Science.gov

Sample records for alpha-al2o3 spectroscopic evidence

  1. Fractionation of Suwannee River fulvic acid and aldrich humic acid on alpha-Al2O3: spectroscopic evidence.

    PubMed

    Claret, Francis; Schäfer, Thorsten; Brevet, Julien; Reiller, Pascal E

    2008-12-01

    Sorptive fractionation of Suwannee River Fulvic Acid (SRFA) and Purified Aldrich Humic Acid (PAHA) on alpha-Al2O3 at pH 6 was probed in the supernatant using different spectroscopic techniques. Comparison of dissolved organic carbon (DOC) analysis with UV/vis spectrophotometric measurements at 254 nm, including specific UV absorbance (SUVA) calculation, revealed a decrease in chromophoric compounds for the nonsorbed extracts after a 24 h contact time. This fractionation, only observable below a certain ratio between initial number of sites of humic substances and of alpha-Al2O3, seems to indicate a higher fractionation for PAHA. C(1s) near-edge X-ray absorption fine structure spectroscopy (NEXAFS) confirmed this trend and points to a decrease in phenolic moieties in the supernatant and to an eventual increase in phenolic moieties on the surface. Time-resolved luminescence spectroscopy (TRLS) of Eu(III) as luminescent probe showed a decrease in the ratio between the (5)D0-->(7)F2 and (5)D0-->(7)F1 transitions for the fractionated organic matter (OM) that is thought to be associated with a lower energy transfer from the OM to Eu(III) due to the loss of polar aromatics. These modifications in the supernatant are a hint for the modification of sorbed humic extracts on the surface. PMID:19192802

  2. The structure of the alpha-Al2O3(0001) surface from low-energyelectron diffraction: Al termination and evidence for large thermalvibrations

    SciTech Connect

    Soares, E.A.; Van Hove, M.A.; Walters, C.F.; McCarty, K.F.

    2000-05-05

    We have determined the surface structure of alpha-Al2O3(0001) using dynamical low-energy electron diffraction (LEED). Sapphire surfaces were prepared in three different ways, and the diffraction results were analyzed using an exhaustive search of possible models. For all sample processing conditions, the clearly favored structure has a single Al layer termination and a large first interlayer contraction. In addition, we find that the surface atoms have unusually large vibrational amplitudes at room temperature, suggestive of an anharmonic vibrational mode.

  3. Oxygen diffusion in alpha-Al2O3. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Cawley, J. D.; Halloran, J. W.; Cooper, A. R.

    1984-01-01

    Oxygen self diffusion coefficients were determined in single crystal alpha-Al2O3 using the gas exchange technique. The samples were semi-infinite slabs cut from five different boules with varying background impurities. The diffusion direction was parallel to the c-axis. The tracer profiles were determined by two techniques, single spectrum proton activation and secondary ion mass spectrometry. The SIMS proved to be a more useful tool. The determined diffusion coefficients, which were insensitive to impurity levels and oxygen partial pressure, could be described by D = .00151 exp (-572kJ/RT) sq m/s. The insensitivities are discussed in terms of point defect clustering. Two independent models are consistent with the findings, the first considers the clusters as immobile point defect traps which buffer changes in the defect chemistry. The second considers clusters to be mobile and oxygen diffusion to be intrinsic behavior, the mechanism for oxygen transport involving neutral clusters of Schottky quintuplets.

  4. Catalytic oxidation of elemental mercury over the modified catalyst Mn/alpha-Al2O3 at lower temperatures.

    PubMed

    Li, Jianfeng; Yan, Naiqiang; Qu, Zan; Qiao, Shaohua; Yang, Shijian; Guo, Yongfu; Liu, Ping; Jia, Jinping

    2010-01-01

    In order to facilitate the removal of elemental mercury (Hg(0)) from coal-fired flue gas, catalytic oxidation of Hg(0) with manganese oxides supported on inert alumina (alpha-Al2O3) was investigated at lower temperatures (373-473 K). To improve the catalytic activity and the sulfur-tolerance of the catalysts at lower temperatures, several metal elements were employed as dopants to modify the catalyst of Mn/alpha-Al2O3. The best performance among the tested elements was achieved with molybdenum (Mo) as the dopant in the catalysts. It can work even better than the noble metal catalyst Pd/alpha-Al2O3. Additionally, the Mo doped catalyst displayed excellent sulfur-tolerance performance at lower temperatures, and the catalytic oxidation efficiency for Mo(0.03)-Mn/alpha-Al2O3 was over 95% in the presence of 500 ppm SO2 versus only about 48% for the unmodified catalyst. The apparent catalytic reaction rate constant increased by approximately 5.5 times at 423 K. In addition, the possible mechanisms involved in Hg(0) oxidation and the reaction with the Mo modified catalyst have been discussed. PMID:19950921

  5. The Characteristics of Interface Misfit Dislocations for Epitaxial alpha-Fe2O3 on alpha-Al2O3(0001)

    SciTech Connect

    Wang, Chong M.; Thevuthasan, Suntharampillai; Gao, Fei; McCready, David E.; Chambers, Scott A.

    2002-07-01

    Alpha-Fe2O3(0001) films of thickness equal to {approx}7 nm and {approx}70 nm were epitaxially grown on alpha-Al2O3(0001) by oxygen plasma assisted molecular beam epitaxy (OPA-MBE). The interfaces were characterized using high resolution transmission electron microscopy (HRTEM), electron energy-loss spectroscopy (EELS), and x-ray diffraction (XRD). The interface exhibited coherent regions separated by equally-spaced misfit dislocations. When imaged from the[2110] direction, the dislocation spacing is 7.0 +- 1.1 nm for the 70 nm thick specimen, and 7.2 +- 0.1 nm for the 7 nm thick specimen. When imaged from the[0110] direction, the dislocation spacing is 4.5 +- 0.1 nm for the 7 nm thick specimen. The experimentally observed dislocation spacings are approximately consistent with those calculated from the lattice mismatch between alpha-Al2O3 and alpha-Fe2O3, implying that the lattice mismatch is accommodated mainly be interface misfit dislocations above the critical thickness, which is less than 7 nm. This conclusion is also corroborated by the measured residual strain of {approx}0.5% determined from x-ray diffraction for the 70 nm film . EELS analysis reveals that the Fe L2,3-edge shows no measurable chemical shift relative to the L2,3-edge of structural Fe3?, indicating complete oxidation of Fe in the as-grown film.

  6. Influence of thermal quenching on the thermostimulated processes in alpha-Al2O3. Role of F and F+ centres.

    PubMed

    Vincellér, S; Molnár, G; Berkane-Krachai, A; Iacconi, P

    2002-01-01

    Anion deficient alpha-Al2O3 is highly sensitive to ionising radiations and is widely used as a thermoluminescence and optically stimulated luminescence dosemeter in environmental monitoring. Two types of alpha alumina were studied and it was observed that both were affected by thermal quenching of luminescence. This effect, which manifests itself by the decay of the TL response when the heating rate increases, can be described by the Mott-Seitz theory. It was observed that thermostimulated exoemission response increased when the heating rate increased, whereas thermostimulated conductivity remained constant. However, none of the available theories could explain the dependence of the F- centre emission on the heating rate. A model is proposed to describe simultaneously the various thermally stimulated processes. PMID:12382832

  7. Vanadium oxides on aluminum oxide supports. 1. Surface termination and reducibility of vanadia films on alpha-Al2O3(0001).

    PubMed

    Todorova, Tanya K; Ganduglia-Pirovano, M Veronica; Sauer, Joachim

    2005-12-15

    Using density functional theory and statistical thermodynamics, we obtained the phase diagram of thin VnOm films of varying thickness (approximately 2-6 A, 1-6 vanadium layers) supported on alpha-Al2O3(0001). Depending on the temperature, oxygen pressure, and vanadium concentration, films with different thickness and termination may form. In ultrahigh vacuum (UHV), at room temperature and for low vanadium concentrations, an ultrathin (1 x 1) O=V-terminated film is most stable. As more vanadium is supplied, the thickest possible films form. Their structures and terminations correspond to previous findings for the (0001) surface of bulk V2O3 [Kresse et al., Surf. Sci. 2004, 555, 118]. The presence of surface vanadyl (O=V) groups is a prevalent feature. They are stable up to at least 800 K in UHV. Vanadyl oxygen atoms induce a V(2p) core-level shift of about 2 eV on the surface V atoms. The reducibility of the supported films is characterized by the energy of oxygen defect formation. For the stable structures, the results vary between 4.11 and 3.59 eV per 1/2O2. In contrast, oxygen removal from the V2O5(001) surface is much easier (1.93 eV). This provides a possible explanation for the lower catalytic activity of vanadium oxides supported on alumina compared to that of crystalline vanadia particles. PMID:16375327

  8. Comparative assessment of structural and biological properties of biomimetically coated hydroxyapatite on alumina (alpha-Al2O3) and titanium (Ti-6Al-4V) alloy substrates.

    PubMed

    Kapoor, Renu; Sistla, Pavana Goury; Kumar, Jerald Mahesh; Raj, T Avinash; Srinivas, G; Chakraborty, Jui; Sinha, Mithlesh K; Basu, Debabrata; Pande, Gopal

    2010-09-01

    Previous reports have shown the use of hydroxyapatite (HAp) and related calcium phosphate coatings on metal and nonmetal substrates for preparing tissue-engineering scaffolds, especially for osteogenic differentiation. These studies have revealed that the structural properties of coated substrates are dependent significantly on the method and conditions used for coating and also whether the substrates had been modified prior to the coating. In this article, we have done a comparative evaluation of the structural features of the HAp coatings, prepared by using simulated body fluid (SBF) at 25 degrees C for various time periods, on a nonporous metal substrate titanium-aluminium-vanadium (Ti-6Al-4V) alloy and a bioinert ceramic substrate alpha-alumina (alpha-Al(2)O(3)), with and without their prior treatment with the globular protein bovine serum albumin (BSA). Our analysis of these substrates by scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier-transform infrared (FTIR) spectrometry showed significant and consistent differences in the quantitative and qualitative properties of the coatings. Interestingly, the bioactivity of these substrates in terms of supporting in vitro cell adhesion and spreading, and in vivo effects of implanted substrates, showed a predictable pattern, thus indicating that some coated substrates prepared under our conditions could be more suitable for biological/biomedical applications. PMID:20730928

  9. Oxygen-Permeable, Hydrophobic Membranes of Silanized alpha-Al2O3

    NASA Technical Reports Server (NTRS)

    Atwater, James E.; Akse, James R.

    2006-01-01

    Membranes made of silanized alumina have been prepared and tested as prototypes of derivatized ceramic membranes that are both highly permeable to oxygen and hydrophobic. Improved oxygen-permeable, hydrophobic membranes would be attractive for use in several technological disciplines, including supporting high-temperature aqueousphase oxidation in industrial production of chemicals, oxygenation of aqueous streams for bioreactors, and oxygenation of blood during open-heart surgery and in cases of extreme pulmonary dysfunction. In comparison with organic polymeric oxygen-permeable membranes now commercially available, the derivatized ceramic membranes are more chemically robust, are capable of withstanding higher temperatures, and exhibit higher oxygen-diffusion coefficients.

  10. Boundary migration and disappearance of voids in Alpha-Al2O3 at 2000 deg C

    NASA Technical Reports Server (NTRS)

    Komatsu, M.; Fujita, H.

    1984-01-01

    A series of photographs taken with Osaka University's high temperature 3MV electron microscope of alpha-A1(z)O(3) at 2000 C is presented. The dynamic study shows grain boundary migration in progress and demonstrates that disappearance of voids is controlled by boundary migration.

  11. Spectroscopic Evidence for Nonuniform Starspot Properties on II Pegasi

    NASA Technical Reports Server (NTRS)

    ONeal, Douglas; Saar, Steven H.; Neff, James E.

    1998-01-01

    We present spectroscopic evidence for Multiple Spot temperatures on the RS CVn star II Pegasi (HD 224085). We model the strengths of the 7055 and 8860 A TiO absorption bands in the spectrum of II Peg using weighted sums of inactive comparison spectra: a K star to represent the nonspotted photosphere and an M star to represent the spots. The best fit yields independent measurements of the starspot filling factor (f(sub s) and mean spot temperature (T(sub s)) averaged over the visible hemisphere of the star. During three-fourths of a rotation of II Peg in late 1996, we measure a constant f(sub s) approximately equals 55% +/- 5%. However, (T(sub s) varies from 3350 +/- 60 to 3550 +/- 70 K. We compute (T(sub s) for two simple models: (1) a star with two distinct spot temperatures, and (2) a star with different umbral/penumbral area ratios. The changing (T(sub s) correlates with emission strengths of H(alpha) and the Ca II infrared triplet in the sense that cooler (T(sub s) accompanies weaker emission. We explore possible implications of these results for the physical properties of the spots on II Peg and for stellar surface structure in general.

  12. II Peg: Spectroscopic Evidence for Multiple Starspot Temperatures

    NASA Astrophysics Data System (ADS)

    O'Neal, Douglas; Saar, Steven H.; Neff, James E. Neff

    We present spectroscopic evidence for multiple spot temperatures on the RS CVn star II Pegasi (HD 224085). We fit the strengths of the 7055 AAg and 8860 AAg TiO absorption bands in the spectrum of an active star using weighted sums of comparison spectra: the spectrum of an inactive K star to represent the non-spotted photosphere and the spectrum of an M star to represent the spots. We can thus independently measure starspot filling factor (fspot) and temperature (tspot). During 3/4 of a rotation of II Peg in Sept.-Oct. 1996, we measure fspot approximately constant at 55+/-5%. However, tspot varies from 3350 K to 3500 K. Since our method yields one derived tspot integrated over the visible hemisphere of the star, we present the results of simple models of a star with two distinct spot temperatures and compute the tspot we would derive in those cases. The changing tspot correlates with emission strengths of Hα and the Ca 2 infrared triplet, in the sense that cooler \\tspot accompanies weaker emission. We explore the consequences of these results for the physical properties of the spots on II Peg and for stellar surface structure in general.

  13. Spectroscopic Evidence for Nonuniform Starspot Properties on II Pegasi

    NASA Astrophysics Data System (ADS)

    O'Neal, Douglas; Saar, Steven H.; Neff, James E.

    1998-07-01

    We present spectroscopic evidence for multiple spot temperatures on the RS CVn star II Pegasi (HD 224085). We model the strengths of the 7055 and 8860 Å TiO absorption bands in the spectrum of II Peg using weighted sums of inactive comparison spectra: a K star to represent the nonspotted photosphere and an M star to represent the spots. The best fit yields independent measurements of the starspot filling factor (fS) and mean spot temperature () averaged over the visible hemisphere of the star. During three-fourths of a rotation of II Peg in late 1996, we measure a constant fS~55%+/-5%. However, varies from 3350+/-60 to 3550+/-70 K. We compute for two simple models: (1) a star with two distinct spot temperatures, and (2) a star with different umbral/penumbral area ratios. The changing correlates with emission strengths of Hα and the Ca II infrared triplet in the sense that cooler accompanies weaker emission. We explore possible implications of these results for the physical properties of the spots on II Peg and for stellar surface structure in general.

  14. Spectroscopic Evidence for Gas Infall in GF 9-2

    NASA Astrophysics Data System (ADS)

    Furuya, Ray S.; Kitamura, Yoshimi; Shinnaga, Hiroko

    2009-02-01

    We present spectroscopic evidence for the infall motion of gas in the natal cloud core harboring an extremely young low-mass protostar GF 9-2. We previously discussed that the ongoing collapse of the GF 9-2 core has agreement with the Larson-Penston-Hunter (LPH) theoretical solution for the gravitational collapse of a core. To discuss the gas infall on firmer ground, we have carried out on-the-fly mapping observations of the HCO+ (1-0) line using the Nobeyama 45 m telescope equipped with the 25 Beam Array Receiver System. Furthermore, we observed the HCN (1-0) line with the 45 m telescope, and the HCO+ (3-2) line with the Caltech Submillimeter Observatory 10.4 m telescope. The optically thick HCO+ and HCN lines show blueskewed profiles whose deepest absorptions are seen at the peak velocity of optically thin lines, i.e., the systemic velocity of the cloud, indicating the presence of gas infall toward the central protostar. We compared the observed HCO+ line profiles with model ones by solving the radiative transfer in the core under LTE assumption. We found that the core gas has a constant infall velocity of ~0.5 km s-1 in the central region, leading to a mass accretion rate of 2.5 × 10-5 M sun yr-1. Consequently, we confirm that the gas infall in the GF 9-2 core is consistent with the LPH solution.

  15. Spectroscopic evidence for Davydov-like solitons in acetanilide

    NASA Astrophysics Data System (ADS)

    Careri, G.; Buontempo, U.; Galluzzi, F.; Scott, A. C.; Gratton, E.; Shyamsunder, E.

    1984-10-01

    Detailed measurements of infrared absorption and Raman scattering on crystalline acetanilide [(CH3CONHC6H5)x] at low temperature show a new band close to the conventional amide I band. Equilibrium properties and spectroscopic data rule out explanations based on a conventional assignment, crystal defects, Fermi resonance, and upon frozen kinetics between two different subsystems. Thus we cannot account for this band using the concepts of conventional molecular spectroscopy, but a soliton model, similar to that proposed by Davydov for α-helix in protein, is in satisfactory agreement with the experimental data.

  16. Vibrational spectroscopic evidence for (NO)3 formation on Cu(111)

    NASA Astrophysics Data System (ADS)

    Koshida, H.; Okuyama, H.; Hatta, S.; Aruga, T.

    2016-08-01

    The formation of (NO)3 on Cu(111) was recently reported based on scanning tunneling microscopy observations [A. Shiotari et al., J. Chem. Phys. 141, 134705 (2014)]. We herein report studies into this system using electron energy loss spectroscopy and verify the above findings through vibrational analysis. For the surface covered with mixed isotopes of N16O and N18O, we observed four peaks corresponding to N-O stretching vibrations, which were ascribed to the four isotopic combinations of the trimer. Dynamic coupling within the trimer was evaluated from model calculations of the coupled oscillators. Furthermore, we observed hindered rotation and translation modes in the dipole scattering regime, suggesting that the molecular axis is tilted from the surface normal. These results provide spectroscopic support for the formation of (NO)3 on Cu(111).

  17. Vibrational spectroscopic evidence for (NO)3 formation on Cu(111).

    PubMed

    Koshida, H; Okuyama, H; Hatta, S; Aruga, T

    2016-08-01

    The formation of (NO)3 on Cu(111) was recently reported based on scanning tunneling microscopy observations [A. Shiotari et al., J. Chem. Phys. 141, 134705 (2014)]. We herein report studies into this system using electron energy loss spectroscopy and verify the above findings through vibrational analysis. For the surface covered with mixed isotopes of N(16)O and N(18)O, we observed four peaks corresponding to N-O stretching vibrations, which were ascribed to the four isotopic combinations of the trimer. Dynamic coupling within the trimer was evaluated from model calculations of the coupled oscillators. Furthermore, we observed hindered rotation and translation modes in the dipole scattering regime, suggesting that the molecular axis is tilted from the surface normal. These results provide spectroscopic support for the formation of (NO)3 on Cu(111). PMID:27497570

  18. Even-odd staggering of the spectroscopic factor as new evidence for α clustering

    NASA Astrophysics Data System (ADS)

    Delion, D. S.; Dumitrescu, A.; Baran, V. V.

    2016-04-01

    We evidence a staggering effect of the experimental spectroscopic factors corresponding to even-even and odd-mass (odd-mass and odd-odd) α emitters. The comparison to the theoretical estimate within the standard Bardeen-Cooper-Schrieffer (BCS) approach reveals a similar staggering, but with a different behavior. It turns out that the ratio between corresponding experimental and theoretical spectroscopic factors is proportional to the experimental reduced decay width. A similar dependence was found in a previous work between the strength of the quadrupole-quadrupole α -core interaction, describing the α -decay fine structure and the reduced width. Thus, the even-odd staggering effect in the spectroscopic factor is a new evidence of the α -clustering phenomenon in medium and heavy nuclei.

  19. Spectroscopic Characterization of Mineralogy Across Vesta: Evidence of Different Lithologies

    NASA Technical Reports Server (NTRS)

    De Sanotis, M. C.; Ammannito, E.; Filacchione, G.; Capria, M. T.; Tosi, F.; Capaccioni, F.; Zambon, F.; Carraro, F.; Fonte, S.; Frigeri, A.; Jaumann, R.; Magni, G.; Marchi, S.; McCord, T. B.; McFadden, L. A.; McSween, H. Y.; Mittlefehldt, D. W.; Nathues, A.; Palomba, E.; Pieters, C. M.; Raymond, C. A.; Russell, C. T.; Turrini, D.

    2012-01-01

    The average spectrum of Vesta, obtained by VIR in the range 0.25-5.1 microns, shows clear evidence of absorption bands due to pyroxenes and thermal emissions beyond 3.5 11m. Vesta shows considerable variability across its surface in terms of spectral reflectance and emission, band depths, bands widths and bands centers, reflecting a complex geological history. Vesta's average spectrum and inferred mineralogy resemble those of howardite meteorites. On a regional scale, significant deviations are seen: the south polar 500km Rheasilvia impact crater has a higher diogenitic component, and equatorial regions show a higher eucritic component. This lithologic distribution, with a concentration of Mg-pyroxenes in the Rheasilvia area, reinforces the hypothesis of a deeper diogenitic crust excavated by the impact that formed the Rheasilvia crater, and an upper eucritic crust, whose remnants are seen in the equatorial region. This scenario has implications for Vesta differentiation, consistent with magma ocean models. However, serial magmatism models could also have concentrated pyroxene cumulates in plutons emplaced within the lower crust,

  20. Soil examination for a forensic trace evidence laboratory--Part 1: Spectroscopic techniques.

    PubMed

    Woods, Brenda; Lennard, Chris; Kirkbride, K Paul; Robertson, James

    2014-12-01

    In the past, forensic soil examination was a routine aspect of trace evidence examination in forensic science. However, in Australia, the apparent need for soil examinations has diminished and with it the capability of forensic science laboratories to carry out soil examination has been eroded. In recent years, due to soil examinations contributing to some high profile investigations, interest in soil examinations has been renewed. Routine soil examinations conducted in a forensic science laboratory by trace evidence scientists can be facilitated if the examinations are conducted using the instrumentation routinely used by these examiners. Spectroscopic techniques such as visible microspectrophotometry (MSP) and Attenuated Total Reflectance (ATR) Fourier Transform Infrared spectroscopy (FTIR) are routinely used by trace evidence analysts for the colour and compositional analysis, respectively, of forensic items, including paints, fibres, inks and toners, tapes, adhesives and other miscellaneous examinations. This article presents an examination of the feasibility of using MSP and ATR-FTIR as a first step in the forensic comparison of soils with particular reference to Australian soil samples. This initial study demonstrates MSP and ATR-FTIR can effectively be used as a screening test for the discrimination of "forensic-sized" soil samples prior to submission for more detailed analyses by a soil expert. PMID:25205526

  1. Oligomerization in As (III) sulfide solutions: Theoretical constraints and spectroscopic evidence

    NASA Astrophysics Data System (ADS)

    Helz, George R.; Tossell, John A.; Charnock, John M.; Pattrick, Richard A. D.; Vaughan, David J.; David Garner, C.

    1995-11-01

    Bond distances, vibrational frequencies, gas-phase energetics, and proton affinities for various thioarsenite molecules and ions are predicted from molecular orbital theory and used to interpret EXAFS and Raman spectra of dissolved thioarsenites in undersaturated, alkaline 1 M NaHS solutions. From MO predictions, Raman peaks at 325 and 412 cm - are assigned to AsS(SH) 2- and a peak at 382 cm - to AsS 2(SH) 2- At alkaline pH, As-S distances in dissolved thioarsenites are 2.21-2.23 Å and no statistically significant As-As interactions are recorded, consistent with predominance of the monomers, AsS(SH) 2- and AsS 2(SH ) 2-. Estimated proton affinities suggest that thioarsenites with a negative charge greater than 2 are unstable in water. In seeming contradiction to this spectroscopic evidence, a new analysis of published solubility studies reinforces previous inferences that the trimer, As 3S 4(SH) 2-, is the predominant thioarsenite in systems saturated with As 2S 3. Previously proposed dimeric species of the form, H xAs2S 4x- , are rejected based on predicted thermodynamic properties. Dimer plus tetramer combinations also are rejected. Estimated free energies for AsS (OH)(SH) - and AsS(SH) 2- are presented. We reconcile the spectroscopic and solubility evidence by showing that in undersaturated solutions monomers can become thermodynamically favored over oligomers. This pattern should be looked for in other sulfide systems as well. Sulfidic natural waters are in many cases undersaturated with respect to AS 2S 3 phases, so monomeric thioarsenites could be more important in nature than the trimers that have been characterized in saturated solutions. EXAFS spectra show that amorphous AS 2S 3 resembles orpiment in the first shell around As, but that higher shells are disordered. Disorder may be caused by occasional realgar-like, As-As bonds, consistent with the observation that amorphous AS 2S 3 is slightly S deficient.

  2. Visible-NIR Spectroscopic Evidence for the Composition of Low-Albedo Altered Soils on Mars

    NASA Astrophysics Data System (ADS)

    Murchie, S.; Merenyi, E.; Singer, R.; Kirkland, L.

    1996-03-01

    Spectroscopic studies of altered Martian soils at visible and at NIR wavelengths have generally supported the canonical model of the surface layer as consisting mostly of 2 components, bright red hematite-containing dust and dark gray pyroxene-containing sand. However several of the studies have also provided tantalizing evidence for distinct 1 micrometer Fe absorptions in discrete areas, particularly dark red soils which are hypothesized to consist of duricrust. These distinct absorptions have been proposed to originate from one or more non-hematitic ferric phases. We have tested this hypothesis by merging high spatial resolution visible- and NIR-wavelength data to synthesize composite 0.44-3.14 1lm spectra for regions of western Arabia and Margaritifer Terra. The extended wavelength coverage allows more complete assessment of ferric, ferrous, and H2O absorptions in both wavelength ranges. The composite data show that, compared to nearby bright red soil in Arabia, dark red soil in Oxia has a lower albedo, a more negative continuum slope, and a stronger 3 micrometer H2O absorption . However Fe absorptions are closely similar in position and depth. These results suggest that at least some dark red soils may differ from "normal" dust and mafic sand more in texture than in Fe mineralogy, although there appears to be enrichment in a water-containing phase and/or a dark, spectrally neutral phase. In contrast, there is clear evidence for enrichment of a low-albedo ferric mineral in dark gray soils composing Sinus Meridiani. These have visible- and NIR-wavelength absorptions consistent with crystalline hematite with relatively little pyroxene, plus a very weak 3 micrometer H2O absorption. These properties suggest a Ethology richer in crystalline hematite and less hydrated than both dust and mafic-rich sand.

  3. An Optical Spectroscopic Survey of the Serpens Main Cluster: Evidence for Two Populations?

    NASA Astrophysics Data System (ADS)

    Erickson, Kristen L.; Wilking, Bruce A.; Meyer, Michael R.; Kim, Jinyoung Serena; Sherry, William; Freeman, Matthew

    2015-03-01

    We have completed an optical spectroscopic survey of a sample of candidate young stars in the Serpens Main star-forming region selected from deep B, V, and R band images. While infrared, X-ray, and optical surveys of the cloud have identified many young stellar objects (YSOs), these surveys have been biased toward particular stages of pre-main sequence evolution. We have obtained over 700 moderate resolution optical spectra that, when combined with published data, have led to the identification of 63 association members based on the presence of Hα in emission, lithium absorption, X-ray emission, a mid-infrared excess, and/or reflection nebulosity. Twelve YSOs are identified based on the presence of lithium absorption alone. An additional 16 objects are classified as possible association members and their pre-main sequence nature is in need of confirmation. Spectral types along with V and R band photometry were used to derive effective temperatures and bolometric luminosities for association members to compare with theoretical tracks and isochrones for pre-main sequence stars. An average age of 2 Myr is derived for this population. When compared to simulations, there is no obvious evidence for an age spread when considering the major sources of uncertainties in the derived luminosities. However when compared to the young cluster in Ophiuchus, the association members in Serpens appear to have a larger spread in luminosities and hence ages which could be intrinsic to the region or the result of a foreground population of YSOs associated with the Aquila Rift. Modeling of the spectral energy distributions from optical through mid-infrared wavelengths has revealed three new transition disk objects, making a total of six in the cluster. Echelle spectra for a subset of these sources enabled estimates of v sin i for seven association members. Analysis of gravity-sensitive lines in the echelle and moderate resolution spectra of the association members indicate surface

  4. Ground-Based Evidence of Spectroscopic Features in the Atmosphere of HAT-P-26b

    NASA Astrophysics Data System (ADS)

    Stevenson, Kevin B.; Bean, Jacob; Gilbert, Greg; Line, Michael R.; Fortney, Jonathan J.; Desert, Jean-Michel

    2016-01-01

    HAT-P-26b is a low-density, Neptune-mass exoplanet that transits its K1 host star every 4.2 days. With an equilibrium temperature of ~990 K, its atmosphere is expected to contain appreciable amounts of water and methane. However, due to obscuring clouds, the detection of spectroscopic features in other planetary atmospheres of comparable temperature has been elusive. Using Magellan's recently-upgraded LDSS-3C detector, we performed transmission spectroscopy observations of HAT-P-26b in the red optical (0.7 - 1.0 μm) and acquired broadband Spitzer measurements at 3.6 and 4.5 μm. We will present the first constraints on the transmission spectrum of HAT-P-26b, which favor the detection of spectroscopic features and argue against the presence of thick, high-level clouds. We will also compare our findings to those of other characterized exoplanets and examine potential trends in the data.

  5. Evidences of long lived cages in functionalized polymers: Effects on chromophore dynamic and spectroscopic properties

    NASA Astrophysics Data System (ADS)

    Prampolini, Giacomo; Monti, Susanna; De Mitri, Nicola; Barone, Vincenzo

    2014-05-01

    molecules between the two zones and a significant modulation of the flexibility and mobility of the dye. Very similar trends were found for the same g (r) computed in the GS. For this latter state, the impact on the distribution of the values adopted by the δ1 dihedral angle, which defines the orientation of the naphthalene ring in relation to the carboxyl group (Figure 4), is evident in the right panel of Figure 1: in toluene solution there are two distinct peaks centered around 0° and ±180°, meaning that two planar conformations are equally probable. Instead, inside the polymer only the δ1≈0° conformer is populated, confirming that the initial orientation of this portion of the probe is preserved by the hindering action of the close polymer chains which prevent a complete rotation of the naphthoyloxy group. The same constraining was also found in the EES, though less evident because of a decreased flexibility of the δ1 torsion.In order to support this view, the effect on dye’s flexibility of the intermolecular interactions of the latter with the polymer bundle was checked and compared with the one due to the dye-solvent interactions established in toluene solution. This was accomplished through a mean field descriptor which was connected to the torsional degrees of freedom, as detailed in the Supporting Information. In this particular case it was interesting to examine the specific behavior of the δ1 dihedral angle. The resulting mean field W (δ1) in the polymer and in toluene solution, displayed in Figure 2, presents a marked difference between the two surrounding media with toluene leading to a nearly vanishing and flatter W(δ1). It is also worth noticing that the entanglement of the polymer around the dye creates a supplementary well, centered at about δ1 = 0, that constrains this angle to librate within a limited interval rather than exploring the complete range of values.Further proofs of the existence of a tight and stable cleft and its constraining

  6. Spectroscopic evidence for spin-polarized silicon atoms on Si(553)-Au

    SciTech Connect

    Snijders, Paul C; Johnson, P.S.; Guisinger, Nathan; Erwin, S. C.; Himpsel, F.J.

    2012-01-01

    The stepped Si(553)-Au surface undergoes a $1\\times3$ reconstruction at low temperature which has recently been interpreted theoretically as the $\\times3$ ordering of spin-polarized silicon atoms along a step edge in each surface unit cell. This predicted magnetic ground state has a clear spectroscopic signature---a silicon step-edge state at $0.5$ eV above the Fermi level---that arises from strong exchange splitting and hence would not occur without spin polarization. Here we report spatially resolved scanning tunneling spectroscopy data for Si(553)-Au that reveal key differences in the unoccupied step-edge density of states between room temperature and $40$ K. At low temperature we find an unoccupied state at 0.55 eV above every third step-edge silicon atom, in excellent agreement with the spin-polarized ground state predicted theoretically.

  7. Search for evidence of Allene on Titan with new spectroscopic data

    NASA Astrophysics Data System (ADS)

    Jolly, A.; Benilan, Y.; Manceron, L.; Kwabia-Tchana, F.; Nixon, C.

    2015-10-01

    The Composite Infrared Spectrometer (CIRS) on board Cassini has recorded spectra in the far and mid-infrared since 2004 with a spectral resolution of up to0.5 cm-1. Mismatch between observed and model spectra obtained from the available line lists has led us to study the spectroscopic parameters of HC3N, C4H 2 and C2 N2, the longest gas phase carbon chains observed so far on Titan. Fundamental and hot band intensities, as well as line lists were systematically verified by comparison with new laboratory spectra. Erroneous band intensities,as well as an absence or shortage of hot band transitions in the available line lists leading to model-data mismatches and inaccurate quantifications have been found.

  8. Spectroscopic Evidence for SN 2010ma Associated with GRB 101219B

    NASA Astrophysics Data System (ADS)

    Sparre, M.; Sollerman, J.; Fynbo, J. P. U.; Malesani, D.; Goldoni, P.; de Ugarte Postigo, A.; Covino, S.; D'Elia, V.; Flores, H.; Hammer, F.; Hjorth, J.; Jakobsson, P.; Kaper, L.; Leloudas, G.; Levan, A. J.; Milvang-Jensen, B.; Schulze, S.; Tagliaferri, G.; Tanvir, N. R.; Watson, D. J.; Wiersema, K.; Wijers, R. A. M. J.

    2011-07-01

    We report on the spectroscopic detection of supernova SN 2010ma associated with the long gamma-ray burst GRB 101219B. We observed the optical counterpart of the GRB on three nights with the X-shooter spectrograph at the Very Large Telescope. From weak absorption lines, we measure a redshift of z = 0.55. The first-epoch UV-near-infrared afterglow spectrum, taken 11.6 hr after the burst, is well fit by a power law consistent with the slope of the X-ray spectrum. The second- and third-epoch spectra (obtained 16.4 and 36.7 days after the burst), however, display clear bumps closely resembling those of the broad-lined type-Ic SN 1998bw if placed at z = 0.55. Apart from demonstrating that spectroscopic SN signatures can be observed for GRBs at these large distances, our discovery makes a step forward in establishing a general connection between GRBs and SNe. In fact, unlike most previous unambiguous GRB-associated SNe, GRB 101219B has a large gamma-ray energy (E iso = 4.2 × 1051 erg), a bright afterglow, and obeys the "Amati" relation, thus being fully consistent with the cosmological population of GRBs. Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere, Chile, under program 086.A-0073(B). Also based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the Science and Technology Facilities Council (United Kingdom), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), Ministério da Ciência e Tecnologia (Brazil), and Ministerio de Ciencia, Tecnología e Innovacón Productiva (Argentina).

  9. Spectroscopic Evidence for Clusters of Like-Charged Ions in Ionic Liquids Stabilized by Cooperative Hydrogen Bonding.

    PubMed

    Knorr, Anne; Stange, Peter; Fumino, Koichi; Weinhold, Frank; Ludwig, Ralf

    2016-02-01

    Direct spectroscopic evidence for hydrogen-bonded clusters of like-charged ions is reported for ionic liquids. The measured infrared O-H vibrational bands of the hydroxyethyl groups in the cations can be assigned to the dispersion-corrected DFT calculated frequencies of linear and cyclic clusters. Compensating the like-charge Coulomb repulsion, these cationic clusters can range up to cyclic tetramers resembling molecular clusters of water and alcohols. These ionic clusters are mainly present at low temperature and show strong cooperative effects in hydrogen bonding. DFT-D3 calculations of the pure multiply charged clusters suggest that the attractive hydrogen bonds can compete with repulsive Coulomb forces. PMID:26670942

  10. Studies on the inclusion behavior of 9-Aminoacridine into cyclodextrins: Spectroscopic and theoretical evidences

    NASA Astrophysics Data System (ADS)

    Manivannan, C.; Vijay Solomon, R.; Venuvanalingam, P.; Renganathan, R.

    2013-02-01

    9-Aminoacridine (9-AA) is an important attractive pharmaceutical drug employed as chemotheraptic agent for wound dressings. However, 9-AA possesses limited solubility and rapid metabolic decomposition renders this potential drug to limit its applications. Here we propose cyclodextrins (CDs) as a drug carrier to improve the bioavailability, solubility of 9-AA. The interaction between 9-AA and CDs (α-CD and β-CD) has been studied using UV-Vis absorption, steady state time resolved fluorescence, 1H NMR and FT-IR spectroscopy techniques. The spectroscopic measurements show that 9-AA does not form stable complex with α-CD and also confirmed by DFT calculations. On the other hand, 9-AA forms inclusion complex with β-CD in a 1:1 stoichiometry ratio. Our DFT results suggest that 9-AA stabilizes inside the CD environment through hydrogen bonding that has unambiguously confirmed by AIM analysis. Thus our studies provide a useful insights in the development of Aminoacridine based drugs & its delivery through a suitable carrier like CDs.

  11. Spectroscopic evidence for biochar amendment promoting humic acid synthesis and intensifying humification during composting.

    PubMed

    Wang, Cheng; Tu, Qiaoping; Dong, Da; Strong, P J; Wang, Hailong; Sun, Bin; Wu, Weixiang

    2014-09-15

    Despite the many benefits of biochar amendment in composting, little information is available about its effects on organic matter humification during the process. In this study the analytical results for two in-vessel composting piles were compared, one amended with biochar (VPSB, pig manure+sawdust+biochar) and the other serving as a control (VPS, pig manure+sawdust). During the 74 days of humification, the increased content of humic acid carbon in VPSB is 16.9% more than that of the control. Spectroscopic analyses show a higher O-alkyl C/alkyl C ratio and aromaticity in VPSB at the thermophilic phase, and peak intensities of fulvic-like and humic-like substances were achieved faster in VPSB than VPS. These data inferred that biochar amendment promoted the neo-synthesis of humic acids and intensified the humification of pig manure. Increase in carboxylic groups of biochar as a result of oxidation reactions and sorption of humic substances may correspond to the faster formation of aromatic polymers in biochar-supplemented composting pile. The results suggest that biochar amendment might be a potential method to enhance humification during pig manure composting. PMID:25194558

  12. Spectroscopic Evidence for the Two C-H-Cleaving Intermediates of Aspergillus nidulans Isopenicillin N Synthase.

    PubMed

    Tamanaha, Esta; Zhang, Bo; Guo, Yisong; Chang, Wei-Chen; Barr, Eric W; Xing, Gang; St Clair, Jennifer; Ye, Shengfa; Neese, Frank; Bollinger, J Martin; Krebs, Carsten

    2016-07-20

    The enzyme isopenicillin N synthase (IPNS) installs the β-lactam and thiazolidine rings of the penicillin core into the linear tripeptide l-δ-aminoadipoyl-l-Cys-d-Val (ACV) on the pathways to a number of important antibacterial drugs. A classic set of enzymological and crystallographic studies by Baldwin and co-workers established that this overall four-electron oxidation occurs by a sequence of two oxidative cyclizations, with the β-lactam ring being installed first and the thiazolidine ring second. Each phase requires cleavage of an aliphatic C-H bond of the substrate: the pro-S-CCys,β-H bond for closure of the β-lactam ring, and the CVal,β-H bond for installation of the thiazolidine ring. IPNS uses a mononuclear non-heme-iron(II) cofactor and dioxygen as cosubstrate to cleave these C-H bonds and direct the ring closures. Despite the intense scrutiny to which the enzyme has been subjected, the identities of the oxidized iron intermediates that cleave the C-H bonds have been addressed only computationally; no experimental insight into their geometric or electronic structures has been reported. In this work, we have employed a combination of transient-state-kinetic and spectroscopic methods, together with the specifically deuterium-labeled substrates, A[d2-C]V and AC[d8-V], to identify both C-H-cleaving intermediates. The results show that they are high-spin Fe(III)-superoxo and high-spin Fe(IV)-oxo complexes, respectively, in agreement with published mechanistic proposals derived computationally from Baldwin's founding work. PMID:27193226

  13. Interaction between aqueous uranium (VI) and sulfide minerals: Spectroscopic evidence for sorption and reduction

    SciTech Connect

    Wersin, P.; Hochella, M.F. Jr.; Persson, P.; Redden, G.; Leckie, J.O. ); Harris, D.W. )

    1994-07-01

    The interaction of aqueous U(VI) with galena and pyrite surfaces under anoxic conditions has been studied by solution analysis and by spectroscopic methods. The solution data indicate that uranyl uptake is strongly dependent on pH; maximum uptake (>98%) occurs above a pH range of between 4.8 and 5.5, depending on experimental conditions. Increasing the sorbate/sorbent ratio results in a relative decrease in uptake of uranyl and in slower sorption kinetics. Auger electron spectroscopy analysis indicates an inhomogeneous distribution of sorbed uranium at the surface. In the case of galena, formation of small precipitates ([approximately] 40 nm wide needles) of a uranium oxide compound are found. Pyrite shows a patchy distribution of uranium, mainly associated with oxidized surface species of sulfur and iron. X-ray photoelectron spectroscopy yields insight into possible redox processes indicating, for both sulfides, the concomitant formation of polysulfides and a uranium oxide compound with a mixed oxidation state at a U(VI)/U(IV) ratio of [approximately] 2. Furthermore, in the case of pyrite, at pH above 6 increased oxidation of sulfur and iron and higher relative amounts of unreduced surface-uranyl are observed. Fourier Transformed Infrared analysis of surface-bound uranyl shows a significant shift of the asymmetric stretching frequency to lower wavenumbers which is consistent with the formation of a U[sub 3]O[sub 8]-type compound and thus, independently, confirms the partial reduction of uranyl at the sulfide surface. The combination of AES, XPS, and FTIR provides a powerful approach for identifying mechanisms that govern the interaction of redox sensitive compounds in aqueous systems. The overall results indicate that sulfide minerals are efficient scavengers of soluble uranyl. Comparing the results with recent field observations, the authors suggest that thermodynamically metastable U[sub 3]O[sub 8] controls uranium concentrations in many anoxic groundwaters.

  14. Evidence for CO in Jupiter's atmosphere from airborne spectroscopic observations at 5 microns

    NASA Technical Reports Server (NTRS)

    Larson, H. P.; Fink, U.; Treffers, R. R.

    1978-01-01

    High-altitude (12.4 km) spectra of Jupiter recorded at the Kuiper Airborne Observatory are analyzed for the presence of CO absorption lines. A line-by-line comparison of Jupiter's spectrum with that of carbon monoxide is presented, as well as a correlation analysis that includes the influence of other gases present in Jupiter's atmosphere (CH4, NH3, H2O, PH3, and GeH4). The resulting evidence points strongly to the presence of carbon monoxide in Jupiter's atmosphere, thus strengthening Beer's evidence for it. Possible explanations for the existence and observability of Jovian CO, including convection from hotter, deeper layers or decomposition of organic molecules, are explored. A recent suggestion that the Jovian CO is restricted to stratospheric levels is not supported by the observations.

  15. X-ray photoelectron spectroscopic evidence for bacteria-enhanced dissolution of hornblende

    NASA Astrophysics Data System (ADS)

    Kalinowski, B. E.; Liermann, L. J.; Brantley, S. L.; Barnes, A.; Pantano, C. G.

    2000-04-01

    hornblende surface. Surface complexation is favored because of the extremely high association constants for siderophore + Fe(III). X-ray photoelectron spectroscopic data is therefore consistent with a model wherein enhanced Fe release by these bacteria or desferrioxamine B is caused by Fe-siderophore complexation at the silicate surface. Such complexation presumably weakens bonds between the Fe and the oxide lattice, causing enhanced Fe leaching and an Fe-depleted surface. Some leaching may also be due to LMWOA, although this is interpreted to be of secondary importance.

  16. First Spectroscopic Evidence for High Ionization State and Low Oxygen Abundance in Lyα Emitters

    NASA Astrophysics Data System (ADS)

    Nakajima, Kimihiko; Ouchi, Masami; Shimasaku, Kazuhiro; Hashimoto, Takuya; Ono, Yoshiaki; Lee, Janice C.

    2013-05-01

    We present results from Keck/NIRSPEC and Magellan/MMIRS follow-up spectroscopy of Lyα emitters (LAEs) at z = 2.2 identified in our Subaru narrowband survey. We successfully detect Hα emission from seven LAEs, and perform a detailed analysis of six LAEs free from active galactic nucleus activity, two out of which, CDFS-3865 and COSMOS-30679, have [O II] and [O III] line detections. They are the first [O II]-detected LAEs at high-z, and their [O III]/[O II] ratios and R23-indices provide the first simultaneous determinations of ionization parameter and oxygen abundance for LAEs. CDFS-3865 has a very high ionization parameter (q_{ion}=2.5^{+1.7}_{-0.8} \\times 10^8 cm s-1) and a low oxygen abundance (12+log (O/H)=7.84^{+0.24}_{-0.25}) in contrast with moderate values of other high-z galaxies such as Lyman break galaxies (LBGs). COSMOS-30679 also possesses a relatively high ionization parameter (q_{ion}=8^{+10}_{-4} \\times 10^7 cm s-1) and a low oxygen abundance (12+log (O/H)=8.18^{+0.28}_{-0.28}). Both LAEs appear to fall below the mass-metallicity relation of z ~ 2 LBGs. Similarly, a low metallicity of 12 + log (O/H) < 8.4 is independently indicated for typical LAEs from a composite spectrum and the [N II]/Hα index. Such high ionization parameters and low oxygen abundances can be found in local star-forming galaxies, but this extreme local population occupies only ~0.06% of the Sloan Digital Sky Survey spectroscopic galaxy sample with a number density ~100 times smaller than that of LAEs. With their high ionization parameters and low oxygen abundances, LAEs would represent an early stage of galaxy formation dominated by massive stars in compact star-forming regions. High-q ion galaxies like LAEs would produce ionizing photons efficiently with a high escape fraction achieved by density-bounded H II regions, which would significantly contribute to cosmic reionization at z > 6. Some of the data presented herein were obtained at the W. M. Keck Observatory, which is

  17. FIRST SPECTROSCOPIC EVIDENCE FOR HIGH IONIZATION STATE AND LOW OXYGEN ABUNDANCE IN Ly{alpha} EMITTERS ,

    SciTech Connect

    Nakajima, Kimihiko; Shimasaku, Kazuhiro; Hashimoto, Takuya; Ono, Yoshiaki; Ouchi, Masami; Lee, Janice C.

    2013-05-20

    We present results from Keck/NIRSPEC and Magellan/MMIRS follow-up spectroscopy of Ly{alpha} emitters (LAEs) at z = 2.2 identified in our Subaru narrowband survey. We successfully detect H{alpha} emission from seven LAEs, and perform a detailed analysis of six LAEs free from active galactic nucleus activity, two out of which, CDFS-3865 and COSMOS-30679, have [O II] and [O III] line detections. They are the first [O II]-detected LAEs at high-z, and their [O III]/[O II] ratios and R23-indices provide the first simultaneous determinations of ionization parameter and oxygen abundance for LAEs. CDFS-3865 has a very high ionization parameter (q{sub ion}=2.5{sup +1.7}{sub -0.8} Multiplication-Sign 10{sup 8} cm s{sup -1}) and a low oxygen abundance (12+ log (O/H)=7.84{sup +0.24}{sub -0.25}) in contrast with moderate values of other high-z galaxies such as Lyman break galaxies (LBGs). COSMOS-30679 also possesses a relatively high ionization parameter (q{sub ion}=8{sup +10}{sub -4} Multiplication-Sign 10{sup 7} cm s{sup -1}) and a low oxygen abundance (12+ log (O/H)=8.18{sup +0.28}{sub -0.28}). Both LAEs appear to fall below the mass-metallicity relation of z {approx} 2 LBGs. Similarly, a low metallicity of 12 + log (O/H) < 8.4 is independently indicated for typical LAEs from a composite spectrum and the [N II]/H{alpha} index. Such high ionization parameters and low oxygen abundances can be found in local star-forming galaxies, but this extreme local population occupies only {approx}0.06% of the Sloan Digital Sky Survey spectroscopic galaxy sample with a number density {approx}100 times smaller than that of LAEs. With their high ionization parameters and low oxygen abundances, LAEs would represent an early stage of galaxy formation dominated by massive stars in compact star-forming regions. High-q{sub ion} galaxies like LAEs would produce ionizing photons efficiently with a high escape fraction achieved by density-bounded H II regions, which would significantly contribute to

  18. Spectroscopic evidence for new denser structure of silica glass under ultrahigh pressure (Invited)

    NASA Astrophysics Data System (ADS)

    Murakami, M.

    2013-12-01

    Silica glass is a prototype network-forming glass serving as the basic framework of a variety of glasses, which widely used as a technologically useful material. Polyamorphism in silica glass is thus one of the most fascinating and puzzling topics in condensed matter physics. Silica glass can be also considered as the major and simplest analogue for all geophysically relevant silicate melts/magmas. Therefore, knowledge of the structural changes and the densification mechanisms of the silica glass under high-pressure is particularly important to provide the fundamental constraints on the thermal, chemical, and dynamical states of the Earth's interior. Previous experimental investigations of the highpressure structure of silicate glasses up to a pressure of ~40 GPa strongly suggest that changes in the Si-O coordination number are a key component of the densification mechanism. However, little is known about further densification above ~40 GPa due to experimental challenges and the lack of suitable in-situ structural probes. Acoustic wave velocity measurement is one of the most promising approaches for detecting structural changes of glasses and melts, inasmuch as the sound velocity directly reflects the density and elasticity, regardless of whether a sample is crystalline or amorphous. Our newly developed in-situ high-pressure Brillouin scattering spectroscopic system has recently proven to be highly suitable for exploring the acoustic velocities under ultrahigh-pressure conditions approaching to 200 GPa. Our recent in-situ high-pressure Brillouin scattering results for several silicate glasses at pressures above 200 GPa have revealed an anomalous increase in the effect of pressure on velocity at ~130-140 GPa. We infer this to be a new transition to a denser structure that is likely associated with the onset of a change in Si-O coordination number to higher than sixfold. However, the change in acoustic wave velocity profile as a function of pressure only indicates

  19. In Situ Molecular Spectroscopic Evidence for CO2 Intercalation into Montmorillonite in Supercritical Carbon Dioxide

    SciTech Connect

    Loring, John S.; Schaef, Herbert T.; Turcu, Romulus VF; Thompson, Christopher J.; Miller, Quin RS; Martin, Paul F.; Hu, Jian Z.; Hoyt, David W.; Qafoku, Odeta; Ilton, Eugene S.; Felmy, Andrew R.; Rosso, Kevin M.

    2012-04-25

    The interaction of anhydrous supercritical CO2 (scCO2) with both kaolinite and ~1W (i.e. close to but less than one layer of hydration) calcium-saturated montmorillonite was investigated under conditions relevant to geologic carbon sequestration (50 °C and 90 bar). The CO2 molecular environment was probed in situ using a combination of three novel high-pressure techniques: X-ray diffraction, magic angle spinning nuclear magnetic resonance spectroscopy and attenuated total reflection infrared spectroscopy. We report the first direct evidence that the expansion of montmorillonite under scCO2 conditions is due to CO2 migration into the interlayer. Intercalated CO2 molecules are rotationally constrained and do not appear to react with waters to form bicarbonate or carbonic acid. In contrast, CO2 does not intercalate into kaolinite. The findings show that predicting the seal integrity of caprock will have complex dependence on clay mineralogy and hydration state.

  20. In situ molecular spectroscopic evidence for CO2 intercalation into montmorillonite in supercritical carbon dioxide.

    PubMed

    Loring, John S; Schaef, Herbert T; Turcu, Romulus V F; Thompson, Christopher J; Miller, Quin R S; Martin, Paul F; Hu, Jianzhi; Hoyt, David W; Qafoku, Odeta; Ilton, Eugene S; Felmy, Andrew R; Rosso, Kevin M

    2012-05-01

    The interaction of anhydrous supercritical CO(2) (scCO(2)) with both kaolinite and ~1W (i.e., close to but less than one layer of hydration) calcium-saturated montmorillonite was investigated under conditions relevant to geologic carbon sequestration (50 °C and 90 bar). The CO(2) molecular environment was probed in situ using a combination of three novel high-pressure techniques: X-ray diffraction, magic angle spinning nuclear magnetic resonance spectroscopy, and attenuated total reflection infrared spectroscopy. We report the first direct evidence that the expansion of montmorillonite under scCO(2) conditions is due to CO(2) migration into the interlayer. Intercalated CO(2) molecules are rotationally constrained and do not appear to react with waters to form bicarbonate or carbonic acid. In contrast, CO(2) does not intercalate into kaolinite. The findings show that predicting the seal integrity of caprock will have complex dependence on clay mineralogy and hydration state. PMID:22533894

  1. Spectroscopic Evidence for Strong Quantum Spin Fluctuations with Itinerant Character in YFe2Ge2

    DOE PAGESBeta

    Sirica, N.; Bondino, F.; Nappini, S.; Piz, I.; Poudel, L.; Christianson, Andrew D.; Mandrus, D.; Singh, David J; Mannella, Norman

    2015-03-04

    We report x-ray absorption and photoemission spectroscopy of the electronic structure in the normal state of metallic YFe2Ge2. The data reveal evidence for large fluctuating spin moments on the Fe sites, as indicated by exchange multiplets appearing in the Fe 3s core-level photoemission spectra, even though the compound does not show magnetic order. The magnitude of the multiplet splitting is comparable to that observed in the normal state of the Fe-pnictide superconductors. This shows a connection between YFe2Ge2 and the Fe-based superconductors even though it contains neither pnictogens nor chalcogens. Finally, the implication is that the chemical range of compoundsmore » showing at least one of the characteristic magnetic signatures of the Fe-based superconductors is broader than previously thought.« less

  2. Reigniting the Debate: First Spectroscopic Evidence for Stratospheres In Hot Jupiters

    NASA Astrophysics Data System (ADS)

    Mandell, Avi M.; Haynes, Korey; Madhusudhan, Nikku; Deming, Drake; Knutson, Heather

    2015-12-01

    Hot Jupiters represent an extreme end of the exoplanet distribution: they orbit very close to their host stars, which subjects them to an intense heating from stellar radiation. An inverted temperature structure (i.e. a stratosphere) was an early observable prediction from atmospheric models of these planets, which demonstrated that high-temperature absorbers such as TiO and VO could reprocess incident UV/visible irradiation to heat the upper layers of the atmosphere.Evidence for such thermal inversions began with the first secondary eclipse measurements of transiting hot Jupiters taken with the IRAC camera on Spitzer, offering the chance to physical processe at work in the atmospheres of hot exoplanets. However, these efforts have been stymied by recent revelations of significant systematic biases and uncertainties buried within older Spitzer results, calling into question whether or not temperature inversions are actually present in hot Jupiters.We have recently published spectroscopy of secondary eclipses of the extrasolar planet WASP-33b using the Wide Field Camera 3 (WFC3) on the Hubble Space Telescope, which allow us to constrain the temperature structure and composition of its dayside atmosphere. WASP-33b is one of the most highly irradiated hot Jupiters discovered to date and orbits a relatively inactive A star, making it an excellent candidate for eclipse spectroscopy at NIR wavelengths (1.1 - 1.7 µm). We find that a fit to combined data from HST, Spitzer and ground-based photometry can rule out models without a temperature inversion; additionally, we find that our measured spectrum displays excess in the measured flux toward short wavelengths that is best explained as emission from TiO.This discovery re-opens the debate on the presence and origin of stratospheres in hot Jupiters, but it also confirms that the combination of HST spectroscopy and a robust analysis of Spitzer and ground-based photometry can conclusively detect thermally inverted atmospheres

  3. Spectroscopic evidence of 'jumping and pecking' of cholinium and H-bond enhanced cation-cation interaction in ionic liquids.

    PubMed

    Knorr, Anne; Fumino, Koichi; Bonsa, Anne-Marie; Ludwig, Ralf

    2015-12-14

    The subtle energy-balance between Coulomb-interaction, hydrogen bonding and dispersion forces governs the unique properties of ionic liquids. To measure weak interactions is still a challenge. This is in particular true in the condensed phase wherein a melange of different strong and directional types of interactions is present and cannot be detected separately. For the ionic liquids (2-hydroxyethyl)-trimethylammonium (cholinium) bis(trifluoro-methylsulfonyl)amide and N,N,N-trimethyl-N-propylammonium bis(trifluoromethylsulfonyl)amide which differ only in the 2-hydroxyethyl and the propyl groups of the cations, we could directly observe distinct vibrational signatures of hydrogen bonding between the cation and the anion indicated by 'jumping and pecking' motions of cholinium. The assignment could be confirmed by isotopic substitution H/D at the hydroxyl group of cholinium. For the first time we could also find direct spectroscopic evidence for H-bonding between like-charged ions. The repulsive Coulomb interaction between the cations is overcome by cooperative hydrogen bonding between the 2-hydroxyethyl functional groups of cholinium. This H-bond network is reflected in the properties of protic ionic liquids (PILs) such as viscosities and conductivities. PMID:26292169

  4. Spectroscopic Evidence for the Localization of Skyrmions near ν=1 as Tarrow 0

    NASA Astrophysics Data System (ADS)

    Barrett, S. E.

    2002-03-01

    Optically pumped nuclear magnetic resonance (OPNMR) measurements of ^71Ga spectra were carried out in an n-doped GaAs/Al_0.1Ga_0.9As multiple quantum well (MQW) sample near Landau level filling factor ν=1. Novel spin textures called skyrmions are predicted(S. L. Sondhi, A. Karlhede, S. A. Kivelson, and E. H. Rezayi, Phys. Rev. B) 47, 16419 (1993); H. A. Fertig, L. Brey, R. Cote, and A. H. MacDonald, Phys. Rev. B 50, 11018 (1994). to be the charged quasiparticles introduced by small deviations (|δν |) from this ferromagnetic quantum Hall ground state. At ``high'' temperatures, the spectra provide evidence for delocalized skyrmions. As the temperature is lowered (down to T ≈ 0.3 K), a ``tilted plateau'' emerges in the Knight shift data, which is a novel experimental signature of quasiparticle localization.(P. Khandelwal, A. E. Dementyev, N. N. Kuzma, S. E. Barrett, L. N. Pfeiffer, and K. W. West, Phys. Rev. Lett.) 86, 5353 (2001). The dependence of the spectra on both T and ν suggests that the localization is a collective process. The frozen limit spectra appear to rule out a 2D lattice of conventional skyrmions.

  5. Surface complexation modeling and spectroscopic evidence of antimony adsorption on iron-oxide-rich red earth soils.

    PubMed

    Vithanage, Meththika; Rajapaksha, Anushka Upamali; Dou, Xiaomin; Bolan, Nanthi S; Yang, Jae E; Ok, Yong Sik

    2013-09-15

    Few studies have investigated surface complexation of antimony (Sb) on natural sorbents. In addition, intrinsic acidic constants, speciation, and spectroscopic data are scarce for Sb sorption in soil. Only simple sorption models have been proposed to describe the sorption of Sb(V) on specific mineral surfaces. This study therefore assessed the mechanisms of Sb(III) and Sb(V) adsorption on natural red earth (NRE), a naturally occurring iron coated sand, at various pHs and Sb loadings. The Sb(V) adsorption followed typical anion adsorption curve with adsorption reaching maximum around pH 4-5, while no pH dependence was observed for Sb(III) sorption. The FT-IR spectra revealed that shifts in absorbance of the hydroxyl groups in iron-oxide were related to the Fe-O-Sb bonds and provided evidence for inner sphere bond formation. Direct evidence on the strong interaction of Sb(III) and Sb(V) with ≡Fe-O and ≡Al-O was observed from the decrease in Fe-2p, Al-2p, and Si-2p peaks of the X-ray photoelectron spectroscopy (XPS) data before and after Sb(V) and Sb(III) adsorption on NRE. Successful data modeling using the 2-pK diffuse double layer model (DDLM) with the FITEQL revealed that sorption occurs through the formation of bidentate mononuclear and binuclear complexes. Model simulations showed a high affinity to the ≡FeOH sites at high Sb loadings, whereas at low loadings, both≡ FeOH and ≡AlOH sites showed similar affinities to Sb. In the case of Sb(V), multilayer formation was also revealed in addition to surface complexation by the isotherm data fitted with the Freundlich model and two sites Langmuir equations, which indicated heterogeneous multilayer adsorption of Sb(V) on NRE. PMID:23791229

  6. Evidences of long lived cages in functionalized polymers: Effects on chromophore dynamic and spectroscopic properties

    NASA Astrophysics Data System (ADS)

    Prampolini, Giacomo; Monti, Susanna; De Mitri, Nicola; Barone, Vincenzo

    2014-05-01

    molecules between the two zones and a significant modulation of the flexibility and mobility of the dye. Very similar trends were found for the same g (r) computed in the GS. For this latter state, the impact on the distribution of the values adopted by the δ1 dihedral angle, which defines the orientation of the naphthalene ring in relation to the carboxyl group (Figure 4), is evident in the right panel of Figure 1: in toluene solution there are two distinct peaks centered around 0° and ±180°, meaning that two planar conformations are equally probable. Instead, inside the polymer only the δ1≈0° conformer is populated, confirming that the initial orientation of this portion of the probe is preserved by the hindering action of the close polymer chains which prevent a complete rotation of the naphthoyloxy group. The same constraining was also found in the EES, though less evident because of a decreased flexibility of the δ1 torsion.In order to support this view, the effect on dye’s flexibility of the intermolecular interactions of the latter with the polymer bundle was checked and compared with the one due to the dye-solvent interactions established in toluene solution. This was accomplished through a mean field descriptor which was connected to the torsional degrees of freedom, as detailed in the Supporting Information. In this particular case it was interesting to examine the specific behavior of the δ1 dihedral angle. The resulting mean field W (δ1) in the polymer and in toluene solution, displayed in Figure 2, presents a marked difference between the two surrounding media with toluene leading to a nearly vanishing and flatter W(δ1). It is also worth noticing that the entanglement of the polymer around the dye creates a supplementary well, centered at about δ1 = 0, that constrains this angle to librate within a limited interval rather than exploring the complete range of values.Further proofs of the existence of a tight and stable cleft and its constraining

  7. Evidence for a spectroscopic direct detection of reflected light from 51 Pegasi b

    NASA Astrophysics Data System (ADS)

    Martins, J. H. C.; Santos, N. C.; Figueira, P.; Faria, J. P.; Montalto, M.; Boisse, I.; Ehrenreich, D.; Lovis, C.; Mayor, M.; Melo, C.; Pepe, F.; Sousa, S. G.; Udry, S.; Cunha, D.

    2015-04-01

    Context. The detection of reflected light from an exoplanet is a difficult technical challenge at optical wavelengths. Even though this signal is expected to replicate the stellar signal, not only is it several orders of magnitude fainter, but it is also hidden among the stellar noise. Aims: We apply a variant of the cross-correlation technique to HARPS observations of 51 Peg to detect the reflected signal from planet 51 Peg b. Methods: Our method makes use of the cross-correlation function (CCF) of a binary mask with high-resolution spectra to amplify the minute planetary signal that is present in the spectra by a factor proportional to the number of spectral lines when performing the cross correlation. The resulting cross-correlation functions are then normalized by a stellar template to remove the stellar signal. Carefully selected sections of the resulting normalized CCFs are stacked to increase the planetary signal further. The recovered signal allows probing several of the planetary properties, including its real mass and albedo. Results: We detect evidence for the reflected signal from planet 51 Peg b at a significance of 3σnoise. The detection of the signal permits us to infer a real mass of 0.46+0.06-0.01 MJup (assuming a stellar mass of 1.04 MSun) for the planet and an orbital inclination of 80+10-19 degrees. The analysis of the data also allows us to infer a tentative value for the (radius-dependent) geometric albedo of the planet. The results suggest that 51Peg b may be an inflated hot Jupiter with a high albedo (e.g., an albedo of 0.5 yields a radius of 1.9 ± 0.3 RJup for a signal amplitude of 6.0 ± 0.4 × 10-5). Conclusions: We confirm that the method we perfected can be used to retrieve an exoplanet's reflected signal, even with current observing facilities. The advent of next generation of instruments (e.g. VLT-ESO/ESPRESSO) and observing facilities (e.g. a new generation of ELT telescopes) will yield new opportunities for this type of technique

  8. Mechanism of myo-inositol hexakisphosphate sorption on amorphous aluminum hydroxide: spectroscopic evidence for rapid surface precipitation.

    PubMed

    Yan, Yupeng; Li, Wei; Yang, Jun; Zheng, Anmin; Liu, Fan; Feng, Xionghan; Sparks, Donald L

    2014-06-17

    Inositol hexakisphosphates are the most abundant organic phosphates (OPs) in most soils and sediments. Adsorption, desorption, and precipitation reactions at environmental interfaces govern the reactivity, speciation, mobility, and bioavailability of inositol hexakisphosphates in terrestrial and aquatic environments. However, surface complexation and precipitation reactions of inositol hexakisphosphates on soil minerals have not been well understood. Here we investigate the surface complexation-precipitation process and mechanism of myo-inositol hexakisphosphate (IHP, phytate) on amorphous aluminum hydroxide (AAH) using macroscopic sorption experiments and multiple spectroscopic tools. The AAH (16.01 μmol m(-2)) exhibits much higher sorption density than boehmite (0.73 μmol m(-2)) and α-Al2O3 (1.13 μmol m(-2)). Kinetics of IHP sorption and accompanying OH(-) release, as well as zeta potential measurements, indicate that IHP is initially adsorbed on AAH through inner-sphere complexation via ligand exchange, followed by AAH dissolution and ternary complex formation; last, the ternary complexes rapidly transform to surface precipitates and bulk phase analogous to aluminum phytate (Al-IHP). The pH level, reaction time, and initial IHP loading evidently affect the interaction of IHP on AAH. In situ ATR-FTIR and solid-state NMR spectra further demonstrate that IHP sorbs on AAH and transforms to surface precipitates analogous to Al-IHP, consistent with the results of XRD analysis. This study indicates that active metal oxides such as AAH strongly mediate the speciation and behavior of IHP via rapid surface complexation-precipitation reactions, thus controlling the mobility and bioavailability of inositol phosphates in the environment. PMID:24871399

  9. Infrared Spectroscopic Evidences of Strong Electronic Correlations in (Sr1-xLax)3Ir2O7.

    PubMed

    Ahn, Gihyeon; Song, S J; Hogan, T; Wilson, S D; Moon, S J

    2016-01-01

    We report on infrared spectroscopic studies of the electronic response of the (Sr1-xLax)3Ir2O7 system. Our experiments revealed hallmarks of strong electronic correlations in the evolution of the electronic response across the filling-controlled insulator-metal transition. We observed a collapse of the Jeff = 1/2 Mott gap accompanying the transfer of the spectral weight from the high-energy region to the gap region with electron doping. The intraband conductivity at the metallic side of the transition was found to consist of coherent Drude-like and incoherent responses. The sum rule and the extended Drude model analyses further indicated a large mass enhancement. Our results demonstrate a critical role of the electronic correlations in the charge dynamics of the (Sr1-xLax)3Ir2O7 system. PMID:27599573

  10. Infrared Spectroscopic Evidences of Strong Electronic Correlations in (Sr1−xLax)3Ir2O7

    PubMed Central

    Ahn, Gihyeon; Song, S. J.; Hogan, T.; Wilson, S. D.; Moon, S. J.

    2016-01-01

    We report on infrared spectroscopic studies of the electronic response of the (Sr1−xLax)3Ir2O7 system. Our experiments revealed hallmarks of strong electronic correlations in the evolution of the electronic response across the filling-controlled insulator-metal transition. We observed a collapse of the Jeff = 1/2 Mott gap accompanying the transfer of the spectral weight from the high-energy region to the gap region with electron doping. The intraband conductivity at the metallic side of the transition was found to consist of coherent Drude-like and incoherent responses. The sum rule and the extended Drude model analyses further indicated a large mass enhancement. Our results demonstrate a critical role of the electronic correlations in the charge dynamics of the (Sr1−xLax)3Ir2O7 system. PMID:27599573

  11. Spectroscopic Quadrupole Moments in Sr,9896 : Evidence for Shape Coexistence in Neutron-Rich Strontium Isotopes at N =60

    NASA Astrophysics Data System (ADS)

    Clément, E.; Zielińska, M.; Görgen, A.; Korten, W.; Péru, S.; Libert, J.; Goutte, H.; Hilaire, S.; Bastin, B.; Bauer, C.; Blazhev, A.; Bree, N.; Bruyneel, B.; Butler, P. A.; Butterworth, J.; Delahaye, P.; Dijon, A.; Doherty, D. T.; Ekström, A.; Fitzpatrick, C.; Fransen, C.; Georgiev, G.; Gernhäuser, R.; Hess, H.; Iwanicki, J.; Jenkins, D. G.; Larsen, A. C.; Ljungvall, J.; Lutter, R.; Marley, P.; Moschner, K.; Napiorkowski, P. J.; Pakarinen, J.; Petts, A.; Reiter, P.; Renstrøm, T.; Seidlitz, M.; Siebeck, B.; Siem, S.; Sotty, C.; Srebrny, J.; Stefanescu, I.; Tveten, G. M.; Van de Walle, J.; Vermeulen, M.; Voulot, D.; Warr, N.; Wenander, F.; Wiens, A.; De Witte, H.; Wrzosek-Lipska, K.

    2016-01-01

    Neutron-rich Sr,9896 isotopes have been investigated by safe Coulomb excitation of radioactive beams at the REX-ISOLDE facility. Reduced transition probabilities and spectroscopic quadrupole moments have been extracted from the differential Coulomb excitation cross sections. These results allow, for the first time, the drawing of definite conclusions about the shape coexistence of highly deformed prolate and spherical configurations. In particular, a very small mixing between the coexisting states is observed, contrary to other mass regions where strong mixing is present. Experimental results have been compared to beyond-mean-field calculations using the Gogny D1S interaction in a five-dimensional collective Hamiltonian formalism, which reproduce the shape change at N =60 .

  12. Measurement of the sign of the spectroscopic quadrupole moment for the 2(1)+ state in 70Se: no evidence for oblate shape.

    PubMed

    Hurst, A M; Butler, P A; Jenkins, D G; Delahaye, P; Wenander, F; Ames, F; Barton, C J; Behrens, T; Bürger, A; Cederkäll, J; Clément, E; Czosnyka, T; Davinson, T; de Angelis, G; Eberth, J; Ekström, A; Franchoo, S; Georgiev, G; Görgen, A; Herzberg, R-D; Huyse, M; Ivanov, O; Iwanicki, J; Jones, G D; Kent, P; Köster, U; Kröll, T; Krücken, R; Larsen, A C; Nespolo, M; Pantea, M; Paul, E S; Petri, M; Scheit, H; Sieber, T; Siem, S; Smith, J F; Steer, A; Stefanescu, I; Syed, N U H; Van de Walle, J; Van Duppen, P; Wadsworth, R; Warr, N; Weisshaar, D; Zielińska, M

    2007-02-16

    Using a method whereby molecular and atomic ions are independently selected, an isobarically pure beam of 70Se ions was postaccelerated to an energy of 206 MeV using REX-ISOLDE. Coulomb-excitation yields for states in the beam and target nuclei were deduced by recording deexcitation gamma rays in the highly segmented MINIBALL gamma-ray spectrometer in coincidence with scattered particles in a silicon detector. At these energies, the Coulomb-excitation yield for the first 2+ state is expected to be strongly sensitive to the sign of the spectroscopic quadrupole moment through the nuclear reorientation effect. Experimental evidence is presented here for a prolate shape for the first 2+ state in 70Se, reopening the question over whether there are, as reported earlier, deformed oblate shapes near to the ground state in the light selenium isotopes. PMID:17359019

  13. Fractionation of Suwannee River Fulvic Acid and Aldrich Humic Acid on α-Al2O3: Spectroscopic Evidence

    SciTech Connect

    Claret, F.; Schäfer, T; Brevet, J; Reiller, P

    2008-01-01

    Sorptive fractionation of Suwannee River Fulvic Acid (SRFA) and Purified Aldrich Humic Acid (PAHA) on a-Al2O3 at pH 6 was probed in the supernatant using different spectroscopic techniques. Comparison of dissolved organic carbon (DOC) analysis with UV/vis spectrophotometric measurements at 254 nm, including specific UV absorbance (SUVA) calculation, revealed a decrease in chromophoric compounds for the nonsorbed extracts after a 24 h contact time. This fractionation, only observable below a certain ratio between initial number of sites of humic substances and of a-Al2O3, seems to indicate a higher fractionation for PAHA. C(1s) near-edge X-ray absorption fine structure spectroscopy (NEXAFS) confirmed this trend and points to a decrease in phenolic moieties in the supernatant and to an eventual increase in phenolic moieties on the surface. Time-resolved luminescence spectroscopy (TRLS) of Eu(III) as luminescent probe showed a decrease in the ratio between the 5D0?7F2 and 5D0?7F1 transitions for the fractionated organic matter (OM) that is thought to be associated with a lower energy transfer from the OM to Eu(III) due to the loss of polar aromatics. These modifications in the supernatant are a hint for the modification of sorbed humic extracts on the surface.

  14. Interplay of electron correlations and localization in disordered β-tantalum films: Evidence from dc transport and spectroscopic ellipsometry study

    SciTech Connect

    Kovaleva, N. N.; Chvostova, D.; Dejneka, A.; Bagdinov, A. V.; Petrova, M. G.; Demikhov, E. I.; Pudonin, F. A.

    2015-02-02

    We report the dc transport (5 K ≲ T ≲ 380 K) and spectroscopic ellipsometry (0.8 eV ≤ hν ≤ 8.5 eV, T ≃ 300 K) study of β-Ta films prepared by rf sputtering deposition as a function of their thickness in the range 2.5 nm ≲ d ≲ 200 nm. The dc transport of the β-Ta films with a thickness d ≳ 25 nm is characterized by negative temperature coefficient of resistivity (TCR) caused by localization effects peculiar of highly disordered metals. Their dielectric function spectra display non-metallic-like behavior due to the presence of the pronounced band at 2 eV. We found that with increasing TCR absolute value, specifying elevated degree disorder, the optical spectral weight (SW) of free charge carriers decreases. The associated SW is recovered in the range of Mott-Hubbard transitions, indicating the mechanism of localization enhancement by electronic correlations in disordered metals.

  15. Spectroscopic observations of propagating disturbances in a polar coronal hole: evidence of slow magneto-acoustic waves

    NASA Astrophysics Data System (ADS)

    Gupta, G. R.; Teriaca, L.; Marsch, E.; Solanki, S. K.; Banerjee, D.

    2012-10-01

    Aims: We focus on detecting and studying quasi-periodic propagating features that have been interpreted in terms of both slow magneto-acoustic waves and of high-speed upflows. Methods: We analyzed long-duration spectroscopic observations of the on-disk part of the south polar coronal hole taken on 1997 February 25 by the SUMER spectrometer onboard SOHO. We calibrated the velocity with respect to the off-limb region and obtained time-distance maps in intensity, Doppler velocity, and line width. We also performed a cross-correlation analysis on different time series curves at different latitudes. We studied average spectral line profiles at the roots of propagating disturbances and along the propagating ridges, and performed a red-blue asymmetry analysis. Results: We clearly find propagating disturbances in intensity and Doppler velocity with a projected propagation speed of about 60 ± 4.8 km s-1 and a periodicity of ≈14.5 min. To our knowledge, this is the first simultaneous detection of propagating disturbances in intensity as well as in Doppler velocity in a coronal hole. During the propagation, an intensity enhancement is associated with a blueshifted Doppler velocity. These disturbances are clearly seen in intensity also at higher latitudes (i.e., closer to the limb), while disturbances in Doppler velocity become faint there. The spectral line profiles averaged along the propagating ridges are found to be symmetric, to be well fitted by a single Gaussian, and have no noticeable red-blue asymmetry. Conclusions: Based on our analysis, we interpret these disturbances in terms of propagating slow magneto-acoustic waves.

  16. Direct spectroscopic evidence for phase competition between the pseudogap and superconductivity in Bi2Sr2CaCu2O(8+δ).

    PubMed

    Hashimoto, Makoto; Nowadnick, Elizabeth A; He, Rui-Hua; Vishik, Inna M; Moritz, Brian; He, Yu; Tanaka, Kiyohisa; Moore, Robert G; Lu, Donghui; Yoshida, Yoshiyuki; Ishikado, Motoyuki; Sasagawa, Takao; Fujita, Kazuhiro; Ishida, Shigeyuki; Uchida, Shinichi; Eisaki, Hiroshi; Hussain, Zahid; Devereaux, Thomas P; Shen, Zhi-Xun

    2015-01-01

    In the high-temperature (T(c)) cuprate superconductors, a growing body of evidence suggests that the pseudogap phase, existing below the pseudogap temperature T*, is characterized by some broken electronic symmetries distinct from those associated with superconductivity. In particular, recent scattering experiments have suggested that charge ordering competes with superconductivity. However, no direct link of an interplay between the two phases has been identified from the important low-energy excitations. Here, we report an antagonistic singularity at T(c) in the spectral weight of Bi2Sr2CaCu2O(8+δ) as compelling evidence for phase competition, which persists up to a high hole concentration p ~ 0.22. Comparison with theoretical calculations confirms that the singularity is a signature of competition between the order parameters for the pseudogap and superconductivity. The observation of the spectroscopic singularity at finite temperatures over a wide doping range provides new insights into the nature of the competitive interplay between the two orders and the complex phase diagram near the pseudogap critical point. PMID:25362356

  17. Spectroscopic and theoretical study of the "azo"-dye E124 in condensate phase: evidence of a dominant hydrazo form.

    PubMed

    Almeida, Mariana R; Stephani, Rodrigo; Dos Santos, Hélio F; de Oliveira, Luiz Fernando C

    2010-01-14

    Spectroscopic techniques, including Raman, IR, UV/vis, and NMR were used to characterize the samples of the azo dye Ponceau 4R (also known as E124, New Coccine; Cochineal Red; C.I. no. 16255; Food Red No. 102), which is 1,3-naphthalenedisulfonic acid, 7-hydroxy-8-[(4-sulfo-1-naphthalenyl) azo] trisodium salt in aqueous solution and solid state. In addition, first principle calculations were carried out for the azo (OH) and hydrazo (NH) tautomers in order to assist in the assignment of the experimental data. The two intense bands observed in the UV/vis spectrum, centered at 332 and 507 nm, can be compared to the calculated values at 296 and 474 nm for azo and 315 and 500 nm for hydrazo isomer, with the latter in closer agreement to the experiment. The Raman spectrum is quite sensitive to tautomeric equilibrium; in solid state and aqueous solution, three bands were observed around 1574, 1515, and 1364 cm(-1), assigned to mixed modes including deltaNH + betaCH + nuCC, deltaNH + nuC horizontal lineO + nuC horizontal lineN + betaCH and nuCC vibrations, respectively. These assignments are predicted only for the NH species centered at 1606, 1554, and 1375 cm(-1). The calculated Raman spectrum for the azo (OH) tautomer showed two strong bands at 1468 (nuN = N + deltaOH) and 1324 cm(-1) (nuCC + nuC-N), which were not obtained experimentally. The (13)C NMR spectrum showed a very characteristic peak at 192 ppm assigned to the carbon bound to oxygen in the naphthol ring; the predicted values were 165 ppm for OH and 187 for NH isomer, supporting once again the predominance of NH species in solution. Therefore, all of the experimental and theoretical results strongly suggest the food dye Ponceau 4R or E124 has a major contribution of the hydrazo structure instead of the azo form as the most abundant in condensate phase. PMID:19852449

  18. Spectroscopic mapping of the white horse alunite deposit, Marysvale volcanic field, Utah: Evidence of a magmatic component

    USGS Publications Warehouse

    Rockwell, B.W.; Cunningham, C.G.; Breit, G.N.; Rye, R.O.

    2006-01-01

    Previous studies have demonstrated that the replacement alunite deposits just north of the town of Marysvale, Utah, USA, were formed primarily by low-temperature (100??-170?? C), steam-heated processes near the early Miocene paleoground surface, immediately above convecting hydrothermal plumes. Pyrite-bearing propylitically altered rocks occur mainly beneath the steam-heated alunite and represent the sulfidized feeder zone of the H2S-dominated hydrothermal fluids, the oxidation of which at higher levels led to the formation of the alunite. Maps of surface mineralogy at the White Horse deposit generated from Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data were used in conjunction with X-ray diffraction studies of field samples to test the accuracy and precision of AVIRIS-based mineral mapping of altered rocks and demonstrate the utility of spectroscopic mapping for ore deposit characterization. The mineral maps identified multiple core zones of alunite that grade laterally outward to kaolinite. Surrounding the core zones are dominantly propylitically altered rocks containing illite, montmorillonite, and chlorite, with minor pyrite, kaolinite, gypsum, and remnant potassium feldspar from the parent rhyodacitic ash-flow tuff. The AVIRIS mapping also identified fracture zones expressed by ridge-forming selvages of quartz + dickite + kaolinite that form a crude ring around the advanced argillic core zones. Laboratory analyses identified the aluminum phosphate-sulfate (APS) minerals woodhouseite and svanbergite in one sample from these dickite-bearing argillic selvages. Reflectance spectroscopy determined that the outer edges of the selvages contain more dickite than do the medial regions. The quartz + dickite ?? kaolinite ?? APS-mineral selvages demonstrate that fracture control of replacement processes is more prevalent away from the advanced argillic core zones. Although not exposed at the White Horse deposit, pyrophyllite ?? ordered illite was identified

  19. Emitting species in chemiluminescence reactions with acidic potassium permanganate: a re-evaluation based on new spectroscopic evidence.

    PubMed

    Adcock, Jacqui L; Francis, Paul S; Barnett, Neil W

    2009-09-01

    The reaction of acidic potassium permanganate with a wide range of compounds is known to produce a broad red emission, and there is strong evidence for an excited manganese(II) emitting species. Nevertheless, numerous researchers have proposed other emitters for reactions with acidic potassium permanganate, particularly for systems where fluorescent compounds were present, either as enhancers or reaction products. We have examined many reactions of this type and found that, in most cases, the same red emission was produced. There were, however, some exceptions, including the oxidation of dihydralazine, certain thiols and sulphite (each in the presence of an enhancer). PMID:19353245

  20. Electrochemical and Spectroscopic Evidence on the One-Electron Reduction of U(VI) to U(V) on Magnetite.

    PubMed

    Yuan, Ke; Ilton, Eugene S; Antonio, Mark R; Li, Zhongrui; Cook, Peter J; Becker, Udo

    2015-05-19

    Reduction of U(VI) to U(IV) on mineral surfaces is often considered a one-step two-electron process. However, stabilized U(V), with no evidence of U(IV), found in recent studies indicates U(VI) can undergo a one-electron reduction to U(V) without further progression to U(IV). We investigated reduction pathways of uranium by reducing U(VI) electrochemically on a magnetite electrode at pH 3.4. Cyclic voltammetry confirms the one-electron reduction of U(VI) to U(V). Formation of nanosize uranium precipitates on the magnetite surface at reducing potentials and dissolution of the solids at oxidizing potentials are observed by in situ electrochemical atomic force microscopy. XPS analysis of the magnetite electrodes polarized in uranium solutions at voltages from -0.1 to -0.9 V (E(0)(U(VI)/U(V))= -0.135 V vs Ag/AgCl) show the presence of only U(V) and U(VI). The sample with the highest U(V)/U(VI) ratio was prepared at -0.7 V, where the longest average U-O(axial) distance of 2.05 ± 0.01 Å was evident in the same sample revealed by extended X-ray absorption fine structure analysis. The results demonstrate that the electrochemical reduction of U(VI) on magnetite only yields U(V), even at a potential of -0.9 V, which favors the one-electron reduction mechanism. U(V) does not disproportionate but stabilizes on magnetite through precipitation of mixed-valence state U(V)/U(VI) solids. PMID:25893535

  1. Electrochemical and spectroscopic evidence on the one-electron reduction of U(VI) to U(V) on magnetite

    SciTech Connect

    Yuan, Ke; Ilton, Eugene S.; Antonio, Mark R.; Li, Zhongrui; Cook, Peter J.; Becker, Udo

    2015-05-19

    Reduction of U(VI) to U(IV) on mineral surfaces has been considered as a one-step two electron process. However, stabilized U(V), with no evidence of U(IV), found in recent studies indicates U(VI) can undergo a one electron reduction to U(V) without further progression to U(IV). We investigated the mechanisms of uranium reduction by reducing U(VI) electrochemically on a magnetite electrode at pH 3.4 . The one electron reduction of U(VI) was first confirmed using the cyclic voltammetry method. Formation of nano-size uranium precipitates on the surface of magnetite at reducing potentials and dissolution of the solids at oxidizing potentials were observed by in situ electrochemical AFM. XPS analysis of the magnetite electrodes polarized in uranium solutions at voltages from 0.1 ~ 0.9 V (vs. Ag/AgCl) showed the presence of only U(V) and U(VI). The highest amount of U(V) relative to U(VI) was prepared at 0.7 V, where the longest average U–Oaxial distance of 2.05 ± 0.01 Å was evident in the same sample revealed by EXAFS analysis. The results demonstrate that the electrochemical reduction of U(VI) on magnetite only yields U(V), even at a potential of 0.9 V, which favors the one-electron reduction mechanism. U(V) did not disproportionate but stabilized on magnetite through precipitation of mixed-valence state U(VI)/U(V) solids.

  2. Gas-Phase Folding of a Prototypical Protonated Pentapeptide: Spectroscopic Evidence for Formation of a Charge-Stabilized β-Hairpin.

    PubMed

    Burke, Nicole L; DeBlase, Andrew F; Redwine, James G; Hopkins, John R; McLuckey, Scott A; Zwier, Timothy S

    2016-03-01

    Ultraviolet and infrared-ultraviolet (IR-UV) double-resonance photofragment spectroscopy has been carried out in a tandem mass spectrometer to determine the three-dimensional structure of cryogenically cooled protonated C-terminally methyl esterified leucine enkephalin [YGGFL-OMe+H](+). By comparing the experimental IR spectrum of the dominant conformer with the predictions of DFT M05-2X/6-31+G(d) calculations, a backbone structure was assigned that is analogous to that previously assigned by our group for the unmodified peptide [ Burke, N.L.; et al. Int. J. Mass Spectrom. 2015 , 378 , 196 ], despite the loss of a C-terminal OH binding site that was thought to play an important role in its stabilization. Both structures are characterized by a type II' β-turn around Gly(3)-Phe(4) and a γ-turn around Gly(2), providing spectroscopic evidence for the formation of a β-hairpin hydrogen bonding pattern. Rather than disrupting the peptide backbone structure, the protonated N-terminus serves to stabilize the β-hairpin by positioning itself in a pocket above the turn where it can form H-bonds to the Gly(3) and C-terminus C═O groups. This β-hairpin type structure has been previously proposed as the biologically active conformation of leucine enkephalin and its methyl ester in the nonpolar cell membrane environment [ Naito, A.; Nishimura, K. Curr. Top. Med. Chem. 2004 , 4 , 135 - 143 ]. PMID:26853832

  3. Spectroscopic and Crystallographic Evidence for the Role of a Water-Containing H-Bond Network in Oxidase Activity of an Engineered Myoglobin.

    PubMed

    Petrik, Igor D; Davydov, Roman; Ross, Matthew; Zhao, Xuan; Hoffman, Brian; Lu, Yi

    2016-02-01

    Heme-copper oxidases (HCOs) catalyze efficient reduction of oxygen to water in biological respiration. Despite progress in studying native enzymes and their models, the roles of non-covalent interactions in promoting this activity are still not well understood. Here we report EPR spectroscopic studies of cryoreduced oxy-F33Y-CuBMb, a functional model of HCOs engineered in myoglobin (Mb). We find that cryoreduction at 77 K of the O2-bound form, trapped in the conformation of the parent oxyferrous form, displays a ferric-hydroperoxo EPR signal, in contrast to the cryoreduced oxy-wild-type (WT) Mb, which is unable to deliver a proton and shows a signal from the peroxo-ferric state. Crystallography of oxy-F33Y-CuBMb reveals an extensive H-bond network involving H2O molecules, which is absent from oxy-WTMb. This H-bonding proton-delivery network is the key structural feature that transforms the reversible oxygen-binding protein, WTMb, into F33Y-CuBMb, an oxygen-activating enzyme that reduces O2 to H2O. These results provide direct evidence of the importance of H-bond networks involving H2O in conferring enzymatic activity to a designed protein. Incorporating such extended H-bond networks in designing other metalloenzymes may allow us to confer and fine-tune their enzymatic activities. PMID:26716352

  4. Spectroscopic Evidence of the Improvement of Reactive Iron Mineral Content in Red Soil by Long-Term Application of Swine Manure.

    PubMed

    Huang, Chichao; Liu, Sha; Li, Ruizhi; Sun, Fusheng; Zhou, Ying; Yu, Guanghui

    2016-01-01

    Mineral elements in soil solutions are thought to be the precursor of the formation of reactive minerals, which play an important role in global carbon (C) cycling. However, information regarding the regulation of mineral elements release in soil is scarce. Here, we examined the long-term (i.e., 23 yrs) effects of fertilisation practices on Fe minerals in a red soil in Southern China. The results from chemical analysis and Fourier-transform infrared spectroscopy showed that long-term swine manure (M) treatment released greater amounts of minerals into soil solutions than chemical fertilisers (NPK) treatment, and Fe played a dominant role in the preservation of dissolved organic C. Furthermore, Fe K-edge X-ray absorption near-edge fine structure spectroscopy demonstrated that reactive Fe minerals were mainly composed of less crystalline ferrihydrite in the M-treated soil and more crystalline goethite in the NPK-treated soil. In conclusion, this study reported spectroscopic evidence of the improvement of reactive Femineral content in the M-treated soil colloids when compared to NPK-treated soil colloids. PMID:26752419

  5. Spectroscopic Evidence of the Improvement of Reactive Iron Mineral Content in Red Soil by Long-Term Application of Swine Manure

    PubMed Central

    Huang, Chichao; Liu, Sha; Li, Ruizhi; Sun, Fusheng; Zhou, Ying; Yu, Guanghui

    2016-01-01

    Mineral elements in soil solutions are thought to be the precursor of the formation of reactive minerals, which play an important role in global carbon (C) cycling. However, information regarding the regulation of mineral elements release in soil is scarce. Here, we examined the long-term (i.e., 23 yrs) effects of fertilisation practices on Fe minerals in a red soil in Southern China. The results from chemical analysis and Fourier-transform infrared spectroscopy showed that long-term swine manure (M) treatment released greater amounts of minerals into soil solutions than chemical fertilisers (NPK) treatment, and Fe played a dominant role in the preservation of dissolved organic C. Furthermore, Fe K-edge X-ray absorption near-edge fine structure spectroscopy demonstrated that reactive Fe minerals were mainly composed of less crystalline ferrihydrite in the M-treated soil and more crystalline goethite in the NPK-treated soil. In conclusion, this study reported spectroscopic evidence of the improvement of reactive Femineral content in the M-treated soil colloids when compared to NPK-treated soil colloids. PMID:26752419

  6. The purple Codex Rossanensis: spectroscopic characterisation and first evidence of the use of the elderberry lake in a sixth century manuscript.

    PubMed

    Bicchieri, Marina

    2014-12-01

    This paper presents the results obtained during the measurements campaign started in June 2012 and ended in November 2013 on the invaluable purple Codex Rossanensis, sixth century, one of the oldest surviving illuminated manuscripts of the New Testament. The tasks of the chemistry laboratory were to answer a variety of questions posed both by historians and restorers, concerning the materials used in a previous restoration, the composition of the pictorial palette and the different inks and to determine which colouring material had been applied to dye the parchment support. It was also requested to determine the state of preservation of the manuscript, as a result of its interactions with the environment in which the manuscript had been stored and the vicissitudes experienced during its life (fire, previous restoration, exhibition). The spectroscopic analyses performed by micro-Raman, micro-Fourier transform infrared and X-ray fluorescence allowed to fill a gap in the knowledge of the pictorial materials used in the Early Middle Ages. The pictorial palette, the inks, the dye applied to obtain the purple parchments, the support and the materials used in the previous restoration treatment executed in 1917-19 were fully characterised. Moreover, to the author's knowledge, the article shows the first experimental evidence of the use of the elderberry lake in a sixth century-illuminated manuscript. The lake was characterised by Raman spectroscopy. PMID:25056752

  7. MR spectroscopic evidence for glial increase but not for neuro-axonal damage in MS normal-appearing white matter.

    PubMed

    Vrenken, H; Barkhof, F; Uitdehaag, B M J; Castelijns, J A; Polman, C H; Pouwels, P J W

    2005-02-01

    Quantitative single-voxel, short echo-time (TE) MR spectroscopy (MRS) was used to determine metabolite concentrations in the cerebral normal-appearing white matter (NAWM) of 76 patients with multiple sclerosis (MS), and the WM of 25 controls. In NAWM of all MS disease types (primary progressive, relapsing-remitting, and secondary progressive), the concentration ratio of total N-acetyl-aspartate (tNAA)/total creatine (tCr) was decreased compared to controls. Remarkably, this was entirely due to an increase of tCr in MS patients, whereas there was no difference in tNAA. Separate quantification of the two tNAA components yielded no significant difference in NAA (N-acetyl-aspartate), while the concentration of NAAG (N-acetyl-aspartyl-glutamate) was slightly-but significantly-elevated in MS patients. Myo-inositol (Ins) was strongly increased in MS patients, and choline-containing compounds (Cho) were mildly increased. There were no metabolite differences between disease types, and no correlations with disability scores. The results are supported by measures of spectral quality, which were identical for patients and controls. In conclusion, MS NAWM containing very little perilesional tissue is characterized by increased glial cell numbers (increase of Ins and tCr) without evidence of axonal dysfunction (normal NAA). Further studies should elucidate the mechanism underlying increased NAAG in MS NAWM. PMID:15678547

  8. X-ray absorption spectroscopic evidence for the complexation of Hg(II) by reduced sulfur in soil humic substances

    SciTech Connect

    Xia, K.; Skyllberg, U.L.; Bleam, W.F.; Helmke, P.A.; Bloom, P.R.; Nater, E.A.

    1999-01-15

    Analysis of Hg(II) complexed by a soil humic acid (HA) using synchrotron-based X-ray absorption spectroscopy (XAS) revealed the importance of reduces sulfur functional groups (thiol (R-SH) and disulfide (R-SS-R)/disulfane (R-SSH)) in humic substances in the complexation of Hg(II). A two-coordinate binding environment with one oxygen atom and one sulfur atom at distances of 2.02 and 2.38 {angstrom}, respectively, was found in the first coordination shell of Hg(II) complexed by humic acid. Model calculations show that a second coordination sphere could contain one carbon atom and a second sulfur atom at 2.78 and 2.93 {angstrom}, respectively. This suggests that in addition to thiol S, disulfide/disulfane S may be involved with the complexation of Hg(II) in soil organic matter. The appearance of carbon atom in the second coordination shell suggests that one O-containing ligand such as carboxyl and phenol ligands rather than H{sub 2}O molecule is bound to the Hg(II). The involvement of oxygen ligand in addition to the reduced S ligands in the complexation of Hg(II) is due to the low density of reduced S ligands in humic substances. The XAS results from this experiment provided direct molecular level evidence for the preference of reduced S functional groups over oxygen ligands by Hg(II) in the complexation with humic substances.

  9. Spectroscopic and Kinetic Evidence for the Crucial Role of Compound 0 in the P450cam -Catalyzed Hydroxylation of Camphor by Hydrogen Peroxide.

    PubMed

    Franke, Alicja; van Eldik, Rudi

    2015-10-19

    The hydroperoxo iron(III) intermediate P450cam Fe(III) -OOH, being the true Compound 0 (Cpd 0) involved in the natural catalytic cycle of P450cam , could be transiently observed in the peroxo-shunt oxidation of the substrate-free enzyme by hydrogen peroxide under mild basic conditions and low temperature. The prolonged lifetime of Cpd 0 enabled us to kinetically examine the formation and reactivity of P450cam Fe(III) -OOH species as a function of varying reaction conditions, such as pH, and concentration of H2 O2 , camphor, and potassium ions. The mechanism of hydrogen peroxide binding to the substrate-free form of P450cam differs completely from that observed for other heme proteins possessing the distal histidine as a general acid-base catalyst and is mainly governed by the ability of H2 O2 to undergo deprotonation at the hydroxo ligand coordinated to the iron(III) center under conditions of pH≥p${K{{{\\rm P450}\\hfill \\atop {\\rm a}\\hfill}}}$. Notably, no spectroscopic evidence for the formation of either Cpd I or Cpd II as products of heterolytic or homolytic OO bond cleavage, respectively, in Cpd 0 could be observed under the selected reaction conditions. The kinetic data obtained from the reactivity studies involving (1R)-camphor, provide, for the first time, experimental evidence for the catalytic activity of the P450Fe(III) -OOH intermediate in the oxidation of the natural substrate of P450cam . PMID:26353996

  10. Supergene destruction of a hydrothermal replacement alunite deposit at Big Rock Candy Mountain, Utah: Mineralogy, spectroscopic remote sensing, stable-isotope, and argon-age evidences

    USGS Publications Warehouse

    Cunningham, C.G.; Rye, R.O.; Rockwell, B.W.; Kunk, M.J.; Councell, T.B.

    2005-01-01

    Big Rock Candy Mountain is a prominent center of variegated altered volcanic rocks in west-central Utah. It consists of the eroded remnants of a hypogene alunite deposit that, at ???21 Ma, replaced intermediate-composition lava flows. The alunite formed in steam-heated conditions above the upwelling limb of a convection cell that was one of at least six spaced at 3- to 4-km intervals around the margin of a monzonite stock. Big Rock Candy Mountain is horizontally zoned outward from an alunite core to respective kaolinite, dickite, and propylite envelopes. The altered rocks are also vertically zoned from a lower pyrite-propylite assemblage upward through assemblages successively dominated by hypogene alunite, jarosite, and hematite, to a flooded silica cap. This hydrothermal assemblage is undergoing natural destruction in a steep canyon downcut by the Sevier River in Marysvale Canyon. Integrated geological, mineralogical, spectroscopic remote sensing using AVIRIS data, Ar radiometric, and stable isotopic studies trace the hypogene origin and supergene destruction of the deposit and permit distinction of primary (hydrothermal) and secondary (weathering) processes. This destruction has led to the formation of widespread supergene gypsum in cross-cutting fractures and as surficial crusts, and to natrojarosite, that gives the mountain its buff coloration along ridges facing the canyon. A small spring, Lemonade Spring, with a pH of 2.6 and containing Ca, Mg, Si, Al, Fe, Mn, Cl, and SO4, also occurs near the bottom of the canyon. The 40Ar/39 Ar age (21.32??0.07 Ma) of the alunite is similar to that for other replacement alunites at Marysvale. However, the age spectrum contains evidence of a 6.6-Ma thermal event that can be related to the tectonic activity responsible for the uplift that led to the downcutting of Big Rock Candy Mountain by the Sevier River. This ???6.6 Ma event also is present in the age spectrum of supergene natrojarosite forming today, and probably dates

  11. Non-covalent interactions of nitrous oxide with aromatic compounds: Spectroscopic and computational evidence for the formation of 1:1 complexes

    SciTech Connect

    Cao, Qian; Gor, Gennady Y.; Krogh-Jespersen, Karsten; Khriachtchev, Leonid

    2014-04-14

    We present the first study of intermolecular interactions between nitrous oxide (N{sub 2}O) and three representative aromatic compounds (ACs): phenol, cresol, and toluene. The infrared spectroscopic experiments were performed in a Ne matrix and were supported by high-level quantum chemical calculations. Comparisons of the calculated and experimental vibrational spectra provide direct identification and characterization of the 1:1 N{sub 2}O-AC complexes. Our results show that N{sub 2}O is capable of forming non-covalently bonded complexes with ACs. Complex formation is dominated by dispersion forces, and the interaction energies are relatively low (about −3 kcal mol{sup −1}); however, the complexes are clearly detected by frequency shifts of the characteristic bands. These results suggest that N{sub 2}O can be bound to the amino-acid residues tyrosine or phenylalanine in the form of π complexes.

  12. Spectroscopic Quadrupole Moments in {96,98}Sr: Evidence for Shape Coexistence in Neutron-Rich Strontium Isotopes at N=60.

    PubMed

    Clément, E; Zielińska, M; Görgen, A; Korten, W; Péru, S; Libert, J; Goutte, H; Hilaire, S; Bastin, B; Bauer, C; Blazhev, A; Bree, N; Bruyneel, B; Butler, P A; Butterworth, J; Delahaye, P; Dijon, A; Doherty, D T; Ekström, A; Fitzpatrick, C; Fransen, C; Georgiev, G; Gernhäuser, R; Hess, H; Iwanicki, J; Jenkins, D G; Larsen, A C; Ljungvall, J; Lutter, R; Marley, P; Moschner, K; Napiorkowski, P J; Pakarinen, J; Petts, A; Reiter, P; Renstrøm, T; Seidlitz, M; Siebeck, B; Siem, S; Sotty, C; Srebrny, J; Stefanescu, I; Tveten, G M; Van de Walle, J; Vermeulen, M; Voulot, D; Warr, N; Wenander, F; Wiens, A; De Witte, H; Wrzosek-Lipska, K

    2016-01-15

    Neutron-rich {96,98}Sr isotopes have been investigated by safe Coulomb excitation of radioactive beams at the REX-ISOLDE facility. Reduced transition probabilities and spectroscopic quadrupole moments have been extracted from the differential Coulomb excitation cross sections. These results allow, for the first time, the drawing of definite conclusions about the shape coexistence of highly deformed prolate and spherical configurations. In particular, a very small mixing between the coexisting states is observed, contrary to other mass regions where strong mixing is present. Experimental results have been compared to beyond-mean-field calculations using the Gogny D1S interaction in a five-dimensional collective Hamiltonian formalism, which reproduce the shape change at N=60. PMID:26824536

  13. Non-covalent interactions of nitrous oxide with aromatic compounds: Spectroscopic and computational evidence for the formation of 1:1 complexes

    NASA Astrophysics Data System (ADS)

    Cao, Qian; Gor, Gennady Y.; Krogh-Jespersen, Karsten; Khriachtchev, Leonid

    2014-04-01

    We present the first study of intermolecular interactions between nitrous oxide (N2O) and three representative aromatic compounds (ACs): phenol, cresol, and toluene. The infrared spectroscopic experiments were performed in a Ne matrix and were supported by high-level quantum chemical calculations. Comparisons of the calculated and experimental vibrational spectra provide direct identification and characterization of the 1:1 N2O-AC complexes. Our results show that N2O is capable of forming non-covalently bonded complexes with ACs. Complex formation is dominated by dispersion forces, and the interaction energies are relatively low (about -3 kcal mol-1); however, the complexes are clearly detected by frequency shifts of the characteristic bands. These results suggest that N2O can be bound to the amino-acid residues tyrosine or phenylalanine in the form of π complexes.

  14. Spectroscopic, Electrochemical and Computational Characterisation of Ru Species Involved in Catalytic Water Oxidation: Evidence for a [Ru(V) (O)(Py2 (Me) tacn)] Intermediate.

    PubMed

    Casadevall, Carla; Codolà, Zoel; Costas, Miquel; Lloret-Fillol, Julio

    2016-07-11

    A new family of ruthenium complexes based on the N-pentadentate ligand Py2 (Me) tacn (N-methyl-N',N''-bis(2-picolyl)-1,4,7-triazacyclononane) has been synthesised and its catalytic activity has been studied in the water-oxidation (WO) reaction. We have used chemical oxidants (ceric ammonium nitrate and NaIO4 ) to generate the WO intermediates [Ru(II) (OH2 )(Py2 (Me) tacn)](2+) , [Ru(III) (OH2 )(Py2 (Me) tacn)](3+) , [Ru(III) (OH)(Py2 (Me) tacn)](2+) and [Ru(IV) (O)(Py2 (Me) tacn)](2+) , which have been characterised spectroscopically. Their relative redox and pH stability in water has been studied by using UV/Vis and NMR spectroscopies, HRMS and spectroelectrochemistry. [Ru(IV) (O)(Py2 (Me) tacn)](2+) has a long half-life (>48 h) in water. The catalytic cycle of WO has been elucidated by using kinetic, spectroscopic, (18) O-labelling and theoretical studies, and the conclusion is that the rate-determining step is a single-site water nucleophilic attack on a metal-oxo species. Moreover, [Ru(IV) (O)(Py2 (Me) tacn)](2+) is proposed to be the resting state under catalytic conditions. By monitoring Ce(IV) consumption, we found that the O2 evolution rate is redox-controlled and independent of the initial concentration of Ce(IV) . Based on these facts, we propose herein that [Ru(IV) (O)(Py2 (Me) tacn)](2+) is oxidised to [Ru(V) (O)(Py2 (Me) tacn)](2+) prior to attack by a water molecule to give [Ru(III) (OOH)(Py2 (Me) tacn)](2+) . Finally, it is shown that the difference in WO reactivity between the homologous iron and ruthenium [M(OH2 )(Py2 (Me) tacn)](2+) (M=Ru, Fe) complexes is due to the difference in the redox stability of the key M(V) (O) intermediate. These results contribute to a better understanding of the WO mechanism and the differences between iron and ruthenium complexes in WO reactions. PMID:27324949

  15. Spectroscopic evidence on improvement in complex formation of O2N2 aza-crown macrocyclic ligands with Cu(II) acetate upon incorporation with [60]Fullerene.

    PubMed

    Ghanbari, Bahram; Gholamnezhad, Parisa

    2016-12-01

    The present paper reports the spectroscopic investigations on the complexation of Cu(II) with two macrocyclic ligands bonded to [60]Fullerene (L1 and L2) measured in N-methylpyrrolidone (NMP) as solvent. On the basis of UV-vis-NIR spectroscopy applying Jobs method of continuous variation, typical 1:1 stoichiometries were established for the complexes of Cu(II) with L1, and L2. DFT calculations suggested that superior HOMO distributions spread over the nitrogen-donor (as well as somehow oxygen- donor in L2) groups of L1 and L2 macrocycles were the key factor for the observed Kb value enhancement. Thermodynamic stabilities for these complexes have also been determined employing Benesi-Hildebrand equation and the results were compared in terms of their calculated binding constants (Kb). These measurements showed that L1 and L2 bound to these cations stronger than their parent free macrocyclic ligands 1 and 2, respectively. Furthermore, Kb values found for L2 complexes revealed that it could coordinate Cu(II) cation better than L1. Thermodynamic parameters (ΔG, ∆H, and -ΔS) derived from Van't Hoff equation showed that L1 and L2 coordination of Cu(II) cation were occurred due to both enthalpic and entropic factors while the coordination of Cu(II) with their parent macrocyclic ligands 1 and 2 only enjoyed from only enthalpic advantages. PMID:27380303

  16. Spectroscopic evidence on improvement in complex formation of O2N2 aza-crown macrocyclic ligands with Cu(II) acetate upon incorporation with [60]Fullerene

    NASA Astrophysics Data System (ADS)

    Ghanbari, Bahram; Gholamnezhad, Parisa

    2016-12-01

    The present paper reports the spectroscopic investigations on the complexation of Cu(II) with two macrocyclic ligands bonded to [60]Fullerene (L1 and L2) measured in N-methylpyrrolidone (NMP) as solvent. On the basis of UV-vis-NIR spectroscopy applying Jobs method of continuous variation, typical 1:1 stoichiometries were established for the complexes of Cu(II) with L1, and L2. DFT calculations suggested that superior HOMO distributions spread over the nitrogen-donor (as well as somehow oxygen- donor in L2) groups of L1 and L2 macrocycles were the key factor for the observed Kb value enhancement. Thermodynamic stabilities for these complexes have also been determined employing Benesi-Hildebrand equation and the results were compared in terms of their calculated binding constants (Kb). These measurements showed that L1 and L2 bound to these cations stronger than their parent free macrocyclic ligands 1 and 2, respectively. Furthermore, Kb values found for L2 complexes revealed that it could coordinate Cu(II) cation better than L1. Thermodynamic parameters (ΔG, ∆ H, and - ΔS) derived from Van't Hoff equation showed that L1 and L2 coordination of Cu(II) cation were occurred due to both enthalpic and entropic factors while the coordination of Cu(II) with their parent macrocyclic ligands 1 and 2 only enjoyed from only enthalpic advantages.

  17. Evidence for the kinematic Sunyaev-Zel'dovich effect with the Atacama Cosmology Telescope and velocity reconstruction from the Baryon Oscillation Spectroscopic Survey

    NASA Astrophysics Data System (ADS)

    Schaan, Emmanuel; Ferraro, Simone; Vargas-Magaña, Mariana; Smith, Kendrick M.; Ho, Shirley; Aiola, Simone; Battaglia, Nicholas; Bond, J. Richard; De Bernardis, Francesco; Calabrese, Erminia; Cho, Hsiao-Mei; Devlin, Mark J.; Dunkley, Joanna; Gallardo, Patricio A.; Hasselfield, Matthew; Henderson, Shawn; Hill, J. Colin; Hincks, Adam D.; Hlozek, Renée; Hubmayr, Johannes; Hughes, John P.; Irwin, Kent D.; Koopman, Brian; Kosowsky, Arthur; Li, Dale; Louis, Thibaut; Lungu, Marius; Madhavacheril, Mathew; Maurin, Loïc; McMahon, Jeffrey John; Moodley, Kavilan; Naess, Sigurd; Nati, Federico; Newburgh, Laura; Niemack, Michael D.; Page, Lyman A.; Pappas, Christine G.; Partridge, Bruce; Schmitt, Benjamin L.; Sehgal, Neelima; Sherwin, Blake D.; Sievers, Jonathan L.; Spergel, David N.; Staggs, Suzanne T.; van Engelen, Alexander; Wollack, Edward J.; ACTPol Collaboration

    2016-04-01

    We use microwave temperature maps from two seasons of data from the Atacama Cosmology Telescope at 146 GHz, together with the "Constant Mass" CMASS galaxy sample from the Baryon Oscillation Spectroscopic Survey to measure the kinematic Sunyaev-Zel'dovich (kSZ) effect over the redshift range z =0.4 - 0.7 . We use galaxy positions and the continuity equation to obtain a reconstruction of the line-of-sight velocity field. We stack the microwave temperature at the location of each halo, weighted by the corresponding reconstructed velocity. We vary the size of the aperture photometry filter used, thus probing the free electron profile of these halos from within the virial radius out to three virial radii, on the scales relevant for investigating the missing baryons problem. The resulting best fit kSZ model is preferred over the no-kSZ hypothesis at 3.3 and 2.9 σ for two independent velocity reconstruction methods, using 25,537 galaxies over 660 square degrees. The data suggest that the baryon profile is shallower than the dark matter in the inner regions of the halos probed here, potentially due to energy injection from active galactic nucleus or supernovae. Thus, by constraining the gas profile on a wide range of scales, this technique will be useful for understanding the role of feedback in galaxy groups and clusters. The effect of foregrounds that are uncorrelated with the galaxy velocities is expected to be well below our signal, and residual thermal Sunyaev-Zel'dovich contamination is controlled by masking the most massive clusters. Finally, we discuss the systematics involved in converting our measurement of the kSZ amplitude into the mean free electron fraction of the halos in our sample.

  18. PHOTOMETRIC AND SPECTROSCOPIC STUDIES OF MASSIVE BINARIES IN THE LARGE MAGELLANIC CLOUD. I. INTRODUCTION AND ORBITS FOR TWO DETACHED SYSTEMS: EVIDENCE FOR A MASS DISCREPANCY?

    SciTech Connect

    Massey, Philip; Neugent, Kathryn F.; Morrell, Nidia I.; Penny, Laura R.; DeGioia-Eastwood, Kathleen; Gies, Douglas R. E-mail: kneugent@lowell.edu E-mail: pennyl@cofc.edu E-mail: gies@chara.gsu.edu

    2012-04-01

    The stellar mass-luminosity relation is poorly constrained by observations for high-mass stars. We describe our program to find eclipsing massive binaries in the Magellanic Clouds using photometry of regions rich in massive stars, and our spectroscopic follow-up to obtain radial velocities and orbits. Our photometric campaign identified 48 early-type periodic variables, of which only 15 (31%) were found as part of the microlensing surveys. Spectroscopy is now complete for 17 of these systems, and in this paper we present analysis of the first two, LMC 172231 and ST2-28, simple detached systems of late-type O dwarfs of relatively modest masses. Our orbit analysis yields very precise masses ({approx}2%), and we use tomography to separate the components and determine effective temperatures by model fitting, necessary for determining accurate (0.05-0.07 dex) bolometric luminosities in combination with the light-curve analysis. Our approach allows more precise comparisons with evolutionary theory than previously possible. To our considerable surprise, we find a small, but significant, systematic discrepancy: all of the stars are slightly undermassive, by typically 11% (or overluminous by 0.2 dex) compared with that predicted by the evolutionary models. We examine our approach for systematic problems, but find no satisfactory explanation. The discrepancy is in the same sense as the long-discussed and elusive discrepancy between the masses measured from stellar atmosphere analysis with the stellar evolutionary models, and might suggest that either increased rotation or convective overshooting is needed in the models. Additional systems will be discussed in future papers of this series, and will hopefully confirm or refute this trend.

  19. Computational, electrochemical, and spectroscopic studies of two mononuclear cobaloximes: the influence of an axial pyridine and solvent on the redox behaviour and evidence for pyridine coordination to cobalt(i) and cobalt(ii) metal centres.

    PubMed

    Lawrence, Mark A W; Celestine, Michael J; Artis, Edward T; Joseph, Lorne S; Esquivel, Deisy L; Ledbetter, Abram J; Cropek, Donald M; Jarrett, William L; Bayse, Craig A; Brewer, Matthew I; Holder, Alvin A

    2016-06-21

    [Co(dmgBF2)2(H2O)2] (where dmgBF2 = difluoroboryldimethylglyoximato) was used to synthesize [Co(dmgBF2)2(H2O)(py)]·0.5(CH3)2CO (where py = pyridine) in acetone. The formulation of complex was confirmed by elemental analysis, high resolution MS, and various spectroscopic techniques. The complex [Co(dmgBF2)2(solv)(py)] (where solv = solvent) was readily formed in situ upon the addition of pyridine to complex . A spectrophotometric titration involving complex and pyridine proved the formation of such a species, with formation constants, log K = 5.5, 5.1, 5.0, 4.4, and 3.1 in 2-butanone, dichloromethane, acetone, 1,2-difluorobenzene/acetone (4 : 1, v/v), and acetonitrile, respectively, at 20 °C. In strongly coordinating solvents, such as acetonitrile, the lower magnitude of K along with cyclic voltammetry, NMR, and UV-visible spectroscopic measurements indicated extensive dissociation of the axial pyridine. In strongly coordinating solvents, [Co(dmgBF2)2(solv)(py)] can only be distinguished from [Co(dmgBF2)2(solv)2] upon addition of an excess of pyridine, however, in weakly coordinating solvents the distinctions were apparent without the need for excess pyridine. The coordination of pyridine to the cobalt(ii) centre diminished the peak current at the Epc value of the Co(I/0) redox couple, which was indicative of the relative position of the reaction equilibrium. Herein we report the first experimental and theoretical (59)Co NMR spectroscopic data for the formation of Co(i) species of reduced cobaloximes in the presence and absence of py (and its derivatives) in CD3CN. From spectroelectrochemical studies, it was found that pyridine coordination to a cobalt(i) metal centre is more favourable than coordination to a cobalt(ii) metal centre as evident by the larger formation constant, log K = 4.6 versus 3.1, respectively, in acetonitrile at 20 °C. The electrosynthesis of hydrogen by complexes and in various solvents demonstrated the dramatic effects of the axial

  20. Direct Spectroscopic Evidence for Phase Competition between the Pseudogap and Superconductivity in Bi2Sr2CaCu2O8+δ

    SciTech Connect

    Hashimoto, Makoto; Nowadnick, Elizabeth A.; He, Rui-Hua; Vishik, Inna M.; Moritz, Brian; He, Yu; Tanaka, Kiyohisa; Moore, Robert G.; Lu, Donghui; Yoshida, Yoshiyuki; Ishikado, Motoyuki; Sasagawa, Takao; Fujita, Kazuhiro; Ishida, Shigeyuku; Uchida, Shinichi; Eisaki, Hiroshi; Hussain, Zahid; Devereaux, Thomas P.; Shen, Zhi-Xun

    2014-11-02

    In the high-temperature (Tc) cuprate superconductors, increasing evidence suggests that the pseudogap, existing below the pseudogap temperature T*, has a distinct broken electronic symmetry from that of superconductivity. Particularly, recent scattering experiments on the underdoped cuprates have suggested that a charge ordering competes with superconductivity. However, no direct link of this physics and the important low-energy excitations has been identified. We report an antagonistic singularity at Tc in the spectral weight of Bi2Sr2CaCu2O8+δ as a compelling evidence for phase competition, which persists up to a high hole concentration p ~ 0.22. Comparison with a theoretical calculation confirms that the singularity is a signature of competition between the order parameters for the pseudogap and superconductivity. Our observation of the spectroscopic singularity at finite temperatures over a wide doping range provides new insights into the nature of the competitive interplay between the two intertwined phases and the complex phase diagram near the pseudogap critical point.

  1. Evidence of colour-modification induced charge and structural disorder in natural corundum: Spectroscopic studies of beryllium treated sapphires and rubies

    NASA Astrophysics Data System (ADS)

    Sastry, M. D.; Mane, Sandesh N.; Gaonkar, Mahesh P.; Bagla, H.; Panjikar, J.; Ramachandran, K. T.

    2009-07-01

    Corundum α - Al2O3 single crystals is an important gemstone known by different names depending on the colour it exhibits which in turn depends on the impurities that are present. The colour depends on the valence state of the impurity element present in corundum (Cr3+ in ruby, Fe3+ in yellow sapphire and Fe-Ti complex in blue sapphire). There have been a number of reports of diffusion controlled high temperature chemical reactions to influence the colouration in these materials. Present paper deals with the Raman and FT-IR results on Be treated rubies/sapphires and gives evidence of the disorder brought about by such treatments. This can be effectively used for diagnostic purposes for detecting the treated stones.

  2. Spectroscopic Evidence for Strong Quantum Spin Fluctuations with Itinerant Character in YFe2Ge2

    SciTech Connect

    Sirica, N.; Bondino, F.; Nappini, S.; Piz, I.; Poudel, L.; Christianson, Andrew D.; Mandrus, D.; Singh, David J; Mannella, Norman

    2015-03-04

    We report x-ray absorption and photoemission spectroscopy of the electronic structure in the normal state of metallic YFe2Ge2. The data reveal evidence for large fluctuating spin moments on the Fe sites, as indicated by exchange multiplets appearing in the Fe 3s core-level photoemission spectra, even though the compound does not show magnetic order. The magnitude of the multiplet splitting is comparable to that observed in the normal state of the Fe-pnictide superconductors. This shows a connection between YFe2Ge2 and the Fe-based superconductors even though it contains neither pnictogens nor chalcogens. Finally, the implication is that the chemical range of compounds showing at least one of the characteristic magnetic signatures of the Fe-based superconductors is broader than previously thought.

  3. Spectroscopic evidence for the coexistence of tetragonal and trigonal minima within the exited state adiabatic potential energy surfaces of hexachlorotellurate and -selenate complexes

    NASA Astrophysics Data System (ADS)

    Cremers, C.; Degen, J.

    1998-11-01

    Coexistence of Jahn-Teller minima resulting from the coupling to different accepting modes within the adiabatic potential energy surface (APES) is not possible within the framework of linear vibronic coupling theory. For the lowest exited triplet state 3T1u of inorganic complexes with s2 electronic ground-state configuration, such a coexistence, due to quadratic coupling effects, is discussed. As a direct experimental evidence two vibronic progressions with different accepting modes in the emission spectra resulting from a single electronic state are observed in the emission spectra of the title compounds. The observation of vibronic finestructure in the emission spectra of [TeCl6]2- is reported for the first time.

  4. Spectroscopic Evidence for a High-Spin Br-Fe(IV)-Oxo Intermediate in the -Ketoglutarate-Dependent Halogenase CyTc3 From Streptomyces

    SciTech Connect

    Fujimori, D.Galonic; Barr, E.W.; Matthews, M.L.; Koch, G.M.; Yonce, J.R.; Walsh, C.T.; Bollinger, J.M., Jr.; Krebs, C.; Riggs-Gelasco, P.J.

    2009-06-01

    The complex of the mononuclear non-heme halogenase CytC3 from Streptomyces, Fe(II), {alpha}-ketoglutarate, bromide, and the substrate l-2-aminobutyryl-S-CytC2 reacts with O{sub 2} to form a reaction intermediate. Variable-field, freeze-quench Moessbauer spectroscopy reveals this intermediate to be a mixture of two high-spin Fe(IV) complexes in an approximate 3.7/1 ratio. Freeze-quench Fe K-edge X-ray absorption spectroscopy provides further insight into the structure of this intermediate. A short 1.62-{angstrom} interaction between the Fe and one of its ligands is attributed to the Fe(IV)-oxo group, and a 2.43-{angstrom} interaction is assigned to the Fe-Br interaction. A significantly longer Fe-Br separation (2.53 {angstrom}) is observed in the reactant complex, consistent with lower valency of the Fe in the reactant complex. This intermediate is the first example for a Br-Fe(IV)-oxo complex in a protein and provides evidence for a unifying mechanism for Fe(II) and {alpha}-ketoglutarate-dependent dioxygenases and halogenases.

  5. Spectroscopic Evidence for a High-Spin Br-Fe(IV)-Oxo Intermediate in the alpha-Ketoglutarate-Dependent Halogenase CytC3 from Streptomyces

    SciTech Connect

    Galonic Fujimori,D.; Barr, E.; Matthews, M.; Koch, G.; Yonce, J.; Walsh, C.; Bollinger, J.; Krebs, C.; Riggs-Gelasco, P.

    2007-01-01

    The complex of the mononuclear non-heme halogenase CytC3 from Streptomyces, Fe(II), {alpha}-ketoglutarate, bromide, and the substrate l-2-aminobutyryl-S-CytC2 reacts with O2 to form a reaction intermediate. Variable-field, freeze-quench Mossbauer spectroscopy reveals this intermediate to be a mixture of two high-spin Fe(IV) complexes in an approximate 3.7/1 ratio. Freeze-quench Fe K-edge X-ray absorption spectroscopy provides further insight into the structure of this intermediate. A short 1.62-Angstroms interaction between the Fe and one of its ligands is attributed to the Fe(IV)-oxo group, and a 2.43-Angstroms interaction is assigned to the Fe-Br interaction. A significantly longer Fe-Br separation (2.53 Angstroms) is observed in the reactant complex, consistent with lower valency of the Fe in the reactant complex. This intermediate is the first example for a Br-Fe(IV)-oxo complex in a protein and provides evidence for a unifying mechanism for Fe(II) and {alpha}-ketoglutarate-dependent dioxygenases and halogenases.

  6. Arsenic(III, V) adsorption on a goethite-based adsorbent in the presence of major co-existing ions: Modeling competitive adsorption consistent with spectroscopic and molecular evidence

    NASA Astrophysics Data System (ADS)

    Kanematsu, Masakazu; Young, Thomas M.; Fukushi, Keisuke; Green, Peter G.; Darby, Jeannie L.

    2013-04-01

    Adsorption of the two oxyanions, arsenate (As(V)) and arsenite (As(III)), on a common goethite-based granular porous adsorbent is studied in the presence of major co-existing ions in groundwater (i.e., phosphate, silicic acid, sulfate, carbonate, magnesium, and calcium) and predicted using the extended triple layer model (ETLM), a dipole modified single-site triple layer surface complexation model consistent with spectroscopic and molecular evidence. Surface species of all ions were selected according to the previous ETLM studies and published experimental spectroscopic/theoretical molecular information. The adsorption equilibrium constants for all ions were determined using adsorption data obtained in single-solute systems. The adsorption equilibrium constants referenced to the site-occupancy standard state (indicated by Kθ) were compared with those for goethite in the literature if available. The values of these constants for the goethite-based adsorbent are found to be close to the values for goethite previously studied. These "constrained" adsorption equilibrium constants determined in single-solute systems were used in the ETLM to predict the competitive interactions of As(III, V) with the co-existing ions in binary-solute systems. The ETLM is capable of predicting As(III, V) adsorption in the presence of oxyanions (phosphate, silicic acid, sulfate, and carbonate). This study presents the first successful and systematic prediction of the competitive interactions of As(III, V) with these oxyanions using the ETLM. The ETLM prediction of surface (and aqueous) speciation also provides insights into the distinct adsorption behavior of As(III, V) in the presence of the oxyanions. Magnesium and calcium significantly enhanced As(V) adsorption at higher pH values, while they had little effect on As(III) adsorption. The enhanced adsorption of As(V), however, could not be predicted by the ETLM using the surface species proposed in previous ETLM studies. Further studies

  7. FT-IR Spectroscopic Evidence Of Phase Transition For NaA-ROH-Kerosine-H2O Microemulsion System Containing Nd3+ Ions

    NASA Astrophysics Data System (ADS)

    Liao, Hua; Xu, Zhen-Hua; Shi, Nai; Wu, Jin-Guang; Xu, Guang-Xian

    1989-12-01

    In the previous investigation, the saponification of naphthenic acid extractant system has been proved to be a process of the formation of a microemulsion of 14/0 type, and its full extraction of rare earths is a process of destruction of the W/O microemulsion[1]. When NdCl3 is partially extracted with NaA (sodium naphthenate) secoctylalcohol-- kerosine-- water microemulsion system (ME), both the NdA3 and the NaA co-exist in the same organic phase. However,the formation mechanism of microemulsion containing neodymium has not been much studied. In this paper, 10 aliquots of fully saponificated extractants were equilibrated with various amounts of NdC13 solutions respectively, then ten organic phases with different extraction efficiencies of neodymium from 094 to 9094 were obtained. After extraction,the volume of neodymium containing organic phase increased by 5 to 4594, because of the transfer of water molecules. The appearance of these organic phase still remained clear and transparent. The average hydrodynamic radius of the drops were found to be 100-300 Angstrom by using light scattering techniques. The results give a direct evidence of the microemulsion formation in the organic phase. Their FT-IR spectra were measured with CaFa liquid cells utilizing a Nicolet 7199B FT-IR spectrometer. The presence of various amounts of water in the organic phases was clearly detected from the relative intensity changes of 1644 cm-I, which is assigned to the bending mode of 1110 molecules. Fig.1 shows the change of water contents to the percent extraction of neodymium. Comparsion with the FT-IR spectra, it is seen that the 1560 cm-1 peak of the full saponificated extractant is attributed to the asym. stretching vibration of COO''' group, it shifted to 1536 for 100% extration of Nd ions, indicating the formation of neodymium naphthenate (NdA ) from ionic sodium naphthenate. The sym. strethching vibration of COO''' located at 1406 cm-1, it shifted to 1408 cm in 45% Nd extration

  8. Calibration method for spectroscopic systems

    DOEpatents

    Sandison, David R.

    1998-01-01

    Calibration spots of optically-characterized material placed in the field of view of a spectroscopic system allow calibration of the spectroscopic system. Response from the calibration spots is measured and used to calibrate for varying spectroscopic system operating parameters. The accurate calibration achieved allows quantitative spectroscopic analysis of responses taken at different times, different excitation conditions, and of different targets.

  9. Calibration method for spectroscopic systems

    DOEpatents

    Sandison, D.R.

    1998-11-17

    Calibration spots of optically-characterized material placed in the field of view of a spectroscopic system allow calibration of the spectroscopic system. Response from the calibration spots is measured and used to calibrate for varying spectroscopic system operating parameters. The accurate calibration achieved allows quantitative spectroscopic analysis of responses taken at different times, different excitation conditions, and of different targets. 3 figs.

  10. Spectroscopic evidence for the formation of singlet molecular oxygen (/sup 1/. delta. /sub g/O/sub 2/) upon irradiation of a solvent-oxygen (/sup 3/Sigma/sub g//sup -/O/sub 2/) cooperative absorption band

    SciTech Connect

    Scurlock, R.D.; Ogilby, P.R.

    1988-01-20

    It is well-known that the presence of molecular oxygen (/sup 3/..sigma../sub g//sup -/O/sub 2/) in a variety of organic solvents causes an often substantial red shift in the solvent absorption spectrum. This extra, broad absorption feature is reversibly removed by purging the solvent with nitrogen gas. Mulliken and Tsubomura assigned the oxygen-dependent absorption band to a transition from a ground state solvent-oxygen complex to a solvent-oxygen charge transfer (CT) state (sol/sup .+/O/sub 2//sup .-/). In addition to the broad Mulliken CT band, there are, often in the same spectral region, distinct singlet-triplet transitions (T/sub 1/ reverse arrow S/sub 0/) which are enhanced by molecular oxygen (/sup 3/..sigma../sub g//sup -/O/sub 2/). Since both of these solvent-oxygen cooperative transitions may result in the formation of reactive oxygenating species, singlet molecular oxygen (/sup 1/..delta../sub g/O/sub 2/) and/or the superoxide ion (O/sub 2//sup .-/), it follows that recent studies have focused on unsaturated hydrocarbon oxygenation subsequent to the irradiation of the oxygen-induced absorption bands in both the solution phase and cryogenic (10 K) glasses. In these particular experiments, oxygenated products characteristic of both /sup 1/..delta../sub g/O/sub 2/ and O/sub 2//sub .-/ were obtained, although the systems studied appeared to involve the participation of one intermediate at the exclusion of the other. In this communication, the authors provide, for the first time, direct spectroscopic evidence for the formation of /sup 1/..delta../sub g/O/sub 2/ following a solvent-oxygen (/sup 3/..sigma../sub g//sup -/O/sub 2/) cooperative absorption. They have observed, in a time-resolved experiment, a near-IR luminescence subsequent to laser excitation of the oxygen-induced absorption bands of mesitylene, p-xylene, o-xylene, toluene, and benzene at 355 nm and 1,4-dioxane at 266 nm. They suggest that this signal is due to /sup 1/..delta../sub g/O/sub 2

  11. Spectroscopic wear detector

    NASA Technical Reports Server (NTRS)

    Madzsar, George C. (Inventor)

    1993-01-01

    The elemental composition of a material exposed to hot gases and subjected to wear is determined. Atoms of an elemental species not appearing in this material are implanted in a surface at a depth based on the maximum allowable wear. The exhaust gases are spectroscopically monitored to determine the exposure of these atoms when the maximum allowable wear is reached.

  12. Spectroscopic infrared ellipsometry

    NASA Astrophysics Data System (ADS)

    Roseler, A.

    1992-03-01

    The spectroscopic infrared ellipsometry (SIRE) by means of the combination of a photometric ellipsometer with a Fourier transform spectrometer is used to measure optical properties in the infrared. From the observed four Stokes parameters, the spectrum of the degree of polarization after the reflection at the sample is calculated and discussed.

  13. Spectroscopic Low Coherence Interferometry

    NASA Astrophysics Data System (ADS)

    Bosschaart, Nienke; van Leeuwen, T. G.; Aalders, Maurice C.; Hermann, Boris; Drexler, Wolfgang; Faber, Dirk J.

    Low-coherence interferometry (LCI) allows high-resolution volumetric imaging of tissue morphology and provides localized optical properties that can be related to the physiological status of tissue. This chapter discusses the combination of spatial and spectroscopic information by means of spectroscopic OCT (sOCT) and low-coherence spectroscopy (LCS). We describe the theory behind these modalities for the assessment of spatially resolved optical absorption and (back)scattering coefficient spectra. These spectra can be used for the highly localized quantification of chromophore concentrations and assessment of tissue organization on (sub)cellular scales. This leads to a wealth of potential clinical applications, ranging from neonatology for the determination of billibrubin concentrations, to oncology for the optical assessment of the aggressiveness of a cancerous lesion.

  14. Spectroscopic Binary Stars

    NASA Astrophysics Data System (ADS)

    Batten, A.; Murdin, P.

    2000-11-01

    Historically, spectroscopic binary stars were binary systems whose nature was discovered by the changing DOPPLER EFFECT or shift of the spectral lines of one or both of the component stars. The observed Doppler shift is a combination of that produced by the constant RADIAL VELOCITY (i.e. line-of-sight velocity) of the center of mass of the whole system, and the variable shift resulting from the o...

  15. Spectroscopically Unlocking Exoplanet Characteristics

    NASA Astrophysics Data System (ADS)

    Lewis, Nikole

    2016-05-01

    Spectroscopy plays a critical role in a number of areas of exoplanet research. The first exoplanets were detected by precisely measuring Doppler shifts in high resolution (R ~ 100,000) stellar spectra, a technique that has become known as the Radial Velocity (RV) method. The RV method provides critical constraints on exoplanet masses, but is currently limited to some degree by robust line shape predictions. Beyond the RV method, spectroscopy plays a critical role in the characterization of exoplanets beyond their mass and radius. The Hubble Space Telescope has spectroscopically observed the atmospheres of exoplanets that transit their host stars as seen from Earth giving us key insights into atmospheric abundances of key atomic and molecular species as well as cloud optical properties. Similar spectroscopic characterization of exoplanet atmospheres will be carried out at higher resolution (R ~ 100-3000) and with broader wavelength coverage with the James Webb Space Telescope. Future missions such as WFIRST that seek to the pave the way toward the detection and characterization of potentially habitable planets will have the capability of directly measuring the spectra of exoplanet atmospheres and potentially surfaces. Our ability to plan for and interpret spectra from exoplanets relies heavily on the fidelity of the spectroscopic databases available and would greatly benefit from further laboratory and theoretical work aimed at optical properties of atomic, molecular, and cloud/haze species in the pressure and temperature regimes relevant to exoplanet atmospheres.

  16. Spectroscopic survey of LAMOST

    NASA Astrophysics Data System (ADS)

    Zhao, Yongheng

    2014-07-01

    LAMOST is a special reflecting Schmidt telescope. LAMOST breaks through the bottleneck of the large scale spectroscopic survey observation with both large aperture (effective aperture of 3.6 - 4.9m) and wide field of view (5 degrees). It is an innovative active reflecting Schmidt configuration achieved by changing mirror surface continuously to achieve a series different reflecting Schmidt system in different moments. By using the parallel controllable fiber positioning technique, the focal surface of 1.75 meters in diameter accommodates 4000 optical fibers. Also, LAMOST has 16 spectrographs with 32 CCD cameras. LAMOST is the telescope of the highest spectrum acquiring rate. As a national large scientific project, LAMOST project was proposed formally in 1996. The construction was started in 2001 and completed in 2008. After commission period, LAMOST pilot survey was started in October 2011 and spectroscopic survey began in September 2012. From October 2011 to June 2013, LAMOST has obtained more than 2 million spectra of celestial objects. There are 1.7 million spectra of stars, in which the stellar parameters (effective temperature, surface gravity, metalicitiy and radial velocity) of more than 1 million stars was obtained. In the first period of spectroscopic survey of LAMOST, 5 million of stellar spectra will be obtained and will make substantial contribution to the study of the stellar astrophysics and the structure of the Galaxy, such as the spheroid substructure of the Galaxy, the galactic gravitational potential and the distribution of the dark matter in the Galaxy, the extremely metal poor stars and hypervelocity stars, the 3D extinction in the Galaxy, the structure of thin and thick disks of the Galaxy, and so on.

  17. Spectroscopic survey of LAMOST

    NASA Astrophysics Data System (ADS)

    Zhao, Yongheng

    2015-08-01

    LAMOST is a special reflecting Schmidt telescope. LAMOST breaks through the bottleneck of the large scale spectroscopic survey observation with both large aperture (effective aperture of 3.6 - 4.9m) and wide field of view (5 degrees). It is an innovative active reflecting Schmidt configuration achieved by changing mirror surface continuously to achieve a series different reflecting Schmidt system in different moments. By using the parallel controllable fiber positioning technique, the focal surface of 1.75 meters in diameter accommodates 4000 optical fibers. Also, LAMOST has 16 spectrographs with 32 CCD cameras. LAMOST is the telescope of the highest spectrum acquiring rate.In the spectroscopic survey of LAMOST from October 2011 to June 2014, LAMOST has obtained more than 4.13 million spectra of celestial objects. There are 3.27 million spectra of stars, in which the stellar parameters of 2.16 million stars were obtained.In the five-year regular survey upto 2017, LAMOST will obtaine 5 million stellar spectra, which would make substantial contribution to the study of the stellar astrophysics and the structure of the Galaxy, such as the spheroid substructure of the Galaxy, the galactic gravitational potential and the distribution of the dark matter in the Galaxy, the extremely metal poor stars and hypervelocity stars, the 3D extinction in the Galaxy, the structure of thin and thick disks of the Galaxy, and so on.

  18. Spectroscopic investigations of dithienyl polyenes

    NASA Astrophysics Data System (ADS)

    Cooper, Thomas M.; Sowards, Laura A.; Natarajan, Lalgudi V.; Kirkpatrick, Sean M.; Chandra, Suresh; McLean, Daniel G.; Spangler, Charles W.

    1999-10-01

    To understand the photophysics of nonlinear absorbers, we have investigated the photophysics of a series of di(2- thienyl-3,3',4,4'-butyl)polyenes. Spectroscopic measurements, including UV/Vis, fluorescence, fluorescence lifetimes, fluorescence quantum yields, triplet state lifetime, solvent effects and two-photon absorption coefficient were obtained as a function of the number of double bonds (n equals 1 - 5). Trends in the data reflected the ordering, energy gap between and mixing of 1Bu* and 1Ag* excited state configurations. We investigated the solvatochromism of a series of (alpha) ,(omega) -di(2- dithienyl 3,3',4,4'-butyl) polyenes. Absorption (n equals 1 - 5 double bonds) were collected in a series of aprotic solvents. The absorption energy dispersion effect sensitivity increased smoothly with n, reaching asymptotic behavior as n approached 5. The emission energy had less solvent sensitivity, giving evidence for a polar 1Bu* absorbing state and a nonpolar 1Ag* emitting state. We observed sensitivity of the absorbing and emitting states to solute-solvent dipole-dipole interactions, suggesting the dithienyl polyenes had a polar syn ground state conformation.

  19. Enhancing forensic science with spectroscopic imaging

    NASA Astrophysics Data System (ADS)

    Ricci, Camilla; Kazarian, Sergei G.

    2006-09-01

    This presentation outlines the research we are developing in the area of Fourier Transform Infrared (FTIR) spectroscopic imaging with the focus on materials of forensic interest. FTIR spectroscopic imaging has recently emerged as a powerful tool for characterisation of heterogeneous materials. FTIR imaging relies on the ability of the military-developed infrared array detector to simultaneously measure spectra from thousands of different locations in a sample. Recently developed application of FTIR imaging using an ATR (Attenuated Total Reflection) mode has demonstrated the ability of this method to achieve spatial resolution beyond the diffraction limit of infrared light in air. Chemical visualisation with enhanced spatial resolution in micro-ATR mode broadens the range of materials studied with FTIR imaging with applications to pharmaceutical formulations or biological samples. Macro-ATR imaging has also been developed for chemical imaging analysis of large surface area samples and was applied to analyse the surface of human skin (e.g. finger), counterfeit tablets, textile materials (clothing), etc. This approach demonstrated the ability of this imaging method to detect trace materials attached to the surface of the skin. This may also prove as a valuable tool in detection of traces of explosives left or trapped on the surfaces of different materials. This FTIR imaging method is substantially superior to many of the other imaging methods due to inherent chemical specificity of infrared spectroscopy and fast acquisition times of this technique. Our preliminary data demonstrated that this methodology will provide the means to non-destructive detection method that could relate evidence to its source. This will be important in a wider crime prevention programme. In summary, intrinsic chemical specificity and enhanced visualising capability of FTIR spectroscopic imaging open a window of opportunities for counter-terrorism and crime-fighting, with applications ranging

  20. Recombinant phytochrome A in yeast differs by its spectroscopic and photochemical properties from the major phyA' and is close to the minor phyA": evidence for posttranslational modification of the pigment in plants.

    PubMed

    Sineshchekov, V; Hennig, L; Lamparter, T; Hughes, J; Gärtner, W; Schäfer, E

    2001-06-01

    Previously, two pools of phytochrome A (phyA' and phyA") have been detected by in situ low-temperature fluorescence spectroscopy and photochemistry; it was suggested that they might differ in the nature of their posttranslational modification. In order to verify this possibility Arabidopsis and rice (Oryza) phyA were expressed in yeast and the pigments were assembled in vivo with phycocyanobilin (PCB) and phytochromobilin (P phi B). The resulting recombinant phytochromes in the red-light-absorbing form (Pr) were characterized in the yeast cell by (1) the fluorescence emission spectra; (2) the temperature dependence of Pr fluorescence intensity and activation energy of fluorescence decay; and (3) the extent of photoconversion of Pr into photoproduct lumi-R (gamma 1) or far-red-light absorbing form (Pfr) (gamma 2). Both Arabidopsis phyA/PCB and Oryza phyA/P phi B had low gamma 1 of ca 0.05, allowing their attribution to the Pr" phenomenological type of phytochrome comprising phyA", phyB and cryptogam phytochromes. The spectroscopic properties of Oryza phyA/P phi B were also very close to phyA". However, both investigated holoproteins differed from phyA", both with respect to the character of temperature dependence of the fluorescence yield and activation energy. Thus, recombinant Oryza phyA/P phi B is similar but not identical to phyA". The data demonstrate that the low-abundance-fraction plant phyA (phyA") comes from the same gene as the major (phyA') fraction. Because both endogenous phyA fractions differ from the phytochrome expressed in yeast, they appear to be posttranslationally modified and/or bound to partner proteins or cellular substructures. However, the character of the presumed chemical modification is different in phyA' and phyA" and its extent is more profound in the case of the former. PMID:11421077

  1. Infrared Solar Spectroscopic Measurements of Free Tropospheric CO, C2H6, and HCN above Mauna Loa, Hawaii: Seasonal Variations and Evidence for Enhanced Emissions from the Southeast Asian Tropical Fires of 1997-1998

    NASA Technical Reports Server (NTRS)

    Rinsland, C. P.; Goldman, A.; Murcray, F. J.; Stephen, T. M.; Pougatchev, N. S.; Fishman, J.; David, S. J.; Blatherwick, R. D.; Novelli, P. C.; Jones, N. B.

    1999-01-01

    High spectral resolution (0.003 per cm) infrared solar absorption measurements of CO, C2H6, and HCN have been recorded at the Network for the Detection of Stratospheric Change station on Mauna Loa, Hawaii, (19.5N, 155.6W, altitude 3.4 km). The observations were obtained on over 250 days between August 1995 and February 1998. Column measurements are reported for the 3.4-16 km altitude region, which corresponds approximately to the free troposphere above the station. Average CO mixing ratios computed for this layer have been compared with flask sampling CO measurements obtained in situ at the station during the same time period. Both show asymmetrical seasonal cycles superimposed on significant variability. The first 2 years of observations exhibit a broad January-April maximum and a sharper CO minimum during late summer. The C2H6 and CO 3.4-16 km columns were highly correlated throughout the observing period with the C2H6/CO slope intermediate between higher and lower values derived from similar infrared spectroscopic measurements at 32'N and 45'S latitude, respectively. Variable enhancements in CO, C2H6, and particularly HCN were observed beginning in about September 1997. The maximum HCN free tropospheric monthly mean column observed in November 1997 corresponds to an average 3.4-16 km mixing ratio of 0.7 ppbv (1 ppbv = 10(exp -9) per unit volume), more than a factor of 3 above the background level. The HCN enhancements continued through the end of the observational series. Back-trajectory calculations suggest that the emissions originated at low northern latitudes in southeast Asia. Surface CO mixing ratios and the C2H6 tropospheric columns measured during the same time also showed anomalous autumn 1997 maxima. The intense and widespread tropical wild fires that burned during the strong El Nino warm phase of 1997- 1998 are the likely source of the elevated emission products.

  2. Spectroscopic classification of supernova candidates

    NASA Astrophysics Data System (ADS)

    Hodgkin, S. T.; Hall, A.; Fraser, M.; Campbell, H.; Wyrzykowski, L.; Kostrzewa-Rutkowska, Z.; Pietro, N.

    2014-09-01

    We report the spectroscopic classification of four supernovae at the 2.5m Isaac Newton Telescope on La Palma, using the Intermediate Dispersion Spectrograph and the R300V grating (3500-8000 Ang; ~6 Ang resolution).

  3. Spectroscopic optical coherence elastography

    PubMed Central

    Adie, Steven G.; Liang, Xing; Kennedy, Brendan F.; John, Renu; Sampson, David D.; Boppart, Stephen A.

    2010-01-01

    We present an optical technique to image the frequency-dependent complex mechanical response of a viscoelastic sample. Three-dimensional hyperspectral data, comprising two-dimensional B-mode images and a third dimension corresponding to vibration frequency, were acquired from samples undergoing external mechanical excitation in the audio-frequency range. We describe the optical coherence tomography (OCT) signal when vibration is applied to a sample and detail the processing and acquisition techniques used to extract the local complex mechanical response from three-dimensional data that, due to a wide range of vibration frequencies, possess a wide range of sample velocities. We demonstrate frequency-dependent contrast of the displacement amplitude and phase of a silicone phantom containing inclusions of higher stiffness. Measurements of an ex vivo tumor margin demonstrate distinct spectra between adipose and tumor regions, and images of displacement amplitude and phase demonstrated spatially-resolved contrast. Contrast was also observed in displacement amplitude and phase images of a rat muscle sample. These results represent the first demonstration of mechanical spectroscopy based on B-mode OCT imaging. Spectroscopic optical coherence elastography (S-OCE) provides a high-resolution imaging capability for the detection of tissue pathologies that are characterized by a frequency-dependent viscoelastic response. PMID:21164898

  4. Spectroscopic optical coherence elastography.

    PubMed

    Adie, Steven G; Liang, Xing; Kennedy, Brendan F; John, Renu; Sampson, David D; Boppart, Stephen A

    2010-12-01

    We present an optical technique to image the frequency-dependent complex mechanical response of a viscoelastic sample. Three-dimensional hyperspectral data, comprising two-dimensional B-mode images and a third dimension corresponding to vibration frequency, were acquired from samples undergoing external mechanical excitation in the audio-frequency range. We describe the optical coherence tomography (OCT) signal when vibration is applied to a sample and detail the processing and acquisition techniques used to extract the local complex mechanical response from three-dimensional data that, due to a wide range of vibration frequencies, possess a wide range of sample velocities. We demonstrate frequency-dependent contrast of the displacement amplitude and phase of a silicone phantom containing inclusions of higher stiffness. Measurements of an ex vivo tumor margin demonstrate distinct spectra between adipose and tumor regions, and images of displacement amplitude and phase demonstrated spatially-resolved contrast. Contrast was also observed in displacement amplitude and phase images of a rat muscle sample. These results represent the first demonstration of mechanical spectroscopy based on B-mode OCT imaging. Spectroscopic optical coherence elastography (S-OCE) provides a high-resolution imaging capability for the detection of tissue pathologies that are characterized by a frequency-dependent viscoelastic response. PMID:21164898

  5. Infrared Solar Spectroscopic Measurements of Free Tropospheric CO, C2H6, and HCN above Mauna Loa, Hawaii: Seasonal Variations and Evidence for Enhanced Emissions from the Southeast Asian Fires of 1997-1998. Revised

    NASA Technical Reports Server (NTRS)

    Rinsland, C. P.; Goldman, A.; Murcray, F. J.; Stephen, T. M.; Pougatchev, N. S.; Fishman, J.; David, S. J.; Blatherwick, R. D.; Novelli, P. C.; Jones, N. B.; Connor, B. J.

    1999-01-01

    High spectral resolution (0.003/ cm) infrared solar absorption measurements of CO, C2H6, and HCN have been recorded at the Network for the Detection of Stratospheric Change station on Mauna Loa, Hawaii, (19.5 deg N, 155.6 deg W, altitude 3.4 km). The observations were obtained on over 250 days between August 1995 and February 1998. Column measurements are reported for the 3.4 - 16 km altitude region, which corresponds approximately to the free troposphere above the station. Average CO mixing ratios computed for this layer have been compared with flask sampling CO measurements obtained in situ at the station during the same time period. Both show asymmetrical seasonal cycles superimposed on significant variability. The first two years of observations exhibit a broad January-April maximum and a sharper CO minimum during late summer. The C2H6 and CO 3.4 - 16 km columns were highly correlated throughout the observing period with the C2H6/CO slope intermediate between higher and lower values derived from similar infrared spectroscopic measurements at 32 deg N and 45 deg S latitude, respectively. Variable enhancements in CO, C2H6, and particularly HCN were observed beginning in about September 1997. The maximum HCN free tropospheric monthly mean column observed in November 1997 corresponds to an average 3.4 - 16 km mixing ratio of 0.7 ppbv (1 ppbv = 10(exp -9) per unit volume), more than a factor of 3 above the background level. The HCN enhancements continued through the end of the observational series. Back-trajectory calculations suggest that the emissions originated at low northern latitudes in southeast Asia. Surface CO mixing ratios and the C2H6 tropospheric columns measured during the same time also showed anomalous autumn 1997 maxima. The intense and widespread tropical wild fires that burned during 3 the strong El Nino warm phase of 1997-1998 are the likely source of the elevated emission products.

  6. Spectroscopic characterization of the Stentor photoreceptor.

    PubMed

    Walker, E B; Lee, T Y; Song, P S

    1979-09-20

    1. On the basis of chromatographic and spectroscopic (absorption, fluorescence and its polarization, fluorescence lifetime, circular dichroism) characterization of the Stentor photoreceptor (stentorin) for photophobic response, the photoreceptor chromophore released from mild acid hydrolysis has been identified as hypericin. 2. The native chromophore is apparently linked to a protein (65 K) containing Lys and several hydrophobic residues, which is soluble in acetone and n-pentane. The peptide-linked stentorin (I) chromophore exhibits circular dichroism in the visible region due to the induced optical activity provided by the peptide. 3. The sodium dodecyl sulfate polyacrylamide gel electrophoresis of a 38% fraction of the sucrose density centrifugation has resolved stentorin II proteins having molecular weights of 13 000, 16 000, 65 000 and 130 000. These proteins, as well as the acetone-soluble peptide, have been spectroscopically characterized with particular emphasis on their primary photoreactivity as the photophobic receptor of Stentor coeruleus. 4. Irradiation of whole living Stentor in dilute buffer solutions induces a decrease in the pH of the medium. A strong dependence upon pH in the fluorescence spectra of both synthetic and native chromophores is also evident, showing a significant drop in the pKa of one or more hydroxyl groups in the excited state. A mechanism for the photophobic response, based on this lowering of the pKa as the primary photoprocess, has been discussed. PMID:39631

  7. Spectroscopic observations of cool degenerate star candidates

    NASA Technical Reports Server (NTRS)

    Hintzen, P.

    1986-01-01

    Spectroscopic observations are reported for 23 Luyten Half-Second degenerate star candidates and for 13 Luyten-Palomar common proper-motion pairs containing possible degenerate star components. Twenty-five degenerate stars are identified, 20 of which lack previous spectroscopy. Most of these stars are cool - Luyten color class g or later. One star, LP 77-57, shows broad continuum depressions similar to those in LHS 1126, which Liebert and Dahn attributed to pressure-shifted C2. A second degenerate star, LHS 290, exhibits apparent strong Swan bands which are blueshifted about 75 A. Further observations, including polarimetry and photometry, are required to appraise the spectroscopic peculiarities of these stars. Finally, five cool, sharp-lined DA white dwarfs have been observed to detect lines of metals and to determine line strengths. None of these DAs show signs of Mg b or the G band, and four show no evidence of Ca II K. The attempt to detect Ca MI in the fifth star, G199-71, was inconclusive.

  8. A DVD Spectroscope: A Simple, High-Resolution Classroom Spectroscope

    ERIC Educational Resources Information Center

    Wakabayashi, Fumitaka; Hamada, Kiyohito

    2006-01-01

    Digital versatile disks (DVDs) have successfully made up an inexpensive but high-resolution spectroscope suitable for classroom experiments that can easily be made with common material and gives clear and fine spectra of various light sources and colored material. The observed spectra can be photographed with a digital camera, and such images can…

  9. The α decay spectroscopic factor of heavy and superheavy nuclei

    NASA Astrophysics Data System (ADS)

    Seif, W. M.

    2013-10-01

    The spectroscopic factor which refers to the preformation probability of an α cluster inside parent radioactive nuclei is investigated. The study is based on the cluster model of α decay that is extended to account for the deformation degrees of freedom. The calculations are carried out for 179 even(Z)-even(N) parent nuclei in the mass region of A = 144-294. Taking into account the deformations of daughter nuclei, the semi-microscopic calculations of the α-daughter interaction potential are performed using the Hamiltonian energy density approach in terms of the SLy4 Skyrme-like effective interaction. The calculated potential is then implemented to find both the assault frequency and the penetration probability of the α particle by means of the Wentzel-Kramers-Brillouin approximation at different orientations of the deformed daughter. By averaging the obtained decay widths over different orientations, the half-lives of the mentioned α decays are then estimated. Taking into account the errors on both the released energy and the experimental half-life times, the extracted half-lives are employed in turn to deduce the α spectroscopic factor. The results show a periodic behaviour of the spectroscopic factor as a function of the charge and neutron numbers characterized by several local maxima and minima. The predicted minima are mainly related to the proton and neutron shell and subshell closures. In addition to the well-known closed shells of the nucleonic numbers 50, 82, and 126, the obtained values of the spectroscopic factor give some evidence for the presence of closed subshells of nucleonic numbers 70, 102 (104) and 152 (150). A simple formula is suggested to roughly estimate the spectroscopic factor in terms of the numbers of protons and neutrons of the parent nucleus outside its closed shells. The parameters of this formula are fitted to the deduced values of the spectroscopic factor.

  10. Spectroscopic study of sprites

    NASA Astrophysics Data System (ADS)

    Kanmae, Takeshi

    Optical emissions from sprites--large electric discharges in the mesosphere caused by intense lightning strokes--have been studied for decades. Studies have identified that sprite emissions are primarily composed of molecular band emissions of nitrogen and notably identified the near ultraviolet and blue emission from the N2+ First Negative system, which provided direct evidence of ionization in sprites. This implies that further evidence of the ionization may be provided by the visible and near infrared emission from the N2+ Meinel system, which is more accessible from ground-based platforms, though anticipated strong quenching in the mesosphere and below have made the presence of the emission somewhat controversial. To investigate the presence of the Meinel emission along the vertical extent of sprites, we made ground-based spectral observations in 2005. The observed spectra were mainly composed of the N2 First Positive system, and no or little indication of the Meinel bands were found. This study suggests that the quenching is indeed severe at sprite altitude, and it is difficult to study the ionization process in sprites via the Meinel emission. In addition, the data allowed us to investigate details of the First Positive emission from sprites. The observed First Positive spectra showed that the vibrational distribution of the upper state varies along the vertical extent of sprites, which is in agreement with previous reports, and furthermore this study indicates that the variation is associated with altitude, implying that collisional energy transfer processes play roles in exciting the First Positive emission, particularly at lower altitudes. Recent high-speed imaging observations have revealed the very dynamic nature of sprites: they develop within a few to 10 ms in forms of streamers and columnar glows. The underlying electron energies in these features have been inferred from their emissions in previous measurements, but they lacked either sufficient

  11. Spectroscopic characterization of polymers: report

    SciTech Connect

    Koenig, J.L.

    1987-10-01

    Polymer characterization has presented major difficulties to the analytical chemist, who has had to develop techniques to cope with the challenge. Even the elementary problem of measuring molecular weight is not easy. Yet such measurements are essential, because the physical, mechanical, and flow properties depend on the length of the polymer chain. Because of the limited solubility and high viscosity of polymers, many classical techniques have been of little use or have had to be extensively modified to measure the molecular weight of polymers. Size-exclusion chromatographic techniques such as gel permeation have been developed to measure these molecular weight distributions. Special chromatographic instruments with a range of spectroscopic detectors (including infrared and laser-light scattering) have emerged commercially to aid the analytical chemist in the fundamental endeavor to measure the length of the polymer chain and its distribution. The author describes the advantages and disadvantages and disadvantages of various spectroscopic techniques.

  12. Single nanoparticle tracking spectroscopic microscope

    DOEpatents

    Yang, Haw; Cang, Hu; Xu, Cangshan; Wong, Chung M.

    2011-07-19

    A system that can maintain and track the position of a single nanoparticle in three dimensions for a prolonged period has been disclosed. The system allows for continuously imaging the particle to observe any interactions it may have. The system also enables the acquisition of real-time sequential spectroscopic information from the particle. The apparatus holds great promise in performing single molecule spectroscopy and imaging on a non-stationary target.

  13. Spectroscopic Evidence Against Nitric Acid Trihydrate in Polar Stratospheric Clouds

    NASA Technical Reports Server (NTRS)

    Toon, Owen B.; Tolbert, Margaret A.

    1995-01-01

    Heterogeneous reactions on polar stratospheric clouds (PSC's) play a key role in the photochemical mechanism thought to be responsible for ozone depletion in the Antarctic and Arctic. Reactions of PSC particles activate chlorine to forms that are capable of photochemical ozone destruction, and sequester nitrogen oxides (NOx) that would otherwise deactivate the chlorine. Although the heterogeneous chemistry is now well established, the composition of the clouds themselves is uncertain. It is commonly thought that they are composed of nitric acid trihydrate, although observations have left this question unresolved. Here we reanalyse infrared spectra of type 1 PSCs obtained in Antarctica in September 1987, using recently measured optical constants of the various compounds that might be present in PSCs. We find these PSCs were not composed of nitric acid trihydrate but instead had a more complex compositon, perhaps that of a ternary solution. Because cloud formation is sensitive to their composition, this finding will alter our understanding of the locations and conditions in which PSCs form. In addition, the extent of ozone loss depends on the ability of the PSCs to remove NOx permanently through sedimentation, The sedimentation rates depend on PSC particle size which in turn is controlled by the composition and formation mechanism.

  14. Spectroscopic Evidence of Formation of Small Polarons in Doped Manganites

    NASA Astrophysics Data System (ADS)

    Moritomo, Yutaka; Machida, Akihiko; Nakamura, Arao

    1998-03-01

    Temperature dependence of absorption spectra for thin films of doped manganites R_0.6Sr_0.4MnO_3, where R is rare-earth atom, has been investigated systematically changing averaged ionic radius < rA > of perovskite A-site. We have observed a specific absorption band at ~1.5eV due to optical excitations from small polarons (SP)(Machida et al.), submitted.. Spectral weight of the SP band increases with decreasing temperature and eventually disappears at the insulator-metal (IM) transition, indicating that SP in the paramagnetic state (T >= T_C) changes into bare electrons (or large polarons) in the ferromagnetic state due to the enhanced one-electron bandwidth W. We further derived important physical quantities, i.e., W, on-site exchange interaction J and binding energy Ep of SP, and discuss material dependence of stability of SP. This work was supported by a Grant-In-Aid for Scientific Research from the Ministry of Education, Science, Sport and Culture and from PRESTO, Japan Scienece and Technology Corporation (JST), Japan.

  15. Spectroscopic Evidence for Interstellar Ice in Comet Hyakutake

    NASA Technical Reports Server (NTRS)

    Irvine, W. M.; Bockelee-Morvan, D.; Lis, D. C.; Matthews, H. E.; Biver, N.; Crovisier, J.; Davies, J. K.; Dent, W. R. F.; Gautier, D.; Godfrey, P. D.; Keene, J.; Lovell, A. J.; Owen, T. C.; Phillips, T. G.; Rauer, H.; Schloerb, F. P.; Senay, M.; Young, K.

    1996-01-01

    Volatile compounds in comets are the most pristine materials surviving from the time of formation of the Solar System, and thus potentially provide information about conditions that prevailed in the primitive solar material. Moreover, comets may have supplied a substantial fraction of the volatiles on the terrestrial planets, perhaps including organic compounds that played a role in the origin of life on Earth. Here we report the detection of hydrogen isocyanide (HNC) in comet Hyakutake. The abundance of HNC relative to hydrogen cyanide (HCN) is very similar to that observed in quiescent interstellar molecular clouds, and quite different from the equilibrium ratio expected in the outermost solar nebula, where comets are thought to form. Such a departure from equilibrium has long been considered a hallmark of gas-phase chemical processing in the interstellar medium, suggesting that interstellar gases have been incorporated into the comet's nucleus, perhaps as ices frozen onto interstellar grains. If this interpretation is correct, our results should provide constraints on the temperature of the solar nebula, and the subsequent chemical processes that occurred in the region where comets formed.

  16. Spectroscopic and Visual Evidence of Perchlorate Deliquescence Under Martian Conditions

    NASA Astrophysics Data System (ADS)

    Nikolakakos, George; Whiteway, James

    2015-04-01

    One of the key findings during the Phoenix and Mars Science Laboratory landed Mars missions has been the detection of perchlorate, a highly deliquescent salt. Perchlorates are of great interest on Mars due to their high affinity for water vapour as well as their ability to greatly depress the freezing point of water when in solution. This has intriguing biological implications as resulting brines could potentially provide a habitable environment for living organisms. Additionally, it has been speculated that these salts may play a significant role in influencing the hydrological cycle on Mars. In order to experimentally study water exchange processes between the surface and atmosphere on Mars and assess the feasibility of a future landed detection tool, a stand-off Raman spectroscopy instrument and environmental simulation chamber have been developed at York University. A sample of magnesium perchlorate consistent with the size of patches found at the Phoenix site has been subjected to the low water vapour pressure and temperatures found at polar Martian latitudes. Results indicate that at a water vapour pressure of ~2 Pa (-54°C frost point temperature), Raman spectroscopy is able to detect the onset of brine formation and provide a relative estimate of the quantity of water taken up by the sample until complete deliquescence is reached. Significant uptake of water from the atmosphere is observed to occur prior to the frost point temperature being reached and on time scales relevant to the Martian diurnal cycle. This result suggests that perchlorates in the Martian regolith can contribute to the hydrological cycle, pre-emptively reducing the water vapour pressure before saturation is reached.

  17. Spectroscopic evidence for interstellar ices in comet Hyakutake.

    PubMed

    Irvine, W M; Bockelee-Morvan, D; Lis, D C; Matthews, H E; Biver, N; Crovisier, J; Davies, J K; Dent, W R; Gautier, D; Godfrey, P D; Keene, J; Lovell, A J; Owen, T C; Phillips, T G; Rauer, H; Schloerb, F P; Senay, M; Young, K

    1996-10-01

    Volatile compounds in comets are the most pristine materials surviving from the time of formation of the Solar System, and thus potentially provide information about conditions that prevailed in the primitive solar nebula. Moreover, comets may have supplied a substantial fraction of the volatiles on the terrestrial planets, perhaps including organic compounds that played a role in the origin of life on Earth. Here we report the detection of hydrogen isocyanide (HNC) in comet Hyakutake. The abundance of HNC relative to hydrogen cyanide (HCN) is very similar to that observed in quiescent interstellar molecular clouds, and quite different from the equilibrium ratio expected in the outermost solar nebula, where comets are thought to form. Such a departure from equilibrium has long been considered a hallmark of gas-phase chemical processing in the interstellar medium, suggesting that interstellar gases have been incorporated into the comet's nucleus, perhaps as ices frozen onto interstellar grains. If this interpretation is correct, our results should provide constraints on the temperature of the solar nebula, and the subsequent chemical processes that occurred in the region where comets formed. PMID:8837771

  18. Chemical and Spectroscopic Evidence for an Fev-Oxo Complex

    SciTech Connect

    de Oliveira,F.; Chanda, A.; Banerjee, D.; Shan, X.; Mondal, S.; Que, Jr., L.; Bominaar, E.; Munck, E.; Collins, T.

    2007-01-01

    Iron(V)-oxo species have been proposed as key reactive intermediates in the catalysis of oxygen-activating enzymes and synthetic catalysts. Here, we report the synthesis of [Fe(TAML)(O)]{sup -} in nearly quantitative yield, where TAML is a macrocyclic tetraamide ligand. Mass spectrometry, Moessbauer, electron paramagnetic resonance, and x-ray absorption spectroscopies, as well as reactivity studies and density functional theory calculations show that this long-lived (hours at -60 C) intermediate is a spin S = 1/2 iron(V)-oxo complex. Iron-TAML systems have proven to be efficient catalysts in the decomposition of numerous pollutants by hydrogen peroxide, and the species we characterized is a likely reactive intermediate in these reactions.

  19. High-energy spectroscopic astrophysics

    NASA Astrophysics Data System (ADS)

    Güdel, Manuel; Walter, Roland

    After three decades of intense research in X-ray and gamma-ray astronomy, the time was ripe to summarize basic knowledge on X-ray and gamma-ray spectroscopy for interested students and researchers ready to become involved in new high-energy missions. This volume exposes both the scientific basics and modern methods of high-energy spectroscopic astrophysics. The emphasis is on physical principles and observing methods rather than a discussion of particular classes of high-energy objects, but many examples and new results are included in the three chapters as well.

  20. Spectroscopic signature for ferroelectric ice

    NASA Astrophysics Data System (ADS)

    Wójcik, Marek J.; Gług, Maciej; Boczar, Marek; Boda, Łukasz

    2014-09-01

    Various forms of ice exist within our galaxy. Particularly intriguing type of ice - ‘ferroelectric ice' was discovered experimentally and is stable in temperatures below 72 K. This form of ice can generate enormous electric fields and can play an important role in planetary formation. In this letter we present Car-Parrinello simulation of infrared spectra of ferroelectric ice and compare them with spectra of hexagonal ice. Librational region of the spectra can be treated as spectroscopic signature of ice XI and can be of help to identify ferroelectric ice in the Universe.

  1. The far ultraviolet spectroscopic explorer

    NASA Technical Reports Server (NTRS)

    Boggess, A.

    1982-01-01

    The scientific objectives and performance characteristics of a new astronomy mission referred to as the far ultraviolet spectroscopic explorer, or FUSE are being defined by a team involving people experienced instrumental requirements that best meet the scientific needs. The team is intended to have a lifetime of about one year, ending with the submission of a report to NASA which could be used as the basis for an engineering design study. The principal objective of FUSE is to obtain astronomical spectra at wavelengths shorter than is possible with the Space Telescope.

  2. Spectroscopic imaging in electron microscopy

    SciTech Connect

    Pennycook, Stephen J; Colliex, C.

    2012-01-01

    In the scanning transmission electron microscope, multiple signals can be simultaneously collected, including the transmitted and scattered electron signals (bright field and annular dark field or Z-contrast images), along with spectroscopic signals such as inelastically scattered electrons and emitted photons. In the last few years, the successful development of aberration correctors for the electron microscope has transformed the field of electron microscopy, opening up new possibilities for correlating structure to functionality. Aberration correction not only allows for enhanced structural resolution with incident probes into the sub-angstrom range, but can also provide greater probe currents to facilitate mapping of intrinsically weak spectroscopic signals at the nanoscale or even the atomic level. In this issue of MRS Bulletin, we illustrate the power of the new generation of electron microscopes with a combination of imaging and spectroscopy. We show the mapping of elemental distributions at atomic resolution and also the mapping of electronic and optical properties at unprecedented spatial resolution, with applications ranging from graphene to plasmonic nanostructures, and oxide interfaces to biology.

  3. Spectroscopic Observations of Nearby Low Mass Stars

    NASA Astrophysics Data System (ADS)

    Vican, Laura; Zuckerman, B. M.; Rodriguez, D.

    2014-01-01

    Young low-mass stars are known to be bright in X-ray and UV due to a high level of magnetic activity. By cross-correlating the GALEX Catalog with the WISE and 2MASS Point Source Catalogs, we have identified more than 2,000 stars whose UV excesses suggest ages in the 10-100 Myr range. We used the Shane 3-m telescope at Lick Observatory on Mount Hamilton, California to observe some of these 2,000 stars spectroscopically. We measured the equivalent width of lithium at 6708 A absorption and H-alpha emission lines. Out of a total of 122 stars observed with the Kast grating spectrometer, we find that roughly 10% have strong lithium absorption features. The high percentage of stars with lithium present is further evidence of the importance of UV emission as a youth indicator for low-mass stars. In addition, we used high-resolution spectra obtained with the Hamilton echelle spectrograph to determine radial velocities for several UV-bright stars. These radial velocities will be useful for the calculation of Galactic UVW space velocities for determination of possible moving group membership. This work is supported by NASA Astrophysics Data Analysis Program award NNX12AH37G to RIT and UCLA and Chilean FONDECYT grant 3130520 to Universidad de Chile. This submission presents work for the GALNYSS project and should be linked to abstracts submitted by David Rodriguez, Laura Vican, and Joel Kastner.

  4. Raman Spectroscopic Detection of Graphitic Carbon of Biogenic Parentage in an Ancient South African Chert

    NASA Technical Reports Server (NTRS)

    Wang, Alian; Haskin, Larry A.; Kuebler, Karla E.; Jolliff, Bradley L.; Walsh, Maud M.

    2001-01-01

    The detection of reduced carbon in martian rocks and soils is important in the search for evidence of life. A Raman spectroscopic study of South Africa chert reveals that 50 ppm carbon or less can be determined by this technique. Additional information is contained in the original extended abstract.

  5. The Hubble Spectroscopic Legacy Archive

    NASA Astrophysics Data System (ADS)

    Peeples, Molly S.; Tumlinson, Jason; Fox, Andrew; Aloisi, Alessandra; Ayres, Thomas R.; Danforth, Charles; Fleming, Scott W.; Jenkins, Edward B.; Jedrzejewski, Robert I.; Keeney, Brian A.; Oliveira, Cristina M.

    2016-01-01

    With no future space ultraviolet instruments currently planned, the data from the UV spectrographs aboard the Hubble Space Telescope have a legacy value beyond their initial science goals. The Hubble Spectroscopic Legacy Archive will provide to the community new science-grade combined spectra for all publicly available data obtained by the Cosmic Origins Spectrograph (COS) and the Space Telescope Imaging Spectrograph (STIS). These data will be packaged into "smart archives" according to target type and scientific themes to facilitate the construction of archival samples for common science uses. A new "quick look" capability will make the data easy for users to quickly access, assess the quality of, and download for archival science starting in Cycle 24, with the first generation of these products for the FUV modes of COS available online via MAST in early 2016.

  6. Multifunction Imaging and Spectroscopic Instrument

    NASA Technical Reports Server (NTRS)

    Mouroulis, Pantazis

    2004-01-01

    A proposed optoelectronic instrument would perform several different spectroscopic and imaging functions that, heretofore, have been performed by separate instruments. The functions would be reflectance, fluorescence, and Raman spectroscopies; variable-color confocal imaging at two different resolutions; and wide-field color imaging. The instrument was conceived for use in examination of minerals on remote planets. It could also be used on Earth to characterize material specimens. The conceptual design of the instrument emphasizes compactness and economy, to be achieved largely through sharing of components among subsystems that perform different imaging and spectrometric functions. The input optics for the various functions would be mounted in a single optical head. With the exception of a targeting lens, the input optics would all be aimed at the same spot on a specimen, thereby both (1) eliminating the need to reposition the specimen to perform different imaging and/or spectroscopic observations and (2) ensuring that data from such observations can be correlated with respect to known positions on the specimen. The figure schematically depicts the principal components and subsystems of the instrument. The targeting lens would collect light into a multimode optical fiber, which would guide the light through a fiber-selection switch to a reflection/ fluorescence spectrometer. The switch would have four positions, enabling selection of spectrometer input from the targeting lens, from either of one or two multimode optical fibers coming from a reflectance/fluorescence- microspectrometer optical head, or from a dark calibration position (no fiber). The switch would be the only moving part within the instrument.

  7. Spectroscopic Studies of Abell Clusters

    NASA Astrophysics Data System (ADS)

    Way, Michael Joseph

    The objectives of this work are to use spectroscopic techniques to accurately categorize galaxies as either HII region star forming galaxies or as Active Galactic Nuclei powered via a black hole, and to use radial velocities and projected positions of galaxies in clusters to obtain the total cluster mass and its distribution. The masses and distributions compare well to X-ray mass measurements. The commonly used Dressler, A., Thompson, I. & Shectman, S. 1985, ApJ, 288, 481 technique for discriminating between Active Galactic Nuclei and HII region galaxies uses the measurement of the equivalent width of the emission lines (OII) 3727 A, H/beta, and (OIII) 5007 A. High quality spectra from 42 galaxies were taken and it is shown that their method is not capable of distinguishing between Active Galactic Nuclei and HII region galaxies. The emission line flux from H/beta, (OIII) 5007 A, (OI) 6300 A, Hα, (NII) 6583 A, and (SII) 6716+6731 A in combination with the method of Veilleux, S. & Osterbrock, D. E. 1987, ApJS, 63, 295 must be used to accurately distinguish between Active Galactic Nuclei and HII region galaxies. Galaxy radial velocities from spectroscopic data and their projected 2-D positions in clusters are used to obtain robust estimates of the total mass and mass distribution in two clusters. The total mass is calculated using the Virial theorem after removing substructure. The mass distribution is estimated via several robust statistical tests for 1-D, 2-D and 3-D structure. It is shown that the derived mass estimates agree well with those found independently from hot X-ray gas emission in clusters.

  8. Spectroscopic Classifications of Optical Transients with SOAR

    NASA Astrophysics Data System (ADS)

    Hounsell, R. A.; Miller, J. A.; Pan, Y.-C.; Foley, R. J.; Jha, S. W.; Rest, A.; Scolnic, D.; Smith, K. W.; Wright, D.; Smartt, S. J.; Huber, M.; Chambers, K. C.; Flewelling, H.; Willman, M.; Primak, N.; Schultz, A.; Gibson, B.; Magnier, E.; Waters, C.; Tonry, J.; Wainscoat, R. J.

    2016-06-01

    We report the following classifications of optical transients from spectroscopic observations with the Goodman spectrograph on the SOAR 4-m telescope. Targets were supplied by the Pan-STARRS Survey for Transients (PSST).

  9. Monitoring spectroscopic binaries in anticipation of Gaia

    NASA Astrophysics Data System (ADS)

    Pourbaix, Dimitri; Halbwachs, Jean-Louis; Arenou, Frederic

    2015-08-01

    For several already known spectroscopic binaries, it is anticipated that Gaia will provide an exquisite astrometric orbit of the photocenter. In case of double-lined spectroscopic binaries, the orbital inclination supplied by Gaia will lead to the mass of both components.. For those masses to be useful, an accuracy of 2-3% is required. This can only be achieved if the spectroscopic orbit is very accurate too. A long term monitoring of good spectroscopic candidates in on going on Sophie at the Observatory of Haute Provence and on Hermes on the Mercator telescope in La Palma. For some of these systems, we have already derived a definitive SB2 orbital solution while, for others, the secondary remains unreachable. We present these new solutions in conjunction with the possible impact on the Hipparcos astrometric solution.

  10. Asiago spectroscopic classification of AT2016bry

    NASA Astrophysics Data System (ADS)

    Ochner, P.; Tinella, V.; Righetti, G. L.; Belligoli, R.; Castellani, F.; Pastorello, A.; Cappellaro, E.; Benetti, S.; Tomasella, L.; Elias-Rosa, N.; Tartaglia, L.; Terreran, G.; Turatto, M.

    2016-05-01

    The Asiago Transient Classification Program (Tomasella et al. 2014, AN, 335, 841) reports the spectroscopic classification of AT2016bry, discovered by V. Tinella in UGC 11635, and preliminary photometric follow-up.

  11. Asiago spectroscopic classification of AT2016ajo

    NASA Astrophysics Data System (ADS)

    Terreran, G.; Pastorello, A.; Benetti, S.; Cappellaro, E.; Elias-Rosa, N.; Ochner, P.; Tartaglia, L.; Tomasella, L.; Turatto, M.

    2016-03-01

    The Asiago Transient Classification Program (Tomasella et al. 2014, AN, 335, 841) reports the spectroscopic classification of AT2016ajo, discovered by Y. Ding, W. Gao and X. Gao in an anonymous galaxy near UGC 11344.

  12. CSP Spectroscopic Classification of LSQ16oi

    NASA Astrophysics Data System (ADS)

    Morrell, N.; Phillips, M.; Lira, P.; Ellman, N.; Baltay, C.; Rabinowitz, D.; Rostami, S.; Hsiao, E. Y.

    2016-02-01

    We report the spectroscopic classification of a La Silla-QUEST (LSQ) supernova (Baltay et al. 2013, PASP, 125, 683) taken using WFCCD on the 2.5-m du Pont Telescope as part of the Carnegie Supernova Project (CSP).

  13. SDSS spectroscopic survey of stars

    SciTech Connect

    Ivezic, Zeljko; Schlegel, D.; Uomoto, A.; Bond, N.; Beers, T.; Allende Prieto, C.; Wilhelm, R.; Lee, Y.Sun; Sivarani, T.; Juric, M.; Lupton, R.; /Washington U., Seattle, Astron. Dept. /LBL, Berkeley /Johns Hopkins U. /Princeton U. /Michigan State U. /Texas U. /Texas Tech. /UC, Santa Cruz /Fermilab /Naval Observ., Flagstaff /Drexel U.

    2007-01-01

    In addition to optical photometry of unprecedented quality, the Sloan Digital Sky Survey (SDSS) is also producing a massive spectroscopic database. They discuss determination of stellar parameters, such as effective temperature, gravity and metallicity from SDSS spectra, describe correlations between kinematics and metallicity, and study their variation as a function of the position in the Galaxy. They show that stellar parameter estimates by Beers et al. show a good correlation with the position of a star in the g-r vs. u-g color-color diagram, thereby demonstrating their robustness as well as a potential for photometric parameter estimation methods. Using Beers et al. parameters, they find that the metallicity distribution of the Milky Way stars at a few kpc from the galactic plane is bimodal with a local minimum at [Z/Z{sub {circle_dot}}] {approx} -1.3. The median metallicity for the low-metallicity [Z/Z{sub {circle_dot}}] < =1.3 subsample is nearly independent of Galactic cylindrical coordinates R and z, while it decreases with z for the high-metallicity [Z/Z{sub {circle_dot}}] > -1.3 sample. they also find that the low-metallicity sample has {approx} 2.5 times larger velocity dispersion and that it does not rotate (at the {approx} 10 km/s level), while the rotational velocity of the high-metallicity sample decreases smoothly with the height above the galactic plane.

  14. SDSS spectroscopic survey of stars.

    NASA Astrophysics Data System (ADS)

    Ivezić, Ž.; Schlegel, D.; Uomoto, A.; Bond, N.; Beers, T.; Allende Prieto, C.; Wilhelm, R.; Lee, Y. Sun; Sivarani, T.; Jurić, M.; Lupton, R.; Rockosi, C.; Knapp, G.; Gunn, J.; Yanny, B.; Jester, S.; Kent, S.; Pier, J.; Munn, J.; Richards, G.; Newberg, H.; Blanton, M.; Eisenstein, D.; Hawley, S.; Anderson, S.; Harris, H.; Kiuchi, F.; Chen, A.; Bushong, J.; Sohi, H.; Haggard, D.; Kimball, A.; Barentine, J.; Brewington, H.; Harvanek, M.; Kleinman, S.; Krzesinski, J.; Long, D.; Nitta, A.; Snedden, S.; SDSS Collaboration

    In addition to optical photometry of unprecedented quality, the Sloan Digital Sky Survey (SDSS) is also producing a massive spectroscopic database. We discuss determination of stellar parameters, such as effective temperature, gravity and metallicity from SDSS spectra, describe correlations between kinematics and metallicity, and study their variation as a function of the position in the Galaxy. We show that stellar parameter estimates by Beers et al. show a good correlation with the position of a star in the g-r vs. u-g color-color diagram, thereby demonstrating their robustness as well as a potential for photometric parameter estimation methods. Using Beers et al. parameters, we find that the metallicity distribution of the Milky Way stars at a few kpc from the galactic plane is bimodal with a local minimum at [Z/Z_⊙] ˜ -1.3. The median metallicity for the low-metallicity [Z/Z_⊙]< -1.3 subsample is nearly independent of Galactic cylindrical coordinates R and z, while it decreases with z for the high-metallicity [Z/Z_⊙]> -1.3 sample. We also find that the low-metallicity sample has ˜2.5 times larger velocity dispersion and that it does not rotate (at the ˜10 km/s level), while the rotational velocity of the high-metallicity sample decreases smoothly with the height above the galactic plane.

  15. Fast Hadamard Spectroscopic Imaging Techniques

    NASA Astrophysics Data System (ADS)

    Goelman, G.

    1994-07-01

    Fast Hadamard spectroscopic imaging (HSI) techniques are presented. These techniques combine transverse and longitudinal encoding to obtain multiple-volume localization. The fast techniques are optimized for nuclei with short T2 and long T1 relaxation times and are therefore suitable for in vivo31P spectroscopy. When volume coils are used in fast HSI techniques, the signal-to-noise ratio per unit time (SNRT) is equal to the SNRT in regular HSI techniques. When surface coils are used, fast HSI techniques give significant improvement of SNRT over conventional HSI. Several fast techniques which are different in total experimental time and pulse demands are presented. When the number of acquisitions in a single repetition time is not higher than two, fast HSI techniques can be used with surface coils and the B1 inhomogeneity does not affect the localization. Surface-coil experiments on phantoms and on human calf muscles in vivo are presented. In addition, it is shown that the localization obtained by the HSI techniques are independent of the repetition times.

  16. Vibrational spectroscopic characterization of fluoroquinolones

    NASA Astrophysics Data System (ADS)

    Neugebauer, U.; Szeghalmi, A.; Schmitt, M.; Kiefer, W.; Popp, J.; Holzgrabe, U.

    2005-05-01

    Quinolones are important gyrase inhibitors. Even though they are used as active agents in many antibiotics, the detailed mechanism of action on a molecular level is so far not known. It is of greatest interest to shed light on this drug-target interaction to provide useful information in the fight against growing resistances and obtain new insights for the development of new powerful drugs. To reach this goal, on a first step it is essential to understand the structural characteristics of the drugs and the effects that are caused by the environment in detail. In this work we report on Raman spectroscopical investigations of a variety of gyrase inhibitors (nalidixic acid, oxolinic acid, cinoxacin, flumequine, norfloxacin, ciprofloxacin, lomefloxacin, ofloxacin, enoxacin, sarafloxacin and moxifloxacin) by means of micro-Raman spectroscopy excited with various excitation wavelengths, both in the off-resonance region (532, 633, 830 and 1064 nm) and in the resonance region (resonance Raman spectroscopy at 244, 257 and 275 nm). Furthermore DFT calculations were performed to assign the vibrational modes, as well as for an identification of intramolecular hydrogen bonding motifs. The effect of small changes in the drug environment was studied by adding successively small amounts of water until physiological low concentrations of the drugs in aqueous solution were obtained. At these low concentrations resonance Raman spectroscopy proved to be a useful and sensitive technique. Supplementary information was obtained from IR and UV/vis spectroscopy.

  17. Spectroscopic characterization of visbreaking tars

    SciTech Connect

    Scotti, R.; Clericuzio, M.; Pirovano, C.

    1995-12-31

    Visbreaking (VB) is a thermal cracking process, widely used in the refineries of Western Europe to obtain distillates (gasoil, naphtha) from a petroleum residue (feedstock). The visbroken residue (tar) is used to produce fuel oil, after addition of the appropriate amounts of cutter-stock. Even if the highest conversion of feedstock would be desirable, the severity of the VB process is limited by the stability of the resulting VB tars. The stability index (SI) here employed is: SI = I + V{sub cet}, where V{sub cet} is the maximum amount of n-cetane, expressed as ml of cetane for g of sample, that can be added before the flocculation of asphaltenes starts. VB tars having SI<1.1 are considered to be unstable and cannot be used in the preparation of fuel oils with the appropriate specifications. Several papers can be found in the literature dealing with the molecular changes occuring during the VB process. The present paper is aimed at verifying the amount of information that can be extracted from optical spectroscopies and, in particular, the possibility of directly monitoring the physico-chemical modifications caused by VB process. To this purpose a series of VB tars, produced from a single feedstock at different severities, were investigated by a number of spectroscopic techniques, viz.: NIR; UV-Vis; Fluorescence; {sup 1}H and {sup 13}C NUR, EPR.

  18. Spectroscopic studies of copper enzymes

    SciTech Connect

    Dooley, D.M.; Moog, R.; Zumft, W.; Koenig, S.H.; Scott, R.A.; Cote, C.E.; McGuirl, M.

    1986-05-01

    Several spectroscopic methods, including absorption, circular dichroism (CD), magnetic CD (MCD), X-ray absorption, resonance Raman, EPR, NMR, and quasi-elastic light-scattering spectroscopy, have been used to probe the structures of copper-containing amine oxidases, nitrite reductase, and nitrous oxide reductase. The basic goals are to determine the copper site structure, electronic properties, and to generate structure-reactivity correlations. Collectively, the results on the amine oxidases permit a detailed model for the Cu(II) sites in these enzymes to be constructed that, in turn, rationalizes the ligand-binding chemistry. Resonance Raman spectra of the phenylhydrazine and 2,4-dinitrophenyl-hydrazine derivatives of bovine plasma amine oxidase and models for its organic cofactor, e.g. pyridoxal, methoxatin, are most consistent with methoxatin being the intrinsic cofactor. The structure of the Cu(I) forms of the amine oxidases have been investigated by X-ray absorption spectroscopy (XAS); the copper coordination geometry is significantly different in the oxidized and reduced forms. Some anomalous properties of the amine oxidases in solution are explicable in terms of their reversible aggregation, which the authors have characterized via light scattering. Nitrite and nitrous oxide reductases display several novel spectral properties. The data suggest that new types of copper sites are present.

  19. Handbook of Basic Atomic Spectroscopic Data

    National Institute of Standards and Technology Data Gateway

    SRD 108 Handbook of Basic Atomic Spectroscopic Data (Web, free access)   This handbook provides a selection of the most important and frequently used atomic spectroscopic data. The compilation includes data for the neutral and singly-ionized atoms of all elements hydrogen through einsteinium (Z = 1-99). The wavelengths, intensities, and spectrum assignments are given for each element, and the data for the approximately 12,000 lines of all elements are also collected into a single table.

  20. Identification and Spectroscopic Characterization of Nonheme Iron(III) Hypochlorite Intermediates†

    PubMed Central

    Draksharapu, Apparao; Angelone, Davide; Quesne, Matthew G.; Padamati, Sandeep K.; Gómez, Laura; Hage, Ronald; Costas, Miquel

    2015-01-01

    Abstract FeIII–hypohalite complexes have been implicated in a wide range of important enzyme‐catalyzed halogenation reactions including the biosynthesis of natural products and antibiotics and post‐translational modification of proteins. The absence of spectroscopic data on such species precludes their identification. Herein, we report the generation and spectroscopic characterization of nonheme FeIII–hypohalite intermediates of possible relevance to iron halogenases. We show that FeIII‐OCl polypyridylamine complexes can be sufficiently stable at room temperature to be characterized by UV/Vis absorption, resonance Raman and EPR spectroscopies, and cryo‐ESIMS. DFT methods rationalize the pathways to the formation of the FeIII‐OCl, and ultimately FeIV=O, species and provide indirect evidence for a short‐lived FeII‐OCl intermediate. The species observed and the pathways involved offer insight into and, importantly, a spectroscopic database for the investigation of iron halogenases. PMID:27478260

  1. Identification and Spectroscopic Characterization of Nonheme Iron(III) Hypochlorite Intermediates**

    PubMed Central

    Draksharapu, Apparao; Angelone, Davide; Quesne, Matthew G; Padamati, Sandeep K; Gómez, Laura; Hage, Ronald; Costas, Miquel; Browne, Wesley R; de Visser, Sam P

    2015-01-01

    FeIII–hypohalite complexes have been implicated in a wide range of important enzyme-catalyzed halogenation reactions including the biosynthesis of natural products and antibiotics and post-translational modification of proteins. The absence of spectroscopic data on such species precludes their identification. Herein, we report the generation and spectroscopic characterization of nonheme FeIII–hypohalite intermediates of possible relevance to iron halogenases. We show that FeIII-OCl polypyridylamine complexes can be sufficiently stable at room temperature to be characterized by UV/Vis absorption, resonance Raman and EPR spectroscopies, and cryo-ESIMS. DFT methods rationalize the pathways to the formation of the FeIII-OCl, and ultimately FeIV=O, species and provide indirect evidence for a short-lived FeII-OCl intermediate. The species observed and the pathways involved offer insight into and, importantly, a spectroscopic database for the investigation of iron halogenases. PMID:25663379

  2. Spectroscopic investigation of protein corona

    NASA Astrophysics Data System (ADS)

    Choudhary, Poonam

    Nanotechnology has revolutionalized the landscape of modern science and technology, including materials, electronics, therapeutics, bioimaging, sensing, and the environment. Research in the past decade has examined the fate of nanomaterials in vitro and in vivo, as well as the interactions between nanoparticles and biological and ecosystems using primarily toxicological and ecotoxicological approaches. However, due to the versatility in the physical and physicochemical properties of nanoparticles, and due to the vast complexity of their hosting systems, the solubility, transformation, and biocompatibility of nanomaterials are still poorly understood. Nanotechnology has been undergoing tremendous development in recent decades, driven by realized perceived applications of nanomaterials in electronics, therapeutics, imaging, sensing, environmental remediation, and consumer products. Nanoparticles on entering the blood stream undergo an identity change, they become coated with proteins. There are different kind of proteins present in blood. Proteins compete for getting coated over the surface of nanoparticle and this whole entity of proteins coated over nanoparticle surface is called Protein Corona. Proteins tightly bound to the surface of nanoparticle form hard corona and the ones loosely bound on the outer surface form soft corona. This dissertation is aimed at spectroscopic investigation of Protein Corona. Chapter I of this dissertation offers a comprehensive review of the literature based on nanomaterials with the focus on carbon based nanomaterilas and introduction to Protein Corona. Chapter II is based different methods used for Graphene Synthesis,different types of defects and doping. In Chapter III influence of defects on Graphene Protein Corona was investigated. Chapter IV is based on the study of Apoptosis induced cell death by Gold and silver nanoparticles. In vitro study of effect of Protein Corona on toxicity of cells was done.

  3. Spectroscopic investigations of heme proteins

    NASA Astrophysics Data System (ADS)

    Ogilvie, Jennifer Pauline

    Using several novel spectroscopic techniques, we investigate the dynamics of heme proteins over the full range of time scales relevant to their function. With ˜10 femtosecond time resolution we use ultrafast pump-probe spectroscopy to gain insight into the earliest dynamics initiated by the photodissociation of the carbon monoxide ligand from myoglobin. Coherent oscillations that are driven by the bond-breaking event reveal several vibrational modes of the heme that provide the driving force for the initial motions along the pathway to protein function. Much later along this pathway we address the question of ligand escape from myoglobin. With this purpose we develop heterodyne-detected diffractive-optics-based phase-grating spectroscopy, which provides more than 2 orders of magnitude increase in sensitivity for the measurement of volume changes and energetics. The improved sensitivity allows us to directly observe the ligand escape, which occurs via a number of discrete routes through the protein. Following the escape process, we observe the full cycle of dynamics that is complete when the carbon monoxide ligand rebinds to the protein. Using a resonant probe we re-examine the dynamics of ligand escape from myoglobin using transient absorption and transient-grating spectroscopy. This study confirms the findings of the previous off-resonant work, and allows us to explore the relationship between the observables in the phase-grating experiment and other resonant spectroscopies. The various dynamical processes of myoglobin provide a basis for understanding the structure/function relationship at the single protein level. This lays the foundation for a description of protein-protein interactions such as cooperativity in hemoglobin.

  4. sick: The Spectroscopic Inference Crank

    NASA Astrophysics Data System (ADS)

    Casey, Andrew R.

    2016-03-01

    There exists an inordinate amount of spectral data in both public and private astronomical archives that remain severely under-utilized. The lack of reliable open-source tools for analyzing large volumes of spectra contributes to this situation, which is poised to worsen as large surveys successively release orders of magnitude more spectra. In this article I introduce sick, the spectroscopic inference crank, a flexible and fast Bayesian tool for inferring astrophysical parameters from spectra. sick is agnostic to the wavelength coverage, resolving power, or general data format, allowing any user to easily construct a generative model for their data, regardless of its source. sick can be used to provide a nearest-neighbor estimate of model parameters, a numerically optimized point estimate, or full Markov Chain Monte Carlo sampling of the posterior probability distributions. This generality empowers any astronomer to capitalize on the plethora of published synthetic and observed spectra, and make precise inferences for a host of astrophysical (and nuisance) quantities. Model intensities can be reliably approximated from existing grids of synthetic or observed spectra using linear multi-dimensional interpolation, or a Cannon-based model. Additional phenomena that transform the data (e.g., redshift, rotational broadening, continuum, spectral resolution) are incorporated as free parameters and can be marginalized away. Outlier pixels (e.g., cosmic rays or poorly modeled regimes) can be treated with a Gaussian mixture model, and a noise model is included to account for systematically underestimated variance. Combining these phenomena into a scalar-justified, quantitative model permits precise inferences with credible uncertainties on noisy data. I describe the common model features, the implementation details, and the default behavior, which is balanced to be suitable for most astronomical applications. Using a forward model on low-resolution, high signal

  5. Multivariate statistical mapping of spectroscopic imaging data.

    PubMed

    Young, Karl; Govind, Varan; Sharma, Khema; Studholme, Colin; Maudsley, Andrew A; Schuff, Norbert

    2010-01-01

    For magnetic resonance spectroscopic imaging studies of the brain, it is important to measure the distribution of metabolites in a regionally unbiased way; that is, without restrictions to a priori defined regions of interest. Since magnetic resonance spectroscopic imaging provides measures of multiple metabolites simultaneously at each voxel, there is furthermore great interest in utilizing the multidimensional nature of magnetic resonance spectroscopic imaging for gains in statistical power. Voxelwise multivariate statistical mapping is expected to address both of these issues, but it has not been previously employed for spectroscopic imaging (SI) studies of brain. The aims of this study were to (1) develop and validate multivariate voxel-based statistical mapping for magnetic resonance spectroscopic imaging and (2) demonstrate that multivariate tests can be more powerful than univariate tests in identifying patterns of altered brain metabolism. Specifically, we compared multivariate to univariate tests in identifying known regional patterns in simulated data and regional patterns of metabolite alterations due to amyotrophic lateral sclerosis, a devastating brain disease of the motor neurons. PMID:19953514

  6. Far Ultraviolet Spectroscopic Explorer Measurements of Interstellar Fluorine

    NASA Astrophysics Data System (ADS)

    Federman, S. R.; Sheffer, Yaron; Lambert, David L.; Smith, V. V.

    2005-02-01

    The source of fluorine is not well understood, although core-collapse supernovae, Wolf-Rayet stars, and asymptotic giant branch stars have been suggested. A search for evidence of the ν-process during Type II supernovae is presented. Absorption from interstellar F I is seen in spectra of HD 208440 and HD 209339A acquired with the Far Ultraviolet Spectroscopic Explorer. In order to extract the column density for F I from the line at 954 Å, absorption from H2 has to be modeled and then removed. Our analysis indicates that for H2 column densities less than about 3×1020 cm-2, the amount of F I can be determined from λ954. For these two sight lines, there is no clear indication for enhanced F abundances resulting from the ν-process in a region shaped by past supernovae. Based on observations made with the NASA/CNES/CSA Far Ultraviolet Spectroscopic Explorer (FUSE), which is operated for NASA by the Johns Hopkins University under NASA contract NAS 5-32985.

  7. Spectroscopic characterizations of organic/inorganic nanocomposites

    NASA Astrophysics Data System (ADS)

    Govani, Jayesh R.

    2009-12-01

    contribution, too. The photoluminescence spectra of the crystal with inhibitor indicate the presence of chlorophyll, and hence, confirm the presence of Mg. This study provides evidence of Mg- and Zn-related inhibition of urinary calculi formation with the addition of RAL herbal extract, contributing, from the spectroscopic point of view, to an intricate subject. Our present investigation might serve as an important source of information on this tantalizing and multifaceted problem, which is not yet completely understood. (Abstract shortened by UMI.)

  8. Optical Spectroscopic Monitoring of Parachute Yarn Aging

    SciTech Connect

    Tallant, D.R.; Garcia, M.J.; Simpson, R.L.; Behr, V.L.; Whinery, L.D.; Peng, L.W.

    1999-04-01

    Optical spectroscopic techniques were evaluated as nondestructive monitors of the aging of parachutes in nuclear weapons. We analyzed thermally aged samples of nylon and Kevlar webbing by photoluminescence spectroscopy and reflection spectroscopy. Infrared analysis was also performed to help understand the degradation mechanisms of the polymer materials in the webbing. The photoluminescence and reflection spectra were analyzed by chemometric data treatment techniques to see if aged-induced changes in the spectra correlated to changes in measured tensile strength. A correlation was found between the shapes of the photoluminescent bands and the measured tensile strengths. Photoluminescent spectra can be used to predict the tensile strengths of nylon and Kevlar webbing with sufficient accuracy to categorize the webbing sample as above rated tensile strength, marginal or below rated tensile strength. The instrumentation required to perform the optical spectroscopic measurement can be made rugged, compact and portable. Thus, optical spectroscopic techniques offer a means for nondestructive field monitoring of parachutes in the enduring stockpile/

  9. Spectroscopic distances of 28 nearby star candidates

    NASA Astrophysics Data System (ADS)

    Jahreiß, H.; Meusinger, H.; Scholz, R.-D.; Stecklum, B.

    2008-06-01

    Aims: Twenty eight hitherto neglected candidates for the Catalogue of Nearby Stars (CNS) were investigated to verify their classification and to improve their distance estimates. All targets had at least a preliminary status of being nearby dwarf stars based on their large proper motions and relatively faint magnitudes. Better photometric and/or spectroscopic distances were required for selecting stars for further trigonometric parallax measurements. Methods: Low-resolution spectra were obtained with NASPEC at the Tautenburg 2 m telescope and with CAFOS at the Calar Alto 2.2 m telescope. The spectral types of M-type stars were determined by direct comparison of the target's spectra with those of comparison stars of known spectral types observed with the same instrument. The classification of earlier types was performed based on comparison with published spectral libraries. Results: For most of the target stars reliable spectral types could be determined and in combination with 2MASS photometry new improved distance estimates became available. The majority were classified as M dwarfs including 11 stars within 25 pc. The fainter component of LDS 1365, previously thought to form a nearby common proper motion pair, is according to our results an unrelated high-velocity background star. For several other nearby common proper motion pairs our distance estimates of the fainter components are in good agreement with Hipparcos distances of the brighter components. The three stars in our sample that were previously thought to be white dwarfs (GJ 2091, GJ 2094, GJ 2098) turned out to be more distant high-velocity F- to K-type (sub)dwarfs. For the star with the largest tangential velocity (GJ 2091; v_ tan>500 km s-1) we have additional evidence for its probable Galactic halo membership from a measured large radial velocity of 266 ± 25 km s-1 and from its UBV photometry indicating a low metallicity. Based on observations with the 2 m telescope of the Thüringer Landessternwarte

  10. Extreme conditions during multibubble cavitation: Sonoluminescence as a spectroscopic probe.

    PubMed

    Suslick, Kenneth S; Eddingsaas, Nathan C; Flannigan, David J; Hopkins, Stephen D; Xu, Hangxun

    2011-07-01

    We review recent work on the use of sonoluminescence (SL) to probe spectroscopically the conditions created during cavitation, both in clouds of collapsing bubbles (multibubble sonoluminescence, (MBSL)) and in single bubble events. The effective MBSL temperature can be controlled by the vapor pressure of the liquid or the thermal conductivity of the dissolved gas over a range from ∼1600 to ∼9000K. The effective pressure during MBSL is ∼300bar, based on atomic line shifts. Given nanosecond emission times, this means that cooling rates are >10(12)K/s. In sulfuric and phosphoric acid, the low volatility and high solubility of any sonolysis products make bubble collapse more efficient and evidence for an optically opaque plasma core is found. PMID:21247788

  11. Raman spectroscopic study of "The Malatesta": a Renaissance painting?

    PubMed

    Edwards, Howell G M; Vandenabeele, Peter; Benoy, Timothy J

    2015-02-25

    Raman spectroscopic analysis of the pigments on an Italian painting described as a "Full Length Portrait of a Gentleman", known also as the "Malatesta", and attributed to the Renaissance period has established that these are consistent with the historical research provenance undertaken earlier. Evidence is found for the early 19th Century addition of chrome yellow to highlighted yellow ochre areas in comparison with a similar painting executed in 1801 by Sir Thomas Lawrence of John Kemble in the role of Hamlet, Prince of Denmark. The Raman data are novel in that no analytical studies have previously been made on this painting and reinforces the procedure whereby scientific analyses are accompanied by parallel historical research. PMID:25194320

  12. Localized and Spectroscopic Orbitals: Squirrel Ears on Water.

    ERIC Educational Resources Information Center

    Martin, R. Bruce

    1988-01-01

    Reexamines the electronic structure of water considering divergent views. Discusses several aspects of molecular orbital theory using spectroscopic molecular orbitals and localized molecular orbitals. Gives examples for determining lowest energy spectroscopic orbitals. (ML)

  13. FIRE NIR spectroscopic classifications of optical transients

    NASA Astrophysics Data System (ADS)

    Morrell, N.; Marion, G. H.; Kirshner, R. P.; Hsiao, E. Y.; Stritzinger, M.

    2014-09-01

    We report spectroscopic classifications of 5 supernovae based on near-infrared (NIR) spectroscopy (range 800-2400 nm) obtained on Sept. 3 UT with the FoldedPort Infrared Echellette (FIRE) spectrograph attached to the 6.5-m Magellan Baade Telescope.

  14. FIRE NIR spectroscopic classifications of optical transients

    NASA Astrophysics Data System (ADS)

    Hsiao, E. Y.; Marion, G. H.; Morrell, N.; Phillips, M. M.; Contreras, C.; Gall, C.; Stritzinger, M. D.; Wyrzykowski, L.; Kozlowski, S.; Udalski, A.; Kirshner, R. P.

    2013-12-01

    We report two spectroscopic classifications using near-infrared spectra (range 800-2400 nm) obtained with the FoldedPort Infrared Echellette (FIRE) spectrograph on the 6.5-m Magellan Baade Telescope. All redshifts are from the presumed hosts and approximately match the supernova redshifts.

  15. Laser Spectroscopic Measurement Of Temperature And Density

    NASA Technical Reports Server (NTRS)

    Mckenzie, Robert L.; Laufer, Gabriel

    1991-01-01

    Report discusses research on use of laser-induced fluorescence in oxygen and Raman scattering in air for simultaneous measurement of temperature and density of air. Major application of laser spectroscopic techniques, measurement of fluctuations of temperature and density in hypersonic flows in wind tunnels.

  16. Spectroscopic study in Z-pinch discharge

    SciTech Connect

    Garamoon, A.A.; Saudy, A.H.; Shark, W.

    1995-12-31

    The temporal variation of the emitted line intensity has been investigated, and thus an important information about the dynamic ionization stages in the Z-pinch discharge has been studied. Also the electron temperature Te, has been deduced by using a spectroscopic technique.

  17. Asiago spectroscopic classification of AT 2016cvm

    NASA Astrophysics Data System (ADS)

    Tomasella, L.; Pastorello, A.; Benetti, S.; Cappellaro, E.; Elias-Rosa, N.; Ochner, P.; Tartaglia, L.; Terreran, G.; Turatto, M.

    2016-06-01

    The Asiago Transient Classification Program (Tomasella et al. 2014, AN, 335, 841) reports the spectroscopic classification of AT 2016cvm (also known as PTSS-16hxs), discovered 20160613.771 by the PMO-Tsinghua Supernova Survey (PTSS) The observation was performed with the Asiago 1.82 m Copernico Telescope (+AFOSC; range 340-820 nm; resolution 1.4 nm).

  18. Asiago spectroscopic classification of four SNe

    NASA Astrophysics Data System (ADS)

    Pastorello, A.; Tartaglia, L.; Benetti, S.; Cappellaro, E.; Elias-Rosa, N.; Ochner, P.; Terreran, G.; Tomasella, L.; Turatto, M.

    2015-12-01

    The Asiago Transient Classification Program (Tomasella et al. 2014, AN, 335, 841) reports the spectroscopic classifications of PS15cym in GALEXASC J011024.12+232124.1, CSS151130:014258+273410 in an anonymous galaxy, PSN J05225991-0008174 in UGC 3301 and ASASSN-15tj in SDSS J075527.63+520911.1 (ATel #8358).

  19. Spectroscopic Classification of Three PSST Transients

    NASA Astrophysics Data System (ADS)

    Blanchard, P.; Nicholl, M.; Berger, E.; Fong, W.; Chornock, R.

    2016-04-01

    We obtained spectroscopic observations on 2016 April 6 UT (range 3000-10600 Angstroms) of three transients reported by the Pan-STARRS Survey for Transients (PSST; Huber et al., ATel #7153; http://star.pst.qub.ac.uk/ps1threepi/) using IMACS mounted on the 6.5m Magellan/Baade Telescope.

  20. Asiago spectroscopic classification of ASASSN-15db

    NASA Astrophysics Data System (ADS)

    Ochner, P.; Pastorello, A.; Benetti, S.; Cappellaro, E.; Elias-Rosa, N.; Tartaglia, L.; Terreran, G.; Tomasella, L.; Turatto, M.

    2015-02-01

    The Asiago Transient Classification Program (Tomasella et al. 2014, AN, 335, 841) reports the spectroscopic observation of ASASSN-15db in NGC 5996. The observation was performed with the Asiago 1.82m Copernico Telescope (+AFOSC; range 340-820 nm; resolution 1.4 nm), equipped with the CCD Andor IKON L936.

  1. Asiago spectroscopic classification of three SNe

    NASA Astrophysics Data System (ADS)

    Elias-Rosa, N.; Cappellaro, E.; Benetti, S.; Milan, M.; Miluzio, M.; Ochner, P.; Pastorello, A.; Tartaglia, L.; Terreran, G.; Tomasella, L.; Turatto, M.; Morales-Garoffolo, A.; Huang, F.

    2014-10-01

    The Asiago Transient Classification Program (Tomasella et al. 2014, AN, 335, 841) reports the spectroscopic classification of two SNe. The observations were performed with the Asiago 1.82 m Copernico Telescope (+AFOSC; range 340-820 nm; resolution 1.2 nm).

  2. Spectroscopic mode identification in gamma Doradus stars

    NASA Astrophysics Data System (ADS)

    Rylvia Pollard, Karen

    2015-08-01

    The MUSICIAN programme at the University of Canterbury has been successfully identifying frequencies and pulsation modes in many gamma Doradus stars using hundreds of precise, high resolution spectroscopic observations. This paper describes some of these frequency and mode identifications and the emerging patterns of the programme.

  3. Asiago spectroscopic classification of ASASSN-16bn

    NASA Astrophysics Data System (ADS)

    Pastorello, A.; Benetti, S.; Tomasella, L.; Cappellaro, E.; Elias-Rosa, N.; Ochner, P.; Tartaglia, L.; Terreran, G.; Turatto, M.

    2016-02-01

    The Asiago Transient Classification Program (Tomasella et al. 2014, AN, 335, 841) reports the spectroscopic classification of ASASSN-16bn (also known as SN 2016adn), discovered by the All Sky Automated Survey for SuperNOvae (ASAS-SN) in 2MASX J03103162+0416184.

  4. Asiago spectroscopic classification of PS15cyk

    NASA Astrophysics Data System (ADS)

    Tartaglia, L.; Pastorello, A.; Benetti, S.; Cappellaro, E.; Elias-Rosa, N.; Ochner, P.; Terreran, G.; Tomasella, L.; Turatto, M.

    2015-12-01

    The Asiago Transient Classification Program (Tomasella et al. 2014, AN, 335, 841) reports the spectroscopic classification of PS15cyk in UGC 12687. The target is supplied by the Pan-STARRS Survey for Transients (see Huber et al., ATel #7153).

  5. Spectroscopic characterization of Ti-doped α-ZnAl2S4 spinel-type single crystals

    NASA Astrophysics Data System (ADS)

    Anghel, Sergiu; Boulon, Georges; Brenier, Alain; Fortin, Emery; Klokishner, Sophia; Koshchug, Dmitrii; Kulyuk, Leonid; Sushkevich, Konstantin

    2010-02-01

    The spectroscopic characteristics of the α-ZnAl2S4 wide bandgap semiconductor doped with Ti ions are investigated. It is shown, that the ZnAl2S4:Ti spinel-type crystals exhibit luminescence in the IR spectral range 0.8-1.4 µm. The observed spectroscopic characteristics are assigned to the emission bands arising from the ligand -Ti4+ charge transfer for octahedral sites of titanium that is in agreement with the experimental evidence for the absence of the EPR signal from Ti ions. A qualitative explanation of the experimental data is given.

  6. Spectroscopic characterization of Ti-doped α-ZnAl2S4 spinel-type single crystals.

    PubMed

    Anghel, Sergiu; Boulon, Georges; Brenier, Alain; Fortin, Emery; Klokishner, Sophia; Koshchug, Dmitrii; Kulyuk, Leonid; Sushkevich, Konstantin

    2010-02-10

    The spectroscopic characteristics of the α-ZnAl(2)S(4) wide bandgap semiconductor doped with Ti ions are investigated. It is shown, that the ZnAl(2)S(4):Ti spinel-type crystals exhibit luminescence in the IR spectral range 0.8-1.4 µm. The observed spectroscopic characteristics are assigned to the emission bands arising from the ligand -Ti(4+) charge transfer for octahedral sites of titanium that is in agreement with the experimental evidence for the absence of the EPR signal from Ti ions. A qualitative explanation of the experimental data is given. PMID:21386352

  7. Spectroscopic Sensitivity Workout: First-order modes

    NASA Astrophysics Data System (ADS)

    Brown, Thomas

    2003-07-01

    We will observe the primary flux standards G191B2B, GD71 and GD153, obtaining first-order spectra in all L-modes {G191B2B only in the CCD modes due to its high brightness in the UV}. By comparing observed and model spectra, we will update calibration reference files describing spectroscopic sensitivity {and CTE loss} as a function of time. On visit of GD71 will be spent on verifying the recently derived CTE formula for STIS Spectroscopic modes with the CCD, by stepping the target along the slit {7 positions} with two {short} exposure times. This will verify the results using the two-amplifier readout method, and provide high-S/N data at low intensity levels and low background level.

  8. The HITRAN 2008 Molecular Spectroscopic Database

    NASA Technical Reports Server (NTRS)

    Rothman, Laurence S.; Gordon, Iouli E.; Barbe, Alain; Benner, D. Chris; Bernath, Peter F.; Birk, Manfred; Boudon, V.; Brown, Linda R.; Campargue, Alain; Champion, J.-P.; Chance, Kelly V.; Coudert, L. H.; Sung, K.; Toth, R. A.

    2009-01-01

    This paper describes the status of the 2008 edition of the HITRAN molecular spectroscopic database. The new edition is the first official public release since the 2004 edition, although a number of crucial updates had been made available online since 2004. The HITRAN compilation consists of several components that serve as input for radiative-transfer calculation codes: individual line parameters for the microwave through visible spectra of molecules in the gas phase; absorption cross-sections for molecules having dense spectral features, i.e., spectra in which the individual lines are not resolved; individual line parameters and absorption cross sections for bands in the ultra-violet; refractive indices of aerosols, tables and files of general properties associated with the database; and database management software. The line-by-line portion of the database contains spectroscopic parameters for forty-two molecules including many of their isotopologues.

  9. Spectroscopic chemical analysis methods and apparatus

    NASA Technical Reports Server (NTRS)

    Hug, William F. (Inventor); Reid, Ray D. (Inventor)

    2009-01-01

    Spectroscopic chemical analysis methods and apparatus are disclosed which employ deep ultraviolet (e.g. in the 200 nm to 300 nm spectral range) electron beam pumped wide bandgap semiconductor lasers, incoherent wide bandgap semiconductor light emitting devices, and hollow cathode metal ion lasers to perform non-contact, non-invasive detection of unknown chemical analytes. These deep ultraviolet sources enable dramatic size, weight and power consumption reductions of chemical analysis instruments. Chemical analysis instruments employed in some embodiments include capillary and gel plane electrophoresis, capillary electrochromatography, high performance liquid chromatography, flow cytometry, flow cells for liquids and aerosols, and surface detection instruments. In some embodiments, Raman spectroscopic detection methods and apparatus use ultra-narrow-band angle tuning filters, acousto-optic tuning filters, and temperature tuned filters to enable ultra-miniature analyzers for chemical identification. In some embodiments Raman analysis is conducted simultaneously with native fluorescence spectroscopy to provide high levels of sensitivity and specificity in the same instrument.

  10. Spectroscopic chemical analysis methods and apparatus

    NASA Technical Reports Server (NTRS)

    Hug, William F. (Inventor); Reid, Ray D. (Inventor)

    2010-01-01

    Spectroscopic chemical analysis methods and apparatus are disclosed which employ deep ultraviolet (e.g. in the 200 nm to 300 nm spectral range) electron beam pumped wide bandgap semiconductor lasers, incoherent wide bandgap semiconductor light emitting devices, and hollow cathode metal ion lasers to perform non-contact, non-invasive detection of unknown chemical analytes. These deep ultraviolet sources enable dramatic size, weight and power consumption reductions of chemical analysis instruments. Chemical analysis instruments employed in some embodiments include capillary and gel plane electrophoresis, capillary electrochromatography, high performance liquid chromatography, flow cytometry, flow cells for liquids and aerosols, and surface detection instruments. In some embodiments, Raman spectroscopic detection methods and apparatus use ultra-narrow-band angle tuning filters, acousto-optic tuning filters, and temperature tuned filters to enable ultra-miniature analyzers for chemical identification. In some embodiments Raman analysis is conducted simultaneously with native fluorescence spectroscopy to provide high levels of sensitivity and specificity in the same instrument.

  11. Studying Young Stars with Large Spectroscopic Surveys

    NASA Astrophysics Data System (ADS)

    Martell, Sarah L.

    2016-01-01

    Galactic archaeology is the study of the history of star formation and chemical evolution in the Milky Way, based on present-day stellar populations. Studies of young stars are a key anchor point for Galactic archaeology, since quantities like the initial mass function and the star formation rate can be studied directly in young clusters and star forming regions. Conversely, massive spectroscopic Galactic archaeology surveys can be used as a data source for young star studies.

  12. Spectroscopic Sensitivity Workout: First-order modes

    NASA Astrophysics Data System (ADS)

    Brown, Thomas

    2001-07-01

    This program is the basic sensitivity measurement for all supported MAMA and CCD first-order spectroscopic modes. It is run once in Cycle 10. Sensitivity measurements are done for all supported tilts of the gratings, at a S/N suitable to any particular setting, in order to get all measurements done in a reasonable number of orbits but still get a very accurate sensitivity measurement. Data for the newly available "pseudo-apertures" near CCD row 900 are also taken.

  13. Asiago spectroscopic classification of SN 2016eob

    NASA Astrophysics Data System (ADS)

    Ochner, P.; Tomasella, G. Terreran L.; Pastorello, A.; Benetti, S.; Cappellaro, E.; Elias-Rosa, N.; Turatto, M.; Yang, S.

    2016-08-01

    The Asiago Transient Classification Program (Tomasella et al. 2014, AN, 335, 841) reports the spectroscopic classification of SN 2016eob. The transient was discovered by Leonini et al. 2016, TNS Astronomical Transient Report No. 3994, Italian Supernovae Search Project (ISSP), on UT 2016-08-03.11 in the galaxy UGC00005 (2 other supernovae exploded in this host: SN 2000da, SN 2003lq).

  14. Spectroscopic classification of Gaia16alf

    NASA Astrophysics Data System (ADS)

    Onori, F.; Fraser, M.; Jonker, P.; Wyrzykowski, L.; Blagorodnova, N.; Mattila, S.

    2016-04-01

    We report the spectroscopic classification of Gaia16alf, from medium resolution (R~1000; 330-990nm) spectra taken with the William Herschel Telescope + ISIS + R300B/R158R on the night of 2016 April 19. The spectrum is consistent with that of a Type Ia SN a few days before maximum light at a redshift of z=0.094.

  15. Asiago spectroscopic classification of three SNe

    NASA Astrophysics Data System (ADS)

    Elias-Rosa, N.; Cappellaro, E.; Benetti, S.; Tomasella, L.; Ochner, P.; Pastorello, A.; Tartaglia, L.; Terreran, G.; Turatto, M.

    2015-09-01

    The Asiago Transient Classification Program (Tomasella et al. 2014, AN, 335, 841) reports the spectroscopic classification of three SNe. Informations on these transients are also available from the "Bright Supernova" website (http://www.rochesterastronomy.org/snimages/), the CBAT Transient Object Followup Reports (http://www.cbat.eps.harvard.edu/index.html) and All-Sky Automated Survey for Supernovae (http://www.astronomy.ohio-state.edu/~assassin/index.shtml).

  16. The mass ratio in spectroscopic binaries

    NASA Astrophysics Data System (ADS)

    Ducati, J. R.; Penteado, E. M.; Turcati, R.

    2003-08-01

    The process of formation of binary and multiple stars is not yet fully understood. Possibilities range from simultaneous processes of condensation from the primeval nebula, to isolated star formation and eventual capture to form a double system. Models exist that predict success probabilities for each theoretical process, and comparison with observational data is crucial. Spectroscopic binaries are specially suited to be used as observational data, since several biases that can arise from general catalogues of binary stars can be avoided, including dominance of systems with large separations between components. A very important parameter in these studies is the mass ratio, the quocient of the masses of primary and secundary members. The histogram of mass ratios provides crucial information to models of binary formation, linked to condensation processes and evolutionaty rates.In this case, spectroscopic binaries can be chosen as the observational sample, provided that the spectrum of the primary is from a non-evolved, main-sequence star,whose mass can be derived reliably from its spectral type. Defining an adequate limiting magnitude (6.5), one avoids bias from eclipsing systems with high inclinations, since nearly all systems up to 6.5 mag were detected. In this paper, a critical review is presented of the existing methods for deriving the distribution of the mass ratios from spectroscopic binary orbital data. After showing the incorrectness of some results published in the litterature, the available data (Batten's 8th Catalogue, 1989) is discussed. Simulations for several distributions of mass ratios (constant, quadratic, etc) are performed. It is shown that the existing data permits only to assert that the spectroscopic binaries with small mass ratios (q < 0.4) are more frequent that those with large mass ratios (q = 0.9 to 1.0).

  17. Nonplanar property study of antifungal agent tolnaftate-spectroscopic approach

    NASA Astrophysics Data System (ADS)

    Arul Dhas, D.; Hubert Joe, I.; Roy, S. D. D.; Balachandran, S.

    2011-09-01

    Vibrational analysis of the thionocarbamate fungicide tolnaftate which is antidermatophytic, antitrichophytic and antimycotic agent, primarily inhibits the ergosterol biosynthesis in the fungus, was carried out using NIR FT-Raman and FTIR spectroscopic techniques. The equilibrium geometry, various bonding features, harmonic vibrational wavenumbers and torsional potential energy surface (PES) scan studies have been computed using density functional theory method. The detailed interpretation of the vibrational spectra has been carried out with the aid of VEDA.4 program. Vibrational spectra, natural bonding orbital (NBO) analysis and optimized molecular structure show the clear evidence for electronic interaction of thionocarbamate group with aromatic ring. Predicted electronic absorption spectrum from TD-DFT calculation has been compared with the UV-vis spectrum. The Mulliken population analysis on atomic charges and the HOMO-LUMO energy were also calculated. Vibrational analysis reveals that the simultaneous IR and Raman activation of the C-C stretching mode in the phenyl and naphthalene ring provide evidence for the charge transfer interaction between the donor and acceptor groups and is responsible for its bioactivity as a fungicide.

  18. Spectroscopic studies of the transplutonium elements

    SciTech Connect

    Carnall, W.T.; Conway, J.G.

    1983-01-01

    The challenging opportunity to develop insights into both atomic structure and the effects of bonding in compounds makes the study of actinide spectroscopy a particularly fruitful and exciting area of scientific endeavor. It is also the interpretation of f-element spectra that has stimulated the development of the most sophisticated theoretical modeling attempted for any elements in the periodic table. The unique nature of the spectra and the wealth of fine detail revealed make possible sensitive tests of both physical models and the results of Hartree-Fock type ab initio calculations. This paper focuses on the unique character of heavy actinide spectroscopy. It discusses how it differs from that of the lighter member of the series and what are the special properties that are manifested. Following the introduction, the paper covers the following: (1) the role of systematic studies and the relationships of heavy-actinide spectroscopy to ongoing spectroscopic investigations of the lighter members of the series; (2) atomic (free-ion) spectra which covers the present status of spectroscopic studies with transplutonium elements, and future needs and directions in atomic spectroscopy; (3) the spectra of actinide compounds which covers the present status and future directions of spectroscopic studies with compounds of the transplutonium elements; and other spectroscopies. 1 figure, 2 tables.

  19. Proton spectroscopic imaging of human brain

    NASA Astrophysics Data System (ADS)

    Moonen, Chrit T. W.; Sobering, Geoffrey; Van Zijl, Peter C. M.; Gillen, Joe; Von Kienlin, Markus; Bizzi, Alberto

    Signals from water and fat can cause artifacts in proton spectroscopic imaging in the human brain. The major problem is variation of the B0 field over a range of several ppm within the sensitive volume of the standard whole-head coil. Here, the coherence-pathway formalism is used to describe and evaluate the origin of artifacts in a double spin-echo (PRESS) sequence. The attenuation of unwanted coherences using pulsed field gradients is described for homogeneous and inhomogeneous B0 fields. The effect of the following parameters on the quality of the spectroscopic images is analyzed: (a) directional order of plane selection, (b) positioning of phase-encode gradients in the sequence, (c) postprocessing spatial windowing, and (d) motion. It is shown that, for a typical echo time of 272 ms, it is not necessary to first select a region of interest within the brain borders when sufficient phase-encode steps are used. Examples of 2D proton spectroscopic images with a nominal voxel volume of 0.85 ml are given for a healthy volunteer and a patient with a low-grade glioma.

  20. Flux measurements using the BATSE spectroscopic detectors

    NASA Technical Reports Server (NTRS)

    Mcnamara, Bernard

    1993-01-01

    Among the Compton Gama-Ray Observatory instruments, the BATSE Spectroscopic Detectors (SD) have the distinction of being able to detect photons of energies less than about 20 keV. This is an interesting energy range for the examination of low mass X-ray binaries (LMXB's). In fact, Sco X-1, the prototype LMXB, is easily seen even in the raw BATSE spectroscopic data. The all-sky coverage afforded by these detectors offers a unique opportunity to monitor this source over time periods never before possible. The aim of this investigation was to test a number of ways in which both continous and discrete flux measurements can be obtained using the BATSE spectroscopic datasets. A instrumental description of a SD can be found in the Compton Workshop of Apr. 1989, this report will deal only with methods which can be used to analyze its datasets. Many of the items discussed below, particularly in regard to the earth occultation technique, have been developed, refined, and applied by the BATSE team to the reduction of BATSE LAD data. Code written as part of this project utilizes portions of that work. The following discussions will first address issues related to the reduction of SD datasets using the earth occultation technique. It will then discuss methods for the recovery of the flux history of strong sources while they are above the earth's limb. The report will conclude with recommended reduction procedures.

  1. The HITRAN2012 molecular spectroscopic database

    NASA Astrophysics Data System (ADS)

    Rothman, L. S.; Gordon, I. E.; Babikov, Y.; Barbe, A.; Chris Benner, D.; Bernath, P. F.; Birk, M.; Bizzocchi, L.; Boudon, V.; Brown, L. R.; Campargue, A.; Chance, K.; Cohen, E. A.; Coudert, L. H.; Devi, V. M.; Drouin, B. J.; Fayt, A.; Flaud, J.-M.; Gamache, R. R.; Harrison, J. J.; Hartmann, J.-M.; Hill, C.; Hodges, J. T.; Jacquemart, D.; Jolly, A.; Lamouroux, J.; Le Roy, R. J.; Li, G.; Long, D. A.; Lyulin, O. M.; Mackie, C. J.; Massie, S. T.; Mikhailenko, S.; Müller, H. S. P.; Naumenko, O. V.; Nikitin, A. V.; Orphal, J.; Perevalov, V.; Perrin, A.; Polovtseva, E. R.; Richard, C.; Smith, M. A. H.; Starikova, E.; Sung, K.; Tashkun, S.; Tennyson, J.; Toon, G. C.; Tyuterev, Vl. G.; Wagner, G.

    2013-11-01

    This paper describes the status of the 2012 edition of the HITRAN molecular spectroscopic compilation. The new edition replaces the previous HITRAN edition of 2008 and its updates during the intervening years. The HITRAN molecular absorption compilation is comprised of six major components structured into folders that are freely accessible on the internet. These folders consist of the traditional line-by-line spectroscopic parameters required for high-resolution radiative-transfer codes, infrared absorption cross-sections for molecules not yet amenable to representation in a line-by-line form, ultraviolet spectroscopic parameters, aerosol indices of refraction, collision-induced absorption data, and general tables such as partition sums that apply globally to the data. The new HITRAN is greatly extended in terms of accuracy, spectral coverage, additional absorption phenomena, and validity. Molecules and isotopologues have been added that address the issues of atmospheres beyond the Earth. Also discussed is a new initiative that casts HITRAN into a relational database format that offers many advantages over the long-standing sequential text-based structure that has existed since the initial release of HITRAN in the early 1970s.

  2. The STIS CCD Spectroscopic Line Spread Functions

    NASA Technical Reports Server (NTRS)

    Gull, T.; Lindler, D.; Tennant, D.; Bowers, C.; Grady, C.; Hill, R. S.; Malumuth, E.

    2002-01-01

    We characterize the spectroscopic line spread functions of the spectroscopic CCD modes for high contrast objects. Our long range goal is to develop tools that accurately extract spectroscopic information of faint, point or extended sources in the vicinity of bright, point sources at separations approaching the realizable angular limits of HST with STIS. Diffracted and scattered light due to the HST optics, and scattered light effects within the STIS are addressed. Filter fringing, CCD fringing, window reflections, and scattering within the detector and other effects are noted. We have obtained spectra of several reference stars, used for flux calibration or for coronagraphic standards, that have spectral distributions ranging from very red to very blue. Spectra of each star were recorded with the star in the aperture and with the star blocked by either the F1 or F2 fiducial. Plots of the detected starlight along the spatial axis of the aperture are provided for four stars. With the star in the aperture, the line spread function is quite noticeable. Placing the star behind one of the fiducials cuts the scattered light and the diffracted light, is detectable even out to 1OOOOA. When the star is placed behind either fiducial, the scattered and diffracted light components, at three arcseconds displacement from the star, are below lop6 the peak of the star at wavelengths below 6000A; at the same angular distance, scattered light does contaminate the background longward of 6000A up to a level of 10(exp -5).

  3. Infrared spectroscopic imaging of kidney tumor tissue

    NASA Astrophysics Data System (ADS)

    Sablinskas, V.; Steiner, G.; Koch, E.; Ceponkus, J.; Pucetaite, M.; Strazdaite, S.; Urboniene, V.; Jankevicius, F.

    2011-02-01

    Infrared spectroscopic imaging of cancerous kidney tissue was performed by means of FTIR microscopy. The spectra of thin tissue cryosections were collected with 64x64 MCT FPA detector and imaging area was increased up to 5.4×5.4 mm by mapping by means of PC controlled x,y stage. Chemical images of the samples were constructed using statistical treatment of the raw spectra. Several unsupervised and supervised statistical methods were used. The imaging results are compared with results of the standard histopathological analysis. It was concluded that application of method of cluster analysis ensures the best contrast of the images. It was found that border between cancerous and normal tissues visible in the infrared spectroscopic image corresponds with the border visible in histopathological image. Closer examination of the infrared spectroscopic image reveals that small domains of cancerous cells are found beyond the border in areas distant from the border up to 3 mm. Such domains are not visible in the histopathological images. The smallest domains found in the infrared images are approx. 60 μm.

  4. LIBS spectroscopic classification relative to compressive sensing

    NASA Astrophysics Data System (ADS)

    Griffin, Steven T.; Jacobs, Eddie; Furxhi, Orges

    2011-05-01

    Laser Induced Breakdown Spectroscopy (LIBS) utilizes a diversity of standard spectroscopic techniques for classification of materials present in the sample. Pre-excitation processing sometimes limits the analyte to a short list of candidates. Prior art demonstrates that sparsity is present in the data. This is sometimes characterized as identification by components. Traditionally, spectroscopic identification has been accomplished by an expert reader in a manner typical for MRI images in the medicine. In an effort to automate this process, more recent art has emphasized the use of customized variations to standard classification algorithms. In addition, formal mathematical proofs for compressive sensing have been advanced. Recently the University of Memphis has been contracted by the Spectroscopic Materials Identification Center to advance and characterize the sensor research and development related to LIBS. Applications include portable standoff sensing for improvised explosive device detection and related law enforcement and military applications. Reduction of the mass, power consumption and other portability parameters is seen as dependent on classification choices for a LIBS system. This paper presents results for the comparison of standard LIBS classification techniques to those implied by Compressive Sensing mathematics. Optimization results and implications for portable LIBS design are presented.

  5. Spectroscopic imaging based approach for condom identification in condom contaminated fingermarks.

    PubMed

    Bradshaw, Robert; Wolstenholme, Rosalind; Ferguson, Leesa Susanne; Sammon, Chris; Mader, Kerstin; Claude, Emmanuelle; Blackledge, Robert D; Clench, Malcolm R; Francese, Simona

    2013-05-01

    Sexual offenders are increasingly reported to use condoms while committing the crime, mainly to prevent the transfer of DNA evidence. Although condoms are often removed from the crime scene, vaginal swabs can be taken from the victim to prove the presence of condom lubricants and therefore evidence of corpus delicti. However, late reporting to the police and the tendency of the victim to wash immediately after the crime, may compromise the detection of condom lubricants. Recently we showed that Matrix-Assisted Laser Desorption/Ionisation MS Imaging (MALDI MSI) of condom contaminated fingermarks enables images of the fingermark ridge pattern to be obtained simultaneously with the detection of the condom lubricant for two condom brands, thus becoming a potential alternative way to link the assailant to the crime. Building on the value of this information, it would be advantageous to identify the condom brand used during the sexual assault. Here we show the development of a multidisciplinary spectroscopic approach, including MALDI MSI, MS/MS, Raman microscopy and ATR-FTIR spectroscopy, applied to a range of condom brands/types. The techniques have complementary features and provide complementary information to retrieve a "condom brand spectroscopic fingerprint". Unique spectroscopic profiles would greatly aid in the screening and identification of the condom, thus adding intelligence to the case under investigation. PMID:23486747

  6. THE APOKASC CATALOG: AN ASTEROSEISMIC AND SPECTROSCOPIC JOINT SURVEY OF TARGETS IN THE KEPLER FIELDS

    SciTech Connect

    Pinsonneault, Marc H.; Epstein, Courtney; Johnson, Jennifer A.; Elsworth, Yvonne; Chaplin, William J.; Hekker, Saskia; Silva Aguirre, Victor; Stello, Dennis; Mészáros, Sz.; García, Rafael A.; Beck, Paul; Mathur, Savita; García Pérez, Ana; Girardi, Léo; Basu, Sarbani; Shetrone, Matthew; Allende Prieto, Carlos; Beers, Timothy C.; and others

    2015-01-01

    We present the first APOKASC catalog of spectroscopic and asteroseismic properties of 1916 red giants observed in the Kepler fields. The spectroscopic parameters provided from the Apache Point Observatory Galactic Evolution Experiment project are complemented with asteroseismic surface gravities, masses, radii, and mean densities determined by members of the Kepler Asteroseismology Science Consortium. We assess both random and systematic sources of error and include a discussion of sample selection for giants in the Kepler fields. Total uncertainties in the main catalog properties are of the order of 80 K in T {sub eff}, 0.06 dex in [M/H], 0.014 dex in log g, and 12% and 5% in mass and radius, respectively; these reflect a combination of systematic and random errors. Asteroseismic surface gravities are substantially more precise and accurate than spectroscopic ones, and we find good agreement between their mean values and the calibrated spectroscopic surface gravities. There are, however, systematic underlying trends with T {sub eff} and log g. Our effective temperature scale is between 0 and 200 K cooler than that expected from the infrared flux method, depending on the adopted extinction map, which provides evidence for a lower value on average than that inferred for the Kepler Input Catalog (KIC). We find a reasonable correspondence between the photometric KIC and spectroscopic APOKASC metallicity scales, with increased dispersion in KIC metallicities as the absolute metal abundance decreases, and offsets in T {sub eff} and log g consistent with those derived in the literature. We present mean fitting relations between APOKASC and KIC observables and discuss future prospects, strengths, and limitations of the catalog data.

  7. The APOKASC Catalog: An Asteroseismic and Spectroscopic Joint Survey of Targets in the Kepler Fields

    NASA Astrophysics Data System (ADS)

    Pinsonneault, Marc H.; Elsworth, Yvonne; Epstein, Courtney; Hekker, Saskia; Mészáros, Sz.; Chaplin, William J.; Johnson, Jennifer A.; García, Rafael A.; Holtzman, Jon; Mathur, Savita; García Pérez, Ana; Silva Aguirre, Victor; Girardi, Léo; Basu, Sarbani; Shetrone, Matthew; Stello, Dennis; Allende Prieto, Carlos; An, Deokkeun; Beck, Paul; Beers, Timothy C.; Bizyaev, Dmitry; Bloemen, Steven; Bovy, Jo; Cunha, Katia; De Ridder, Joris; Frinchaboy, Peter M.; García-Hernández, D. A.; Gilliland, Ronald; Harding, Paul; Hearty, Fred R.; Huber, Daniel; Ivans, Inese; Kallinger, Thomas; Majewski, Steven R.; Metcalfe, Travis S.; Miglio, Andrea; Mosser, Benoit; Muna, Demitri; Nidever, David L.; Schneider, Donald P.; Serenelli, Aldo; Smith, Verne V.; Tayar, Jamie; Zamora, Olga; Zasowski, Gail

    2014-12-01

    We present the first APOKASC catalog of spectroscopic and asteroseismic properties of 1916 red giants observed in the Kepler fields. The spectroscopic parameters provided from the Apache Point Observatory Galactic Evolution Experiment project are complemented with asteroseismic surface gravities, masses, radii, and mean densities determined by members of the Kepler Asteroseismology Science Consortium. We assess both random and systematic sources of error and include a discussion of sample selection for giants in the Kepler fields. Total uncertainties in the main catalog properties are of the order of 80 K in T eff, 0.06 dex in [M/H], 0.014 dex in log g, and 12% and 5% in mass and radius, respectively; these reflect a combination of systematic and random errors. Asteroseismic surface gravities are substantially more precise and accurate than spectroscopic ones, and we find good agreement between their mean values and the calibrated spectroscopic surface gravities. There are, however, systematic underlying trends with T eff and log g. Our effective temperature scale is between 0 and 200 K cooler than that expected from the infrared flux method, depending on the adopted extinction map, which provides evidence for a lower value on average than that inferred for the Kepler Input Catalog (KIC). We find a reasonable correspondence between the photometric KIC and spectroscopic APOKASC metallicity scales, with increased dispersion in KIC metallicities as the absolute metal abundance decreases, and offsets in T eff and log g consistent with those derived in the literature. We present mean fitting relations between APOKASC and KIC observables and discuss future prospects, strengths, and limitations of the catalog data.

  8. Spectroscopic Parameters of Lumbar Intervertebral Disc Material

    NASA Astrophysics Data System (ADS)

    Terbetas, G.; Kozlovskaja, A.; Varanius, D.; Graziene, V.; Vaitkus, J.; Vaitkuviene, A.

    2009-06-01

    There are numerous methods of investigating intervertebral disc. Visualization methods are widely used in clinical practice. Histological, imunohistochemical and biochemical methods are more used in scientific research. We propose that a new spectroscopic investigation would be useful in determining intervertebral disc material, especially when no histological specimens are available. Purpose: to determine spectroscopic parameters of intervertebral disc material; to determine emission spectra common for all intervertebral discs; to create a background for further spectroscopic investigation where no histological specimen will be available. Material and Methods: 20 patients, 68 frozen sections of 20 μm thickness from operatively removed intervertebral disc hernia were excited by Nd:YAG microlaser STA-01-TH third harmonic 355 nm light throw 0, 1 mm fiber. Spectrophotometer OceanOptics USB2000 was used for spectra collection. Mathematical analysis of spectra was performed by ORIGIN multiple Gaussian peaks analysis. Results: In each specimen of disc hernia were found distinct maximal spectral peaks of 4 types supporting the histological evaluation of mixture content of the hernia. Fluorescence in the spectral regions 370-700 nm was detected in the disc hernias. The main spectral component was at 494 nm and the contribution of the components with the peak wavelength values at 388 nm, 412 nm and 435±5 nm were varying in the different groups of samples. In comparison to average spectrum of all cases, there are 4 groups of different spectral signatures in the region 400-500 nm in the patient groups, supporting a clinical data on different clinical features of the patients. Discussion and Conclusion: besides the classical open discectomy, new minimally invasive techniques of treating intervertebral disc emerge (PLDD). Intervertebral disc in these techniques is assessed by needle, no histological specimen is taken. Spectroscopic investigation via fiber optics through the

  9. Experimental and theoretical spectroscopic studies of dye modification in synthetic Maya Blue pigment

    NASA Astrophysics Data System (ADS)

    Reza, Layra; Manciu, Felicia; Ramirez, Alejandra; Chianelli, Russell

    2009-03-01

    Maya pigments are hybrid organic/inorganic materials with multiple technology applications that possess unprecedented stability with respect to harsh environment conditions. In this investigation, we address the question of how the organic indigo dye modifies as it binds to the inorganic palygorskite clay to form a pigment similar to Maya Blue after a heating treatment is applied. Both infrared and Raman spectroscopic data demonstrate the disappearance of nitrogen-hydrogen (N-H) bonding, as the indigo molecule incorporates into the inorganic palygorskite material. This effect suggests a transformation of the dye from indigo to dehydroindigo. Furthermore, the Raman and infrared absorption results demonstrate partial elimination of the selection rules for the centrosymmetric indigo, which provides further evidence for this conversion. Theoretical spectroscopic studies are also addressed in this investigation to confirm the transformation of the dye into dehydroindigo.

  10. PRIMitive Asteroids Spectroscopic Survey - PRIMASS: First Results

    NASA Astrophysics Data System (ADS)

    de Leon, Julia; Pinilla-Alonso, Noemi; Campins, Humberto; Lorenzi, Vania; Licandro, Javier; Morate, David; Tanga, Paolo; Cellino, Alberto; Delbo, Marco

    2015-11-01

    NASA OSIRIS-REx and JAXA Hayabusa 2 sample-return missions have targeted two near-Earth asteroids: (101955) Bennu and (162173) 1999 JU3, respectively. These are primitive asteroids that are believed to originate in the inner belt, where five distinct sources have been identified: four primitive collisional families (Polana, Erigone, Sulamitis, and Clarissa), and a population of low-albedo and low-inclination background asteroids. Identifying and characterizing the populations from which these two NEAs might originate will enchance the science return of the two missions.With this main objective in mind, we initiated in 2010 a spectroscopic survey in the visible and the near-infrared to characterize the primitive collisional families in the inner belt and the low-albedo background population. This is the PRIMitive Asteroids Spectroscopic Survey - PRIMASS. So far we have obtained more than 200 spectra using telescopes located at different observatories. PRIMASS uses a variety of ground based facilities. Most of the spectra have been obtained using the 10.4m Gran Telescopio Canarias (GTC), and the 3.6m Telescopio Nazionale Galileo (TNG), both located at the El Roque de los Muchachos Observatory (La Palma, Spain), and the 3.0m NASA Infrared Telescope Facility on Mauna Kea (Hawai, USA).We present the first results from our on-going survey (de Leon et al. 2015; Pinilla-Alonso et al. 2015; Morate et al. 2015), focused on the Polana and the Erigone primitive families, with visible and near-infrared spectra of more than 200 objects, most of them with no previous spectroscopic data. Our survey is already the largest database of primitive asteroids spectra, and we keep obtaining data on the Sulamitis and the Clarissa families, as well as on the background low-albedo population.

  11. Are your Spectroscopic Data Being Used?

    NASA Astrophysics Data System (ADS)

    Gordon, Iouli E.; Rothman, Laurence S.; Wilzewski, Jonas

    2014-06-01

    Spectroscopy is an established and indispensable tool in science, industry, agriculture, medicine, surveillance, etc.. The potential user of spectral data, which is not available in HITRAN or other databases, searches the spectroscopy publications. After finding the desired publication, the user very often encounters the following problems: 1) They cannot find the data described in the paper. There can be many reasons for this: nothing is provided in the paper itself or supplementary material; the authors are not responding to any requests; the web links provided in the paper have long been broken; etc. 2) The data is presented in a reduced form, for instance through the fitted spectroscopic constants. While this is a long-standing practice among spectroscopists, there are numerous serious problems with this practice, such as users getting different energy and intensity values because of different representations of the solution to the Hamiltonian, or even just despairing of trying to generate usable line lists from the published constants. Properly providing the data benefits not only users but also the authors of the spectroscopic research. We will show that this increases citations to the spectroscopy papers and visibility of the research groups. We will also address the quite common issue when researchers obtain the data, but do not feel that they have time, interest or resources to write an article describing it. There are modern tools that would allow one to make these data available to potential users and still get credit for it. However, this is a worst case scenario recommendation, i.e., publishing the data in a peer-reviewed journal is still the preferred way. L. S. Rothman, I. E. Gordon, et al. "The HITRAN 2012 molecular spectroscopic database," JQSRT 113, 4-50 (2013).

  12. THIRTY NEW LOW-MASS SPECTROSCOPIC BINARIES

    SciTech Connect

    Shkolnik, Evgenya L.; Hebb, Leslie; Cameron, Andrew C.; Liu, Michael C.; Neill Reid, I. E-mail: Andrew.Cameron@st-and.ac.u E-mail: mliu@ifa.hawaii.ed

    2010-06-20

    As part of our search for young M dwarfs within 25 pc, we acquired high-resolution spectra of 185 low-mass stars compiled by the NStars project that have strong X-ray emission. By cross-correlating these spectra with radial velocity standard stars, we are sensitive to finding multi-lined spectroscopic binaries. We find a low-mass spectroscopic binary fraction of 16% consisting of 27 SB2s, 2 SB3s, and 1 SB4, increasing the number of known low-mass spectroscopic binaries (SBs) by 50% and proving that strong X-ray emission is an extremely efficient way to find M-dwarf SBs. WASP photometry of 23 of these systems revealed two low-mass eclipsing binaries (EBs), bringing the count of known M-dwarf EBs to 15. BD-22 5866, the ESB4, was fully described in 2008 by Shkolnik et al. and CCDM J04404+3127 B consists of two mid-M stars orbiting each other every 2.048 days. WASP also provided rotation periods for 12 systems, and in the cases where the synchronization time scales are short, we used P{sub rot} to determine the true orbital parameters. For those with no P{sub rot}, we used differential radial velocities to set upper limits on orbital periods and semimajor axes. More than half of our sample has near-equal-mass components (q > 0.8). This is expected since our sample is biased toward tight orbits where saturated X-ray emission is due to tidal spin-up rather than stellar youth. Increasing the samples of M-dwarf SBs and EBs is extremely valuable in setting constraints on current theories of stellar multiplicity and evolution scenarios for low-mass multiple systems.

  13. Vibrational spectroscopic study of fluticasone propionate

    NASA Astrophysics Data System (ADS)

    Ali, H. R. H.; Edwards, H. G. M.; Kendrick, J.; Scowen, I. J.

    2009-03-01

    Fluticasone propionate is a synthetic glucocorticoid with potent anti-inflammatory activity that has been used effectively in the treatment of chronic asthma. The present work reports a vibrational spectroscopic study of fluticasone propionate and gives proposed molecular assignments on the basis of ab initio calculations using BLYP density functional theory with a 6-31G* basis set and vibrational frequencies predicted within the quasi-harmonic approximation. Several spectral features and band intensities are explained. This study generated a library of information that can be employed to aid the process monitoring of fluticasone propionate.

  14. Spectroscopic diagnostics of tritium recycling in TFTR

    SciTech Connect

    Skinner, C.H.; Stotler, D.P.; Adler, H.; Ramsey, A.T.

    1995-03-01

    The authors present the first spectroscopic measurements of tritium Balmer-alpha (T{sub {alpha}}) emission from a fusion plasma. A Fabry-Perot interferometer is used to measure the H{sub {alpha}}, D{sub {alpha}}, T{sub {alpha}} spectrum in the current D-T a experimental campaign on TFTR and the contributions of H, D and T are separated by spectral analysis. The T{sub {alpha}} line was measurable at concentrations T{sub {alpha}}/(H{sub {alpha}} + D{sub {alpha}} + T{sub {alpha}}) down to 2%.

  15. The Gaia-ESO Public Spectroscopic Survey

    NASA Astrophysics Data System (ADS)

    Gilmore, G.; Randich, S.; Asplund, M.; Binney, J.; Bonifacio, P.; Drew, J.; Feltzing, S.; Ferguson, A.; Jeffries, R.; Micela, G.; Negueruela, I.; Prusti, T.; Rix, H.-W.; Vallenari, A.; Alfaro, E.; Allende-Prieto, C.; Babusiaux, C.; Bensby, T.; Blomme, R.; Bragaglia, A.; Flaccomio, E.; François, P.; Irwin, M.; Koposov, S.; Korn, A.; Lanzafame, A.; Pancino, E.; Paunzen, E.; Recio-Blanco, A.; Sacco, G.; Smiljanic, R.; Van Eck, S.; Walton, N.; Aden, D.; Aerts, C.; Affer, L.; Alcala, J.-M.; Altavilla, G.; Alves, J.; Antoja, T.; Arenou, F.; Argiroffi, C.; Asensio Ramos, A.; Bailer-Jones, C.; Balaguer-Nunez, L.; Bayo, A.; Barbuy, B.; Barisevicius, G.; Barrado y Navascues, D.; Battistini, C.; Bellas Velidis, I.; Bellazzini, M.; Belokurov, V.; Bergemann, M.; Bertelli, G.; Biazzo, K.; Bienayme, O.; Bland-Hawthorn, J.; Boeche, C.; Bonito, S.; Boudreault, S.; Bouvier, J.; Brandao, I.; Brown, A.; de Bruijne, J.; Burleigh, M.; Caballero, J.; Caffau, E.; Calura, F.; Capuzzo-Dolcetta, R.; Caramazza, M.; Carraro, G.; Casagrande, L.; Casewell, S.; Chapman, S.; Chiappini, C.; Chorniy, Y.; Christlieb, N.; Cignoni, M.; Cocozza, G.; Colless, M.; Collet, R.; Collins, M.; Correnti, M.; Covino, E.; Crnojevic, D.; Cropper, M.; Cunha, M.; Damiani, F.; David, M.; Delgado, A.; Duffau, S.; Edvardsson, B.; Eldridge, J.; Enke, H.; Eriksson, K.; Evans, N. W.; Eyer, L.; Famaey, B.; Fellhauer, M.; Ferreras, I.; Figueras, F.; Fiorentino, G.; Flynn, C.; Folha, D.; Franciosini, E.; Frasca, A.; Freeman, K.; Fremat, Y.; Friel, E.; Gaensicke, B.; Gameiro, J.; Garzon, F.; Geier, S.; Geisler, D.; Gerhard, O.; Gibson, B.; Gomboc, A.; Gomez, A.; Gonzalez-Fernandez, C.; Gonzalez Hernandez, J.; Gosset, E.; Grebel, E.; Greimel, R.; Groenewegen, M.; Grundahl, F.; Guarcello, M.; Gustafsson, B.; Hadrava, P.; Hatzidimitriou, D.; Hambly, N.; Hammersley, P.; Hansen, C.; Haywood, M.; Heber, U.; Heiter, U.; Held, E.; Helmi, A.; Hensler, G.; Herrero, A.; Hill, V.; Hodgkin, S.; Huelamo, N.; Huxor, A.; Ibata, R.; Jackson, R.; de Jong, R.; Jonker, P.; Jordan, S.; Jordi, C.; Jorissen, A.; Katz, D.; Kawata, D.; Keller, S.; Kharchenko, N.; Klement, R.; Klutsch, A.; Knude, J.; Koch, A.; Kochukhov, O.; Kontizas, M.; Koubsky, P.; Lallement, R.; de Laverny, P.; van Leeuwen, F.; Lemasle, B.; Lewis, G.; Lind, K.; Lindstrom, H. P. E.; Lobel, A.; Lopez Santiago, J.; Lucas, P.; Ludwig, H.; Lueftinger, T.; Magrini, L.; Maiz Apellaniz, J.; Maldonado, J.; Marconi, G.; Marino, A.; Martayan, C.; Martinez-Valpuesta, I.; Matijevic, G.; McMahon, R.; Messina, S.; Meyer, M.; Miglio, A.; Mikolaitis, S.; Minchev, I.; Minniti, D.; Moitinho, A.; Momany, Y.; Monaco, L.; Montalto, M.; Monteiro, M. J.; Monier, R.; Montes, D.; Mora, A.; Moraux, E.; Morel, T.; Mowlavi, N.; Mucciarelli, A.; Munari, U.; Napiwotzki, R.; Nardetto, N.; Naylor, T.; Naze, Y.; Nelemans, G.; Okamoto, S.; Ortolani, S.; Pace, G.; Palla, F.; Palous, J.; Parker, R.; Penarrubia, J.; Pillitteri, I.; Piotto, G.; Posbic, H.; Prisinzano, L.; Puzeras, E.; Quirrenbach, A.; Ragaini, S.; Read, J.; Read, M.; Reyle, C.; De Ridder, J.; Robichon, N.; Robin, A.; Roeser, S.; Romano, D.; Royer, F.; Ruchti, G.; Ruzicka, A.; Ryan, S.; Ryde, N.; Santos, N.; Sanz Forcada, J.; Sarro Baro, L. M.; Sbordone, L.; Schilbach, E.; Schmeja, S.; Schnurr, O.; Schoenrich, R.; Scholz, R.-D.; Seabroke, G.; Sharma, S.; De Silva, G.; Smith, M.; Solano, E.; Sordo, R.; Soubiran, C.; Sousa, S.; Spagna, A.; Steffen, M.; Steinmetz, M.; Stelzer, B.; Stempels, E.; Tabernero, H.; Tautvaisiene, G.; Thevenin, F.; Torra, J.; Tosi, M.; Tolstoy, E.; Turon, C.; Walker, M.; Wambsganss, J.; Worley, C.; Venn, K.; Vink, J.; Wyse, R.; Zaggia, S.; Zeilinger, W.; Zoccali, M.; Zorec, J.; Zucker, D.; Zwitter, T.; Gaia-ESO Survey Team

    2012-03-01

    The Gaia-ESO Public Spectroscopic Survey has begun and will obtain high quality spectroscopy of some 100000 Milky Way stars, in the field and in open clusters, down to magnitude 19, systematically covering all the major components of the Milky Way. This survey will provide the first homogeneous overview of the distributions of kinematics and chemical element abundances in the Galaxy. The motivation, organisation and implementation of the Gaia-ESO Survey are described, emphasising the complementarity with the ESA Gaia mission. Spectra from the very first observing run of the survey are presented.

  16. Spectroscopic ellipsometer for ultra thin film

    NASA Astrophysics Data System (ADS)

    Akashika, Kumiko; Shiota, Shuji; Yamaguchi, Shinji; Horie, Masahiro; Kobayashi, Masayoshi

    2008-03-01

    As semiconductor technology has advanced, the films have become thinner and changed to multi-layer films, such as gate dielectric construction. To deal with these trends, we are continuing development of our spectroscopic ellipsometer with elliptical polarization. We chose a Rotating-Analyzer Ellipsometer (RAE) configuration. The incident light in this type of device is usually polarized linearly, because polarizers do not disperse the light. But the incident light in the ellipsometer described in this paper is elliptical, which has a nearly circular polarization. In this paper, we introduce a technique for solving the dispersion problem.

  17. Spectroscopic needs for imaging dark energy experiments

    NASA Astrophysics Data System (ADS)

    Newman, Jeffrey A.; Abate, Alexandra; Abdalla, Filipe B.; Allam, Sahar; Allen, Steven W.; Ansari, Réza; Bailey, Stephen; Barkhouse, Wayne A.; Beers, Timothy C.; Blanton, Michael R.; Brodwin, Mark; Brownstein, Joel R.; Brunner, Robert J.; Carrasco Kind, Matias; Cervantes-Cota, Jorge L.; Cheu, Elliott; Chisari, Nora Elisa; Colless, Matthew; Comparat, Johan; Coupon, Jean; Cunha, Carlos E.; de la Macorra, Axel; Dell'Antonio, Ian P.; Frye, Brenda L.; Gawiser, Eric J.; Gehrels, Neil; Grady, Kevin; Hagen, Alex; Hall, Patrick B.; Hearin, Andew P.; Hildebrandt, Hendrik; Hirata, Christopher M.; Ho, Shirley; Honscheid, Klaus; Huterer, Dragan; Ivezić, Željko; Kneib, Jean-Paul; Kruk, Jeffrey W.; Lahav, Ofer; Mandelbaum, Rachel; Marshall, Jennifer L.; Matthews, Daniel J.; Ménard, Brice; Miquel, Ramon; Moniez, Marc; Moos, H. W.; Moustakas, John; Myers, Adam D.; Papovich, Casey; Peacock, John A.; Park, Changbom; Rahman, Mubdi; Rhodes, Jason; Ricol, Jean-Stephane; Sadeh, Iftach; Slozar, Anže; Schmidt, Samuel J.; Stern, Daniel K.; Anthony Tyson, J.; von der Linden, Anja; Wechsler, Risa H.; Wood-Vasey, W. M.; Zentner, Andrew R.

    2015-03-01

    Ongoing and near-future imaging-based dark energy experiments are critically dependent upon photometric redshifts (a.k.a. photo-z's): i.e., estimates of the redshifts of objects based only on flux information obtained through broad filters. Higher-quality, lower-scatter photo-z's will result in smaller random errors on cosmological parameters; while systematic errors in photometric redshift estimates, if not constrained, may dominate all other uncertainties from these experiments. The desired optimization and calibration is dependent upon spectroscopic measurements for secure redshift information; this is the key application of galaxy spectroscopy for imaging-based dark energy experiments.

  18. Spectroscopic methods in gas hydrate research.

    PubMed

    Rauh, Florian; Mizaikoff, Boris

    2012-01-01

    Gas hydrates are crystalline structures comprising a guest molecule surrounded by a water cage, and are particularly relevant due to their natural occurrence in the deep sea and in permafrost areas. Low molecular weight molecules such as methane and carbon dioxide can be sequestered into that cage at suitable temperatures and pressures, facilitating the transition to the solid phase. While the composition and structure of gas hydrates appear to be well understood, their formation and dissociation mechanisms, along with the dynamics and kinetics associated with those processes, remain ambiguous. In order to take advantage of gas hydrates as an energy resource (e.g., methane hydrate), as a sequestration matrix in (for example) CO(2) storage, or for chemical energy conservation/storage, a more detailed molecular level understanding of their formation and dissociation processes, as well as the chemical, physical, and biological parameters that affect these processes, is required. Spectroscopic techniques appear to be most suitable for analyzing the structures of gas hydrates (sometimes in situ), thus providing access to such information across the electromagnetic spectrum. A variety of spectroscopic methods are currently used in gas hydrate research to determine the composition, structure, cage occupancy, guest molecule position, and binding/formation/dissociation mechanisms of the hydrate. To date, the most commonly applied techniques are Raman spectroscopy and solid-state nuclear magnetic resonance (NMR) spectroscopy. Diffraction methods such as neutron and X-ray diffraction are used to determine gas hydrate structures, and to study lattice expansions. Furthermore, UV-vis spectroscopic techniques and scanning electron microscopy (SEM) have assisted in structural studies of gas hydrates. Most recently, waveguide-coupled mid-infrared spectroscopy in the 3-20 μm spectral range has demonstrated its value for in situ studies on the formation and dissociation of gas

  19. Spectroscopic characterization of nitroaromatic landmine signature explosives

    NASA Astrophysics Data System (ADS)

    Hernandez-Rivera, Samuel P.; Manrique-Bastidas, Cesar A.; Blanco, Alejandro; Primera, Oliva M.; Pacheco, Leonardo C.; Castillo-Chara, Jairo; Castro, Miguel E.; Mina, Nairmen

    2004-09-01

    TNT and DNT are important explosives used as base charges of landmines and other explosive devices. They are often combined with RDX in specific explosive formulations. Their detection in vapor phase as well as in soil in contact with the explosives is important in landmine detection technology. The spectroscopic signatures of nitroaromatic compounds in neat forms: crystals, droplets, and recrystallized samples were determined by Raman Microspectroscopy (RS), Fourier Transform Infrared Microscopy (FTIR) and Fiber Optics Coupled - Fourier Transform Infrared Spectroscopy (FOC-FTIR) using a grazing angle (GA) probe. TNT exhibits a series of characteristic bands: vibrational signatures, which allow its detection in soil. The spectroscopic signature of neat TNT is dominated by strong bands about 1380 and 2970 cm-1. The intensity and position of these bands were found remarkably different in soil samples spiked with TNT. The 1380 cm-1 band is split into a number of bands in that region. The 2970 cm-1 band is reduced in intensity and new bands are observed about 2880 cm-1. The results are consistent with a different chemical environment of TNT in soil as compared to neat TNT. Interactions were found to be dependent on the physical source of the explosive. In the case of DNT-sand interactions, shifts in vibrational frequencies of the explosives as well as the substrates were found.

  20. Spectroscopic chemical analysis methods and apparatus

    NASA Technical Reports Server (NTRS)

    Hug, William F. (Inventor); Reid, Ray D. (Inventor); Bhartia, Rohit (Inventor)

    2013-01-01

    Spectroscopic chemical analysis methods and apparatus are disclosed which employ deep ultraviolet (e.g. in the 200 nm to 300 nm spectral range) electron beam pumped wide bandgap semiconductor lasers, incoherent wide bandgap semiconductor light emitting devices, and hollow cathode metal ion lasers to perform non-contact, non-invasive detection of unknown chemical analytes. These deep ultraviolet sources enable dramatic size, weight and power consumption reductions of chemical analysis instruments. Chemical analysis instruments employed in some embodiments include capillary and gel plane electrophoresis, capillary electrochromatography, high performance liquid chromatography, flow cytometry, flow cells for liquids and aerosols, and surface detection instruments. In some embodiments, Raman spectroscopic detection methods and apparatus use ultra-narrow-band angle tuning filters, acousto-optic tuning filters, and temperature tuned filters to enable ultra-miniature analyzers for chemical identification. In some embodiments Raman analysis is conducted along with photoluminescence spectroscopy (i.e. fluorescence and/or phosphorescence spectroscopy) to provide high levels of sensitivity and specificity in the same instrument.

  1. Spectroscopic Modeling of Single Element Plasma

    SciTech Connect

    Ghomeishi, Mostafa; Yap, S. L.; Wong, C. S.; Saboohi, S.; Chan, L. S.

    2011-03-30

    A strategy for spectroscopic analysis of single element plasmas is through modeling. An experimental investigation or generation of a specified emission spectrum can be attempted based on the modeling results which are currently under investigating by many researchers in the world. In the emission spectroscopy, the K-shell emission is more interesting than emissions from other shells due to their unique EUV and SXR frequencies that can be applied in various scientific and industrial applications. Population information of our model is based on a steady state kinetic code which is calculated for a given electron temperature and an estimated electron density. Thus for each single element plasma it needs large amounts of experimental or theoretical database. Depending on the parameter of the plasma, theories based on local thermodynamic equilibrium (LTE) and non-LTE are considered. In the non-LTE case, the Corona model is used and the total absolute number densities are calculated based on the ion densities that are related to the electron density corresponds to the mean charge of the ions. The spectra generated by the model can then be compared with spectroscopic data obtained experimentally.

  2. Spectroscopic Ellipsometry Applications in Advanced Lithography Research

    NASA Astrophysics Data System (ADS)

    Synowicki, R. A.; Pribil, Greg K.; Hilfiker, James N.; Edwards, Kevin

    2005-09-01

    Spectroscopic ellipsometry (SE) is an optical metrology technique widely used in the semiconductor industry. For lithography applications SE is routinely used for measurement of film thickness and refractive index of polymer photoresist and antireflective coatings. While this remains a primary use of SE, applications are now expanding into other areas of advanced lithography research. New applications include immersion lithography, phase-shift photomasks, transparent pellicles, 193 and 157 nm lithography, stepper optical coatings, imprint lithography, and even real-time monitoring of etch development rate in liquid ambients. Of recent interest are studies of immersion fluids where knowledge of the fluid refractive index and absorption are critical to their use in immersion lithography. Phase-shift photomasks are also of interest as the thickness and index of the phase-shift and absorber layers must be critically controlled for accurate intensity and phase transmission. Thin transparent pellicles to protect these masks must be also characterized for thickness and refractive index. Infrared ellipsometry is sensitive to chemical composition, film thickness, and how film chemistry changes with processing. Real-time monitoring of polymer film thickness during etching in a liquid developer allows etch rate and endpoint determination with monolayer sensitivity. This work considers these emerging applications to survey the current status of spectroscopic ellipsometry as a characterization technique in advanced lithography applications.

  3. Spectroscopic enhancement in nanoparticles embedded glasses

    NASA Astrophysics Data System (ADS)

    Sahar, M. R.; Ghoshal, S. K.

    2014-09-01

    This presentation provides an overview of the recent progress in the enhancement of the spectroscopic characteristics of the glass embedded with nanoparticles (NPs). Some of our research activities with few significantly new results are highlighted and facilely analyzed. The science and technology dealing with the manipulation of the physical properties of rare earth doped inorganic glasses by embedding metallic NPs or nanoclusters produce the so-called 'nanoglass'. Meanwhile, the spectroscopic enhancement relates the intensity of the luminescence measured at certain transition. The enhancement which expectedly due to the 'plasmonics wave' (referring to the coherent coupling of photons to free electron oscillations called plasmon) occurs at the interface between a conductor and a dielectric. Plasmonics being an emerging concept in advanced optical material of nanophotonics has given this material the ability to exploit the optical response at nanoscale and opened up a new avenue in metal-based glass optics. There is a vast array of plasmonic NPs concepts yet to be explored, with applications spanning solar cells, (bio) sensing, communications, lasers, solid-state lighting, waveguides, imaging, optical data transfer, display and even bio-medicine. Localized surface plasmon resonance (LSPR) can enhance the optical response of nanoglass by orders of magnitude as observed. The luminescence enhancement and surface enhanced Raman scattering (SERS) are new paradigm of research. The enhancement of luminescence due to the influence of metallic NPs is the recurring theme of this paper.

  4. Synergies between spectroscopic and asteroseismic surveys

    NASA Astrophysics Data System (ADS)

    Fu, Jianning; De Cat, Peter; Ren, An-Bing; Yang, Xiao-Hu; Catanzaro, Giovanni; Corbally, Christopher J.; Frasca, Antonio; Gray, Richard O.; Cecylia Molenda-Zakowicz, Joanna; Shi, Jian-Rong; Ali, Luo; Zhang, Haotong

    2015-08-01

    The NASA Kepler satellite has provided unprecedented high duty-cycle, high-precision light curves for a large number of stars by continuously monitoring a field of view in Cygnus-Lyra region, leading to great progress in both discovering exoplanets and characterizing planet-hosting stars by means of asteroseismic methods. The asteroseismic survey allows the investigation of stars covering the whole H-R diagram. However, the low precision of effective temperatures and surface gravities in the KIC10 catalogue and the lack of information on chemical composition, metallicity and rotation rate prevent asteroseismic modeling, requiring spectroscopic observations for thousands of asteroseismic targets in the Kepler field in a homogeneous way.In 2010, we initiated the LAMOST-Kepler project which aimed at collecting low-resolution spectra for as many objects from the KIC10 catalogue as possible, with the Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST), a 4-m telescope equipped with 4,000 optical fibers. The first round of observations has been completed in fall 2014, covering all the 14 sub-fields at least once, resulting in more than 100,000 low-resolution spectra. The stellar atmospheric parameters are then derived and the results have been confirmed to be consistent with those reported in the literature based on high-resolution spectroscopy.

  5. Infrared Spectroscopic Imaging: The Next Generation

    PubMed Central

    Bhargava, Rohit

    2013-01-01

    Infrared (IR) spectroscopic imaging seemingly matured as a technology in the mid-2000s, with commercially successful instrumentation and reports in numerous applications. Recent developments, however, have transformed our understanding of the recorded data, provided capability for new instrumentation, and greatly enhanced the ability to extract more useful information in less time. These developments are summarized here in three broad areas— data recording, interpretation of recorded data, and information extraction—and their critical review is employed to project emerging trends. Overall, the convergence of selected components from hardware, theory, algorithms, and applications is one trend. Instead of similar, general-purpose instrumentation, another trend is likely to be diverse and application-targeted designs of instrumentation driven by emerging component technologies. The recent renaissance in both fundamental science and instrumentation will likely spur investigations at the confluence of conventional spectroscopic analyses and optical physics for improved data interpretation. While chemometrics has dominated data processing, a trend will likely lie in the development of signal processing algorithms to optimally extract spectral and spatial information prior to conventional chemometric analyses. Finally, the sum of these recent advances is likely to provide unprecedented capability in measurement and scientific insight, which will present new opportunities for the applied spectroscopist. PMID:23031693

  6. High-Definition Infrared Spectroscopic Imaging

    PubMed Central

    Reddy, Rohith K.; Walsh, Michael J.; Schulmerich, Matthew V.; Carney, P. Scott; Bhargava, Rohit

    2013-01-01

    The quality of images from an infrared (IR) microscope has traditionally been limited by considerations of throughput and signal-to-noise ratio (SNR). An understanding of the achievable quality as a function of instrument parameters, from first principals is needed for improved instrument design. Here, we first present a model for light propagation through an IR spectroscopic imaging system based on scalar wave theory. The model analytically describes the propagation of light along the entire beam path from the source to the detector. The effect of various optical elements and the sample in the microscope is understood in terms of the accessible spatial frequencies by using a Fourier optics approach and simulations are conducted to gain insights into spectroscopic image formation. The optimal pixel size at the sample plane is calculated and shown much smaller than that in current mid-IR microscopy systems. A commercial imaging system is modified, and experimental data are presented to demonstrate the validity of the developed model. Building on this validated theoretical foundation, an optimal sampling configuration is set up. Acquired data were of high spatial quality but, as expected, of poorer SNR. Signal processing approaches were implemented to improve the spectral SNR. The resulting data demonstrated the ability to perform high-definition IR imaging in the laboratory by using minimally-modified commercial instruments. PMID:23317676

  7. Optoacoustic spectroscopic imaging of radiolucent foreign bodies

    NASA Astrophysics Data System (ADS)

    Page, Leland; Maswadi, Saher; Glickman, Randolph D.

    2010-03-01

    One of the leading causes of medical malpractice claims in emergency medicine is the misdiagnosis of the presence of foreign bodies. Radiolucent foreign bodies are especially difficult to differentiate from surrounding soft tissue, gas, and bone. Current imaging modalities employed for the detection of foreign bodies include: X-ray computed tomography, magnetic resonance, and ultrasound; however, there is no consensus as to which modality is optimal for diagnosis. Because many radiolucent foreign bodies have sufficient contrast for imaging in the optical domain, we are exploring the use of laser-induced optoacoustic imaging for the detection of foreign bodies, especially in craniofacial injuries, in which the foreign bodies are likely to lie within the penetration depth of visible and near infrared wavelengths. Tissue-simulating phantoms containing various common foreign bodies have been constructed. Images of these phantoms have been successfully generated using two laser-based optoacoustic imaging methods with different detection modalities. In order to enhance the image contrast, common foreign bodies are being scanned over a wide range of wavelengths to obtain the spectroscopic properties of the materials commonly associated with these foreign bodies. This spectroscopic characterization will help select specific wavelengths to be used for imaging specific objects and provide useful diagnostic data about the material properties of the object.

  8. EPSILON AURIGAE: AN IMPROVED SPECTROSCOPIC ORBITAL SOLUTION

    SciTech Connect

    Stefanik, Robert P.; Torres, Guillermo; Lovegrove, Justin; Latham, David W.; Zajac, Joseph; Pera, Vivian E.; Mazeh, Tsevi

    2010-03-15

    A rare eclipse of the mysterious object {epsilon} Aurigae will occur in 2009-2011. We report an updated single-lined spectroscopic solution for the orbit of the primary star based on 20 years of monitoring at the CfA, combined with historical velocity observations dating back to 1897. There are 518 new CfA observations obtained between 1989 and 2009. Two solutions are presented. One uses the velocities outside the eclipse phases together with mid-times of previous eclipses, from photometry dating back to 1842, which provide the strongest constraint on the ephemeris. This yields a period of 9896.0 {+-} 1.6 days (27.0938 {+-} 0.0044 years) with a velocity semi-amplitude of 13.84 {+-} 0.23 km s{sup -1} and an eccentricity of 0.227 {+-} 0.011. The middle of the current ongoing eclipse predicted by this combined fit is JD 2,455,413.8 {+-} 4.8, corresponding to 2010 August 5. If we use only the radial velocities, we find that the predicted middle of the current eclipse is nine months earlier. This would imply that the gravitating companion is not the same as the eclipsing object. Alternatively, the purely spectroscopic solution may be biased by perturbations in the velocities due to the short-period oscillations of the supergiant.

  9. Spectroscopic enhancement in nanoparticles embedded glasses

    SciTech Connect

    Sahar, M. R. Ghoshal, S. K.

    2014-09-25

    This presentation provides an overview of the recent progress in the enhancement of the spectroscopic characteristics of the glass embedded with nanoparticles (NPs). Some of our research activities with few significantly new results are highlighted and facilely analyzed. The science and technology dealing with the manipulation of the physical properties of rare earth doped inorganic glasses by embedding metallic NPs or nanoclusters produce the so-called 'nanoglass'. Meanwhile, the spectroscopic enhancement relates the intensity of the luminescence measured at certain transition. The enhancement which expectedly due to the 'plasmonics wave' (referring to the coherent coupling of photons to free electron oscillations called plasmon) occurs at the interface between a conductor and a dielectric. Plasmonics being an emerging concept in advanced optical material of nanophotonics has given this material the ability to exploit the optical response at nanoscale and opened up a new avenue in metal-based glass optics. There is a vast array of plasmonic NPs concepts yet to be explored, with applications spanning solar cells, (bio) sensing, communications, lasers, solid-state lighting, waveguides, imaging, optical data transfer, display and even bio-medicine. Localized surface plasmon resonance (LSPR) can enhance the optical response of nanoglass by orders of magnitude as observed. The luminescence enhancement and surface enhanced Raman scattering (SERS) are new paradigm of research. The enhancement of luminescence due to the influence of metallic NPs is the recurring theme of this paper.

  10. Spectroscopic ellipsometry studies of HF treated Si (100) surfaces

    NASA Technical Reports Server (NTRS)

    Yao, Huade; Woollam, John A.; Alterovitz, Samuel A.

    1993-01-01

    Both ex situ and in situ spectroscopic ellipsometry (SE) measurements were employed to investigate the effects of HF cleaning on Si surfaces. The hydrogen-terminated (H-terminated) Si surface was modeled as an equivalent dielectric layer, and monitored in real time by SE measurements. The SE analyses indicate that after a 20-s 9:1 HF dip without rinse, the Si(100) surface was passivated by the hydrogen termination and remained chemically stable. Roughness of the HF-etched bare Si(100) surface was observed, in an ultrahigh vacuum (UHV) chamber, and analyzed by the in situ SE. Evidence for desorption of the H-terminated Si surface-layer, after being heated to approximately 550 C in the UHV chamber, is presented and discussed. This is the first use of an ex situ and in situ real-time, nondestructive technique capable of showing state of passivation, the rate of reoxidation, and the surface roughness of the H-terminated Si surfaces.

  11. Spectroscopic ellipsometry studies of HF treated Si (100) surfaces

    NASA Technical Reports Server (NTRS)

    Yao, Huade; Woollam, John A.; Alterovitz, Samuel A.

    1993-01-01

    Both ex situ and in situ spectroscopic ellipsometry (SE) measurements were employed to investigate the effect of HF cleaning on Si surfaces. The hydrogen-terminated (H-terminated) Si surface was modeled as an equivalent dielectric layer, and monitored in real time by SE measurements. The SE analyses indicate that, after a 20-sec 9:1 HF dip without rinse, the Si (100) surface was passivated by the hydrogen termination and remained chemically stable. Roughness of the HF-etched bare Si (100) surface was observed, in an ultrahigh vacuum chamber (UHV), and analyzed by the in situ SE. Evidence for desorption of the H-terminated Si surface layer, after being heated to about 550 C in the UHV chamber, is presented and discussed. This is the first use of an ex situ and in situ real-time, nondestructive technique capable of showing state of passivation, the rate of reoxidation, and the surface roughness of the H-terminated Si surfaces.

  12. Imaging spectroscopic ellipsometry of MoS2

    NASA Astrophysics Data System (ADS)

    Funke, S.; Miller, B.; Parzinger, E.; Thiesen, P.; Holleitner, A. W.; Wurstbauer, U.

    2016-09-01

    Micromechanically exfoliated mono- and multilayers of molybdenum disulfide (MoS2) are investigated by spectroscopic imaging ellipsometry. In combination with knife edge illumination, MoS2 flakes can be detected and classified on arbitrary flat and also transparent substrates with a lateral resolution down to 1–2 µm. The complex dielectric functions from mono- and trilayer MoS2 are presented. They are extracted from a multilayer model to fit the measured ellipsometric angles employing an anisotropic and an isotropic fit approach. We find that the energies of the critical points of the optical constants can be treated to be independent of the utilized model, whereas the magnitude of the optical constants varies with the used model. The anisotropic model suggests a maximum absorbance for a MoS2 sheet supported by sapphire of about 14% for monolayer and of 10% for trilayer MoS2. Furthermore, the lateral homogeneity of the complex dielectric function for monolayer MoS2 is investigated with a spatial resolution of 2 µm. Only minor fluctuations are observed. No evidence for strain, for a significant amount of disorder or lattice defects can be found in the wrinkle-free regions of the MoS2 monolayer from complementary µ-Raman spectroscopy measurements. We assume that the minor lateral variation in the optical constants are caused by lateral modification in the van der Waals interaction presumably caused by the preparation using micromechanical exfoliation and viscoelastic stamping.

  13. Spectroscopic observations and analysis of the peculiar SN1999aa

    SciTech Connect

    Garavini, G.; Folatelli, G.; Goobar, A.; Nobili, S.; Aldering,G.; Amadon, A.; Amanullah, R.; Astier, P.; Balland, C.; Blanc, G.; Burns,M.S.; Conley, A.; Dahlen, T.; Deustua, S.E.; Ellis, R.; Fabbro, S.; Fan,X.; Frye, B.; Gates, E.L.; Gibbons, R.; Goldhaber, G.; Goldman, B.; Groom, D.E.; Haissinski, J.; Hardin, D.; Hook, I.M.; Howell, D.A.; Kasen,D.; Kent, S.; Kim, A.G.; Knop, R.A.; Lee, B.C.; Lidman, C.; Mendez, J.; Miller, G.J.; Moniez, M.; Mourao, A.; Newberg, H.; Nugent, P.E.; Pain,R.; Perdereau, O.; Perlmutter, S.; Prasad, V.; Quimby, R.; Raux, J.; Regnault, N.; Rich, J.; Richards, G.T.; Ruiz-Lapuente, P.; Sainton, G.; Schaefer, B.E.; Schahmaneche, K.; Smith, E.; Spadafora, A.L.; Stanishev,V.; Walton, N.A.; Wang, L.; Wood-Vasey, W.M.

    2003-12-10

    We present an extensive new time series of spectroscopic data of the peculiar SN 1999aa in NGC 2595. Our data set includes 25 optical spectra between -11 and +58 days with respect to B-band maximum light, providing an unusually complete time history. The early spectra resemble those of an SN 1991T-like object but with a relatively strong CaH and K absorption feature. The first clear sign of Si II lambda 6355, characteristic of Type Ia supernovae, is found at day -7, and its velocity remains constant up to at least the first month after B-band maximum light. The transition to normal-looking spectra is found to occur earlier than in SN 1991T, suggesting SN 1999aa as a possible link between SN 1991T-like and Branch-normal supernovae. Comparing the observations with synthetic spectra, doubly ionized Fe, Si, and Ni are identified at early epochs. These are characteristic of SN 1991 T-like objects. Furthermore, in the day -11 spectrum, evidence is found for an absorption feature that could be identified as high velocity C II lambda 6580 or H alpha. At the same epoch C III lambda 4648.8 at photospheric velocity is probably responsible for the absorption feature at 4500 8. High-velocity Ca is found around maximum light together with Si II and Fe II confined in a narrow velocity window. Implied constraints on supernovae progenitor systems and explosion hydrodynamic models are briefly discussed.

  14. Rotational Spectroscopic and Theoretical Investigations on Benzene-Ethylene Complex

    NASA Astrophysics Data System (ADS)

    Aiswarya Lakshmi, P.; Arunan, E.

    2009-06-01

    Theoretical studies and condensed phase experimental studies point towards a π stacked structure for benzene dimer, for which experimental evidence has not been found yet. This structure has no dipole moment and hence microwave spectroscopy can not be used. Benzene and ethylene can dimerise to give π stacked complex which will have a net dipole moment. Rotational spectroscopic technique can be used to detect this π stacked structure, if present, in the gas phase. Depending upon the nature of interaction, in addition to the π stacked structure, other geometries are also possible where either benzene or ethylene can act as hydrogen bond donor. Theoretical investigations led to five different structures including the π stacked one. Pulsed Nozzle Fourier Transform Microwave Spectrometer has been used to study the rotational spectrum of the benzene-ethylene complex, with helium as the carrier gas. A total of 24 `a' dipole transitions were observed. Out of these 24 transitions, 20 lines were fitted to the structure with C_2H_4 as the hydrogen bond donor. In the observed transitions the K=0 lines show doubling. The line centres of the K=0 doublets were used along with K=1 transitions for the fitting. The fitted rotational constants are, A= 5.4(1) GHz, B= 1221.879(3) MHz, C=1206.794(4) MHz. Search and assignments for C_6H_6-C_2D_4 and C_6D_6-C_2H_4 complexes are in progress.

  15. Spectroscopic and photometric monitoring of southern post-AGB stars

    NASA Astrophysics Data System (ADS)

    Pooley, D. J.; Cottrell, P. L.; Pollard, K. R.; Albrow, M. D.

    2004-05-01

    We present the results of contemporaneous photometric and spectroscopic monitoring of 20 post-AGB stars from Mt John University Observatory. Photometric measures were carried our suing Johnson BV and Cousins RI filters, and the radial velocity measurements were acquired using spectra from an echelle spectrograph. Our program spanned five years and the stars covered a range of spectral types from B to K in order to investigate the behavior of post-AGB stars as they evolve away from the AGB. A number of stars proved to be variable inways incompatible with post-AGB models and are reclassified. Periodicities are presented for a number of stars. Photometrically, HD 70379 was found to be pulsating in two modes with periods of 85 and 97 d. The radial velocities also varied, with the peak amplitude occurring when the photometry was also changing most. AI CMi presented three different types of spectra associated with photometric brightness, with varying strengths of narrow emission lines and molecular bandheads. The Hα profiles in almost all of the stars show evidence of emission which varies on time scales of days to months. The Na D line profiles are generally complex showing between 4 and 7 components due to both circumstellar and interstellar material.

  16. Preliminary spectroscopic characterization of six toxins from Latin American scorpions.

    PubMed

    Possani, L; Steinmetz, W E; Dent, M A; Alagón, A C; Wüthrich, K

    1981-07-28

    This paper reports on spectroscopic studies of six toxins from the Latin American scorpions Centruroides noxius Hoffmann, Centruroides elegans Thorell and Tityus serrulatus Lutz and Mello. The isolation and purification of five of these toxins was described previously. The preparation of toxin II.9.2.2 from the venom of C. noxius is first described here. Circular dichroism and nuclear magnetic resonance spectra indicate similarities and differences between these scorpion toxins and previously characterized snake toxins. While there is evidence that the toxins from scorpions and snakes both contain extended beta-sheet secondary structures, the spectral properties of the scorpion toxins are overall of a different type from those of snake toxins. Among the six scorpion toxins those from T. serrulatus have spectral properties markedly different from those of the Centruroides species. Furthermore, thermal denaturation and amide proton exchange measurements showed that the globular structures of the Tityus toxins were markedly less stable and less rigid than those of the Centruroides toxins. PMID:7284435

  17. Spectroscopic Search for Water Ice on Jovian Trojan Asteroids

    NASA Astrophysics Data System (ADS)

    Yang, Bin; Jewitt, D.

    2006-09-01

    We are conducting a systematic study of the Jovian Trojans using the Subaru 8-m, UKIRT 4-m and IRTF 3-m telescopes atop Mauna Kea, Hawaii. Theoretical models show that the Jovian Trojans formed beyond the snow-line and they may contain considerable amounts of water ice. We seek spectroscopic evidence for this pristine ice. Object (4709) Ennomos has a geometric albedo of 0.13+/-0.02, which is significantly above the mean Trojan albedo of 0.041+/- 0.002 (Fernandez et al., 2003). An intriguing possibility is that the albedo of Ennomos is high because a recent impact has coated part of the surface with freshly excavated ice. We obtained near-IR (0.8-2.5 micron) spectra of (4709) Ennomos in search of the 1.5 and 2.0 micron bands of water ice. Four other Trojans, (911) Agamemnon, (617) Patroclus, (1143) Odysseus and (2797) Teucer, were also observed. These objects have been reported to show possible weak absorptions at 1.7 and 2.3 micron respectively (Emery and Brown, 2003). All five targets appear spectrally featureless, even in our highest signal-to-noise ratio data. We present the data and a simple model consisting of mixtures of water ice and a spectrally featureless material, to quantify the limits to surface ice.

  18. Spectroscopic diagnostics of organic chemistry in the protostellar environment

    NASA Technical Reports Server (NTRS)

    Charnley, S. B.; Ehrenfreund, P.; Kuan, Y. J.

    2001-01-01

    A combination of astronomical observations, laboratory studies, and theoretical modelling is necessary to determine the organic chemistry of dense molecular clouds. We present spectroscopic evidence for the composition and evolution of organic molecules in protostellar environments. The principal reaction pathways to complex molecule formation by catalysis on dust grains and by reactions in the interstellar gas are described. Protostellar cores, where warming of dust has induced evaporation of icy grain mantles, are excellent sites in which to study the interaction between gas phase and grain-surface chemistries. We investigate the link between organics that are observed as direct products of grain surface reactions and those which are formed by secondary gas phase reactions of evaporated surface products. Theory predicts observable correlations between specific interstellar molecules, and also which new organics are viable for detection. We discuss recent infrared observations obtained with the Infrared Space Observatory, laboratory studies of organic molecules, theories of molecule formation, and summarise recent radioastronomical searches for various complex molecules such as ethers, azaheterocyclic compounds, and amino acids.

  19. Imaging spectroscopic ellipsometry of MoS2.

    PubMed

    Funke, S; Miller, B; Parzinger, E; Thiesen, P; Holleitner, A W; Wurstbauer, U

    2016-09-28

    Micromechanically exfoliated mono- and multilayers of molybdenum disulfide (MoS2) are investigated by spectroscopic imaging ellipsometry. In combination with knife edge illumination, MoS2 flakes can be detected and classified on arbitrary flat and also transparent substrates with a lateral resolution down to 1-2 µm. The complex dielectric functions from mono- and trilayer MoS2 are presented. They are extracted from a multilayer model to fit the measured ellipsometric angles employing an anisotropic and an isotropic fit approach. We find that the energies of the critical points of the optical constants can be treated to be independent of the utilized model, whereas the magnitude of the optical constants varies with the used model. The anisotropic model suggests a maximum absorbance for a MoS2 sheet supported by sapphire of about 14% for monolayer and of 10% for trilayer MoS2. Furthermore, the lateral homogeneity of the complex dielectric function for monolayer MoS2 is investigated with a spatial resolution of 2 µm. Only minor fluctuations are observed. No evidence for strain, for a significant amount of disorder or lattice defects can be found in the wrinkle-free regions of the MoS2 monolayer from complementary µ-Raman spectroscopy measurements. We assume that the minor lateral variation in the optical constants are caused by lateral modification in the van der Waals interaction presumably caused by the preparation using micromechanical exfoliation and viscoelastic stamping. PMID:27460278

  20. Spectroscopic ellipsometry studies of HF treated Si (100) surfaces

    NASA Astrophysics Data System (ADS)

    Yao, Huade; Woollam, John A.; Alterovitz, Samuel A.

    1993-08-01

    Both ex situ and in situ spectroscopic ellipsometry (SE) measurements were employed to investigate the effects of HF cleaning on Si surfaces. The hydrogen-terminated (H-terminated) Si surface was modeled as an equivalent dielectric layer, and monitored in real time by SE measurements. The SE analyses indicate that after a 20-s 9:1 HF dip without rinse, the Si(100) surface was passivated by the hydrogen termination and remained chemically stable. Roughness of the HF-etched bare Si(100) surface was observed, in an ultrahigh vacuum (UHV) chamber, and analyzed by the in situ SE. Evidence for desorption of the H-terminated Si surface-layer, after being heated to approximately 550 C in the UHV chamber, is presented and discussed. This is the first use of an ex situ and in situ real-time, nondestructive technique capable of showing state of passivation, the rate of reoxidation, and the surface roughness of the H-terminated Si surfaces.

  1. Spectroscopic ellipsometry studies of HF treated Si (100) surfaces

    NASA Astrophysics Data System (ADS)

    Yao, Huade; Woollam, John A.; Alterovitz, Samuel A.

    1993-06-01

    Both ex situ and in situ spectroscopic ellipsometry (SE) measurements were employed to investigate the effect of HF cleaning on Si surfaces. The hydrogen-terminated (H-terminated) Si surface was modeled as an equivalent dielectric layer, and monitored in real time by SE measurements. The SE analyses indicate that, after a 20-sec 9:1 HF dip without rinse, the Si (100) surface was passivated by the hydrogen termination and remained chemically stable. Roughness of the HF-etched bare Si (100) surface was observed, in an ultrahigh vacuum chamber (UHV), and analyzed by the in situ SE. Evidence for desorption of the H-terminated Si surface layer, after being heated to about 550 C in the UHV chamber, is presented and discussed. This is the first use of an ex situ and in situ real-time, nondestructive technique capable of showing state of passivation, the rate of reoxidation, and the surface roughness of the H-terminated Si surfaces.

  2. Spectroscopic Infrared Extinction Mapping as a Probe of Grain Growth in IRDCs

    NASA Astrophysics Data System (ADS)

    Lim, Wanggi; Carey, Sean J.; Tan, Jonathan C.

    2015-11-01

    We present spectroscopic tests of MIR to FIR extinction laws in IRDC G028.36+00.07, a potential site of massive star and star cluster formation. Lim & Tan developed methods of FIR extinction mapping of this source using Spitzer-MIPS 24 μm and Herschel-PACS 70 μm images, and by comparing to MIR Spitzer-IRAC 3-8 μm extinction maps, found tentative evidence for grain growth in the highest mass surface density regions. Here we present results of spectroscopic infrared extinction mapping using Spitzer-IRS (14-38 μm) data of the same Infrared dark cloud (IRDC). These methods allow us to first measure the SED of the diffuse Galactic interstellar medium that is in the foreground of the IRDC. We then carry out our primary investigation of measuring the MIR to FIR opacity law and searching for potential variations as a function of mass surface density within the IRDC. We find relatively flat, featureless MIR-FIR opacity laws that lack the ˜12 and ˜35 μm features associated with the thick water ice mantle models of Ossenkopf & Henning. Their thin ice mantle models and the coagulating aggregate dust models of Ormel et al. are a generally better match to the observed opacity laws. We also find evidence for generally flatter MIR to FIR extinction laws as mass surface density increases, strengthening the evidence for grain and ice mantle growth in higher density regions.

  3. Spectroscopic infrared extinction mapping as a probe of grain growth in IRDCs

    NASA Astrophysics Data System (ADS)

    Lim, Wanggi; Carey, Sean J.

    2014-07-01

    We present photometric and spectroscopic tests of MIR to FIR extinction laws toward IRDC G028.36+00.07, a potential site of massive star formation. Lim & Tan (2014, hereafter LT14) developed methods of FIR extinction mapping of this source using Spitzer-MIPS 24 micron and Herschel-PACS 70 micron images, and extending the MIR 8 micron mapping methods of (Butler & Tan 2012, hereafter BT12), finding evidence for grain growth in the highest mass surface density regions. Here we present initial results of spectroscopic infrared extinction (SIREX) mapping using Spitzer-IRS (14 to 38 micron) data of the same IRDC. These methods allow us to measure the SED of the diffuse Galactic ISM, which we compare to theoretical models of Draine & Li (2007), as well as to search for opacity law variations with mass surface density within the IRDC. By comparison with theoretical dust models, e.g., Ossenkopf & Henning (1994) and Ormel et al. (2011), we are able to search for compositional signatures of the grain ices, such as water and methanol. We find evidence for generally flatter MIR to FIR extinction laws as mass surface density increases, strengthening the evidence for grain and ice mantle growth in higher density regions.

  4. THE FIRST SPECTROSCOPICALLY RESOLVED SUB-PARSEC ORBIT OF A SUPERMASSIVE BINARY BLACK HOLE

    SciTech Connect

    Bon, E.; Jovanovic, P.; Bon, N.; Popovic, L. C.; Marziani, P.; Shapovalova, A. I.; Borka Jovanovic, V.; Borka, D.; Sulentic, J.

    2012-11-10

    One of the most intriguing scenarios proposed to explain how active galactic nuclei are triggered involves the existence of a supermassive binary black hole (BH) system in their cores. Here, we present an observational evidence for the first spectroscopically resolved sub-parsec orbit of a such system in the core of Seyfert galaxy NGC 4151. Using a method similar to those typically used for spectroscopic binary stars, we obtained radial velocity curves of the supermassive binary system, from which we calculated orbital elements and made estimates about the masses of the components. Our analysis shows that periodic variations in the light and radial velocity curves can be accounted for by an eccentric, sub-parsec Keplerian orbit with a 15.9 year period. The flux maximum in the light curve corresponds to the approaching phase of the secondary component toward the observer. According to the obtained results, we speculate that the periodic variations in the observed H{alpha} line shape and flux are due to shock waves generated by the supersonic motion of the components through the surrounding medium. Given the large observational effort needed to reveal this spectroscopically resolved binary orbital motion, we suggest that many such systems may exist in similar objects even if they are hard to find. Detecting more of them will provide us with insight into the BH mass growth process.

  5. Obtaining the Electron Angular Momentum Coupling Spectroscopic Terms, jj

    ERIC Educational Resources Information Center

    Orofino, Hugo; Faria, Roberto B.

    2010-01-01

    A systematic procedure is developed to obtain the electron angular momentum coupling (jj) spectroscopic terms, which is based on building microstates in which each individual electron is placed in a different m[subscript j] "orbital". This approach is similar to that used to obtain the spectroscopic terms under the Russell-Saunders (LS) coupling…

  6. Fundamental spectroscopic studies of carbenes and hydrocarbon radicals

    SciTech Connect

    Gottlieb, C.A.; Thaddeus, P.

    1993-12-01

    Highly reactive carbenes and carbon-chain radicals are studied at millimeter wavelengths by observing their rotational spectra. The purpose is to provide definitive spectroscopic identification, accurate spectroscopic constants in the lowest vibrational states, and reliable structures of the key intermediates in reactions leading to aromatic hydrocarbons and soot particles in combustion.

  7. Review of spectroscopic parameters for upper atmospheric measurements

    NASA Technical Reports Server (NTRS)

    Smith, M. A. H. (Editor)

    1985-01-01

    The workshop included communication of spectroscopic data requirements for the planned upper atmosphere research satellite (UARS) mission, review of the status of currently available spectroscopic parameters, and recommendation of additional studies. The objectives were accomplished and resulted in a series of general and specific recommendations for laboratory spectroscopy research to meet the needs of UARS and other atmospheric remote sensing programs.

  8. A Spectroscopic-Based Laboratory Experiment for Protein Conformational Studies

    ERIC Educational Resources Information Center

    Ramos, Carlos Henrique I.

    2004-01-01

    This article describes a practical experiment for teaching basic spectroscopic techniques to introduce the topic of protein conformational change to students in the field of molecular biology, biochemistry, or structural biology. The spectroscopic methods employed in the experiment are absorbance, for protein concentration measurements, and…

  9. Spectroscopic Signature of Aging in (delta)-Pu(Ga)

    SciTech Connect

    Chung, B W; Schwartz, A J; Ebbinghaus, B B; Fluss, M J; Haslam, J J; Blobaum, K M; Tobin, J G

    2005-04-15

    Resonant Photoemission, a variant of Photoelectron Spectroscopy, has been demonstrated to have sensitivity to aging of Pu samples. The spectroscopic results are correlated with resistivity measurements and are shown to be the fingerprint of mesoscopic or nanoscale internal damage in the Pu physical structure. This means that a spectroscopic signature of internal damage due to aging in Pu has been established.

  10. Resolving Spectral Lines with a Periscope-Type DVD Spectroscope

    ERIC Educational Resources Information Center

    Wakabayashi, Fumitaka

    2008-01-01

    A new type of DVD spectroscope, the periscope type, is described and the numerical analysis of the observed emission and absorption spectra is demonstrated. A small and thin mirror is put inside and an eighth part of a DVD is used as a grating. Using this improved DVD spectroscope, one can observe and photograph visible spectra more easily and…

  11. Spectroscopic observations of the counterpart of IGR J00291+5934

    NASA Astrophysics Data System (ADS)

    Roelofs, G.; Jonker, P. G.; Steeghs, D.; Torres, M.; Nelemans, G.

    2004-12-01

    Spectroscopic observations of the optical counterpart of the millisecond X-ray pulsar IGR J00291+5934 (Atel #352, 353) reported in an Atel by Fox & Kulkarni were obtained (Dec 5 00:29-01:15 UT) with the ISIS spectrograph mounted on the 4.2m William Herschel Telescope on La Palma. Weather conditions were not optimal with a seeing of ~2" and thin clouds. The spectra show weak evidence for broad emission line features near the HeII line at 4686 Angstrom and near the Halpha line at 6563 Angstrom.

  12. Spectroscopic study of sub-barrier quasi-elastic nuclear reactions

    SciTech Connect

    Pass, C.N.; Evans, P.M.; Smith, A.E.; Stuttge, L.; Betts, R.R.; Lilley, J.S.; Connell, K.A.; Simpson, J.; Smith, J.R.; James, A.N.

    1988-01-01

    The technique developed in this paper is particularly well suited to the detailed spectroscopic study of low energy quasi-elastic nuclear reactions and by overcoming the limitations of conventional procedure, the prospect of detailed studies of inclusive reaction mechanism may be realised. With only limited statistics we find evidence for strong multistep character in the transfer of a single nucleon from spherical vibrational target to spherical projectile nuclei. The suggestive measurements reported here may be made definitive through extended runs based on this technique and experiments planned for the future offer the real prospect of developing a quantified interpretation of the reaction process. 9 refs. 5 figs.

  13. Spectroscopic study of solar twins and analogues

    NASA Astrophysics Data System (ADS)

    Datson, Juliet; Flynn, Chris; Portinari, Laura

    2015-02-01

    Context. Many large stellar surveys have been and are still being carried out, providing huge amounts of data, for which stellar physical parameters will be derived. Solar twins and analogues provide a means to test the calibration of these stellar catalogues because the Sun is the best-studied star and provides precise fundamental parameters. Solar twins should be centred on the solar values. Aims: This spectroscopic study of solar analogues selected from the Geneva-Copenhagen Survey (GCS) at a resolution of 48 000 provides effective temperatures and metallicities for these stars. We test whether our spectroscopic parameters, as well as the previous photometric calibrations, are properly centred on the Sun. In addition, we search for more solar twins in our sample. Methods: The methods used in this work are based on literature methods for solar twin searches and on methods we developed in previous work to distinguish the metallicity-temperature degeneracies in the differential comparison of spectra of solar analogues versus a reference solar reflection spectrum. Results: We derive spectroscopic parameters for 148 solar analogues (about 70 are new entries to the literature) and verify with a-posteriori differential tests that our values are well-centred on the solar values. We use our dataset to assess the two alternative calibrations of the GCS parameters; our methods favour the latest revision. We show that the choice of spectral line list or the choice of asteroid or time of observation does not affect the results. We also identify seven solar twins in our sample, three of which are published here for the first time. Conclusions: Our methods provide an independent means to differentially test the calibration of stellar catalogues around the values of a well-known benchmark star, which makes our work interesting for calibration tests of upcoming Galactic surveys. Based on observations made with ESO Telescopes at the La Silla Observatory under programme ID 077.D

  14. Melt Structure and Properties: a Spectroscopic Perspective

    NASA Astrophysics Data System (ADS)

    Stebbins, J.

    2006-12-01

    Entropy, volume, and their P/T derivatives are at the heart of models of the thermodynamics of silicate melts and magmas. Quantitative characterization of glass structure is leading to important new insights into the links from "Microscopic to Macroscopic" that can at least guide interpretations of data and in some cases even have predictive power. A few recent examples will be discussed here. The often-large configurational components to heat capacities, thermal expansivities, and compressibilities of melts strongly indicate that structural changes with temperature and pressure are of key importance. At least some aspects of thermal increases in configurational (as opposed to vibrational) disorder are amenable to spectroscopic detection, either with in situ methods or on glasses with varying quench rates and thus varying fictive temperatures. In some systems, such changes are now clear, and can be shown to make significant contributions to properties. These include network cation coordination in systems such as borate liquids (BO4 to BO3 at higher T), and Al-Si disordering in aluminosilicates. In general, however, progress in this rich problem has only begun. It has long been suspected from thermodynamic analyses (and theoretical simulations) that configurational changes in melts play a key role in volume compression at high pressure, over and above that which can be expressed in "normal" equations of state or from those expected from bond compression and bending. Scattering and spectroscopic studies have revealed some of the important aspects of pressure-induced structural changes, but again we are just at the beginning of full understanding. For example, binary silicate glasses quenched from high-P melts clearly record some systematic increases in Si coordination, while aluminosilicates record systematic pressure and compositional (modifier cation field strength) effects on Al coordination in recovered samples with large, quenched-in density increases

  15. Thirty New Low-mass Spectroscopic Binaries

    NASA Astrophysics Data System (ADS)

    Shkolnik, Evgenya L.; Hebb, Leslie; Liu, Michael C.; Reid, I. Neill; Collier Cameron, Andrew

    2010-06-01

    As part of our search for young M dwarfs within 25 pc, we acquired high-resolution spectra of 185 low-mass stars compiled by the NStars project that have strong X-ray emission. By cross-correlating these spectra with radial velocity standard stars, we are sensitive to finding multi-lined spectroscopic binaries. We find a low-mass spectroscopic binary fraction of 16% consisting of 27 SB2s, 2 SB3s, and 1 SB4, increasing the number of known low-mass spectroscopic binaries (SBs) by 50% and proving that strong X-ray emission is an extremely efficient way to find M-dwarf SBs. WASP photometry of 23 of these systems revealed two low-mass eclipsing binaries (EBs), bringing the count of known M-dwarf EBs to 15. BD-22 5866, the ESB4, was fully described in 2008 by Shkolnik et al. and CCDM J04404+3127 B consists of two mid-M stars orbiting each other every 2.048 days. WASP also provided rotation periods for 12 systems, and in the cases where the synchronization time scales are short, we used P rot to determine the true orbital parameters. For those with no P rot, we used differential radial velocities to set upper limits on orbital periods and semimajor axes. More than half of our sample has near-equal-mass components (q > 0.8). This is expected since our sample is biased toward tight orbits where saturated X-ray emission is due to tidal spin-up rather than stellar youth. Increasing the samples of M-dwarf SBs and EBs is extremely valuable in setting constraints on current theories of stellar multiplicity and evolution scenarios for low-mass multiple systems. Based on observations collected at the W. M. Keck Observatory, the Canada-France-Hawaii Telescope and by the WASP Consortium. The Keck Observatory is operated as a scientific partnership between the California Institute of Technology, the University of California, and NASA, and was made possible by the generous financial support of the W. M. Keck Foundation. The CFHT is operated by the National Research Council of Canada

  16. THE SPECTROSCOPIC DIVERSITY OF TYPE Ia SUPERNOVAE

    SciTech Connect

    Blondin, S.; Kirshner, R. P.; Mandel, K. S.; Challis, P.; Berlind, P.; Calkins, M.; Garnavich, P. M.; Jha, S. W.; Modjaz, M.; Riess, A. G.; Schmidt, B. P.

    2012-05-15

    We present 2603 spectra of 462 nearby Type Ia supernovae (SNe Ia), including 2065 previously unpublished spectra, obtained during 1993-2008 through the Center for Astrophysics Supernova Program. There are on average eight spectra for each of the 313 SNe Ia with at least two spectra. Most of the spectra were obtained with the FAST spectrograph at the Fred Lawrence Whipple Observatory 1.5 m telescope and reduced in a consistent manner, making this data set well suited for studies of SN Ia spectroscopic diversity. Using additional data from the literature, we study the spectroscopic and photometric properties of SNe Ia as a function of spectroscopic class using the classification schemes of Branch et al. and Wang et al. The width-luminosity relation appears to be steeper for SNe Ia with broader lines, although the result is not statistically significant with the present sample. Based on the evolution of the characteristic Si II {lambda}6355 line, we propose improved methods for measuring velocity gradients, revealing a larger range than previously suspected, from {approx}0 to {approx}400 km s{sup -1} day{sup -1} considering the instantaneous velocity decline rate at maximum light. We find a weaker and less significant correlation between Si II velocity and intrinsic B - V color at maximum light than reported by Foley et al., owing to a more comprehensive treatment of uncertainties and host galaxy dust. We study the extent of nuclear burning and the presence of unburnt carbon in the outermost layers of the ejecta and report new detections of C II {lambda}6580 in 23 early-time SN Ia spectra. The frequency of C II detections is not higher in SNe Ia with bluer colors or narrower light curves, in conflict with the recent results of Thomas et al. Based on nebular spectra of 27 SNe Ia, we find no relation between the FWHM of the iron emission feature at {approx}4700 A and {Delta}m{sub 15}(B) after removing the two low-luminosity SN 1986G and SN 1991bg, suggesting that the

  17. Super-resolution spectroscopic microscopy via photon localization.

    PubMed

    Dong, Biqin; Almassalha, Luay; Urban, Ben E; Nguyen, The-Quyen; Khuon, Satya; Chew, Teng-Leong; Backman, Vadim; Sun, Cheng; Zhang, Hao F

    2016-01-01

    Traditional photon localization microscopy analyses only the spatial distributions of photons emitted by individual molecules to reconstruct super-resolution optical images. Unfortunately, however, the highly valuable spectroscopic information from these photons have been overlooked. Here we report a spectroscopic photon localization microscopy that is capable of capturing the inherent spectroscopic signatures of photons from individual stochastic radiation events. Spectroscopic photon localization microscopy achieved higher spatial resolution than traditional photon localization microscopy through spectral discrimination to identify the photons emitted from individual molecules. As a result, we resolved two fluorescent molecules, which were 15 nm apart, with the corresponding spatial resolution of 10 nm-a four-fold improvement over photon localization microscopy. Using spectroscopic photon localization microscopy, we further demonstrated simultaneous multi-colour super-resolution imaging of microtubules and mitochondria in COS-7 cells and showed that background autofluorescence can be identified through its distinct emission spectra. PMID:27452975

  18. Super-resolution spectroscopic microscopy via photon localization

    NASA Astrophysics Data System (ADS)

    Dong, Biqin; Almassalha, Luay; Urban, Ben E.; Nguyen, The-Quyen; Khuon, Satya; Chew, Teng-Leong; Backman, Vadim; Sun, Cheng; Zhang, Hao F.

    2016-07-01

    Traditional photon localization microscopy analyses only the spatial distributions of photons emitted by individual molecules to reconstruct super-resolution optical images. Unfortunately, however, the highly valuable spectroscopic information from these photons have been overlooked. Here we report a spectroscopic photon localization microscopy that is capable of capturing the inherent spectroscopic signatures of photons from individual stochastic radiation events. Spectroscopic photon localization microscopy achieved higher spatial resolution than traditional photon localization microscopy through spectral discrimination to identify the photons emitted from individual molecules. As a result, we resolved two fluorescent molecules, which were 15 nm apart, with the corresponding spatial resolution of 10 nm--a four-fold improvement over photon localization microscopy. Using spectroscopic photon localization microscopy, we further demonstrated simultaneous multi-colour super-resolution imaging of microtubules and mitochondria in COS-7 cells and showed that background autofluorescence can be identified through its distinct emission spectra.

  19. Super-resolution spectroscopic microscopy via photon localization

    PubMed Central

    Dong, Biqin; Almassalha, Luay; Urban, Ben E.; Nguyen, The-Quyen; Khuon, Satya; Chew, Teng-Leong; Backman, Vadim; Sun, Cheng; Zhang, Hao F.

    2016-01-01

    Traditional photon localization microscopy analyses only the spatial distributions of photons emitted by individual molecules to reconstruct super-resolution optical images. Unfortunately, however, the highly valuable spectroscopic information from these photons have been overlooked. Here we report a spectroscopic photon localization microscopy that is capable of capturing the inherent spectroscopic signatures of photons from individual stochastic radiation events. Spectroscopic photon localization microscopy achieved higher spatial resolution than traditional photon localization microscopy through spectral discrimination to identify the photons emitted from individual molecules. As a result, we resolved two fluorescent molecules, which were 15 nm apart, with the corresponding spatial resolution of 10 nm—a four-fold improvement over photon localization microscopy. Using spectroscopic photon localization microscopy, we further demonstrated simultaneous multi-colour super-resolution imaging of microtubules and mitochondria in COS-7 cells and showed that background autofluorescence can be identified through its distinct emission spectra. PMID:27452975

  20. The CHARA Catalog of Orbital Elements of Spectroscopic Binary Stars

    NASA Astrophysics Data System (ADS)

    Taylor, Stuart F.; Harvin, James A.; McAlister, Harold A.

    2003-05-01

    Optical interferometry is entering a new age, with several ground-based long-baseline observatories now making observations of unprecedented resolution. Interferometers bring a new level of resolution to bear on spectroscopic binaries, enabling the full extraction of the physical parameters for the component stars with high accuracy. In the case of double-lined systems, a geometrically determined orbital parallax becomes available as well. The first step in preparing to observe spectroscopic binaries is to list them, which has not been done since the 1989 publication of the Eighth Catalogue of the Orbital Elements of Spectroscopic Binaries by Batten et al. We present a new catalog with roughly half again as many listings as the Eighth Catalogue. Angular separation predictions are made for each catalog entry. The numbers of spectroscopic binaries available for study as a function of several important observational parameters are explored, and in particular, the number of spectroscopic binaries as a function of expected separation is discussed.

  1. Interpreting Evidence.

    ERIC Educational Resources Information Center

    Munsart, Craig A.

    1993-01-01

    Presents an activity that allows students to experience the type of discovery process that paleontologists necessarily followed during the early dinosaur explorations. Students are read parts of a story taken from the "American Journal of Science" and interpret the evidence leading to the discovery of Triceratops and Stegosaurus. (PR)

  2. Infrared Imaging, Spectroscopic, and Photometric Studies of Comets

    NASA Technical Reports Server (NTRS)

    Gehrz, Robert D.

    1997-01-01

    We have continued our program of infrared (IR) photometric, imaging, spectroscopic, and polarimetric temporal observations of comets to study the properties of comet dust and comet nuclei. During the first two years we digitized our IR data base on P/Halley and other recent comets to facilitate further analysis and comparison with other data bases, and found compelling evidence for the emission of a burst of small grains from P/Halley's nucleus at perihelion. We reported imaging and photometric observations of Comets Austin 1990 V and Swift-Tuttle 1992. The Swift-Tuttle 1992t observations included IR photometry, several 7-14 micron long-slit spectra of the coma and a time-sequence of more than 150 10 micron broadband images of the coma. An analysis of near-IR images of the inner coma of P/Halley obtained on three consecutive nights in 1986 March showed sunwardjets. We completed our analysis of IR imaging spectrosco-photometric data on comets. We also obtained observations of Comets Hyakutake 1996 B2 and Hale/Bopp 1995 01. We obtained infrared imaging, photometric, spectroscopic and polarimetric temporal observations of bright comets using a network of five telescopes, with emphasis on simultaneous observations of comets at many wavelengths with different instruments. Our program offers several unique advantages: 1) rapid observational response to new comets with dedicated infrared telescopes; 2) observations within a few degrees of the sun when comets are near perihelion and 3) access to advanced infrared array imagers and spectrometers. In particular, reduction, analysis, publication and archiving of our Jupiter/sl-9 and Comet Hyakutake infrared data received special emphasis. Instrumentation development included installation of the latest version of the innovative FORTH telescope control and a data acquisition system that enables us to control three telescopes remotely by telephone from anywhere in the world for comet observations in broad daylight. We have

  3. Structural and spectroscopic changes to natural nontronite induced by experimental impacts between 10 and 40 GPa

    NASA Astrophysics Data System (ADS)

    Friedlander, Lonia R.; Glotch, Timothy D.; Bish, David L.; Dyar, M. Darby; Sharp, Thomas G.; Sklute, Elizabeth C.; Michalski, Joseph R.

    2015-05-01

    Many phyllosilicate deposits remotely detected on Mars occur within bombarded terrains. Shock metamorphism from meteor impacts alters mineral structures, producing changed mineral spectra. Thus, impacts have likely affected the spectra of remotely sensed Martian phyllosilicates. We present spectral analysis results for a natural nontronite sample before and after laboratory-generated impacts over five peak pressures between 10 and 40 GPa. We conducted a suite of spectroscopic analyses to characterize the sample's impact-induced structural and spectral changes. Nontronite becomes increasingly disordered with increasing peak impact pressure. Every infrared spectroscopic technique used showed evidence of structural changes at shock pressures above ~25 GPa. Reflectance spectroscopy in the visible near-infrared region is primarily sensitive to the vibrations of metal-OH and interlayer H2O groups in the nontronite octahedral sheet. Midinfrared (MIR) spectroscopic techniques are sensitive to the vibrations of silicon and oxygen in the nontronite tetrahedral sheet. Because the tetrahedral and octahedral sheets of nontronite deform differently, impact-driven structural deformation may contribute to differences in phyllosilicate detection between remote sensing techniques sensitive to different parts of the nontronite structure. Observed spectroscopic changes also indicated that the sample's octahedral and tetrahedral sheets were structurally deformed but not completely dehydroxylated. This finding is an important distinction from previous studies of thermally altered phyllosilicates in which dehydroxylation follows dehydration in a stepwise progression preceding structural deformation. Impact alteration may thus complicate mineral-specific identifications based on the location of OH-group bands in remotely detected spectra. This is a key implication for Martian remote sensing arising from our results.

  4. Spectroscopic behavior of bioconjugated quantum dots

    NASA Astrophysics Data System (ADS)

    Chornokur, G.; Ostapenko, S.; Emirov, Yu; Korsunska, N. E.; Sellers, T.; Phelan, C.

    2008-07-01

    We report on a short-wavelength, 'blue' spectral shift of the photoluminescence (PL) spectrum in CdSeTe/ZnS core/shell quantum dots (QDs) caused by bioconjugation with several monoclonal cancer-related antibodies (ABs). Scanning PL spectroscopy was performed on samples dried on solid substrates at various temperatures. The influence of the AB chemical origin on the PL spectral shift was observed. The QD-AB conjugation reaction was confirmed using the agarose gel electrophoresis technique. The spectral shift was strongly increased and the process facilitated when the samples were dried above room temperature. The PL spectroscopic mapping revealed a profile of the PL spectral shift across the dried QD-AB spot. A mechanism of the blue shift is attributed to changes in the QD electronic energy levels caused by a local stress applied to the bioconjugated QD.

  5. Spectroscopic characterization of genetically modified flax fibers

    NASA Astrophysics Data System (ADS)

    Dymińska, L.; Gągor, A.; Hanuza, J.; Kulma, A.; Preisner, M.; Żuk, M.; Szatkowski, M.; Szopa, J.

    2014-09-01

    The principal goal of this paper is an analysis of flax fiber composition. Natural and genetically modified flax fibers derived from transgenic flax have been analyzed. Development of genetic engineering enables to improve the quality of fibers. Three transgenic plant lines with different modifications were generated based on fibrous flax plants as the origin. These are plants with: silenced cinnamyl alcohol dehydrogenase (CAD) gene; overexpression of polygalacturonase (PGI); and expression of three genes construct containing β-ketothiolase (phb A), acetoacetyl-CoA reductase (phb B), and poly-3-hydroxybutyric acid synthase (phb C). Flax fibers have been studied by FT-IR spectroscopy. The integral intensities of the IR bands have been used for estimation of the chemical content of the normal and transgenic flaxes. The spectroscopic data were compared to those obtained from chemical analysis of flax fibers. X-ray studies have been used to characterize the changes of the crystalline structure of the flax cellulose fibers.

  6. Search for planets by spectroscopic methods

    NASA Technical Reports Server (NTRS)

    Serkowski, K.

    1980-01-01

    Spectroscopic means of detecting the motion of a star around a star-planet barycenter are considered. The precision of such an observation, which requires a radial velocity error of not more than 5 m/sec, is discussed in relation to the spectral resolutions of the detectors utilized. The University of Arizona radial velocity spectrometer is then presented, with particular attention given to the location of the absorption cell in a beam of light from an incandescent bulb, high-accuracy wavelength calibration involving the use of a Fabry-Perot interferometer in front of an echelle spectrograph, and future plans for the use of light reflected from a Fabry-Perot etalon to improve transmittance. On the basis of these techniques, it is expected that radial velocities with accuracies sufficient for the detection of extrasolar planets will be obtained.

  7. Terahertz broadband spectroscopic investigations of amino acid

    NASA Astrophysics Data System (ADS)

    Zhu, De-chong; Zhang, Liang-liang; Zhong, Hua; Zhang, Cun-lin

    2011-08-01

    We present an experimental terahertz (THz) spectroscopic investigation of amino acid using an air-breakdown-coherent detection (ABCD) system. The strong and ultra-broadband (0.1 to 10THz) terahertz radiations generated by two-color laser induced air plasma and measured by coherent heterodyne detection. The broadband THz reflection spectra of L-Lysine (C6H14N2O2) and L-Arginine (C6H14N2O2) are obtained. To solve the phase-retrieval problem in RTDS, the absorption signatures of the materials are extracted directly from the first derivative of the relative reflectance with respect to frequency. The absorption features of the two amino acids are characterized in the 0.5~6 THz region. It is found that both the two amino acids have an absorption peak at 1.10 THz.

  8. Selective spectroscopic methods for water analysis

    SciTech Connect

    Vaidya, B.

    1997-06-24

    This dissertation explores in large part the development of a few types of spectroscopic methods in the analysis of water. Methods for the determination of some of the most important properties of water like pH, metal ion content, and chemical oxygen demand are investigated in detail. This report contains a general introduction to the subject and the conclusions. Four chapters and an appendix have been processed separately. They are: chromogenic and fluorogenic crown ether compounds for the selective extraction and determination of Hg(II); selective determination of cadmium in water using a chromogenic crown ether in a mixed micellar solution; reduction of chloride interference in chemical oxygen demand determination without using mercury salts; structural orientation patterns for a series of anthraquinone sulfonates adsorbed at an aminophenol thiolate monolayer chemisorbed at gold; and the role of chemically modified surfaces in the construction of miniaturized analytical instrumentation.

  9. Spectroscopic Needs for Imaging Dark Energy Experiments

    DOE PAGESBeta

    Newman, Jeffrey A.; Slosar, Anze; Abate, Alexandra; Abdalla, Filipe B.; Allam, Sahar; Allen, Steven W.; Ansari, Reza; Bailey, Stephen; Barkhouse, Wayne A.; Beers, Timothy C.; et al

    2015-03-15

    Ongoing and near-future imaging-based dark energy experiments are critically dependent upon photometric redshifts (a.k.a. photo-z’s): i.e., estimates of the redshifts of objects based only on flux information obtained through broad filters. Higher-quality, lower-scatter photo-z’s will result in smaller random errors on cosmological parameters; while systematic errors in photometric redshift estimates, if not constrained, may dominate all other uncertainties from these experiments. The desired optimization and calibration is dependent upon spectroscopic measurements for secure redshift information; this is the key application of galaxy spectroscopy for imaging-based dark energy experiments. Hence, to achieve their full potential, imaging-based experiments will require large setsmore » of objects with spectroscopically-determined redshifts, for two purposes: Training: Objects with known redshift are needed to map out the relationship between object color and z (or, equivalently, to determine empirically-calibrated templates describing the rest-frame spectra of the full range of galaxies, which may be used to predict the color-z relation). The ultimate goal of training is to minimize each moment of the distribution of differences between photometric redshift estimates and the true redshifts of objects, making the relationship between them as tight as possible. The larger and more complete our “training set” of spectroscopic redshifts is, the smaller the RMS photo-z errors should be, increasing the constraining power of imaging experiments; Requirements: Spectroscopic redshift measurements for ~30,000 objects over >~15 widely-separated regions, each at least ~20 arcmin in diameter, and reaching the faintest objects used in a given experiment, will likely be necessary if photometric redshifts are to be trained and calibrated with conventional techniques. Larger, more complete samples (i.e., with longer exposure times) can improve photo-z algorithms and reduce

  10. Spectroscopic Active Galaxies and Clusters Explorer

    NASA Astrophysics Data System (ADS)

    Ferrari, L.; Bagliani, D.; Bardi, A.; Battistelli, E.; Birkinshaw, M.; Colafrancesco, S.; Conte, A.; Debernardis, P.; Degregori, S.; Depetris, M.; de Zotti, G.; Donati, A.; Franceschini, A.; Gatti, F.; Gervasi, M.; Gonzalez-Nuevo, J.; Lamagna, L.; Luzzi, G.; Maiolino, M.; Marchegiani, P.; Mariani, A.; Masi, S.; Massardi, M.; Mauskopf, P.; Nati, L.; Nati, F.; Natoli, P.; Piacentini, F.; Polenta, G.; Porciani, M.; Savini, G.; Schillaci, A.; Spinelli, S.; Tartari, A.; Tavanti, M.; Tortora, A.; Vaccari, M.; Vaccarone, R.; Zannoni, M.

    2009-12-01

    We present a concept for the payload SAGACE, the Spectroscopic Active Galaxies And Cluster Explorer, devoted to study the evolution of Universe structures using different observables, all of them in the mm/submm wavelength. The SAGACE payload is made of a passively cooled 3 m telescope, a cryogenic Fourier Transform Spectrometer (FTS) and detector arrays to be operated at 0.3 K by a 3He fridge. The detectors are Ti/Au Transition Edge Sensor (TES) bolometers with a NEP<10-17 W/Hz12. A phase-A study has been recently completed for this experiment, in the framework of the call for small missions of the Italian Space Agency.