Science.gov

Sample records for alpha1 proteinase inhibitor

  1. Ozone inactivation of human alpha 1-proteinase inhibitor

    SciTech Connect

    Johnson, D.A.

    1980-06-01

    Ozone decreased the trypsin, chymotrypsin, and elastase inhibitory activities of human alpha 1-proteinase inhibitor both in plasma and in solutions of the pure inhibitor. The total loss of porcine elastase inhibitory activity required 18 mol of ozone/mol of pure alpha 1-PI and approximately 850 mol of ozone/mol of alpha 1-PI in plasma. A corresponding loss of the ability to inhibit human leukocyte elastase was observed. Inactivated alpha 1-PI contains four residues of methionine sulfoxide, in addition to oxidized tryosine and tryptophan. Electrophoretic analysis demonstrated that the ozone-inactivated alpha 1-PI did not form normal complexes with serine proteinases. These findings suggest that the inhalation of ozone could inactivate alpha 1-PI on the airspace side of the lung to create a localized alpha 1-PI deficiency, which might contribute to the development of emphysema.

  2. [Effect of adrenal stress on activity of proteinase and alpha-1-proteinase inhibitor in rats].

    PubMed

    Samokhina, L M; Kaliman, P A

    1994-01-01

    The effect of adrenal stress on the proteinase and alpha-1-proteinase inhibitor activities in blood serum and cytosols of the rat organs were investigated. The reliable change was marked only in the alpha-1-PI level research of lung tissue cytosol. The proteolysis suppression was revealed in the heart and kidney tissue, while the proteolysis activation was revealed in serum and less in the lung tissue cytosol. Changes in proteinase level in the myocardium and kidney tissue play the primary role in respect to those of the other research liquids under study. PMID:7747353

  3. Secretory leukoprotease inhibitor: partnering alpha 1-proteinase inhibitor to combat pulmonary inflammation.

    PubMed Central

    Bingle, L.; Tetley, T. D.

    1996-01-01

    Secretory leukoprotease inhibitor (SLPI) is a low molecular weight serine proteinase inhibitor, notably of neutrophil elastase (NE), which is synthesised and secreted by the pulmonary epithelium. SLPI plays an important role in limiting NE-induced pulmonary inflammation and, significantly, it also possesses anti-HIV activity. SLPI is a significant component of the anti-NE shield in the lung which has different reactivity from, and is therefore complementary to, the anti-NE action of alpha 1-proteinase inhibitor (alpha 1-PI). Inhaled recombinant SLPI (rSLPI) could prove beneficial in partnership with alpha 1-PI in the treatment of a number of inflammatory lung disorders including emphysema, chronic bronchitis, cystic fibrosis, and adult respiratory distress syndrome. PMID:8994529

  4. Resistance of horse alpha 1-proteinase inhibitor to perchloric acid denaturation and a simplified purification procedure resulting therefrom.

    PubMed

    Pellegrini, A; Hägeli, G; von Fellenberg, R

    1986-11-21

    Addition of perchloric acid (6.4% w/v final concentration) to horse alpha 1-proteinase inhibitor or to horse plasma neither precipitated nor inactivated alpha 1-proteinase inhibitor. None of the isoinhibitors of alpha 1-proteinase inhibitor was altered by dilute perchloric acid. This unexpected behavior led to a simplified procedure for the purification of horse alpha 1-proteinase inhibitor, consisting of removal of the bulk of plasma proteins, by perchloric acid precipitation and by gel filtration on Sephadex G-75 and G-200. The resulting preparations of alpha 1-proteinase inhibitor were immunogenically pure. The simplified purification procedure permitted the immunochemical comparison of the isoinhibitors of alpha 1-proteinase inhibitor, which proved to be immunologically identical. PMID:3022814

  5. OZONE EFFECTS ON ALPHA-1-PROTEINASE INHIBITOR IN VIVO: BLOOD PLASMA INHIBITORY ACTIVITY IS UNCHANGED

    EPA Science Inventory

    The possible oxidative inactivation of human blood plasma alpha-1-proteinase inhibitor (PI) by inhaled ozone was assessed. Eleven male volunteers (non-smokers) were exposed to 0.5 ppm ozone for four hours on two consecutive days and ten control subjects were exposed to air under ...

  6. INHALED ALPHA1-PROTEINASE INHIBITOR THERAPY IN PATIENTS WITH CYSTIC FIBROSIS

    PubMed Central

    Gaggar, Amit; Chen, Junliang; Chmiel, James F; Dorkin, Henry L; Flume, Patrick A; Griffin, Rhonda; Nichols, David; Donaldson, Scott H

    2016-01-01

    Background Inhaled alpha1-proteinase inhibitor (PI) is known to reduce neutrophil elastase burden in some patients with CF. This phase 2a study was designed to test inhaled Alpha-1 HC, a new aerosolized alpha1-PI formulation, in CF patients. Methods We performed a randomized, double-blind, placebo-controlled study and evaluated the safety of 100 or 200 mg of inhaled Alpha-1 HC once daily for 3 weeks in subjects with CF. Thirty adult subjects were randomized in a 2:1 ratio to receive Alpha-1 HC or placebo. Results Drug delivery was confirmed by a dose-dependent increase in the sputum alpha1-PI. Seven (20.0%) of the 35 adverse events in the 100-mg dose group, 3 (13.0%) of 23 in the 200-mg dose group, and 4 (14.3%) of 28 in the placebo group were drug-related in these subjects. One serious adverse event occurred in 1 subject within each group. Conclusions Alpha-1 HC inhalation was safe and well tolerated. PMID:26321218

  7. Effect of nonsteroidal antiinflammatory drugs on the neutrophil promoted inactivation of alpha-1-proteinase inhibitor.

    PubMed

    Dallegri, F; Ottonello, L; Dapino, P; Sacchetti, C

    1992-03-01

    We investigated the effect of some nonsteroidal antiinflammatory drugs (aspirin, naproxen and nimesulide) on the ability of neutrophils to oxidatively inactivate the alpha-1-proteinase inhibitor (A1PI). Nimesulide prevented the inactivation of A1PI by effectively scavenging the hypochlorous acid released by neutrophils. Aspirin and naproxen were completely ineffective. We suggest that the antiinflammatory effect of nimesulide may be due at least in part to the rescue of A1PI from neutrophil oxidative attack. The rescue of A1PI may in fact alter the elastase-A1PI balance in favor of the inhibitor, with resulting tissue protection. PMID:1578457

  8. Isolation and characterization of human plasma alpha 1-proteinase inhibitor and a conformational study of its interaction with proteinases.

    PubMed Central

    Saklatvala, J; Wood, G C; White, D D

    1976-01-01

    1. alpha 1-Proteinase inhibitor was isolated from human plasma by a five-step procedure. Isoelectric focusing showed that six components focused between pH4.85 and 4.95. 2. The mol.wt. of the inhibitor was 52000 by sedimentation equilibrium and sodium dodecyl sulphate/polyacrylamide-gel electrophoresis. The amino acid and carbohydrate compositions of the inhibitor were also determined. 3. The far-u.v.c.d. (circular-dichroism) spectrum indicated that the inhibitor had about 36% alpha-helical content. 4. The loss of proteinase-inhibitory activity when the inhibitor was exposed to pH values less than 5.0 or greater than 10.5 was accompanied by small changes in the far-u.v.c.d. spectrum and large changes in the near-u.v.c.d. spectrum. The change at alkaline pH was associated with ionization of tyrosine residues. 5. Interaction of inhibitor with chymotrypsin caused perturbation of the c.d. spectrum and this was used to follow the interaction and show a 1:1 stoicheiometry. 6. C.d., electrophoresis and isoelectric focusing showed that the inhibitor-enzyme complex is degraded by free enzyme. 7. Parallel studies with trypsin indicated that it too forms a 1:1 complex with inhibitor and is degraded by excess of enzyme. Images PLATE 2 PLATE 3 PLATE 4 PLATE 5 PLATE 6 PLATE 1 PMID:9069

  9. Comparative cleavage sites within the reactive-site loop of native and oxidized alpha1-proteinase inhibitor by selected bacterial proteinases.

    PubMed

    Rapala-Kozik, M; Potempa, J; Nelson, D; Kozik, A; Travis, J

    1999-10-01

    Human alpha1-proteinase inhibitor (alpha1-PI) is responsible for the tight control of neutrophil elastase activity which, if down regulated, may cause local excessive tissue degradation. Many bacterial proteinases can inactivate alpha1-PI by hydrolytic cleavage within its reactive site, resulting in the down regulation of elastase, and this mechanism is likely to contribute to the connective tissue damage often associated with bacterial infections. Another pathway of the inactivation of alpha1-PI is reversible and involves oxidation of a critical active-site methionine residue that may influence inhibitor susceptibility to proteolytic inactivation. Hence, the aim of this work was to determine whether this oxidation event might affectthe rate and pattern of the cleavage of the alpha1-PI reactive-site loop by selected bacterial proteinases, including thermolysin, aureolysin, serralysin, pseudolysin, Staphylococcus aureus serine proteinase, streptopain, and periodontain. A shift of cleavage specificity was observed after alpha1-PI oxidation, with a preference for the Glu354-Ala355 bond by most of the proteinases tested. Only aureolysin and serralysin cleave the oxidized form of alpha1-PI faster than the native inhibitor, suggesting that bacteria which secrete these metalloproteinases may specifically take advantage of the host defense oxidative mechanism to accelerate elimination of alpha1-PI and, consequently, tissue degradation by neutrophil elastase. PMID:10595584

  10. Purification and characterization of a novel cysteine proteinase (periodontain) from Porphyromonas gingivalis. Evidence for a role in the inactivation of human alpha1-proteinase inhibitor.

    PubMed

    Nelson, D; Potempa, J; Kordula, T; Travis, J

    1999-04-30

    Periodontal disease is characterized by inflammation of the periodontium manifested by recruitment of neutrophils, which can degranulate, releasing powerful proteinases responsible for destruction of connective tissues, and eventual loss of tooth attachment. Although the presence of host proteinase inhibitors (serpins) should minimize tissue damage by endogenous proteinases, this is not seen clinically, and it has been speculated that proteolytic inactivation of serpins may contribute to progression of the disease. A major pathogen associated with periodontal disease is the Gram-negative anaerobe Porphyromonas gingivalis, and in this report, we describe a novel proteinase that has been isolated from culture supernatants of this organism that is capable of inactivating the human serpin, alpha1-proteinase inhibitor, the primary endogenous regulator of human neutrophil elastase. This new enzyme, referred to as periodontain, belongs to the cysteine proteinase family based on inhibition studies and exists as a 75-kDa heterodimer. Furthermore, periodontain shares significant homology to streptopain, a proteinase from Streptococcus pyogenes, and prtT, a putative proteinase from P. gingivalis. Clearly, the presence of this enzyme, which rapidly inactivates alpha1-proteinase inhibitor, could result in elevated levels of human neutrophil elastase clinically detected in periodontal disease and should be considered as a potential virulence factor for P. gingivalis. PMID:10212191

  11. Alpha 1-proteinase inhibitor is more sensitive to inactivation by cigarette smoke than is leukocyte elastase

    SciTech Connect

    Janoff, A.; Dearing, R.

    1982-10-01

    Aqueous solutions of gas phase cigarette smoke were incubated with pure human leukocyte elastase or with crude human leukocyte granule extract, and the effects on enzyme activity were determined using a synthetic amide substrate. Simultaneously, the same smoke solutions were incubated with 10% human serum under identical conditions, and the effects on serum inhibition of purified or crude leukocyte elastase were similarly measured. In addition, aqueous solutions of unfractionated cigarette smoke were incubated with leukocyte elastase or serum, and the abilities of the smoke-treated enzyme to digest elastin and of the smoke-treated serum to inhibit elastin digestion were determined. Both experimental protocols showed that serum elastase-inhibiting capacity (primarily caused by alpha 1-proteinase inhibitor) is more susceptible to inactivation by aqueous solutions of cigarette smoke than is leukocyte elastase, suggesting that elastase inhibition (rather than elastase activity) may be predominantly suppressed by cigarette smoke inhalation in vivo.

  12. The drug 5-aminosalicylic acid rescues alpha 1-proteinase inhibitor from the neutrophil oxidative inactivation. A possible contribution to its therapeutic action in ulcerative colitis.

    PubMed

    Ottonello, L; Dapino, P; Pastorino, G; Vitale, E; Dallegri, F

    1992-01-01

    The glycoprotein alpha 1-proteinase inhibitor is the specific inhibitor of neutrophil elastase, a major tissue-damaging protease. When incubated with activated neutrophils, alpha 1-proteinase inhibitor lost its pancreatic porcine elastase inhibitory capacity and became incapable of forming a sodium dodecyl sulphate-stable complex with pancreatic porcine elastase. Inhibitors and scavengers of neutrophil-derived reactive oxygen species outlined the crucial role of hypochlorous acid in the alpha 1-proteinase inhibitor inactivation. Moreover, the drug 5-aminosalicylic acid prevented the inactivation of alpha 1-proteinase inhibitor by neutrophils in a dose-dependent manner. Finally, when the capacity of 5-aminosalicylic acid to rescue alpha 1-proteinase inhibitor from the neutrophil-derived attack was plotted as a function of the 5-aminosalicylic acid ability to scavenge neutrophil-derived hypochlorous acid, a positive linear relationship was found. Thus, our results provide a direct evidence that 5-aminosalicylic acid is able to prevent the oxidative inactivation of alpha 1-proteinase inhibitor by neutrophils. Therefore, we suggest that the drug has the potential to limit the elastase-mediated damage of colonic connective tissue by creating a microenvironment of active alpha 1-proteinase inhibitor around the neutrophils. PMID:1521714

  13. Development and evaluation of an ELISA for quantification of human alpha-1-proteinase inhibitor in complex biological mixtures.

    PubMed

    Karnaukhova, Elena; Golding, Basil; Ophir, Yakir

    2007-10-01

    Human alpha-1-proteinase inhibitor(1) (alpha(1)-PI) is the most abundant serine protease inhibitor in plasma. Its major function is inhibition of neutrophil elastase in lungs. alpha(1)-PI deficiency may result in severe, ultimately fatal emphysema. Three plasma-derived (pd-) alpha(1)-PI products are licensed in the US for replacement therapy of deficient patients. The recombinant versions (r-alpha(1)-PI), proposed as alternatives to pd-alpha(1)-PI products, have been under intensive investigation. For accurate determination of alpha(1)-PI from different sources and in various forms, there is an obvious need for reliable standardized assays for alpha(1)-PI quantification and potency measurements. As a part of our multi-step research focused on alpha(1)-PI structure-function investigation, we have established a simple and reproducible double-sandwich ELISA based on commercially available polyclonal antibodies. The developed ELISA allows the quantification of both pd-alpha(1)-PI and r-alpha(1)-PI in various complex matrices. A validation of the ELISA was performed with the working range of the assay (3.1-50 ng/ml) established on the bases of the following parameters: linearity (3-100 ng/ml, r(2)=0.995); accuracy (87.3-114.6% recovery); intra-assay precision (%CV, 2.8%); inter-assay plate-to-plate precision (3.9% per day and 4.1% day-to-day); detection limit (1.10 ng/ml); and quantification limit (3.34 ng/ml). The analytical performance of the alpha(1)-PI ELISA indicates that this assay can be used for monitoring concentration levels of alpha(1)-PI in multi-component biological matrices, based on the following: (a) quantification of r-alpha(1)-PI in various fermentation mixtures (E. coli and A. niger); (b) investigation of alpha(1)-PI enzymatically digested in the conditions of harsh fungal proteolysis; (c) evaluation of thermally polymerized alpha(1)-PI; (d) quantification of alpha(1)-PI in human serum; and (e) comparative quantification of alpha(1)-PI in commercially

  14. The anti-inflammatory drug nimesulide rescues alpha-1-proteinase inhibitor from oxidative inactivation by phagocytosing neutrophils.

    PubMed

    Dallegri, F; Ottonello, L; Dapino, P; Bevilacqua, M

    1992-01-01

    When neutrophils are recruited to tissue sites and exposed to phagocytosable targets, they release oxidants which may be responsible for the local inactivation of alpha-1-proteinase inhibitor (A1PI). Consequently, A1PI becomes incapable of inhibiting the proteolytic activity of elastase, released at the same time by neutrophils as a result of leakage from phagocytic vacuoles. In the present paper we show that phagocytosing neutrophils inactivate A1PI via a process inhibitable by chemical agents known to interfere with the hypochlorous acid (HOCl)-generating myeloperoxidase pathway. The anti-inflammatory drug nimesulide (NMS), which is able to efficiently limit the extracellular availability of HOCl in the neutrophil surroundings, was found to prevent the inactivation of A1PI by neutrophils. The results provide evidence for a possible way to control neutrophil elastase activity by rescuing its natural inhibitor (A1PI) at inflamed tissue sites during infectious and noninfectious processes. PMID:1579712

  15. Inflammatory mediators and modulators released in organ culture from rabbit skin lesions produced in vivo by sulfur mustard. III. Electrophoretic protein fractions, trypsin-inhibitory capacity, alpha 1-proteinase inhibitor, and alpha 1- and alpha 2-macroglobulin proteinase inhibitors of culture fluids and serum.

    PubMed Central

    Harada, S.; Dannenberg, A. M.; Vogt, R. F.; Myrick, J. E.; Tanaka, F.; Redding, L. C.; Merkhofer, R. M.; Pula, P. J.; Scott, A. L.

    1987-01-01

    This is the third report in a series on the inflammatory mediators and modulators released in organ culture from skin lesions of various ages, which were produced in vivo in rabbits by the military vesicant, sulfur mustard (SM). It describes the electrophoretic protein fractions and trypsin-inhibitory capacities of the various culture fluids and the amounts of alpha 1-proteinase inhibitor and alpha-macroglobulin proteinase inhibitors in these fluids. With one-dimensional electrophoresis, the albumin and beta-globulin fractions of protein in culture fluids varied little with the development and healing of the SM lesions. These fractions proportionally resembled the corresponding fractions found in serum. The alpha 1-globulin fraction was proportionally smaller than the corresponding fractions of serum as the lesions healed. The alpha 2-globulin fraction was proportionally smaller than the corresponding fractions of serum at all stages of lesion development and healing. The gamma-globulin fraction was proportionally larger as the lesions healed. With two-dimensional electrophoresis, about 68%, 46%, and 35% of the protein spots in culture fluids from representative 1-day and 6-day SM lesions and normal skin, respectively, matched those from serum. In each case, the large, diffuse, serum albumin spot represented about two-thirds of the protein present. Thus, gravimetrically, in normal skin and in both developing and healing lesions, the extracellular proteins were 80-90% of serum origin. The trypsin-inhibitory capacity (TIC) per milligram protein in the culture fluids of healing lesions was markedly less than the TIC per milligram protein in the fluids of peak lesions. This decrease correlates well with the decrease found in the alpha 1-globulin fraction, which contains alpha 1-antiproteinase (alpha 1-PI) (and alpha 1-macroglobulin [alpha 1M] in rabbits). The alpha 1PI and the alpha 1M-alpha 2M proteinase inhibitors were identified in the culture fluids by means of

  16. Intravenous administration of alpha-1-proteinase inhibitor in patients of PiZ and PiM phenotype. Preliminary report

    SciTech Connect

    Moser, K.M.; Smith, R.M.; Spragg, R.G.; Tisi, G.M.

    1988-06-24

    Nine patients with moderate pulmonary emphysema, six of PiZ phenotype and three of PiM phenotype, have received a single intravenous infusion of alpha-1-proteinase inhibitor (human) (A1PI), in a dose of 60 mg/kg over a 30-minute period. They also received a tracer dose (300 microCi) of /sup 131/I-labeled A1PI. No active or passive immunization against hepatitis was given. No acute toxicity was observed. Compared with baseline data, significant elevations of serum A1PI (measured both antigenically and as anti-elastase activity) occurred, with a serum half-life approximating 110 hours. Bronchoalveolar lavage fluid, obtained 48 hours after infusion, reflected a significant increase in A1PI concentration versus baseline bronchoalveolar lavage fluid values. Serial gamma camera images of the lungs confirmed persistence of enhanced lung radioactivity for several days. Urinary desmosine excretion did not change following A1PI infusion. During the period of follow-up thus far, no patient has had chronic toxicity, results of liver function tests have been stable, and there has been no development of hepatitis B antigen or antibodies to hepatitis B surface or core antigens.

  17. Expression screening of bacterial libraries of recombinant alpha-1 proteinase inhibitor variants for candidates with thrombin inhibitory capacity.

    PubMed

    Bhakta, Varsha; Gierczak, Richard F; Sheffield, William P

    2013-12-01

    Exhaustive mutagenesis studies of the reactive centre loop (RCL), a key structural component of proteins belonging to the serpin superfamily of protease inhibitors, are complicated by the size of the RCL, serpin conformational complexity, and, for most serpins, the lack of a serpin-dependent phenotype of expressing cells. Here, we describe a thrombin capture assay that distinguished thrombin-inhibitory recombinant human alpha-1 proteinase inhibitor (API M358R) from non-inhibitory API variants in Escherichia coli lysates prepared from either single clones or pools. Binding of API proteins in the lysates to thrombin immobilized on microtiter plate wells was quantified via colour generated by a peroxidase-coupled anti-API antibody. Bacterial expression plasmids encoding inhibitory API M358R were mixed 1:99 with plasmids encoding non-inhibitory API T345R/M358R and the resulting library screened in pools of 10. All above-background signals arising from pools or subsequently re-probed single clones were linked to the presence of plasmids encoding API M358R. Screening of a portion of another expression library encoding hypervariable API with all possibilities at codons 352-358 also yielded only novel, thrombin-inhibitory variants. Probing a smaller library expressing all possible codons at Ala347 yielded the wild type, 6 different functional variants, one partially active variant, and two variants with no thrombin-inhibitory activity. API antigen levels varied considerably less among Ala347 variants than activity levels, and comparison of rate constants of inhibition of purified API variants to their corresponding thrombin capture assay lysate values was used to establish the sensitivity and specificity of the assay. The results indicate that the approach is sufficiently robust to correctly identify functional versus non-functional candidates in API expression libraries, and could be of value in systematically probing structure/function relationships not only in the API

  18. [Proteinase-proteinase inhibitor complex in rats under oxidative stress caused by administration of cobalt chloride].

    PubMed

    Kaliman, P A; Samokhin, A A; Samokhina, L M

    2000-01-01

    Mechanisms of proteinase-inhibitor proteinase system response was estimated following of cobalt chloride injection. The increase proteinase activity, which led to significant decrease of alpha-2-macroglobulin (alpha-2-MG) level was established that indicated to the removal of the proteinase in complex with alpha-2-MG from the organism. Increase of alpha-1-proteinase inhibitor (alpha-1-PI) trypsin-inhibitory activity in the kidneys testify about removal of oxidative alpha-1-PI. PMID:10979565

  19. Inactivation of alpha-1-proteinase inhibitor by neutrophil metalloproteinases. Crucial role of the myeloperoxidase system and effects of the anti-inflammatory drug nimesulide.

    PubMed

    Ottonello, L; Dapino, P; Dallegri, F

    1993-01-01

    Supernatants, obtained from normal neutrophil polymorphonuclear leukocytes (PMN), challenged with opsonized zymosan (OPZ), were found to inactivate the PMN elastase inhibitor, alpha 1-proteinase inhibitor (A1PI). As the supernatants were treated with methionine to quench residual oxidants, primarily chloramines, the observed inactivation of A1PI appears to be due to enzymes. The activity of the supernatants was in fact inhibited by metal-chelators and by the tissue inhibitor of metalloproteinases (TIMP), which is consistent with the intervention of metalloproteinases. Supernatants from normal PMN triggered by OPZ in the presence of inhibitors of the myeloperoxidase (MPO) system as well as supernatants from MPO-deficient PMN were inactive but displayed the capacity of inactivating A1PI after treatment with the metalloproteinases activator 4-aminophenylmercuric acetate. These data suggest that the A1PI inactivation is due to metalloenzymes released by PMN as latent molecules, in turn activated by the MPO system. The MPO-dependent autoactivation of latent metalloenzymes by PMN, with consequent A1PI inactivation, was inhibited by the nonsteroidal anti-inflammatory drug nimesulide (NMS). As PMN-derived HOCl is well known to inactivate A1PI directly, through a process previously shown to be inhibitable by NMS, the present results suggest: (1) both the oxidative and proteolytic inactivation of A1PI depend on the HOCl-generating MPO system; (2) the tissue-destructive activity of PMN elastase could be controlled by interfering pharmacologically with the PMN-MPO system, directly and indirectly responsible for the breakdown of the tissue antielastase screen. PMID:8385794

  20. Oncostatin M, but not interleukin-6 or leukemia inhibitory factor, stimulates expression of alpha1-proteinase inhibitor in A549 human alveolar epithelial cells.

    PubMed

    Sallenave, J M; Tremblay, G M; Gauldie, J; Richards, C D

    1997-06-01

    Alpha-1 proteinase inhibitor (A1-Pi) is the main serine proteinase inhibitor found in human plasma and is a potent elastase inhibitor in various tissues, including lung. A1-Pi is expressed and induced in liver during inflammatory responses but can also be produced by epithelial cells. Since hepatocyte A1-Pi production is stimulated by interleukin-6 (IL-6) and other gp130-cytokines, such as leukemia inhibitory factor (LIF) and oncostatin M (OM), we investigated the role of these cytokines in regulating A1-Pi in lung epithelial cells. We show that OM, a monocyte and T cell product, can specifically and potently induce A1-Pi production in lung-derived A549 alveolar (epithelial) cells, as well as in liver-derived HepG2 cells. Both A1-Pi protein (as detected by ELISA and Western blots) and mRNA levels were enhanced 20-fold to 30-fold in A549 cells. OM was also able to stimulate the expression of tissue inhibitor of metalloproteinase-1 in these cells. Interestingly, other members of the IL-6 family (IL-6 and LIF) had little or no effect on A549 cells, and proinflammatory cytokines, such as IL-1 beta and tumor necrosis factor-alpha (TNF-alpha) also had no stimulatory effect on A1-Pi synthesis in A549 cells. Costimulation with IL-1 beta resulted in a decrease in A1-Pi production from OM-stimulated A549 cells. However, IL-6 production was synergistically enhanced. OM was also able to stimulate A1-Pi production from a bronchial epithelial primary cell line, whereas an intestinal epithelial cell line HT29 responded to IL-6 but not OM. These results suggest that lung levels A1-Pi could be derived not only from liver and inflammatory cells but also from epithelial cells, which can be upregulated on stimulation by OM. This may have implications for regulation of local activity of human neutrophil elastase (HNE) in such diseases as emphysema and cystic fibrosis. PMID:9198001

  1. Insect cell production of a secreted form of human alpha(1)-proteinase inhibitor as a bifunctional protein which inhibits neutrophil elastase and has growth factor-like activities.

    PubMed

    Curtis, Heather; Sandoval, Carolyn; Oblin, Colette; Difalco, Marcos R; Congote, L Fernando

    2002-01-31

    alpha(1)-proteinase inhibitor (API) is a potential therapeutic agent in all diseases in which elastase released by neutrophils has to be effectively neutralized. We ligated the cDNA of human API to the C-terminal section of an insulin-like growth factor II analogue (BOMIGF), known to be properly folded and secreted in insect cells using the baculovirus expression system. The BOMIGF-API chimera was recovered from the incubation medium of the infected cells. It shared the properties of both IGFs and API. It inhibited neutrophil elastase and formed SDS-stable complexes with the enzyme. The attachment of the large API protein to the C-terminal end of the 10 kDa IGF analogue did not destroy the IGF-mediated stimulation of thymidine incorporation into bovine fetal erythroid cells. We tested the capacity of the chimera to affect fibronectin-dependent TF-1 cell migration. BOMIGF-API significantly restored TF-1 cell migration in the presence of elastase, which is the enzyme of burn wound fluid most probably involved in fibronectin degradation. Some of the beneficial uses for this chimera may include all instances for which inhibition of elastase-mediated extracellular matrix destruction as well as stimulation of cell migration and proliferation are required for tissue repair. PMID:11690693

  2. A study of the effects of altering the sites for N-glycosylation in alpha-1-proteinase inhibitor variants M and S.

    PubMed Central

    Samandari, T.; Brown, J. L.

    1993-01-01

    alpha-1-Proteinase inhibitor (A1Pi) is a monomeric secreted protein glycosylated at asparagines 46, 83, and 247. For this study cDNAs for M (normal) and S (Glu264-->Val) variants of A1Pi were altered by site-directed mutagenesis to produce the combinations of single, double, and triple mutants that can be generated by changing the codons normally specifying these Asn residues to encode Gln. The fates of the mutant proteins were followed in transiently transfected COS-1 cells. All variants with altered glycosylation sites are secreted at reduced rates, are partially degraded, accumulate intracellularly, and some form Nonidet P-40-insoluble aggregates. The carbohydrate attached at Asn83 seems to be of particular importance to the export of both A1PiM and A1PiS from the endoplasmic reticulum. All mutations affecting glycosylation of A1PiS notably reduce secretion, cause formation of insoluble aggregates, and influence degradation of the altered proteins. The variant of A1PiS missing all three glycosylation sites is poorly secreted, is incompletely degraded, and accumulates in unusual perinuclear vesicles. These studies show that N-linked oligosaccharides in A1Pi are vital to its efficient export from the endoplasmic reticulum and that the consequences of changing the normal pattern of glycosylation vary depending upon the sites altered and the variant of A1Pi bearing these alterations. PMID:8401226

  3. Comparison of mammalian and bacterial expression library screening to detect recombinant alpha-1 proteinase inhibitor variants with enhanced thrombin inhibitory capacity.

    PubMed

    Gierczak, Richard F; Bhakta, Varsha; Xie, Michael; Sheffield, William P

    2015-08-20

    Serpins are a widely distributed family of serine proteases. A key determinant of their specificity is the reactive centre loop (RCL), a surface motif of ∼20 amino acids in length. Expression libraries of variant serpins could be rapidly probed with proteases to develop novel inhibitors if optimal systems were available. The serpin variant alpha-1 proteinase inhibitor M358R (API M358R) inhibits the coagulation protease thrombin, but at sub-maximal rates compared to other serpins. Here we compared two approaches to isolate functional API variants from serpin expression libraries, using the same small library of API randomized at residue 358 (M358X): flow cytometry of transfected HEK 293 cells expressing membrane-displayed API; and a thrombin capture assay (TCA) performed on pools of bacterial lysates expressing soluble API. No enrichment for specific P1 residues was observed when the RCL codons of the 1% of sorted transfected 293 cells with the highest fluorescent thrombin-binding signals were subcloned and sequenced. In contrast, screening of 16 pools of bacterial API-expressing transformants led to the facile identification of API M358R and M358K as functional variants. Kinetic characterization showed that API M358R inhibited thrombin 17-fold more rapidly than API M358K. Reducing the incubation time with immobilized thrombin improved the sensitivity of TCA to detect supra-active API M358R variants and was used to screen a hypervariable library of API variants expressing 16 different amino acids at residues 352-357. The most active variant isolated, with TLSATP substituted for FLEAI, inhibited thrombin 2.9-fold more rapidly than API M358R. Our results indicate that flow cytometric approaches used in protein engineering of antibodies are not appropriate for serpins, and highlight the utility of the optimized TCA for serpin protein engineering. PMID:26043905

  4. Phage display of the serpin alpha-1 proteinase inhibitor randomized at consecutive residues in the reactive centre loop and biopanned with or without thrombin.

    PubMed

    Scott, Benjamin M; Matochko, Wadim L; Gierczak, Richard F; Bhakta, Varsha; Derda, Ratmir; Sheffield, William P

    2014-01-01

    In spite of the power of phage display technology to identify variant proteins with novel properties in large libraries, it has only been previously applied to one member of the serpin superfamily. Here we describe phage display of human alpha-1 proteinase inhibitor (API) in a T7 bacteriophage system. API M358R fused to the C-terminus of T7 capsid protein 10B was directly shown to form denaturation-resistant complexes with thrombin by electrophoresis and immunoblotting following exposure of intact phages to thrombin. We therefore developed a biopanning protocol in which thrombin-reactive phages were selected using biotinylated anti-thrombin antibodies and streptavidin-coated magnetic beads. A library consisting of displayed API randomized at residues 357 and 358 (P2-P1) yielded predominantly Pro-Arg at these positions after five rounds of thrombin selection; in contrast the same degree of mock selection yielded only non-functional variants. A more diverse library of API M358R randomized at residues 352-356 (P7-P3) was also probed, yielding numerous variants fitting a loose consensus of DLTVS as judged by sequencing of the inserts of plaque-purified phages. The thrombin-selected sequences were transferred en masse into bacterial expression plasmids, and lysates from individual colonies were screening for API-thrombin complexing. The most active candidates from this sixth round of screening contained DITMA and AAFVS at P7-P3 and inhibited thrombin 2.1-fold more rapidly than API M358R with no change in reaction stoichiometry. Deep sequencing using the Ion Torrent platform confirmed that over 800 sequences were significantly enriched in the thrombin-panned versus naïve phage display library, including some detected using the combined phage display/bacterial lysate screening approach. Our results show that API joins Plasminogen Activator Inhibitor-1 (PAI-1) as a serpin amenable to phage display and suggest the utility of this approach for the selection of "designer

  5. [Effect of pentoxyphylline on certain indicators of the proteinase-proteinase inhibitor system in rats upon administration of cycloheximide].

    PubMed

    Samokhin, A A; Kaliman, P A; Samokhinka, L M

    2001-01-01

    The pentoxifylline influence on neutral proteinase, alpha-2-macroglobulin, trypsin-alpha-1-proteinase inhibitor and elastaseinhibitory activity under cycloheximide injection has been investigated. Two hours after cycloheximide injection the activity of neutral proteinases increases in rats serum, lungs, heart, liver and kidneys. The preliminary injection of pentoxifylline prevents increase of neutral proteinases activity. Cycloheximide also decreases alpha-2-macroglobulin activity in serum and liver and trypsin-, elastaseinhibitory activity of alpha-1-proteinase inhibitor in all investigated organs. At using pentoxifylline the alpha-2-macroglobulin activity doesn't change in liver and increases in serum in comparison with only cycloheximide and there are no observed any alpha-1 inhibitor proteinase activity changes in rats serum and organs. PMID:12035527

  6. Plasma levels of alpha1-antichymotrypsin and secretory leukocyte proteinase inhibitor in healthy and chronic obstructive pulmonary disease (COPD) subjects with and without severe α1-antitrypsin deficiency

    PubMed Central

    Hollander, Camilla; Westin, Ulla; Wallmark, Anders; Piitulainen, Eeva; Sveger, Tomas; Janciauskiene, Sabina M

    2007-01-01

    Background Individuals with severe Z α1-antitrypsin (AAT) deficiency have a considerably increased risk of developing chronic obstructive lung disease (COPD). It has been hypothesized that compensatory increases in levels of other protease inhibitors mitigate the effects of this AAT deficiency. We analysed plasma levels of AAT, α1-antichymotrypsin (ACT) and secretory leukocyte protease inhibitor (SLPI) in healthy (asymptomatic) and COPD subjects with and without AAT deficiency. Methods Studied groups included: 71 asymptomatic AAT-deficient subjects (ZZ, n = 48 and SZ, n = 23, age 31 ± 0.5) identified during Swedish neonatal screening for AAT deficiency between 1972 and 1974; age-matched controls (MM, n = 57, age 30.7 ± 0.6); older asymptomatic ZZ (n = 10); healthy MM (n = 20, age 53 ± 9.6); and COPD patients (ZZ, n = 10, age 47.4 ± 11 and MM, n = 10, age 59.4 ± 6.7). Plasma levels of SLPI, AAT and ACT were analysed using ELISA and immunoelectrophoresis. Results No significant difference was found in plasma ACT and SLPI levels between the healthy MM and the ZZ or SZ subjects in the studied groups. Independent of the genetic variant, subjects with COPD (n = 19) had elevated plasma levels of SLPI and ACT relative to controls (n = 153) (49.5 ± 7.2 vs 40.7 ± 9.1 ng/ml, p < 0.001 and 0.52 ± 0.19 vs 0.40 ± 0.1 mg/ml, p < 0.05, respectively). Conclusion Our findings show that plasma levels of ACT and SLPI are not elevated in subjects with genetic AAT deficiency compared MM controls and do not appear to compensate for the deficiency of plasma AAT. PMID:17261175

  7. [Character of changes in indicators of proteinase and proteinase inhibitor activity in gastroenterological pathology in children].

    PubMed

    Dovgun, O B; Tebloeva, L T; Shumeĭko, N K; Rudenskaia, G N

    1998-01-01

    The aim of this study was to determine trypsin-lake proteinase activity, chymotrypsin-like proteinase activity, trypsin, alpha 1-antitrypsin and alpha 2-macroglobulin levels in blood serum at the children with gastroenterological pathology. These parameters did not chang at the children with functional disorder of stomach and duodenum. The stable balance between proteinases and inhibitors was determined only at the duration of the disease not more 5 years. The absence of normal levels these enzymes after traditional treatment was explain the necessity to continue the therapy at home with control of enzymes' levels. PMID:9703629

  8. Characterization of serine/cysteine protease inhibitor alpha1-antitripsin from meconium-instilled rabbit lungs.

    PubMed

    Zagariya, A M; Bhat, R; Zhabotynsky, E; Chari, G; Navale, S; Xu, Q; Keiderling, T A; Vidyasagar, D

    2005-09-01

    We have recently purified from meconium-instilled rabbit lungs a novel serine proteinase inhibitor, with an apparent molecular mass of 50 kDa, which we assign to be alpha1-antitripsin. We hypothesize that serpin may attenuate pulmonary inflammation and improve surfactant function after meconium aspiration. Alpha1-antitripsin is a member of the proteinase inhibitor (serpin) superfamily and inhibitor of neutrophil elastase, and it can be identified as a member of the family by its amino acid sequence due to the high degree of conserved residues. Alpha1-antitripsin is synthesized by epithelial cells, macrophages, monocytes, and neutrophils. Deficiency in alpha1-antitripsin leads to exposure of lungs to uncontrolled proteolytic attack from neutrophil elastase or other damaging factors culminating in lung destruction and cell apoptosis. We hypothesize that accumulation of alpha1-antitripsin in the lungs serves as a predisposed protection against meconium-induced lung injury. In this paper, we show how this knowledge can lead to the development of novel therapeutic approaches for treatment of MAS. PMID:15962329

  9. Novel proteinase inhibitor promotes resistance to insects

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A novel Beta vulgaris serine proteinase inhibitor gene (BvSTI) and its protein are identified in response to insect feeding on B. vulgaris seedlings. BvSTI is cloned into an expression vector with constitutive promoter and transformed into Nicotiana benthamiana plants to assess BvSTI’s ability to ...

  10. Ozone effects on inhibitors of human neutrophil proteinases

    SciTech Connect

    Smith, C.E.; Stack, M.S.; Johnson, D.A.

    1987-02-15

    The effects of ozone on human alpha 1-proteinase inhibitor (A-1-PI), alpha 1-antichymotrypsin (A-1-Achy), bronchial leukocyte proteinase inhibitor (BLPI), and Eglin C were studied using in vitro exposures in phosphate-buffered solutions. Following ozone exposure, inhibitory activities against human neutrophil elastase (HNE) and/or cathepsin G (Cat G) were measured. Exposure of A-1-PI to 50 mol O3/mol protein resulted in a complete loss of HNE inhibitory activity, whereas A-1-Achy lost only 50% of its Cat G inhibitory activity and remained half active even after exposure to 250 mol of O3. At 40 mol O3/mol protein, BLPI lost 79% of its activity against HNE and 87% of its Cat G inhibitory activity. Eglin C, a leech-derived inhibitor, lost 81% of its HNE inhibitory activity and 92% of its ability to inhibit Cat G when exposed to 40 mol O3/mol. Amino acid analyses of ozone-exposed inhibitors showed destruction of Trp, Met, Tyr, and His with as little as 10 mol O3/mol protein, and higher levels of O3 resulted in more extensive oxidation of susceptible residues. The variable ozone susceptibility of the different amino acid residues in the four proteins indicated that oxidation was a function of protein structure, as well as the inherent susceptibility of particular amino acids. Exposure of A-1-PI and BLPI in the presence of the antioxidants, Trolox C (water soluble vitamin E) and ascorbic acid (vitamin C), showed that antioxidant vitamins may protect proteins from oxidative inactivation by ozone. Methionine-specific modification of BLPI reduced its HNE and Cat G inhibitory activities. Two moles of N-chlorosuccinimide per mole of BLPI methionine caused an 80% reduction in activity against Cat G, but only a 40% reduction in HNE inhibitory activity.

  11. Pathobiochemical significance of granulocyte elastase complexed with proteinase inhibitors: effect on glycosaminoglycan metabolism in cultured synovial cells.

    PubMed

    Kleesiek, K; van de Leur, E; Reinards, R; Greiling, H

    1987-03-01

    Interactions between elastase inhibitor complexes and synovial cells are of special interest, since, in chronic joint diseases, granulocytes release large amounts of elastase into the synovial fluid and connective tissue, where the proteinase is bound to alpha 1-proteinase inhibitor and alpha 2-macroglobulin. To study the effect of elastase-alpha 2-macroglobulin and elastase-alpha 1-proteinase inhibitor complexes on the glycosaminoglycan metabolism of cultured synovial cells, we determined the distribution of [3H]glucosamine-labelled hyaluronate, which represents the main synthesized glycosaminoglycan, and of 35SO4(2-)-labelled chondroitin sulphate into the intracellular, pericellular and extracellular compartments of the cell culture. Exposure of the synovial cells to elastase-alpha 2-macroglobulin complexes leads to an enhanced synthesis and secretion of hyaluronate, and chondroitin sulphate, and also induces a rise of the fibronectin concentration in the medium. Analogous but less pronounced effects are observed in the presence of elastase-alpha 1-proteinase inhibitor complexes. Native uncomplexed elastase, however, causes no significant changes in hyaluronate metabolism. An increase of prostaglandin E2 in the culture medium during incubation with elastase inhibitor complexes occurs in parallel to the stimulatory effect on glycosaminoglycan metabolism. Our results demonstrate that elastase, whose enzymic activity is inactivated by the formation of complexes with alpha 1-proteinase inhibitor or alpha 2-macroglobulin, nevertheless acts as an inflammatory mediator, which in vitro induces metabolic changes closely resembling the in vivo findings in inflammatory joint diseases. PMID:2439645

  12. Secretory leukocyte proteinase inhibitor is preferentially increased in patients with acute respiratory distress syndrome.

    PubMed

    Sallenave, J M; Donnelly, S C; Grant, I S; Robertson, C; Gauldie, J; Haslett, C

    1999-05-01

    Inappropriate release of proteases from inflammatory and stromal cells can lead to destruction of the lung parenchyma. Antiproteinases such as alpha-1-proteinase inhibitor (alpha1-Pi), secretory leukocyte proteinase inhibitor (SLPI) and elastase-specific inhibitor (elafin) control excess production of human neutrophil elastase. In the present study, the concentrations of alpha1-Pi, SLPI and elafin found in bronchoalveolar lavage (BAL) fluid from control subjects, patients at risk of developing acute respiratory distress syndrome (ARDS) and patients with established ARDS were determined. Levels of all three inhibitors were raised in patients compared with normal subjects. SLPI was increased in the group of patients who were at risk of ARDS and went on to develop the condition, compared with the "at-risk" group who did not progress to ARDS (p=0.0083). Alpha1-Pi and elafin levels were similar in these two populations. In patients with established ARDS, both alpha1-Pi and SLPI levels were significantly increased, compared to patients at risk of ARDS who did (p=0.0089) or did not (p=0.0003) progress to ARDS. The finding of increased antiproteinases shortly before the development of acute respiratory distress syndrome provide further evidence for enhanced inflammation prior to clinical disease. PMID:10414400

  13. A low molecular weight proteinase inhibitor produced by T lymphocytes.

    PubMed Central

    Ganea, D; Teodorescu, M; Dray, S

    1986-01-01

    A low molecular weight (MW) proteinase inhibitor, between 6500 and 21,500 MW, appeared in the supernatant of rabbit spleen cells cultured at high density for 24 hr. The inhibitor inhibited the enzymatic activity of trypsin for both a high MW natural substrate, fibrinogen, and for a low MW artificial substrate, Chromozym TRY. The low MW proteinase inhibitor is protein in nature and is different, in terms of specificity for enzymes, MW and sensitivity to different physical or chemical treatments, from aprotinin, a low MW proteinase inhibitor (6500 MW) of bovine origin, and from the soybean trypsin inhibitor, a relatively high MW proteinase inhibitor (21,500 MW). The inhibitor was found in the supernatant of purified T cells but not B cells, and its production was increased in the presence of an optimal concentration of Con A. The possibility that this proteinase inhibitor has a role in the regulation of trypsin-like proteinases involved to the immune response remains to be investigated. Images Figure 4 PMID:2417942

  14. Molecular dynamic and docking interaction study of Heterodera glycines serine proteinase with Vigna mungo proteinase inhibitor.

    PubMed

    Prasad, C V S Siva; Gupta, Saurabh; Gaponenko, Alex; Tiwari, Murlidhar

    2013-08-01

    Many plants do produce various defense proteins like proteinase inhibitors (PIs) to protect them against various pests. PIs function as pseudosubstrates of digestive proteinase, which inhibits proteolysis in pests and leads to amino acid deficiency-based mortality. This work reports the structural interaction studies of serine proteinase of Heterodera glycines (SPHG) with Vigna mungo proteinase inhibitor (VMPI). 3D protein structure modeling, validation of SPHG and VMPI, and their putative protein-protein binding sites were predicted. Protein-protein docking followed by molecular dynamic simulation was performed to find the reliable confirmation of SPHG-VMPI complex. Trajectory analysis of each successive conformation concludes better interaction of first loop in comparison with second loop. Lysine residues of first loop were actively participating in complex formation. Overall, this study discloses the structural aspects and interaction mechanisms of VMPI with SPHG, and it would be helpful in the development of pest-resistant genetically modified crops. PMID:23813339

  15. Short-term variability of biomarkers of proteinase activity in patients with emphysema associated with type Z alpha-1-antitrypsin deficiency

    PubMed Central

    Stolk, Jan; Veldhuisen, Barbara; Annovazzi, Laura; Zanone, Chiara; Versteeg, Elly M; van Kuppevelt, Toine H; Nieuwenhuizen, Willem; Iadarola, Paolo; Luisetti, Maurizio

    2005-01-01

    Background The burden of proteinases from inflammatory cells in the lung of subjects with type Pi ZZ of alpha-1-antitrypsin deficiency is higher than in those without the deficiency. Cross-sectional studies have shown increased levels of biomarkers of extracellular matrix degradation in vivo. Longitudinal variability of these biomarkers is unknown but desirable for clinical studies with proteinase inhibitors. Methods We measured three different types of biomarkers, including desmosines, elastase-formed fibrinogen fragments and heparan sulfate epitope JM403, in plasma and urine for a period of 7 weeks in a group of 12 patients who participated in a placebo-controlled study to assess the safety of a single inhalation of hyaluronic acid. Results Effect of study medication on any of the biomarkers was not seen. Baseline desmosines in plasma and urine correlated with baseline CO diffusion capacity (R = 0.81, p = 0.01 and R = 0.65, p = 0.05). Mean coefficient of variation within patients (CVi) for plasma and urine desmosines was 18.7 to 13.5%, respectively. Change in urinary desmosine levels correlated significantly with change in plasma desmosine levels (R = 0.84, p < 0.01). Mean CVi for fibrinogen fragments in plasma was 20.5% and for JM403 in urine was 27.8%. No correlations were found between fibrinogen fragments or JM403 epitope and desmosines. Conclusion We found acceptable variability in our study parameters, indicating the feasibility of their use in an evaluation of biochemical efficacy of alpha-1-antitrypsin augmentation therapy in Pi Z subjects. PMID:15927063

  16. Oxidized mucus proteinase inhibitor: a fairly potent neutrophil elastase inhibitor.

    PubMed Central

    Boudier, C; Bieth, J G

    1994-01-01

    N-chlorosuccinimide oxidizes one of the methionine residues of mucus proteinase inhibitor with a second-order rate constant of 1.5 M-1.s-1. Cyanogen bromide cleavage and NH2-terminal sequencing show that the modified residue is methionine-73, the P'1 component of the inhibitor's active centre. Oxidation of the inhibitor decreases its neutrophil elastase inhibitory capacity but does not fully abolish it. The kinetic parameters describing the elastase-oxidized inhibitor interaction are: association rate constant kass. = 2.6 x 10(5) M-1.s-1, dissociation rate constant kdiss. = 2.9 x 10(-3) s-1 and equilibrium dissociation constant Ki = 1.1 x 10(-8) M. Comparison with the native inhibitor indicates that oxidation decreases kass. by a factor of 18.8 and increases kdiss. by a factor of 6.4, and therefore leads to a 120-fold increase in Ki. Yet, the oxidized inhibitor may still act as a potent elastase inhibitor in the upper respiratory tract where its concentration is 500-fold higher than Ki, i.e. where the elastase inhibition is pseudo-irreversible. Experiments in vitro with fibrous human lung elastin, the most important natural substrate of elastase, support this view: 1.35 microM elastase is fully inhibited by 5-6 microM oxidized inhibitor whether the enzyme-inhibitor complex is formed in the presence or absence of elastin and whether elastase is pre-adsorbed on elastin or not. PMID:7945266

  17. Biospecific haemosorbents based on proteinase inhibitor. II. Efficiency of biospecific antiproteinase haemosorbent 'Ovosorb' in complex treatment of experimental generalized purulent peritonitis and acute destructive pancreatitis in dogs.

    PubMed

    Platé, N A; Kirkovsky, V V; Antiperovich, O F; Nicolaichik, V V; Valueva, T A; Sinilo, S B; Moin, V M; Lobacheva, G A

    1994-03-01

    The biospecific antiproteinase haemosorbent (BAH) 'Ovosorb' containing, in the bulk of polyacryamide gel, the ovomucoid from whites of duck eggs, was used for a complex treatment of the experimental generalized purulent peritonitis and acute destructive pancreatitis in dogs. The efficiency of BAH was manifested in the significant reduction of lethality of the experimental animals, a more rapid liquidation of proteinasaemia, normalization in plasma of alpha 1-proteinase inhibitor and protein metabolism. Thus, by eliminating proteinases from circulation, Ovosorb contributes to the cessation of imbalance in the proteinase-inhibitor system and is efficient in the therapy of pathological states related to this imbalance. PMID:8031989

  18. Identification and characterization of alpha-I-proteinase inhibitor from common carp sarcoplasmic proteins.

    PubMed

    Siriangkanakun, Siriphon; Li-Chan, Eunice C Y; Yongsawadigul, Jirawat

    2016-02-01

    Purification of proteinase inhibitor from common carp (Cyprinus carpio) sarcoplasmic proteins resulted in 2.8% yield with purification fold of 111. Two inhibitors, namely inhibitor I and II, exhibited molecular mass of 47 and 52 kDa, respectively, based on non-reducing sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Both inhibitors I and II were identified to be alpha-1-proteinase inhibitor (α1-PI) based on LC-MS/MS. They were glycoproteins and molecular mass after peptide-N-glycosidase F treatment was 38 and 45 kDa, respectively. The N-glycosylation sites of both inhibitors were determined to be at N214 and N226. The inhibitors specifically inhibited trypsin. The common carp α1-PI showed high thermal stability with denaturation temperatures of 65.43 and 73.31 °C, which were slightly less than those of ovomucoid. High stability toward NaCl was also evident up to 3M. The common carp α1-PI effectively reduced autolytic degradation of bigeye snapper surimi at the concentration as low as 0.025%. PMID:26304452

  19. Molecular mechanisms of antithrombin-heparin regulation of blood clotting proteinases. a paradigm for understanding proteinase regulation by serpin family protein proteinase inhibitors

    PubMed Central

    Olson, Steven T.; Richard, Benjamin; Izaguirre, Gonzalo; Schedin-Weiss, Sophia; Gettins, Peter G. W.

    2010-01-01

    Serpin family protein proteinase inhibitors regulate the activity of serine and cysteine proteinases by a novel conformational trapping mechanism that may itself be regulated by cofactors to provide a finely-tuned time and location-dependent control of proteinase activity. The serpin, antithrombin, together with its cofactors, heparin and heparan sulfate, perform a critical anticoagulant function by preventing the activation of blood clotting proteinases except when needed at the site of a vascular injury. Here, we review the detailed molecular understanding of this regulatory mechanism that has emerged from numerous X-ray crystal structures of antithrombin and its complexes with heparin and target proteinases together with mutagenesis and functional studies of heparin-antithrombin-proteinase interactions in solution. Like other serpins, antithrombin achieves specificity for its target blood clotting proteinases by presenting recognition determinants in an exposed reactive center loop as well as in exosites outside the loop. Antithrombin reactivity is repressed in the absence of its activator because of unfavorable interactions that diminish the favorable RCL and exosite interactions with proteinases. Binding of a specific heparin or heparan sulfate pentasaccharide to antithrombin induces allosteric activating changes that mitigate the unfavorable interactions and promote template bridging of the serpin and proteinase. Antithrombin has thus evolved a sophisticated means of regulating the activity of blood clotting proteinases in a time and location-dependent manner that exploits the multiple conformational states of the serpin and their differential stabilization by glycosaminoglycan cofactors. PMID:20685328

  20. Proteinase inhibitor homologues as potassium channel blockers.

    PubMed

    Lancelin, J M; Foray, M F; Poncin, M; Hollecker, M; Marion, D

    1994-04-01

    We report here the NMR structure of dendrotoxin I, a powerful potassium channel blocker from the venom of the African Elapidae snake Dendroaspis polylepis polylepis (black mamba), calculated from an experimentally-derived set of 719 geometric restraints. The backbone of the toxin superimposes on bovine pancreatic trypsin inhibitor (BPTI) with a root-mean-square deviation of < 1.7 A. The surface electrostatic potential calculated for dendrotoxin I and BPTI, reveal an important difference which might account for the differences in function of the two proteins. These proteins may provide examples of adaptation for specific and diverse biological functions while at the same time maintaining the overall three-dimensional structure of a common ancestor. PMID:7544683

  1. An electroblotting, two-step procedure for the detection of proteinases and the study of proteinase/inhibitor complexes in gelatin-containing polyacrylamide gels.

    PubMed

    Visal-Shah, S; Vrain, T C; Yelle, T C; Nguyen-Quoc, B; Michaud, D

    2001-08-01

    A two-step gelatin/polyacrylamide gel electrophoresis (gelatin/PAGE) procedure was devised for the detection of proteinases and the study of proteinase/inhibitor interactions in complex biological extracts. The proteins are first resolved by sodium dodecyl sulfate (SDS)-PAGE under reducing or nonreducing conditions, and electrotransferred into a 0.75 mm-thick accompanying polyacrylamide slab gel containing 0.1% w/v porcine gelatin. The active proteinase bands are developed by a gelatin proteolysis step in the accompanying gel in the presence or absence of diagnostic proteinase inhibitors, allowing the assessment of proteinase classes and the visual discrimination of inhibitor-'sensitive' and -'insensitive' proteinases in complex extracts. Alternatively, protein extracts are preincubated with specific reversible inhibitors before electrophoresis, allowing a rapid discrimination of strong and weak interactions implicating proteinases and reversible inhibitors. In comparison with the standard gelatin/PAGE procedure, that involves copolymerization of gelatin with acrylamide in the resolving gel, this new procedure simplifies proteinase patterns, avoids overestimation of proteinase numbers in complex extracts, and allows in certain conditions the estimation of proteinase molecular weights. Stem bromelain (EC 3.4.22.32), bovine trypsin (EC 3.4.21.4), papain (EC 3.4.22.2), and the extracellular (digestive) cysteine proteinases of five herbivorous pests are used as model enzymes to illustrate the usefulness of this approach in detecting proteinases and in studying their interactions with specific proteinaceous inhibitors potentially useful in biotechnology. PMID:11545387

  2. [Occurrence and function of a proteinase inhibitor in the hemolymph of insects].

    PubMed

    Hanschke, R; Hanschke, M

    1975-01-01

    The presence of proteinase inhibitor has been proved in the hemolymph of a number of insect species from seven different insect orders. The amount of proteinase inhibitor in the hemolymph significantly increases after injection of inactivated bacteria into the hemocoelom of Galleria mellonella-larvae. Moreover the larvae show an increased resistance against normally lethal concentrations of trypsin, chymotrypsin, pronase P and extracellular proteinase produced by Pseudomonas aeruginosa. It is discussed that the proteinase inhibitor is one of the factors acting in the antibacterial defense system in the hemolymph of Galleria mellonella-larvae. PMID:811027

  3. The synthesis of inhibitors for processing proteinases and their action on the Kex2 proteinase of yeast.

    PubMed Central

    Angliker, H; Wikstrom, P; Shaw, E; Brenner, C; Fuller, R S

    1993-01-01

    Peptidyl chloromethane and sulphonium salts containing multiple Arg and Lys residues were synthesized as potential inhibitors of prohormone and pro-protein processing proteinases. The potencies of these compounds were assayed by measuring the kinetics of inactivation of the yeast Kex2 proteinase, the prototype of a growing family of eukaryotic precursor processing proteinases. The most potent inhibitor, Pro-Nvl-Tyr-Lys-Arg-chloromethane, was based on cleavage sites in the natural Kex2 substrate pro-alpha-factor. This inhibitor exhibited a Ki of 3.7 nM and a second-order inactivation rate constant (k2/Ki) of 1.3 x 10(7) M-1.s-1 comparable with the value of kcat./Km obtained with Kex2 for the corresponding peptidyl methylcoumarinylamide substrate. The enzyme exhibited sensitivity to the other peptidyl chloromethanes over a range of concentrations, depending on peptide sequence and alpha-amino decanoylation, but was completely resistant to peptidyl sulphonium salts. Kinetics of inactivation by these new inhibitors of a set of 'control' proteinases, including members of both the trypsin and subtilisin families, underscored the apparent specificity of the compounds most active against Kex2 proteinase. PMID:8328974

  4. [Effect of quercetin on some indicators of the proteinase-proteinase inhibitor system in rats upon administration of cobalt chloride to them].

    PubMed

    Kaliman, P A; Samokhin, A A; Samokhina, L M

    2001-01-01

    The results of quercetin effect on some changes of proteinase--proteinase inhibitor system parameters in rats under cobalt chloride injection are shown. It was established that preliminary quercetin administration prevened neutral proteinase activation and alpha-2-macroglobulin activity decreasing after 2 h of cobalt chloride influence. PMID:12199071

  5. Two wound-inducible soybean cysteine proteinase inhibitors have greater insect digestive proteinase inhibitory activities than a constitutive homolog.

    PubMed

    Zhao, Y; Botella, M A; Subramanian, L; Niu, X; Nielsen, S S; Bressan, R A; Hasegawa, P M

    1996-08-01

    Diverse functions for three soybean (Glycine max L. Merr.) cysteine proteinase inhibitors (CysPIs) are inferred from unique characteristics of differential regulation of gene expression and inhibitory activities against specific Cys proteinases. Based on northern blot analyses, we found that the expression in leaves of one soybean CysPI gene (L1) was constitutive and the other two (N2 and R1) were induced by wounding or methyl jasmonate treatment. Induction of N2 and R1 transcript levels in leaves occurred coincidentally with increased papain inhibitory activity. Analyses of kinetic data from bacterial recombinant CysPI proteins indicated that soybean CysPIs are noncompetitive inhibitors of papain. The inhibition constants against papain of the CysPIs encoded by the wound and methyl jasmonate-inducible genes (57 and 21 nM for N2 and R1, respectively) were 500 to 1000 times lower than the inhibition constant of L1 (19,000 nM). N2 and R1 had substantially greater inhibitory activities than L1 against gut cysteine proteinases of the third-instar larvae of western corn rootworm and Colorado potato beetle. Cysteine proteinases were the predominant digestive proteolytic enzymes in the guts of these insects at this developmental stage. N2 and R1 were more inhibitory than the epoxide trans-epoxysuccinyl-L-leucylamide-(4-guanidino)butane (E-64) against western corn rootworm gut proteinases (50% inhibition concentration = 50, 200, and 7000 nM for N2, R1, and E-64, respectively). However, N2 and R1 were less effective than E-64 against the gut proteinases of Colorado potato beetle. These results indicate that the wound-inducible soybean CysPIs, N2 and R1, function in host plant defense against insect predation, and that substantial variation in CysPI activity against insect digestive proteinases exists among plant CysPI proteins. PMID:8756506

  6. Two wound-inducible soybean cysteine proteinase inhibitors have greater insect digestive proteinase inhibitory activities than a constitutive homolog.

    PubMed Central

    Zhao, Y; Botella, M A; Subramanian, L; Niu, X; Nielsen, S S; Bressan, R A; Hasegawa, P M

    1996-01-01

    Diverse functions for three soybean (Glycine max L. Merr.) cysteine proteinase inhibitors (CysPIs) are inferred from unique characteristics of differential regulation of gene expression and inhibitory activities against specific Cys proteinases. Based on northern blot analyses, we found that the expression in leaves of one soybean CysPI gene (L1) was constitutive and the other two (N2 and R1) were induced by wounding or methyl jasmonate treatment. Induction of N2 and R1 transcript levels in leaves occurred coincidentally with increased papain inhibitory activity. Analyses of kinetic data from bacterial recombinant CysPI proteins indicated that soybean CysPIs are noncompetitive inhibitors of papain. The inhibition constants against papain of the CysPIs encoded by the wound and methyl jasmonate-inducible genes (57 and 21 nM for N2 and R1, respectively) were 500 to 1000 times lower than the inhibition constant of L1 (19,000 nM). N2 and R1 had substantially greater inhibitory activities than L1 against gut cysteine proteinases of the third-instar larvae of western corn rootworm and Colorado potato beetle. Cysteine proteinases were the predominant digestive proteolytic enzymes in the guts of these insects at this developmental stage. N2 and R1 were more inhibitory than the epoxide trans-epoxysuccinyl-L-leucylamide-(4-guanidino)butane (E-64) against western corn rootworm gut proteinases (50% inhibition concentration = 50, 200, and 7000 nM for N2, R1, and E-64, respectively). However, N2 and R1 were less effective than E-64 against the gut proteinases of Colorado potato beetle. These results indicate that the wound-inducible soybean CysPIs, N2 and R1, function in host plant defense against insect predation, and that substantial variation in CysPI activity against insect digestive proteinases exists among plant CysPI proteins. PMID:8756506

  7. Potent and selective nonpeptidic inhibitors of procollagen C-proteinase.

    PubMed

    Fish, Paul V; Allan, Gillian A; Bailey, Simon; Blagg, Julian; Butt, Richard; Collis, Michael G; Greiling, Doris; James, Kim; Kendall, Jackie; McElroy, Andrew; McCleverty, Dawn; Reed, Charlotte; Webster, Robert; Whitlock, Gavin A

    2007-07-26

    6-Cyclohexyl-N-hydroxy-3-(1,2,4-oxadiazol-5-yl)hexanamides were previously disclosed as inhibitors of procollagen C-proteinase (PCP) culminating in the identification of amide 1. Our objective was to discover a second inhibitor that would have improved affinity for PCP and to optimize properties for transepidermal delivery (TED) to intact skin. Further investigation of this template identified a number of potent PCP inhibitors (IC50 values of 2-6 nM) with improved TED flux. Sulfonamide 56 had excellent PCP enzyme activity when measured with a peptide substrate (Ki 8.7 nM) or with the endogenous substrate procollagen (IC50 3.4 nM) and demonstrates excellent selectivity over MMPs involved in wound healing (>10 000-fold). In the fibroplasia model, 56 inhibited deposition of insoluble collagen by 76 +/- 2% at 10 microM and was very effective at penetrating human skin in vitro with a TED flux of 1.5 microg/cm2/h, which compares favorably with values for agents that are known to penetrate skin well in vivo. Based on this profile, 56 (UK-421,045) was selected as a candidate for further preclinical evaluation as a topically applied, dermal anti-scarring agent. PMID:17591762

  8. Digestive Duet: Midgut Digestive Proteinases of Manduca sexta Ingesting Nicotiana attenuata with Manipulated Trypsin Proteinase Inhibitor Expression

    PubMed Central

    Zavala, Jorge A.; Giri, Ashok P.; Jongsma, Maarten A.; Baldwin, Ian T.

    2008-01-01

    Background The defensive effect of endogenous trypsin proteinase inhibitors (NaTPIs) on the herbivore Manduca sexta was demonstrated by genetically altering NaTPI production in M. sexta's host plant, Nicotiana attenuata. To understand how this defense works, we studied the effects of NaTPI on M. sexta gut proteinase activity levels in different larval instars of caterpillars feeding freely on untransformed and transformed plants. Methodology/ Principal Findings Second and third instars larvae that fed on NaTPI-producing (WT) genotypes were lighter and had less gut proteinase activity compared to those that fed on genotypes with either little or no NaTPI activity. Unexpectedly, NaTPI activity in vitro assays not only inhibited the trypsin sensitive fraction of gut proteinase activity but also halved the NaTPI-insensitive fraction in third-instar larvae. Unable to degrade NaTPI, larvae apparently lacked the means to adapt to NaTPI in their diet. However, caterpillars recovered at least part of their gut proteinase activity when they were transferred from NaTPI-producing host plants to NaTPI-free host plants. In addition extracts of basal leaves inhibited more gut proteinase activity than did extracts of middle stem leaves with the same protein content. Conclusions/ Significance Although larvae can minimize the effects of high NaTPI levels by feeding on leaves with high protein and low NaTPI activity, the host plant's endogenous NaTPIs remain an effective defense against M. sexta, inhibiting gut proteinase and affecting larval performance. PMID:18431489

  9. Human plasma alpha-cysteine proteinase inhibitor. Purification by affinity chromatography, characterization and isolation of an active fragment.

    PubMed Central

    Gounaris, A D; Brown, M A; Barrett, A J

    1984-01-01

    Human plasma alpha-cysteine proteinase inhibitor (alpha CPI) was purified by a two-stage method: affinity chromatography on S-carboxymethyl-papain-Sepharose, and high-resolution anion-exchange chromatography. The protein was obtained as a form of Mr about 64 000 and material of higher Mr (about 100 000). In sodium dodecyl sulphate/polyacrylamide-gel electrophoresis with reduction, both forms showed a major component of Mr 64 000. An antiserum was raised against alpha CPI, and 'rocket' immunoassays showed the mean concentration in sera from 19 individuals to be 35.9 mg/dl. Both low-Mr and high-Mr forms of alpha CPI were confirmed to be sialoglycoproteins by the decrease in electrophoretic mobility after treatment with neuraminidase. alpha CPI was shown immunologically to be distinct from antithrombin III and alpha 1-antichymotrypsin, two serine proteinase inhibitors from plasma with somewhat similar Mr values. alpha CPI was also distinct from cystatins A and B, the two intracellular low-Mr cysteine proteinase inhibitors from human liver. Complexes of alpha CPI with papain were detectable in immunoelectrophoresis, but dissociated to free enzyme and intact inhibitor in sodium dodecyl sulphate/polyacrylamide-gel electrophoresis. The stoichiometry of binding of papain was close to 1:1 for both low-Mr and high-Mr forms. alpha CPI was found to be a tight-binding inhibitor of papain and human cathepsins H and L (Ki 34 pM, 1.1 nM and 62 pM respectively). By contrast, inhibition of cathepsin B was much weaker, Ki being about 35 microM. Dipeptidyl peptidase I also was weakly inhibited. Digestion of alpha CPI with bromelain gave rise to an inhibitory fragment of Mr about 22 000, which was isolated. Images Fig. 2. Fig. 3. Fig. 4. PMID:6548132

  10. Triacontanol negatively modulates the jasmonic acid-stimulated proteinase inhibitors in tomato (Lycopersicon esculentum).

    PubMed

    Ramanarayan, Krishnamurthy; Swamy, Gangadharamurthy Sivakumar

    2004-04-01

    Triacontanol (TRIA), a long chain aliphatic alcohol (C30H61OH) reverses the effect of jasmonic acid (JA) in inducing proteinase inhibitors (PIs) in tomato leaves. Porcine pancreas trypsin and Spodoptera litura gut proteinases were inhibited in the presence of leaf proteins treated with JA, and TRIA partially reverses this effect. Spodoptera litura larvae fed with tomato leaves treated with JA were reduced in body weight and TRIA is able to partially reverse this JA-induced effect. These results reflect the partial reversal effect of TRIA in down regulating the JA-induced production of proteinase inhibitors. PMID:15128037

  11. Purification and partial characterization of α1-proteinase inhibitor in the common marmoset (Callithrix jacchus)

    PubMed Central

    Parambeth, Joseph Cyrus; Suchodolski, Jan S.; Steiner, Jörg M.

    2015-01-01

    Fecal alpha1-proteinase inhibitor (α1-PI) concentration has been to diagnose enteric protein loss in dogs and cats. Chronic lymphocytic enteritis is commonly seen in the marmoset (C. jaccus) and is characterized by hypoalbuminemia. As a prelude to immunoassay development for detecting enteric protein loss, marmoset serum α1-PI was purified using immunoaffinity chromatography and ceramic hydroxyapatite chromatography. Partial characterization was performed by reducing gel electrophoresis and enzyme inhibitory assays. Protein identity was confirmed with peptide mass fingerprinting and N-terminal amino acid sequencing. Molecular mass, relative molecular mass, and isoelectric point for marmoset α1-PI were 54 kDa, 51677, and 4.8-5.4, respectively. Trypsin, chymotrypsin, and elastase inhibitory activity were observed. N-terminal amino acid sequence for marmoset α1-PI was EDPQGDAAQKMDTSHH. In conclusion, marmoset α1-PI was successfully purified from serum with an overall yield of 12% using a rapid and efficient method. Purified marmoset α1-PI has characteristics similar to those of α1-PI reported for other species. PMID:25745866

  12. Partial purification and characterization of an inhibitor from newborn-rat epidermis with activity against the proteinase of Schistosoma mansoni cercariae.

    PubMed Central

    Tzeng, S; McKerrow, J H; Jeong, K; Fukuyama, K; Epstein, W L

    1982-01-01

    The penetration of cercariae through the skin initiates infection of the host with the human trematode parasite Schistosoma mansoni. Many larvae fail to migrate into the living epidermal cell layer. In order to determine if chemical as well as mechanical barriers to cercarial skin penetration exist, inhibitory activity of epidermal cell extracts against the proteinase obtained from cercarial secretions was assayed. An inhibitor was purified 50-fold by gel filtration on Sephadex G 75 and cation exchange chromatography at pH 5.8 and 4.9. The inhibitor has a relative molecular mass (Mr) of approx. 40 000-53 000. Oxidation of the inhibitor with N-chlorosuccinimide eliminated its inhibitory activity and thus indicated a critical methionine residue. The inhibitor was active against a wide spectrum of serine proteinases: porcine pancreatic elastase, human granulocyte elastase, bovine trypsin, and bovine alpha-chymotrypsin. However, no inhibition was detected against papain or clostridial collagenase. The inhibitor did not cross react with antiserum to human or rat serum alpha 1-proteinase inhibitor. Images Fig. 3. PMID:7165704

  13. The Pseudomonas aeruginosa secretory product pyocyanin inactivates alpha1 protease inhibitor: implications for the pathogenesis of cystic fibrosis lung disease.

    PubMed

    Britigan, B E; Railsback, M A; Cox, C D

    1999-03-01

    Alpha1 Protease inhibitor (alpha1PI) modulates serine protease activity in the lung. Reactive oxygen species inactivate alpha1PI, and this process has been implicated in the pathogenesis of a variety of forms of lung injury. An imbalance of protease-antiprotease activity is also detected in the airways of patients with cystic fibrosis-associated lung disease who are infected with Pseudomonas aeruginosa. P. aeruginosa secretes pyocyanin, which, through its ability to redox cycle, induces cells to generate reactive oxygen species. We tested the hypothesis that redox cycling of pyocyanin could lead to inactivation of alpha1PI. When alpha1PI was exposed to NADH and pyocyanin, a combination that results in superoxide production, alpha1PI lost its ability to form an inhibitory complex with both porcine pancreatic elastase (PPE) and trypsin. Similarly, addition of pyocyanin to cultures of human airway epithelial cells to which alpha1PI was also added resulted in a loss of the ability of alpha1PI to form a complex with PPE or trypsin. Neither superoxide dismutase, catalase, nor dimethylthiourea nor depletion of the media of O2 to prevent formation of reactive oxygen species blocked pyocyanin-mediated inactivation of alpha1PI. These data raise the possibility that a direct interaction between reduced pyocyanin and alpha1PI is involved in the process. Consistent with this possibility, pretreatment of alpha1PI with the reducing agent beta-mercaptoethanol also inhibited binding of trypsin to alpha1PI. These data suggest that pyocyanin could contribute to lung injury in the P. aeruginosa-infected airway of cystic fibrosis patients by decreasing the ability of alpha1PI to control the local activity of serine proteases. PMID:10024562

  14. Secretory leukocyte proteinase inhibitor is a major leukocyte elastase inhibitor in human neutrophils.

    PubMed

    Sallenave, J M; Si Tahar, M; Cox, G; Chignard, M; Gauldie, J

    1997-06-01

    Secretory leukocyte proteinase inhibitor (SLPI) is the main neutrophil elastase (HLE) inhibitor found in the upper airways during pulmonary inflammation. It has been shown to be synthesized and secreted in vitro by epithelial cells and has been localized in tracheal glands and bronchiolar epithelial cells by immunocytochemistry. In this study, using immunodetection and immunopurification techniques with specific anti-SLPI immunoglobulin G (IgG), we show that SLPI is present as a native 14-kDa molecule in neutrophil cytosol. In addition, we demonstrate that SLPI is the major inhibitor of HLE present in neutrophil cytosol because pre-incubation with specific anti-SLPI IgG was able to inhibit completely the anti-HLE activity of the cytosol. SLPI can be secreted (probably in an inactive form) by neutrophils and its secretion is enhanced when the cells are stimulated with phorbol myristate acetate (PMA). Elafin, an elastase-specific inhibitor, is also present in minute amounts in neutrophil cytosol and its secretion can be up-regulated. The presence of SLPI in the cytosol of neutrophils may serve as a protective screen against proteinases spilling from azurophilic granules. An alternative or supplementary role may be the maintenance of a differentiated phenotype. PMID:9201260

  15. Expression of human α1-proteinase inhibitor in Aspergillus niger

    PubMed Central

    Karnaukhova, Elena; Ophir, Yakir; Trinh, Loc; Dalal, Nimish; Punt, Peter J; Golding, Basil; Shiloach, Joseph

    2007-01-01

    Background Human α1-proteinase inhibitor (α1-PI), also known as antitrypsin, is the most abundant serine protease inhibitor (serpin) in plasma. Its deficiency is associated with development of progressive, ultimately fatal emphysema. Currently in the United States, α1-PI is available for replacement therapy as an FDA licensed plasma-derived (pd) product. However, the plasma source itself is limited; moreover, even with efficient viral inactivation steps used in manufacture of plasma products, the risk of contamination from emerging viruses may still exist. Therefore, recombinant α1-PI (r-α1-PI) could provide an attractive alternative. Although r-α1-PI has been produced in several hosts, protein stability in vitro and rapid clearance from the circulation have been major issues, primarily due to absent or altered glycosylation. Results We have explored the possibility of expressing the gene for human α1-PI in the filamentous fungus Aspergillus niger (A. niger), a system reported to be capable of providing more "mammalian-like" glycosylation patterns to secretable proteins than commonly used yeast hosts. Our expression strategy was based on fusion of α1-PI with a strongly expressed, secreted leader protein (glucoamylase G2), separated by dibasic processing site (N-V-I-S-K-R) that provides in vivo cleavage. SDS-PAGE, Western blot, ELISA, and α1-PI activity assays enabled us to select the transformant(s) secreting a biologically active glycosylated r-α1-PI with yields of up to 12 mg/L. Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) analysis further confirmed that molecular mass of the r-α1-PI was similar to that of the pd-α1-PI. In vitro stability of the r-α1-PI from A. niger was tested in comparison with pd-α1-PI reference and non-glycosylated human r-α1-PI from E. coli. Conclusion We examined the suitability of the filamentous fungus A. niger for the expression of the human gene for α1-PI, a medium size glycoprotein of high

  16. Purification and characterization of elastase-specific inhibitor. Sequence homology with mucus proteinase inhibitor.

    PubMed

    Sallenave, J M; Ryle, A P

    1991-01-01

    Elastase-specific inhibitor (ESI) was purified from sputum of patients with chronic bronchitis and compared with mucus proteinase inhibitor (MPI, BrI) isolated, without the use of affinity chromatography on an enzyme, from non-purulent sputum of a patient with bronchial carcinoma. The N-terminal sequence of 27 residues of the latter was determined and showed serine as the only N-terminus. The partial N-terminal amino-acid sequence of ESI shows some homology with MPI, especially around the reactive site of MPI for human neutrophil elastase. This region could therefore be the reactive site of ESI. The thermodynamic and kinetic constants of the reactions of ESI with human neutrophil elastase and with porcine pancreatic elastase show that ESI is a fast-acting inhibitor. PMID:2039600

  17. The synthesis of peptidylfluoromethanes and their properties as inhibitors of serine proteinases and cysteine proteinases.

    PubMed Central

    Rauber, P; Angliker, H; Walker, B; Shaw, E

    1986-01-01

    A synthesis of peptidylfluoromethanes is described that utilizes the conversion of phthaloyl amino acids into their fluoromethane derivatives. These can be deblocked and elongated. The inactivation of chymotrypsin by Cbz-Phe-CH2F (benzyloxycarbonylphenylalanylfluoromethane) was found to be considerably slower than that of the analogous chloromethane. The fluoromethane analogue inactivates chymotrypsin with an overall rate constant that is 2% of that observed for the inactivation of the enzyme with the chloromethane. However, the result is the same. The reagent complexes in a substrate-like manner, with Ki = 1.4 X 10(-4) M, and alkylates the active-centre histidine residue. Cbz-Phe-Phe-CH2F and Cbz-Phe-Ala-CH2F were investigated as inactivators of the cysteine proteinase cathepsin B. The difference in reactivity between fluoromethyl ketones and chloromethyl ketones is less pronounced in the case of the cysteine proteinase than for the serine proteinase. Covalent bond formation takes place in this case also, as demonstrated by the use of a radiolabelled reagent. PMID:3827817

  18. Salicylic Acid Inhibits Synthesis of Proteinase Inhibitors in Tomato Leaves Induced by Systemin and Jasmonic Acid.

    PubMed Central

    Doares, S. H.; Narvaez-Vasquez, J.; Conconi, A.; Ryan, C. A.

    1995-01-01

    Salicylic acid (SA) and acetylsalicylic acid (ASA), previously shown to inhibit proteinase inhibitor synthesis induced by wounding, oligouronides (H.M. Doherty, R.R. Selvendran, D.J. Bowles [1988] Physiol Mol Plant Pathol 33: 377-384), and linolenic acid (H. Pena-Cortes, T. Albrecht, S. Prat, E.W. Weiler, L. Willmitzer [1993] Planta 191: 123-128), are shown here to be potent inhibitors of systemin-induced and jasmonic acid (JA)-induced synthesis of proteinase inhibitor mRNAs and proteins. The inhibition by SA and ASA of proteinase inhibitor synthesis induced by systemin and JA, as well as by wounding and oligosaccharide elicitors, provides further evidence that both oligosaccharide and polypeptide inducer molecules utilize the octadecanoid pathway to signal the activation of proteinase inhibitor genes. Tomato (Lycopersicon esculentum) leaves were pulse labeled with [35S]methionine, followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and the inhibitory effects of SA are shown to be specific for the synthesis of a small number of JA-inducible proteins that includes the proteinase inhibitors. Previous results have shown that SA inhibits the conversion of 13S-hydroperoxy linolenic acid to 12-oxo-phytodienoic acid, thereby inhibiting the signaling pathway by blocking synthesis of JA. Here we report that the inhibition of synthesis of proteinase inhibitor proteins and mRNAs by SA in both light and darkness also occurs at a step in the signal transduction pathway, after JA synthesis but preceding transcription of the inhibitor genes. PMID:12228577

  19. Limited proteolysis by macrophage elastase inactivities human. cap alpha. /sub 1/-proteinase inhibitor

    SciTech Connect

    Banda, M.J.; Clark, E.J.; Werb, Z.

    1980-12-01

    Ever since the initial description of ..cap alpha../sub 1/-proteinase inhibitor (..cap alpha../sub 1/PI), the role of this plasma glycoprotein and its allelic polymorphism in disease and in healthy physiology has been the subject of much investigation, ..cap alpha../sub 1/PI inactivates a number of serine proteinases, including granulocyte elastase, and thus affords protection from the connective tissue degradation mediated by this class of proteinases. Because an imbalance in the ratio between ..cap alpha../sub 1/PI and proteinase may contribute to the development of destructive lung diseases, proteinases have been implicated in the pathogenesis of pulmonary emphysema. Both macrophages and polymorphonuclear leukocytes have been implicated in disruption of the ..cap alpha../sub 1/PI-proteinase balance. In this report, a new mechanism for alteration of the ..cap alpha../sub 1/PI-proteinase balance is demonstrated. It was found that the purified form of macrophage elastase catalytically degrades and inactivates ..cap alpha../sub 1/PI so that it no longer inhibits the elastinolytic activity of granulocyte elastase.

  20. Kazal-type serine proteinase inhibitors in the midgut of Phlebotomus papatasi

    PubMed Central

    Sigle, Leah Theresa; Ramalho-Ortigão, Marcelo

    2013-01-01

    Sandflies (Diptera: Psychodidae) are important disease vectors of parasites of the genus Leishmania, as well as bacteria and viruses. Following studies of the midgut transcriptome of Phlebotomus papatasi, the principal vector of Leishmania major, two non-classical Kazal-type serine proteinase inhibitors were identified (PpKzl1 and PpKzl2). Analyses of expression profiles indicated that PpKzl1 and PpKzl2 transcripts are both regulated by blood-feeding in the midgut of P. papatasi and are also expressed in males, larva and pupa. We expressed a recombinant PpKzl2 in a mammalian expression system (CHO-S free style cells) that was applied to in vitro studies to assess serine proteinase inhibition. Recombinant PpKzl2 inhibited α-chymotrypsin to 9.4% residual activity and also inhibited α-thrombin and trypsin to 33.5% and 63.9% residual activity, suggesting that native PpKzl2 is an active serine proteinase inhibitor and likely involved in regulating digestive enzymes in the midgut. Early stages of Leishmania are susceptible to killing by digestive proteinases in the sandfly midgut. Thus, characterising serine proteinase inhibitors may provide new targets and strategies to prevent transmission of Leishmania. PMID:24037187

  1. Kazal-type serine proteinase inhibitors in the midgut of Phlebotomus papatasi.

    PubMed

    Sigle, Leah Theresa; Ramalho-Ortigão, Marcelo

    2013-09-01

    Sandflies (Diptera: Psychodidae) are important disease vectors of parasites of the genus Leishmania, as well as bacteria and viruses. Following studies of the midgut transcriptome of Phlebotomus papatasi, the principal vector of Leishmania major, two non-classical Kazal-type serine proteinase inhibitors were identified (PpKzl1 and PpKzl2). Analyses of expression profiles indicated that PpKzl1 and PpKzl2 transcripts are both regulated by blood-feeding in the midgut of P. papatasi and are also expressed in males, larva and pupa. We expressed a recombinant PpKzl2 in a mammalian expression system (CHO-S free style cells) that was applied to in vitro studies to assess serine proteinase inhibition. Recombinant PpKzl2 inhibited α-chymotrypsin to 9.4% residual activity and also inhibited α-thrombin and trypsin to 33.5% and 63.9% residual activity, suggesting that native PpKzl2 is an active serine proteinase inhibitor and likely involved in regulating digestive enzymes in the midgut. Early stages of Leishmania are susceptible to killing by digestive proteinases in the sandfly midgut. Thus, characterising serine proteinase inhibitors may provide new targets and strategies to prevent transmission of Leishmania. PMID:24037187

  2. LEKTI domain 15 is a functional Kazal-type proteinase inhibitor.

    PubMed

    Vitzithum, Klaus; Lauber, Thomas; Kreutzmann, Peter; Schulz, Axel; Sommerhoff, Christian P; Rösch, Paul; Marx, Ute C

    2008-01-01

    The multidomain proteinase inhibitor LEKTI (lympho-epithelial Kazal-type related inhibitor) consists of 15 potential serine proteinase inhibitory domains. In various diseases such as the severe skin disorder Netherton syndrome as well as atopy, defects in the gene encoding LEKTI have been identified that generate premature termination codons of translation, suggesting a specific role of the COOH-terminal part of LEKTI in healthy individuals. We overexpressed and purified a sequence comprising the 15th domain of LEKTI for further characterisation. Here, we present a high yield expression system for recombinant production and efficient purification of LEKTI domain 15 as a highly soluble protein with a uniform disulfide pattern that is identical to that of other known Kazal-type inhibitors. Also, the expected P1P1' site was confirmed. LEKTI domain 15 is a well-structured protein as verified by circular dichroism (CD) spectroscopy and a tight-binding and stable inhibitor of the serine proteinase trypsin. These findings confirm the designation of domain 15 as a proteinase inhibitor of the Kazal family. PMID:17936012

  3. Insect and wound induced GUS gene expression from a Beta vulgaris proteinase inhibitor gene promoter

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Inducible gene promoters that are specifically activated by pathogen invasion or insect pest attack are needed for effective expression of resistance genes to control plant diseases. In the present study, a promoter from a serine proteinase inhibitor gene (BvSTI) shown to be up-regulated in resist...

  4. Insect resistance to sugar beet pests mediated by a Beta vulgaris proteinase inhibitor transgene

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We transformed sugar beet (Beta vulgaris) hairy roots and Nicotiana benthamiana plants with a Beta vulgaris root gene (BvSTI) that codes for a serine proteinase inhibitor. BvSTI is a root gene cloned from the F1016 breeding line that has moderate levels of resistance to the sugar beet root maggot ...

  5. Successive Use of Non-Host Plant Proteinase Inhibitors Required for Effective Inhibition of Helicoverpa armigera Gut Proteinases and Larval Growth1

    PubMed Central

    Harsulkar, Abhay M.; Giri, Ashok P.; Patankar, Aparna G.; Gupta, Vidya S.; Sainani, Mohini N.; Ranjekar, Prabhakar K.; Deshpande, Vasanti V.

    1999-01-01

    We report on the efficacy of proteinase inhibitors (PIs) from three host plants (chickpea [Cicer arietinum], pigeonpea [Cajanus cajan], and cotton [Gossypium arboreum]) and three non-host (groundnut [Arachis hypogea], winged bean [Psophocarpus tetragonolobus], and potato [Solanum tuberosum]) in retarding the growth of Helicoverpa armigera larvae, a devastating pest of important crop plants. Enzyme assays and electrophoretic analysis of interaction of H. armigera gut proteinases (HGPs) with PIs revealed that non-host PIs inhibited HGP activity efficiently whereas host PIs were ineffective. In the electrophoretic assay, trypsin inhibitor activity bands were detected in all of the host and non-host plants, but HGP inhibitor activity bands were present only in non-host plants (except cotton in the host plant group). H. armigera larvae reared on a diet containing non-host PIs showed growth retardation, a reduction in total and trypsin-like proteinase activity, and the production of inhibitor-insensitive proteinases. Electrophoretic analysis of PI-induced HGP showed differential regulation of proteinase isoforms. Interestingly, HGP activity induced in response to dietary potato PI-II was inhibited by winged bean PIs. The optimized combination of potato PI-II and winged bean PIs identified in the present study and their proposed successive use has potential in developing H. armigera-resistant transgenic plants. PMID:10517841

  6. Effects of E-64, a cysteine proteinase inhibitor, on cowpea weevil growth, development, and fecundity

    SciTech Connect

    Murdock, L.L.; Shade, R.E.; Pomeroy, M.A.

    1988-06-01

    E-64, a specific inhibitor of cysteine proteinases, was incorporated into artificial seeds at low levels (0.01-0.25% by weight). It prolonged developmental time and increased mortality of the larval cowpea weevil, Callosobruchus maculatus (F.), in direct proportion to its concentration in the artificial seeds. The fecundity of females emerging from the artificial seeds was significantly decreased by E-64 concentrations of 0.06% and higher. These observations are compatible with the hypothesis that the midgut cysteine proteinase in C. maculatus is essential for normal growth and development.

  7. Altered Expression of Brain Proteinase-Activated Receptor-2, Trypsin-2 and Serpin Proteinase Inhibitors in Parkinson's Disease.

    PubMed

    Hurley, Michael J; Durrenberger, Pascal F; Gentleman, Steve M; Walls, Andrew F; Dexter, David T

    2015-09-01

    Neuroinflammation is thought to contribute to cell death in neurodegenerative disorders, but the factors involved in the inflammatory process are not completely understood. Proteinase-activated receptor-2 (PAR2) expression in brain is increased in Alzheimer's disease and multiple sclerosis, but the status of PAR2 in Parkinson's disease is unknown. This study examined expression of PAR2 and endogenous proteinase activators (trypsin-2, mast cell tryptase) and proteinase inhibitors (serpin-A5, serpin-A13) in areas vulnerable and resistant to neurodegeneration in Parkinson's disease at different Braak α-synuclein stages of the disease in post-mortem brain. In normal aged brain, expression of PAR-2, trypsin-2, and serpin-A5 and serpin-A13 was found in neurons and microglia, and alterations in the amount of immunoreactivity for these proteins were found in some brain regions. Namely, there was a decrease in neurons positive for serpin-A5 in the dorsal motor nucleus, and serpin-A13 expression was reduced in the locus coeruleus and primary motor cortex, while expression of PAR2, trypsin-2 and both serpins was reduced in neurons within the substantia nigra. There was an increased number of microglia that expressed serpin-A5 in the dorsal motor nucleus of vagus and elevated numbers of microglia that expressed serpin-A13 in the substantia nigra of late Parkinson's disease cases. The number of microglia that expressed trypsin-2 increased in primary motor cortex of incidental Lewy body disease cases. Analysis of Parkinson's disease cases alone indicated that serpin-A5 and serpin-A13, and trypsin-2 expression in midbrain and cerebral cortex was different in cases with a high incidence of L-DOPA-induced dyskinesia and psychosis compared to those with low levels of these treatment-induced side effects. This study showed that there was altered expression in brain of PAR2 and some proteins that can control its function in Parkinson's disease. Given the role of PAR2 in

  8. Discovery of an Inhibitor of Z-Alpha1 Antitrypsin Polymerization

    PubMed Central

    Estenson, Kasey Noel; Baudry, Jerome

    2015-01-01

    Polymerization of the Z variant alpha-1-antitrypsin (Z-α1AT) results in the most common and severe form of α1AT deficiency (α1ATD), a debilitating genetic disorder whose clinical manifestations range from asymptomatic to fatal liver and/or lung disease. As the altered conformation of Z-α1AT and its attendant aggregation are responsible for pathogenesis, the polymerization process per se has become a major target for the development of therapeutics. Based on the ability of Z-α1AT to aggregate by recruiting the reactive center loop (RCL) of another Z-α1AT into its s4A cavity, we developed a high-throughput screening assay that uses a modified 6-mer peptide mimicking the RCL to screen for inhibitors of Z-α1AT polymer growth. A subset of compounds from the Library of Pharmacologically Active Compounds (LOPAC) with molecular weights ranging from 300 to 700 Da, was used to evaluate the assay’s capabilities. The inhibitor S-(4-nitrobenzyl)-6-thioguanosine was identified as a lead compound and its ability to prevent Z-α1AT polymerization confirmed by secondary assays. To further investigate the binding location of S-(4-nitrobenzyl)-6-thioguanosine, an in silico strategy was pursued and the intermediate α1AT M* state modeled to allow molecular docking simulations and explore various potential binding sites. Docking results predict that S-(4-nitrobenzyl)-6-thioguanosine can bind at the s4A cavity and at the edge of β-sheet A. The former binding site would directly block RCL insertion whereas the latter site would prevent β-sheet A from expanding between s3A/s5A, and thus indirectly impede RCL insertion. Altogether, our investigations have revealed a novel compound that inhibits the formation of Z-α1AT polymers, as well as in vitro and in silico strategies for identifying and characterizing additional blocking molecules of Z-α1AT polymerization. PMID:25961288

  9. Three low molecular weight cysteine proteinase inhibitors of human seminal fluid: purification and enzyme kinetic properties.

    PubMed

    Yadav, Vikash Kumar; Chhikara, Nirmal; Gill, Kamaldeep; Dey, Sharmistha; Singh, Sarman; Yadav, Savita

    2013-08-01

    The cystatins form a superfamily of structurally related proteins with highly conserved structural folds. They are all potent, reversible, competitive inhibitors of cysteine proteinases (CPs). Proteins from this group present differences in proteinase inhibition despite their high level of structural similarities. In this study, three cysteine proteinase inhibitors (CPIs) of low molecular weight were isolated from human seminal fluid (HSF) by affinity chromatography on carboxymethyl (CM)-papain-Sepharose column, purified using various chromatographic procedures and checked for purity on sodium-dodecyl PAGE (SDS-PAGE). Matrix-assisted laser desorption-ionization-time-of flight-mass spectrometry (MALDI-TOF-MS) identified these proteins as cystatin 9, cystatin SN, and SAP-1 (an N-terminal truncated form of cystatin S). All three CPIs suppressed the activity of papain potentially and showed remarkable heat stability. Interestingly SAP-1 also inhibits the activity of trypsin, chymotrypsin, pepsin, and PSA (prostate specific antigen) and acts as a cross-class protease inhibitor in in vitro studies. Using Surface Plasmon Resonance, we have also observed that SAP-1 shows a significant binding with all these proteases. These studies suggest that SAP-1 is a cross-class inhibitor that may regulate activity of various classes of proteases within the reproductive systems. To our knowledge, this is the first report about purification of CPIs from HSF; the identification of such proteins could provide better insights into the physiological processes and offer intimation for further research. PMID:23619703

  10. Structure of equine infectious anemia virus proteinase complexed with an inhibitor.

    PubMed Central

    Gustchina, A.; Kervinen, J.; Powell, D. J.; Zdanov, A.; Kay, J.; Wlodawer, A.

    1996-01-01

    Equine infectious anemia virus (EIAV), the causative agent of infectious anemia in horses, is a member of the lentiviral family. The virus-encoded proteinase (PR) processes viral polyproteins into functional molecules during replication and it also cleaves viral nucleocapsid protein during infection. The X-ray structure of a complex of the 154G mutant of EIAV PR with the inhibitor HBY-793 was solved at 1.8 A resolution and refined to a crystallographic R-factor of 0.136. The molecule is a dimer in which the monomers are related by a crystallographic twofold axis. Although both the enzyme and the inhibitor are symmetric, the interactions between the central part of the inhibitor and the active site aspartates are asymmetric, and the inhibitor and the two flaps are partially disordered. The overall fold of EIAV PR is very similar to that of other retroviral proteinases. However, a novel feature of the EIAV PR structure is the appearance of the second alpha-helix in the monomer in a position predicted by the structural template for the family of aspartic proteinases. The parts of the EIAV PR with the highest resemblance to human immunodeficiency virus type 1 PR include the substrate-binding sites; thus, the differences in the specificity of both enzymes have to be explained by enzyme-ligand interactions at the periphery of the active site as well. PMID:8844837

  11. alpha 1-Antichymotrypsin is the human plasma inhibitor of macrophage ectoenzymes that cleave pro-macrophage stimulating protein.

    PubMed

    Skeel, A; Leonard, E J

    2001-06-15

    Macrophage stimulating protein (MSP) is secreted as 78-kDa single chain pro-MSP, which is converted to biologically active, disulfide-linked alphabeta chain MSP by cleavage at Arg(483)-Val(484). Murine resident peritoneal macrophages have two cell surface proteolytic activities that cleave pro-MSP. One is a pro-MSP convertase, which cleaves pro-MSP to active MSP; the other degrades pro-MSP. The degrading protease is inhibited by soybean trypsin inhibitor or by low concentrations of blood plasma, which allows the convertase to cleave pro-MSP to MSP. Using pro-MSP cleavage as the assay, we purified the inhibitor from human plasma. The bulk of the plasma protein was removed by salting out and by isoelectric precipitation of albumin. Highly purified inhibitor was then obtained in three steps: dye-ligand binding and elution, ion exchange chromatography, and high performance liquid chromatography gel filtration. After SDS-polyacrylamide gel electrophoresis and transfer to a polyvinylidene membrane, N-terminal sequencing of the product identified it as alpha(1)-antichymotrypsin. The mean concentration of alpha(1)-antichymotrypsin in human plasma is 7 micrometer. At this concentration, alpha(1)-antichymotrypsin inhibits both macrophage enzymes. A concentration of 0.4 micrometer, which is in the expected concentration range in extracellular fluid, preferentially inhibits the degrading enzyme, which allows for cleavage to active MSP by the pro-MSP convertase. PMID:11274154

  12. A substitution of cysteine for glycine 748 of the alpha 1 chain produces a kink at this site in the procollagen I molecule and an altered N-proteinase cleavage site over 225 nm away.

    PubMed

    Vogel, B E; Doelz, R; Kadler, K E; Hojima, Y; Engel, J; Prockop, D J

    1988-12-15

    In previous work (Vogel, B. E., Minor, R. R., Freund, M., and Prockop, D. J. (1987) J. Biol. Chem. 262, 14737-14744), we identified a single-base mutation that converted the glycine at position 748 of the alpha 1 chain of type I procollagen to a cysteine in a proband with a lethal variant of osteogenesis imperfecta. In addition to posttranslational overmodification, the abnormal molecules displayed decreased thermal stability and a decreased rate of secretion. An unexplained finding was that procollagen was poorly processed to pCcollagen in postconfluent cultures of skin fibroblasts. Here, we show that the procollagen synthesized by the proband's cells is resistant to cleavage by procollagen N-proteinase, a conformation-sensitive enzyme. Since the only detectable defect in the molecule was the cysteine for glycine substitution, we assembled several space-filling models to try to explain how the structure of the N-proteinase cleavage site can be affected by an amino acid substitution over 700 amino acid residues or 225 nm away. The models incorporated a phase shift of a tripeptide unit in one or both of the alpha 1 chains. The most satisfactory models produced a flexible kink of 30 degrees or 60 degrees at the site of the cysteine substitution. Therefore, we examined the procollagen by electron microscopy. About 25% of the molecules had a kink not seen in control samples, and the kink was at the site of the cysteine substitution. PMID:3198624

  13. Snake venoms. The amino acid sequences of two proteinase inhibitor homologues from Dendroaspis angusticeps venom.

    PubMed

    Joubert, F J; Taljaard, N

    1980-05-01

    Toxins C13S1C3 and C13S2C3 from D. angusticeps venom were purified by gel filtration and ion exchange chromatography. Whereas C13S1C3 contains 57 amino acids, C13S2C3 contains 59 but each include six half-cystine residues. The complete primary structure of the low toxicity proteins have been elucidated. The sequences and the invariant residues of toxins C13S1C3 and C13S2C3 from D. angusticeps venom resemble, respectively, those of the proteinase inhibitor homologues K and I from D. polylepis polylepis venom and they are also homologous to the active proteinase inhibitors from various sources. In C13S1C3 and K the active site lysyl residue of active bovine pancreatic proteinase inhibitor is conserved but the site residue alanine, is replaced by lysine. In C13S2C3 and I the active site residue is replaced by tyrosine. PMID:7429422

  14. Enzymatic response of the eucalypt defoliator Thyrinteina arnobia (Stoll) (Lepidoptera: Geometridae) to a bis-benzamidine proteinase Inhibitor. i.

    PubMed

    Marinho-Prado, Jeanne Scardini; Lourenção, A L; Guedes, R N C; Pallini, A; Oliveira, J A; Oliveira, M G A

    2012-10-01

    Ingestion of proteinase inhibitors leads to hyperproduction of digestive proteinases, limiting the bioavailability of essential amino acids for protein synthesis, which affects insect growth and development. However, the effects of proteinase inhibitors on digestive enzymes can lead to an adaptive response by the insect. In here, we assessed the biochemical response of midgut proteinases from the eucalypt defoliator Thyrinteina arnobia (Stoll) to different concentrations of berenil, a bis-benzamidine proteinase inhibitor, on eucalyptus. Eucalyptus leaves were immersed in berenil solutions at different concentrations and fed to larvae of T. arnobia. Mortality was assessed daily. The proteolytic activity in the midgut of T. arnobia was assessed after feeding on plants sprayed with aqueous solutions of berenil, fed to fifth instars of T. arnobia for 48 h before midgut removal for enzymatic assays. Larvae of T. arnobia were able to overcome the effects of the lowest berenil concentrations by increasing their trypsin-like activity, but not as berenil concentration increased, despite the fact that the highest berenil concentration resulted in overproduction of trypsin-like proteinases. Berenil also prevented the increase of the cysteine proteinases activity in response to trypsin inhibition. PMID:23950094

  15. Uniquely Regulated Proteinase Inhibitor I Gene in a Wild Tomato Species 1

    PubMed Central

    Wingate, Vincent P. M.; Ryan, Clarence A.

    1991-01-01

    A uniquely regulated proteinase inhibitor I gene was isolated from the wild tomato species Lycopersicon peruvianum (L.) Mill. (LA 107) and characterized. The inhibitor gene is wound-inducible in leaves and is expressed in unripe fruit during development. The gene (λ clone 1) is present on a 15.5 kilobase pair Sal 1-SalI genomic DNA fragment. Southern blot analysis of L. peruvianum genomic DNA shows only one strongly hybridizing DNA fragment to probes derived from λ clone 1. S1 nuclease protection experiments and Northern analyses confirm that this gene is both wound-inducible in leaves and developmentally regulated in young unripe fruit. These observations are supported by comparisons of the 5′-flanking DNA sequences of the L. peruvianum inhibitor I gene with known elicitor responsive cis-acting sequences. The transcriptional regulation of the λ clone 1 inhibitor I gene in leaves of wounded plants and in developing unripe fruit indicates that the gene contains unique complex regulating elements. These elements respond to both environmental and developmental tissue-specific signals that can regulate proteinase inhibitor synthesis to protect the tissues of this wild species of tomato against predators and pathogens. ImagesFigure 4Figure 5Figure 6 PMID:16668426

  16. Competitive inhibition of nitric oxide synthase by p-aminobenzamidine, a serine proteinase inhibitor.

    PubMed

    Venturini, G; Menegatti, E; Ascenzi, P

    1997-03-01

    p-Aminobenzamidine competitively inhibits bovine trypsin, human and bovine thrombin, and human plasmin, all of which act on substrates containing preferentially the L-arginyl side chain at their P1 position. Considering the structural and functional similarity between p-aminobenzamidine and the L-arginyl side chain in trypsin-like serine proteinases, we investigated the interaction of p-aminobenzamidine with mouse brain nitric oxide synthase (NOS), which uses L-arginine as the substrate for generating NO and L-citrulline. p-Aminobenzamidine is a competitive NOS inhibitor (Ki = 1.2 x 10(-4) M, at pH 7.5 and 37.0 degrees C), but not an NO precursor. Therefore, p-aminobenzamidine affects the NO production and the trypsin-like serine proteinase action. PMID:9125158

  17. A trypsin-like proteinase in the midgut of Ectomyelois ceratoniae Zeller (Lepidoptera: Pyralidae): purification, characterization, and host plant inhibitors.

    PubMed

    Ranjbar, Mina; Zibaee, Arash; Sendi, Jalal Jalali

    2014-01-01

    A trypsin-like proteinase was purified and characterized in the midgut of Ectomyelois ceratoniae. A purification process that used Sepharyl G-100 and DEAE-cellulose fast flow chromatographies revealed a proteinase with specific activity of 66.7 μmol/min/mg protein, recovery of 27.04 and purification fold of 23.35. Molecular weight of the purified protein was found to be 35.8 kDa. Optimal pH and temperature were obtained 9 and 20°C for the purified trypsin proteinase, respectively. The purified enzyme was significantly inhibited by PMSF, TLCK, and SBTI as specific inhibitors of trypsins in which TLCK showed the highest inhibitory effect. Trypsin proteinase inhibitors were extracted from four varieties of pomegranate including Brait, Torsh-Sabz, May-Khosh, and Shirin by ion exchange chromatography. It was found that fractions 17-20 of Brait; fractions 18 and 21-26 of Torsh-Sabz; fractions 1-7, 11-17, and 19-21 of May-Khosh and fraction 8 for Shirin showed presence of trypsin inhibitor in these host. Comparison of their inhibitory effects on the purified trypsin proteinase of E. ceratoniae demonstrated that fractions from May-khosh variety had the highest effect on the enzyme among other extracted fractions. Characterization of serine proteinases of insects mainly trypsins is one of the promising methods to decrease population and damages via extracting their inhibitors and providing resistant varieties. PMID:24338707

  18. Alpha-1 antitrypsin reduces ovariectomy-induced bone loss in mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Alpha-1antitrypsin (AAT) is a multifunctional protein with proteinase inhibitor and anti-inflammatory activities. Recent studies showed that AAT has therapeutic effect for diseases associated with inflammation, such as type 1 diabetes and arthritis. Proinflammatory cytokines are primary mediators of...

  19. Kazal-type proteinase inhibitor from disk abalone (Haliotis discus discus): molecular characterization and transcriptional response upon immune stimulation.

    PubMed

    Wickramaarachchi, W D Niroshana; De Zoysa, Mahanama; Whang, Ilson; Wan, Qiang; Lee, Jehee

    2013-09-01

    Proteinases and proteinase inhibitors are involved in several biological and physiological processes in all multicellular organisms. Proteinase inhibitors play a key role in regulating the activity of the respective proteinases. Among serine proteinase inhibitors, kazal-type proteinase inhibitors (KPIs) are widely found in mammals, avians, and a variety of invertebrates. In this study, we describe the identification of a kazal-type serine proteinase inhibitor (Ab-KPI) from the disk abalone, Haliotis discus discus, which is presumably involved in innate immunity. The full-length cDNA of Ab-KPI includes 600 bp nucleotides with an open reading frame (ORF) encoding a polypeptide of 143 amino acids. The deduced amino acid sequence of Ab-KPI contains a putative 17-amino acid signal peptide and two tandem kazal domains with high similarity to other kazal-type SPIs. Each kazal domain consists of reactive site (P1) residue containing a leucine (L), and a threonine (T) located in the second amino acid position after the second conserved cysteine of each domain. Temporal expression of Ab-KPI was assessed by real time quantitative PCR in hemocytes and mantle tissue following bacterial and viral hemorrhagic septicemia virus (VHSV) challenge, and tissue injury. At 6 h post-bacterial and -VHSV challenge, Ab-KPI expression in hemocytes was increased 14-fold and 4-fold, respectively, compared to control samples. The highest up-regulations upon tissue injury were shown at 9 h and 12 h in hemocytes and mantle, respectively. The transcriptional modulation of Ab-KPI following bacterial and viral challenges and tissue injury indicates that it might be involved in immune defense as well as wound healing process in abalone. PMID:23859879

  20. Biochemical features, molecular biology and clinical relevance of the human 15-domain serine proteinase inhibitor LEKTI.

    PubMed

    Walden, Michael; Kreutzmann, Peter; Drögemüller, Katrin; John, Harald; Forssmann, Wolf-Georg; Hans-Jürgen, Mägert

    2002-01-01

    Based on the isolation of a 55 amino acid peptide from human hemofiltrate, we cloned the cDNA for a novel human 15-domain serine proteinase inhibitor termed LEKTI. A trypsin-inhibiting activity was demonstrated for three different domains. High levels of expression of the corresponding gene were detected in oral mucosa, followed by the tonsils, parathyroid glands, thymus, and trachea. Hovnanian and coworkers recently found that certain mutations within the LEKTI gene are linked to the severe congenital disease Netherton syndrome and atopic manifestations (including asthma). Thus, a future therapeutic use of LEKTI is conceivable. PMID:12437098

  1. Determination of human serum alpha1-acid glycoprotein and albumin binding of various marketed and preclinical kinase inhibitors.

    PubMed

    Zsila, Ferenc; Fitos, Ilona; Bencze, Gyula; Kéri, György; Orfi, László

    2009-01-01

    There are about 380 protein kinase inhibitors in drug development as of today and 15 drugs have been marketed already for the treatment of cancer. This time 139 validated kinase targets are in the focus of drug research of pharmaceutical companies and big efforts are made for the development of new, druglike kinase inhibitors. Plasma protein binding is an important factor of the ADME profiling of a drug compound. Human serum albumin (HSA) and alpha(1)-acid glycoprotein (AAG) are the most relevant drug carriers in blood plasma. Since previous literature data indicated that AAG is the principal plasma binding component of some kinase inhibitors the present work focuses on the comprehensive evaluation of AAG binding of a series of marketed and experimental kinase inhibitors by using circular dichroism (CD) spectroscopy approach. HSA binding was also evaluated by affinity chromatography. Protein binding interactions of twenty-six kinase inhibitors are characterized. The contribution of AAG and HSA binding data to the pharmacokinetic profiles of the investigated therapeutic agents is discussed. Structural, biological and drug binding properties of AAG as well as the applicability of the CD method in studying drug-protein binding interactions are also briefly reviewed. PMID:19519376

  2. Purification, crystallization and preliminary crystallographic studies of a Kunitz-type proteinase inhibitor from tamarind (Tamarindus indica) seeds.

    PubMed

    Patil, Dipak N; Chaudhry, Anshul; Sharma, Ashwani K; Tomar, Shailly; Kumar, Pravindra

    2009-07-01

    A Kunitz-type proteinase inhibitor has been purified from tamarind (Tamarindus indica) seeds. SDS-PAGE analysis of a purified sample showed a homogeneous band corresponding to a molecular weight of 21 kDa. The protein was identified as a Kunitz-type proteinase inhibitor based on N-terminal amino-acid sequence analysis. It was crystallized by the vapour-diffusion method using PEG 6000. The crystals belonged to the orthorhombic space group C222(1), with unit-cell parameters a = 37.2, b = 77.1, c = 129.1 A. Diffraction data were collected to a resolution of 2.7 A. Preliminary crystallographic analysis indicated the presence of one proteinase inhibitor molecule in the asymmetric unit, with a solvent content of 44%. PMID:19574654

  3. Coexpression of potato type I and II proteinase inhibitors gives cotton plants protection against insect damage in the field

    PubMed Central

    Dunse, K. M.; Stevens, J. A.; Lay, F. T.; Gaspar, Y. M.; Heath, R. L.; Anderson, M. A.

    2010-01-01

    Potato type I and II serine protease inhibitors are produced by solanaceous plants as a defense mechanism against insects and microbes. Nicotiana alata proteinase inhibitor (NaPI) is a multidomain potato type II inhibitor (pin II) that is produced at high levels in the female reproductive tissues of the ornamental tobacco, Nicotiana alata. The individual inhibitory domains of NaPI target the major classes of digestive enzymes, trypsin and chymotrypsin, in the gut of lepidopteran larval pests. Although consumption of NaPI dramatically reduced the growth and development of a major insect pest, Helicoverpa punctigera, we discovered that surviving larvae had high levels of chymotrypsin activity resistant to inhibition by NaPI. We found a potato type I inhibitor, Solanum tuberosum potato type I inhibitor (StPin1A), was a strong inhibitor of the NaPI-resistant chymotrypsin activity. The combined inhibitory effect of NaPI and StPin1A on H. armigera larval growth in the laboratory was reflected in the increased yield of cotton bolls in field trials of transgenic plants expressing both inhibitors. Better crop protection thus is achieved using combinations of inhibitors in which one class of proteinase inhibitor is used to match the genetic capacity of an insect to adapt to a second class of proteinase inhibitor. PMID:20696895

  4. Molecular cloning, sequencing and expression of a serine proteinase inhibitor gene from Toxoplasma gondii.

    PubMed

    Pszenny, V; Angel, S O; Duschak, V G; Paulino, M; Ledesma, B; Yabo, M I; Guarnera, E; Ruiz, A M; Bontempi, E J

    2000-04-15

    A cDNA clone from a Toxoplasma gondii tachyzoite cDNA library encoding a serine proteinase inhibitor (serpin) was isolated. The 1376 bp cDNA sequence encodes a 294 amino acid protein with a putative signal peptide of 23 amino acids resulting in a mature protein with a predicted mass of 30,190 Da and a pI of 4.86. This protein has internal sequence similarity of residues 30-66, 114-150, 181-217 and 247-283 indicating a four-domain structure. The four domains exhibit high identity to serine proteinase inhibitors belonging to the non-classical Kazal-type family. The gene is single copy in the tachyzoite haploid genome of RH strain and was amplified by polymerase chain reaction (PCR). Several introns were identified. The sequence encoding the mature protein was amplified by PCR, cloned into the pQE30 vector and expressed in Escherichia coli. Specific antiserum generated against the recombinant protein was used in immunoblot assay and two bands of 38 and 42 kDa were detected in a whole parasite homogenate. The recombinant protein showed trypsin-inhibitory activity, one of the two potential specificities. We discuss the possible roles that T. gondii serpin(s) may play in the survival of the tachyzoites in the host. PMID:10779600

  5. [Features of clinical course and proteinase inhibitor balance in tears in eye burns of different localization (an experimental study)].

    PubMed

    Chesnokova, N B; Malarpv, P V; Beznos, O V

    2001-01-01

    Chemical burns of the eye of different location (cornea, corneal fragment with adjacent conjunctiva, and limbus) were studied in experiments. Clinical picture and changes in the lacrimal proteinase inhibitor balance were analyzed. Burn disease is less severe and the number of complications is less if a fragment of the cornea with adjacent conjunctiva and a fragment of the limbus are injured than in case of a corneal burn of the same depth and area. Burn of the total limbus area is a severe injury involving essential shifts in the proteinase inhibitor balance, leading to deep organic changes in the cornea and inner structures of the eye, eventuating in its subatrophy. PMID:11510165

  6. Cloning eleven midgut trypsin cDNAs and evaluating the interaction of proteinase inhibitors with Cry1Ac against the tobacco budworm Heliothis virescens (F.) (Lepidoptera: Noctuidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Midgut trypsins are associated with Bt protoxin activation and toxin degradation. Proteinase inhibitors have potential insecticidal toxicity against a wide range of insect species. Proactive action to examine trypsin gene profiles and proteinase inhibitors for interaction with Bt toxin is necessary ...

  7. Trypsin-like proteinase and its endogenous inhibitor from Yersinia pseudotuberculosis. Biological activity.

    PubMed

    Burtseva, T I; Loenko, Y N

    1999-09-01

    A trypsin-like proteinase (YPTP) and its endogenous inhibitor (ITYP) were isolated from the culture filtrate of the pathogenic bacterium Yersinia pseudotuberculosis, and their biological activities were studied. YPTP was found to be highly toxic for random-bred white mice. Under in vitro conditions the proteolytic enzyme destroyed protective proteins of the immune system of the animals--IgG, IgA, and proteins of the complement system (CIq, C3, and C5)--and, consequently, was a pathogenetic factor in yersinioses. The inhibitor ITYP was shown to manifest antibacterial activity against virulent forms of Yersinia pseudotuberculosis, Escherichia coli, and Salmonella typhimurium. The ITYP preparation was harmless and nontoxic. PMID:10521713

  8. The evolution of a genetic locus encoding small serine proteinase inhibitors

    PubMed Central

    Clauss, Adam; Lilja, Hans; Lundwall, Åke

    2007-01-01

    We previously identified a locus on human chromosome 20 that encompasses 14 genes of postulated WFDC-type proteinase inhibitors with a potential role in innate immunity. In an extended study, homologous loci are here described on mouse chromosome 2, rat chromosome 3, and dog chromosome 24. As in humans, the murine and canine loci are divided into two sub-loci separated by 0.2 Mb. The majority of genes are conserved in all species, but there are also species-specific gains and losses of genes, e.g., several duplications have yielded four SLPI genes in the rat and, most surprisingly, there is no murine elafin gene. Two human pseudogenes were identified due to the discovery of functional rodent genes. The conservation of different WFDC domains varies considerably, and it is hypothesized that this reflects a dual role of WFDC inhibitors in natural immunity, which is directed both against microbes and proinflammatory cells. PMID:15950183

  9. Secretion of mucus proteinase inhibitor and elafin by Clara cell and type II pneumocyte cell lines.

    PubMed

    Sallenave, J M; Silva, A; Marsden, M E; Ryle, A P

    1993-02-01

    The regulation of proteinases secreted by neutrophils is very important for the prevention of tissue injury. We recently described the isolation of elafin from bronchial secretions, a new elastase-specific inhibitor that is also found in the skin of patients with psoriasis. In this study, we investigated the secretion of elafin and mucus proteinase inhibitor (MPI), another inhibitor showing sequence similarity with elafin, in two lung carcinoma cell lines, NCI-H322 and A549, which have features of Clara cells and type II alveolar cells, respectively. The results presented show that the two inhibitors are produced when the cells are cultured either in serum-free or in serum-containing media. MPI was detected immunologically as a unique molecule of M(r) 14 kD, in accordance with previous studies. Conversely, one or two elafin-immunoreactive species were detected depending on the cell line: a 12- to 14-kD species was observed in the A549 cell line, regardless of the culture conditions, whereas in the NCI-H322 cell line we detected a 6-kD species in serum-containing (10% fetal calf serum) conditions and a 12- to 14-kD species in serum-free conditions. The 12- to 14-kD molecule probably represents an active precursor of elafin. Whether the cleavage of the 12- to 14-kD precursor giving rise to the elafin molecule is of any physiologic significance is not known. In showing for the first time that MPI and elafin (and its precursor) are secreted by the A549 cell line, this report implicates the type II alveolar cell in the defense of the peripheral lung against the neutrophil elastase secreted during inflammation. PMID:8427705

  10. Regulation of factor IXa in vitro in human and mouse plasma and in vivo in the mouse. Role of the endothelium and the plasma proteinase inhibitors

    SciTech Connect

    Fuchs, H.E.; Trapp, H.G.; Griffith, M.J.; Roberts, H.R.; Pizzo, S.V.

    1984-06-01

    The regulation of human Factor IXa was studied in vitro in human and mouse plasma and in vivo in the mouse. In human plasma, approximately 60% of the /sup 125/I-Factor IXa was bound to antithrombin III (ATIII) by 2 h, with no binding to alpha 2-macroglobulin or alpha 1-proteinase inhibitor, as assessed by gel electrophoresis and IgG- antiproteinase inhibitor-Sepharose beads. In the presence of heparin, virtually 100% of the /sup 125/I-Factor IXa was bound to ATIII by 1 min. The distribution of /sup 125/I-Factor IXa in mouse plasma was similar. The clearance of /sup 125/I-Factor IXa was rapid (50% clearance in 2 min) and biphasic and was inhibited by large molar excesses of ATIII-thrombin and alpha 1-proteinase inhibitor-trypsin, but not alpha 2-macro-globulin-trypsin; it was also inhibited by large molar excesses of diisopropylphosphoryl - (DIP-) Factor Xa, DIP-thrombin, and Factor IX, but not by prothrombin or Factor X. The clearance of Factor IX was also rapid (50% clearance in 2.5 min) and was inhibited by a large molar excess of Factor IX, but not by large molar excesses of Factor X, prothrombin, DIP-Factor Xa, or DIP-thrombin. Electrophoresis and IgG- antiproteinase inhibitor-Sepharose bead studies confirmed that by 2 min after injection into the murine circulation, 60% of the /sup 125/I-Factor IXa was bound to ATIII. Organ distribution studies with /sup 125/I-Factor IXa demonstrated that most of the radioactivity was in the liver. These studies suggest that Factor IXa binds to at least two classes of binding sites on endothelial cells. One site apparently recognizes both Factors IX and IXa, but not Factor X, Factor Xa, prothrombin, or thrombin. The other site recognizes thrombin, Factor Xa, and Factor IXa, but not the zymogen forms of these clotting factors. After this binding, Factor IXa is bound to ATIII and the complex is cleared from the circulation by hepatocytes.

  11. Functional Characterization of Cucumis metuliferus Proteinase Inhibitor Gene (CmSPI) in Potyviruses Resistance

    PubMed Central

    Lin, Chia-Wei; Su, Mei-Hsiu; Lin, Yu-Tsung; Chung, Chien-Hung; Ku, Hsin-Mei

    2015-01-01

    Proteinase inhibitors are ubiquitous proteins that block the active center or interact allosterically with proteinases and are involved in plant physiological processes and defense responses to biotic and abiotic stresses. The CmSPI gene identified from Cucumis metuliferus encodes a serine type PI (8 kDa) that belongs to potato I type family. To evaluate the effect of silencing CmSPI gene on Papaya ringspot virus resistance, RNA interference (RNAi) with an inter-space hairpin RNA (ihpRNA) construct was introduced into a PRSV-resistant C. metuliferus line. CmSPI was down-regulated in CmSPI RNAi transgenic lines in which synchronously PRSV symptoms were evident at 21 day post inoculation. Alternatively, heterogeneous expression of CmSPI in Nicotiana benthamiana was also conducted and showed that CmSPI can provide resistance to Potato virus Y, another member of Potyvirus, in transgenic N. benthamiana lines. This study demonstrated that CmSPI plays an important role in resistant function against potyviruses in C. metuliferus and N. benthamiana. PMID:26184285

  12. Functional Characterization of Cucumis metuliferus Proteinase Inhibitor Gene (CmSPI) in Potyviruses Resistance.

    PubMed

    Lin, Chia-Wei; Su, Mei-Hsiu; Lin, Yu-Tsung; Chung, Chien-Hung; Ku, Hsin-Mei

    2015-07-01

    Proteinase inhibitors are ubiquitous proteins that block the active center or interact allosterically with proteinases and are involved in plant physiological processes and defense responses to biotic and abiotic stresses. The CmSPI gene identified from Cucumis metuliferus encodes a serine type PI (8 kDa) that belongs to potato I type family. To evaluate the effect of silencing CmSPI gene on Papaya ringspot virus resistance, RNA interference (RNAi) with an inter-space hairpin RNA (ihpRNA) construct was introduced into a PRSV-resistant C. metuliferus line. CmSPI was down-regulated in CmSPI RNAi transgenic lines in which synchronously PRSV symptoms were evident at 21 day post inoculation. Alternatively, heterogeneous expression of CmSPI in Nicotiana benthamiana was also conducted and showed that CmSPI can provide resistance to Potato virus Y, another member of Potyvirus, in transgenic N. benthamiana lines. This study demonstrated that CmSPI plays an important role in resistant function against potyviruses in C. metuliferus and N. benthamiana. PMID:26184285

  13. [Conformational stability of serine proteinase inhibitor from the sea anemone Heteractis crispa].

    PubMed

    Vakorina, T I; Gladkikh, I N; Monastyrnaia, M M; Kozlovskaia, E P

    2011-01-01

    The influence of different environmental values of the pH and temperature on the spatial organization of serine proteinase inhibitor from the sea anemone Heteractis crispa (=Radianthus macrodactylus) on the level of tertiary and secondary structure was studied by CD spectroscopy. The molecule InhVJ was shown to possess a high conformational thermo- and pH-stability. We determined the point of conformational thermotransition of polypeptide (70 degrees C) after which the molecule gets denaturational stable state with conservation of 80% proteinase inhibitory activity. The significant partial reversible changes of molecule spatial organization were established to occur at the level of tertiary structure in the process of acid-base titration in the range of pH 11.0-13.0. This can be explained by of ionization of tyrosine residues. The molecule InhVJ is conformationally stable at the low pH values (2.0). The quenching of tyrosine residues by acrylamide showed that two of these residues are accessible to the quencher in full, while the third part is available. PMID:21899045

  14. Effects of cysteine proteinase inhibitors scN and E-64 on southern corn rootworm larval development

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The southern corn rootworm (SCRW) can be a serious pest of peanut pods. A laboratory bioassay was developed to test feeding cysteine proteinase inhibitors soyacystatin N (scN) and E-64 against southern corn rootworm reared on artificial diet to determine the effects on larvae development and mortal...

  15. Computational study of some benzamidine-based inhibitors of thrombin-like snake venom proteinases

    NASA Astrophysics Data System (ADS)

    Henriques, Elsa S.; Nascimento, Marco A. C.; Ramos, Maria João

    Pit viper venoms contain a number of serine proteinases that, despite their observed coagulant thrombin-like action in vitro, exhibit a paradoxical benign defibrinogenating (anticoagulant) action in vivo, with clinical applications in preventing thrombi and improved blood circulation. Considering that several benzamidine-based inhibitors, some highly selective to thrombin, also inhibit the enzymatic activity of such venombins, the modeling of their enzyme-inhibitor interactions could provide valuable information on the topological factors that determine the divergences in activity. The first step, and the object of the present study, was to derive the necessary set of parameters, consistent with the CHARMM force field, and to perform molecular dynamics (MD) simulations on a few selected representatives of the inhibitors in question under physiological conditions. Bonding and van der Waals parameters were derived by analogy to similar ones in the existing force field. Net atomic charges were obtained with a restrained fitting to the molecular electrostatic potential generated at B3LYP/6-31G(d) level. The parameters were refined to reproduce the available experimental geometries and crystal data, and the MD simulations of the free inhibitors in aqueous solution at 298 K provided an insightful description of their available conformational space.

  16. Protein inhibitors of serine proteinases: role of backbone structure and dynamics in controlling the hydrolysis constant.

    PubMed

    Song, Jikui; Markley, John L

    2003-05-13

    Standard mechanism protein inhibitors of serine proteinases bind as substrates and are cleaved by cognate proteinases at their reactive sites. The hydrolysis constant for this cleavage reaction at the P(1)-P(1)' peptide bond (K(hyd)) is determined by the relative concentrations at equilibrium of the "intact" (uncleaved, I) and "modified" (reactive site cleaved, I*) forms of the inhibitor. The pH dependence of K(hyd) can be explained in terms of a pH-independent term, K(hyd) degrees, plus the proton dissociation constants of the newly formed amino and carboxylate groups at the cleavage site. Two protein inhibitors that differ from one another by a single residue substitution have been found to have K(hyd) degrees values that differ by a factor of 5 [Ardelt, W., and Laskowski, M., Jr. (1991) J. Mol. Biol. 220, 1041-1052]: turkey ovomucoid third domain (OMTKY3) has K(hyd) degrees = 1.0, and Indian peafowl ovomucoid third domain (OMIPF3), which differs from OMTKY3 by the substitution P(2)'-Tyr(20)His, has K(hyd) degrees = 5.15. What mechanism is responsible for this small difference? Is it structural (enthalpic) or dynamic (entropic)? Does the mutation affect the free energy of the I state, the I* state, or both? We have addressed these questions through NMR investigations of the I and I forms of OMTKY3 and OMIPF3. Information about structure was derived from measurements of NMR chemical shift changes and trans-hydrogen-bond J-couplings; information about dynamics was obtained through measurements of (15)N relaxation rates and (1)H-(15)N heteronuclear NOEs with model-free analysis of the results. Although the I forms of each variant are more dynamic than the corresponding I forms, the study revealed no appreciable difference in the backbone dynamics of either intact inhibitor (OMIPF3 vs OMTKY3) or modified inhibitor (OMIPF3* vs OMTKY3*). Instead, changes in chemical shifts and trans-hydrogen-bond J-couplings suggested that the K(hyd) degrees difference arises from

  17. Antifeedant effects of proteinase inhibitors on feeding behaviors of adult western corn rootworm (Diabrotica virgifera virgifera).

    PubMed

    Kim, Jae Hak; Mullin, Christopher A

    2003-04-01

    Low-molecular-weight peptidyl proteinase inhibitors (PIs) including leupeptin, calpain inhibitor I, and calpeptin were found to be potent antifeedants for adult western corn rootworm (WCR) against the phagostimulation of cucurbitacin B (Cuc B) or a corn pollen extract (CPE). Leupeptin was the strongest (ED50 = 0.36 and 0.55 nmol/disk for Cuc B and CPE, respectively) among PIs tested with an antifeedant potency much stronger than the steroid progesterone (ED50 = 2.29 and 5.05 nmol/disk for Cuc B and CPE, respectively), but slightly less than the reference alkaloid, strychnine (ED50 = 0.17 and 0.37 nmol/disk for Cuc B and CPE, respectively). All active PIs contain a di- or tripeptidyl aldehyde moiety, indicating that PIs exert their antifeedant effects by covalent interaction with putative sulfhydryl (SH) groups on taste receptors as do these PIs with cysteine proteinases. However, opposite inhibition potency against Cuc B versus CPE by two thiol-group reducing agents, DTT and L-cysteine, and the results with other cysteine-modifying reagents obscure the net functional role of SH groups at WCR taste chemoreceptors. Surprisingly, the model phagostimulant for diabroticites, Cuc B, was more easily counteracted by these feeding deterrents than the stimulants present in CPE. Three-dimensional structure-antifeedant relationships for the PIs suggest that a novel taste chemoreception mechanism exists for these peptidyl aldehydes or that they fit partially into a strychnine binding pocket on protein chemoreceptors. Favorable economic benefit may be achieved if PIs are discovered to be useful in adult WCR control, since both pre- and postingestive sites would be targeted. PMID:12775144

  18. Serine leucocyte proteinase inhibitor-treated monocyte inhibits human CD4(+) lymphocyte proliferation.

    PubMed

    Guerrieri, Diego; Tateosian, Nancy L; Maffía, Paulo C; Reiteri, Romina M; Amiano, Nicolás O; Costa, María J; Villalonga, Ximena; Sanchez, Mercedes L; Estein, Silvia M; Garcia, Verónica E; Sallenave, Jean-Michel; Chuluyan, Héctor E

    2011-08-01

    Serine leucocyte proteinase inhibitor (SLPI) is the main serine proteinase inhibitor produced by epithelial cells and has been shown to be a pleiotropic molecule with anti-inflammatory and microbicidal activities. However, the role of SLPI on the adaptive immune response is not well established. Therefore, we evaluated the effect of SLPI on lymphocyte proliferation and cytokine production. Human peripheral blood mononuclear cells (PBMC) were treated with mitogens plus SLPI and proliferation was assessed by [(3) H]thymidine uptake. The SLPI decreased the lymphocyte proliferation induced by interleukin-2 (IL-2) or OKT3 monoclonal antibodies in a dose-dependent manner. Inhibition was not observed when depleting monocytes from the PBMC and it was restored by adding monocytes and SLPI. SLPI-treated monocyte slightly decreased MHC II and increased CD18 expression, and secreted greater amounts of IL-4, IL-6 and IL-10 in the cell culture supernatants. SLPI-treated monocyte culture supernatant inhibited the CD4(+) lymphocyte proliferation but did not affect the proliferation of CD8(+) cells. Moreover, IL-2 increased T-bet expression and the presence of SLPI significantly decreased it. Finally, SLPI-treated monocyte culture supernatant dramatically decreased interferon-γ but increased IL-4, IL-6 and IL-10 in the presence of IL-2-treated T cells. Our results demonstrate that SLPI target monocytes, which in turn inhibit CD4 lymphocyte proliferation and T helper type 1 cytokine secretion. Overall, these results suggest that SLPI is an alarm protein that modulates not only the innate immune response but also the adaptive immune response. PMID:21574992

  19. Serine leucocyte proteinase inhibitor-treated monocyte inhibits human CD4+ lymphocyte proliferation

    PubMed Central

    Guerrieri, Diego; Tateosian, Nancy L; Maffía, Paulo C; Reiteri, Romina M; Amiano, Nicolás O; Costa, María J; Villalonga, Ximena; Sanchez, Mercedes L; Estein, Silvia M; Garcia, Verónica E; Sallenave, Jean-Michel; Chuluyan, Héctor E

    2011-01-01

    Serine leucocyte proteinase inhibitor (SLPI) is the main serine proteinase inhibitor produced by epithelial cells and has been shown to be a pleiotropic molecule with anti-inflammatory and microbicidal activities. However, the role of SLPI on the adaptive immune response is not well established. Therefore, we evaluated the effect of SLPI on lymphocyte proliferation and cytokine production. Human peripheral blood mononuclear cells (PBMC) were treated with mitogens plus SLPI and proliferation was assessed by [3H]thymidine uptake. The SLPI decreased the lymphocyte proliferation induced by interleukin-2 (IL-2) or OKT3 monoclonal antibodies in a dose-dependent manner. Inhibition was not observed when depleting monocytes from the PBMC and it was restored by adding monocytes and SLPI. SLPI-treated monocyte slightly decreased MHC II and increased CD18 expression, and secreted greater amounts of IL-4, IL-6 and IL-10 in the cell culture supernatants. SLPI-treated monocyte culture supernatant inhibited the CD4+ lymphocyte proliferation but did not affect the proliferation of CD8+ cells. Moreover, IL-2 increased T-bet expression and the presence of SLPI significantly decreased it. Finally, SLPI-treated monocyte culture supernatant dramatically decreased interferon-γ but increased IL-4, IL-6 and IL-10 in the presence of IL-2-treated T cells. Our results demonstrate that SLPI target monocytes, which in turn inhibit CD4 lymphocyte proliferation and T helper type 1 cytokine secretion. Overall, these results suggest that SLPI is an alarm protein that modulates not only the innate immune response but also the adaptive immune response. PMID:21574992

  20. Inactivation of α1-proteinase inhibitor by Candida albicans aspartic proteases favors the epithelial and endothelial cell colonization in the presence of neutrophil extracellular traps.

    PubMed

    Gogol, Mariusz; Ostrowska, Dominika; Klaga, Kinga; Bochenska, Oliwia; Wolak, Natalia; Aoki, Wataru; Ueda, Mitsuyoshi; Kozik, Andrzej; Rapala-Kozik, Maria

    2016-01-01

    Candida albicans, a causative agent of opportunistic fungal infections in immunocompromised patients, uses ten secreted aspartic proteases (SAPs) to deregulate the homeostasis of the host organism on many levels. One of these deregulation mechanisms involves a SAP-dependent disturbance of the control over proteolytic enzymes of the host by a system of dedicated proteinase inhibitors, with one important example being the neutrophil elastase and alpha1-proteinase inhibitor (A1PI). In this study, we found that soluble SAPs 1-4 and the cell membrane-anchored SAP9 efficiently cleaved A1PI, with the major cleavage points located at the C-terminal part of A1PI in a close vicinity to the reactive-site loop that plays a critical role in the inhibition mechanism. Elastase is released by neutrophils to the environment during fungal infection through two major processes, a degranulation or formation of neutrophil extracellular traps (NET). Both, free and NET-embedded elastase forms, were found to be controlled by A1PI. A local acidosis, resulting from the neutrophil activity at the infection sites, favors A1PI degradation by SAPs. The deregulation of NET-connected elastase affected a NET-dependent damage of epithelial and endothelial cells, resulting in the increased susceptibility of these host cells to candidal colonization. Moreover, the SAP-catalyzed cleavage of A1PI was found to decrease its binding affinity to a proinflammatory cytokine, interleukin-8. The findings presented here suggest a novel strategy used by C. albicans for the colonization of host tissues and overcoming the host defense. PMID:26641639

  1. A serine proteinase inhibitor isolated from Tamarindus indica seeds and its effects on the release of human neutrophil elastase.

    PubMed

    Fook, J M S L L; Macedo, L L P; Moura, G E D D; Teixeira, F M; Oliveira, A S; Queiroz, A F S; Sales, M P

    2005-05-01

    Proteinaceous inhibitors with high inhibitory activities against human neutrophil elastase (HNE) were found in seeds of the Tamarind tree (Tamarindus indica). A serine proteinase inhibitor denoted PG50 was purified using ammonium sulphate and acetone precipitation followed by Sephacryl S-300 and Sephadex G-50 gel filtration chromatographies. Inhibitor PG50 showed a Mr of 14.9 K on Sephadex G-50 calibrated column and a Mr of 11.6 kDa on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. PG50 had selective activity while cysteine proteinases (papain and bromelain) and serine proteinases (porcine pancreatic elastase and bovine chymotrypsin) were not inhibited, it was strongly effective against serine proteinases such as bovine trypsin and isolated human neutrophil elastase. The IC50 value was determined to be 55.96 microg.mL-1. PG50 showed neither cytotoxic nor haemolytic activity on human blood cells. After pre-incubation of PG50 with cytochalasin B, the exocytosis of elastase was initiated using PAF and fMLP. PG50 exhibited different inhibition on elastase release by PAF, at 44.6% and on release by fMLP, at 28.4%. These results showed that PG50 preferentially affected elastase release by PAF stimuli and this may indicate selective inhibition on PAF receptors. PMID:15820500

  2. Synthesis of the proteinase inhibitor LEKTI domain 6 by the fragment condensation method and regioselective disulfide bond formation.

    PubMed

    Vasileiou, Zoe; Barlos, Kostas K; Gatos, Dimitrios; Adermann, Knut; Deraison, Celine; Barlos, Kleomenis

    2010-01-01

    Proteinase inhibitors are of high pharmaceutical interest and are drug candidates for a variety of indications. Specific kallikrein inhibitors are important for their antitumor activity and their potential application to the treatment of skin diseases. In this study we describe the synthesis of domain 6 of the kallikrein inhibitor Lympho-Epithilial Kazal-Type Inhibitor (LEKTI) by the fragment condensation method and site-directed cystine bridge formation. To obtain the linear LEKTI precursor, the condensation was best performed in solution, coupling the protected fragment 1-22 to 23-68. This method yielded LEKTI domain 6 of high purity and equipotent to the recombinantly produced peptide. PMID:20069636

  3. Embryonic Dorsal-Ventral Signaling: Secreted Frizzled-Related Proteins as Inhibitors of Tolloid Proteinases

    PubMed Central

    Lee, Hojoon X.; Ambrosio, Andrea L.; Reversade, Bruno; De Robertis, E.M.

    2008-01-01

    SUMMARY Here we report an unexpected role for the secreted Frizzled-related protein (sFRP) Sizzled/Ogon as an inhibitor of the extracellular proteolytic reaction that controls BMP signaling during Xenopus gastrulation. Microinjection experiments suggest that the Frizzled domain of Sizzled regulates the activity of Xolloid-related (Xlr), a metalloproteinase that degrades Chordin, through the following molecular pathway: Szl ┤ Xlr ┤ Chd ┤ BMP → P-Smad1 → Szl. In biochemical assays, the Xlr proteinase has similar affinities for its endogenous substrate Chordin and for its competitive inhibitor Sizzled, which is resistant to enzyme digestion. Extracellular levels of Sizzled and Chordin in the gastrula embryo and enzyme reaction constants were all in the 10−8 M range, consistent with a physiological role in the regulation of dorsal-ventral patterning. Sizzled is also a natural inhibitor of BMP1, a Tolloid metalloproteinase of medical interest. Furthermore, mouse sFRP2 inhibited Xlr, suggesting a wider role for this molecular mechanism. PMID:16413488

  4. Inhibition of antigen- and lectin-induced proliferation of rat spleen cells by a Taenia taeniaeformis proteinase inhibitor.

    PubMed Central

    Leid, R W; Suquet, C M; Perryman, L E

    1984-01-01

    Rat splenic lymphocytes, cultured in vitro for 3 days in the presence of a larval cestode proteinase inhibitor, exhibited a marked suppression of proliferation when stimulated with Con A, PHA, PWM and ovalbumin. Reduced responsiveness was observed over a full range of concentrations of Con A (16-fold), PHA (50-fold), PWM (four-fold) and ovalbumin (16-fold). These results indicated that the inhibitory action could not be overcome by increasing the mitogen or antigen doses beyond optimal levels. This suppressive effect disappeared when the Taenia taeniaeformis proteinase inhibitor was added 20 h after the initiation of culture, suggesting that the inhibitor affects lymphocyte blastogenesis during the early stages of lymphocyte activation. PMID:6744668

  5. Effects of a potato cysteine proteinase inhibitor on midgut proteolytic enzyme activity and growth of the southern corn rootworm, Diabrotica undecimpunctata howardi (Coleoptera: Chrysomelidae).

    PubMed

    Fabrick, J; Behnke, C; Czapla, T; Bala, K; Rao, A G; Kramer, K J; Reeck, G R

    2002-04-01

    The major proteinase activity in extracts of larval midguts from the southern corn rootworm (SCR), Diabrotica undecimpunctata howardi, was identified as a cysteine proteinase that prefers substrates containing an arginine residue in the P1 position. Gelatin-zymogram analysis of the midgut proteinases indicated that the artificial diet-fed SCR, corn root-fed SCR, and root-fed western corn rootworms (Diabrotica virgifera virgifera) possess a single major proteinase with an apparent molecular mass of 25kDa and several minor proteinases. Similar proteinase activity pH profiles were exhibited by root-fed and diet-fed rootworms with the optimal activity being slightly acidic. Rootworm larvae reared on corn roots exhibited significantly less caseinolytic activity than those reared on the artificial diet. Midgut proteolytic activity from SCR was most sensitive to inhibition by inhibitors of cysteine proteinases. Furthermore, rootworm proteinase activity was particularly sensitive to inhibition by a commercial protein preparation from potato tubers (PIN-II). One of the proteins, potato cysteine proteinase inhibitor-10', PCPI-10', obtained from PIN-II by ion-exchange chromatography, was the major source of inhibitory activity against rootworm proteinase activity. PCPI-10' and E-64 were of comparable potency as inhibitors of southern corn rootworm proteinase activity (IC(50) =31 and 35nM, respectively) and substantially more effective than chicken egg white cystatin (IC(50) =121nM). Incorporation of PCPI-10' into the diet of SCR larvae in feeding trials resulted in a significant increase in mortality and growth inhibition. We suggest that expression of inhibitors such as PCPI-10' by transgenic corn plants in the field is a potentially attractive method of host plant resistance to these Diabrotica species. PMID:11886775

  6. Isolation, Cloning and Structural Characterisation of Boophilin, a Multifunctional Kunitz-Type Proteinase Inhibitor from the Cattle Tick

    PubMed Central

    Macedo-Ribeiro, Sandra; Almeida, Carla; Calisto, Bárbara M.; Friedrich, Thomas; Mentele, Reinhard; Stürzebecher, Jörg; Fuentes-Prior, Pablo; Pereira, Pedro José Barbosa

    2008-01-01

    Inhibitors of coagulation factors from blood-feeding animals display a wide variety of structural motifs and inhibition mechanisms. We have isolated a novel inhibitor from the cattle tick Boophilus microplus, one of the most widespread parasites of farm animals. The inhibitor, which we have termed boophilin, has been cloned and overexpressed in Escherichia coli. Mature boophilin is composed of two canonical Kunitz-type domains, and inhibits not only the major procoagulant enzyme, thrombin, but in addition, and by contrast to all other previously characterised natural thrombin inhibitors, significantly interferes with the proteolytic activity of other serine proteinases such as trypsin and plasmin. The crystal structure of the bovine α-thrombin·boophilin complex, refined at 2.35 Å resolution reveals a non-canonical binding mode to the proteinase. The N-terminal region of the mature inhibitor, Q16-R17-N18, binds in a parallel manner across the active site of the proteinase, with the guanidinium group of R17 anchored in the S1 pocket, while the C-terminal Kunitz domain is negatively charged and docks into the basic exosite I of thrombin. This binding mode resembles the previously characterised thrombin inhibitor, ornithodorin which, unlike boophilin, is composed of two distorted Kunitz modules. Unexpectedly, both boophilin domains adopt markedly different orientations when compared to those of ornithodorin, in its complex with thrombin. The N-terminal boophilin domain rotates 9° and is displaced by 6 Å, while the C-terminal domain rotates almost 6° accompanied by a 3 Å displacement. The reactive-site loop of the N-terminal Kunitz domain of boophilin with its P1 residue, K31, is fully solvent exposed and could thus bind a second trypsin-like proteinase without sterical restraints. This finding explains the formation of a ternary thrombin·boophilin·trypsin complex, and suggests a mechanism for prothrombinase inhibition in vivo. PMID:18286181

  7. Increased expression of the secretory leukocyte proteinase inhibitor in Wegener's granulomatosis

    PubMed Central

    OHLSSON, S; FALK, R; YANG, J J; OHLSSON, K; SEGELMARK, M; WIESLANDER, J

    2003-01-01

    The secretory leucocyte proteinase inhibitor (SLPI) is a low molecular weight, tissue-specific inhibitor of proteases, such as elastase and cathepsin G. It is the major local protease inhibitor in the upper airways. Proteinase 3, the main autoantigen in Wegener's granulomatosis (WG), can degrade SLPI proteolytically. In addition, SLPI is sensitive to oxidative inactivation by myeloperoxidase-generated free oxygen radicals. SLPI also has an antimicrobial capacity that can be of interest, as infection is considered to play a role in the pathogenesis of WG. This study focuses on SLPI expression in patients suffering from WG, something that to our knowledge has not been explored hitherto. Serum samples and nasal biopsies were obtained from 12 Swedish WG patients, while buffy coats were obtained from 33 American WG patients. SLPI levels in serum were measured by means of ELISA and the protein was detected by means of immunohistochemistry in nasal biopsies. mRNA expression was studied by means of in situ hybridization on nasal biopsies and RT-PCR on leucocytes. IL-6 or ESR were measured as markers of inflammatory activity. Cystatin C or creatinine was measured as a marker of renal filtration. White blood cell counts were registered. In serum, we found close to normal SLPI levels, without any correlation to IL-6. Two patients had greatly elevated values, both of them suffering from severe renal engagement. Strong SLPI mRNA expression was found in nasal biopsies. RT-PCR on leucocyte mRNA showed normal or greatly elevated expression of SLPI mRNA, correlating with disease activity. Leukocyte SLPI expression seems to be up-regulated in active WG. Serum levels were measured in a small number of patients and were found to be close to normal. Lack of correlation to the acute phase response indicates a specific regulation. This might be linked to an altered protease/antiprotease balance. These findings could indicate that SLPI locally participates in the anti-inflammatory and

  8. Potato type I and II proteinase inhibitors: modulating plant physiology and host resistance.

    PubMed

    Turra, David; Lorito, Matteo

    2011-08-01

    Serine protease inhibitors (PIs) are a large and complex group of plant proteins. Members of the potato type I (Pin1) and II (Pin2) proteinase inhibitor families are among the first and most extensively characterized plant PIs. Many insects and phytopathogenic microorganisms use intracellular and extracellular serine proteases playing important roles in pathogenesis. Plants, however, are able to fight these pathogens through the activation of an intricate defence system that leads to the accumulation of various PIs, including Pin1 and Pin2. Several transgenic plants over-expressing members of the Pin1 and Pin2 families have been obtained in the last twenty years and their enhanced defensive capabilities demonstrated against insects, fungi and bacteria. Furthermore, Pin1 and Pin2 genetically engineered plants showed altered regulation of different plant physiological processes (e.g., dehydratation response, programmed cell death, plant growth, trichome density and branching), supporting an endogenous role in various plant species in addition to the well established defensive one. This review summarizes the current knowledge about Pin1 and Pin2 structure, the role of these proteins in plant defence and physiology, and their potential exploitation in biotechnology. PMID:21418020

  9. Neutrophil elastase reduces secretion of secretory leukoproteinase inhibitor (SLPI) by lung epithelial cells: role of charge of the proteinase-inhibitor complex

    PubMed Central

    Sullivan, Anita L; Dafforn, Timothy; Hiemstra, Pieter S; Stockley, Robert A

    2008-01-01

    Background Secretory leukoproteinase inhibitor (SLPI) is an important inhibitor of neutrophil elastase (NE), a proteinase implicated in the pathogenesis of lung diseases such as COPD. SLPI also has antimicrobial and anti-inflammatory properties, but the concentration of SLPI in lung secretions in COPD varies inversely with infection and the concentration of NE. A fall in SLPI concentration is also seen in culture supernatants of respiratory cells exposed to NE, for unknown reasons. We investigated the hypothesis that SLPI complexed with NE associates with cell membranes in vitro. Methods Respiratory epithelial cells were cultured in the presence of SLPI, varying doses of proteinases over time, and in different experimental conditions. The likely predicted charge of the complex between SLPI and proteinases was assessed by theoretical molecular modelling. Results We observed a rapid, linear decrease in SLPI concentration in culture supernatants with increasing concentration of NE and cathepsin G, but not with other serine proteinases. The effect of NE was inhibited fully by a synthetic NE inhibitor only when added at the same time as NE. Direct contact between NE and SLPI was required for a fall in SLPI concentration. Passive binding to cell culture plate materials was able to remove a substantial amount of SLPI both with and without NE. Theoretical molecular modelling of the structure of SLPI in complex with various proteinases showed a greater positive charge for the complex with NE and cathepsin G than for other proteinases, such as trypsin and mast cell tryptase, that also bind SLPI but without reducing its concentration. Conclusion These data suggest that NE-mediated decrease in SLPI is a passive, charge-dependent phenomenon in vitro, which may correlate with changes observed in vivo. PMID:18699987

  10. Conformational changes of ovine α-1-proteinase inhibitor: The influence of heparin binding

    NASA Astrophysics Data System (ADS)

    Gupta, Vivek Kumar; Gowda, Lalitha R.

    2008-11-01

    α-1-Proteinase inhibitor (α-1-PI), the archetypal serpin causes rapid, irreversible stoichiometric inhibition of redundant circulating serine proteases and is associated with emphysema, inflammatory response and maintenance of protease-inhibitor equilibrium in vascular and peri-vascular spaces. A homogenous preparation of heparin octasaccharide binds to ovine and human α-1-PI and enhances their protease inhibitory activity phenomenally. Size-exclusion chromatography and dynamic light scattering experiments reveal that ovine α-1-PI undergoes a decrease in the Stokes' radius upon heparin binding. A strong binding; characterizes this α-1-PI-heparin interaction as revealed by the binding constant ( Kα) 1.98 ± 0.2 × 10 -6 M and 2.1 ± 0.2 × 10 -6 M determined by fluorescence spectroscopy and equilibrium dialysis, respectively. The stoichiometry of heparin binding to ovine α-1-PI was 1.1 ± 0.2:1. The Stern-Volmer constants ( Ksv) for heparin activated ovine and human α-1-PI were found to be 5.13 × 10 -6 M and 5.67 × 10 -6 M, respectively, significantly higher than the native inhibitors. FTIR and CD spectroscopy project the systematic structural reorientations that α-1-PI undergoes upon heparin binding characterized by a decrease in α-helical content and a concomitant increase in β-turn and random coil elements. It is likely that these conformational changes result in the movement of the α-1-PI reactive site loop into an extended structure that is better poised to combat the cognate protease and accelerate the inhibition.

  11. Bowman-Birk proteinase inhibitor from Clitoria fairchildiana seeds: Isolation, biochemical properties and insecticidal potential.

    PubMed

    Dantzger, Miriam; Vasconcelos, Ilka Maria; Scorsato, Valéria; Aparicio, Ricardo; Marangoni, Sergio; Macedo, Maria Lígia Rodrigues

    2015-10-01

    Herein described is the biochemical characterisation, including in vitro and in vivo assays, for a proteinase inhibitor purified from Clitoria fairchildiana seeds (CFPI). Purification was performed by hydrophobic interaction and gel filtration chromatography. Kinetic studies of the purified inhibitor showed a competitive-type inhibitory activity against bovine trypsin and chymotrypsin, with an inhibition stoichiometry of 1:1 for both enzymes. The inhibition constants against trypsin and chymotrypsin were 3.3 × 10(-10) and 1.5 × 10(-10)M, respectively, displaying a tight binding property. SDS-PAGE showed that CFPI has a single polypeptide chain with an apparent molecular mass of 15 kDa under non-reducing conditions. However, MALDI-TOF analysis demonstrated a molecular mass of 7.973 kDa, suggesting that CFPI is dimeric in solution. The N-terminal sequence of CFPI showed homology with members of the Bowman-Birk inhibitor family. CFPI remained stable to progressive heating for 30 min to each temperature range of 37 up to 100 °C and CD analysis exhibited no changes in spectra at 207 nm after heating at 90 °C and subsequent cooling. Moreover, CFPI was active over a wide pH range (2-10). In contrast, reduction with DTT resulted in a loss of inhibitory activity against trypsin and chymotrypsin. CFPI also exhibited significant inhibitory activity against larval midgut trypsin enzymes from Anagasta kuehniella (76%), Diatraea saccharalis (59%) and Heliothis virescens (49%). Its insecticidal properties were further analysed by bioassays and confirmed by negative impact on A. kuehniella development. PMID:26330217

  12. Rhabdovirus-induced apoptosis in a fish cell line is inhibited by a human endogenous acid cysteine proteinase inhibitor.

    PubMed Central

    Björklund, H V; Johansson, T R; Rinne, A

    1997-01-01

    To determine the mechanisms of cell death in rhabdovirus-infected cells, we studied the infection of the epithelial papilloma of carp cell line with spring viremia of carp virus. Studies using electron microscopy, confocal microscopy, and agarose gel electrophoresis revealed changes in cell morphology and DNA fragmentation indicative of apoptosis. The virus-induced apoptosis was inhibited in cells treated with a human endogenous acid cysteine proteinase inhibitor. PMID:9188644

  13. Opposite Effects on Spodoptera littoralis Larvae of High Expression Level of a Trypsin Proteinase Inhibitor in Transgenic Plants1

    PubMed Central

    De Leo, Francesca; Bonadé-Bottino, Michel A.; Ceci, Luigi R.; Gallerani, Raffaele; Jouanin, Lise

    1998-01-01

    This work illustrates potential adverse effects linked with the expression of proteinase inhibitor (PI) in plants used as a strategy to enhance pest resistance. Tobacco (Nicotiana tabacum L. cv Xanthi) and Arabidopsis [Heynh.] ecotype Wassilewskija) transgenic plants expressing the mustard trypsin PI 2 (MTI-2) at different levels were obtained. First-instar larvae of the Egyptian cotton worm (Spodoptera littoralis Boisd.) were fed on detached leaves of these plants. The high level of MTI-2 expression in leaves had deleterious effects on larvae, causing mortality and decreasing mean larval weight, and was correlated with a decrease in the leaf surface eaten. However, larvae fed leaves from plants expressing MTI-2 at the low expression level did not show increased mortality, but a net gain in weight and a faster development compared with control larvae. The low MTI-2 expression level also resulted in increased leaf damage. These observations are correlated with the differential expression of digestive proteinases in the larval gut; overexpression of existing proteinases on low-MTI-2-expression level plants and induction of new proteinases on high-MTI-2-expression level plants. These results emphasize the critical need for the development of a PI-based defense strategy for plants obtaining the appropriate PI-expression level relative to the pest's sensitivity threshold to that PI. PMID:9808744

  14. Development and bioassay of transgenic Chinese cabbage expressing potato proteinase inhibitor II gene.

    PubMed

    Zhang, Junjie; Liu, Fan; Yao, Lei; Luo, Chen; Yin, Yue; Wang, Guixiang; Huang, Yubi

    2012-06-01

    Lepidopteran larvae are the most injurious pests of Chinese cabbage production. We attempted the development of transgenic Chinese cabbage expressing the potato proteinase inhibitor II gene (pinII) and bioassayed the pest-repelling ability of these transgenic plants. Cotyledons with petioles from aseptic seedlings were used as explants for Agrobacterium-mediated in vitro transformation. Agrobacterium tumefaciens C58 contained the binary vector pBBBasta-pinII-bar comprising pinII and bar genes. Plants showing vigorous PPT resistance were obtained by a series concentration selection for PPT resistance and subsequent regeneration of leaf explants dissected from the putative chimera. Transgenic plants were confirmed by PCR and genomic Southern blotting, which showed that the bar and pinII genes were integrated into the plant genome. Double haploid homozygous transgenic plants were obtained by microspore culture. The pinII expression was detected using quantitative real time polymerase chain reaction (qRT-PCR) and detection of PINII protein content in the transgenic homozygous lines. Insect-feeding trials using the larvae of cabbage worm (Pieris rapae) and the larvae of the diamondback moth (Plutella xylostella) showed higher larval mortality, stunted larval development, and lower pupal weights, pupation rates, and eclosion rates in most of the transgenic lines in comparison with the corresponding values in the non-transformed wild-type line. PMID:23136521

  15. Development and bioassay of transgenic Chinese cabbage expressing potato proteinase inhibitor II gene

    PubMed Central

    Zhang, Junjie; Liu, Fan; Yao, Lei; Luo, Chen; Yin, Yue; Wang, Guixiang; Huang, Yubi

    2012-01-01

    Lepidopteran larvae are the most injurious pests of Chinese cabbage production. We attempted the development of transgenic Chinese cabbage expressing the potato proteinase inhibitor II gene (pinII) and bioassayed the pest-repelling ability of these transgenic plants. Cotyledons with petioles from aseptic seedlings were used as explants for Agrobacterium-mediated in vitro transformation. Agrobacterium tumefaciens C58 contained the binary vector pBBBasta-pinII-bar comprising pinII and bar genes. Plants showing vigorous PPT resistance were obtained by a series concentration selection for PPT resistance and subsequent regeneration of leaf explants dissected from the putative chimera. Transgenic plants were confirmed by PCR and genomic Southern blotting, which showed that the bar and pinII genes were integrated into the plant genome. Double haploid homozygous transgenic plants were obtained by microspore culture. The pinII expression was detected using quantitative real time polymerase chain reaction (qRT-PCR) and detection of PINII protein content in the transgenic homozygous lines. Insect-feeding trials using the larvae of cabbage worm (Pieris rapae) and the larvae of the diamondback moth (Plutella xylostella) showed higher larval mortality, stunted larval development, and lower pupal weights, pupation rates, and eclosion rates in most of the transgenic lines in comparison with the corresponding values in the non-transformed wild-type line. PMID:23136521

  16. Inactivation of bronchial mucous proteinase inhibitor by cigarette smoke and phagocyte-derived oxidants

    SciTech Connect

    Carp, H.; Janoff, A.

    1980-08-01

    Freshly prepared aqueous solutions of cigarette smoke suppressed the elastase inhibitory capacity (EIC) of the acid-stable proteinase inhibitor present in bronchial mucus (BMPi) and human seminal plasma (HUSI-I). Thin-layer gel-immunofiltration analysis of mixtures of smoke-treated BMPi and human leukocyte elastase showed decreased elastase: BMPi complexes, increased uncomplexed BMPi and increased free elastase. Phenolic antioxidants prevented the suppression of the EIC of BMPi or HUSI-I by cigarette smoke. In addition, treatment of BMPi or HUSI-I with chemical oxidants caused a similar suppression of EIC. Furthermore, treatment of BMPi or HUSI-I with the phagocyte-derived oxidizing system, myeloperoxidase + H2O2 + Cl-, suppressed EIC. Finally, the functional activity of BMPi was significantly reduced in tracheal aspirates of human smokers compared to that of nonsmokers. These results support the hypothesis that local inactivation of BMPi in the conducting airways of the lung by inhaled cigarette smoke or by phagocyte-derived oxidants may play a role in the pathogenesis of obstructive lung disease in smokers.

  17. Structural and inhibitory properties of a plant proteinase inhibitor containing the RGD motif.

    PubMed

    Nakahata, Adriana M; Bueno, Norlene R; Rocha, Hugo A O; Franco, Célia R C; Chammas, Roger; Nakaie, Clovis R; Jasiulionis, Miriam G; Nader, Helena B; Santana, Lucimeire A; Sampaio, Misako U; Oliva, Maria Luiza V

    2006-12-15

    Purified from Bauhinia rufa seeds, BrTI is a Kunitz proteinase inhibitor that contains the RGD sequence. BrTI inhibits trypsin (K(iapp) 2.9 nM) and human plasma kallikrein (K(iapp) 14.0 nM) but not other related enzymes. The synthetic peptide YLEPVARGDGGLA-NH(2) (70 microM) inhibited the adhesion to fibronectin of B16F10 (high-metastatic B16 murine mouse melanoma cell line) and of Tm5 (murine melanoma cell lines derived from a non-tumorigenic lineage of pigmented murine melanocytes, melan-a). YLEPVARGEGGLA-NH(2) in which Asp(9) was changed into Glu does not affect the cell attachment. Moreover, this peptide was functional only when the sequence present in the native protein was preserved, since YLIPVARGDGGLA-NH(2) in which Glu(3) was changed into Ile does not interfere with B16F10 and was less effective on Tm5 cell line adhesion. Neither YLEPVARGDGGLA-NH(2), YLIPVARGDGGLA-NH(2) or YLEPVARGEGGLA-NH(2) inhibit the interaction of RAEC (endothelial cell line from rabbit aorta) with fibronectin. PMID:16846639

  18. Regulation of secretory leukocyte proteinase inhibitor (SLPI) and elastase-specific inhibitor (ESI/elafin) in human airway epithelial cells by cytokines and neutrophilic enzymes.

    PubMed

    Sallenave, J M; Shulmann, J; Crossley, J; Jordana, M; Gauldie, J

    1994-12-01

    The regulation of the activity of potentially harmful proteinases secreted by neutrophils during inflammation is important for the prevention of excessive tissue injury. Secretory leukocyte proteinase inhibitor (SLPI), also called antileukoprotease (ALP) or mucus proteinase inhibitor (MPI), is a serine proteinase inhibitor that has been found in a variety of mucous secretions and that is secreted by bronchial epithelial cells. We recently reported the presence of SLPI and of an elastase-specific inhibitor (ESI), also called elafin, in the supernatants of two cell lines, NCI-H322 and A549, which have features of Clara cells and type II alveolar cells, respectively. We showed in addition that epithelial cell lines produce the elastase-specific inhibitor as a 12 to 16 kD precursor of the elafin molecule (6 kD) called pre-elafin. In the present study, we show that NCI-H322 cells produced higher amounts of both inhibitors than A549 cells and that basal production of SLPI in both cell lines is higher than the production of elafin/pre-elafin. In addition, we show that interleukin-1 beta and tumor necrosis factor induce significant SLPI expression and are major inducers of elafin/pre-elafin expression. Moreover, induction is greater in A549 cells than in NCI-H322 cells. The implications of these findings for the peripheral airways are twofold: (1) alveolar epithelial cells may respond to cytokines secreted during the onset of inflammation by increasing their antiprotease shield; (2) elafin/pre-elafin seems to be a true local "acute phase reactant" whereas SLPI, in comparison, may be less responsive to local inflammatory mediators. PMID:7946401

  19. N-terminal extension of the yeast IA3 aspartic proteinase inhibitor relaxes the strict intrinsic selectivity.

    PubMed

    Winterburn, Tim J; Phylip, Lowri H; Bur, Daniel; Wyatt, David M; Berry, Colin; Kay, John

    2007-07-01

    Yeast IA(3) aspartic proteinase inhibitor operates through an unprecedented mechanism and exhibits a remarkable specificity for one target enzyme, saccharopepsin. Even aspartic proteinases that are very closely similar to saccharopepsin (e.g. the vacuolar enzyme from Pichia pastoris) are not susceptible to significant inhibition. The Pichia proteinase was selected as the target for initial attempts to engineer IA(3) to re-design the specificity. The IA(3) polypeptides from Saccharomyces cerevisiae and Saccharomyces castellii differ considerably in sequence. Alterations made by deletion or exchange of the residues in the C-terminal segment of these polypeptides had only minor effects. By contrast, extension of each of these wild-type and chimaeric polypeptides at its N-terminus by an MK(H)(7)MQ sequence generated inhibitors that displayed subnanomolar potency towards the Pichia enzyme. This gain-in-function was completely reversed upon removal of the extension sequence by exopeptidase trimming. Capture of the potentially positively charged aromatic histidine residues of the extension by remote, negatively charged side-chains, which were identified in the Pichia enzyme by modelling, may increase the local IA(3) concentration and create an anchor that enables the N-terminal segment residues to be harboured in closer proximity to the enzyme active site, thus promoting their interaction. In saccharopepsin, some of the counterpart residues are different and, consistent with this, the N-terminal extension of each IA(3) polypeptide was without major effect on the potency of interaction with saccharopepsin. In this way, it is possible to convert IA(3) polypeptides that display little affinity for the Pichia enzyme into potent inhibitors of this proteinase and thus broaden the target selectivity of this remarkable small protein. PMID:17608726

  20. The M358R variant of α(1)-proteinase inhibitor inhibits coagulation factor VIIa.

    PubMed

    Sheffield, William P; Bhakta, Varsha

    2016-02-12

    The naturally occurring M358R mutation of the plasma serpin α1-proteinase inhibitor (API) changes both its cleavable reactive centre bond to Arg-Ser and the efficacy with which it inhibits different proteases, reducing the rate of inhibition of neutrophil elastase, and enhancing that of thrombin, factor XIa, and kallikrein, by several orders of magnitude. Although another plasma serpin with an Arg-Ser reactive centre, antithrombin (AT), has been shown to inhibit factor VIIa (FVIIa), no published data are available with respect to FVIIa inhibition by API M358R. Recombinant bacterially-expressed API M358R and plasma-derived AT were therefore compared using gel-based and kinetic assays of FVIIa integrity and activity. Under pseudo-first order conditions of excess serpin over protease, both AT and API M358R formed denaturation-resistant inhibitory complexes with FVIIa in reactions accelerated by TF; AT, but not API M358R, also required heparin for maximal activity. The second order rate constant for heparin-independent API M358R-mediated FVIIa inhibition was determined to be 7.8 ± 0.8 × 10(2) M(-1)sec(-1). We conclude that API M358R inhibits FVIIa by forming inhibitory complexes of the serpin type more rapidly than AT in the absence of heparin. The likely 20-fold excess of API M358R over AT in patient plasma during inflammation raises the possibility that it could contribute to the hemorrhagic tendencies manifested by rare individuals expressing this mutant serpin. PMID:26797521

  1. Proteinase treatment of intact hepatic mitochondria has differential effects on inhibition of carnitine palmitoyltransferase by different inhibitors.

    PubMed Central

    Kashfi, K; Cook, G A

    1992-01-01

    Proteolysis of intact mitochondria by Nagarse (subtilisin BPN') and papain resulted in limited loss of activity of the outer-membrane carnitine palmitoyltransferase, but much greater loss of sensitivity to inhibition by malonyl-CoA. In contrast with a previous report [Murthy & Pande (1987) Proc. Natl. Acad. Sci. U.S.A. 84, 378-382], we found that trypsin had no effect on malonyl-CoA sensitivity. Even when 80% of activity was destroyed by trypsin, there was no difference in the malonyl-CoA sensitivity of the enzyme remaining. Trypsin caused release of the intermembrane-space enzyme adenylate kinase, indicating loss of integrity of the mitochondrial outer membrane, whereas Nagarse and papain caused no release of that enzyme. Citrate synthase was not released by any of the three proteinases, indicating no damage to the mitochondrial inner membrane. When we examined the effects of proteolysis on the inhibition of carnitine palmitoyltransferase by a wide variety of inhibitors having different mechanisms of inhibition, we found differential proteolytic effects that were specific for those inhibitors (malonyl-CoA and hydroxyphenylglyoxylate) that have their inhibitory potencies diminished by changes in physiological state. Both of those inhibitors protected carnitine palmitoyltransferase from the effects of proteolysis, but did not inhibit the proteinases directly. Inhibition by two other inhibitors (DL-2-bromopalmitoyl-CoA and N-benzyladriamycin 14-valerate) was not altered by proteinase treatment, even when most of the enzyme activity had been destroyed. Inhibition by glyburide, which is minimally affected by physiological state, was affected only to a slight extent at the highest concentration of trypsin tested. Proteolysis by Nagarse appeared to produce loss of co-operativity in malonyl-CoA inhibition. The effects of proteolysis are discussed and compared with changes in Ki occurring with changing physiological states. PMID:1554374

  2. Inducible expression of a fusion gene encoding two proteinase inhibitors leads to insect and pathogen resistance in transgenic rice.

    PubMed

    Quilis, Jordi; López-García, Belén; Meynard, Donaldo; Guiderdoni, Emmanuel; San Segundo, Blanca

    2014-04-01

    Plant proteinase inhibitors (PIs) are considered as candidates for increased insect resistance in transgenic plants. Insect adaptation to PI ingestion might, however, compromise the benefits received by transgenic expression of PIs. In this study, the maize proteinase inhibitor (MPI), an inhibitor of insect serine proteinases, and the potato carboxypeptidase inhibitor (PCI) were fused into a single open reading frame and introduced into rice plants. The two PIs were linked using either the processing site of the Bacillus thuringiensis Cry1B precursor protein or the 2A sequence from the foot-and-mouth disease virus (FMDV). Expression of each fusion gene was driven by the wound- and pathogen-inducible mpi promoter. The mpi-pci fusion gene was stably inherited for at least three generations with no penalty on plant phenotype. An important reduction in larval weight of Chilo suppressalis fed on mpi-pci rice, compared with larvae fed on wild-type plants, was observed. Expression of the mpi-pci fusion gene confers resistance to C. suppressalis (striped stem borer), one of the most important insect pest of rice. The mpi-pci expression systems described may represent a suitable strategy for insect pest control, better than strategies based on the use of single PI genes, by preventing insect adaptive responses. The rice plants expressing the mpi-pci fusion gene also showed enhanced resistance to infection by the fungus Magnaporthe oryzae, the causal agent of the rice blast disease. Our results illustrate the usefulness of the inducible expression of the mpi-pci fusion gene for dual resistance against insects and pathogens in rice plants. PMID:24237606

  3. The primary structure and characterization of carbohydrate chains of the extracellular glycoprotein proteinase inhibitor from latex of Carica papaya.

    PubMed

    Odani, S; Yokokawa, Y; Takeda, H; Abe, S; Odani, S

    1996-10-01

    A secretory proteinase inhibitor was isolated from the latex of green fruits of papaya (Carica papaya). The protein exhibited stoichiometric inhibition of bovine trypsin and alpha-chymotrypsin by the same site or overlapping binding sites. The complete covalent structure consisting of 184 amino acids and two disulfide bonds was determined by protein analysis. During the structural analysis, a procedure was established to separate very hydrophilic peptides by reverse-phase HPLC. The result revealed that the latex protein belongs to an extensively diverse plant protein family that includes inhibitors of serine, cysteine and aspartic proteases, a taste-modifying protein, wound responsive proteins, storage proteins, amylase inhibitors and even an oxidoreductase. In this superfamily, the latex proteinase inhibitor is most similar to the curious protein, miraculin, which makes sour food taste sweet. Two carbohydrate chains, each probably composed of (mannose)5, (xylose)1, (fucose)0-2, and (N-acetylglucosamine)2 residues, were attached to asparagine 84 and 90. Mass-spectrometric and compositional analysis suggested that they may represent a new class of plant xylose-containing carbohydrate chains with five mannose residues. PMID:8898891

  4. Alpha-1 Antitrypsin Deficiency

    MedlinePlus

    ... Liver Disease Information > Alpha-1 Antitrypsin Deficiency Alpha-1 Antitrypsin Deficiency Explore this section to learn more about alpha-1 antitrypsin deficiency, including a description of the disorder ...

  5. Effects of proteinase inhibitor from Adenanthera pavonina seeds on short- and long term larval development of Aedes aegypti.

    PubMed

    Sasaki, Daniele Yumi; Jacobowski, Ana Cristina; de Souza, Antônio Pancrácio; Cardoso, Marlon Henrique; Franco, Octávio Luiz; Macedo, Maria Lígia Rodrigues

    2015-05-01

    Currently, one of the major global public health concerns is related to the transmission of dengue/yellow fever virus by the vector Aedes aegypti. The most abundant digestive enzymes in Ae. aegypti midgut larvae are trypsin and chymotrypsin. Since protease inhibitors have the capacity to bind to and inhibit the action of insect digestive proteinases, we investigated the short- and long-term effects of Adenanthera pavonina seed proteinase inhibitor (ApTI) on Ae. aegypti larvae, as well as a possible mechanism of adaptation. ApTI had a significant effect on Ae. aegypti larvae exposed to a non-lethal concentration of ApTI during short- and long-duration assays, decreasing survival, weight and proteinase activities of midgut extracts of larvae. The zymographic profile of ApTI demonstrated seven bands; three bands apparently have trypsin-like activity. Moreover, the peritrophic membrane was not disrupted. The enzymes of ApTI-fed larvae were found to be sensitive to ApTI and to have a normal feedback mechanism; also, the larval digestive enzymes were not able to degrade the inhibitor. In addition, ApTI delayed larval development time. Histological studies demonstrated a degeneration of the microvilli of the posterior midgut region epithelium cells, hypertrophy of the gastric caeca cells and an augmented ectoperitrophic space in larvae. Moreover, Ae. aegypti larvae were incapable of overcoming the negative effects of ApTI, indicating that this inhibitor might be used as a promising agent against Ae. aegypti. In addition, molecular modeling and molecular docking studies were also performed in order to construct three-dimensional theoretical models for ApTI, trypsin and chymotrypsin from Ae. aegypti, as well as to predict the possible interactions and affinity values for the complexes ApTI/trypsin and ApTI/chymotrypsin. In this context, this study broadens the base of our understanding about the modes of action of proteinase inhibitors in insects, as well as the way insects

  6. Predicting the reactivity of proteins from their sequence alone: Kazal family of protein inhibitors of serine proteinases

    PubMed Central

    Lu, Stephen M.; Lu, Wuyuan; Qasim, M. A.; Anderson, Stephen; Apostol, Izydor; Ardelt, Wojciech; Bigler, Theresa; Chiang, Yi Wen; Cook, James; James, Michael N. G.; Kato, Ikunoshin; Kelly, Clyde; Kohr, William; Komiyama, Tomoko; Lin, Tiao-Yin; Ogawa, Michio; Otlewski, Jacek; Park, Soon-Jae; Qasim, Sabiha; Ranjbar, Michael; Tashiro, Misao; Warne, Nicholas; Whatley, Harry; Wieczorek, Anna; Wieczorek, Maciej; Wilusz, Tadeusz; Wynn, Richard; Zhang, Wenlei; Laskowski, Michael

    2001-01-01

    An additivity-based sequence to reactivity algorithm for the interaction of members of the Kazal family of protein inhibitors with six selected serine proteinases is described. Ten consensus variable contact positions in the inhibitor were identified, and the 19 possible variants at each of these positions were expressed. The free energies of interaction of these variants and the wild type were measured. For an additive system, this data set allows for the calculation of all possible sequences, subject to some restrictions. The algorithm was extensively tested. It is exceptionally fast so that all possible sequences can be predicted. The strongest, the most specific possible, and the least specific inhibitors were designed, and an evolutionary problem was solved. PMID:11171964

  7. Differential expression of soybean cysteine proteinase inhibitor genes during development and in response to wounding and methyl jasmonate.

    PubMed Central

    Botella, M A; Xu, Y; Prabha, T N; Zhao, Y; Narasimhan, M L; Wilson, K A; Nielsen, S S; Bressan, R A; Hasegawa, P M

    1996-01-01

    Three cysteine proteinase inhibitor cDNA clones (pL1, pR1, and pN2) have been isolated from a soybean (Glycine max L. Merr.) embryo library. The proteins encoded by the clones are between 60 and 70% identical and contain the consensus QxVxG motif and W residue in the appropriate spatial context for interaction with the cysteine proteinase papain. L1, R1, and N2 mRNAs were differentially expressed in different organs of plants (juvenile and mature) and seedlings, although N2 mRNA was constitutive only in flowers. R1 and N2 transcripts were induced by wounding or methyl jasmonate (M-JA) treatment in local and systemic leaves coincident with increased papain inhibitory activity, indicating a role for R1 and N2 in plant defense. The L1 transcript was constitutively expressed in leaves and was induced slightly by M-JA treatment in roots. Unlike the chymotrypsin/trypsin proteinase inhibitor II gene (H. Peña-Cortés, J. Fisahn, L. Willmitzer [1995] Proc Natl Acad Sci USA 92: 4106-4113), expression of the soybean genes was only marginally induced by abscisic acid and only in certain tissues. Norbornadiene, a competitive inhibitor of ethylene binding, abolished the wounding or M-JA induction of R1 and N2 mRNAs but not the accumulation of the wound-inducible vspA transcript. Presumably, ethylene binding to its receptor is involved in the wound inducibility of R1 and N2 but not vspA mRNAs. Bacterial recombinant L1 and R1 proteins, expressed as glutathione S-transferase fusion proteins, exhibited substantial inhibitory activities against vicilin peptidohydrolase, the major thiol endopeptidase in mung bean seedlings. Recombinant R1 protein had much greater cysteine proteinase inhibitor activity than recombinant L1 protein, consistent with the wound inducibility of the R1 gene and its presumed role in plant defense. PMID:8938418

  8. Structural and functional aspects of papain-like cysteine proteinases and their protein inhibitors.

    PubMed

    Turk, B; Turk, V; Turk, D

    1997-01-01

    Cysteine proteinases are widely distributed among living organisms. According to the most recent classifications (Rawlings and Barrett, 1993, 1994), they can be subdivided on the basis of sequence homology into 14 or even 20 different families, the most important being the papain and the calpain families. The papain-like cysteine proteinases are the most abundant among the cysteine proteinases. The family consists of papain and related plant proteinases such as chymopapain, caricain, bromelain, actinidin, ficin, and aleurain, and the lysosomal cathepsins B, H, L, S, C and K. Most of these enzymes are relatively small proteins with Mr values in the range 20000-35000 (reviewed in Brocklehurst et al., 1987; Polgar, 1989; Rawlings and Barrett, 1994; Berti and Storer, 1995), with the exception of cathepsin C, which is an oligomeric enzyme with Mr approximately 200000 (Metrione et al., 1970; Dolenc et al., 1995). A number of cysteine proteinases are located within lysosomes. Four of them, cathepsins B, C, H and L, are ubiquitous in lysosomes of animals, whereas cathepsin S has a more restricted localisation (Barrett and Kirschke, 1981; Kirschke and Wiederanders, 1994). The enzymes, except cathepsin C, are endopeptidases (reviewed in Kirschke et al., 1995), although cathepsin B was found also to be a dipeptidyl carboxypeptidase (Aronson and Barrett, 1978) and cathepsin H also an aminopeptidase (Koga et al., 1992). Cathepsin C is a dipeptidyl aminopeptidase, but at higher pH it exhibits also dipeptidyl transferase activity (reviewed in Kirschke et al., 1995). Among the lysosomal cysteine proteinases, cathepsin L was found to be the most active in degradation of protein substrates, such as collagen, elastin and azocasein (Barrett and Kirschke, 1981; Maciewicz et al., 1987; Mason et al., 1989), arid cathepsin B the most abundant (Kirschke and Barrett, 1981). All the enzymes are optimally active at slightly acidic pH, although their pH optima for degradation of synthetic

  9. Functional analysis of the 3' control region of the potato wound-inducible proteinase inhibitor II gene.

    PubMed Central

    An, G; Mitra, A; Choi, H K; Costa, M A; An, K; Thornburg, R W; Ryan, C A

    1989-01-01

    Proteinase inhibitor genes are expressed strongly in specific plant tissues under both developmental and environmental regulation. We have studied the role of the 3' control region of the potato proteinase inhibitor II gene (PI-II) that is inducible in leaves in response to herbivore attacks or other severe wounding. Comparison of the terminator from the PI-II gene with two different terminators from the 6b and 7 genes, driven by a common PI-II promoter-cat fusion molecule, indicated that the PI-II terminator provided the most efficient expression of cat. The PI-II terminator also caused a significantly elevated cat gene expression driven by the cauliflower mosaic virus 35S promoter. The increase in the level of expression is probably not due to the presence of an enhancer element in the PI-II terminator region, but to cis-acting elements involved in mRNA processing or stability. Both transient and stable transformation analyses of the deletion mutants in the 3'-flanking sequence indicated that about a 100-base pair DNA fragment surrounding the polyadenylation site is essential for the efficient gene expression. This region seems to consist of several regulatory elements, including the conserved sequence, CGTGTCTT, which is located 9 bases downstream from the polyadenylation site. The elements appear to contribute to the increased stability of mRNAs containing the PI-II terminator. PMID:2535459

  10. Cloning of a Locusta cDNA encoding a precursor peptide for two structurally related proteinase inhibitors.

    PubMed

    Kromer, E; Nakakura, N; Lagueux, M

    1994-03-01

    Two peptides of respectively 35 and 36 residues were recently isolated from Locusta migratoria and their full structural characteristics were established by Edman degradation and mass spectrometry. These peptides were subsequently shown to have a proteinase inhibiting activity. We report here the cloning and characterization of a cDNA encoding a 92-residue precursor with three distinct domains: (I) a typical signal peptide of 19 residues; (II) the peptide sequence of the 35-residue inhibitor separated by a Lys-Arg dipeptide cleavage site from (III) the peptide sequence of the 36-residue inhibitor. We show by Northern blot analysis that the gene encoding this precursor is mainly transcribed in the cells of the fat body. PMID:8019577

  11. SDZ PRI 053, an orally bioavailable human immunodeficiency virus type 1 proteinase inhibitor containing the 2-aminobenzylstatine moiety.

    PubMed Central

    Billich, A; Fricker, G; Müller, I; Donatsch, P; Ettmayer, P; Gstach, H; Lehr, P; Peichl, P; Scholz, D; Rosenwirth, B

    1995-01-01

    A series of inhibitors of human immunodeficiency virus type 1 (HIV-1) proteinase containing the 2-aralkyl-amino-substituted statine moiety as a novel transition-state analog was synthesized, with the aim to obtain compounds which combine anti-HIV potency with oral bioavailability. The reduced-size 2-aminobenzylstatine derivative SDZ PRI 053, which contains 2-(S)-amino-3-(R)-hydroxyindane in place of an amino acid amide, is a potent and orally bioavailable inhibitor of HIV-1 replication. The antiviral activity of SDZ PRI 053 was demonstrated in various cell lines, in primary lymphocytes, and in primary monocytes, against laboratory strains as well as clinical HIV-1 isolates (50% effective dose = 0.028 to 0.15 microM). Cell proliferation was impaired only at 100- to 300-fold-higher concentrations. The mechanism of antiviral action of the proteinase inhibitor SDZ PRI 0.53 was demonstrated to be inhibition of gag precursor protein processing. The finding that the inhibitory potency of SDZ PRI 053 in chronic virus infection, determined by p24 release, was considerably lower than that in de novo infection may be explained by the fact that the virus particles produced in the presence of SDZ PRI 053 are about 50-fold less infectious than those from untreated cultures. Upon intravenous administration, half-lives in blood of 100 and 32 min in mice and rats, respectively, were measured. Oral bioavailability of SDZ PRI 053 in rodents was 20 to 60%, depending on the dose. In mice, rats, and dogs, the inhibitor levels after oral administration remained far above the concentrations needed to efficiently block HIV replication in vitro for a prolonged period. This compound is thus a promising candidate for clinical use in HIV disease. PMID:7492076

  12. Alpha-1 Antitrypsin Deficiency

    MedlinePlus

    ... from the NHLBI on Twitter. What Is Alpha-1 Antitrypsin Deficiency? Alpha-1 antitrypsin (an-tee-TRIP-sin) deficiency, or AAT ... as it relates to lung disease. Overview Alpha-1 antitrypsin, also called AAT, is a protein made ...

  13. Growth and development of Colorado potato beetle larvae, Leptinotarsa decemlineata, on potato plants expressing the oryzacystatin II proteinase inhibitor.

    PubMed

    Cingel, Aleksandar; Savić, Jelena; Vinterhalter, Branka; Vinterhalter, Dragan; Kostić, Miroslav; Jovanović, Darka Šešlija; Smigocki, Ann; Ninković, Slavica

    2015-08-01

    Plant proteinase inhibitors (PIs) are attractive tools for crop improvement and their heterologous expression can enhance insect resistance in transgenic plants. PI oryzacystatin II (OCII), isolated from rice, showed potential in controlling pests that utilize cysteine proteinases for protein digestion. To evaluate the applicability of the OCII gene in enhancing plant defence, OCII-transformed potatoes were bioassayed for resistance to Colorado potato beetle (Leptinotarsa decemlineata Say). Feeding on transformed leaves of potato cultivars Desiree and Jelica significantly affected larval growth and development, but did not change mortality rates. During the L2 and L3 developmental stages larvae consumed the OCII-transformed foliage faster as compared to the nontransformed control. Also these larvae reached the prepupal stage (end of L4 stage) 2 days earlier than those fed on control leaves. However, the total amounts of consumed OCII-transformed leaves were up to 23% lower than of control, and the maximal weights of prepupal larvae were reduced by up to 18% as compared to larvae fed on nontransformed leaves. The reduction in insect fitness reported in this study in combination with other control measures, could lead to improved CPB resistance management in potato. PMID:25820664

  14. Molecular characterization and phylogenetic studies of a wound-inducible proteinase inhibitor I gene in Lycopersicon species.

    PubMed

    Lee, J S; Brown, W E; Graham, J S; Pearce, G; Fox, E A; Dreher, T W; Ahern, K G; Pearson, G D; Ryan, C A

    1986-10-01

    A gene coding for proteinase inhibitor I, whose expression is induced in tomato leaves (Lycopersicon esculentum L. var. Bonny Best) in response to wounding or insect attacks, was isolated from a genomic library and characterized. The nucleotide sequence revealed that the gene is complete and encodes the sequence of an inhibitor I cDNA that was previously isolated from a cDNA library prepared from wound-induced mRNA from tomato leaves. This gene is located 13.1 kilobase pairs (kbp) upstream from an inhibitor II gene. The wound-inducible gene is interrupted by two intervening sequences of 445 and 404 bp, situated within the codons of amino acids 17 and 47, respectively, of the open reading frame. In addition to the presence of putative regulatory sequences, TATAAA and CCACT, two copies of an imperfect direct repeat approximately 100 bp long were identified in the 5'-flanking region. Phylogenetic comparisons of wound-inducible inhibitor I genes within the genomes of various Lycopersicon species revealed that the repeat is found in seven ancestral species of tomato. PMID:3463966

  15. N-Arylacyl O-sulfonated aminoglycosides as novel inhibitors of human neutrophil elastase, cathepsin G and proteinase 3.

    PubMed

    Craciun, Ioana; Fenner, Amanda M; Kerns, Robert J

    2016-07-01

    The balance between neutrophil serine proteases (NSPs) and protease inhibitors (PIs) in the lung is a critical determinant for a number of chronic inflammatory lung diseases such as chronic obstructive pulmonary disease, cystic fibrosis and acute lung injury. During activation at inflammatory sites, excessive release of NSPs such as human neutrophil elastase (HNE), proteinase 3 (Pr3) and cathepsin G (CatG), leads to destruction of the lung matrix and continued propagation of acute inflammation. Under normal conditions, PIs counteract these effects by inactivating NSPs; however, in chronic inflammatory lung diseases, there are insufficient amounts of PIs to mitigate damage. Therapeutic strategies are needed to modulate excessive NSP activity for the clinical management of chronic inflammatory lung diseases. In the study reported here, a panel of N-arylacyl O-sulfonated aminoglycosides was screened to identify inhibitors of the NSPs. Dose-dependent inhibitors for each individual serine protease were identified. Select compounds were found to inhibit multiple NSPs, including one lead structure that is shown to inhibit all three NSPs. Two lead compounds identified during the screen for each individual NSP were further characterized as partial mixed inhibitors of CatG. Concentration-dependent inhibition of protease-mediated detachment of lung epithelial cells is demonstrated. PMID:26850997

  16. Wound-inducible nuclear protein binds DNA fragments that regulate a proteinase inhibitor II gene from potato.

    PubMed Central

    Palm, C J; Costa, M A; An, G; Ryan, C A

    1990-01-01

    Deletion analysis from the 3' to the 5' end of the promoter region of the wound-inducible potato proteinase inhibitor IIK gene has identified a 421-base sequence at -136 to -557 that is necessary for expression. Utilizing DNA band-shift assays, a 10-base sequence within the 421-base region was found to bind a nuclear protein from wounded tomato leaves. This 10-base sequence is adjacent to an 8-base consensus sequence at -147 to -155 that is present in the promoter region of several elicitor-inducible genes from various other plants. The evidence suggests that a complex set of cis- and trans-acting elements within the -136 to -165 region of the potato IIK gene may be involved with the signaling mechanisms that regulate the inducibility of this gene in response to pest and pathogen attacks. Images PMID:2405385

  17. A four-domain Kunitz-type proteinase inhibitor from Solen grandis is implicated in immune response.

    PubMed

    Wei, Xiumei; Yang, Jialong; Yang, Jianmin; Liu, Xiangquan; Liu, Meijun; Yang, Dinglong; Xu, Jie; Hu, Xiaoke

    2012-12-01

    Serine proteinase inhibitor (SPI) serves as a negative regulator in immune signal pathway by restraining the activities of serine proteinase (SP) and plays an essential role in the innate immunity. In the present study, a Kunitz-type SPI was identified from the mollusk razor clam Solen grandis (designated as SgKunitz). The full-length cDNA of SgKunitz was of 1284 bp, containing an open reading frame (ORF) of 768 bp. The ORF encoded four Kunitz domains, and their amino acids were well conserved when compared with those in other Kunitz-type SPIs, especially the six cysteines involved in forming of three disulfide bridges in each domain. In addition, the tertiary structure of all the four domains adopted a typical model of Kunitz-type SPI family, indicating SgKunitz was a new member of Kunitz-type SPI superfamily. The mRNA transcripts of SgKunitz were detected in all tested tissues of razor clam, including muscle, mantle, gonad, gill, hepatopancreas and hemocytes, and with the highest expression level in gill. When the razor clams were stimulated by LPS, PGN or β-1, 3-glucan, the expression level of SgKunitz mRNA in hemocytes was significantly up-regulated (P < 0.01), suggesting SgKunitz might involved in the processes of inhibiting the activity of SPs during the immune responses triggered by various pathogens. Furthermore, the recombinant protein of SgKunitz could effectively inhibit the activities of SP trypsin and chymotrypsin in vitro. The present results suggested SgKunitz could serve as an inhibitor of SP involving in the immune response of S. grandis, and provided helpful evidences to understand the regulation mechanism of immune signal pathway in mollusk. PMID:23022284

  18. Proteinase-antiproteinase balance in tracheal aspirates from neonates.

    PubMed

    Sluis, K B; Darlow, B A; Vissers, M C; Winterbourn, C C

    1994-02-01

    We wanted to identify the inhibitors of neutrophil elastase, quantify their activities in the upper airways of neonates, and relate these to the presence of active elastase and the likelihood of elastolytic injury occurring due to inhibitory capacity being overwhelmed. Activities of neutrophil elastase and its inhibitors were measured in tracheal aspirates from 17 infants, 10 of whom subsequently developed bronchopulmonary dysplasia. All aspirates contained immunologically detectable alpha 1-proteinase inhibitor (alpha 1-PI), but their inhibitory capacity against neutrophil elastase ranged from being undetectable to being in excess of the amount of alpha 1-PI detected immunologically. When the alpha 1-PI was removed from each of the aspirates, using a specific antibody, from 0-50% of the original activity remained, indicating the presence of another elastase inhibitor. Its properties were consistent with it being the low molecular mass, secretory leucoproteinase inhibitor (SLPI), also known as bronchial antileucoproteinase. The alpha 1-PI was from 0-100% active. Most of the inactive inhibitor was shown by western blotting to be complexed with elastase, with a small amount of cleaved material. There was no evidence of major oxidative inactivation. Free elastase was detected in only three of the aspirates; these had little or no detectable elastase inhibitory capacity, and most of their alpha 1-PI was complexed. Elastase load, comprising the sum of free and complexed elastase, correlated closely with myeloperoxidase activity, a recognized marker of inflammatory activity. Active SLPI levels showed a positive correlation with gestational age (r = 0.66). We conclude that most neutrophil elastase in the upper airways of ventilated infants is complexed.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7909297

  19. Basis for the Specificity and Activation of the Serpin Protein Z-dependent Proteinase Inhibitor (ZPI) as an Inhibitor of Membrane-associated Factor Xa

    SciTech Connect

    Huang, Xin; Dementiev, Alexey; Olson, Steven T.; Gettins, Peter G.W.

    2012-12-13

    The serpin ZPI is a protein Z (PZ)-dependent specific inhibitor of membrane-associated factor Xa (fXa) despite having an unfavorable P1 Tyr. PZ accelerates the inhibition reaction {approx}2000-fold in the presence of phospholipid and Ca{sup 2+}. To elucidate the role of PZ, we determined the x-ray structure of Gla-domainless PZ (PZ{sub {Delta}GD}) complexed with protein Z-dependent proteinase inhibitor (ZPI). The PZ pseudocatalytic domain bound ZPI at a novel site through ionic and polar interactions. Mutation of four ZPI contact residues eliminated PZ binding and membrane-dependent PZ acceleration of fXa inhibition. Modeling of the ternary Michaelis complex implicated ZPI residues Glu-313 and Glu-383 in fXa binding. Mutagenesis established that only Glu-313 is important, contributing {approx}5-10-fold to rate acceleration of fXa and fXIa inhibition. Limited conformational change in ZPI resulted from PZ binding, which contributed only {approx}2-fold to rate enhancement. Instead, template bridging from membrane association, together with previously demonstrated interaction of the fXa and ZPI Gla domains, resulted in an additional {approx}1000-fold rate enhancement. To understand why ZPI has P1 tyrosine, we examined a P1 Arg variant. This reacted at a diffusion-limited rate with fXa, even without PZ, and predominantly as substrate, reflecting both rapid acylation and deacylation. P1 tyrosine thus ensures that reaction with fXa or most other arginine-specific proteinases is insignificant unless PZ binds and localizes ZPI and fXa on the membrane, where the combined effects of Gla-Gla interaction, template bridging, and interaction of fXa with Glu-313 overcome the unfavorability of P1 Tyr and ensure a high rate of reaction as an inhibitor.

  20. Inhibitors and Antibody Fragments as Potential Anti-Inflammatory Therapeutics Targeting Neutrophil Proteinase 3 in Human Disease.

    PubMed

    Korkmaz, Brice; Lesner, Adam; Guarino, Carla; Wysocka, Magdalena; Kellenberger, Christine; Watier, Hervé; Specks, Ulrich; Gauthier, Francis; Jenne, Dieter E

    2016-07-01

    Proteinase 3 (PR3) has received great scientific attention after its identification as the essential antigenic target of antineutrophil cytoplasm antibodies in Wegener's granulomatosis (now called granulomatosis with polyangiitis). Despite many structural and functional similarities between neutrophil elastase (NE) and PR3 during biosynthesis, storage, and extracellular release, unique properties and pathobiological functions have emerged from detailed studies in recent years. The development of highly sensitive substrates and inhibitors of human PR3 and the creation of PR3-selective single knockout mice led to the identification of nonredundant roles of PR3 in cell death induction via procaspase-3 activation in cell cultures and in mouse models. According to a study in knockout mice, PR3 shortens the lifespan of infiltrating neutrophils in tissues and accelerates the clearance of aged neutrophils in mice. Membrane exposure of active human PR3 on apoptotic neutrophils reprograms the response of macrophages to phagocytosed neutrophils, triggers secretion of proinflammatory cytokines, and undermines immune silencing and tissue regeneration. PR3-induced disruption of the anti-inflammatory effect of efferocytosis may be relevant for not only granulomatosis with polyangiitis but also for other autoimmune diseases with high neutrophil turnover. Inhibition of membrane-bound PR3 by endogenous inhibitors such as the α-1-protease inhibitor is comparatively weaker than that of NE, suggesting that the adverse effects of unopposed PR3 activity resurface earlier than those of NE in individuals with α-1-protease inhibitor deficiency. Effective coverage of PR3 by anti-inflammatory tools and simultaneous inhibition of both PR3 and NE should be most promising in the future. PMID:27329045

  1. Proteomic analysis reveals suppression of bark chitinases and proteinase inhibitors in citrus plants affected by the citrus sudden death disease.

    PubMed

    Cantú, M D; Mariano, A G; Palma, M S; Carrilho, E; Wulff, N A

    2008-10-01

    Citrus sudden death (CSD) is a disease of unknown etiology that greatly affects sweet oranges grafted on Rangpur lime rootstock, the most important rootstock in Brazilian citriculture. We performed a proteomic analysis to generate information related to this plant pathogen interaction. Protein profiles from healthy, CSD-affected and CSD-tolerant stem barks, were generated using two-dimensional gel electrophoresis. The protein spots were well distributed over a pI range of 3.26 to 9.97 and a molecular weight (MW) range from 7.1 to 120 kDa. The patterns of expressed proteins on 2-DE gels made it possible to distinguish healthy barks from CSD-affected barks. Protein spots with MW around 30 kDa and pI values ranging from 4.5 to 5.2 were down-regulated in the CSD-affected root-stock bark. This set of protein spots was identified as chitinases. Another set of proteins, ranging in pI from 6.1 to 9.6 with an MW of about 20 kDa, were also suppressed in CSD-affected rootstock bark; these were identified as miraculin-like proteins, potential trypsin inhibitors. Down-regulation of chitinases and proteinase inhibitors in CSD-affected plants is relevant since chitinases are well-known pathogenesis-related protein, and their activity against plant pathogens is largely accepted. PMID:18943454

  2. Estimation of plasma esterolytic activity and it's in vitro inhibition by proteinase inhibitors during acute pancreatitis in the human.

    PubMed Central

    Worthington, K. J.; Cuschieri, A.

    1976-01-01

    The plasma esterolytic activity was measured using benzyol arginine ethyl ester (BAEe) in the peripheral venous blood of patients with acute pancreatitis, normal healthy volunteers and a contrast group of patients with acute intrabdominal inflammations other than acute pancreatitis. The plasma esterolytic activity was significantly elevated in the pancreatitis group. This activity was maximal during the first 48 hours of the illness and remained elevated for a further 8 days thereafter. Aprotinin in a dose of 2000 K.I. u/0-3 ml plasma did not completely inhibit this esterolytic activity, although it resulted in a more substantial inhibition than either ovomucoid or soy bean inhibitor. It is concluded that pancreatic enzymes are released into the circulation during acute pancreatitis and that Aprotinin does not completely inhibit this proteolytic activity. This polyvalent proteinase inhibitor should therefore be administered in much higher dosage than that used hitherto in acute pancreatitis. The plasma esterolytic activity seems to be of diagnostic value in acute pancreatitis. PMID:1083738

  3. Isolation and primary structure of proteinase inhibitors from Erythrina variegata (Linn.) var. Orientalis seeds.

    PubMed

    Kouzuma, Y; Suetake, M; Kimura, M; Yamasaki, N

    1992-11-01

    The Kunitz-type trypsin inhibitors, ETIa and ETIb, and chymotrypsin inhibitor ECI were isolated from the seeds of Erythrina variegata. The proteins were extracted from a defatted meal of seeds with 10 mM phosphate buffer, pH 7.2, containing 0.15 M NaCl, and purified by DEAE-cellulose and Q-Sepharose column chromatographies. The stoichiometry of trypsin inhibitors with trypsin was estimated to be 1:1, while that of chymotrypsin inhibitor with chymotrypsin was 1:2, judging from the titration patterns of their inhibitory activities. The complete amino acids of the two trypsin inhibitors were sequenced by protein chemical methods. The proteins ETIa and ETIb consist of 172 and 176 amino acid residues and have M(r) 19,242 and M(r) 19,783, respectively, and share 112 identical amino acid residues, which is 65% identity. They show structural features characteristic of the Kunitz-type trypsin inhibitor (i.e., identical residues at about 45% with soybean trypsin inhibitor STI). Furthermore, the trypsin inhibitors show a significant homology to the storage proteins, sporamin, in sweet potato and the taste-modifying protein, miraculin, in miracle fruit, having about 30% identical residues. PMID:1369077

  4. Alpha-1 antitrypsin test

    MedlinePlus

    ... page: //medlineplus.gov/ency/article/003715.htm Alpha-1 antitrypsin test To use the sharing features on this page, please enable JavaScript. Alpha-1 antitrypsin is a laboratory test to measure the ...

  5. Alpha-1 Antitrypsin Test

    MedlinePlus

    ... measures the level of the protein AAT in blood. Alpha-1 antitrypsin phenotype testing evaluates the amount and type of AAT being produced and compares it to normal patterns. Alpha-1 antitrypsin genotype testing ( DNA testing) can ...

  6. The role of secretory leukocyte proteinase inhibitor and elafin (elastase-specific inhibitor/skin-derived antileukoprotease) as alarm antiproteinases in inflammatory lung disease.

    PubMed

    Sallenave, J M

    2000-01-01

    Secretory leukocyte proteinase inhibitor and elafin are two low-molecular-mass elastase inhibitors that are mainly synthesized locally at mucosal sites. It is thought that their physicochemical properties allow them to efficiently inhibit target enzymes, such as neutrophil elastase, released into the interstitium. Historically, in the lung, these inhibitors were first purified from secretions of patients with chronic obstructive pulmonary disease and cystic fibrosis. This suggested that they might be important in controlling excessive neutrophil elastase release in these pathologies. They are upregulated by 'alarm signals' such as bacterial lipopolysaccharides, and cytokines such as interleukin-1 and tumor necrosis factor and have been shown to be active against Gram-positive and Gram-negative bacteria, so that they have joined the growing list of antimicrobial 'defensin-like' peptides produced by the lung. Their site of synthesis and presumed functions make them very attractive candidates as potential therapeutic agents under conditions in which the excessive release of elastase by neutrophils might be detrimental. Because of its natural tropism for the lung, the use of adenovirus-mediated gene transfer is extremely promising in such applications. PMID:11667971

  7. The role of secretory leukocyte proteinase inhibitor and elafin (elastase-specific inhibitor/skin-derived antileukoprotease) as alarm antiproteinases in inflammatory lung disease

    PubMed Central

    Sallenave, Jean-Michel

    2000-01-01

    Secretory leukocyte proteinase inhibitor and elafin are two low-molecular-mass elastase inhibitors that are mainly synthesized locally at mucosal sites. It is thought that their physicochemical properties allow them to efficiently inhibit target enzymes, such as neutrophil elastase, released into the interstitium. Historically, in the lung, these inhibitors were first purified from secretions of patients with chronic obstructive pulmonary disease and cystic fibrosis. This suggested that they might be important in controlling excessive neutrophil elastase release in these pathologies. They are upregulated by 'alarm signals' such as bacterial lipopolysaccharides, and cytokines such as interleukin-1 and tumor necrosis factor and have been shown to be active against Gram-positive and Gram-negative bacteria, so that they have joined the growing list of antimicrobial 'defensin-like' peptides produced by the lung. Their site of synthesis and presumed functions make them very attractive candidates as potential therapeutic agents under conditions in which the excessive release of elastase by neutrophils might be detrimental. Because of its natural tropism for the lung, the use of adenovirus-mediated gene transfer is extremely promising in such applications. PMID:11667971

  8. The refined 2.4 A X-ray crystal structure of recombinant human stefin B in complex with the cysteine proteinase papain: a novel type of proteinase inhibitor interaction.

    PubMed Central

    Stubbs, M T; Laber, B; Bode, W; Huber, R; Jerala, R; Lenarcic, B; Turk, V

    1990-01-01

    A stoichiometric complex of human stefin B and carboxymethylated papain has been crystallized in a trigonal crystal form. Data to 2.37 A resolution were collected using the area detector diffractometer FAST. The crystal structure of the complex has been solved by Patterson search techniques using papain as search model. Starting from the structure of chicken cystatin, the stefin structure was elucidated through cycles of model building and crystallographic refinement. The current crystallographic R factor is 0.19. Like cystatin, the stefin molecule consists of a five stranded beta-sheet wrapped around a five turn alpha-helix, but with an additional carboxy terminal strand running along the convex side of the sheet. Topological equivalence of stefin and cystatin reveal the previous sequence alignment to be incorrect in part, through deletion of the intermediate helix. The conserved residues form a tripartite wedge, which slots into the papain active site as proposed through consideration of the tertiary structures of the individual components (Bode et al., 1988). The main interactions are provided by the amino terminal 'trunk' (occupying the 'unprimed' subsites of the enzyme), and by the first hairpin loop, containing the highly conserved QVVAG sequence, with minor contributions from the second hairpin loop. The carboxyl terminus of stefin provides an additional interaction region with respect to cystatin. The interaction is dominated by hydrophobic contacts. Inhibition by the cysteine proteinase inhibitors is fundamentally different to that observed for the serine proteinase inhibitors. Images Fig. 5. Fig. 6. Fig. 8. PMID:2347312

  9. The Plant-Derived Bauhinia bauhinioides Kallikrein Proteinase Inhibitor (rBbKI) Attenuates Elastase-Induced Emphysema in Mice.

    PubMed

    Martins-Olivera, Bruno Tadeu; Almeida-Reis, Rafael; Theodoro-Júnior, Osmar Aparecido; Oliva, Leandro Vilela; Neto Dos Santos Nunes, Natalia; Olivo, Clarice Rosa; Vilela de Brito, Marlon; Prado, Carla Máximo; Leick, Edna Aparecida; Martins, Mílton de Arruda; Oliva, Maria Luiza Vilela; Righetti, Renato Fraga; Tibério, Iolanda de Fátima Lopes Calvo

    2016-01-01

    Background. Elastase mediates important oxidative actions during the development of chronic obstructive pulmonary disease (COPD). However, few resources for the inhibition of elastase have been investigated. Our study evaluated the ability of the recombinant plant derived Bauhinia bauhinioides Kallikrein proteinase Inhibitor (rBbKI) to modulate elastase-induced pulmonary inflammation. Methods. C57Bl/6 mice were given intratracheal elastase (ELA group) or saline (SAL group) and were treated intraperitoneally with rBbKI (ELA-rBbKI and SAL-rBbKI groups). At day 28, the following analyses were performed: (I) lung mechanics, (II) exhaled nitric oxide (ENO), (III) bronchoalveolar lavage fluid (BALF), and (IV) lung immunohistochemical staining. Results. In addition to decreasing mechanical alterations and alveolar septum disruption, rBbKI reduced the number of cells in the BALF and decreased the cellular expression of TNF-α, MMP-9, MMP-12, TIMP-1, eNOS, and iNOS in airways and alveolar walls compared with the ELA group. rBbKI decreased the volume proportion of 8-iso-PGF2α, collagen, and elastic fibers in the airways and alveolar walls compared with the ELA group. A reduction in the number of MUC-5-positive cells in the airway walls was also observed. Conclusion. rBbKI reduced elastase-induced pulmonary inflammation and extracellular matrix remodeling. rBbKI may be a potential pharmacological tool for COPD treatment. PMID:27528793

  10. The Plant-Derived Bauhinia bauhinioides Kallikrein Proteinase Inhibitor (rBbKI) Attenuates Elastase-Induced Emphysema in Mice

    PubMed Central

    Martins-Olivera, Bruno Tadeu; Theodoro-Júnior, Osmar Aparecido; Oliva, Leandro Vilela; Neto dos Santos Nunes, Natalia; Olivo, Clarice Rosa; Vilela de Brito, Marlon; Prado, Carla Máximo; Leick, Edna Aparecida; Martins, Mílton de Arruda

    2016-01-01

    Background. Elastase mediates important oxidative actions during the development of chronic obstructive pulmonary disease (COPD). However, few resources for the inhibition of elastase have been investigated. Our study evaluated the ability of the recombinant plant derived Bauhinia bauhinioides Kallikrein proteinase Inhibitor (rBbKI) to modulate elastase-induced pulmonary inflammation. Methods. C57Bl/6 mice were given intratracheal elastase (ELA group) or saline (SAL group) and were treated intraperitoneally with rBbKI (ELA-rBbKI and SAL-rBbKI groups). At day 28, the following analyses were performed: (I) lung mechanics, (II) exhaled nitric oxide (ENO), (III) bronchoalveolar lavage fluid (BALF), and (IV) lung immunohistochemical staining. Results. In addition to decreasing mechanical alterations and alveolar septum disruption, rBbKI reduced the number of cells in the BALF and decreased the cellular expression of TNF-α, MMP-9, MMP-12, TIMP-1, eNOS, and iNOS in airways and alveolar walls compared with the ELA group. rBbKI decreased the volume proportion of 8-iso-PGF2α, collagen, and elastic fibers in the airways and alveolar walls compared with the ELA group. A reduction in the number of MUC-5-positive cells in the airway walls was also observed. Conclusion. rBbKI reduced elastase-induced pulmonary inflammation and extracellular matrix remodeling. rBbKI may be a potential pharmacological tool for COPD treatment. PMID:27528793

  11. Complexes between tissue-type plasminogen activator and proteinase inhibitors in human plasma, identified with an immunoradiometric assay

    SciTech Connect

    Rijken, D.C.; Juhan-Vague, I.; Collen, D.

    1983-02-01

    Extrinsic (tissue-type) plasminogen activator antigen in human plasma, as measured by a two-site immunoradiometric assay, is composed of a fibrin-adsorbable and a nonadsorbable fraction. Gel filtration on Ultrogel AcA 44 in 1.6M KSCN of the fibrin-adsorbable fraction showed a peak with M/sub r/ approx. =70,000, which contained plasminogen activator activity and was assumed to represent free extrinsic plasminogen activator. The nonadsorbable fraction showed a broad peak with M/sub r/ approx. =140,000 without plasminogen activator activity. Overnight incubation at 37/sup 0/C of postexercise plasma revealed a shift of the M/sub r/ approx. =70,000 peak to the M/sub r/ approx. =140,000 position, suggesting that the M/sub r/ approx. =140,000 peak consists of extrinsic plasminogen activator-protease inhibitor complex(es). ..cap alpha../sub 2/-Antiplasmin is the main inhibitor of extrinsic plasminogen activator in plasma and is probably responsible for the generation of the M/sub r/ approx. =140,000 component. A possible involvement of other plasma proteinase inhibitors was explored by incubation of /sup 125/I-labeled extrinsic plasminogen activator in ..cap alpha../sub 2/-antiplasmin-depleted plasma. A complex was formed with a t1/2 of about 1 hr, which was identified by immunoprecipitation as extrinsic plasminogen activator-..cap alpha../sub 2/-antiplasmin complex. Additional evidence for the presence of extrinsic plasminogen activator complexes with ..cap alpha../sub 2/-antiplasmin and ..cap alpha../sub 1/-antitrypsin in plasma was obtained from two-site immunoradiometric assays. It was concluded that plasma contains both free extrinsic plasminogen activator and plasminogen activator complexes with ..cap alpha../sub 2/-antiplasmin and ..cap alpha../sub 1/-antitrypsin. These complexes are also present in plasma collected on the active site inhibitor, D-Phe-Pro-Arg-CH/sub 2/Cl, at rest and after exercise and are therefore assumed to circulate in vivo. (JMT)

  12. Variation of proteins and proteinases in Entamoeba histolytica lysates containing a protease inhibitor.

    PubMed

    López-Revilla, R; Jiménez-Delgadillo, B; Canto-Ortiz, L; Chávez-Dueñas, L

    1992-01-01

    Sodium dodecyl sulfate (SDS)-lysates of E. histolytica trophozoites were analyzed by electrophoresis in simple and gelatin-containing ("substrate") SDS-polyacrylamide gels. In simple gels, boiled lysates with para hydroxymercuribenzoate (pHMB) had a complex pattern of apparently undegraded proteins; boiled lysates without pHMB showed a major 30 kDa and four minor (43, 46, 63 and 117 kDa) proteins, whereas unheated lysates displayed only the 117 kDa protein. Using substrate gels no gelatinases were detected in heated lysates; unheated lysates without pHMB showed a major 30 kDa and three minor (33, 46 and 68 kDa) gelatinases, whereas those with pHMB presented a major 56 kDa and two minor (70 and 105 kDa) gelatinases. Three caseinase peaks were separated by Sephadex G-75 chromatography from unheated lysates: peak I contained 46, 56 and 117 kDa pHMB-sensitive gelatinases and peaks II and III contained smaller pHMB-resistant caseinases. We conclude that proteins remaining in lysates after SDS-induced proteolysis appear to be mainly proteases relatively resistant to self-digestion whose type and amount changes with the conditions of lysis and the presence of inhibitors; this is exemplified by the finding of the major gelatinase of lysates with pHMB being larger (56 kDa) than in lysates lacking the inhibitor (30 kDa). PMID:1340329

  13. Ubiquitin-protein conjugates accumulate in the lysosomal system of fibroblasts treated with cysteine proteinase inhibitors.

    PubMed Central

    Doherty, F J; Osborn, N U; Wassell, J A; Heggie, P E; Laszlo, L; Mayer, R J

    1989-01-01

    Mouse fibroblasts (3T3-L1 cells) accumulate detergent- and salt-insoluble aggregates of proteins conjugated to ubiquitin when incubated in the presence of inhibitors of lysosomal cysteine cathepsins, including E-64. These ubiquitin-protein conjugates co-fractionate with lysosomes on density gradients and are found in multivesicular dense bodies which by electron microscopy appear to be engaged in microautophagy. Both E-64 and ammonium chloride increase the intracellular concentration of free ubiquitin, but only E-64 leads to the formation of insoluble lysosomal ubiquitin-protein conjugates. The results are discussed in relation to the possible intracellular roles of ubiquitin conjugation. Images Fig. 1. Fig. 3. Fig. 4. p52-a PMID:2557825

  14. Occurrence of two distinct types of tissue inhibitors of metallo-proteinases-2 in Fugu rubripes

    NASA Astrophysics Data System (ADS)

    Yokoyama, Yoshihiro; Tsukamoto, Hiroshi; Suzuki, Tohru; Mizuta, Shohshi; Yoshinaka, Reiji

    2005-07-01

    In this study, genes of two distinct tissue inhibitors of metalloproteinases-2 (TIMP-2) from Japanese puffer fish Fugu rubripes, Fugu TIMP-2a and TIMP-2b, were cloned. The open reading frames of Fugu TIMP-2a and TIMP-2b cDNAs are composed of 660 and 657 nucleotides and 220 and 219 amino acids, respectively. Both Fugu TIMP-2s contain 12 cysteine residues, which might form six disulfide bonds as in other animals’ TIMP-2s. Reverse-transcribed polymerase chain reaction analysis showed the mRNAs of Fugu TIMP-2a and TIMP-2b to be expressed in some tissues examined with different expression patterns. These findings suggest that the two distinct Fugu TIMP-2s might perform different functions in Fugu tissues.

  15. AFM Imaging Reveals Topographic Diversity of Wild Type and Z Variant Polymers of Human α1-Proteinase Inhibitor

    PubMed Central

    Gaczynska, Maria; Karpowicz, Przemyslaw; Stuart, Christine E.; Norton, Malgorzata G.; Teckman, Jeffrey H.; Marszal, Ewa; Osmulski, Pawel A.

    2016-01-01

    α1-Proteinase inhibitor (antitrypsin) is a canonical example of the serpin family member that binds and inhibits serine proteases. The natural metastability of serpins is crucial to carry out structural rearrangements necessary for biological activity. However, the enhanced metastability of the mutant Z variant of antitrypsin, in addition to folding defect, may substantially contribute to its polymerization, a process leading to incurable serpinopathy. The metastability also impedes structural studies on the polymers. There are no crystal structures of Z monomer or any kind of polymers larger than engineered wild type (WT) trimer. Our understanding of polymerization mechanisms is based on biochemical data using in vitro generated WT oligomers and molecular simulations. Here we applied atomic force microscopy (AFM) to compare topography of monomers, in vitro formed WT oligomers, and Z type polymers isolated from transgenic mouse liver. We found the AFM images of monomers closely resembled an antitrypsin outer shell modeled after the crystal structure. We confirmed that the Z variant demonstrated higher spontaneous propensity to dimerize than WT monomers. We also detected an unexpectedly broad range of different types of polymers with periodicity and topography depending on the applied method of polymerization. Short linear oligomers of unit arrangement similar to the Z polymers were especially abundant in heat-treated WT preparations. Long linear polymers were a prominent and unique component of liver extracts. However, the liver preparations contained also multiple types of oligomers of topographies undistinguishable from those found in WT samples polymerized with heat, low pH or guanidine hydrochloride treatments. In conclusion, we established that AFM is an excellent technique to assess morphological diversity of antitrypsin polymers, which is important for etiology of serpinopathies. These data also support previous, but controversial models of in vivo

  16. Fitness benefits of trypsin proteinase inhibitor expression in Nicotiana attenuata are greater than their costs when plants are attacked.

    PubMed Central

    Zavala, Jorge A; Baldwin, Ian T

    2004-01-01

    Background The commonly invoked cost-benefit paradigm, central to most of functional biology, explains why one phenotype cannot be optimally fit in all environments; yet it is rarely tested. Trypsin proteinase inhibitors (TPIs) expression in Nicotiana attenuata is known to decrease plant fitness when plants compete with unattacked conspecifics that do not produce TPIs and also to decrease the performance of attacking herbivores. Results In order to determine whether the putative benefits of TPI production outweigh its cost, we transformed N. attenuata to silence endogenous TPI production or restore it in a natural mutant that was unable to produce TPIs. We compared the lifetime seed production of N. attenuata genotypes of the same genetic background with low or no TPI to that of genotypes with high TPI levels on which M. sexta larvae were allowed to feed freely. Unattacked low TPI-producing genotypes produced more seed capsules than did plants with high TPI levels. Caterpillar attack reduced seed capsule production in all genotypes and reversed the pattern of seed capsule production among genotypes. M. sexta larvae attacking genotypes with high TPI activity consumed more TPI, less protein, and move later to the young leaves. Larval masses were negatively correlated (R2 = 0.56) with seed capsule production per plant. Conclusions Our results demonstrate that the fitness benefits of TPI production outweigh their costs in greenhouse conditions, when plants are attacked and that despite the ongoing evolutionary interactions between plant and herbivore, TPI-mediated decreases in M. sexta performance translates into a fitness benefit for the plant. PMID:15304198

  17. AFM Imaging Reveals Topographic Diversity of Wild Type and Z Variant Polymers of Human α1-Proteinase Inhibitor

    DOE PAGESBeta

    Gaczynska, Maria; Karpowicz, Przemyslaw; Stuart, Christine E.; Norton, Malgorzata G.; Teckman, Jeffrey H.; Marszal, Ewa; Osmulski, Pawel A.

    2016-03-23

    α1-Proteinase inhibitor (antitrypsin) is a canonical example of the serpin family member that binds and inhibits serine proteases. The natural metastability of serpins is crucial to carry out structural rearrangements necessary for biological activity. However, the enhanced metastability of the mutant Z variant of antitrypsin, in addition to folding defect, may substantially contribute to its polymerization, a process leading to incurable serpinopathy. The metastability also impedes structural studies on the polymers. There are no crystal structures of Z monomer or any kind of polymers larger than engineered wild type (WT) trimer. Our understanding of polymerization mechanisms is based on biochemicalmore » data using in vitro generated WT oligomers and molecular simulations. Here we applied atomic force microscopy (AFM) to compare topography of monomers, in vitro formed WT oligomers, and Z type polymers isolated from transgenic mouse liver. We found the AFM images of monomers closely resembled an antitrypsin outer shell modeled after the crystal structure. We confirmed that the Z variant demonstrated higher spontaneous propensity to dimerize than WT monomers. We also detected an unexpectedly broad range of different types of polymers with periodicity and topography depending on the applied method of polymerization. Short linear oligomers of unit arrangement similar to the Z polymers were especially abundant in heat-treated WT preparations. Long linear polymers were a prominent and unique component of liver extracts. However, the liver preparations contained also multiple types of oligomers of topographies undistinguishable from those found inWT samples polymerized with heat, low pH or guanidine hydrochloride treatments. In conclusion, we established that AFM is an excellent technique to assess morphological diversity of antitrypsin polymers, which is important for etiology of serpinopathies. These data also support previous, but controversial models of in vivo

  18. Pharmacokinetics of Hedgehog Pathway Inhibitor Vismodegib (GDC-0449) in Patients with Locally Advanced or Metastatic Solid Tumors: the Role of Alpha-1-Acid Glycoprotein Binding

    PubMed Central

    Graham, Richard A.; Lum, Bert L.; Cheeti, Sravanthi; Jin, Jin Yan; Jorga, Karin; Von Hoff, Daniel D.; Rudin, Charles M.; Reddy, Josina C.; Low, Jennifer A.; LoRusso, Patricia M.

    2013-01-01

    Purpose In a phase I trial for patients with refractory solid tumors, hedgehog pathway inhibitor vismodegib (GDC-0449) showed little decline in plasma concentrations over 7 days after a single oral dose and nonlinearity with respect to dose and time after single and multiple dosing. We studied the role of GDC-0449 binding to plasma protein alpha-1-acid glycoprotein (AAG) to better understand these unusual pharmacokinetics. Experimental Design Sixty-eight patients received GDC-0449 at 150 (n = 41), 270 (n = 23), or 540 (n = 4) mg/d, with pharmacokinetic (PK) sampling at multiple time points. Total and unbound (dialyzed) GDC-0449 plasma concentrations were assessed by liquid chromatography/tandem mass spectrometry, binding kinetics by surface plasmon resonance–based microsensor, and AAG levels by ELISA. Results A linear relationship between total GDC-0449 and AAG plasma concentrations was observed across dose groups (R2 = 0.73). In several patients, GDC-0449 levels varied with fluctuations in AAG levels over time. Steady-state, unbound GDC-0449 levels were less than 1% of total, independent of dose or total plasma concentration. In vitro, GDC-0449 binds AAG strongly and reversibly (KD = 13 μmol/L) and human serum albumin less strongly (KD = 120 μmol/L). Simulations from a derived mechanistic PK model suggest that GDC-0449 pharmacokinetics are mediated by AAG binding, solubility-limited absorption, and slow metabolic elimination. Conclusions GDC-0449 levels strongly correlated with AAG levels, showing parallel fluctuations of AAG and total drug over time and consistently low, unbound drug levels, different from previously reported AAG-binding drugs. This PK profile is due to high-affinity, reversible binding to AAG and binding to albumin, in addition to solubility-limited absorption and slow metabolic elimination properties. PMID:21300760

  19. Interaction of new kinase inhibitors cabozantinib and tofacitinib with human serum alpha-1 acid glycoprotein. A comprehensive spectroscopic and molecular Docking approach.

    PubMed

    Ajmal, Mohammad Rehan; Abdelhameed, Ali Saber; Alam, Parvez; Khan, Rizwan Hasan

    2016-04-15

    In the current study we have investigated the interaction of newly approved kinase inhibitors namely Cabozantinib (CBZ) and Tofacitinib (TFB) with human Alpha-1 acid glycoprotein (AAG) under simulated physiological conditions using fluorescence quenching measurements, circular dichroism, dynamic light scattering and molecular docking methods. CBZ and TFB binds to AAG with significant affinity and the calculated binding constant for the drugs lie in the order of 10(4). With the increase in temperature the binding constant values decreased for both CBZ and TFB. The fluorescence resonance energy transfer (FRET) from AAG to CBZ and TFB suggested the fluorescence intensity of AAG was quenched by the two studied drugs via the formation of a non-fluorescent complex in the static manner. The molecular distance r value calculated from FRET is around 2 nm for both drugs, fluorescence spectroscopy data was employed for the study of thermodynamic parameters, standard Gibbs free energy change at 300 K was calculated as -5.234 kcal mol(-1) for CBZ-AAG interaction and -6.237 kcal mol(-1) for TFB-AAG interaction, standard enthalpy change and standard entropy change for CBZ-AAG interaction are -9.553 kcal mol(-1) and -14.618 cal mol(-1) K(-1) respectively while for AAG-TFB interaction, standard enthalpy and standard entropy change was calculated as 4.019 kcal mol(-1) and 7.206 cal mol(-1) K(-1) respectively. Protein binding of the two drugs caused the tertiary structure alterations. Dynamic light scattering measurements demonstrated the reduction in the hydrodynamic radii of the protein. Furthermore molecular docking results suggested the Hydrophobic interaction and hydrogen bonding were the interactive forces in the binding process of CBZ to AAG while in case of TFB only hydrophobic interactions were found to be involved, overlap of the binding site for two studied drugs on the AAG molecule was revealed by docking results. PMID:26851488

  20. Interaction of new kinase inhibitors cabozantinib and tofacitinib with human serum alpha-1 acid glycoprotein. A comprehensive spectroscopic and molecular Docking approach

    NASA Astrophysics Data System (ADS)

    Ajmal, Mohammad Rehan; Abdelhameed, Ali Saber; Alam, Parvez; Khan, Rizwan Hasan

    2016-04-01

    In the current study we have investigated the interaction of newly approved kinase inhibitors namely Cabozantinib (CBZ) and Tofacitinib (TFB) with human Alpha-1 acid glycoprotein (AAG) under simulated physiological conditions using fluorescence quenching measurements, circular dichroism, dynamic light scattering and molecular docking methods. CBZ and TFB binds to AAG with significant affinity and the calculated binding constant for the drugs lie in the order of 104. With the increase in temperature the binding constant values decreased for both CBZ and TFB. The fluorescence resonance energy transfer (FRET) from AAG to CBZ and TFB suggested the fluorescence intensity of AAG was quenched by the two studied drugs via the formation of a non-fluorescent complex in the static manner. The molecular distance r value calculated from FRET is around 2 nm for both drugs, fluorescence spectroscopy data was employed for the study of thermodynamic parameters, standard Gibbs free energy change at 300K was calculated as - 5.234 kcal mol- 1 for CBZ-AAG interaction and - 6.237 kcal mol- 1 for TFB-AAG interaction, standard enthalpy change and standard entropy change for CBZ-AAG interaction are - 9.553 kcal mol- 1 and - 14.618 cal mol- 1K- 1 respectively while for AAG-TFB interaction, standard enthalpy and standard entropy change was calculated as 4.019 kcal mol- 1 and 7.206 cal mol- 1K- 1 respectively. Protein binding of the two drugs caused the tertiary structure alterations. Dynamic light scattering measurements demonstrated the reduction in the hydrodynamic radii of the protein. Furthermore molecular docking results suggested the Hydrophobic interaction and hydrogen bonding were the interactive forces in the binding process of CBZ to AAG while in case of TFB only hydrophobic interactions were found to be involved, overlap of the binding site for two studied drugs on the AAG molecule was revealed by docking results.

  1. Biotin-labelled peptidyl diazomethane inhibitors derived from the substrate-like sequence of cystatin: targeting of the active site of cruzipain, the major cysteine proteinase of Trypanosoma cruzi.

    PubMed Central

    Lalmanach, G; Mayer, R; Serveau, C; Scharfstein, J; Gauthier, F

    1996-01-01

    Biotin-labelled peptidyl diazomethane inhibitors of cysteine proteinases, based on the N-terminal substrate-like segment of human cystatin C, a natural inhibitor of cysteine proteinases, were synthesized. These synthetic derivatives were tested as irreversible inhibitors of cruzipain, the major cysteine proteinase of Trypanosoma cruzi, to compare the kinetics of the inhibition of the parasite proteinase with that of the mammalian cathepsins B and L. The accessibility of the active sites of these proteinases to these probes was also investigated. The inhibition of cruzipain by Biot-LVG-CHN2 (where Biot represents biotinyl and L,V and G are single-letter amino acid residue abbreviations) and Biot-Ahx-LVG-CHN2 (where Ahx represents 6-aminohexanoic acid) was similar to that of unlabelled inhibitor. Biotin labelling of the inhibitor slowed the inhibition of both cathepsin B and cathepsin L. Adding a spacer arm (Ahx) between the biotin and the peptide moiety of the derivative increased the inhibition of cathepsin B but not that of cathepsin L. The discrimination provided by this spacer is probably due to differences in the topologies of the binding sites of proteinases, a feature that can be exploited to improve targeting of individual cysteine proteinases. Analysis of the blotted proteinases revealed marked differences in the accessibility of extravidin-peroxidase conjugate to the proteinase-bound biotinylated inhibitor. Cruzipain molecules exposed to Biot-LVG-CHN2 or Biot-Ahx-LVG-CHN2 were readily identified, but the reaction was much stronger when the enzyme was treated with the spacer-containing inhibitor. In contrast with the parasite enzyme, rat cathepsin B and cathepsin L treated with either Biot-LVG-CHN2 or Biot-Ahx-LVG-CHN2 produced no detectable bands. Papain, the archetype of this family of proteinases, was poorly labelled with Biot-LVG-CHN2, but strong staining was obtained with Biot-Ahx-LVG-CHN2. These findings suggest that optimized biotinylated

  2. Bmcystatin, a cysteine proteinase inhibitor characterized from the tick Boophilus microplus

    SciTech Connect

    Lima, Cassia A.; Sasaki, Sergio D.; Tanaka, Aparecida S. . E-mail: Tanaka.bioq@epm.br

    2006-08-18

    The bovine tick Rhipicephalus (Boophilus) microplus is a blood-sucking animal, which is responsible for Babesia spp and Anaplasma marginale transmission for cattle. From a B. microplus fat body cDNA library, 465 selected clones were sequenced randomly and resulted in 60 Contigs. An open reading frame (ORF) contains 98 amino acids named Bmcystatin, due to 70% amino acid identity to a classical type 1 cystatin from Ixodes scapularis tick (GenBank Accession No. DQ066227). The Bmcystatin amino acid sequence analysis showed two cysteine residues, theoretical pI of 5.92 and M{sub r} of 11kDa. Bmcystatin gene was cloned in pET 26b vector and the protein expressed using bacteria Escherichia coli BL21 SI. Recombinant Bmcystatin (rBmcystatin) purified by affinity chromatography on Ni-NTA-agarose column and ionic exchange chromatography on HiTrap Q column presented molecular mass of 11kDa, by SDS-PAGE and the N-terminal amino acid sequenced revealed unprocessed N-terminal containing part of pelB signal sequence. Purified rBmcystatin showed to be a C1 cysteine peptidase inhibitor with K{sub i} value of 0.1 and 0.6nM for human cathepsin L and VTDCE (vitellin degrading cysteine endopeptidase), respectively. The rBmcystatin expression analyzed by semi-quantitative RT-PCR confirmed the amplification of a specific DNA sequence (294bp) in the fat body and ovary cDNA preparation. On the other hand, a protein band was detected in the fat body, ovary, and the salivary gland extracts using anti-Bmcystatin antibody by Western blot. The present results suggest a possible role of Bmcystatin in the ovary, even though the gene was cloned from the fat body, which could be another site of this protein synthesis.

  3. Recombinant pro-regions from papain and papaya proteinase IV-are selective high affinity inhibitors of the mature papaya enzymes.

    PubMed

    Taylor, M A; Baker, K C; Briggs, G S; Connerton, I F; Cummings, N J; Pratt, K A; Revell, D F; Freedman, R B; Goodenough, P W

    1995-01-01

    Proteolytic enzymes require the presence of their pro-regions for correct folding. Of the four proteolytic enzymes from Carica papaya, papain and papaya proteinase IV (PPIV) have 68% sequence identity. We find that their pro-regions are even more similar, exhibiting 73.6% identity. cDNAs encoding the pro-regions of these two proteinases have been expressed in Escherichia coli independently from their mature enzymes. The recombinant pro-regions of papain and PPIV have been shown to be high affinity inhibitors of all four of the mature native papaya cysteine proteinases. Their inhibition constants are in the range 10(-6) - 10(-9) M. PPIV was inhibited two to three orders of magnitude less effectively than papain, chymopapain and caricain. The pro-region of PPIV, however, inhibited its own mature enzyme more effectively than did the pro-region of papain. Alignment of the sequences of the four papaya enzymes shows that there is a highly variable section towards the C-terminal of the pro-region. This region may therefore confer selectivity to the pro-regions for the individual proteolytic enzymes. PMID:7770454

  4. Modification of the proteinase/anti-proteinase balance in the respiratory tract of Sprague-Dawley rats after single intratracheal instillation of benzo[A]pyrene-coated onto Fe(2)O(3) particles.

    PubMed

    Garçon, G; Campion, J; Hannothiaux, M H; Boutin, A C; Venembre, P; Balduyck, M; Haguenoer, J M; Shirali, P

    2000-01-01

    Available data suggest that repeated concurrent exposure to haematite (Fe(2)O(3)) and benzo[A]pyrene (B[A]P) results in a decreased latency and an increased incidence of lung tumours in rodents compared to exposure to B[A]P alone. Moreover, the reactive oxygen species (ROS) formed by the lung cells themselves and/or by activated inflammatory cells may possibly contribute to the development of pulmonary disorders such as cancer formation. In order to investigate the precise role of iron in the injury induced by B[A]P-coated onto Fe(2)O(3) particles, we tend to address the hypothesis that Fe(2)O(3) and B[A]P, alone or in association, can induce oxidative stress conditions (malondialdehyde) and/or inflammatory reactions (interleukin-6) and thereby disrupt the proteinase/anti-proteinase balance (cathepsins B and L, polynuclear neutrophil (PNN) elastase, alpha-1 proteinase inhibitor (alpha(1)PI) and its inhibitory capacity) in the rat respiratory tract. Thus, Fe(2)O(3) or B[A]P-coated onto Fe(2)O(3) particles produce oxidative stress conditions through not only iron-catalysed oxidative reactions but also inflammatory processes. However, B[A]P initiates only inflammatory responses. These pollutants generate increased levels of proteases and decrease the concentrations of free alpha(1)PI. There is also a clear relationship between the partial inactivation of alpha(1)PI and the occurrence of ROS after exposure to Fe(2)O(3), alone or as a carrier of B[A]P. Hence, the proteinase/anti-proteinase balance might be more disrupted by Fe(2)O(3) or B[A]P-coated onto Fe(2)O(3) particles than by B[A]P alone. These results suggest a mechanism that can explain why B[A]P-coated onto Fe(2)O(3) particles are more injurious than B[A]P alone. PMID:10942902

  5. Identification of proteinaceous inhibitors of a cysteine proteinase (an Arg-specific gingipain) from Porphyromonas gingivalis in rice grain, using targeted-proteomics approaches.

    PubMed

    Taiyoji, Mayumi; Shitomi, Yasuyuki; Taniguchi, Masayuki; Saitoh, Eiichi; Ohtsubo, Sadami

    2009-11-01

    Porphyromonas gingivalis is known to be a major etiologic agent in the onset and progression of chronic periodontitis. Among various virulence factors that this bacterium produces, Arg- and Lys-specific cysteine proteinases (gingipains) are believed to be major determinants of the pathogenicity of P. gingivalis. Here, we report on our finding that there are inhibitors of these cysteine proteinases in a rice protein fraction. Comprehensive affinity chromatography and MS analyses resulted in the identification of 17 Arg-gingipain (Rgp)-interacting proteins in the rice endosperm. Of these, four proteins (i.e., a 26 kDa globulin, a plant lipid transfer/trypsin-alpha amylase inhibitor, the RA17 seed allergen, and an alpha amylase/trypsin inhibitor) were estimated to account for 90% of the Rgp inhibitory activity in the rice protein fraction, using a two-dimensional gel system of double-layer reverse zymography. In addition, a synthetic peptide derived from an Rgp-interacting protein, cyanate hydratase, could inhibit the growth of P. gingivalis and showed inhibitory activity against both the Arg- and Lys-gingipains. These results suggest that these rice proteins may be useful as nutraceutical ingredients for the prevention and management of periodontal diseases. PMID:19691286

  6. Succinyl hydroxamates as potent and selective non-peptidic inhibitors of procollagen C-proteinase: design, synthesis, and evaluation as topically applied, dermal anti-scarring agents.

    PubMed

    Bailey, Simon; Fish, Paul V; Billotte, Stephane; Bordner, Jon; Greiling, Doris; James, Kim; McElroy, Andrew; Mills, James E; Reed, Charlotte; Webster, Robert

    2008-12-15

    Succinyl hydroxamates 1 and 2 are disclosed as novel series of potent and selective inhibitors of procollagen C-proteinase (PCP) which may have potential as anti-fibrotic agents. Carboxamide 7 demonstrated good PCP inhibition and had excellent selectivity over MMPs involved in wound healing. In addition, 7 was effective in a cell-based model of collagen deposition (fibroplasia model) and was very effective at penetrating human skin in vitro. Compound 7 (UK-383,367) was selected as a candidate for evaluation in clinical studies as a topically applied, dermal anti-scarring agent. PMID:18945617

  7. [Alpha1-adrenoceptor subtypes and alpha1-adrenoceptor antagonists].

    PubMed

    Muramatsu, Ikunobu; Suzuki, Fumiko; Tanaka, Takashi; Yamamoto, Hatsumi; Morishima, Shigeru

    2006-03-01

    Alpha(1)-adrenoceptors are widely distributed in the human body and play important physiologic roles. Three alpha(1)-adrenoceptor subtypes (alpha(1A), alpha(1B) and alpha(1D)) have been cloned and show different pharmacologic profiles. In addition, a putative alpha(1)-adrenoceptor (alpha(1L) subtype) has also been proposed. Recently, three drugs (tamsulosin, naftopidil, and silodosin) have been developed in Japan for the treatment of urinary obstruction in patients with benign prostatic hyperplasia. In this review, we describe recent alpha(1)-adrenoceptor subclassifications and the pharmacologic characteristics (subtype selectivity and clinical relevance) of alpha(1)-adrenoceptor antagonists. PMID:16518082

  8. [Extracellular proteinases of filamentous fungi as potential markers of phytopathogenesis].

    PubMed

    Dunaevskiĭ, Ia E; Gruban', T N; Beliakova, G A; Belozerskiĭ, M A

    2006-01-01

    The presence of proteins in the culture liquid of filamentous fungi under study was found to induce the secretion of proteinases. The inhibitory analysis of the major extracellular proteinases of the saprotrophic fungus Trichoderma harzianum and the phytopathogenic fungus Alternaria alternata showed that they both belong to the group of serine proteinases. The substrate specificity of these proteinases and their sensitivity to inhibitors suggest that the enzyme of T. harzianum is a subtilisin-like proteinase and the enzyme of A. alternata is a trypsin-like proteinase. This difference between the proteinases may reflect the physiological difference between their producers (saprotroph and phytopathogen). PMID:17205798

  9. Negative effects of a nonhost proteinase inhibitor of ~19.8 kDa from Madhuca indica seeds on developmental physiology of Helicoverpa armigera (Hübner).

    PubMed

    Jamal, Farrukh; Singh, Dushyant; Pandey, Prabhash K

    2014-01-01

    An affinity purified trypsin inhibitor from the seed flour extracts of Madhuca indica (MiTI) on denaturing polyacrylamide gel electrophoresis showed that MiTI consisted of a single polypeptide chain with molecular mass of ~19.8 kDa. MiTI inhibited the total proteolytic and trypsin-like activities of the midgut proteinases of Helicoverpa armigera larvae by 87.51% and 76.12%, respectively, at concentration of 5 µg/mL with an IC50 of 1.75 µg/mL against trypsin like midgut proteinases. The enzyme kinetic studies demonstrated that MiTI is a competitive inhibitor with a K i value of 4.1 × 10(-10) M for Helicoverpa trypsin like midgut proteinases. In vivo experiments with different concentrations of MiTI in artificial diet (0.5, 1.0, and 1.5% w/w) showed an effective downfall in the larval body weight and an increase in larval mortality. The concentration of MiTI in the artificial diet to cause 50% mortality (LD50) of larvae was 1.5% w/w and that to cause reduction in mass of larvae by 50% (ED50) was 1.0% w/w. Nutritional indices observations suggest the toxic and adverse effects of MiTI on the growth and development of H. armigera larvae. The results suggest a strong bioinsecticidal potential of affinity purified MiTI which can be exploited in insect pest management of crop plants. PMID:25298962

  10. Negative Effects of a Nonhost Proteinase Inhibitor of ~19.8 kDa from Madhuca indica Seeds on Developmental Physiology of Helicoverpa armigera (Hübner)

    PubMed Central

    Jamal, Farrukh; Singh, Dushyant; Pandey, Prabhash K.

    2014-01-01

    An affinity purified trypsin inhibitor from the seed flour extracts of Madhuca indica (MiTI) on denaturing polyacrylamide gel electrophoresis showed that MiTI consisted of a single polypeptide chain with molecular mass of ~19.8 kDa. MiTI inhibited the total proteolytic and trypsin-like activities of the midgut proteinases of Helicoverpa armigera larvae by 87.51% and 76.12%, respectively, at concentration of 5 µg/mL with an IC50 of 1.75 µg/mL against trypsin like midgut proteinases. The enzyme kinetic studies demonstrated that MiTI is a competitive inhibitor with a Ki value of 4.1 × 10−10 M for Helicoverpa trypsin like midgut proteinases. In vivo experiments with different concentrations of MiTI in artificial diet (0.5, 1.0, and 1.5% w/w) showed an effective downfall in the larval body weight and an increase in larval mortality. The concentration of MiTI in the artificial diet to cause 50% mortality (LD50) of larvae was 1.5% w/w and that to cause reduction in mass of larvae by 50% (ED50) was 1.0% w/w. Nutritional indices observations suggest the toxic and adverse effects of MiTI on the growth and development of H. armigera larvae. The results suggest a strong bioinsecticidal potential of affinity purified MiTI which can be exploited in insect pest management of crop plants. PMID:25298962

  11. Adaptation of the behaviour of an aspartic proteinase inhibitor by relocation of a lysine residue by one helical turn.

    PubMed

    Winterburn, Tim J; Wyatt, David M; Phylip, Lowri H; Berry, Colin; Bur, Daniel; Kay, John

    2006-08-01

    In addition to self-inhibition of aspartic proteinase zymogens by their intrinsic proparts, the activity of certain members of this enzyme family can be modulated through active-site occupation by extrinsic polypeptides such as the small IA3 protein from Saccharomyces cerevisiae. The unprecedented mechanism by which IA3 helicates to inhibit its sole target aspartic proteinase locates an i, i+4 pair of charged residues (Lys18+Asp22) on an otherwise-hydrophobic face of the amphipathic helix. The nature of these residues is not crucial for effective inhibition, but re-location of the lysine residue by one turn (+4 residues) in the helical IA3 positions its side chain in the mutant IA3-proteinase complex in an orientation essentially identical to that of the key lysine residue in zymogen proparts. The binding of the extrinsic mutant IA3 shows pH dependence reminiscent of that required for the release of intrinsic zymogen proparts so that activation can occur. PMID:16895485

  12. Reactive oxygen species and anti-proteinases.

    PubMed

    Siddiqui, Tooba; Zia, Mohammad Khalid; Ali, Syed Saqib; Rehman, Ahmed Abdur; Ahsan, Haseeb; Khan, Fahim Halim

    2016-01-01

    Reactive oxygen species (ROS) cause damage to macromolecules such as proteins, lipids and DNA and alters their structure and function. When generated outside the cell, ROS can induce damage to anti-proteinases. Anti-proteinases are proteins that are involved in the control and regulation of proteolytic enzymes. The damage caused to anti-proteinase barrier disturbs the proteinase-anti-proteinases balance and uncontrolled proteolysis at the site of injury promotes tissue damage. Studies have shown that ROS damages anti-proteinase shield of the body by inactivating key members such as alpha-2-macroglobulin, alpha-1-antitrypsin. Hypochlorous acid inactivates α-1-antitrypsin by oxidizing a critical reactive methionine residue. Superoxide and hypochlorous acid are physiological inactivators of alpha-2-macroglobulin. The damage to anti-proteinase barrier induced by ROS is a hallmark of diseases such as atherosclerosis, emphysema and rheumatoid arthritis. Thus, understanding the behaviour of ROS-induced damage to anti-proteinases may helps us in development of strategies that could control these inflammatory reactions and diseases. PMID:26699123

  13. Active Trafficking of Alpha 1 Antitrypsin across the Lung Endothelium

    PubMed Central

    Lockett, Angelia D.; Brown, Mary Beth; Santos-Falcon, Nieves; Rush, Natalia I.; Oueini, Houssam; Oberle, Amber J.; Bolanis, Esther; Fragoso, Miryam A.; Petrusca, Daniela N.; Serban, Karina A.; Schweitzer, Kelly S.; Presson Jr., Robert G.

    2014-01-01

    The homeostatic lung protective effects of alpha-1 antitrypsin (A1AT) may require the transport of circulating proteinase inhibitor across an intact lung endothelial barrier. We hypothesized that uninjured pulmonary endothelial cells transport A1AT to lung epithelial cells. Purified human A1AT was rapidly taken up by confluent primary rat pulmonary endothelial cell monolayers, was secreted extracellularly, both apically and basolaterally, and was taken up by adjacent rat lung epithelial cells co-cultured on polarized transwells. Similarly, polarized primary human lung epithelial cells took up basolaterally-, but not apically-supplied A1AT, followed by apical secretion. Evidence of A1AT transcytosis across lung microcirculation was confirmed in vivo by two-photon intravital microscopy in mice. Time-lapse confocal microscopy indicated that A1AT co-localized with Golgi in the endothelium whilst inhibition of the classical secretory pathway with tunicamycin significantly increased intracellular retention of A1AT. However, inhibition of Golgi secretion promoted non-classical A1AT secretion, associated with microparticle release. Polymerized A1AT or A1AT supplied to endothelial cells exposed to soluble cigarette smoke extract had decreased transcytosis. These results suggest previously unappreciated pathways of A1AT bidirectional uptake and secretion from lung endothelial cells towards the alveolar epithelium and airspaces. A1AT trafficking may determine its functional bioavailablity in the lung, which could be impaired in individuals exposed to smoking or in those with A1AT deficiency. PMID:24743137

  14. Elafin/elastase-specific inhibitor in bronchoalveolar lavage of normal subjects and farmer's lung.

    PubMed

    Tremblay, G M; Sallenave, J M; Israél-Assayag, E; Cormier, Y; Gauldie, J

    1996-10-01

    Secretory leukocyte proteinase inhibitor (SLPI) and alpha1-proteinase inhibitor (alpha1(PI)) cannot fully explain the total neutrophil elastase (NE) inhibitory capacity detected in bronchoalveolar lavage (BAL) fluid, suggesting the existence of other NE inhibitor(s). In the present study, we measured the concentrations of elafin, a newly described, low-molecular-weight serine proteinase inhibitor, SLPI, and alpha1(PI) in BAL fluids from eight healthy subjects, 13 asymptomatic farmers, seven farmers with active farmer's lung (FL), and seven farmers with previous (Ex) FL. In addition to SLPI and alpha1(PI), elafin was present in BAL fluids from control subjects and asymptomatic farmers, 13 (7-31) and 12 (7-67) mmol/mol of albumin (median and range) respectively. Elafin concentration increased significantly to 105 (38-207) mmol/mol of albumin in farmers with active FL and was also elevated in farmers with Ex FL. Elafin levels were highly correlated with lung inflammatory cell numbers, especially lymphocytes, and the decrease in single-breath diffusion capacity (DLCO). Elafin and SLPI were linked to yet uncharacterized proteins in BAL fluids. In conclusion, elafin is a constituent of BAL fluid from normal subjects and is found in enhanced concentrations in FL and in farmers with lymphocytic alveolitis. This suggests that elafin may play a role in lung homeostasis and inflammation. PMID:8887613

  15. Activated recombinant adenovirus proteinases

    DOEpatents

    Anderson, C.W.; Mangel, W.F.

    1999-08-10

    This application describes methods and expression constructs for producing activatable recombinant adenovirus proteinases. Purified activatable recombinant adenovirus proteinases and methods of purification are described. Activated adenovirus proteinases and methods for obtaining activated adenovirus proteinases are further included. Isolated peptide cofactors of adenovirus proteinase activity, methods of purifying and identifying peptide cofactors are also described. Antibodies immunoreactive with adenovirus proteinases, immunospecific antibodies, and methods for preparing them are also described. Other related methods and materials are also described. 29 figs.

  16. Activated recombinant adenovirus proteinases

    DOEpatents

    Anderson, Carl W.; Mangel, Walter F.

    1999-08-10

    This application describes methods and expression constructs for producing activatable recombinant adenovirus proteinases. Purified activatable recombinant adenovirus proteinases and methods of purification are described. Activated adenovirus proteinases and methods for obtaining activated adenovirus proteinases are further included. Isolated peptide cofactors of adenovirus proteinase activity, methods of purifying and identifying said peptide cofactors are also described. Antibodies immunoreactive with adenovirus proteinases, immunospecific antibodies, and methods for preparing them are also described. Other related methods and materials are also described.

  17. Activation of progelatinase A (MMP-2) by neutrophil elastase, cathepsin G, and proteinase-3: a role for inflammatory cells in tumor invasion and angiogenesis.

    PubMed

    Shamamian, P; Schwartz, J D; Pocock, B J; Monea, S; Whiting, D; Marcus, S G; Mignatti, P

    2001-11-01

    Gelatinase A (MMP-2), a matrix metalloproteinase (MMP) involved in tumor invasion and angiogenesis, is secreted as an inactive zymogen (proMMP-2) and activated by proteolytic cleavage. Here we report that polymorphonuclear neutrophil (PMN)-derived elastase, cathepsin G, and proteinase-3 activate proMMP-2 through a mechanism that requires membrane-type 1 matrix metalloproteinase (MT1-MMP) expression. Immunoprecipitation of human PMN-conditioned medium with a mixture of antibodies to elastase, cathepsin G, and proteinase-3 abolished proMMP-2 activation, whereas individual antibodies were ineffective. Incubation of HT1080 cells with either purified PMN elastase or cathepsin G or proteinase-3 resulted in dose-and time-dependent proMMP-2 activation. Addition of PMN-conditioned medium to MT1-MMP expressing cells resulted in increased proMMP-2 activation and in vitro invasion of extracellular matrix (ECM), but had no effect with cells that express no MT1-MMP. MMP-2 activation by PMN-conditioned medium or purified elastase was blocked by the elastase inhibitor alpha(1)-antitrypsin but not by Batimastat, an MMP inhibitor, showing that elastase activation of MMP-2 is not mediated by MMP activities. The PMN-conditioned medium-induced increase in cell invasion was blocked by Batimastat as well as by alpha(1)-antitrypsin, showing that PMN serine proteinases trigger a proteinase cascade that entails proMMP-2 activation: this gelatinase is the downstream effector of the proinvasive activity of PMN proteinases. These findings indicate a novel role for PMN-mediated inflammation in a variety of tissue remodeling processes including tumor invasion and angiogenesis. PMID:11598905

  18. Cystatins may confer viral resistance in plants by inhibition of a virus-induced cell death phenomenon in which cysteine proteinases are active: cloning and molecular characterization of a cDNA encoding cysteine-proteinase inhibitor (celostatin) from Celosia cristata (crested cock's comb).

    PubMed

    Gholizadeh, Ashraf; Santha, Ittiaparambu Mana; Kohnehrouz, Bahram Baghban; Lodha, Madan Lal; Kapoor, Harish Chander

    2005-12-01

    Cystatins (cysteine proteinase inhibitors) have been recently used in plants as antiviral strategy against those viruses whose replication involves cysteine proteinase activity. We proposed an idea that cystatins may confer resistance by inhibition of a virus-induced cell-death phenomenon in which cysteine proteinases are active. To test this idea, a full-length cDNA library was constructed from the preflowering stage of Celosia cristata (crested cock's comb) leaves, and a cDNA clone with cystatin domain was isolated using an oligonucleotide probe designed on the basis of the conserved peptide of plant cystatins. It was expressed in an Escherichia coli expression system as a fusion protein. The purified recombinant product, termed 'celostatin' (Celosia cystatin), inhibited the enzymatic activity of papain indicating its cystatin activity and prevented TMV (tobacco mosaic virus)-induced hypersensitive-response cell death in Nicotiana glutinosa (a wild species of tobacco) leaves by 65-70% at the concentration of approx. 50 ng/ml. It also offered resistance against TMV and caused normal growth of the test plant. Since the activity of cysteine proteinases is not involved in the TMV replication process, we speculated that inhibition of the hypersensitive response by celostatin may be due to the inactivation of proteolysis involved in the plant cell death programme, a phenomenon that has already been reported in animal systems. PMID:15842197

  19. Isolation and characterization of selective and potent human Fab inhibitors directed to the active-site region of the two-component NS2B-NS3 proteinase of West Nile virus.

    PubMed

    Shiryaev, Sergey A; Radichev, Ilian A; Ratnikov, Boris I; Aleshin, Alexander E; Gawlik, Katarzyna; Stec, Boguslaw; Frisch, Christian; Knappik, Achim; Strongin, Alex Y

    2010-05-01

    There is a need to develop inhibitors of mosquito-borne flaviviruses, including WNV (West Nile virus). In the present paper, we describe a novel and efficient recombinant-antibody technology that led us to the isolation of inhibitory high-affinity human antibodies to the active-site region of a viral proteinase. As a proof-of-principal, we have successfully used this technology and the synthetic naive human combinatorial antibody library HuCAL GOLD(R) to isolate selective and potent function-blocking active-site-targeting antibodies to the two-component WNV NS (non-structural protein) 2B-NS3 serine proteinase, the only proteinase encoded by the flaviviral genome. First, we used the wild-type enzyme in antibody screens. Next, the positive antibody clones were counter-screened using an NS2B-NS3 mutant with a single mutation of the catalytically essential active-site histidine residue. The specificity of the antibodies to the active site was confirmed by substrate-cleavage reactions and also by using proteinase mutants with additional single amino-acid substitutions in the active-site region. The selected WNV antibodies did not recognize the structurally similar viral proteinases from Dengue virus type 2 and hepatitis C virus, and human serine proteinases. Because of their high selectivity and affinity, the identified human antibodies are attractive reagents for both further mutagenesis and structure-based optimization and, in addition, for studies of NS2B-NS3 activity. Conceptually, it is likely that the generic technology reported in the present paper will be useful for the generation of active-site-specific antibody probes for multiple enzymes. PMID:20156198

  20. Molecular characterization and mapping of murine genes encoding three members of the stefin family of cysteine proteinase inhibitors

    SciTech Connect

    Tsui, F.W.L.; Hingwo Tsui; Mok, S. Toronto Hospital, Ontario ); Mlinaric, I.; Siminovitch, K.A. Mount Sinai Hospital, Toronto, Ontario ); Copeland, N.G.; Gilbert, D.J.; Jenkins, N.A. )

    1993-03-01

    Stefins or Type 1 cystatins belong to a large, evolutionarily conserved protein superfamily, the members of which inhibit the papain-like cysteine proteinases. The authors report here on the molecular cloning and chromosomal localization of three newly identified members of the murine stefin gene family. These genes, designated herein as mouse stefins 1, 2, and 3, were isolated on the basis of their relatively increased expression in moth-eaten viable compared to normal congenic mouse bone marrow cells. The open reading frames of the stefin cDNAs encode proteins of approximately 11.5 kDa that show between 50 and 92% identity to sequences of stefins isolated from various other species. Data from Southern analysis suggest that the murine stefin gene family encompasses at least 6 and possible 10-20 membranes, all of which appear to be clustered in the genome. Analysis of interspecific backcross mice indicates that the genes encoding the three mouse stefins all map to mouse chromosome 16, a localization that is consistent with the recent assignment of the human stefin A gene to a region of conserved homology between human chromosome 3q and the proximal region of mouse chromosome 16. 51 refs., 7 figs.

  1. Potential Use of Proteinase Inhibitors, Avidin, and Other Bio-reagents for Synergizing Bt Performance and Delaying Resistance Development to Bt

    Technology Transfer Automated Retrieval System (TEKTRAN)

    After being ingested by target insects, the insecticidal proteins from Bacillus thuringiensis (Bt) need to go through a proteolytic process by insect midgut proteinases to become activated. At the same time, Bt can be hydrolyzed and degraded by midgut proteinases to become non-toxic to target insect...

  2. Changes in tissue distribution of rat alpha 1-macroglobulin and pregnancy-associated alpha 1-glycoprotein after inflammatory injury.

    PubMed Central

    Zorin, N. A.; Zhabin, S. G.; Belogorlova, T. I.; Chirikova, T. S.; Krayushkina, N. A.; Lykova, O. F.

    1994-01-01

    Antiserum against rat alpha 1-macroglobulin (alpha 1MG) was produced in rabbits. Antiserum against rat pregnancy-associated alpha 1-glycoprotein (PAG) was obtained by immunization with a partly purified PAG preparation and absorption of the serum with male rat serum. Acute inflammation was produced in non-pregnant female rats by a single intramuscular injection of turpentine. The concentrations of both macroglobulins in the serum and in tissue extracts were measured by rocket immunoelectrophoresis at various times up to 7 days after injury. Inflammation produced in the rats resulted in moderately elevated serum levels of these proteins soon after injury. At first, alpha 1MG levels in a number of tissues (heart, lung, kidney, spleen, pancreas, uterus and ovary) were depressed markedly; they then stabilized. The elevated serum concentrations of alpha 1MG remained unchanged during inflammation. The store of PAG in the tissues was rapidly depleted and its serum level decreased to a normal value 7 days after injury. Our findings indicate that alpha 1MG plays a more important role in maintenance of the proteinase inhibitory potential in the rat than does PAG. Images Figure 1 Figure 2 PMID:7537521

  3. DNA structures decorated with cathepsin G/secretory leukocyte proteinase inhibitor stimulate IFNI production by plasmacytoid dendritic cells

    PubMed Central

    Skrzeczynska-Moncznik, Joanna; Wlodarczyk, Agnieszka; Banas, Magdalena; Kwitniewski, Mateusz; Zabieglo, Katarzyna; Kapinska-Mrowiecka, Monika; Dubin, Adam; Cichy, Joanna

    2013-01-01

    Plasmacytoid dendritic cells (pDCs) and neutrophils are detected in psoriatic skin lesions and implicated in the pathogenesis of psoriasis. pDCs specialize in the production of type I interferon (IFNI), a cytokine that plays an important role in chronic autoimmune-like inflammation, including psoriasis. Here, we demonstrate that IFNI production in pDCs is stimulated by DNA structures containing the neutrophil serine protease cathepsin G (CatG) and the secretory leukocyte protease inhibitor (SLPI), which is a controlling inhibitor of serine proteases. We also demonstrate the presence of neutrophil-derived DNA structures containing CatG and SLPI in lesional skin samples from psoriasis patients. These findings suggest a previously unappreciated role for CatG in psoriasis by linking CatG and its inhibitor SLPI to the IFNI-dependent regulation of immune responses by pDCs in psoriatic skin. PMID:23885335

  4. Suspecting and Testing for Alpha-1 Antitrypsin Deficiency-An Allergist's and/or Immunologist's Perspective.

    PubMed

    Craig, Timothy J

    2015-01-01

    Alpha-1 antitrypsin deficiency (AATD) is a hereditary, monogenic disorder with no unique clinical features. AATD can be difficult to diagnose as patients commonly present with respiratory symptoms often mistaken for other respiratory syndromes such as asthma or smoking-related chronic obstructive pulmonary disease. In addition, symptoms related to AATD may also affect other organs, including the liver, vasculature, and skin. The severity of AATD varies between individuals, and in severe cases, the irreversible lung damage can develop into emphysema. Early diagnosis is critical to enable the implementation of lifestyle changes and therapeutic options that can slow further deterioration of pulmonary tissue. Once AATD is suspected, a range of tests are available (serum alpha-1 proteinase inhibitor [A1-PI] level measurement, phenotyping, genotyping, gene sequencing) for confirming AATD. Currently, intravenous infusion of A1-PI is the only therapy that directly addresses the underlying cause of AATD, and has demonstrated efficacy in a recent randomized, placebo-controlled trial. This review discusses the etiology, testing, and management of AATD from the allergist's and/or immunologist's perspective. It aims to raise awareness of the condition among physicians who care for people with obstructive lung disorders and are therefore likely to see patients with obstructive lung disease that may, in fact, prove to be AATD. PMID:26032475

  5. MOLECULAR CLONING OF TRYPSIN-LIKE CDNAS AND COMPARISON OF PROTEINASE ACTIVITIES IN THE SALIVARY GLANDS AND GUT OF THE TARNISHED PLANT BUG LYGUS LINEOLARIS (HEMIPTERA: MIRIDAE)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Using specific proteinase inhibitors, we demonstrated that serine proteinases in the tarnished plant bug, Lygus lineolaris, are major proteinases in both salivary glands and gut tissues. Gut proteinases were less sensitive to inhibition than proteinases from the salivary glands. Up to 80% azocaseina...

  6. 12-o-Tetradecanoyl-phorbol-13-acetate-differentiated U937 cells express a macrophage-like profile of neutral proteinases. High levels of secreted collagenase and collagenase inhibitor accompany low levels of intracellular elastase and cathepsin G.

    PubMed

    Welgus, H G; Connolly, N L; Senior, R M

    1986-05-01

    Human monocytic tumor cells of the U937 cell line contain substantial quantities of two neutrophil neutral proteinases, elastase and cathepsin G, raising the question of whether their presence reflects an expression of transformation or whether normal monocytes undergo a developmental stage in which they produce certain neutrophil proteinases. To address this issue, we examined U937 cells for production of collagenase, since human alveolar macrophages release fibroblast-like collagenase, an enzyme that is distinct from neutrophil collagenase. Using an immunoassay that utilized antibody to skin fibroblast collagenase, we found that U937 cells secreted barely detectable quantities of enzyme, 10-12 ng/10(6) cells per 24 h, under basal conditions. Upon incubation with 10 nM 12-o-tetradecanoyl-phorbol-13-acetate (TPA), however, collagenase release increased 200-fold, comparable to the amount secreted by phorbol-stimulated human fibroblasts. Metabolic labeling and immunoprecipitation confirmed the enhanced synthesis of U937 cell collagenase upon TPA exposure. This enzyme activity further resembled fibroblast collagenase and differed from neutrophil collagenase by exhibiting preferential cleavage of monomeric type III collagen relative to type I. As previously observed with human alveolar macrophages, U937 cells also released a protein identical to the collagenase inhibitor produced by human skin fibroblasts, a molecule not associated with neutrophils. Release of this inhibitor increased 10-fold with TPA exposure. In contrast to collagenase and collagense inhibitor, TPA-treated U937 cells contained only 10-15% as much elastase and cathepsin G activities as control cells. Thus, TPA-induced differentiation modified the presence of these enzymes in the direction of their content in normal monocytes. Since the neutral proteinase profile of undifferentiated U937 cells resembles that of neutrophils and changes markedly after cellular differentiation to one that is

  7. Characterization and gene sequence of the precursor of elafin, an elastase-specific inhibitor in bronchial secretions.

    PubMed

    Sallenave, J M; Silva, A

    1993-04-01

    Human bronchial mucous secretions have been shown to contain inhibitors of serine proteinases secreted by neutrophils. The role of these inhibitors is probably to control the enzymes secreted in the airways and in the lung interstitium. Three of these inhibitors have been identified and characterized: alpha 1-proteinase inhibitor, mucus proteinase inhibitor, and elafin. The elafin molecule, a 6.0 kD inhibitor of serine proteinases shows homology with mucus proteinase inhibitor. We recently isolated both molecules in bronchial secretions. In this report, we present evidence for the existence of a precursor of the elafin molecule. We have cloned and sequenced the gene for this precursor and show that it is composed of three exons. The coding information for a 117 amino acid precursor protein of elafin (inclusive of the signal peptide) is contained in the first two exons. This was confirmed at the mRNA and protein levels. By Northern Blot analysis we detected a 800 bp long product, and by immunoaffinity we detected in sputum and in cultured epithelial cell supernatant (NCI-H322 cell line) a 12 kD protein species cross-reacting with anti-elafin IgG. The finding of possible cross-linking function for the precursor in addition to its antiproteinase activity indicates a possible role for this molecule as a cross-linker agent in the extracellular matrix. PMID:8476637

  8. Role for different cell proteinases in cancer invasion and cytolysis.

    PubMed Central

    Zucker, S.; Beck, G.; DiStefano, J. F.; Lysik, R. M.

    1985-01-01

    The crucial role of non-plasminogen dependent serine proteinases is tissue invasive and cytolytic functions of Walker 256 cancer cells has been documented using a rat urinary bladder invasion and a 125I-labelled fibroblast cytolysis assay. The invasive capacity of these cancer cells was abrogated by non toxic concentrations of the serine proteinase inhibitors, diisopropylfluorophosphate and phenylmethylsulfonylfluoride, but not by metallo or cysteine proteinase inhibitors. Although tumour cell collagenase activity and plasminogen activator were demonstrated, these proteolytic enzymes were not essential in these in vitro assays. These results suggest that different categories of proteinases play specific roles in the complicated process of cancer invasion. PMID:2992566

  9. The 2.5 A X-ray crystal structure of the acid-stable proteinase inhibitor from human mucous secretions analysed in its complex with bovine alpha-chymotrypsin.

    PubMed Central

    Grütter, M G; Fendrich, G; Huber, R; Bode, W

    1988-01-01

    Orthorhombic crystals of the complex formed between bovine alpha-chymotrypsin and a recombinant human mucous proteinase inhibitor (SLPI) were grown. Data to 2.3 A resolution were collected on the area-detector diffractometer FAST. The crystal structure of the complex was solved by Patterson search techniques using chymotrypsin as a search model. A cyclic procedure of modeling and crystallographic refinement enabled the determination of the SLPI structure. The current crystallographic R-value is 0.19. SLPI has a boomerang-like shape with both wings comprising two well separated domains of similar architecture. In each domain the polypeptide chain is arranged like a stretched spiral. Two internal strands form a regular beta-hairpin loop which is accompanied by two external strands linked by the proteinase binding segment. The polypeptide segment of each domain is interconnected by four disulfide bridges with a connectivity pattern hitherto unobserved. The reactive site loop of the second domain has elastase and chymotrypsin binding properties. It contains the scissile peptide bond between Leu72I and Met73I and has a similar conformation to that observed in other serine proteinase protein inhibitors. Eight residues of this loop, two of the adjacent hairpin loop, the C-terminal segment and Trp30I are in direct contact with the cognate enzyme. The binding loop of the first domain (probably with anti-trypsin activity) is disordered due to proteolytic cleavage occurring in the course of crystallization. PMID:3366116

  10. Knock-down of transcript abundance of a family of Kunitz proteinase inhibitor genes in white clover (Trifolium repens) reveals a redundancy and diversity of gene function.

    PubMed

    Islam, Afsana; Leung, Susanna; Burgess, Elisabeth P J; Laing, William A; Richardson, Kim A; Hofmann, Rainer W; Dijkwel, Paul P; McManus, Michael T

    2015-12-01

    The transcriptional regulation of four phylogenetically distinct members of a family of Kunitz proteinase inhibitor (KPI) genes isolated from white clover (Trifolium repens; designated Tr-KPI1, Tr-KPI2, Tr-KPI4 and Tr-KPI5) has been investigated to determine their wider functional role. The four genes displayed differential transcription during seed germination, and in different tissues of the mature plant, and transcription was also ontogenetically regulated. Heterologous over-expression of Tr-KPI1, Tr-KPI2, Tr-KPI4 and Tr-KPI5 in Nicotiana tabacum retarded larval growth of the herbivore Spodoptera litura, and an increase in the transcription of the pathogenesis-related genes PR1 and PR4 was observed in the Tr-KPI1 and Tr-KPI4 over-expressing lines. RNA interference (RNAi) knock-down lines in white clover displayed significantly altered vegetative growth phenotypes with inhibition of shoot growth and a stimulation of root growth, while knock-down of Tr-KPI1, Tr-KPI2 and Tr-KPI5 transcript abundance also retarded larval growth of S. litura. Examination of these RNAi lines revealed constitutive stress-associated phenotypes as well as altered transcription of cellular signalling genes. These results reveal a functional redundancy across members of the KPI gene family. Further, the regulation of transcription of at least one member of the family, Tr-KPI2, may occupy a central role in the maintenance of a cellular homeostasis. PMID:26377591

  11. Serum and fecal canine α1-proteinase inhibitor concentrations reflect the severity of intestinal crypt abscesses and/or lacteal dilation in dogs.

    PubMed

    Heilmann, Romy M; Parnell, Nolie K; Grützner, Niels; Mansell, Joanne; Berghoff, Nora; Schellenberg, Stefan; Reusch, Claudia E; Suchodolski, Jan S; Steiner, Jörg M

    2016-01-01

    Gastrointestinal (GI) protein loss, due to lymphangiectasia or chronic inflammation, can be challenging to diagnose. This study evaluated the diagnostic accuracy of serum and fecal canine α1-proteinase inhibitor (cα1PI) concentrations to detect crypt abscesses and/or lacteal dilation in dogs. Serum and fecal cα1PI concentrations were measured in 120 dogs undergoing GI tissue biopsies, and were compared between dogs with and without crypt abscesses/lacteal dilation. Sensitivity and specificity were calculated for dichotomous outcomes. Serial serum cα1PI concentrations were also evaluated in 12 healthy corticosteroid-treated dogs. Serum cα1PI and albumin concentrations were significantly lower in dogs with crypt abscesses and/or lacteal dilation than in those without (both P <0.001), and more severe lesions were associated with lower serum cα1PI concentrations, higher 3 days-mean fecal cα1PI concentrations, and lower serum/fecal cα1PI ratios. Serum and fecal cα1PI, and their ratios, distinguished dogs with moderate or severe GI crypt abscesses/lacteal dilation from dogs with only mild or none such lesions with moderate sensitivity (56-92%) and specificity (67-81%). Serum cα1PI concentrations increased during corticosteroid administration. We conclude that serum and fecal α1PI concentrations reflect the severity of intestinal crypt abscesses/lacteal dilation in dogs. Due to its specificity for the GI tract, measurement of fecal cα1PI appears to be superior to serum cα1PI for diagnosing GI protein loss in dogs. In addition, the serum/fecal cα1PI ratio has an improved accuracy in hypoalbuminemic dogs, but serum cα1PI concentrations should be carefully interpreted in corticosteroid-treated dogs. PMID:26631946

  12. Leukocyte Cell Surface Proteinases: Regulation of Expression, Functions, and Mechanisms of Surface Localization

    PubMed Central

    Owen, Caroline A.

    2008-01-01

    A number of proteinases are expressed on the surface of leukocytes including members of the serine, metallo-, and cysteine proteinase superfamilies. Some proteinases are anchored to the plasma membrane of leukocytes by a transmembrane domain or a glycosyl phosphatidyl inositol (GPI) anchor. Other proteinases bind with high affinity to classical receptors, or with lower affinity to integrins, proteoglycans, or other leukocyte surface molecules. Leukocyte surface levels of proteinases are regulated by: 1) cytokines, chemokines, bacterial products, and growth factors which stimulate synthesis and/or release of proteinase by cells; 2) the availability of surface binding sites for proteinases; and/or 3) internalization or shedding of surface-bound proteinases. The binding of proteinases to leukocyte surfaces serves many functions including: 1) concentrating the activity of proteinases to the immediate pericellular environment; 2) facilitating pro-enzyme activation; 3) increasing proteinase stability and retention in the extracellular space; 4) regulating leukocyte function by proteinases signaling through cell surface binding sites or other surface proteins; and 5) protecting proteinases from inhibition by extracellular proteinase inhibitors. There is strong evidence that membrane-associated proteinases on leukocytes play critical roles in wound healing, inflammation, extracellular matrix remodeling, fibrinolysis, and coagulation. This review will outline the biology of membrane-associated proteinases expressed by leukocytes and their roles in physiologic and pathologic processes. PMID:18329945

  13. Detecting Alpha-1 Antitrypsin Deficiency.

    PubMed

    Stoller, James K

    2016-08-01

    Alpha-1 antitrypsin deficiency is a widely underrecognized condition, with evidence of persisting long diagnostic delays and patients' frequent need to see multiple physicians before initial diagnosis. Reasons for underrecognition include inadequate understanding of alpha-1 antitrypsin deficiency by physicians and allied health care providers; failure to implement available, guideline-based practice recommendations; and the belief that effective therapy is unavailable. Multiple studies have described both the results of screening and targeted detection of individuals with alpha-1 antitrypsin deficiency, with both varying strategies employed to identify at-risk individuals and varying results of testing. Also, various strategies to enhance detection of affected individuals have been examined, including use of the electronic medical record to prompt testing and empowerment of allied health providers, especially respiratory therapists, to promote testing for alpha-1 antitrypsin deficiency. Such efforts are likely to enhance detection with the expected result that the harmful effects of delayed diagnosis can be mitigated. PMID:27564667

  14. Well-Known and Less Well-Known Functions of Alpha-1 Antitrypsin. Its Role in Chronic Obstructive Pulmonary Disease and Other Disease Developments.

    PubMed

    Janciauskiene, Sabina; Welte, Tobias

    2016-08-01

    Alpha-1 antitrypsin (A1AT) is an acute-phase protein, and is best known as an inhibitor of the serine proteases, specifically, neutrophil elastase, proteinase 3, and cathepsin G. The discovery of the connection between inherited A1AT deficiency and emphysema resulted in the concept of a proteinase-antiproteinase imbalance to explain the pathogenic mechanisms of chronic obstructive pulmonary disease, as well as the concomitant development of augmentation therapy with plasma-purified human A1AT. This proteinase-antiproteinase imbalance concept has been difficult to prove, as no single mechanism can account for the complex pathology of chronic obstructive pulmonary disease. New studies have begun to characterize A1AT as an antiinflammatory and an immunoregulatory protein, independent of its antiprotease activity. We recently found that A1AT binds to free fatty acids, and it is this form of A1AT that induces the expression and release of angiopoietin-like protein 4, a protein associated with dyslipidemia and inflammation. This latter finding further strengthens the idea that describing A1AT therapy as antiserine protease is perhaps an oversimplification. The preliminary findings suggest that A1AT could be used for the management of diseases not necessarily related to inherited A1ATD, and points toward a need for more detailed investigations into the relationships between the concentration, structure, and function of A1AT protein. PMID:27564662

  15. Inhibition of proteinase K by phosphorylated sugars.

    PubMed

    Orstan, A; Gafni, A

    1991-11-01

    Proteolysis of lactate dehydrogenase, aldolase and the synthetic substrate N-succinylalanylalanylalanyl-p-nitroanilide by proteinase K is inhibited by glucose-6-phosphate and fructose-1,6-biphosphate. Analysis of the kinetic data obtained with the synthetic substrate indicates that the inhibition is a mixed-type and that more than one inhibitor molecule binds to proteinase K. Glucose and fructose are ineffective as inhibitors. In the presence of 0.2-4 mM fructose-1,6-biphosphate, aldolase becomes more susceptible to proteolysis, probably as a result of a conformational change induced by the substrate. PMID:1815500

  16. Oncostatin M induced alpha1-antitrypsin (AAT) gene expression in Hep G2 cells is mediated by a 3' enhancer.

    PubMed Central

    Morgan, Kevin; Marsters, Peter; Morley, Stephen; van Gent, Diana; Hejazi, Ala; Backx, Matt; Thorpe, Emma R K; Kalsheker, Noor

    2002-01-01

    alpha(1)-Antitrypsin (AAT) is the major serine proteinase inhibitor (SERPIN A1) in human plasma. Its target proteinase is neutrophil elastase and its main physiological function is protection of the lower respiratory tract from the destructive effects of neutrophil elastase during an inflammatory response. Circulating levels of AAT rise 2-3-fold during inflammation and the liver produces most of this increase. The cytokines oncostatin M (OSM) and interleukin-6 have been shown to be mainly responsible for this effect, which is mediated via the interaction of cytokine-inducible transcription factors with regulatory elements within the gene. In the present study, we report for the first time that OSM stimulation of hepatocyte AAT occurs via an interaction between the hepatocyte promoter and an OSM-responsive element at the 3'-end of the AAT gene. This effect is mediated by the transcription factor signal transducer and activator of transcription 3 ('STAT 3') binding to an OSM-responsive element (sequence TTCTCTTAA), and this site is distinct from, but close to, a previously reported interleukin-6-responsive element. PMID:11936950

  17. A protein structural approach to the solution of biological problems: alpha 1-antitrypsin as a recent example.

    PubMed

    Lomas, D A; Carrell, R W

    1993-09-01

    alpha 1-Antitrypsin is a circulating serine proteinase inhibitor that protects the lungs against proteolysis by the enzyme neutrophil elastase. Most northern Europeans have only the normal M form, but some 4% are heterozygotes for the Z deficiency mutant. This mutant is characterized by the substitution of a positively charged lysine residue for a negatively charged glutamic acid at position 342 and results in normal gene translation but reduced protein secretion into the plasma. The plasma levels of antitrypsin in homozygotes are only 15% of normal, the other 85% being retained in the endoplasmic reticulum of the hepatocyte. This review describes the effect of the Z mutation on the structure and function of antitrypsin and illustrates the importance of understanding protein structure in solving the mechanism of Z antitrypsin retention within the liver. We demonstrate that antitrypsin accumulation in the liver results from a unique interaction between antitrypsin molecules. The Z mutation perturbs the gap between the third and fifth strands of the A sheet, allowing the reactive center loop of one molecule to insert into the A sheet of a second. This loop-sheet polymerization results in the formation of chains of protein which form insoluble inclusions in the endoplasmic reticulum, resulting in hepatocellular damage and cirrhosis. In addition, the Z mutation results in a distortion of the circular dichroic spectrum, a rearrangement of the reactive center loop with respect to the A sheet, and a reduction in association rate constant with the cognate proteinase neutrophil elastase. PMID:8214081

  18. Differential subcellular targeting of recombinant human α₁-proteinase inhibitor influences yield, biological activity and in planta stability of the protein in transgenic tomato plants.

    PubMed

    Jha, Shweta; Agarwal, Saurabh; Sanyal, Indraneel; Jain, G K; Amla, D V

    2012-11-01

    The response of protein accumulation site on yield, biological activity and in planta stability of therapeutic recombinant human proteinase inhibitor (α₁-PI) was analyzed via targeting to different subcellular locations, like endoplasmic reticulum (ER), apoplast, vacuole and cytosol in leaves of transgenic tomato plants. In situ localization of the recombinant α₁-PI protein in transgenic plant cells was monitored by immunohistochemical staining. Maximum accumulation of recombinant α₁-PI in T₀ and T₁ transgenic tomato plants was achieved from 1.5 to 3.2% of total soluble protein (TSP) by retention in ER lumen, followed by vacuole and apoplast, whereas cytosolic targeting resulted into degradation of the protein. The plant-derived recombinant α₁-PI showed biological activity for elastase inhibition, as monitored by residual porcine pancreatic elastase (PPE) activity assay and band-shift assay. Recombinant α₁-PI was purified from transgenic tomato plants with high yield, homogeneity and biological activity. Purified protein appeared as a single band of ∼48-50 kDa on SDS-PAGE with pI value ranging between 5.1 and 5.3. Results of mass spectrometry and optical spectroscopy of purified recombinant α₁-PI revealed the structural integrity of the recombinant protein comparable to native serum α₁-PI. Enzymatic deglycosylation and lectin-binding assays with the purified recombinant α₁-PI showed compartment-specific N-glycosylation of the protein targeted to ER, apoplast and vacuole. Conformational studies based on urea-induced denaturation and circular dichroism (CD) spectroscopy revealed relatively lower stability of the recombinant α₁-PI protein, compared to its serum counterpart. Pharmacokinetic evaluation of plant derived recombinant and human plasma-purified α₁-PI in rat, by intravenous route, revealed significantly faster plasma clearance and lower area under curve (AUC) of recombinant protein. Our data suggested significance of

  19. Phosphorylation and desensitization of alpha1d-adrenergic receptors.

    PubMed Central

    García-Sáinz, J A; Vázquez-Cuevas, F G; Romero-Avila, M T

    2001-01-01

    In rat-1 fibroblasts stably expressing rat alpha(1d)-adrenoceptors, noradrenaline and PMA markedly decreased alpha(1d)-adrenoceptor function (noradrenaline-elicited increases in calcium in whole cells and [(35)S]guanosine 5'-[gamma-thio]triphosphate binding in membranes), suggesting homologous and heterologous desensitizations. Photoaffinity labelling, Western blotting and immunoprecipitation identified alpha(1d)-adrenoceptors as a broad band of 70-80 kDa. alpha(1d)-Adrenoceptors were phosphorylated in the basal state and noradrenaline and PMA increased it. The effect of noradrenaline was concentration-dependent (EC(50) 75 nM), rapid (maximum at 1 min) and transient. Phorbol ester-induced phosphorylation was concentration-dependent (EC(50) 25 nM), slightly slower (maximum at 5 min) and stable for at least 60 min. Inhibitors of protein kinase C decreased the effect of phorbol esters but not that of noradrenaline. Evidence of cross-talk of alpha(1d)-adrenoceptors with receptors endogenously expressed in rat-1 fibroblasts was given by the ability of endothelin, lysophosphatidic acid and bradykinin to induce alpha(1d)-adrenoceptor phosphorylation. In summary, it is shown for the first time here that alpha(1d)-adrenoceptors are phosphoproteins and that receptor phosphorylation is increased by the natural ligand, noradrenaline, by direct activation of protein kinase C and via cross-talk with other receptors endogenously expressed in rat-1 fibroblasts. Receptor phosphorylation has functional repercussions. PMID:11171057

  20. [The interaction of human alpha 1-antitrypsin with human plasmin].

    PubMed

    Sakurama, S

    1984-01-01

    The interaction of alpha 1-antitrypsin (alpha 1-AT) with plasmin was investigated, and the molecular weight of the inhibitor was also re-evaluated. The value of molecular weight of alpha 1-AT determined by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) method showed a difference depending on the presence or absence of the reducing agent, resulting in 72,000 dalton before reduction and 59,000 dalton after reduction. Conclusively, the molecular weight of alpha 1-AT was appropriate to be 59,000 dalton from considering the molecular shape of the protein. The interaction of alpha 1-AT with plasmin was analysed by SDS-PAGE method. Unreduced analysis revealed that two kinds of complexes with different molecular weight (the major of 155,000 dalton and the minor of 140,000 dalton) were formed time dependently, suggesting that the former was a native complex and the latter was a degraded product. Reduced analysis disclosed that the light chain of plasmin involved the complex formation with the inhibitor, and a peptide of 16,000 dalton appeared during the reaction. From these observations, the mechanism of action was summarized as follows. First, alpha 1-AT inhibited all of the plasmin activities by forming a 1: 1 stoichiometric complex with the enzyme, presumably with the active center of the enzyme, whose complex is undissociable in the presence of denaturing or reducing agents or both. Secondly, the native complex broke into a degraded product and a released peptide by limited proteolysis with the free plasmin which existed in the reaction mixture even with an excess of alpha 1-AT due to the reaction of complex formation being time consuming. The clinical significance of alpha 1-AT on fibrinolysis was also subject for discussion. PMID:6232193

  1. Gamma globulin, Evan's blue, aprotinin A PLA2 inhibitor, tetracycline and antioxidants protect epithelial cells against damage induced by synergism among streptococcal hemolysins, oxidants and proteinases: relation to the prevention of post-streptococcal sequelae and septic shock.

    PubMed

    Ginsburg, I; Sadovnic, M

    1998-11-01

    An in vitro model was employed to study the potential role of streptococcal extra-cellular products, rich in streptolysin O, in cellular injury as related to streptococcal infections and post-streptococcal sequelae. Extra-cellular products (EXPA) rich in streptolysin O were isolated from type 4, group A hemolytic streptococci grown in a chemostat, in a synthetic medium. EXPA induced moderate cytopathogenic changes in monkey kidney epithelial cells and in rat heart cells pre-labeled with 3H-arachidonate. However very strong toxic effects were induced when EXP was combined with oxidants (glucose oxides generated H2O2, AAPH-induced peroxyl radical (ROO.), NO generated by sodium nitroprusside) and proteinases (plasmin, trypsin). Cell killing was distinctly synergistic in nature. Cell damage induced by the multi-component cocktails was strongly inhibited either by micromolar amounts of gamma globulin, and Evan's blue which neutralized SLO activity, by tetracycline, trasylol (aprotinin), epsilon amino caproic acid and by soybean trypsin inhibitor, all proteinase inhibitors as well as by a non-penetrating PLA2 inhibitor A. The results suggest that fasciitis, myositis and sepsis resulting from infections with hemolytic streptococci might be caused by a coordinated 'cross-talk' among microbial, leukocyte and additional host-derived pro-inflammatory agents. Since attempts to prolong lives of septic patients by the exclusive administration of single antagonists invariably failed, it is proposed that the administration of 'cocktails' of putative inhibitors against major pro-inflammatory agonizes generated in inflammation and infection might protect against the deleterious effects caused by the biochemical and pharmacological cascades which are known to be activated in sepsis. PMID:9848686

  2. Multiple forms of calcium-dependent proteinase in crustacean muscle

    SciTech Connect

    Mykles, D.L.; Skinner, D.M.

    1986-01-01

    Four calcium-dependent proteinase (CDP) activities in lobster muscles have been resolved by high performance liquid chromatography. These activities differ in molecular weight and net charge. Though optimum activity occurred at high (5 and 10 mM) calcium at pH 6.8, the enzymes differ in activation at lower calcium concentrations. Only one of the CDPs is active at 100 ..mu..M calcium; none are active at 10 ..mu..M and below. Although all four CDPs are inhibited by the cysteine proteinase inhibitors leupeptin, E-64, and iodoacetamide, they show a differential response to the aspartic proteinase inhibitor pepstatin and the serine proteinase inhibitor PMSF. In contrast to CDPs from vertebrate tissues, crustacean muscles contain multiple forms that require calcium at millimolar levels. 17 refs., 6 figs.

  3. What Causes Alpha-1 Antitrypsin Deficiency?

    MedlinePlus

    ... from the NHLBI on Twitter. What Causes Alpha-1 Antitrypsin Deficiency? Alpha-1 antitrypsin (AAT) deficiency is an inherited disease. "Inherited" ... have AAT deficiency inherit two faulty AAT genes, one from each parent. These genes tell cells in ...

  4. How Is Alpha-1 Antitrypsin Deficiency Treated?

    MedlinePlus

    ... from the NHLBI on Twitter. How Is Alpha-1 Antitrypsin Deficiency Treated? Alpha-1 antitrypsin (AAT) deficiency has no cure, but its ... of these treatments are the same as the ones used for a lung disease called COPD (chronic ...

  5. The primary structure of bdellin B-3 from the leech Hirudo medicinalis. Bdellin B-3 is a compact proteinase inhibitor of a "non-classical" Kazal type. It is present in the leech in a high molecular mass form.

    PubMed

    Fink, E; Rehm, H; Gippner, C; Bode, W; Eulitz, M; Machleidt, W; Fritz, H

    1986-12-01

    A proteinase inhibitor was isolated from extracts of the leech Hirudo medicinalis by gel filtration and anion exchange chromatography. This inhibitor is similar to the bdellins in that it blocks the activity of trypsin, plasmin and sperm acrosin but has a molecular mass, as estimated by SDS polyacrylamide electrophoresis, of about 20 kDa, whereas the bdellins have molecular masses in the range 5-6 kDa. It is therefore designated as high-molecular mass bdellin B-3 (HMB). The amino-acid sequence of the inhibitor was elucidated as far as position 56. This revealed that the molecule consists of a bdellin B-3 moiety, corresponding to the N-terminal 46 residues, which is then extended at the C-terminus by a polypeptide chain of the composition Asx15, Glx25, Gly6, Val, His26-27 and Lys4. It has been formerly concluded from a partial amino-acid sequence that bdellin B-3 is a Kazal-type inhibitor. However, the complete sequence of bdellin B-3, represented by the N-terminal 46 residues of HMB, discloses that bdellin B-3 is a non-classical Kazal-type inhibitor when the number of amino-acid residues between half-cystines are considered. Presuming that formation of disulfide bridges principally follows the same pattern as in classical Kazal-type inhibitors the bdellin B-3 molecule was modeled based on the known three-dimensional structure of the third ovomucoid domains. This showed that a compact arrangement of the peptide chain of bdellin B-3 is conceivable.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:3828073

  6. Preclinical pharmacology of alpha1-adrenoceptor antagonists.

    PubMed

    Martin, D J

    1999-01-01

    The implication of a single adrenoceptor subtype in the contractility of prostatic and urethral smooth muscle cells led to the concept that drugs with selectivity for this subtype may exhibit functional uroselectivity. Comparison of the affinities of the alpha1-adrenoceptor antagonists revealed that few compounds show selectivity for one of the three cloned alpha1-adrenoceptor subtypes (alpha1a/A, alpha1b/B, alpha1d/D) whereas most of them had a similar affinity for the three subtypes. Moreover, data supporting a relationship between selectivity for the alpha1a/A-adrenoceptor subtype and functional uroselectivity are still lacking and recent data challenged the relevance of the selectivity for a given cloned alpha1-adrenoceptor subtype in predicting functional uroselectivity. In vivo data showed that alpha1-adrenoceptor antagonists without adrenoceptor subtype selectivity, like alfuzosin or to a minor extent doxazosin, showed functional uroselectivity whereas prazosin and terazosin were not shown to be uroselective. Compounds considered to be selective for the alpha1a/A-adrenoceptor, like tamsulosin or 5-Me-urapidil, did not show functional uroselectivity since they modified urethral and blood pressures in a manner which was not correlated to their selectivity for the cloned alpha1-adrenoceptor subtypes. Meanwhile, the identification in prostatic tissue, of a new sub-family of alpha1-adrenoceptors with low affinity for prazosin and denominated alpha1L gave rise to numerous studies. However, its functional role as well as the affinity of the known antagonists for this receptor subtype remains to be clarified. In conclusion, the existing alpha1-adrenoceptor antagonists have different pharmacological profiles in vivo which are yet not predictable from their receptor pharmacology based on the actual state of knowledge of the alpha1-adrenoceptor classification. PMID:10393471

  7. The action of calcium channel blockers on recombinant L-type calcium channel alpha1-subunits.

    PubMed

    Morel, N; Buryi, V; Feron, O; Gomez, J P; Christen, M O; Godfraind, T

    1998-11-01

    1. CHO cells expressing the alpha(1C-a) subunit (cardiac isoform) and the alpha(1C-b) subunit (vascular isoform) of the voltage-dependent L-type Ca2+ channel were used to investigate whether tissue selectivity of Ca2+ channel blockers could be related to different affinities for alpha1C isoforms. 2. Inward current evoked by the transfected alpha1 subunit was recorded by the patch-clamp technique in the whole-cell configuration. 3. Neutral dihydropyridines (nifedipine, nisoldipine, (+)-PN200-110) were more potent inhibitors of alpha(1C-)b-subunit than of alpha(1C-a)-subunit. This difference was more marked at a holding potential of -100 mV than at -50 mV. SDZ 207-180 (an ionized dihydropyridine) exhibited the same potency on the two isoforms. 4. Pinaverium (ionized non-dihydropyridine derivative) was 2 and 4 fold more potent on alpha(1C-a) than on alpha(1C-b) subunit at Vh of -100 mV and -50 mV, respectively. Effects of verapamil were identical on the two isoforms at both voltages. 5. [3H]-(+)-PN 200-110 binding experiments showed that neutral dihydropyridines had a higher affinity for the alpha(1C-b) than for the alpha(1C-a) subunit. SDZ 207-180 had the same affinity for the two isoforms and pinaverium had a higher affinity for the alpha(1C-a) subunit than for the alpha(1C-b) subunit. 6. These results indicate marked differences among Ca2+ channel blockers in their selectivity for the alpha(1C-a) and alpha(1C-b) subunits of the Ca2+ channel. PMID:9846638

  8. [A case report of hereditary angioedema and studies on the serum components of complement, C1-inactivator and proteinase inhibitors during edema attack].

    PubMed

    Mikami, A; Kohno, M

    1987-05-01

    Sixteen years old girl was admitted because of for the past ten years' frequent edema attack and abdominal pain. Laboratory examination revealed hypocomplementemia, marked depletion of the fourth component of complement and low level of C1-inactivator. Familial studies revealed that her mother was also hypocomplementemic and in low level of C1-inactivator. Serial studies performed on the alterlation of components of complement, C1-inactivator, alpha 1-antitrypsin, antithrombin III, and alpha 2-macroglobulin during edema attack. The fourth component of complement and C1-inactivator were markedly depleted in remission and attack. Remarkable depletion was found in antithrombin III and esterase inhibition activity of C1-inactivator during attack. In contrast, alpha 1-antitrypsin and alpha 2-macroglobulin did not change. The present study may explain that Hageman factor fragments, activated by C1s, promotes kinin generation via kalikrein activation. And the condition that complete functional deficiency of C1-inactivator was main role in this circuit. Fibrynolysis and late components of complement was less influence on edema attack. PMID:3610041

  9. Delivery of Alpha-1 Antitrypsin to Airways.

    PubMed

    Griese, Matthias; Scheuch, Gerhard

    2016-08-01

    Treatment with exogenous alpha-1 antitrypsin (AAT), a potent serine protease inhibitor, was developed originally for chronic obstructive pulmonary disease associated with AAT deficiency; however, other lung conditions involving neutrophilic inflammation and proteolytic tissue injury related to neutrophil elastase and other serine proteases may also be considered for AAT therapy. These conditions include bronchiectasis caused by primary ciliary dyskinesia, cystic fibrosis, and other diseases associated with an increased free elastase activity in the airways. Inhaled AAT may be a viable option to counteract proteolytic tissue damage. This form of treatment requires efficient drug delivery to the targeted pulmonary compartment. Aerosol technology meeting this requirement is currently available and offers an alternative therapeutic approach to systemic AAT administration. To date, early studies in humans have shown biochemical efficacy and have established the safety of inhaled AAT. However, to bring aerosol AAT therapy to patients, large phase 3 protocols in carefully selected patient populations (i.e., subgroups of patients with AAT deficiency, cystic fibrosis, or other lung diseases with bronchiectasis) will be needed with clinical end points in addition to the measurement of proteolytic activity in the airway. The outcomes likely will have to include lung function, lung structure assessed by computed tomography imaging, disease exacerbations, health status, and mortality. PMID:27564672

  10. Alpha-1 Antitrypsin and Lung Cell Apoptosis.

    PubMed

    Serban, Karina A; Petrache, Irina

    2016-04-01

    Discovery of alpha-1 antitrypsin (A1AT) as the principal circulating inhibitor of neutrophil elastase was critical to the appreciation of protease/antiprotease imbalance involvement in the pathogenesis of emphysema. Additional targets of A1AT have been uncovered, along with their contribution to alveolar wall destruction induced by cigarette smoke exposure. We highlight in this report mechanisms of A1AT antiapoptotic effects on structural lung endothelial cells. This function was largely dependent on uptake of the protein from the circulation via clathrin- and, in part, caveolae-mediated endocytosis and on specific interactions with cysteine proteases such as capsase-3, -6, and -7. Exposures to cigarette smoke diminished A1AT intracellular uptake and its anticaspase action, suggesting that even in A1AT-suficient individuals, cigarette smoke may weaken the serpin's endothelial prosurvival effect. In addition, cigarette smoke exposure or genetic mutations known to induce posttranslational modifications such as oxidation or polymerization may alter A1AT bidirectional intracellular traffic in endothelial cells and thus determine its functional bioavailability in certain lung compartments. Uncovering and harnessing the A1AT canonical and noncanonical mechanisms will advance our understanding of the pathogenesis of emphysema and may provide means to improve the effectiveness of therapies in both A1AT-sufficient and A1AT-deficient individuals. PMID:27115949

  11. Tumor Necrosis Factor-α-induced Proteolytic Activation of Pro-matrix Metalloproteinase-9 by Human Skin Is Controlled by Down-regulating Tissue Inhibitor of Metalloproteinase-1 and Mediated by Tissue-associated Chymotrypsin-like Proteinase*

    PubMed Central

    Han, Yuan-Ping; Nien, Yih-Dar; Garner, Warren L.

    2008-01-01

    The proteolytic activation of pro-matrix metalloproteinase (MMP)-9 by conversion of the 92-kDa precursor into an 82-kDa active form has been observed in chronic wounds, tumor metastasis, and many inflammation-associated diseases, yet the mechanistic pathway to control this process has not been identified. In this report, we show that the massive expression and activation of MMP-9 in skin tissue from patients with chronically unhealed wounds could be reconstituted in vitro with cultured normal human skin by stimulation with transforming growth factor-β and tumor necrosis factor (TNF)-α. We dissected the mechanistic pathway for TNF-α induced activation of pro-MMP-9 in human skin. We found that proteolytic activation of pro-MMP-9 was mediated by a tissue-associated chymotrypsin-like proteinase, designated here as pro-MMP-9 activator (pM9A). This unidentified activator specifically converted pro-MMP-9 but not pro-MMP-2, another member of the gelatinase family. The tissue-bound pM9A was steadily expressed and not regulated by TNF-α, which indicated that the cytokine-mediated activation of pro-MMP-9 might be regulated at the inhibitor level. Indeed, the skin constantly secreted tissue inhibitor of metalloproteinase-1 at the basal state. TNF-α, but not transforming growth factor-β, down-regulated this inhibitor. The TNF-α-mediated activation of pro-MMP-9 was tightly associated with down-regulation of tissue inhibitor of metalloproteinase-1 in a dose-dependent manner. To establish this linkage, we demonstrate that the recombinant tissue inhibitor of metalloproteinase-1 could block the activation of pro-MMP-9 by either the intact skin or skin fractions. Thus, these studies suggest a novel regulation for the proteolytic activation of MMP-9 in human tissue, which is mediated by tissue-bound activator and controlled by down-regulation of a specific inhibitor. PMID:12004062

  12. A new class of potent reversible inhibitors of metallo-proteinases: C-terminal thiol-peptides as zinc-coordinating ligands.

    PubMed

    Peters, K; Jahreis, G; Kotters, E M

    2001-10-01

    A number of substrate analogous peptides containing a phosphoramidate, phosphonate ester, hydroxamate, carboxylate or sulfhydryl group are known to be inhibitors of thermolysin and other metalloproteinases. According to the specificity, most of the inhibitors mimic the prime site of the active center. Hitherto, peptidyl derivatives with a thiol group at the C-terminus have not been described. We have synthesized the protected cysteamides Ac-Ala-Ala-CA-SH and Z-Aa1-Aa2-CA-SH (Aa1: Ala, Pro; Aa2: Ala, Leu). The binding of these thiol peptide inhibitors to the metalloproteinases is characterized first by the coordination of the thiolate group of the inhibitor to the catalytic zinc ion and second by the subsite interaction of the peptide ligand in the active site of the enzyme. All peptide derivatives were competitive inhibitors of the zinc metalloproteinase thermolysin. The strongest inhibition was found with Z-Pro-Leu-CA-SH (Ki = 30 microM). Substitution of the N-protecting benzyloxycarbonyl residue towards the acetyl group in the peptide inhibitor, the inhibition constant decreased about 25 times. PMID:11916139

  13. Midgut proteinases of Sitotroga cerealella (Oliver) (Lepidoptera:Gelechiidae): Characterization and relationship to resistance in cereals

    SciTech Connect

    Wu, Lan.

    1989-01-01

    Midgut proteinases are vital to the insects which digest ingested food in the midgut. Insect midgut proteinases, therefore, have been considered as possible targets for the control of insect pests. Proteinaceous proteinase inhibitors are very attractive for their potential use in developing insect resistant plant varieties via genetic engineering. Sitotroga cerealella is one of the major storage pests of cereals, and no antibiotic resistance in wheat against this insect has been identified to date. A series of diagnostic inhibitors, thiol-reducing agents and a metal-ion chelator were used in the identification of proteinases in crude extracts from S. cerealella larval midguts with both protein and ester substrates. The partial inhibition of proteolytic activity in crude midgut extract toward ({sup 3}H)-methemoglobin by pepstatin A suggested the presence of another proteinase which was sensitive to pepstatin A. The optimum pH range for the proteolytic activity, however, indicated that the major midgut proteinases were not carboxyl proteinases. Two proteinases were successfully purified by a combination of fractionation with ammonium sulfate, gel permeation and anion exchange chromatography. Characterization of the enzymes with the purified enzyme preparations confirmed that the two major proteinases were serine endoproteinases with trypsin-like and chymotrypsin-like specificities respectively. Bioassays were conducted using the artificial seeds to test naturally occurring proteinaceous proteinase inhibitors of potential value. Soybean trypsin inhibitor and the Bowman-Birk proteinase inhibitor had adverse effects on the development of the insect. A predictive model was constructed to evaluate effects of seed resistance in conjunction with other control methods on S. cerealella population dynamics.

  14. Alpha-1 Antitrypsin Deficiency (Inherited Emphysema)

    MedlinePlus

    ... 1 protein in the blood with normal alpha-1 antitrypsin from healthy plasma donors. It is given in a vein (IV). The dose is adjusted based on body weight. This treatment is often given once a week. There are three ... the management of Alpha-1 related emphysema includes: • Exercise and a healthy lifestyle ...

  15. Alpha1-antitrypsin suppresses TNF-alpha and MMP-12 production by cigarette smoke-stimulated macrophages.

    PubMed

    Churg, Andrew; Wang, Xiaoshan; Wang, Rong D; Meixner, Scott C; Pryzdial, Edward L G; Wright, Joanne L

    2007-08-01

    We have previously observed that mice exposed to cigarette smoke and treated with exogenous alpha(1)-antitrypsin (A1AT) were protected against the development of emphysema and against smoke-induced increases in serum TNF-alpha. To investigate possible mechanisms behind this latter observation, we cultured alveolar macrophages lavaged from C57 mice. Smoke-conditioned medium caused alveolar macrophages to increase secretion of macrophage metalloelastase (MMP-12) and TNF-alpha, and this effect was suppressed in a dose-response fashion by addition of A1AT. Macrophages from animals exposed to smoke in vivo and then lavaged also failed to increase MMP-12 and TNF-alpha secretion when the animals were pretreated with A1AT. Because proteinase activated receptor-1 (PAR-1) is known to control MMP-12 release, macrophages were treated with the G protein-coupled receptor inhibitor, pertussis toxin; this suppressed both TNF-alpha and MMP-12 release, while a PAR-1 agonist (TRAP) increased TNF-alpha and MMP-12 release. Smoke-conditioned medium caused increased release of the prothrombin activator, tissue factor, from macrophages. Hirudin, a thrombin inhibitor, and aprotinin, an inhibitor of plasmin, reduced smoke-mediated TNF-alpha and MMP-12 release, and A1AT inhibited both plasmin and thrombin activity in a cell-free functional assay. These findings extend our previous suggestion that TNF-alpha production by alveolar macrophages is related to MMP-12 secretion. They also suggest that A1AT can inhibit thrombin and plasmin in blood constituents that leak into the lung after smoke exposure, thereby preventing PAR-1 activation and MMP-12/TNF-alpha release, and decreasing smoke-mediated inflammatory cell influx. PMID:17395890

  16. Alpha-1 Antitrypsin Deficiency: Beyond the Protease/Antiprotease Paradigm.

    PubMed

    Cosio, Manuel G; Bazzan, Erica; Rigobello, Chiara; Tinè, Mariaenrica; Turato, Graziella; Baraldo, Simonetta; Saetta, Marina

    2016-08-01

    From the discovery that alpha-1 antitrypsin (AAT) was an effective inhibitor of neutrophil elastase originated the classic paradigm of protease/antiprotease imbalance, linking lung destruction to the unopposed effect of proteases in patients with the deficiency. Notwithstanding its importance as an antiprotease, it has become evident that alpha-1 antitrypsin has important antiinflammatory and immune-regulatory activities, which may be critically involved in lung destruction. We review here recent evidence showing that, indeed, an important adaptive immune reaction is present in lungs with AAT deficiency, similar to the one seen in severe chronic obstructive pulmonary disease with normal AAT. On the basis of recent evidence from epidemiological, clinical, and pathogenetic studies, it is likely time to move on from the original protease/antiprotease hypothesis for the production of emphysema toward a more complex paradigm, involving the antiinflammatory and immune modulating functions of AAT. PMID:27564665

  17. Alpha1 and Alpha2 Integrins Mediate Invasive Activity of Mouse Mammary Carcinoma Cells through Regulation of Stromelysin-1 Expression

    SciTech Connect

    Lochter, Andre; Navre, Marc; Werb, Zena; Bissell, Mina J

    1998-06-29

    Tumor cell invasion relies on cell migration and extracellular matrix proteolysis. We investigated the contribution of different integrins to the invasive activity of mouse mammary carcinoma cells. Antibodies against integrin subunits {alpha}6 and {beta}1, but not against {alpha}1 and {alpha}2, inhibited cell locomotion on a reconstituted basement membrane in two-dimensional cell migration assays, whereas antibodies against {beta}1, but not against a6 or {alpha}2, interfered with cell adhesion to basement membrane constituents. Blocking antibodies against {alpha}1 integrins impaired only cell adhesion to type IV collagen. Antibodies against {alpha}1, {alpha}2, {alpha}6, and {beta}1, but not {alpha}5, integrin subunits reduced invasion of a reconstituted basement membrane. Integrins {alpha}1 and {alpha}2, which contributed only marginally to motility and adhesion, regulated proteinase production. Antibodies against {alpha}1 and {alpha}2, but not {alpha}6 and {beta}1, integrin subunits inhibited both transcription and protein expression of the matrix metalloproteinase stromelysin-1. Inhibition of tumor cell invasion by antibodies against {alpha}1 and {alpha}2 was reversed by addition of recombinant stromelysin-1. In contrast, stromelysin-1 could not rescue invasion inhibited by anti-{alpha}6 antibodies. Our data indicate that {alpha}1 and {alpha}2 integrins confer invasive behavior by regulating stromelysin-1 expression, whereas {alpha}6 integrins regulate cell motility. These results provide new insights into the specific functions of integrins during tumor cell invasion.

  18. Genetics Home Reference: alpha-1 antitrypsin deficiency

    MedlinePlus

    ... and genetic modifiers of emphysema risk. Thorax. 2004 Mar;59(3):259-64. Review. Citation on PubMed ... alpha}1-antitrypsin deficiency. Arch Intern Med. 2009 Mar 23;169(6):546-50. doi: 10.1001/ ...

  19. Co-factor activated recombinant adenovirus proteinases

    DOEpatents

    Anderson, Carl W.; Mangel, Walter F.

    1996-08-06

    This application describes methods and expression constructs for producing activatable recombinant adenovirus proteinases. Purified activatable recombinant adenovirus proteinases and methods of purification are described. Activated adenovirus proteinases and methods for obtaining activated adenovirus proteinases are further included. Isolated peptide cofactors of adenovirus proteinase activity, methods of purifying and identifying said peptide cofactors are also described. Antibodies immunoreactive with adenovirus proteinases, immunospecific antibodies, and methods for preparing them are also described. Other related methods and materials are also described.

  20. Co-factor activated recombinant adenovirus proteinases

    DOEpatents

    Anderson, C.W.; Mangel, W.F.

    1996-08-06

    This application describes methods and expression constructs for producing activatable recombinant adenovirus proteinases. Purified activatable recombinant adenovirus proteinases and methods of purification are described. Activated adenovirus proteinases and methods for obtaining activated adenovirus proteinases are further included. Isolated peptide cofactors of adenovirus proteinase activity, methods of purifying and identifying the peptide cofactors are also described. Antibodies immunoreactive with adenovirus proteinases, immunospecific antibodies, and methods for preparing them are also described. Other related methods and materials are also described. 29 figs.

  1. Predicting proteinase specificities from free energy calculations.

    PubMed

    Mekonnen, Seble Merid; Olufsen, Magne; Smalås, Arne O; Brandsdal, Bjørn O

    2006-10-01

    The role of the primary binding residue (P1) in complexes between three different subtilases (subtilisin Carlsberg, thermitase and proteinase K) and their canonical protein inhibitor eglin c have been studied by free energy calculations. Based on the crystal structures of eglin c in complex with subtilisin Carlsberg and thermitase, and a homology model of the eglin c-proteinase K complex, a total of 57 mutants have been constructed and docked into their host proteins. The binding free energy was then calculated using molecular dynamics (MD) simulations combined with the linear interaction energy (LIE) method for all complexes differing only in the nature of the amino acid at the P1 position. LIE calculations for 19 different complexes for each subtilase were thus carried out excluding proline. The effects of substitutions at the P1 position on the binding free energies are found to be very large, and positively charged residues (Arg, Lys and His) are particularly deleterious for all three enzymes. The charged variants of the acidic side chains are found to bind more favorably as compared to their protonated states in all three subtilases. Furthermore, hydrophobic amino acids are accommodated most favorably at the S1-site in all three enzymes. Comparison of the three series of binding free energies shows only minor differences in the 19 computed relative binding free energies among these subtilases. This is further reflected in the correlation coefficient between the 23 relative binding free energies obtained, including the possible protonation states of ionizable side chains, but excluding the P1 Pro, for subtilisin Carlsberg versus thermitase (0.95), subtilisin versus proteinase K (0.94) and thermitase versus proteinase K (0.96). PMID:16386933

  2. Proteinases in the joint: clinical relevance of proteinases in joint destruction

    PubMed Central

    Rengel, Yvonne; Ospelt, Caroline; Gay, Steffen

    2007-01-01

    Proteinases are involved in essential steps in cartilage and bone homeostasis. Consequently, efforts have been made to establish their potential role in the pathology of rheumatic conditions such as rheumatoid arthritis, osteoarthritis and spondyloarthritis. Matrix metalloproteinases (MMPs) are sensitive markers of disease severity and response to treatment, and therefore they have potential in the assessment of rheumatic diseases. Despite disappointing early results with synthetic inhibitors of MMPs, there is still much scope for developing effective and safe MMPs inhibitors, and consequently to deliver new options to inhibit joint destruction. PMID:18001502

  3. [Alpha-1 antitrypsin deficiency: diagnosis and treatment].

    PubMed

    Camelier, Aquiles A; Winter, Daniel Hugo; Jardim, José Roberto; Barboza, Carlos Eduardo Galvão; Cukier, Alberto; Miravitlles, Marc

    2008-07-01

    Alpha-1 antitrypsin deficiency is a recently identified genetic disease that occurs almost as frequently as cystic fibrosis. It is caused by various mutations in the SERPINA1 gene, and has numerous clinical implications. Alpha-1 antitrypsin is mainly produced in the liver and acts as an antiprotease. Its principal function is to inactivate neutrophil elastase, preventing tissue damage. The mutation most commonly associated with the clinical disease is the Z allele, which causes polymerization and accumulation within hepatocytes. The accumulation of and the consequent reduction in the serum levels of alpha-1 antitrypsin cause, respectively, liver and lung disease, the latter occurring mainly as early emphysema, predominantly in the lung bases. Diagnosis involves detection of low serum levels of alpha-1 antitrypsin as well as phenotypic confirmation. In addition to the standard treatment of chronic obstructive pulmonary disease, specific therapy consisting of infusion of purified alpha-1 antitrypsin is currently available. The clinical efficacy of this therapy, which appears to be safe, has yet to be definitively established, and its cost-effectiveness is also a controversial issue that is rarely addressed. Despite its importance, in Brazil, there are no epidemiological data on the prevalence of the disease or the frequency of occurrence of deficiency alleles. Underdiagnosis has also been a significant limitation to the study of the disease as well as to appropriate treatment of patients. It is hoped that the creation of the Alpha One International Registry will resolve these and other important issues. PMID:18695797

  4. Alpha1-antichymotrypsin activity correlates with and may modulate matrix metalloproteinase-9 in human acute wounds.

    PubMed

    Reiss, Matthew J; Han, Yuan-Ping; Garner, Warren L

    2009-01-01

    Matrix metalloproteinase-9 (MMP-9) plays a central role in many physiologic processes including acute and the chronic wounds. MMP-9 is not routinely expressed in healthy tissues but is promptly expressed as a proenzyme and converted into active enzyme after tissue injury. The mechanisms involved, including the activators and inhibitors for this enzyme in human tissue remain largely obscure. We recently identified alpha1-antichymotrypsin (alpha1-ACT), an acute phase factor, as a potent inhibitor controlling activation of pro-MMP-9 by human skin. The aim of this study is to establish the clinical relevance of the inhibitor in cutaneous wound healing. Fluids from acute burn blisters and conditioned media from skin explants of burn patients were analyzed. We observed that the presence pro-MMP-9 and its activation correlated with the proximity to and degree of injury. Early after trauma, massive levels of wound alpha1-ACT were associated with an absence of pro-MMP-9 activation. Conversely, the active MMP-9 occurs simultaneously with inactivation of alpha1-ACT. Our results suggest a role for alpha1-ACT as a physiologic inhibitor of MMP-9 activation in human wound healing. PMID:19660051

  5. Molecular characterization of two kazal-type serine proteinase inhibitor genes in the surf clam Mesodesma donacium exposed to Vibrio anguillarum.

    PubMed

    Maldonado-Aguayo, Waleska; Núñez-Acuña, Gustavo; Valenzuela-Muñoz, Valentina; Chávez-Mardones, Jacqueline; Gallardo-Escárate, Cristian

    2013-06-01

    This study reports two kazal-type serine protease inhibitors (KPI) identified in a cDNA library from the surf clam Mesodesma donacium, and characterized through Rapid Amplification of cDNA Ends (RACE). The KPIs, denoted as MdSPI-1 and MdSPI-2, presented full sequences of 1139 bp and 781 bp respectively. MdSPI-1 had a 5'untranslated region (UTR) of 175 bp, a 3'UTR of 283 bp and an open reading frame (ORF) of 681 pb that encodes for 227 amino acids. MdSPI-2 showed a 5'UTR of 70 bp, a 3'UTR of 279 bp and an ORF of 432 bp that encodes for 144 amino acids. Both sequences presented two kazal-type tandem domains. Phylogenetic analysis of MdSPI-1 and MdSPI-2 shows a main clade composed by other bivalve species and closely related crustaceans. Real time PCR analysis showed that MdSPI-1 is mainly up-regulated in mantle, foot, gills and muscle tissues, while MdSPI-2 is expressed principally in foot tissue. Moreover, to evaluate the immune response of MdSPI-1 and MdSPI-2, infections with Vibrio anguillarum were performed. Herein, MdSPI-1 and MdSPI-2 transcription expression were significantly up-regulated at 2 and 8 h post-challenge. Our results suggest that MdSPI-1 and MdSPI-2 are important humoral factors of innate immunity in M. donacium. PMID:23528874

  6. The analysis of estrogen receptor-α positive breast cancer stem-like cells unveils a high expression of the serpin proteinase inhibitor PI-9: Possible regulatory mechanisms.

    PubMed

    Lauricella, Marianna; Carlisi, Daniela; Giuliano, Michela; Calvaruso, Giuseppe; Cernigliaro, Cesare; Vento, Renza; D'Anneo, Antonella

    2016-07-01

    Breast cancer stem cells seem to play important roles in breast tumor recurrence and endocrine therapy resistance, although the underlying mechanisms have not been well established. Moreover, in some tumor systems the immunosurveillance failure against cancer cells has been related to the presence of the granzyme B inhibitor PI-9. This study explored the status of PI-9 in tumorspheres isolated from estrogen receptor-α positive (ERα+) breast cancer MCF7 cells. Studies were performed in tertiary tumorspheres which possess high levels of stemness markers (Nanog, Oct3/4 and Sox2) and self-renewal ability. The exposure to estrogens (17-β estradiol and genistein) increased the number and sizes of tumorspheres, promoting cell proliferation as demonstrated by the increase in the proliferating cell nuclear antigen (PCNA). The study of the three isoforms (66, 46 and 36 kDa) of ERα disclosed that tertiary tumorspheres exhibit a marked increase in ERα36, while the level of ERα66, which is highly expressed in MCF7 cells, declines. Although it is known that PI-9 is a transcriptional target of ERα66, surprisingly in tertiary tumorspheres, despite the reduced level of ERα66, the protein and mRNA content of PI-9 is higher than in MCF7 cells. Treatment with estrogens further increased PI-9 level while decreased that of ERα66 isoform thus excluding the involvement of this receptor isoform in the event. Moreover, our studies also provided evidence that tertiary tumorspheres express elevated levels of CXCR4 and phospho-p38, suggesting that the high PI-9 content might be ascribed to the activation of the proliferative CXCR4/phospho-p38 axis. Taken together, these events could supply a selective advantage to breast cancer stem cells by interfering with immunosurveillance systems and open up the avenue to new possible targets for breast cancer treatment. PMID:27121069

  7. Effects of leupeptin on proteinase and germination of castor beans

    SciTech Connect

    Alpi, A.; Beevers, H.

    1981-10-01

    Leupeptin, tripeptide inhibitor of some proteinases, was shown previously to maintain the stability of several enzymes (isocitrate lyase, fumarase, and catalase) in crude extracts of castor bean endosperm. This reagent is now shown to inhibit the breakdown of water-soluble and crystalloid-storage proteins of the protein bodies isolated from castor beans by the SH-proteinase and it also inhibits the endopeptidase from mung beans. When suitably introduced into the endosperm of dry castor beans it strongly inhibits germination and seedling development. Application of leupeptin to endosperm halves removed from the seed prevents the normal development of enzymes concerned with gluconeogenesis from fat and drastically curtails sugar production. The results suggest that the SH-proteinase is intimately involved in the mobilization of storage proteins.

  8. Elastase-induced emphysema: retention of instilled proteinase in the rat

    SciTech Connect

    Sandhaus, R.A.; Janoff, A.

    1982-11-01

    Airway instillation of proteinases with the ability to degrade elastin has been used to produce disease in the rat analogous to human pulmonary emphysema. This study examined the retention, localization, and fate of endotracheally instilled elastase using /sup 125/I labeled enzyme and immunoperoxidase histochemistry. Porcine pancreatic elastase labeled with /sup 125/I was detected in rat lungs through 96 h after instillation; over half of the label was still present after 7 h. Similar results were obtained when elastase was reacted with a specific, catalytic site inactivator prior to instillation. Trypsin and denatured elastase, however, were cleared much more rapidly from the lung (less than half of the label present after 30 min). When lungs were homogenized after instillation of active elastase, the soluble fraction contained elastase bound to rat alpha1-antitrypsin. In addition, a small amount of label (less than 10%) appeared bound to insoluble components for extended periods of time. Using immunoperoxidase histochemistry, it was found that exogenous elastase was rapidly contained with pulmonary alveolar macrophages, as well as associated with alveolar septums and other parenchymal structures. Similar results were obtained with elastase from both porcine pancreas and human neutrophils. These results suggest that exogenous elastase in the rat, and perhaps endogenous elastolytic enzymes in humans, may have several fates in the lungs: complex formation with endogenous inhibitors, containment within the macrophage, and/or association with connective tissue targets.

  9. Cefoperazone prevents the inactivation of alpha(1)-antitrypsin by activated neutrophils.

    PubMed

    Dallegri, F; Dapino, P; Arduino, N; Bertolotto, M; Ottonello, L

    1999-09-01

    At sites of neutrophilic inflammation, tissue injury by neutrophil elastase is favored by phagocyte-induced hypochlorous acid-dependent inactivation of the natural elastase inhibitor alpha(1)-antitrypsin. In the present study, cefoperazone prevented alpha(1)-antitrypsin inactivation by neutrophils and reduced the recovery of hypochlorous acid from these cells. Moreover, the antibiotic reduced the free elastase activity in a neutrophil suspension supplemented with alpha(1)-antitrypsin without affecting the cells' ability to release elastase. These data suggest that the drug inactivates hypochlorous acid before its reaction with alpha(1)-antitrypsin, thereby permitting the antiprotease-mediated blockade of released elastase. In conclusion, cefoperazone appears to have the potential for limiting elastase-antielastase imbalances, attenuating the related tissue injury at sites of inflammation. PMID:10471586

  10. Corticosteroid-binding globulin cleavage is paradoxically reduced in alpha-1 antitrypsin deficiency: Implications for cortisol homeostasis.

    PubMed

    Nenke, Marni A; Holmes, Mark; Rankin, Wayne; Lewis, John G; Torpy, David J

    2016-01-15

    High-affinity corticosteroid-binding globulin (haCBG) is cleaved by neutrophil elastase (NE) resulting in permanent transition to the low cortisol-binding affinity form (laCBG), thereby increasing cortisol availability at inflammatory sites. Alpha-1 antitrypsin (AAT) is the major inhibitor of NE. AAT deficiency (AATD) predisposes patients to early-onset emphysema due to increased proteolytic destruction from the inherent proteinase-antiproteinase imbalance. We hypothesized that AATD may result in increased CBG cleavage in vivo. We collected demographic data and blood samples from 10 patients with AATD and 28 healthy controls measuring total CBG and haCBG levels by parallel in-house ELISAs, as well as AAT, total and free cortisol levels. haCBG was higher (median [range]); 329 [210-551] vs. 250 [175-365] nmol/L; P<0.005, and laCBG lower; 174 [68-229] vs. 220 [119-348] nmol/L; P=0.016 in the AATD group, compared with controls. The ratio of haCBG:total CBG was also higher in AATD; 72 [53-83] vs. 54 [41-72] %; P=0.0001). There was a negative correlation between haCBG:total CBG and AAT levels (P<0.05, R=-0.64). Paradoxically, proteolytic cleavage of CBG was reduced in AATD, despite the recognized increase in NE activity. This implies that NE activity is not the mechanism for systemic CBG cleavage in basal, low inflammatory conditions. Relatively low levels of laCBG may have implications for cortisol action in AATD. PMID:26522656

  11. Ubiquitin ligase gp78 increases solubility and facilitates degradation of the Z variant of {alpha}-1-antitrypsin

    SciTech Connect

    Shen Yuxian; Ballar, Petek; Fang, Shengyun . E-mail: fangs@umbi.umd.edu

    2006-11-03

    Deficiency of circulating {alpha}-1-antitrypsin (AAT) is the most widely recognized abnormality of a proteinase inhibitor that causes lung disease. AAT-deficiency is caused by mutations of the AAT gene that lead to AAT protein retention in the endoplasmic reticulum (ER). Moreover, the mutant AAT accumulated in the ER predisposes the homozygote to severe liver injuries, such as neonatal hepatitis, juvenile cirrhosis, and hepatocellular carcinoma. Despite the fact that mutant AAT protein is subject to ER-associated degradation (ERAD), yeast genetic studies have determined that the ubiquitination machinery, Hrd1/Der3p-cue1p-Ubc7/6p, which plays a prominent role in ERAD, is not involved in degradation of mutant AAT. Here we report that gp78, a ubiquitin ligase (E3) pairing with mammalian Ubc7 for ERAD, ubiquitinates and facilitates degradation of ATZ, the classic deficiency variant of AAT having a Z mutation (Glu 342 Lys). Unexpectedly, gp78 over-expression also significantly increases ATZ solubility. p97/VCP, an AAA ATPase essential for retrotranslocation of misfolded proteins from the ER during ERAD, is involved in gp78-mediated degradation of ATZ. Surprisingly, unlike other ERAD substrates that cause ER stress leading to apoptosis when accumulated in the ER, ATZ, in fact, increases cell proliferation when over-expressed in cells. This effect can be partially inhibited by gp78 over-expression. These data indicate that gp78 assumes multiple unique quality control roles over ATZ, including the facilitation of degradation and inhibition of aggregation of ATZ.

  12. Proteolytic inactivation of alpha-1-antitrypsin by human neutrophils: involvement of multiple and interlinked cell responses to phagocytosable targets.

    PubMed

    Ottonello, L; Dapino, P; Scirocco, M; Dallegri, F; Sacchetti, C

    1994-01-01

    Neutrophil polymorphonuclear leukocytes (PMN) can inactivate the PMN-elastase inhibitor alpha-1-antitrypsin (A1AT) proteolytically, by using metalloproteinases normally stored as zymogens in myeloperoxidase (MPO)-negative granules. Supernatants from opsonized zymosan (OPZ)-triggered human PMN cleaved and inactivated human A1AT through a process inhibitable by metal-chelators, suggesting that the interaction of PMN with OPZ leads to the extracellular availability of active metalloenzymes. During OPZ-triggering, PMN used approximately 80% of the generated hydrogen peroxide (H2O2) to produce HOCl by means of the MPO pathway, while the remainder was catabolized by PMN themselves. No H2O2 was available as free compound in the extracellular environment and hydroxyl (.OH) or .OH-like radicals were not generated. The selective deletion of single components of the HOCl-generating MPO pathway resulted in the generation of PMN supernatants free of active metalloenzymes but rich of the corresponding zymogens. Similar results were obtained by replacing normal PMN with cells from a patient with hereditary MPO deficiency. No evidence was obtained for the intervention or contribution of .OH-like radicals, serine-proteinases and oxidized glutathione in the transformation of the zymogens into enzymes able to inactivate A1AT. On concluding, PMN undergoing phagocytosis release MPO in amount sufficient to handle the extracellular pool of the generated H2O2 entirely, leading to the generation of equimolar amounts of HOCl. In turn, HOCl or a similar compound derived from it interacts with concomitantly released metallozymogens, switching on their A1AT inactivating potential without the apparent contribution of other PMN-derived molecules.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8187807

  13. Roles for proteinases in the pathogenesis of chronic obstructive pulmonary disease

    PubMed Central

    Owen, Caroline A

    2008-01-01

    Since the early 1960s, a compelling body of evidence has accumulated to show that proteinases play critical roles in airspace enlargement in chronic obstructive pulmonary disease (COPD). However, until recently the causative enzymes and their exact roles in pathologic processes in COPD have not been clear. Recent studies of gene-targeted mice in murine models of COPD have confirmed roles for proteinases not only in airspace enlargement, but also in airway pathologies in COPD. These studies have also shed light on the specific proteinases involved in COPD pathogenesis, and the mechanisms by which these proteinases injure the lung. They have also identified important interactions between different classes of proteinases, and between proteinases and other molecules that amplify lung inflammation and injury. This review will discuss the biology of proteinases and the mechanisms by which they contribute to the pathogenesis of COPD. In addition, I will discuss the potential of proteinase inhibitors and anti-inflammatory drugs as new treatment strategies for COPD patients. PMID:18686734

  14. Alpha 1D- and alpha 1A-adrenoceptors mediate contraction in rat renal artery.

    PubMed

    Villalobos-Molina, R; López-Guerrero, J J; Ibarra, M

    1997-03-19

    To investigate the alpha 1-adrenoceptor subtype(s) mediating contraction in rat renal artery, we have compared the effect of the alpha 1-adrenoceptor antagonists, 5-methylurapidil, BMY 7378 (8-(2-(4-(2-methoxyphenyl)-1-piperazinyl) ethyl) 8-azaspiro (4.5) decane-7,9-dione 2HCl) and chloroethylclonidine on functional responses to noradrenaline. A clear blockade by chloroethylclonidine (10(-4) M) of noradrenaline-induced contraction was observed and, along with this effect. pKB values of 9.12 and 8.40 for BMY 7378 and 9.75 and 10.06 for 5-methylurapidil were obtained, indicating that the renal artery expresses the alpha 1D-adrenoceptor subtype as the one involved in contraction and not only the alpha 1A subtype as has been reported. PMID:9098691

  15. Challenges and Prospects for Alpha-1 Antitrypsin Deficiency Gene Therapy.

    PubMed

    Wozniak, Joanna; Wandtke, Tomasz; Kopinski, Piotr; Chorostowska-Wynimko, Joanna

    2015-11-01

    Alpha-1 antitrypsin (AAT) is a protease inhibitor belonging to the serpin family. A number of identified mutations in the SERPINA1 gene encoding this protein result in alpha-1 antitrypsin deficiency (AATD). A decrease in AAT serum concentration or reduced biological activity causes considerable risk of chronic respiratory and liver disorders. As a monogenic disease, AATD appears to be an attractive target for gene therapy, particularly for patients with pulmonary dysfunction, where augmentation of functional AAT levels in plasma might slow down respiratory disease development. The short AAT coding sequence and its activity in the extracellular matrix would enable an increase in systemic serum AAT production by cellular secretion. In vitro and in vivo experimental AAT gene transfer with gamma-retroviral, lentiviral, adenoviral, and adeno-associated viral (AAV) vectors has resulted in enhanced AAT serum levels and a promising safety profile. Human clinical trials using intramuscular viral transfer with AAV1 and AAV2 vectors of the AAT gene demonstrated its safety, but did not achieve a protective level of AAT >11 μM in serum. This review provides an in-depth critical analysis of current progress in AATD gene therapy based on viral gene transfer. The factors affecting transgene expression levels, such as site of administration, dose and type of vector, and activity of the immune system, are discussed further as crucial variables for optimizing the clinical effectiveness of gene therapy in AATD subjects. PMID:26413996

  16. alpha1B-Adrenergic receptor phosphorylation and desensitization induced by transforming growth factor-beta.

    PubMed Central

    Romero-Avila, M Teresa; Flores-Jasso, C Fabián; García-Sáinz, J Adolfo

    2002-01-01

    Transforming growth factor-beta (TGF-beta) induced alpha(1B)-adrenergic receptor phosphorylation in Rat-1 fibroblasts stably expressing these adrenoceptors. This effect of TGF-beta was rapid, reaching a maximum within 30 min and decreasing thereafter, and concentration-dependent (EC(50) 0.3 pM). The phosphoinositide 3-kinase inhibitors wortmannin and LY294002, and the protein kinase C inhibitors staurosporine, Ro 318220 and bisindolylmaleimide, blocked the effect of this growth factor. alpha(1B)-Adrenergic receptor phosphorylation was associated with desensitization, as indicated by a reduction in the adrenergic-mediated production of [(3)H]inositol phosphates. Phosphorylation of alpha(1B)-adrenergic receptors by TGF-beta was also observed in Cos-1 cells transfected with the receptor. Co-transfection of the dominant-negative mutant of the regulatory subunit of phosphoinositide 3-kinase (Deltap85) inhibited the phosphorylation of alpha(1B)-adrenergic receptors induced by TGF-beta. Our results indicate that activation of TGF-beta receptors induces alpha(1B)-adrenergic receptor phosphorylation and desensitization. The data suggest that phosphoinositide 3-kinase and protein kinase C play key roles in this effect of TGF-beta. PMID:12234252

  17. alpha1B-Adrenergic receptor phosphorylation and desensitization induced by transforming growth factor-beta.

    PubMed

    Romero-Avila, M Teresa; Flores-Jasso, C Fabián; García-Sáinz, J Adolfo

    2002-12-01

    Transforming growth factor-beta (TGF-beta) induced alpha(1B)-adrenergic receptor phosphorylation in Rat-1 fibroblasts stably expressing these adrenoceptors. This effect of TGF-beta was rapid, reaching a maximum within 30 min and decreasing thereafter, and concentration-dependent (EC(50) 0.3 pM). The phosphoinositide 3-kinase inhibitors wortmannin and LY294002, and the protein kinase C inhibitors staurosporine, Ro 318220 and bisindolylmaleimide, blocked the effect of this growth factor. alpha(1B)-Adrenergic receptor phosphorylation was associated with desensitization, as indicated by a reduction in the adrenergic-mediated production of [(3)H]inositol phosphates. Phosphorylation of alpha(1B)-adrenergic receptors by TGF-beta was also observed in Cos-1 cells transfected with the receptor. Co-transfection of the dominant-negative mutant of the regulatory subunit of phosphoinositide 3-kinase (Deltap85) inhibited the phosphorylation of alpha(1B)-adrenergic receptors induced by TGF-beta. Our results indicate that activation of TGF-beta receptors induces alpha(1B)-adrenergic receptor phosphorylation and desensitization. The data suggest that phosphoinositide 3-kinase and protein kinase C play key roles in this effect of TGF-beta. PMID:12234252

  18. Cross-talk between receptors with intrinsic tyrosine kinase activity and alpha1b-adrenoceptors.

    PubMed Central

    del Carmen Medina, L; Vázquez-Prado, J; García-Sáinz, J A

    2000-01-01

    The effect of epidermal growth factor (EGF) and platelet-derived growth factor (PDGF) on the phosphorylation and function of alpha(1b)-adrenoceptors transfected into Rat-1 fibroblasts was studied. EGF and PDGF increased the phosphorylation of these adrenoceptors. The effect of EGF was blocked by tyrphostin AG1478 and that of PDGF was blocked by tyrphostin AG1296, inhibitors of the intrinsic tyrosine kinase activities of the receptors for these growth factors. Wortmannin, an inhibitor of phosphoinositide 3-kinase, blocked the alpha(1b)-adrenoceptor phosphorylation induced by EGF but not that induced by PDGF. Inhibition of protein kinase C blocked the adrenoceptor phosphorylation induced by EGF and PDGF. The ability of noradrenaline to increase [(35)S]guanosine 5'-[gamma-thio]triphosphate ([(35)S]GTP[S]) binding in membrane preparations was used as an index of the functional coupling of the alpha(1b)-adrenoceptors and G-proteins. Noradrenaline-stimulated [(35)S]GTP[S] binding was markedly decreased in membranes from cells pretreated with EGF or PDGF. Our data indicate that: (i) activation of EGF and PDGF receptors induces phosphorylation of alpha(1b)-adrenoceptors, (ii) phosphatidylinositol 3-kinase is involved in the EGF response, but does not seem to play a major role in the action of PDGF, (iii) protein kinase C mediates this action of both growth factors and (iv) the phosphorylation of alpha(1b)-adrenoceptors induced by EGF and PDGF is associated with adrenoceptor desensitization. PMID:10947955

  19. Gene Therapy for Alpha-1 Antitrypsin Deficiency Lung Disease.

    PubMed

    Chiuchiolo, Maria J; Crystal, Ronald G

    2016-08-01

    Alpha-1 antitrypsin (AAT) deficiency, characterized by low plasma levels of the serine protease inhibitor AAT, is associated with emphysema secondary to insufficient protection of the lung from neutrophil proteases. Although AAT augmentation therapy with purified AAT protein is efficacious, it requires weekly to monthly intravenous infusion of AAT purified from pooled human plasma, has the risk of viral contamination and allergic reactions, and is costly. As an alternative, gene therapy offers the advantage of single administration, eliminating the burden of protein infusion, and reduced risks and costs. The focus of this review is to describe the various strategies for AAT gene therapy for the pulmonary manifestations of AAT deficiency and the state of the art in bringing AAT gene therapy to the bedside. PMID:27564673

  20. Activation of Proteinase 3 Contributes to Nonalcoholic Fatty Liver Disease and Insulin Resistance

    PubMed Central

    Toonen, Erik JM; Mirea, Andreea-Manuela; Tack, Cees J; Stienstra, Rinke; Ballak, Dov B; van Diepen, Janna A; Hijmans, Anneke; Chavakis, Triantafyllos; Dokter, Wim H; Pham, Christine TN; Netea, Mihai G; Dinarello, Charles A; Joosten, Leo AB

    2016-01-01

    Activation of inflammatory pathways is known to accompany development of obesity-induced nonalcoholic fatty liver disease (NAFLD), insulin resistance and type 2 diabetes. In addition to caspase-1, the neutrophil serine proteases proteinase 3, neutrophil elastase and cathepsin G are able to process the inactive proinflammatory mediators interleukin (IL)-1β and IL-18 to their bioactive forms, thereby regulating inflammatory responses. In this study, we investigated whether proteinase 3 is involved in obesity-induced development of insulin resistance and NAFLD. We investigated the development of NAFLD and insulin resistance in mice deficient for neutrophil elastase/proteinase 3 and neutrophil elastase/cathepsin G and in wild-type mice treated with the neutrophil serine proteinase inhibitor human α-1 antitrypsin. Expression profiling of metabolically relevant tissues obtained from insulin-resistant mice showed that expression of proteinase 3 was specifically upregulated in the liver, whereas neutrophil elastase, cathepsin G and caspase-1 were not. Neutrophil elastase/proteinase 3-deficient mice showed strongly reduced levels of lipids in the liver after being fed a high-fat diet. Moreover, these mice were resistant to high–fat–diet-induced weight gain, inflammation and insulin resistance. Injection of proteinase 3 exacerbated insulin resistance in caspase-1–/– mice, indicating that proteinase 3 acts independently of caspase-1. Treatment with α-1 antitrypsin during the last 10 d of a 16-wk high-fat diet reduced hepatic lipid content and decreased fasting glucose levels. We conclude that proteinase 3 is involved in NAFLD and insulin resistance and that inhibition of proteinase 3 may have therapeutic potential. PMID:27261776

  1. α-1-Antitrypsin variants and the proteinase/antiproteinase imbalance in chronic obstructive pulmonary disease

    PubMed Central

    Sinden, Nicola J.; Baker, Michael J.; Smith, David J.; Kreft, Jan-Ulrich; Dafforn, Timothy R.

    2014-01-01

    The excessive activities of the serine proteinases neutrophil elastase and proteinase 3 are associated with tissue damage in chronic obstructive pulmonary disease. Reduced concentrations and/or inhibitory efficiency of the main circulating serine proteinase inhibitor α-1-antitrypsin result from point mutations in its gene. In addition, α-2-macroglobulin competes with α-1-antitrypsin for proteinases, and the α-2-macroglobulin-sequestered enzyme can retain its catalytic activity. We have studied how serine proteinases partition between these inhibitors and the effects of α-1-antitrypsin mutations on this partitioning. Subsequently, we have developed a three-dimensional reaction-diffusion model to describe events occurring in the lung interstitium when serine proteinases diffuse from the neutrophil azurophil granule following degranulation and subsequently bind to either α-1-antitrypsin or α-2-macroglobulin. We found that the proteinases remained uninhibited on the order of 0.1 s after release and diffused on the order of 10 μm into the tissue before becoming sequestered. We have shown that proteinases sequestered to α-2-macroglobulin retain their proteolytic activity and that neutrophil elastase complexes with α-2-macroglobulin are able to degrade elastin. Although neutrophil elastase is implicated in the pathophysiology of emphysema, our results highlight a potentially important role for proteinase 3 because of its greater concentration in azurophil granules, its reduced association rate constant with all α-1-antitrypsin variants studied here, its greater diffusion distance, time spent uninhibited following degranulation, and its greater propensity to partition to α-2-macroglobulin where it retains proteolytic activity. PMID:25416382

  2. Who Is at Risk for Alpha-1 Antitrypsin Deficiency?

    MedlinePlus

    ... on Twitter. Who Is at Risk for Alpha-1 Antitrypsin Deficiency? Alpha-1 antitrypsin (AAT) deficiency occurs in all ethnic groups. ... it doesn't mean that you'll develop one of the diseases related to the condition. Some ...

  3. Identification and characterization of cysteine proteinases of Trypanosoma evansi.

    PubMed

    Yadav, S C; Kumar, R; Kumar, S; Tatu, U; Singh, R K; Gupta, A K

    2011-09-01

    Trypanosoma evansi is a causative agent of 'surra', a common haemoprotozoan disease of livestock in India causing high morbidity and mortality in disease endemic areas. The proteinases released by live and dead trypanosomes entail immunosuppression in the infected host, which immensely contribute in disease pathogenesis. Cysteine proteinases are identified in the infectious cycle of trypanosomes such as cruzain from Trypanosoma cruzi, rhodesain or brucipain from Trypanosoma brucei rhodesiense and congopain from Trypanosoma congelense. These enzymes localised in lysosome-like organelles, flagellar pocket and on cell surface, which play a critical role in the life cycle of protozoan parasites, viz. in host invasion, nutrition and alteration of the host immune response. The paper describes the identification of cysteine proteinases of T. evansi lysate, activity profile at different pH optima and inhibition pattern using a specific inhibitor, besides the polypeptide profile of an antigen. Eight proteinases of T. evansi were identified in the molecular weight (MW) ranges of 28-170 kDa using gelatin substrate-polyacrylamide gel electrophoresis (GS-PAGE), and of these proteinases, six were cysteine proteinases, as they were inhibited by L-3-carboxy-2,3-transepoxypropionyl-lecuylamido (4-guanidino)-butane (E-64), a specific inhibitor. These proteolytic enzymes were most reactive in acidic pH between 3.0 and 5.5 in the presence of dithiothreitol and completely inactive at alkaline pH 10.0. Similarly, the GS-PAGE profile of the serum samples of rats infected with T. evansi revealed strong proteolytic activity only at the 28-kDa zone at pH 5.5, while no proteolytic activity was observed in serum samples of uninfected rats. Further, the other zones of clearance, which were evident in T. evansi antigen zymogram, could not be observed in the serum samples of rats infected with T. evansi. The polypeptide pattern of the whole cell lysate antigen revealed 12-15 polypeptide bands

  4. Isolation and characterization of a serine proteinase specific to human C3b from human erythrocyte membranes

    SciTech Connect

    Charriaut, C.; Krikorian, L.; Barel, M.; Frade, R.

    1986-03-05

    In a previous report, they have shown that human C3b bound through CR1 to human erythrocytes is cleaved by a membrane proteinase activity. Following the molecular analysis of this proteinase activity, they have purified it by a four step procedure: ammonium sulfate precipitation, biogel filtration, fluid phase electrophoresis and hydroxylapatite chromatography. The highly purified proteinase was labeled by /sup 125/I iodine or /sup 3/H-DFP and analyzed by gel electrophoresis: a single band membrane component was characterized by its apparent molecular weight of 57 K or 60 K, under non reducing or reducing conditions respectively and was called p 57. Its reactivity with /sup 3/H-DFP and the inhibition by PMSF of the proteinase activity indicate that p 57 is a serine proteinase. Moreover, it is sensitive to aprotinin and ..gamma..1-antitrypsin. This membrane proteinase presents a higher activity in the presence of detergent and cleaves both alpha and beta chains of human C3b. Polyclonal antibody prepared against this purified proteinase inhibits its activity. On the basis of its structure and its functions, i.e. molecular weight, antigenic properties, proteinase properties and proteinases inhibitors sensitivity, p57 is not related to CR1 or DAF, two others membrane components which react with human C3b and identified by others on human erythrocytes. These specific antibodies allow to analyze the presence of p57 on human cells.

  5. Sensitive, hydrosoluble, macromolecular fluorogenic substrates for human immunodeficiency virus 1 proteinase.

    PubMed Central

    Anjuère, F; Monsigny, M; Lelièvre, Y; Mayer, R

    1993-01-01

    Hydrosoluble macromolecular fluorogenic substrates specific for the human immunodeficiency virus 1 (HIV-1) proteinase have been prepared. The fluoresceinyl peptide Ftc-epsilon-Ahx-Ser-Phe-Asn-Phe-Pro-Gln-Ile-Thr-(Gly)n, corresponding to the first cleavage site of HIV-1 gag-pol native precursor was linked to a water-soluble neutral (Lys)n derivative. The epsilon-aminohexanoyl residue (epsilon-Ahx) and the glycyl sequence were added in order to improve the stability of the substrate and the accessibility of the cleavage site to the HIV-1 proteinase respectively. This macro-molecular peptidic-substrate conjugate is significantly more water-soluble than the free peptide itself on a substrate molar concentration basis. The assay is based on the quantitative precipitation of the polymeric material by adding propan-2-ol whereas the fluorescent peptide moiety released upon proteolysis remains soluble in the supernatant. The proteinase activity is assessed by measuring the fluorescence of the supernatant. This assay allows the detection of a few fmol of HIV-1 proteinase, even in the presence of cell culture media, plasma or cell lysate and it gives accurate results within a large proteinase concentration range. The hydrosoluble macromolecular substrate is also suitable for determining the HIV-1 proteinase activity using 96-well microplates, allowing us to test accurately and rapidly numerous enzyme samples and/or the potency of new proteinase inhibitors. PMID:8489513

  6. Characterization of proteinases in trypanosomatids.

    PubMed

    Branquinha, M H; Vermelho, A B; Goldenberg, S; Bonaldo, M C

    1994-02-01

    Proteinases are important factors in the pathogenicity of many parasitic diseases. In this study, the proteolytic activities of 10 trypanosomatids from five different genera (Crithidia, Phytomonas, Endotrypanum, Trypanosoma and Leishmania) were determined by SDS-PAGE containing copolymerized gelatin as substrate. In almost all species we could detect two proteolytic classes, cysteine- and metalloproteinases, based on the inhibition of their activities by E-64 and 1,10-phenanthroline, respectively. In all cases, the metalloproteinase activities did not change over a broad pH range (from 5.5 to 10). E. schaudinni, T. mega, T. dionisii, C. luciliae, C. fasciculata, C. oncopelti and C. guilhermei expressed one or two metalloproteinases of 45-66 kDa, whereas in P. serpens and P. hyssopifolia a double band of this endopeptidase was detected at 94 kDa. In contrast, no metalloproteinase activity was observed in L. tarentolae. The optimal pH for the cysteine-proteinase activities was acidic (about 5.5). In E. schaudinni, T. mega and in Crithidia sp., these proteinases had an apparent molecular weight of 66-94 kDa, while L. tarentolae expressed a broad band from 29 to 45 kDa. In Phytomonas sp., this class of endopeptidase showed a unique feature, in that major cysteine-proteinases were found at 29-66 kDa, but multiple, low-activity bands were detected from 116 to 200 kDa. The most striking characteristic, however, was the very intense cysteine-proteinase activity expressed by T. dionisii (29-66 kDa). We conclude that these differences in the proteolytic profiles could be useful markers to characterize and compare trypanosomatids. PMID:8081271

  7. Alpha 1-Antitrypsin Therapy Mitigated Ischemic Stroke Damage in Rats

    PubMed Central

    Moldthan, Huong L.; Hirko, Aaron C.; Thinschmidt, Jeffrey S.; Grant, Maria; Li, Zhimin; Peris, Joanna; Lu, Yuanqing; Elshikha, Ahmed; King, Michael A.; Hughes, Jeffrey A.; Song, Sihong

    2014-01-01

    Currently, the only effective therapy for acute ischemic stroke is the thrombolytic agent recombinant tissue plasminogen activator. α1-Antitrypsin, an endogenous inhibitor of serine proteinases and a primary acute phase protein with potent anti-inflammatory, anti-apoptotic, antimicrobial and cytoprotective activities, could be beneficial in stroke.. The goal of this study was to test whether α1-antitrypsin could improve ischemic stroke outcome in an established rat model. Middle cerebral artery occlusion was induced in male rats via intracranial microinjection of endothelin-1. Five to ten minutes following stroke induction rats received either intracranial or intravenous delivery of human α1-antitrypsin. Cylinder and vibrissae tests were used to evaluate sensorimotor function before and 72 hours after middle cerebral artery occlusion. Infarct volumes were examined via either 2,3,5-triphenyltetrazolium chloride assay or magnetic resonance imaging 72 hours after middle cerebral artery occlusion. Despite equivalent initial strokes, at 72 hours the infarct volumes of the human α1-antitrypsin treatment groups (local and systemic injection) were statistically significantly reduced by 83% and 63% (p<0.0001 and p < 0.05 respectively) compared with control rats. Human α1-antitrypsin significantly limited sensory motor systems deficits. Human α1-antitrypsin could be a potential novel therapeutic drug for the protection against neurodegeneration following ischemic stroke, but more studies are needed to investigate the protective mechanisms and efficacy in other animal models. PMID:24582784

  8. Characterization of a Cell Envelope-Associated Proteinase Activity from Streptococcus thermophilus H-Strains

    PubMed Central

    Shahbal, Samaha; Hemme, Denis; Renault, Pierre

    1993-01-01

    The production and biochemical properties of cell envelope-associated proteinases from two strains of Streptococcus thermophilus (strains CNRZ 385 and CNRZ 703) were compared. No significant difference in proteinase activity was found for strain CNRZ 385 when cells were grown in skim milk medium and M17 broth. Strain CNRZ 703 exhibited a threefold-higher proteinase activity when cells were grown in low-heat skim milk medium than when grown in M17 broth. Forty-one percent of the total activity of CNRZ 385 was localized on the cell wall. The optimum pH for enzymatic activity at 37°C was around 7.0. Serine proteinase inhibitors, such as phenylmethylsulfonyl fluoride and diisopropylfluorophosphate, inhibited the enzyme activity in both strains. The divalents cations Ca2+, Mg2+, and Mn2+ were activators, while Zn2+ and Cu2+ were inhibitors. β-Casein was hydrolyzed more rapidly than αs1-casein. The results of DNA hybridization and immunoblot studies suggested that the S. thermophilus cell wall proteinase and the lactococcal proteinase are not closely related. Images PMID:16348841

  9. Alpha-1-Antitrypsin: A Novel Human High Temperature Requirement Protease A1 (HTRA1) Substrate in Human Placental Tissue

    PubMed Central

    Frochaux, Violette; Hildebrand, Diana; Talke, Anja; Linscheid, Michael W.; Schlüter, Hartmut

    2014-01-01

    The human serine protease high temperature requirement A1 (HTRA1) is highly expressed in the placental tissue, especially in the last trimester of gestation. This suggests that HTRA1 is involved in placental formation and function. With the aim of a better understanding of the role of HTRA1 in the placenta, candidate substrates were screened in a placenta protein extract using a gel-based mass spectrometric approach. Protease inhibitor alpha-1-antitrypsin, actin cytoplasmic 1, tropomyosin beta chain and ten further proteins were identified as candidate substrates of HTRA1. Among the identified candidate substrates, alpha-1-antitrypsin (A1AT) was considered to be of particular interest because of its important role as protease inhibitor. For investigation of alpha-1-antitrypsin as substrate of HTRA1 synthetic peptides covering parts of the sequence of alpha-1-antitrypsin were incubated with HTRA1. By mass spectrometry a specific cleavage site was identified after met-382 (AIPM382↓383SIPP) within the reactive centre loop of alpha-1-antitrypsin, resulting in a C-terminal peptide comprising 36 amino acids. Proteolytic removal of this peptide from alpha-1-antitrypsin results in a loss of its inhibitor function. Beside placental alpha-1-antitrypsin the circulating form in human plasma was also significantly degraded by HTRA1. Taken together, our data suggest a link between the candidate substrates alpha-1-antitrypsin and the function of HTRA1 in the placenta in the syncytiotrophoblast, the cell layer attending to maternal blood in the villous tree of the human placenta. Data deposition: Mass spectrometry (MS) data have been deposited to the ProteomeXchange with identifier PXD000473. PMID:25329061

  10. Replacement therapy of alpha 1-antitrypsin deficiency. Reversal of protease-antiprotease imbalance within the alveolar structures of PiZ subjects.

    PubMed Central

    Gadek, J E; Klein, H G; Holland, P V; Crystal, R G

    1981-01-01

    The emphysema associated with the inherited serum deficiency of alpha 1-antitrypsin appears to result from an imbalance between neutrophil elastase and its major inhibitor within the alveolar structures. In the present study we assessed the feasibility of reversing this biochemical defect within the lung via parenteral replacement therapy with an alpha 1-antitrypsin concentrate of normal plasma. A 20--40% polyethylene glycol precipitate of pooled human donor plasma was used to obtain an enriched alpha 1-antitrypsin concentrate devoid of hepatitis B antigen and immunoglobulins. Using this material, five individuals with severe serum alpha 1-antitrypsin deficiency (PiZ phenotype) and advanced emphysema received 4 g of alpha 1-antitrypsin intravenously at weekly intervals for four doses. During this period of weekly replacement therapy alpha 1-antitrypsin serum levels were maintained at greater than or equal to 70 mg/dl, the level likely required for effective antielastase protection of the lung. In addition, assessment of lower respiratory tract antielastase activity by bronchoalveolar lavage demonstrated that parenteral replacement of alpha 1-antitrypsin resulted in establishment of effective antielastase activity within the alveolar structures. There were no untoward side effects consequent to this approach to the replacement therapy of alpha 1-antitrypsin. These results demonstrate that the parenteral replacement of alpha 1-antitrypsin provides a means of obtaining elastase-antielastase balance within the lung of individuals with this serum protease inhibitor deficiency. PMID:7028785