardial function, they selectively altered vascular reactivity upon α1-adrenergic receptor (AR) activation in pressure myography experiments. CXCR4 activation with ubiquitin enhanced α1-AR-mediated vasoconstriction, whereas ACKR3 activation with various natural and synthetic ligands antagonized α1-AR-mediated vasoconstriction. The opposing effects of CXCR4 and ACKR3 activation by CXCL12 could be dissected pharmacologically. CXCR4 and ACKR3 ligands did not affect vasoconstriction upon activation of voltage-operated Ca2+ channels or endothelin receptors. Effects of CXCR4 and ACKR3 agonists on vascular α1-AR responsiveness were independent of the endothelium. These findings suggest that CXCR4 and ACKR3 modulate α1-AR reactivity in vascular smooth muscle and regulate hemodynamics in normal and pathological conditions. Our observations point toward CXCR4 and ACKR3 as new pharmacological targets to control vasoreactivity and blood pressure. PMID:25032954

  15. A PDZ-Like Motif in the Biliary Transporter ABCB4 Interacts with the Scaffold Protein EBP50 and Regulates ABCB4 Cell Surface Expression.

    PubMed

    Venot, Quitterie; Delaunay, Jean-Louis; Fouassier, Laura; Delautier, Danièle; Falguières, Thomas; Housset, Chantal; Maurice, Michèle; Aït-Slimane, Tounsia

    2016-01-01

    ABCB4/MDR3, a member of the ABC superfamily, is an ATP-dependent phosphatidylcholine translocator expressed at the canalicular membrane of hepatocytes. Defects in the ABCB4 gene are associated with rare biliary diseases. It is essential to understand the mechanisms of its canalicular membrane expression in particular for the development of new therapies. The stability of several ABC transporters is regulated through their binding to PDZ (PSD95/DglA/ZO-1) domain-containing proteins. ABCB4 protein ends by the sequence glutamine-asparagine-leucine (QNL), which shows some similarity to PDZ-binding motifs. The aim of our study was to assess the potential role of the QNL motif on the surface expression of ABCB4 and to determine if PDZ domain-containing proteins are involved. We found that truncation of the QNL motif decreased the stability of ABCB4 in HepG2-transfected cells. The deleted mutant ABCB4-ΔQNL also displayed accelerated endocytosis. EBP50, a PDZ protein highly expressed in the liver, strongly colocalized and coimmunoprecipitated with ABCB4, and this interaction required the QNL motif. Down-regulation of EBP50 by siRNA or by expression of an EBP50 dominant-negative mutant caused a significant decrease in the level of ABCB4 protein expression, and in the amount of ABCB4 localized at the canalicular membrane. Interaction of ABCB4 with EBP50 through its PDZ-like motif plays a critical role in the regulation of ABCB4 expression and stability at the canalicular plasma membrane. PMID:26789121

  16. A PDZ-Like Motif in the Biliary Transporter ABCB4 Interacts with the Scaffold Protein EBP50 and Regulates ABCB4 Cell Surface Expression

    PubMed Central

    Venot, Quitterie; Delaunay, Jean-Louis; Fouassier, Laura; Delautier, Danièle; Falguières, Thomas; Housset, Chantal; Maurice, Michèle; Aït-Slimane, Tounsia

    2016-01-01

    ABCB4/MDR3, a member of the ABC superfamily, is an ATP-dependent phosphatidylcholine translocator expressed at the canalicular membrane of hepatocytes. Defects in the ABCB4 gene are associated with rare biliary diseases. It is essential to understand the mechanisms of its canalicular membrane expression in particular for the development of new therapies. The stability of several ABC transporters is regulated through their binding to PDZ (PSD95/DglA/ZO-1) domain-containing proteins. ABCB4 protein ends by the sequence glutamine-asparagine-leucine (QNL), which shows some similarity to PDZ-binding motifs. The aim of our study was to assess the potential role of the QNL motif on the surface expression of ABCB4 and to determine if PDZ domain-containing proteins are involved. We found that truncation of the QNL motif decreased the stability of ABCB4 in HepG2-transfected cells. The deleted mutant ABCB4-ΔQNL also displayed accelerated endocytosis. EBP50, a PDZ protein highly expressed in the liver, strongly colocalized and coimmunoprecipitated with ABCB4, and this interaction required the QNL motif. Down-regulation of EBP50 by siRNA or by expression of an EBP50 dominant-negative mutant caused a significant decrease in the level of ABCB4 protein expression, and in the amount of ABCB4 localized at the canalicular membrane. Interaction of ABCB4 with EBP50 through its PDZ-like motif plays a critical role in the regulation of ABCB4 expression and stability at the canalicular plasma membrane. PMID:26789121

  17. Integrin Engagement by the Helical RGD Motif of the Helicobacter pylori CagL Protein Is Regulated by pH-induced Displacement of a Neighboring Helix*

    PubMed Central

    Bonsor, Daniel A.; Pham, Kieu T.; Beadenkopf, Robert; Diederichs, Kay; Haas, Rainer; Beckett, Dorothy; Fischer, Wolfgang; Sundberg, Eric J.

    2015-01-01

    Arginine-aspartate-glycine (RGD) motifs are recognized by integrins to bridge cells to one another and the extracellular matrix. RGD motifs typically reside in exposed loop conformations. X-ray crystal structures of the Helicobacter pylori protein CagL revealed that RGD motifs can also exist in helical regions of proteins. Interactions between CagL and host gastric epithelial cell via integrins are required for the translocation of the bacterial oncoprotein CagA. Here, we have investigated the molecular basis of the CagL-host cell interactions using structural, biophysical, and functional analyses. We solved an x-ray crystal structure of CagL that revealed conformational changes induced by low pH not present in previous structures. Using analytical ultracentrifugation, we found that pH-induced conformational changes in CagL occur in solution and not just in the crystalline environment. By designing numerous CagL mutants based on all available crystal structures, we probed the functional roles of CagL conformational changes on cell surface integrin engagement. Together, our data indicate that the helical RGD motif in CagL is buried by a neighboring helix at low pH to inhibit CagL binding to integrin, whereas at neutral pH the neighboring helix is displaced to allow integrin access to the CagL RGD motif. This novel molecular mechanism of regulating integrin-RGD motif interactions by changes in the chemical environment provides new insight to H. pylori-mediated oncogenesis. PMID:25837254

  18. Ginsenoside Rf, a component of ginseng, regulates lipoprotein metabolism through peroxisome proliferator-activated receptor {alpha}

    SciTech Connect

    Lee, Hyunghee; Gonzalez, Frank J.; Yoon, Michung . E-mail: yoon60@mokwon.ac.kr

    2006-01-06

    We investigated whether ginseng regulates lipoprotein metabolism by altering peroxisome proliferator-activated receptor {alpha} (PPAR{alpha})-mediated pathways, using a PPAR{alpha}-null mouse model. Administration of ginseng extract, ginsenosides, and ginsenoside Rf (Rf) to wild-type mice not only significantly increased basal levels of hepatic apolipoprotein (apo) A-I and C-III mRNA compared with wild-type controls, but also substantially reversed the reductions in mRNA levels of apo A-I and C-III expected following treatment with the potent PPAR{alpha} ligand Wy14,643. In contrast, no effect was detected in the PPAR{alpha}-null mice. Testing of eight main ginsenosides on PPAR{alpha} reporter gene expression indicated that Rf was responsible for the effects of ginseng on lipoprotein metabolism. Furthermore, the inhibition of PPAR{alpha}-dependent transactivation by Rf seems to occur at the level of DNA binding. These results demonstrate that ginseng component Rf regulates apo A-I and C-III mRNA and the actions of Rf on lipoprotein metabolism are mediated via interactions with PPAR{alpha}.

  19. AMPA receptors serum-dependently mediate GABAA receptor alpha1 and alpha6 subunit down-regulation in cultured mouse cerebellar granule cells.

    PubMed

    Uusi-Oukari, Mikko; Kontturi, Leena-Stiina; Kallinen, Sampsa A; Salonen, Virpi

    2010-04-01

    Depolarization of cultured mouse cerebellar granule cells with potassium or kainate results in developmentally arrested state that includes down-regulation of GABA(A) receptor alpha1, alpha6 and beta2 subunit expression. These subunits are normally strongly expressed in cerebellar granule cells from second postnatal week throughout the adulthood. In the present study we demonstrate that selective activation of AMPA subtype of glutamate receptors down-regulates alpha1 and alpha6 subunit mRNA expression. Removal of AMPA agonist from culture medium restores expression of these subunits indicating reversibility of the down-regulation. In serum-free culture medium AMPA receptor activation did not down-regulate alpha1 or alpha6 subunit expression. Furthermore, the down-regulation was strongly attenuated when the cells were cultured in the presence of dialysed fetal calf serum. The results indicate that down-regulation of GABA(A) receptor alpha1 and alpha6 subunits by AMPA receptor activation is dependent on the presence of low molecular weight compounds present in fetal calf serum. In order to study mouse cerebellar granule cell maturation and/or regulation of GABA(A) receptor subunit expression in culture, the experiments should be performed in the absence of fetal calf serum. PMID:20170697

  20. Tumor necrosis factor alpha regulates in vivo intrapulmonary expression of ICAM-1.

    PubMed Central

    Mulligan, M. S.; Vaporciyan, A. A.; Miyasaka, M.; Tamatani, T.; Ward, P. A.

    1993-01-01

    Lung injury following deposition of IgG immune complexes is neutrophil-dependent and requires both tumor necrosis factor alpha (TNF alpha) and CD18. In the current studies, we have evaluated the relationship between TNF alpha and expression of intracellular adhesion molecule-1 (ICAM-1) in vitro and in vivo. In both rat pulmonary artery endothelial cells and human umbilical vein endothelial cells, TNF alpha induced an early (within 60 minutes) increase in ICAM-1 expression, followed by a peak at 6 to 8 hours, with relatively stable expression at 24 hours. Expression of E-selectin did not show the early phase (within 60 minutes) of up-regulation, peaked at 4 hours, and then declined thereafter. Using a radioimmunochemical assay in vivo, it was demonstrated that intrapulmonary deposition of IgG immune complexes caused a progressive increase in ICAM-1 expression in lung over an 8-hour period. In animals pretreated with antibody to TNF alpha, the intrapulmonary expression of ICAM-1 was significantly reduced. These results were confirmed by immunoperoxidase analysis of lung tissue. It was also shown that airway instillation of TNF alpha caused up-regulation of ICAM-1 in lung. These data support the concept that deposition of IgG immune complexes in lung induces intrapulmonary up-regulation of ICAM-1 in a manner that is TNF alpha-dependent. Images Figure 2 Figure 7 PMID:7685152

  1. [Prediction of Promoter Motifs in Virophages].

    PubMed

    Gong, Chaowen; Zhou, Xuewen; Pan, Yingjie; Wang, Yongjie

    2015-07-01

    Virophages have crucial roles in ecosystems and are the transport vectors of genetic materials. To shed light on regulation and control mechanisms in virophage--host systems as well as evolution between virophages and their hosts, the promoter motifs of virophages were predicted on the upstream regions of start codons using an analytical tool for prediction of promoter motifs: Multiple EM for Motif Elicitation. Seventeen potential promoter motifs were identified based on the E-value, location, number and length of promoters in genomes. Sputnik and zamilon motif 2 with AT-rich regions were distributed widely on genomes, suggesting that these motifs may be associated with regulation of the expression of various genes. Motifs containing the TCTA box were predicted to be late promoter motif in mavirus; motifs containing the ATCT box were the potential late promoter motif in the Ace Lake mavirus . AT-rich regions were identified on motif 2 in the Organic Lake virophage, motif 3 in Yellowstone Lake virophage (YSLV)1 and 2, motif 1 in YSLV3, and motif 1 and 2 in YSLV4, respectively. AT-rich regions were distributed widely on the genomes of virophages. All of these motifs may be promoter motifs of virophages. Our results provide insights into further exploration of temporal expression of genes in virophages as well as associations between virophages and giant viruses. PMID:26524912

  2. Hydrophobic motif site-phosphorylated protein kinase CβII between mTORC2 and Akt regulates high glucose-induced mesangial cell hypertrophy.

    PubMed

    Das, Falguni; Ghosh-Choudhury, Nandini; Mariappan, Meenalakshmi M; Kasinath, Balakuntalam S; Choudhury, Goutam Ghosh

    2016-04-01

    PKCβII controls the pathologic features of diabetic nephropathy, including glomerular mesangial cell hypertrophy. PKCβII contains the COOH-terminal hydrophobic motif site Ser-660. Whether this hydrophobic motif phosphorylation contributes to high glucose-induced mesangial cell hypertrophy has not been determined. Here we show that, in mesangial cells, high glucose increased phosphorylation of PKCβII at Ser-660 in a phosphatidylinositol 3-kinase (PI3-kinase)-dependent manner. Using siRNAs to downregulate PKCβII, dominant negative PKCβII, and PKCβII hydrophobic motif phosphorylation-deficient mutant, we found that PKCβII regulates activation of mechanistic target of rapamycin complex 1 (mTORC1) and mesangial cell hypertrophy by high glucose. PKCβII via its phosphorylation at Ser-660 regulated phosphorylation of Akt at both catalytic loop and hydrophobic motif sites, resulting in phosphorylation and inactivation of its substrate PRAS40. Specific inhibition of mTORC2 increased mTORC1 activity and induced mesangial cell hypertrophy. In contrast, inhibition of mTORC2 decreased the phosphorylation of PKCβII and Akt, leading to inhibition of PRAS40 phosphorylation and mTORC1 activity and prevented mesangial cell hypertrophy in response to high glucose; expression of constitutively active Akt or mTORC1 restored mesangial cell hypertrophy. Moreover, constitutively active PKCβII reversed the inhibition of high glucose-stimulated Akt phosphorylation and mesangial cell hypertrophy induced by suppression of mTORC2. Finally, using renal cortexes from type 1 diabetic mice, we found that increased phosphorylation of PKCβII at Ser-660 was associated with enhanced Akt phosphorylation and mTORC1 activation. Collectively, our findings identify a signaling route connecting PI3-kinase to mTORC2 to phosphorylate PKCβII at the hydrophobic motif site necessary for Akt phosphorylation and mTORC1 activation, leading to mesangial cell hypertrophy. PMID:26739493

  3. Phosphorylation regulates the water channel activity of the seed-specific aquaporin alpha-TIP.

    PubMed

    Maurel, C; Kado, R T; Guern, J; Chrispeels, M J

    1995-07-01

    The vacuolar membrane protein alpha-TIP is a seed-specific protein of the Major Intrinsic Protein family. Expression of alpha-TIP in Xenopus oocytes conferred a 4- to 8-fold increase in the osmotic water permeability (Pf) of the oocyte plasma membrane, showing that alpha-TIP forms water channels and is thus a new aquaporin. alpha-TIP has three putative phosphorylation sites on the cytoplasmic side of the membrane (Ser7, Ser23 and Ser99), one of which (Ser7) has been shown to be phosphorylated. We present several lines of evidence that the activity of this aquaporin is regulated by phosphorylation. First, mutation of the putative phosphorylation sites in alpha-TIP (Ser7Ala, Ser23Ala and Ser99Ala) reduced the apparent water transport activity of alpha-TIP in oocytes, suggesting that phosphorylation of alpha-TIP occurs in the oocytes and participates in the control of water channel activity. Second, exposure of oocytes to the cAMP agonists 8-bromoadenosine 3',5'-cyclic monophosphate, forskolin and 3-isobutyl-1-methylxanthine, which stimulate endogenous protein kinase A (PKA), increased the water transport activity of alpha-TIP by 80-100% after 60 min. That the protein can be phosphorylated by PKA was demonstrated by phosphorylating alpha-TIP in isolated oocyte membranes with the bovine PKA catalytic subunit. Third, the integrity of the three sites at positions 7, 23 and 99 was necessary for the cAMP-dependent increase in the Pf of oocytes expressing alpha-TIP, as well as for in vitro phosphorylation of alpha-TIP. These findings demonstrate that the alpha-TIP water channel can be modulated via phosphorylation of Ser7, Ser23 and Ser99.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7542585

  4. Biophysical analysis of binding of WW domains of the YAP2 transcriptional regulator to PPXY motifs within WBP1 and WBP2 adaptors.

    PubMed

    McDonald, Caleb B; McIntosh, Samantha K N; Mikles, David C; Bhat, Vikas; Deegan, Brian J; Seldeen, Kenneth L; Saeed, Ali M; Buffa, Laura; Sudol, Marius; Nawaz, Zafar; Farooq, Amjad

    2011-11-01

    The YAP2 transcriptional regulator mediates a plethora of cellular functions, including the newly discovered Hippo tumor suppressor pathway, by virtue of its ability to recognize WBP1 and WBP2 signaling adaptors among a wide variety of other ligands. Herein, using isothermal titration calorimery and circular dichroism in combination with molecular modeling and molecular dynamics, we provide evidence that the WW1 and WW2 domains of YAP2 recognize various PPXY motifs within WBP1 and WBP2 in a highly promiscuous and subtle manner. Thus, although both WW domains strictly require the integrity of the consensus PPXY sequence, nonconsensus residues within and flanking this motif are not critical for high-affinity binding, implying that they most likely play a role in stabilizing the polyproline type II helical conformation of the PPXY ligands. Of particular interest is the observation that both WW domains bind to a PPXYXG motif with highest affinity, implicating a preference for a nonbulky and flexible glycine one residue to the C-terminal side of the consensus tyrosine. Importantly, a large set of residues within both WW domains and the PPXY motifs appear to undergo rapid fluctuations on a nanosecond time scale, suggesting that WW-ligand interactions are highly dynamic and that such conformational entropy may be an integral part of the reversible and temporal nature of cellular signaling cascades. Collectively, our study sheds light on the molecular determinants of a key WW-ligand interaction pertinent to cellular functions in health and disease. PMID:21981024

  5. Leucine zipper motif in RRS1 is crucial for the regulation of Arabidopsis dual resistance protein complex RPS4/RRS1

    PubMed Central

    Narusaka, Mari; Toyoda, Kazuhiro; Shiraishi, Tomonori; Iuchi, Satoshi; Takano, Yoshitaka; Shirasu, Ken; Narusaka, Yoshihiro

    2016-01-01

    Arabidopsis thaliana leucine-rich repeat-containing (NLR) proteins RPS4 and RRS1, known as dual resistance proteins, confer resistance to multiple pathogen isolates, such as the bacterial pathogens Pseudomonas syringae and Ralstonia solanacearum and the fungal pathogen Colletotrichum higginsianum. RPS4 is a typical Toll/interleukin 1 Receptor (TIR)-type NLR, whereas RRS1 is an atypical TIR-NLR that contains a leucine zipper (LZ) motif and a C-terminal WRKY domain. RPS4 and RRS1 are localised near each other in a head-to-head orientation. In this study, direct mutagenesis of the C-terminal LZ motif in RRS1 caused an autoimmune response and stunting in the mutant. Co-immunoprecipitation analysis indicated that full-length RPS4 and RRS1 are physically associated with one another. Furthermore, virus-induced gene silencing experiments showed that hypersensitive-like cell death triggered by RPS4/LZ motif-mutated RRS1 depends on EDS1. In conclusion, we suggest that the RRS1-LZ motif is crucial for the regulation of the RPS4/RRS1 complex. PMID:26750751

  6. Glucocorticoids Regulate Tristetraprolin Synthesis and Posttranscriptionally Regulate Tumor Necrosis Factor Alpha Inflammatory Signaling▿

    PubMed Central

    Smoak, Kathleen; Cidlowski, John A.

    2006-01-01

    Glucocorticoids are used to treat various inflammatory disorders, but the mechanisms underlying these actions are incompletely understood. The zinc finger protein tristetraprolin (TTP) destabilizes several proinflammatory cytokine mRNAs by binding to AU-rich elements within their 3′ untranslated regions, targeting them for degradation. Here we report that glucocorticoids induce the synthesis of TTP mRNA and protein in A549 lung epithelial cells and in rat tissues. Dexamethasone treatment leads to a sustained induction of TTP mRNA expression that is abrogated by RU486. Glucocorticoid induction of TTP mRNA is also blocked by actinomycin D but not by cycloheximide, suggesting a transcriptional mechanism which has been confirmed by transcription run-on experiments. The most widely characterized TTP-regulated gene is the AU-rich tumor necrosis factor alpha (TNF-α) gene. Dexamethasone represses TNF-α mRNA in A549 cells and decreases luciferase expression of a TNF-α 3′ untranslated region reporter plasmid in an orientation-dependent manner. Small interfering RNAs to TTP significantly prevent this effect, and a cell line stably expressing a short-hairpin RNA to TTP conclusively establishes that TTP is critical for dexamethasone inhibition of TNF-α mRNA expression. These studies provide the molecular evidence for glucocorticoid regulation of human TTP and reflect a novel inductive anti-inflammatory signaling pathway for glucocorticoids that acts via posttranscriptional mechanisms. PMID:16982682

  7. Pur-alpha regulates cytoplasmic stress granule dynamics and ameliorates FUS toxicity.

    PubMed

    Daigle, J Gavin; Krishnamurthy, Karthik; Ramesh, Nandini; Casci, Ian; Monaghan, John; McAvoy, Kevin; Godfrey, Earl W; Daniel, Dianne C; Johnson, Edward M; Monahan, Zachary; Shewmaker, Frank; Pasinelli, Piera; Pandey, Udai Bhan

    2016-04-01

    Amyotrophic lateral sclerosis is characterized by progressive loss of motor neurons in the brain and spinal cord. Mutations in several genes, including FUS, TDP43, Matrin 3, hnRNPA2 and other RNA-binding proteins, have been linked to ALS pathology. Recently, Pur-alpha, a DNA/RNA-binding protein was found to bind to C9orf72 repeat expansions and could possibly play a role in the pathogenesis of ALS. When overexpressed, Pur-alpha mitigates toxicities associated with Fragile X tumor ataxia syndrome (FXTAS) and C9orf72 repeat expansion diseases in Drosophila and mammalian cell culture models. However, the function of Pur-alpha in regulating ALS pathogenesis has not been fully understood. We identified Pur-alpha as a novel component of cytoplasmic stress granules (SGs) in ALS patient cells carrying disease-causing mutations in FUS. When cells were challenged with stress, we observed that Pur-alpha co-localized with mutant FUS in ALS patient cells and became trapped in constitutive SGs. We also found that FUS physically interacted with Pur-alpha in mammalian neuronal cells. Interestingly, shRNA-mediated knock down of endogenous Pur-alpha significantly reduced formation of cytoplasmic stress granules in mammalian cells suggesting that Pur-alpha is essential for the formation of SGs. Furthermore, ectopic expression of Pur-alpha blocked cytoplasmic mislocalization of mutant FUS and strongly suppressed toxicity associated with mutant FUS expression in primary motor neurons. Our data emphasizes the importance of stress granules in ALS pathogenesis and identifies Pur-alpha as a novel regulator of SG dynamics. PMID:26728149

  8. PKC{alpha} expression regulated by Elk-1 and MZF-1 in human HCC cells

    SciTech Connect

    Hsieh, Y.-H.; Wu, T.-T.; Tsai, J.-H.; Huang, C.-Y.; Hsieh, Y.-S.; Liu, J.-Y. . E-mail: jyl@csmu.edu.tw

    2006-01-06

    Our previous study found that PKC{alpha} was highly expressed in the poor-differentiated human HCC cells and associated with cell migration and invasion. In this study, we further investigated the gene regulation of this enzyme. We showed that PKC{alpha} expression enhancement in the poor-differentiated human HCC cells was found neither by DNA amplification nor by increasing mRNA stability using differential PCR and mRNA decay assays. After screening seven transcription factors in the putative cis-acting regulatory elements of human PKC{alpha} promoters, only Elk-1 and MZF-1 antisense oligonucleotide showed a significant reduction in the PKC{alpha} mRNA level. They also reduced cell proliferation, cell migratory and invasive capabilities, and DNA binding activities in the PKC{alpha} promoter region. Over-expression assay confirmed that the PKC{alpha} expression may be modulated by these two factors at the transcriptional level. Therefore, these results may provide a novel mechanism for PKC{alpha} expression regulation in human HCC cells.

  9. Unraveling the Redox Properties of the Global Regulator FurA from Anabaena sp. PCC 7120: Disulfide Reductase Activity Based on Its CXXC Motifs

    PubMed Central

    Botello-Morte, Laura; Bes, M. Teresa; Heras, Begoña; Fernández-Otal, Ángela; Peleato, M. Luisa

    2014-01-01

    Abstract Cyanobacterial FurA works as a global regulator linking iron homeostasis to photosynthetic metabolism and the responses to different environmental stresses. Additionally, FurA modulates several genes involved in redox homeostasis and fulfills the characteristics of a heme-sensor protein whose interaction with this cofactor negatively affects its DNA binding ability. FurA from Anabaena PCC 7120 contains five cysteine residues, four of them arranged in two redox CXXC motifs. Aims: Our goals were to analyze in depth the putative contribution of these CXXC motifs in the redox properties of FurA and to identify potential interacting partners of this regulator. Results: Insulin reduction assays unravel that FurA exhibits disulfide reductase activity. Simultaneous presence of both CXXC signatures greatly enhances the reduction rate, although the redox motif containing Cys101 and Cys104 seems a major contributor to this activity. Disulfide reductase activity was not detected in other ferric uptake regulator (Fur) proteins isolated from heterotrophic bacteria. In vivo, FurA presents different redox states involving intramolecular disulfide bonds when is partially oxidized. Redox potential values for CXXC motifs, −235 and −238 mV, are consistent with those reported for other proteins displaying disulfide reductase activity. Pull-down and two-hybrid assays unveil potential FurA interacting partners, namely phosphoribulokinase Alr4123, the hypothetical amidase-containing domain All1140 and the DNA-binding protein HU. Innovation: A novel biochemical activity of cyanobacterial FurA based on its cysteine arrangements and the identification of novel interacting partners are reported. Conclusion: The present study discloses a putative connection of FurA with the cyanobacterial redox-signaling pathway. Antioxid. Redox Signal. 20, 1396–1406. PMID:24093463

  10. Calcium-dependent regulation of tumour necrosis factor-alpha receptor signalling by copine.

    PubMed Central

    Tomsig, Jose Luis; Sohma, Hitoshi; Creutz, Carl E

    2004-01-01

    The role of copines in regulating signalling from the TNF-alpha (tumour necrosis factor-alpha) receptor was probed by the expression of a copine dominant-negative construct in HEK293 (human embryonic kidney 293) cells. The construct was found to reduce activation of the transcription factor NF-kappaB (nuclear factor-kappaB) by TNF-alpha. The introduction of calcium into HEK293 cells either through the activation of muscarinic cholinergic receptors or through the application of the ionophore A23187 was found to enhance TNF-alpha-dependent activation of NF-kappaB. This effect of calcium was completely blocked by the copine dominant-negative construct. TNF-alpha was found to greatly enhance the expression of endogenous copine I, and the responsiveness of the TNF-alpha signalling pathway to muscarinic stimulation increased in parallel with the increased copine I expression. The copine dominant-negative construct also inhibited the TNF-alpha-dependent degradation of IkappaB, a regulator of NF-kappaB. All of the effects of the dominant-negative construct could be reversed by overexpression of full-length copine I, suggesting that the construct acts specifically through competitive inhibition of copine. One of the identified targets of copine I is the NEDD8-conjugating enzyme UBC12 (ubiquitin C12), that promotes the degradation of IkappaB through the ubiquitin ligase enzyme complex SCF(betaTrCP). Therefore the copine dominant-negative construct might inhibit TNF-alpha signalling by dysregulation or mislocalization of UBC12. Based on these results, a hypothesis is presented for possible roles of copines in regulating other signalling pathways in animals, plants and protozoa. PMID:14674885

  11. The cytoplasmic end of transmembrane domain 3 regulates the activity of the Saccharomyces cerevisiae G-protein-coupled alpha-factor receptor.

    PubMed Central

    Parrish, William; Eilers, Markus; Ying, Weiwen; Konopka, James B

    2002-01-01

    The binding of alpha-factor to its receptor (Ste2p) activates a G-protein-signaling pathway leading to conjugation of MATa cells of the budding yeast S. cerevisiae. We conducted a genetic screen to identify constitutively activating mutations in the N-terminal region of the alpha-factor receptor that includes transmembrane domains 1-5. This approach identified 12 unique constitutively activating mutations, the strongest of which affected polar residues at the cytoplasmic ends of transmembrane domains 2 and 3 (Asn84 and Gln149, respectively) that are conserved in the alpha-factor receptors of divergent yeast species. Targeted mutagenesis, in combination with molecular modeling studies, suggested that Gln149 is oriented toward the core of the transmembrane helix bundle where it may be involved in mediating an interaction with Asn84. These residues appear to play specific roles in maintaining the inactive conformation of the protein since a variety of mutations at either position cause constitutive receptor signaling. Interestingly, the activity of many mammalian G-protein-coupled receptors is also regulated by conserved polar residues (the E/DRY motif) at the cytoplasmic end of transmembrane domain 3. Altogether, the results of this study suggest a conserved role for the cytoplasmic end of transmembrane domain 3 in regulating the activity of divergent G-protein-coupled receptors. PMID:11861550

  12. Down-regulating alpha-galactosidase enhances freezing tolerance in transgenic petunia.

    PubMed

    Pennycooke, Joyce C; Jones, Michelle L; Stushnoff, Cecil

    2003-10-01

    Alpha-galactosidase (alpha-Gal; EC 3.2.1.22) is involved in many aspects of plant metabolism, including hydrolysis of the alpha-1,6 linkage of raffinose oligosaccharides during deacclimation. To examine the relationship between endogenous sugars and freezing stress, the expression of alpha-Gal was modified in transgenic petunia (Petunia x hybrida cv Mitchell). The tomato (Lycopersicon esculentum) Lea-Gal gene under the control of the Figwort Mosaic Virus promoter was introduced into petunia in the sense and antisense orientations using Agrobacterium tumefaciens-mediated transformation. RNA gel blots confirmed that alpha-Gal transcripts were reduced in antisense lines compared with wild type, whereas sense plants had increased accumulation of alpha-Gal mRNAs. alpha-Gal activity followed a similar trend, with reduced activity in antisense lines and increased activity in all sense lines evaluated. Raffinose content of nonacclimated antisense plants increased 12- to 22-fold compared with wild type, and 22- to 53-fold after cold acclimation. Based upon electrolyte leakage tests, freezing tolerance of the antisense lines increased from -4 degrees C for cold-acclimated wild-type plants to -8 degrees C for the most tolerant antisense line. Down-regulating alpha-Gal in petunia results in an increase in freezing tolerance at the whole-plant level in nonacclimated and cold-acclimated plants, whereas overexpression of the alpha-Gal gene caused a decrease in endogenous raffinose and impaired freezing tolerance. These results suggest that engineering raffinose metabolism by transformation with alpha-Gal provides an additional method for improving the freezing tolerance of plants. PMID:14500789

  13. P70S6K 1 regulation of angiogenesis through VEGF and HIF-1{alpha} expression

    SciTech Connect

    Bian, Chuan-Xiu; Shi, Zhumei; Meng, Qiao; Jiang, Yue; Liu, Ling-Zhi; Jiang, Bing-Hua

    2010-07-30

    Research highlights: {yields} P70S6K1 regulates VEGF expression; {yields} P70S6K1 induces transcriptional activation through HIF-1{alpha} binding site; {yields} P70S6K1 regulates HIF-1{alpha}, but not HIF-1{beta} protein expression; {yields} P70S6K1 mediates tumor growth and angiogenesis through HIF-1{alpha} and VEGF expression. -- Abstract: The 70 kDa ribosomal S6 kinase 1 (p70S6K1), a downstream target of phosphoinositide 3-kinase (PI3K) and ERK mitogen-activated protein kinase (MAPK), is an important regulator of cell cycle progression, and cell proliferation. Recent studies indicated an important role of p70S6K1 in PTEN-negative and AKT-overexpressing tumors. However, the mechanism of p70S6K1 in tumor angiogenesis remains to be elucidated. In this study, we specifically inhibited p70S6K1 activity in ovarian cancer cells using vector-based small interfering RNA (siRNA) against p70S6K1. We found that knockdown of p70S6K1 significantly decreased VEGF protein expression and VEGF transcriptional activation through the HIF-1{alpha} binding site at its enhancer region. The expression of p70S6K1 siRNA specifically inhibited HIF-1{alpha}, but not HIF-1{beta} protein expression. We also found that p70S6K1 down-regulation inhibited ovarian tumor growth and angiogenesis, and decreased cell proliferation and levels of VEGF and HIF-1{alpha} expression in tumor tissues. Our results suggest that p70S6K1 is required for tumor growth and angiogenesis through HIF-1{alpha} and VEGF expression, providing a molecular mechanism of human ovarian cancer mediated by p70S6K1 signaling.

  14. Internalization and trafficking of guanylyl (guanylate) cyclase/natriuretic peptide receptor A is regulated by an acidic tyrosine-based cytoplasmic motif GDAY

    PubMed Central

    Pandey, Kailash N.; Nguyen, Huong T.; Garg, Renu; Khurana, Madan L.; Fink, Jude

    2004-01-01

    We have identified a GDAY motif in the C-terminal domain of guanylyl cyclase (guanylate cyclase)/NPRA (natriuretic peptide receptor A) sequence, which serves a dual role as an internalization signal and a recycling signal. To delineate the role of the GDAY motif in receptor internalization and sequestration, we mutated Gly920, Asp921 and Tyr923 to alanine residues (GDAY/AAAA) in the NPRA cDNA sequence. The cDNAs encoding wild-type and mutant receptors were transfected in HEK-293 cells (human embryonic kidney 293 cells). The internalization studies of ligand–receptor complexes revealed that endocytosis of 125I-ANP by HEK-293 cells expressing G920A, Y923A or GDAY/AAAA mutant receptor was decreased by almost 50% (P<0.001) when compared with cells expressing the wild-type receptor. However, the effect of D921A mutation on receptor internalization was minimal. Ligand-mediated down-regulation of G920A, Y923A and GDAY/AAAA mutant receptors was decreased by 35–40% when compared with wild-type NPRA. Subsequently, the recycling of internalized D921A and GDAY/AAAA mutant receptors from the intracellular pool was decreased by more than 40±4% when compared with wild-type NPRA. Recycling of G920A and Y923A mutant receptors was also decreased, but to a significantly lesser extent compared with the D921A or GDAY/AAAA mutant receptors. We conclude that the Gly920 and Tyr923 residues within the GDAY consensus motif are necessary for internalization, and that residue Asp921 is important for recycling of NPRA. The current results provide new evidence for a dual role of the GDAY sequence motif in ligand-mediated internalization, recycling and down-regulation of a single-transmembrane receptor protein NPRA. PMID:15574117

  15. A wheat alpha-Amy2 promoter is regulated by gibberellin in transformed oat aleurone protoplasts.

    PubMed

    Huttly, A K; Baulcombe, D C

    1989-07-01

    Gibberellin (GA(3))-responsive aleurone protoplasts isolated from Avena sativa have been successfully used as a transient expression system to analyse promoter fusions between the wheat alpha-amylase gene alpha-Amy2/54 and the reporter gene GUS. Following PEG-mediated uptake of plasmid DNA, transient expression directed by the alpha-Amy2/54 promoter was found to be regulated in the same way as the endogenous oat alpha-amylase genes. Expression was thus dependent on the inclusion of GA(3) in the protoplast incubation media, could not be detected before a lag phase of 2 days following transformation and was inhibited by simultaneous addition of abscisic acid (ABA) with GA(3) to the media. In contrast, expression from the CaMV 35S promoter in the same system was not affected by GA(3) or ABA and could be detected 1 day after transformation. Introduction of a further three different promoters into the aleurone protoplasts confirmed that GA(3) specifically controlled transient expression from the alpha-Amy2/54 promoter only. Promoter deletions of the alpha-Amy2/54: GUS fusion demonstrated that sequences within 300 bp of the start of transcription of the gene were sufficient to direct high-level expression that was regulated by GA(3) and ABA. PMID:16453890

  16. Phytol directly activates peroxisome proliferator-activated receptor {alpha} (PPAR{alpha}) and regulates gene expression involved in lipid metabolism in PPAR{alpha}-expressing HepG2 hepatocytes

    SciTech Connect

    Goto, Tsuyoshi; Takahashi, Nobuyuki; Kato, Sota; Egawa, Kahori; Ebisu, Shogo; Moriyama, Tatsuya; Fushiki, Tohru; Kawada, Teruo . E-mail: fat@kais.kyoto-u.ac.jp

    2005-11-18

    The peroxisome proliferator-activated receptor (PPAR) is one of the indispensable transcription factors for regulating lipid metabolism in various tissues. In our screening for natural compounds that activate PPAR using luciferase assays, a branched-carbon-chain alcohol (a component of chlorophylls), phytol, has been identified as a PPAR{alpha}-specific activator. Phytol induced the increase in PPAR{alpha}-dependent luciferase activity and the degree of in vitro binding of a coactivator, SRC-1, to GST-PPAR{alpha}. Moreover, the addition of phytol upregulated the expression of PPAR{alpha}-target genes at both mRNA and protein levels in PPAR{alpha}-expressing HepG2 hepatocytes. These findings indicate that phytol is functional as a PPAR{alpha} ligand and that it stimulates the expression of PPAR{alpha}-target genes in intact cells. Because PPAR{alpha} activation enhances circulating lipid clearance, phytol may be important in managing abnormalities in lipid metabolism.

  17. A natural variant of the cysteine protease virulence factor of group A Streptococcus with an arginine-glycine-aspartic acid (RGD) motif preferentially binds human integrins alphavbeta3 and alphaIIbbeta3.

    PubMed

    Stockbauer, K E; Magoun, L; Liu, M; Burns, E H; Gubba, S; Renish, S; Pan, X; Bodary, S C; Baker, E; Coburn, J; Leong, J M; Musser, J M

    1999-01-01

    The human pathogenic bacterium group A Streptococcus produces an extracellular cysteine protease [streptococcal pyrogenic exotoxin B (SpeB)] that is a critical virulence factor for invasive disease episodes. Sequence analysis of the speB gene from 200 group A Streptococcus isolates collected worldwide identified three main mature SpeB (mSpeB) variants. One of these variants (mSpeB2) contains an Arg-Gly-Asp (RGD) sequence, a tripeptide motif that is commonly recognized by integrin receptors. mSpeB2 is made by all isolates of the unusually virulent serotype M1 and several other geographically widespread clones that frequently cause invasive infections. Only the mSpeB2 variant bound to transfected cells expressing integrin alphavbeta3 (also known as the vitronectin receptor) or alphaIIbbeta3 (platelet glycoprotein IIb-IIIa), and binding was blocked by a mAb that recognizes the streptococcal protease RGD motif region. In addition, mSpeB2 bound purified platelet integrin alphaIIbbeta3. Defined beta3 mutants that are altered for fibrinogen binding were defective for SpeB binding. Synthetic peptides with the mSpeB2 RGD motif, but not the RSD sequence present in other mSpeB variants, blocked binding of mSpeB2 to transfected cells expressing alphavbeta3 and caused detachment of cultured human umbilical vein endothelial cells. The results (i) identify a Gram-positive virulence factor that directly binds integrins, (ii) identify naturally occurring variants of a documented Gram-positive virulence factor with biomedically relevant differences in their interactions with host cells, and (iii) add to the theme that subtle natural variation in microbial virulence factor structure alters the character of host-pathogen interactions. PMID:9874803

  18. AMPK activation regulates apoptosis, adipogenesis, and lipolysis by eIF2{alpha} in adipocytes

    SciTech Connect

    Dagon, Yossi; Avraham, Yosefa; Berry, Elliot M. . E-mail: Berry@md.huji.ac.il

    2006-02-03

    AMP-activated protein kinase (AMPK) is a metabolic master switch regulating glucose and lipid metabolism. Recently, AMPK has been implicated in the control of adipose tissue content. Yet, the nature of this action is controversial. We examined the effect on F442a adipocytes of the AMPK activator-AICAR. Activation of AMPK induced dose-dependent apoptotic cell death, inhibition of lipolysis, and downregulatation key adipogenic genes, such as peroxisome proliferator-activated receptor (PPAR{gamma}) and CCAAT/enhancer-binding protein alpha (C/EBP{alpha}). We have identified the {alpha}-subunit of the eukaryotic initiation factor-2 (eIF2{alpha}) as a target gene which is phosphorylated following AICAR treatment. Such phosphorylation is one of the best-characterized mechanisms for downregulating protein synthesis. 2-Aminopurine (2-AP), an inhibitor of eIF2{alpha} kinases, could overcome the apoptotic effect of AICAR, abolishing the reduction of PPAR{gamma} and C/EBP{alpha} and the lipolytic properties of AMPK. Thus, AMPK may diminish adiposity via reduction of fat cell number through eIF2{alpha}-dependent translation shutdown.

  19. Peroxisome proliferator-activated receptor alpha (PPARalpha) agonists down-regulate alpha2-macroglobulin expression by a PPARalpha-dependent mechanism.

    EPA Science Inventory

    Peroxisome proliferator-activated receptor alpha (PPARα) regulates transcription of genes involved both in lipid and glucose metabolism as well as inflammation. Fibrates are PPARα ligands used to normalize lipid and glucose parameters and exert anti-inflammatory effects. Fibrates...

  20. Analysis of Ca2+ Signaling Motifs That Regulate Proton Signaling through the Na+/H+ Exchanger NHX-7 during a Rhythmic Behavior in Caenorhabditis elegans*

    PubMed Central

    Allman, Erik; Waters, Korrie; Ackroyd, Sarah; Nehrke, Keith

    2013-01-01

    Membrane proton transporters contribute to pH homeostasis but have also been shown to transmit information between cells in close proximity through regulated proton secretion. For example, the nematode intestinal Na+/H+ exchanger NHX-7 causes adjacent muscle cells to contract by transiently acidifying the extracellular space between the intestine and muscle. NHX-7 operates during a Ca2+-dependent rhythmic behavior and contains several conserved motifs for regulation by Ca2+ input, including motifs for calmodulin and phosphatidylinositol 4,5-bisphosphate binding, protein kinase C- and calmodulin-dependent protein kinase type II phosphorylation, and a binding site for calcineurin homologous protein. Here, we tested the idea that Ca2+ input differentiates proton signaling from pH housekeeping activity. Each of these motifs was mutated, and their contribution to NHX-7 function was assessed. These functions included pH recovery from acidification in cells in culture expressing recombinant NHX-7, extracellular acidification measured during behavior in live moving worms, and muscle contraction strength as a result of this acidification. Our data suggest that multiple levels of Ca2+ input regulate NHX-7, whose transport capacity normally exceeds the minimum necessary to cause muscle contraction. Furthermore, extracellular acidification limits NHX-7 proton transport through feedback inhibition, likely to prevent metabolic acidosis from occurring. Our findings are consistent with an integrated network whereby both Ca2+ and pH contribute to proton signaling. Finally, our results obtained by expressing rat NHE1 in Caenorhabditis elegans suggest that a conserved mechanism of regulation may contribute to cell-cell communication or proton signaling by Na+/H+ exchangers in mammals. PMID:23319594

  1. Analysis of Ca2+ signaling motifs that regulate proton signaling through the Na+/H+ exchanger NHX-7 during a rhythmic behavior in Caenorhabditis elegans.

    PubMed

    Allman, Erik; Waters, Korrie; Ackroyd, Sarah; Nehrke, Keith

    2013-02-22

    Membrane proton transporters contribute to pH homeostasis but have also been shown to transmit information between cells in close proximity through regulated proton secretion. For example, the nematode intestinal Na(+)/H(+) exchanger NHX-7 causes adjacent muscle cells to contract by transiently acidifying the extracellular space between the intestine and muscle. NHX-7 operates during a Ca(2+)-dependent rhythmic behavior and contains several conserved motifs for regulation by Ca(2+) input, including motifs for calmodulin and phosphatidylinositol 4,5-bisphosphate binding, protein kinase C- and calmodulin-dependent protein kinase type II phosphorylation, and a binding site for calcineurin homologous protein. Here, we tested the idea that Ca(2+) input differentiates proton signaling from pH housekeeping activity. Each of these motifs was mutated, and their contribution to NHX-7 function was assessed. These functions included pH recovery from acidification in cells in culture expressing recombinant NHX-7, extracellular acidification measured during behavior in live moving worms, and muscle contraction strength as a result of this acidification. Our data suggest that multiple levels of Ca(2+) input regulate NHX-7, whose transport capacity normally exceeds the minimum necessary to cause muscle contraction. Furthermore, extracellular acidification limits NHX-7 proton transport through feedback inhibition, likely to prevent metabolic acidosis from occurring. Our findings are consistent with an integrated network whereby both Ca(2+) and pH contribute to proton signaling. Finally, our results obtained by expressing rat NHE1 in Caenorhabditis elegans suggest that a conserved mechanism of regulation may contribute to cell-cell communication or proton signaling by Na(+)/H(+) exchangers in mammals. PMID:23319594

  2. Peroxisome proliferator-activated receptor alpha, PPARα, directly regulates transcription of cytochrome P450 CYP2C8

    PubMed Central

    Thomas, Maria; Winter, Stefan; Klumpp, Britta; Turpeinen, Miia; Klein, Kathrin; Schwab, Matthias; Zanger, Ulrich M.

    2015-01-01

    The cytochrome P450, CYP2C8, metabolizes more than 60 clinically used drugs as well as endogenous substances including retinoic acid and arachidonic acid. However, predictive factors for interindividual variability in the efficacy and toxicity of CYP2C8 drug substrates are essentially lacking. Recently we demonstrated that peroxisome proliferator-activated receptor alpha (PPARα), a nuclear receptor primarily involved in control of lipid and energy homeostasis directly regulates the transcription of CYP3A4. Here we investigated the potential regulation of CYP2C8 by PPARα. Two linked intronic SNPs in PPARα (rs4253728, rs4823613) previously associated with hepatic CYP3A4 status showed significant association with CYP2C8 protein level in human liver samples (N = 150). Furthermore, siRNA-mediated knock-down of PPARα in HepaRG human hepatocyte cells resulted in up to ∼60 and ∼50% downregulation of CYP2C8 mRNA and activity, while treatment with the PPARα agonist WY14,643 lead to an induction by >150 and >100%, respectively. Using chromatin immunoprecipitation scanning assay we identified a specific upstream gene region that is occupied in vivo by PPARα. Electromobility shift assay demonstrated direct binding of PPARα to a DR-1 motif located at positions –2762/–2775 bp upstream of the CYP2C8 transcription start site. We further validated the functional activity of this element using luciferase reporter gene assays in HuH7 cells. Moreover, based on our previous studies we demonstrated that WNT/β-catenin acts as a functional inhibitor of PPARα-mediated inducibility of CYP2C8 expression. In conclusion, our data suggest direct involvement of PPARα in both constitutive and inducible regulation of CYP2C8 expression in human liver, which is further modulated by WNT/β-catenin pathway. PPARA gene polymorphism could have a modest influence on CYP2C8 phenotype. PMID:26582990

  3. ALIX Regulates the Ubiquitin-Independent Lysosomal Sorting of the P2Y1 Purinergic Receptor via a YPX3L Motif

    PubMed Central

    Dores, Michael R.; Grimsey, Neil J.; Mendez, Francisco; Trejo, JoAnn

    2016-01-01

    Endocytic sorting and lysosomal degradation are integral to the regulation of G protein-coupled receptor (GPCR) function. Upon ligand binding, classical GPCRs are activated, internalized and recycled or sorted to lysosomes for degradation, a process that requires receptor ubiquitination. However, recent studies have demonstrated that numerous GPCRs are sorted to lysosomes independent of receptor ubiquitination. Here, we describe an ubiquitin-independent lysosomal sorting pathway for the purinergic GPCR P2Y1. After activation, P2Y1 sorts to lysosomes for degradation independent of direct ubiquitination that is mediated by a YPX3L motif within the second intracellular loop that serves as a binding site for the adaptor protein ALIX. Depletion of ALIX or site-directed mutation of the YPX3L motif inhibits P2Y1 sorting into the lumen of multivesicular endosomes/lysosomes and degradation. These findings confirm the function of YPX3L motifs as lysosomal targeting sequences for GPCRs and demonstrate that ALIX mediates the ubiquitin-independent degradation of certain GPCRs. PMID:27301021

  4. Return of the GDI: the GoLoco motif in cell division.

    PubMed

    Willard, Francis S; Kimple, Randall J; Siderovski, David P

    2004-01-01

    The GoLoco motif is a 19-amino-acid sequence with guanine nucleotide dissociation inhibitor activity against G-alpha subunits of the adenylyl-cyclase-inhibitory subclass. The GoLoco motif is present as an independent element within multidomain signaling regulators, such as Loco, RGS12, RGS14, and Rap1GAP, as well as in tandem arrays in proteins, such as AGS3, G18, LGN, Pcp-2/L7, and Partner of Inscuteable (Pins/Rapsynoid). Here we discuss the biochemical mechanisms of GoLoco motif action on G-alpha subunits in light of the recent crystal structure of G-alpha-i1 bound to the RGS14 GoLoco motif. Currently, there is sparse evidence for GoLoco motif regulation of canonical G-protein-coupled receptor signaling. Rather, studies of asymmetric cell division in Drosophila and Caenorhabditis elegans, as well as mammalian mitosis, implicate GoLoco proteins, such as Pins, GPR-1/GPR-2, LGN, and RGS14, in mitotic spindle organization and force generation. We discuss potential mechanisms by which GoLoco/Galpha complexes might modulate spindle dynamics. PMID:15189163

  5. Biophysical Analysis of the Binding of WW Domains of YAP2 Transcriptional Regulator to PPXY Motifs within WBP1 and WBP2 Adaptors

    PubMed Central

    McDonald, Caleb B.; McIntosh, Samantha K. N.; Mikles, David C.; Bhat, Vikas; Deegan, Brian J.; Seldeen, Kenneth L.; Saeed, Ali M.; Buffa, Laura; Sudol, Marius; Nawaz, Zafar; Farooq, Amjad

    2011-01-01

    YAP2 transcriptional regulator mediates a plethora of cellular functions, including the newly discovered Hippo tumor suppressor pathway, by virtue of its ability to recognize WBP1 and WBP2 signaling adaptors among a wide variety of other ligands. Herein, using isothermal titration calorimery (ITC) and circular dichroism (CD) in combination with molecular modeling (MM) and molecular dynamics (MD), we provide evidence that the WW1 and WW2 domains of YAP2 recognize various PPXY motifs within WBP1 and WBP2 in a highly promiscuous and subtle manner. Thus, although both WW domains strictly require the integrity of the consensus PPXY sequence, non-consensus residues within and flanking this motif are not critical for high-affinity binding, implying that they most likely play a role in stabilizing the polyproline type II (PPII) helical conformation of the PPXY ligands. Of particular interest is the observation that both WW domains bind to a PPXYXG motif with highest affinity, implicating a preference for a non-bulky and flexible glycine one-residue C-terminal to the consensus tyrosine. Importantly, a large set of residues within both WW domains and the PPXY motifs appear to undergo rapid fluctuations on a nanosecond time scale, arguing that WW-ligand interactions are highly dynamic and that such conformational entropy may be an integral part of the reversible and temporal nature of cellular signaling cascades. Collectively, our study sheds light on the molecular determinants of a key WW-ligand interaction pertinent to cellular functions in health and disease. PMID:21981024

  6. ULK2 Ser 1027 Phosphorylation by PKA Regulates Its Nuclear Localization Occurring through Karyopherin Beta 2 Recognition of a PY-NLS Motif.

    PubMed

    Shin, Sung Hwa; Lee, Eun Jeoung; Chun, Jaesun; Hyun, Sunghee; Kang, Sang Sun

    2015-01-01

    Uncoordinated 51-like kinase 2 (ULK2), a member of the serine/threonine kinase family, plays an essential role in the regulation of autophagy in mammalian cells. Given the role of autophagy in normal cellular homeostasis and in multiple diseases, improved mechanistic insight into this process may result in the development of novel therapeutic approaches. Here, we present evidence that ULK2 associates with karyopherin beta 2 (Kapβ2) for its transportation into the nucleus. We identify a potential PY-NLS motif ((774)gpgfgssppGaeaapslRyvPY(795)) in the S/P space domain of ULK2, which is similar to the consensus PY-NLS motif (R/K/H)X(2-5)PY. Using a pull-down approach, we observe that ULK2 interacts physically with Kapβ2 both in vitro and in vivo. Confocal microscopy confirmed the co-localization of ULK2 and Kapβ2. Localization of ULK2 to the nuclear region was disrupted by mutations in the putative Kapβ2-binding motif (P794A). Furthermore, in transient transfection assays, the presence of the Kapβ2 binding site mutant (the cytoplasmic localization form) was associated with a substantial increase in autophagy activity (but a decrease in the in vitro serine-phosphorylation) compared with the wild type ULK2. Mutational analysis showed that the phosphorylation on the Ser1027 residue of ULK2 by Protein Kinase A (PKA) is the regulatory point for its functional dissociation from Atg13 and FIP 200, nuclear localization, and autophagy. Taken together, our observations indicate that Kapβ2 interacts with ULK2 through ULK2's putative PY-NLS motif, and facilitates transport from the cytoplasm to the nucleus, depending on its Ser1027 residue phosphorylation by PKA, thereby reducing autophagic activity. PMID:26052940

  7. Substitution of a conserved cysteine-996 in a cysteine-rich motif of the laminin {alpha}2-chain in congenital muscular dystrophy with partial deficiency of the protein

    SciTech Connect

    Nissinen, M.; Xu Zhang; Tryggvason, K.

    1996-06-01

    Congenital muscular dystrophies (CMDs) are autosomal recessive muscle disorders of early onset. Approximately half of CMD patients present laminin {alpha}2-chain (merosin) deficiency in muscle biopsies, and the disease locus has been mapped to the region of the LAMA2 gene (6q22-23) in several families. Recently, two nonsense mutations in the laminin {alpha}2-chain gene were identified in CMD patients exhibiting complete deficiency of the laminin {alpha}2-chain in muscle biopsies. However, a subset of CMD patients with linkage to LAMA2 show only partial absence of the laminin {alpha}2-chain around muscle fibers, by immunocytochemical analysis. In the present study we have identified a homozygous missense mutation in the {alpha}2-chain gene of a consanguineous Turkish family with partial laminin {alpha}2-chain deficiency. The T{r_arrow}C transition at position 3035 in the cDNA sequence results in a Cys996{r_arrow}Arg substitution. The mutation that affects one of the conserved cysteine-rich repeats in the short arm of the laminin {alpha}2-chain should result in normal synthesis of the chain and in formation and secretion of a heterotrimeric laminin molecule. Muscular dysfunction is possibly caused either by abnormal disulfide cross-links and folding of the laminin repeat, leading to the disturbance of an as yet unknown binding function of the laminin {alpha}2-chain and to shorter half-life of the muscle-specific laminin-2 and laminin-4 isoforms, or by increased proteolytic sensitivity, leading to truncation of the short arm. 42 refs., 7 figs.

  8. Short RNA Molecules with High Binding Affinity to the KH Motif of A-Kinase Anchoring Protein 1 (AKAP1): Implications for the Regulation of Steroidogenesis

    PubMed Central

    Grozdanov, Petar N.

    2012-01-01

    One of the key regulators of acute steroid hormone biosynthesis in steroidogenic tissues is the steroidogenic acute regulatory (STAR) protein. Acute regulation of STAR production on the transcriptional level is mainly achieved through a cAMP-dependent mechanism, which is well understood. However, less is known about the posttranscriptional regulation of STAR synthesis, specifically the factors influencing the destiny of the Star mRNA after it leaves the nucleus. Here, we show that the 3′-untranslated region of Star mRNA interacts with the heterogeneous nuclear ribonucleoprotein K-homology (KH) motif of the mitochondrial scaffold A-kinase anchoring protein 1 (AKAP1) in vitro with a moderate affinity as measured by EMSAs. A mutation that mimics the phosphorylation state of the KH motif at a specific serine either did not alter, or had a negative impact on, protein-RNA binding under these conditions. The KH motif of AKAP1 binds short pyrimidine-rich RNA molecules with a stable hairpin structure as demonstrated by in vitro selection. AKAP1 also interacts with STAR mRNA in a dibutyryl-cAMP-stimulated human steroidogenic adrenocortical carcinoma cell line in vivo. Therefore, we propose a model in which AKAP1 anchors Star mRNA at the mitochondria, thus stabilizing the translational complex at this organelle, a situation that might affect STAR production and steroidogenesis. In addition, we suggest that the last 216 amino acid residues of AKAP1 might participate in the degradation of STAR and other nuclear-encoded mitochondrial mRNAs through interaction with a RNA-induced silencing complex, specifically with the argonaute 2 protein. PMID:23077346

  9. Demonstration that circulating 1 alpha, 25-dihydroxyvitamin D is loosely regulated in normal children.

    PubMed Central

    Stern, P H; Taylor, A B; Bell, N H; Epstein, S

    1981-01-01

    The effects of vitamin D, 2.5 mg (100,000 U)/d for 4 d, on serum calcium, serum 25-hydroxyvitamin D (25-OHD) and serum 1 alpha, 25-dihydroxyvitamin D (1 alpha, 25(OH)2D) were compared in 24 normal adults and 12 normal children. The daily dose of vitamin D was 1,500 U/kg body wt in children weighing less than 45 kg. Vitamin D increased mean serum calcium from 9.5 +/- 0.1 to 9.8 +/- 0.1 mg/dl (P less than 0.05), increased mean serum phosphorus from 4.6 +/- 0.1 to 5.0 +/- 0.1 mg/dl (P less than 0.01), increased mean serum 25-OHD from 25 +/- 3 to 34 +/- 4 ng/ml (P less than 0.001), and increased mean serum 1 alpha, 25(OH)2D from 34 +/- 3 to 42 +/- 4 pg/ml (P less than 0.02) in children. In contrast, vitamin D increased mean serum 25-OHD from 18 +/- 2 to 39 +/- 6 ng/ml (P less than 0.001) and did not change mean serum calcium (9.4 +/- 0.1 vs. 9.5 +/- 0.1 mg/dl), mean serum phosphorus (4.0 +/- 0.1 vs. 4.1 +/- 0.1 mg/dl), or mean serum 1 alpha, 25(OH)2D (31 +/- 2 vs. 29 +/- 3 pg/ml) in adults. Mean serum 1 alpha, 25(OH)2D was significantly higher after vitamin D in children than in adults (P less than 0.02). These results provide evidence that circulating 1 alpha, 25(OH)2D is not as tightly regulated in children as it is in adults. This difference in regulation could account in part for the higher values for serum 1 alpha, 25(OH)2D observed in children. PMID:6975284

  10. Filamin A negatively regulates the transcriptional activity of p73{alpha} in the cytoplasm

    SciTech Connect

    Kim, Eun-Joo; Park, Jong-Sup; Um, Soo-Jong

    2007-11-03

    The transcription regulator p73{alpha} is structurally different from p53 in that it possesses a unique C-terminal domain, which has been implicated in transcriptional repression. To dissect the mechanism of repression by this domain, we performed a yeast two-hybrid screen of a HeLa cDNA library using residues 487-636 of p73{alpha} as bait and isolated a cDNA clone encoding the C-terminal portion (residues 2210-2647) of filamin A, a 280-kDa actin-binding protein. Additional yeast two-hybrid assays indicated that filamin A specifically interacts with the p73{alpha} C-terminus, which is lacking in p53 and p73{beta}. The interaction was confirmed by GST pull-down assays in vitro and by immunoprecipitation analysis in vivo. Immunofluorescence microscopy revealed that p73{alpha} remained in the cytoplasm in A7 melanoma cells stably expressing filamin A, whereas it was localized in the nucleus of filamin A-deficient M2 cells. Deletion of the C-terminus of p73{alpha} (residues 487-636) resulted in nuclear localization in both cell types. Consistent with our interaction data, transient co-expression of filamin A resulted in the down-regulation of p73{alpha}, but not of p53, transcriptional activity on various p53-responsive promoters. Taken together, our data suggest that p73{alpha} is sequestered in the cytoplasm by filamin A, thereby inhibiting its transcriptional activity.

  11. Potential Role of Reversion-Inducing Cysteine-Rich Protein with Kazal Motifs (RECK) in Regulation of Matrix Metalloproteinases (MMPs) Expression in Periodontal Diseases

    PubMed Central

    Liu, Nian; Zhou, Bin; Zhu, Guangxun

    2016-01-01

    Periodontal diseases are characterized by pathological destruction of extracellular matrix (ECM) of periodontal tissues. Matrix metalloproteinases (MMPs) are a significant part of the degradation of ECM. However, the regulation of MMPs expression level in periodontal diseases is as yet undetermined. RECK (reversion-inducing cysteine-rich protein with Kazal motifs), a novel membrane-anchored inhibitor of MMPs, could regulate the expressions of MMP-2, 9 and MT1-MMP as a cell surface-signaling molecule. Thus, we propose that RECK may play an important role in regulating MMPs in the ECM degradation of periodontal diseases. The RECK/MMPs signaling pathway could provide a new approach for prevention and treatment of RECK in periodontal diseases by blocking MMPs. PMID:27272560

  12. Potential Role of Reversion-Inducing Cysteine-Rich Protein with Kazal Motifs (RECK) in Regulation of Matrix Metalloproteinases (MMPs) Expression in Periodontal Diseases.

    PubMed

    Liu, Nian; Zhou, Bin; Zhu, Guangxun

    2016-01-01

    Periodontal diseases are characterized by pathological destruction of extracellular matrix (ECM) of periodontal tissues. Matrix metalloproteinases (MMPs) are a significant part of the degradation of ECM. However, the regulation of MMPs expression level in periodontal diseases is as yet undetermined. RECK (reversion-inducing cysteine-rich protein with Kazal motifs), a novel membrane-anchored inhibitor of MMPs, could regulate the expressions of MMP-2, 9 and MT1-MMP as a cell surface-signaling molecule. Thus, we propose that RECK may play an important role in regulating MMPs in the ECM degradation of periodontal diseases. The RECK/MMPs signaling pathway could provide a new approach for prevention and treatment of RECK in periodontal diseases by blocking MMPs. PMID:27272560

  13. RNF4 and VHL regulate the proteasomal degradation of SUMO-conjugated Hypoxia-Inducible Factor-2alpha.

    PubMed

    van Hagen, Martijn; Overmeer, René M; Abolvardi, Sharareh S; Vertegaal, Alfred C O

    2010-04-01

    Hypoxia-inducible factors (HIFs) are critical transcription factors that mediate cell survival during reduced oxygen conditions (hypoxia). At regular oxygen conditions (normoxia), HIF-1alpha and HIF-2alpha are continuously synthesized in cells and degraded via the ubiquitin-proteasome pathway. During hypoxia, these proteins are stabilized and translocate to the nucleus to activate transcription of target genes that enable cell survival at reduced oxygen levels. HIF proteins are tightly regulated via post-translational modifications including phosphorylation, acetylation, prolyl-hydroxylation and ubiquitination. Here we show for the first time that exogenous and endogenous HIF-2alpha are also regulated via the ubiquitin-like modifier small ubiquitin-like modifiers (SUMO). Using mutational analysis, we found that K394, which is situated in the sumoylation consensus site LKEE, is the major SUMO acceptor site in HIF-2alpha. Functionally, sumoylation reduced the transcriptional activity of HIF-2alpha. Similar to HIF-1alpha, HIF-2alpha is regulated by the SUMO protease SENP1. The proteasome inhibitor MG132 strongly stabilized SUMO-2-conjugated HIF-2alpha during hypoxia but did not affect the total level of HIF-2alpha. The ubiquitin E3 ligases von Hippel-Lindau and RNF4 control the levels of sumoylated HIF-2alpha, indicating that sumoylated HIF-2alpha is degraded via SUMO-targeted ubiquitin ligases. PMID:20026589

  14. Comprehensive discovery of DNA motifs in 349 human cells and tissues reveals new features of motifs

    PubMed Central

    Zheng, Yiyu; Li, Xiaoman; Hu, Haiyan

    2015-01-01

    Comprehensive motif discovery under experimental conditions is critical for the global understanding of gene regulation. To generate a nearly complete list of human DNA motifs under given conditions, we employed a novel approach to de novo discover significant co-occurring DNA motifs in 349 human DNase I hypersensitive site datasets. We predicted 845 to 1325 motifs in each dataset, for a total of 2684 non-redundant motifs. These 2684 motifs contained 54.02 to 75.95% of the known motifs in seven large collections including TRANSFAC. In each dataset, we also discovered 43 663 to 2 013 288 motif modules, groups of motifs with their binding sites co-occurring in a significant number of short DNA regions. Compared with known interacting transcription factors in eight resources, the predicted motif modules on average included 84.23% of known interacting motifs. We further showed new features of the predicted motifs, such as motifs enriched in proximal regions rarely overlapped with motifs enriched in distal regions, motifs enriched in 5′ distal regions were often enriched in 3′ distal regions, etc. Finally, we observed that the 2684 predicted motifs classified the cell or tissue types of the datasets with an accuracy of 81.29%. The resources generated in this study are available at http://server.cs.ucf.edu/predrem/. PMID:25505144

  15. Alpha2 adrenoceptors regulate proliferation of human intestinal epithelial cells

    PubMed Central

    Schaak, S; Cussac, D; Cayla, C; Devedjian, J; Guyot, R; Paris, H; Denis, C

    2000-01-01

    BACKGROUND AND AIMS—Previous studies on rodents have suggested that catecholamines stimulate proliferation of the intestinal epithelium through activation of α2 adrenoceptors located on crypt cells. The occurrence of this effect awaits demonstration in humans and the molecular mechanisms involved have not yet been elucidated. Here, we examined the effect of α2 agonists on a clone of Caco2 cells expressing the human α2A adrenoceptor.
METHODS—Cells were transfected with a bicistronic plasmid containing the α2C10 and neomycin phosphotransferase genes. G418 resistant clones were assayed for receptor expression using radioligand binding. Receptor functionality was assessed by testing its ability to couple Gi proteins and to inhibit cAMP production. Mitogen activated protein kinase (MAPK) phosphorylation was followed by western blot, and cell proliferation was estimated by measuring protein and DNA content.
RESULTS—Permanent transfection of Caco2 cells allowed us to obtain a clone (Caco2-3B) expressing α2A adrenoceptors at a density similar to that found in normal human intestinal epithelium. Caco2-3B retained morphological features and brush border enzyme expression characteristic of enterocytic differentiation. The receptor was coupled to Gi2/Gi3 proteins and its stimulation caused marked diminution of forskolin induced cAMP production. Treatment of Caco2-3B with UK14304 (α2 agonist) induced a rapid increase in the phosphorylation state of MAPK, extracellular regulated protein kinase 1 (Erk1), and 2 (Erk2). This event was totally abolished in pertussis toxin treated cells and in the presence of kinase inhibitors (genistein or PD98059). It was unaffected by protein kinase C downregulation but correlated with a transient increase in Shc tyrosine phosphorylation. Finally, sustained exposure of Caco2-3B to UK14304 resulted in modest but significant acceleration of cell proliferation. None of these effects was observed in the parental cell line Caco2.

  16. A regulatory motif in nonmuscle myosin II-B regulates its role in migratory front–back polarity

    PubMed Central

    Juanes-Garcia, Alba; Chapman, Jessica R.; Aguilar-Cuenca, Rocio; Delgado-Arevalo, Cristina; Hodges, Jennifer; Whitmore, Leanna A.; Shabanowitz, Jeffrey; Hunt, Donald F.; Horwitz, Alan Rick

    2015-01-01

    In this study, we show that the role of nonmuscle myosin II (NMII)-B in front–back migratory cell polarity is controlled by a short stretch of amino acids containing five serines (1935–1941). This motif resides near the junction between the C terminus helical and nonhelical tail domains. Removal of this motif inhibited NMII-B assembly, whereas its insertion into NMII-A endowed an NMII-B–like ability to generate large actomyosin bundles that determine the rear of the cell. Phosphomimetic mutation of the five serines also inhibited NMII-B assembly, rendering it unable to support front–back polarization. Mass spectrometric analysis showed that several of these serines are phosphorylated in live cells. Single-site mutagenesis showed that serine 1935 is a major regulatory site of NMII-B function. These data reveal a novel regulatory mechanism of NMII in polarized migrating cells by identifying a key molecular determinant that confers NMII isoform functional specificity. PMID:25869664

  17. Mutations in the nucleotide binding domain 1 signature motif region rescue processing and functional defects of cystic fibrosis transmembrane conductance regulator delta f508.

    PubMed

    DeCarvalho, Ana C V; Gansheroff, Lisa J; Teem, John L

    2002-09-27

    The gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR), an ATP binding cassette (ABC) transporter that functions as a phosphorylation- and nucleotide-regulated chloride channel, is mutated in cystic fibrosis (CF) patients. Deletion of a phenylalanine at amino acid position 508 (DeltaF508) in the first nucleotide binding domain (NBD1) is the most prevalent CF-causing mutation and results in defective protein processing and reduced CFTR function, leading to chloride impermeability in CF epithelia and heterologous systems. Using a STE6/CFTRDeltaF508 chimera system in yeast, we isolated two novel DeltaF508 revertant mutations, I539T and G550E, proximal to and within the conserved ABC signature motif of NBD1, respectively. Western blot and functional analysis in mammalian cells indicate that mutations I539T and G550E each partially rescue the CFTRDeltaF508 defect. Furthermore, a combination of both revertant mutations resulted in a 38-fold increase in CFTRDeltaF508-mediated chloride current, representing 29% of wild type channel activity. The G550E mutation increased the sensitivity of CFTRDeltaF508 and wild type CFTR to activation by cAMP agonists and blocked the enhancement of CFTRDeltaF508 channel activity by 2 mm 3-isobutyl-1-methylxanthine. The data show that the DeltaF508 defect can be significantly rescued by second-site mutations in the nucleotide binding domain 1 region, that includes the LSGGQ consensus motif. PMID:12110684

  18. SMAX1-LIKE7 Signals from the Nucleus to Regulate Shoot Development in Arabidopsis via Partially EAR Motif-Independent Mechanisms[OPEN

    PubMed Central

    Li, Ping

    2016-01-01

    Strigolactones (SLs) are hormonal signals that regulate multiple aspects of shoot architecture, including shoot branching. Like many plant hormonal signaling systems, SLs act by promoting ubiquitination of target proteins and their subsequent proteasome-mediated degradation. Recently, SMXL6, SMXL7, and SMXL8, members of the SMAX1-LIKE (SMXL) family of chaperonin-like proteins, have been identified as proteolytic targets of SL signaling in Arabidopsis thaliana. However, the mechanisms by which these proteins regulate downstream events remain largely unclear. Here, we show that SMXL7 functions in the nucleus, as does the SL receptor, DWARF14 (D14). We show that nucleus-localized D14 can physically interact with both SMXL7 and the MAX2 F-box protein in a SL-dependent manner and that disruption of specific conserved domains in SMXL7 affects its localization, SL-induced degradation, and activity. By expressing and overexpressing these SMXL7 protein variants, we show that shoot tissues are broadly sensitive to SMXL7 activity, but degradation normally buffers the effect of increasing SMXL7 expression. SMXL7 contains a well-conserved EAR (ETHYLENE-RESPONSE FACTOR Amphiphilic Repression) motif, which contributes to, but is not essential for, SMXL7 functionality. Intriguingly, different developmental processes show differential sensitivity to the loss of the EAR motif, raising the possibility that there may be several distinct mechanisms at play downstream of SMXL7. PMID:27317673

  19. Venom gland EST analysis of the saw-scaled viper, Echis ocellatus, reveals novel alpha9beta1 integrin-binding motifs in venom metalloproteinases and a new group of putative toxins, renin-like aspartic proteases.

    PubMed

    Wagstaff, Simon C; Harrison, Robert A

    2006-08-01

    Echis ocellatus is the most medically important snake in West Africa. However, the composition of its venom and the differential contribution of these venom components to the severe haemorrhagic and coagulopathic pathology of envenoming are poorly understood. To address this situation we assembled a toxin transcriptome based upon 1000 expressed sequence tags (EST) from a cDNA library constructed from pooled venom glands of 10 individual E. ocellatus. We used a variety of bioinformatic tools to construct a fully annotated venom-toxin transcriptome that was interrogated with a combination of BLAST annotation, gene ontology cataloguing and disintegrin-motif searching. The results of these analyses revealed an unusually abundant and diverse expression of snake venom metalloproteinases (SVMP) and a broad toxin-expression profile including several distinct isoforms of bradykinin-potentiating peptides, phospholipase A(2), C-type lectins, serine proteinases and l-amino oxidases. Most significantly, we identified for the first time a conserved alpha(9)beta(1) integrin-binding motif in several SVMPs, and a new group of putative venom toxins, renin-like aspartic proteases. PMID:16713134

  20. Role of vascular alpha-2 adrenoceptors in regulating lipid mobilization from human adipose tissue.

    PubMed Central

    Galitzky, J; Lafontan, M; Nordenström, J; Arner, P

    1993-01-01

    The role of alpha-2 adrenoceptors in lipid mobilization and blood flow was investigated in situ using microdialysis of subcutaneous adipose tissue in nonobese healthy subjects. The alpha-2 agonist clonidine caused dose-dependent biphasic response with increased glycerol levels at low clonidine concentrations and decreased glycerol levels at concentrations > 10(-7) mol/liter. Similar results were observed with epinephrine plus propranolol. Clonidine action was unaffected in the presence of labetalol (beta-/alpha-1 antagonist) but completely blunted by the presence of yohimbine (alpha-2 antagonist). The pseudolipolytic effect of clonidine was significantly more pronounced in gluteal as compared with abdominal adipose tissue. When clonidine was added together with the vasodilating agents nitroprusside or hydralazine, the pseudolipolytic effect was abolished and a dose-dependent decrease in dialysate glycerol was observed at all clonidine concentrations (10(-10)-10(-4) mol/liter). When ethanol was added to the perfusate to monitor blood flow, the escape of alcohol from the dialysate was accelerated by 30% with hydralazine or nitroprusside (P < 0.01) and 30% retarded (P < 0.05) by clonidine (10(-10) mol/liter). Thus, the results demonstrate an important role of blood flow for regulating lipid mobilization from adipose tissue in vivo. Alpha-2 adrenoceptor activation causes marked retention of lipids in adipose tissue due to vasoconstriction in combination with antilipoiysis. PMID:8387538

  1. Uncoupling protein-2 up-regulation and enhanced cyanide toxicity are mediated by PPAR{alpha} activation and oxidative stress

    SciTech Connect

    Zhang, X.; Li, L.; Prabhakaran, K.; Zhang, L.; Leavesley, H.B.; Borowitz, J.L.; Isom, G.E.

    2007-08-15

    Uncoupling protein 2 (UCP-2) is an inner mitochondrial membrane proton carrier that modulates mitochondrial membrane potential ({delta}{psi}{sub m}) and uncouples oxidative phosphorylation. We have shown that up-regulation of UCP-2 by Wy14,643, a selective peroxisome proliferator-activated receptor-{alpha} (PPAR{alpha}) agonist, enhances cyanide cytotoxicity. The pathway by which Wy14,643 up-regulates UCP-2 was determined in a dopaminergic cell line (N27 cells). Since dopaminergic mesencephalic cells are a primary brain target of cyanide, the N27 immortalized mesencephalic cell was used in this study. Wy14,643 produced a concentration- and time-dependent up-regulation of UCP-2 that was linked to enhanced cyanide-induced cell death. MK886 (PPAR{alpha} antagonist) or PPAR{alpha} knock-down by RNA interference (RNAi) inhibited PPAR{alpha} activity as shown by the peroxisome proliferator response element-luciferase reporter assay, but only partially decreased up-regulation of UCP-2. The role of oxidative stress as an alternative pathway to UCP-2 up-regulation was determined. Wy14,643 induced a rapid surge of ROS generation and loading cells with glutathione ethyl ester (GSH-EE) or pre-treatment with vitamin E attenuated up-regulation of UCP-2. On the other hand, RNAi knockdown of PPAR{alpha} did not alter ROS generation, suggesting a PPAR{alpha}-independent component to the response. Co-treatment with PPAR{alpha}-RNAi and GSH-EE blocked both the up-regulation of UCP-2 by Wy14,643 and the cyanide-induced cell death. It was concluded that a PPAR{alpha}-mediated pathway and an oxidative stress pathway independent of PPAR{alpha} mediate the up-regulation of UCP-2 and subsequent increased vulnerability to cyanide-induced cytotoxicity.

  2. The impact of RNA binding motif protein 4-regulated splicing cascade on the progression and metabolism of colorectal cancer cells

    PubMed Central

    Lin, Ying-Ju; Lin, Jung-Chun

    2015-01-01

    Dysregulated splicing of pre-messenger (m)RNA is considered a molecular occasion of carcinogenesis. However, the underlying mechanism is complex and remains to be investigated. Herein, we report that the upregulated miR-92a reduced the RNA-binding motif 4 (RBM4) protein expression, leading to the imbalanced expression of the neuronal polypyrimidine tract-binding (nPTB) protein through alternative splicing-coupled nonsense mediated decay (NMD) mechanism. Increase in nPTB protein enhances the relative level of fibroblast growth factor receptor 2 IIIc (FGFR2) and pyruvate kinase M2 (PKM2) transcripts which contribute to the progression and metabolic signature of CRC cells. Expression profiles of RBM4 and downstream alternative splicing events are consistently observed in cancerous tissues compared to adjacent normal tissues. These results constitute a mechanistic understanding of RBM4 on repressing the carcinogenesis of colorectal cells. PMID:26506517

  3. Adenovirus E4-ORF3-dependent relocalization of TIF1{alpha} and TIF1{gamma} relies on access to the Coiled-Coil motif

    SciTech Connect

    Vink, Elizabeth I.; Yondola, Mark A.; Wu, Kai; Hearing, Patrick

    2012-01-20

    The adenovirus E4-ORF3 protein promotes viral replication by relocalizing cellular proteins into nuclear track structures, interfering with potential anti-viral activities. E4-ORF3 targets transcriptional intermediary factor 1 alpha (TIF1{alpha}), but not homologous TIF1{beta}. Here, we introduce TIF1{gamma} as a novel E4-ORF3-interacting partner. E4-ORF3 relocalizes endogenous TIF1{gamma} in virus-infected cells in vivo and binds to TIF1{gamma} in vitro. We used the homologous nature, yet differing binding capabilities, of these proteins to study how E4-ORF3 targets proteins for track localization. We mapped the ability of E4-ORF3 to interact with specific TIF1 subdomains, demonstrating that E4-ORF3 interacts with the Coiled-Coil domains of TIF1{alpha}, TIF1{beta}, and TIF1{gamma}, and that the C-terminal half of TIF1{beta} interferes with this interaction. The results of E4-ORF3-directed TIF1 protein relocalization assays performed in vivo were verified using coimmunoprecipitation assays in vitro. These results suggest that E4-ORF3 targets proteins for relocalization through a loosely homologous sequence dependent on accessibility.

  4. Regulation of human hepatic hydroxysteroid sulfotransferase gene expression by the peroxisome proliferator-activated receptor alpha transcription factor.

    PubMed

    Fang, Hai-Lin; Strom, Stephen C; Cai, Hongbo; Falany, Charles N; Kocarek, Thomas A; Runge-Morris, Melissa

    2005-04-01

    Human hydroxysteroid sulfotransferase or (HUMAN)SULT2A1 catalyzes the sulfonation of procarcinogen xenobiotics, hydroxysteroids, and bile acids and plays a dynamic role in hepatic cholesterol homeostasis. The treatment of primary cultured human hepatocytes with a peroxisome proliferator-activated receptor alpha (PPARalpha)-activating concentration of ciprofibrate (10(-) (4) M) increased (HUMAN)SULT2A1 mRNA, immunoreactive protein, and enzymatic activity levels by approximately 2-fold. By contrast, expression of (RAT)SULT2A3, the rat counterpart to (HUMAN)SULT2A1, was induced by treatment of primary hepatocyte cultures with an activator of the pregnane X receptor, but not PPARalpha. In HepG2 cells, transient transfection analyses of luciferase reporter constructs containing upstream regions of the (HUMAN)SULT2A1 gene implicated a candidate peroxisome proliferator response element (PPRE) at nucleotides (nt) -5949 to -5929 relative to the transcription start site. Site-directed mutagenesis and electrophoretic mobility shift assay studies confirmed that this distal PPRE (dPPRE), a direct repeat nuclear receptor motif containing one intervening nt, represented a functional PPRE. Chromatin immunoprecipitation analysis indicated that the (HUMAN)SULT2A1 dPPRE was also a functional element in the context of the human genome. These data support a major role for the PPARalpha transcription factor in the regulation of hepatic (HUMAN)SULT2A1. Results also indicate that important species differences govern the transactivation of SULT2A gene transcription by nuclear receptors. PMID:15635043

  5. Regulation of the human SLC25A20 expression by peroxisome proliferator-activated receptor alpha in human hepatoblastoma cells

    SciTech Connect

    Tachibana, Keisuke; Takeuchi, Kentaro; Inada, Hirohiko; Yamasaki, Daisuke; The Center for Advanced Medical Engineering and Informatics, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871 ; Ishimoto, Kenji; Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871 ; Tanaka, Toshiya; Hamakubo, Takao; Sakai, Juro; Kodama, Tatsuhiko; Doi, Takefumi; The Center for Advanced Medical Engineering and Informatics, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871; Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871

    2009-11-20

    Solute carrier family 25, member 20 (SLC25A20) is a key molecule that transfers acylcarnitine esters in exchange for free carnitine across the mitochondrial membrane in the mitochondrial {beta}-oxidation. The peroxisome proliferator-activated receptor alpha (PPAR{alpha}) is a ligand-activated transcription factor that plays an important role in the regulation of {beta}-oxidation. We previously established tetracycline-regulated human cell line that can be induced to express PPAR{alpha} and found that PPAR{alpha} induces the SLC25A20 expression. In this study, we analyzed the promoter region of the human slc25a20 gene and showed that PPAR{alpha} regulates the expression of human SLC25A20 via the peroxisome proliferator responsive element.

  6. FTZ-F1 and FOXL2 up-regulate catfish brain aromatase gene transcription by specific binding to the promoter motifs.

    PubMed

    Sridevi, P; Chaitanya, R K; Dutta-Gupta, Aparna; Senthilkumaran, B

    2012-01-01

    Cytochrome P450 aromatase (cyp19) catalyzes the conversion of androgens into estrogens. Teleosts have distinct, ovarian specific (cyp19a1a) and brain specific (cyp19a1b) cyp19 genes. Previous studies in teleosts demonstrated regulation of cyp19a1a expression by the NR5A nuclear receptor subfamily as well as a fork head transcription factor, FOXL2. In the present study, we investigated the involvement of fushi tarazu factor 1, FTZ-F1, a NR5A subfamily member, and FOXL2 in the regulation of cyp19a1b expression in brain of the air-breathing catfish, Clarias gariepinus. Based on the synchronous expression pattern of cyp19a1b, FTZ-F1 and FOXL2 in the brain, we isolated the 5' upstream region of cyp19a1b to analyse regulatory motifs. Promoter motif analysis revealed FTZ-F1/NR5A1 and FOXL2 binding nucleotide sequences. Transient transfection studies showed that FTZ-F1 and FOXL2 together enhanced the transcriptional activity of cyp19a1b gene in mammalian cell lines. Mutation in either of their putative binding sites within the cyp19a1b promoter abolished this effect. Electrophoretic gel mobility shift experiments indicated that FTZ-F1 and FOXL2 proteins bind to the synthesized radio-labelled oligomers used as probes and mobility shifted upon addition of their respective antibodies. Chromatin immunoprecipitation assay confirmed the binding of both these transcription factors to their corresponding cis-acting elements in the upstream region of cyp19a1b. To our knowledge, this study is the first report on the transcriptional regulation of cyp19a1b by FTZ-F1 and FOXL2 in a teleost fish. PMID:22019437

  7. The ternary complex factor Net/Elk-3 participates in the transcriptional response to hypoxia and regulates HIF-1 alpha.

    PubMed

    Gross, C; Dubois-Pot, H; Wasylyk, B

    2008-02-21

    The ternary complex factor Net/Elk3 is downregulated in hypoxia and participates in the induction by hypoxia of several genes, including c-fos, vascular endothelial growth factor and egr-1. However, the global role of Net in hypoxia remains to be elucidated. We have identified, in a large-scale analysis of RNA expression using microarrays, more than 370 genes that are regulated by Net in hypoxia. In order to gain insights into the role of Net in hypoxia, we have analysed in parallel the genes regulated by HIF-1alpha, the classical factor involved in the response to hypoxia. We identified about 190 genes that are regulated by HIF-1alpha in hypoxia. Surprisingly, when we compare the genes induced by hypoxia that require either Net or HIF-1alpha, the majority are the same (75%), suggesting that the functions of both factors are closely linked. Interestingly, in hypoxia, Net regulates the expression of several genes known to control HIF-1alpha stability, including PHD2, PHD3 and Siah2, suggesting that Net regulates the stability of HIF-1alpha. We found that inhibition of Net by RNAi leads to decreased HIF-1alpha expression at the protein level in hypoxia. These results indicate that Net participates in the transcriptional response to hypoxia by regulation of HIF-1alpha protein stability. PMID:17704799

  8. Alternative Splicing in CaV2.2 Regulates Neuronal Trafficking via Adaptor Protein Complex-1 Adaptor Protein Motifs

    PubMed Central

    Macabuag, Natsuko

    2015-01-01

    N-type voltage-gated calcium (CaV2.2) channels are expressed in neurons and targeted to the plasma membrane of presynaptic terminals, facilitating neurotransmitter release. Here, we find that the adaptor protein complex-1 (AP-1) mediates trafficking of CaV2.2 from the trans-Golgi network to the cell surface. Examination of splice variants of CaV2.2, containing either exon 37a (selectively expressed in nociceptors) or 37b in the proximal C terminus, reveal that canonical AP-1 binding motifs, YxxΦ and [DE]xxxL[LI], present only in exon 37a, enhance intracellular trafficking of exon 37a-containing CaV2.2 to the axons and plasma membrane of rat DRG neurons. Finally, we identify differential effects of dopamine-2 receptor (D2R) and its agonist-induced activation on trafficking of CaV2.2 isoforms. D2R slowed the endocytosis of CaV2.2 containing exon 37b, but not exon 37a, and activation by the agonist quinpirole reversed the effect of the D2R. Our work thus reveals key mechanisms involved in the trafficking of N-type calcium channels. SIGNIFICANCE STATEMENT CaV2.2 channels are important for neurotransmitter release, but how they are trafficked is still poorly understood. Here, we describe a novel mechanism for trafficking of CaV2.2 from the trans-Golgi network to the cell surface which is mediated by the adaptor protein AP-1. Alternative splicing of exon 37 produces CaV2.2-exon 37a, selectively expressed in nociceptors, or CaV2.2-exon 37b, which is the major splice isoform. Our study reveals that canonical AP-1 binding motifs (YxxΦ and [DE]xxxL[LI]), present in exon 37a, but not 37b, enhance intracellular trafficking of exon 37a-containing CaV2.2 to axons and plasma membrane of DRG neurons. Interaction of APs with CaV2.2 channels may also be key underlying mechanisms for differential effects of the dopamine D2 receptor on trafficking of CaV2.2 splice variants. PMID:26511252

  9. Regulation of hepatic branched-chain alpha-keto acid dehydrogenase complex in rats fed a high-fat diet

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Objective: Branched-chain alpha-keto acid dehydrogenase complex (BCKDC) regulates branched-chain amino acid (BCAA) metabolism at the level of branched chain alpha-ketoacid (BCKA) catabolism. It has been demonstrated that the activity of hepatic BCKDC is markedly decreased in type 2 diabetic animal...

  10. Glucocorticoid regulation of branched-chain alpha-ketoacid dehydrogenase E2 subunit gene expression.

    PubMed Central

    Costeas, P A; Chinsky, J M

    2000-01-01

    Regulation of the mammalian branched-chain alpha-ketoacid dehydrogenase complex (BCKAD) occurs under a variety of stressful conditions associated with changes in circulating glucocorticoids. Multiple levels of regulation in hepatocytes, including alteration of the levels of the structural subunits available for assembly (E1, alpha-ketoacid decarboxylase; E2, dihydrolipoamide acyltransferase; and E3, dihydrolipoamide dehydrogenase), as well as BCKAD kinase, which serves to phosphorylate the E1alpha subunit and inactivate complex activity, have been proposed. The direct role of glucocorticoids in regulating the expression of the murine gene encoding the major BCKAD subunit E2, upon which the other BCKAD subunits assemble, was therefore examined. Deletion analysis of the 5' proximal 7.0 kb of the murine E2 promoter sequence, using E2 promoter/luciferase expression minigene plasmids introduced into the hepatic H4IIEC3 cell line, suggested a promoter proximal region responsive to glucocorticoid regulation. Linker-scanning mutagenesis combined with deletion analysis established this functional glucocorticoid-responsive unit (GRU) to be located near the murine E2 proximal promoter site at -140 to -70 bp upstream from the transcription initiation site. The presence of this region in plasmid minigenes, containing varying amounts of the murine genomic sequence 5' upstream from proximal E2 promoter sequences, conferred 2-10 fold increases in luciferase reporter gene expression in H4IIEC3 cells, whether introduced by transient transfection or following co-selection for stable transfectants. The GRU region itself appeared to contain multiple interacting elements that combine to regulate overall E2 promoter activity in response to changing physiological conditions associated with varying concentrations of glucocorticoids and likely other hormonal effectors. PMID:10749674

  11. Interlocked positive and negative feedback network motifs regulate β-catenin activity in the adherens junction pathway

    PubMed Central

    Klinke, David J.; Horvath, Nicholas; Cuppett, Vanessa; Wu, Yueting; Deng, Wentao; Kanj, Rania

    2015-01-01

    The integrity of epithelial tissue architecture is maintained through adherens junctions that are created through extracellular homotypic protein–protein interactions between cadherin molecules. Cadherins also provide an intracellular scaffold for the formation of a multiprotein complex that contains signaling proteins, including β-catenin. Environmental factors and controlled tissue reorganization disrupt adherens junctions by cleaving the extracellular binding domain and initiating a series of transcriptional events that aim to restore tissue homeostasis. However, it remains unclear how alterations in cell adhesion coordinate transcriptional events, including those mediated by β-catenin in this pathway. Here were used quantitative single-cell and population-level in vitro assays to quantify the endogenous pathway dynamics after the proteolytic disruption of the adherens junctions. Using prior knowledge of isolated elements of the overall network, we interpreted these data using in silico model-based inference to identify the topology of the regulatory network. Collectively the data suggest that the regulatory network contains interlocked network motifs consisting of a positive feedback loop, which is used to restore the integrity of adherens junctions, and a negative feedback loop, which is used to limit β-catenin–induced gene expression. PMID:26224311

  12. Inverse regulation of human ERBB2 and epidermal growth factor receptors by tumor necrosis factor alpha.

    PubMed Central

    Kalthoff, H; Roeder, C; Gieseking, J; Humburg, I; Schmiegel, W

    1993-01-01

    Recombinant human tumor necrosis factor (TNF) alpha decreased the expression of ERBB2 mRNA by stimulating p55 TNF receptors of pancreatic tumor cells. This decrease contrasts with an increase in epidermal growth factor receptor (EGFR) mRNA. Both effects were selectively achieved by TNF-alpha or -beta, whereas interferon alpha or gamma or transforming growth factor beta showed no such effects. The inverse regulatory effects of TNF on ERBB2 and EGFR mRNA levels were evoked by different signaling pathways of p55 TNF receptors. The TNF-mediated ERBB2 mRNA decrease was followed by a reduction in protein. Four of five pancreatic tumor cell lines exhibited this down-regulation. This decrease of ERBB2 is a singular example of a modulation of this growth factor receptor by TNF. Overexpression of ERBB2 has been reported to cause resistance to TNF and other cytotoxic cytokines. In our study we show that the TNF-mediated down-regulation of ERBB2 in pancreatic tumor cells is accompanied by an increase in growth inhibition at low doses of TNF. The simultaneous alteration of the ERBB2/EGFR balance by TNF represents a striking model of cytokine receptor transregulation in the growth control of malignant pancreatic epithelial cells. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:8105469

  13. Detecting correlations among functional-sequence motifs

    NASA Astrophysics Data System (ADS)

    Pirino, Davide; Rigosa, Jacopo; Ledda, Alice; Ferretti, Luca

    2012-06-01

    Sequence motifs are words of nucleotides in DNA with biological functions, e.g., gene regulation. Identification of such words proceeds through rejection of Markov models on the expected motif frequency along the genome. Additional biological information can be extracted from the correlation structure among patterns of motif occurrences. In this paper a log-linear multivariate intensity Poisson model is estimated via expectation maximization on a set of motifs along the genome of E. coli K12. The proposed approach allows for excitatory as well as inhibitory interactions among motifs and between motifs and other genomic features like gene occurrences. Our findings confirm previous stylized facts about such types of interactions and shed new light on genome-maintenance functions of some particular motifs. We expect these methods to be applicable to a wider set of genomic features.

  14. Detecting correlations among functional-sequence motifs.

    PubMed

    Pirino, Davide; Rigosa, Jacopo; Ledda, Alice; Ferretti, Luca

    2012-06-01

    Sequence motifs are words of nucleotides in DNA with biological functions, e.g., gene regulation. Identification of such words proceeds through rejection of Markov models on the expected motif frequency along the genome. Additional biological information can be extracted from the correlation structure among patterns of motif occurrences. In this paper a log-linear multivariate intensity Poisson model is estimated via expectation maximization on a set of motifs along the genome of E. coli K12. The proposed approach allows for excitatory as well as inhibitory interactions among motifs and between motifs and other genomic features like gene occurrences. Our findings confirm previous stylized facts about such types of interactions and shed new light on genome-maintenance functions of some particular motifs. We expect these methods to be applicable to a wider set of genomic features. PMID:23005179

  15. Long-chain fatty acids regulate liver carnitine palmitoyltransferase I gene (L-CPT I) expression through a peroxisome-proliferator-activated receptor alpha (PPARalpha)-independent pathway.

    PubMed Central

    Louet, J F; Chatelain, F; Decaux, J F; Park, E A; Kohl, C; Pineau, T; Girard, J; Pegorier, J P

    2001-01-01

    Liver carnitine palmitoyltransferase I (L-CPT I) catalyses the transfer of long-chain fatty acid (LCFA) for translocation across the mitochondrial membrane. Expression of the L-CPT I gene is induced by LCFAs as well as by lipid-lowering compounds such as clofibrate. Previous studies have suggested that the peroxisome-proliferator-activated receptor alpha (PPARalpha) is a common mediator of the transcriptional effects of LCFA and clofibrate. We found that free LCFAs rather than acyl-CoA esters are the signal metabolites responsible for the stimulation of L-CPT I gene expression. Using primary culture of hepatocytes we found that LCFAs failed to stimulate L-CPT I gene expression both in wild-type and PPARalpha-null mice. These results suggest that the PPARalpha-knockout mouse does not represent a suitable model for the regulation of L-CPT I gene expression by LCFAs in the liver. Finally, we determined that clofibrate stimulates L-CPT I through a classical direct repeat 1 (DR1) motif in the promoter of the L-CPT I gene while LCFAs induce L-CPT I via elements in the first intron of the gene. Our results demonstrate that LCFAs can regulate gene expression through PPARalpha-independent pathways and suggest that the regulation of gene expression by dietary lipids is more complex than previously proposed. PMID:11171094

  16. Regulated C-C motif ligand 2 (CCL2) in luteal cells contributes to macrophage infiltration into the human corpus luteum during luteolysis.

    PubMed

    Nio-Kobayashi, Junko; Kudo, Masataka; Sakuragi, Noriaki; Kimura, Shunsuke; Iwanaga, Toshihiko; Duncan, W Colin

    2015-08-01

    Intense macrophage infiltration is observed during luteolysis in various animals including women; however, we still do not know how macrophage infiltration into the human corpus luteum (CL) during luteolysis is regulated. In this study, we examined the expression, localization and regulation of an important chemokine for the recruitment of monocyte/macrophage lineages, C-C motif ligand 2 (CCL2), in the human CL across the luteal phase and in cultured human luteinized granulosa cells (LGCs), with special reference to the number of infiltrating macrophages and luteal cell function. CCL2 mRNA increased in the non-functional regressing CL during menstruation (P < 0.01), corresponding to an elevated mRNA expression of a macrophage-derived cytokine, tumor necrosis factor (TNF), and an increased number of infiltrating macrophages positively stained with a macrophage marker, CD68. CCL2 protein was immunohistochemically localized to the cytoplasm of granulosa-lutein and theca-lutein cells, and CCL2 mRNA was significantly reduced by hCG both in vivo (P < 0.05) and in vitro (P < 0.01). CCL2 was also down-regulated by luteotrophic prostaglandin (PG) E (P < 0.0001), but up-regulated by luteolytic PGF (P < 0.05) in vitro. Administration of TNF significantly enhanced the CCL2 mRNA expression in cultured LGCs (P < 0.01). A greater abundance of infiltrating macrophages were found around granulosa-lutein cells lacking 3β-HSD or PGE synthase (PGES) immunostaining. CCL2 mRNA expression was negatively correlated with both HSD3B1 and PGES, suggesting that locally produced progesterone and PGE suppress macrophage infiltration into the CL. Taken together, the infiltration of macrophages in the human CL is regulated by endocrine and paracrine molecules via regulation of the CCL2 expression in luteal cells. PMID:26003810

  17. Integrin alpha5beta1 function is regulated by XGIPC/kermit2 mediated endocytosis during Xenopus laevis gastrulation.

    PubMed

    Spicer, Erin; Suckert, Catherine; Al-Attar, Hyder; Marsden, Mungo

    2010-01-01

    During Xenopus gastrulation alpha5beta1 integrin function is modulated in a temporally and spatially restricted manner, however, the regulatory mechanisms behind this regulation remain uncharacterized. Here we report that XGIPC/kermit2 binds to the cytoplasmic domain of the alpha5 subunit and regulates the activity of alpha5beta1 integrin. The interaction of kermit2 with alpha5beta1 is essential for fibronectin (FN) matrix assembly during the early stages of gastrulation. We further demonstrate that kermit2 regulates alpha5beta1 integrin endocytosis downstream of activin signaling. Inhibition of kermit2 function impairs cell migration but not adhesion to FN substrates indicating that integrin recycling is essential for mesoderm cell migration. Furthermore, we find that the alpha5beta1 integrin is colocalized with kermit2 and Rab 21 in embryonic and XTC cells. These data support a model where region specific mesoderm induction acts through kermit2 to regulate the temporally and spatially restricted changes in adhesive properties of the alpha5beta1 integrin through receptor endocytosis. PMID:20498857

  18. Effects of PGF{sub 2{alpha}} on human melanocytes and regulation of the FP receptor by ultraviolet radiation

    SciTech Connect

    Scott, Glynis . E-mail: Glynis_Scott@urmc.rochester.edu; Jacobs, Stacey; Leopardi, Sonya; Anthony, Frank A.; Learn, Doug; Malaviya, Rama; Pentland, Alice

    2005-04-01

    Prostaglandins are potent lipid hormones that activate multiple signaling pathways resulting in regulation of cellular growth, differentiation, and apoptosis. In the skin, prostaglandins are rapidly released by keratinocytes following ultraviolet radiation and are chronically present in inflammatory skin lesions. We have shown previously that melanocytes, which provide photoprotection to keratinocytes through the production of melanin, express several receptors for prostaglandins, including the PGE{sub 2} receptors EP{sub 1} and EP{sub 3} and the PGF{sub 2{alpha}} receptor FP, and that PGF{sub 2{alpha}} stimulates melanocyte dendricity. We now show that PGF{sub 2{alpha}} stimulates the activity and expression of tyrosinase, the rate-limiting enzyme in melanin synthesis. Analysis of FP receptor regulation showed that the FP receptor is regulated by ultraviolet radiation in melanocytes in vitro and in human skin in vivo. We also show that ultraviolet irradiation stimulates production of PGF{sub 2{alpha}} by melanocytes. These results show that PGF{sub 2{alpha}} binding to the FP receptor activates signals that stimulate a differentiated phenotype (dendricity and pigmentation) in melanocytes. The regulation of the FP receptor and the stimulation of production of PGF{sub 2{alpha}} in melanocytes in response to ultraviolet radiation suggest that PGF{sub 2{alpha}} could act as an autocrine factor for melanocyte differentiation.

  19. Banana fruit VQ motif-containing protein5 represses cold-responsive transcription factor MaWRKY26 involved in the regulation of JA biosynthetic genes.

    PubMed

    Ye, Yu-Jie; Xiao, Yun-Yi; Han, Yan-Chao; Shan, Wei; Fan, Zhong-Qi; Xu, Qun-Gang; Kuang, Jian-Fei; Lu, Wang-Jin; Lakshmanan, Prakash; Chen, Jian-Ye

    2016-01-01

    Most harvested fruits and vegetables are stored at low temperature but many of them are highly sensitive to chilling injury. Jasmonic acid (JA), a plant hormone associated with various stress responses, is known to reduce chilling injury in fruits. However, little is known about the transcriptional regulation of JA biosynthesis in relation to cold response of fruits. Here, we show the involvement of a Group I WRKY transcription factor (TF) from banana fruit, MaWRKY26, in regulating JA biosynthesis. MaWRKY26 was found to be nuclear-localized with transcriptional activation property. MaWRKY26 was induced by cold stress or by methyl jasmonate (MeJA), which enhances cold tolerance in banana fruit. More importantly, MaWRKY26 transactivated JA biosynthetic genes MaLOX2, MaAOS3 and MaOPR3 via binding to their promoters. Further, MaWRKY26 physically interacted with a VQ motif-containing protein MaVQ5, and the interaction attenuated MaWRKY26-induced transactivation of JA biosynthetic genes. These results strongly suggest that MaVQ5 might act as a repressor of MaWRKY26 in activating JA biosynthesis. Taken together, our findings provide new insights into the transcriptional regulation of JA biosynthesis in response to cold stress and a better understanding of the molecular aspects of chilling injury in banana fruit. PMID:27004441

  20. Banana fruit VQ motif-containing protein5 represses cold-responsive transcription factor MaWRKY26 involved in the regulation of JA biosynthetic genes

    PubMed Central

    Ye, Yu-Jie; Xiao, Yun-Yi; Han, Yan-Chao; Shan, Wei; Fan, Zhong-Qi; Xu, Qun-Gang; Kuang, Jian-Fei; Lu, Wang-Jin; Lakshmanan, Prakash; Chen, Jian-Ye

    2016-01-01

    Most harvested fruits and vegetables are stored at low temperature but many of them are highly sensitive to chilling injury. Jasmonic acid (JA), a plant hormone associated with various stress responses, is known to reduce chilling injury in fruits. However, little is known about the transcriptional regulation of JA biosynthesis in relation to cold response of fruits. Here, we show the involvement of a Group I WRKY transcription factor (TF) from banana fruit, MaWRKY26, in regulating JA biosynthesis. MaWRKY26 was found to be nuclear-localized with transcriptional activation property. MaWRKY26 was induced by cold stress or by methyl jasmonate (MeJA), which enhances cold tolerance in banana fruit. More importantly, MaWRKY26 transactivated JA biosynthetic genes MaLOX2, MaAOS3 and MaOPR3 via binding to their promoters. Further, MaWRKY26 physically interacted with a VQ motif-containing protein MaVQ5, and the interaction attenuated MaWRKY26-induced transactivation of JA biosynthetic genes. These results strongly suggest that MaVQ5 might act as a repressor of MaWRKY26 in activating JA biosynthesis. Taken together, our findings provide new insights into the transcriptional regulation of JA biosynthesis in response to cold stress and a better understanding of the molecular aspects of chilling injury in banana fruit. PMID:27004441

  1. A specific A/T polymorphism in Western tyrosine phosphorylation B-motifs regulates Helicobacter pylori CagA epithelial cell interactions.

    PubMed

    Zhang, Xue-Song; Tegtmeyer, Nicole; Traube, Leah; Jindal, Shawn; Perez-Perez, Guillermo; Sticht, Heinrich; Backert, Steffen; Blaser, Martin J

    2015-02-01

    Helicobacter pylori persistently colonizes the human stomach, with mixed roles in human health. The CagA protein, a key host-interaction factor, is translocated by a type IV secretion system into host epithelial cells, where its EPIYA tyrosine phosphorylation motifs (TPMs) are recognized by host cell kinases, leading to multiple host cell signaling cascades. The CagA TPMs have been described as type A, B, C or D, each with a specific conserved amino acid sequence surrounding EPIYA. Database searching revealed strong non-random distribution of the B-motifs (including EPIYA and EPIYT) in Western H. pylori isolates. In silico analysis of Western H. pylori CagA sequences provided evidence that the EPIYT B-TPMs are significantly less associated with gastric cancer than the EPIYA B-TPMs. By generating and using a phosphorylated CagA B-TPM-specific antibody, we demonstrated the phosphorylated state of the CagA B-TPM EPIYT during H. pylori co-culture with host cells. We also showed that within host cells, CagA interaction with phosphoinositol 3-kinase (PI3-kinase) was B-TPM tyrosine-phosphorylation-dependent, and the recombinant CagA with EPIYT B-TPM had higher affinity to PI3-kinase and enhanced induction of AKT than the isogenic CagA with EPIYA B-TPM. Structural modeling of the CagA B-TPM motif bound to PI3-kinase indicated that the threonine residue at the pY+1 position forms a side-chain hydrogen bond to N-417 of PI3-kinase, which cannot be formed by alanine. During co-culture with AGS cells, an H. pylori strain with a CagA EPIYT B-TPM had significantly attenuated induction of interleukin-8 and hummingbird phenotype, compared to the isogenic strain with B-TPM EPIYA. These results suggest that the A/T polymorphisms could regulate CagA activity through interfering with host signaling pathways related to carcinogenesis, thus influencing cancer risk. PMID:25646814

  2. PU.1 (Spi-1) and C/EBP alpha regulate expression of the granulocyte-macrophage colony-stimulating factor receptor alpha gene.

    PubMed Central

    Hohaus, S; Petrovick, M S; Voso, M T; Sun, Z; Zhang, D E; Tenen, D G

    1995-01-01

    Growth factor receptors play an important role in hematopoiesis. In order to further understand the mechanisms directing the expression of these key regulators of hematopoiesis, we initiated a study investigating the transcription factors activating the expression of the granulocyte-macrophage colony-stimulating factor (GM-CSF) receptor alpha gene. Here, we demonstrate that the human GM-CSF receptor alpha promoter directs reporter gene activity in a tissue-specific fashion in myelomonocytic cells, which correlates with its expression pattern as analyzed by reverse transcription PCR. The GM-CSF receptor alpha promoter contains an important functional site between positions -53 and -41 as identified by deletion analysis of reporter constructs. We show that the myeloid and B cell transcription factor PU.1 binds specifically to this site. Furthermore, we demonstrate that a CCAAT site located upstream of the PU.1 site between positions -70 and -54 is involved in positive-negative regulation of the GM-CSF receptor alpha promoter activity. C/EBP alpha is the major CCAAT/enhancer-binding protein (C/EBP) form binding to this site in nuclear extracts of U937 cells. Point mutations of either the PU.1 site or the C/EBP site that abolish the binding of the respective factors result in a significant decrease of GM-CSF receptor alpha promoter activity in myelomonocytic cells only. Furthermore, we demonstrate that in myeloid and B cell extracts, PU.1 forms a novel, specific, more slowly migrating complex (PU-SF) when binding the GM-CSF receptor alpha promoter PU.1 site. This is the first demonstration of a specific interaction with PU.1 on a myeloid PU.1 binding site. The novel complex is distinct from that described previously as binding to B cell enhancer sites and can be formed by addition of PU.1 to extracts from certain nonmyeloid cell types which do not express PU.1, including T cells and epithelial cells, but not from erythroid cells. Furthermore, we demonstrate that the PU

  3. Arabidopsis AtbHLH112 regulates the expression of genes involved in abiotic stress tolerance by binding to their E-box and GCG-box motifs.

    PubMed

    Liu, Yujia; Ji, Xiaoyu; Nie, Xianguang; Qu, Min; Zheng, Lei; Tan, Zilong; Zhao, Huimin; Huo, Lin; Liu, Shengnan; Zhang, Bing; Wang, Yucheng

    2015-08-01

    Plant basic helix-loop-helix (bHLH) transcription factors play essential roles in abiotic stress tolerance. However, most bHLHs have not been functionally characterized. Here, we characterized the functional role of a bHLH transcription factor from Arabidopsis, AtbHLH112, in response to abiotic stress. AtbHLH112 is a nuclear-localized protein, and its nuclear localization is induced by salt, drought and abscisic acid (ABA). In addition, AtbHLH112 serves as a transcriptional activator, with the activation domain located at its N-terminus. In addition to binding to the E-box motifs of stress-responsive genes, AtbHLH112 binds to a novel motif with the sequence 'GG[GT]CC[GT][GA][TA]C' (GCG-box). Gain- and loss-of-function analyses showed that the transcript level of AtbHLH112 is positively correlated with salt and drought tolerance. AtbHLH112 mediates stress tolerance by increasing the expression of P5CS genes and reducing the expression of P5CDH and ProDH genes to increase proline levels. AtbHLH112 also increases the expression of POD and SOD genes to improve reactive oxygen species (ROS) scavenging ability. We present a model suggesting that AtbHLH112 is a transcriptional activator that regulates the expression of genes via binding to their GCG- or E-boxes to mediate physiological responses, including proline biosynthesis and ROS scavenging pathways, to enhance stress tolerance. PMID:25827016

  4. Immunoreceptor tyrosine-based inhibitory motif (ITIM)-mediated inhibitory signaling is regulated by sequential phosphorylation mediated by distinct nonreceptor tyrosine kinases: a case study involving PECAM-1.

    PubMed

    Tourdot, Benjamin E; Brenner, Michelle K; Keough, Kathleen C; Holyst, Trudy; Newman, Peter J; Newman, Debra K

    2013-04-16

    The activation state of many blood and vascular cells is tightly controlled by a delicate balance between receptors that contain immunoreceptor tyrosine-based activation motifs (ITAMs) and those that contain immunoreceptor tyrosine-based inhibitory motifs (ITIMs). Precisely how the timing of cellular activation by ITAM-coupled receptors is regulated by ITIM-containing receptors is, however, poorly understood. Using platelet endothelial cell adhesion molecule 1 (PECAM-1) as a prototypical ITIM-bearing receptor, we demonstrate that initiation of inhibitory signaling occurs via a novel, sequential process in which Src family kinases phosphorylate the C-terminal ITIM, thereby enabling phosphorylation of the N-terminal ITIM of PECAM-1 by other Src homology 2 domain-containing nonreceptor tyrosine kinases (NRTKs). NRTKs capable of mediating the second phosphorylation event include C-terminal Src kinase (Csk) and Bruton's tyrosine kinase (Btk). Btk and Csk function downstream of phosphatidylinositol 3-kinase (PI3K) activation during ITAM-dependent platelet activation. In ITAM-activated platelets that were treated with a PI3K inhibitor, PECAM-1 was phosphorylated but did not bind the tandem SH2 domain-containing tyrosine phosphatase SHP-2, indicating that it was not phosphorylated on its N-terminal ITIM. Csk bound to and phosphorylated PECAM-1 more efficiently than did Btk and required its SH2 domain to perform these functions. Additionally, the phosphorylation of the N-terminal ITIM of Siglec-9 by Csk is enhanced by the prior phosphorylation of its C-terminal ITIM, providing evidence that the ITIMs of other dual ITIM-containing receptors are also sequentially phosphorylated. On the basis of these findings, we propose that sequential ITIM phosphorylation provides a general mechanism for precise temporal control over the recruitment and activation of tandem SH2 domain-containing tyrosine phosphatases that dampen ITAM-dependent signals. PMID:23418871

  5. Coactivator PGC-1{alpha} regulates the fasting inducible xenobiotic-metabolizing enzyme CYP2A5 in mouse primary hepatocytes

    SciTech Connect

    Arpiainen, Satu; Jaervenpaeae, Sanna-Mari; Manninen, Aki; Viitala, Pirkko; Lang, Matti A.; Pelkonen, Olavi; Hakkola, Jukka

    2008-10-01

    The nutritional state of organisms and energy balance related diseases such as diabetes regulate the metabolism of xenobiotics such as drugs, toxins and carcinogens. However, the mechanisms behind this regulation are mostly unknown. The xenobiotic-metabolizing cytochrome P450 (CYP) 2A5 enzyme has been shown to be induced by fasting and by glucagon and cyclic AMP (cAMP), which mediate numerous fasting responses. Peroxisome proliferator-activated receptor {gamma} coactivator (PGC)-1{alpha} triggers many of the important hepatic fasting effects in response to elevated cAMP levels. In the present study, we were able to show that cAMP causes a coordinated induction of PGC-1{alpha} and CYP2A5 mRNAs in murine primary hepatocytes. Furthermore, the elevation of the PGC-1{alpha} expression level by adenovirus mediated gene transfer increased CYP2A5 transcription. Co-transfection of Cyp2a5 5' promoter constructs with the PGC-1{alpha} expression vector demonstrated that PGC-1{alpha} is able to activate Cyp2a5 transcription through the hepatocyte nuclear factor (HNF)-4{alpha} response element in the proximal promoter of the Cyp2a5 gene. Chromatin immunoprecipitation assays showed that PGC-1{alpha} binds, together with HNF-4{alpha}, to the same region at the Cyp2a5 proximal promoter. In conclusion, PGC-1{alpha} mediates the expression of CYP2A5 induced by cAMP in mouse hepatocytes through coactivation of transcription factor HNF-4{alpha}. This strongly suggests that PGC-1{alpha} is the major factor mediating the fasting response of CYP2A5.

  6. Tumor necrosis factor alpha negatively regulates hepatitis B virus gene expression in transgenic mice.

    PubMed Central

    Gilles, P N; Fey, G; Chisari, F V

    1992-01-01

    It is well known that several inflammatory cytokines can modulate hepatocellular gene expression in a complex physiological process known as the hepatic acute-phase response. Since hepatitis B virus (HBV) characteristically induces a vigorous lymphomononuclear inflammatory response in the liver during acute and chronic hepatitis, it is possible that hepatocellular HBV gene expression may also be modulated by one or more of the cytokines produced by these cells. Using bacterial lipopolysaccharide (LPS) as a surrogate inducer of inflammatory cytokines in vivo, we have tested this hypothesis in a transgenic mouse model system. In experiments with two independent transgenic mouse lineages that express the HBV envelope region under the control of either HBV or cellular promoters, we observed a 50 to 80% reduction in the hepatic steady-state content of a 2.1-kb HBV mRNA following administration of a single intraperitoneal dose of LPS. The regulatory influence of several inflammatory cytokines known to be induced by LPS was also examined in this system. The negative regulatory effect of LPS was consistently reproduced by the administration of a single nontoxic dose of tumor necrosis factor alpha, and it was occasionally observed following the administration of high doses of alpha interferon and interleukin-6, while no effect was detectable in response to high-dose interleukin-1 alpha or to gamma interferon. These observations suggest that tumor necrosis factor alpha and perhaps other cytokines may activate a heretofore unsuspected intracellular pathway that negatively regulates HBV gene expression. The intracellular mechanism(s) responsible for this effect and its pathophysiologic relevance remain to be elucidated. Images PMID:1583737

  7. Alpha-1 giardin is an annexin with highly unusual calcium-regulated mechanisms.

    PubMed

    Weeratunga, Saroja K; Osman, Asiah; Hu, Nien-Jen; Wang, Conan K; Mason, Lyndel; Svärd, Staffan; Hope, Greg; Jones, Malcolm K; Hofmann, Andreas

    2012-10-19

    Alpha-giardins constitute the annexin proteome (group E annexins) in the intestinal protozoan parasite Giardia and, as such, represent the evolutionary oldest eukaryotic annexins. The dominance of alpha-giardins in the cytoskeleton of Giardia with its greatly reduced actin content emphasises the importance of the alpha-giardins for the structural integrity of the parasite, which is particularly critical in the transformation stage between cyst and trophozoite. In this study, we report the crystal structures of the apo- and calcium-bound forms of α1-giardin, a protein localised to the plasma membrane of Giardia trophozoites that has recently been identified as a vaccine target. The calcium-bound crystal structure of α1-giardin revealed the presence of a type III site in the first repeat as known from other annexin structures, as well as a novel calcium binding site situated between repeats I and IV. By means of comparison, the crystal structures of three different alpha-giardins known to date indicate that these proteins engage different calcium coordination schemes, among each other, as well as compared to annexins of groups A-D. Evaluation of the calcium-dependent binding to acidic phosphoplipid membranes revealed that this process is not only mediated but also regulated by the environmental calcium concentration. Uniquely within the large family of annexins, α1-giardin disengages from the phospholipid membrane at high calcium concentrations possibly due to formation of a dimeric species. The observed behaviour is in line with changing calcium levels experienced by the parasite during excystation and may thus provide first insights into the molecular mechanisms underpinning the transformation and survival of the parasite in the host. PMID:22796298

  8. Stabilization of cellular mRNAs and up-regulation of proteins by oligoribonucleotides homologous to the Bcl2 adenine-uridine rich element motif.

    PubMed

    Bevilacqua, Annamaria; Ghisolfi, Laura; Franzi, Sara; Maresca, Giovanna; Gherzi, Roberto; Capaccioli, Sergio; Nicolin, Angelo; Canti, Gianfranco

    2007-02-01

    Adenine-uridine rich elements (AREs) play an important role in modulating mRNA stability, being the target site of many ARE-binding proteins (AUBPs) that are involved in the decay process. Three 26-mer 2'-O-methyl oligoribonucleotides (ORNs) homologous to the core region of ARE of bcl2 mRNA have been studied for decoy-aptamer activity in UV cross-linking assays. Sense-oriented ORNs competed with the ARE motif for the interaction with both destabilizing and stabilizing AUBPs in cell-free systems and in cell lines. Moreover, ORNs induced mRNA stabilization and up-regulated both Bcl2 mRNA and protein levels in the cells. Bcl2 ORNs stabilized other ARE-containing transcripts and up-regulated their expression. These results indicate that Bcl2 ORNs compete for AUBP-ARE interactions independently of ARE class and suggest that in the cell, the default labile status of ARE-containing mRNAs depends on the combined interaction of such transcripts with destabilizing AUBPs. PMID:17077270

  9. Structural studies on the RNA-recognition motif of NELF E, a cellular negative transcription elongation factor involved in the regulation of HIV transcription

    PubMed Central

    Rao, Jampani N.; Neumann, Liane; Wenzel, Sabine; Schweimer, Kristian; Rösch, Paul; Wöhrl, Birgitta M.

    2006-01-01

    The elongation of transcription of HIV RNA at the TAR (transactivation-response element) is highly regulated by positive and negative factors. The cellular negative transcription elongation factor NELF (negative elongation factor) was suggested to be involved in transcriptional regulation of HIV-1 (HIV type 1) by binding to the stem of the viral TAR RNA which is synthesized by cellular RNA polymerase II at the viral long terminal repeat. NELF is a heterotetrameric protein consisting of NELF A, B, C or the splice variant D, and E. In the present study, we determined the solution structure of the RRM (RNA-recognition motif) of the RNA-binding subunit NELF E and studied its interaction with the viral TAR RNA. Our results show that the separately expressed recombinant NELF E RRM has α-helical and β-strand elements adopting a βαββαβ fold and is able to bind to TAR RNA. Fluorescence equilibrium titrations with fluorescently labelled double- and single-stranded oligoribonucleotides representing the TAR RNA stem imply that NELF E RRM binds to the single-stranded TAR RNAs with Kd values in the low-micromolar range. PMID:16898873

  10. Structural Fine-Tuning of MIT-Interacting Motif 2 (MIM2) and Allosteric Regulation of ESCRT-III by Vps4 in Yeast.

    PubMed

    Kojima, Rieko; Obita, Takayuki; Onoue, Kousuke; Mizuguchi, Mineyuki

    2016-06-01

    The endosomal sorting complex required for transport (ESCRT) facilitates roles in membrane remodeling, such as multivesicular body biogenesis, enveloped virus budding and cell division. In yeast, Vps4 plays a crucial role in intraluminal vesicle formation by disassembling ESCRT proteins. Vps4 is recruited by ESCRT-III proteins to the endosomal membrane through the interaction between the microtubule interacting and trafficking (MIT) domain of Vps4 and the C-terminal MIT-interacting motif (MIM) of ESCRT-III proteins. Here, we have determined the crystal structure of Vps4-MIT in a complex with Vps20, a member of ESCRT-III, and revealed that Vps20 adopts a unique MIM2 conformation. Based on structural comparisons with other known MIM2s, we have refined the consensus sequence of MIM2. We have shown that another ESCRT-III protein, Ist1, binds to Vps4-MIT via its C-terminal MIM1 with higher affinity than Vps2, but lacks MIM2 by surface plasmon resonance. Surprisingly, the Ist1 MIM1 competed with the MIM2 of Vfa1, a regulator of Vps4, for binding to Vps4-MIT, even though these MIMs bind in non-overlapping sites on the MIT. These findings provide insight into the allosteric recognition of MIMs of ESCRT-III by Vps4 and also the regulation of ESCRT machinery at the last step of membrane remodeling. PMID:27075672

  11. The highly conserved amino acid sequence motif Tyr-Gly-Asp-Thr-Asp-Ser in alpha-like DNA polymerases is required by phage phi 29 DNA polymerase for protein-primed initiation and polymerization.

    PubMed Central

    Bernad, A; Lázaro, J M; Salas, M; Blanco, L

    1990-01-01

    The alpha-like DNA polymerases from bacteriophage phi 29 and other viruses, prokaryotes and eukaryotes contain an amino acid consensus sequence that has been proposed to form part of the dNTP binding site. We have used site-directed mutants to study five of the six highly conserved consecutive amino acids corresponding to the most conserved C-terminal segment (Tyr-Gly-Asp-Thr-Asp-Ser). Our results indicate that in phi 29 DNA polymerase this consensus sequence, although irrelevant for the 3'----5' exonuclease activity, is essential for initiation and elongation. Based on these results and on its homology with known or putative metal-binding amino acid sequences, we propose that in phi 29 DNA polymerase the Tyr-Gly-Asp-Thr-Asp-Ser consensus motif is part of the dNTP binding site, involved in the synthetic activities of the polymerase (i.e., initiation and polymerization), and that it is involved particularly in the metal binding associated with the dNTP site. Images PMID:2191296

  12. A survey of DNA motif finding algorithms

    PubMed Central

    Das, Modan K; Dai, Ho-Kwok

    2007-01-01

    Background Unraveling the mechanisms that regulate gene expression is a major challenge in biology. An important task in this challenge is to identify regulatory elements, especially the binding sites in deoxyribonucleic acid (DNA) for transcription factors. These binding sites are short DNA segments that are called motifs. Recent advances in genome sequence availability and in high-throughput gene expression analysis technologies have allowed for the development of computational methods for motif finding. As a result, a large number of motif finding algorithms have been implemented and applied to various motif models over the past decade. This survey reviews the latest developments in DNA motif finding algorithms. Results Earlier algorithms use promoter sequences of coregulated genes from single genome and search for statistically overrepresented motifs. Recent algorithms are designed to use phylogenetic footprinting or orthologous sequences and also an integrated approach where promoter sequences of coregulated genes and phylogenetic footprinting are used. All the algorithms studied have been reported to correctly detect the motifs that have been previously detected by laboratory experimental approaches, and some algorithms were able to find novel motifs. However, most of these motif finding algorithms have been shown to work successfully in yeast and other lower organisms, but perform significantly worse in higher organisms. Conclusion Despite considerable efforts to date, DNA motif finding remains a complex challenge for biologists and computer scientists. Researchers have taken many different approaches in developing motif discovery tools and the progress made in this area of research is very encouraging. Performance comparison of different motif finding tools and identification of the best tools have proven to be a difficult task because tools are designed based on algorithms and motif models that are diverse and complex and our incomplete understanding of

  13. Effects of 12 metal ions on iron regulatory protein 1 (IRP-1) and hypoxia-inducible factor-1 alpha (HIF-1{alpha}) and HIF-regulated genes

    SciTech Connect

    Li Qin; Chen Haobin; Huang Xi; Costa, Max . E-mail: costam@env.med.nyu.edu

    2006-06-15

    Several metal ions that are carcinogenic affect cellular iron homeostasis by competing with iron transporters or iron-regulated enzymes. Some metal ions can mimic a hypoxia response in cells under normal oxygen tension, and induce expression of HIF-1{alpha}-regulated genes. This study investigated whether 12 metal ions altered iron homeostasis in human lung carcinoma A549 cells as measured by an activation of IRP-1 and ferritin level. We also studied hypoxia signaling by measuring HIF-1{alpha} protein levels, hypoxia response element (HRE)-driven luciferase reporter activity, and Cap43 protein level (an HIF-1{alpha} responsive gene). Our results show the following: (i) Ni(II), Co(II), V(V), Mn(II), and to a lesser extent As(III) and Cu(II) activated the binding of IRP-1 to IRE after 24 h, while the other metal ions had no effect; (ii) 10 of 12 metal ions induced HIF-1{alpha} protein but to strikingly different degrees. Two of these metal ions, Al(III) and Cd(II), did not induce HIF-1{alpha} protein; however, as indicated below, only Ni(II), Co (II), and to lesser extent Mn(II) and V(V) activated HIF-1{alpha}-dependent transcription. The combined effects of both [Ni(II) + As(III)] and [Ni(II) + Cr(VI)] on HIF-1{alpha} protein were synergistic; (iii) Addition of Fe(II) with Ni(II), Co(II), and Cr(VI) attenuated the induction of HIF-1{alpha} after 4 h treatment; (iv) Ni(II), Co(II), and Mn(II) significantly decrease ferritin level after 24 h exposure; (v) Ni(II), Co(II), V(V), and Mn(II) activated HRE reporter gene after 20 h treatment; (vi) Ni(II), Co(II), V(V), and Mn(II) increased the HIF-1-dependent Cap43 protein level after 24 h treatment. In conclusion, only Ni (II), Co (II), and to a lesser extent Mn(II) and V(V) significantly stabilized HIF-1{alpha} protein, activated IRP, decreased the levels of ferritin, induced the transcription of HIF-dependent reporter, and increased the expression of Cap43 protein levels (HIF-dependent gene). The mechanism for the

  14. PGC-1{beta} regulates mouse carnitine-acylcarnitine translocase through estrogen-related receptor {alpha}

    SciTech Connect

    Gacias, Mar; Perez-Marti, Albert; Pujol-Vidal, Magdalena; Marrero, Pedro F.; Haro, Diego; Relat, Joana

    2012-07-13

    Highlights: Black-Right-Pointing-Pointer The Cact gene is induced in mouse skeletal muscle after 24 h of fasting. Black-Right-Pointing-Pointer The Cact gene contains a functional consensus sequence for ERR. Black-Right-Pointing-Pointer This sequence binds ERR{alpha} both in vivo and in vitro. Black-Right-Pointing-Pointer This ERRE is required for the activation of Cact expression by the PGC-1/ERR axis. Black-Right-Pointing-Pointer Our results add Cact as a genuine gene target of these transcriptional regulators. -- Abstract: Carnitine/acylcarnitine translocase (CACT) is a mitochondrial-membrane carrier proteins that mediates the transport of acylcarnitines into the mitochondrial matrix for their oxidation by the mitochondrial fatty acid-oxidation pathway. CACT deficiency causes a variety of pathological conditions, such as hypoketotic hypoglycemia, cardiac arrest, hepatomegaly, hepatic dysfunction and muscle weakness, and it can be fatal in newborns and infants. Here we report that expression of the Cact gene is induced in mouse skeletal muscle after 24 h of fasting. To gain insight into the control of Cact gene expression, we examine the transcriptional regulation of the mouse Cact gene. We show that the 5 Prime -flanking region of this gene is transcriptionally active and contains a consensus sequence for the estrogen-related receptor (ERR), a member of the nuclear receptor family of transcription factors. This sequence binds ERR{alpha}in vivo and in vitro and is required for the activation of Cact expression by the peroxisome proliferator-activated receptor gamma coactivator (PGC)-1/ERR axis. We also demonstrate that XTC790, the inverse agonist of ERR{alpha}, specifically blocks Cact activation by PGC-1{beta} in C2C12 cells.

  15. Exogenous cMHM regulates the expression of DMRT1 and ER alpha in avian testes.

    PubMed

    Yang, Xiurong; Zheng, Jiangxia; Xu, Guiyun; Qu, Lujiang; Chen, Sirui; Li, Junying; Yang, Ning

    2010-04-01

    The male hypemethylated (MHM) region, associated with sex-specific DNA methylation and histone acetylation, encodes non-coding RNAs that are expressed exclusively on Z chromosome in female chickens. The function of the MHM non-coding RNAs is unclear yet. In order to analyze the regulation effect of MHM on mRNA expression of sex-dependent genes, exogenous plasmid containing chicken MHM (cMHM) was constructed and injected into left testes of 13-week-old roosters. Comb color of the roosters in the pEGFP-N1-cMHM group became much paler, an indication of change in sex hormones, as compared with that of the negative control groups at the 10 days after injection. Real-time PCR was used to determine mRNA expression of sex-dependent genes in testes tissue. Transcription of ER alpha gene was significantly up-regulated in the pEGFP-N1-cMHM group compared with that of the pEGFP-N1 and normal saline groups (P < 0.01), while expression of DMRT1 mRNA declined severely in the pEGFP-N1-cMHM group compared with that of normal saline groups (P < 0.05). Nevertheless, expression of other candidate genes, such as AMH, FOXL2, SOX9, and P450arom did not change after injection of exogenous cMHM. In conclusion, down-regulation of DMRT1 and up-regulation of ER alpha in rooster testes treated with exogenous pEGFP-N1-cMHM plasmid might indicate a novel cMHM non-coding RNA-mediated mechanism in avian sex differentiation. PMID:19597752

  16. RegulonDB version 9.0: high-level integration of gene regulation, coexpression, motif clustering and beyond

    PubMed Central

    Gama-Castro, Socorro; Salgado, Heladia; Santos-Zavaleta, Alberto; Ledezma-Tejeida, Daniela; Muñiz-Rascado, Luis; García-Sotelo, Jair Santiago; Alquicira-Hernández, Kevin; Martínez-Flores, Irma; Pannier, Lucia; Castro-Mondragón, Jaime Abraham; Medina-Rivera, Alejandra; Solano-Lira, Hilda; Bonavides-Martínez, César; Pérez-Rueda, Ernesto; Alquicira-Hernández, Shirley; Porrón-Sotelo, Liliana; López-Fuentes, Alejandra; Hernández-Koutoucheva, Anastasia; Moral-Chávez, Víctor Del; Rinaldi, Fabio; Collado-Vides, Julio

    2016-01-01

    RegulonDB (http://regulondb.ccg.unam.mx) is one of the most useful and important resources on bacterial gene regulation,as it integrates the scattered scientific knowledge of the best-characterized organism, Escherichia coli K-12, in a database that organizes large amounts of data. Its electronic format enables researchers to compare their results with the legacy of previous knowledge and supports bioinformatics tools and model building. Here, we summarize our progress with RegulonDB since our last Nucleic Acids Research publication describing RegulonDB, in 2013. In addition to maintaining curation up-to-date, we report a collection of 232 interactions with small RNAs affecting 192 genes, and the complete repertoire of 189 Elementary Genetic Sensory-Response units (GENSOR units), integrating the signal, regulatory interactions, and metabolic pathways they govern. These additions represent major progress to a higher level of understanding of regulated processes. We have updated the computationally predicted transcription factors, which total 304 (184 with experimental evidence and 120 from computational predictions); we updated our position-weight matrices and have included tools for clustering them in evolutionary families. We describe our semiautomatic strategy to accelerate curation, including datasets from high-throughput experiments, a novel coexpression distance to search for ‘neighborhood’ genes to known operons and regulons, and computational developments. PMID:26527724

  17. RegulonDB version 9.0: high-level integration of gene regulation, coexpression, motif clustering and beyond.

    PubMed

    Gama-Castro, Socorro; Salgado, Heladia; Santos-Zavaleta, Alberto; Ledezma-Tejeida, Daniela; Muñiz-Rascado, Luis; García-Sotelo, Jair Santiago; Alquicira-Hernández, Kevin; Martínez-Flores, Irma; Pannier, Lucia; Castro-Mondragón, Jaime Abraham; Medina-Rivera, Alejandra; Solano-Lira, Hilda; Bonavides-Martínez, César; Pérez-Rueda, Ernesto; Alquicira-Hernández, Shirley; Porrón-Sotelo, Liliana; López-Fuentes, Alejandra; Hernández-Koutoucheva, Anastasia; Del Moral-Chávez, Víctor; Rinaldi, Fabio; Collado-Vides, Julio

    2016-01-01

    RegulonDB (http://regulondb.ccg.unam.mx) is one of the most useful and important resources on bacterial gene regulation,as it integrates the scattered scientific knowledge of the best-characterized organism, Escherichia coli K-12, in a database that organizes large amounts of data. Its electronic format enables researchers to compare their results with the legacy of previous knowledge and supports bioinformatics tools and model building. Here, we summarize our progress with RegulonDB since our last Nucleic Acids Research publication describing RegulonDB, in 2013. In addition to maintaining curation up-to-date, we report a collection of 232 interactions with small RNAs affecting 192 genes, and the complete repertoire of 189 Elementary Genetic Sensory-Response units (GENSOR units), integrating the signal, regulatory interactions, and metabolic pathways they govern. These additions represent major progress to a higher level of understanding of regulated processes. We have updated the computationally predicted transcription factors, which total 304 (184 with experimental evidence and 120 from computational predictions); we updated our position-weight matrices and have included tools for clustering them in evolutionary families. We describe our semiautomatic strategy to accelerate curation, including datasets from high-throughput experiments, a novel coexpression distance to search for 'neighborhood' genes to known operons and regulons, and computational developments. PMID:26527724

  18. Cyclic mechanical stretching and interleukin-1alpha synergistically up-regulate prostacyclin secretion in cultured human uterine myometrial cells.

    PubMed

    Korita, D; Itoh, H; Sagawa, N; Yura, S; Yoshida, M; Kakui, K; Takemura, M; Nuamah, M A; Fujii, S

    2004-03-01

    Prostacyclin (PGI2), a potent uterine smooth muscle relaxant, is postulated to be a major prostaglandin (PG) secreted from the human myometrium. PGI2 metabolite concentrations in the maternal plasma were reported to be elevated during pregnancy, especially during labor. Recently, we developed cultured human myometrial cells from pregnant women and reported that cyclic mechanical stretching mimicking labor increased PGI2 secretion from these cells by up-regulating PGI2 synthase promoter activities. Since elevation of cervical/vaginal interleukin-1alpha (IL-1alpha) concentrations is also a characteristic feature of delivery, and IL-1alpha is a known stimulator of PG synthesis, we investigated a possible synergistic effect of cyclic mechanical stretching and IL-1alpha on PGI2 production in cultured human myometrial cells. Treatment with IL-1alpha (10 ng/ml) significantly augmented (4- to 60-fold) the secretion of PGI2, prostaglandin E2 (PGE2), prostaglandin F2alpha (PGF2alpha) and thromboxane A2 (TXA2) from cultured human myometrial cells obtained from non-pregnant and pregnant women as well as in cultured human umbilical artery and cultured human coronary artery smooth muscle cells (p < 0.05 for all comparisons). However, labor-like cyclic mechanical stretching up-regulated IL-1alpha-augmented PGI2 secretion from myometrial cells obtained from non-pregnant and pregnant women 2.1- to 2.8-fold (p < 0.05 for all comparisons), but not PGE2, PGF2alpha nor TXA2. Moreover, such an augumentation of PGI2 secretion by cyclic mechanical stretching was not observed in cultured human umbilical artery nor in cultured human coronary artery smooth muscle cells. These results suggest that cyclic mechanical stretching by labor, in concert with IL-1alpha stimulation, contributes to the increase in myometrial PGI2 secretion during delivery. PMID:15255281

  19. Tumour necrosis factor-alpha up-regulates decay-accelerating factor gene expression in human intestinal epithelial cells.

    PubMed Central

    Andoh, A; Fujiyama, Y; Sumiyoshi, K; Sakumoto, H; Okabe, H; Bamba, T

    1997-01-01

    The increased expression of decay-accelerating factor (DAF) has been detected in intestinal epithelial cells at the inflamed mucosa. In this study, we examined the effects of tumour necrosis factor (TNF)-alpha on DAF expression in three intestinal epithelial cell lines. DAF mRNA expression was evaluated by Northern blot analysis, and DAF protein expression was analysed by biotin labelling and immunoprecipitation. TNF-alpha induced a marked increase in DAF mRNA and protein expression in HT-29, T84 and Caco-2 cells. In HT-29 cells, the effects of TNF-a on DAF mRNA accumulation were observed in a dose-dependent manner; DAF mRNA accumulation reached a maximum at 3-6 hr, and then gradually decreased. These effects of TNF-alpha required de novo protein synthesis. Messenger RNA stability studies suggested that TNF-alpha partially regulated DAF gene expression by a posttranscriptional mechanism. Moreover, the combination of TNF-alpha and interleukin (IL)-4 induced an additive increase in DAF mRNA accumulation in HT-29 and T84 cells. In human intestinal epithelial cells, TNF-alpha acts as a potent inducer of DAF mRNA expression, indicating an important role for TNF-alpha in the regulation of DAF expression at the inflamed mucosa. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 6 Figure 7 Figure 8 PMID:9155641

  20. Mining Conditional Phosphorylation Motifs.

    PubMed

    Liu, Xiaoqing; Wu, Jun; Gong, Haipeng; Deng, Shengchun; He, Zengyou

    2014-01-01

    Phosphorylation motifs represent position-specific amino acid patterns around the phosphorylation sites in the set of phosphopeptides. Several algorithms have been proposed to uncover phosphorylation motifs, whereas the problem of efficiently discovering a set of significant motifs with sufficiently high coverage and non-redundancy still remains unsolved. Here we present a novel notion called conditional phosphorylation motifs. Through this new concept, the motifs whose over-expressiveness mainly benefits from its constituting parts can be filtered out effectively. To discover conditional phosphorylation motifs, we propose an algorithm called C-Motif for a non-redundant identification of significant phosphorylation motifs. C-Motif is implemented under the Apriori framework, and it tests the statistical significance together with the frequency of candidate motifs in a single stage. Experiments demonstrate that C-Motif outperforms some current algorithms such as MMFPh and Motif-All in terms of coverage and non-redundancy of the results and efficiency of the execution. The source code of C-Motif is available at: https://sourceforge. net/projects/cmotif/. PMID:26356863

  1. PPAR{alpha} gene expression is up-regulated by LXR and PXR activators in the small intestine

    SciTech Connect

    Inoue, Jun; Satoh, Shin-ichi; Kita, Mariko; Nakahara, Mayuko; Hachimura, Satoshi; Miyata, Masaaki; Nishimaki-Mogami, Tomoko; Sato, Ryuichiro

    2008-07-11

    LXR, PXR, and PPAR{alpha} are members of a nuclear receptor family which regulate the expression of genes involved in lipid metabolism. Here, we show the administration of T0901317 stimulates PPAR{alpha} gene expression in the small intestine but not in the liver of both normal and FXR-null mice. The administration of LXR specific ligand GW3965, or PXR specific ligand PCN has the same effect, indicating that ligand-dependent activation of LXR and PXR, but not FXR, is responsible for the increased gene expression of PPAR{alpha} in the mouse small intestine.

  2. Mechanisms regulating male sexual behavior in the rat: role of 3 alpha- and 3 beta-androstanediols.

    PubMed

    Morali, G; Oropeza, M V; Lemus, A E; Perez-Palacios, G

    1994-09-01

    To assess whether naturally occurring 5 alpha-androstanediols (5 alpha-androstane-3 alpha, 17 beta-diol and 5 alpha-androstane-3 beta, 17 beta-diol) play a role in the regulation of male sexual behavior in the rat, their capability to restore copulatory behavior in castrated animals was evaluated. Androstanediols were chronically administered either alone or in combination with 5 alpha-dihydrotestosterone (DHT) or with estradiol-17 beta (E2). Animals treated with testosterone (T), DHT, E2, and vehicle, either alone or in different combinations, served as controls. The occurrence of mounting, intromission, and ejaculation as well as detailed parameters of copulatory behavior were recorded twice per week for 3 weeks. At the end of treatments, the weights of sex accessory organs were also recorded. When 3 beta, 5 alpha-androstanediol (3 beta-diol; 500 micrograms/day) was administered in combination with DHT (300 micrograms/day), full copulatory behavior was restored in all subjects in a manner similar to that obtained with E2 plus DHT or T plus DHT combinations, thus indicating an estrogen-like behavioral effect of 3 beta-diol. Administration of 3 alpha, 5 alpha-androstanediol (3 alpha-diol; 500 micrograms/day) combined with DHT also restored sexual behavior, though to a lesser extent. When 3 alpha-diol (500 micrograms/day) was simultaneously administered with E2 (5 micrograms/day), the copulatory behavior of castrated animals was fully restored in a fashion similar to that observed after administration of DHT plus E2 and T plus E2 combinations, indicating a potent androgen-like effect of 3 alpha-diol.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7803627

  3. Regulation of monocyte MMP-9 production by TNF-alpha and a tumour-derived soluble factor (MMPSF).

    PubMed Central

    Leber, T. M.; Balkwill, F. R.

    1998-01-01

    The matrix metalloprotease MMP-9 localizes to tumour-associated macrophages in human ovarian cancer but little is known of its regulation. Co-culture of human ovarian cancer cells (PEO-1) and a monocytic cell line (THP-1) led to production of 92-kDa proMMP-9. PEO-1-conditioned medium (CM) also stimulated THP-1 cells or isolated peripheral blood monocytes to produce proMMP-9. Expression of TIMP-1, however, remained unaffected. There was evidence that tumour necrosis factor alpha (TNF-alpha) was involved in tumour-stimulated monocytic proMMP-9 production. Antibody to TNF-alpha inhibited proMMP-9 production, and synthesis of TNF-alpha mRNA and protein preceded proMMP-9 release. In addition, the synthetic matrix metalloprotease inhibitor (MMPI) BB-2116, which blocks TNF-alpha shedding, inhibited proMMP-9 release in the co-cultures and from CM-stimulated monocytic cells. Further experiments suggested that the stimulating factor present in CM was not TNF-alpha, but acted synergistically with autocrine monocyte-derived TNF-alpha to release monocytic proMMP-9. Thus, ovarian cancer cells can stimulate monocytic cells in vitro to make proMMP-9 without affecting the expression of its inhibitor TIMP-1. This induction is mediated via a soluble factor (provisionally named MMPSF) that requires synergistic action of autocrine or paracrine TNF-alpha. Images Figure 1 Figure 4 Figure 7 PMID:9743290

  4. Divergent regulation of the key enzymes of polyamine metabolism by chiral alpha-methylated polyamine analogues.

    PubMed

    Hyvönen, Mervi T; Howard, Michael T; Anderson, Christine B; Grigorenko, Nikolay; Khomutov, Alex R; Vepsäläinen, Jouko; Alhonen, Leena; Jänne, Juhani; Keinänen, Tuomo A

    2009-09-01

    The natural polyamines are ubiquitous multifunctional organic cations which play important roles in regulating cellular proliferation and survival. Here we present a novel approach to investigating polyamine functions by using optical isomers of MeSpd (alpha-methylspermidine) and Me2Spm (alpha,omega-bismethylspermine), metabolically stable functional mimetics of natural polyamines. We studied the ability of MeSpd and Me2Spm to alter the normal polyamine regulation pathways at the level of polyamine uptake and the major control mechanisms known to affect the key polyamine metabolic enzymes. These include: (i) ODC (ornithine decarboxylase), which catalyses the rate-limiting step of polyamine synthesis; (ii) ODC antizyme, an inhibitor of ODC and polyamine uptake; (iii) SSAT (spermidine/spermine N1-acetyltransferase), the major polyamine catabolic enzyme; and (iv) AdoMetDC (S-adenosyl-L-methionine decarboxylase), which is required for the conversion of putrescine into spermidine, and spermidine into spermine. We show that the stereoisomers differ in their cellular uptake and ability to downregulate ODC and AdoMetDC, and to induce SSAT. These effects are mediated by the ability of the enantiomers to induce +1 ribosomal frameshifting on ODC antizyme mRNA, to suppress the translation of AdoMetDC uORF (upstream open reading frame) and to regulate the alternative splicing of SSAT pre-mRNA. The unique effects of chiral polyamine analogues on polyamine metabolism may offer novel possibilities for studying the physiological functions, control mechanisms, and targets of the natural polyamines, as well as advance therapeutic drug development in cancer and other human health-related issues. PMID:19522702

  5. KRÜPPEL-LIKE FACTOR 9 AND REGULATION OF ENDOMETRIAL ESTROGEN RECEPTOR-ALPHA SIGNALING

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Endometrial cancer risk is linked to aberrant estrogen receptor-alpha (ER alpha) signaling caused by increased ER alpha activation due to hyper-estrogenic environments or mutations in growth-regulatory factors. We had shown that ER alpha signaling is attenuated by the Sp1-related transcription facto...

  6. Homeobox A7 stimulates breast cancer cell proliferation by up-regulating estrogen receptor-alpha

    SciTech Connect

    Zhang, Yu; Cheng, Jung-Chien; Huang, He-Feng; Leung, Peter C.K.

    2013-11-01

    Highlights: •HOXA7 regulates MCF7 cell proliferation. •HOXA7 up-regulates ERα expression. •HOXA7 mediates estrogen-induced MCF7 cell proliferation. -- Abstract: Breast cancer is the most common hormone-dependent malignancy in women. Homeobox (HOX) transcription factors regulate many cellular functions, including cell migration, proliferation and differentiation. The aberrant expression of HOX genes has been reported to be associated with human reproductive cancers. Estradiol (E2) and its nuclear receptors, estrogen receptor (ER)-alpha and ER-beta, are known to play critical roles in the regulation of breast cancer cell growth. However, an understanding of the potential relationship between HOXA7 and ER in breast cancer cells is limited. In this study, our results demonstrate that knockdown of HOXA7 in MCF7 cells significantly decreased cell proliferation and ERα expression. In addition, HOXA7 knockdown attenuated E2-induced cell proliferation as well as progesterone receptor (PR) expression. The stimulatory effects of E2 on cell proliferation and PR expression were abolished by co-treatment with ICI 182780, a selective ERα antagonist. In contrast, overexpression of HOXA7 significantly stimulated cell proliferation and ERα expression. Moreover, E2-induced cell proliferation, as well as PR expression, was enhanced by the overexpression of HOXA7. Neither knockdown nor overexpression of HOXA7 affected the ER-beta levels. Our results demonstrate a novel mechanistic role for HOXA7 in modulating breast cancer cell proliferation via regulation of ERα expression. This finding contributes to our understanding of the role HOXA7 plays in regulating the proliferation of ER-positive cancer cells.

  7. Role of the SUMO-interacting motif in HIPK2 targeting to the PML nuclear bodies and regulation of p53

    SciTech Connect

    Sung, Ki Sa; Lee, Yun-Ah; Kim, Eui Tae; Lee, Seung-Rock; Ahn, Jin-Hyun; Choi, Cheol Yong

    2011-04-15

    Homeodomain-interacting protein kinase 2 (HIPK2) is a key regulator of various transcription factors including p53 and CtBP in the DNA damage signaling pathway. PML-nuclear body (NB) is required for HIPK2-mediated p53 phosphorylation at Ser46 and induction of apoptosis. Although PML-NB targeting of HIPK2 has been shown, much is not clear about the molecular mechanism of HIPK2 recruitment to PML-NBs. Here we show that HIPK2 colocalizes specifically with PML-I and PML-IV. Mutational analysis showed that HIPK2 recruitment to PML-IV-NBs is mediated by the SUMO-interaction motifs (SIMs) of both PML-IV and HIPK2. Wild-type HIPK2 associated with SUMO-conjugated PML-IV at a higher affinity than with un-conjugated PML-IV, while the association of a HIPK2 SIM mutant with SUMO-modified PML-IV was impaired. In colony formation assays, HIPK2 strongly suppressed cell proliferation, but HIPK2 SIM mutants did not. In addition, activation and phosphorylation of p53 at the Ser46 residue were impaired by HIPK2 SIM mutants. These results suggest that SIM-mediated HIPK2 targeting to PML-NBs is crucial for HIPK2-mediated p53 activation and induction of apoptosis.

  8. Structure of GrlR and the Implication of its EDED Motif in Mediating the Regulation of Type III Secretion System in EHEC

    SciTech Connect

    Jobichen,C.; Li, M.; Yerushalmi, G.; Tan, Y.; Mok, Y.; Rosenshine, I.; Leung, K.; Sivaraman, J.

    2007-01-01

    Enterohemorrhagic Escherichia coli (EHEC) is a common cause of severe hemorrhagic colitis. EHEC's virulence is dependent upon a type III secretion system (TTSS) encoded by 41 genes. These genes are organized in several operons clustered in the locus of enterocyte effacement. Most of the locus of enterocyte effacement genes, including grlA and grlR, are positively regulated by Ler, and Ler expression is positively and negatively modulated by GrlA and GrlR, respectively. However, the molecular basis for the GrlA and GrlR activity is still elusive. We have determined the crystal structure of GrlR at 1.9 Angstroms resolution. It consists of a typical {beta}-barrel fold with eight {beta}-strands containing an internal hydrophobic cavity and a plug-like loop on one side of the barrel. Strong hydrophobic interactions between the two {beta}-barrels maintain the dimeric architecture of GrlR. Furthermore, a unique surface-exposed EDED (Glu-Asp-Glu-Asp) motif is identified to be critical for GrlA-GrlR interaction and for the repressive activity of GrlR. This study contributes a novel molecular insight into the mechanism of GrlR function.

  9. Role of the SUMO-interacting motif in HIPK2 targeting to the PML nuclear bodies and regulation of p53.

    PubMed

    Sung, Ki Sa; Lee, Yun-Ah; Kim, Eui Tae; Lee, Seung-Rock; Ahn, Jin-Hyun; Choi, Cheol Yong

    2011-04-15

    Homeodomain-interacting protein kinase 2 (HIPK2) is a key regulator of various transcription factors including p53 and CtBP in the DNA damage signaling pathway. PML-nuclear body (NB) is required for HIPK2-mediated p53 phosphorylation at Ser46 and induction of apoptosis. Although PML-NB targeting of HIPK2 has been shown, much is not clear about the molecular mechanism of HIPK2 recruitment to PML-NBs. Here we show that HIPK2 colocalizes specifically with PML-I and PML-IV. Mutational analysis showed that HIPK2 recruitment to PML-IV-NBs is mediated by the SUMO-interaction motifs (SIMs) of both PML-IV and HIPK2. Wild-type HIPK2 associated with SUMO-conjugated PML-IV at a higher affinity than with un-conjugated PML-IV, while the association of a HIPK2 SIM mutant with SUMO-modified PML-IV was impaired. In colony formation assays, HIPK2 strongly suppressed cell proliferation, but HIPK2 SIM mutants did not. In addition, activation and phosphorylation of p53 at the Ser46 residue were impaired by HIPK2 SIM mutants. These results suggest that SIM-mediated HIPK2 targeting to PML-NBs is crucial for HIPK2-mediated p53 activation and induction of apoptosis. PMID:21192925

  10. The transcription factor-like nuclear regulator (TFNR) contains a novel 55-amino-acid motif repeated nine times and maps closely to SMN1.

    PubMed

    Kelter, A R; Herchenbach, J; Wirth, B

    2000-12-15

    The transcription factor-like nuclear regulator (TFNR) is a novel human gene that maps on 5q13, distal to the duplicated region that includes SMN1, the spinal muscular atrophy (SMA) determining gene. The location of TFNR allowed us to design an evolutionary model of the SMA region. The 9.5-kb TFNR transcript is highly expressed in cerebellum and weakly in all other tissues tested. TFNR encodes a protein of 2254 amino acids (aa) and contains nine repeats of a novel 55-aa motif, of yet unknown function. The coding region is organized in 32 exons. Alternative splicing of exon 15 results in a truncated protein of 796 aa. TFNR comprises a series of polypeptides that range from 55 to 250 kDa. Immunocytological studies showed that the TFNR protein is present exclusively in the nucleus, where it is concentrated in several nuclear structures. Amino acids 155-474 show significant homology to TFC5, a subunit of the yeast transcription factor TFIIIB, suggesting that TFNR is a putative transcription factor. Based on its proximity to SMN1 and its expression pattern, TFNR may be a candidate gene for atypical forms of SMA with cerebral atrophy and axonal neuropathy that have been shown to carry large deletions in the SMA region. PMID:11161782

  11. PPAR{alpha} regulates the hepatotoxic biomarker alanine aminotransferase (ALT1) gene expression in human hepatocytes

    SciTech Connect

    Thulin, Petra; Rafter, Ingalill; Stockling, Kenneth; Tomkiewicz, Celine; Norjavaara, Ensio; Aggerbeck, Martine; Hellmold, Heike; Ehrenborg, Ewa; Andersson, Ulf; Cotgreave, Ian; Glinghammar, Bjoern

    2008-08-15

    In this work, we investigated a potential mechanism behind the observation of increased aminotransferase levels in a phase I clinical trial using a lipid-lowering drug, the peroxisome proliferator-activated receptor (PPAR) {alpha} agonist, AZD4619. In healthy volunteers treated with AZD4619, serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities were elevated without an increase in other markers for liver injury. These increases in serum aminotransferases have previously been reported in some patients receiving another PPAR{alpha} agonist, fenofibrate. In subsequent in vitro studies, we observed increased expression of ALT1 protein and mRNA in human hepatocytes after treatment with fenofibric acid. The PPAR effect on ALT1 expression was shown to act through a direct transcriptional mechanism involving at least one PPAR response element (PPRE) in the proximal ALT1 promoter, while no effect of fenofibrate and AZD4619 was observed on the ALT2 promoter. Binding of PPARs to the PPRE located at - 574 bp from the transcriptional start site was confirmed on both synthetic oligonucleotides and DNA in hepatocytes. These data show that intracellular ALT expression is regulated by PPAR agonists and that this mechanism might contribute to increased ALT activity in serum.

  12. Down-regulation of. alpha. sub 2 adrenoceptors in ventrolateral medulla of spontaneously hypertensive rats

    SciTech Connect

    Gulati, A. )

    1991-01-01

    The binding of ({sup 3}H)idaxazon to imidazole sites and ({sup 3}H)rauwolscine to {alpha}{sub 2} adrenoceptors of neuronal membranes prepared from cerebral cortex and ventrolateral medulla of 10 week old spontaneously hypertensive (SHR) and normotensive Wistar-Kyoto (WKY) rats was determined. ({sup 3}H)idaxazon bound to the membranes of cerebral cortex and ventrolateral medulla at a single high affinity site. The binding of ({sup 3}H)idaxazon in ventrolateral medulla and cerebral cortex was found to be similar in SHR and WKY rats. ({sup 3}H)Rauwolscine bound to the membranes of cerebral cortex and ventrolateral medulla at a single high affinity site. The binding of ({sup 3}H)rauwolscine in the cerebral cortex was found to be similar in SHR and WKY rats. However, in the ventrolateral medulla ({sup 3}H)rauwolscine binding was found to be significantly lower in SHR as compared to WKY rats. The decreased binding was due a decrease (32%) in the B{sub max} value in SHR rats as compared to WKY rats. The K{sub d} values were similar in SHR and WKY rats. It is concluded that imidazole binding sites are not affected while, {alpha}{sub 2} adrenergic binding sites are decreased in the ventrolateral medulla of SHR rats and may be contributing to the regulation of blood pressure.

  13. Epigenetic regulation of diacylglycerol kinase alpha promotes radiation-induced fibrosis.

    PubMed

    Weigel, Christoph; Veldwijk, Marlon R; Oakes, Christopher C; Seibold, Petra; Slynko, Alla; Liesenfeld, David B; Rabionet, Mariona; Hanke, Sabrina A; Wenz, Frederik; Sperk, Elena; Benner, Axel; Rösli, Christoph; Sandhoff, Roger; Assenov, Yassen; Plass, Christoph; Herskind, Carsten; Chang-Claude, Jenny; Schmezer, Peter; Popanda, Odilia

    2016-01-01

    Radiotherapy is a fundamental part of cancer treatment but its use is limited by the onset of late adverse effects in the normal tissue, especially radiation-induced fibrosis. Since the molecular causes for fibrosis are largely unknown, we analyse if epigenetic regulation might explain inter-individual differences in fibrosis risk. DNA methylation profiling of dermal fibroblasts obtained from breast cancer patients prior to irradiation identifies differences associated with fibrosis. One region is characterized as a differentially methylated enhancer of diacylglycerol kinase alpha (DGKA). Decreased DNA methylation at this enhancer enables recruitment of the profibrotic transcription factor early growth response 1 (EGR1) and facilitates radiation-induced DGKA transcription in cells from patients later developing fibrosis. Conversely, inhibition of DGKA has pronounced effects on diacylglycerol-mediated lipid homeostasis and reduces profibrotic fibroblast activation. Collectively, DGKA is an epigenetically deregulated kinase involved in radiation response and may serve as a marker and therapeutic target for personalized radiotherapy. PMID:26964756

  14. Epigenetic regulation of diacylglycerol kinase alpha promotes radiation-induced fibrosis

    PubMed Central

    Weigel, Christoph; Veldwijk, Marlon R.; Oakes, Christopher C.; Seibold, Petra; Slynko, Alla; Liesenfeld, David B.; Rabionet, Mariona; Hanke, Sabrina A.; Wenz, Frederik; Sperk, Elena; Benner, Axel; Rösli, Christoph; Sandhoff, Roger; Assenov, Yassen; Plass, Christoph; Herskind, Carsten; Chang-Claude, Jenny; Schmezer, Peter; Popanda, Odilia

    2016-01-01

    Radiotherapy is a fundamental part of cancer treatment but its use is limited by the onset of late adverse effects in the normal tissue, especially radiation-induced fibrosis. Since the molecular causes for fibrosis are largely unknown, we analyse if epigenetic regulation might explain inter-individual differences in fibrosis risk. DNA methylation profiling of dermal fibroblasts obtained from breast cancer patients prior to irradiation identifies differences associated with fibrosis. One region is characterized as a differentially methylated enhancer of diacylglycerol kinase alpha (DGKA). Decreased DNA methylation at this enhancer enables recruitment of the profibrotic transcription factor early growth response 1 (EGR1) and facilitates radiation-induced DGKA transcription in cells from patients later developing fibrosis. Conversely, inhibition of DGKA has pronounced effects on diacylglycerol-mediated lipid homeostasis and reduces profibrotic fibroblast activation. Collectively, DGKA is an epigenetically deregulated kinase involved in radiation response and may serve as a marker and therapeutic target for personalized radiotherapy. PMID:26964756

  15. Soluble alpha-APP (sAPPalpha) regulates CDK5 expression and activity in neurons.

    PubMed

    Hartl, Daniela; Klatt, Stephan; Roch, Manfred; Konthur, Zoltan; Klose, Joachim; Willnow, Thomas E; Rohe, Michael

    2013-01-01

    A growing body of evidence suggests a role for soluble alpha-amyloid precursor protein (sAPPalpha) in pathomechanisms of Alzheimer disease (AD). This cleavage product of APP was identified to have neurotrophic properties. However, it remained enigmatic what proteins, targeted by sAPPalpha, might be involved in such neuroprotective actions. Here, we used high-resolution two-dimensional polyacrylamide gel electrophoresis to analyze proteome changes downstream of sAPPalpha in neurons. We present evidence that sAPPalpha regulates expression and activity of CDK5, a kinase that plays an important role in AD pathology. We also identified the cytoprotective chaperone ORP150 to be induced by sAPPalpha as part of this protective response. Finally, we present functional evidence that the sAPPalpha receptor SORLA is essential to mediate such molecular functions of sAPPalpha in neurons. PMID:23776568

  16. SIRT1 associates with eIF2-alpha and regulates the cellular stress response

    PubMed Central

    Ghosh, Hiyaa Singhee; Reizis, Boris; Robbins, Paul D.

    2011-01-01

    SIRT1 is a NAD+ dependent protein deacetylase known to increase longevity in model organisms. SIRT1 regulates cellular response to oxidative and/or genotoxic stress by regulating proteins such as p53 and FOXO. The eukaryotic initiation factor-2, eIF2, plays a critical role in the integrated stress response pathway. Under cellular stress, phosphorylation of the alpha subunit of eIF2 is essential for immediate shut-off of translation and activation of stress response genes. Here we demonstrate that SIRT1 interacts with eIF2α. Loss of SIRT1 results in increased phosphorylation of eIF2α. However, the downstream stress induced signaling pathway is compromised in SIRT1-deficient cells, indicated by delayed expression of the downstream target genes CHOP and GADD34 and a slower post-stress translation recovery. Finally, SIRT1 co-immunoprecipitates with mediators of eIF2α dephosphorylation, GADD34 and CreP, suggesting a role for SIRT1 in the negative feedback regulation of eIF2α phosphorylation. PMID:22355666

  17. Regulation of glycoprotein D synthesis: does alpha 4, the major regulatory protein of herpes simplex virus 1, regulate late genes both positively and negatively?

    PubMed Central

    Arsenakis, M; Campadelli-Fiume, G; Roizman, B

    1988-01-01

    Earlier studies have described the alpha 4/c113 baby hamster kidney cell line which constitutively expresses the alpha 4 protein, the major regulatory protein of herpes simplex virus 1 (HSV-1). Introduction of the HSV-1 glycoprotein B (gB) gene, regulated as a gamma 1 gene, into these cells yielded a cell line which constitutively expressed both the alpha 4 and gamma 1 gB genes. The expression of the gB gene was dependent on the presence of functional alpha 4 protein. In this article we report that we introduced into the alpha 4/c113 and into the parental BHK cells, the HSV-1 BamHI J fragment, which encodes the domains of four genes, including those of glycoproteins D, G, and I (gD, gG, and gI), and most of the coding sequences of the glycoprotein E (gE) gene. In contrast to the earlier studies, we obtained significant constitutive expression of gD (also a gamma 1 gene) in a cell line (BJ) derived from parental BHK cells, but not in a cell line (alpha 4/BJ) which expresses functional alpha 4 protein. RNA homologous to the gD gene was present in significant amounts in the BJ cell line; smaller amounts of this RNA were detected in the alpha 4/BJ cell line. RNA homologous to gE, presumed to be polyadenylated from signals in the vector sequences, was present in the BJ cells but not in the alpha 4/BJ cells. The expression of the HSV-1 gD and gE genes was readily induced in the alpha 4/BJ cells by superinfection with HSV-2. The BJ cell line was, in contrast, resistant to expression of HSV-1 and HSV-2 genes. The BamHI J DNA fragment copy number was approximately 1 per BJ cell genome equivalent and 30 to 50 per alpha 4/BJ cell genome equivalent. We conclude that (i) the genes specifying gD and gB belong to different viral regulatory gene subsets, (ii) the gD gene is subject to both positive and negative regulation, (iii) both gD and gE mRNAs are subject to translational controls although they may be different, and (iv) the absence of expression of gD in the alpha 4/BJ

  18. Peroxisome proliferator-activated receptor {alpha} agonist-induced down-regulation of hepatic glucocorticoid receptor expression in SD rats

    SciTech Connect

    Chen Xiang; Li Ming; Sun Weiping; Bi Yan; Cai Mengyin; Liang Hua; Yu Qiuqiong; He Xiaoying; Weng Jianping

    2008-04-18

    It was reported that glucocorticoid production was inhibited by fenofibrate through suppression of type-1 11{beta}-hydroxysteroid dehydrogenase gene expression in liver. The inhibition might be a negative-feedback regulation of glucocorticoid receptor (GR) activity by peroxisome proliferator-activated receptor alpha (PPAR{alpha}), which is quickly induced by glucocorticoid in the liver. However, it is not clear if GR expression is changed by fenofibrate-induced PPAR{alpha} activation. In this study, we tested this possibility in the liver of Sprague-Dawley rats. GR expression was reduced by fenofibrate in a time- and does-dependent manner. The inhibition was observed in liver, but not in fat and muscle. The corticosterone level in the blood was increased significantly by fenofibrate. These effects of fenofibrate were abolished by PPAR{alpha} inhibitor MK886, suggesting that fenofibrate activated through PPAR{alpha}. In conclusion, inhibition of GR expression may represent a new molecular mechanism for the negative feedback regulation of GR activity by PPAR{alpha}.

  19. Expression and regulation of the macrophage inflammatory protein-1 alpha gene by nicotine in rat alveolar macrophages.

    PubMed

    Chong, Inn-Wen; Lin, Shiu-Ru; Hwang, Jhi-Jhu; Huang, Ming-Shyan; Wang, Tung-Heng; Hung, Jen-Yu; Paulauskis, Joseph D

    2002-01-01

    Cigarette smoking causes inflammation mainly confined to the airway and lung. Nicotine is one of the primary constituents in cigarette smoke. Alveolar macrophages apparently play a pivotal role in mediating pulmonary inflammation via the production of chemokines. Macrophage inflammatory protein-1 alpha (MIP-1 alpha), a member of CC chemokines, has been shown to contribute to monocyte/macrophage and neutrophil chemotaxis and activation. Our previous work demonstrated that MIP-1 alpha mRNA expression in macrophages is induced by a variety of stimuli. In the present study, we further investigate whether nicotine can regulate the gene expression of MIP-1 alpha in macrophages and determine the mechanism leading to increased expression. A rat alveolar macrophage (RAM) cell line, NR8383, was treated with nicotine at a dose of 3.1, 31, 310 microM, or 3.1 mM. Northern blot analysis showed that the induction of MIP-1 alpha mRNA expression was dose-dependent. To define the time course of the inflammatory response, RAM cells were exposed to 31 microM nicotine, MIP-1 alpha mRNA was induced as early as 1 h after treatment, was maximally expressed at 4 and 6 hours, and reduced by 8 hours. Western blot analysis demonstrated a single band with an estimated molecular weight of 10 kD for MIP-1 alpha which was induced after nicotine treatment, suggesting that expression of MIP-1 alpha mRNA could reflect in protein synthesis. In addition. the increase in MIP-1 alpha mRNA expression induced by nicotine was attenuated by co-treatment with the antioxidant N-acetylcysteine (NAC), at doses of 10 and 20 mM, suggesting that the induction of MIP-1 alpha mRNA is mediated via the generation of reactive oxygen species (ROS). To further investigate transcriptional regulation of the MIP-1 alpha gene expression, RAM cells were exposed to nicotine. MIP-1 alpha mRNA levels were significantly increased in nuclear RNA preparations, indicating that transcriptional activation is involved in increased

  20. Constitutive shedding of the amyloid precursor protein ectodomain is up-regulated by tumour necrosis factor-alpha converting enzyme.

    PubMed Central

    Slack, B E; Ma, L K; Seah, C C

    2001-01-01

    The amyloid precursor protein (APP) of Alzheimer's disease is a transmembrane protein that is cleaved within its extracellular domain, liberating a soluble N-terminal fragment (sAPP alpha). Putative mediators of this process include three members of the ADAM (a disintegrin and metalloprotease) family, ADAM9, ADAM10 and ADAM17/TACE (tumour necrosis factor-alpha converting enzyme). Tumour necrosis factor-alpha protease inhibitor (TAPI-1), an inhibitor of ADAMs, reduced constitutive and muscarinic receptor-stimulated sAPP alpha release in HEK-293 cells stably expressing M3 muscarinic receptors. However, the former was less sensitive to TAPI-1 (IC(50)=8.09 microM) than the latter (IC(50)=3.61 microM), suggesting that these processes may be mediated by different metalloproteases. Constitutive sAPP alpha release was increased several-fold in cells transiently transfected with TACE, and this increase was proportional to TACE expression. In contrast, muscarinic-receptor-activated sAPP alpha release was not altered in TACE transfectants. TACE-dependent constitutive release of co-transfected APP(695) was inhibited by TAPI-1 with an IC(50) of 0.92 microm, a value significantly lower than the IC(50)s for inhibition of either constitutive or receptor-regulated sAPP alpha shedding mediated by endogenous secretases. The results indicate that TACE is capable of catalysing constitutive alpha-secretory cleavage of APP, but it is likely that additional members of the ADAM family mediate endogenous constitutive and receptor-coupled release of sAPP alpha in HEK-293 cells. PMID:11463349

  1. ERR{alpha} regulates osteoblastic and adipogenic differentiation of mouse bone marrow mesenchymal stem cells

    SciTech Connect

    Rajalin, Ann-Marie; Pollock, Hanna; Aarnisalo, Piia

    2010-05-28

    The orphan nuclear receptor estrogen-related receptor-{alpha} (ERR{alpha}) has been reported to have both a positive and a negative regulatory role in osteoblastic and adipocytic differentiation. We have studied the role of ERR{alpha} in osteoblastic and adipogenic differentiation of mesenchymal stem cells. Bone marrow mesenchymal stem cells were isolated from ERR{alpha} deficient mice and their differentiation capacities were compared to that of the wild-type cells. ERR{alpha} deficient cultures displayed reduced cellular proliferation, osteoblastic differentiation, and mineralization. In the complementary experiment, overexpression of ERR{alpha} in MC3T3-E1 cells increased the expression of osteoblastic markers and mineralization. Alterations in the expression of bone sialoprotein (BSP) may at least partially explain the effects on mineralization as BSP expression was reduced in ERR{alpha} deficient MSCs and enhanced upon ERR{alpha} overexpression in MC3T3-E1 cells. Furthermore, a luciferase reporter construct driven by the BSP promoter was efficiently transactivated by ERR{alpha}. Under adipogenic conditions, ERR{alpha} deficient cultures displayed reduced adipocytic differentiation. Our data thus propose a positive role for ERR{alpha} in osteoblastic and adipocytic differentiation. The variability in the results yielded in the different studies implies that ERR{alpha} may play different roles in bone under different physiological conditions.

  2. Perilipin, a critical regulator of fat storage and breakdown, is a target gene of estrogen receptor-related receptor {alpha}

    SciTech Connect

    Akter, Mst. Hasina; Yamaguchi, Tomohiro; Hirose, Fumiko; Osumi, Takashi

    2008-04-11

    Perilipin is a protein localized on lipid droplet surfaces in adipocytes and steroidogenic cells, playing a central role in regulated lipolysis. Expression of the perilipin gene is markedly induced during adipogenesis. We found that transcription from the perilipin gene promoter is activated by an orphan nuclear receptor, estrogen receptor-related receptor (ERR){alpha}. A response element to this receptor was identified in the promoter region by a gene reporter assay, the electrophoretic-gel mobility-shift assay and the chromatin immunoprecipitation assay. Peroxisome proliferator-activated receptor {gamma} coactivator (PGC)-1{alpha} enhanced, whereas small heterodimer partner (SHP) repressed, the transactivating function of ERR{alpha} on the promoter. Thus, the perilipin gene expression is regulated by a transcriptional network controlling energy metabolism, substantiating the functional importance of perilipin in the maintenance of body energy balance.

  3. The PTB interacting protein raver1 regulates alpha-tropomyosin alternative splicing.

    PubMed

    Gromak, Natalia; Rideau, Alexis; Southby, Justine; Scadden, A D J; Gooding, Clare; Hüttelmaier, Stefan; Singer, Robert H; Smith, Christopher W J

    2003-12-01

    Regulated switching of the mutually exclusive exons 2 and 3 of alpha-tropomyosin (TM) involves repression of exon 3 in smooth muscle cells. Polypyrimidine tract-binding protein (PTB) is necessary but not sufficient for regulation of TM splicing. Raver1 was identified in two-hybrid screens by its interactions with the cytoskeletal proteins actinin and vinculin, and was also found to interact with PTB. Consistent with these interactions raver1 can be localized in either the nucleus or cytoplasm. Here we show that raver1 is able to promote the smooth muscle-specific alternative splicing of TM by enhancing PTB-mediated repression of exon 3. This activity of raver1 is dependent upon characterized PTB-binding regulatory elements and upon a region of raver1 necessary for interaction with PTB. Heterologous recruitment of raver1, or just its C-terminus, induced very high levels of exon 3 skipping, bypassing the usual need for PTB binding sites downstream of exon 3. This suggests a novel mechanism for PTB-mediated splicing repression involving recruitment of raver1 as a potent splicing co-repressor. PMID:14633994

  4. Cell type-specific transcriptional regulation of the gene encoding importin-{alpha}1

    SciTech Connect

    Kamikawa, Yasunao; Yasuhara, Noriko; Yoneda, Yoshihiro; Department of Biochemistry, Graduate School of Medicine, Osaka University; JST, CREST, Graduate School of Frontier Biosciences, Osaka University, Yamada-oka, Suita, Osaka 565-0871

    2011-08-15

    Importin-{alpha}1 belongs to a receptor family that recognizes classical nuclear localization signals. Encoded by Kpna2, this receptor subtype is highly expressed in mouse embryonic stem (ES) cells. In this study, we identified a critical promoter region in Kpna2 and showed that the expression of this gene is differentially regulated in ES cells and NIH3T3 cells. Conserved CCAAT boxes are required for Kpna2 promoter activity in both ES and NIH3T3 cells. Interestingly, deletion of the region from nucleotide position - 251 to - 179 bp resulted in a drastic reduction in Kpna2 transcriptional activity only in ES cells. This region contains Krueppel-like factor (Klf) binding sequences and is responsible for transactivation of the gene by Klf2 and Klf4. Accordingly, endogenous Kpna2 mRNA levels decreased in response to depletion of Klf2 and Klf4 in ES cells. Our results suggest that Klf2 and Klf4 function redundantly to drive high level of Kpna2 expression in ES cells. -- Research Highlights: {yields} We showed the cell type-specific transcriptional regulation of Kpna2 encoding importin-al. {yields} NF-Y binds the CCAAT boxes to activate Kpna2 transcription in NIH3T3 cells. {yields} Klf2 and Klf4 redundantly activate the expression of Kpna2 in ES cells.

  5. LARP4 Is Regulated by Tumor Necrosis Factor Alpha in a Tristetraprolin-Dependent Manner

    PubMed Central

    Mattijssen, Sandy

    2015-01-01

    LARP4 is a protein with unknown function that independently binds to poly(A) RNA, RACK1, and the poly(A)-binding protein (PABPC1). Here, we report on its regulation. We found a conserved AU-rich element (ARE) in the human LARP4 mRNA 3′ untranslated region (UTR). This ARE, but not its antisense version or a point-mutated version, significantly decreased the stability of β-globin reporter mRNA. We found that overexpression of tristetraprolin (TTP), but not its RNA binding mutant or the other ARE-binding proteins tested, decreased cellular LARP4 levels. RNA coimmunoprecipitation showed that TTP specifically associated with LARP4 mRNA in vivo. Consistent with this, mouse LARP4 accumulated to higher levels in TTP gene knockout (KO) cells than in control cells. Stimulation of WT cells with tumor necrosis factor alpha (TNF-α), which rapidly induces TTP, robustly decreased LARP4 with a coincident time course but had no such effect on LARP4B or La protein or on LARP4 in the TTP KO cells. The TNF-α-induced TTP pulse was followed by a transient decrease in LARP4 mRNA that was quickly followed by a subsequent transient decrease in LARP4 protein. Involvement of LARP4 as a target of TNF-α–TTP regulation provides a clue as to how its functional activity may be used in a physiologic pathway. PMID:26644407

  6. OsCCD1, a novel small calcium-binding protein with one EF-hand motif, positively regulates osmotic and salt tolerance in rice.

    PubMed

    Jing, Pei; Zou, Juanzi; Kong, Lin; Hu, Shiqi; Wang, Biying; Yang, Jun; Xie, Guosheng

    2016-06-01

    Calcium-binding proteins play key roles in the signal transduction in the growth and stress response in eukaryotes. However, a subfamily of proteins with one EF-hand motif has not been fully studied in higher plants. Here, a novel small calcium-binding protein with a C-terminal centrin-like domain (CCD1) in rice, OsCCD1, was characterized to show high similarity with a TaCCD1 in wheat. As a result, OsCCD1 can bind Ca(2+) in the in vitro EMSA and the fluorescence staining calcium-binding assays. Transient expression of green fluorescent protein (GFP)-tagged OsCCD1 in rice protoplasts showed that OsCCD1 was localized in the nucleus and cytosol of rice cells. OsCCD1 transcript levels were transiently induced by osmotic stress and salt stress through the calcium-mediated ABA signal. The rice seedlings of T-DNA mutant lines showed significantly less tolerance to osmotic and salt stresses than wild type plants (p<0.01). Conversely, its overexpressors can significantly enhance the tolerance to osmotic and salt stresses than wild type plants (p<0.05). Semi-quantitative RT-PCR analysis revealed that, OsDREB2B, OsAPX1 and OsP5CS genes are involved in the rice tolerance to osmotic and salt stresses. In sum, OsCCD1 gene probably affects the DREB2B and its downstream genes to positively regulate osmotic and salt tolerance in rice seedlings. PMID:27095404

  7. RECK (reversion-inducing cysteine-rich protein with Kazal motifs) regulates migration, differentiation and Wnt/β-catenin signaling in human mesenchymal stem cells.

    PubMed

    Mahl, Christian; Egea, Virginia; Megens, Remco T A; Pitsch, Thomas; Santovito, Donato; Weber, Christian; Ries, Christian

    2016-04-01

    The membrane-anchored glycoprotein RECK (reversion-inducing cysteine-rich protein with Kazal motifs) inhibits expression and activity of certain matrix metalloproteinases (MMPs), thereby suppressing tumor cell metastasis. However, RECK's role in physiological cell function is largely unknown. Human mesenchymal stem cells (hMSCs) are able to differentiate into various cell types and represent promising tools in multiple clinical applications including the regeneration of injured tissues by endogenous or transplanted hMSCs. RNA interference of RECK in hMSCs revealed that endogenous RECK suppresses the transcription and biosynthesis of tissue inhibitor of metalloproteinases (TIMP)-2 but does not influence the expression of MMP-2, MMP-9, membrane type (MT)1-MMP and TIMP-1 in these cells. Knockdown of RECK in hMSCs promoted monolayer regeneration and chemotactic migration of hMSCs, as demonstrated by scratch wound and chemotaxis assay analyses. Moreover, expression of endogenous RECK was upregulated upon osteogenic differentiation and diminished after adipogenic differentiation of hMSCs. RECK depletion in hMSCs reduced their capacity to differentiate into the osteogenic lineage whereas adipogenesis was increased, demonstrating that RECK functions as a master switch between both pathways. Furthermore, knockdown of RECK in hMSCs attenuated the Wnt/β-catenin signaling pathway as indicated by reduced stability and impaired transcriptional activity of β-catenin. The latter was determined by analysis of the β-catenin target genes Dickkopf1 (DKK1), axis inhibition protein 2 (AXIN2), runt-related transcription factor 2 (RUNX2) and a luciferase-based β-catenin-activated reporter (BAR) assay. Our findings demonstrate that RECK is a regulator of hMSC functions suggesting that modulation of RECK may improve the development of hMSC-based therapeutical approaches in regenerative medicine. PMID:26459448

  8. Reversibly bound chloride in the atrial natriuretic peptide receptor hormone-binding domain: Possible allosteric regulation and a conserved structural motif for the chloride-binding site

    PubMed Central

    Ogawa, Haruo; Qiu, Yue; Philo, John S; Arakawa, Tsutomu; Ogata, Craig M; Misono, Kunio S

    2010-01-01

    The binding of atrial natriuretic peptide (ANP) to its receptor requires chloride, and it is chloride concentration dependent. The extracellular domain (ECD) of the ANP receptor (ANPR) contains a chloride near the ANP-binding site, suggesting a possible regulatory role. The bound chloride, however, is completely buried in the polypeptide fold, and its functional role has remained unclear. Here, we have confirmed that chloride is necessary for ANP binding to the recombinant ECD or the full-length ANPR expressed in CHO cells. ECD without chloride (ECD(−)) did not bind ANP. Its binding activity was fully restored by bromide or chloride addition. A new X-ray structure of the bromide-bound ECD is essentially identical to that of the chloride-bound ECD. Furthermore, bromide atoms are localized at the same positions as chloride atoms both in the apo and in the ANP-bound structures, indicating exchangeable and reversible halide binding. Far-UV CD and thermal unfolding data show that ECD(−) largely retains the native structure. Sedimentation equilibrium in the absence of chloride shows that ECD(−) forms a strongly associated dimer, possibly preventing the structural rearrangement of the two monomers that is necessary for ANP binding. The primary and tertiary structures of the chloride-binding site in ANPR are highly conserved among receptor-guanylate cyclases and metabotropic glutamate receptors. The chloride-dependent ANP binding, reversible chloride binding, and the highly conserved chloride-binding site motif suggest a regulatory role for the receptor bound chloride. Chloride-dependent regulation of ANPR may operate in the kidney, modulating ANP-induced natriuresis. PMID:20066666

  9. Reversibly Bound Chloride in the Atrial Natriuretic Peptide Receptor Hormone Binding Domain: Possible Allosteric Regulation and a Conserved Structural Motif for the Chloride-binding Site

    SciTech Connect

    Ogawa, H.; Qiu, Y; Philo, J; Arakawa, T; Ogata, C; Misono, K

    2010-01-01

    The binding of atrial natriuretic peptide (ANP) to its receptor requires chloride, and it is chloride concentration dependent. The extracellular domain (ECD) of the ANP receptor (ANPR) contains a chloride near the ANP-binding site, suggesting a possible regulatory role. The bound chloride, however, is completely buried in the polypeptide fold, and its functional role has remained unclear. Here, we have confirmed that chloride is necessary for ANP binding to the recombinant ECD or the full-length ANPR expressed in CHO cells. ECD without chloride (ECD(-)) did not bind ANP. Its binding activity was fully restored by bromide or chloride addition. A new X-ray structure of the bromide-bound ECD is essentially identical to that of the chloride-bound ECD. Furthermore, bromide atoms are localized at the same positions as chloride atoms both in the apo and in the ANP-bound structures, indicating exchangeable and reversible halide binding. Far-UV CD and thermal unfolding data show that ECD(-) largely retains the native structure. Sedimentation equilibrium in the absence of chloride shows that ECD(-) forms a strongly associated dimer, possibly preventing the structural rearrangement of the two monomers that is necessary for ANP binding. The primary and tertiary structures of the chloride-binding site in ANPR are highly conserved among receptor-guanylate cyclases and metabotropic glutamate receptors. The chloride-dependent ANP binding, reversible chloride binding, and the highly conserved chloride-binding site motif suggest a regulatory role for the receptor bound chloride. Chloride-dependent regulation of ANPR may operate in the kidney, modulating ANP-induced natriuresis.

  10. Estrogen receptor alpha is cell cycle-regulated and regulates the cell cycle in a ligand-dependent fashion.

    PubMed

    JavanMoghadam, Sonia; Weihua, Zhang; Hunt, Kelly K; Keyomarsi, Khandan

    2016-06-17

    Estrogen receptor alpha (ERα) has been implicated in several cell cycle regulatory events and is an important predictive marker of disease outcome in breast cancer patients. Here, we aimed to elucidate the mechanism through which ERα influences proliferation in breast cancer cells. Our results show that ERα protein is cell cycle-regulated in human breast cancer cells and that the presence of 17-β-estradiol (E2) in the culture medium shortened the cell cycle significantly (by 4.5 hours, P < 0.05) compared with unliganded conditions. The alterations in cell cycle duration were observed in the S and G2/M phases, whereas the G1 phase was indistinguishable under liganded and unliganded conditions. In addition, ERα knockdown in MCF-7 cells accelerated mitotic exit, whereas transfection of ERα-negative MDA-MB-231 cells with exogenous ERα significantly shortened the S and G2/M phases (by 9.1 hours, P < 0.05) compared with parental cells. Finally, treatment of MCF-7 cells with antiestrogens revealed that tamoxifen yields a slower cell cycle progression through the S and G2/M phases than fulvestrant does, presumably because of the destabilizing effect of fulvestrant on ERα protein. Together, these results show that ERα modulates breast cancer cell proliferation by regulating events during the S and G2/M phases of the cell cycle in a ligand-dependent fashion. These results provide the rationale for an effective treatment strategy that includes a cell cycle inhibitor in combination with a drug that lowers estrogen levels, such as an aromatase inhibitor, and an antiestrogen that does not result in the degradation of ERα, such as tamoxifen. PMID:27049344

  11. Down-regulation of aryl hydrocarbon receptor-regulated genes by tumor necrosis factor-alpha and lipopolysaccharide in murine hepatoma Hepa 1c1c7 cells.

    PubMed

    Gharavi, Negar; El-Kadi, Ayman O S

    2005-03-01

    Although much is known concerning the effects of inflammation and oxidative stress on the cytochrome P450 1A1 (CYP1A1), little is known about the modulation of other aryl hydrocarbon receptor (AHR)-regulated genes such as glutathione-S-transferase Ya (GST Ya) and NAD(P)H:quinone oxidoreductase (QOR) by inflammation. In the present study, the effect of tumor necrosis factor (TNF)-alpha and lipopolysaccharides (LPS) on the constitutive and inducible expression of the AHR-regulated genes cyp1a1, GST Ya, and QOR was determined in murine hepatoma Hepa 1c1c7 (WT), AHR-deficient (C12), and AHR nuclear translocator protein (ARNT)-deficient (C4) cells. We found that both TNF-alpha and LPS strongly repressed the constitutive expression and the beta-naphthoflavone-mediated induction of cyp1a1, GST Ya, and QOR in WT but not in C12 and C4 cells. The induction of GST Ya and QOR activities and mRNA levels by phenolic antioxidant, tert-butylhydroquinone, through the antioxidant response element was not significantly affected by TNF-alpha or LPS. In addition, a significant increase in reactive oxygen species was observed in WT, C12, and C4 cells treated with TNF-alpha or LPS which was completely prevented by tert-butylhydroquinone. These results show that the down-regulation of AHR-regulated genes by TNF-alpha and LPS is dependent on the presence of both heterodimeric transcription factors, AHR and ARNT. Furthermore, reactive oxygen species may be involved in the down-regulation of AHR-regulated genes. PMID:15627257

  12. Suppression of integrin activation by the membrane-distal sequence of the integrin alphaIIb cytoplasmic tail.

    PubMed Central

    Yamanouchi, Jun; Hato, Takaaki; Tamura, Tatsushiro; Fujita, Shigeru

    2004-01-01

    Integrin cytoplasmic tails regulate integrin activation including an increase in integrin affinity for ligands. Although there is ample evidence that the membrane-proximal regions of the alpha and beta tails interact with each other to maintain integrins in a low-affinity state, little is known about the role of the membrane-distal region of the alpha tail in regulation of integrin activation. We report a critical sequence for regulation of integrin activation in the membrane-distal region of the alphaIIb tail. Alanine substitution of the RPP residues in the alphaIIb tail rendered alphaIIbbeta3 constitutively active in a metabolic energy-dependent manner. Although an alphaIIb/alpha6Abeta3 chimaeric integrin, in which the alphaIIb tail was replaced by the alpha6A tail, was in an energy-dependent active state to bind soluble ligands, introduction of the RPP sequence into the alpha6A tail inhibited binding of an activation-dependent antibody PAC1. In alphaIIb/alpha6Abeta3, deleting the TSDA sequence from the alpha6A tail or single amino acid substitutions of the TSDA residues inhibited alphaIIb/alpha6Abeta3 activation and replacing the membrane-distal region of the alphaIIb tail with TSDA rendered alphaIIbbeta3 active, suggesting a stimulatory role of TSDA in energy-dependent integrin activation. However, adding TSDA to the alphaIIb tail containing the RPP sequence of the membrane-distal region failed to activate alphaIIbbeta3. These results suggest that the RPP sequence after the GFFKR motif of the alphaIIb tail suppresses energy-dependent alphaIIbbeta3 activation. These findings provide a molecular basis for the regulation of energy-dependent integrin activation by alpha subunit tails. PMID:14723599

  13. The liver-enriched transcription factor CREBH is nutritionally regulated and activated by fatty acids and PPAR{alpha}

    SciTech Connect

    Danno, Hirosuke; Ishii, Kiyo-aki; Nakagawa, Yoshimi; Mikami, Motoki; Yamamoto, Takashi; Yabe, Sachiko; Furusawa, Mika; Kumadaki, Shin; Watanabe, Kazuhisa; Shimizu, Hidehisa; Matsuzaka, Takashi; Kobayashi, Kazuto; Takahashi, Akimitsu; Yatoh, Shigeru; Suzuki, Hiroaki; Yamada, Nobuhiro; Shimano, Hitoshi

    2010-01-08

    To elucidate the physiological role of CREBH, the hepatic mRNA and protein levels of CREBH were estimated in various feeding states of wild and obesity mice. In the fast state, the expression of CREBH mRNA and nuclear protein were high and profoundly suppressed by refeeding in the wild-type mice. In ob/ob mice, the refeeding suppression was impaired. The diet studies suggested that CREBH expression was activated by fatty acids. CREBH mRNA levels in the mouse primary hepatocytes were elevated by addition of the palmitate, oleate and eicosapenonate. It was also induced by PPAR{alpha} agonist and repressed by PPAR{alpha} antagonist. Luciferase reporter gene assays indicated that the CREBH promoter activity was induced by fatty acids and co-expression of PPAR{alpha}. Deletion studies identified the PPRE for PPAR{alpha} activation. Electrophoretic mobility shift assay and chromatin immunoprecipitation (ChIP) assay confirmed that PPAR{alpha} directly binds to the PPRE. Activation of CREBH at fasting through fatty acids and PPAR{alpha} suggest that CREBH is involved in nutritional regulation.

  14. A-type lamins bind both hetero- and euchromatin, the latter being regulated by lamina-associated polypeptide 2 alpha

    PubMed Central

    Gesson, Kevin; Rescheneder, Philipp; Skoruppa, Michael P.; von Haeseler, Arndt; Dechat, Thomas

    2016-01-01

    Lamins are components of the peripheral nuclear lamina and interact with heterochromatic genomic regions, termed lamina-associated domains (LADs). In contrast to lamin B1 being primarily present at the nuclear periphery, lamin A/C also localizes throughout the nucleus, where it associates with the chromatin-binding protein lamina-associated polypeptide (LAP) 2 alpha. Here, we show that lamin A/C also interacts with euchromatin, as determined by chromatin immunoprecipitation of euchromatin- and heterochromatin-enriched samples. By way of contrast, lamin B1 was only found associated with heterochromatin. Euchromatic regions occupied by lamin A/C overlap with those bound by LAP2alpha, and lack of LAP2alpha in LAP2alpha-deficient cells shifts binding of lamin A/C toward more heterochromatic regions. These alterations in lamin A/C-chromatin interactions correlate with changes in epigenetic histone marks in euchromatin but do not significantly affect gene expression. Loss of lamin A/C in heterochromatic regions in LAP2alpha-deficient cells, however, correlated with increased gene expression. Our data show a novel role of nucleoplasmic lamin A/C and LAP2alpha in regulating euchromatin. PMID:26798136

  15. Regulation of pT alpha gene expression by a dosage of E2A, HEB, and SCL.

    PubMed

    Tremblay, Mathieu; Herblot, Sabine; Lecuyer, Eric; Hoang, Trang

    2003-04-11

    The expression of the pT alpha gene is required for effective selection, proliferation, and survival of beta T-cell receptor (beta TCR)-expressing immature thymocytes. Here, we have identified two phylogenetically conserved E-boxes within the pT alpha enhancer sequence that are required for optimal enhancer activity and for its stage-specific activity in immature T cells. We have shown that the transcription factors E2A and HEB associate with high affinity to these E-boxes. Moreover, we have identified pT alpha as a direct target of E2A-HEB heterodimers in immature thymocytes because they specifically occupy the enhancer in vivo. In these cells, pT alpha mRNA levels are determined by the presence of one or two functional E2A or HEB alleles. Furthermore, E2A/HEB transcriptional activity is repressed by heterodimerization with SCL, a transcription factor that is turned off in differentiating thymocytes exactly at a stage when pT alpha is up-regulated. Taken together, our observations suggest that the dosage of E2A, HEB, and SCL determines pT alpha gene expression in immature T cells. PMID:12566462

  16. The human intestinal fatty acid binding protein (hFABP2) gene is regulated by HNF-4{alpha}

    SciTech Connect

    Klapper, Maja . E-mail: klapper@molnut.uni-kiel.de; Boehme, Mike; Nitz, Inke; Doering, Frank

    2007-04-27

    The cytosolic human intestinal fatty acid binding protein (hFABP2) is proposed to be involved in intestinal absorption of long-chain fatty acids. The aim of this study was to investigate the regulation of hFABP2 by the endodermal hepatocyte nuclear factor 4{alpha} (HNF-4{alpha}), involved in regulation of genes of fatty acid metabolism and differentiation. Electromobility shift assays demonstrated that HNF-4{alpha} binds at position -324 to -336 within the hFABP2 promoter. Mutation of this HNF-4 binding site abolished the luciferase reporter activity of hFABP2 in postconfluent Caco-2 cells. In HeLa cells, this mutation reduced the activation of the hFABP2 promoter by HNF-4{alpha} by about 50%. Thus, binding element at position -336/-324 essentially determines the transcriptional activity of promoter and may be important in control of hFABP2 expression by dietary lipids and differentiation. Studying genotype interactions of hFABP2 and HNF-4{alpha}, that are both candidate genes for diabetes type 2, may be a powerful approach.

  17. The biological activity of 3alpha-hydroxysteroid oxido-reductase in the spinal cord regulates thermal and mechanical pain thresholds after sciatic nerve injury.

    PubMed

    Meyer, Laurence; Venard, Christine; Schaeffer, Véronique; Patte-Mensah, Christine; Mensah-Nyagan, Ayikoe G

    2008-04-01

    Identification of cellular targets pertinent for the development of effective therapies against pathological pain constitutes a difficult challenge. We combined several approaches to show that 3alpha-hydroxysteroid oxido-reductase (3alpha-HSOR), abundantly expressed in the spinal cord (SC), is a key target, the modulation of which markedly affects nociception. 3alpha-HSOR catalyzes the biosynthesis and oxidation of 3alpha,5alpha-reduced neurosteroids as allopregnanolone (3alpha,5alpha-THP), which stimulates GABA(A) receptors. Intrathecal injection of Provera (pharmacological inhibitor of 3alpha-HSOR activity) in naive rat SC decreased thermal and mechanical nociceptive thresholds assessed with behavioral methods. In contrast, pain thresholds were dose-dependently increased by 3alpha,5alpha-THP. In animals subjected to sciatic nerve injury-evoked neuropathic pain, molecular and biochemical experiments revealed an up-regulation of 3alpha-HSOR reductive activity in the SC. Enhancement of 3alpha,5alpha-THP concentration in the SC induced analgesia in neuropathic rats while Provera exacerbated their pathological state. Possibilities are opened for chronic pain control with drugs modulating 3alpha-HSOR activity in nerve cells. PMID:18291663

  18. The adaptor protein alpha-syntrophin regulates adipocyte lipid droplet growth.

    PubMed

    Eisinger, Kristina; Rein-Fischboeck, Lisa; Pohl, Rebekka; Meier, Elisabeth M; Krautbauer, Sabrina; Buechler, Christa

    2016-07-01

    The scaffold protein alpha-syntrophin (SNTA) regulates lipolysis indicating a role in lipid homeostasis. Adipocytes are the main lipid storage cells in the body, and here, the function of SNTA has been analyzed in 3T3-L1 cells. SNTA is expressed in preadipocytes and is induced early during adipogenesis. Knock-down of SNTA in preadipocytes increases their proliferation. Proteins which are induced during adipogenesis like adiponectin and caveolin-1, and the inflammatory cytokine IL-6 are at normal levels in the mature cells differentiated from preadipocytes with low SNTA. This suggests that SNTA does neither affect differentiation nor inflammation. Expression of proteins with a role in cholesterol and triglyceride homeostasis is unchanged. Consequently, basal and epinephrine induced lipolysis as well as insulin stimulated phosphorylation of Akt and ERK1/2 are normal. Importantly, adipocytes with low SNTA form smaller lipid droplets and store less triglycerides. Stearoyl-CoA reductase and MnSOD are reduced upon SNTA knock-down but do not contribute to lower lipid levels. Oleate uptake is even increased in cells with SNTA knock-down. In summary, current data show that SNTA is involved in the expansion of lipid droplets independent of adipogenesis. Enhanced preadipocyte proliferation and capacity to store surplus fatty acids may protect adipocytes with low SNTA from lipotoxicity in obesity. PMID:27242274

  19. D2HGDH regulates alpha-ketoglutarate levels and dioxygenase function by modulating IDH2

    PubMed Central

    Lin, An-Ping; Abbas, Saman; Kim, Sang-Woo; Ortega, Manoela; Bouamar, Hakim; Escobedo, Yissela; Varadarajan, Prakash; Qin, Yuejuan; Sudderth, Jessica; Schulz, Eduard; Deutsch, Alexander; Mohan, Sumitra; Ulz, Peter; Neumeister, Peter; Rakheja, Dinesh; Gao, Xiaoli; Hinck, Andrew; Weintraub, Susan T.; DeBerardinis, Ralph J.; Sill, Heinz; Dahia, Patricia L. M.; Aguiar, Ricardo C. T.

    2015-01-01

    Isocitrate dehydrogenases (IDH) convert isocitrate to alpha-ketoglutarate (α-KG). In cancer, mutant IDH1/2 reduces α-KG to D2-hydroxyglutarate (D2-HG) disrupting α-KG-dependent dioxygenases. However, the physiological relevance of controlling the interconversion of D2-HG into α-KG, mediated by D2-hydroxyglutarate dehydrogenase (D2HGDH), remains obscure. Here we show that wild-type D2HGDH elevates α-KG levels, influencing histone and DNA methylation, and HIF1α hydroxylation. Conversely, the D2HGDH mutants that we find in diffuse large B-cell lymphoma are enzymatically inert. D2-HG is a low-abundance metabolite, but we show that it can meaningfully elevate α-KG levels by positively modulating mitochondrial IDH activity and inducing IDH2 expression. Accordingly, genetic depletion of IDH2 abrogates D2HGDH effects, whereas ectopic IDH2 rescues D2HGDH-deficient cells. Our data link D2HGDH to cancer and describe an additional role for the enzyme: the regulation of IDH2 activity and α-KG-mediated epigenetic remodelling. These data further expose the intricacies of mitochondrial metabolism and inform on the pathogenesis of D2HGDH-deficient diseases. PMID:26178471

  20. Arginyltransferase regulates alpha cardiac actin, myofibril formation and contractility during heart development

    PubMed Central

    Rai, Reena; Wong, Catherine C. L.; Xu, Tao; Leu, N. Adrian; Dong, Dawei W.; Guo, Caiying; McLaughlin, K. John; Yates, John R.; Kashina, Anna

    2008-01-01

    Summary Posttranslational arginylation mediated by arginyltransferase (Ate1) is essential for cardiovascular development and angiogenesis in mammals and directly affects the myocardium structure in the developing heart. We recently showed that arginylation exerts a number of intracellular effects by modifying proteins involved in the functioning of actin cytoskeleton and the events of cell motility. Here we investigate the role of arginylation in the development and function of cardiac myocytes and their actin-containing structures during embryogenesis. Biochemical and mass spectrometry analysis shows that alpha cardiac actin undergoes arginylation on multiple sites during development. Ultrastructural analysis of the myofibrils in wild type and Ate1 knockout mouse hearts shows that the absence of arginylation results in defects in myofibril structure that delay their development and affect the continuity of myofibrils throughout the heart, predicting defects in cardiac contractility. Comparison of cardiac myocytes derived from wild type and Ate1 knockout mouse embryos show that the absence of arginylation results in abnormal beating patterns. Our results demonstrate cell-autonomous cardiac myocyte defects in arginylation knockout mice that lead to severe congenital abnormalities similar to those observed in human disease, and outline a new function of arginylation in the regulation of actin cytoskeleton in cardiac myocytes. PMID:18948421

  1. Drosophila glucome screening identifies Ck1alpha as a regulator of mammalian glucose metabolism

    PubMed Central

    Ugrankar, Rupali; Berglund, Eric; Akdemir, Fatih; Tran, Christopher; Kim, Min Soo; Noh, Jungsik; Schneider, Rebekka; Ebert, Benjamin; Graff, Jonathan M.

    2015-01-01

    Circulating carbohydrates are an essential energy source, perturbations in which are pathognomonic of various diseases, diabetes being the most prevalent. Yet many of the genes underlying diabetes and its characteristic hyperglycaemia remain elusive. Here we use physiological and genetic interrogations in D. melanogaster to uncover the ‘glucome', the complete set of genes involved in glucose regulation in flies. Partial genomic screens of ∼1,000 genes yield ∼160 hyperglycaemia ‘flyabetes' candidates that we classify using fat body- and muscle-specific knockdown and biochemical assays. The results highlight the minor glucose fraction as a physiological indicator of metabolism in Drosophila. The hits uncovered in our screen may have conserved functions in mammalian glucose homeostasis, as heterozygous and homozygous mutants of Ck1alpha in the murine adipose lineage, develop diabetes. Our findings demonstrate that glucose has a role in fly biology and that genetic screenings carried out in flies may increase our understanding of mammalian pathophysiology. PMID:25994086

  2. D2HGDH regulates alpha-ketoglutarate levels and dioxygenase function by modulating IDH2.

    PubMed

    Lin, An-Ping; Abbas, Saman; Kim, Sang-Woo; Ortega, Manoela; Bouamar, Hakim; Escobedo, Yissela; Varadarajan, Prakash; Qin, Yuejuan; Sudderth, Jessica; Schulz, Eduard; Deutsch, Alexander; Mohan, Sumitra; Ulz, Peter; Neumeister, Peter; Rakheja, Dinesh; Gao, Xiaoli; Hinck, Andrew; Weintraub, Susan T; DeBerardinis, Ralph J; Sill, Heinz; Dahia, Patricia L M; Aguiar, Ricardo C T

    2015-01-01

    Isocitrate dehydrogenases (IDH) convert isocitrate to alpha-ketoglutarate (α-KG). In cancer, mutant IDH1/2 reduces α-KG to D2-hydroxyglutarate (D2-HG) disrupting α-KG-dependent dioxygenases. However, the physiological relevance of controlling the interconversion of D2-HG into α-KG, mediated by D2-hydroxyglutarate dehydrogenase (D2HGDH), remains obscure. Here we show that wild-type D2HGDH elevates α-KG levels, influencing histone and DNA methylation, and HIF1α hydroxylation. Conversely, the D2HGDH mutants that we find in diffuse large B-cell lymphoma are enzymatically inert. D2-HG is a low-abundance metabolite, but we show that it can meaningfully elevate α-KG levels by positively modulating mitochondrial IDH activity and inducing IDH2 expression. Accordingly, genetic depletion of IDH2 abrogates D2HGDH effects, whereas ectopic IDH2 rescues D2HGDH-deficient cells. Our data link D2HGDH to cancer and describe an additional role for the enzyme: the regulation of IDH2 activity and α-KG-mediated epigenetic remodelling. These data further expose the intricacies of mitochondrial metabolism and inform on the pathogenesis of D2HGDH-deficient diseases. PMID:26178471

  3. Network Analysis Implicates Alpha-Synuclein (Snca) in the Regulation of Ovariectomy-Induced Bone Loss

    PubMed Central

    Calabrese, Gina; Mesner, Larry D.; Foley, Patricia L.; Rosen, Clifford J.; Farber, Charles R.

    2016-01-01

    The postmenopausal period in women is associated with decreased circulating estrogen levels, which accelerate bone loss and increase the risk of fracture. Here, we gained novel insight into the molecular mechanisms mediating bone loss in ovariectomized (OVX) mice, a model of human menopause, using co-expression network analysis. Specifically, we generated a co-expression network consisting of 53 gene modules using expression profiles from intact and OVX mice from a panel of inbred strains. The expression of four modules was altered by OVX, including module 23 whose expression was decreased by OVX across all strains. Module 23 was enriched for genes involved in the response to oxidative stress, a process known to be involved in OVX-induced bone loss. Additionally, module 23 homologs were co-expressed in human bone marrow. Alpha synuclein (Snca) was one of the most highly connected “hub” genes in module 23. We characterized mice deficient in Snca and observed a 40% reduction in OVX-induced bone loss. Furthermore, protection was associated with the altered expression of specific network modules, including module 23. In summary, the results of this study suggest that Snca regulates bone network homeostasis and ovariectomy-induced bone loss. PMID:27378017

  4. Hepatitis C virus suppresses Hepatocyte Nuclear Factor 4 alpha, a key regulator of hepatocellular carcinoma.

    PubMed

    Vallianou, Ioanna; Dafou, Dimitra; Vassilaki, Niki; Mavromara, Penelope; Hadzopoulou-Cladaras, Margarita

    2016-09-01

    Hepatitis C Virus (HCV) infection presents with a disturbed lipid profile and can evolve to hepatic steatosis and hepatocellular carcinoma (HCC). Hepatocyte Nuclear Factor 4 alpha (HNF4α) is the most abundant transcription factor in the liver, a key regulator of hepatic lipid metabolism and a critical determinant of Epithelial to Mesenchymal Transition and hepatic development. We have previously shown that transient inhibition of HNF4α initiates transformation of immortalized hepatocytes through a feedback loop consisting of miR-24, IL6 receptor (IL6R), STAT3, miR-124 and miR-629, suggesting a central role of HNF4α in HCC. However, the role of HNF4α in Hepatitis C Virus (HCV)-related hepatocarcinoma has not been evaluated and remains controversial. In this study, we provide strong evidence suggesting that HCV downregulates HNF4α expression at both transcriptional and translational levels. The observed decrease of HNF4α expression correlated with the downregulation of its downstream targets, HNF1α and MTP. Ectopic overexpression of HCV proteins also exhibited an inhibitory effect on HNF4α levels. The inhibition of HNF4α expression by HCV appeared to be mediated at transcriptional level as HCV proteins suppressed HNF4α gene promoter activity. HCV also up-regulated IL6R, activated STAT3 protein phosphorylation and altered the expression of acute phase genes. Furthermore, as HCV triggered the loss of HNF4α a consequent change of miR-24, miR-629 or miR-124 was observed. Our findings demonstrated that HCV-related HCC could be mediated through HNF4α-microRNA deregulation implying a possible role of HNF4α in HCV hepatocarcinogenesis. HCV inhibition of HNF4α could be sustained to promote HCC. PMID:27477312

  5. Human Lineage-Specific Transcriptional Regulation through GA-Binding Protein Transcription Factor Alpha (GABPa).

    PubMed

    Perdomo-Sabogal, Alvaro; Nowick, Katja; Piccini, Ilaria; Sudbrak, Ralf; Lehrach, Hans; Yaspo, Marie-Laure; Warnatz, Hans-Jörg; Querfurth, Robert

    2016-05-01

    A substantial fraction of phenotypic differences between closely related species are likely caused by differences in gene regulation. While this has already been postulated over 30 years ago, only few examples of evolutionary changes in gene regulation have been verified. Here, we identified and investigated binding sites of the transcription factor GA-binding protein alpha (GABPa) aiming to discover cis-regulatory adaptations on the human lineage. By performing chromatin immunoprecipitation-sequencing experiments in a human cell line, we found 11,619 putative GABPa binding sites. Through sequence comparisons of the human GABPa binding regions with orthologous sequences from 34 mammals, we identified substitutions that have resulted in 224 putative human-specific GABPa binding sites. To experimentally assess the transcriptional impact of those substitutions, we selected four promoters for promoter-reporter gene assays using human and African green monkey cells. We compared the activities of wild-type promoters to mutated forms, where we have introduced one or more substitutions to mimic the ancestral state devoid of the GABPa consensus binding sequence. Similarly, we introduced the human-specific substitutions into chimpanzee and macaque promoter backgrounds. Our results demonstrate that the identified substitutions are functional, both in human and nonhuman promoters. In addition, we performed GABPa knock-down experiments and found 1,215 genes as strong candidates for primary targets. Further analyses of our data sets link GABPa to cognitive disorders, diabetes, KRAB zinc finger (KRAB-ZNF), and human-specific genes. Thus, we propose that differences in GABPa binding sites played important roles in the evolution of human-specific phenotypes. PMID:26814189

  6. Human Lineage-Specific Transcriptional Regulation through GA-Binding Protein Transcription Factor Alpha (GABPa)

    PubMed Central

    Perdomo-Sabogal, Alvaro; Nowick, Katja; Piccini, Ilaria; Sudbrak, Ralf; Lehrach, Hans; Yaspo, Marie-Laure; Warnatz, Hans-Jörg; Querfurth, Robert

    2016-01-01

    A substantial fraction of phenotypic differences between closely related species are likely caused by differences in gene regulation. While this has already been postulated over 30 years ago, only few examples of evolutionary changes in gene regulation have been verified. Here, we identified and investigated binding sites of the transcription factor GA-binding protein alpha (GABPa) aiming to discover cis-regulatory adaptations on the human lineage. By performing chromatin immunoprecipitation-sequencing experiments in a human cell line, we found 11,619 putative GABPa binding sites. Through sequence comparisons of the human GABPa binding regions with orthologous sequences from 34 mammals, we identified substitutions that have resulted in 224 putative human-specific GABPa binding sites. To experimentally assess the transcriptional impact of those substitutions, we selected four promoters for promoter-reporter gene assays using human and African green monkey cells. We compared the activities of wild-type promoters to mutated forms, where we have introduced one or more substitutions to mimic the ancestral state devoid of the GABPa consensus binding sequence. Similarly, we introduced the human-specific substitutions into chimpanzee and macaque promoter backgrounds. Our results demonstrate that the identified substitutions are functional, both in human and nonhuman promoters. In addition, we performed GABPa knock-down experiments and found 1,215 genes as strong candidates for primary targets. Further analyses of our data sets link GABPa to cognitive disorders, diabetes, KRAB zinc finger (KRAB-ZNF), and human-specific genes. Thus, we propose that differences in GABPa binding sites played important roles in the evolution of human-specific phenotypes. PMID:26814189

  7. An Amphipathic Alpha-Helix in the Prodomain of Cocaine and Amphetamine Regulated Transcript Peptide Precursor Serves as Its Sorting Signal to the Regulated Secretory Pathway

    PubMed Central

    Blanco, Elías H.; Lagos, Carlos F.; Andrés, María Estela; Gysling, Katia

    2013-01-01

    Cocaine and Amphetamine Regulated Transcript (CART) peptides are anorexigenic neuropeptides. The L34F mutation in human CART peptide precursor (proCART) has been linked to obesity (Yanik et al. Endocrinology 147: 39, 2006). Decrease in CART peptide levels in individuals carrying the L34F mutation was attributed to proCART subcellular missorting. We studied proCART features required to enter the regulated secretory pathway. The subcellular localization and the secretion mode of monomeric EGFP fused to the full-length or truncated forms of human proCART transiently transfected in PC12 cells were analyzed. Our results showed that the N-terminal 1–41 fragment of proCART was necessary and sufficient to sort proCART to the regulated secretory pathway. In silico modeling predicted an alpha-helix structure located between residues 24–37 of proCART. Helical wheel projection of proCART alpha-helix showed an amphipathic configuration. The L34F mutation does not modify the amphipathicity of proCART alpha-helix and consistently proCARTL34F was efficiently sorted to the regulated secretory pathway. However, four additional mutations to proCARTL34F that reduced its alpha-helix amphipathicity resulted in the missorting of the mutated proCART toward the constitutive secretory pathway. These findings show that an amphipathic alpha-helix is a key cis-structure for the proCART sorting mechanism. In addition, our results indicate that the association between L34F mutation and obesity is not explained by proCART missorting. PMID:23527253

  8. The Q motif of Fanconi anemia group J protein (FANCJ) DNA helicase regulates its dimerization, DNA binding, and DNA repair function.

    PubMed

    Wu, Yuliang; Sommers, Joshua A; Loiland, Jason A; Kitao, Hiroyuki; Kuper, Jochen; Kisker, Caroline; Brosh, Robert M

    2012-06-22

    The Q motif, conserved in a number of RNA and DNA helicases, is proposed to be important for ATP binding based on structural data, but its precise biochemical functions are less certain. FANCJ encodes a Q motif DEAH box DNA helicase implicated in Fanconi anemia and breast cancer. A Q25A mutation of the invariant glutamine in the Q motif abolished its ability to complement cisplatin or telomestatin sensitivity of a fancj null cell line and exerted a dominant negative effect. Biochemical characterization of the purified recombinant FANCJ-Q25A protein showed that the mutation disabled FANCJ helicase activity and the ability to disrupt protein-DNA interactions. FANCJ-Q25A showed impaired DNA binding and ATPase activity but displayed ATP binding and temperature-induced unfolding transition similar to FANCJ-WT. Size exclusion chromatography and sedimentation velocity analyses revealed that FANCJ-WT existed as molecular weight species corresponding to a monomer and a dimer, and the dimeric form displayed a higher specific activity for ATPase and helicase, as well as greater DNA binding. In contrast, FANCJ-Q25A existed only as a monomer, devoid of helicase activity. Thus, the Q motif is essential for FANCJ enzymatic activity in vitro and DNA repair function in vivo. PMID:22582397

  9. Developmentally-regulated sodium channel subunits are differentially sensitive to {alpha}-cyano containing pyrethroids

    SciTech Connect

    Meacham, Connie A.; Brodfuehrer, Peter D.; Watkins, Jennifer A.; Shafer, Timothy J.

    2008-09-15

    Juvenile rats have been reported to be more sensitive to the acute neurotoxic effects of the pyrethroid deltamethrin than adults. While toxicokinetic differences between juveniles and adults are documented, toxicodynamic differences have not been examined. Voltage-gated sodium channels, the primary targets of pyrethroids, are comprised of {alpha} and {beta} subunits, each of which have multiple isoforms that are expressed in a developmentally-regulated manner. To begin to test whether toxicodynamic differences could contribute to age-dependent deltamethrin toxicity, deltamethrin effects were examined on sodium currents in Xenopus laevis oocytes injected with different combinations of rat {alpha} (Na{sub v}1.2 or Na{sub v}1.3) and {beta} ({beta}{sub 1} or {beta}{sub 3}) subunits. Deltamethrin induced tail currents in all isoform combinations and increased the percent of modified channels in a concentration-dependent manner. Effects of deltamethrin were dependent on subunit combination; Na{sub v}1.3-containing channels were modified to a greater extent than were Na{sub v}1.2-containing channels. In the presence of a {beta} subunit, deltamethrin effects were significantly greater, an effect most pronounced for Na{sub v}1.3 channels; Na{sub v}1.3/{beta}{sub 3} channels were more sensitive to deltamethrin than Na{sub v}1.2/{beta}{sub 1} channels. Na{sub v}1.3/{beta}{sub 3} channels are expressed embryonically, while the Na{sub v}1.2 and {beta}{sub 1} subunits predominate in adults, supporting the hypothesis for age-dependent toxicodynamic differences. Structure-activity relationships for sensitivity of these subunit combinations were examined for other pyrethroids. Permethrin and tetramethrin did not modify currents mediated by either subunit combination. Cypermethrin, {beta}-cyfluthrin, esfenvalerate and fenpropathrin all modified sodium channel function; effects were significantly greater on Na{sub v}1.3/{beta}{sub 3} than on Na{sub v}1.2/{beta}{sub 1} channels. These

  10. Fast approximate motif statistics.

    PubMed

    Nicodème, P

    2001-01-01

    We present in this article a fast approximate method for computing the statistics of a number of non-self-overlapping matches of motifs in a random text in the nonuniform Bernoulli model. This method is well suited for protein motifs where the probability of self-overlap of motifs is small. For 96% of the PROSITE motifs, the expectations of occurrences of the motifs in a 7-million-amino-acids random database are computed by the approximate method with less than 1% error when compared with the exact method. Processing of the whole PROSITE takes about 30 seconds with the approximate method. We apply this new method to a comparison of the C. elegans and S. cerevisiae proteomes. PMID:11535175