Science.gov

Sample records for alpha particles emitted

  1. Radioimmunotherapy with alpha-particle emitting radionuclides.

    PubMed

    Zalutsky, M R; Pozzi, O R

    2004-12-01

    An important consideration in the development of effective strategies for radioimmunotherapy is the nature of the radiation emitted by the radionuclide. Radionuclides decaying by the emission of alpha-particles offer the possibility of matching the cell specific reactivity of monoclonal antibodies with radiation with a range of only a few cell diameters. Furthermore, alpha-particles have important biological advantages compared with external beam radiation and beta-particles including a higher biological effectiveness, which is nearly independent of oxygen concentration, dose rate and cell cycle position. In this review, the clinical settings most likely to benefit from alpha-particle radioimmunotherapy will be discussed. The current status of preclinical and clinical research with antibodies labeled with 3 promising alpha-particle emitting radionuclides - (213)Bi, (225)Ac, and (211)At - also will be summarized. PMID:15640792

  2. Continuous air monitor for alpha-emitting aerosol particles

    SciTech Connect

    McFarland, A.R.; Ortiz, C.A. . Dept. of Mechanical Engineering); Rodgers, J.C.; Nelson, D.C. )

    1990-01-01

    A new alpha Continuous Air Monitor (CAM) sampler is being developed for use in detecting the presence of alpha-emitting aerosol particles. The effort involves design, fabrication and evaluation of systems for the collection of aerosol and for the processing of data to speciate and quantify the alpha emitters of interest. At the present time we have a prototype of the aerosol sampling system and we have performed wind tunnel tests to characterize the performance of the device for different particle sizes, wind speeds, flow rates and internal design parameters. The results presented herein deal with the aerosol sampling aspects of the new CAM sampler. Work on the data processing, display and alarm functions is being done in parallel with the particle sampling work and will be reported separately at a later date. 17 refs., 5 figs., 3 tabs.

  3. Quality factors for alpha particles emitted in tissue

    NASA Technical Reports Server (NTRS)

    Borak, Thomas B.; Chatterjee, A. (Principal Investigator)

    2002-01-01

    A concept of a mean or dose averaged quality factor was defined in ICRP Publication 26 using relationships for quality factor as a function of LET. The concept of radiation weighting factors, wR, was introduced in ICRP Publication 60 in 1990. These are meant to be generalized factors that modify absorbed dose to reflect the risk of stochastic effects as a function of the quality of the radiation incident on the body or emitted by radioactivity within the body. The values of wr are equal to 20 for all alpha particles externally or internally emitted. This note compares the dose averaged quality factor for alpha particles originating in tissue using the old and revised recommendations for quality factor as a function of LET. The dose averaged quality factor never exceeds 20 using the old recommendations and is never less than 20 with the revised recommendations.

  4. Alpha Particle

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    Term that is sometimes used to describe a helium nucleus, a positively charged particle that consists of two protons and two neutrons, bound together. Alpha particles, which were discovered by Ernest Rutherford (1871-1937) in 1898, are emitted by atomic nuclei that are undergoing alpha radioactivity. During this process, an unstable heavy nucleus spontaneously emits an alpha particle and transmut...

  5. Intense alpha-particle emitting crystallites in uranium mill wastes

    USGS Publications Warehouse

    Landa, E.R.; Stieff, L.R.; Germani, M.S.; Tanner, A.B.; Evans, J.R.

    1994-01-01

    Nuclear emulsion microscopy has demonstrated the presence of small, intense ??-particle emitting crystallites in laboratory-produced tailings derived from the sulfuric acid milling of uranium ores. The ??-particle activity is associated with the isotope pair 210Pb 210Po, and the host mineral appears to be PbSO4 occurring as inclusions in gypsum laths. These particles represent potential inhalation hazards at uranium mill tailings disposal areas. ?? 1994.

  6. Enhanced retention of the alpha-particle-emitting daughters of Actinium-225 by liposome carriers.

    PubMed

    Sofou, Stavroula; Kappel, Barry J; Jaggi, Jaspreet S; McDevitt, Michael R; Scheinberg, David A; Sgouros, George

    2007-01-01

    Targeted alpha-particle emitters hold great promise as therapeutics for micrometastatic disease. Because of their high energy deposition and short range, tumor targeted alpha-particles can result in high cancer-cell killing with minimal normal-tissue irradiation. Actinium-225 is a potential generator for alpha-particle therapy: it decays with a 10-day half-life and generates three alpha-particle-emitting daughters. Retention of (225)Ac daughters at the target increases efficacy; escape and distribution throughout the body increases toxicity. During circulation, molecular carriers conjugated to (225)Ac cannot retain any of the daughters. We previously proposed liposomal encapsulation of (225)Ac to retain the daughters, whose retention was shown to be liposome-size dependent. However, daughter retention was lower than expected: 22% of theoretical maximum decreasing to 14%, partially due to the binding of (225)Ac to the phospholipid membrane. In this study, Multivesicular liposomes (MUVELs) composed of different phospholipids were developed to increase daughter retention. MUVELs are large liposomes with entrapped smaller lipid-vesicles containing (225)Ac. PEGylated MUVELs stably retained over time 98% of encapsulated (225)Ac. Retention of (213)Bi, the last daughter, was 31% of the theoretical maximum retention of (213)Bi for the liposome sizes studied. MUVELs were conjugated to an anti-HER2/neu antibody (immunolabeled MUVELs) and were evaluated in vitro with SKOV3-NMP2 ovarian cancer cells, exhibiting significant cellular internalization (83%). This work demonstrates that immunolabeled MUVELs might be able to deliver higher fractions of generated alpha-particles per targeted (225)Ac compared to the relative fractions of alpha-particles delivered by (225)Ac-labeled molecular carriers. PMID:17935286

  7. Sizing alpha emitting particles of aged plutonium on personal air sampler filters using CR-39 autoradiography.

    PubMed

    Richardson, R B; Hegyi, G; Starling, S C

    2003-01-01

    Methods have been developed to assess the size distribution of alpha emitting particles of reactor fuel of known composition captured on air sampler filters. The sizes of uranium oxide and plutonium oxide particles were determined using a system based on CR-39 solid-state nuclear track detectors. The CR-39 plastic was exposed to the deposited particles across a 400 microm airgap. The exposed CR-39 was chemically etched to reveal clusters of tracks radially dispersed from central points. The number and location of the tracks were determined using an optical microscope with an XY motorised table and image analysis software. The sample mounting arrangement allowed individual particles to be simultaneously viewed with their respective track cluster. The predicted diameters correlated with the actual particle diameters, as measured using the optical microscope. The efficacy of the technique was demonstrated with particles of natural uranium oxide (natUO2) of known size, ranging from 4 to 150 microm in diameter. Two personal air sampler (PAS) filters contaminated with actinide particles were placed against CR-39 and estimated to have size distributions of 0.8 and 1.0 microm activity median aerodynamic diameter (AMAD). PMID:14526944

  8. 212Bi-DOTMP: an alpha particle emitting bone-seeking agent for targeted radiotherapy.

    PubMed

    Hassfjell, S P; Bruland, O S; Hoff, P

    1997-04-01

    The synthesis and in vivo stability of the bone-seeking alpha-particle emitting compounds 212Bi-DOTMP and 212Pb/212Bi-DOTMP are described. 212Bi-DOTMP, injected i.v. into Balb/c mice, showed prominent bone localization and a rapid clearance from blood and other organs. Femur/blood ratios increased from 13 at 15 min up to 490 at 2.0 h postinjection. Enhanced uptake of 212Bi-DOTMP was demonstrated in regions with high bone turnover. A comparison between 212Bi-DOTMP and [153Sm]Sm-EDTMP showed essentially no differences in biodistribution. 212Pb/212Bi-DOTMP followed a similar biodistribution, except for slightly elevated levels of 212Bi in the kidneys. The present study has shown 212Bi-DOTMP to be an in vivo stable bone-seeking radiopharmaceutical with promising biological properties for the treatment of sclerotic metastases and osteoblastic osteosarcoma. PMID:9228657

  9. Renal tubulointerstitial changes after internal irradiation with alpha-particle-emitting actinium daughters.

    PubMed

    Jaggi, Jaspreet Singh; Seshan, Surya V; McDevitt, Michael R; LaPerle, Krista; Sgouros, George; Scheinberg, David A

    2005-09-01

    The effect of external gamma irradiation on the kidneys is well described. However, the mechanisms of radiation nephropathy as a consequence of targeted radionuclide therapies are poorly understood. The functional and morphologic changes were studied chronologically (from 10 to 40 wk) in mouse kidneys after injection with an actinium-225 (225Ac) nanogenerator, a molecular-sized, antibody-targeted, in vivo generator of alpha-particle-emitting elements. Renal irradiation from free, radioactive daughters of 225Ac led to time-dependent reduction in renal function manifesting as increase in blood urea nitrogen. The histopathologic changes corresponded with the decline in renal function. Glomerular, tubular, and endothelial cell nuclear pleomorphism and focal tubular cell injury, lysis, and karyorrhexis were observed as early as 10 wk. Progressive thinning of the cortex as a result of widespread tubulolysis, collapsed tubules, glomerular crowding, decrease in glomerular cellularity, interstitial inflammation, and an elevated juxtaglomerular cell count were noted at 20 to 30 wk after treatment. By 35 to 40 wk, regeneration of simplified tubules with tubular atrophy and loss with focal, mild interstitial fibrosis had occurred. A lower juxtaglomerular cell count with focal cytoplasmic vacuolization, suggesting increased degranulation, was also observed in this period. A focal increase in tubular and interstitial cell TGF-beta1 expression starting at 20 wk, peaking at 25 wk, and later declining in intensity with mild increase in the extracellular matrix deposition was noticed. These findings suggest that internally delivered alpha-particle irradiation-induced loss of tubular epithelial cells triggers a chain of adaptive changes that result in progressive renal parenchymal damage accompanied by a loss of renal function. These findings are dissimilar to those seen after gamma or beta irradiation of kidneys. PMID:15987754

  10. Thorium and actinium polyphosphonate compounds as bone-seeking alpha particle-emitting agents.

    PubMed

    Henriksen, Gjermund; Bruland, Oyvind S; Larsen, Roy H

    2004-01-01

    The present study explores the use of alpha-particle-emitting, bone-seeking agents as candidates for targeted radiotherapy. Actinium and thorium 1,4,7,10 tetraazacyclododecane N,N',N'',N''' 1,4,7,10-tetra(methylene) phosphonic acid (DOTMP) and thorium-diethylene triamine N,N',N'' penta(methylene) phosphonic acid (DTMP) were prepared and their biodistribution evaluated in conventional Balb/C mice at four hours after injection. All three bone-seeking agents showed a high uptake in bone and a low uptake in soft tissues. Among the soft tissue organs, only kidney had a relatively high uptake. The femur/kidney ratios for 227Th-DTMP, 228-Ac-DOTMP and 227Th-DOTMP were 14.2, 7.6 and 6.0, respectively. A higher liver uptake of 228Ac-DOTMP was seen than for 227Th-DTMP and 227Th-DOTMP. This suggests that some demetallation of the 228Ac-DOTMP complex had occurred. The results indicate that 225Ac-DOTMP, 227Th-DOTMP and 227Th-DTMP have promising properties as potential therapeutic bone-seeking agents. PMID:15015582

  11. Angular and velocity distributions of secondary particles emitted in interaction of 3. 6-GeV/nucleon. cap alpha. particles and lead nuclei

    SciTech Connect

    Antonenko, V.G.; Vinogradov, A.A.; Galitskii, V.M.; Grigor'yan, Y.I.; Ippolitov, M.S.; Karadzhev, K.V.; Kuz'min, E.A.; Man'ko, V.I.; Ogloblin, A.A.; Paramonov, V.V.; Tsvetkov, A.A.

    1980-04-01

    The technique is described and results presented of measurements of the velocity and angular distributions of pions, protons, and deuterons, and tritons emitted in bombardment of lead nuclei by ..cap alpha.. particles with energy 3.6 GeV/nucleon.

  12. Measurement of the spectra of doubly charged particles emitted in bombardment of lead nuclei by. cap alpha. particles with energy 3. 6 GeV/nucleon

    SciTech Connect

    Ad'yasevich, B.P.; Antonenko, V.G.; Vinogradov, A.A.; Grigor'yan, Y.I.; Dukhanov, V.I.; Ippolitov, M.S.; Karadzhev, K.V.; Lebedev, A.L.; Man'ko, V.I.; Nikolaev, S.A.; Polunin, Y.P.; Tsvetkov, A.A.

    1983-12-01

    We have measured the spectra of double charged particles emitted in interaction of 3.6 GeV/nucleon ..cap alpha.. particles with lead nuclei. Spectra were measured at emission angles from 10 to 95/sup 0/ in the range of secondary-particle velocities 0.37<..beta..<0.55. Angular distributions were obtained, the total cross section for emission of doubly charged particles was evaluated, and the ratios of the contributions of doubly and singly charged particles were determined. The rapidity distributions of the invariant cross sections for production of doubly charged particles reveal maxima at a rapidity yroughly-equal0.15--0.20.

  13. Bismuth-212-labeled anti-Tac monoclonal antibody: alpha-particle-emitting radionuclides as modalities for radioimmunotherapy

    SciTech Connect

    Kozak, R.W.; Atcher, R.W.; Gansow, O.A.; Friedman, A.M.; Hines, J.J.; Waldmann, T.A.

    1986-01-01

    Anti-Tac, a monoclonal antibody directed to the human interleukin 2 (IL-2) receptor, has been successfully conjugated to the alpha-particle-emitting radionuclide bismuth-212 by use of a bifunctional ligand, the isobutylcarboxycarbonic anhydride of diethylenetriaminepentaacetic acid. The physical properties of 212Bi are appropriate for radioimmunotherapy in that it has a short half-life, deposits its high energy over a short distance, and can be obtained in large quantities from a radium generator. Antibody specific activities of 1-40 microCi/microgram (1 Ci = 37 GBq) were achieved. Specificity of the 212Bi-labeled anti-Tac was demonstrated for the IL-2 receptor-positive adult T-cell leukemia line HUT-102B2 by protein synthesis inhibition and clonogenic assays. Activity levels of 0.5 microCi or the equivalent of 12 rad/ml of alpha radiation targeted by anti-Tac eliminated greater than 98% the proliferative capabilities of HUT-102B2 cells with more modest effects on IL-2 receptor-negative cell lines. Specific cytotoxicity was blocked by excess unlabeled anti-Tac but not by human IgG. In addition, an irrelevant control monoclonal antibody of the same isotype labeled with 212Bi was unable to target alpha radiation to cell lines. Therefore, 212Bi-labeled anti-Tac is a potentially effective and specific immunocytotoxic reagent for the elimination of IL-2 receptor-positive cells. These experiments thus provide the scientific basis for use of alpha-particle-emitting radionuclides in immunotherapy.

  14. Alpha-Particle Emitting 213Bi-Anti-EGFR Immunoconjugates Eradicate Tumor Cells Independent of Oxygenation

    PubMed Central

    Gaertner, Florian C.; Bruchertseifer, Frank; Morgenstern, Alfred; Essler, Markus; Senekowitsch-Schmidtke, Reingard

    2013-01-01

    Hypoxia is a central problem in tumor treatment because hypoxic cells are less sensitive to chemo- and radiotherapy than normoxic cells. Radioresistance of hypoxic tumor cells is due to reduced sensitivity towards low Linear Energy Transfer (LET) radiation. High LET α-emitters are thought to eradicate tumor cells independent of cellular oxygenation. Therefore, the aim of this study was to demonstrate that cell-bound α-particle emitting 213Bi immunoconjugates kill hypoxic and normoxic CAL33 tumor cells with identical efficiency. For that purpose CAL33 cells were incubated with 213Bi-anti-EGFR-MAb or irradiated with photons with a nominal energy of 6 MeV both under hypoxic and normoxic conditions. Oxygenation of cells was checked via the hypoxia-associated marker HIF-1α. Survival of cells was analysed using the clonogenic assay. Cell viability was monitored with the WST colorimetric assay. Results were evaluated statistically using a t-test and a Generalized Linear Mixed Model (GLMM). Survival and viability of CAL33 cells decreased both after incubation with increasing 213Bi-anti-EGFR-MAb activity concentrations (9.25 kBq/ml–1.48 MBq/ml) and irradiation with increasing doses of photons (0.5–12 Gy). Following photon irradiation survival and viability of normoxic cells were significantly lower than those of hypoxic cells at all doses analysed. In contrast, cell death induced by 213Bi-anti-EGFR-MAb turned out to be independent of cellular oxygenation. These results demonstrate that α-particle emitting 213Bi-immunoconjugates eradicate hypoxic tumor cells as effective as normoxic cells. Therefore, 213Bi-radioimmunotherapy seems to be an appropriate strategy for treatment of hypoxic tumors. PMID:23724085

  15. Optimizing the Delivery of Short-Lived Alpha Particle-Emitting Isotopes to Solid Tumors

    SciTech Connect

    Adams, Gregory P.

    2004-11-24

    The underlying hypothesis of this project was that optimal alpha emitter-based radioimmunotherapy (RAIT) could be achieved by pairing the physical half-life of the radioisotope to the biological half-life of the targeting vehicle. The project had two specific aims. The first aim was to create and optimize the therapeutic efficacy of 211At-SAPS-C6.5 diabody conjugates. The second aim was to develop bispecific-targeting strategies that increase the specificity and efficacy of alpha-emitter-based RAIT. In the performance of the first aim, we created 211At-SAPS-C6.5 diabody conjugates that specifically targeted the HER2 tumor associated antigen. In evaluating these immunoconjugates we determined that they were capable of efficient tumor targeting and therapeutic efficacy of established human tumor xenografts growing in immunodeficient mice. We also determined that therapeutic doses were associated with late renal toxicity, likely due to the role of the kidneys in the systemic elimination o f these agents. We are currently performing more studies focused on better understanding the observed toxicity. In the second aim, we successfully generated bispecific single-chain Fv (bs-scFv) molecules that co-targeted HER2 and HER3 or HER2 and HER4. The in vitro kinetics and in vivo tumor-targeting properties of these molecules were evaluated. These studies revealed that the bs-scFv molecules selectively localized in vitro on tumor cells that expressed both antigens and were capable of effective tumor localization in in vivo studies.

  16. Engineered Modular Recombinant Transporters: Application of New Platform for Targeted Radiotherapeutic Agents to {alpha}-Particle Emitting {sup 211}At

    SciTech Connect

    Rosenkranz, Andrey A.; Vaidyanathan, Ganesan; Pozzi, Oscar R.; Lunin, Vladimir G.; Zalutsky, Michael R. Sobolev, Alexander S.

    2008-09-01

    Purpose: To generate and evaluate a modular recombinant transporter (MRT) for targeting {sup 211}At to cancer cells overexpressing the epidermal growth factor receptor (EGFR). Methods and Materials: The MRT was produced with four functional modules: (1) human epidermal growth factor as the internalizable ligand, (2) the optimized nuclear localization sequence of simian vacuolating virus 40 (SV40) large T-antigen, (3) a translocation domain of diphtheria toxin as an endosomolytic module, and (4) the Escherichia coli hemoglobin-like protein (HMP) as a carrier module. MRT was labeled using N-succinimidyl 3-[{sup 211}At]astato-5-guanidinomethylbenzoate (SAGMB), its {sup 125}I analogue SGMIB, or with {sup 131}I using Iodogen. Binding, internalization, and clonogenic assays were performed with EGFR-expressing A431, D247 MG, and U87MG.wtEGFR human cancer cell lines. Results: The affinity of SGMIB-MRT binding to A431 cells, determined by Scatchard analysis, was 22 nM, comparable to that measured before labeling. The binding of SGMIB-MRT and its internalization by A431 cancer cells was 96% and 99% EGFR specific, respectively. Paired label assays demonstrated that compared with Iodogen-labeled MRT, SGMIB-MRT and SAGMB-MRT exhibited more than threefold greater peak levels and durations of intracellular retention of activity. SAGMB-MRT was 10-20 times more cytotoxic than [{sup 211}At]astatide for all three cell lines. Conclusion: The results of this study have demonstrated the initial proof of principle for the MRT approach for designing targeted {alpha}-particle emitting radiotherapeutic agents. The high cytotoxicity of SAGMB-MRT for cancer cells overexpressing EGFR suggests that this {sup 211}At-labeled conjugate has promise for the treatment of malignancies, such as glioma, which overexpress this receptor.

  17. Alpha particle emitters in medicine

    SciTech Connect

    Fisher, D.R.

    1989-09-01

    Radiation-induced cancer of bone, liver and lung has been a prominent harmful side-effect of medical applications of alpha emitters. In recent years, however, the potential use of antibodies labeled with alpha emitting radionuclides against cancer has seemed promising because alpha particles are highly effective in cell killing. High dose rates at high LET, effectiveness under hypoxic conditions, and minimal expectancy of repair are additional advantages of alpha emitters over antibodies labeled with beta emitting radionuclides for cancer therapy. Cyclotron-produced astatine-211 ({sup 211}At) and natural bismuth-212 ({sup 212}Bi) have been proposed and are under extensive study in the United States and Europe. Radium-223 ({sup 223}Ra) also has favorable properties as a potential alpha emitting label, including a short-lived daughter chain with four alpha emissions. The radiation dosimetry of internal alpha emitters is complex due to nonuniformly distributed sources, short particle tracks, and high relative specific ionization. The variations in dose at the cellular level may be extreme. Alpha-particle radiation dosimetry, therefore, must involve analysis of statistical energy deposition probabilities for cellular level targets. It must also account fully for nonuniform distributions of sources in tissues, source-target geometries, and particle-track physics. 18 refs., 4 figs.

  18. Hit rates and radiation doses to nuclei of bone lining cells from alpha-particle-emitting radionuclides

    NASA Technical Reports Server (NTRS)

    Polig, E.; Jee, W. S.; Kruglikov, I. L.

    1992-01-01

    Factors relating the local concentration of a bone-seeking alpha-particle emitter to the mean hit rate have been determined for nuclei of bone lining cells using a Monte Carlo procedure. Cell nuclei were approximated by oblate spheroids with dimensions and location taken from a previous histomorphometric study. The Monte Carlo simulation is applicable for planar and diffuse labels at plane or cylindrical bone surfaces. Additionally, the mean nuclear dose per hit, the dose mean per hit, the mean track segment length and its second moment, the percentage of stoppers, and the frequency distribution of the dose have been determined. Some basic features of the hit statistics for bone lining cells have been outlined, and the consequences of existing standards of radiation protection with regard to the hit frequency to cell nuclei are discussed.

  19. Imaging alpha particle detector

    DOEpatents

    Anderson, D.F.

    1980-10-29

    A method and apparatus for detecting and imaging alpha particles sources is described. A dielectric coated high voltage electrode and a tungsten wire grid constitute a diode configuration discharge generator for electrons dislodged from atoms or molecules located in between these electrodes when struck by alpha particles from a source to be quantitatively or qualitatively analyzed. A thin polyester film window allows the alpha particles to pass into the gas enclosure and the combination of the glass electrode, grid and window is light transparent such that the details of the source which is imaged with high resolution and sensitivity by the sparks produced can be observed visually as well. The source can be viewed directly, electronically counted or integrated over time using photographic methods. A significant increase in sensitivity over other alpha particle detectors is observed, and the device has very low sensitivity to gamma or beta emissions which might otherwise appear as noise on the alpha particle signal.

  20. Imaging alpha particle detector

    DOEpatents

    Anderson, David F.

    1985-01-01

    A method and apparatus for detecting and imaging alpha particles sources is described. A conducting coated high voltage electrode (1) and a tungsten wire grid (2) constitute a diode configuration discharge generator for electrons dislodged from atoms or molecules located in between these electrodes when struck by alpha particles from a source (3) to be quantitatively or qualitatively analyzed. A thin polyester film window (4) allows the alpha particles to pass into the gas enclosure and the combination of the glass electrode, grid and window is light transparent such that the details of the source which is imaged with high resolution and sensitivity by the sparks produced can be observed visually as well. The source can be viewed directly, electronically counted or integrated over time using photographic methods. A significant increase in sensitivity over other alpha particle detectors is observed, and the device has very low sensitivity to gamma or beta emissions which might otherwise appear as noise on the alpha particle signal.

  1. Alpha-particle diagnostics

    SciTech Connect

    Young, K.M.

    1991-01-01

    This paper will focus on the state of development of diagnostics which are expected to provide the information needed for {alpha}- physics studies in the future. Conventional measurement of detailed temporal and spatial profiles of background plasma properties in DT will be essential for such aspects as determining heating effectiveness, shaping of the plasma profiles and effects of MHD, but will not be addressed here. This paper will address (1) the measurement of the neutron source, and hence {alpha}-particle birth profile, (2) measurement of the escaping {alpha}-particles and (3) measurement of the confined {alpha}-particles over their full energy range. There will also be a brief discussion of (4) the concerns about instabilities being generated by {alpha}-particles and the methods necessary for measuring these effects. 51 refs., 10 figs.

  2. Alpha Particle Diagnostic

    SciTech Connect

    Fisher, Ray, K.

    2009-05-13

    The study of burning plasmas is the next frontier in fusion energy research, and will be a major objective of the U.S. fusion program through U.S. collaboration with our international partners on the ITER Project. For DT magnetic fusion to be useful for energy production, it is essential that the energetic alpha particles produced by the fusion reactions be confined long enough to deposit a significant fraction of their initial ~3.5 MeV energy in the plasma before they are lost. Development of diagnostics to study the behavior of energetic confined alpha particles is a very important if not essential part of burning plasma research. Despite the clear need for these measurements, development of diagnostics to study confined the fast confined alphas to date has proven extremely difficult, and the available techniques remain for the most part unproven and with significant uncertainties. Research under this grant had the goal of developing diagnostics of fast confined alphas, primarily based on measurements of the neutron and ion tails resulting from alpha particle knock-on collisions with the plasma deuterium and tritium fuel ions. One of the strengths of this approach is the ability to measure the alphas in the hot plasma core where the interesting ignition physics will occur.

  3. First In Vivo Evaluation of Liposome-encapsulated 223Ra as a Potential Alpha-particle-emitting Cancer Therapeutic Agent

    SciTech Connect

    Jonasdottir, Thora J.; Fisher, Darrell R.; Borrebaek, Jorgen; Bruland, Oyvind S.; Larsen, Roy H.

    2006-09-13

    Liposomes carrying chemotherapeutics have had some success in cancer treatment and may be suitable carriers for therapeutic radionuclides. This study was designed to evaluate the biodistribution of and to estimate the radiation doses from the alpha emitter 223Ra loaded into pegylated liposomes in selected tissues. 223Ra was encapsulated in pegylated liposomal doxorubicin by ionophore-mediated loading. The biodistribution of liposomal 223Ra was compared to free cationic 223Ra in Balb/C mice. We showed that liposomal 223 Ra circulated in the blood with an initial half-time in excess of 24 hours, which agreed well with that reported for liposomal doxorubicin in rodents, while the blood half-time of cationic 223Ra was considerably less than one hour. When liposomal 223 Ra was catabolized, the released 223Ra was either excreted or taken up in the skeleton. This skeletal uptake increased up to 14 days after treatment, but did not reach the level seen with free 223Ra. Pre-treatment with non-radioactive liposomal doxorubicin 4 days in advance lessened the liver uptake of liposomal 223 Ra. Dose estimates showed that the spleen, followed by bone surfaces, received the highest absorbed doses. Liposomal 223 Ra was relatively stable in vivo and may have potential for radionuclide therapy and combination therapy with chemotherapeutic agents.

  4. Labeling monoclonal antibodies and F(ab')2 fragments with the alpha-particle-emitting nuclide astatine-211: preservation of immunoreactivity and in vivo localizing capacity.

    PubMed Central

    Zalutsky, M R; Garg, P K; Friedman, H S; Bigner, D D

    1989-01-01

    alpha-Particles such as those emitted by 211At may be advantageous for radioimmunotherapy since they are radiation of high linear energy transfer, depositing high energy over a short distance. Here we describe a strategy for labeling monoclonal antibodies and F(ab')2 fragments with 211At by means of the bifunctional reagent N-succinimidyl 3-(trimethylstannyl)benzoate. An intact antibody, 81C6, and the F(ab')2 fragment of Me1-14 (both reactive with human gliomas) were labeled with 211At in high yield and with a specific activity of up to 4 mCi/mg in a time frame compatible with the 7.2-hr half-life of 211At. Quantitative in vivo binding assays demonstrated that radioastatination was accomplished with maintenance of high specific binding and affinity. Comparison of the biodistribution of 211At-labeled Me1-14 F(ab')2 to that of a nonspecific antibody fragment labeled with 211At and 131I in athymic mice bearing D-54 MG human glioma xenografts demonstrated selective and specific targeting of 211At-labeled antibody in this human tumor model. PMID:2476813

  5. Summary of Alpha Particle Transport

    SciTech Connect

    Medley, S.S.; White, R.B.; Zweben, S.J.

    1998-08-19

    This paper summarizes the talks on alpha particle transport which were presented at the 5th International Atomic Energy Agency's Technical Committee Meeting on "Alpha Particles in Fusion Research" held at the Joint European Torus, England in September 1997.

  6. N-succinimidyl 3-[211At]astato-4-guanidinomethylbenzoate: an acylation agent for labeling internalizing antibodies with alpha-particle emitting 211At.

    PubMed

    Vaidyanathan, Ganesan; Affleck, Donna J; Bigner, Darell D; Zalutsky, Michael R

    2003-05-01

    The objective of this study was to develop a method for labeling internalizing monoclonal antibodies (mAbs) such as those reactive to the anti-epidermal growth factor receptor variant III (EGFRvIII) with the alpha-particle emitting radionuclide (211)At. Based on previous work utilizing the guanidine-containing acylation agent, N-succinimidyl 4-guanidinomethyl-3-[(131)I]iodobenzoate ([(131)I]SGMIB), we have now investigated the potential utility of its astato analogue for labeling the anti-EGFRvIII mAb L8A4. N-succinimidyl 3-[(211)At]astato-4-guanidinomethylbenzoate ([(211)At]SAGMB) in its Boc-protected form was prepared from a tin precursor in 61.7 +/- 13.1% radiochemical yield, in situ deprotected to [(211)At]SAGMB, which was coupled to L8A4 in 36.1 +/- 1.9% yield. Paired-label internalization assays demonstrated that tumor cell retention of radioactivity for L8A4 labeled using [(211)At]SAGMB was almost identical to L8A4 labeled using [(131)I]SGMIB, and 3-4-fold higher than for mAb radioiodinated using Iodogen. Paired-label biodistribution of L8A4 labeled using [(211)At]SAGMB and [(131)I]SGMIB in athymic mice hosting U87MGdeltaEGFR xenografts resulted in identical uptake of both (211)At and (131)I in tumor tissues over 24 h. Although higher levels of (211)At compared with (131)I were sometimes seen in tissues known to sequester free astatide, these (211)At/(131)I uptake ratios were considerably lower than those seen with other labeling methods. These results suggest that [(211)At]SAGMB may be a useful acylation agent for labeling internalizing mAbs with (211)At. PMID:12767391

  7. Treatment of HER2-Expressing Breast Cancer and Ovarian Cancer Cells With Alpha Particle-Emitting {sup 227}Th-Trastuzumab

    SciTech Connect

    Heyerdahl, Helen; Krogh, Cecilie; Borrebaek, Jorgen; Larsen, Asmund; Dahle, Jostein

    2011-02-01

    Purpose: To evaluate the cytotoxic effects of low-dose-rate alpha particle-emitting radioimmunoconjugate {sup 227}Th-p-isothiocyanato-benzyl-DOTA-trastuzumab ({sup 227}Th-trastuzumab [where DOTA is 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid]) internalized by breast and ovarian cancer cell lines in order to assess the potential of {sup 227}Th-trastuzumab as a therapeutic agent against metastatic cancers that overexpress the HER2 oncogene. Methods and Materials: Clonogenic survival and cell growth rates of breast cancer cells treated with {sup 227}Th-trastuzumab were compared with rates of cells treated with nonbinding {sup 227}Th-rituximab, cold trastuzumab, and X-radiation. Cell growth experiments were also performed with ovarian cancer cells. Cell-associated radioactivity was measured at several time points, and the mean radiation dose to cells was calculated. Results: SKBR-3 cells got 50% of the mean absorbed radiation dose from internalized activity and 50% from cell surface-bound activity, while BT-474 and SKOV-3 cells got 75% radiation dose from internalized activity and 25% from cell surface-bound activity. Incubation of breast cancer cells with 2.5 kBq/ml {sup 227}Th-trastuzumab for 1 h at 4{sup o}C, followed by washing, resulted in mean absorbed radiation doses of 2 to 2.5 Gy. A dose-dependent inhibition of cell growth and an increase in apoptosis were induced in all cell lines. Conclusions: Clinically relevant activity concentrations of {sup 227}Th-trastuzumab induced a specific cytotoxic effect in three HER2-expressing cell lines. The cytotoxic effect of {sup 227}Th-trastuzumab was higher than that of single-dose X-radiation (relative biological effectiveness = 1.2). These results warrant further studies of treatment of breast cancer and ovarian cancer with {sup 227}Th-trastuzumab.

  8. Cancer radioimmunotherapy with alpha-emitting nuclides.

    PubMed

    Couturier, Olivier; Supiot, Stéphane; Degraef-Mougin, Marie; Faivre-Chauvet, Alain; Carlier, Thomas; Chatal, Jean-François; Davodeau, François; Cherel, Michel

    2005-05-01

    In lymphoid malignancies and in certain solid cancers such as medullary thyroid carcinoma, somewhat mixed success has been achieved when applying radioimmunotherapy (RIT) with beta-emitters for the treatment of refractory cases. The development of novel RIT with alpha-emitters has created new opportunities and theoretical advantages due to the high linear energy transfer (LET) and the short path length in biological tissue of alpha-particles. These physical properties offer the prospect of achieving selective tumoural cell killing. Thus, RIT with alpha-emitters appears particularly suited for the elimination of circulating single cells or cell clusters or for the treatment of micrometastases at an early stage. However, to avoid non-specific irradiation of healthy tissues, it is necessary to identify accessible tumoural targets easily and rapidly. For this purpose, a small number of alpha-emitters have been investigated, among which only a few have been used for in vivo preclinical studies. Another problem is the availability and cost of these radionuclides; for instance, the low cost and the development of a reliable actinium-225/bismuth-213 generator were probably determining elements in the choice of bismuth-213 in the only human trial of RIT with an alpha-emitter. This article reviews the literature concerning monoclonal antibodies radiolabelled with alpha-emitters that have been developed for possible RIT in cancer patients. The principal radio-immunoconjugates are considered, starting with physical and chemical properties of alpha-emitters, their mode of production, the possibilities and difficulties of labelling, in vitro studies and finally, when available, in vivo preclinical and clinical studies. PMID:15841373

  9. Alpha-emitting radioisotopes for switchable neutron generators

    NASA Astrophysics Data System (ADS)

    Hertz, K. L.; Hilton, N. R.; Lund, J. C.; Van Scyoc, J. M.

    2003-06-01

    Traditionally, radioisotopic neutron generators mix an alpha-emitting radioisotope with beryllium. The disadvantage of such an alpha-Be source is that they emit neutrons at a steady rate even when stored. These conventional generators are extremely awkward to use in many applications because of the neutron shielding required to prevent exposure to personnel and sensitive electronics. Recently, at our laboratory and others, the possibility of using switchable radioactive neutron sources has been investigated. These sources rely on a mechanical operation to separate the alpha-emitting radioisotope from the Be target, thus allowing the source to be switched on and off. The utility of these new switchable sources is critically dependent on the selection of the alpha-emitting radioisotope. In this paper we discuss issues that determine the desirability of an alpha-emitting source for a switchable neutron generator, and select alpha emitters that are best suited for use in this application.

  10. Streptavidin in antibody pretargeting. 5. chemical modification of recombinant streptavidin for labeling with the alpha-particle-emitting radionuclides 213Bi and 211At.

    PubMed

    Wilbur, D Scott; Hamlin, Donald K; Chyan, Ming-Kuan; Brechbiel, Martin W

    2008-01-01

    We are investigating the use of recombinant streptavidin (rSAv) as a carrier molecule for the short-lived alpha-particle-emitting radionuclides 213Bi ( t 1/2 = 45.6 min) and 211At ( t 1/2 = 7.21 h) in cancer therapy. To utilize rSAv as a carrier, it must be modified in a manner that permits rapid chelation or bonding with these short-lived radionuclides and also modified in a manner that diminishes its natural propensity for localization in the kidney. Modification for labeling with (213)Bi was accomplished by conjugation of rSAv with the DTPA derivative p-isothiocyanato-benzyl-CHX-A'' (CHX-A''), 3a. Modification for direct labeling with 211At was accomplished by conjugation of rSAv with an isothiocyanatophenyl derivative of a nido-carborane (nCB), 3b, or an isothiocyanatophenyl-dPEG/decaborate(2-) derivative, 3c. After conjugation of the chelating or bonding moiety, rSAv was further modified by reaction with an excess (50-100 equivalents) of succinic anhydride. Succinylation of the lysine amines has previously been shown to greatly diminish kidney localization. rSAv modified by conjugation with 3a and succinylated rapidly radiolabeled with 213Bi (<5 min), providing a 72% isolated yield. 211At labeling of modified rSAv was accomplished in aqueous solution using chloramine-T as the oxidant. Astatination of rSAv conjugated with 3b and succinylated occurred very rapidly (<1 min), providing a 50% isolated radiochemical yield. Astatination of rSAv conjugated with 3c and succinylated was also very rapid (<1 min) providing 66-71% isolated radiochemical yields. Astatination of succinylated rSAv, 2a, which did not have conjugated borane cage moieties, resulted in a much lower radiolabeling yield (18%). The 213Bi or 211At-labeled modified rSAv preparations were mixed with the corresponding 125 I-labeled rSAv, and dual-label in vivo distributions were obtained in athymic mice. The in vivo data show that 213Bi-labeled succinylated rSAv [ 213Bi] 6a has tissue concentrations

  11. Long range alpha particle detector

    DOEpatents

    MacArthur, Duncan W.; Wolf, Michael A.; McAtee, James L.; Unruh, Wesley P.; Cucchiara, Alfred L.; Huchton, Roger L.

    1993-01-01

    An alpha particle detector capable of detecting alpha radiation from distant sources. In one embodiment, a high voltage is generated in a first electrically conductive mesh while a fan draws air containing air molecules ionized by alpha particles through an air passage and across a second electrically conductive mesh. The current in the second electrically conductive mesh can be detected and used for measurement or alarm. The detector can be used for area, personnel and equipment monitoring.

  12. Long range alpha particle detector

    DOEpatents

    MacArthur, D.W.; Wolf, M.A.; McAtee, J.L.; Unruh, W.P.; Cucchiara, A.L.; Huchton, R.L.

    1993-02-02

    An alpha particle detector capable of detecting alpha radiation from distant sources. In one embodiment, a high voltage is generated in a first electrically conductive mesh while a fan draws air containing air molecules ionized by alpha particles through an air passage and across a second electrically conductive mesh. The current in the second electrically conductive mesh can be detected and used for measurement or alarm. The detector can be used for area, personnel and equipment monitoring.

  13. Determination of alpha-emitting Pu isotopes in environmental samples.

    PubMed

    Vioque, I; Manjón, G; García-Tenorio, R; El-Daoushy, F

    2002-04-01

    This paper presents an improved radiochemical procedure for the determination of alpha-emitting Pu isotopes in environmental samples (soils, sediments, vegetation) by alpha-particle spectrometry. Quantitative Pu recovery yields were obtained (average 60%), 0.1 mBq being the average minimum detectable activity by the complete technique. Special efforts were made to ensure the removal of traces of different natural alpha-emitting radionuclides, which can interfere with the correct determination of 239+240Pu and 238Pu concentrations. The radiochemical procedure was validated by application to reference material and by participation in intercomparison exercises. This radiochemical procedure was applied to the different layers of a high-resolution sediment core taken from a lake in Sweden. The 239+240Pu and 238Pu/239+240Pu profiles obtained in the high-resolution sediment core correctly reproduced the expected evolution of these quantities as observed historically in the atmosphere, validating the procedure for this purpose and showing the power of these radionuclides for dating purposes. PMID:12022654

  14. Alpha-particle spectrometer experiment

    NASA Technical Reports Server (NTRS)

    Gorenstein, P.; Bjorkholm, P.

    1972-01-01

    Mapping the radon emanation of the moon was studied to find potential areas of high activity by detection of radon isotopes and their daughter products. It was felt that based on observation of regions overflown by Apollo spacecraft and within the field of view of the alpha-particle spectrometer, a radon map could be constructed, identifying and locating lunar areas of outgassing. The basic theory of radon migration from natural concentrations of uranium and thorium is discussed in terms of radon decay and the production of alpha particles. The preliminary analysis of the results indicates no significant alpha emission.

  15. Actinium-225 in targeted alpha-particle therapeutic applications.

    PubMed

    Scheinberg, David A; McDevitt, Michael R

    2011-10-01

    Alpha particle-emitting isotopes are being investigated in radioimmunotherapeutic applications because of their unparalleled cytotoxicity when targeted to cancer and their relative lack of toxicity towards untargeted normal tissue. Actinium- 225 has been developed into potent targeting drug constructs and is in clinical use against acute myelogenous leukemia. The key properties of the alpha particles generated by 225Ac are the following: i) limited range in tissue of a few cell diameters; ii) high linear energy transfer leading to dense radiation damage along each alpha track; iii) a 10 day halflife; and iv) four net alpha particles emitted per decay. Targeting 225Ac-drug constructs have potential in the treatment of cancer. PMID:22202153

  16. Collection and Analysis of Aircraft Emitted Particles

    NASA Technical Reports Server (NTRS)

    Wilson, James Charles

    1999-01-01

    The University of Denver Aerosol Group proposed to adapt an impactor system for the collection of particles emitted by aircraft. The collection substrates were electron microscope grids which were analyzed by Dr. Pat Sheridan using a transmission electron microscope. The impactor was flown in the SNIFF behind aircraft and engine emissions were sampled. This report details the results of that work.

  17. Commercial Availability of Alpha-Emitting Radionuclides for Medicine

    SciTech Connect

    Fisher, Darrell R.

    2008-09-15

    Alpha-emitting radionuclides provide effective cell-killing properties and have been shown to be effective in cancer treatment. The number of different alpha emitters having suitable physical and chemical characteristics for applications in medicine is relatively few. Development and testing of new radiopharmaceuticals requires a reliable supply of alpha-emitters in high quality, with timely delivery, but at reasonable cost. Applications and commercial availability of the follow alpha emitters are reviewed: Actinium-225, bismuth-213, astatine-211, radium-223, bismuth-212, radium-224, radium-226, terbium-149, and thorium-227. Recommendations for improving the supply of these alpha emitters include an increased federal commitment (through funding and joint-agency cooperation), establishing new production capabilities, and strengthening federal-private partnerships with companies involved in helping to meet critical radionuclide supplies.

  18. Contemporary Issues in Ultra-Low Alpha Particle Counting

    NASA Astrophysics Data System (ADS)

    Gordon, Michael

    Single-Event Upsets (SEU) in CMOS devices are caused by the passage of ionizing radiation either from terrestrial neutrons or from the natural alpha particle radiation within the materials surrounding the transistors. Interactions of the neutrons with the silicon cause spallation reactions which emit energetic highly ionizing elements. Alpha particles, on the other hand, can upset the devices through direct ionization rather than through a nuclear reaction as in the case of the neutrons. In order to minimize the alpha-particle component of SEU, the radiation from the materials within a distance 100 μm of the transistors, currently needs to have an alpha particle emissivity of less than 2 alpha particles per khr per square centimeter. Many alpha particle detectors have background levels that are larger than this, which can make these measurements inaccurate and time consuming. This talk will discuss what is involved in making alpha particle emissivity measurements of materials used in the semiconductor industry using an ultra-low background commercially-available ionization detector. Detector calibration and efficiency, radon adsorption on the samples, and the effect of surface charge on electrically insulating samples will be discussed.

  19. Luminescence imaging of water during alpha particle irradiation

    NASA Astrophysics Data System (ADS)

    Yamamoto, Seiichi; Komori, Masataka; Koyama, Shuji; Toshito, Toshiyuki

    2016-05-01

    The luminescence imaging of water using the alpha particle irradiation of several MeV energy range is thought to be impossible because this alpha particle energy is far below the Cerenkov-light threshold and the secondary electrons produced in this energy range do not emit Cerenkov-light. Contrary to this consensus, we found that the luminescence imaging of water was possible with 5.5 MeV alpha particle irradiation. We placed a 2 MBq of 241Am alpha source in water, and luminescence images of the source were conducted with a high-sensitivity, cooled charge-coupled device (CCD) camera. We also carried out such imaging of the alpha source in three different conditions to compare the photon productions with that of water, in air, with a plastic scintillator, and an acrylic plate. The luminescence imaging of water was observed from 10 to 20 s acquisition, and the intensity was linearly increased with time. The intensity of the luminescence with the alpha irradiation of water was 0.05% of that with the plastic scintillator, 4% with air, and 15% with the acrylic plate. The resolution of the luminescence image of water was better than 0.25 mm FWHM. Alpha particles of 5.5 MeV energy emit luminescence in water. Although the intensity of the luminescence was smaller than that in air, it was clearly observable. The luminescence of water with alpha particles would be a new method for alpha particle detection and distribution measurements in water.

  20. Azimuthal distributions of fission fragments and. alpha. particles emitted in the reactions sup 36 Ar+ sup 238 U at E / A =20 and 35 MeV and sup 14 N+ sup 238 U at E / A =50 MeV

    SciTech Connect

    Tsang, M.B.; Kim, Y.D.; Carlin, N.; Chen, Z.; Gelbke, C.K.; Gong, W.G.; Lynch, W.G.; Murakami, T.; Nayak, T.; Ronningen, R.M.; Xu, H.M.; Zhu, F. Department of Physics Astronomy, Michigan State University, East Lansing, MI ); Sobotka, L.G.; Stracener, D.W.; Sarantites, D.G.; Majka, Z.; Abenante, V. )

    1990-07-01

    Azimuthal correlations between coincident fission fragments and {alpha} particles were measured for the reactions {sup 36}Ar+{sup 238}U at {ital E}/{ital A}=20 and 35 MeV and {sup 14}N+{sup 238}U at {ital E}/{ital A}=50 MeV. At all energies, coplanar emission is enhanced. The azimuthal distributions for fission fragments and {alpha} particles are decoupled using a simple parametrization. Both azimuthal distributions are highly anisotropic at lower incident energies; these anisotropies decrease with energy. At the highest incident energies, energetic {alpha} particles emitted at large transverse momenta appear to be more suited than fission fragments to tag the orientation of the entrance channel reaction plane.

  1. Prospects for alpha particle studies on TFTR

    SciTech Connect

    Zweben, S.J.

    1987-05-01

    TFTR is expected to produce approximately 5 MW of alpha heating during the D/T Q approx. = 1 phase of operation in 1990. At that point the collective confinement properties and the heating effects of alpha particles become accessible for study for the first time. This paper outlines the potential performance of TFTR with respect to alpha particle production, the diagnostics which will be available for alpha particle measurements, and the physics issues which can be studied both before and during D/T operation.

  2. Realizing the potential of the Actinium-225 radionuclide generator in targeted alpha particle therapy applications.

    PubMed

    Miederer, Matthias; Scheinberg, David A; McDevitt, Michael R

    2008-09-01

    Alpha particle-emitting isotopes have been proposed as novel cytotoxic agents for augmenting targeted therapy. Properties of alpha particle radiation such as their limited range in tissue of a few cell diameters and their high linear energy transfer leading to dense radiation damage along each alpha track are promising in the treatment of cancer, especially when single cells or clusters of tumor cells are targeted. Actinium-225 (225 Ac) is an alpha particle-emitting radionuclide that generates 4 net alpha particle isotopes in a short decay chain to stable 209 Bi, and as such can be described as an alpha particle nanogenerator. This article reviews the literature pertaining to the research, development, and utilization of targeted 225 Ac to potently and specifically affect cancer. PMID:18514364

  3. Realizing the potential of the Actinium-225 radionuclide generator in targeted alpha-particle therapy applications

    PubMed Central

    Miederer, Matthias; Scheinberg, David A.; McDevitt, Michael R.

    2013-01-01

    Alpha particle-emitting isotopes have been proposed as novel cytotoxic agents for augmenting targeted therapy. Properties of alpha particle radiation such as their limited range in tissue of a few cell diameters and their high linear energy transfer leading to dense radiation damage along each alpha track are promising in the treatment of cancer, especially when single cells or clusters of tumor cells are targeted. Actinium-225 (225Ac) is an alpha particle-emitting radionuclide that generates 4 net alpha particle isotopes in a short decay chain to stable 209Bi, and as such can be described as an alpha particle nanogenerator. This article reviews the literature pertaining to the research, development, and utilization of targeted 225Ac to potently and specifically affect cancer. PMID:18514364

  4. Alpha particle confinement in tandem mirrors

    SciTech Connect

    Devoto, R.S.; Ohnishi, M.; Kerns, J.; Woo, J.T.

    1980-10-10

    Mechanisms leading to loss of alpha particles from non-axisymmetric tandem mirrors are considered. Stochastic diffusion due to bounce-drift resonances, which can cause rapid radial losses of high-energy alpha particles, can be suppressed by imposing a 20% rise in axisymmetric fields before the quadrupole transition sections. Alpha particles should then be well-confined until thermal energies when they enter the resonant plateau require. A fast code for computation of drift behavior in reactors is described. Sample calculations are presented for resonant particles in a proposed coil set for the Tandem Mirror Next Step.

  5. Angular distributions of sequentially emitted particles and gamma rays in deep inelastic processes

    SciTech Connect

    Moretto, L.G.

    1981-01-01

    A general theory for the angular distribution of sequentially emitted particles and gamma rays is developed. Comparison with experimental data allows one to obtain information on the fragment spin and misalignment. Angular distributions of sequentially emitted gammas, alphas, and fission fragments are discussed in detail. It is shown that the experimental data are consistent with the thermal excitation of angular momentum-bearing modes. The anomaly of sequential fission suggests the presence of a prompt or direct fission component. 13 figures.

  6. Counting Particles Emitted by Stratospheric Aircraft and Measuring Size of Particles Emitted by Stratospheric Aircraft

    NASA Technical Reports Server (NTRS)

    Wilson, James Charles

    1994-01-01

    There were two principal objectives of the cooperative agreement between NASA and the University of Denver. The first goal was to modify the design of the ER-2 condensation nuclei counter (CNC) so that the effective lower detection limit would be improved at high altitudes. This improvement was sought because, in the instrument used prior to 1993, diffusion losses prevented the smallest detectable particles from reaching the detection volume of the instrument during operation at low pressure. Therefore, in spite of the sensor's ability to detect particles as small as 0.008 microns in diameter, many of these particles were lost in transport to the sensing region and were not counted. Most of the particles emitted by aircraft are smaller than 0.1 micron in diameter. At the start date of this work, May 1990, continuous sizing techniques available on the ER-2 were only capable of detecting particles larger than 0.17 micron. Thus, the second objective of this work was to evaluate candidate sizing techniques in an effort to gain additional information concerning the size of particles emitted by aircraft.

  7. Alpha particle spectrometry using superconducting microcalorimeters

    NASA Astrophysics Data System (ADS)

    Horansky, Robert; Ullom, Joel; Beall, James; Hilton, Gene; Stiehl, Gregory; Irwin, Kent; Plionis, Alexander; Lamont, Stephen; Rudy, Clifford; Rabin, Michael

    2009-03-01

    Alpha spectrometry is the preferred technique for analyzing trace samples of radioactive material because the alpha particle flux can be significantly higher than the gamma-ray flux from nuclear materials of interest. Traditionally, alpha spectrometry is performed with Si detectors whose resolution is at best 8 keV FWHM. Here, we describe the design and operation of a microcalorimeter alpha detector with an energy resolution of 1.06 keV FWHM at 5 MeV. We demonstrate the ability of the microcalorimeter to clearly resolve the alpha particles from Pu-239 and Pu-240, whose ratio differentiates reactor-grade Pu from weapons-grade. We also show the first direct observation of the decay of Po-209 to the ground state of Pb-205 which has traditionally been obscured by a much stronger alpha line 2 keV away. Finally, the 1.06 keV resolution observed for alpha particles is far worse than the 0.12 keV resolution predicted from thermal fluctuations and measurement of gamma-rays. The cause of the resolution degradation may be ion damage in the tin. Hence, alpha particle microcalorimeters may provide a novel tool for studying ion damage and lattice displacement energies in bulk materials.

  8. Instrument for measuring total alpha particle energies of alpha emitters in ambient air

    NASA Astrophysics Data System (ADS)

    Kronenberg, S.; Brucker, G. J.; Cummings, B.; Bechtel, E.; Gentner, F.; Horne, S.

    2000-11-01

    This paper describes the design, fabrication, testing and evaluation of a self-reading, carbon fiber, electrometer-type instrument. It is used for measuring the total energy of alpha particles emitted in air by progenies of 222Rn ( 218Po, 214Pb, and 214Bi), and sometimes by other types of alpha emitters (e.g. 212Pb, 238U, and 239Pu). The purpose of these measurements is to assess the energy delivered by alpha emission from these sources to the lung tissue. A sample (charged progenies attached to aerosols) is collected on filter paper from a known volume of air and placed on the instrument. The discharge rate indicates the alpha energy in MeV l -1 of air per min that is produced by the alpha emitters. The calibration procedure shows that the instrument has an energy sensitivity for alpha particles of 800.5 MeV/scale unit. The range of the readout scale is 30 units. Measurements of alpha contamination in air were made using this instrument in buildings, private homes and in a standard chamber. The value of the radon concentration in this chamber is traceable back to the US Environmental Protection Agency (EPA) and to the National Institute of Standards and Technology (NIST).

  9. Nuclear diagnostic for fast alpha particles

    DOEpatents

    Grisham, L.R.; Post, D.E. Jr.; Dawson, J.M.

    1983-11-23

    This invention relates generally to high energy confined plasmas and more particularly is directed to measuring the velocity distribution of confined energetic alpha particles resulting from deuterium-tritium fusion reactions in a confined energetic plasma.

  10. Alpha-emitting nuclides in the marine environment

    NASA Astrophysics Data System (ADS)

    Pentreath, R. J.

    1984-06-01

    The occurrence of alpha-emitting nuclides and their daughter products in the marine environment continues to be a subject of study for many reasons. Those nuclides which occur naturally, in the uranium, thorium and actinium series, are of interest because of their value in determining the rates of geological and geochemical processes in the oceans. Studies of them address such problems as the determination of rates of transfer of particulate matter, deposition rates, bioturbation rates, and so on. Two of the natural alpha-series nuclides in which a different interest has been expressed are 210Po and 226Ra, because their concentrations in marine organisms are such that they contribute to a significant fraction of the background dose rates sustained both by the organisms themselves and by consumers of marine fish and shellfish. To this pool of naturally-occurring nuclides, human activities have added the transuranium nuclides, both from the atmospheric testing of nuclear devices and from the authorized discharges of radioactive wastes into coastal waters and the deep sea. Studies have therefore been made to understand the chemistry of these radionuclides in sea water, their association with sedimentary materials, and their accumulation by marine organisms, the last of these being of particular interest because the transuranics are essentially "novel" elements to the marine fauna and flora. The need to predict the long-term behaviour of these nuclides has, in turn, stimulated research on those naturally-occurring nuclides which may behave in a similar manner.

  11. Mutagenic effects of alpha particles in normal human skin fibroblasts

    SciTech Connect

    Chen, D.J.; Carpenter, S.; Hanks, T.

    1992-12-31

    Alpha-irradiation to the bronchial airways from inhaled radon progeny increases the risk of developing lung cancer. The molecular mechanism of radon-induced lung cancer is not clear, but one of the most important genetic effects of ionizing radiation is the induction of gene mutation. Mutations, especially those associated with visible chromosome abnormalities in humans, have been associated with cancer. Therefore, our objective is to use a well-defined model system to determine the mutagenic potential of alpha particles in normal human skin cells and to define this action at the molecular level. Normal human skin fibroblasts were irradiated with alpha particles (3.59 MeV, LET 115 keV {mu}m{sup {minus}1}) emitted from the decay of {sup 238}Pu. Mutagenicity was determined at the X-linked hypoxanthine guanine phosphoribosyl transferase (HPRT) locus. Results from this study indicate that beta particles were more efficient in mutation induction than gamma rays. Based on the initial slopes of the dose-response curves, the RBE for mutation is about 8 for alpha particles. HPRT-deficient mutants which are resistant to 6-thioguanine have been isolated and analyzed by the Southern blot technique. To date, we have characterized 69 gamma-ray-induced and 195 alpha-particle-induced HPRT-deficient mutants. Our data indicate that more than 50% of all gamma-ray-induced mutants have band patterns identical to that observed for the normal structural HPRT gene, whereas the remaining mutants (45%) contain either a rearrangement, partial deletion, or total deletion of the HPRT gene. In contrast, only 30% of alpha-particle-induced human HPRT mutants contain a normal Southern blot pattern, and about 50% indicate total deletion of the HPRT gene. Our results support the notion that high-LET radiation produces more unrepaired or misrepaired DNA damage than do gamma rays.

  12. Alpha particles in effective field theory

    SciTech Connect

    Caniu, C.

    2014-11-11

    Using an effective field theory for alpha (α) particles at non-relativistic energies, we calculate the strong scattering amplitude modified by Coulomb corrections for a system of two αs. For the strong interaction, we consider a momentum-dependent interaction which, in contrast to an energy dependent interaction alone [1], could be more useful in extending the theory to systems with more than two α particles. We will present preliminary results of our EFT calculations for systems with two alpha particles.

  13. High resolution alpha particle spectrometry through collimation

    NASA Astrophysics Data System (ADS)

    Park, Seunghoon; Kwak, Sung-Woo; Kang, Han-Byeol

    2015-06-01

    Alpha particle spectrometry with collimation is a useful method for identifying nuclear materials among various nuclides. A mesh type collimator reduces the low energy tail and broadened energy distribution by cutting off particles with a low incidence angle. The relation between the resolution and the counting efficiency can be investigated by changing a ratio of the mesh hole diameter and the collimator thickness. Through collimation, a target particle can be distinguished by a PIPS® detector under a mixture of various nuclides.

  14. Alpha-particle sensitive test SRAMs

    NASA Technical Reports Server (NTRS)

    Buehler, M. G.; Blaes, B. R.

    1990-01-01

    A bench-level test is being developed to evaluate memory-cell upsets in a test SRAM designed with a cell offset voltage. This offset voltage controls the critical charge needed to upset the cell. The effect is demonstrated using a specially designed 2-micron n-well CMOS 4-kb test SRAM and a Po-208 5.1-MeV 0.61-LET alpha-particle source. This test SRAM has been made sensitive to alpha particles through the use of a cell offset voltage, and this has allowed a bench-level characterization in a laboratory setting. The experimental data are linked to a alpha-particle interaction physics and to SPICE circuit simulations through the alpha-particle collection depth. The collection depth is determined by two methods and found to be about 7 micron. In addition, alpha particles that struck outside the bloated drain were able to flip the SRAM cells. This lateral charge collection was observed to be more than 6 micron.

  15. Alternating current long range alpha particle detector

    DOEpatents

    MacArthur, D.W.; McAtee, J.L.

    1993-02-16

    An alpha particle detector, utilizing alternating currents, which is capable of detecting alpha particles from distinct sources. The use of alternating currents allows use of simpler ac circuits which, in turn, are not susceptible to dc error components. It also allows the benefit of gas gain, if desired. In the invention, a voltage source creates an electric field between two conductive grids, and between the grids and a conductive enclosure. Air containing air ions created by collision with alpha particles is drawn into the enclosure and detected. In some embodiments, the air flow into the enclosure is interrupted, creating an alternating flow of ions. In another embodiment, a modulated voltage is applied to the grid, also modulating the detection of ions.

  16. Alternating current long range alpha particle detector

    DOEpatents

    MacArthur, Duncan W.; McAtee, James L.

    1993-01-01

    An alpha particle detector, utilizing alternating currents, whcih is capable of detecting alpha particles from distinct sources. The use of alternating currents allows use of simpler ac circuits which, in turn, are not susceptible to dc error components. It also allows the benefit of gas gain, if desired. In the invention, a voltage source creates an electric field between two conductive grids, and between the grids and a conductive enclosure. Air containing air ions created by collision with alpha particles is drawn into the enclosure and detected. In some embodiments, the air flow into the enclosure is interrupted, creating an alternating flow of ions. In another embodiment, a modulated voltage is applied to the grid, also modulating the detection of ions.

  17. The status of alpha-particle diagnostics

    SciTech Connect

    Young, K.M.; Johnson, D.W.

    1992-08-01

    There is a flurry of activity to complete alpha-particle diagnostics so that they can undergo some experimental testing in DT plasmas on JET or TFTR prior to implementation on ITER. Successful measurements of escaping charged fusion products have been made in DD plasmas, and the {alpha}-particle source can be well characterized by neutron profile measurement. These methods can be extrapolated to DT plasmas. Measurement of the confined {alpha}-particles requires a new technique. Collective Thomson scattering, methods involving charge-exchange interactions and nuclear reactions with impurities will be discussed. Some assessment is given of the capabilities of these techniques, bearing in mind the potential for their use in the physics phase of the ITER program.

  18. The status of alpha-particle diagnostics

    SciTech Connect

    Young, K.M.; Johnson, D.W.

    1992-01-01

    There is a flurry of activity to complete alpha-particle diagnostics so that they can undergo some experimental testing in DT plasmas on JET or TFTR prior to implementation on ITER. Successful measurements of escaping charged fusion products have been made in DD plasmas, and the {alpha}-particle source can be well characterized by neutron profile measurement. These methods can be extrapolated to DT plasmas. Measurement of the confined {alpha}-particles requires a new technique. Collective Thomson scattering, methods involving charge-exchange interactions and nuclear reactions with impurities will be discussed. Some assessment is given of the capabilities of these techniques, bearing in mind the potential for their use in the physics phase of the ITER program.

  19. Lunar surface outgassing and alpha particle measurements

    SciTech Connect

    Lawson, S. L.; Feldman, W. C.; Lawrence, David J. ,; Moore, K. R.; Elphic, R. C.; Maurice, S.; Belian, Richard D.; Binder, Alan B.

    2002-01-01

    The Lunar Prospector Alpha Particle Spectrometer (LP APS) searched for lunar surface gas release events and mapped their distribution by detecting alpha particle?; produced by the decay of gaseous radon-222 (5.5 MeV, 3.8 day half-life), solid polonium-2 18 (6.0 MeV, 3 minute half-life), and solid polonium-210 (5.3 MeV, 138 day half-life, but held up in production by the 21 year half-life of lead-210). These three nuclides are radioactive daughters from the decay of uranium-238.

  20. Measurement of the Internal Magnetic Field of Plasmas using an Alpha Particle Source

    SciTech Connect

    S.J. Zweben; D.S. Darrow; P.W. Ross; J.L. Lowrance; G. Renda

    2004-05-13

    The internal magnetic fields of plasmas can be measured under certain conditions from the integrated v x B deflection of MeV alpha particles emitted by a small radioactive source. This alpha source and large-area alpha particle detector would be located inside the vacuum vessel but outside the plasma. Alphas with a typical energy of 5.5 MeV (241Am) can reach the center of almost all laboratory plasmas and magnetic fusion devices, so this method can potentially determine the q(r) profile of tokamaks or STs. Orbit calculations, background evaluations, and conceptual designs for such a vxB (or ''AVB'') detector are described.

  1. Alpha particles diffusion due to charge changes

    SciTech Connect

    Clauser, C. F. Farengo, R.

    2015-12-15

    Alpha particles diffusion due to charge changes in a magnetized plasma is studied. Analytical calculations and numerical simulations are employed to show that this process can be very important in the pedestal-edge-SOL regions. This is the first study that presents clear evidence of the importance of atomic processes on the diffusion of alpha particles. A simple 1D model that includes inelastic collisions with plasma species, “cold” neutrals, and partially ionized species was employed. The code, which follows the exact particle orbits and includes the effect of inelastic collisions via a Monte Carlo type random process, runs on a graphic processor unit (GPU). The analytical and numerical results show excellent agreement when a uniform background (plasma and cold species) is assumed. The simulations also show that the gradients in the density of the plasma and cold species, which are large and opposite in the edge region, produce an inward flux of alpha particles. Calculations of the alpha particles flux reaching the walls or divertor plates should include these processes.

  2. Relative biological effectiveness of alpha-particle emitters in vivo at low doses.

    PubMed

    Howell, R W; Azure, M T; Narra, V R; Rao, D V

    1994-03-01

    The therapeutic potential of radionuclides that emit alpha particles, as well as their associated health hazards, have attracted considerable attention. The 224Ra daughters 212Pb and 212Bi, by virtue of their radiation properties which involve emission of alpha and beta particles in their decay to stable 208Pb, have been proposed as candidates for radioimmunotherapy. Using mouse testes as the experimental model and testicular spermhead survival as the biological end point, the present work examines the radiotoxicity of 212Pb and its daughters. When 212Pb, in equilibrium with its daughters 212Bi, 212Po and 208Tl, was administered directly into the testis, the dose required to achieve 37% survival (D37) was 0.143 +/- 0.014 Gy and the corresponding RBE of the mixed radiation field was 4.7 when compared to the D37 for acute external 120 kVp X rays. This datum, in conjunction with our earlier results for 210Po, was used to obtain an RBE-LET relationship for alpha particles emitted by tissue-incorporated radionuclides: RBE alpha = 4.8 - 6.1 x 10(-2) LET + 1.0 x 10(-3) LET2. Similarly, the dependence of RBE on alpha-particle energy E alpha was given by RBE alpha = 22 E(-0.73) alpha. These relationships, based on in vivo experimental data, may be valuable in predicting biological effects of alpha-particle emitters. PMID:8146279

  3. Nuclear diagnostic for fast alpha particles

    DOEpatents

    Grisham, Larry R.; Post Jr., Douglass E.; Dawson, John M.

    1986-06-03

    Measurement of the velocity distribution of confined energetic alpha particles resulting from deuterium-tritium fusion reactions in a magnetically contained plasma is provided. The fusion plasma is seeded with energetic boron neutrals for producing, by means of the reaction .sup.10 B (.alpha.,n) .sup.13 N reaction, radioactive nitrogen nuclei which are then collected by a probe. The radioactivity of the probe is then measured by conventional techniques in determining the energy distribution of the alpha particles in the plasma. In a preferred embodiment, diborane gas (B.sub.2 H.sub.6) is the source of the boron neutrals to produce .sup.13 N which decays almost exclusively by positron emission with a convenient half-life of 10 minutes.

  4. Nuclear diagnostic for fast alpha particles

    DOEpatents

    Grisham, Larry R.; Post, Jr., Douglass E.; Dawson, John M.

    1986-01-01

    Measurement of the velocity distribution of confined energetic alpha particles resulting from deuterium-tritium fusion reactions in a magnetically contained plasma is provided. The fusion plasma is seeded with energetic boron neutrals for producing, by means of the reaction .sup.10 B (.alpha.,n) .sup.13 N reaction, radioactive nitrogen nuclei which are then collected by a probe. The radioactivity of the probe is then measured by conventional techniques in determining the energy distribution of the alpha particles in the plasma. In a preferred embodiment, diborane gas (B.sub.2 H.sub.6) is the source of the boron neutrals to produce .sup.13 N which decays almost exclusively by positron emission with a convenient half-life of 10 minutes.

  5. Evolution of the alpha particle driven toroidicity induced Alfven mode

    SciTech Connect

    Wu, Y.; White, R.B.; Cheng, C.Z.

    1994-04-01

    The interaction of alpha particles with a toroidicity induced Alfven eigenmode is investigated self-consistently by using a kinetic dispersion relation. All important poloidal harmonics and their radial mode profiles are included. A Hamiltonian guiding center code is used to simulate the alpha particle motion. The simulations include particle orbit width, nonlinear particle dynamics and the effects of the modes on the particles. Modification of the particle distribution leading to mode saturation is observed. There is no significant alpha particle loss.

  6. Alpha particle analysis using PEARLS spectrometry

    SciTech Connect

    McKlveen, J.W.; Klingler, G.W.; McDowell, W.J.; Case, G.N.

    1984-01-01

    Alpha particle assay by conventional plate-counting methods is difficult because chemical separation, tracer techniques, and/or self-absorption losses in the final sample may cause either non-reproducible results or create unacceptable errors. PEARLS (Photon-Electron Rejecting Alpha Liquid Scintillation) Spectrometry is an attractive alternative since radionuclides may be extracted into a scintillator in which there would be no self-absorption or geometry problems and in which up to 100% chemical recovery and counting efficiency is possible. Sample preparation may include extraction of the alpha emitter of interest by a specific organic-phase-soluble compound directly into the liquid scintillator. Detection electronics use energy and pulse-shape discrimination to provide discrete alpha spectra and virtual absence of beta and gamma backgrounds. Backgrounds on the order of 0.01 cpm are readily achievable. Accuracy and reproducibility are typically in the 100 +-1% range. Specific procedures have been developed for gross alpha, uranium, plutonium, thorium, and polonium assay. This paper will review liquid scintillation alpha counting methods and reference some of the specific applications. 8 refs., 1 fig.

  7. A practical alpha particle irradiator for studying internal alpha particle exposure.

    PubMed

    Lee, Ki-Man; Lee, Ui-Seob; Kim, Eun-Hee

    2016-09-01

    An alpha particle irradiator has been built in the Radiation Bioengineering Laboratory at Seoul National University (SNU) to investigate the cellular responses to alpha emissions from radon and the progeny. This irradiator is designed to have the energy of alpha particles entering target cells similar to that of alpha emissions from the radon progeny Po-218 and Po-214 residing in the human respiratory tract. For the SNU alpha particle irradiator, an irradiation system is equipped with cell dishes of 4µm thick Mylar bottom and a special setup of cells on slide for gamma-H2AX assay. Dose calibration for the alpha particle irradiator was performed by dual approaches, detection and computer simulation, in consideration of the source-to-target distance (STD) and the size of a cell dish. The uniformity of dose among cells in a dish is achieved by keeping the STD and the size of cell dish in certain ranges. The performance of the SNU alpha particle irradiator has been proven to be reliable through the gamma-H2AX assay with the human lung epithelial cells irradiated. PMID:27475622

  8. Lyman Alpha Emitting Galaxies in the Nearby Universe

    NASA Astrophysics Data System (ADS)

    Hayes, Matthew

    2015-07-01

    The Lyman alpha emission line (Lyα) of neutral hydrogen (Hi) is intrinsically the brightest emission feature in the spectrum of astrophysical nebulae, making it a very attractive observational feature with which to survey galaxies. Moreover as an ultraviolet resonance line, Lyα possesses several unique characteristics that make it useful to study the properties of the interstellar medium and ionising stellar population at all cosmic epochs. In this review, I present a summary of Lyα observations of galaxies in the nearby universe. By ultraviolet continuum selection, at the magnitudes reachable with current facilities, only ≈ 5% of the local galaxy population shows a Lyα equivalent width (W Lyα) that exceeds 20 Å. This fraction increases dramatically at higher redshifts, but only in the local universe can we study galaxies in detail and assemble unprecedented multi-wavelength datasets. I discuss many local Lyα observations, showing that when galaxies show net Lyα emission, they ubiquitously also produce large-scale halos of scattered Lyα, that dominate the integrated luminosity. Concerning global measurements, we discuss how W Lyα and the Lyα escape fraction (f Lyα esc) are higher (W Lyα ≳ 20 Å and f Lyα esc ≳ 10%) in galaxies that represent the less massive and younger end of the distribution for local objects. This is connected with various properties, such that Lyα-emitting galaxies have lower metal abundances (median value of 12 + log(O/H) ~ 8.1) and dust reddening. However, the presence of galactic outflows/winds is also vital to Doppler shift the Lyα line out of resonance with the atomic gas, and high W Lyα is found only among galaxies with winds faster than ~ 50 km s-1. The empirical evidence is then assembled into a coherent picture, and the requirement for star-formation-driven feedback is discussed in the context of an evolutionary sequence where the interstellar medium is accelerated and/or subject to hydrodynamical instabilities

  9. Alpha Particle Physics Experiments in the Tokamak Fusion Test Reactor

    SciTech Connect

    Budny, R.V.; Darrow, D.S.; Medley, S.S.; Nazikian, R.; Zweben, S.J.; et al.

    1998-12-14

    Alpha particle physics experiments were done on the Tokamak Fusion Test Reactor (TFTR) during its deuterium-tritium (DT) run from 1993-1997. These experiments utilized several new alpha particle diagnostics and hundreds of DT discharges to characterize the alpha particle confinement and wave-particle interactions. In general, the results from the alpha particle diagnostics agreed with the classical single-particle confinement model in magnetohydrodynamic (MHD) quiescent discharges. Also, the observed alpha particle interactions with sawteeth, toroidal Alfvén eigenmodes (TAE), and ion cyclotron resonant frequency (ICRF) waves were roughly consistent with theoretical modeling. This paper reviews what was learned and identifies what remains to be understood.

  10. THE SPATIALLY RESOLVED H{alpha}-EMITTING WIND STRUCTURE OF P CYGNI

    SciTech Connect

    Balan, Aurelian; Tycner, C.; Zavala, R. T.; Benson, J. A.; Hutter, D. J.; Templeton, M. E-mail: c.tycner@cmich.ed E-mail: jbenson@nofs.navy.mi E-mail: matthewt@aavso.or

    2010-06-15

    High spatial resolution observations of the H{alpha}-emitting wind structure associated with the luminous blue variable star P Cygni were obtained with the Navy Prototype Optical Interferometer. These observations represent the most comprehensive interferometric data set on P Cyg to date. We demonstrate how the apparent size of the H{alpha}-emitting region of the wind structure of P Cyg compares between the 2005, 2007, and 2008 observing seasons and how this relates to the H{alpha} line spectroscopy. Using the data sets from 2005, 2007, and 2008 observing seasons, we fit a circularly symmetric Gaussian model to the interferometric signature from the H{alpha}-emitting wind structure of P Cyg. Based on our results, we conclude that the radial extent of the H{alpha}-emitting wind structure around P Cyg is stable at the 10% level. We also show how the radial distribution of the H{alpha} flux from the wind structure deviates from a Gaussian shape, whereas a two-component Gaussian model is sufficient to fully describe the H{alpha}-emitting region around P Cyg.

  11. Sterically stabilized liposomes as a carrier for alpha-emitting radium and actinium radionuclides.

    PubMed

    Henriksen, Gjermund; Schoultz, B W; Michaelsen, T E; Bruland, Ø S; Larsen, R H

    2004-05-01

    The alpha-particle emitting radionuclides (223)Ra (t(1/2) = 11.4 d), (224)Ra (t(1/2) = 3.6 d), and (225)Ac(t(1/2) = 10.0 d) may have a broad application in targeted radiotherapy provided that they could be linked to vehicles with tumor affinity. The potential usefulness of liposomes as carriers was studied in the present work. Radium and actinium radionuclides could be loaded in good yields into sterically stabilized liposomes. Subsequent coating of the liposomes with a folate-F(ab')(2) construct yielded a product with affinity towards tumor cells expressing folate receptors. Radionuclide loaded liposomes showed excellent stability in serum in vitro. PMID:15093814

  12. Ferroelectric Devices Emit Charged Particles and Radiation

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph; Sherrit, Stewart; Bao, Xiaoqi; Felsteiner, Joshua; Karsik, Yakov

    2005-01-01

    Devices called solid-state ferroelectric- based sources (SSFBSs) are under development as sources of electrons, ions, ultraviolet light, and x-rays for diverse applications in characterization and processing of materials. Whereas heretofore it has been necessary to use a different device to generate each of the aforementioned species of charged particles or radiation, a single SSFBS can be configured and operated to selectively generate any of the species as needed using a single source. Relative to comparable prior sources based, variously, on field emission, thermionic emission, and gaseous discharge plasmas, SSFBSs demand less power, and are compact and lightweight. An SSFBS exploits the unique physical characteristics of a ferroelectric material in the presence of a high-frequency pulsed electric field. The basic building block of an SSFBS is a ferroelectric cathode -- a ferroelectric wafer with a solid electrode covering its rear face and a grid electrode on its front face (see figure). The application of a voltage pulse -- typically having amplitude of several kilovolts and duration of several nanoseconds -- causes dense surface plasma to form near the grid wires on the front surface.

  13. Track nanodosimetry of an alpha particle.

    PubMed

    De Nardo, L; Colautti, P; Baek, W Y; Grosswendt, B; Alkaa, A; Ségur, P; Tornielli, G

    2002-01-01

    Experimental measurements and calculations are described of ionisation distributions in propane wall-less gas cavities of about 20 nm simulated size, performed at different distances from a 244Cm alpha particle track. Ionisation events are detected one by one by collecting electrons from the sensitive volume and by separating them with a drift column. Experimental results and Monte Carlo calculations indicate that, in the delta ray cloud, conditional probability curves, average cluster size and the ratio of second moment above first moment of the cluster distribution are invariant with track distance. PMID:12194323

  14. Alpha particle collective Thomson scattering in TFTR

    SciTech Connect

    Machuzak, J.S.; Woskov, P.P.; Rhee, D.Y.; Gilmore, J.; Bretz, N.L.; Park, H.K.; Aamodt, R.E.; Cheung, P.Y.; Russell, D.A.; Bindslev, H.

    1993-11-01

    A collective Thomson scattering diagnostic is being implemented on TFTR to measure alpha particle, energetic and thermal ion densities and velocity distributions. A 60 GHz, 0.1-1 kW gyrotron will be used as the transmitter source, and the scattering geometry will be perpendicular to the magnetic field in the extraordinary mode polarization. An enhanced scattered signal is anticipated from fluctuations in the lower hybrid frequency range with this scattering geometry. Millimeter wave collective Thomson scattering diagnostics have the advantage of larger scattering angles to decrease the amount of stray light, and long, high power, modulated pulses to obtain improved signal to noise through synchronous detection techniques.

  15. Measurement of the internal magnetic field of plasmas using an alpha particle source

    SciTech Connect

    Zweben, S.J.; Darrow, D.S.; Ross, P.W.; Lowrance, J.L.; Renda, G.

    2004-10-01

    The internal magnetic fields of plasmas can be measured under certain conditions from the integrated vxB deflection of MeV alpha particles emitted by a small radioactive source. The alpha source and large-area alpha particle detector would be located inside the vacuum vessel but outside the plasma. Alphas with a typical energy of 5.5 MeV ({sup 241}Am) can reach the center of almost all laboratory plasmas and magnetic fusion devices, so this method can potentially determine the q(r) profile of tokamaks or spherical toris (STs). Orbit calculations, background evaluations, and conceptual designs for such {alpha} vxB (or 'AVB') detector are described.

  16. Turbulent transport of alpha particles in reactor plasmas

    SciTech Connect

    Estrada-Mila, C.; Candy, J.; Waltz, R. E.

    2006-11-15

    A systematic study of the behavior of energetic ions in reactor plasmas is presented. Using self-consistent gyrokinetic simulations, in concert with an analytic asymptotic theory, it is found that alpha particles can interact significantly with core ion-temperature-gradient turbulence. Specifically, the per-particle flux of energetic alphas is comparable to the per-particle flux of thermal species (deuterium or helium ash). This finding opposes the conventional wisdom that energetic ions, because of their large gyroradii, do not interact with the turbulence. For the parameters studied, a turbulent modification of the alpha-particle density profile appears to be stronger than turbulent modification of the alpha-particle pressure profile. Crude estimates indicate that the alpha density modification, which is directly proportional to the core turbulence intensity, could be in the range of 15% at midradius in a reactor. The corresponding modification of the alpha-particle pressure profile is predicted to be smaller (in the 1% range)

  17. Counting particles emitted by stratospheric aircraft and measuring size of particles emitted by stratospheric aircraft

    NASA Technical Reports Server (NTRS)

    Wilson, James Charles

    1994-01-01

    The ER-2 condensation nuclei counter (CNC) has been modified to reduce the diffusive losses of particles within the instrument. These changes have been successful in improving the counting efficiency of small particles at low pressures. Two techniques for measuring the size distributions of particles with diameters less than 0.17 micrometers have been evaluated. Both of these methods, the differential mobility analyzer (DMA) and the diffusion battery, have fundamental problems that limit their usefulness for stratospheric applications. We cannot recommend either for this application. Newly developed, alternative methods for measuring small particles include inertial separation with a low-loss critical orifice and thin-plate impactor device. This technique is now used to collect particles in the multisample aerosol collector housed in the ER-2 CNC-2, and shows some promise for particle size measurements when coupled with a CNC as a counting device. The modified focused-cavity aerosol spectrometer (FCAS) can determine the size distribution of particles with ambient diameters as small as about 0.07 micrometers. Data from this instrument indicates the presence of a nuclei mode when CNC-2 indicates high concentrations of particles, but cannot resolve important parameters of the distribution.

  18. Alpha particle loss in the TFTR DT experiments

    SciTech Connect

    Zweben, S.J.; Darrow, D.S.; Herrmann, H.W.

    1995-01-01

    Alpha particle loss was measured during the TFTR DT experiments using a scintillator detector located at the vessel bottom in the ion grad-B drift direction. The DT alpha particle loss to this detector was consistent with the calculated first-orbit loss over the whole range of plasma current I=0.6-2.7 MA. In particular, the alpha particle loss rate per DT neutron did not increase significantly with fusion power up to 10.7 MW, indicating the absence of any new ``collective`` alpha particle loss processes in these experiments.

  19. Alpha-Particle Gas-Pressure Sensor

    NASA Technical Reports Server (NTRS)

    Buehler, M. C.; Bell, L. D.; Hecht, M. H.

    1996-01-01

    An approximate model was developed to establish design curves for the saturation region and a more complete model developed to characterize the current-voltage curves for an alpha-particle pressure sensor. A simple two-parameter current-voltage expression was developed to describe the dependence of the ion current on pressure. The parameters are the saturation-current pressure coefficient and mu/D, the ion mobility/diffusion coefficient. The sensor is useful in the pressure range between 0.1 and 1000 mb using a 1 - mu Ci(241) Am source. Experimental results, taken between 1 and up to 200 mb, show the sensor operates with an anode voltage of 5 V and a sensitivity of 20 fA/mb in nitrogen.

  20. Alpha particle destabilization of the toroidicity-induced Alfven eigenmodes

    SciTech Connect

    Cheng, C.Z.

    1990-10-01

    The high frequency, low mode number toroidicity-induced Alfven eigenmodes (TAE) are shown to be driven unstable by the circulating and/or trapped {alpha}-particles through the wave-particle resonances. Satisfying the resonance condition requires that the {alpha}-particle birth speed v{sub {alpha}} {ge} v{sub A}/2{vert bar}m-nq{vert bar}, where v{sub A} is the Alfven speed, m is the poloidal model number, and n is the toroidal mode number. To destabilize the TAE modes, the inverse Landau damping associated with the {alpha}-particle pressure gradient free energy must overcome the velocity space Landau damping due to both the {alpha}-particles and the core electrons and ions. The growth rate was studied analytically with a perturbative formula derived from the quadratic dispersion relation, and numerically with the aid of the NOVA-K code. Stability criteria in terms of the {alpha}-particle beta {beta}{sub {alpha}}, {alpha}-particle pressure gradient parameter ({omega}{sub {asterisk}}/{omega}{sub A}) ({omega}{sub {asterisk}} is the {alpha}-particle diamagnetic drift frequency), and (v{sub {alpha}}/v{sub A}) parameters will be presented for TFTR, CIT, and ITER tokamaks. The volume averaged {alpha}-particle beta threshold for TAE instability also depends sensitively on the core electron and ion temperature. Typically the volume averaged {alpha}-particle beta threshold is in the order of 10{sup {minus}4}. Typical growth rates of the n=1 TAE mode can be in the order of 10{sup {minus}2}{omega}{sub A}, where {omega}{sub A}=v{sub A}/qR. Other types of global Alfven waves are stable in D-T tokamaks due to toroidal coupling effects.

  1. Analytic expressions for {alpha} particle preformation in heavy nuclei

    SciTech Connect

    Zhang, H. F.; Wang, Y. J.; Dong, J. M.; Royer, G.

    2009-11-15

    Experimental {alpha} decay energies and half-lives are investigated systematically to extract {alpha} particle preformation in heavy nuclei. Formulas for the preformation factors are proposed that can be used to guide microscopic studies on preformation factors and perform accurate calculations of the {alpha} decay half-lives. There is little evidence for the existence of an island of long stability of superheavy nuclei.

  2. Control of the risk of exposure to alpha emitting radionuclides in French nuclear power plants: example of Cattenom.

    PubMed

    Le Guen, B; Roupioz, A; Rabu, B; Bouvy, A; Labouglie, J F; Garcier, Y

    2003-01-01

    Control of the risk of internal exposure of EDF PWR plant maintenance workers by alpha-emitting radioactive elements is based on identification and quantification of the contamination of the systems. In 2001, an experiment carried out at Cattenom Power Plant during a unit outage in the presence of a leaking fuel cladding, based on measurement of alpha-emitting radioactive elements, made it possible to determine a realistic particle resuspension coefficient. A resuspension coefficient of 10(-6) m(-1) was adopted for operational radiological protection. An appropriate monitoring system for workers was set in place in collaboration with the occupational medicine and radiological protection department. It was based on prior estimation of the level of alpha contamination, and confirmed by swipe measurements, atmospheric surveillance by monitors, and collective analysis by nose blow samples from workers selected on the basis of their workstations, as well as supplementary individual measurements (monitoring of faeces). This surveillance made it possible to validate an appropriate work area monitoring system. PMID:14526975

  3. Local Control of Lung Derived Tumors by Diffusing Alpha-Emitting Atoms Released From Intratumoral Wires Loaded With Radium-224

    SciTech Connect

    Cooks, Tomer; Schmidt, Michael; Bittan, Hadas; Lazarov, Elinor; Arazi, Lior; Kelson, Itzhak; Keisari, Yona

    2009-07-01

    Purpose: Diffusing alpha-emitters radiation therapy (DART) is a new form of brachytherapy enabling the treatment of solid tumors with alpha radiation. The present study examines the antitumoral effects resulting from the release of alpha emitting radioisotopes into solid lung carcinoma (LL2, A427, and NCI-H520). Methods and Materials: An in vitro setup tested the dose-dependent killing of tumor cells exposed to alpha particles. In in vivo studies, radioactive wires (0.3 mm diameter, 5 mm long) with {sup 224}Ra activities in the range of 21-38 kBq were inserted into LL/2 tumors in C57BL/6 mice and into human-derived A427 or NCI-H520 tumors in athymic mice. The efficacy of the short-lived daughters of {sup 224}Ra to produce tumor growth retardation and prolong life was assessed, and the spread of radioisotopes inside tumors was measured using autoradiography. Results: The insertion of a single DART wire into the center of 6- to 7-mm tumors had a pronounced retardation effect on tumor growth, leading to a significant inhibition of 49% (LL2) and 93% (A427) in tumor development and prolongations of 48% (LL2) in life expectancy. In the human model, more than 80% of the treated tumors disappeared or shrunk. Autoradiographic analysis of the treated sectioned tissue revealed the intratumoral distribution of the radioisotopes, and histological analysis showed corresponding areas of necrosis. In vitro experiments demonstrated a dose-dependent killing of tumors cells exposed to alpha particles. Conclusions: Short-lived diffusing alpha-emitters produced tumor growth retardation and increased survival in mice bearing lung tumor implants. These results justify further investigations with improved dose distributions.

  4. Dosimetry and radiobiological studies of automated alpha-particle irradiator.

    PubMed

    M V, Jyothish Babu; Shinde, Sanjay G; S, Sunil Kumar; Ali, Manjoor; Vasumathy, R; Kumar, Amit; Kolekar, R; Kumar, Manish; Nema, P; Bhagwat, P V; Pandey, Badri N

    2013-01-01

    Understanding the effect of alpha radiation on biological systems is an important component of radiation risk assessment and associated health consequences. However, due to the short path length of alpha radiation in the atmosphere, in vitro radiobiological experiments cannot be performed with accuracy in terms of dose and specified exposure time. The present paper describes the design and dosimetry of an automated alpha-particle irradiator named 'BARC BioAlpha', which is suitable for in vitro radiobiological studies. Compared to alpha irradiators developed in other laboratories, BARC BioAlpha has integrated computer-controlled movement of the alpha-particle source, collimator, and electronic shutter. The diaphragm blades of the electronic shutter can control the area (diameter) of irradiation without any additional shielding, which is suitable for radiobiological bystander studies. To avoid irradiation with incorrect parameters, a software interlock is provided to prevent shutter opening, unless the user-specified speed of the source and collimator are achieved. The dosimetry of the alpha irradiator using CR-39 and silicon surface barrier detectors showed that ~4 MeV energy of the alpha particle reached the cells on the irradiation dish. The alpha irradiation was also demonstrated by the evaluation of DNA double-strand breaks in human cells. In conclusion, 'BARC BioAlpha' provides a user-friendly alpha irradiation system for radiobiological experiments with a novel automation mechanism for better accuracy of dose and exposure time. PMID:24266413

  5. [alpha]-particle transport-driven current in tokamaks

    SciTech Connect

    Heikkinen, J.A. ); Sipilae, S.K. )

    1995-03-01

    It is shown that the radial transport of fusion-born energetic [alpha] particles, induced by electrostatic waves traveling in one poloidal direction, is directly connected to a net momentum of [alpha] particles in the toroidal direction in tokamaks. Because the momentum change is almost independent of toroidal velocity, the energy required for the momentum generation remains small on an [alpha]-particle population sustained by an isotropic time-independent source. By numerical toroidal Monte Carlo calculations it is shown that the current carried by [alpha] particles in the presence of intense well penetrated waves can reach several mega-amperes in reactor-sized tokamaks. The current obtained can greatly exceed the neoclassical bootstrap current of the [alpha] particles.

  6. Genotoxicity of alpha particles in human embryonic skin fibroblasts

    SciTech Connect

    Chen, D.J.; Strniste, G.F.; Tokita, N.

    1984-11-01

    Cell inactivation and induced mutation frequencies at the hypoxanthine-guanine phosphoribosyl transferase (HGPRT) locus have been measured in cultured human fibroblasts (GM10) exposed to ..cap alpha.. particles from /sup 238/ Pu and 250 kVp X rays. The survival curves resulting from exposure to ..cap alpha.. particles are exponential. The mean lethal dose, D/sub 0/, is approximately 1.3 Gy for X rays and 0.25 Gy for ..cap alpha.. particles. As a function of radiation dose, mutation induction at the HGPRT locus was linear for ..cap alpha.. particles whereas the X-ray-induced mutation data were better fitted by a quadratic function. When mutation frequencies were plotted against the log of survival, mutation frequency at a given survival level was greater in cells exposed to ..cap alpha.. particles than to X rays.

  7. Radiotoxicity of gadolinium-148 and radium-223 in mouse testes: relative biological effectiveness of alpha-particle emitters in vivo.

    PubMed

    Howell, R W; Goddu, S M; Narra, V R; Fisher, D R; Schenter, R E; Rao, D V

    1997-03-01

    The biological effects of radionuclides that emit alpha particles are of considerable interest in view of their potential for therapy and their presence in the environment. The present work is a continuation of our ongoing effort to study the radiotoxicity of alpha-particle emitters in vivo using the survival of murine testicular sperm heads as the biological end point. Specifically, the relative biological effectiveness (RBE) of very low-energy alpha particles (3.2 MeV) emitted by 148Gd is investigated and determined to be 7.4 +/- 2.4 when compared to the effects of acute external 120 kVp X rays. This datum, in conjunction with our earlier results for 210Po and 212Pb in equilibrium with its daughters, is used to revise and extend the range of validity of our previous RBE-energy relationship for alpha particles emitted by tissue-incorporated radionuclides. The new empirical relationship is given by RBE alpha = 9.14 - 0.510 E alpha where 3 < E alpha < 9 MeV. The validity of this empirical relationship is tested by determining the RBE of the prolific alpha-particle emitter 223Ra (in equilibrium with its daughters) experimentally in the same biological model and comparing the value obtained experimentally with the predicted value. The resulting RBE values are 5.4 +/- 0.9 and 5.6, respectively. This close agreement strongly supports the adequacy of the empirical RBE-E alpha relationship to predict the biological effects of alpha-particle emitters in vivo. PMID:9052681

  8. EVIDENCE FOR SPATIALLY COMPACT Ly{alpha} EMISSION IN z = 3.1 Ly{alpha}-EMITTING GALAXIES

    SciTech Connect

    Bond, Nicholas A.; Gawiser, Eric; Feldmeier, John J.; Matkovic, Ana; Gronwall, Caryl; Ciardullo, Robin E-mail: gawiser@physics.rutgers.ed E-mail: matkovic@astro.psu.ed E-mail: rbc@astro.psu.ed

    2010-06-20

    We present the results of a high spatial resolution study of the line emission in a sample of z = 3.1 Ly{alpha}-emitting galaxies (LAEs) in the Extended Chandra Deep Field-South. Of the eight objects with coverage in our HST/WFPC2 narrowband imaging, two have clear detections and two are barely detected ({approx}2 {sigma}). The clear detections are within {approx}0.5 kpc of the centroid of the corresponding rest-UV continuum source, suggesting that the line-emitting gas and young stars in LAEs are spatially coincident. The brightest object exhibits extended emission with a half-light radius of {approx}1.5 kpc, but a stack of the remaining LAE surface brightness profiles is consistent with the WFPC2 point-spread function. This suggests that the Ly{alpha} emission in these objects originates from a compact ({approx}<2 kpc) region and cannot be significantly more extended than the far-UV continuum emission ({approx}<1 kpc). Comparing our WFPC2 photometry to previous ground-based measurements of their monochromatic fluxes, we find at 95% (99.7%) confidence that we cannot be missing more than 22% (32%) of the Ly{alpha} emission.

  9. Evaluation of ZnO(Ga)Coatings as Alpha Particle Transducers Within a Neutron Generator

    SciTech Connect

    Mihalczo, J. T.; Neal, J. S.; Cooper, J. C.; Koltick, D. S.

    2002-05-02

    We report investigations and preliminary results from efforts to develop a recoil alpha particle detector for use in a portable neutron generator. The associated particle sealed tube neutron generator (APSTNG) will be used as an interrogation source for the Nuclear Materials Identification System (NMIS). With the emission of 14.1 MeV neutrons produced by the D-T reaction, associated 3.5 MeV alpha particles are emitted. These neutrons and alphas may then be correlated in time and direction, thus effectively ''tagging'' the neutrons of interest for subsequent use as an active nuclear materials interrogation source. The alpha particle detector uses a ZnO(Ga) scintillator coating applied to a fiber optic face plate. Gallium-doped zinc oxide is a fast (1.5 ns decay time), inorganic scintillator with a high melting point (1975C) and an absolute light yield of 1.5% of NaI(Tl). The scintillator is coated with a thin layer of nickel in order to screen out light produced in the tube and scattered deuterons and tritons. This coating also serves to prevent the buildup of charge on the detector surface. Results to date indicate promise as an effective alpha particle detector for the APSTNG for future use in the NMIS.

  10. Alpha-Particle Angular Distributions of At and Rn Isotopes and Their Relation to Nuclear Structure

    SciTech Connect

    NICOLE Collaboration and ISOLDE Collaboration

    1996-12-01

    We report on an extensive on-line nuclear orientation study of the angular distribution of {alpha} particles emitted in the favored decay of neutron deficient At and Rn nuclei near the {ital N}=126 shell closure. Surprisingly large anisotropies were observed, showing pronounced changes from one isotope to another. Comparing these data with several theoretical models shows that anisotropic {alpha} emission in favored decays from near-spherical nuclei can well be explained within the shell model, implying that it is mainly determined by the structure of the decaying nucleus. {copyright} {ital 1996 The American Physical Society.}

  11. DISCOVERY OF AN H{alpha} EMITTING DISK AROUND THE SUPERMASSIVE BLACK HOLE OF M31

    SciTech Connect

    Menezes, R. B.; Steiner, J. E.; Ricci, T. V.

    2013-01-10

    Due to its proximity, the mass of the supermassive black hole in the nucleus of the Andromeda galaxy (M31), the most massive black hole in the Local Group of galaxies, has been measured by several methods involving the kinematics of a stellar disk which surrounds it. We report here the discovery of an eccentric H{alpha} emitting disk around the black hole at the center of M31 and show how modeling this disk can provide an independent determination of the mass of the black hole. Our model implies a mass of 5.0{sup +0.8}{sub -1.0} Multiplication-Sign 10{sup 7} M{sub Sun} for the central black hole, consistent with the average of determinations by methods involving stellar dynamics, and compatible (at 1{sigma} level) with measurements obtained from the most detailed models of the stellar disk around the central black hole. This value is also consistent with the M-{sigma} relation. In order to make a comparison, we applied our simulation on the stellar kinematics in the nucleus of M31 and concluded that the parameters obtained for the stellar disk are not formally compatible with the parameters obtained for the H{alpha} emitting disk. This result suggests that the stellar and the H{alpha} emitting disks are intrinsically different from each other. A plausible explanation is that the H{alpha} emission is associated with a gaseous disk. This hypothesis is supported by the detection of traces of weaker nebular lines in the nuclear region of M31. However, we cannot exclude the possibility that the H{alpha} emission is, at least partially, generated by stars.

  12. Effect of alpha particles on Toroidal Alfven Eigenmodes

    SciTech Connect

    Berk, H.L.

    1992-11-01

    An overview is given of the analytic structure for the linear theory of the Toroidal Alfven Eigenmode (TAE), where multiple gap structures occur. A discussion is given of the alpha particle drive and the various dissipation mechanisms that can stabilize the system. A self-consistent calculation of the TAE mode, for a low-beta high-aspect-ratio plasma, indicates that though the alpha particle drive is comparable to the dissipation mechanisms, overall stability is still achieved for ignited ITER-like plasma. A brief discussion is given of the nonlinear theory for the TAE mode and how nonlinear alpha particle dynamics can be treated by mapping methods.

  13. Calibration and operation of continuous air monitors for alpha-emitting radionuclides

    SciTech Connect

    Hoover, M.D.; Newton, G.J.

    1993-12-31

    Spectrometer-based continuous air monitors have improved our capabilities for detecting aerosols of alpha-emitting radionuclides. This paper describes basic requirements and statistical limitations in the sensitivity of alpha continuous air monitors, and presents a technical basis for selecting the energy window for detection of uranium and plutonium aerosols, correcting for interference from airborne dust, selecting filters with low pressure drop and good front surface collection characteristics, and properly using electroplated calibration sources. Sensitivity limits are described for detecting uranium or plutonium aerosols in the presence of increased concentrations of naturally occurring, alpha-emitting radon progeny radionuclides. Decreasing the lower energy boundary of the detection window from 4.3 MeV to 2.7 MeV improves by a factor of three the detection of plutonium in the presence of dust, while causing minimal additional interference from ambient radon progeny. Selection of the Millipore Fluoropore teflon membrane filter reduces both pressure drop and interference from ambient radon progeny by up to a factor of two. Field collection of ambient radon progeny can be used to verify the proper energy of alpha emissions from electroplated calibration sources. In the absence of energy verification, errors in instrument calibration may result from solid state diffusion of the electroplated calibration radionuclide into the substrate plate.

  14. Effects of alpha-particles on survival and chromosomal aberrations in human mammary epithelial cells

    NASA Technical Reports Server (NTRS)

    Durante, M.; Grossi, G. F.; Gialanella, G.; Pugliese, M.; Nappo, M.; Yang, T. C.

    1995-01-01

    We have studied the radiation responses of a human mammary epithelial cell line, H184B5 F5-1 M/10. This cell line was derived from primary mammary cells after treatment with chemicals and heavy ions. The F5-1 M/10 cells are immortal, density-inhibited in growth, and non-tumorigenic in athymic nude mice and represent an in vitro model of the human epithelium for radiation studies. Because epithelial cells are the target of alpha-particles emitted from radon daughters, we concentrated our studies on the efficiency of alpha-particles. Confluent cultures of M/10 cells were exposed to accelerated alpha-particles [beam energy incident at the cell monolayer = 3.85 MeV, incident linear energy transfer (LET) in cell = 109 keV/microns] and, for comparison, to 80 kVp x-rays. The following endpoints were studied: (1) survival, (2) chromosome aberrations at the first postirradiation mitosis, and (3) chromosome alterations at later passages following irradiation. The survival curve was exponential for alpha-particles (D0 = 0.73 +/- 0.04 Gy), while a shoulder was observed for x-rays (alpha/beta = 2.9 Gy; D0 = 2.5 Gy, extrapolation number 1.6). The relative biological effectiveness (RBE) of high-LET alpha-particles for human epithelial cell killing was 3.3 at 37% survival. Dose-response curves for the induction of chromosome aberrations were linear for alpha-particles and linearquadratic for x-rays. The RBE for the induction of chromosome aberrations varied with the type of aberration scored and was high (about 5) for chromosome breaks and low (about 2) for chromosome exchanges.(ABSTRACT TRUNCATED AT 250 WORDS).

  15. Full orbit calculation for lost alpha particle measurement on ITER

    SciTech Connect

    Funaki, D.; Isobe, M.; Nishiura, M.; Sato, Y.; Okamoto, A.; Kobuchi, T.; Kitajima, S.; Sasao, M.

    2008-10-15

    An orbit following calculation code with full gyromotion under the ITER magnetic field configuration has been developed to investigate escaping alpha particle orbits in ITER and to determine the geometrical arrangement for alpha particle detection. The code contained the full geometrical information of the first wall panels. It was carefully investigated whether an alpha particle escaping from the plasma through the last closed flux surface does not touch or intersect the first wall boundary before reaching the detection point. Candidates of blanket module modification have been studied to achieve effective measurement geometry for escaping alpha particle detection. The calculations showed that direct orbit loss and banana diffusion can be detected with a probe head recessed from the first wall surface.

  16. Alpha particle nonionizing energy loss (NIEL) for device applications

    NASA Technical Reports Server (NTRS)

    Jun, Insoo; Xapsos, Michael A.; Messenger, Scott R.; Burke, Edward A.; Walters, Robert J.; Summers, Geoff; Jordan, Thomas

    2004-01-01

    A method developed for the proton NIEL calculation previously is extended to incident alpha particles in this study: ZBL screened potential for Coulomb interactions and MCNPX 'thin target approximation' for nuclear interactions.

  17. Alpha-particle effects on ballooning flute modes in tokamaks

    SciTech Connect

    Andrushchenko, Z.N.; Bijko, A.Y.; Cheremnykh, O.K. )

    1990-11-01

    In this paper a more accurate dispersion equation for ideal ballooning flute modes in a plasma with alpha particles is obtained. It is shown that circulating and trapped alpha particles generate the eigenbranches of the mode oscillations with frequencies {omega} {approx lt} {omega}{sub *i}, where {omega}{sub *i}, is the ion drift frequency. The relevant growth rates and frequencies are found. It is ascertained that in the frequency range {omega}{sub *i} {lt} {omega} {lt} {bar {omega}{sub Db}}, where {bar {omega}{sub Db}} is the magnetic drift frequency average over a bounce period, trapped alpha particles may generate forced oscillations that influence the ideal ballooning flute mode stability boundary. It is shown that the stability may be improved for certain plasma parameters and trapped alpha-particle pressures.

  18. Alpha particle effects on the internal kink modes

    SciTech Connect

    Wu, Yanlin; Cheng, C.Z.

    1994-08-01

    The {alpha}-particle effects on the internal kink mode stability are studied. Finite Grad-Shafranov Shift, plasma {beta}, and plasma shape can significantly enhance the trapped particle drift reversal domain in pitch angle space and reduce average magnetic drift frequency. The drift reversal effect on the ideal kink mode is small, but the {beta}{sub {alpha}} threshold for the fishbone mode can be much lower than previously predicted. In addition, the ion diamagnetic drift has a stronger destabilizing effect.

  19. Shielding of manned space vehicles against protons and alpha particles

    NASA Technical Reports Server (NTRS)

    Alsmiller, R. G., Jr.; Santoro, R. T.; Barish, J.; Claiborne, H. C.

    1972-01-01

    The available information on the shielding of manned space vehicles against protons and alpha particles is summarized. The emphasis is placed on shielding against Van Allen belt protons and against solar-flare protons and alpha particles, but information on shielding against galactic cosmic rays is also presented. The approximation methods for use by nonexperts in the space shielding field are those that are standard in the space shielding literature.

  20. TEST PROCEDURE FOR GROSS ALPHA PARTICLE ACTIVITY IN DRINKING WATER: INTERLABORATORY COLLABORATIVE STUDY

    EPA Science Inventory

    Gross alpha activity values were calculated with four different alpha emitting radionuclide standard counting efficiencies to see which standard was best for gross alpha activity determinations. Thorium-230, a pure alpha emitter, appeared to be the best standard for gross alpha c...

  1. Magnetoluminescence of light-emitting field-effect transistors based on alpha sexithiophene

    NASA Astrophysics Data System (ADS)

    Pham, Song-Toan; Tada, Hirokazu

    2014-03-01

    We demonstrated the effect of a magnetic field on the luminous intensity and electric current of light-emitting field-effect transistors (LEFETs) based on alpha sexithiophene (α-6T). Sublimate-grade α-6T was thermally deposited on an n+-Si/300 nm-SiO2 substrate with patterned asymmetric gold-aluminum electrodes to fabricate a bottom-contact LEFET. We observed an increase in luminous intensity of approximately 1.3% under a magnetic field of 100 mT. A possible explanation for this is that the magnetic field increased the probability of singlet formation at the α-6T/Al interface. While the magneto-electroluminescence (MEL) was reported to be derived from the magneto-conductance (MC) in ordinary light emitting diodes, the MEL in LEFET was independent with MC. This indicates that the luminous efficiency can be improved by optimizing the magnetic field effect.

  2. Coordination chemistry of the sup 212 Pb/ sup 212 Bi nuclear transformation: Alpha-emitting radiopharmaceuticals

    SciTech Connect

    Parks, N.J.; Harris, W.R.; Keen, C.L.; Cooper, S.R.

    1992-07-01

    Subdivisions of this project are: (a) the synthesis of prototypical thiolate and dithiocarbamate based hexacoordinate complexes, (b) radiochemical engineering for generation of no-carrier-added lead and bismuth radioelements, (c) the first isolation of bismuth-binding proteins from in vivo studies with cyclotron produced {sup 205/206}Bi tracer, and (d) initial development of transport mechanisms for the intracellular radiobiological study of alpha emitting bismuth, and (e) the initiation of chemical equilibrium studies and biochemical pathways with cyclotron-produced, no-carrier-added, {sup 203}Pb (T{sub 1/2} = 51 hr).

  3. Alpha particle backscattering measurements used for chemical analysis of surfaces

    NASA Technical Reports Server (NTRS)

    Patterson, J. H.

    1967-01-01

    Alpha particle backscattering performs a chemical analysis of surfaces. The apparatus uses a curium source and a semiconductor detector to determine the energy spectrum of the particles. This in turn determines the chemical composition of the surface after calibration to known samples.

  4. DUST EXTINCTION AND METALLICITIES OF STAR-FORMING Ly{alpha} EMITTING GALAXIES AT LOW REDSHIFT

    SciTech Connect

    Finkelstein, Steven L.; Papovich, Casey; Cohen, Seth H.; Malhotra, Sangeeta; Rhoads, James E.; Moustakas, John

    2011-06-01

    We present the results of an optical spectroscopic study of 12 GALEX-discovered star-forming Ly{alpha} emitting galaxies (LAEs) at z {approx} 0.3. We measure the emission-line fluxes from these galaxies by fitting their observed spectra to stellar population models in order to correct for underlying stellar absorption. We revisit earlier stellar population model fitting results, finding that excluding now-known active galactic nuclei lowers the typical stellar population age and stellar mass of this sample to {approx}300 Myr and {approx}4 x 10{sup 9} M{sub sun}, respectively. We calculate their dust extinction using the Balmer decrement, and find a typical visual attenuation of A{sub V} {approx} 0.3 mag, similar to that seen in some high-redshift LAEs. Comparing the ratios of Ly{alpha}/H{alpha} and the Ly{alpha} equivalent widths to the measured dust extinction, we find that the interstellar media (ISMs) in these objects appear to be neither enhancing nor seriously attenuating the Ly{alpha} equivalent widths, as would be the case in a quasi-clumpy ISM. Lastly, we perform a detailed analysis of the gas-phase metallicities of these galaxies, and we find that most galaxies in our sample have Z {approx}< 0.4 Z{sub sun}. We find that at a fixed stellar mass, these low-redshift LAE analogs are offset by {approx}0.3-0.6 dex lower metallicity from the general galaxy population at similar redshifts based on the local mass-metallicity relationship. This implies that galaxies with Ly{alpha} in emission may be systematically more metal-poor than star-forming galaxies at the same stellar mass and redshift, similar to preliminary results at z {approx} 2.

  5. A Search for z>6.5 Lyman-alpha Emitting Galaxies with WISP

    NASA Astrophysics Data System (ADS)

    Bagley, Micaela B.; Scarlata, Claudia; Dai, Yu Sophia; Rafelski, Marc; Baronchelli, Ivano; Colbert, James W.; Dominguez, Alberto; Hathi, Nimish P.; Henry, Alaina L.; Malkan, Matthew Arnold; Martin, Crystal L.; Mehta, Vihang; Pahl, Anthony; Ross, Nathaniel; Rutkowski, Michael J.; Teplitz, Harry I.; WISP Team

    2016-01-01

    The observed number density of Lyman-alpha emitting galaxies at z>6 provides an important probe of the reionization history of the universe. Because Lyman-alpha photons are very sensitive to the presence of neutral hydrogen, the evolution of the galaxy number density above redshift 6 can be used as a measurement on the progress of reionization. However, the Lyman-alpha luminosity function is currently poorly constrained at high-z. We present the results of a systematic search for Lyman-alpha emitters (LAEs) at redshifts of ~6.5 to 7.5 using the HST WFC3 Infrared Spectroscopic Parallels (WISP) survey. WISP's uncorrelated fields are well-suited to the study of bright LAEs, minimizing the effects of clustering introduced by a patchy reionization. From the 30 deepest WISP fields, we compile a sample of single-line emitters, confirm redshifts with broadband colors, and identify LAE candidates that have "dropped out" (are undetected at the 1 sigma level) of the WFC3 UVIS filters. By combining our results with other z~7 studies, we determine whether the number density of LAEs evolves past z~6.5.

  6. Analysis of radiation risk from alpha particle component of soalr particle events

    NASA Technical Reports Server (NTRS)

    Cucinotta, F. A.; Townsend, L. W.; Wilson, J. W.; Golightly, M. J.; Weyland, M.

    1994-01-01

    The Solar Particle Events (SPE) will contain a primary alpha particle component, representing a possible increase in the potential risk to astronauts during an SPE over the often studied proton component. We discuss the physical interactions of alpha particles important in describing the transport of these particles through spacecraft and body shielding. Models of light ion reactions are presented and their effects on energy and Linear Energy Transfer (LET) spectra in shielding are discussed. We present predictions of particle spectra, dose, and dose equivalent in organs of interest for SPE spectra typical of those occurring in recent solar cycles. The large events of solar cycle 19 are found to have substantial increase in biological risk from alpha particles, including a large increase in secondary neutron production from alpha particle breakup.

  7. Analysis of radiation risk from alpha particle component of solar particle events

    NASA Technical Reports Server (NTRS)

    Cucinotta, F. A.; Townsend, L. W.; Wilson, J. W.; Golightly, M. J.; Weyland, M.

    1994-01-01

    The solar particle events (SPE) will contain a primary alpha particle component, representing a possible increase in the potential risk to astronauts during an SPE over the often studied proton component. We discuss the physical interactions of alpha particles important in describing the transport of these particles through spacecraft and body shielding. Models of light ion reactions are presented and their effects on energy and linear energy transfer (LET) spectra in shielding discussed. We present predictions of particle spectra, dose, and dose equivalent in organs of interest for SPE spectra typical of those occurring in recent solar cycles. The large events of solar cycle 19 are found to have substantial increase in biological risk from alpha particles, including a large increase in secondary neutron production from alpha particle breakup.

  8. Utility of extracting {alpha}-particle energy by waves

    SciTech Connect

    Fisch, N.J.; Herrmann, M.C.

    1994-05-01

    The utility of extracting {alpha}-particle power, and then diverting this power to fast fuel ions, is investigated. As power is diverted to fast ions and then to ions, a number of effects come into play, as the relative amounts of pressure taken up by electrons, fuel ions, and fast {alpha}-particles shift. In addition, if the {alpha}-particle power is diverted to fast fuel ions, there is an enhanced fusion reactivity because of the nonthermal component of the ion distribution. Some useful expressions for describing these effects are derived, and it is shown that fusion reactors with power density about twice what otherwise might be obtained can be contemplated, so long as a substantial amount of the {alpha}-particle power can be diverted. Interestingly, in this mode of operation, once the electron heat is sufficiently confined, further improvement in confinement is actually not desirable. A similar improvement in fusion power density can be obtained for advanced fuel mixtures such as D-He{sup 3}, where the power of both the energetic {alpha}-particles and the energetic protons might be diverted advantageously.

  9. Targeted alpha-particle radiotherapy with 211At-labeled monoclonal antibodies.

    PubMed

    Zalutsky, Michael R; Reardon, David A; Pozzi, Oscar R; Vaidyanathan, Ganesan; Bigner, Darell D

    2007-10-01

    An attractive feature of targeted radionuclide therapy is the ability to select radionuclides and targeting vehicles with characteristics that are best suited for a particular clinical application. One combination that has been receiving increasing attention is the use of monoclonal antibodies (mAbs) specifically reactive to receptors and antigens that are expressed in tumor cells to selectively deliver the alpha-particle-emitting radiohalogen astatine-211 (211At) to malignant cell populations. Promising results have been obtained in preclinical models with multiple 211At-labeled mAbs; however, translation of the concept to the clinic has been slow. Impediments to this process include limited radionuclide availability, the need for suitable radiochemistry methods operant at high activity levels and lack of data concerning the toxicity of alpha-particle emitters in humans. Nonetheless, two clinical trials have been initiated to date with 211At-labeled mAbs, and others are planned for the near future. PMID:17921029

  10. Targeted alpha-particle immunotherapy for acute myeloid leukemia.

    PubMed

    Jurcic, Joseph G; Rosenblat, Todd L

    2014-01-01

    Because alpha-particles have a shorter range and a higher linear energy transfer (LET) compared with beta-particles, targeted alpha-particle immunotherapy offers the potential for more efficient tumor cell killing while sparing surrounding normal cells. To date, clinical studies of alpha-particle immunotherapy for acute myeloid leukemia (AML) have focused on the myeloid cell surface antigen CD33 as a target using the humanized monoclonal antibody lintuzumab. An initial phase I study demonstrated the safety, feasibility, and antileukemic effects of bismuth-213 ((213)Bi)-labeled lintuzumab. In a subsequent study, (213)Bi-lintuzumab produced remissions in some patients with AML after partial cytoreduction with cytarabine, suggesting the utility of targeted alpha-particle therapy for small-volume disease. The widespread use of (213)Bi, however, is limited by its short half-life. Therefore, a second-generation construct containing actinium-225 ((225)Ac), a radiometal that generates four alpha-particle emissions, was developed. A phase I trial demonstrated that (225)Ac-lintuzumab is safe at doses of 3 μCi/kg or less and has antileukemic activity across all dose levels studied. Fractionated-dose (225)Ac-lintuzumab in combination with low-dose cytarabine (LDAC) is now under investigation for the management of older patients with untreated AML in a multicenter trial. Preclinical studies using (213)Bi- and astatine-211 ((211)At)-labeled anti-CD45 antibodies have shown that alpha-particle immunotherapy may be useful as part conditioning before hematopoietic cell transplantation. The use of novel pretargeting strategies may further improve target-to-normal organ dose ratios. PMID:24857092

  11. The development of alpha-emitting radionuclide lead 212 for the potential treatment of ovarian carcinoma.

    PubMed

    Rotmensch, J; Atcher, R W; Hines, J; Grdina, D; Schwartz, J S; Toohill, M; Herbst, A L

    1989-04-01

    alpha-Emitting radionuclides may be an effective alternative treatment against ovarian carcinoma because they have short half-lives and are densely ionizing, with high linear energy transfer to a depth of several cell diameters without requiring cellular oxygenation. One radionuclide that has been generated and tested in our laboratory in vitro and in vivo is lead 212 (212Pb). Intraperitoneal instillation of 212Pb prolonged survival and totally eradicated tumor in 24% of mice inoculated with the extremely virulent Ehrlich ascites-producing tumor. In vitro 212Pb was two to four times more effective in killing human ovarian cancer cells than x-rays. Irradiation with 212Pb increased the radiosensitivity and chromosomal aberrations of cells. In dogs, intraperitoneal instillation of 2.6 mCi of ferrous hydroxide tagged with 212Pb caused no significant toxicity. It appears that alpha-emitting radionucides such as 212Pb have the potential to be a new and potent treatment of ovarian carcinoma and could be effective in cases that are resistant to conventional chemotherapy or x-ray therapy. PMID:2712112

  12. Selective flow path alpha particle detector and method of use

    DOEpatents

    Orr, Christopher Henry; Luff, Craig Janson; Dockray, Thomas; Macarthur, Duncan Whittemore

    2002-01-01

    A method and apparatus for monitoring alpha contamination are provided in which ions generated in the air surrounding the item, by the passage of alpha particles, are moved to a distant detector location. The parts of the item from which ions are withdrawn can be controlled by restricting the air flow over different portions of the apparatus. In this way, detection of internal and external surfaces separately, for instance, can be provided. The apparatus and method are particularly suited for use in undertaking alpha contamination measurements during the commissioning operations.

  13. Quantum dot solar cell tolerance to alpha-particle irradiation

    SciTech Connect

    Cress, Cory D.; Hubbard, Seth M.; Landi, Brian J.; Raffaelle, Ryne P.; Wilt, David M.

    2007-10-29

    The effects of alpha-particle irradiation on an InAs quantum dot (QD) array and GaAs-based InAs QD solar cells were investigated. Using photoluminescence (PL) mapping, the PL intensity at 872 and 1120 nm, corresponding to bulk GaAs and InAs QD emissions, respectively, were measured for a five-layer InAs QD array which had a spatially varying total alpha-particle dose. The spectral response and normalized current-voltage parameters of the solar cells, measured as a function of alpha-particle fluence, were used to investigate the change in device performance between GaAs solar cells with and without InAs QDs.

  14. Solar wind alpha particle capture at Mars and Venus

    NASA Astrophysics Data System (ADS)

    Stenberg, Gabriella; Barabash, Stas; Nilsson, Hans; Fedorov, Andrei; Brain, Dave

    2010-05-01

    Helium is detected in the atmospheres of both Mars and Venus. It is believed that radioactive decay of uranium and thorium in the interior of the planets' is not sufficient to account for the abundance of helium observed. Alpha particles in the solar wind are suggested to be an additional source of helium, especially at Mars. Recent hybrid simulations show that as much as 30% of the alpha particles can be lost from the solar wind due to charge-exchange processes associated with the Mars/solar wind interaction. We use ion data from the ASPERA-3 and ASPERA-4 instruments on Mars and Venus Express to estimate how efficient solar wind alpha particles are captured in the atmospheres of the two planets.

  15. Performance comparison of scintillators for alpha particle detectors

    NASA Astrophysics Data System (ADS)

    Morishita, Yuki; Yamamoto, Seiichi; Izaki, Kenji; Kaneko, Junichi H.; Toui, Kohei; Tsubota, Youichi; Higuchi, Mikio

    2014-11-01

    Scintillation detectors for alpha particles are often used in nuclear fuel facilities. Alpha particle detectors have also become important in the research field of radionuclide therapy using alpha emitters. ZnS(Ag) is the most often used scintillator for alpha particle detectors because its light output is high. However, the energy resolution of ZnS(Ag)-based scintillation detectors is poor because they are not transparent. A new ceramic sample, namely the cerium doped Gd2Si2O7 (GPS) scintillator, has been tested as alpha particle detector and its performances have been compared to that one of three different scintillating materials: ZnS(Ag), GAGG and a standard plastic scintillator. The different scintillating materials have been coupled to two different photodetectors, namely a photomultiplier tube (PMT) and a Silicon Photo-multiplier (Si-PM): the performances of each detection system have been compared. Promising results as far as the energy resolution performances (10% with PMT and 14% with Si-PM) have been obtained in the case of GPS and GAGG samples. Considering the quantum efficiencies of the photodetectors under test and their relation to the emission wavelength of the different scintillators, the best results were achieved coupling the GPS with the PMT and the GAGG with the Si-PM

  16. Solar wind alpha particle capture at Mars and Venus

    NASA Astrophysics Data System (ADS)

    Stenberg, Gabriella; Barabash, Stas; Nilsson, Hans; Fedorov, A.; Brain, David; André, Mats

    Helium is detected in the atmospheres of both Mars and Venus. It is believed that radioactive decay of uranium and thorium in the interior of the planets' is not sufficient to account for the abundance of helium observed. Alpha particles in the solar wind are suggested to be an additional source of helium, especially at Mars. Recent hybrid simulations show that as much as 30We use ion data from the ASPERA-3 and ASPERA-4 instruments on Mars and Venus Express to estimate how efficient solar wind alpha particles are captured in the atmospheres of the two planets.

  17. The effect of alpha particles on bacteriophage T4Br+.

    PubMed

    Leont'eva, G A; Akoev, I G; Grigor'ev, A E

    1983-01-01

    It is generally accepted that heavy charged particles play an important part in generating the secondary flux of nuclear particles formed by the interaction of space hadrons with nuclei. It is assumed that these particles are responsible for the high biological efficiency of space hadrons in causing cellular damage by their strong interactions. To examine this assumption we investigated the effects of 5.3 MeV alpha particles on bacteriophage T4. This energy provides a LET value of 88.6 KeV/micrometer lying in the range of the highest biological efficiency. PMID:11542756

  18. Photoluminescence detection of alpha particle using DAM-ADC nuclear detector

    NASA Astrophysics Data System (ADS)

    Abdalla, Ayman M.; Harraz, Farid A.; Ali, Atif M.; Al-Sayari, S. A.; Al-Hajry, A.

    2016-09-01

    The photoluminescence (PL) and UV-vis spectral analysis of DAM-ADC (diallyl maleate: DAM, polyallyl diglycol carbonate: ADC) nuclear detector are demonstrated for the first time. The DAM-ADC surfaces were exposed to thin 241Am disk source that emits alpha particles with activity 333 kBq. It is found that the track density of the irradiated samples remarkably influences the PL characteristics of the DAM-ADC detector. The spectral peak heights and the integrated intensities under the peaks exhibit linear correlations with correlation coefficient R2=0.9636 and 0.9806, respectively for different alpha particle fluences ranging from 8.16-40.82×107 particles/cm2. Additionally, a correlation coefficient R2=0.9734 was achieved for the UV-vis spectral analysis. The linear fitting functions, along with the corresponding fitting parameters were evaluated in each case. Both the PL and the UV-vis data of the irradiated DAM-ADC samples showed considerable spectral differences, and hence they would be used to offer sensitive approaches for alpha particle detection.

  19. HETDEX: Developing the HET's Second Generation Low Resolution Spectrograph for Probing Lyman-alpha Emitting Galaxies

    NASA Astrophysics Data System (ADS)

    Chonis, Taylor S.; Hill, G. J.; Lee, H.; Tuttle, S. E.; Vattiat, B. L.; Gebhardt, K.; Finkelstein, S. L.; Adams, J. J.; HETDEX Collaboration

    2012-01-01

    HETDEX will map the power spectrum of 0.8 million blindly discovered Lyman-alpha Emitting Galaxies (LAE) using a revolutionary new array of massively replicated fiber-fed spectrographs dubbed the Visible Integral-Field Replicable Unit Spectrograph (VIRUS). In the era of the Hobby-Eberly Telescope wide-field upgrade and VIRUS, the current Low Resolution Spectrograph (LRS) must be replaced with a fiber instrument. We discuss the development of the second generation LRS (LRS2), which is a multi-channel instrument based on the VIRUS design. In its current design phase, it is fed by a 287 fiber microlens coupled integral field unit that covers 7” x 12” with 0.62” resolution. The instrument covers 3720 Å to 4700 Å at R ≈ 1900 and 4600 Å to 7000 Å at R ≈1200. With the purpose of making the instrument ideal for follow-up observations of LAE in the HETDEX survey, we discuss the science drivers for selecting the instrument's spectral resolution. We test the utility of the instrument and pilot a future study with LRS2 by presenting R ≈ 2000 spectra taken with the VIRUS prototype spectrograph (VIRUS-P) in a high-resolution mode at the McDonald Observatory Harlan J. Smith 2.7 m telescope. These LAE were originally discovered in the HETDEX Pilot Survey and their Lyman-alpha line profiles are constrained by near-infrared observations of rest-frame optical emission lines that set the systemic redshift of the galaxies. We discuss the velocity offsets of the Lyman-alpha line from the systemic line center and compare the line profiles to theoretical predictions and to similar observations for Lyman-break galaxies. Our observations provide an example of how LRS2 can be used to probe Lyman-alpha emission in 2 < z < 3 star forming galaxies.

  20. TF ripple loss of alpha particles in TFTR DT experiments

    SciTech Connect

    Redi, M.H.; Budny, R.V.; Darrow, D.S.

    1995-08-01

    Quantitative evaluation of TF ripple loss of DT alpha particles is a central issue for reactor design because of potentially severe first wall heat load problems. DT experiments on TFTR allow experimental measurements to be compared to modeling of the underlying alpha physics, with code validation an important goal. Modeling of TF ripple loss of alphas in TFTR now includes neoclassical calculations of alpha losses arising from first orbit loss, stochastic ripple diffusion, ripple trapping and collisional effects. Recent Hamiltonian coordinate guiding center code (ORBIT) simulations for TFTR have shown that collisions enhance the stochastic TF ripple losses at TFTR. A faster way to simulate experiment has been developed and is discussed here which uses a simple stochastic domain model for TF ripple loss within the TRANSP analysis code.

  1. Transport of Fusion Alpha Particles in ITER Scenarios

    NASA Astrophysics Data System (ADS)

    Bass, E. M.; Waltz, R. E.

    2014-10-01

    We predict the fusion-born alpha particle density in steady-state and hybrid (reverse shear) ITER scenarios with an integrated 1D transport model. The model combines ``stiff'' critical gradient alpha-driven Alfvén eigenmode (AE) transport with a quasilinear approximation of microturbulent transport. In an ITER baseline case, AE transport is found to redistribute alphas within the core but not propagate to the loss boundary. The remaining microturbulence at the edge causes negligible alpha-channel energy flux there (neglecting ripple loss). We set the AE stiff transport critical gradient threshold at gAE =gITG , below which microturbulence can nonlinearly suppress AE transport, and the more stringent condition gAE = 0 . Work supported in part by the US DOE under GA-Grant No. DE-FG02-95ER54309 and SciDAC-GSEP Grant No DE-FC02-08ER54977.

  2. MHD-Induced Alpha Particle Loss in TFTR

    SciTech Connect

    Darrow, D.S.; Fredrickson, E.D.; Taylor, G.; White, R.B.; Zweben, S.J.; von Goeler, S.

    1999-03-01

    MHD-induced increases in alpha particle loss to the wall were observed for both coherent modes and transient reconnection events using an array of scintillator detectors near the wall of Tokamak Fusion Test Reactor (TFTR). The magnitude of the coherent MHD-induced alpha loss as seen by these detectors was normally comparable to the MHD-quiescent first-orbit or toroidal-field ripple loss, but the magnitude of the alpha loss during reconnection events was up to 1000 times higher than this for a short time. Modeling suggest that the coherent MHD loss mechanism will be even less significant for future reactor-scale deuterium-tritium tokamaks due to the smaller ratio of the alpha gyroradius to minor radius.

  3. Alpha particle heating at comet-solar wind interaction regions

    NASA Technical Reports Server (NTRS)

    Sharma, A. S.; Papadopoulos, K.

    1995-01-01

    The satellite observations at comet Halley have shown strong heating of solar wind alpha particles over an extended region dominated by high-intensity, low-frequency turbulence. These waves are excited by the water group pickup ions and can energize the solar wind plasma by different heating processes. The alpha particle heating by the Landau damping of kinetic Alfven waves and the transit time damping of low-frequency hydromagnetic waves in this region of high plasma beta are studied in this paper. The Alfven wave heating was shown to be the dominant mechanism for the observed proton heating, but it is found to be insufficient to account for the observed alpha particle heating. The transit time damping due to the interaction of the ions with the electric fields associated with the magnetic field compressions of magnetohydrodynamic waves is found to heat the alpha particles preferentially over the protons. Comparison of the calculated heating times for the transit time damping with the observations from comet Halley shows good agreement. These processes contribute to the thermalization of the solar wind by the conversion of its directed energy into the thermal energy in the transition region at comet-solar wind interaction.

  4. Alpha-particle losses in compact torsatron reactors

    SciTech Connect

    Painter, S.L.; Lyon, J.F.

    1989-01-01

    Loss of alpha particles in compact torsatron reactors is studied. For 6, 9, and 12 field period reactors, the direct loss is a relatively weak function of radius and energy and varies from approx. =33% for M = 6 to approx. =18% for M = 12. Loss of alpha particles through scattering into the loss region is calculated using the Fokker-Plank equation for fast ions and found to contribute an additional alpha-particle energy loss of approx. =15%. The consequences of these relatively large losses for torsatron reactor design are discussed. The relationship between the direct particle losses and the magnetic field structure is also studied. Orbit losses from a variety of stellarator configurations are calculated and a figure-of-merit that characterizes the orbit confinement of a magnetic configuration is deduced from these calculations. This figure-of-merit is used to show how the direct losses might be reduced at low aspect-ratio. Effects of finite beta on the direct particle losses are also addressed, and are shown to significantly increase the direct losses in some configurations. 15 refs., 8 figs.

  5. Michrochannel plate for position sensitive alpha particle detection

    SciTech Connect

    Paul Hurley and James Tinsley

    2007-08-31

    This paper will describe the use of a microchannel plate (MCP) as the associated particle detector on a sealed tube neutron generator. The generator produces neutrons and associated alpha particles for use as a probe to locate and identify hidden explosives in associated particle imaging (API). The MCP measures the position in two dimensions and precise timing of the incident alpha particle, information which is then used to calculate the emission time and direction of the corresponding neutron. The MCP replaces the position-sensitive photomultipler tube (PSPMT) which, until recently, had been the only detector available for measuring position and timing for alpha particles in neutron generator applications. Where the PSPMT uses charge division for generating position information, a process that requires a first order correction to each pulse, the MCP uses delay-line timing, which requires no correction. The result is a device with an order of magnitude improvement in both position resolution and timing compared to the PSPMT. Hardware and software development and the measurements made to characterize the MCP for API applications are described.

  6. Lyman Alpha Emitting Galaxies at 2 < z < 3: Towards a Calibrated Probe of Dark Energy

    SciTech Connect

    Caryl Gronwall

    2012-12-03

    The goal of this project was to establish the physical properties of Ly{alpha} emitting galaxies from redshifts of 2 to 3 in order to better calibrate the use of LAEs as probes of the large scale structure of the universe for upcoming dark energy experiments, such as the Hobby Eberly Telescope Dark Energy Experiment (HETDEX). We have obtained narrow-band imaging of the Extended Chandra Deep Field South (ECDF-S) in two different narrow-band filters centered at Ly{alpha} at z=2.1 and 3.1. The resulting of samples of LAEs were used to determine the LAE luminosity function, equivalent width distribution and clustering properties (bias) of LAEs at these redshifts. While the results from the ECDF-S appear robust, they are based on a single field. To explore the effects of cosmic variance and galaxy environment on the physical properties of LAEs, we have also obtained narrow-band data at both redshifts (z = 2:1 and 3:1) in three additional fields (SDSS 1030+-05, the Extended Hubble Deep Field South, and CW 1255+01). The narrow-band imaging data has been reduced and LAE catalogs are being generated. We have calculated preliminary luminosity functions, equivalent width distributions, and clustering properties. We have also obtained follow-up spectroscopy in the optical (using VLT/FORS) and in the near-infrared (using Magellan/MMIRS). Since individual LAEs have too little S/N to enable meaningful fits for stellar population parameters, our previous work has analyzed stacked Spectral Energy Distributions (SEDs). SED fitting was performed on several subsets of LAEs selected by their rest-UV luminosity, UV spectral slope, Ly alpha luminosity, Equivalent Width, or rest-optical (IRAC) luminosity.

  7. Skeletal dosimetry models for alpha-particles for use in molecular radiotherapy

    NASA Astrophysics Data System (ADS)

    Watchman, Christopher J.

    Molecular radiotherapy is a cancer treatment methodology whereby a radionuclide is combined with a biologically active molecule to preferentially target cancer cells. Alpha-particle emitting radionuclides show significant potential for use in molecular radiotherapy due to the short range of the alpha-particles in tissue and their high rates of energy deposition. Current radiation dosimetry models used to assess alpha emitter dose in the skeleton were developed originally for occupational applications. In medical dosimetry, individual variability in uptake, translocation and other biological factors can result in poor correlation of clinical outcome with marrow dose estimates determined using existing skeletal models. Methods presented in this work were developed in response to the need for dosimetry models which account for these biological and patient-specific factors. Dosimetry models are presented for trabecular bone alpha particle dosimetry as well as a model for cortical bone dosimetry. These radiation transport models are the 3D chord-based infinite spongiosa transport model (3D-CBIST) and the chord-based infinite cortical transport model (CBICT), respectively. Absorbed fraction data for several skeletal tissues for several subjects are presented. Each modeling strategy accounts for biological parameters, such as bone marrow cellularity, not previously incorporated into alpha-particle skeletal dosimetry models used in radiation protection. Using these data a study investigating the variability in alpha-particle absorbed fractions in the human skeleton is also presented. Data is also offered relating skeletal tissue masses in individual bone sites for a range of ages. These data are necessary for dose calculations and have previously only been available as whole body tissue masses. A revised 3D-CBIST model is also presented which allows for changes in endosteum thickness to account for revised target cell location of tissues involved in the radiological

  8. In situ production of alpha particles and alpha recoil particles in quartz applied to ESR studies of oxygen vacancies

    NASA Astrophysics Data System (ADS)

    Toyoda, S.; Rink, W. J.; Yonezawa, C.; Matsue, H.; Kagami, T.

    2001-12-01

    The intensity of an ESR signal associated with oxygen vacancies in quartz (E 1' center and heat-treated E 1' center) are correlated with the radiometric age of their host rocks. Two natural processes are responsible for the production of oxygen vacancies (1) lattice damage along alpha recoil and alpha particle tracks and (2) randomly distributed ionization damage from energetic electrons (beta particles) and gamma photons. The aim of this paper was to determine whether the track damage process is dominant relative to the ionization processes. Heat-treated E 1' centers are considered a proxy measure of the oxygen vacancy concentration. In situ alpha irradiation of quartz was accomplished by neutron irradiation of lithium and boron-bearing quartz. We found that the oxygen vacancy population measured by ESR was a factor of 2 higher than estimated from calculations of the damage using Ziegler's TRIM software. Considering the uncertainties in absolute determinations of spin concentration from ESR signals, the agreement is very good and supports the theory that alpha particle damage is largely responsible for oxygen vacancy production during natural irradiation of quartz over intervals of hundreds of millions of years.

  9. Alpha particle spectra in coincidence with normal and superdeformed states in {sup 150}Tb

    SciTech Connect

    Viesti, G.; Lunardon, M.; Bazzacco, D. |

    1996-12-31

    The study of correlations between particle evaporation from highly excited compound nuclei at large angular momenta and the states in the final evaporation residues (ER) is a field of investigation which has been opened, in the last years, with the advent of the new large {gamma}-ray arrays. It is now possible to correlate the evaporation spectra to various bands with shapes ranging from spherical to superdeformed (SD) in the same final nucleus. It is generally accepted that the particle evaporation from the compound nucleus is chaotic and that only in the near-yrast {gamma} cascade, where the feeding of different classes of states takes place, the ordered motion is restored. The sensitivity of the particle spectra on the feeding of specific states in the residual nuclei can be taken as an indication that additional degrees of freedom might be important in the evaporation process or that particular regions of the phase space open to the decay populate preferentially some selected structures in the final cold nucleus. This latter point is important for the understanding of the feeding mechanism of SD states. Several experiments performed so far did not find a clear dependence of the shapes of the particle spectra on the excited states having different deformations in the ER. For example, the proton spectra in coincidence with transitions in the SD bands of {sup 133}Nd and {sup 152}Dy nuclei were found to be similar to those in coincidence with transitions in the normal deformed (ND) bands. Alpha particles have been proposed since long as a sensitive probe of the deformation of the emitting nucleus. Results are presented here of an experiment in which the authors have measured the energy spectra of alpha particles associated with different classes of states (ND and SD) in the {sup 150}Tb nucleus populated in the reaction {sup 37}Cl({sup 120}Sn, {alpha}3n{gamma}){sup 150}Tb.

  10. An atlas of H-alpha-emitting regions in M33: A systematic search for SS433 star candidates

    NASA Technical Reports Server (NTRS)

    Calzetti, Daniela; Kinney, Anne L.; Ford, Holland; Doggett, Jesse; Long, Knox S.

    1995-01-01

    We report finding charts and accurate positions for 432 compact H-alpha emitting regions in the Local Group galaxy M 33 (NGC 598), in an effort to isolate candidates for an SS433-like stellar system. The objects were extracted from narrow band images, centered in the rest-frame H-alpha (lambda 6563 A) and in the red continuum at 6100 A. The atlas is complete down to V approximately equal to 20 and includes 279 compact HII regions and 153 line emitting point-like sources. The point-like sources undoubtedly include a variety of objects: very small HII regions, early type stars with intense stellar winds, and Wolf-Rayet stars, but should also contain objects with the characteristics of SS433. This extensive survey of compact H-alpha regions in M 33 is a first step towards the identification of peculiar stellar systems like SS433 in external galaxies.

  11. CHARGE-EXCHANGE LIMITS ON LOW-ENERGY {alpha}-PARTICLE FLUXES IN SOLAR FLARES

    SciTech Connect

    Hudson, H. S.; Fletcher, L.; MacKinnon, A. L.; Woods, T. N.

    2012-06-20

    This paper reports on a search for flare emission via charge-exchange radiation in the wings of the Ly{alpha} line of He II at 304 A, as originally suggested for hydrogen by Orrall and Zirker. Via this mechanism a primary {alpha} particle that penetrates into the neutral chromosphere can pick up an atomic electron and emit in the He II bound-bound spectrum before it stops. The Extreme-ultraviolet Variability Experiment on board the Solar Dynamics Observatory gives us our first chance to search for this effect systematically. The Orrall-Zirker mechanism has great importance for flare physics because of the essential roles that particle acceleration plays; this mechanism is one of the few proposed that would allow remote sensing of primary accelerated particles below a few MeV nucleon{sup -1}. We study 10 events in total, including the {gamma}-ray events SOL2010-06-12 (M2.0) and SOL2011-02-24 (M3.5) (the latter a limb flare), seven X-class flares, and one prominent M-class event that produced solar energetic particles. The absence of charge-exchange line wings may point to a need for more complete theoretical work. Some of the events do have broadband signatures, which could correspond to continua from other origins, but these do not have the spectral signatures expected from the Orrall-Zirker mechanism.

  12. Identification of gene-based responses in human blood cells exposed to alpha particle radiation

    PubMed Central

    2014-01-01

    Background The threat of a terrorist-precipitated nuclear event places humans at danger for radiological exposures. Isotopes which emit alpha (α)-particle radiation pose the highest risk. Currently, gene expression signatures are being developed for radiation biodosimetry and triage with respect to ionizing photon radiation. This study was designed to determine if similar gene expression profiles are obtained after exposures involving α-particles. Methods Peripheral blood mononuclear cells (PBMCs) were used to identify sensitive and robust gene-based biomarkers of α-particle radiation exposure. Cells were isolated from healthy individuals and were irradiated at doses ranging from 0-1.5 Gy. Microarray technology was employed to identify transcripts that were differentially expressed relative to unirradiated cells 24 hours post-exposure. Statistical analysis identified modulated genes at each of the individual doses. Results Twenty-nine genes were common to all doses with expression levels ranging from 2-10 fold relative to control treatment group. This subset of genes was further assessed in independent complete white blood cell (WBC) populations exposed to either α-particles or X-rays using quantitative real-time PCR. This 29 gene panel was responsive in the α-particle exposed WBCs and was shown to exhibit differential fold-changes compared to X-irradiated cells, though no α-particle specific transcripts were identified. Conclusion Current gene panels for photon radiation may also be applicable for use in α-particle radiation biodosimetry. PMID:25017500

  13. A Novel Experiment to Investigate the Attenuation of Alpha Particles in Air

    ERIC Educational Resources Information Center

    Andrews, D. G. H.

    2008-01-01

    A simple student experiment investigating dependence on air pressure of the attenuation of alpha particles in air is described. An equation giving the pressure needed to absorb all alpha particles of a given energy is derived from the Bethe-Bloch formula. Results are presented for the attenuation of alpha particles from americium 241 and radium…

  14. Diffusion studies of Ra and Pb in GaAs by the alpha-particle energy loss method

    NASA Astrophysics Data System (ADS)

    Adamcyk, M.; Beaudoin, M.; Kelson, I.; Levy, Y.; Tiedje, T.

    1998-12-01

    The temperature dependence of the diffusion of lead in GaAs is determined by measuring the modification to the energy spectrum of emitted alpha particles from the decay chain of implanted 212Pb atoms. Diffusion rates are measured for temperatures up to 900 °C. Higher rates are observed for the diffusion in silicon-doped GaAs than in semi-insulating GaAs. An upper limit for the diffusion of radium in GaAs is similarly obtained from the decay of the 224Ra isotope. Implications for the use of implanted alpha sources for thickness monitoring during epitaxial film growth by the alpha-particle energy loss method are discussed.

  15. An alpha particle instrument with alpha, proton, and X-ray modes for planetary chemical analyses

    NASA Technical Reports Server (NTRS)

    Economou, T. E.; Turkevich, A. L.

    1976-01-01

    The interaction of alpha particles with matter is employed in a compact instrument that could provide rather complete in-situ chemical analyses of surfaces and thin atmospheres of extraterrestrial bodies. The instrument is a miniaturized and improved version of the Surveyor lunar instrument. The backscattering of alpha particles and (alpha, p) reactions provide analytical data on the light elements (carbon-iron). An X-ray mode that detects the photons produced by the alpha sources provides sensitivity and resolution for the chemical elements heavier than about silicon. The X-rays are detected by semiconductor detectors having a resolution between 150 and 250 eV at 5.9 keV. Such an instrument can identify and determine with good accuracy 99 percent of the atoms (except hydrogen) in rocks. For many trace elements, the detecting sensitivity is a few ppm. Auxiliary sources could be used to enhance the sensitivities for elements of special interest. The instrument could probably withstand the acceleration involved in semi-hard landings.

  16. Effective density and morphology of particles emitted from small-scale combustion of various wood fuels.

    PubMed

    Leskinen, Jani; Ihalainen, Mika; Torvela, Tiina; Kortelainen, Miika; Lamberg, Heikki; Tiitta, Petri; Jakobi, Gert; Grigonyte, Julija; Joutsensaari, Jorma; Sippula, Olli; Tissari, Jarkko; Virtanen, Annele; Zimmermann, Ralf; Jokiniemi, Jorma

    2014-11-18

    The effective density of fine particles emitted from small-scale wood combustion of various fuels were determined with a system consisting of an aerosol particle mass analyzer and a scanning mobility particle sizer (APM-SMPS). A novel sampling chamber was combined to the system to enable measurements of highly fluctuating combustion processes. In addition, mass-mobility exponents (relates mass and mobility size) were determined from the density data to describe the shape of the particles. Particle size, type of fuel, combustion phase, and combustion conditions were found to have an effect on the effective density and the particle shape. For example, steady combustion phase produced agglomerates with effective density of roughly 1 g cm(-3) for small particles, decreasing to 0.25 g cm(-3) for 400 nm particles. The effective density was higher for particles emitted from glowing embers phase (ca. 1-2 g cm(-3)), and a clear size dependency was not observed as the particles were nearly spherical in shape. This study shows that a single value cannot be used for the effective density of particles emitted from wood combustion. PMID:25365741

  17. Quality assurance of alpha-particle dosimetry using peeled-off Gafchromic EBT3® film

    NASA Astrophysics Data System (ADS)

    Ng, C. Y. P.; Chun, S. L.; Yu, K. N.

    2016-08-01

    A novel alpha-particle dosimetry technique using Gafchromic EBT3 film has recently been proposed for calibrating the activity of alpha-emitting radiopharmaceuticals. In the present paper, we outlined four measures which could further help assure the quality of the method. First, we suggested an alternative method in fabricating the peeled-off EBT3 film. Films with a chosen size were cut from the original films and all the edges were sealed with silicone. These were immersed into deionized water for 19 d and the polyester covers of the EBT3 films could then be easily peeled off. The active layers in these peeled-off EBT3 films remained intact, and these films could be prepared reproducibly with ease. Second, we proposed a check on the integrity of the peeled-off film by comparing the responses of the pristine and peeled-off EBT3 films to the same X-ray irradiation. Third, we highlighted the importance of scanning directions of the films. The "landscape" and "portrait" scanning directions were defined as the scanning directions perpendicular and parallel to the long edge of the original EBT3 films, respectively. Our results showed that the responses were different for different scanning directions. As such, the same scanning direction should be used every time. Finally, we cautioned the need to confirm the uniformity of the alpha-particle source used for calibration. Radiochromic films are well known for their capability of providing two-dimensional dosimetric information. As such, EBT3 films could also be conveniently used to check the uniformity of the alpha-particle source.

  18. Targeted alpha therapy using short-lived alpha-particles and the promise of nanobodies as targeting vehicle

    PubMed Central

    Dekempeneer, Yana; Keyaerts, Marleen; Krasniqi, Ahmet; Puttemans, Janik; Muyldermans, Serge; Lahoutte, Tony; D’huyvetter, Matthias; Devoogdt, Nick

    2016-01-01

    ABSTRACT Introduction: The combination of a targeted biomolecule that specifically defines the target and a radionuclide that delivers a cytotoxic payload offers a specific way to destroy cancer cells. Targeted radionuclide therapy (TRNT) aims to deliver cytotoxic radiation to cancer cells and causes minimal toxicity to surrounding healthy tissues. Recent advances using α-particle radiation emphasizes their potential to generate radiation in a highly localized and toxic manner because of their high level of ionization and short range in tissue. Areas covered: We review the importance of targeted alpha therapy (TAT) and focus on nanobodies as potential beneficial vehicles. In recent years, nanobodies have been evaluated intensively as unique antigen-specific vehicles for molecular imaging and TRNT. Expert opinion: We expect that the efficient targeting capacity and fast clearance of nanobodies offer a high potential for TAT. More particularly, we argue that the nanobodies’ pharmacokinetic properties match perfectly with the interesting decay properties of the short-lived α-particle emitting radionuclides Astatine-211 and Bismuth-213 and offer an interesting treatment option particularly for micrometastatic cancer and residual disease. PMID:27145158

  19. Alpha-particle Measurements Needed for Burning Plasma Experiments

    SciTech Connect

    Kenneth M. Young

    2001-09-26

    The next major step in magnetic fusion studies will be the construction of a burning plasma (BP) experiment where the goals will be to achieve and understand the plasma behavior with the internal heating provided by fusion-generated alpha particles. Two devices with these physics goals have been proposed: the International Thermonuclear Experimental Reactor (ITER) and the Fusion Ignition Research Experiment (FIRE). Extensive conceptual design work for the instrumentation to try to meet the physics demands has been done for these devices, especially ITER. This article provides a new look at the measurements specifically important for understanding the physics aspects of the alpha particles taking into account two significant events. The first is the completion of physics experiments on the Joint European Torus (JET) and the Tokamak Fusion Test Reactor (TFTR) with deuterium-tritium fueling with the first chances to study alpha physics and the second is the realization that relatively compact plasmas, making use of advanced tokamak plasma concepts, are the most probable route to burning plasmas and ultimately a fusion reactor.

  20. ELEMENTAL COMPOSITION OF SIZED PARTICLES EMITTED FROM STATIONARY SOURCES

    EPA Science Inventory

    This paper discusses several approaches for obtaining the elemental and, in a few cases, inorganic compound identification in sized particles. The elemental analyses are done by wavelength dispersion x-ray fluorescence (WXRF). Fourier Transform infrared is being used for inorgani...

  1. In Vitro Cytotoxicity of Low-Dose-Rate Radioimmunotherapy by the Alpha-Emitting Radioimmunoconjugate Thorium-227-DOTA-Rituximab

    SciTech Connect

    Dahle, Jostein; Krogh, Cecilie; Melhus, Katrine B.; Borrebaek, Jorgen; Larsen, Roy H.; Kvinnsland, Yngve

    2009-11-01

    Purpose: To determine whether the low-dose-rate alpha-particle-emitting radioimmunoconjugate {sup 227}Th-1,4,7,10-p-isothiocyanato-benzyl-tetraazacyclododecane-1,4,7, 10-tetraacetic acid (DOTA)-rituximab can be used to inactivate lymphoma cells growing as single cells and small colonies. Methods and Materials: CD20-positive lymphoma cell lines were treated with {sup 227}Th-DOTA-rituximab for 1-5 weeks. To simulate the in vivo situation with continuous but decreasing supply of radioimmunoconjugates from the blood pool, the cells were not washed after incubation with {sup 227}Th-DOTA-rituximab, but half of the medium was replaced with fresh medium, and cell concentration and cell-bound activity were determined every other day after start of incubation. A microdosimetric model was established to estimate the average number of hits in the nucleus for different localizations of activity. Results: There was a specific targeted effect on cell growth of the {sup 227}Th-DOTA-rituximab treatment. Although the cells were not washed after incubation with {sup 227}Th-DOTA-rituximab, the average contribution of activity in the medium to the mean dose was only 6%, whereas the average contribution from activity on the cells' own surface was 78%. The mean dose rates after incubation with 800 Bq/mL {sup 227}Th-DOTA-rituximab varied from 0.01 to 0.03 cGy/min. The average delay in growing from 10{sup 5} to 10{sup 7} cells/mL was 15 days when the cells were treated with a mean absorbed radiation dose of 2 Gy alpha-particle radiation from {sup 227}Th-DOTA-rituximab, whereas it was 11 days when the cells were irradiated with 6 Gy of X-radiation. The relative biologic effect of the treatment was estimated to be 2.9-3.4. Conclusions: The low-dose-rate radioimmunoconjugate {sup 227}Th-DOTA-rituximab is suitable for inactivation of single lymphoma cells and small colonies of lymphoma cells.

  2. Model for alpha particle induced nuclear reactions: /sup 93/Nb(. cap alpha. ,x. cap alpha. ypzn) from 40--140 MeV

    SciTech Connect

    Gadioli, E.; Gadioli-Erba, E.; Hogan, J.J.; Jacak, B.V.

    1984-01-01

    A comprehensive model is introduced for alpha particle induced nuclear reactions. Five different mechanisms are examined and discussed. These include inelastic scattering of the incident alpha particle, nucleon pickup, binary fragmentation, dissolution of the alpha in the nuclear field, and preequilibrium processes initiated by alpha-nucleon collisions. A series of experiments was performed to measure the excitation functions of many nuclides produced from the irradiation of /sup 93/Nb by 40--140 MeV alpha particles. Together with alpha particle and proton spectra measured by other authors, these data form the basis of a test of the model introduced. A detailed analysis of the comparison between the calculated and experimental results, with particular emphasis on the interpretation of breakup processes, leads to the conclusion that breakup to four nucleons is preferred to the more commonly assumed binary fragmentation in that a much broader range of experimental data may be reproduced.

  3. Measurements of DT alpha particle loss near the outer midplane of TFTR

    SciTech Connect

    Zweben, S.J.; Darrow, D.S.; Herrmann, H.W.; Redi, M.H.; Schivell, J.; White, R.B.

    1995-07-01

    Measurements of DT alpha particle loss to the outer midplane region of TFTR have been made using a radially movable scintillator detector. The conclusion from this data is that mechanisms determining the DT alpha loss to the outer midplane are not substantially different from those for DD fusion products. Some of these results are compared with a simplified theoretical model for TF ripple-induced alpha loss, which is expected to be the dominant classical alpha loss mechanism near the outer midplane. An example of plasma-driven MHD-induced alpha particle loss is shown, but no signs of any ``collective`` alpha instability-induced alpha loss have yet been observed.

  4. XRF-analysis of fine and ultrafine particles emitted from laser printing devices.

    PubMed

    Barthel, Mathias; Pedan, Vasilisa; Hahn, Oliver; Rothhardt, Monika; Bresch, Harald; Jann, Oliver; Seeger, Stefan

    2011-09-15

    In this work, the elemental composition of fine and ultrafine particles emitted by ten different laser printing devices (LPD) is examined. The particle number concentration time series was measured as well as the particle size distributions. In parallel, emitted particles were size-selectively sampled with a cascade impactor and subsequently analyzed by the means of XRF. In order to identify potential sources for the aerosol's elemental composition, materials involved in the printing process such as toner, paper, and structural components of the printer were also analyzed. While the majority of particle emissions from laser printers are known to consist of recondensated semi volatile organic compounds, elemental analysis identifies Si, S, Cl, Ca, Ti, Cr, and Fe as well as traces of Ni and Zn in different size fractions of the aerosols. These elements can mainly be assigned to contributions from toner and paper. The detection of elements that are likely to be present in inorganic compounds is in good agreement with the measurement of nonvolatile particles. Quantitative measurements of solid particles at 400 °C resulted in residues of 1.6 × 10(9) and 1.5 × 10(10) particles per print job, representing fractions of 0.2% and 1.9% of the total number of emitted particles at room temperature. In combination with the XRF results it is concluded that solid inorganic particles contribute to LPD emissions in measurable quantities. Furthermore, for the first time Br was detected in significant concentrations in the aerosol emitted from two LPD. The analysis of several possible sources identified the plastic housings of the fuser units as main sources due to substantial Br concentrations related to brominated flame retardants. PMID:21809840

  5. HETDEX: Probing the Chemical Evolution of the Universe with Lyman Alpha Emitting Galaxies

    NASA Astrophysics Data System (ADS)

    Finkelstein, Steven L.; Hill, G. J.; Gebhardt, K.; Blanc, G.; Drory, N.; HETDEX Collaboration

    2012-01-01

    The Hobby Eberly Telescope Dark Energy Experiment (HETDEX) will discover 0.8 million Lyman alpha emitting galaxies (LAEs) at 1.9 < z < 3.5 over 300 square degrees beginning in Fall 2012. This unprecedentedly large volume probed will allow the discovery of large samples of bright LAEs, enabling follow-up science which cannot be done for the bulk of the LAE population, as they form the faint end of the galaxy luminosity function. Combining the HETDEX sample with the new generation of multi-object near-infrared (NIR) spectrographs will allow direct measurements of LAE physical properties, which are of interest as LAEs appear similar to galaxies at very high redshifts (z > 7) , and LAEs are also the likely progenitors of present-day Milky Way-like galaxies. Here we present results from the HETDEX pilot survey, which discovered 100 LAEs with a single integral field spectrograph mounted on the McDonald Observatory 2.7m telescope. We have detected rest-frame optical emission lines from five of these galaxies with the single-slit NIR spectrograph NIRSPEC on the Keck II 10m telescope. From the ratio of the upper limit on the (undetected) [NII] flux to the observed Halpha line strength, all five LAEs appear to have low metallicities (< 50% solar). The brightest LAE in our sample lies significantly below the mass-metallicity relation for continuum-selected galaxies at the same redshift. The remaining LAEs may also lie below this relation, however their fainter Halpha fluxes result in higher limits on the [NII]/Halpha flux ratio. Thus deeper integrations, requiring multi-object spectrographs (MOS) to be feasible, are necessary. The field-of-view of the next generation of MOS NIR spectrographs will be able to simultaneously observe > 10 HETDEX LAEs to a much deeper depth, providing a significant boost in our ability to probe the chemical enrichment of this enigmatic galaxy population.

  6. Thick Source Alpha Particle Spectroscopy: Possibilities And Prospects

    NASA Astrophysics Data System (ADS)

    Michael, C. T.; Zacharias, N.; Hein, A.

    The new technique for the calculation of U and Th concentration which is based on the alpha particle spectrum taken from a thick sample by using a silicon detector is briefly described. Within the present study two major advantages of the technique will also be presented: the potentiality for detecting and providing an estimation of disequilibrium in the U and Th series -when present- for especially young sediments, and the potential use of the technique as a new method for isotopic dating of speleothems and other materials. Also the validity of the basic equation and the accuracy of this technique is tested.

  7. Radiolytic gas production in the alpha particle degradation of plastics

    SciTech Connect

    Reed, D.T.; Hoh, J.; Emery, J.; Hobbs, D.

    1992-05-01

    Net gas generation due to alpha particle irradiation of polyethylene and polyvinyl chloride was investigated. Experiments were performed in an air environment at 30, 60, and 100{degree}C. The predominant radiolytic degradation products of polyethylene were hydrogen and carbon dioxide with a wide variety of trace organic species noted. Irradiation of polyvinyl chloride resulted in the formation of HCl in addition to the products observed for polyethylene. For both plastic materials, a strong enhancement of net yields was noted at 100{degree}C.

  8. Protons and alpha particles in the solar wind

    NASA Astrophysics Data System (ADS)

    Hellinger, Petr; Travnicek, Pavel M.; Passot, Thierry; Sulem, Pierre-Louis; Matteini, Lorenzo; Landi, Simone

    2014-05-01

    We investigate energetic consequences of ion kinetic instabilitities in the solar wind connected with beam and core protons and alpha particles drifting with respect to each other. We compare theoretical predictions, simulations and observation results. For theoretical prediction we assume drifting bi-Maxwellian ion populations and we calculate theoretical quasilinear heating rates (Hellinger et al., 2013b). The nonlinear evolution of beam-core protons, and alpha particles in the expanding solar wind we investigate using hybrid expanding box system (Hellinger and Travnicek, 2013). The expansion leads to many different kinetic instabilities. In the simulation the beam protons and alpha particles are decelerated with respect to the core protons and all the populations are cooled in the parallel direction and heated in the perpendicular one in agreement with theoretical expectations. On the macroscopic level the kinetic instabilities cause large departures of the system evolution from the double adiabatic prediction and lead to a perpendicular heating and parallel cooling rates. The simulated heating rates are comparable to the heating rates estimated from the Helios observations (Hellinger et al., 2013a); furthermore, the differential velocity between core and beam protons observed by Ulysses exhibits apparent bounds which are compatible with the theoretical constaints imposed by the linear theory for the magnetosonic instability driven by beam-core differential velocity (Matteini et al., 2013). References Hellinger, P., P. M. Travnicek, S. Stverak, L. Matteini, and M. Velli (2013a), Proton thermal energetics in the solar wind: Helios reloaded, J. Geophys. Res., 118, 1351-1365, doi:10.1002/jgra.50107. Hellinger, P., T. Passot, P.-L. Sulem, and P. M. Travnicek (2013b), Quasi-linear heating and acceleration in bi-Maxwellian plasmas, Phys. Plasmas, 20, 122306. Hellinger, P., and P. M. Travnicek (2013), Protons and alpha particles in the expanding solar wind: Hybrid

  9. Lyman alpha emitting galaxies at high redshift: Direct detection of young galaxies in a young universe

    NASA Astrophysics Data System (ADS)

    Dawson, Steven Arthur

    An early result of galaxy formation theory was the prediction that the copious ionizing radiation produced in nascent galaxies undergoing their first starbursts should in turn produce a strong Lya emission line. We report on our efforts to detect and characterize primeval galaxies by searching for this expected Lya signature with two observational techniques: serendipitous slit spectroscopy, and narrowband imaging selection. In Part I, we describe our serendipitous slit spectroscopy survey of the Hubble Deep Field and its environs, which resulted in a catalog of 74 spectroscopic redshifts spanning 0.10 < z < 5.77, including a galaxy cluster at z = 0.85 and five galaxies at z > 5. Follow-up observations at higher resolution resulted in the additional serendipitous detection of a strong Lya-emitting galaxy at z = 5.190 (ES1). At the time of its discovery, ES1 was one of only nine known galaxies at z > 5, and was the sixth most distant known galaxy. The unprecedented spectral purity of the observation offers evidence for a galaxy-scale outflow with a. velocity of v > 300 km s -1 , consistent with wind speeds observed in powerful local starbursts (typically 10 2 to 10 3 km s -1 ), and with simulations of the late- stage evolution of Lya emission in star-forming systems. Our final serendipitous detection is the remarkable source CXOHDFN J123635.6+621424, which is both the highest redshift known spiral galaxy, and a rare example of a high redshift, hard X-ray-emitting Type II AGN. Significantly, all of these results were acquired with no direct allocation of telescope time. In Part II, we report on our implementation of narrowband imaging selection, with which we traded redshift coverage for survey volume, focusing on the systematic study of galaxies at a particular epoch in favor of chasing that rare, most-distant object. This effort resulted in a catalog of 76 z [approximate] 4.5 Lya-emitting galaxies spectroscopically-confirmed in campaigns of Keck/LRIS and Keck

  10. Mineralogical characterization of ambient fine/ultrafine particles emitted from Xuanwei C1 coal combustion

    NASA Astrophysics Data System (ADS)

    Lu, Senlin; Hao, Xiaojie; Liu, Dingyu; Wang, Qiangxiang; Zhang, Wenchao; Liu, Pinwei; Zhang, Rongci; Yu, Shang; Pan, Ruiqi; Wu, Minghong; Yonemochi, Shinich; Wang, Qingyue

    2016-03-01

    Nano-quartz in Xuanwei coal, the uppermost Permian (C1) coal deposited in the northwest of Yuanan, China, has been regarded as one of factors which caused high lung cancer incidence in the local residents. However, mineralogical characterization of the fine/ultrafine particles emitted from Xuanwei coal combustion has not previously been studied. In this study, PM1 and ultrafine particles emitted from Xuanwei coal combustion were sampled. Chemical elements in the ambient particles were analyzed by inductively coupled plasma mass spectrometry (ICP-MS), and mineralogical characterization of these ambient particles was investigated using scanning electronic microscopy (SEM/EDX) and transmission electronic microscopy, coupled with energy-dispersive spectroscopy (TEM/EDX). Our results showed that the size distribution of mineral particles from the coal combustion emissions ranged from 20 to 200 nm. Si-containing particles and Fe-containing particles accounted for 50.7% of the 150 individual particles measured, suggesting that these two types of particles were major minerals in the ambient particles generally. The nano-mineral particles were identified as quartz (SiO2) and gypsum (CaSO4) based on their crystal parameters and chemical elements. Additionally, there also existed unidentified nano-minerals. Armed with these data, toxicity assessments of the nano-minerals will be carried out in a future study.

  11. White top-emitting organic light-emitting diodes with solution-processed nano-particle scattering layers

    SciTech Connect

    Schaefer, Tim; Schwab, Tobias; Lenk, Simone; Gather, Malte C.

    2015-12-07

    A random scattering approach to enhance light extraction in white top-emitting organic light-emitting diodes (OLEDs) is reported. Through solution processing from fluorinated solvents, a nano-particle scattering layer (NPSL) can be deposited directly on top of small molecule OLEDs without affecting their electrical performance. The scattering length for light inside the NPSL is determined from transmission measurements and found to be in agreement with Mie scattering theory. Furthermore, the dependence of the light outcoupling enhancement on electron transport layer thickness is studied. Depending on the electron transport layer thickness, the NPSL enhances the external quantum efficiency of the investigated white OLEDs by between 1.5 and 2.3-fold. For a device structure that has been optimized prior to application of the NPSL, the maximum external quantum efficiency is improved from 4.7% to 7.4% (1.6-fold improvement). In addition, the scattering layer strongly reduces the undesired shift in emission color with viewing angle.

  12. Code System for Analyzing Ge and Alpha-Particle Detector Spectra.

    Energy Science and Technology Software Center (ESTSC)

    1992-06-29

    Version 00 GRPANL (GRouP ANaLysis) is a suite of programs which analyzes and interprets regions of germanium and alpha-particle detector pulse-height spectra. GRPANL is the main peak-fitting program; the other programs included are used in conjunction with GRPANL. GRPANL is particularly useful for accurately deconvoluting and interpreting complex clusters of peaks in a spectrum. GRPANL fits peaks in specified regions of a gamma-ray, x-ray, or alpha-particle spectrum, calculates their energies and intensities, and optionally calculatesmore » the photon emission rates for the sample from which they were emitted. It can also identify and measure isotopes in a sample. GRPANL output can be immediately analyzed for quantitative isotopic assays or stored in an intermediate data file. The other programs are EDIGRP, LIBRY, and GEVAL. EDISRP (EDIt GRouP) creates and edits an analysis control file that contains input parameters and analysis options for spectral regions analyzed by GRPANL; users can repeat or modify an analysis without retyping input. LIBRY (LIBRarY) assembles and cross references selected nuclear decay scheme data and stores it in decay scheme data files for use by GRPANL and GEVAL. GEVAL (Gamma ray EVALuation) uses these data files along with GRPANL intermediate results to identify isotopes, calculate their abundance in a sample, and print the corresponding disintegration rates and abundances at counting and zero times.« less

  13. Observation of lunar radon emanation with the Apollo 15 alpha particle spectrometer.

    NASA Technical Reports Server (NTRS)

    Gorenstein, P.; Bjorkholm, P.

    1972-01-01

    The alpha particle spectrometer, a component of the orbital Sim Bay group of 'geochemistry' experiments on Apollo 15, was designed to detect alpha particles emitted during the decay of isotopes of radon gas and her daughter products. The purpose was to measure the gross activity of radon on the lunar surface and to find possible regions of increased local activity. Results are presented from a partial analysis of Apollo 15 data. For the moon as a whole, Rn220 was not observed and the upper limit on its decay rate above the lunar surface is 0.00038 disintegrations/sq cm-sec. Rn222 was marginally observed. Possible variations of radon activity on the lunar surface are being investigated. Po210 (a daughter product of Rn222) has been detected in a broad region from west of Mare Crisium to the Van de Graaff-Orlov region. The observed count rate is (4.6 plus or minus 1.4) x 0.001 disintegrations/sq cm-sec. The observed level of Po210 activity is in excess of the amount that would be in equilibrium with Rn222 by about an order of magnitude. This implies that larger levels of radon emanation have occurred on the moon within a time scale of 10 to 100 years.

  14. Alpha particles induce apoptosis through the sphingomyelin pathway.

    PubMed

    Seideman, Jonathan H; Stancevic, Branka; Rotolo, Jimmy A; McDevitt, Michael R; Howell, Roger W; Kolesnick, Richard N; Scheinberg, David A

    2011-10-01

    The sphingomyelin pathway involves the enzymatic cleavage of sphingomyelin to produce ceramide, a second messenger that serves as a key mediator in the rapid apoptotic response to various cell stressors. Low-linear energy transfer (LET) γ radiation can initiate this pathway, independent of DNA damage, via the cell membrane. Whether short-ranged, high-LET α particles, which are of interest as potent environmental carcinogens, radiotherapies and potential components of dirty bombs, can act through this mechanism to signal apoptosis is unknown. Here we show that irradiation of Jurkat cells with α particles emitted by the ²²⁵Ac-DOTA-anti-CD3 IgG antibody construct results in dose-dependent apoptosis. This apoptosis was significantly reduced by pretreating cells with cholesterol-depleting nystatin, a reagent known to inhibit ceramide signaling by interfering with membrane raft coalescence and ceramide-rich platform generation. The effects of nystatin on α-particle-induced apoptosis were related to disruption of the ceramide pathway and not to microdosimetry alterations, because similar results were obtained after external irradiation of the cells with a broad beam of collimated α particles using a planar ²⁴¹Am source. External irradiation allowed for more precise control of the dosimetry and geometry of the irradiation, independent of antibody binding or cell internalization kinetics. Mechanistically consistent with these findings, Jurkat cells rapidly increased membrane concentrations of ceramide after external irradiation with an average of five α-particle traversals per cell. These data indicate that α particles can activate the sphingomyelin pathway to induce apoptosis. PMID:21631289

  15. Alpha Particles Induce Apoptosis through the Sphingomyelin Pathway

    PubMed Central

    Seideman, Jonathan H.; Stancevic, Branka; Rotolo, Jimmy A.; McDevitt, Michael R.; Howell, Roger W.; Kolesnick, Richard N.; Scheinberg, David A.

    2011-01-01

    The sphingomyelin pathway involves the enzymatic cleavage of sphingomyelin to produce ceramide, a second messenger that serves as a key mediator in the rapid apoptotic response to various cell stressors. Low-linear energy transfer (LET) γ radiation can initiate this pathway, independent of DNA damage, via the cell membrane. Whether short-ranged, high-LET a particles, which are of interest as potent environmental carcinogens, radiotherapies and potential components of dirty bombs, can act through this mechanism to signal apoptosis is unknown. Here we show that irradiation of Jurkat cells with a particles emitted by the 225Ac-DOTA-anti-CD3 IgG antibody construct results in dose-dependent apoptosis. This apoptosis was significantly reduced by pretreating cells with cholesterol-depleting nystatin, a reagent known to inhibit ceramide signaling by interfering with membrane raft coalescence and ceramide-rich platform generation. The effects of nystatin on α-particle-induced apoptosis were related to disruption of the ceramide pathway and not to microdosimetry alterations, because similar results were obtained after external irradiation of the cells with a broad beam of collimated a particles using a planar 241Am source. External irradiation allowed for more precise control of the dosimetry and geometry of the irradiation, independent of antibody binding or cell internalization kinetics. Mechanistically consistent with these findings, Jurkat cells rapidly increased membrane concentrations of ceramide after external irradiation with an average of five α-particle traversals per cell. These data indicate that a particles can activate the sphingomyelin pathway to induce apoptosis. PMID:21631289

  16. Sawtooth mixing of alpha particles in TFTR D-T plasmas

    SciTech Connect

    Petrov, M.P.; Budny, R.V.; Chang, Z.

    1996-12-31

    Radially resolved confined alpha particle energy and density distributions are routinely measured on TFTR using two diagnostics: PCX and {alpha}-CHERS. The Pellet Charge-eXchange (PCX) diagnostic uses the ablation cloud formed by an impurity pellet (Li or B) for neutralization of the alphas followed by analysis of the escaping helium neutrals. PCX detects deeply trapped alpha particles in the energy range 0.5 - 3.8 MeV. The {alpha}-CHERS technique, were the alpha signal is excited by charge-exchange between alphas and the deuterium atoms of one of the heating beams and appears as a wing on the He{sup +} 468.6 nm line, detects mainly passing alphas in the range of 0.15 - 0.7 MeV. Studies of alpha losses during DT experiments on TFTR have also been conducted using lost alpha detectors located on the walls of the plasma chamber. All of these diagnostics were used for investigating the influence of sawtooth crashes on alphas in high power D-T discharges in TFTR. Both PCX and {alpha}-CHERS measurements show a strong depletion of the alpha core density and transport of trapped alphas radially outwards well beyond q = 1 surface after a sawtooth crash. Lost alpha detectors measure bursts of alpha loss of the previously confined alphas (<1%). Thus, a sawtooth crash leads mainly to radial redistribution of the alphas rather than losses. For modeling of alpha sawtooth mixing, a code is used which is based on the conventional model of magnetic reconnection and the conservation of particles, energy and magnetic flux. The effect of the particle orbit averaged toroidal drift in a perturbed helical electric field generated by the crash has also been included in the code. It is shown that mixing of the passing alphas is dominated by the magnetic reconnection whereas trapped alphas are affected mainly by ExB drift.

  17. Detection of alpha particles using DNA/Al Schottky junctions

    NASA Astrophysics Data System (ADS)

    Al-Ta'ii, Hassan Maktuff Jaber; Periasamy, Vengadesh; Amin, Yusoff Mohd

    2015-09-01

    Deoxyribonucleic acid or DNA can be utilized in an organic-metallic rectifying structure to detect radiation, especially alpha particles. This has become much more important in recent years due to crucial environmental detection needs in both peace and war. In this work, we fabricated an aluminum (Al)/DNA/Al structure and generated current-voltage characteristics upon exposure to alpha radiation. Two models were utilized to investigate these current profiles; the standard conventional thermionic emission model and Cheung and Cheung's method. Using these models, the barrier height, Richardson constant, ideality factor and series resistance of the metal-DNA-metal structure were analyzed in real time. The barrier height, Φ value calculated using the conventional method for non-radiated structure was 0.7149 eV, increasing to 0.7367 eV after 4 min of radiation. Barrier height values were observed to increase after 20, 30 and 40 min of radiation, except for 6, 8, and 10 min, which registered a decrease of about 0.67 eV. This was in comparison using Cheung and Cheung's method, which registered 0.6983 eV and 0.7528 eV for the non-radiated and 2 min of radiation, respectively. The barrier height values, meanwhile, were observed to decrease after 4 (0.61 eV) to 40 min (0.6945 eV). The study shows that conventional thermionic emission model could be practically utilized for estimating the diode parameters including the effect of series resistance. These changes in the electronic properties of the Al/DNA/Al junctions could therefore be utilized in the manufacture of sensitive alpha particle sensors.

  18. Detection of alpha particles using DNA/Al Schottky junctions

    SciTech Connect

    Al-Ta'ii, Hassan Maktuff Jaber E-mail: vengadeshp@um.edu.my; Periasamy, Vengadesh E-mail: vengadeshp@um.edu.my; Amin, Yusoff Mohd

    2015-09-21

    Deoxyribonucleic acid or DNA can be utilized in an organic-metallic rectifying structure to detect radiation, especially alpha particles. This has become much more important in recent years due to crucial environmental detection needs in both peace and war. In this work, we fabricated an aluminum (Al)/DNA/Al structure and generated current–voltage characteristics upon exposure to alpha radiation. Two models were utilized to investigate these current profiles; the standard conventional thermionic emission model and Cheung and Cheung's method. Using these models, the barrier height, Richardson constant, ideality factor and series resistance of the metal-DNA-metal structure were analyzed in real time. The barrier height, Φ value calculated using the conventional method for non-radiated structure was 0.7149 eV, increasing to 0.7367 eV after 4 min of radiation. Barrier height values were observed to increase after 20, 30 and 40 min of radiation, except for 6, 8, and 10 min, which registered a decrease of about 0.67 eV. This was in comparison using Cheung and Cheung's method, which registered 0.6983 eV and 0.7528 eV for the non-radiated and 2 min of radiation, respectively. The barrier height values, meanwhile, were observed to decrease after 4 (0.61 eV) to 40 min (0.6945 eV). The study shows that conventional thermionic emission model could be practically utilized for estimating the diode parameters including the effect of series resistance. These changes in the electronic properties of the Al/DNA/Al junctions could therefore be utilized in the manufacture of sensitive alpha particle sensors.

  19. Preliminary results from the lunar prospector alpha particle spectrometer

    SciTech Connect

    Lawson, S. L.

    2001-01-01

    The Lunar Prospector Alpha Particle Spectrometer (LP APS) builds on Apollo heritage and maps the distribution of outgassing sites on the Moon. The APS searches for lunar surface gas release events and maps their distribution by detecting alpha particles produced by the decay of gaseous radon-222 (5.5 MeV, 3.8 day half-life) and solid polonium-210 (5.3 MeV, 138 day half-life, but remains on the surface with a 21 year half-life as lead-210), which are radioactive daughters from the decay of uranium-238. Radon is in such small quantities that it is not released directly from the lunar interior, rather it is entrained in a stream of gases and serves as a tracer for such gases. Once released, the radon spreads out by 'bouncing' across the surface on ballistic trajectories in a random-walk process. The 3.8 day half-life of radon-222 allows the gas to spread out by several 100 km before it decays and allows the APS to detect gas release events up to a few days after they occur. The long residence time (10s of years) of the lead-210 precursor to the polonium-210 allows the mapping of gas vents which have been active over the last approximately 50 years. Because radon and polonium are daughter products of the decay of uranium, the background level of alpha particle activity is a function of the lunar crustal uranium distribution. Using radioactive radon and polonium as tracers, the Apollo 15 and 16 Command Module orbital alpha particle experiments obtained evidence for the release of gases at several sites beneath the orbit tracks, especially over the Aristarchus Plateau and Mare Fecunditatis [1]. Aristarchus crater had previously been identified by ground-based observers as the site of transient optical events [2]. The Apollo 17 surface mass spectrometer showed that argon-40 is released from the lunar interior every few months, apparently in concert with some of the shallow moonquakes that are believed to be of tectonic origin [3]. The latter tectonic events could be

  20. The energy spectra of protons and alpha particles above 300 keV/nucleon during quiet times

    NASA Technical Reports Server (NTRS)

    Gloeckler, G.; Hovestadt, D.; Klecker, B.; Vollmer, O.; Fan, C. Y.

    1975-01-01

    An unusual spectral feature and anomalously large abundance of helium between 0.6 and about 2 MeV/nucleon observed during the most quiet time periods in 1974 indicate the presence of low energy helium of an unknown origin. During these same quiet periods protons below 1.5 MeV and alphas below 0.6 MeV/nucleon have a power law energy spectrum with an index of -1.8 and the proton to alpha ratio is about 30. From these results and the measured anisotropy of these particles we conclude that the sun emits less than about 1 MeV particles continuously even during its most inactive periods.

  1. INSTABILITIES DRIVEN BY THE DRIFT AND TEMPERATURE ANISOTROPY OF ALPHA PARTICLES IN THE SOLAR WIND

    SciTech Connect

    Verscharen, Daniel; Bourouaine, Sofiane; Chandran, Benjamin D. G. E-mail: s.bourouaine@unh.edu

    2013-08-20

    We investigate the conditions under which parallel-propagating Alfven/ion-cyclotron (A/IC) waves and fast-magnetosonic/whistler (FM/W) waves are driven unstable by the differential flow and temperature anisotropy of alpha particles in the solar wind. We focus on the limit in which w{sub Parallel-To {alpha}} {approx}> 0.25v{sub A}, where w{sub Parallel-To {alpha}} is the parallel alpha-particle thermal speed and v{sub A} is the Alfven speed. We derive analytic expressions for the instability thresholds of these waves, which show, e.g., how the minimum unstable alpha-particle beam speed depends upon w{sub Parallel-To {alpha}}/v{sub A}, the degree of alpha-particle temperature anisotropy, and the alpha-to-proton temperature ratio. We validate our analytical results using numerical solutions to the full hot-plasma dispersion relation. Consistent with previous work, we find that temperature anisotropy allows A/IC waves and FM/W waves to become unstable at significantly lower values of the alpha-particle beam speed U{sub {alpha}} than in the isotropic-temperature case. Likewise, differential flow lowers the minimum temperature anisotropy needed to excite A/IC or FM/W waves relative to the case in which U{sub {alpha}} = 0. We discuss the relevance of our results to alpha particles in the solar wind near 1 AU.

  2. Alpha particle losses from Tokamak Fusion Test Reactor deuterium-tritium plasmas

    SciTech Connect

    Darrow, D.S.; Zweben, S.J.; Batha, S.

    1996-01-01

    Because alpha particle losses can have a significant influence on tokamak reactor viability, the loss of deuterium-tritium alpha particles from the Tokamak Fusion Test Reactor (TFTR) has been measured under a wide range of conditions. In TFTR, first orbit loss and stochastic toroidal field ripple diffusion are always present. Other losses can arise due to magnetohydrodynamic instabilities or due to waves in the ion cyclotron range of frequencies. No alpha particle losses have yet been seen due to collective instabilities driven by alphas. Ion Bernstein waves can drive large losses of fast ions from TFTR, and details of those losses support one element of the alpha energy channeling scenario.

  3. Particle size distribution of airborne Aspergillus fumigatus spores emitted from compost using membrane filtration

    NASA Astrophysics Data System (ADS)

    Deacon, L. J.; Pankhurst, L. J.; Drew, G. H.; Hayes, E. T.; Jackson, S.; Longhurst, P. J.; Longhurst, J. W. S.; Liu, J.; Pollard, S. J. T.; Tyrrel, S. F.

    Information on the particle size distribution of bioaerosols emitted from open air composting operations is valuable in evaluating potential health impacts and is a requirement for improved dispersion simulation modelling. The membrane filter method was used to study the particle size distribution of Aspergillus fumigatus spores in air 50 m downwind of a green waste compost screening operation at a commercial facility. The highest concentrations (approximately 8 × 10 4 CFU m -3) of culturable spores were found on filters with pore diameters in the range 1-2 μm which suggests that the majority of spores are emitted as single cells. The findings were compared to published data collected using an Andersen sampler. Results were significantly correlated ( p < 0.01) indicating that the two methods are directly comparable across all particles sizes for Aspergillus spores.

  4. Selective Alpha-Particle Mediated Depletion of Tumor Vasculature with Vascular Normalization

    PubMed Central

    Seshan, Surya V.; Kappel, Barry J.; Chattopadhyay, Debjit; May, Chad; McDevitt, Michael R.; Nolan, Daniel; Mittal, Vivek; Benezra, Robert; Scheinberg, David A.

    2007-01-01

    Background Abnormal regulation of angiogenesis in tumors results in the formation of vessels that are necessary for tumor growth, but compromised in structure and function. Abnormal tumor vasculature impairs oxygen and drug delivery and results in radiotherapy and chemotherapy resistance, respectively. Alpha particles are extraordinarily potent, short-ranged radiations with geometry uniquely suitable for selectively killing neovasculature. Methodology and Principal Findings Actinium-225 (225Ac)-E4G10, an alpha-emitting antibody construct reactive with the unengaged form of vascular endothelial cadherin, is capable of potent, selective killing of tumor neovascular endothelium and late endothelial progenitors in bone-marrow and blood. No specific normal-tissue uptake of E4G10 was seen by imaging or post-mortem biodistribution studies in mice. In a mouse-model of prostatic carcinoma, 225Ac-E4G10 treatment resulted in inhibition of tumor growth, lower serum prostate specific antigen level and markedly prolonged survival, which was further enhanced by subsequent administration of paclitaxel. Immunohistochemistry revealed lower vessel density and enhanced tumor cell apoptosis in 225Ac-E4G10 treated tumors. Additionally, the residual tumor vasculature appeared normalized as evident by enhanced pericyte coverage following 225Ac-E4G10 therapy. However, no toxicity was observed in vascularized normal organs following 225Ac-E4G10 therapy. Conclusions The data suggest that alpha-particle immunotherapy to neovasculature, alone or in combination with sequential chemotherapy, is an effective approach to cancer therapy. PMID:17342201

  5. The effect of the alpha-emitting radionuclide lead-212 on human ovarian carcinoma: a potential new form of therapy.

    PubMed

    Rotmensch, J; Atcher, R W; Schlenker, R; Hines, J; Grdina, D; Block, B S; Press, M F; Herbst, A L; Weichselbaum, R R

    1989-02-01

    To improve response and survival of patients with ovarian carcinoma noncross-resistant forms of therapy must be developed. alpha-emitting radionuclides may be therapeutically useful since they can directly ionize with energies of 5 to 9 MeV, penetrate only a few cell diameters, and transfer a high amount of energy. The purpose of this study was to determine the effect of the alpha-emitter, lead-212 (212Pb), complexed to sulfur in a nude athymic mouse model (NIH:OVCAR-3) containing human ascites and solid epithelial ovarian carcinoma. Thirty-six nude mice 28 to 32 days old were injected with 10(7) to 10(8) carcinoma cells from donor mice. After 4 weeks, six groups of six nu/nu athymic BALB-C mice were intraperitoneally injected with 70, 50, 20, 5 microCi of 212Pb sulfur colloid, sulfur colloid, or saline. Tumor necrosis with a decrease in ascites and a dose-related survival were noted with doses of 50, 20, and 5 microCi. With 70 microCi acute gastrointestinal toxicity developed. These experiments form the basis for further investigations and the development of alpha-emitting radiocolloids which may be of therapeutic efficacy in the treatment of intraperitoneal ovarian carcinoma. PMID:2910786

  6. A self-consistent theory of collective alpha particle losses induced by Alfvenic turbulence

    SciTech Connect

    Biglari, H.; Diamond, P.H.

    1992-01-01

    The nonlinear dynamics of kinetic Alfven waves, resonantly excited by energetic ions/alpha particles, is investigated. It is shown that {alpha}-particles govern both linear instability and nonlinear saturation dynamics, while the background MHD turbulence results only in a nonlinear real frequency shift. The most efficient saturation mechanism is found to be self-induced profile modification. Expressions for the fluctuation amplitudes and the {alpha}-particle radial flux are self-consistently derived. The work represents the first self-consistent, turbulent treatment of collective {alpha}-particle losses by Alfvenic fluctuations.

  7. Anomalous loss of DT alpha particles in the Tokamak Fusion Test Reactor

    SciTech Connect

    Herrmann, H.W.

    1997-09-01

    An escaping alpha collector probe has been developed for TFTR`s DT phase. Energy distributions of escaping alphas have been determined by measuring the range of {alpha}-particles implanted into nickel foils located within the alpha collector. Results at 1.0 MA of plasma current are in good agreement with predictions for first orbit alpha loss. Results at 1.8 MA, however, show a significant anomalous loss of partially thermalized alphas (in addition to the expected first orbit loss), which is not observed with the lost alpha scintillator detectors in DT plasmas, but does resemble the anomalous delayed loss seen in DD plasmas. None of the candidate explanations proposed thus far are fully consistent with the anomalous loss observations. An experiment designed to study the effect of plasma major radius shifts on {alpha}-particle loss has led to a better understanding of {alpha}-particle dynamics in tokamaks. Intuitively, one might suppose that confined marginally passing {alpha}-particles forced to move toward higher magnetic field during an inward major radius shift (i.e., compression) would mirror and become trapped particles, leading to increased alpha loss. Such an effect was looked for during the shift experiment, however, no significant changes in alpha loss to the 90{degree} lost alpha scintillator detector were observed during the shifts. It is calculated that the energy gained by an {alpha}-particle during the inward shift is sufficient to explain this result. However, an unexpected loss of partially thermalized {alpha}-particles near the passing/trapped boundary was observed to occur between inward and outward shifts at an intermediate value of plasma current (1.4 MA). This anomalous loss feature is not yet understood.

  8. Toxicity of particles emitted from combustion of waste crankcase oil: in vitro and in vivo studies.

    PubMed

    Mumford, J L; Hatch, G E; Hall, R E; Jackson, M A; Merrill, R G; Lewtas, J

    1986-07-01

    The ever-rising cost of energy provides incentives for the utilization of low-cost waste crankcase oil (WCO) for space heating. Although WCO is known to contain toxic heavy metals, the potential health hazards of emissions and waste products resulting from the combustion of WCO are unknown. Thus, the toxicity of the emission particles and waste products from two different types of burners, a Dravo atomizing oil burner (AOB) and a Kroll vaporizing oil burner (VOB), is evaluated using automotive WCO. Samples are characterized by performing elemental analysis and scanning electron microscopy. Both burners emitted fine (less than or equal to 3 microns), respirable particles. The AOB emission particles contained high concentrations of toxic heavy metals, especially Pb, which showed concentrations as high as 7.5%. The VOB retained a significant amount of heavy metals in the burner residue and emitted a much smaller quantity into the air. The toxicity of AOB emission particles, VOB emission particles, and VOB waste residue is evaluated in three bioassay systems, including a rabbit alveolar macrophage (RAM) cytotoxicity in vitro assay, an intratracheal injection infectivity assay, and a peritoneal irritancy test in mice. The emission particles from both burners and leachate from VOB residue produce a dose-related reduction in viability and cellular adenosine triphosphate (ATP) in alveolar macrophages following 20-hr exposure. Acidity of the RAM medium due to the presence of VOB emission particles and waste leachate contributes to its toxicity.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:3732672

  9. Coordination chemistry of the {sup 212}Pb/{sup 212}Bi nuclear transformation: Alpha-emitting radiopharmaceuticals. Final technical report

    SciTech Connect

    Parks, N.J.; Harris, W.R.; Keen, C.L.; Cooper, S.R.

    1992-07-01

    Subdivisions of this project are: (a) the synthesis of prototypical thiolate and dithiocarbamate based hexacoordinate complexes, (b) radiochemical engineering for generation of no-carrier-added lead and bismuth radioelements, (c) the first isolation of bismuth-binding proteins from in vivo studies with cyclotron produced {sup 205/206}Bi tracer, and (d) initial development of transport mechanisms for the intracellular radiobiological study of alpha emitting bismuth, and (e) the initiation of chemical equilibrium studies and biochemical pathways with cyclotron-produced, no-carrier-added, {sup 203}Pb (T{sub 1/2} = 51 hr).

  10. Ultrafine particles emitted by flame and electric arc guns for thermal spraying of metals.

    PubMed

    Bémer, Denis; Régnier, Roland; Subra, Isabelle; Sutter, Benjamin; Lecler, Marie T; Morele, Yves

    2010-08-01

    The ultrafine aerosol emitted by thermal spraying of metals using flame and electric arc processes has been characterized in terms of particle size distribution and emission rates based on both particle number and mass. Thermal spraying of Zn, Zn/Al, and Al was studied. Measurements taken using an electrical low pressure impactor and a condensation nucleus counter reveal an aerosol made up of very fine particles (80-95% of number distribution <100 nm). Ultrafine particle emission rates produced by the electric arc process are very high, the largest values being recorded during spraying of pure aluminium. This process generates high particle emissions and therefore requires careful consideration and possible rethinking of currently implemented protection measures: ventilated cabins, dust collectors, and personal protective equipment. PMID:20685717

  11. Anomalous Loss of DT Alpha Particles in the Tokamak Fusion Test Reactor

    SciTech Connect

    Herrmann, Hans W.

    1997-06-01

    Princeton's Tokamak Fusion Test Reactor (TFTR) is the first experimental fusion device to routinely use tritium to study the deuterium-tritium (DT) fusion reaction,allowing the first systematic study of DT alpha particles in tokamak plasmas. A crucial aspect of alpha-particle physics is the fraction of alphas that escape from the plasma, particularly since these energetic particles can do severe damage to the first wall of a reactor. An escaping alpha collector probe has been developed for TFTR's DT phase. Energy distributions of escaping alphas have been determined by measuring the range of alpha-particles implanted into nickel foils located within the alpha collector. Results at 1.0 MA of plasma current are in good agreement with predictions for first orbit alpha loss. Results at 1.8 MA, however, show a significant anomalous loss of partially thermalized alphas (in addition to the expected first orbit loss), which is not observed with the lost alpha scintillator detectors in DT plasmas, but does resemble the anomalous "delayed" loss seen in DD plasmas. None of the candidate explanations proposed thus far are fully consistent with the anomalous loss observations. An experiment designed to study the effect of plasma major radius shifts on alpha-particle loss has led to a better understanding of alpha-particle dynamics in tokamaks. Intuitively, one might suppose that confined marginally passing alpha-particles forced to move toward higher magnetic field during an inward major radius shift (i.e. compression) would mirror and become trapped particles, leading to increased alpha loss. Such an effect was looked for during the shift experiment, however, no significant changes in alpha loss to the 90 degree lost alpha scintillator detector were observed during the shifts. It is calculated that the energy gained by an alpha-particle during the inward shift is sufficient to explain this result. However, an unexpected loss of partially thermalized alpha-particles near the

  12. Ly{alpha} EMITTING GALAXIES AS EARLY STAGES IN GALAXY FORMATION

    SciTech Connect

    Cowie, Lennox L.; Barger, Amy J.; Hu, Esther M.

    2011-09-10

    We present optical spectroscopy of two samples of Galaxy Evolution Explorer grism selected Ly{alpha} emitters (LAEs): one at z = 0.195-0.44 and the other at z = 0.65-1.25. We have also observed a comparison sample of galaxies in the same redshift intervals with the same UV magnitude distributions but with no detected Ly{alpha}. We use the optical spectroscopy to eliminate active galactic nuclei and to obtain the optical emission-line properties of the samples. We compare the luminosities of the LAEs in the two redshift intervals and show that there is dramatic evolution in the maximum Ly{alpha} luminosity over z = 0-1. Focusing on the z = 0.195-0.44 samples alone, we show that there are tightly defined relations between all of the galaxy parameters and the rest-frame equivalent width (EW) of H{alpha}. The higher EW(H{alpha}) sources all have lower metallicities, bluer colors, smaller sizes, and less extinction, consistent with their being in the early stages of the galaxy formation process. We find that 75% {+-} 12% of the LAEs have EW(H{alpha}) >100 A and, conversely, that 31% {+-} 13% of galaxies with EW(H{alpha}) >100 A are LAEs. We correct the broadband magnitudes for the emission-line contributions and use spectral synthesis fits to estimate the ages of the galaxies. We find a median age of 1.1 x 10{sup 8} yr for the LAE sample and 1.4 x 10{sup 9} yr for the UV-continuum sample without detected Ly{alpha}. The median metallicity of the LAE sample is 12 + log (O/H) = 8.24, or about 0.4 dex lower than the UV-continuum sample.

  13. Experimental Study of the Cross Sections of {alpha}-Particle Induced Reactions on 209Bi

    SciTech Connect

    Hermanne, A.; Tarkanyi, F.; Takacs, S.; Szucs, Z.

    2005-05-24

    Alpha particle induced reactions for generation of 211At used in therapeutic nuclear medicine and possible contaminants were investigated with the stacked foil activation technique on natural bismuth targets up to E{alpha}=39 MeV. Excitation functions for the reactions 209Bi({alpha},2n)211At, 209Bi({alpha},3n)210At, 209Bi({alpha},x) 210Po obtained from direct alpha emission measurements and gamma spectra from decay products are compared with earlier literature values. Thick target yields have been deduced from the experimental cross sections.

  14. Enhanced homologous recombination is induced by alpha-particle radiation in somatic cells of Arabidopsis thaliana

    NASA Astrophysics Data System (ADS)

    Bian, Po; Liu, Ping; Wu, Yuejin

    Almost 9 percent of cosmic rays which strike the earth's atmosphere are alpha particles. As one of the ionizing radiations (IR), its biological effects have been widely studied. However, the plant genomic instability induced by alpha-particle radiation was not largely known. In this research, the Arabidopsis thaliana transgenic for GUS recombination substrate was used to evaluate the genomic instability induced by alpha-particle radiation (3.3MeV). The pronounced effects of systemic exposure to alpha-particle radiation on the somatic homologous recombination frequency (HRF) were found at different doses. The 10Gy dose of radiation induced the maximal HRF which was 1.9-fold higher than the control. The local radiation of alpha-particle (10Gy) on root also resulted in a 2.5-fold increase of somatic HRF in non-radiated aerial plant, indicating that the signal(s) of genomic instability was transferred to non-radiated parts and initiated their genomic instability. Concurrent treatment of seedlings of Arabidopsis thaliana with alpha-particle and DMSO(ROS scavenger) both in systemic and local radiation signifi- cantly suppressed the somatic HR, indicating that the free radicals produced by alpha-particle radiation took part in the production of signal of genomic instability rather than the signal transfer. Key words: alpha-particle radiation, somatic homologous recombination, genomic instability

  15. Excitation of high-n toroidicity-induced shear Alfven eigenmodes by energetic particles and fusion alpha particles in tokamaks

    SciTech Connect

    Fu, G.Y.; Cheng, C.Z.

    1992-07-01

    The stability of high-n toroidicity-induced shear Alfven eigenmodes (TAE) in the presence of fusion alpha particles or energetic ions in tokamaks is investigated. The TAE modes are discrete in nature and thus can easily tap the free energy associated with energetic particle pressure gradient through wave particle resonant interaction. A quadratic form is derived for the high-n TAE modes using gyro-kinetic equation. The kinetic effects of energetic particles are calculated perturbatively using the ideal MHD solution as the lowest order eigenfunction. The finite Larmor radius (FLR) effects and the finite drift orbit width (FDW) effects are included for both circulating and trapped energetic particles. It is shown that, for circulating particles, FLR and FDW effects have two opposite influences on the stability of the high-n TAE modes. First, they have the usual stabilizing effects by reducing the wave particle interaction strength. Second, they also have destabilizing effects by allowing more particles to resonate with the TAE modes. It is found that the growth rate induced by the circulating alpha particles increase linearly with toroidal mode number n for small {kappa}{sub {theta}}{rho}{sub {alpha}}, and decreases as 1/n for {kappa}{sub {theta}}{rho}{sub {alpha}} {much_gt} 1. The maximum growth rate is obtained at {kappa}{sub {theta}}{rho}{sub {alpha}} on the order of unity and is nearly constant for the range of 0.7 < {upsilon}{sub {alpha}}/{upsilon}{sub A} < 2.5. On the other hand, the trapped particle response is dominated by the precessional drift resonance. The bounce resonant contribution is negligible. The growth rate peaks sharply at the value of {kappa}{sub {theta}}{rho}{sub {alpha}} such that the precessional drift resonance occurs for the most energetic trapped particles. The maximum growth rate due to the energetic trapped particles is comparable to that of circulating particles.

  16. Excitation of high-n toroidicity-induced shear Alfven eigenmodes by energetic particles and fusion alpha particles in tokamaks

    SciTech Connect

    Fu, G.Y.; Cheng, C.Z.

    1992-07-01

    The stability of high-n toroidicity-induced shear Alfven eigenmodes (TAE) in the presence of fusion alpha particles or energetic ions in tokamaks is investigated. The TAE modes are discrete in nature and thus can easily tap the free energy associated with energetic particle pressure gradient through wave particle resonant interaction. A quadratic form is derived for the high-n TAE modes using gyro-kinetic equation. The kinetic effects of energetic particles are calculated perturbatively using the ideal MHD solution as the lowest order eigenfunction. The finite Larmor radius (FLR) effects and the finite drift orbit width (FDW) effects are included for both circulating and trapped energetic particles. It is shown that, for circulating particles, FLR and FDW effects have two opposite influences on the stability of the high-n TAE modes. First, they have the usual stabilizing effects by reducing the wave particle interaction strength. Second, they also have destabilizing effects by allowing more particles to resonate with the TAE modes. It is found that the growth rate induced by the circulating alpha particles increase linearly with toroidal mode number n for small {kappa}{sub {theta}}{rho}{sub {alpha}}, and decreases as 1/n for {kappa}{sub {theta}}{rho}{sub {alpha}} {much gt} 1. The maximum growth rate is obtained at {kappa}{sub {theta}}{rho}{sub {alpha}} on the order of unity and is nearly constant for the range of 0.7 < {upsilon}{sub {alpha}}/{upsilon}{sub A} < 2.5. On the other hand, the trapped particle response is dominated by the precessional drift resonance. The bounce resonant contribution is negligible. The growth rate peaks sharply at the value of {kappa}{sub {theta}}{rho}{sub {alpha}} such that the precessional drift resonance occurs for the most energetic trapped particles. The maximum growth rate due to the energetic trapped particles is comparable to that of circulating particles.

  17. Simulation of Alpha Particles in Rotating Plasma Interacting with a Stationary Ripple

    SciTech Connect

    Abraham J. Fetterman and Nathaniel J. Fisch

    2011-01-11

    Superthermal ExB rotation can provide magnetohydrodynamic (MHD) stability and enhanced confinement to axisymmetric mirrors. However, the rotation speed has been limited by phenomena at end electrodes. A new prediction is that rotation might instead be produced using a magnetic ripple and alpha particle kinetic energy, in an extension of the alpha channeling concept. The interaction of alpha particles with the ripple results in visually interesting and practically useful orbits.

  18. Use of /sup 3/He/sup + +/ ICRF minority heating to simulate alpha particle heating

    DOEpatents

    Post, D.E. Jr.; Hwang, D.Q.; Hovey, J.

    1983-11-16

    It is an object of the present invention to provide a better understanding of alpha particle behavior in a magnetically confined, energetic plasma. Another object of the present invention is to provide an improved means and method for studying and measuring the energy distribution of heated alpha particles in a confined plasma. Yet another object of the present invention is to permit detailed analysis of energetic alpha particle behavior in a magnetically confined plasma for use in near term fusion reactor experiments. A still further object of the present invention is to simulate energetic alpha particle behavior in a deuterium-tritium plasma confined in a fusion reactor without producing the neutron activation associated with the thus produced alpha particles.

  19. Production of α-particle emitting ²¹¹At using 45 MeV α-beam.

    PubMed

    Kim, Gyehong; Chun, Kwonsoo; Park, Sung Ho; Kim, Byungil

    2014-06-01

    Among the α-particle emitting radionuclides, (211)At is considered to be a promising radionuclide for targeted cancer therapy due to its decay properties. The range of alpha particles produced by the decay of (211)At are less than 70 µm in water with a linear energy transfer between 100 and 130 keV µm(-1), which are about the maximum relative biological effectiveness for heavy ions. It is important to note that at the present time, only a few of cyclotrons routinely produce (211)At. The direct production method is based on the nuclear reactions (209)Bi(α,2n)(211)At. Production of the radionuclide (211)At was carried out using the MC-50 cyclotron at the Korea Institute of Radiological and Medical Sciences (KIRAMS). To ensure high beam current, the α-beam was extracted with an initial energy of 45 MeV, which was degraded to obtain the appropriate α-beam energy. The calculations of beam energy degradation were performed utilizing the MCNPX. Alumina-baked targets were prepared by heating the bismuth metal powder onto a circular cavity in a furnace. When using an E(α, av) of 29.17 MeV, the very small contribution of (210)At confirms the right choice of the irradiation energy to obtain a pure production of (211)At isotope. PMID:24819557

  20. Mitigation of radiation nephropathy after internal {alpha}-particle irradiation of kidneys

    SciTech Connect

    Jaggi, Jaspreet Singh; Seshan, Surya V.; McDevitt, Michael R.; Sgouros, George; Hyjek, Elizabeth; Scheinberg, David A. . E-mail: d-scheinberg@ski.mskcc.org

    2006-04-01

    Purpose: Internal irradiation of kidneys as a consequence of radioimmunotherapy, radiation accidents, or nuclear terrorism can result in radiation nephropathy. We attempted to modify pharmacologically, the functional and morphologic changes in mouse kidneys after injection with the actinium ({sup 225}Ac) nanogenerator, an in vivo generator of {alpha}- and {beta}-particle emitting elements. Methods and Materials: The animals were injected with 0.35 {mu}Ci of the {sup 225}Ac nanogenerator, which delivers a dose of 27.6 Gy to the kidneys. Then, they were randomized to receive captopril (angiotensin-converting enzyme inhibitor), L-158,809 (angiotensin II receptor-1 blocker), spironolactone (aldosterone receptor antagonist), or a placebo. Results: Forty weeks after the {sup 225}Ac injection, the placebo-control mice showed a significant increase in blood urea nitrogen (BUN) (87.6 {+-} 6.9 mg/dL), dilated Bowman spaces, and tubulolysis with basement membrane thickening. Captopril treatment accentuated the functional (BUN 119.0 {+-} 4.0 mg/dL; p <0.01 vs. placebo controls) and histopathologic damage. In contrast, L-158,809 offered moderate protection (BUN 66.6 {+-} 3.9 mg/dL; p = 0.02 vs. placebo controls). Spironolactone treatment, however, significantly prevented the development of histopathologic and functional changes (BUN 31.2 {+-} 2.5 mg/dL; p <0.001 vs. placebo controls). Conclusions: Low-dose spironolactone and, to a lesser extent, angiotensin receptor-1 blockade can offer renal protection in a mouse model of internal {alpha}-particle irradiation.

  1. Identification of platinum and palladium particles emitted from vehicles and dispersed into the surface environment.

    PubMed

    Prichard, Hazel M; Fisher, Peter C

    2012-03-20

    Platinum, palladium, and rhodium are emitted from vehicle catalytic converters. Until now, the form of precious metal particles in road dust and urban waste has not been identified. This study has located, imaged, and analyzed these particles in road dust and gully waste. Two fragments of catalytic converter have been observed in road dust. They are 40-80 μm in size and covered in many minute particles (<0.3 μm) of either platinum with minor rhodium or palladium. One fragment identified in gully sediment is smaller, 25 μm in diameter, hosting only one attached particle of palladium with minor rhodium. As fragments are washed off roads they begin to disintegrate and the precious metals become detached. Also precious metal-bearing particles have been located in incinerated sewage ash including a 20 μm diameter cluster of <3 μm sized platinum particles that may be the remains of a catalytic converter fragment that has survived incineration. The form of these precious metal-bearing particles described here reveals that as they are dispersed from roads they are likely to be present predominantly as two particle sizes. Either they are attached to larger fragments of catalytic converter or they are released as individual detached tiny <0.3 μm to nanoparticle sizes. PMID:22313190

  2. Phase Response of Brain Alpha Wave to Temporally Alternating Red/Blue Light Emitting Diode Stimuli

    NASA Astrophysics Data System (ADS)

    Nishifuji, Seiji; Tanaka, Shogo

    2003-09-01

    Spatial phase response of the alpha wave is investigated under the condition that red and blue flicker stimuli are temporally alternately applied. The alternating stimuli lead to two distinct phase distributions depending on the subjects: 1) a phase reversal, in which the phases of the alpha waves are antilocked between the occipital and frontal regions, and 2) a quasi-phase-locking, in which the phase difference distribution includes the temporal alternation of a phase locking over the entire scalp and the phase reversal between the occiput and front. The result suggests possibilities for the underlying mechanism of the hyper-synchronization of the brain waves seen in photosensitive epilepsy.

  3. Development of the MICROMEGAS detector for measuring the energy spectrum of alpha particles by using a 241Am source

    NASA Astrophysics Data System (ADS)

    Kim, Do Yoon; Ham, Cheolmin; Shin, Jae Won; Park, Tae-Sun; Hong, Seung-Woo; Andriamonje, Samuel; Kadi, Yacine; Tenreiro, Claudio

    2016-05-01

    We have developed MICROMEGAS (MICRO MEsh GASeous) detectors for detecting a particles emitted from an 241Am standard source. The voltage applied to the ionization region of the detector is optimized for stable operation at room temperature and atmospheric pressure. The energy of a particles from the 241Am source can be varied by changing the flight path of the a particle from the 241Am source. The channel numbers of the experimentally-measured pulse peak positions for different energies of the a particles are associated with the energies deposited by the alpha particles in the ionization region of the detector as calculated by using GEANT4 simulations; thus, the energy calibration of the MICROMEGAS detector for a particles is done. For the energy calibration, the thickness of the ionization region is adjusted so that a particles may completely stop in the ionization region and their kinetic energies are fully deposited in the region. The efficiency of our MICROMEGAS detector for a particles under the present conditions is found to be ~97.3%.

  4. Angular distribution of {alpha} particles from oriented {sup 253,254}Es and {sup 255}Fm nuclei

    SciTech Connect

    Severijns, N.; Golovko, V.V.; Kraev, I.S.; Phalet, T.; Belyaev, A.A.; Lukhanin, A.A.; Noga, V.I.; Erzinkyan, A.L.; Parfenova, V.P.; Eversheim, P.-D.; Herzog, P.; Tramm, C.; Filimonov, V.T.; Toporov, Yu.G.; Zotov, E.; Gurevich, G.M.; Rusakov, A.V.; Vyachin, V.N.; Zakoucky, D.

    2005-04-01

    The anisotropy in the angular distribution of {alpha} particles from oriented {sup 253,254}Es and {sup 255}Fm nuclei, which are among the strongest deformed {alpha} emitters, was measured. Large {alpha} anisotropies have been observed for all three nuclei. The results are compared with calculations based on {alpha}-particle tunneling through a deformed Coulomb barrier.

  5. Characterizing gas-particle interactions of phthalate plasticizer emitted from vinyl flooring.

    PubMed

    Benning, Jennifer L; Liu, Zhe; Tiwari, Andrea; Little, John C; Marr, Linsey C

    2013-03-19

    Phthalates are widely used as plasticizers, and improved ability to predict emissions of phthalates is of interest because of concern about their health effects. An experimental chamber was used to measure emissions of di-2-ethylhexyl-phthalate (DEHP) from vinyl flooring, with ammonium sulfate particles introduced to examine their influence on the emission rate and to measure the partitioning of DEHP onto airborne particles. When particles were introduced to the chamber at concentrations of 100 to 245 μg/m(3), the total (gas + particle) DEHP concentrations increased by a factor of 3 to 8; under these conditions, emissions were significantly enhanced compared to the condition without particles. The measured DEHP partition coefficient to ammonium sulfate particles with a median diameter of 45 ± 5 nm was 0.032 ± 0.003 m(3)/μg (95% confidence interval). The DEHP-particle sorption equilibration time was demonstrated to be less than 1 min. Both the partition coefficient and equilibration time agree well with predictions from the literature. This study represents the first known measurements of the particle-gas partition coefficient for DEHP. Furthermore, the results demonstrate that the emission rate of DEHP is substantially enhanced in the presence of particles. The particles rapidly sorb DEHP from the gas phase, allowing more to be emitted from the source, and also appear to enhance the convective mass-transfer coefficient itself. Airborne particles can influence SVOC fate and transport in the indoor environment, and these mechanisms must be considered in evaluating exposure and human health. PMID:23410053

  6. Observation of sawtooth redistribution of nonthermal, confined alpha particles in TFTR D-T discharges

    SciTech Connect

    Stratton, B.; Budny, R.; Chang, Z.; Fonck, R.; Wising, F.; Odblom, A.

    1996-05-01

    Radial profiles of the density of confined alpha particles with energies in the 0.15-0.6 MeV range are spectroscopically observed before and after a sawtooth crash in a TFTR D-T plasma. A large drop in the core alpha density is seen indicating expulsion of alphas from the core to the plasma periphery. The measured changes in the alpha density profiles are consistent with predictions based on the Kolesnichenko sawtooth model, indicating that it may be used to reliably predict the effect of sawteeth on fusion-produced alphas.

  7. Alpha-emitting isotopes and chromium in a coastal California aquifer

    USGS Publications Warehouse

    Densmore, Jill N.; Izbicki, John A.; Murtaugh, Joseph M.; Swarzenski, Peter W.; Bullen, Thomas D.

    2014-01-01

    The unadjusted 72-h gross alpha activities in water from two wells completed in marine and alluvial deposits in a coastal southern California aquifer 40 km north of San Diego were 15 and 25 picoCuries per liter (pCi/L). Although activities were below the Maximum Contaminant Level (MCL) of 15 pCi/L, when adjusted for uranium activity; there is concern that new wells in the area may exceed MCLs, or that future regulations may limit water use from the wells. Coupled well-bore flow and depth-dependent water-quality data collected from the wells in 2011 (with analyses for isotopes within the uranium, actinium, and thorium decay-chains) show gross alpha activity in marine deposits is associated with decay of naturally-occurring 238U and its daughter 234U. Radon activities in marine deposits were as high as 2230 pCi/L. In contrast, gross alpha activities in overlying alluvium within the Piedra de Lumbre watershed, eroded from the nearby San Onofre Hills, were associated with decay of 232Th, including its daughter 224Ra. Radon activities in alluvium from Piedra de Lumbre of 450 pCi/L were lower than in marine deposits. Chromium VI concentrations in marine deposits were less than the California MCL of 10 μg/L (effective July 1, 2014) but δ53Cr compositions were near zero and within reported ranges for anthropogenic chromium. Alluvial deposits from the nearby Las Flores watershed, which drains a larger area having diverse geology, has low alpha activities and chromium as a result of geologic and geochemical conditions and may be more promising for future water-supply development.

  8. Measurements of alpha particle energy using nuclear tracks in solids methodology.

    PubMed

    Espinosa, G; Amero, C; Gammage, R B

    2002-01-01

    In this paper we present a method for the measurement of alpha particle energy using polycarbonate materials as nuclear track detectors (NTDs). This method is based on the interaction of the radiation with the solid-state materials, using the relationship between the energy deposited in the material by the ionising particle and the track developed after an established chemical process. The determination of the geometrical parameters of the formed track, such as major axis, minor axis and overall track length, permit determination of the energy of the alpha particle. The track analysis is performed automatically using a digital image system, and the data are processed in a PC with commercial software. In this experiment 148Gd, 238U, 230Th, 239Pu and 244Cm alpha particle emitters were used. The values for alpha particle energy resolution, the linear response to energy, the confidence in the results and the automatisation of the procedure make this method a promising analysis system. PMID:12382812

  9. Alpha-particle effects on high-n instabilities in tokamaks

    SciTech Connect

    Rewoldt, G.

    1988-06-01

    Hot ..cap alpha..-particles and thermalized helium ash particles in tokamaks can have significant effects on high toroidal mode number instabilities such as the trapped-electron drift mode and the kinetically calculated magnetohydrodynamic ballooning mode. In particular, the effects can be stabilizing, destabilizing, or negligible, depending on the parameters involved. In high-temperature tokamaks capable of producing significant numbers of hot ..cap alpha..-particles, the predominant interaction of the mode with the ..cap alpha..-particles is through resonances of various sorts. In turn, the modes can cause significant anomalous transport of the ..cap alpha..-particles and the helium ash. Here, results of comprehensive linear eigenfrequency-eigenfunction calculations are presented for relevant realistic cases to show these effects. 24 refs., 12 figs., 6 tabs.

  10. The Effects of Alpha Particle Confinement on Burning Plasma Tokamak Performance

    NASA Astrophysics Data System (ADS)

    Gormley, Robert P.

    In this thesis, three effects of alpha particle plasma interactions on the global performance of a fusion reactor are studied, namely, (i) the energy coupling efficiency of the fast alpha particles with the bulk plasma, (ii) the relationship between imperfect alpha energy coupling to the bulk plasma and the resultant alpha particle/helium ash fuel dilution; and (iii) the neoclassical bootstrap current induced by fusion born alpha particles calculated self-consistently with the plasma equilibrium. First, the ion drift kinetic equation for the high energy alpha particles is reduced from the exact five dimensional form to a two dimensional form in radius r and energy E (plus time t). The resulting slowing-down diffusion equation is solved by a multiple energy group method. A theoretically based anomalous diffusion coefficient D_sp{alpha}{an} is then introduced from a self-consistent alpha particle Alfven wave turbulence solution (by F. Gang), in which D_sp{alpha}{an } itself depends on the gradient in alpha density. The temporal and spatial behavior of eta_ alpha is analyzed for an ITER-CDA physics phase fusion reactor. We find that eta_ alpha can be as low as 0.95 depending on the plasma operating temperature. Next, the relationship between the alpha-particle power coupling efficiency and the actual alpha-particle power that is coupled with the bulk plasma is investigated, this time taking into account the concomitant helium ash accumulation. It is found that the coupled power varies less than linearly with eta_alpha and is, in fact, significantly depressed for eta_alpha near unity. Combining these effects with a thermal power balance shows that the high temperature "thermally stable" side of the ignition boundary is pushed toward lower temperatures if either D_alpha increases (which results in a lower eta_alpha) or the helium-ash confinement time lengthens. This is a consequence of strengthened fuel dilution and imperfect alpha power coupling. Implications on the

  11. The simulation of the response of superheated emulsion to alpha particles

    NASA Astrophysics Data System (ADS)

    Seth, Susnata; Das, Mala

    2016-04-01

    The response of superheated emulsion of liquid perfluorobutane (C4F10; b.p.: ‑1.7o C) to alpha particle has been studied by performing the simulation using GEANT3.21 toolkit. The simulations have been performed to generate two different experimental situations. In one case, the alpha contamination is present only in polymer and in another case, the alpha contamination is present both in polymer and active liquid. The value of the nucleation parameter, k, for bubble nucleation induced by alpha particle in superheated emulsion detector is determined by comparing the simulated normalized count rates with the available experimental results. The results show that the nucleation parameter for alpha particle in C4F10 liquid is about 0.19. The energy and position of alpha particle are not able to change the response of the alpha particle in C4F10 liquid. The recoiling nuclei associated with the alpha decay chain are responsible for making the detector sensitive at lower threshold temperatures.

  12. Method for characterizing the upset response of CMOS circuits using alpha-particle sensitive test circuits

    NASA Technical Reports Server (NTRS)

    Buehler, Martin G. (Inventor); Blaes, Brent R. (Inventor); Nixon, Robert H. (Inventor); Soli, George A. (Inventor)

    1995-01-01

    A method for predicting the SEU susceptibility of a standard-cell D-latch using an alpha-particle sensitive SRAM, SPICE critical charge simulation results, and alpha-particle interaction physics. A technique utilizing test structures to quickly and inexpensively characterize the SEU sensitivity of standard cell latches intended for use in a space environment. This bench-level approach utilizes alpha particles to induce upsets in a low LET sensitive 4-k bit test SRAM. This SRAM consists of cells that employ an offset voltage to adjust their upset sensitivity and an enlarged sensitive drain junction to enhance the cell's upset rate.

  13. On the approximations of the distribution function of fusion alpha particles

    SciTech Connect

    Bilato, R. Brambilla, M.; Poli, E.

    2014-10-15

    The solution of the drift-kinetic equation for fusion-born alpha particles is derived in the limit of dominant parallel streaming, and it is related to the usual slowing-down distribution function. The typical approximations of the fast tail of fusion-born alpha particles are briefly compared and discussed. In particular, approximating the distribution function of fast-alpha particles with an “equivalent” Maxwellian is inaccurate to describe absorption of radio-frequency waves in the ion-cyclotron range of frequencies.

  14. Transport theory for energetic alpha particles in finite aspect ratio tokamaks with broken symmetry

    NASA Astrophysics Data System (ADS)

    Shaing, K. C.; Schlutt, M.; Lai, A. L.

    2016-02-01

    Transport theory for the energetic alpha particles in finite aspect ratio tokamaks with broken symmetry is developed for the case where the slowing down collision operator dominates. The transport fluxes in the 1 /ν and superbanana plateau regimes are derived. Here, ν is the typical collision frequency. They can be used in modeling the energy loss of the alpha particles in thermonuclear fusion reactors. Numerical realizations of the superbanana orbits of alpha particles in tokamaks with broken symmetry are also presented. The existence of the superbananas corroborates the predictions of the theories presented here and elsewhere.

  15. Note: Real time optical sensing of alpha-radiation emitting radioactive aerosols based on solid state nuclear track detector

    SciTech Connect

    Kulkarni, A.; Bak, M. S. E-mail: moonsoo@skku.edu; Ha, S.; Joshirao, P.; Manchanda, V.; Kim, T. E-mail: moonsoo@skku.edu

    2015-06-15

    A sensitive radioactive aerosols sensor has been designed and developed. Its design guidance is based on the need for a low operational cost and reliable measurements to provide daily aerosol monitoring. The exposure of diethylene-glycol bis (allylcarbonate) to radiation causes modification of its physico-chemical properties like surface roughness and reflectance. In the present study, optical sensor based on the reflectance measurement has been developed with an aim to monitor real time presence of alpha radioactive aerosols emitted from thorium nitrate hydrate. The results shows that the fabricated sensor can detect 0.0157 kBq to 0.1572 kBq of radio activity by radioactive aerosols generated from (Th(NO{sub 3}){sub 4} ⋅ 5H{sub 2}O) at 0.1 ml/min flow rate. The proposed instrument will be helpful to monitor radioactive aerosols in/around a nuclear facility, building construction sites, mines, and granite polishing factories.

  16. Note: Real time optical sensing of alpha-radiation emitting radioactive aerosols based on solid state nuclear track detector.

    PubMed

    Kulkarni, A; Ha, S; Joshirao, P; Manchanda, V; Bak, M S; Kim, T

    2015-06-01

    A sensitive radioactive aerosols sensor has been designed and developed. Its design guidance is based on the need for a low operational cost and reliable measurements to provide daily aerosol monitoring. The exposure of diethylene-glycol bis (allylcarbonate) to radiation causes modification of its physico-chemical properties like surface roughness and reflectance. In the present study, optical sensor based on the reflectance measurement has been developed with an aim to monitor real time presence of alpha radioactive aerosols emitted from thorium nitrate hydrate. The results shows that the fabricated sensor can detect 0.0157 kBq to 0.1572 kBq of radio activity by radioactive aerosols generated from (Th(NO3)4 ⋅ 5H2O) at 0.1 ml/min flow rate. The proposed instrument will be helpful to monitor radioactive aerosols in/around a nuclear facility, building construction sites, mines, and granite polishing factories. PMID:26133876

  17. Alpha-particle scattering from sup 6 Li near the. alpha. - d breakup threshold

    SciTech Connect

    Samanta, C.; Ghosh, S.; Lahiri, M. ); Ray, S. ); Banerjee, S.R. )

    1992-04-01

    The {sup 6}Li({alpha},{alpha}{prime}) reaction was studied at {ital E}{sub {alpha}}=50 MeV. The angular distribution of the continuum region near the {sup 6}Li{r arrow}{alpha}+{ital d} breakup threshold (1.475 MeV) was measured for {theta}{sub lab}=7{degree}--40{degree}. The data were analyzed in terms of plane-wave and distorted-wave impulse approximation calculations. To study the possible effects of recombination of the breakup clusters in the exit channel, distorted-wave Born approximation calculations were also performed.

  18. In vitro immunotoxic and genotoxic activities of particles emitted from two different small-scale wood combustion appliances

    NASA Astrophysics Data System (ADS)

    Tapanainen, Maija; Jalava, Pasi I.; Mäki-Paakkanen, Jorma; Hakulinen, Pasi; Happo, Mikko S.; Lamberg, Heikki; Ruusunen, Jarno; Tissari, Jarkko; Nuutinen, Kati; Yli-Pirilä, Pasi; Hillamo, Risto; Salonen, Raimo O.; Jokiniemi, Jorma; Hirvonen, Maija-Riitta

    2011-12-01

    Residential wood combustion appliances emit large quantities of fine particles which are suspected to cause a substantial health burden worldwide. Wood combustion particles contain several potential health-damaging metals and carbon compounds such as polycyclic aromatic hydrocarbons (PAH), which may determine the toxic properties of the emitted particles. The aim of the present study was to characterize in vitro immunotoxicological and chemical properties of PM 1 ( Dp ≤ 1 μm) emitted from a pellet boiler and a conventional masonry heater. Mouse RAW264.7 macrophages were exposed for 24 h to different doses of the emission particles. Cytotoxicity, production of the proinflammatory cytokine TNF-α and the chemokine MIP-2, apoptosis and phases of the cell cycle as well as genotoxic activity were measured after the exposure. The type of wood combustion appliance had a significant effect on emissions and chemical composition of the particles. All the studied PM 1 samples induced cytotoxic, genotoxic and inflammatory responses in a dose-dependent manner. The particles emitted from the conventional masonry heater were 3-fold more potent inducers of programmed cell death and DNA damage than those emitted from the pellet boiler. Furthermore, the particulate samples that induced extensive DNA damage contained also large amounts of PAH compounds. Instead, significant differences between the studied appliances were not detected in measurements of inflammatory mediators, although the chemical composition of the combustion particles differed considerably from each other. In conclusion, the present results show that appliances representing different combustion technology have remarkable effects on physicochemical and associated toxicological and properties of wood combustion particles. The present data indicate that the particles emitted from incomplete combustion are toxicologically more potent than those emitted from more complete combustion processes.

  19. Hygroscopic properties of smoke-generated organic aerosol particles emitted in the marine atmosphere

    NASA Astrophysics Data System (ADS)

    Wonaschütz, A.; Coggon, M.; Sorooshian, A.; Modini, R.; Frossard, A. A.; Ahlm, L.; Mülmenstädt, J.; Roberts, G. C.; Russell, L. M.; Dey, S.; Brechtel, F. J.; Seinfeld, J. H.

    2013-10-01

    During the Eastern Pacific Emitted Aerosol Cloud Experiment (E-PEACE), a plume of organic aerosol was produced by a smoke generator and emitted into the marine atmosphere from aboard the R/V Point Sur. In this study, the hygroscopic properties and the chemical composition of the plume were studied at plume ages between 0 and 4 h in different meteorological conditions. In sunny conditions, the plume particles had very low hygroscopic growth factors (GFs): between 1.05 and 1.09 for 30 nm and between 1.02 and 1.1 for 150 nm dry size at a relative humidity (RH) of 92%, contrasted by an average marine background GF of 1.6. New particles were produced in large quantities (several 10 000 cm-3), which lead to substantially increased cloud condensation nuclei (CCN) concentrations at supersaturations between 0.07 and 0.88%. Ratios of oxygen to carbon (O : C) and water-soluble organic mass (WSOM) increased with plume age: from < 0.001 to 0.2, and from 2.42 to 4.96 μg m-3, respectively, while organic mass fractions decreased slightly (~ 0.97 to ~ 0.94). High-resolution aerosol mass spectrometer (AMS) spectra show that the organic fragment m/z 43 was dominated by C2H3O+ in the small, new particle mode and by C3H7+ in the large particle mode. In the marine background aerosol, GFs for 150 nm particles at 40% RH were found to be enhanced at higher organic mass fractions: an average GF of 1.06 was observed for aerosols with an organic mass fraction of 0.53, and a GF of 1.04 for an organic mass fraction of 0.35.

  20. Instabilities Driven by the Drift and Temperature Anisotropy of Alpha Particles in the Solar Wind

    NASA Astrophysics Data System (ADS)

    Verscharen, Daniel; Bourouaine, Sofiane; Chandran, Benjamin D. G.

    2013-08-01

    We investigate the conditions under which parallel-propagating Alfvén/ion-cyclotron (A/IC) waves and fast-magnetosonic/whistler (FM/W) waves are driven unstable by the differential flow and temperature anisotropy of alpha particles in the solar wind. We focus on the limit in which w ∥α >~ 0.25v A, where w ∥α is the parallel alpha-particle thermal speed and v A is the Alfvén speed. We derive analytic expressions for the instability thresholds of these waves, which show, e.g., how the minimum unstable alpha-particle beam speed depends upon w ∥α/v A, the degree of alpha-particle temperature anisotropy, and the alpha-to-proton temperature ratio. We validate our analytical results using numerical solutions to the full hot-plasma dispersion relation. Consistent with previous work, we find that temperature anisotropy allows A/IC waves and FM/W waves to become unstable at significantly lower values of the alpha-particle beam speed U α than in the isotropic-temperature case. Likewise, differential flow lowers the minimum temperature anisotropy needed to excite A/IC or FM/W waves relative to the case in which U α = 0. We discuss the relevance of our results to alpha particles in the solar wind near 1 AU.

  1. Relative Biologic Effects of Low-Dose-Rate {alpha}-Emitting {sup 227}Th-Rituximab and {beta}-Emitting {sup 90}Y-Tiuexetan-Ibritumomab Versus External Beam X-Radiation

    SciTech Connect

    Dahle, Jostein Bruland, Oyvind S.; Larsen, Roy H.

    2008-09-01

    Purpose: To determine the relative biologic effects (RBE) of {alpha}-particle radiation from {sup 227}Th-rituximab and of {beta}-radiation from {sup 90}Y-tiuexetan-ibritumomab (Zevalin) compared with external beam X-radiation in the Raji lymphoma xenograft model. Methods and Materials: Radioimmunoconjugates were administered intravenously in nude mice with Raji lymphoma xenografts at different levels of activity. Absorbed dose to tumor was estimated by separate biodistribution experiments for {sup 227}Th-rituximab and Zevalin. Tumor growth was measured two to three times per week after injection or X-radiation. Treatment-induced increase in growth delay to reach tumor volumes of 500 and 1,000 mm{sup 3}, respectively, was used as an end point. Results: The absorbed radiation dose-rate in tumor was slightly more than 0.1 Gy/d for the first week following injection of {sup 227}Th-rituximab, and thereafter gradually decreased to 0.03 Gy/d at 21 days after injection. For treatment with Zevalin the maximum dose-rate in tumor was achieved already 6 h after injection (0.2 Gy/d), and thereafter decreased to 0.01 Gy/d after 7 days. The relative biologic effect was between 2.5 and 7.2 for {sup 227}Th-rituximab and between 1 and 1.3 for Zevalin. Conclusions: Both at low doses and low-dose-rates, the {sup 227}Th-rituximab treatment was more effective per absorbed radiation dose unit than the two other treatments. The considerable effect at low doses suggests that the best way to administer low-dose-rates, {alpha}-emitting radioimmunoconjugates is via multiple injections.

  2. Present status of alpha-particle condensed states in 4n self-conjugate nuclei

    SciTech Connect

    Funaki, Y.; Yamada, T.; Horiuchi, H.; Tohsaki, A.; Roepke, G.; Schuck, P.

    2010-05-12

    Low density states near the 3alpha and 4alpha breakup threshold in {sup 12}C and {sup 16}O, respectively, are discussed in terms of the alpha-particle condensation. Calculations are performed in OCM (Orthogonality Condition Model) and THSR (Tohsaki-Horiuchi-Schuck-Roepke) approaches. The 0{sub 2}{sup +} state in {sup 12}C and the 0{sub 6}{sup +} state in {sup 16}O are shown to have dilute density structures and give strong enhancement of the occupation of the S-state c.o.m. orbital of the alpha-particles. The possibility of the existence of alpha-particle condensed states in heavier nalpha nuclei is also discussed.

  3. MIRD Pamphlet No. 22 (Unabridged): Radiobiology and Dosimetry of alpha-Particle Emitters for Targeted Radionuclide Therapy

    SciTech Connect

    Sgouros, George; Roeske, John C.; McDevitt, Michael S.; Palm, Stig; Allen, Barry J.; Fisher, Darrell R.; Brill, Bertrand A.; Song, Hong; Howell, R. W.; Akabani, Gamal

    2010-02-28

    The potential of alpha-particle emitters to treat cancer has been recognized since the early 1900s. Advances in the targeted delivery of radionuclides, in radionuclide conjugation chemistry, and in the increased availability of alpha-emitters appropriate for clinical use have recently led to patient trials of alpha-particle-emitter labeled radiopharmaceuticals. Although alpha-emitters have been studied for many decades, their current use in humans for targeted therapy is an important milestone. The objective of this work is to review those aspects of the field that are pertinent to targeted alpha-particle-emitter therapy and to provide guidance and recommendations for human alpha-particle-emitter dosimetry.

  4. High concentrations of coarse particles emitted from a cattle feeding operation

    NASA Astrophysics Data System (ADS)

    Hiranuma, N.; Brooks, S. D.; Gramann, J.; Auvermann, B. W.

    2011-08-01

    Housing roughly 10 million head of cattle in the United States alone, open air cattle feedlots represent a significant but poorly constrained source of atmospheric particles. Here we present a comprehensive characterization of physical and chemical properties of particles emitted from a large representative cattle feedlot in the Southwest United States. In the summer of 2008, measurements and samplings were conducted at the upwind and downwind edges of the facility. A series of far-field measurements and samplings was also conducted 3.5 km north of the facility. Two instruments, a GRIMM Sequential Mobility Particle Sizer (SMPS) and a GRIMM Portable Aerosol Spectrometer (PAS), were used to measure particle size distributions over the range of 0.01 to 25 μm diameter. Raman microspectroscopy was used to determine the chemical composition of particles on a single particle basis. Volume size distributions of dust were dominated by coarse mode particles. Twenty-four hour averaged concentrations of PM10 (particulate matter with a diameter of 10 μm or less) were as high as 1200 μg m-3 during the campaign. The primary constituents of the particulate matter were carbonaceous materials, such as humic acid, water soluble organics, and less soluble fatty acids, including stearic acid and tristearin. A significant fraction of the organic particles was present in internal mixtures with salts. Basic characteristics such as size distribution and composition of agricultural aerosols were found to be different than the properties of those found in urban and semi-urban aerosols. Failing to account for such differences may lead to errors in estimates of aerosol effects on local air quality, visibility, and public health.

  5. Treatment of neuroblastoma meningeal carcinomatosis with intrathecal application of alpha-emitting atomic nanogenerators targeting disialo-ganglioside GD2.

    PubMed

    Miederer, Matthias; McDevitt, Michael R; Borchardt, Paul; Bergman, Ira; Kramer, Kim; Cheung, Nai-Kong V; Scheinberg, David A

    2004-10-15

    Labeling of specific antibodies with bifunctional chelated Actinium-225 ((225)Ac; an alpha generator) allows the formation of new, highly potent and selective alpha-emitting anticancer drugs. We synthesized and evaluated a radioimmunoconjugate based on 3F8, an IgG(3) antibody that specifically binds to ganglioside GD2, which is overexpressed by many neuroectodermal tumors including neuroblastoma. The (225)Ac-1,4,7,10-tetra-azacylododecane (DOTA)-3F8 construct was evaluated for radiochemical purity and sterility, immunoreactivity, cytotoxicity in vitro, induction of apoptosis on GD2-positive cells, as well as for pharmacological biodistribution and metabolism of the (225)Ac generator and its daughters in a nude mouse xenograft model of neuroblastoma. The (225)Ac-3F8 showed an IC(50) of 3 Bq/ml (80 pCi/ml) on the neuroblastoma cell line, NMB7, in vitro. Apoptosis of these cells was not observed. Biodistribution in mice showed specific targeting of a subcutaneous tumor; there was redistribution of the (225)Ac daughter nuclides mainly from blood to kidneys and to small intestine. Toxicity was examined in cynomolgus monkeys. Monkeys injected with 1 to 3 doses of intrathecal (225)Ac-3F8 radioimmunoconjugate (80 to 150 kBq/kg total dose) did not show signs of toxicity based on blood chemistry, complete blood counts, or by clinical evaluations. Therapeutic efficacy of intrathecal (225)Ac-3F8 was studied in a nude rat xenograft model of meningeal carcinomatosis. The (225)Ac-3F8 treatment improved survival 2-fold from 16 to 34 days (P = 0.01). In conclusion, in vivo alpha generators targeted by 3F8 warrant additional study as a possible new approach to the treatment of carcinomatous meningitis. PMID:15501978

  6. FORMATION OF METAL-POOR GLOBULAR CLUSTERS IN Ly{alpha} EMITTING GALAXIES IN THE EARLY UNIVERSE

    SciTech Connect

    Elmegreen, Bruce G.; Malhotra, Sangeeta; Rhoads, James

    2012-09-20

    The size, mass, luminosity, and space density of Ly{alpha} emitting (LAE) galaxies observed at intermediate to high redshift agree with expectations for the properties of galaxies that formed metal-poor halo globular clusters (GCs). The low metallicity of these clusters is the result of their formation in low-mass galaxies. Metal-poor GCs could enter spiral galaxies along with their dwarf galaxy hosts, unlike metal-rich GCs, which form in the spirals themselves. Considering an initial GC mass larger than the current mass to account for multiple stellar populations, and considering the additional clusters that are likely to form with massive clusters, we estimate that each GC with a mass today greater than 2 Multiplication-Sign 10{sup 5} M{sub Sun} was likely to have formed among a total stellar mass {approx}> 3 Multiplication-Sign 10{sup 7} M{sub Sun }, a molecular mass {approx}> 10{sup 9} M{sub Sun }, and 10{sup 7} to 10{sup 9} M{sub Sun} of older stars, depending on the relative gas fraction. The star formation rate would have been several M{sub Sun} yr{sup -1} lasting for {approx}10{sup 7} yr, and the Ly{alpha} luminosity would have been {approx}> 10{sup 42} erg s{sup -1}. Integrating the LAE galaxy luminosity function above this minimum, considering the average escape probability for Ly{alpha} photons (25%), and then dividing by the probability that a dwarf galaxy is observed in the LAE phase (0.4%), we find agreement between the comoving space density of LAEs and the average space density of metal-poor GCs today. The local galaxy WLM, with its early starburst and old GC, could be an LAE remnant that did not get into a galaxy halo because of its remote location.

  7. Environmental impact of particles emitted from Windscale Piles, 1954-7.

    PubMed

    Chamberlain, A C

    1987-05-01

    During 1954-7 particles of irradiated uranium oxide were emitted from the Windscale Piles. The particles were large compared with most ambient aerosols, 85% by weight being between 10 and 100 micron diameter, and they mostly fell within a few kilometers of the works. From measurements of activity in soil in 1958 onwards, it is estimated that about 12 kg of uranium, 20 Ci of 137Cs, 18 Ci of 90Sr and 0.3 Ci of 239+240Pu were emitted. To estimate the concentrations of 90Sr and 137Cs in milk during the emissions, comparison is made with the fallout of fission products from bomb tests, which also began in 1954, but continued longer. It is calculated that the average level of 90Sr in milk at Seascale, 1954-7, was 36 pCi per g Ca, with higher concentrations, 100-200 pCi (g Ca)-1, in milk from farms immediately surrounding the Windscale plant. For comparison, in 1963/5 the average level of 90Sr in milk in the UK was 20-30 pCi (g Ca)-1, with 90-170 pCi (g Ca)-1 in milk from certain hill farms. Since the oxide particles were larger than those derived from bomb tests, and the conditions of deposition different, an extended review is given (Appendix 1) of the factors determining the entry of radioactive or stable contaminants from fallout into food chains. It is concluded that the oxide particles would have been less efficient in this respect than bomb fallout, mainly because their relatively large size and high density would have given impact velocities sufficient to cause them to bounce off leaves, leaving little activity on the edible herbage. For this reason, the calculations are on the safe side. PMID:3589652

  8. Beta camera for static and dynamic imaging of charged-particle emitting radionuclides in biologic samples

    SciTech Connect

    Ljunggren, K.; Strand, S.E. )

    1990-12-01

    A detection system based on microchannel plates has been constructed to image charged particles emitted by radionuclides in biomedical samples. This technique has significant advantages over conventional film autoradiography for investigating the distribution of radiolabeled compounds: shorter acquisition times due to the high sensitivity, easier sample handling, direct quantification and the ability to perform dynamic studies. The detector performance shows a spatial resolution of 0.9 mm for carbon-14 ({sup 14}C) (0.156 MeV), good linearity and homogeneity. The noise level is below 50/(cm{sup 2}.sec). Successful imaging with this system has been performed with beta-emitters {sup 14}C, sulfur-35 ({sup 35}S), iodine-131 ({sup 131}I), yttrium-90 (90Y), and positron emitters gallium-68 ({sup 68}Ga), and fluorine-18 ({sup 18}F). Dynamic studies of axonal transport of {sup 35}S-methionine in a nerve, and static images of 90Y-labeled monoclonal antibodies in slices of tumors are presented. The system shows promise for rapid quantitative imaging of charged-particle emitting radionuclides in small biologic samples.

  9. LIMITS ON ALPHA PARTICLE TEMPERATURE ANISOTROPY AND DIFFERENTIAL FLOW FROM KINETIC INSTABILITIES: SOLAR WIND OBSERVATIONS

    SciTech Connect

    Bourouaine, Sofiane; Verscharen, Daniel; Chandran, Benjamin D. G.; Maruca, Bennett A.; Kasper, Justin C.

    2013-11-01

    Previous studies have shown that the observed temperature anisotropies of protons and alpha particles in the solar wind are constrained by theoretical thresholds for pressure and anisotropy driven instabilities such as the Alfvén/ion-cyclotron (A/IC) and fast-magnetosonic/whistler (FM/W) instabilities. In this Letter, we use a long period of in situ measurements provided by the Wind spacecraft's Faraday cups to investigate the combined constraint on the alpha proton differential flow velocity and the alpha particle temperature anisotropy due to A/IC and FM/W instabilities. We show that the majority of the data are constrained to lie within the region of parameter space in which A/IC and FM/W waves are either stable or have extremely low growth rates. In the minority of observed cases in which the growth rate of the A/IC (FM/W) instability is comparatively large, we find relatively higher values of T {sub α}/T {sub p} (T {sub ∥α}/T {sub ∥p}) when the alpha proton differential flow velocity is small, where T {sub α} and T {sub p} (T {sub ∥α} and T {sub ∥p}) are the perpendicular (parallel) temperatures of alpha particles and protons. We conjecture that this observed feature might arise from preferential alpha particle heating which can drive the alpha particles beyond the instability thresholds.

  10. Influence of source composition and particle energy on the determination of gross alpha activity.

    PubMed

    Timón, A Fernández; Vargas, M Jurado; Sánchez, A B Ruano; Pérez, J de la Torre; Sánchez, A Martín

    2013-12-01

    The influence of different source compositions and α-particle energies on the detection efficiency of a gas-flow proportional counter was examined using experimental measurements and Monte Carlo simulations. Efficiency variation with alpha-particle energy was very marked, being less significant with the substrate composition. These results show that the determination of gross alpha activity in an unknown sample must be carried out very carefully in order to give a correct estimation of its activity. PMID:24184741

  11. Alpha particles in solar cosmic rays over the last 80,000 years.

    NASA Technical Reports Server (NTRS)

    Lanzerotti, L. J.; Reedy, R. C.; Arnold, J. R.

    1973-01-01

    Present-day (1967 to 1969) fluxes of alpha particles from solar cosmic rays, determined from satellite measurements, were used to calculate the production rates of cobalt-57, cobalt-58, and nickel-59 in lunar surface samples. Comparisons with the activities of nickel-59 (half-life, 80,000 years) measured in lunar samples indicate that the long-term and present-day fluxes of solar alpha particles are comparable within a factor of approximately 4.

  12. An alpha particle diagnostic based on measurements of lower hybrid wave fluctuations

    SciTech Connect

    Wong, K.L.

    1989-07-01

    It is shown that the one-dimensional alpha particle velocity distribution function can be determined from the fluctuation- dissipation theorem based on measurements of lower hybrid wave fluctuations in an equilibrium plasma. This method uses collective Thomson scattering data with large signal-to-noise ratio, but it is applicable only when the alpha particles have an isotropic velocity distribution. 16 refs., 1 fig.

  13. Combined effects of alpha particles and depleted uranium on Zebrafish (Danio rerio) embryos

    PubMed Central

    Ng, Candy Y.P.; Pereira, Sandrine; Cheng, Shuk Han; Adam-Guillermin, Christelle; Garnier-Laplace, Jacqueline; Yu, Kwan Ngok

    2016-01-01

    The combined effects of low-dose or high-dose alpha particles and depleted uranium (DU) in Zebrafish (Danio rerio) embryos were studied. Three schemes were examined—(i) [ILUL]: 0.44 mGy alpha-particle dose + 10 µg/l DU exposure, (ii) [IHUH]: 4.4 mGy alpha-particle dose + 100 µg/l DU exposure and (iii) [IHUL]: 4.4 mGy alpha-particle dose + 10 µg/l DU exposure—in which Zebrafish embryos were irradiated with alpha particles at 5 h post fertilization (hpf) and/or exposed to uranium at 5–6 hpf. The results were also compared with our previous work, which studied the effects of [ILUH]: 0.44 mGy alpha-particle dose + 100 µg/l DU exposure. When the Zebrafish embryos developed to 24 hpf, the apoptotic signals in the entire embryos, used as the biological endpoint for this study, were quantified. Our results showed that [ILUL] and [IHUL] led to antagonistic effects, whereas [IHUH] led to an additive effect. The effect found for the previously studied case of [ILUH] was difficult to define because it was synergistic with reference to the 100 µg/l DU exposure, but it was antagonistic with reference to the 0.44 mGy alpha-particle dose. All the findings regarding the four different schemes showed that the combined effects critically depended on the dose response to each individual stressor. We also qualitatively explained these findings in terms of promotion of early death of cells predisposed to spontaneous transformation by alpha particles, interacting with the delay in cell death resulting from various concentrations of DU exposure. PMID:26937024

  14. {alpha}-particle optical potentials for nuclear astrophysics (NA) and nuclear technology (NT)

    SciTech Connect

    Avrigeanu, V.; Avrigeanu, M.

    2012-11-20

    The high precision of recent measurements for low-energy {alpha}-particle elastic-scattering as well as induced-reaction data makes possible the understanding of actual limits and possible improvement of the global optical model potentials parameters. Involvement of recent optical potentials for reliable description of both the elastic scattering and emission of {alpha}-particles, of equal interest for nuclear astrophysics (NA) and nuclear technology (NT) for fusion devices, is discussed in the present work.

  15. Induction of mutations by bismuth-212 alpha particles at two genetic loci in human B-lymphoblasts.

    PubMed

    Metting, N F; Palayoor, S T; Macklis, R M; Atcher, R W; Liber, H L; Little, J B

    1992-12-01

    The human lymphoblast cell line TK6 was exposed to the alpha-particle-emitting radon daughter 212Bi by adding DTPA-chelated 212Bi directly to the cell suspension. Cytotoxicity and mutagenicity at two genetic loci were measured, and the molecular nature of mutant clones was studied by Southern blot analysis. Induced mutant fractions were 2.5 x 10(-5)/Gy at the hprt locus and 3.75 x 10(-5)/Gy at the tk locus. Molecular analysis of HPRT- mutant DNAs showed a high frequency (69%) of clones with partial or full deletions of the hprt gene among radiation-induced mutants compared with spontaneous mutants (31%). Chi-squared analyses of mutational spectra show a significant difference (P < or = 0.005) between spontaneous mutants and alpha-particle-induced mutants. Comparison with published studies of accelerator-produced heavy-ion exposures of TK6 cells indicates that the induction of mutations at the hprt locus, and perhaps a subset of mutations at the tk locus, is a simple linear function of particle fluence regardless of the ion species or its LET. PMID:1475356

  16. Potential for irradiation of the lens and cataract induction by incorporated alpha-emitting radionuclides

    SciTech Connect

    Taylor, D.M.; Thorne, M.C.

    1988-02-01

    Data on the uptake and retention of Ra and Pu in ocular tissues are reviewed. These data were used to calculate alpha radiation doses to the lens of the eye for patients injected with /sup 224/Ra and for individuals exposed to one annual limit on intake (ALI) per year of /sup 224/Ra, /sup 226/Ra, /sup 228/Ra and /sup 239/Pu for a period of 50 y. On the basis of this analysis, it is concluded that the induction of lens opacity should not be the factor limiting intake of any radioisotope of Pu or for /sup 224/Ra or /sup 226/Ra. However, for /sup 228/Ra the dose lies within the range of doses received by /sup 224/Ra patients who have developed cataracts.

  17. Bose-Einstein condensation of {alpha} particles and Airy structure in nuclear rainbow scattering

    SciTech Connect

    Ohkubo, S.; Hirabayashi, Y.

    2004-10-01

    It is shown that the dilute density distribution of {alpha} particles in nuclei can be observed in the Airy structure in nuclear rainbow scattering. We have analyzed {alpha}+{sup 12}C rainbow scattering to the 0{sub 2}{sup +} (7.65 MeV) state of {sup 12}C in a coupled-channel method with the precise wave functions for {sup 12}C. It is found that the enhanced Airy oscillations in the experimental angular distributions for the 0{sub 2}{sup +} state is caused by the dilute density distribution of this state in agreement for the idea of Bose-Einstein condensation of the three alpha particles.

  18. Calculations of alpha particle loss for reversed magnetic shear in the Tokamak Fusion Test Reactor

    SciTech Connect

    Redi, M.H.; White, R.B.; Batha, S.H.; Levinton, F.M.; McCune, D.C.

    1997-03-01

    Hamiltonian coordinate, guiding center code calculations of the toroidal field ripple loss of alpha particles from a reversed shear plasma predict both total alpha losses and ripple diffusion losses to be greater than those from a comparable non-reversed magnetic shear plasma in the Tokamak Fusion Test Reactor (TFTR) [Fusion Technol. 21, 1324 (1992)]. High central q is found to increase alpha ripple losses as well as first orbit losses of alphas in the reversed shear simulations. A simple ripple loss model, benchmarked against the guiding center code, is found to work satisfactorily in transport analysis modelling of reversed and monotonic shear scenarios. Alpha ripple transport on TFTR affects ions within r/a=0.5, not at the plasma edge. The entire plasma is above threshold for stochastic ripple loss of alpha particles at birth energy in the reversed shear case simulated, so that all trapped 3.5 MeV alphas are lost stochastically or through prompt losses. The 40% alpha particle loss predictions for TFTR suggest that reduction of toroidal field ripple will be a critical issue in the design of a reversed shear fusion reactor.

  19. Downstream energetic proton and alpha particles during quasi-parallel interplanetary shock events

    NASA Technical Reports Server (NTRS)

    Tan, L. C.; Mason, G. M.; Gloeckler, G.; Ipavich, F. M.

    1988-01-01

    This paper considers the energetic particle populations in the downstream region of three quasi-parallel interplanetary shock events, which was explored using the ISEE 3 Ultra Low Energy Charge Analyzer sensor, which unambiguously identifies protons and alpha particles using the electrostatic deflection versus residual energy technique. The downstream particles were found to exhibit anisotropies due largely to convection in the solar wind. The spectral indices of the proton and the alpha-particle distribution functions were found to be remarkably constant during the downstream period, being generally insensitive to changes in particle flux levels, magnetic field direction, and solar wind densities. In two of the three events, the proton and the alpha spectra were the same throughout the entire downstream period, supporting the prediction of diffusive shock acceleration theory.

  20. Effect of inhaled alpha-emitting nuclides on mouse alveolar macrophages

    SciTech Connect

    Talbot, R.J.; Nicholls, L.; Morgan, A.; Moores, S.R. )

    1989-08-01

    The effects of inhaled alpha emitters on the free cell population of the mouse lung were investigated up to 100 days after exposure. Groups of mice inhaled aerosols of {sup 238}PuO{sub 2}, {sup 239}PuO{sub 2}, or {sup 241}Am(NO{sub 3}){sub 3} to give alveolar deposits resulting in lung-averaged cumulative absorbed doses of about 20 Gy by the end of the study. Initially, with {sup 238}Pu most of the activity was associated with relatively few pulmonary alveolar macrophages (PAM), whereas with {sup 241}Am, all pulmonary alveolar macrophages were labeled and a substantial fraction was extracellular. The free cell population of the lung was sampled using bronchoalveolar lavage. The main parameters investigated were (a) the recovery and total numbers of free cells, including PAM, lymphocytes, and neutrophils; (b) the incidence of nuclear abnormalities in PAM (cells with more than one nucleus or with micronuclei); and (c) metabolic activation of PAM from measurements of their size and associated beta-glucuronidase activity. All three actinides produced depletions in total numbers of PAM, increased incidences of nuclear abnormalities, and metabolic activation of PAM, without a marked infiltration of inflammatory cells. Americium-241, which is distributed relatively uniformly in PAM, produced the most marked changes in that population and {sup 238}Pu, which gave the most inhomogeneous distribution of activity, produced the least.

  1. Superconducting calorimetric alpha particle sensors for nuclear nonproliferation applications

    SciTech Connect

    Horansky, Robert D.; Ullom, Joel N.; Beall, James A.; Hilton, Gene C.; Irwin, Kent D.; Dry, Donald E.; Hastings, Elizabeth P.; Lamont, Stephen P.; Rudy, Clifford R.; Rabin, Michael W.

    2008-09-22

    Identification of trace nuclear materials is usually accomplished by alpha spectrometry. Current detectors cannot distinguish critical elements and isotopes. We have developed a detector called a microcalorimeter, which achieves a resolution of 1.06 keV for 5.3 MeV alphas, the highest resolving power of any energy dispersive measurement. With this exquisite resolution, we can unambiguously identify the {sup 240}Pu/{sup 239}Pu ratio in Pu, a critical measurement for ascertaining the intended use of nuclear material. Furthermore, we have made a direct measurement of the {sup 209}Po ground state decay.

  2. Simulation of {alpha}-particle redistribution due to sawteeth on TFTR

    SciTech Connect

    Yi Zhao; White, R.B.

    1996-12-31

    In recent Deuterium-Tritium experiments on the Tokamak Fusion Test Reactor (TFTR), both the Pellet Charge Exchange (PCX) and the alpha Charge Exchange Recombination Spectroscopy ({alpha}-CHERS) diagnostics indicate that sawtooth oscillations can cause significant broadening of the fusion alpha radial density profile. The authors investigate this sawtooth mixing phenomenon by applying a Hamiltonian guiding center approach. A model of time evolution of the Kadomtsev-type sawtooth is constructed. The presence of more than one mode in the nonlinear stage of the sawtooth crash is necessary to cause significant broadening of the alpha density profile. Use of numerical equilibria allows us to perform detailed comparisons with TFTR experimental data. The results are in reasonable agreement with {alpha}-CHERS and show a broadening of alpha particles similar to that seen in PCX measurements.

  3. Chemical characterization of soot particles emitted by Wood-Burning Cook Stoves: A XPS and HRTEM study

    NASA Astrophysics Data System (ADS)

    Carabali, Giovanni; Peralta, Oscar; Castro, Telma; Torres, Ricardo; Ruiz, Gerardo; Molina, Luisa; Saavedra, Isabel

    2014-05-01

    The morphology, microstructure, chemical composition, and electronic structure of soot particles emitted directly from biofuel cook stoves have been studied by high resolution transmission electron microscopy (HRTEM) and X-ray photoelectron spectroscopy (XPS). In order to obtain freshly emitted soot particles, copper grids for Transmission Electron Microscope (TEM) were placed on the last two of an 8-stages MOUDI cascade impactor. The analysis of HRTEM micrographs revealed the nanostructure and the particle size of soot chain. Additionally, the morphology of soot particles was analyzed calculating the border-based fractal dimension (Df). Particles sampled on the first heating stage exhibit complex shapes with high values of Df, which are present as aggregates formed by carbon ceno-spheres. The XPS survey spectrum for soot particles shows that the main particle composition is carbon. We also observed differences in the carbon/oxygen (C/O) ratio of the particles, which probably depends on the combustion process efficiency of each cook-stove analyzed. The XPS C-1s spectra show carbon with two peaks that correspond to sp2 and sp3 hybridization. Also, real-time absorption (βa) and scattering (αs) coefficients of the particles emitted by cook stoves were measured. The trend in βa and αs indicate that the cooking process has two important combustion stages which varied in its flaming strength, being vigorous in the first stage and soft in the second one.

  4. Use of .sup.3 He.sup.30 + ICRF minority heating to simulate alpha particle heating

    DOEpatents

    Post, Jr., Douglass E.; Hwang, David Q.; Hovey, Jane

    1986-04-22

    Neutron activation due to high levels of neutron production in a first heated deuterium-tritium plasma is substantially reduced by using Ion Cyclotron Resonance Frequency (ICRF) heating of energetic .sup.3 He.sup.++ ions in a second deuterium-.sup.3 He.sup.++ plasma which exhibit an energy distribution and density similar to that of alpha particles in fusion reactor experiments to simulate fusion alpha particle heating in the first plasma. The majority of the fast .sup.3 He.sup.++ ions and their slowing down spectrum can be studied using either a modulated hydrogen beam source for producing excited states of He.sup.+ in combination with spectrometers or double charge exchange with a high energy neutral lithium beam and charged particle detectors at the plasma edge. The maintenance problems thus associated with neutron activation are substantially reduced permitting energetic alpha particle behavior to be studied in near term large fusion experiments.

  5. Modelling NPA measurements of alpha-particle distributions in JET and TFTR

    NASA Astrophysics Data System (ADS)

    McClements, K. G.; Dendy, R. O.; Gondhalekar, A.

    1997-11-01

    Neutral particle analyser (NPA) measurements of the DT fusion alpha-particle energy distribution function are simulated by geometrically weighted spatial line integrals of the time-evolving population. The latter is modelled semi-analytically using a simplified Fokker-Planck equation, where the alpha-particle source term is derived from measured fusion reactivity, and plasma collisionality from measured electron density and temperature profiles. This model [1] is benchmarked by zero-free-parameters agreement with TFTR tritium beam blip results [2]. We can thus quantify the differences between the measured NPA spectrum and the local alpha-particle distribution in the plasma core. [1] K G McClements et al, JET Report JET-R(97)02. [2] S S Medley et al, Plasma Phys Contr Fusion 38, 1779 (1996). This work was supported in part by the UK Department of Trade and Industry and Euratom

  6. Chemical Composition of Aerosol Particles Emitted by a Passenger Car Engine Fueled by Ethanol/Gasoline Mixtures

    NASA Astrophysics Data System (ADS)

    Medrano, J. M.; Gross, D. S.; Dutcher, D. D.; Drayton, M.; Kittelson, D.; McMurry, P.

    2007-12-01

    With concerns of national security, climate change, and human health, many people have called for oil independence for the United States and for the creation of alternative fuels. Ethanol has been widely praised as a viable alternative to petroleum-based fuels, due to the fact that it can be produced locally. A great deal of work has been done to characterize the energy balance of ethanol production versus consumption, but there have been fewer studies of the environmental and health impacts of emissions from combustion of ethanol/gasoline mixtures such as those burned in the modern vehicle fleet. To study the particulate emissions from such fuels, different ethanol/gasoline fuel mixtures with 0, 20, 40, and 85% ethanol were burned in a dynamometer-mounted automobile engine. The engine exhaust was diluted and sampled with two aerosol Time-of-Flight Mass Spectrometers (TSI 3800 ATOFMS), sampling different particle size ranges (50-500 nm and 150-3000 nm, respectively), to measure size and composition of the emitted aerosol particles. A variety of other aerosol characterization techniques were also employed to determine the size distribution of the aerosol particles, the mass emission rate from the engine, and the concentration of polycyclic aromatic hydrocarbons (PAHs) and elemental carbon (EC) in the particle emissions. Here we will focus on results from the ATOFMS, which provides us with a particle size and mass spectra - for both negative and positive ions - for each particle that is sampled. Particles being emitted were found to contain primarily PAHs, elemental carbon (EC), nitrates, and sulfates. Particles were analyzed to investigate trends in particle composition as a function of fuel ethanol content, particle size, and for the types of particles emitted. A trend in particle type as a function of fuel ethanol content was evident in smaller particles, and trends in composition as a function of particle size were visible across the entire size range sampled.

  7. Detection and localization of particle-emitting sources with compound-eye inspired detector arrays

    NASA Astrophysics Data System (ADS)

    Liu, Zhi

    2007-08-01

    We develop methods to detect and localize particle-emitting sources using detector arrays that are inspired by biological compound eyes. The sources of interest may be optical, nuclear, or cosmic; they emit particles such as visible photons, neutrons, protons, or charged particles. Our results may have wide applications to artificial vision, which can be important in robotics (robot vision) or medicine (e.g., artificial eyes for the blind); security, where the detection of nuclear materials is needed; or astronomy. This dissertation consists of three parts. First, we detect a far-field particle source using two directional detector arrays: cubic and spherical. We propose a mean-difference test (MDT) detector, analyze its statistical performance, and show that the MDT has a number of advantages over the generalized likelihood- ratio test (GLRT). Second, we localize the source by proposing a novel biologically inspired detector array, whose configuration generalizes the compound eye of insects. This array combines the advantages of compound eyes (e.g., large field-of-view) and human eyes (e.g., high angular resolution). Based on a statistical model of the array measurements, we analyze the array performance by computing the Cramérao bound (CRB) on the error in estimating the source direction. We also derive lower bounds on the mean-square angular error (MSAE) of the source localization and investigate the MSAE of two source- direction estimators. Numerical examples, including the optimal array design, are presented to further illustrate the array performance. Third, we derive a statistical angular resolution limit (ARL) on resolving two closely spaced point sources in a three-dimensional frame, which is applicable to various measurement models (e.g., radar, sonar, or astronomy). Using the asymptotic analysis of the GLRT, we derive the ARL with constraints on the probabilities of false alarm and detection. Our results give explicit analytical expression for the ARL

  8. Simple experimental method for alpha particle range determination in lead iodide films

    SciTech Connect

    Dmitriev, Yuri; Bennett, Paul R.; Cirignano, Leonard J.; Klugerman, Mikhail; Shah, Kanai S.

    2007-05-15

    An experimental method for determining the range of alpha particles in films based on I-V{sub s} analysis has been suggested. The range of 5.5 MeV alpha particles in PbI{sub 2} films determined by this technique is 30{+-}5 {mu}m, and this value is in agreement with the value calculated by SRIM (the stopping and range of ions in matter), r=24 {mu}m in PbI{sub 2}. More than 100 I-V{sub s} of PbI{sub 2} films with different thicknesses and quality have been analyzed, and the influence of alpha particle radiation on PbI{sub 2} I-V{sub s} curves has been studied. Developed analytical methods (dependence of current density on electric field and conception of surface defects) were used, and the method limitations are discussed. It was shown that I-V{sub s} demonstrate the tendency to obey Ohm's law under alpha radiation. On the other hand, dark conductivity of the lead iodide films shows a typical impure character that can lead to an overestimation of the alpha particles' range in PbI{sub 2} films. After films were exposed to alpha radiation, the dark resistivity and I-V shape of some films improved. Also, a weak decrease of the charge carrier concentration, due to a decrease of the ''surface defect'' concentration (''surface refining''), was registered after successive measurements of I-V{sub s}.

  9. Simple experimental method for alpha particle range determination in lead iodide films.

    PubMed

    Dmitriev, Yuri; Bennett, Paul R; Cirignano, Leonard J; Klugerman, Mikhail; Shah, Kanai S

    2007-05-01

    An experimental method for determining the range of alpha particles in films based on I-V(s) analysis has been suggested. The range of 5.5 MeV alpha particles in PbI(2) films determined by this technique is 30+/-5 microm, and this value is in agreement with the value calculated by SRIM (the stopping and range of ions in matter), r=24 microm in PbI(2). More than 100 I-V(s) of PbI(2) films with different thicknesses and quality have been analyzed, and the influence of alpha particle radiation on PbI(2) I-V(s) curves has been studied. Developed analytical methods (dependence of current density on electric field and conception of surface defects) were used, and the method limitations are discussed. It was shown that I-V(s) demonstrate the tendency to obey Ohm's law under alpha radiation. On the other hand, dark conductivity of the lead iodide films shows a typical impure character that can lead to an overestimation of the alpha particles' range in PbI(2) films. After films were exposed to alpha radiation, the dark resistivity and I-V shape of some films improved. Also, a weak decrease of the charge carrier concentration, due to a decrease of the "surface defect" concentration ("surface refining"), was registered after successive measurements of I-V(s). PMID:17552841

  10. Determination of neutron-induced alpha-particle cross sections on carbon using the response of a liquid scintillation detector

    SciTech Connect

    Brede, H.J.; Dietze, G.; Klein, H.; Schoelermann, H. )

    1991-01-01

    This paper presents the sums of the cross section {sup 12}C(n, {alpha}{sub 0}) {sup 9}Be and {sup 12}C(n, N{prime}3{alpha}) determined in the neutron energy range between 7.4 and 11 MeV. An NE-213 scintillation detector is simultaneously used as a carbon target, an alpha-particle detector, and a neutron fluence monitor. By comparing the measured and calculated response spectra, the neutron-induced alpha-particle events in the scintillation volume are separated and the cross sections {sigma}{sub n,{alpha}0} + {sigma}{sub n,n{prime}3{alpha}} are determined relative to the n-p scattering cross section. The pulse-height distribution due to alpha particles allows the angular distribution to be extracted on the basis of the reaction kinematics and an accurately determined light output function for alpha particles in the NE-213 detector.

  11. Comparison of short-lived high-LET alpha-emitting radionuclides lead-212 and bismuth-212 to low-LET X-rays on ovarian carcinoma.

    PubMed

    Rotmensch, J; Atcher, R W; Hines, J; Toohill, M; Herbst, A L

    1989-12-01

    We are investigating the potential use of short-lived alpha-emitting radionuclides for the treatment of ovarian carcinoma. These radionuclides transfer dense high ionizing linear energy (high LET) over a short path length without dependence upon cellular oxygen. The alpha-emitting radionuclides chosen were lead-212 and bismuth-212 which are readily available. The radiosensitivities of two ovarian carcinoma cell lines (OVC-1 and OVC-2) was greater with 212Pb and 212Bi than with X-ray therapy. D0, inversely related to the radiosensitivity, was 155 and 240 rads for OVC-1 and OVC-2, respectively. With 212Pb or 212Bi, the slope of the survival curves was steeper. The D0 was 75 and 70 rads after 212Pb and 85 and 95 rads after 212Bi treatment for OVC-1 and OVC-2, respectively. The relative biological effectiveness with alpha irradiation was two to four times greater than with X rays. Unlike low-LET irradiation (i.e., X rays and gamma emitters) the cells had no ability to accumulate or repair sublethal damage. From these experiments it is concluded that a greater therapeutic advantage may be gained with alpha-emitting radionuclides than X rays. Further development of these nuclides may provide for a new form of therapy. PMID:2599463

  12. TCAD simulation for alpha-particle spectroscopy using SIC Schottky diode.

    PubMed

    Das, Achintya; Duttagupta, Siddhartha P

    2015-12-01

    There is a growing requirement of alpha spectroscopy in the fields context of environmental radioactive contamination, nuclear waste management, site decommissioning and decontamination. Although silicon-based alpha-particle detection technology is mature, high leakage current, low displacement threshold and radiation hardness limits the operation of the detector in harsh environments. Silicon carbide (SiC) is considered to be excellent material for radiation detection application due to its high band gap, high displacement threshold and high thermal conductivity. In this report, an alpha-particle-induced electron-hole pair generation model for a reverse-biased n-type SiC Schottky diode has been proposed and verified using technology computer aided design (TCAD) simulations. First, the forward-biased I-V characteristics were studied to determine the diode ideality factor and compared with published experimental data. The ideality factor was found to be in the range of 1.4-1.7 for a corresponding temperature range of 300-500 K. Next, the energy-dependent, alpha-particle-induced EHP generation model parameters were optimised using transport of ions in matter (TRIM) simulation. Finally, the transient pulses generated due to alpha-particle bombardment were analysed for (1) different diode temperatures (300-500 K), (2) different incident alpha-particle energies (1-5 MeV), (3) different reverse bias voltages of the 4H-SiC-based Schottky diode (-50 to -250 V) and (4) different angles of incidence of the alpha particle (0°-70°).The above model can be extended to other (wide band-gap semiconductor) device technologies useful for radiation-sensing application. PMID:25634901

  13. Alpha-particle emission probabilities in the decay of 240Pu.

    PubMed

    Sibbens, G; Pommé, S; Altzitzoglou, T; García-Toraño, E; Janssen, H; Dersch, R; Ott, O; Sánchez, A Martín; Montero, M P Rubio; Loidl, M; Coron, N; de Marcillac, P; Semkow, T M

    2010-01-01

    Sources of enriched (240)Pu were prepared by vacuum evaporation on quartz substrates. High-resolution alpha-particle spectrometry of (240)Pu was performed with high statistical accuracy using silicon detectors and with low statistical accuracy using a bolometer. The alpha-particle emission probabilities of six transitions were derived from the spectra and compared with literature values. Additionally, some alpha-particle emission probabilities were derived from gamma-ray intensity measurements with a high-purity germanium detector. The alpha-particle emission probabilities of the three main transitions at 5168.1, 5123.6 and 5021.2 keV were derived from seven aggregate spectra analysed with five different fit functions and the results were compatible with evaluated data. Two additional weak peaks at 4863.5 and 4492.0 keV were fitted separately, using the exponential of a polynomial function to represent the underlying tailing of the larger peaks. The peak at 4655 keV could not be detected by alpha-particle spectrometry, while gamma-ray spectrometry confirms that its intensity is much lower than expected from literature. PMID:20106670

  14. Effects of q(r) on the Alpha Particle Ripple Loss in TFTR

    SciTech Connect

    D.S. Darrow; M. Diesso; R.V. Budny; S. Batha; S.J. Zweben; et al.

    1997-09-01

    An experiment was done with TFTR DT plasmas to determine the effect of the q(r) profile on the alpha particle ripple loss to the outer midplane. The alpha particle loss measurements were made using a radially movable scintillator detector 20 degrees below the outer midplane. The experimental results were compared with TF ripple loss calculations done using a Monte Carlo guiding center orbit following code, ORBIT. Although some of the experimental results are consistent with the ORBIT code modeling, the variation of the alpha loss with the q(r) profiles is not well explained by this code. Quantitative interpretation of these measurements requires a careful analysis of the limiter shadowing effect, which strongly determines the diffusion of alphas into the detector aperture.

  15. Chemical characteristics of fine particles emitted from different gas cooking methods

    NASA Astrophysics Data System (ADS)

    See, Siao Wei; Balasubramanian, Rajasekhar

    Gas cooking is an important indoor source of fine particles (PM 2.5). The chemical characteristics of PM 2.5 emitted from different cooking methods, namely, steaming, boiling, stir-frying, pan-frying and deep-frying were investigated in a domestic kitchen. Controlled experiments were conducted to measure the mass concentration of PM 2.5 and its chemical constituents (elemental carbon (EC), organic carbon (OC), polycyclic aromatic hydrocarbons (PAHs), metals and ions) arising from these five cooking methods. To investigate the difference in particle properties of different cooking emissions, the amount and type of food, and the heat setting on the gas stove were kept constant during the entire course of the experiments. Results showed that deep-frying gave rise to the largest amount of PM 2.5 and most chemical components, followed by pan-frying, stir-frying, boiling, and steaming. Oil-based cooking methods released more organic pollutants (OC, PAHs, and organic ions) and metals, while water-based cooking methods accounted for more water-soluble (WS) ions. Their source profiles are also presented and discussed.

  16. Fusion alpha-particle diagnostics for DT experiments on the joint European torus

    SciTech Connect

    Kiptily, V. G.; Beaumont, P.; Syme, D. B.; Cecil, F. E.; Riva, M.; Conroy, S.; Ericsson, G.; Craciunescu, T.; Garcia-Munoz, M.; Curuia, M.; Soare, S.; Darrow, D.; Fernandes, A. M.; Pereira, R. C.; Sousa, J.; Gorini,; Nocente, M.; and others

    2014-08-21

    JET equipped with ITER-like wall (a beryllium wall and a tungsten divertor) can provide auxiliary heating with power up to 35MW, producing a significant population of α-particles in DT operation. The direct measurements of alphas are very difficult and α-particle studies require a significant development of dedicated diagnostics. JET now has an excellent set of confined and lost fast particle diagnostics for measuring the α-particle source and its evolution in space and time, α-particle energy distribution, and α-particle losses. This paper describes how the above mentioned JET diagnostic systems could be used for α-particle measurements, and what options exist for keeping the essential α-particle diagnostics functioning well in the presence of intense DT neutron flux. Also, α-particle diagnostics for ITER are discussed.

  17. Alpha particle condensation in {sup 12}C and nuclear rainbow scattering

    SciTech Connect

    Ohkubo, S.; Hirabayashi, Y.

    2008-05-12

    It is shown that the large radius of the Hoyle state of {sup 12}C with a dilute density distribution in an {alpha} particle condensate can be clearly seen in the shift of the rainbow angle (therefore the Airy minimum) to a larger angle in {alpha}+{sup 12}C rainbow scattering at the high energy region and prerainbow oscillations in {sup 3}He+{sup 12}C scattering at the lower energy region.

  18. Characterizing Ice Nucleating Particles Emitted from Agricultural Activities and Natural Landscapes

    NASA Astrophysics Data System (ADS)

    Suski, K. J.; Levin, E. J.; DeMott, P. J.; Kreidenweis, S. M.; Hill, T. C. J.

    2015-12-01

    Soil dust and plant fragment emissions from agricultural harvesting and natural ecosystems are two potentially large, yet unquantified and largely uncharacterized, sources of ice nucleating particles (INPs). Both organic and mineral components have been shown to contribute to the ice-nucleating ability of soil dust, but apart from the likely presence of ice nucleation-active bacteria, little is known about the ice nucleating potential of plant tissues. This work aims to identify and differentiate the organic and inorganic contributions of soil and plant INP sources emitted from harvesting activities and natural landscapes. For this purpose, the CSU Continuous Flow Diffusion Chamber (CFDC) and the Ice Spectrometer (IS) were utilized in a combination of ambient measurements and laboratory studies. Small variability and low INP numbers (< 10 L-1 at -30 °C) characterized measurements made in air over the grazed Pawnee National Grassland in Colorado, while more variable INP over croplands around the DOE-ARM SGP site in Oklahoma appear linked to regional wind, humidity, and rainfall conditions. Harvesting of milo (grain sorghum), soybean, and wheat at an experimental research farm in Kansas resulted in spikes of INPs, with wheat harvesting producing the largest INP concentrations (up to 100 L-1 at -30 °C). In-situ use of heating tubes upstream of the CFDC to deactivate organic INP showed that milo and wheat harvest emissions showed a stronger reduction of INPs at warm temperatures than soybean emissions, suggesting a larger contribution of organics to their INP activity. Further characterization of the sources and organic and inorganic contributions to terrestrially emitted INPs by comparison to laboratory studies on collected soil dust and plant samples will also be presented.

  19. Monte Carlo simulation of age-dependent radiation dose from alpha- and beta-emitting radionuclides to critical trabecular bone and bone marrow targets

    NASA Astrophysics Data System (ADS)

    Dant, James T.; Richardson, Richard B.; Nie, Linda H.

    2013-05-01

    Alpha (α) particles and low-energy beta (β) particles present minimal risk for external exposure. While these particles can induce leukemia and bone cancer due to internal exposure, they can also be beneficial for targeted radiation therapies. In this paper, a trabecular bone model is presented to investigate the radiation dose from bone- and marrow-seeking α and β emitters to different critical compartments (targets) of trabecular bone for different age groups. Two main issues are addressed with Monte Carlo simulations. The first is the absorption fractions (AFs) from bone and marrow to critical targets within the bone for different age groups. The other issue is the application of 223Ra for the radiotherapy treatment of bone metastases. Both a static model and a simulated bone remodeling process are established for trabecular bone. The results show significantly lower AFs from radionuclide sources in the bone volume to the peripheral marrow and the haematopoietic marrow for adults than for newborns and children. The AFs from sources on the bone surface and in the bone marrow to peripheral marrow and haematopoietic marrow also varies for adults and children depending on the energy of the particles. Regarding the use of 223Ra as a radionuclide for the radiotherapy of bone metastases, the simulations show a significantly higher dose from 223Ra and its progeny in forming bone to the target compartment of bone metastases than that from two other more commonly used β-emitting radiopharmaceuticals, 153Sm and 89Sr. There is also a slightly lower dose from 223Ra in forming bone to haematopoietic marrow than that from 153Sm and 89Sr. These results indicate a higher therapy efficiency and lower marrow toxicity from 223Ra and its progeny. In conclusion, age-related changes in bone dimension and cellularity seem to significantly affect the internal dose from α and β emitters in the bone and marrow to critical targets, and 223Ra may be a more efficient

  20. Elements and polycyclic aromatic hydrocarbons in exhaust particles emitted by light-duty vehicles.

    PubMed

    Alves, Célia A; Barbosa, Cátia; Rocha, Sónia; Calvo, Ana; Nunes, Teresa; Cerqueira, Mário; Pio, Casimiro; Karanasiou, Angeliki; Querol, Xavier

    2015-08-01

    The main purpose of this work was to evaluate the chemical composition of particulate matter (PM) emitted by eight different light-duty vehicles. Exhaust samples from petrol and diesel cars (Euro 3 to Euro 5) were collected in a chassis dynamometer facility. To simulate the real-world driving conditions, three ARTEMIS cycles were followed: road, to simulate a fluid traffic flow and urban with hot and cold starts, to simulate driving conditions in cities. Samples were analysed for the water-soluble ions, for the elemental composition and for polycyclic aromatic hydrocarbons (PAHs), respectively, by ion chromatography, inductively coupled plasma atomic emission spectroscopy (ICP-AES), inductively coupled plasma mass spectrometry (ICP-MS) and gas chromatography-mass spectrometry (GC-MS). Nitrate and phosphate were the major water-soluble ions in the exhaust particles emitted from diesel and petrol vehicles, respectively. The amount of material emitted is affected by the vehicle age. For vehicles ≥Euro 4, most elements were below the detection limits. Sodium, with emission factors in the ranges 23.5-62.4 and 78.2-227μg km(-1), for petrol and diesel Euro 3 vehicles, respectively, was the major element. The emission factors of metallic elements indicated that diesel vehicles release three to five times more than petrol automobiles. Element emissions under urban cycles are higher than those found for on-road driving, being three or four times higher, for petrol vehicles, and two or three times, for diesel vehicles. The difference between cycles is mainly due to the high emissions for the urban cycle with hot start-up. As registered for elements, most of the PAH emissions for vehicles ≥Euro 4 were also below the detection limits. Regardless of the vehicle models or driving cycles, the two- to four-ring PAHs were always dominant. Naphthalene, with emission factors up to 925 μg km(-1), was always the most abundant PAH. The relative cancer risk associated with

  1. Recent outgassing from the lunar surface: The Lunar Prospector Alpha Particle Spectrometer

    NASA Astrophysics Data System (ADS)

    Lawson, Stefanie L.; Feldman, William C.; Lawrence, David J.; Moore, Kurt R.; Elphic, Richard C.; Belian, Richard D.; Maurice, Sylvestre

    2005-09-01

    The Lunar Prospector Alpha Particle Spectrometer (APS) was designed to detect characteristic-energy alpha particles from the decay of Rn-222, Po-218, and Po-210 and to therefore map sites of radon release on the lunar surface. These three nuclides are radioactive daughters from the decay of U-238 hence the background level of alpha particle activity is a function of the lunar crustal uranium distribution. Radon reaches the lunar surface either at areas of high soil porosity or where fissures release the trapped gases in which radon is entrained. Once released, the radon spreads out by ``bouncing'' across the surface on ballistic trajectories in a random-walk process. The half-life of Rn-222 allows the gas to spread out by several hundred kilometers before it decays (depositing approximately half of the Po-218 recoil nuclides on the lunar surface) and allows the APS to detect gas release events up to several days after they occur. The long residence time of the Pb-210 precursor to Po-210 allows the mapping of gas vents which have been active over the last approximately 60 years. The APS found only a faint indication of Po-218 alpha particles. However, the Rn-222 alpha particle map shows that radon gas was emanating from the vicinity of craters Aristarchus and Kepler at the time of Lunar Prospector. The Po-210 alpha particle distribution reveals a variability in time and space of lunar gas release events. Po-210 and Rn-222 detections are associated with both thorium enhancements and lunar pyroclastic deposits.

  2. Gross alpha, gross beta activities and gamma emitting radionuclides composition of airborne particulate samples in an oceanic island

    NASA Astrophysics Data System (ADS)

    Hernández, F.; Hernández-Armas, J.; Catalán, A.; Fernández-Aldecoa, J. C.; Karlsson, L.

    The radiometric compositions of airborne particulate samples, collected weekly during a 4 years period (1 January 2000 till 31 December 2003) at a site located 310 m a.s.l. in Tenerife (Canary Islands), are analysed in this paper. To do this, measurements of gross alpha, gross beta, 7Be, 210Pb, 228Ac, 226Ra, 212Pb, 214Pb, 208Tl, 214Bi, 235U, 40K, 131I and 137Cs concentrations were carried out in 376 cellulose and polypropylene filters. The time variations of the different radionuclides concentrations have been discussed in relation with various meteorological factors and the mean values have been compared to those published in recent literature for other sites located at the same altitude but different latitudes. The weekly activities of 7Be correlated linearly with the 210Pb activities ( R=0.59). In disagreement with other published studies, the 7Be activities did not correlate ( R=-0.05) with the temperature and maximum values were not found during summer season. The gross beta activities showed correlations with the gross alpha ( R=0.72) and 210Pb activities ( R=0.52), but not with the 7Be ( R=0.16). The anthropogenic radionuclide 131I, emitted from a nearby hospital, was detected slightly above detection limits (1.73×10 -6 Bq m -3) in 88 of the 210 weeks of measurement considered in this work. 137Cs was detected in 31 of those weeks. The 4-year average calculated for 7Be and 210Pb were 3 and 0.3 mBq m -3, respectively. These values are lower than those expected for a site at comparable latitude and altitude. In general, the radionuclides which appeared most frequently in the airborne particulate filters ( 7Be, 210Pb, 212Pb and 40K), did not correlate significantly with any of the meteorological parameters considered: rainfall, temperature, pressure, relative humidity, visibility, wind speed and direction. Therefore, no predictive model could be established with the available data as it has been done for continental sites. The long-range transport of aerosols

  3. Volatile properties of particles emitted by compressed natural gas and diesel buses during steady-state and transient driving modes.

    PubMed

    Jayaratne, E R; Meyer, N K; Ristovski, Z D; Morawska, L

    2012-01-01

    Volatile properties of particle emissions from four compressed natural gas (CNG) and four diesel buses were investigated under steady-state and transient driving modes on a chassis dynamometer. The exhaust was diluted utilizing a full-flow continuous volume sampling system and passed through a thermodenuder at controlled temperature. Particle number concentration and size distribution were measured with a condensation particle counter and a scanning mobility particle sizer, respectively. We show that while almost all the particles emitted by the CNG buses were in the nanoparticle size range, at least 85% and 98% were removed at 100 and 250 °C, respectively. Closer analysis of the volatility of particles emitted during transient cycles showed that volatilization began at around 40 °C, with the majority occurring by 80 °C. Particles produced during hard acceleration from rest exhibited lower volatility than those produced during other times of the cycle. On the basis of our results and the observation of ash deposits on the walls of the tailpipes, we suggest that these nonvolatile particles were composed mostly of ash from lubricating oil. Heating the diesel bus emissions to 100 °C removed ultrafine particle numbers by 69-82% when a nucleation mode was present and just 18% when it was not. PMID:22107263

  4. Size distribution, chemical composition, and hygroscopicity of fine particles emitted from an oil-fired heating plant.

    PubMed

    Happonen, Matti; Mylläri, Fanni; Karjalainen, Panu; Frey, Anna; Saarikoski, Sanna; Carbone, Samara; Hillamo, Risto; Pirjola, Liisa; Häyrinen, Anna; Kytömäki, Jorma; Niemi, Jarkko V; Keskinen, Jorma; Rönkkö, Topi

    2013-12-17

    Heavy fuel oil (HFO) is a commonly used fuel in industrial heating and power generation and for large marine vessels. In this study, the fine particle emissions of a 47 MW oil-fired boiler were studied at 30 MW power and with three different fuels. The studied fuels were HFO, water emulsion of HFO, and water emulsion of HFO mixed with light fuel oil (LFO). With all the fuels, the boiler emitted considerable amounts of particles smaller than 200 nm in diameter. Further, these small particles were quite hygroscopic even as fresh and, in the case of HFO+LFO emulsion, the hygroscopic growth of the particles was dependent on particle size. The use of emulsions and the addition of LFO to the fuel had a reducing effect on the hygroscopic growth of particles. The use of emulsions lowered the sulfate content of the smallest particles but did not affect significantly the sulfate content of particles larger than 42 nm and, further, the addition of LFO considerably increased the black carbon content of particulate matter. The results indicate that even the fine particles emitted from HFO based combustion can have a significant effect on cloud formation, visibility, and air quality. PMID:24245691

  5. Lyman Alpha-emitting Galaxies at z = 2.1: Characterizing the Progenitors of Typical Present-day Galaxies

    NASA Astrophysics Data System (ADS)

    Gawiser, Eric J.; Guaita, L.; Padilla, N.; Francke, H.; Bond, N. A.; Gronwall, C.; Ciardullo, R.; Sinawa, S.; Feldmeier, J. J.; MUSYC Collaboration

    2010-01-01

    We discovered a sample of 261 Lyman alpha emitting (LAE) galaxies at z=2.1 in an ultra-deep 3727A narrow-band MUSYC image of the Extended Chandra Deep Field-South. LAEs were selected to have rest-frame equivalent widths >20A and emission line fluxes >3.7x10-17 ergs/cm2/s, corresponding to L_Lya>1.2x1042 ergs/s. 3% of the original candidates were detected in X-rays by Chandra, and 7% were detected in the rest-frame far-UV by GALEX; these objects were eliminated to minimize contamination by AGN and low-redshift galaxies. Our sample has median rest-frame EW=40A, and only a few galaxies have rest-frame EW bigger than 200A. Our results show that the luminosity function of LAEs at z=2.1 is consistent with that of LAEs at z=3.1 but with number density a factor of 1.8+-0.3 higher. We used the rest frame UV luminosity to estimate a median star formation rate of 4 Msun/yr. Clustering analysis reveals that LAEs at z=2.1 have r0=3+-0.5 Mpc, corresponding to b=1.0+-0.2, the lowest clustering bias of any high-redshift galaxy population. This implies that z=2.1 LAEs reside in dark matter halos with masses 1010 Msun, which are the lowest-mass halos yet probed at this redshift. We used the Sheth-Tormen conditional mass function to study the descendants of these LAEs and found that their typical present-day descendants are local galaxies with sub-L* and L* luminosities, like the Milky Way. We gratefully acknowledge grant support for this research from NSF, DOE, and NASA.

  6. PRESENT-DAY DESCENDANTS OF z = 3 Ly{alpha}-EMITTING GALAXIES IN THE MILLENNIUM-II HALO MERGER TREES

    SciTech Connect

    Walker-Soler, Jean P.; Gawiser, Eric; Bond, Nicholas A.; Padilla, Nelson; Francke, Harold

    2012-06-20

    Using the Millennium-II Simulation dark matter sub-halo merger histories, we created mock catalogs of Ly{alpha}-emitting (LAE) galaxies at z = 3.1 to study the properties of their descendants. Several models were created by selecting the sub-halos to match the number density and typical dark matter mass determined from observations of these galaxies. We used mass-based and age-based selection criteria to study their effects on descendant populations at z {approx_equal} 2, 1, and 0. For the models that best represent LAEs at z = 3.1, the z = 0 descendants have a median dark matter halo mass of 10{sup 12.7} M{sub Sun }, with a wide scatter in masses (50% between 10{sup 11.8} and 10{sup 13.7} M{sub Sun }). Our study differentiated between central and satellite sub-halos and found that {approx}55% of z = 0 descendants are central sub-halos with M{sub Median} {approx} 10{sup 12}. This confirms that central z = 0 descendants of z = 3.1 LAEs have halo masses typical of L*-type galaxies. The satellite sub-halos reside in group/cluster environments with dark matter masses around 10{sup 14} M{sub Sun }. The median descendant mass is robust to various methods of age determination, but it could vary by a factor of five due to current observational uncertainties in the clustering of LAEs used to determine their typical z = 3.1 dark matter mass.

  7. Natural protection from zoonosis by alpha-gal epitopes on virus particles in xenotransmission.

    PubMed

    Kim, Na Young; Jung, Woon-Won; Oh, Yu-Kyung; Chun, Taehoon; Park, Hong-Yang; Lee, Hoon-Taek; Han, In-Kwon; Yang, Jai Myung; Kim, Young Bong

    2007-03-01

    Clinical transplantation has become one of the preferred treatments for end-stage organ failure, and one of the novel approaches being pursued to overcome the limited supply of human organs involves the use of organs from other species. The pig appears to be a near ideal animal due to proximity to humans, domestication, and ability to procreate. The presence of Gal-alpha1,3-Gal residues on the surfaces of pig cells is a major immunological obstacle to xenotransplantation. Alpha1,3galactosyltransferase (alpha1,3GT) catalyzes the synthesis of Gal alpha 1-3Gal beta 1-4GlcNAc-R (alpha-gal epitope) on the glycoproteins and glycolipids of non-primate mammals, but this does not occur in humans. Moreover, the alpha-gal epitope causes hyperacute rejection of pig organs in humans, and thus, the elimination of this antigen from pig tissues is highly desirable. Recently, concerns have been raised that the risk of virus transmission from such pigs may be increased due to the absence of alpha-gal on their viral particles. In this study, transgenic cells expressing alpha1,3GT were selected using 1.25 mg/ml neomycin. The development of HeLa cells expressing alpha1,3GT now allows accurate studies to be conducted on the function of the alpha-gal epitope in xenotransmission. The expressions of alpha-gal epitopes on HeLa/alpha-gal cells were demonstrated by flow cytometry and confocal microscopy using cells stained with IB4-fluorescein isothiocyanate lectin. Vaccinia viruses propagated in HeLa/alpha-gal cells also expressed alpha-gal on their viral envelopes and were more sensitive to inactivation by human sera than vaccinia virus propagated in HeLa cells. Moreover, neutralization of vaccinia virus was inhibited in human serum by 10 mm ethylene glycol bis(beta-aminoethylether)tetraacetic acid (EDTA) treatment. Our data indicated that alpha-gal epitopes are one of the major barriers to zoonosis via xenotransmission. PMID:17381684

  8. Evolution of trace gases and particles emitted by a chaparral fire in California

    NASA Astrophysics Data System (ADS)

    Akagi, S. K.; Craven, J. S.; Taylor, J. W.; McMeeking, G. R.; Yokelson, R. J.; Burling, I. R.; Urbanski, S. P.; Wold, C. E.; Seinfeld, J. H.; Coe, H.; Alvarado, M. J.; Weise, D. R.

    2012-02-01

    Biomass burning (BB) is a major global source of trace gases and particles. Accurately representing the production and evolution of these emissions is an important goal for atmospheric chemical transport models. We measured a suite of gases and aerosols emitted from an 81 hectare prescribed fire in chaparral fuels on the central coast of California, US on 17 November 2009. We also measured physical and chemical changes that occurred in the isolated downwind plume in the first ~4 h after emission. The measurements were carried out onboard a Twin Otter aircraft outfitted with an airborne Fourier transform infrared spectrometer (AFTIR), aerosol mass spectrometer (AMS), single particle soot photometer (SP2), nephelometer, LiCor CO2 analyzer, a chemiluminescence ozone instrument, and a wing-mounted meteorological probe. Our measurements included: CO2; CO; NOx; NH3; non-methane organic compounds; organic aerosol (OA); inorganic aerosol (nitrate, ammonium, sulfate, and chloride); aerosol light scattering; refractory black carbon (rBC); and ambient temperature, relative humidity, barometric pressure, and three-dimensional wind velocity. The molar ratio of excess O3 to excess CO in the plume (ΔO3/ΔCO) increased from -5.13 (±1.13) × 10-3 to 10.2 (±2.16) × 10-2 in ~4.5 h following smoke emission. Excess acetic and formic acid (normalized to excess CO) increased by factors of 1.73 ± 0.43 and 7.34 ± 3.03 (respectively) over the same time since emission. Based on the rapid decay of C2H4 we infer an in-plume average OH concentration of 5.27 (±0.97) × 106 molec cm-3, consistent with previous studies showing elevated OH concentrations in biomass burning plumes. Ammonium, nitrate, and sulfate all increased over the course of 4 h. The observed ammonium increase was a factor of 3.90 ± 2.93 in about 4 h, but accounted for just ~36% of the gaseous ammonia lost on a molar basis. Some of the gas phase NH3 loss may have been due to condensation on, or formation of, particles

  9. Energy and frequency dependence of the alpha particle redistribution produced by internal kink modes

    SciTech Connect

    Farengo, R.; Ferrari, H. E.; Garcia-Martinez, P. L.; Firpo, M.-C.; Ettoumi, W.; Lifschitz, A. F.

    2014-08-15

    The redistribution of alpha particles due to internal kink modes is studied. The exact particle trajectories in the total fields, equilibrium plus perturbation, are calculated. The equilibrium has circular cross section and the plasma parameters are similar to those expected in ITER. The alpha particles are initially distributed according to a slowing down distribution function and have energies between 18 keV and 3.5 MeV. The (1, 1), (2, 2), and (2, 1) modes are included and the effect of changing their amplitude and frequency is studied. When only the (1, 1) mode is included, the spreading of high energy (E≳1 MeV) alpha particles increases slowly with the energy and mode frequency. At lower energies, the redistribution is more sensitive to the mode frequency and particle energy. When a (2, 1) mode is added, the spreading increases significantly and particles can reach the edge of the plasma. Trapped particles are the most affected and the redistribution parameter can have maxima above 1 MeV, depending on the mode frequency. These results can have important implications for ash removal.

  10. Theory of energetic/alpha particle effects on magnetohydrodynamic modes in tokamaks

    SciTech Connect

    Chen, L.; White, R.B.; Rewoldt, G.; Colestock, P.; Rutherford, P.H.; Chen, Y.P.; Ke, F.J.; Tsai, S.T.; Bussac, M.N.

    1989-01-01

    The presence of energetic particles is shown to qualitatively modify the stability properties of ideal as well as resistive magnetohydrodynamic (MHD) modes in tokamaks. Specifically, we demonstrate that, consistent with highpower ICRF heating experiments in JET, high energy trapped particles can effectively stabilize the sawtooth mode, providing a possible route to stable high current tokamak operation. An alternative stabilization scheme employing barely circulating energetic particles is also proposed. Finally, we present analytical and numerical studies on the excitations of high-n MHD modes via transit resonances with circulating alpha particles. 14 refs., 3 figs.