Science.gov

Sample records for als phenotypes identifies

  1. Phenoscape: Identifying Candidate Genes for Evolutionary Phenotypes.

    PubMed

    Edmunds, Richard C; Su, Baofeng; Balhoff, James P; Eames, B Frank; Dahdul, Wasila M; Lapp, Hilmar; Lundberg, John G; Vision, Todd J; Dunham, Rex A; Mabee, Paula M; Westerfield, Monte

    2016-01-01

    Phenotypes resulting from mutations in genetic model organisms can help reveal candidate genes for evolutionarily important phenotypic changes in related taxa. Although testing candidate gene hypotheses experimentally in nonmodel organisms is typically difficult, ontology-driven information systems can help generate testable hypotheses about developmental processes in experimentally tractable organisms. Here, we tested candidate gene hypotheses suggested by expert use of the Phenoscape Knowledgebase, specifically looking for genes that are candidates responsible for evolutionarily interesting phenotypes in the ostariophysan fishes that bear resemblance to mutant phenotypes in zebrafish. For this, we searched ZFIN for genetic perturbations that result in either loss of basihyal element or loss of scales phenotypes, because these are the ancestral phenotypes observed in catfishes (Siluriformes). We tested the identified candidate genes by examining their endogenous expression patterns in the channel catfish, Ictalurus punctatus. The experimental results were consistent with the hypotheses that these features evolved through disruption in developmental pathways at, or upstream of, brpf1 and eda/edar for the ancestral losses of basihyal element and scales, respectively. These results demonstrate that ontological annotations of the phenotypic effects of genetic alterations in model organisms, when aggregated within a knowledgebase, can be used effectively to generate testable, and useful, hypotheses about evolutionary changes in morphology. PMID:26500251

  2. Phenoscape: Identifying Candidate Genes for Evolutionary Phenotypes

    PubMed Central

    Edmunds, Richard C.; Su, Baofeng; Balhoff, James P.; Eames, B. Frank; Dahdul, Wasila M.; Lapp, Hilmar; Lundberg, John G.; Vision, Todd J.; Dunham, Rex A.; Mabee, Paula M.; Westerfield, Monte

    2016-01-01

    Phenotypes resulting from mutations in genetic model organisms can help reveal candidate genes for evolutionarily important phenotypic changes in related taxa. Although testing candidate gene hypotheses experimentally in nonmodel organisms is typically difficult, ontology-driven information systems can help generate testable hypotheses about developmental processes in experimentally tractable organisms. Here, we tested candidate gene hypotheses suggested by expert use of the Phenoscape Knowledgebase, specifically looking for genes that are candidates responsible for evolutionarily interesting phenotypes in the ostariophysan fishes that bear resemblance to mutant phenotypes in zebrafish. For this, we searched ZFIN for genetic perturbations that result in either loss of basihyal element or loss of scales phenotypes, because these are the ancestral phenotypes observed in catfishes (Siluriformes). We tested the identified candidate genes by examining their endogenous expression patterns in the channel catfish, Ictalurus punctatus. The experimental results were consistent with the hypotheses that these features evolved through disruption in developmental pathways at, or upstream of, brpf1 and eda/edar for the ancestral losses of basihyal element and scales, respectively. These results demonstrate that ontological annotations of the phenotypic effects of genetic alterations in model organisms, when aggregated within a knowledgebase, can be used effectively to generate testable, and useful, hypotheses about evolutionary changes in morphology. PMID:26500251

  3. Identifying biochemical phenotypic differences between cryptic species

    PubMed Central

    Liebeke, Manuel; Bruford, Michael W.; Donnelly, Robert K.; Ebbels, Timothy M. D.; Hao, Jie; Kille, Peter; Lahive, Elma; Madison, Rachael M.; Morgan, A. John; Pinto-Juma, Gabriela A.; Spurgeon, David J.; Svendsen, Claus; Bundy, Jacob G.

    2014-01-01

    Molecular genetic methods can distinguish divergent evolutionary lineages in what previously appeared to be single species, but it is not always clear what functional differences exist between such cryptic species. We used a metabolomic approach to profile biochemical phenotype (metabotype) differences between two putative cryptic species of the earthworm Lumbricus rubellus. There were no straightforward metabolite biomarkers of lineage, i.e. no metabolites that were always at higher concentration in one lineage. Multivariate methods, however, identified a small number of metabolites that together helped distinguish the lineages, including uncommon metabolites such as Nε-trimethyllysine, which is not usually found at high concentrations. This approach could be useful for characterizing functional trait differences, especially as it is applicable to essentially any species group, irrespective of its genome sequencing status. PMID:25252836

  4. Gingival Tissue Transcriptomes Identify Distinct Periodontitis Phenotypes

    PubMed Central

    Kebschull, M.; Demmer, R.T.; Grün, B.; Guarnieri, P.; Pavlidis, P.; Papapanou, P.N.

    2014-01-01

    The currently recognized principal forms of periodontitis—chronic and aggressive—lack an unequivocal, pathobiology-based foundation. We explored whether gingival tissue transcriptomes can serve as the basis for an alternative classification of periodontitis. We used cross-sectional whole-genome gene expression data from 241 gingival tissue biopsies obtained from sites with periodontal pathology in 120 systemically healthy nonsmokers with periodontitis, with available data on clinical periodontal status, subgingival microbial profiles, and serum IgG antibodies to periodontal microbiota. Adjusted model-based clustering of transcriptomic data using finite mixtures generated two distinct clusters of patients that did not align with the current classification of chronic and aggressive periodontitis. Differential expression profiles primarily related to cell proliferation in cluster 1 and to lymphocyte activation and unfolded protein responses in cluster 2. Patients in the two clusters did not differ with respect to age but presented with distinct phenotypes (statistically significantly different whole-mouth clinical measures of extent/severity, subgingival microbial burden by several species, and selected serum antibody responses). Patients in cluster 2 showed more extensive/severe disease and were more often male. The findings suggest that distinct gene expression signatures in pathologic gingival tissues translate into phenotypic differences and can provide a basis for a novel classification. PMID:24646639

  5. Identifying genetically driven clinical phenotypes using linear mixed models.

    PubMed

    Mosley, Jonathan D; Witte, John S; Larkin, Emma K; Bastarache, Lisa; Shaffer, Christian M; Karnes, Jason H; Stein, C Michael; Phillips, Elizabeth; Hebbring, Scott J; Brilliant, Murray H; Mayer, John; Ye, Zhan; Roden, Dan M; Denny, Joshua C

    2016-01-01

    We hypothesized that generalized linear mixed models (GLMMs), which estimate the additive genetic variance underlying phenotype variability, would facilitate rapid characterization of clinical phenotypes from an electronic health record. We evaluated 1,288 phenotypes in 29,349 subjects of European ancestry with single-nucleotide polymorphism (SNP) genotyping on the Illumina Exome Beadchip. We show that genetic liability estimates are primarily driven by SNPs identified by prior genome-wide association studies and SNPs within the human leukocyte antigen (HLA) region. We identify 44 (false discovery rate q<0.05) phenotypes associated with HLA SNP variation and show that hypothyroidism is genetically correlated with Type I diabetes (rG=0.31, s.e. 0.12, P=0.003). We also report novel SNP associations for hypothyroidism near HLA-DQA1/HLA-DQB1 at rs6906021 (combined odds ratio (OR)=1.2 (95% confidence interval (CI): 1.1-1.2), P=9.8 × 10(-11)) and for polymyalgia rheumatica near C6orf10 at rs6910071 (OR=1.5 (95% CI: 1.3-1.6), P=1.3 × 10(-10)). Phenome-wide application of GLMMs identifies phenotypes with important genetic drivers, and focusing on these phenotypes can identify novel genetic associations. PMID:27109359

  6. Identifying genetically driven clinical phenotypes using linear mixed models

    PubMed Central

    Mosley, Jonathan D.; Witte, John S.; Larkin, Emma K.; Bastarache, Lisa; Shaffer, Christian M.; Karnes, Jason H.; Stein, C. Michael; Phillips, Elizabeth; Hebbring, Scott J.; Brilliant, Murray H.; Mayer, John; Ye, Zhan; Roden, Dan M.; Denny, Joshua C.

    2016-01-01

    We hypothesized that generalized linear mixed models (GLMMs), which estimate the additive genetic variance underlying phenotype variability, would facilitate rapid characterization of clinical phenotypes from an electronic health record. We evaluated 1,288 phenotypes in 29,349 subjects of European ancestry with single-nucleotide polymorphism (SNP) genotyping on the Illumina Exome Beadchip. We show that genetic liability estimates are primarily driven by SNPs identified by prior genome-wide association studies and SNPs within the human leukocyte antigen (HLA) region. We identify 44 (false discovery rate q<0.05) phenotypes associated with HLA SNP variation and show that hypothyroidism is genetically correlated with Type I diabetes (rG=0.31, s.e. 0.12, P=0.003). We also report novel SNP associations for hypothyroidism near HLA-DQA1/HLA-DQB1 at rs6906021 (combined odds ratio (OR)=1.2 (95% confidence interval (CI): 1.1–1.2), P=9.8 × 10−11) and for polymyalgia rheumatica near C6orf10 at rs6910071 (OR=1.5 (95% CI: 1.3–1.6), P=1.3 × 10−10). Phenome-wide application of GLMMs identifies phenotypes with important genetic drivers, and focusing on these phenotypes can identify novel genetic associations. PMID:27109359

  7. Identifying neurobiological phenotypes associated with alcohol use disorder severity.

    PubMed

    Claus, Eric D; Ewing, Sarah W Feldstein; Filbey, Francesca M; Sabbineni, Amithrupa; Hutchison, Kent E

    2011-09-01

    Although numerous studies provide general support for the importance of genetic factors in the risk for alcohol use disorders (AUDs), candidate gene and genome-wide studies have yet to identify a set of genetic variations that explain a significant portion of the variance in AUDs. One reason is that alcohol-related phenotypes used in genetic studies are typically based on highly heterogeneous diagnostic categories. Therefore, identifying neurobiological phenotypes related to neuroadaptations that drive the development of AUDs is critical for the future success of genetic and epigenetic studies. One such neurobiological phenotype is the degree to which exposure to alcohol taste cues recruits the basal ganglia, prefrontal cortex, and motor areas, all of which have been shown to have a critical role in addictive behaviors in animal studies. To that end, this study was designed to examine whether cue-elicited responses of these structures are associated with AUD severity in a large sample (n=326) using voxelwise and functional connectivity measures. Results suggested that alcohol cues significantly activated dorsal striatum, insula/orbitofrontal cortex, anterior cingulate cortex, and ventral tegmental area. AUD severity was moderately correlated with regions involved in incentive salience such as the nucleus accumbens and amygdala, and stronger relationships with precuneus, insula, and dorsal striatum. The findings indicate that AUDs are related to neuroadaptations in these regions and that these measures may represent important neurobiological phenotypes for subsequent genetic studies. PMID:21677649

  8. Phenotype Sequencing: Identifying the Genes That Cause a Phenotype Directly from Pooled Sequencing of Independent Mutants

    PubMed Central

    Harper, Marc A.; Chen, Zugen; Toy, Traci; Machado, Iara M. P.; Nelson, Stanley F.; Liao, James C.; Lee, Christopher J.

    2011-01-01

    Random mutagenesis and phenotype screening provide a powerful method for dissecting microbial functions, but their results can be laborious to analyze experimentally. Each mutant strain may contain 50–100 random mutations, necessitating extensive functional experiments to determine which one causes the selected phenotype. To solve this problem, we propose a “Phenotype Sequencing” approach in which genes causing the phenotype can be identified directly from sequencing of multiple independent mutants. We developed a new computational analysis method showing that 1. causal genes can be identified with high probability from even a modest number of mutant genomes; 2. costs can be cut many-fold compared with a conventional genome sequencing approach via an optimized strategy of library-pooling (multiple strains per library) and tag-pooling (multiple tagged libraries per sequencing lane). We have performed extensive validation experiments on a set of E. coli mutants with increased isobutanol biofuel tolerance. We generated a range of sequencing experiments varying from 3 to 32 mutant strains, with pooling on 1 to 3 sequencing lanes. Our statistical analysis of these data (4099 mutations from 32 mutant genomes) successfully identified 3 genes (acrB, marC, acrA) that have been independently validated as causing this experimental phenotype. It must be emphasized that our approach reduces mutant sequencing costs enormously. Whereas a conventional genome sequencing experiment would have cost $7,200 in reagents alone, our Phenotype Sequencing design yielded the same information value for only $1200. In fact, our smallest experiments reliably identified acrB and marC at a cost of only $110–$340. PMID:21364744

  9. Brain Parenchymal Fraction: A Relatively Simple MRI Measure to Clinically Distinguish ALS Phenotypes

    PubMed Central

    Rajagopalan, Venkateswaran; Pioro, Erik P.

    2015-01-01

    Even though neuroimaging and clinical studies indicate that amyotrophic lateral sclerosis (ALS) manifests with distinct clinical phenotypes, no objective test exists to assess upper motor degeneration in ALS. There is great interest in identifying biomarkers of ALS to allow earlier diagnosis and to recognize disease subtypes. Current quantitative neuroimaging techniques such as T2 relaxometry and diffusion tensor imaging are time-consuming to use in clinical settings due to extensive postprocessing requirements. Therefore, we aimed to study the potential role of brain parenchymal fraction (BPF) as a relatively simple quantitative measure for distinguishing ALS phenotypes. T1-weighted MR images of brain were obtained in 15 neurological controls and 88 ALS patients categorized into 4 distinct clinical phenotypes, upper motor neuron- (UMN-) predominant ALS patients with/without corticospinal tract (CST) hyperintensity on T2/PD-weighted images, classic ALS, and ALS with frontotemporal dementia (ALS-FTD). BPF was calculated using intracranial grey matter, white matter, and cerebrospinal fluid volumes obtained in control and ALS subgroups using SPM8 software. Only ALS-FTD patients had significant reduction in BPF when compared to controls and nondemented ALS patients. Correlation of clinical measures such as disease duration with BPF further supports the view that the BPF could be a potential biomarker for clinical diagnosis of ALS-FTD patients. PMID:26783524

  10. An Effective Method to Identify Heritable Components from Multivariate Phenotypes.

    PubMed

    Sun, Jiangwen; Kranzler, Henry R; Bi, Jinbo

    2015-01-01

    Multivariate phenotypes may be characterized collectively by a variety of low level traits, such as in the diagnosis of a disease that relies on multiple disease indicators. Such multivariate phenotypes are often used in genetic association studies. If highly heritable components of a multivariate phenotype can be identified, it can maximize the likelihood of finding genetic associations. Existing methods for phenotype refinement perform unsupervised cluster analysis on low-level traits and hence do not assess heritability. Existing heritable component analytics either cannot utilize general pedigrees or have to estimate the entire covariance matrix of low-level traits from limited samples, which leads to inaccurate estimates and is often computationally prohibitive. It is also difficult for these methods to exclude fixed effects from other covariates such as age, sex and race, in order to identify truly heritable components. We propose to search for a combination of low-level traits and directly maximize the heritability of this combined trait. A quadratic optimization problem is thus derived where the objective function is formulated by decomposing the traditional maximum likelihood method for estimating the heritability of a quantitative trait. The proposed approach can generate linearly-combined traits of high heritability that has been corrected for the fixed effects of covariates. The effectiveness of the proposed approach is demonstrated in simulations and by a case study of cocaine dependence. Our approach was computationally efficient and derived traits of higher heritability than those by other methods. Additional association analysis with the derived cocaine-use trait identified genetic markers that were replicated in an independent sample, further confirming the utility and advantage of the proposed approach. PMID:26658140

  11. An Effective Method to Identify Heritable Components from Multivariate Phenotypes

    PubMed Central

    Sun, Jiangwen; Kranzler, Henry R.; Bi, Jinbo

    2015-01-01

    Multivariate phenotypes may be characterized collectively by a variety of low level traits, such as in the diagnosis of a disease that relies on multiple disease indicators. Such multivariate phenotypes are often used in genetic association studies. If highly heritable components of a multivariate phenotype can be identified, it can maximize the likelihood of finding genetic associations. Existing methods for phenotype refinement perform unsupervised cluster analysis on low-level traits and hence do not assess heritability. Existing heritable component analytics either cannot utilize general pedigrees or have to estimate the entire covariance matrix of low-level traits from limited samples, which leads to inaccurate estimates and is often computationally prohibitive. It is also difficult for these methods to exclude fixed effects from other covariates such as age, sex and race, in order to identify truly heritable components. We propose to search for a combination of low-level traits and directly maximize the heritability of this combined trait. A quadratic optimization problem is thus derived where the objective function is formulated by decomposing the traditional maximum likelihood method for estimating the heritability of a quantitative trait. The proposed approach can generate linearly-combined traits of high heritability that has been corrected for the fixed effects of covariates. The effectiveness of the proposed approach is demonstrated in simulations and by a case study of cocaine dependence. Our approach was computationally efficient and derived traits of higher heritability than those by other methods. Additional association analysis with the derived cocaine-use trait identified genetic markers that were replicated in an independent sample, further confirming the utility and advantage of the proposed approach. PMID:26658140

  12. RNAi screening to identify postembryonic phenotypes in C. elegans.

    PubMed

    Beifuss, Katherine K; Gumienny, Tina L

    2012-01-01

    C. elegans has proven to be a valuable model system for the discovery and functional characterization of many genes and gene pathways. More sophisticated tools and resources for studies in this system are facilitating continued discovery of genes with more subtle phenotypes or roles. Here we present a generalized protocol we adapted for identifying C. elegans genes with postembryonic phenotypes of interest using RNAi. This procedure is easily modified to assay the phenotype of choice, whether by light or fluorescence optics on a dissecting or compound microscope. This screening protocol capitalizes on the physical assets of the organism and molecular tools the C. elegans research community has produced. As an example, we demonstrate the use of an integrated transgene that expresses a fluorescent product in an RNAi screen to identify genes required for the normal localization of this product in late stage larvae and adults. First, we used a commercially available genomic RNAi library with full-length cDNA inserts. This library facilitates the rapid identification of multiple candidates by RNAi reduction of the candidate gene product. Second, we generated an integrated transgene that expresses our fluorecently tagged protein of interest in an RNAi-sensitive background. Third, by exposing hatched animals to RNAi, this screen permits identification of gene products that have a vital embryonic role that would otherwise mask a post-embryonic role in regulating the protein of interest. Lastly, this screen uses a compound microscope equipped for single cell resolution. PMID:22353760

  13. Phenotypic lentivirus screens to identify functional single domain antibodies.

    PubMed

    Schmidt, Florian I; Hanke, Leo; Morin, Benjamin; Brewer, Rebeccah; Brusic, Vesna; Whelan, Sean P J; Ploegh, Hidde L

    2016-01-01

    Manipulation of proteins is key in assessing their in vivo function. Although genetic ablation is straightforward, reversible and specific perturbation of protein function remains a challenge. Single domain antibody fragments, such as camelid-derived VHHs, can serve as inhibitors or activators of intracellular protein function, but functional testing of identified VHHs is laborious. To address this challenge, we have developed a lentiviral screening approach to identify VHHs that elicit a phenotype when expressed intracellularly. We identified 19 antiviral VHHs that protect human A549 cells from lethal infection with influenza A virus (IAV) or vesicular stomatitis virus (VSV), respectively. Both negative-sense RNA viruses are vulnerable to VHHs uniquely specific for their respective nucleoproteins. Antiviral VHHs prevented nuclear import of viral ribonucleoproteins or mRNA transcription, respectively, and may provide clues for novel antiviral reagents. In principle, the screening approach described here should be applicable to identify inhibitors of any pathogen or biological pathway. PMID:27573105

  14. Identifying phenotypic signatures of neuropsychiatric disorders from electronic medical records

    PubMed Central

    Lyalina, Svetlana; Percha, Bethany; LePendu, Paea; Iyer, Srinivasan V; Altman, Russ B; Shah, Nigam H

    2013-01-01

    Objective Mental illness is the leading cause of disability in the USA, but boundaries between different mental illnesses are notoriously difficult to define. Electronic medical records (EMRs) have recently emerged as a powerful new source of information for defining the phenotypic signatures of specific diseases. We investigated how EMR-based text mining and statistical analysis could elucidate the phenotypic boundaries of three important neuropsychiatric illnesses—autism, bipolar disorder, and schizophrenia. Methods We analyzed the medical records of over 7000 patients at two facilities using an automated text-processing pipeline to annotate the clinical notes with Unified Medical Language System codes and then searching for enriched codes, and associations among codes, that were representative of the three disorders. We used dimensionality-reduction techniques on individual patient records to understand individual-level phenotypic variation within each disorder, as well as the degree of overlap among disorders. Results We demonstrate that automated EMR mining can be used to extract relevant drugs and phenotypes associated with neuropsychiatric disorders and characteristic patterns of associations among them. Patient-level analyses suggest a clear separation between autism and the other disorders, while revealing significant overlap between schizophrenia and bipolar disorder. They also enable localization of individual patients within the phenotypic ‘landscape’ of each disorder. Conclusions Because EMRs reflect the realities of patient care rather than idealized conceptualizations of disease states, we argue that automated EMR mining can help define the boundaries between different mental illnesses, facilitate cohort building for clinical and genomic studies, and reveal how clear expert-defined disease boundaries are in practice. PMID:23956017

  15. Progeny Clustering: A Method to Identify Biological Phenotypes.

    PubMed

    Hu, Chenyue W; Kornblau, Steven M; Slater, John H; Qutub, Amina A

    2015-01-01

    Estimating the optimal number of clusters is a major challenge in applying cluster analysis to any type of dataset, especially to biomedical datasets, which are high-dimensional and complex. Here, we introduce an improved method, Progeny Clustering, which is stability-based and exceptionally efficient in computing, to find the ideal number of clusters. The algorithm employs a novel Progeny Sampling method to reconstruct cluster identity, a co-occurrence probability matrix to assess the clustering stability, and a set of reference datasets to overcome inherent biases in the algorithm and data space. Our method was shown successful and robust when applied to two synthetic datasets (datasets of two-dimensions and ten-dimensions containing eight dimensions of pure noise), two standard biological datasets (the Iris dataset and Rat CNS dataset) and two biological datasets (a cell phenotype dataset and an acute myeloid leukemia (AML) reverse phase protein array (RPPA) dataset). Progeny Clustering outperformed some popular clustering evaluation methods in the ten-dimensional synthetic dataset as well as in the cell phenotype dataset, and it was the only method that successfully discovered clinically meaningful patient groupings in the AML RPPA dataset. PMID:26267476

  16. Social-Cognition and the Broad Autism Phenotype: Identifying Genetically Meaningful Phenotypes

    ERIC Educational Resources Information Center

    Losh, Molly; Piven, Joseph

    2007-01-01

    Background: Strong evidence from twin and family studies suggests that the genetic liability to autism may be expressed through personality and language characteristics qualitatively similar, but more subtly expressed than those defining the full syndrome. This study examined behavioral features of this "broad autism phenotype" (BAP) in relation…

  17. Identifying Behavioral Phenotypes and Heterogeneity in Heart Valve Surface Endothelium.

    PubMed

    Blancas, Alicia A; Balaoing, Liezl R; Acosta, Francisca M; Grande-Allen, K Jane

    2016-01-01

    Heart valvular endothelial cells (VECs) are distinct from vascular endothelial cells (ECs), but have an uncertain context within the spectrum of known endothelial phenotypes, including lymphatic ECs (LECs). Profiling the phenotypes of the heart valve surface VECs would facilitate identification of a proper seeding population for tissue-engineered valves, as well as elucidate mechanisms of valvular disease. Porcine VECs and porcine aortic ECs (AECs) were isolated from pig hearts and characterized to assess known EC and LEC markers. A transwell migration assay determined their propensity to migrate toward vascular endothelial growth factor, an angiogenic stimulus, over 24 h. Compared to AECs, Flt-1 was expressed on almost double the percentage of VECs, measured as 74 versus 38%. The expression of angiogenic EC markers CXCR4 and DLL4 was >90% on AECs, whereas VECs showed only 35% CXCR4+ and 47% DLL4+. AECs demonstrated greater migration (71.5 ± 11.0 cells per image field) than the VECs with 30.0 ± 15.3 cells per image field (p = 0.032). In total, 30% of VECs were positive for LYVE1+/Prox1+, while these markers were absent in AECs. In conclusion, the population of cells on the surface of heart valves is heterogeneous, consisting largely of nonangiogenic VECs and a subset of LECs. Previous studies have indicated the presence of LECs within the interior of the valves; however, this is the first study to demonstrate their presence on the surface. Identification of this unique endothelial mixture is a step forward in the development of engineered valve replacements as a uniform EC seeding population may not be the best option to maximize transplant success. PMID:27144771

  18. Identifying functional microRNAs in macrophages with polarized phenotypes.

    PubMed

    Graff, Joel W; Dickson, Anne M; Clay, Gwendolyn; McCaffrey, Anton P; Wilson, Mary E

    2012-06-22

    Macrophages respond to external stimuli with rapid changes in expression of many genes. Different combinations of external stimuli lead to distinct polarized activation patterns, resulting in a spectrum of possible macrophage activation phenotypes. MicroRNAs (miRNAs) are small, noncoding RNAs that can repress the expression of many target genes. We hypothesized that miRNAs play a role in macrophage polarization. miRNA expression profiles were determined in monocyte-derived macrophages (MDMs) incubated in conditions causing activation toward M1, M2a, M2b, or M2c phenotypes. One miRNA guide strand and seven miRNA passenger strands were significantly altered. Changes were confirmed in MDMs from six separate donors. The amplitude of miRNA expression changes in MDMs was smaller than described studies of monocytes responding to inflammatory stimuli. Further investigation revealed this correlated with higher basal miRNA expression in MDMs compared with monocytes. The regulation of M1- and M2b-responsive miRNAs (miR-27a, miR-29b, miR-125a, miR-146a, miR-155, and miR-222) was similar in differentiated THP-1 cells and primary MDMs. Studies in this model revealed cross-talk between IFNγ- and LPS-associated pathways regulating miRNA expression. Furthermore, expression of M1-associated transcripts was increased in THP-1 cells transfected with mimics of miR-29b, miR-125a-5p, or miR-155. The apparent inflammatory property of miR-29b and miR-125a-5p can be at least partially explained by repression of TNFAIP3, a negative regulator of NF-κB signaling. Overall, these data suggest miRNAs can contribute to changes in macrophage gene expression that occur in different exogenous activating conditions. PMID:22549785

  19. Als2 mRNA splicing variants detected in KO mice rescue severe motor dysfunction phenotype in Als2 knock-down zebrafish.

    PubMed

    Gros-Louis, Francois; Kriz, Jasna; Kabashi, Edor; McDearmid, Jonathan; Millecamps, Stéphanie; Urushitani, Makoto; Lin, Li; Dion, Patrick; Zhu, Qinzhang; Drapeau, Pierre; Julien, Jean-Pierre; Rouleau, Guy A

    2008-09-01

    Recessive ALS2 mutations are linked to three related but slightly different neurodegenerative disorders: amyotrophic lateral sclerosis, hereditary spastic paraplegia and primary lateral sclerosis. To investigate the function of the ALS2 encoded protein, we generated Als2 knock-out (KO) mice and zAls2 knock-down zebrafish. The Als2(-/-) mice lacking exon 2 and part of exon 3 developed mild signs of neurodegeneration compatible with axonal transport deficiency. In contrast, zAls2 knock-down zebrafish had severe developmental abnormalities, swimming deficits and motor neuron perturbation. We identified, by RT-PCR, northern and western blotting novel Als2 transcripts in mouse central nervous system. These Als2 transcripts were present in Als2 null mice as well as in wild-type littermates and some rescued the zebrafish phenotype. Thus, we speculate that the newly identified Als2 mRNA species prevent the Als2 KO mice from developing severe neurodegenerative disease and might also regulate the severity of the motor neurons phenotype observed in ALS2 patients. PMID:18558633

  20. A cell-based phenotypic assay to identify cardioprotective agents

    PubMed Central

    Guo, Stephanie; Olm-Shipman, Adam; Walters, Andrew; Urciuoli, William R.; Devito, Stefanie; Nadtochiy, Sergiy M.; Wojtovich, Andrew P.; Brookes, Paul S.

    2012-01-01

    Rationale Tissue ischemia/reperfusion (IR) injury underlies several leading causes of death such as heart-attack and stroke. The lack of clinical therapies for IR injury may be partly due to the difficulty of adapting IR injury models to high-throughput screening (HTS). Objective To develop a model of IR injury that is both physiologically relevant and amenable to HTS. Methods and Results A micro-plate based respirometry apparatus was used. Controlling gas flow in the plate head space, coupled with the instrument’s mechanical systems, yielded a 24 well model of IR injury in which H9c2 cardiomyocytes were transiently trapped in a small volume, rendering them ischemic. Following initial validation with known protective molecules, the model was used to screen a 2000 molecule library, with post IR cell death as an endpoint. pO2 and pH monitoring in each well also afforded metabolic data. Ten protective, detrimental and inert molecules from the screen were subsequently tested in a Langendorff perfused heart model of IR injury, revealing strong correlations between the screening endpoint and both recovery of cardiac function (negative r2=0.66), and infarct size (positive, r2=0.62). Relationships between the effects of added molecules on cellular bioenergetics, and protection against IR injury, were also studied. Conclusion This novel cell-based assay can predict either protective or detrimental effects on IR injury in the intact heart. Its application may help identify therapeutic or harmful molecules. PMID:22394516

  1. Cluster analysis of spontaneous preterm birth phenotypes identifies potential associations among preterm birth mechanisms

    PubMed Central

    Esplin, M Sean; Manuck, Tracy A.; Varner, Michael W.; Christensen, Bryce; Biggio, Joseph; Bukowski, Radek; Parry, Samuel; Zhang, Heping; Huang, Hao; Andrews, William; Saade, George; Sadovsky, Yoel; Reddy, Uma M.; Ilekis, John

    2015-01-01

    Objective We sought to employ an innovative tool based on common biological pathways to identify specific phenotypes among women with spontaneous preterm birth (SPTB), in order to enhance investigators' ability to identify to highlight common mechanisms and underlying genetic factors responsible for SPTB. Study Design A secondary analysis of a prospective case-control multicenter study of SPTB. All cases delivered a preterm singleton at SPTB ≤34.0 weeks gestation. Each woman was assessed for the presence of underlying SPTB etiologies. A hierarchical cluster analysis was used to identify groups of women with homogeneous phenotypic profiles. One of the phenotypic clusters was selected for candidate gene association analysis using VEGAS software. Results 1028 women with SPTB were assigned phenotypes. Hierarchical clustering of the phenotypes revealed five major clusters. Cluster 1 (N=445) was characterized by maternal stress, cluster 2 (N=294) by premature membrane rupture, cluster 3 (N=120) by familial factors, and cluster 4 (N=63) by maternal comorbidities. Cluster 5 (N=106) was multifactorial, characterized by infection (INF), decidual hemorrhage (DH) and placental dysfunction (PD). These three phenotypes were highly correlated by Chi-square analysis [PD and DH (p<2.2e-6); PD and INF (p=6.2e-10); INF and DH (p=0.0036)]. Gene-based testing identified the INS (insulin) gene as significantly associated with cluster 3 of SPTB. Conclusion We identified 5 major clusters of SPTB based on a phenotype tool and hierarchal clustering. There was significant correlation between several of the phenotypes. The INS gene was associated with familial factors underlying SPTB. PMID:26070700

  2. Phenotype Similarity Regression for Identifying the Genetic Determinants of Rare Diseases

    PubMed Central

    Greene, Daniel; Richardson, Sylvia; Turro, Ernest

    2016-01-01

    Rare genetic disorders, which can now be studied systematically with affordable genome sequencing, are often caused by high-penetrance rare variants. Such disorders are often heterogeneous and characterized by abnormalities spanning multiple organ systems ascertained with variable clinical precision. Existing methods for identifying genes with variants responsible for rare diseases summarize phenotypes with unstructured binary or quantitative variables. The Human Phenotype Ontology (HPO) allows composite phenotypes to be represented systematically but association methods accounting for the ontological relationship between HPO terms do not exist. We present a Bayesian method to model the association between an HPO-coded patient phenotype and genotype. Our method estimates the probability of an association together with an HPO-coded phenotype characteristic of the disease. We thus formalize a clinical approach to phenotyping that is lacking in standard regression techniques for rare disease research. We demonstrate the power of our method by uncovering a number of true associations in a large collection of genome-sequenced and HPO-coded cases with rare diseases. PMID:26924528

  3. Phenotype Similarity Regression for Identifying the Genetic Determinants of Rare Diseases.

    PubMed

    Greene, Daniel; Richardson, Sylvia; Turro, Ernest

    2016-03-01

    Rare genetic disorders, which can now be studied systematically with affordable genome sequencing, are often caused by high-penetrance rare variants. Such disorders are often heterogeneous and characterized by abnormalities spanning multiple organ systems ascertained with variable clinical precision. Existing methods for identifying genes with variants responsible for rare diseases summarize phenotypes with unstructured binary or quantitative variables. The Human Phenotype Ontology (HPO) allows composite phenotypes to be represented systematically but association methods accounting for the ontological relationship between HPO terms do not exist. We present a Bayesian method to model the association between an HPO-coded patient phenotype and genotype. Our method estimates the probability of an association together with an HPO-coded phenotype characteristic of the disease. We thus formalize a clinical approach to phenotyping that is lacking in standard regression techniques for rare disease research. We demonstrate the power of our method by uncovering a number of true associations in a large collection of genome-sequenced and HPO-coded cases with rare diseases. PMID:26924528

  4. Dissecting molecular stress networks: identifying nodes of divergence between life-history phenotypes.

    PubMed

    Schwartz, Tonia S; Bronikowski, Anne M

    2013-02-01

    The complex molecular network that underlies physiological stress response is comprised of nodes (proteins, metabolites, mRNAs, etc.) whose connections span cells, tissues and organs. Variable nodes are points in the network upon which natural selection may act. Thus, identifying variable nodes will reveal how this molecular stress network may evolve among populations in different habitats and how it might impact life-history evolution. Here, we use physiological and genetic assays to test whether laboratory-born juveniles from natural populations of garter snakes (Thamnophis elegans), which have diverged in their life-history phenotypes, vary concomitantly at candidate nodes of the stress response network, (i) under unstressed conditions and (ii) in response to an induced stress. We found that two common measures of stress (plasma corticosterone and liver gene expression of heat shock proteins) increased under stress in both life-history phenotypes. In contrast, the phenotypes diverged at four nodes both under unstressed conditions and in response to stress: circulating levels of reactive oxygen species (superoxide, H(2)O(2)); liver gene expression of GPX1 and erythrocyte DNA damage. Additionally, allele frequencies for SOD2 diverge from neutral markers, suggesting diversifying selection on SOD2 alleles. This study supports the hypothesis that these life-history phenotypes have diverged at the molecular level in how they respond to stress, particularly in nodes regulating oxidative stress. Furthermore, the differences between the life-history phenotypes were more pronounced in females. We discuss the responses to stress in the context of the associated life-history phenotype and the evolutionary pressures thought to be responsible for divergence between the phenotypes. PMID:22988821

  5. Molecular and phenotypic characterization of Als1 and Als2 mutations conferring tolerance to acetolactate synthase herbicides in soybean

    PubMed Central

    Walter, Kay L; Strachan, Stephen D; Ferry, Nancy M; Albert, Henrik H; Castle, Linda A; Sebastian, Scott A

    2014-01-01

    BACKGROUND Sulfonylurea (SU) herbicides are effective because they inhibit acetolactate synthase (ALS), a key enzyme in branched-chain amino acid synthesis required for plant growth. A soybean line known as W4-4 was developed through rounds of seed mutagenesis and was demonstrated to have a high degree of ALS-based resistance to both post-emergence and pre-emergence applications of a variety of SU herbicides. This report describes the molecular and phenotypic characterization of the Als1 and Als2 mutations that confer herbicide resistance to SUs and other ALS inhibitors. RESULTS The mutations are shown to occur in two different ALS genes that reside on different chromosomes: Als1 (P178S) on chromosome 4 and Als2 (W560L) on chromosome 6 (P197S and W574L in Arabidopsis thaliana). CONCLUSION Although the Als1 and Als2 genes are unlinked, the combination of these two mutations is synergistic for improved tolerance of soybeans to ALS-inhibiting herbicides. © 2014 DuPont Pioneer. Pest Management Science published by JohnWiley & Sons Ltd on behalf of Society of Chemical Industry. PMID:24425499

  6. Unbiased analysis of senescence associated secretory phenotype (SASP) to identify common components following different genotoxic stresses.

    PubMed

    Özcan, Servet; Alessio, Nicola; Acar, Mustafa B; Mert, Eda; Omerli, Fatih; Peluso, Gianfranco; Galderisi, Umberto

    2016-07-01

    Senescent cells secrete senescence-associated secretory phenotype (SASP) proteins to carry out several functions, such as sensitizing surrounding cells to senesce; immunomodulation; impairing or fostering cancer growth; and promoting tissue development. Identifying secreted factors that achieve such tasks is a challenging issue since the profile of secreted proteins depends on genotoxic stress and cell type. Currently, researchers are trying to identify common markers for SASP. The present investigation compared the secretome composition of five different senescent phenotypes in two different cell types: bone marrow and adipose mesenchymal stromal cells (MSC). We induced MSC senescence by oxidative stress, doxorubicin treatment, X-ray irradiation, and replicative exhaustion. We took advantage of LC-MS/MS proteome identification and subsequent gene ontology (GO) evaluation to perform an unbiased analysis (hypothesis free manner) of senescent secretomes. GO analysis allowed us to distribute SASP components into four classes: extracellular matrix/cytoskeleton/cell junctions; metabolic processes; ox-redox factors; and regulators of gene expression. We used Ingenuity Pathway Analysis (IPA) to determine common pathways among the different senescent phenotypes. This investigation, along with identification of eleven proteins that were exclusively expressed in all the analyzed senescent phenotypes, permitted the identification of three key signaling paths: MMP2 - TIMP2; IGFBP3 - PAI-1; and Peroxiredoxin 6 - ERP46 - PARK7 - Cathepsin D - Major vault protein. We suggest that these paths could be involved in the paracrine circuit that induces senescence in neighboring cells and may confer apoptosis resistance to senescent cells. PMID:27288264

  7. Unbiased analysis of senescence associated secretory phenotype (SASP) to identify common components following different genotoxic stresses

    PubMed Central

    Özcan, Servet; Alessio, Nicola; Acar, Mustafa B.; Mert, Eda; Omerli, Fatih; Peluso, Gianfranco; Galderisi, Umberto

    2016-01-01

    Senescent cells secrete senescence-associated secretory phenotype (SASP) proteins to carry out several functions, such as sensitizing surrounding cells to senesce; immunomodulation; impairing or fostering cancer growth; and promoting tissue development. Identifying secreted factors that achieve such tasks is a challenging issue since the profile of secreted proteins depends on genotoxic stress and cell type. Currently, researchers are trying to identify common markers for SASP. The present investigation compared the secretome composition of five different senescent phenotypes in two different cell types: bone marrow and adipose mesenchymal stromal cells (MSC). We induced MSC senescence by oxidative stress, doxorubicin treatment, X-ray irradiation, and replicative exhaustion. We took advantage of LC-MS/MS proteome identification and subsequent gene ontology (GO) evaluation to perform an unbiased analysis (hypothesis free manner) of senescent secretomes. GO analysis allowed us to distribute SASP components into four classes: extracellular matrix/cytoskeleton/cell junctions; metabolic processes; ox-redox factors; and regulators of gene expression. We used Ingenuity Pathway Analysis (IPA) to determine common pathways among the different senescent phenotypes. This investigation, along with identification of eleven proteins that were exclusively expressed in all the analyzed senescent phenotypes, permitted the identification of three key signaling paths: MMP2 - TIMP2; IGFBP3 - PAI-1; and Peroxiredoxin 6 - ERP46 - PARK7 - Cathepsin D - Major vault protein. We suggest that these paths could be involved in the paracrine circuit that induces senescence in neighboring cells and may confer apoptosis resistance to senescent cells. PMID:27288264

  8. Integromic Analysis of Genetic Variation and Gene Expression Identifies Networks for Cardiovascular Disease Phenotypes

    PubMed Central

    Yao, Chen; Chen, Brian H.; Joehanes, Roby; Otlu, Burcak; Zhang, Xiaoling; Liu, Chunyu; Huan, Tianxiao; Tastan, Oznur; Cupples, L. Adrienne; Meigs, James B.; Fox, Caroline S.; Freedman, Jane E.; Courchesne, Paul; O’Donnell, Christopher J.; Munson, Peter J.; Keles, Sunduz; Levy, Daniel

    2015-01-01

    Background Cardiovascular disease (CVD) reflects a highly coordinated complex of traits. Although genome-wide association studies have reported numerous single nucleotide polymorphisms (SNPs) to be associated with CVD, the role of most of these variants in disease processes remains unknown. Methods and Results We built a CVD network using 1512 SNPs associated with 21 CVD traits in genome-wide association studies (at P≤5×10−8) and cross-linked different traits by virtue of their shared SNP associations. We then explored whole blood gene expression in relation to these SNPs in 5257 participants in the Framingham Heart Study. At a false discovery rate <0.05, we identified 370 cis-expression quantitative trait loci (eQTLs; SNPs associated with altered expression of nearby genes) and 44 trans-eQTLs (SNPs associated with altered expression of remote genes). The eQTL network revealed 13 CVD-related modules. Searching for association of eQTL genes with CVD risk factors (lipids, blood pressure, fasting blood glucose, and body mass index) in the same individuals, we found examples in which the expression of eQTL genes was significantly associated with these CVD phenotypes. In addition, mediation tests suggested that a subset of SNPs previously associated with CVD phenotypes in genome-wide association studies may exert their function by altering expression of eQTL genes (eg, LDLR and PCSK7), which in turn may promote interindividual variation in phenotypes. Conclusions Using a network approach to analyze CVD traits, we identified complex networks of SNP-phenotype and SNP-transcript connections. Integrating the CVD network with phenotypic data, we identified biological pathways that may provide insights into potential drug targets for treatment or prevention of CVD. PMID:25533967

  9. Genome Wide Association Study Identifies New Loci Associated with Undesired Coat Color Phenotypes in Saanen Goats

    PubMed Central

    Martin, Pauline Marie; Palhière, Isabelle; Ricard, Anne; Tosser-Klopp, Gwenola; Rupp, Rachel

    2016-01-01

    This paper reports a quantitative genetics and genomic analysis of undesirable coat color patterns in goats. Two undesirable coat colors have routinely been recorded for the past 15 years in French Saanen goats. One fifth of Saanen females have been phenotyped “pink” (8.0%) or “pink neck” (11.5%) and consequently have not been included in the breeding program as elite animals. Heritability of the binary “pink” and “pink neck” phenotype, estimated from 103,443 females was 0.26 for “pink” and 0.21 for “pink neck”. Genome wide association studies (using haplotypes or single SNPs) were implemented using a daughter design of 810 Saanen goats sired by 9 Artificial Insemination bucks genotyped with the goatSNP50 chip. A highly significant signal (-log10pvalue = 10.2) was associated with the “pink neck” phenotype on chromosome 11, suggesting the presence of a major gene. Highly significant signals for the “pink” phenotype were found on chromosomes 5 and 13 (-log10p values of 7.2 and, 7.7 respectively). The most significant SNP on chromosome 13 was in the ASIP gene region, well known for its association with coat color phenotypes. Nine significant signals were also found for both traits. The highest signal for each trait was detected by both single SNP and haplotype approaches, whereas the smaller signals were not consistently detected by the two methods. Altogether these results demonstrated a strong genetic control of the “pink” and “pink neck” phenotypes in French Saanen goats suggesting that SNP information could be used to identify and remove undesired colored animals from the breeding program. PMID:27030980

  10. Identifying Gut Microbe-Host Phenotype Relationships Using Combinatorial Communities in Gnotobiotic Mice

    PubMed Central

    Faith, Jeremiah J.; Ahern, Philip P.; Ridaura, Vanessa K.; Cheng, Jiye; Gordon, Jeffrey I.

    2014-01-01

    Identifying a scalable, unbiased method for discovering which members of the human gut microbiota influence specific physiologic, metabolic and immunologic phenotypes remains a challenge. Here we describe a method in which a clonally-arrayed collection of cultured, sequenced bacteria was generated from one of several human fecal microbiota samples found to transmit a particular phenotype to recipient germ-free mice. Ninety-four bacterial consortia, of diverse size, randomly drawn from the culture collection, were introduced into germ-free animals. We identified an unanticipated range of bacterial strains that promoted accumulation of colonic regulatory T cells (Tregs) and expansion of Nrp1lo/− peripheral Tregs, as well as strains that modulated mouse adiposity and cecal metabolite concentrations using feature selection algorithms and follow-up mono-colonization. This combinatorial approach enabled a systems-level understanding of some of the microbial contributions to human biology. PMID:24452263

  11. Exploration of methods to identify polymorphisms associated with variation in DNA repair capacity phenotypes

    SciTech Connect

    Jones, I M; Thomas, C B; Xi, T; Mohrenweiser, H W; Nelson, D O

    2006-07-03

    Elucidating the relationship between polymorphic sequences and risk of common disease is a challenge. For example, although it is clear that variation in DNA repair genes is associated with familial cancer, aging and neurological disease, progress toward identifying polymorphisms associated with elevated risk of sporadic disease has been slow. This is partly due to the complexity of the genetic variation, the existence of large numbers of mostly low frequency variants and the contribution of many genes to variation in susceptibility. There has been limited development of methods to find associations between genotypes having many polymorphisms and pathway function or health outcome. We have explored several statistical methods for identifying polymorphisms associated with variation in DNA repair phenotypes. The model system used was 80 cell lines that had been resequenced to identify variation; 191 single nucleotide substitution polymorphisms (SNPs) are included, of which 172 are in 31 base excision repair pathway genes, 19 in 5 anti-oxidation genes, and DNA repair phenotypes based on single strand breaks measured by the alkaline Comet assay. Univariate analyses were of limited value in identifying SNPs associated with phenotype variation. Of the multivariable model selection methods tested: the easiest that provided reduced error of prediction of phenotype was simple counting of the variant alleles predicted to encode proteins with reduced activity, which led to a genotype including 52 SNPs; the best and most parsimonious model was achieved using a two-step analysis without regard to potential functional relevance: first SNPs were ranked by importance determined by Random Forests Regression (RFR), followed by cross-validation in a second round of RFR modeling that included ever more SNPs in declining order of importance. With this approach 6 SNPs were found to minimize prediction error. The results should encourage research into utilization of multivariate

  12. Exploration of methods to identify polymorphisms associated with variation in DNA repair capacity phenotypes.

    PubMed

    Jones, Irene M; Thomas, Cynthia B; Xi, Tina; Mohrenweiser, Harvey W; Nelson, David O

    2007-03-01

    Elucidating the relationship between polymorphic sequences and risk of common disease is a challenge. For example, although it is clear that variation in DNA repair genes is associated with familial cancer, aging and neurological disease, progress toward identifying polymorphisms associated with elevated risk of sporadic disease has been slow. This is partly due to the complexity of the genetic variation, the existence of large numbers of mostly low frequency variants and the contribution of many genes to variation in susceptibility. There has been limited development of methods to find associations between genotypes having many polymorphisms and pathway function or health outcome. We have explored several statistical methods for identifying polymorphisms associated with variation in DNA repair phenotypes. The model system used was 80 cell lines that had been resequenced to identify variation; 191 single nucleotide substitution polymorphisms (SNPs) are included, of which 172 are in 31 base excision repair pathway genes, 19 in 5 anti-oxidation genes, and DNA repair phenotypes based on single strand breaks measured by the alkaline Comet assay. Univariate analyses were of limited value in identifying SNPs associated with phenotype variation. Of the multivariable model selection methods tested: the easiest that provided reduced error of prediction of phenotype was simple counting of the variant alleles predicted to encode proteins with reduced activity, which led to a genotype including 52 SNPs; the best and most parsimonious model was achieved using a two-step analysis without regard to potential functional relevance: first SNPs were ranked by importance determined by random forests regression (RFR), followed by cross-validation in a second round of RFR modeling that included ever more SNPs in declining order of importance. With this approach six SNPs were found to minimize prediction error. The results should encourage research into utilization of multivariate

  13. Using complete genome comparisons to identify sequences whose presence accurately predicts clinically important phenotypes.

    PubMed

    Hall, Barry G; Cardenas, Heliodoro; Barlow, Miriam

    2013-01-01

    In clinical settings it is often important to know not just the identity of a microorganism, but also the danger posed by that particular strain. For instance, Escherichia coli can range from being a harmless commensal to being a very dangerous enterohemorrhagic (EHEC) strain. Determining pathogenic phenotypes can be both time consuming and expensive. Here we propose a simple, rapid, and inexpensive method of predicting pathogenic phenotypes on the basis of the presence or absence of short homologous DNA segments in an isolate. Our method compares completely sequenced genomes without the necessity of genome alignments in order to identify the presence or absence of the segments to produce an automatic alignment of the binary string that describes each genome. Analysis of the segment alignment allows identification of those segments whose presence strongly predicts a phenotype. Clinical application of the method requires nothing more that PCR amplification of each of the set of predictive segments. Here we apply the method to identifying EHEC strains of E. coli and to distinguishing E. coli from Shigella. We show in silico that with as few as 8 predictive sequences, if even three of those predictive sequences are amplified the probability of being EHEC or Shigella is >0.99. The method is thus very robust to the occasional amplification failure for spurious reasons. Experimentally, we apply the method to screening a set of 98 isolates to distinguishing E. coli from Shigella, and EHEC from non-EHEC E. coli strains and show that all isolates are correctly identified. PMID:23935901

  14. Machine learning based methodology to identify cell shape phenotypes associated with microenvironmental cues.

    PubMed

    Chen, Desu; Sarkar, Sumona; Candia, Julián; Florczyk, Stephen J; Bodhak, Subhadip; Driscoll, Meghan K; Simon, Carl G; Dunkers, Joy P; Losert, Wolfgang

    2016-10-01

    Cell morphology has been identified as a potential indicator of stem cell response to biomaterials. However, determination of cell shape phenotype in biomaterials is complicated by heterogeneous cell populations, microenvironment heterogeneity, and multi-parametric definitions of cell morphology. To associate cell morphology with cell-material interactions, we developed a shape phenotyping framework based on support vector machines. A feature selection procedure was implemented to select the most significant combination of cell shape metrics to build classifiers with both accuracy and stability to identify and predict microenvironment-driven morphological differences in heterogeneous cell populations. The analysis was conducted at a multi-cell level, where a "supercell" method used average shape measurements of small groups of single cells to account for heterogeneous populations and microenvironment. A subsampling validation algorithm revealed the range of supercell sizes and sample sizes needed for classifier stability and generalization capability. As an example, the responses of human bone marrow stromal cells (hBMSCs) to fibrous vs flat microenvironments were compared on day 1. Our analysis showed that 57 cells (grouped into supercells of size 4) are the minimum needed for phenotyping. The analysis identified that a combination of minor axis length, solidity, and mean negative curvature were the strongest early shape-based indicator of hBMSCs response to fibrous microenvironment. PMID:27449947

  15. Phenotyping and genotyping are both essential to identify and classify a probiotic microorganism

    PubMed Central

    Donelli, Gianfranco; Vuotto, Claudia; Mastromarino, Paola

    2013-01-01

    The use of probiotic products, especially for humans, requires an unequivocal taxonomical definition of their microbial content, in order to assign the probiotic effects to well identified and characterized microbial strains. In the absence of this, the labeling of some marketed probiotics may be misleading, both in terms of microbiological contents and possible beneficial effects. Currently, the ‘polyphasic taxonomy’ based on the integration of phenotypic and genotypic data seems to be the most appropriate approach. In fact, even if phenotypic characters often overlap among genetically different species, the molecular methods alone are frequently not able to establish distinct boundaries among phylogenetically related species. Thus, a valid scheme for the identification of a probiotic strain should be currently based on its morphological, physiological, and biochemical features as well as on aspects of its genetic profile. It is important that the identity of specific probiotic strains appearing on the product label is the result of a carefully selected combination of suitable phenotypic and genotypic analytical methods. Only adoption of such a policy could give the right emphasis to the significance of strain-specificity and thus provide health authorities with accurate tools to better evaluate the health benefits claimed by each probiotic-based product. The most common phenotypic and genotypic methods are briefly reviewed here with the aim of highlighting the suitable techniques which can be used to differentiate among microorganisms of probiotic interest, particularly those claiming beneficial health effects for humans. PMID:24009545

  16. Tightly congruent bursts of lineage and phenotypic diversification identified in a continental ant radiation.

    PubMed

    Price, Shauna L; Etienne, Rampal S; Powell, Scott

    2016-04-01

    Adaptive diversification is thought to be shaped by ecological opportunity. A prediction of this ecological process of diversification is that it should result in congruent bursts of lineage and phenotypic diversification, but few studies have found this expected association. Here, we study the relationship between rates of lineage diversification and body size evolution in the turtle ants, a diverse Neotropical clade. Using a near complete, time-calibrated phylogeny we investigated lineage diversification dynamics and body size disparity through model fitting analyses and estimation of per-lineage rates of cladogenesis and phenotypic evolution. We identify an exceptionally high degree of congruence between the high rates of lineage and body size diversification in a young clade undergoing renewed diversification in the ecologically distinct Chacoan biogeographical region of South America. It is likely that the region presented turtle ants with novel ecological opportunity, which facilitated a nested burst of diversification and phenotypic evolution within the group. Our results provide a compelling quantitative example of tight congruence between rates of lineage and phenotypic diversification, meeting the key predicted pattern of adaptive diversification shaped by ecological opportunity. PMID:26935139

  17. Automated local bright feature image analysis of nuclear proteindistribution identifies changes in tissue phenotype

    SciTech Connect

    Knowles, David; Sudar, Damir; Bator, Carol; Bissell, Mina

    2006-02-01

    The organization of nuclear proteins is linked to cell and tissue phenotypes. When cells arrest proliferation, undergo apoptosis, or differentiate, the distribution of nuclear proteins changes. Conversely, forced alteration of the distribution of nuclear proteins modifies cell phenotype. Immunostaining and fluorescence microscopy have been critical for such findings. However, there is an increasing need for quantitative analysis of nuclear protein distribution to decipher epigenetic relationships between nuclear structure and cell phenotype, and to unravel the mechanisms linking nuclear structure and function. We have developed imaging methods to quantify the distribution of fluorescently-stained nuclear protein NuMA in different mammary phenotypes obtained using three-dimensional cell culture. Automated image segmentation of DAPI-stained nuclei was generated to isolate thousands of nuclei from three-dimensional confocal images. Prominent features of fluorescently-stained NuMA were detected using a novel local bright feature analysis technique, and their normalized spatial density calculated as a function of the distance from the nuclear perimeter to its center. The results revealed marked changes in the distribution of the density of NuMA bright features as non-neoplastic cells underwent phenotypically normal acinar morphogenesis. In contrast, we did not detect any reorganization of NuMA during the formation of tumor nodules by malignant cells. Importantly, the analysis also discriminated proliferating non-neoplastic cells from proliferating malignant cells, suggesting that these imaging methods are capable of identifying alterations linked not only to the proliferation status but also to the malignant character of cells. We believe that this quantitative analysis will have additional applications for classifying normal and pathological tissues.

  18. A review of approaches to identifying patient phenotype cohorts using electronic health records

    PubMed Central

    Shivade, Chaitanya; Raghavan, Preethi; Fosler-Lussier, Eric; Embi, Peter J; Elhadad, Noemie; Johnson, Stephen B; Lai, Albert M

    2014-01-01

    Objective To summarize literature describing approaches aimed at automatically identifying patients with a common phenotype. Materials and methods We performed a review of studies describing systems or reporting techniques developed for identifying cohorts of patients with specific phenotypes. Every full text article published in (1) Journal of American Medical Informatics Association, (2) Journal of Biomedical Informatics, (3) Proceedings of the Annual American Medical Informatics Association Symposium, and (4) Proceedings of Clinical Research Informatics Conference within the past 3 years was assessed for inclusion in the review. Only articles using automated techniques were included. Results Ninety-seven articles met our inclusion criteria. Forty-six used natural language processing (NLP)-based techniques, 24 described rule-based systems, 41 used statistical analyses, data mining, or machine learning techniques, while 22 described hybrid systems. Nine articles described the architecture of large-scale systems developed for determining cohort eligibility of patients. Discussion We observe that there is a rise in the number of studies associated with cohort identification using electronic medical records. Statistical analyses or machine learning, followed by NLP techniques, are gaining popularity over the years in comparison with rule-based systems. Conclusions There are a variety of approaches for classifying patients into a particular phenotype. Different techniques and data sources are used, and good performance is reported on datasets at respective institutions. However, no system makes comprehensive use of electronic medical records addressing all of their known weaknesses. PMID:24201027

  19. Targeting the IL-6 Dependent Phenotype Can Identify Novel Therapies for Cholangiocarcinoma

    PubMed Central

    Kogure, Takayuki; Huang, Nianyuan; Patel, Tushar

    2010-01-01

    Background The need for new therapies for cholangiocarcinoma is highlighted by their poor prognosis and refractoriness to chemotherapy. Increased production of Interleukin-6 promotes cholangiocarcinoma growth and contributes to chemoresistance by activating cell survival mechanisms. We sought to identify biologically active compounds capable of ameliorating the phenotypic effects of IL-6 expression and to explore their potential therapeutic use for cholangiocarcinoma. Methodology A genomic signature associated with Interleukin-6 expression in Mz-ChA-1 human malignant cholangiocytes was derived. Computational bioinformatics analysis was performed to identify compounds that induced inverse gene changes to the signature. The effect of these compounds on cholangiocarcinoma growth was then experimentally verified in vitro and in vivo. Interactions with other therapeutic agents were evaluated using median effects analysis. Principal Findings A group of structurally related compounds, nitrendipine, nifedipine and felodipine was identified. All three compounds were cytotoxic to Mz-ChA-1 cells with an IC50 for felodipine of 26 µM, nitrendipine, 44 µM and nifedipine, 15 µM. Similar results were observed in KMCH-1, CC-LP-1 and TFK-1 cholangiocarcinoma cell lines. At a fractional effect of 0.5, all three agents were synergistic with either camptothecin or gemcitabine in Mz-ChA-1 cells in vitro. Co-administration of felodipine and gemcitabine decreased the growth of Mz-ChA-1 cell xenografts in nude athymic mice. Conclusions Computational bioinformatics analysis of phenotype-based genomic expression can be used to identify therapeutic agents. Using this drug discovery approach based on targeting a defined tumor associated phenotype, we identified compounds with the potential for therapeutic use in cholangiocarcinoma. PMID:21179572

  20. Identifying Multimodal Intermediate Phenotypes Between Genetic Risk Factors and Disease Status in Alzheimer's Disease.

    PubMed

    Hao, Xiaoke; Yao, Xiaohui; Yan, Jingwen; Risacher, Shannon L; Saykin, Andrew J; Zhang, Daoqiang; Shen, Li

    2016-10-01

    Neuroimaging genetics has attracted growing attention and interest, which is thought to be a powerful strategy to examine the influence of genetic variants (i.e., single nucleotide polymorphisms (SNPs)) on structures or functions of human brain. In recent studies, univariate or multivariate regression analysis methods are typically used to capture the effective associations between genetic variants and quantitative traits (QTs) such as brain imaging phenotypes. The identified imaging QTs, although associated with certain genetic markers, may not be all disease specific. A useful, but underexplored, scenario could be to discover only those QTs associated with both genetic markers and disease status for revealing the chain from genotype to phenotype to symptom. In addition, multimodal brain imaging phenotypes are extracted from different perspectives and imaging markers consistently showing up in multimodalities may provide more insights for mechanistic understanding of diseases (i.e., Alzheimer's disease (AD)). In this work, we propose a general framework to exploit multi-modal brain imaging phenotypes as intermediate traits that bridge genetic risk factors and multi-class disease status. We applied our proposed method to explore the relation between the well-known AD risk SNP APOE rs429358 and three baseline brain imaging modalities (i.e., structural magnetic resonance imaging (MRI), fluorodeoxyglucose positron emission tomography (FDG-PET) and F-18 florbetapir PET scans amyloid imaging (AV45)) from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. The empirical results demonstrate that our proposed method not only helps improve the performances of imaging genetic associations, but also discovers robust and consistent regions of interests (ROIs) across multi-modalities to guide the disease-induced interpretation. PMID:27277494

  1. Identifying common genetic variants in blood pressure due to polygenic pleiotropy with associated phenotypes

    PubMed Central

    Andreassen, Ole A.; McEvoy, Linda K.; Thompson, Wesley K.; Wang, Yunpeng; Reppe, Sjur; Schork, Andrew J.; Zuber, Verena; Barrett-Connor, Elizabeth; Gautvik, Kaare; Aukrust, Pål; Karlsen, Tom H.; Djurovic, Srdjan; Desikan, Rahul S.; Dale, Anders M.

    2014-01-01

    Blood pressure is a critical determinant of cardiovascular morbidity and mortality. It is affected by environmental factors, but has a strong heritable component. Despite recent large genome-wide association studies, few genetic risk factors for blood pressure have been identified. Epidemiological studies suggest associations between blood pressure and several diseases and traits, which may partly arise from a shared genetic basis (genetic pleiotropy). Using genome-wide association studies summary statistics and a genetic pleiotropy-informed conditional False Discovery Rate method, we systematically investigated genetic overlap between systolic blood pressure and 12 co-morbid traits and diseases. We found significant ‘enrichment’ of single nucleotide polymorphisms associated with systolic blood pressure as a function of their association with body mass index, low density lipoprotein, waist hip ratio, schizophrenia, bone mineral density, type 1 diabetes and celiac disease. In contrast, the magnitude of enrichment due to shared polygenic effects was smaller with the other phenotypes (triglycerides, high density lipoproteins, type 2 diabetes, rheumatoid arthritis, and height). Applying the conditional False Discovery Rate method to the enriched phenotypes, we identified 62 loci associated with systolic blood pressure (False Discovery Rate < 0.01), including 42 novel loci. The observed polygenic overlap between systolic blood pressure and several related disorders indicates that the epidemiological associations are not mediated solely via lifestyle factors, but also reflect an etiological relation that warrants further investigation. The new gene loci identified implicate novel genetic mechanisms related to lipid biology and the immune system in systolic blood pressure. PMID:24396023

  2. Identifying common genetic variants in blood pressure due to polygenic pleiotropy with associated phenotypes.

    PubMed

    Andreassen, Ole A; McEvoy, Linda K; Thompson, Wesley K; Wang, Yunpeng; Reppe, Sjur; Schork, Andrew J; Zuber, Verena; Barrett-Connor, Elizabeth; Gautvik, Kaare; Aukrust, Pål; Karlsen, Tom H; Djurovic, Srdjan; Desikan, Rahul S; Dale, Anders M

    2014-04-01

    Blood pressure is a critical determinant of cardiovascular morbidity and mortality. It is affected by environmental factors, but has a strong heritable component. Despite recent large genome-wide association studies, few genetic risk factors for blood pressure have been identified. Epidemiological studies suggest associations between blood pressure and several diseases and traits, which may partly arise from a shared genetic basis (genetic pleiotropy). Using genome-wide association studies summary statistics and a genetic pleiotropy-informed conditional false discovery rate method, we systematically investigated genetic overlap between systolic blood pressure (SBP) and 12 comorbid traits and diseases. We found significant enrichment of single nucleotide polymorphisms associated with SBP as a function of their association with body mass index, low-density lipoprotein, waist/hip ratio, schizophrenia, bone mineral density, type 1 diabetes mellitus, and celiac disease. In contrast, the magnitude of enrichment due to shared polygenic effects was smaller with the other phenotypes (triglycerides, high-density lipoproteins, type 2 diabetes mellitus, rheumatoid arthritis, and height). Applying the conditional false discovery rate method to the enriched phenotypes, we identified 62 loci associated with SBP (false discovery rate <0.01), including 42 novel loci. The observed polygenic overlap between SBP and several related disorders indicates that the epidemiological associations are not mediated solely via lifestyle factors but also reflect an etiologic relation that warrants further investigation. The new gene loci identified implicate novel genetic mechanisms related to lipid biology and the immune system in SBP. PMID:24396023

  3. Oral sensory phenotype identifies level of sugar and fat required for maximal liking

    PubMed Central

    Hayes, John E.; Duffy, Valerie B.

    2008-01-01

    A half-century ago, Fischer and colleagues found correlations between food preference and genetic markers of taste [propylthiouracil (PROP), quinine]. Recently, a number of studies report differences in sweet liking/disliking with taste phenotype or genotype. Here we modeled optimal liking for milk/sugar mixtures using the response surface method among 79 mostly normal weight adults (36 women) who reported low dietary restraint. Two non-overlapping phenotype analyses were performed: a) discordance in PROP versus quinine bitterness and b) number of fungiform papillae (FP, taste papillae on the tongue tip). Although all phenotype groups liked highly sweet and creamy sensations (in liking by sensation models), the fat and sugar levels for hedonic optima varied (in liking by concentration models). Males generally liked higher fat (20 to 40%) and sugar levels, with females disliking unsweetened cream. In quinine/PROP groups, liking peaked at 30% fat/15% sucrose for men and women who tasted 0.32mM quinine more bitter than 3.2mM PROP (n=15); a group previously shown to have highest sugar intakes (Duffy et al, 2003). Those tasting PROP more bitter than quinine (n=14) reported greater creamy/sweet sensations, with peak liking at lower fat and sweet levels (3.3% fat/10% sucrose). Generally, those in the high FP group perceived more creamy/sweet sensations with level of liking more influenced by sugar level, especially among high FP females. At high sugar/high fat levels low-FP males and females retained this liking while liking fell off for those in the high FP group. In summary, although most liked sweet/creamy sensations, perceptual differences in these sensations varied with oral phenotype, explaining some of the differences in the amount of sugar and fat required to reach hedonic optima. A high affinity for high sugar/high fat mixtures among oral phenotype subgroups has relevance for energy consumption and could explain the link previously observed between oral sensation

  4. Phenotypic population screen identifies a new mutation in bovine DGAT1 responsible for unsaturated milk fat

    PubMed Central

    Lehnert, Klaus; Ward, Hamish; Berry, Sarah D.; Ankersmit-Udy, Alex; Burrett, Alayna; Beattie, Elizabeth M.; Thomas, Natalie L.; Harris, Bevin; Ford, Christine A.; Browning, Sharon R.; Rawson, Pisana; Verkerk, Gwyneth A.; van der Does, Yvonne; Adams, Linda F.; Davis, Stephen R.; Jordan, T. William; MacGibbon, Alastair K. H.; Spelman, Richard J.; Snell, Russell G.

    2015-01-01

    Selective breeding has strongly reduced the genetic diversity in livestock species, and contemporary breeding practices exclude potentially beneficial rare genetic variation from the future gene pool. Here we test whether important traits arising by new mutations can be identified and rescued in highly selected populations. We screened milks from 2.5 million cows to identify an exceptional individual which produced milk with reduced saturated fat content, and improved unsaturated and omega-3 fatty acid concentrations. The milk traits were transmitted dominantly to her offspring, and genetic mapping and genome sequencing revealed a new mutation in a previously unknown splice enhancer of the DGAT1 gene. Homozygous carriers show features of human diarrheal disorders, and may be useful for the development of therapeutic strategies. Our study demonstrates that high-throughput phenotypic screening can uncover rich genetic diversity even in inbred populations, and introduces a novel strategy to develop novel milks with improved nutritional properties. PMID:25719731

  5. An RNA Interference Phenotypic Screen Identifies a Role for FGF Signals in Colon Cancer Progression

    PubMed Central

    Leushacke, Marc; Spörle, Ralf; Bernemann, Christof; Brouwer-Lehmitz, Antje; Fritzmann, Johannes; Theis, Mirko; Buchholz, Frank; Herrmann, Bernhard G.; Morkel, Markus

    2011-01-01

    In tumor cells, stepwise oncogenic deregulation of signaling cascades induces alterations of cellular morphology and promotes the acquisition of malignant traits. Here, we identified a set of 21 genes, including FGF9, as determinants of tumor cell morphology by an RNA interference phenotypic screen in SW480 colon cancer cells. Using a panel of small molecular inhibitors, we subsequently established phenotypic effects, downstream signaling cascades, and associated gene expression signatures of FGF receptor signals. We found that inhibition of FGF signals induces epithelial cell adhesion and loss of motility in colon cancer cells. These effects are mediated via the mitogen-activated protein kinase (MAPK) and Rho GTPase cascades. In agreement with these findings, inhibition of the MEK1/2 or JNK cascades, but not of the PI3K-AKT signaling axis also induced epithelial cell morphology. Finally, we found that expression of FGF9 was strong in a subset of advanced colon cancers, and overexpression negatively correlated with patients' survival. Our functional and expression analyses suggest that FGF receptor signals can contribute to colon cancer progression. PMID:21853123

  6. Anthropometric indices to identify metabolic syndrome and hypertriglyceridemic waist phenotype: a comparison between the three stages of adolescence

    PubMed Central

    Pereira, Patrícia Feliciano; de Faria, Franciane Rocha; de Faria, Eliane Rodrigues; Hermsdorff, Helen Hermana Miranda; Peluzio, Maria do Carmo Gouveia; Franceschini, Sylvia do Carmo Castro; Priore, Silvia Eloiza

    2015-01-01

    OBJECTIVE: To determine the prevalence of metabolic syndrome (MS) and the hypertriglyceridemic waist phenotype (HW) in a representative adolescent sample; as well as to establish which anthropometric indicator better identifies MS and HW, according to gender and adolescent age. METHODS: This cross sectional study had the participation of 800 adolescents (414 girls) from 10-19 years old. Anthropometric indicators (body mass index, waist perimeter, waist/stature ratio, waist/hip ratio, and central/peripheral skinfolds) were determined by standard protocols. For diagnosis of MS, the criteria proposed by de Ferranti et al. (2004) were used. HW was defined by the simultaneous presence of increased waist perimeter (>75th percentile for age and sex) and high triglycerides (>100 mg/dL). The ability of anthropometric indicators was evaluated by Receiver Operating Characteristic curve. RESULTS: The prevalence of MS was identical to HW (6.4%), without differences between genders and the adolescence phases. The waist perimeter showed higher area under the curve for the diagnosis of MS, except for boys with 17-19 years old, for whom the waist/stature ratio exhibited better performance. For diagnosing HW, waist perimeter also showed higher area under the curve, except for boys in initial and final phases, in which the waist/stature ratio obtained larger area under the curve. The central/peripheral skinfolds had the lowest area under the curve for the presence of both MS and HW phenotype. CONCLUSIONS: The waist perimeter and the waist/stature showed a better performance to identify MS and HW in both genders and in all three phases of adolescence. PMID:25913494

  7. Genes identified by visible mutant phenotypes show increased bias toward one of two subgenomes of maize.

    PubMed

    Schnable, James C; Freeling, Michael

    2011-01-01

    Not all genes are created equal. Despite being supported by sequence conservation and expression data, knockout homozygotes of many genes show no visible effects, at least under laboratory conditions. We have identified a set of maize (Zea mays L.) genes which have been the subject of a disproportionate share of publications recorded at MaizeGDB. We manually anchored these "classical" maize genes to gene models in the B73 reference genome, and identified syntenic orthologs in other grass genomes. In addition to proofing the most recent version 2 maize gene models, we show that a subset of these genes, those that were identified by morphological phenotype prior to cloning, are retained at syntenic locations throughout the grasses at much higher levels than the average expressed maize gene, and are preferentially found on the maize1 subgenome even with a duplicate copy is still retained on the opposite subgenome. Maize1 is the subgenome that experienced less gene loss following the whole genome duplication in maize lineage 5-12 million years ago and genes located on this subgenome tend to be expressed at higher levels in modern maize. Links to the web based software that supported our syntenic analyses in the grasses should empower further research and support teaching involving the history of maize genetic research. Our findings exemplify the concept of "grasses as a single genetic system," where what is learned in one grass may be applied to another. PMID:21423772

  8. FISH Mapping of De Novo Apparently Balanced Chromosome Rearrangements Identifies Characteristics Associated with Phenotypic Abnormality

    PubMed Central

    Fantes, J.A.; Boland, E.; Ramsay, J.; Donnai, D.; Splitt, M.; Goodship, J.A.; Stewart, H.; Whiteford, M.; Gautier, P.; Harewood, L.; Holloway, S.; Sharkey, F.; Maher, E.; van Heyningen, V.; Clayton-Smith, J.; Fitzpatrick, D.R.; Black, G.C.M.

    2008-01-01

    We report fluorescence in situ hybridization (FISH) mapping of 152, mostly de novo, apparently balanced chromosomal rearrangement (ABCR) breakpoints in 76 individuals, 30 of whom had no obvious phenotypic abnormality (control group) and 46 of whom had an associated disease (case group). The aim of this study was to identify breakpoint characteristics that could discriminate between these groups and which might be of predictive value in de novo ABCR (DN-ABCR) cases detected antenatally. We found no difference in the proportion of breakpoints that interrupted a gene, although in three cases, direct interruption or deletion of known autosomal-dominant or X-linked recessive Mendelian disease genes was diagnostic. The only significant predictor of phenotypic abnormality in the group as a whole was the localization of one or both breakpoints to an R-positive (G-negative) band with estimated predictive values of 0.69 (95% CL 0.54–0.81) and 0.90 (95% CL 0.60–0.98), respectively. R-positive bands are known to contain more genes and have a higher guanine-cytosine (GC) content than do G-positive (R-negative) bands; however, whether a gene was interrupted by the breakpoint or the GC content in the 200kB around the breakpoint had no discriminant ability. Our results suggest that the large-scale genomic context of the breakpoint has prognostic utility and that the pathological mechanism of mapping to an R-band cannot be accounted for by direct gene inactivation. PMID:18374296

  9. Energy Expenditure Responses to Fasting and Overfeeding Identify Phenotypes Associated With Weight Change.

    PubMed

    Schlögl, Mathias; Piaggi, Paolo; Pannacciuli, Nicola; Bonfiglio, Susan M; Krakoff, Jonathan; Thearle, Marie S

    2015-11-01

    Because it is unknown whether 24-h energy expenditure (EE) responses to dietary extremes will identify phenotypes associated with weight regulation, the aim of this study was to determine whether such responses to fasting or overfeeding are associated with future weight change. The 24-h EE during energy balance, fasting, and four different overfeeding diets with 200% energy requirements was measured in a metabolic chamber in 37 subjects with normal glucose regulation while they resided on our clinical research unit. Diets were given for 24 h each and included the following: (1) low protein (3%), (2) standard (50% carbohydrate, 20% protein), (3) high fat (60%), and (4) high carbohydrate (75%). Participants returned for follow-up 6 months after the initial measures. The decrease in 24-h EE during fasting and the increase with overfeeding were correlated. A larger reduction in EE during fasting, a smaller EE response to low-protein overfeeding, and a larger response to high-carbohydrate overfeeding all correlated with weight gain. The association of the fasting EE response with weight change was not independent from that of low protein in a multivariate model. We identified the following two independent propensities associated with weight gain: a predilection for conserving energy during caloric and protein deprivation and a profligate response to large amounts of carbohydrates. PMID:26185280

  10. Sensitized phenotypic screening identifies gene dosage sensitive region on chromosome 11 that predisposes to disease in mice

    PubMed Central

    Ermakova, Olga; Piszczek, Lukasz; Luciani, Luisa; Cavalli, Florence M G; Ferreira, Tiago; Farley, Dominika; Rizzo, Stefania; Paolicelli, Rosa Chiara; Al-Banchaabouchi, Mumna; Nerlov, Claus; Moriggl, Richard; Luscombe, Nicholas M; Gross, Cornelius

    2011-01-01

    The identification of susceptibility genes for human disease is a major goal of current biomedical research. Both sequence and structural variation have emerged as major genetic sources of phenotypic variability and growing evidence points to copy number variation as a particularly important source of susceptibility for disease. Here we propose and validate a strategy to identify genes in which changes in dosage alter susceptibility to disease-relevant phenotypes in the mouse. Our approach relies on sensitized phenotypic screening of megabase-sized chromosomal deletion and deficiency lines carrying altered copy numbers of ∼30 linked genes. This approach offers several advantages as a method to systematically identify genes involved in disease susceptibility. To examine the feasibility of such a screen, we performed sensitized phenotyping in five therapeutic areas (metabolic syndrome, immune dysfunction, atherosclerosis, cancer and behaviour) of a 0.8 Mb reciprocal chromosomal duplication and deficiency on chromosome 11 containing 27 genes. Gene dosage in the region significantly affected risk for high-fat diet-induced metabolic syndrome, antigen-induced immune hypersensitivity, ApoE-induced atherosclerosis, and home cage activity. Follow up studies on individual gene knockouts for two candidates in the region showed that copy number variation in Stat5 was responsible for the phenotypic variation in antigen-induced immune hypersensitivity and metabolic syndrome. These data demonstrate the power of sensitized phenotypic screening of segmental aneuploidy lines to identify disease susceptibility genes. PMID:21204268

  11. Differential Analysis of Ovarian and Endometrial Cancers Identifies a Methylator Phenotype

    PubMed Central

    Kolbe, Diana L.; DeLoia, Julie A.; Porter-Gill, Patricia; Strange, Mary; Petrykowska, Hanna M.; Guirguis, Alfred; Krivak, Thomas C.; Brody, Lawrence C.; Elnitski, Laura

    2012-01-01

    Despite improved outcomes in the past 30 years, less than half of all women diagnosed with epithelial ovarian cancer live five years beyond their diagnosis. Although typically treated as a single disease, epithelial ovarian cancer includes several distinct histological subtypes, such as papillary serous and endometrioid carcinomas. To address whether the morphological differences seen in these carcinomas represent distinct characteristics at the molecular level we analyzed DNA methylation patterns in 11 papillary serous tumors, 9 endometrioid ovarian tumors, 4 normal fallopian tube samples and 6 normal endometrial tissues, plus 8 normal fallopian tube and 4 serous samples from TCGA. For comparison within the endometrioid subtype we added 6 primary uterine endometrioid tumors and 5 endometrioid metastases from uterus to ovary. Data was obtained from 27,578 CpG dinucleotides occurring in or near promoter regions of 14,495 genes. We identified 36 locations with significant increases or decreases in methylation in comparisons of serous tumors and normal fallopian tube samples. Moreover, unsupervised clustering techniques applied to all samples showed three major profiles comprising mostly normal samples, serous tumors, and endometrioid tumors including ovarian, uterine and metastatic origins. The clustering analysis identified 60 differentially methylated sites between the serous group and the normal group. An unrelated set of 25 serous tumors validated the reproducibility of the methylation patterns. In contrast, >1,000 genes were differentially methylated between endometrioid tumors and normal samples. This finding is consistent with a generalized regulatory disruption caused by a methylator phenotype. Through DNA methylation analyses we have identified genes with known roles in ovarian carcinoma etiology, whereas pathway analyses provided biological insight to the role of novel genes. Our finding of differences between serous and endometrioid ovarian tumors

  12. Subgrouping siblings of people with autism: Identifying the broader autism phenotype

    PubMed Central

    Allison, Carrie; Smith, Paula; Watson, Peter; Auyeung, Bonnie; Ring, Howard; Baron‐Cohen, Simon

    2015-01-01

    We investigate the broader autism phenotype (BAP) in siblings of individuals with autism spectrum conditions (ASC). Autistic traits were measured in typical controls (n = 2,000), siblings (n = 496), and volunteers with ASC (n = 2,322) using the Autism‐Spectrum Quotient (AQ), both self‐report and parent‐report versions. Using cluster analysis of AQ subscale scores, two sibling subgroups were identified for both males and females: a cluster of low‐scorers and a cluster of high‐scorers. Results show that while siblings as a group have intermediate levels of autistic traits compared to control individuals and participants with ASC, when examined on a cluster level, the low‐scoring sibling group is more similar to typical controls while the high‐scoring group is more similar to the ASC clinical group. Further investigation into the underlying genetic and epigenetic characteristics of these two subgroups will be informative in understanding autistic traits, both within the general population and in relation to those with a clinical diagnosis. Autism Res 2016, 9: 658–665. © 2015 The Authors Autism Research published by Wiley Periodicals, Inc. on behalf of International Society for Autism Research PMID:26332889

  13. High-throughput screening of mouse gene knockouts identifies established and novel skeletal phenotypes

    PubMed Central

    Brommage, Robert; Liu, Jeff; Hansen, Gwenn M; Kirkpatrick, Laura L; Potter, David G; Sands, Arthur T; Zambrowicz, Brian; Powell, David R; Vogel, Peter

    2014-01-01

    Screening gene function in vivo is a powerful approach to discover novel drug targets. We present high-throughput screening (HTS) data for 3 762 distinct global gene knockout (KO) mouse lines with viable adult homozygous mice generated using either gene-trap or homologous recombination technologies. Bone mass was determined from DEXA scans of male and female mice at 14 weeks of age and by microCT analyses of bones from male mice at 16 weeks of age. Wild-type (WT) cagemates/littermates were examined for each gene KO. Lethality was observed in an additional 850 KO lines. Since primary HTS are susceptible to false positive findings, additional cohorts of mice from KO lines with intriguing HTS bone data were examined. Aging, ovariectomy, histomorphometry and bone strength studies were performed and possible non-skeletal phenotypes were explored. Together, these screens identified multiple genes affecting bone mass: 23 previously reported genes (Calcr, Cebpb, Crtap, Dcstamp, Dkk1, Duoxa2, Enpp1, Fgf23, Kiss1/Kiss1r, Kl (Klotho), Lrp5, Mstn, Neo1, Npr2, Ostm1, Postn, Sfrp4, Slc30a5, Slc39a13, Sost, Sumf1, Src, Wnt10b), five novel genes extensively characterized (Cldn18, Fam20c, Lrrk1, Sgpl1, Wnt16), five novel genes with preliminary characterization (Agpat2, Rassf5, Slc10a7, Slc26a7, Slc30a10) and three novel undisclosed genes coding for potential osteoporosis drug targets. PMID:26273529

  14. Lactobacillus casei, Lactobacillus rhamnosus, and Lactobacillus zeae isolates identified by sequence signature and immunoblot phenotype.

    PubMed

    Dobson, C Melissa; Chaban, Bonnie; Deneer, Harry; Ziola, Barry

    2004-07-01

    Species taxonomy within the Lactobacillus casei group of bacteria has been unsettled. With the goal of helping clarify the taxonomy of these bacteria, we investigated the first 3 variable regions of the 16S rRNA gene, the 16S-23S rRNA interspacer region, and one third of the chaperonin 60 gene for Lactobacillus isolates originally designated as L. casei, L. paracasei, L. rhamnosus, and L. zeae. For each genetic region, a phylogenetic tree was created and signature sequence analysis was done. As well, phenotypic analysis of the various strains was performed by immunoblotting. Both sequence signature analysis and immunoblotting gave immediate identification of L. casei, L. rhamnosus, and L. zeae isolates. These results corroborate and extend previous findings concerning these lactobacilli; therefore, we strongly endorse recent proposals for revised nomenclature. Specifically, isolate ATCC 393 is appropriately rejected as the L. casei type strain because of grouping with isolates identified as L. zeae. As well, because all other L. casei isolates, including the proposed neotype isolate ATCC 334, grouped together with isolates designated L. paracasei, we support the use of the single species L. casei and rejection of the name L. paracasei. PMID:15381972

  15. Common genetic variants associated with cognitive performance identified using the proxy-phenotype method.

    PubMed

    Rietveld, Cornelius A; Esko, Tõnu; Davies, Gail; Pers, Tune H; Turley, Patrick; Benyamin, Beben; Chabris, Christopher F; Emilsson, Valur; Johnson, Andrew D; Lee, James J; de Leeuw, Christiaan; Marioni, Riccardo E; Medland, Sarah E; Miller, Michael B; Rostapshova, Olga; van der Lee, Sven J; Vinkhuyzen, Anna A E; Amin, Najaf; Conley, Dalton; Derringer, Jaime; van Duijn, Cornelia M; Fehrmann, Rudolf; Franke, Lude; Glaeser, Edward L; Hansell, Narelle K; Hayward, Caroline; Iacono, William G; Ibrahim-Verbaas, Carla; Jaddoe, Vincent; Karjalainen, Juha; Laibson, David; Lichtenstein, Paul; Liewald, David C; Magnusson, Patrik K E; Martin, Nicholas G; McGue, Matt; McMahon, George; Pedersen, Nancy L; Pinker, Steven; Porteous, David J; Posthuma, Danielle; Rivadeneira, Fernando; Smith, Blair H; Starr, John M; Tiemeier, Henning; Timpson, Nicholas J; Trzaskowski, Maciej; Uitterlinden, André G; Verhulst, Frank C; Ward, Mary E; Wright, Margaret J; Davey Smith, George; Deary, Ian J; Johannesson, Magnus; Plomin, Robert; Visscher, Peter M; Benjamin, Daniel J; Cesarini, David; Koellinger, Philipp D

    2014-09-23

    We identify common genetic variants associated with cognitive performance using a two-stage approach, which we call the proxy-phenotype method. First, we conduct a genome-wide association study of educational attainment in a large sample (n = 106,736), which produces a set of 69 education-associated SNPs. Second, using independent samples (n = 24,189), we measure the association of these education-associated SNPs with cognitive performance. Three SNPs (rs1487441, rs7923609, and rs2721173) are significantly associated with cognitive performance after correction for multiple hypothesis testing. In an independent sample of older Americans (n = 8,652), we also show that a polygenic score derived from the education-associated SNPs is associated with memory and absence of dementia. Convergent evidence from a set of bioinformatics analyses implicates four specific genes (KNCMA1, NRXN1, POU2F3, and SCRT). All of these genes are associated with a particular neurotransmitter pathway involved in synaptic plasticity, the main cellular mechanism for learning and memory. PMID:25201988

  16. Phenotype of Children with QT Prolongation Identified Using an Institution-Wide QT Alert System.

    PubMed

    Anderson, Heather N; Bos, J Martijn; Haugaa, Kristina H; Morlan, Bruce W; Tarrell, Robert F; Caraballo, Pedro J; Ackerman, Michael J

    2015-10-01

    QT prolongation is an independent risk factor for cardiovascular mortality in adults. However, there is little information available on pediatric patients with QT prolongation and their outcomes. Herein, we evaluated the prevalence of QT prolongation in pediatric patients identified by an institution-wide QT alert system, and the spectrum of their phenotype. Patients with documented QT prolongation on an ECG obtained between November 2010 and June 2011 were included. There were 1303 pediatric ECGs, and 68 children had electrographically isolated QT prolongation. Comprehensive review of medical records was performed with particular attention to QT-prolonging clinical, laboratory, and medication data, which were summarized into a pro-QTc score. Overall, 68 (5 %) pediatric patients had isolated QT prolongation. The mean age of this pediatric cohort was 9 ± 6 years, and the average QTc was 494 ± 42 ms. All children had 1 or more QT-prolonging risk factor(s), most commonly QT-prolonging medications. One patient was identified with congenital long QT syndrome (LQTS), which was not previously diagnosed. In one-year follow-up, only one pediatric death (non-cardiac) occurred (1.5 %). Potentially QT-offending/pro-arrhythmic medications were changed in 80 % of pediatric patients after the physician received the QT alert. Children with QT prolongation had very low mortality and minimal polypharmacy. Still, medications and other modifiable conditions were the most common causes of QT prolongation. Children with a prolonged QTc should be evaluated for modifiable QT-prolonging factors. However, if no risk factors are present or the QTc does not attenuate after risk factor modification/removal, the child should be evaluated for congenital LQTS. PMID:25845942

  17. NIH Researchers Identify New Gene Mutation Associated with ALS and Dementia

    MedlinePlus

    ... NIH researchers identify new gene mutation associated with ALS and dementia April 7, 2014 A rare mutation ... cell, has been linked with development of familial amyotrophic lateral sclerosis (ALS). This finding, from a research team led ...

  18. Aberrant phenotypic expression of CD15 and CD56 identifies poor prognostic acute promyelocytic leukemia patients.

    PubMed

    Breccia, Massimo; De Propris, Maria Stefania; Minotti, Clara; Stefanizzi, Caterina; Raponi, Sara; Colafigli, Gioia; Latagliata, Roberto; Guarini, Anna; Foà, Robin

    2014-02-01

    Limited information is available on the relationship between expression of some additional aberrant phenotypic features and outcome of acute promyelocytic leukemia (APL) patients. Here, we set out to assess the frequency of CD15 and CD56 expression, and their prognostic value in a large series of APL patients. One hundred and fourteen adult patients consecutively diagnosed with PML/RARα-positive APL and homogeneously treated with the AIDA induction schedule at a single institution were included in the study. Twelve (10.5%) and 9 (8%) of the 114 patients expressed CD15 and CD56, respectively. CD15 expression identified a subset of patients with a classic morphologic subtype (92%), a prevalent association with a bcr1 expression (67%) with an unexpectedly higher frequency of relapses (42% vs 20% for the CD15- patients, p=0.03) and a low overall survival (OS) (median OS at 5 years 58% vs 85% for the CD15- patients, p=0.01). CD56 expression was detected only in patients with a classic morphologic subtype, a prevalent bcr3 expression (67%), high incidence of differentiation syndrome (55%), higher frequency of relapse (34% vs 20% for the CD56- population, p=0.04) and a low OS (60% vs 85% for the CD56- population p=0.02). We hereby confirm the negative prognostic value of CD56 and we show that the same applies also to cases expressing CD15. These aberrant markers may be considered for the refinement of risk-adapted therapeutic strategies in APL patients. PMID:24296270

  19. Exploiting CpG hypermutability to identify phenotypically significant variation within human protein-coding genes.

    PubMed

    Ying, Hua; Huttley, Gavin

    2011-01-01

    The CpG dinucleotide is disproportionately represented in human genetic variation due to the hypermutability of 5-methyl-cytosine (5mC). We exploit this hypermutability and a novel codon substitution model to identify candidate functionally important exonic nucleotides. Population genetic theory suggests that codon positions with high cross-species CpG frequency will derive from stronger purifying selection. Using the phylogeny-based maximum likelihood inference framework, we applied codon substitution models with context-dependent parameters to measure the mutagenic and selective processes affecting CpG dinucleotides within exonic sequence. The suitability of these models was validated on >2,000 protein coding genes from a naturally occurring biological control, four yeast species that do not methylate their DNA. As expected, our analyses of yeast revealed no evidence for an elevated CpG transition rate or for substitution suppression affecting CpG-containing codons. Our analyses of >12,000 protein-coding genes from four primate lineages confirm the systemic influence of 5mC hypermutability on the divergence of these genes. After adjusting for confounding influences of mutation and the properties of the encoded amino acids, we confirmed that CpG-containing codons are under greater purifying selection in primates. Genes with significant evidence of enhanced suppression of nonsynonymous CpG changes were also shown to be significantly enriched in Online Mendelian Inheritance in Man. We developed a method for ranking candidate phenotypically influential CpG positions in human genes. Application of this method indicates that of the ∼1 million exonic CpG dinucleotides within humans, ∼20% are strong candidates for both hypermutability and disease association. PMID:21398426

  20. Epigenome-Wide Scans Identify Differentially Methylated Regions for Age and Age-Related Phenotypes in a Healthy Ageing Population

    PubMed Central

    Yang, Tsun-Po; Pidsley, Ruth; Nisbet, James; Glass, Daniel; Mangino, Massimo; Zhai, Guangju; Zhang, Feng; Valdes, Ana; Shin, So-Youn; Dempster, Emma L.; Murray, Robin M.; Grundberg, Elin; Hedman, Asa K.; Nica, Alexandra; Small, Kerrin S.; Dermitzakis, Emmanouil T.; McCarthy, Mark I.; Mill, Jonathan; Spector, Tim D.; Deloukas, Panos

    2012-01-01

    Age-related changes in DNA methylation have been implicated in cellular senescence and longevity, yet the causes and functional consequences of these variants remain unclear. To elucidate the role of age-related epigenetic changes in healthy ageing and potential longevity, we tested for association between whole-blood DNA methylation patterns in 172 female twins aged 32 to 80 with age and age-related phenotypes. Twin-based DNA methylation levels at 26,690 CpG-sites showed evidence for mean genome-wide heritability of 18%, which was supported by the identification of 1,537 CpG-sites with methylation QTLs in cis at FDR 5%. We performed genome-wide analyses to discover differentially methylated regions (DMRs) for sixteen age-related phenotypes (ap-DMRs) and chronological age (a-DMRs). Epigenome-wide association scans (EWAS) identified age-related phenotype DMRs (ap-DMRs) associated with LDL (STAT5A), lung function (WT1), and maternal longevity (ARL4A, TBX20). In contrast, EWAS for chronological age identified hundreds of predominantly hyper-methylated age DMRs (490 a-DMRs at FDR 5%), of which only one (TBX20) was also associated with an age-related phenotype. Therefore, the majority of age-related changes in DNA methylation are not associated with phenotypic measures of healthy ageing in later life. We replicated a large proportion of a-DMRs in a sample of 44 younger adult MZ twins aged 20 to 61, suggesting that a-DMRs may initiate at an earlier age. We next explored potential genetic and environmental mechanisms underlying a-DMRs and ap-DMRs. Genome-wide overlap across cis-meQTLs, genotype-phenotype associations, and EWAS ap-DMRs identified CpG-sites that had cis-meQTLs with evidence for genotype–phenotype association, where the CpG-site was also an ap-DMR for the same phenotype. Monozygotic twin methylation difference analyses identified one potential environmentally-mediated ap-DMR associated with total cholesterol and LDL (CSMD1). Our results suggest that in a

  1. Genome-wide Association Study Identifies Loci for the Polled Phenotype in Yak.

    PubMed

    Liang, Chunnian; Wang, Lizhong; Wu, Xiaoyun; Wang, Kun; Ding, Xuezhi; Wang, Mingcheng; Chu, Min; Xie, Xiuyue; Qiu, Qiang; Yan, Ping

    2016-01-01

    The absence of horns, known as the polled phenotype, is an economically important trait in modern yak husbandry, but the genomic structure and genetic basis of this phenotype have yet to be discovered. Here, we conducted a genome-wide association study with a panel of 10 horned and 10 polled yaks using whole genome sequencing. We mapped the POLLED locus to a 200-kb interval, which comprises three protein-coding genes. Further characterization of the candidate region showed recent artificial selection signals resulting from the breeding process. We suggest that expressional variations rather than structural variations in protein probably contribute to the polled phenotype. Our results not only represent the first and important step in establishing the genomic structure of the polled region in yak, but also add to our understanding of the polled trait in bovid species. PMID:27389700

  2. Genome-wide Association Study Identifies Loci for the Polled Phenotype in Yak

    PubMed Central

    Wu, Xiaoyun; Wang, Kun; Ding, Xuezhi; Wang, Mingcheng; Chu, Min; Xie, Xiuyue; Qiu, Qiang; Yan, Ping

    2016-01-01

    The absence of horns, known as the polled phenotype, is an economically important trait in modern yak husbandry, but the genomic structure and genetic basis of this phenotype have yet to be discovered. Here, we conducted a genome-wide association study with a panel of 10 horned and 10 polled yaks using whole genome sequencing. We mapped the POLLED locus to a 200-kb interval, which comprises three protein-coding genes. Further characterization of the candidate region showed recent artificial selection signals resulting from the breeding process. We suggest that expressional variations rather than structural variations in protein probably contribute to the polled phenotype. Our results not only represent the first and important step in establishing the genomic structure of the polled region in yak, but also add to our understanding of the polled trait in bovid species. PMID:27389700

  3. Drosophila TDP-43 dysfunction in glia and muscle cells cause cytological and behavioural phenotypes that characterize ALS and FTLD

    PubMed Central

    Diaper, Danielle C.; Adachi, Yoshitsugu; Lazarou, Luke; Greenstein, Max; Simoes, Fabio A.; Di Domenico, Angelique; Solomon, Daniel A.; Lowe, Simon; Alsubaie, Rawan; Cheng, Daryl; Buckley, Stephen; Humphrey, Dickon M.; Shaw, Christopher E.; Hirth, Frank

    2013-01-01

    Amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) are neurodegenerative disorders that are characterized by cytoplasmic aggregates and nuclear clearance of TAR DNA-binding protein 43 (TDP-43). Studies in Drosophila, zebrafish and mouse demonstrate that the neuronal dysfunction of TDP-43 is causally related to disease formation. However, TDP-43 aggregates are also observed in glia and muscle cells, which are equally affected in ALS and FTLD; yet, it is unclear whether glia- or muscle-specific dysfunction of TDP-43 contributes to pathogenesis. Here, we show that similar to its human homologue, Drosophila TDP-43, Tar DNA-binding protein homologue (TBPH), is expressed in glia and muscle cells. Muscle-specific knockdown of TBPH causes age-related motor abnormalities, whereas muscle-specific gain of function leads to sarcoplasmic aggregates and nuclear TBPH depletion, which is accompanied by behavioural deficits and premature lethality. TBPH dysfunction in glia cells causes age-related motor deficits and premature lethality. In addition, both loss and gain of Drosophila TDP-43 alter mRNA expression levels of the glutamate transporters Excitatory amino acid transporter 1 (EAAT1) and EAAT2. Taken together, our results demonstrate that both loss and gain of TDP-43 function in muscle and glial cells can lead to cytological and behavioural phenotypes in Drosophila that also characterize ALS and FTLD and identify the glutamate transporters EAAT1/2 as potential direct targets of TDP-43 function. These findings suggest that together with neuronal pathology, glial- and muscle-specific TDP-43 dysfunction may directly contribute to the aetiology and progression of TDP-43-related ALS and FTLD. PMID:23727833

  4. Drosophila TDP-43 dysfunction in glia and muscle cells cause cytological and behavioural phenotypes that characterize ALS and FTLD.

    PubMed

    Diaper, Danielle C; Adachi, Yoshitsugu; Lazarou, Luke; Greenstein, Max; Simoes, Fabio A; Di Domenico, Angelique; Solomon, Daniel A; Lowe, Simon; Alsubaie, Rawan; Cheng, Daryl; Buckley, Stephen; Humphrey, Dickon M; Shaw, Christopher E; Hirth, Frank

    2013-10-01

    Amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) are neurodegenerative disorders that are characterized by cytoplasmic aggregates and nuclear clearance of TAR DNA-binding protein 43 (TDP-43). Studies in Drosophila, zebrafish and mouse demonstrate that the neuronal dysfunction of TDP-43 is causally related to disease formation. However, TDP-43 aggregates are also observed in glia and muscle cells, which are equally affected in ALS and FTLD; yet, it is unclear whether glia- or muscle-specific dysfunction of TDP-43 contributes to pathogenesis. Here, we show that similar to its human homologue, Drosophila TDP-43, Tar DNA-binding protein homologue (TBPH), is expressed in glia and muscle cells. Muscle-specific knockdown of TBPH causes age-related motor abnormalities, whereas muscle-specific gain of function leads to sarcoplasmic aggregates and nuclear TBPH depletion, which is accompanied by behavioural deficits and premature lethality. TBPH dysfunction in glia cells causes age-related motor deficits and premature lethality. In addition, both loss and gain of Drosophila TDP-43 alter mRNA expression levels of the glutamate transporters Excitatory amino acid transporter 1 (EAAT1) and EAAT2. Taken together, our results demonstrate that both loss and gain of TDP-43 function in muscle and glial cells can lead to cytological and behavioural phenotypes in Drosophila that also characterize ALS and FTLD and identify the glutamate transporters EAAT1/2 as potential direct targets of TDP-43 function. These findings suggest that together with neuronal pathology, glial- and muscle-specific TDP-43 dysfunction may directly contribute to the aetiology and progression of TDP-43-related ALS and FTLD. PMID:23727833

  5. HyperModules: identifying clinically and phenotypically significant network modules with disease mutations for biomarker discovery

    PubMed Central

    Leung, Alvin; Bader, Gary D.; Reimand, Jüri

    2014-01-01

    Summary: Correlating disease mutations with clinical and phenotypic information such as drug response or patient survival is an important goal of personalized cancer genomics and a first step in biomarker discovery. HyperModules is a network search algorithm that finds frequently mutated gene modules with significant clinical or phenotypic signatures from biomolecular interaction networks. Availability and implementation: HyperModules is available in Cytoscape App Store and as a command line tool at www.baderlab.org/Sofware/HyperModules. Contact: Juri.Reimand@utoronto.ca or Gary.Bader@utoronto.ca Supplementary information: Supplementary data are available at Bioinformatics online PMID:24713437

  6. Aggregation propensities of superoxide dismutase G93 hotspot mutants mirror ALS clinical phenotypes

    PubMed Central

    Pratt, Ashley J.; Shin, David S.; Merz, Gregory E.; Rambo, Robert P.; Lancaster, W. Andrew; Dyer, Kevin N.; Borbat, Peter P.; Poole, Farris L.; Adams, Michael W. W.; Freed, Jack H.; Crane, Brian R.; Tainer, John A.; Getzoff, Elizabeth D.

    2014-01-01

    Protein framework alterations in heritable Cu, Zn superoxide dismutase (SOD) mutants cause misassembly and aggregation in cells affected by the motor neuron disease ALS. However, the mechanistic relationship between superoxide dismutase 1 (SOD1) mutations and human disease is controversial, with many hypotheses postulated for the propensity of specific SOD mutants to cause ALS. Here, we experimentally identify distinguishing attributes of ALS mutant SOD proteins that correlate with clinical severity by applying solution biophysical techniques to six ALS mutants at human SOD hotspot glycine 93. A small-angle X-ray scattering (SAXS) assay and other structural methods assessed aggregation propensity by defining the size and shape of fibrillar SOD aggregates after mild biochemical perturbations. Inductively coupled plasma MS quantified metal ion binding stoichiometry, and pulsed dipolar ESR spectroscopy evaluated the Cu2+ binding site and defined cross-dimer copper–copper distance distributions. Importantly, we find that copper deficiency in these mutants promotes aggregation in a manner strikingly consistent with their clinical severities. G93 mutants seem to properly incorporate metal ions under physiological conditions when assisted by the copper chaperone but release copper under destabilizing conditions more readily than the WT enzyme. Altered intradimer flexibility in ALS mutants may cause differential metal retention and promote distinct aggregation trends observed for mutant proteins in vitro and in ALS patients. Combined biophysical and structural results test and link copper retention to the framework destabilization hypothesis as a unifying general mechanism for both SOD aggregation and ALS disease progression, with implications for disease severity and therapeutic intervention strategies. PMID:25316790

  7. Rapid-Throughput Skeletal Phenotyping of 100 Knockout Mice Identifies 9 New Genes That Determine Bone Strength

    PubMed Central

    Gogakos, Apostolos; White, Jacqueline K.; Evans, Holly; Jacques, Richard M.; van der Spek, Anne H.; Ramirez-Solis, Ramiro; Ryder, Edward; Sunter, David; Boyde, Alan; Campbell, Michael J.

    2012-01-01

    Osteoporosis is a common polygenic disease and global healthcare priority but its genetic basis remains largely unknown. We report a high-throughput multi-parameter phenotype screen to identify functionally significant skeletal phenotypes in mice generated by the Wellcome Trust Sanger Institute Mouse Genetics Project and discover novel genes that may be involved in the pathogenesis of osteoporosis. The integrated use of primary phenotype data with quantitative x-ray microradiography, micro-computed tomography, statistical approaches and biomechanical testing in 100 unselected knockout mouse strains identified nine new genetic determinants of bone mass and strength. These nine new genes include five whose deletion results in low bone mass and four whose deletion results in high bone mass. None of the nine genes have been implicated previously in skeletal disorders and detailed analysis of the biomechanical consequences of their deletion revealed a novel functional classification of bone structure and strength. The organ-specific and disease-focused strategy described in this study can be applied to any biological system or tractable polygenic disease, thus providing a general basis to define gene function in a system-specific manner. Application of the approach to diseases affecting other physiological systems will help to realize the full potential of the International Mouse Phenotyping Consortium. PMID:22876197

  8. Genome-wide association analysis identifies 11 risk variants associated with the asthma with hay fever phenotype

    PubMed Central

    Ferreira, Manuel A. R.; Matheson, Melanie C.; Tang, Clara S.; Granell, Raquel; Ang, Wei; Hui, Jennie; Kiefer, Amy K.; Duffy, David L.; Baltic, Svetlana; Danoy, Patrick; Bui, Minh; Price, Loren; Sly, Peter D.; Eriksson, Nicholas; Madden, Pamela A.; Abramson, Michael J.; Holt, Patrick G.; Heath, Andrew C.; Hunter, Michael; Musk, Bill; Robertson, Colin F.; Le Souëf, Peter; Montgomery, Grant W.; Henderson, A. John; Tung, Joyce Y.; Dharmage, Shyamali C.; Brown, Matthew A.; James, Alan; Thompson, Philip J.; Pennell, Craig; Martin, Nicholas G.; Evans, David M.; Hinds, David A.; Hopper, John L.

    2014-01-01

    Background To date, no genome-wide association study (GWAS) has considered the combined phenotype of asthma with hay fever. Previous analyses of family data from the Tasmanian Longitudinal Health Study provide evidence that this phenotype has a stronger genetic cause than asthma without hay fever. Objective We sought to perform a GWAS of asthma with hay fever to identify variants associated with having both diseases. Methods We performed a meta-analysis of GWASs comparing persons with both physician-diagnosed asthma and hay fever (n = 6,685) with persons with neither disease (n = 14,091). Results At genome-wide significance, we identified 11 independent variants associated with the risk of having asthma with hay fever, including 2 associations reaching this level of significance with allergic disease for the first time: ZBTB10 (rs7009110; odds ratio [OR], 1.14; P = 4 × 10−9) and CLEC16A (rs62026376; OR, 1.17; P = 1 × 10−8). The rs62026376:C allele associated with increased asthma with hay fever risk has been found to be associated also with decreased expression of the nearby DEXI gene in monocytes. The 11 variants were associated with the risk of asthma and hay fever separately, but the estimated associations with the individual phenotypes were weaker than with the combined asthma with hay fever phenotype. A variant near LRRC32 was a stronger risk factor for hay fever than for asthma, whereas the reverse was observed for variants in/near GSDMA and TSLP. Single nucleotide polymorphisms with suggestive evidence for association with asthma with hay fever risk included rs41295115 near IL2RA (OR, 1.28; P = 5 × 10−7) and rs76043829 in TNS1 (OR, 1.23; P = 2 × 10−6). Conclusion By focusing on the combined phenotype of asthma with hay fever, variants associated with the risk of allergic disease can be identified with greater efficiency. PMID:24388013

  9. Use of Illumina sequencing to identify transposon insertions underlying mutant phenotypes in high-copy Mutator lines of maize.

    PubMed

    Williams-Carrier, Rosalind; Stiffler, Nicholas; Belcher, Susan; Kroeger, Tiffany; Stern, David B; Monde, Rita-Ann; Coalter, Robert; Barkan, Alice

    2010-07-01

    High-copy transposons have been effectively exploited as mutagens in a variety of organisms. However, their utility for phenotype-driven forward genetics has been hampered by the difficulty of identifying the specific insertions responsible for phenotypes of interest. We describe a new method that can substantially increase the throughput of linking a disrupted gene to a known phenotype in high-copy Mutator (Mu) transposon lines in maize. The approach uses the Illumina platform to obtain sequences flanking Mu elements in pooled, bar-coded DNA samples. Insertion sites are compared among individuals of suitable genotype to identify those that are linked to the mutation of interest. DNA is prepared for sequencing by mechanical shearing, adapter ligation, and selection of DNA fragments harboring Mu flanking sequences by hybridization to a biotinylated oligonucleotide corresponding to the Mu terminal inverted repeat. This method yields dense clusters of sequence reads that tile approximately 400 bp flanking each side of each heritable insertion. The utility of the approach is demonstrated by identifying the causal insertions in four genes whose disruption blocks chloroplast biogenesis at various steps: thylakoid protein targeting (cpSecE), chloroplast gene expression (polynucleotide phosphorylase and PTAC12), and prosthetic group attachment (HCF208/CCB2). This method adds to the tools available for phenotype-driven Mu tagging in maize, and could be adapted for use with other high-copy transposons. A by-product of the approach is the identification of numerous heritable insertions that are unrelated to the targeted phenotype, which can contribute to community insertion resources. PMID:20409008

  10. 3D phenotyping and quantitative trait locus mapping identify core regions of the rice genome controlling root architecture

    PubMed Central

    Topp, Christopher N.; Iyer-Pascuzzi, Anjali S.; Anderson, Jill T.; Lee, Cheng-Ruei; Zurek, Paul R.; Symonova, Olga; Zheng, Ying; Bucksch, Alexander; Mileyko, Yuriy; Galkovskyi, Taras; Moore, Brad T.; Harer, John; Edelsbrunner, Herbert; Mitchell-Olds, Thomas; Weitz, Joshua S.; Benfey, Philip N.

    2013-01-01

    Identification of genes that control root system architecture in crop plants requires innovations that enable high-throughput and accurate measurements of root system architecture through time. We demonstrate the ability of a semiautomated 3D in vivo imaging and digital phenotyping pipeline to interrogate the quantitative genetic basis of root system growth in a rice biparental mapping population, Bala × Azucena. We phenotyped >1,400 3D root models and >57,000 2D images for a suite of 25 traits that quantified the distribution, shape, extent of exploration, and the intrinsic size of root networks at days 12, 14, and 16 of growth in a gellan gum medium. From these data we identified 89 quantitative trait loci, some of which correspond to those found previously in soil-grown plants, and provide evidence for genetic tradeoffs in root growth allocations, such as between the extent and thoroughness of exploration. We also developed a multivariate method for generating and mapping central root architecture phenotypes and used it to identify five major quantitative trait loci (r2 = 24–37%), two of which were not identified by our univariate analysis. Our imaging and analytical platform provides a means to identify genes with high potential for improving root traits and agronomic qualities of crops. PMID:23580618

  11. Sqstm1 knock-down causes a locomotor phenotype ameliorated by rapamycin in a zebrafish model of ALS/FTLD.

    PubMed

    Lattante, Serena; de Calbiac, Hortense; Le Ber, Isabelle; Brice, Alexis; Ciura, Sorana; Kabashi, Edor

    2015-03-15

    Mutations in SQSTM1, encoding for the protein SQSTM1/p62, have been recently reported in 1-3.5% of patients with amyotrophic lateral sclerosis and frontotemporal lobar degeneration (ALS/FTLD). Inclusions positive for SQSTM1/p62 have been detected in patients with neurodegenerative disorders, including ALS/FTLD. In order to investigate the pathogenic mechanisms induced by SQSTM1 mutations in ALS/FTLD, we developed a zebrafish model. Knock-down of the sqstm1 zebrafish ortholog, as well as impairment of its splicing, led to a specific phenotype, consisting of behavioral and axonal anomalies. Here, we report swimming deficits associated with shorter motor neuronal axons that could be rescued by the overexpression of wild-type human SQSTM1. Interestingly, no rescue of the loss-of-function phenotype was observed when overexpressing human SQSTM1 constructs carrying ALS/FTLD-related mutations. Consistent with its role in autophagy regulation, we found increased mTOR levels upon knock-down of sqstm1. Furthermore, treatment of zebrafish embryos with rapamycin, a known inhibitor of the mTOR pathway, yielded an amelioration of the locomotor phenotype in the sqstm1 knock-down model. Our results suggest that loss-of-function of SQSTM1 causes phenotypic features characterized by locomotor deficits and motor neuron axonal defects that are associated with a misregulation of autophagic processes. PMID:25410659

  12. Phenotypes of Recessive Pediatric Cataract in a Cohort of Children with Identified Homozygous Gene Mutations (An American Ophthalmological Society Thesis)

    PubMed Central

    Khan, Arif O.; Aldahmesh, Mohammed A.; Alkuraya, Fowzan S.

    2015-01-01

    Purpose: To assess for phenotype-genotype correlations in families with recessive pediatric cataract and identified gene mutations. Methods: Retrospective review (2004 through 2013) of 26 Saudi Arabian apparently nonsyndromic pediatric cataract families referred to one of the authors (A.O.K.) and for which recessive gene mutations were identified. Results: Fifteen different homozygous recessive gene mutations were identified in the 26 consanguineous families; two genes and five families are novel to this study. Ten families had a founder CRYBB1 deletion (all with bilateral central pulverulent cataract), two had the same missense mutation in CRYAB (both with bilateral juvenile cataract with marked variable expressivity), and two had different mutations in FYCO1 (both with bilateral posterior capsular abnormality). The remaining 12 families each had mutations in 12 different genes (CRYAA, CRYBA1, AKR1E2, AGK, BFSP2, CYP27A1, CYP51A1, EPHA2, GCNT2, LONP1, RNLS, WDR87) with unique phenotypes noted for CYP27A1 (bilateral juvenile fleck with anterior and/or posterior capsular cataract and later cerebrotendinous xanthomatosis), EPHA2 (bilateral anterior persistent fetal vasculature), and BFSP2 (bilateral flecklike with cloudy cortex). Potential carrier signs were documented for several families. Conclusions: In this recessive pediatric cataract case series most identified genes are noncrystallin. Recessive pediatric cataract phenotypes are generally nonspecific, but some notable phenotypes are distinct and associated with specific gene mutations. Marked variable expressivity can occur from a recessive missense CRYAB mutation. Genetic analysis of apparently isolated pediatric cataract can sometimes uncover mutations in a syndromic gene. Some gene mutations seem to be associated with apparent heterozygous carrier signs. PMID:26622071

  13. Integrating EMR-Linked and In Vivo Functional Genetic Data to Identify New Genotype-Phenotype Associations

    PubMed Central

    Mosley, Jonathan D.; Van Driest, Sara L.; Weeke, Peter E.; Delaney, Jessica T.; Wells, Quinn S.; Bastarache, Lisa; Roden, Dan M.; Denny, Josh C.

    2014-01-01

    The coupling of electronic medical records (EMR) with genetic data has created the potential for implementing reverse genetic approaches in humans, whereby the function of a gene is inferred from the shared pattern of morbidity among homozygotes of a genetic variant. We explored the feasibility of this approach to identify phenotypes associated with low frequency variants using Vanderbilt's EMR-based BioVU resource. We analyzed 1,658 low frequency non-synonymous SNPs (nsSNPs) with a minor allele frequency (MAF)<10% collected on 8,546 subjects. For each nsSNP, we identified diagnoses shared by at least 2 minor allele homozygotes and with an association p<0.05. The diagnoses were reviewed by a clinician to ascertain whether they may share a common mechanistic basis. While a number of biologically compelling clinical patterns of association were observed, the frequency of these associations was identical to that observed using genotype-permuted data sets, indicating that the associations were likely due to chance. To refine our analysis associations, we then restricted the analysis to 711 nsSNPs in genes with phenotypes in the On-line Mendelian Inheritance in Man (OMIM) or knock-out mouse phenotype databases. An initial comparison of the EMR diagnoses to the known in vivo functions of the gene identified 25 candidate nsSNPs, 19 of which had significant genotype-phenotype associations when tested using matched controls. Twleve of the 19 nsSNPs associations were confirmed by a detailed record review. Four of 12 nsSNP-phenotype associations were successfully replicated in an independent data set: thrombosis (F5,rs6031), seizures/convulsions (GPR98,rs13157270), macular degeneration (CNGB3,rs3735972), and GI bleeding (HGFAC,rs16844401). These analyses demonstrate the feasibility and challenges of using reverse genetics approaches to identify novel gene-phenotype associations in human subjects using low frequency variants. As increasing amounts of rare variant data are

  14. Leveraging Comparative Genomics to Identify and Functionally Characterize Genes Associated with Sperm Phenotypes in Python bivittatus (Burmese Python)

    PubMed Central

    Rutllant, Josep

    2016-01-01

    Comparative genomics approaches provide a means of leveraging functional genomics information from a highly annotated model organism's genome (such as the mouse genome) in order to make physiological inferences about the role of genes and proteins in a less characterized organism's genome (such as the Burmese python). We employed a comparative genomics approach to produce the functional annotation of Python bivittatus genes encoding proteins associated with sperm phenotypes. We identify 129 gene-phenotype relationships in the python which are implicated in 10 specific sperm phenotypes. Results obtained through our systematic analysis identified subsets of python genes exhibiting associations with gene ontology annotation terms. Functional annotation data was represented in a semantic scatter plot. Together, these newly annotated Python bivittatus genome resources provide a high resolution framework from which the biology relating to reptile spermatogenesis, fertility, and reproduction can be further investigated. Applications of our research include (1) production of genetic diagnostics for assessing fertility in domestic and wild reptiles; (2) enhanced assisted reproduction technology for endangered and captive reptiles; and (3) novel molecular targets for biotechnology-based approaches aimed at reducing fertility and reproduction of invasive reptiles. Additional enhancements to reptile genomic resources will further enhance their value. PMID:27200191

  15. Leveraging Comparative Genomics to Identify and Functionally Characterize Genes Associated with Sperm Phenotypes in Python bivittatus (Burmese Python).

    PubMed

    Irizarry, Kristopher J L; Rutllant, Josep

    2016-01-01

    Comparative genomics approaches provide a means of leveraging functional genomics information from a highly annotated model organism's genome (such as the mouse genome) in order to make physiological inferences about the role of genes and proteins in a less characterized organism's genome (such as the Burmese python). We employed a comparative genomics approach to produce the functional annotation of Python bivittatus genes encoding proteins associated with sperm phenotypes. We identify 129 gene-phenotype relationships in the python which are implicated in 10 specific sperm phenotypes. Results obtained through our systematic analysis identified subsets of python genes exhibiting associations with gene ontology annotation terms. Functional annotation data was represented in a semantic scatter plot. Together, these newly annotated Python bivittatus genome resources provide a high resolution framework from which the biology relating to reptile spermatogenesis, fertility, and reproduction can be further investigated. Applications of our research include (1) production of genetic diagnostics for assessing fertility in domestic and wild reptiles; (2) enhanced assisted reproduction technology for endangered and captive reptiles; and (3) novel molecular targets for biotechnology-based approaches aimed at reducing fertility and reproduction of invasive reptiles. Additional enhancements to reptile genomic resources will further enhance their value. PMID:27200191

  16. A candidate gene approach to identify modifiers of the palatal phenotype in 22q11.2 deletion syndrome patients

    PubMed Central

    Widdershoven, Josine C.C.; Bowser, Mark; Sheridan, Molly B.; McDonald-McGinn, Donna M.; Zackai, Elaine H.; Solot, Cynthia B.; Kirschner, Richard E.; Beemer, Frits A.; Morrow, Bernice E.; Devoto, Marcella; Emanuel, Beverly S.

    2014-01-01

    Objective Palatal anomalies are one of the identifying features of 22q11.2 deletion syndrome (22q11.2DS) affecting about one third of patients. To identify genetic variants that increase the risk of cleft or palatal anomalies in 22q11.2DS patients, we performed a candidate gene association study in 101 patients with 22q11.2DS genotyped with the Affymetrix genome-wide human SNP array 6.0. Methods Patients from Children's Hospital of Philadelphia, USA and Wilhelmina Children's Hospital Utrecht, The Netherlands were stratified based on palatal phenotype (overt cleft, submucosal cleft, bifid uvula). SNPs in 21 candidate genes for cleft palate were analyzed for genotype-phenotype association. In addition, TBX1 sequencing was carried out. Quality control and association analyses were conducted using the software package PLINK. Results Genotype and phenotype data of 101 unrelated patients (63 non-cleft subjects (62.4%), 38 cleft subjects (37.6%)) were analyzed. A Total of 39 SNPs on 10 genes demonstrated a p-value ≤0.05 prior to correction. The most significant SNPs were found on FGF10. However none of the SNPs remained significant after correcting for multiple testing. Conclusions Although these results are promising, analysis of additional samples will be required to confirm that variants in these regions influence risk for cleft palate or palatal anomalies in 22q11.2DS patients. PMID:23121717

  17. Use of Phylogenetic and Phenotypic Analyses To Identify Nonhemolytic Streptococci Isolated from Bacteremic Patients

    PubMed Central

    Hoshino, Tomonori; Fujiwara, Taku; Kilian, Mogens

    2005-01-01

    The aim of this study was to evaluate molecular and phenotypic methods for the identification of nonhemolytic streptococci. A collection of 148 strains consisting of 115 clinical isolates from cases of infective endocarditis, septicemia, and meningitis and 33 reference strains, including type strains of all relevant Streptococcus species, were examined. Identification was performed by phylogenetic analysis of nucleotide sequences of four housekeeping genes, ddl, gdh, rpoB, and sodA; by PCR analysis of the glucosyltransferase (gtf) gene; and by conventional phenotypic characterization and identification using two commercial kits, Rapid ID 32 STREP and STREPTOGRAM and the associated databases. A phylogenetic tree based on concatenated sequences of the four housekeeping genes allowed unequivocal differentiation of recognized species and was used as the reference. Analysis of single gene sequences revealed deviation clustering in eight strains (5.4%) due to homologous recombination with other species. This was particularly evident in S. sanguinis and in members of the anginosus group of streptococci. The rate of correct identification of the strains by both commercial identification kits was below 50% but varied significantly between species. The most significant problems were observed with S. mitis and S. oralis and 11 Streptococcus species described since 1991. Our data indicate that identification based on multilocus sequence analysis is optimal. As a more practical alternative we recommend identification based on sodA sequences with reference to a comprehensive set of sequences that is available for downloading from our server. An analysis of the species distribution of 107 nonhemolytic streptococci from bacteremic patients showed a predominance of S. oralis and S. anginosus with various underlying infections. PMID:16333101

  18. Phenotypic consequences of a mosaic marker chromosome identified by fluorescence in situ hybridization (FISH) as being derived from chromosome 16

    SciTech Connect

    Ray, J.H.; Zhou, X.; Pletcher, B.A.

    1994-09-01

    De novo marker chromosomes are detected in 1 in 2500 amniotic fluid samples and are associated with a 10-15% risk for phenotypic abnormality. FISH can be utilized as a research tool to identify the origins of marker chromosomes. The phenotypic consequences of a marker chromosome derived from the short arm of chromosome 16 are described. A 26-year-old woman underwent amniocentesis at 28 weeks gestation because of a prenatally diagnosed tetralogy of Fallot. Follow-up ultrasounds also showed ventriculomegaly and cleft lip and palate. 32 of 45 cells had the karyotype 47,XY,+mar; the remaining cells were 46,XY. The de novo marker chromosome was C-band positive and non-satellited and failed to stain with distamycin A/DAPI. At birth the ultrasound findings were confirmed and dysmorphic features and cryptorchidism were noted. Although a newborn blood sample contained only normal cells, mosaicism was confirmed in 2 skin biopsies. FISH using whole-chromosome painting and alpha-satellite DNA probes showed that the marker chromosome had originated from chromosome 16. As proximal 16q is distamycin A/DAPI positive, the marker is apparently derived from proximal 16p. At 15 months of age, this child is hypotonic, globally delayed and is gavage-fed. His physical examination is significant for microbrachycephaly, a round face, sparse scalp hair, ocular hypertelorism, exotropia, a flat, wide nasal bridge and tip, mild micrognathia, and tapered fingers with lymphedema of hands and feet. Inguinal hernias have been repaired. His features are consistent with those described for patients trisomic for most or all of the short arm of chromosome 16. Marker chromosomes derived from the short arm of chromosome 16 appear to have phenotypic consequences. As the origin of more marker chromosomes are identified using FISH, their karyotype/phenotype correlations will become more apparent, which will permit more accurate genetic counseling.

  19. Whole Exome Sequencing Identifies CRB1 Defect in an Unusual Maculopathy Phenotype

    PubMed Central

    Tsang, Stephen H.; Burke, Tomas; Oll, Maris; Yzer, Suzanne; Lee, Winston; Xie, Yajing (Angela); Allikmets, Rando

    2014-01-01

    Objective To report a new phenotype caused by mutations in the CRB1 gene in a family with 2 affected siblings. Design Molecular genetics and observational case studies. Participants Two affected siblings and 3 unaffected family members. Methods Each subject received a complete ophthalmic examination together with color fundus photography, fundus autofluorescence (FAF), and spectral domain optical coherence tomography (SD-OCT). Microperimetry 1 (MP-1) mapping and electroretinogram (ERG) analysis were performed on the proband. Screening for disease-causing mutations was performed by whole exome sequencing in 3 family members followed by segregation analyses in the entire family. Main Outcome Measures Appearance of the macula as examined by clinical examination, fundus photography, FAF imaging, SD-OCT, and visual function by MP-1 and ERG. Results The proband and her affected brother exhibited unusual, previously unreported, findings of a macular dystrophy with relative sparing of the retinal periphery beyond the vascular arcades. The FAF imaging showed severely affected areas of hypoautofluorescence that extended nasally beyond the optic disc in both eyes. A central macular patch of retinal pigment epithelium (RPE) sparing was evident in both eyes on FAF, whereas photoreceptor sparing was documented in the right eye only using SD-OCT. The affected brother presented with irregular patterns of autofluorescence in both eyes characterized by concentric rings of alternating hyper- and hypoautofluorescence, and foveal sparing of photoreceptors and RPE, as seen on SD-OCT, bilaterally. After negative results in screening for mutations in candidate genes including ABCA4 and PRPH2, DNA from 3 members of the family, including both affected siblings and their mother, was screened by whole exome sequencing resulting in identification of 2 CRB1 missense mutations, c.C3991T:p.R1331C and c.C4142T:p.P1381L, which segregated with the disease in the family. Of the 2, the p.R1331C CRB1

  20. Identifying Heritable Brain Phenotypes in an Extended Pedigree of Vervet Monkeys

    PubMed Central

    Melega, William P.; Service, Susan K.; Lee, Chris; Chen, Kelly; Tu, Zhuowen; Jorgensen, Matthew J.; Fairbanks, Lynn A.; Cantor, Rita M.; Freimer, Nelson B.; Woods, Roger P.

    2009-01-01

    The area and volume of brain structural features, as assessed by high-resolution 3D magnetic resonance imaging (MRI), are among the most heritable measures relating to the human central nervous system. We have conducted MRI scanning of all available monkeys over 2 years of age (n=357) from the extended multigenerational pedigree of the Vervet Research Colony (VRC). Using a combination of automated and manual segmentation we have quantified several correlated but distinct brain structural phenotypes. The estimated heritabilities (h2) for these measures in the VRC are higher than those reported previously for such features in humans or in other non human primates (NHP): total brain volume (h2=0.99, standard error (se)=0.06), cerebral volume (h2=0.98, se=0.06), cerebellar volume (h2=0.86, se=0.09), hippocampal volume (h2=0.95, se=0.07) and corpus callosum cross-sectional areas (h2=0.87, se=0.07). These findings indicate that, in the controlled environment and with the inbreeding structure of the VRC, additive genetic factors account for almost all of the observed variance in brain structure, and suggest the potential of the VRC for genetic mapping of quantitative trait loci (QTL) underlying such variance. PMID:19261882

  1. New Compound Sets Identified from High Throughput Phenotypic Screening Against Three Kinetoplastid Parasites: An Open Resource

    PubMed Central

    Peña, Imanol; Pilar Manzano, M.; Cantizani, Juan; Kessler, Albane; Alonso-Padilla, Julio; Bardera, Ana I.; Alvarez, Emilio; Colmenarejo, Gonzalo; Cotillo, Ignacio; Roquero, Irene; de Dios-Anton, Francisco; Barroso, Vanessa; Rodriguez, Ana; Gray, David W.; Navarro, Miguel; Kumar, Vinod; Sherstnev, Alexander; Drewry, David H.; Brown, James R.; Fiandor, Jose M.; Julio Martin, J.

    2015-01-01

    Using whole-cell phenotypic assays, the GlaxoSmithKline high-throughput screening (HTS) diversity set of 1.8 million compounds was screened against the three kinetoplastids most relevant to human disease, i.e. Leishmania donovani, Trypanosoma cruzi and Trypanosoma brucei. Secondary confirmatory and orthogonal intracellular anti-parasiticidal assays were conducted, and the potential for non-specific cytotoxicity determined. Hit compounds were chemically clustered and triaged for desirable physicochemical properties. The hypothetical biological target space covered by these diversity sets was investigated through bioinformatics methodologies. Consequently, three anti-kinetoplastid chemical boxes of ~200 compounds each were assembled. Functional analyses of these compounds suggest a wide array of potential modes of action against kinetoplastid kinases, proteases and cytochromes as well as potential host–pathogen targets. This is the first published parallel high throughput screening of a pharma compound collection against kinetoplastids. The compound sets are provided as an open resource for future lead discovery programs, and to address important research questions. PMID:25740547

  2. What makes the lac-pathway switch: identifying the fluctuations that trigger phenotype switching in gene regulatory systems.

    PubMed

    Bhogale, Prasanna M; Sorg, Robin A; Veening, Jan-Willem; Berg, Johannes

    2014-10-01

    Multistable gene regulatory systems sustain different levels of gene expression under identical external conditions. Such multistability is used to encode phenotypic states in processes including nutrient uptake and persistence in bacteria, fate selection in viral infection, cell-cycle control and development. Stochastic switching between different phenotypes can occur as the result of random fluctuations in molecular copy numbers of mRNA and proteins arising in transcription, translation, transport and binding. However, which component of a pathway triggers such a transition is generally not known. By linking single-cell experiments on the lactose-uptake pathway in E. coli to molecular simulations, we devise a general method to pinpoint the particular fluctuation driving phenotype switching and apply this method to the transition between the uninduced and induced states of the lac-genes. We find that the transition to the induced state is not caused only by the single event of lac-repressor unbinding, but depends crucially on the time period over which the repressor remains unbound from the lac-operon. We confirm this notion in strains with a high expression level of the lac-repressor (leading to shorter periods over which the lac-operon remains unbound), which show a reduced switching rate. Our techniques apply to multistable gene regulatory systems in general and allow to identify the molecular mechanisms behind stochastic transitions in gene regulatory circuits. PMID:25245949

  3. MCentridFS: a tool for identifying module biomarkers for multi-phenotypes from high-throughput data.

    PubMed

    Wen, Zhenshu; Zhang, Wanwei; Zeng, Tao; Chen, Luonan

    2014-11-01

    Systematically identifying biomarkers, in particular, network biomarkers, from high-throughput data is an important and challenging task, and many methods for two-class comparison have been developed to exploit information of high-throughput data. However, as the high-throughput data with multi-phenotypes are available, there is a great need to develop effective multi-classification models. In this study, we proposed a novel approach, called MCentridFS (Multi-class Centroid Feature Selection), to systematically identify responsive modules or network biomarkers for classifying multi-phenotypes from high-throughput data. MCentridFS formulated the multi-classification model by network modules as a binary integer linear programming problem, which can be solved efficiently and effectively in an accurate manner. The approach is evaluated with respect to two diseases, i.e., multi-stages HCV-induced dysplasia and hepatocellular carcinoma and multi-tissues breast cancer, both of which demonstrated the high classification rate and the cross-validation rate of the approach. The computational results of the five-fold cross-validation of the two data show that MCentridFS outperforms the state-of-the-art multi-classification methods. We further verified the effectiveness of MCentridFS to characterize the multi-phenotype processes using module biomarkers by two independent datasets. In addition, functional enrichment analysis revealed that the identified network modules are strongly related to the corresponding biological processes and pathways. All these results suggest that it can serve as a useful tool for module biomarker detection in multiple biological processes or multi-classification problems by exploring both big biological data and network information. The Matlab code for MCentridFS is freely available from http://www.sysbio.ac.cn/cb/chenlab/images/MCentridFS.rar. PMID:25099602

  4. A Genome-wide Association Analysis of a Broad Psychosis Phenotype Identifies Three Loci for Further Investigation

    PubMed Central

    2014-01-01

    Background Genome-wide association studies (GWAS) have identified several loci associated with schizophrenia and/or bipolar disorder. We performed a GWAS of psychosis as a broad syndrome rather than within specific diagnostic categories. Methods 1239 cases with schizophrenia, schizoaffective disorder, or psychotic bipolar disorder; 857 of their unaffected relatives, and 2739 healthy controls were genotyped with the Affymetrix 6.0 single nucleotide polymorphism (SNP) array. Analyses of 695,193 SNPs were conducted using UNPHASED, which combines information across families and unrelated individuals. We attempted to replicate signals found in 23 genomic regions using existing data on nonoverlapping samples from the Psychiatric GWAS Consortium and Schizophrenia-GENE-plus cohorts (10,352 schizophrenia patients and 24,474 controls). Results No individual SNP showed compelling evidence for association with psychosis in our data. However, we observed a trend for association with same risk alleles at loci previously associated with schizophrenia (one-sided p = .003). A polygenic score analysis found that the Psychiatric GWAS Consortium’s panel of SNPs associated with schizophrenia significantly predicted disease status in our sample (p = 5 × 10–14) and explained approximately 2% of the phenotypic variance. Conclusions Although narrowly defined phenotypes have their advantages, we believe new loci may also be discovered through meta-analysis across broad phenotypes. The novel statistical methodology we introduced to model effect size heterogeneity between studies should help future GWAS that combine association evidence from related phenotypes. Applying these approaches, we highlight three loci that warrant further investigation. We found that SNPs conveying risk for schizophrenia are also predictive of disease status in our data. PMID:23871474

  5. An Efficient Stepwise Statistical Test to Identify Multiple Linked Human Genetic Variants Associated with Specific Phenotypic Traits

    PubMed Central

    Huh, Iksoo; Kwon, Min-Seok; Park, Taesung

    2015-01-01

    Recent advances in genotyping methodologies have allowed genome-wide association studies (GWAS) to accurately identify genetic variants that associate with common or pathological complex traits. Although most GWAS have focused on associations with single genetic variants, joint identification of multiple genetic variants, and how they interact, is essential for understanding the genetic architecture of complex phenotypic traits. Here, we propose an efficient stepwise method based on the Cochran-Mantel-Haenszel test (for stratified categorical data) to identify causal joint multiple genetic variants in GWAS. This method combines the CMH statistic with a stepwise procedure to detect multiple genetic variants associated with specific categorical traits, using a series of associated I × J contingency tables and a null hypothesis of no phenotype association. Through a new stratification scheme based on the sum of minor allele count criteria, we make the method more feasible for GWAS data having sample sizes of several thousands. We also examine the properties of the proposed stepwise method via simulation studies, and show that the stepwise CMH test performs better than other existing methods (e.g., logistic regression and detection of associations by Markov blanket) for identifying multiple genetic variants. Finally, we apply the proposed approach to two genomic sequencing datasets to detect linked genetic variants associated with bipolar disorder and obesity, respectively. PMID:26406920

  6. Comparison of Methods for Identifying Phenotype Subgroups Using Categorical Features Data With Application to Autism Spectrum Disorder

    PubMed Central

    Shotwell, Matthew S; Charles, Jane M; Nicholas, Joyce S

    2011-01-01

    We evaluate the performance of the Dirichlet process mixture (DPM) and the latent class model (LCM) in identifying autism phenotype subgroups based on categorical autism spectrum disorder (ASD) diagnostic features from the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition Text Revision. A simulation study is designed to mimic the diagnostic features in the ASD dataset in order to evaluate the LCM and DPM methods in this context. Likelihood based information criteria and DPM partitioning are used to identify the best fitting models. The Rand statistic is used to compare the performance of the methods in recovering simulated phenotype subgroups. Our results indicate excellent recovery of the simulated subgroup structure for both methods. The LCM performs slightly better than DPM when the correct number of latent subgroups is selected a priori. The DPM method utilizes a maximum a posteriori (MAP) criterion to estimate the number of classes, and yielded results in fair agreement with the LCM method. Comparison of model fit indices in identifying the best fitting LCM showed that adjusted Bayesian information criteria (ABIC) picks the correct number of classes over 90% of the time. Thus, when diagnostic features are categorical and there is some prior information regarding the number of latent classes, LCM in conjunction with ABIC is preferred. PMID:21927523

  7. Systems Biology in Animal Breeding: Identifying relationships among markers, genes, and phenotypes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Breeding and Genetics Symposium titled “Systems Biology in Animal Breeding: Identifying relationships among markers, genes, and phenotypes” was held at the Joint Annual Meeting of the American Dairy Science Association and the American Society of Animal Science in Phoenix, AZ, July 15 to 19, 201...

  8. Gravimetric phenotyping of whole plant transpiration responses to atmospheric vapour pressure deficit identifies genotypic variation in water use efficiency.

    PubMed

    Ryan, Annette C; Dodd, Ian C; Rothwell, Shane A; Jones, Ros; Tardieu, Francois; Draye, Xavier; Davies, William J

    2016-10-01

    There is increasing interest in rapidly identifying genotypes with improved water use efficiency, exemplified by the development of whole plant phenotyping platforms that automatically measure plant growth and water use. Transpirational responses to atmospheric vapour pressure deficit (VPD) and whole plant water use efficiency (WUE, defined as the accumulation of above ground biomass per unit of water used) were measured in 100 maize (Zea mays L.) genotypes. Using a glasshouse based phenotyping platform with naturally varying VPD (1.5-3.8kPa), a 2-fold variation in WUE was identified in well-watered plants. Regression analysis of transpiration versus VPD under these conditions, and subsequent whole plant gas exchange at imposed VPDs (0.8-3.4kPa) showed identical responses in specific genotypes. Genotype response of transpiration versus VPD fell into two categories: 1) a linear increase in transpiration rate with VPD with low (high WUE) or high (low WUE) transpiration rate at all VPDs, 2) a non-linear response with a pronounced change point at low VPD (high WUE) or high VPD (low WUE). In the latter group, high WUE genotypes required a significantly lower VPD before transpiration was restricted, and had a significantly lower rate of transpiration in response to VPD after this point, when compared to low WUE genotypes. Change point values were significantly positively correlated with stomatal sensitivity to VPD. A change point in stomatal response to VPD may explain why some genotypes show contradictory WUE rankings according to whether they are measured under glasshouse or field conditions. Furthermore, this novel use of a high throughput phenotyping platform successfully reproduced the gas exchange responses of individuals measured in whole plant chambers, accelerating the identification of plants with high WUE. PMID:27593468

  9. Phenotypic assays to identify agents that induce reactive gliosis: a counter-screen to prioritize compounds for preclinical animal studies.

    PubMed

    Beckerman, Samuel R; Jimenez, Joaquin E; Shi, Yan; Al-Ali, Hassan; Bixby, John L; Lemmon, Vance P

    2015-09-01

    Astrocyte phenotypes change in a process called reactive gliosis after traumatic central nervous system (CNS) injury. Astrogliosis is characterized by expansion of the glial fibrillary acidic protein (GFAP) cytoskeleton, adoption of stellate morphologies, and differential expression of some extracellular matrix molecules. The astrocytic response immediately after injury is beneficial, but in the chronic injury phase, reactive astrocytes produce inhibitory factors (i.e., chondroitin sulfate proteoglycans [CSPGs]) that limit the regrowth of injured axons. There are no drugs that promote axon regeneration or functional recovery after CNS trauma in humans. To develop novel therapeutics for the injured CNS, we screened various libraries in a phenotypic assay to identify compounds that promote neurite outgrowth. However, the effects these compounds have on astrocytes are unknown. Specifically, we were interested in whether compounds could alter astrocytes in a manner that mimics the glial reaction to injury. To test this hypothesis, we developed cell-based phenotypic bioassays to measure changes in (1) GFAP morphology/localization and (2) CSPG expression/immunoreactivity from primary astrocyte cultures. These assays were optimized for six-point dose-response experiments in 96-well plates. The GFAP morphology assay is suitable for counter-screening with a Z-factor of 0.44±0.03 (mean±standard error of the mean; N=3 biological replicates). The CSPG assay is reproducible and informative, but does not satisfy common metrics for a "screenable" assay. As proof of principle, we tested a small set of hit compounds from our neurite outgrowth bioassay and identified one that can enhance axon growth without exacerbating the deleterious characteristics of reactive gliosis. PMID:26230074

  10. Identifying Functional Gene Regulatory Network Phenotypes Underlying Single Cell Transcriptional Variability

    PubMed Central

    Park, James; Ogunnaike, Babatunde; Schwaber, James; Vadigepalli, Rajanikanth

    2014-01-01

    Summary/abstract Recent analysis of single-cell transcriptomic data has revealed a surprising organization of the transcriptional variability pervasive across individual neurons. In response to distinct combinations of synaptic input-type, a new organization of neuronal subtypes emerged based on transcriptional states that were aligned along a gradient of correlated gene expression. Individual neurons traverse across these transcriptional states in response to cellular inputs. However, the regulatory network interactions driving these changes remain unclear. Here we present a novel fuzzy logic-based approach to infer quantitative gene regulatory network models from highly variable single-cell gene expression data. Our approach involves developing an a priori regulatory network that is then trained against in vivo single-cell gene expression data in order to identify causal gene interactions and corresponding quantitative model parameters. Simulations of the inferred gene regulatory network response to experimentally observed stimuli levels mirrored the pattern and quantitative range of gene expression across individual neurons remarkably well. In addition, the network identification results revealed that distinct regulatory interactions, coupled with differences in the regulatory network stimuli, drive the variable gene expression patterns observed across the neuronal subtypes. We also identified a key difference between the neuronal subtype-specific networks with respect to negative feedback regulation, with the catecholaminergic subtype network lacking such interactions. Furthermore, by varying regulatory network stimuli over a wide range, we identified several cases in which divergent neuronal subtypes could be driven towards similar transcriptional states by distinct stimuli operating on subtype-specific regulatory networks. Based on these results, we conclude that heterogeneous single-cell gene expression profiles should be interpreted through a regulatory

  11. Integrating Diverse Types of Genomic Data to Identify Genes that Underlie Adverse Pregnancy Phenotypes

    PubMed Central

    Hirbo, Jibril; Eidem, Haley; Rokas, Antonis; Abbot, Patrick

    2015-01-01

    Progress in understanding complex genetic diseases has been bolstered by synthetic approaches that overlay diverse data types and analyses to identify functionally important genes. Pre-term birth (PTB), a major complication of pregnancy, is a leading cause of infant mortality worldwide. A major obstacle in addressing PTB is that the mechanisms controlling parturition and birth timing remain poorly understood. Integrative approaches that overlay datasets derived from comparative genomics with function-derived ones have potential to advance our understanding of the genetics of birth timing, and thus provide insights into the genes that may contribute to PTB. We intersected data from fast evolving coding and non-coding gene regions in the human and primate lineage with data from genes expressed in the placenta, from genes that show enriched expression only in the placenta, as well as from genes that are differentially expressed in four distinct PTB clinical subtypes. A large fraction of genes that are expressed in placenta, and differentially expressed in PTB clinical subtypes (23–34%) are fast evolving, and are associated with functions that include adhesion neurodevelopmental and immune processes. Functional categories of genes that express fast evolution in coding regions differ from those linked to fast evolution in non-coding regions. Finally, there is a surprising lack of overlap between fast evolving genes that are differentially expressed in four PTB clinical subtypes. Integrative approaches, especially those that incorporate evolutionary perspectives, can be successful in identifying potential genetic contributions to complex genetic diseases, such as PTB. PMID:26641094

  12. Phenotypic Screening Identifies Protein Synthesis Inhibitors as H-Ras-Nanocluster-Increasing Tumor Growth Inducers.

    PubMed

    Najumudeen, Arafath K; Posada, Itziar M D; Lectez, Benoit; Zhou, Yong; Landor, Sebastian K-J; Fallarero, Adyary; Vuorela, Pia; Hancock, John; Abankwa, Daniel

    2015-12-15

    Ras isoforms H-, N-, and K-ras are each mutated in specific cancer types at varying frequencies and have different activities in cell fate control. On the plasma membrane, Ras proteins are laterally segregated into isoform-specific nanoscale signaling hubs, termed nanoclusters. As Ras nanoclusters are required for Ras signaling, chemical modulators of nanoclusters represent ideal candidates for the specific modulation of Ras activity in cancer drug development. We therefore conducted a chemical screen with commercial and in-house natural product libraries using a cell-based H-ras-nanoclustering FRET assay. Next to established Ras inhibitors, such as a statin and farnesyl-transferase inhibitor, we surprisingly identified five protein synthesis inhibitors as positive regulators. Using commonly employed cycloheximide as a representative compound, we show that protein synthesis inhibition increased nanoclustering and effector recruitment specifically of active H-ras but not of K-ras. Consistent with these data, cycloheximide treatment activated both Erk and Akt kinases and specifically promoted H-rasG12V-induced, but not K-rasG12V-induced, PC12 cell differentiation. Intriguingly, cycloheximide increased the number of mammospheres, which are enriched for cancer stem cells. Depletion of H-ras in combination with cycloheximide significantly reduced mammosphere formation, suggesting an exquisite synthetic lethality. The potential of cycloheximide to promote tumor cell growth was also reflected in its ability to increase breast cancer cell tumors grown in ovo. These results illustrate the possibility of identifying Ras-isoform-specific modulators using nanocluster-directed screening. They also suggest an unexpected feedback from protein synthesis inhibition to Ras signaling, which might present a vulnerability in certain tumor cell types. PMID:26568031

  13. Adult Olfactory Bulb Interneuron Phenotypes Identified by Targeting Embryonic and Postnatal Neural Progenitors

    PubMed Central

    Figueres-Oñate, Maria; López-Mascaraque, Laura

    2016-01-01

    Neurons are generated during embryonic development and in adulthood, although adult neurogenesis is restricted to two main brain regions, the hippocampus and olfactory bulb. The subventricular zone (SVZ) of the lateral ventricles generates neural stem/progenitor cells that continually provide the olfactory bulb (OB) with new granule or periglomerular neurons, cells that arrive from the SVZ via the rostral migratory stream. The continued neurogenesis and the adequate integration of these newly generated interneurons is essential to maintain homeostasis in the olfactory bulb, where the differentiation of these cells into specific neural cell types is strongly influenced by temporal cues. Therefore, identifying the critical features that control the generation of adult OB interneurons at either pre- or post-natal stages is important to understand the dynamic contribution of neural stem cells. Here, we used in utero and neonatal SVZ electroporation along with a transposase-mediated stable integration plasmid, in order to track interneurons and glial lineages in the OB. These plasmids are valuable tools to study the development of OB interneurons from embryonic and post-natal SVZ progenitors. Accordingly, we examined the location and identity of the adult progeny of embryonic and post-natally transfected progenitors by examining neurochemical markers in the adult OB. These data reveal the different cell types in the olfactory bulb that are generated in function of age and different electroporation conditions. PMID:27242400

  14. Adult Olfactory Bulb Interneuron Phenotypes Identified by Targeting Embryonic and Postnatal Neural Progenitors.

    PubMed

    Figueres-Oñate, Maria; López-Mascaraque, Laura

    2016-01-01

    Neurons are generated during embryonic development and in adulthood, although adult neurogenesis is restricted to two main brain regions, the hippocampus and olfactory bulb. The subventricular zone (SVZ) of the lateral ventricles generates neural stem/progenitor cells that continually provide the olfactory bulb (OB) with new granule or periglomerular neurons, cells that arrive from the SVZ via the rostral migratory stream. The continued neurogenesis and the adequate integration of these newly generated interneurons is essential to maintain homeostasis in the olfactory bulb, where the differentiation of these cells into specific neural cell types is strongly influenced by temporal cues. Therefore, identifying the critical features that control the generation of adult OB interneurons at either pre- or post-natal stages is important to understand the dynamic contribution of neural stem cells. Here, we used in utero and neonatal SVZ electroporation along with a transposase-mediated stable integration plasmid, in order to track interneurons and glial lineages in the OB. These plasmids are valuable tools to study the development of OB interneurons from embryonic and post-natal SVZ progenitors. Accordingly, we examined the location and identity of the adult progeny of embryonic and post-natally transfected progenitors by examining neurochemical markers in the adult OB. These data reveal the different cell types in the olfactory bulb that are generated in function of age and different electroporation conditions. PMID:27242400

  15. Comparative interactomics analysis of different ALS-associated proteins identifies converging molecular pathways.

    PubMed

    Blokhuis, Anna M; Koppers, Max; Groen, Ewout J N; van den Heuvel, Dianne M A; Dini Modigliani, Stefano; Anink, Jasper J; Fumoto, Katsumi; van Diggelen, Femke; Snelting, Anne; Sodaar, Peter; Verheijen, Bert M; Demmers, Jeroen A A; Veldink, Jan H; Aronica, Eleonora; Bozzoni, Irene; den Hertog, Jeroen; van den Berg, Leonard H; Pasterkamp, R Jeroen

    2016-08-01

    Amyotrophic lateral sclerosis (ALS) is a devastating neurological disease with no effective treatment available. An increasing number of genetic causes of ALS are being identified, but how these genetic defects lead to motor neuron degeneration and to which extent they affect common cellular pathways remains incompletely understood. To address these questions, we performed an interactomic analysis to identify binding partners of wild-type (WT) and ALS-associated mutant versions of ATXN2, C9orf72, FUS, OPTN, TDP-43 and UBQLN2 in neuronal cells. This analysis identified several known but also many novel binding partners of these proteins. Interactomes of WT and mutant ALS proteins were very similar except for OPTN and UBQLN2, in which mutations caused loss or gain of protein interactions. Several of the identified interactomes showed a high degree of overlap: shared binding partners of ATXN2, FUS and TDP-43 had roles in RNA metabolism; OPTN- and UBQLN2-interacting proteins were related to protein degradation and protein transport, and C9orf72 interactors function in mitochondria. To confirm that this overlap is important for ALS pathogenesis, we studied fragile X mental retardation protein (FMRP), one of the common interactors of ATXN2, FUS and TDP-43, in more detail in in vitro and in vivo model systems for FUS ALS. FMRP localized to mutant FUS-containing aggregates in spinal motor neurons and bound endogenous FUS in a direct and RNA-sensitive manner. Furthermore, defects in synaptic FMRP mRNA target expression, neuromuscular junction integrity, and motor behavior caused by mutant FUS in zebrafish embryos, could be rescued by exogenous FMRP expression. Together, these results show that interactomics analysis can provide crucial insight into ALS disease mechanisms and they link FMRP to motor neuron dysfunction caused by FUS mutations. PMID:27164932

  16. Anti-MDA5 autoantibodies in juvenile dermatomyositis identify a distinct clinical phenotype: a prospective cohort study

    PubMed Central

    2014-01-01

    Introduction The aim of this study was to define the frequency and associated clinical phenotype of anti-MDA5 autoantibodies in a large UK based, predominantly Caucasian, cohort of patients with juvenile dermatomyositis (JDM). Methods Serum samples and clinical data were obtained from 285 patients with JDM recruited to the UK Juvenile Dermatomyositis Cohort and Biomarker Study. The presence of anti-MDA5 antibodies was determined by immunoprecipitation and confirmed by ELISA using recombinant MDA5 protein. Results were compared with matched clinical data, muscle biopsies (scored by an experienced paediatric neuropathologist) and chest imaging (reviewed by an experienced paediatric radiologist). Results Anti-MDA5 antibodies were identified in 7.4% of JDM patients and were associated with a distinct clinical phenotype including skin ulceration (P = 0.03) oral ulceration (P = 0.01), arthritis (P <0.01) and milder muscle disease both clinically (as determined by Childhood Myositis Assessment Score (P = 0.03)) and histologically (as determined by a lower JDM muscle biopsy score (P <0.01)) than patients who did not have anti-MDA5 antibodies. A greater proportion of children with anti-MDA5 autoantibodies achieved disease inactivity at two years post-diagnosis according to PRINTO criteria (P = 0.02). A total of 4 out of 21 children with anti-MDA5 had interstitial lung disease; none had rapidly progressive interstitial lung disease. Conclusions Anti-MDA5 antibodies can be identified in a small but significant proportion of patients with JDM and identify a distinctive clinical sub-group. Screening for anti-MDA5 autoantibodies at diagnosis would be useful to guide further investigation for lung disease, inform on prognosis and potentially confirm the diagnosis, as subtle biopsy changes could otherwise be missed. PMID:24989778

  17. Genome-wide association study with 1000 genomes imputation identifies signals for nine sex hormone-related phenotypes

    PubMed Central

    Ruth, Katherine S; Campbell, Purdey J; Chew, Shelby; Lim, Ee Mun; Hadlow, Narelle; Stuckey, Bronwyn GA; Brown, Suzanne J; Feenstra, Bjarke; Joseph, John; Surdulescu, Gabriela L; Zheng, Hou Feng; Richards, J Brent; Murray, Anna; Spector, Tim D; Wilson, Scott G; Perry, John RB

    2016-01-01

    Genetic factors contribute strongly to sex hormone levels, yet knowledge of the regulatory mechanisms remains incomplete. Genome-wide association studies (GWAS) have identified only a small number of loci associated with sex hormone levels, with several reproductive hormones yet to be assessed. The aim of the study was to identify novel genetic variants contributing to the regulation of sex hormones. We performed GWAS using genotypes imputed from the 1000 Genomes reference panel. The study used genotype and phenotype data from a UK twin register. We included 2913 individuals (up to 294 males) from the Twins UK study, excluding individuals receiving hormone treatment. Phenotypes were standardised for age, sex, BMI, stage of menstrual cycle and menopausal status. We tested 7 879 351 autosomal SNPs for association with levels of dehydroepiandrosterone sulphate (DHEAS), oestradiol, free androgen index (FAI), follicle-stimulating hormone (FSH), luteinizing hormone (LH), prolactin, progesterone, sex hormone-binding globulin and testosterone. Eight independent genetic variants reached genome-wide significance (P<5 × 10−8), with minor allele frequencies of 1.3–23.9%. Novel signals included variants for progesterone (P=7.68 × 10−12), oestradiol (P=1.63 × 10−8) and FAI (P=1.50 × 10−8). A genetic variant near the FSHB gene was identified which influenced both FSH (P=1.74 × 10−8) and LH (P=3.94 × 10−9) levels. A separate locus on chromosome 7 was associated with both DHEAS (P=1.82 × 10−14) and progesterone (P=6.09 × 10−14). This study highlights loci that are relevant to reproductive function and suggests overlap in the genetic basis of hormone regulation. PMID:26014426

  18. A Zebrafish In Vivo Phenotypic Assay to Identify 3-Aminothiophene-2-Carboxylic Acid-Based Angiogenesis Inhibitors

    PubMed Central

    Papakyriakou, Athanasios; Kefalos, Panagiotis; Sarantis, Panagiotis; Tsiamantas, Christos; Xanthopoulos, Kleanthis P.

    2014-01-01

    Abstract Small molecules that inhibit angiogenesis are attractive drug candidates for cancer, retinopathies, and age-related macular degeneration. In vivo, phenotypic screening in zebrafish (Danio rerio) emerges as a powerful methodology to identify and optimize novel compounds with pharmacological activity. Zebrafish provides several advantages for in vivo phenotypic screens especially for angiogenesis, since it develops rapidly, externally, and does not rely on a functional cardiovascular system to survive for several days during development. In this study, we utilize a transgenic line that allows the noninvasive monitoring of angiogenesis at a cellular level. The inhibition of angiogenesis can be observed under a fluorescent stereoscope and quantified. To exemplify the versatility and robustness of the zebrafish screen, we have employed a series of 60 novel compounds that were designed based on a potent VEGFR2 inhibitor. Herein, we report their structure-based design, synthesis, and in vivo zebrafish screening for optimal activity, toxicity, and off-target effects, which revealed six reversible inhibitors of angiogenesis. PMID:25506802

  19. A genome-wide association study identifies a genomic region for the polycerate phenotype in sheep (Ovis aries)

    PubMed Central

    Ren, Xue; Yang, Guang-Li; Peng, Wei-Feng; Zhao, Yong-Xin; Zhang, Min; Chen, Ze-Hui; Wu, Fu-An; Kantanen, Juha; Shen, Min; Li, Meng-Hua

    2016-01-01

    Horns are a cranial appendage found exclusively in Bovidae, and play important roles in accessing resources and mates. In sheep (Ovies aries), horns vary from polled to six-horned, and human have been selecting polled animals in farming and breeding. Here, we conducted a genome-wide association study on 24 two-horned versus 22 four-horned phenotypes in a native Chinese breed of Sishui Fur sheep. Together with linkage disequilibrium (LD) analyses and haplotype-based association tests, we identified a genomic region comprising 132.0–133.1 Mb on chromosome 2 that contained the top 10 SNPs (including 4 significant SNPs) and 5 most significant haplotypes associated with the polycerate phenotype. In humans and mice, this genomic region contains the HOXD gene cluster and adjacent functional genes EVX2 and KIAA1715, which have a close association with the formation of limbs and genital buds. Our results provide new insights into the genetic basis underlying variable numbers of horns and represent a new resource for use in sheep genetics and breeding. PMID:26883901

  20. Searching in the Dark: Phenotyping Diabetic Retinopathy in a De-Identified Electronic Medical Record Sample of African Americans.

    PubMed

    Restrepo, Nicole A; Farber-Eger, Eric; Crawford, Dana C

    2016-01-01

    A hurdle to EMR-based studies is the characterization and extraction of complex phenotypes not readily defined by single diagnostic/procedural codes. Here we developed an algorithm utilizing data mining techniques to identify a diabetic retinopathy (DR) cohort of type-2 diabetic African Americans from the Vanderbilt University de-identified EMR system. The algorithm incorporates a combination of diagnostic codes, current procedural terminology billing codes, medications, and text matching to identify DR when gold-standard digital photography results were unavailable. DR cases were identified with a positive predictive value of 75.3% and an accuracy of 84.8%. Controls were classified with a negative predictive value of 1.0% as could be assessed. Limited studies of DR have been performed in African Americans who are at an elevated risk of DR. Identification of EMR-based African American cohorts may help stimulate new biomedical studies that could elucidate differences in risk for the development of DR and other complex diseases. PMID:27570675

  1. Searching in the Dark: Phenotyping Diabetic Retinopathy in a De-Identified Electronic Medical Record Sample of African Americans

    PubMed Central

    Restrepo, Nicole A.; Farber-Eger, Eric; Crawford, Dana C.

    2016-01-01

    A hurdle to EMR-based studies is the characterization and extraction of complex phenotypes not readily defined by single diagnostic/procedural codes. Here we developed an algorithm utilizing data mining techniques to identify a diabetic retinopathy (DR) cohort of type-2 diabetic African Americans from the Vanderbilt University de-identified EMR system. The algorithm incorporates a combination of diagnostic codes, current procedural terminology billing codes, medications, and text matching to identify DR when gold-standard digital photography results were unavailable. DR cases were identified with a positive predictive value of 75.3% and an accuracy of 84.8%. Controls were classified with a negative predictive value of 1.0% as could be assessed. Limited studies of DR have been performed in African Americans who are at an elevated risk of DR. Identification of EMR-based African American cohorts may help stimulate new biomedical studies that could elucidate differences in risk for the development of DR and other complex diseases. PMID:27570675

  2. Systematic Phenotypic Screen of Arabidopsis Peroxisomal Mutants Identifies Proteins Involved in β-Oxidation1[W][OPEN

    PubMed Central

    Cassin-Ross, Gaëlle; Hu, Jianping

    2014-01-01

    Peroxisomes are highly dynamic and multifunctional organelles essential to development. Plant peroxisomes accommodate a multitude of metabolic reactions, many of which are related to the β-oxidation of fatty acids or fatty acid-related metabolites. Recently, several dozens of novel peroxisomal proteins have been identified from Arabidopsis (Arabidopsis thaliana) through in silico and experimental proteomic analyses followed by in vivo protein targeting validations. To determine the functions of these proteins, we interrogated their transfer DNA insertion mutants with a series of physiological, cytological, and biochemical assays to reveal peroxisomal deficiencies. Sugar dependence and 2,4-dichlorophenoxybutyric acid and 12-oxo-phytodienoic acid response assays uncovered statistically significant phenotypes in β-oxidation-related processes in mutants for 20 of 27 genes tested. Additional investigations uncovered a subset of these mutants with abnormal seed germination, accumulation of oil bodies, and delayed degradation of long-chain fatty acids during early seedling development. Mutants for seven genes exhibited deficiencies in multiple assays, strongly suggesting the involvement of their gene products in peroxisomal β-oxidation and initial seedling growth. Proteins identified included isoforms of enzymes related to β-oxidation, such as acyl-CoA thioesterase2, acyl-activating enzyme isoform1, and acyl-activating enzyme isoform5, and proteins with functions previously unknown to be associated with β-oxidation, such as Indigoidine synthase A, Senescence-associated protein/B12D-related protein1, Betaine aldehyde dehydrogenase, and Unknown protein5. This multipronged phenotypic screen allowed us to reveal β-oxidation proteins that have not been discovered by single assay-based mutant screens and enabled the functional dissection of different isoforms of multigene families involved in β-oxidation. PMID:25253886

  3. RNA targets of TDP-43 identified by UV-CLIP are deregulated in ALS.

    PubMed

    Xiao, Shangxi; Sanelli, Teresa; Dib, Samar; Sheps, David; Findlater, Joseph; Bilbao, Juan; Keith, Julia; Zinman, Lorne; Rogaeva, Ekaterina; Robertson, Janice

    2011-07-01

    TDP-43 is a predominantly nuclear DNA/RNA binding protein involved in transcriptional regulation and RNA processing. TDP-43 is also a component of the cytoplasmic inclusion bodies characteristic of amyotrophic lateral sclerosis (ALS) and of frontotemporal lobar degeneration with ubiquitinated inclusions (FTLD-U). We have investigated the premise that abnormalities of TDP-43 in disease would be reflected by changes in processing of its target RNAs. To this end, we have firstly identified RNA targets of TDP-43 using UV-Cross-Linking and Immunoprecipitation (UV-CLIP) of SHSY5Y cells, a human neuroblastoma cell line. We used conventional cloning strategies to identify, after quality control steps, 127 targets. Results show that TDP-43 binds mainly to introns at UG/TG repeat motifs (49%) and polypyrimidine rich sequences (17.65%). To determine if the identified RNA targets of TDP-43 were abnormally processed in ALS versus control lumbar spinal cord RNA, we performed RT-PCR using primers designed according to the location of TDP-43 binding within the gene, and prior evidence of alternative splicing of exons adjacent to this site. Of eight genes meeting these criteria, five were differentially spliced in ALS versus control. This supports the premise that abnormalities of TDP-43 in ALS are reflected in changes of RNA processing. PMID:21421050

  4. Inhibiting phosphorylation of the oncogenic PAX3-FOXO1 reduces alveolar rhabdomyosarcoma phenotypes identifying novel therapy options.

    PubMed

    Loupe, J M; Miller, P J; Ruffin, D R; Stark, M W; Hollenbach, A D

    2015-01-01

    Patients with translocation-positive alveolar rhabdomyosarcoma (ARMS), an aggressive childhood tumor primarily characterized by the PAX3-FOXO1 oncogenic fusion protein, have a poor prognosis because of lack of therapies that specifically target ARMS tumors. This fact highlights the need for novel pharmaceutical interventions. Posttranslational modifications such as phosphorylation are becoming attractive biological targets for the development of such interventions. Along these lines, we demonstrated that PAX3-FOXO1 is phosphorylated at three specific sites and that its pattern of phosphorylation is altered relative to wild-type Pax3 throughout early myogenesis and in ARMS tumor cells. However, little work has been performed examining the effect of directly inhibiting phosphorylation at these sites on ARMS development. To address this gap in knowledge, we used small molecule inhibitors or mutational analysis to specifically inhibit phosphorylation of PAX3-FOXO1 to investigate how altering phosphorylation of the oncogenic fusion protein affects ARMS phenotypes. We found that inhibiting the phosphorylation of PAX3-FOXO1 at Ser201 significantly reduced migration, invasion and proliferation in two independent ARMS tumor cell lines. Further, we found that inhibition of phosphorylation at Ser205 also decreased proliferation and anchorage-independent growth. Consistent with these in vitro results, we demonstrate for the first time that PAX3-FOXO1 is phosphorylated at Ser201 and Ser205 in a primary tumor sample and in tumor cells actively invading the surrounding normal tissue. This report is the first to demonstrate that the direct inhibition of PAX3-FOXO1 phosphorylation reduces ARMS tumor phenotypes in vitro and that these phosphorylation events are present in primary human ARMS tumors and invading tumor cells. These results identify phosphorylation of PAX3-FOXO1, especially at Ser201, as a novel biological target that can be explored as a promising avenue for ARMS

  5. A High-Content, Phenotypic Screen Identifies Fluorouridine as an Inhibitor of Pyoverdine Biosynthesis and Pseudomonas aeruginosa Virulence

    PubMed Central

    Kirienko, Daniel R.; Revtovich, Alexey V.

    2016-01-01

    ABSTRACT Pseudomonas aeruginosa is an opportunistic pathogen that causes severe health problems. Despite intensive investigation, many aspects of microbial virulence remain poorly understood. We used a high-throughput, high-content, whole-organism, phenotypic screen to identify small molecules that inhibit P. aeruginosa virulence in Caenorhabditis elegans. Approximately half of the hits were known antimicrobials. A large number of hits were nonantimicrobial bioactive compounds, including the cancer chemotherapeutic 5-fluorouracil. We determined that 5-fluorouracil both transiently inhibits bacterial growth and reduces pyoverdine biosynthesis. Pyoverdine is a siderophore that regulates the expression of several virulence determinants and is critical for pathogenesis in mammals. We show that 5-fluorouridine, a downstream metabolite of 5-fluorouracil, is responsible for inhibiting pyoverdine biosynthesis. We also show that 5-fluorouridine, in contrast to 5-fluorouracil, is a genuine antivirulence compound, with no bacteriostatic or bactericidal activity. To our knowledge, this is the first report utilizing a whole-organism screen to identify novel compounds with antivirulent properties effective against P. aeruginosa. IMPORTANCE Despite intense research effort from scientists and the advent of the molecular age of biomedical research, many of the mechanisms that underlie pathogenesis are still understood poorly, if at all. The opportunistic human pathogen Pseudomonas aeruginosa causes a variety of soft tissue infections and is responsible for over 50,000 hospital-acquired infections per year. In addition, P. aeruginosa exhibits a striking degree of innate and acquired antimicrobial resistance, complicating treatment. It is increasingly important to understand P. aeruginosa virulence. In an effort to gain this information in an unbiased fashion, we used a high-throughput phenotypic screen to identify small molecules that disrupted bacterial pathogenesis and

  6. A High-Content, Phenotypic Screen Identifies Fluorouridine as an Inhibitor of Pyoverdine Biosynthesis and Pseudomonas aeruginosa Virulence.

    PubMed

    Kirienko, Daniel R; Revtovich, Alexey V; Kirienko, Natalia V

    2016-01-01

    Pseudomonas aeruginosa is an opportunistic pathogen that causes severe health problems. Despite intensive investigation, many aspects of microbial virulence remain poorly understood. We used a high-throughput, high-content, whole-organism, phenotypic screen to identify small molecules that inhibit P. aeruginosa virulence in Caenorhabditis elegans. Approximately half of the hits were known antimicrobials. A large number of hits were nonantimicrobial bioactive compounds, including the cancer chemotherapeutic 5-fluorouracil. We determined that 5-fluorouracil both transiently inhibits bacterial growth and reduces pyoverdine biosynthesis. Pyoverdine is a siderophore that regulates the expression of several virulence determinants and is critical for pathogenesis in mammals. We show that 5-fluorouridine, a downstream metabolite of 5-fluorouracil, is responsible for inhibiting pyoverdine biosynthesis. We also show that 5-fluorouridine, in contrast to 5-fluorouracil, is a genuine antivirulence compound, with no bacteriostatic or bactericidal activity. To our knowledge, this is the first report utilizing a whole-organism screen to identify novel compounds with antivirulent properties effective against P. aeruginosa. IMPORTANCE Despite intense research effort from scientists and the advent of the molecular age of biomedical research, many of the mechanisms that underlie pathogenesis are still understood poorly, if at all. The opportunistic human pathogen Pseudomonas aeruginosa causes a variety of soft tissue infections and is responsible for over 50,000 hospital-acquired infections per year. In addition, P. aeruginosa exhibits a striking degree of innate and acquired antimicrobial resistance, complicating treatment. It is increasingly important to understand P. aeruginosa virulence. In an effort to gain this information in an unbiased fashion, we used a high-throughput phenotypic screen to identify small molecules that disrupted bacterial pathogenesis and increased host

  7. IL-10 Controls Early Microglial Phenotypes and Disease Onset in ALS Caused by Misfolded Superoxide Dismutase 1.

    PubMed

    Gravel, Mathieu; Béland, Louis-Charles; Soucy, Geneviève; Abdelhamid, Essam; Rahimian, Reza; Gravel, Claude; Kriz, Jasna

    2016-01-20

    While reactive microgliosis is a hallmark of advanced stages of amyotrophic lateral sclerosis (ALS), the role of microglial cells in events initiating and/or precipitating disease onset is largely unknown. Here we provide novel in vivo evidence of a distinct adaptive shift in functional microglial phenotypes in preclinical stages of superoxide dismutase 1 (SOD1)-mutant-mediated disease. Using a mouse model for live imaging of microglial activation crossed with SOD1(G93A) and SOD1(G37R) mouse models, we discovered that the preonset phase of SOD1-mediated disease is characterized by development of distinct anti-inflammatory profile and attenuated innate immune/TLR2 responses to lipopolysaccharide (LPS) challenge. This microglial phenotype was associated with a 16-fold overexpression of anti-inflammatory cytokine IL-10 in baseline conditions followed by a 4.5-fold increase following LPS challenge. While infusion of IL-10R blocking antibody, initiated at day 60, caused a significant increase in markers of microglial activation and precipitated clinical onset of disease, a targeted overexpression of IL-10 in microglial cells, delivered via viral vectors expressed under CD11b promoter, significantly delayed disease onset and increased survival of SOD1(G93A) mice. We propose that the high IL-10 levels in resident microglia in early ALS represent a homeostatic and compensatory "adaptive immune escape" mechanism acting as a nonneuronal determinant of clinical onset of disease. Significance statement: We report here for the first time that changing the immune profile of brain microglia may significantly affect clinical onset and duration of disease in ALS models. We discovered that in presymptomatic disease microglial cells overexpress anti-inflammatory cytokine IL-10. Given that IL-10 is major homeostatic cytokine and its production becomes deregulated with aging, this may suggest that the capacity of microglia to adequately produce IL-10 may be compromised in ALS. We show

  8. Phenotypic assays identify azoramide as a small-molecule modulator of the unfolded protein response with antidiabetic activity.

    PubMed

    Fu, Suneng; Yalcin, Abdullah; Lee, Grace Y; Li, Ping; Fan, Jason; Arruda, Ana Paula; Pers, Benedicte M; Yilmaz, Mustafa; Eguchi, Kosei; Hotamisligil, Gökhan S

    2015-06-17

    The endoplasmic reticulum (ER) plays a critical role in protein, lipid, and glucose metabolism as well as cellular calcium signaling and homeostasis. Perturbation of ER function and chronic ER stress are associated with many pathologies ranging from diabetes and neurodegenerative diseases to cancer and inflammation. Although ER targeting shows therapeutic promise in preclinical models of obesity and other pathologies, the available chemical entities generally lack the specificity and other pharmacological properties required for effective clinical translation. To overcome these challenges and identify new potential therapeutic candidates, we first designed and chemically and genetically validated two high-throughput functional screening systems that independently measure the free chaperone content and protein-folding capacity of the ER. With these quantitative platforms, we characterized a small-molecule compound, azoramide, that improves ER protein-folding ability and activates ER chaperone capacity to protect cells against ER stress in multiple systems. This compound also exhibited potent antidiabetic efficacy in two independent mouse models of obesity by improving insulin sensitivity and pancreatic β cell function. Together, these results demonstrate the utility of this functional, phenotypic assay platform for ER-targeted drug discovery and provide proof of principle for the notion that specific ER modulators can be potential drug candidates for type 2 diabetes. PMID:26084805

  9. Genetic Analysis of the Pathogenic Molecular Sub-phenotype Interferon Alpha Identifies Multiple Novel Loci Involved in Systemic Lupus Erythematosus

    PubMed Central

    Kariuki, Silvia N.; Ghodke-Puranik, Yogita; Dorschner, Jessica M.; Chrabot, Beverly S.; Kelly, Jennifer A.; Tsao, Betty P.; Kimberly, Robert P.; Alarcón-Riquelme, Marta E.; Jacob, Chaim O.; Criswell, Lindsey A.; Sivils, Kathy L.; Langefeld, Carl D.; Harley, John B.; Skol, Andrew D.; Niewold, Timothy B.

    2014-01-01

    Systemic Lupus Erythematosus (SLE) is a chronic autoimmune disorder characterized by inflammation of multiple organ systems and dysregulated interferon responses. SLE is both genetically and phenotypically heterogeneous, greatly reducing the power of case-control studies in SLE. Elevated circulating interferon alpha (IFN-α) is a stable, heritable trait in SLE, which has been implicated in primary disease pathogenesis. 40–50% of patients have high IFN-α, and high levels correspond with clinical differences. To study genetic heterogeneity in SLE, we performed a case-case study comparing patients with high vs. low IFN-α in over 1550 SLE cases, including GWAS and replication cohorts. In meta-analysis, the top associations in European ancestry were PRKG1 rs7897633 (PMeta=2.75 × 10−8) and PNP rs1049564 (PMeta=1.24 × 10−7). We also found evidence for cross-ancestral background associations with the ANKRD44 and PLEKHF2 loci. These loci have not been previously identified in case-control SLE genetic studies. Bioinformatic analyses implicated these loci functionally in dendritic cells and natural killer cells, both of which are involved in IFN-α production in SLE. As case-control studies of heterogeneous diseases reach a limit of feasibility with respect to subject number and detectable effect size, the study of informative pathogenic subphenotypes becomes an attractive strategy for genetic discovery in complex disease. PMID:25338677

  10. Fine-Mapping and Phenotypic Analysis of the Ity3 Salmonella Susceptibility Locus Identify a Complex Genetic Structure

    PubMed Central

    Khan, Rabia T.; Yuki, Kyoko E.; Malo, Danielle

    2014-01-01

    Experimental animal models of Salmonella infections have been widely used to identify genes important in the host immune response to infection. Using an F2 cross between the classical inbred strain C57BL/6J and the wild derived strain MOLF/Ei, we have previously identified Ity3 (Immunity to Typhimurium locus 3) as a locus contributing to the early susceptibility of MOLF/Ei mice to infection with Salmonella Typhimurium. We have also established a congenic strain (B6.MOLF-Ity/Ity3) with the MOLF/Ei Ity3 donor segment on a C57BL/6J background. The current study was designed to fine map and characterize functionally the Ity3 locus. We generated 12 recombinant sub-congenic strains that were characterized for susceptibility to infection, bacterial load in target organs, cytokine profile and anti-microbial mechanisms. These analyses showed that the impact of the Ity3 locus on survival and bacterial burden was stronger in male mice compared to female mice. Fine mapping of Ity3 indicated that two subloci contribute collectively to the susceptibility of B6.MOLF-Ity/Ity3 congenic mice to Salmonella infection. The Ity3.1 sublocus controls NADPH oxidase activity and is characterized by decreased ROS production, reduced inflammatory cytokine response and increased bacterial burden, thereby supporting a role for Ncf2 (neutrophil cytosolic factor 2 a subunit of NADPH oxidase) as the gene underlying this sublocus. The Ity3.2 sub-locus is characterized by a hyperresponsive inflammatory cytokine phenotype after exposure to Salmonella. Overall, this research provides support to the combined action of hormonal influences and complex genetic factors within the Ity3 locus in the innate immune response to Salmonella infection in wild-derived MOLF/Ei mice. PMID:24505352

  11. Genome-wide Association Study Identifies HLA 8.1 Ancestral Haplotype Alleles as Major Genetic Risk Factors for Myositis Phenotypes

    PubMed Central

    Miller, Frederick W.; Chen, Wei; O’Hanlon, Terrance P.; Cooper, Robert G.; Vencovsky, Jiri; Rider, Lisa G.; Danko, Katalin; Wedderburn, Lucy R.; Lundberg, Ingrid E.; Pachman, Lauren M.; Reed, Ann M.; Ytterberg, Steven R.; Padyukov, Leonid; Selva-O’Callaghan, Albert; Radstake, Timothy R.; Isenberg, David A.; Chinoy, Hector; Ollier, William E.R.; Scheet, Paul; Peng, Bo; Lee, Annette; Byun, Jinyoung; Lamb, Janine A.; Gregersen, Peter K.; Amos, Christopher I.

    2016-01-01

    Autoimmune muscle diseases (myositis) comprise a group of complex phenotypes influenced by genetic and environmental factors. To identify genetic risk factors in patients of European ancestry, we conducted a genome-wide association study (GWAS) of the major myositis phenotypes in a total of 1710 cases, which included 705 adult dermatomyositis; 473 juvenile dermatomyositis; 532 polymyositis; and 202 adult dermatomyositis, juvenile dermatomyositis or polymyositis patients with anti-histidyl tRNA synthetase (anti-Jo-1) autoantibodies, and compared them with 4724 controls. Single-nucleotide polymorphisms showing strong associations (P < 5 × 10−8) in GWAS were identified in the major histocompatibility complex (MHC) region for all myositis phenotypes together, as well as for the four clinical and autoantibody phenotypes studied separately. Imputation and regression analyses found that alleles comprising the human leukocyte antigen (HLA) 8.1 ancestral haplotype (AH8.1) defined essentially all the genetic risk in the phenotypes studied. Although the HLA DRB1*03:01 allele showed slightly stronger associations with adult and juvenile dermatomyositis, and HLA B*08:01 with polymyositis and anti-Jo-1 autoantibody-positive myositis, multiple alleles of AH8.1 were required for the full risk effects. Our findings establish that alleles of the AH8.1haplotype comprise the primary genetic risk factors associated with the major myositis phenotypes in geographically diverse Caucasian populations. PMID:26291516

  12. Genome-wide association study identifies HLA 8.1 ancestral haplotype alleles as major genetic risk factors for myositis phenotypes.

    PubMed

    Miller, F W; Chen, W; O'Hanlon, T P; Cooper, R G; Vencovsky, J; Rider, L G; Danko, K; Wedderburn, L R; Lundberg, I E; Pachman, L M; Reed, A M; Ytterberg, S R; Padyukov, L; Selva-O'Callaghan, A; Radstake, T R; Isenberg, D A; Chinoy, H; Ollier, W E R; Scheet, P; Peng, B; Lee, A; Byun, J; Lamb, J A; Gregersen, P K; Amos, C I

    2015-10-01

    Autoimmune muscle diseases (myositis) comprise a group of complex phenotypes influenced by genetic and environmental factors. To identify genetic risk factors in patients of European ancestry, we conducted a genome-wide association study (GWAS) of the major myositis phenotypes in a total of 1710 cases, which included 705 adult dermatomyositis, 473 juvenile dermatomyositis, 532 polymyositis and 202 adult dermatomyositis, juvenile dermatomyositis or polymyositis patients with anti-histidyl-tRNA synthetase (anti-Jo-1) autoantibodies, and compared them with 4724 controls. Single-nucleotide polymorphisms showing strong associations (P<5×10(-8)) in GWAS were identified in the major histocompatibility complex (MHC) region for all myositis phenotypes together, as well as for the four clinical and autoantibody phenotypes studied separately. Imputation and regression analyses found that alleles comprising the human leukocyte antigen (HLA) 8.1 ancestral haplotype (AH8.1) defined essentially all the genetic risk in the phenotypes studied. Although the HLA DRB1*03:01 allele showed slightly stronger associations with adult and juvenile dermatomyositis, and HLA B*08:01 with polymyositis and anti-Jo-1 autoantibody-positive myositis, multiple alleles of AH8.1 were required for the full risk effects. Our findings establish that alleles of the AH8.1 comprise the primary genetic risk factors associated with the major myositis phenotypes in geographically diverse Caucasian populations. PMID:26291516

  13. Differential neuronal vulnerability identifies IGF-2 as a protective factor in ALS.

    PubMed

    Allodi, Ilary; Comley, Laura; Nichterwitz, Susanne; Nizzardo, Monica; Simone, Chiara; Benitez, Julio Aguila; Cao, Ming; Corti, Stefania; Hedlund, Eva

    2016-01-01

    The fatal disease amyotrophic lateral sclerosis (ALS) is characterized by the loss of somatic motor neurons leading to muscle wasting and paralysis. However, motor neurons in the oculomotor nucleus, controlling eye movement, are for unknown reasons spared. We found that insulin-like growth factor 2 (IGF-2) was maintained in oculomotor neurons in ALS and thus could play a role in oculomotor resistance in this disease. We also showed that IGF-1 receptor (IGF-1R), which mediates survival pathways upon IGF binding, was highly expressed in oculomotor neurons and on extraocular muscle endplate. The addition of IGF-2 induced Akt phosphorylation, glycogen synthase kinase-3β phosphorylation and β-catenin levels while protecting ALS patient motor neurons. IGF-2 also rescued motor neurons derived from spinal muscular atrophy (SMA) patients from degeneration. Finally, AAV9::IGF-2 delivery to muscles of SOD1(G93A) ALS mice extended life-span by 10%, while preserving motor neurons and inducing motor axon regeneration. Thus, our studies demonstrate that oculomotor-specific expression can be utilized to identify candidates that protect vulnerable motor neurons from degeneration. PMID:27180807

  14. Differential neuronal vulnerability identifies IGF-2 as a protective factor in ALS

    PubMed Central

    Allodi, Ilary; Comley, Laura; Nichterwitz, Susanne; Nizzardo, Monica; Simone, Chiara; Benitez, Julio Aguila; Cao, Ming; Corti, Stefania; Hedlund, Eva

    2016-01-01

    The fatal disease amyotrophic lateral sclerosis (ALS) is characterized by the loss of somatic motor neurons leading to muscle wasting and paralysis. However, motor neurons in the oculomotor nucleus, controlling eye movement, are for unknown reasons spared. We found that insulin-like growth factor 2 (IGF-2) was maintained in oculomotor neurons in ALS and thus could play a role in oculomotor resistance in this disease. We also showed that IGF-1 receptor (IGF-1R), which mediates survival pathways upon IGF binding, was highly expressed in oculomotor neurons and on extraocular muscle endplate. The addition of IGF-2 induced Akt phosphorylation, glycogen synthase kinase-3β phosphorylation and β-catenin levels while protecting ALS patient motor neurons. IGF-2 also rescued motor neurons derived from spinal muscular atrophy (SMA) patients from degeneration. Finally, AAV9::IGF-2 delivery to muscles of SOD1G93A ALS mice extended life-span by 10%, while preserving motor neurons and inducing motor axon regeneration. Thus, our studies demonstrate that oculomotor-specific expression can be utilized to identify candidates that protect vulnerable motor neurons from degeneration. PMID:27180807

  15. Chronic Exposure to Dietary Sterol Glucosides is Neurotoxic to Motor Neurons and Induces an ALS-PDC Phenotype

    PubMed Central

    Tabata, R. C.; Wilson, J. M. B.; Ly, P.; Zwiegers, P.; Kwok, D.; Van Kampen, J. M.; Cashman, N.; Shaw, C. A.

    2008-01-01

    Epidemiological studies of the Guamanian variants of amyotrophic lateral sclerosis (ALS) and parkinsonism, amyotrophic lateral sclerosis-parkinsonism dementia complex (ALS-PDC), have shown a positive correlation between consumption of washed cycad seed flour and disease occurrence. Previous in vivo studies by our group have shown that the same seed flour induces ALS and PDC phenotypes in out bred adult male mice. In vitro studies using isolated cycad compounds have also demonstrated that several of these are neurotoxic, specifically, a number of water insoluble phytosterol glucosides of which β-sitosterol β-d-glucoside (BSSG) forms the largest fraction. BSSG is neurotoxic to motor neurons and other neuronal populations in culture. The present study shows that an in vitro hybrid motor neuron (NSC-34) culture treated with BSSG undergoes a dose-dependent cell loss. Surviving cells show increased expression of HSP70, decreased cytosolic heavy neurofilament expression, and have various morphological abnormalities. CD-1 mice fed mouse chow pellets containing BSSG for 15 weeks showed motor deficits and motor neuron loss in the lumbar and thoracic spinal cord, along with decreased glutamate transporter labelling, and increased glial fibrillary acid protein reactivity. Other pathological outcomes included increased caspase-3 labelling in the striatum and decreased tyrosine-hydroxylase labelling in the striatum and substantia nigra. C57BL/6 mice fed BSSG-treated pellets for 10 weeks exhibited progressive loss of motor neurons in the lumbar spinal cord that continued to worsen even after the BSSG exposure ended. These results provide further support implicating sterol glucosides as one potential causal factor in the motor neuron pathology previously associated with cycad consumption and ALS-PDC. PMID:18196479

  16. Molecular genetics of addiction and related heritable phenotypes: genome wide association approaches identify “connectivity constellation” and drug target genes with pleiotropic effects

    PubMed Central

    Uhl, George R; Drgon, Tomas; Johnson, Catherine; Li, Chuan-Yun; Contoreggi, Carlo; Hess, Judith; Naiman, Daniel; Liu, Qing-Rong

    2013-01-01

    Genome wide association (GWA) can elucidate molecular genetic bases for human individual differences in “complex” phenotypes that include vulnerability to addiction. Here, we review: a) evidence that supports polygenic models with (at least) modest heterogeneity for the genetic architectures of addiction and several related phenotypes; b) technical and ethical aspects of importance for understanding genome wide association data: genotyping in individual samples vs DNA pools, analytic approaches, power estimation and ethical issues in genotyping individuals with illegal behaviors; c) the samples and the data that shape our current understanding of the molecular genetics of individual differences in vulnerability to substance dependence and related phenotypes; d) overlaps between GWA datasets for dependence on different substances; e) overlaps between GWA data for addictions vs other heritable, brain-based phenotypes that include: i) bipolar disorder, ii) cognitive ability, iii) frontal lobe brain volume, iv) ability to successfully quit smoking, v) neuroticism and vi) Alzheimer’s disease. These convergent results identify potential targets for drugs that might modify addictions and play roles in these other phenotypes. They add to evidence that individual differences in the quality and quantity of brain connections make pleiotropic contributions to individual differences in vulnerability to addictions and to related brain disorders and phenotypes. A “connectivity constellation” of brain phenotypes and disorders appears to receive substantial pathogenic contributions from individual differences in a constellation of genes whose variants provide individual differences in the specification of brain connectivities during development and in adulthood. Heritable brain differences that underlie addiction vulnerability thus lie squarely in the midst of the repertoire of heritable brain differences that underlie vulnerability to other common brain disorders and

  17. Exome sequencing identified mutations in CASK and MYBPC3 as the cause of a complex dilated cardiomyopathy phenotype.

    PubMed

    Reinstein, Eyal; Tzur, Shay; Bormans, Concetta; Behar, Doron M

    2016-01-01

    Whole-exome sequencing for clinical applications is now an integral part of medical genetics practice. Though most studies are performed in order to establish diagnoses in individuals with rare and clinically unrecognizable disorders, due to the constantly decreasing costs and commercial availability, whole-exome sequencing has gradually become the initial tool to study patients with clinically recognized disorders when more than one gene is responsible for the phenotype or in complex phenotypes, when variants in more than one gene can be the cause for the disease. Here we report a patient presenting with a complex phenotype consisting of severe, adult-onset, dilated cardiomyopathy, hearing loss and developmental delay, in which exome sequencing revealed two genetic variants that are inherited from a healthy mother: a novel missense variant in the CASK gene, mutations in which cause a spectrum of neurocognitive manifestations, and a second variant, in MYBPC3, that is associated with hereditary cardiomyopathy. We conclude that although the potential for co-occurrence of rare diseases is higher when analyzing undefined phenotypes in consanguineous families, it should also be given consideration in the genetic evaluation of complex phenotypes in non-consanguineous families. PMID:27173948

  18. Proteome-wide association studies identify biochemical modules associated with a wing-size phenotype in Drosophila melanogaster.

    PubMed

    Okada, Hirokazu; Ebhardt, H Alexander; Vonesch, Sibylle Chantal; Aebersold, Ruedi; Hafen, Ernst

    2016-01-01

    The manner by which genetic diversity within a population generates individual phenotypes is a fundamental question of biology. To advance the understanding of the genotype-phenotype relationships towards the level of biochemical processes, we perform a proteome-wide association study (PWAS) of a complex quantitative phenotype. We quantify the variation of wing imaginal disc proteomes in Drosophila genetic reference panel (DGRP) lines using SWATH mass spectrometry. In spite of the very large genetic variation (1/36 bp) between the lines, proteome variability is surprisingly small, indicating strong molecular resilience of protein expression patterns. Proteins associated with adult wing size form tight co-variation clusters that are enriched in fundamental biochemical processes. Wing size correlates with some basic metabolic functions, positively with glucose metabolism but negatively with mitochondrial respiration and not with ribosome biogenesis. Our study highlights the power of PWAS to filter functional variants from the large genetic variability in natural populations. PMID:27582081

  19. The CHEK2 1100delC Mutation Identifies Families with a Hereditary Breast and Colorectal Cancer Phenotype

    PubMed Central

    Meijers-Heijboer, Hanne; Wijnen, Juul; Vasen, Hans; Wasielewski, Marijke; Wagner, Anja; Hollestelle, Antoinette; Elstrodt, Fons; van den Bos, Renate; de Snoo, Anja; Tjon A Fat, Grace; Brekelmans, Cecile; Jagmohan, Shantie; Franken, Patrick; Verkuijlen, Paul; van den Ouweland, Ans; Chapman, Pamela; Tops, Carli; Möslein, Gabriela; Burn, John; Lynch, Henry; Klijn, Jan; Fodde, Riccardo; Schutte, Mieke

    2003-01-01

    Because of genetic heterogeneity, the identification of breast cancer–susceptibility genes has proven to be exceedingly difficult. Here, we define a new subset of families with breast cancer characterized by the presence of colorectal cancer cases. The 1100delC variant of the cell cycle checkpoint kinase CHEK2 gene was present in 18% of 55 families with hereditary breast and colorectal cancer (HBCC) as compared with 4% of 380 families with non-HBCC (P<.001), thus providing genetic evidence for the HBCC phenotype. The CHEK2 1100delC mutation was, however, not the major predisposing factor for the HBCC phenotype but appeared to act in synergy with another, as-yet-unknown susceptibility gene(s). The unequivocal definition of the HBCC phenotype opens new avenues to search for this putative HBCC-susceptibility gene. PMID:12690581

  20. Coexisting/Coexpressing Genomic Libraries (CoGeL) identify interactions among distantly located genetic loci for developing complex microbial phenotypes

    PubMed Central

    Nicolaou, Sergios A.; Gaida, Stefan M.; Papoutsakis, Eleftherios T.

    2011-01-01

    In engineering novel microbial strains for biotechnological applications, beyond a priori identifiable pathways to be engineered, it is becoming increasingly important to develop complex, ill-defined cellular phenotypes. One approach is to screen genomic or metagenomic libraries to identify genes imparting desirable phenotypes, such as tolerance to stressors or novel catabolic programs. Such libraries are limited by their inability to identify interactions among distant genetic loci. To solve this problem, we constructed plasmid- and fosmid-based Escherichia coli Coexisting/Coexpressing Genomic Libraries (CoGeLs). As a proof of principle, four sets of two genes of the l-lysine biosynthesis pathway distantly located on the E. coli chromosome were knocked out. Upon transformation of these auxotrophs with CoGeLs, cells growing without supplementation were found to harbor library inserts containing the knocked-out genes demonstrating the interaction between the two libraries. CoGeLs were also screened to identify genetic loci that work synergistically to create the considerably more complex acid-tolerance phenotype. CoGeL screening identified combination of genes known to enhance acid tolerance (gadBC operon and adiC), but also identified the novel combination of arcZ and recA that greatly enhanced acid tolerance by 9000-fold. arcZ is a small RNA that we show increases pH tolerance alone and together with recA. PMID:21976725

  1. Genome-wide linkage analysis to identify chromosomal regions affecting phenotypic traits in the chicken. II. Body composition

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Two informative chicken F2 populations based on crosses between a broiler breeder male line and dams from genetically distinct, highly inbred (>99%) chicken lines, the Leghorn G-B2 and Fayoumi M15.2, have been used for genome-wide linkage and QTL analysis. Phenotypic data on 12 body composition trai...

  2. Novel Phenotypic Outcomes Identified for a Public Collection of Approved Drugs from a Publicly Accessible Panel of Assays.

    PubMed

    Lee, Jonathan A; Shinn, Paul; Jaken, Susan; Oliver, Sarah; Willard, Francis S; Heidler, Steven; Peery, Robert B; Oler, Jennifer; Chu, Shaoyou; Southall, Noel; Dexheimer, Thomas S; Smallwood, Jeffrey; Huang, Ruili; Guha, Rajarshi; Jadhav, Ajit; Cox, Karen; Austin, Christopher P; Simeonov, Anton; Sittampalam, G Sitta; Husain, Saba; Franklin, Natalie; Wild, David J; Yang, Jeremy J; Sutherland, Jeffrey J; Thomas, Craig J

    2015-01-01

    Phenotypic assays have a proven track record for generating leads that become first-in-class therapies. Whole cell assays that inform on a phenotype or mechanism also possess great potential in drug repositioning studies by illuminating new activities for the existing pharmacopeia. The National Center for Advancing Translational Sciences (NCATS) pharmaceutical collection (NPC) is the largest reported collection of approved small molecule therapeutics that is available for screening in a high-throughput setting. Via a wide-ranging collaborative effort, this library was analyzed in the Open Innovation Drug Discovery (OIDD) phenotypic assay modules publicly offered by Lilly. The results of these tests are publically available online at www.ncats.nih.gov/expertise/preclinical/pd2 and via the PubChem Database (https://pubchem.ncbi.nlm.nih.gov/) (AID 1117321). Phenotypic outcomes for numerous drugs were confirmed, including sulfonylureas as insulin secretagogues and the anti-angiogenesis actions of multikinase inhibitors sorafenib, axitinib and pazopanib. Several novel outcomes were also noted including the Wnt potentiating activities of rotenone and the antifolate class of drugs, and the anti-angiogenic activity of cetaben. PMID:26177200

  3. GENOME-WIDE LINKAGE ANALYSIS TO IDENTIFY CHROMOSOMAL REGIONS AFFECTING PHENOTYPIC TRAITS IN THE CHICKEN. IV. SKELETAL INTEGRITY

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Two unique chicken F2 populations generated from a broiler breeder male line and two genetically distinct inbred (greater than 99%) chicken lines (Leghom and Fayoumi), were used for whole genome QTL analysis. Twelve phenotypic skeletal integrity traits (6 absolute and 6 relative traits) were measure...

  4. Novel Phenotypic Outcomes Identified for a Public Collection of Approved Drugs from a Publicly Accessible Panel of Assays

    PubMed Central

    Oliver, Sarah; Willard, Francis S.; Heidler, Steven; Peery, Robert B.; Oler, Jennifer; Chu, Shaoyou; Southall, Noel; Dexheimer, Thomas S.; Smallwood, Jeffrey; Huang, Ruili; Guha, Rajarshi; Jadhav, Ajit; Cox, Karen; Austin, Christopher P.; Simeonov, Anton; Sittampalam, G. Sitta; Husain, Saba; Franklin, Natalie; Wild, David J.; Yang, Jeremy J.; Sutherland, Jeffrey J.; Thomas, Craig J.

    2015-01-01

    Phenotypic assays have a proven track record for generating leads that become first-in-class therapies. Whole cell assays that inform on a phenotype or mechanism also possess great potential in drug repositioning studies by illuminating new activities for the existing pharmacopeia. The National Center for Advancing Translational Sciences (NCATS) pharmaceutical collection (NPC) is the largest reported collection of approved small molecule therapeutics that is available for screening in a high-throughput setting. Via a wide-ranging collaborative effort, this library was analyzed in the Open Innovation Drug Discovery (OIDD) phenotypic assay modules publicly offered by Lilly. The results of these tests are publically available online at www.ncats.nih.gov/expertise/preclinical/pd2 and via the PubChem Database (https://pubchem.ncbi.nlm.nih.gov/) (AID 1117321). Phenotypic outcomes for numerous drugs were confirmed, including sulfonylureas as insulin secretagogues and the anti-angiogenesis actions of multikinase inhibitors sorafenib, axitinib and pazopanib. Several novel outcomes were also noted including the Wnt potentiating activities of rotenone and the antifolate class of drugs, and the anti-angiogenic activity of cetaben. PMID:26177200

  5. An introductory review of parallel independent component analysis (p-ICA) and a guide to applying p-ICA to genetic data and imaging phenotypes to identify disease-associated biological pathways and systems in common complex disorders.

    PubMed

    Pearlson, Godfrey D; Liu, Jingyu; Calhoun, Vince D

    2015-01-01

    Complex inherited phenotypes, including those for many common medical and psychiatric diseases, are most likely underpinned by multiple genes contributing to interlocking molecular biological processes, along with environmental factors (Owen et al., 2010). Despite this, genotyping strategies for complex, inherited, disease-related phenotypes mostly employ univariate analyses, e.g., genome wide association. Such procedures most often identify isolated risk-related SNPs or loci, not the underlying biological pathways necessary to help guide the development of novel treatment approaches. This article focuses on the multivariate analysis strategy of parallel (i.e., simultaneous combination of SNP and neuroimage information) independent component analysis (p-ICA), which typically yields large clusters of functionally related SNPs statistically correlated with phenotype components, whose overall molecular biologic relevance is inferred subsequently using annotation software suites. Because this is a novel approach, whose details are relatively new to the field we summarize its underlying principles and address conceptual questions regarding interpretation of resulting data and provide practical illustrations of the method. PMID:26442095

  6. An introductory review of parallel independent component analysis (p-ICA) and a guide to applying p-ICA to genetic data and imaging phenotypes to identify disease-associated biological pathways and systems in common complex disorders

    PubMed Central

    Pearlson, Godfrey D.; Liu, Jingyu; Calhoun, Vince D.

    2015-01-01

    Complex inherited phenotypes, including those for many common medical and psychiatric diseases, are most likely underpinned by multiple genes contributing to interlocking molecular biological processes, along with environmental factors (Owen et al., 2010). Despite this, genotyping strategies for complex, inherited, disease-related phenotypes mostly employ univariate analyses, e.g., genome wide association. Such procedures most often identify isolated risk-related SNPs or loci, not the underlying biological pathways necessary to help guide the development of novel treatment approaches. This article focuses on the multivariate analysis strategy of parallel (i.e., simultaneous combination of SNP and neuroimage information) independent component analysis (p-ICA), which typically yields large clusters of functionally related SNPs statistically correlated with phenotype components, whose overall molecular biologic relevance is inferred subsequently using annotation software suites. Because this is a novel approach, whose details are relatively new to the field we summarize its underlying principles and address conceptual questions regarding interpretation of resulting data and provide practical illustrations of the method. PMID:26442095

  7. Exome Sequencing of Phenotypic Extremes Identifies CAV2 and TMC6 as Interacting Modifiers of Chronic Pseudomonas aeruginosa Infection in Cystic Fibrosis

    PubMed Central

    Emond, Mary J.; Louie, Tin; Emerson, Julia; Chong, Jessica X.; Mathias, Rasika A.; Knowles, Michael R.; Rieder, Mark J.; Tabor, Holly K.; Nickerson, Debbie A.; Barnes, Kathleen C.; GO, Lung; Gibson, Ronald L.; Bamshad, Michael J.

    2015-01-01

    Discovery of rare or low frequency variants in exome or genome data that are associated with complex traits often will require use of very large sample sizes to achieve adequate statistical power. For a fixed sample size, sequencing of individuals sampled from the tails of a phenotype distribution (i.e., extreme phenotypes design) maximizes power and this approach was recently validated empirically with the discovery of variants in DCTN4 that influence the natural history of P. aeruginosa airway infection in persons with cystic fibrosis (CF; MIM219700). The increasing availability of large exome/genome sequence datasets that serve as proxies for population-based controls affords the opportunity to test an alternative, potentially more powerful and generalizable strategy, in which the frequency of rare variants in a single extreme phenotypic group is compared to a control group (i.e., extreme phenotype vs. control population design). As proof-of-principle, we applied this approach to search for variants associated with risk for age-of-onset of chronic P. aeruginosa airway infection among individuals with CF and identified variants in CAV2 and TMC6 that were significantly associated with group status. These results were validated using a large, prospective, longitudinal CF cohort and confirmed a significant association of a variant in CAV2 with increased age-of-onset of P. aeruginosa airway infection (hazard ratio = 0.48, 95% CI=[0.32, 0.88]) and variants in TMC6 with diminished age-of-onset of P. aeruginosa airway infection (HR = 5.4, 95% CI=[2.2, 13.5]) A strong interaction between CAV2 and TMC6 variants was observed (HR=12.1, 95% CI=[3.8, 39]) for children with the deleterious TMC6 variant and without the CAV2 protective variant. Neither gene showed a significant association using an extreme phenotypes design, and conditions for which the power of an extreme phenotype vs. control population design was greater than that for the extreme phenotypes design were

  8. The phenotype of a knockout mouse identifies flavin-containing monooxygenase 5 (FMO5) as a regulator of metabolic ageing

    PubMed Central

    Gonzalez Malagon, Sandra G.; Melidoni, Anna N.; Hernandez, Diana; Omar, Bilal A.; Houseman, Lyndsey; Veeravalli, Sunil; Scott, Flora; Varshavi, Dorsa; Everett, Jeremy; Tsuchiya, Yugo; Timms, John F.; Phillips, Ian R.; Shephard, Elizabeth A.

    2015-01-01

    We report the production and metabolic phenotype of a mouse line in which the Fmo5 gene is disrupted. In comparison with wild-type (WT) mice, Fmo5−/− mice exhibit a lean phenotype, which is age-related, becoming apparent after 20 weeks of age. Despite greater food intake, Fmo5−/− mice weigh less, store less fat in white adipose tissue (WAT), have lower plasma glucose and cholesterol concentrations and enhanced whole-body energy expenditure, due mostly to increased resting energy expenditure, with no increase in physical activity. An increase in respiratory exchange ratio during the dark phase, the period in which the mice are active, indicates a switch from fat to carbohydrate oxidation. In comparison with WT mice, the rate of fatty acid oxidation in Fmo5−/− mice is higher in WAT, which would contribute to depletion of lipid stores in this tissue, and lower in skeletal muscle. Five proteins were down regulated in the liver of Fmo5−/− mice: aldolase B, ketohexokinase and cytosolic glycerol 3-phosphate dehydrogenase (GPD1) are involved in glucose or fructose metabolism and GPD1 also in production of glycerol 3-phosphate, a precursor of triglyceride biosynthesis; HMG-CoA synthase 1 is involved in cholesterol biosynthesis; and malic enzyme 1 catalyzes the oxidative decarboxylation of malate to pyruvate, in the process producing NADPH for use in lipid and cholesterol biosynthesis. Down regulation of these proteins provides a potential explanation for the reduced fat deposits and lower plasma cholesterol characteristic of Fmo5−/− mice. Our results indicate that disruption of the Fmo5 gene slows metabolic ageing via pleiotropic effects. PMID:26049045

  9. Spinal but not cortical microglia acquire an atypical phenotype with high VEGF, galectin-3 and osteopontin, and blunted inflammatory responses in ALS rats.

    PubMed

    Nikodemova, Maria; Small, Alissa L; Smith, Stephanie M C; Mitchell, Gordon S; Watters, Jyoti J

    2014-09-01

    Activation of microglia, CNS resident immune cells, is a pathological hallmark of amyotrophic lateral sclerosis (ALS), a neurodegenerative disorder affecting motor neurons. Despite evidence that microglia contribute to disease progression, the exact role of these cells in ALS pathology remains unknown. We immunomagnetically isolated microglia from different CNS regions of SOD1(G93A) rats at three different points in disease progression: presymptomatic, symptom onset and end-stage. We observed no differences in microglial number or phenotype in presymptomatic rats compared to wild-type controls. Although after disease onset there was no macrophage infiltration, there were significant increases in microglial numbers in the spinal cord, but not cortex. At disease end-stage, microglia were characterized by high expression of galectin-3, osteopontin and VEGF, and concomitant downregulated expression of TNFα, IL-6, BDNF and arginase-1. Flow cytometry revealed the presence of at least two phenotypically distinct microglial populations in the spinal cord. Immunohistochemistry showed that galectin-3/osteopontin positive microglia were restricted to the ventral horns of the spinal cord, regions with severe motor neuron degeneration. End-stage SOD1(G93A) microglia from the cortex, a less affected region, displayed similar gene expression profiles to microglia from wild-type rats, and displayed normal responses to systemic inflammation induced by LPS. On the other hand, end-stage SOD1(G93A) spinal microglia had blunted responses to systemic LPS suggesting that in addition to their phenotypic changes, they may also be functionally impaired. Thus, after disease onset, microglia acquired unique characteristics that do not conform to typical M1 (inflammatory) or M2 (anti-inflammatory) phenotypes. This transformation was observed only in the most affected CNS regions, suggesting that overexpression of mutated hSOD1 is not sufficient to trigger these changes in microglia. These

  10. RNAseq Analyses Identify Tumor Necrosis Factor-Mediated Inflammation as a Major Abnormality in ALS Spinal Cord.

    PubMed

    Brohawn, David G; O'Brien, Laura C; Bennett, James P

    2016-01-01

    ALS is a rapidly progressive, devastating neurodegenerative illness of adults that produces disabling weakness and spasticity arising from death of lower and upper motor neurons. No meaningful therapies exist to slow ALS progression, and molecular insights into pathogenesis and progression are sorely needed. In that context, we used high-depth, next generation RNA sequencing (RNAseq, Illumina) to define gene network abnormalities in RNA samples depleted of rRNA and isolated from cervical spinal cord sections of 7 ALS and 8 CTL samples. We aligned >50 million 2X150 bp paired-end sequences/sample to the hg19 human genome and applied three different algorithms (Cuffdiff2, DEseq2, EdgeR) for identification of differentially expressed genes (DEG's). Ingenuity Pathways Analysis (IPA) and Weighted Gene Co-expression Network Analysis (WGCNA) identified inflammatory processes as significantly elevated in our ALS samples, with tumor necrosis factor (TNF) found to be a major pathway regulator (IPA) and TNFα-induced protein 2 (TNFAIP2) as a major network "hub" gene (WGCNA). Using the oPOSSUM algorithm, we analyzed transcription factors (TF) controlling expression of the nine DEG/hub genes in the ALS samples and identified TF's involved in inflammation (NFkB, REL, NFkB1) and macrophage function (NR1H2::RXRA heterodimer). Transient expression in human iPSC-derived motor neurons of TNFAIP2 (also a DEG identified by all three algorithms) reduced cell viability and induced caspase 3/7 activation. Using high-density RNAseq, multiple algorithms for DEG identification, and an unsupervised gene co-expression network approach, we identified significant elevation of inflammatory processes in ALS spinal cord with TNF as a major regulatory molecule. Overexpression of the DEG TNFAIP2 in human motor neurons, the population most vulnerable to die in ALS, increased cell death and caspase 3/7 activation. We propose that therapies targeted to reduce inflammatory TNFα signaling may be helpful

  11. A phenotypic screen in zebrafish identifies a novel small-molecule inducer of ectopic tail formation suggestive of alterations in non-canonical Wnt/PCP signaling.

    PubMed

    Gebruers, Evelien; Cordero-Maldonado, María Lorena; Gray, Alexander I; Clements, Carol; Harvey, Alan L; Edrada-Ebel, Ruangelie; de Witte, Peter A M; Crawford, Alexander D; Esguerra, Camila V

    2013-01-01

    Zebrafish have recently emerged as an attractive model for the in vivo bioassay-guided isolation and characterization of pharmacologically active small molecules of natural origin. We carried out a zebrafish-based phenotypic screen of over 3000 plant-derived secondary metabolite extracts with the goal of identifying novel small-molecule modulators of the BMP and Wnt signaling pathways. One of the bioactive plant extracts identified in this screen - Jasminum gilgianum, an Oleaceae species native to Papua New Guinea - induced ectopic tails during zebrafish embryonic development. As ectopic tail formation occurs when BMP or non-canonical Wnt signaling is inhibited during the tail protrusion process, we suspected a constituent of this extract to act as a modulator of these pathways. A bioassay-guided isolation was carried out on the basis of this zebrafish phenotype, identifying para-coumaric acid methyl ester (pCAME) as the active compound. We then performed an in-depth phenotypic analysis of pCAME-treated zebrafish embryos, including a tissue-specific marker analysis of the secondary tails. We found pCAME to synergize with the BMP-inhibitors dorsomorphin and LDN-193189 in inducing ectopic tails, and causing convergence-extension defects in compound-treated embryos. These results indicate that pCAME may interfere with non-canonical Wnt signaling. Inhibition of Jnk, a downstream target of Wnt/PCP signaling (via morpholino antisense knockdown and pharmacological inhibition with the kinase inhibitor SP600125) phenocopied pCAME-treated embryos. However, immunoblotting experiments revealed pCAME to not directly inhibit Jnk-mediated phosphorylation of c-Jun, suggesting additional targets of SP600125, and/or other pathways, as possibly being involved in the ectopic tail formation activity of pCAME. Further investigation of pCAME's mechanism of action will help determine this compound's pharmacological utility. PMID:24349481

  12. Comparison of Muscle Transcriptome between Pigs with Divergent Meat Quality Phenotypes Identifies Genes Related to Muscle Metabolism and Structure

    PubMed Central

    Damon, Marie; Wyszynska-Koko, Joanna; Vincent, Annie; Hérault, Frédéric; Lebret, Bénédicte

    2012-01-01

    Background Meat quality depends on physiological processes taking place in muscle tissue, which could involve a large pattern of genes associated with both muscle structural and metabolic features. Understanding the biological phenomena underlying muscle phenotype at slaughter is necessary to uncover meat quality development. Therefore, a muscle transcriptome analysis was undertaken to compare gene expression profiles between two highly contrasted pig breeds, Large White (LW) and Basque (B), reared in two different housing systems themselves influencing meat quality. LW is the most predominant breed used in pig industry, which exhibits standard meat quality attributes. B is an indigenous breed with low lean meat and high fat contents, high meat quality characteristics, and is genetically distant from other European pig breeds. Methodology/Principal Findings Transcriptome analysis undertaken using a custom 15 K microarray, highlighted 1233 genes differentially expressed between breeds (multiple-test adjusted P-value<0.05), out of which 635 were highly expressed in the B and 598 highly expressed in the LW pigs. No difference in gene expression was found between housing systems. Besides, expression level of 12 differentially expressed genes quantified by real-time RT-PCR validated microarray data. Functional annotation clustering emphasized four main clusters associated to transcriptome breed differences: metabolic processes, skeletal muscle structure and organization, extracellular matrix, lysosome, and proteolysis, thereby highlighting many genes involved in muscle physiology and meat quality development. Conclusions/Significance Altogether, these results will contribute to a better understanding of muscle physiology and of the biological and molecular processes underlying meat quality. Besides, this study is a first step towards the identification of molecular markers of pork quality and the subsequent development of control tools. PMID:22470472

  13. High-throughput phenotyping of avoidance learning in mice discriminates different genotypes and identifies a novel gene1

    PubMed Central

    Maroteaux, G.; Loos, M.; van der Sluis, S.; Koopmans, B.; Aarts, E.; van Gassen, K.; Geurts, A.; Largaespada, D. A.; Spruijt, B. M.; Stiedl, O.; Smit, A. B.; Verhage, M.

    2012-01-01

    Recognizing and avoiding aversive situations are central aspects of mammalian cognition. These abilities are essential for health and survival and are expected to have a prominent genetic basis. We modeled these abilities in eight common mouse inbred strains covering ~75% of the species’ natural variation and in gene-trap mice (>2000 mice), using an unsupervised, automated assay with an instrumented home cage (PhenoTyper) containing a shelter with two entrances. Mice visited this shelter for 20–1200 times/24 h and 71% of all mice developed a significant and often strong preference for one entrance. Subsequently, a mild aversive stimulus (shelter illumination) was automatically delivered when mice used their preferred entrance. Different genotypes developed different coping strategies. Firstly, the number of entries via the preferred entrance decreased in DBA/2J, C57BL/6J and 129S1/SvImJ, indicating that these genotypes associated one specific entrance with the aversive stimulus. Secondly, mice started sleeping outside (C57BL/6J, DBA/2J), indicating they associated the shelter, in general, with the aversive stimulus. Some mice showed no evidence for an association between the entrance and the aversive light, but did show markedly shorter shelter residence times in response to illumination, indicating they did perceive illumination as aversive. Finally, using this assay, we screened 43 different mutants, which yielded a novel gene, specc1/cytospinB. This mutant showed profound and specific delay in avoidance learning. Together, these data suggest that different genotypes express distinct learning and/or memory of associations between shelter entrance and aversive stimuli, and that specc1/cytospinB is involved in this aspect of cognition. PMID:22846151

  14. Comparative analysis of Edwardsiella isolates from fish in the eastern United States identifies two distinct genetic taxa amongst organisms phenotypically classified as E. tarda

    USGS Publications Warehouse

    Griffin, Matt J.; Quiniou, Sylvie M.; Cody, Theresa; Tabuchi, Maki; Ware, Cynthia; Cipriano, Rocco C.; Mauel, Michael J.; Soto, Esteban

    2013-01-01

    Edwardsiella tarda, a Gram-negative member of the family Enterobacteriaceae, has been implicated in significant losses in aquaculture facilities worldwide. Here, we assessed the intra-specific variability of E. tarda isolates from 4 different fish species in the eastern United States. Repetitive sequence mediated PCR (rep-PCR) using 4 different primer sets (ERIC I & II, ERIC II, BOX, and GTG5) and multi-locus sequence analysis of 16S SSU rDNA, groEl, gyrA, gyrB, pho, pgi, pgm, and rpoA gene fragments identified two distinct genotypes of E. tarda (DNA group I; DNA group II). Isolates that fell into DNA group II demonstrated more similarity to E. ictaluri than DNA group I, which contained the reference E. tarda strain (ATCC #15947). Conventional PCR analysis using published E. tarda-specific primer sets yielded variable results, with several primer sets producing no observable amplification of target DNA from some isolates. Fluorometric determination of G + C content demonstrated 56.4% G + C content for DNA group I, 60.2% for DNA group II, and 58.4% for E. ictaluri. Surprisingly, these isolates were indistinguishable using conventional biochemical techniques, with all isolates demonstrating phenotypic characteristics consistent with E. tarda. Analysis using two commercial test kits identified multiple phenotypes, although no single metabolic characteristic could reliably discriminate between genetic groups. Additionally, anti-microbial susceptibility and fatty acid profiles did not demonstrate remarkable differences between groups. The significant genetic variation (<90% similarity at gyrA, gyrB, pho, phi and pgm; <40% similarity by rep-PCR) between these groups suggests organisms from DNA group II may represent an unrecognized, genetically distinct taxa of Edwardsiella that is phenotypically indistinguishable from E. tarda.

  15. Phenotypic chemical screening using a zebrafish neural crest EMT reporter identifies retinoic acid as an inhibitor of epithelial morphogenesis.

    PubMed

    Jimenez, Laura; Wang, Jindong; Morrison, Monique A; Whatcott, Clifford; Soh, Katherine K; Warner, Steven; Bearss, David; Jette, Cicely A; Stewart, Rodney A

    2016-04-01

    The epithelial-to-mesenchymal transition (EMT) is a highly conserved morphogenetic program essential for embryogenesis, regeneration and cancer metastasis. In cancer cells, EMT also triggers cellular reprogramming and chemoresistance, which underlie disease relapse and decreased survival. Hence, identifying compounds that block EMT is essential to prevent or eradicate disseminated tumor cells. Here, we establish a whole-animal-based EMT reporter in zebrafish for rapid drug screening, calledTg(snai1b:GFP), which labels epithelial cells undergoing EMT to producesox10-positive neural crest (NC) cells. Time-lapse and lineage analysis ofTg(snai1b:GFP)embryos reveal that cranial NC cells delaminate from two regions: an early population delaminates adjacent to the neural plate, whereas a later population delaminates from within the dorsal neural tube. TreatingTg(snai1b:GFP)embryos with candidate small-molecule EMT-inhibiting compounds identified TP-0903, a multi-kinase inhibitor that blocked cranial NC cell delamination in both the lateral and medial populations. RNA sequencing (RNA-Seq) analysis and chemical rescue experiments show that TP-0903 acts through stimulating retinoic acid (RA) biosynthesis and RA-dependent transcription. These studies identify TP-0903 as a new therapeutic for activating RAin vivoand raise the possibility that RA-dependent inhibition of EMT contributes to its prior success in eliminating disseminated cancer cells. PMID:26794130

  16. Phenotypic chemical screening using a zebrafish neural crest EMT reporter identifies retinoic acid as an inhibitor of epithelial morphogenesis

    PubMed Central

    Jimenez, Laura; Wang, Jindong; Morrison, Monique A.; Whatcott, Clifford; Soh, Katherine K.; Warner, Steven; Bearss, David; Jette, Cicely A.; Stewart, Rodney A.

    2016-01-01

    ABSTRACT The epithelial-to-mesenchymal transition (EMT) is a highly conserved morphogenetic program essential for embryogenesis, regeneration and cancer metastasis. In cancer cells, EMT also triggers cellular reprogramming and chemoresistance, which underlie disease relapse and decreased survival. Hence, identifying compounds that block EMT is essential to prevent or eradicate disseminated tumor cells. Here, we establish a whole-animal-based EMT reporter in zebrafish for rapid drug screening, called Tg(snai1b:GFP), which labels epithelial cells undergoing EMT to produce sox10-positive neural crest (NC) cells. Time-lapse and lineage analysis of Tg(snai1b:GFP) embryos reveal that cranial NC cells delaminate from two regions: an early population delaminates adjacent to the neural plate, whereas a later population delaminates from within the dorsal neural tube. Treating Tg(snai1b:GFP) embryos with candidate small-molecule EMT-inhibiting compounds identified TP-0903, a multi-kinase inhibitor that blocked cranial NC cell delamination in both the lateral and medial populations. RNA sequencing (RNA-Seq) analysis and chemical rescue experiments show that TP-0903 acts through stimulating retinoic acid (RA) biosynthesis and RA-dependent transcription. These studies identify TP-0903 as a new therapeutic for activating RA in vivo and raise the possibility that RA-dependent inhibition of EMT contributes to its prior success in eliminating disseminated cancer cells. PMID:26794130

  17. Integrative functional genomics analysis of sustained polyploidy phenotypes in breast cancer cells identifies an oncogenic profile for GINS2.

    PubMed

    Rantala, Juha K; Edgren, Henrik; Lehtinen, Laura; Wolf, Maija; Kleivi, Kristine; Vollan, Hans Kristian Moen; Aaltola, Anna-Riina; Laasola, Petra; Kilpinen, Sami; Saviranta, Petri; Iljin, Kristiina; Kallioniemi, Olli

    2010-11-01

    Aneuploidy is among the most obvious differences between normal and cancer cells. However, mechanisms contributing to development and maintenance of aneuploid cell growth are diverse and incompletely understood. Functional genomics analyses have shown that aneuploidy in cancer cells is correlated with diffuse gene expression signatures and aneuploidy can arise by a variety of mechanisms, including cytokinesis failures, DNA endoreplication, and possibly through polyploid intermediate states. To identify molecular processes contributing to development of aneuploidy, we used a cell spot microarray technique to identify genes inducing polyploidy and/or allowing maintenance of polyploid cell growth in breast cancer cells. Of 5760 human genes screened, 177 were found to induce severe DNA content alterations on prolonged transient silencing. Association with response to DNA damage stimulus and DNA repair was found to be the most enriched cellular processes among the candidate genes. Functional validation analysis of these genes highlighted GINS2 as the highest ranking candidate inducing polyploidy, accumulation of endogenous DNA damage, and impairing cell proliferation on inhibition. The cell growth inhibition and induction of polyploidy by suppression of GINS2 was verified in a panel of breast cancer cell lines. Bioinformatic analysis of published gene expression and DNA copy number studies of clinical breast tumors suggested GINS2 to be associated with the aggressive characteristics of a subgroup of breast cancers in vivo. In addition, nuclear GINS2 protein levels distinguished actively proliferating cancer cells suggesting potential use of GINS2 staining as a biomarker of cell proliferation as well as a potential therapeutic target. PMID:21082043

  18. A Quantitative Comparison of Human HT-1080 Fibrosarcoma Cells and Primary Human Dermal Fibroblasts Identifies a 3D Migration Mechanism with Properties Unique to the Transformed Phenotype

    PubMed Central

    Schwartz, Michael P.; Rogers, Robert E.; Singh, Samir P.; Lee, Justin Y.; Loveland, Samuel G.; Koepsel, Justin T.; Witze, Eric S.; Montanez-Sauri, Sara I.; Sung, Kyung E.; Tokuda, Emi Y.; Sharma, Yasha; Everhart, Lydia M.; Nguyen, Eric H.; Zaman, Muhammad H.; Beebe, David J.; Ahn, Natalie G.; Murphy, William L.; Anseth, Kristi S.

    2013-01-01

    Here, we describe an engineering approach to quantitatively compare migration, morphologies, and adhesion for tumorigenic human fibrosarcoma cells (HT-1080s) and primary human dermal fibroblasts (hDFs) with the aim of identifying distinguishing properties of the transformed phenotype. Relative adhesiveness was quantified using self-assembled monolayer (SAM) arrays and proteolytic 3-dimensional (3D) migration was investigated using matrix metalloproteinase (MMP)-degradable poly(ethylene glycol) (PEG) hydrogels (“synthetic extracellular matrix” or “synthetic ECM”). In synthetic ECM, hDFs were characterized by vinculin-containing features on the tips of protrusions, multipolar morphologies, and organized actomyosin filaments. In contrast, HT-1080s were characterized by diffuse vinculin expression, pronounced β1-integrin on the tips of protrusions, a cortically-organized F-actin cytoskeleton, and quantitatively more rounded morphologies, decreased adhesiveness, and increased directional motility compared to hDFs. Further, HT-1080s were characterized by contractility-dependent motility, pronounced blebbing, and cortical contraction waves or constriction rings, while quantified 3D motility was similar in matrices with a wide range of biochemical and biophysical properties (including collagen) despite substantial morphological changes. While HT-1080s were distinct from hDFs for each of the 2D and 3D properties investigated, several features were similar to WM239a melanoma cells, including rounded, proteolytic migration modes, cortical F-actin organization, and prominent uropod-like structures enriched with β1-integrin, F-actin, and melanoma cell adhesion molecule (MCAM/CD146/MUC18). Importantly, many of the features observed for HT-1080s were analogous to cellular changes induced by transformation, including cell rounding, a disorganized F-actin cytoskeleton, altered organization of focal adhesion proteins, and a weakly adherent phenotype. Based on our results

  19. RNAseq Analyses Identify Tumor Necrosis Factor-Mediated Inflammation as a Major Abnormality in ALS Spinal Cord

    PubMed Central

    Brohawn, David G.; O’Brien, Laura C.; Bennett, James P.

    2016-01-01

    ALS is a rapidly progressive, devastating neurodegenerative illness of adults that produces disabling weakness and spasticity arising from death of lower and upper motor neurons. No meaningful therapies exist to slow ALS progression, and molecular insights into pathogenesis and progression are sorely needed. In that context, we used high-depth, next generation RNA sequencing (RNAseq, Illumina) to define gene network abnormalities in RNA samples depleted of rRNA and isolated from cervical spinal cord sections of 7 ALS and 8 CTL samples. We aligned >50 million 2X150 bp paired-end sequences/sample to the hg19 human genome and applied three different algorithms (Cuffdiff2, DEseq2, EdgeR) for identification of differentially expressed genes (DEG’s). Ingenuity Pathways Analysis (IPA) and Weighted Gene Co-expression Network Analysis (WGCNA) identified inflammatory processes as significantly elevated in our ALS samples, with tumor necrosis factor (TNF) found to be a major pathway regulator (IPA) and TNFα-induced protein 2 (TNFAIP2) as a major network “hub” gene (WGCNA). Using the oPOSSUM algorithm, we analyzed transcription factors (TF) controlling expression of the nine DEG/hub genes in the ALS samples and identified TF’s involved in inflammation (NFkB, REL, NFkB1) and macrophage function (NR1H2::RXRA heterodimer). Transient expression in human iPSC-derived motor neurons of TNFAIP2 (also a DEG identified by all three algorithms) reduced cell viability and induced caspase 3/7 activation. Using high-density RNAseq, multiple algorithms for DEG identification, and an unsupervised gene co-expression network approach, we identified significant elevation of inflammatory processes in ALS spinal cord with TNF as a major regulatory molecule. Overexpression of the DEG TNFAIP2 in human motor neurons, the population most vulnerable to die in ALS, increased cell death and caspase 3/7 activation. We propose that therapies targeted to reduce inflammatory TNFα signaling may be

  20. Transcriptional and functional characterization of CD137L-dendritic cells identifies a novel dendritic cell phenotype

    PubMed Central

    Harfuddin, Zulkarnain; Dharmadhikari, Bhushan; Wong, Siew Cheng; Duan, Kaibo; Poidinger, Michael; Kwajah, Shaqireen; Schwarz, Herbert

    2016-01-01

    The importance of monocyte-derived dendritic cells (DCs) is evidenced by the fact that they are essential for the elimination of pathogens. Although in vitro DCs can be generated by treatment of monocytes with GM-CSF and IL-4, it is unknown what stimuli induce differentiation of DCs in vivo. CD137L-DCs are human monocyte-derived DC that are generated by CD137 ligand (CD137L) signaling. We demonstrate that the gene signature of in vitro generated CD137L-DCs is most similar to those of GM-CSF and IL-4-generated immature DCs and of macrophages. This is reminiscent of in vivo inflammatory DC which also have been reported to share gene signatures with monocyte-derived DCs and macrophages. Performing direct comparison of deposited human gene expression data with a CD137L-DC dataset revealed a significant enrichment of CD137L-DC signature genes in inflammatory in vivo DCs. In addition, surface marker expression and cytokine secretion by CD137L-DCs resemble closely those of inflammatory DCs. Further, CD137L-DCs express high levels of adhesion molecules, display strong attachment, and employ the adhesion molecule ALCAM to stimulate T cell proliferation. This study characterizes the gene expression profile of CD137L-DCs, and identifies significant similarities of CD137L-DCs with in vivo inflammatory monocyte-derived DCs and macrophages. PMID:27431276

  1. High-throughput root phenotyping screens identify genetic loci associated with root architectural traits in Brassica napus under contrasting phosphate availabilities

    PubMed Central

    Shi, Lei; Shi, Taoxiong; Broadley, Martin R.; White, Philip J.; Long, Yan; Meng, Jinling; Xu, Fangsen; Hammond, John P.

    2013-01-01

    Background and Aims Phosphate (Pi) deficiency in soils is a major limiting factor for crop growth worldwide. Plant growth under low Pi conditions correlates with root architectural traits and it may therefore be possible to select these traits for crop improvement. The aim of this study was to characterize root architectural traits, and to test quantitative trait loci (QTL) associated with these traits, under low Pi (LP) and high Pi (HP) availability in Brassica napus. Methods Root architectural traits were characterized in seedlings of a double haploid (DH) mapping population (n = 190) of B. napus [‘Tapidor’ × ‘Ningyou 7’ (TNDH)] using high-throughput phenotyping methods. Primary root length (PRL), lateral root length (LRL), lateral root number (LRN), lateral root density (LRD) and biomass traits were measured 12 d post-germination in agar at LP and HP. Key Results In general, root and biomass traits were highly correlated under LP and HP conditions. ‘Ningyou 7’ had greater LRL, LRN and LRD than ‘Tapidor’, at both LP and HP availability, but smaller PRL. A cluster of highly significant QTL for LRN, LRD and biomass traits at LP availability were identified on chromosome A03; QTL for PRL were identified on chromosomes A07 and C06. Conclusions High-throughput phenotyping of Brassica can be used to identify root architectural traits which correlate with shoot biomass. It is feasible that these traits could be used in crop improvement strategies. The identification of QTL linked to root traits under LP and HP conditions provides further insights on the genetic basis of plant tolerance to P deficiency, and these QTL warrant further dissection. PMID:23172414

  2. Whole-Exome Sequencing Identifies a Novel Genotype-Phenotype Correlation in the Entactin Domain of the Known Deafness Gene TECTA

    PubMed Central

    Chung, Juyong; Kim, Ah Reum; Mun, Sue Jean; Kang, Seong Il; Lee, Sang-Heon; Kim, Namshin; Oh, Seung-Ha

    2014-01-01

    Postlingual progressive hearing loss, affecting primarily the high frequencies, is the clinical finding in most cases of autosomal dominant nonsyndromic hearing loss (ADNSHL). The molecular genetic etiology of ADNSHL is extremely heterogeneous. We applied whole-exome sequencing to reveal the genetic etiology of high-frequency hearing loss in a mid-sized Korean family without any prior linkage data. Whole-exome sequencing of four family members (two affected and two unaffected), together with our filtering strategy based on comprehensive bioinformatics analyses, identified 21 potential pathogenic candidates. Sanger validation of an additional five family members excluded 20 variants, leaving only one novel variant, TECTA c.710C>T (p.T237I), as the strongest candidate. This variant resides in the entactin (ENT) domain and co-segregated perfectly with non-progressive high-frequency hearing loss in the family. It was absent among 700 ethnically matched control chromosomes, and the T237 residue is conserved among species, which supports its pathogenicity. Interestingly, this finding contrasted with a previously proposed genotype-phenotype correlation in which variants of the ENT domain of TECTA were associated with mid-frequency hearing loss. Based upon what we observed, we propose a novel “genotype to phenotype” correlation in the ENT domain of TECTA. Our results shed light on another important application of whole-exome sequencing: the establishment of a novel genotype-phenotype in the molecular genetic diagnosis of autosomal dominant hearing loss. PMID:24816743

  3. Genomic and Transcriptomic Associations Identify a New Insecticide Resistance Phenotype for the Selective Sweep at the Cyp6g1 Locus of Drosophila melanogaster.

    PubMed

    Battlay, Paul; Schmidt, Joshua M; Fournier-Level, Alexandre; Robin, Charles

    2016-01-01

    Scans of the Drosophila melanogaster genome have identified organophosphate resistance loci among those with the most pronounced signature of positive selection. In this study, the molecular basis of resistance to the organophosphate insecticide azinphos-methyl was investigated using the Drosophila Genetic Reference Panel, and genome-wide association. Recently released full transcriptome data were used to extend the utility of the Drosophila Genetic Reference Panel resource beyond traditional genome-wide association studies to allow systems genetics analyses of phenotypes. We found that both genomic and transcriptomic associations independently identified Cyp6g1, a gene involved in resistance to DDT and neonicotinoid insecticides, as the top candidate for azinphos-methyl resistance. This was verified by transgenically overexpressing Cyp6g1 using natural regulatory elements from a resistant allele, resulting in a 6.5-fold increase in resistance. We also identified four novel candidate genes associated with azinphos-methyl resistance, all of which are involved in either regulation of fat storage, or nervous system development. In Cyp6g1, we find a demonstrable resistance locus, a verification that transcriptome data can be used to identify variants associated with insecticide resistance, and an overlap between peaks of a genome-wide association study, and a genome-wide selective sweep analysis. PMID:27317781

  4. Genomic and Transcriptomic Associations Identify a New Insecticide Resistance Phenotype for the Selective Sweep at the Cyp6g1 Locus of Drosophila melanogaster

    PubMed Central

    Battlay, Paul; Schmidt, Joshua M.; Fournier-Level, Alexandre; Robin, Charles

    2016-01-01

    Scans of the Drosophila melanogaster genome have identified organophosphate resistance loci among those with the most pronounced signature of positive selection. In this study, the molecular basis of resistance to the organophosphate insecticide azinphos-methyl was investigated using the Drosophila Genetic Reference Panel, and genome-wide association. Recently released full transcriptome data were used to extend the utility of the Drosophila Genetic Reference Panel resource beyond traditional genome-wide association studies to allow systems genetics analyses of phenotypes. We found that both genomic and transcriptomic associations independently identified Cyp6g1, a gene involved in resistance to DDT and neonicotinoid insecticides, as the top candidate for azinphos-methyl resistance. This was verified by transgenically overexpressing Cyp6g1 using natural regulatory elements from a resistant allele, resulting in a 6.5-fold increase in resistance. We also identified four novel candidate genes associated with azinphos-methyl resistance, all of which are involved in either regulation of fat storage, or nervous system development. In Cyp6g1, we find a demonstrable resistance locus, a verification that transcriptome data can be used to identify variants associated with insecticide resistance, and an overlap between peaks of a genome-wide association study, and a genome-wide selective sweep analysis. PMID:27317781

  5. Genome-Scale Genotype-Phenotype Matching of Two Lactococcus lactis Isolates from Plants Identifies Mechanisms of Adaptation to the Plant Niche▿ †

    PubMed Central

    Siezen, Roland J.; Starrenburg, Marjo J. C.; Boekhorst, Jos; Renckens, Bernadet; Molenaar, Douwe; van Hylckama Vlieg, Johan E. T.

    2008-01-01

    Lactococcus lactis is a primary constituent of many starter cultures used for the manufacturing of fermented dairy products, but the species also occurs in various nondairy niches such as (fermented) plant material. Three genome sequences of L. lactis dairy strains (IL-1403, SK11, and MG1363) are publicly available. An extensive molecular and phenotypic diversity analysis was now performed on two L. lactis plant isolates. Diagnostic sequencing of their genomes resulted in over 2.5 Mb of sequence for each strain. A high synteny was found with the genome of L. lactis IL-1403, which was used as a template for contig mapping and locating deletions and insertions in the plant L. lactis genomes. Numerous genes were identified that do not have homologs in the published genome sequences of dairy L. lactis strains. Adaptation to growth on substrates derived from plant cell walls is evident from the presence of gene sets for the degradation of complex plant polymers such as xylan, arabinan, glucans, and fructans but also for the uptake and conversion of typical plant cell wall degradation products such as α-galactosides, β-glucosides, arabinose, xylose, galacturonate, glucuronate, and gluconate. Further niche-specific differences are found in genes for defense (nisin biosynthesis), stress response (nonribosomal peptide synthesis and various transporters), and exopolysaccharide biosynthesis, as well as the expected differences in various mobile elements such as prophages, plasmids, restriction-modification systems, and insertion sequence elements. Many of these genes were identified for the first time in Lactococcus lactis. In most cases good correspondence was found with the phenotypic characteristics of these two strains. PMID:18039825

  6. Screen for abnormal mitochondrial phenotypes in mouse embryonic stem cells identifies a model for succinyl-CoA ligase deficiency and mtDNA depletion

    PubMed Central

    Donti, Taraka R.; Stromberger, Carmen; Ge, Ming; Eldin, Karen W.; Craigen, William J.; Graham, Brett H.

    2014-01-01

    ABSTRACT Mutations in subunits of succinyl-CoA synthetase/ligase (SCS), a component of the citric acid cycle, are associated with mitochondrial encephalomyopathy, elevation of methylmalonic acid (MMA), and mitochondrial DNA (mtDNA) depletion. A FACS-based retroviral-mediated gene trap mutagenesis screen in mouse embryonic stem (ES) cells for abnormal mitochondrial phenotypes identified a gene trap allele of Sucla2 (Sucla2SAβgeo), which was used to generate transgenic mice. Sucla2 encodes the ADP-specific β-subunit isoform of SCS. Sucla2SAβgeo homozygotes exhibited recessive lethality, with most mutants dying late in gestation (e18.5). Mutant placenta and embryonic (e17.5) brain, heart and muscle showed varying degrees of mtDNA depletion (20–60%). However, there was no mtDNA depletion in mutant liver, where the gene is not normally expressed. Elevated levels of MMA were observed in embryonic brain. SCS-deficient mouse embryonic fibroblasts (MEFs) demonstrated a 50% reduction in mtDNA content compared with wild-type MEFs. The mtDNA depletion resulted in reduced steady state levels of mtDNA encoded proteins and multiple respiratory chain deficiencies. mtDNA content could be restored by reintroduction of Sucla2. This mouse model of SCS deficiency and mtDNA depletion promises to provide insights into the pathogenesis of mitochondrial diseases with mtDNA depletion and into the biology of mtDNA maintenance. In addition, this report demonstrates the power of a genetic screen that combines gene trap mutagenesis and FACS analysis in mouse ES cells to identify mitochondrial phenotypes and to develop animal models of mitochondrial dysfunction. PMID:24271779

  7. Genome sequencing of the Trichoderma reesei QM9136 mutant identifies a truncation of the transcriptional regulator XYR1 as the cause for its cellulase-negative phenotype

    SciTech Connect

    Lichius, Alexander; Bidard, Frederique; Buchholz, Franziska; Le Crom, Stphane; Martin, Joel X.; Schackwitz, Wendy; Austerlitz, Tina; Grigoriev, Igor V.; Baker, Scott E.; Margeot, Antoine; Seiboth, Bernhard; Kubicek, Christian P.

    2015-12-01

    Background: Trichoderma reesei is the main industrial source of cellulases and hemicellulases required for the hydrolysis of biomass to simple sugars, which can then be used in the production of biofuels and biorefineries. The highly productive strains in use today were generated by classical mutagenesis. As byproducts of this procedure, mutants were generated that turned out to be unable to produce cellulases. In order to identify the mutations responsible for this inability, we sequenced the genome of one of these strains, QM9136, and compared it to that of its progenitor T. reesei QM6a. Results: In QM9136, we detected a surprisingly low number of mutagenic events in the promoter and coding regions of genes, i.e. only eight indels and six single nucleotide variants. One of these indels led to a frame-shift in the Zn2Cys6 transcription factor XYR1, the general regulator of cellulase and xylanase expression, and resulted in its C-terminal truncation by 140 amino acids. Retransformation of strain QM9136 with the wild-type xyr1 allele fully recovered the ability to produce cellulases, and is thus the reason for the cellulase-negative phenotype. Introduction of an engineered xyr1 allele containing the truncating point mutation into the moderate producer T. reesei QM9414 rendered this strain also cellulase-negative. The correspondingly truncated XYR1 protein was still able to enter the nucleus, but failed to be expressed over the basal constitutive level. Conclusion: The missing 140 C-terminal amino acids of XYR1 are therefore responsible for its previously observed auto-regulation which is essential for cellulases to be expressed. Our data present a working example of the use of genome sequencing leading to a functional explanation of the QM9136 cellulase-negative phenotype.

  8. Comparison of the Accuracy of Two Conventional Phenotypic Methods and Two MALDI-TOF MS Systems with That of DNA Sequencing Analysis for Correctly Identifying Clinically Encountered Yeasts

    PubMed Central

    Chao, Qiao-Ting; Lee, Tai-Fen; Teng, Shih-Hua; Peng, Li-Yun; Chen, Ping-Hung; Teng, Lee-Jene; Hsueh, Po-Ren

    2014-01-01

    We assessed the accuracy of species-level identification of two commercially available matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) systems (Bruker Biotyper and Vitek MS) and two conventional phenotypic methods (Phoenix 100 YBC and Vitek 2 Yeast ID) with that of rDNA gene sequencing analysis among 200 clinical isolates of commonly encountered yeasts. The correct identification rates of the 200 yeast isolates to species or complex (Candida parapsilosis complex, C. guilliermondii complex and C. rugosa complex) levels by the Bruker Biotyper, Vitek MS (using in vitro devices [IVD] database), Phoenix 100 YBC and Vitek 2 Yeast ID (Sabouraud's dextrose agar) systems were 92.5%, 79.5%, 89%, and 74%, respectively. An additional 72 isolates of C. parapsilosis complex and 18 from the above 200 isolates (30 in each of C. parapsilosis, C. metapsilosis, and C. orthopsilosis) were also evaluated separately. Bruker Biotyper system could accurately identify all C. parapsilosis complex to species level. Using Vitek 2 MS (IVD) system, all C. parapsilosis but none of C. metapsilosis, or C. orthopsilosis could be accurately identified. Among the 89 yeasts misidentified by the Vitek 2 MS (IVD) system, 39 (43.8%), including 27 C. orthopsilosis isolates, could be correctly identified Using the Vitek MS Plus SARAMIS database for research use only. This resulted in an increase in the rate of correct identification of all yeast isolates (87.5%) by Vitek 2 MS. The two species in C. guilliermondii complex (C. guilliermondii and C. fermentati) isolates were correctly identified by cluster analysis of spectra generated by the Bruker Biotyper system. Based on the results obtained in the current study, MALDI-TOF MS systems present a promising alternative for the routine identification of yeast species, including clinically commonly and rarely encountered yeast species and several species belonging to C. parapsilosis complex, C. guilliermondii complex

  9. Combining High-Content Imaging and Phenotypic Classification Analysis of Senescence-Associated Beta-Galactosidase Staining to Identify Regulators of Oncogene-Induced Senescence.

    PubMed

    Chan, Keefe T; Paavolainen, Lassi; Hannan, Katherine M; George, Amee J; Hannan, Ross D; Simpson, Kaylene J; Horvath, Peter; Pearson, Richard B

    2016-09-01

    Hyperactivation of the PI3K/AKT/mTORC1 signaling pathway is a hallmark of the majority of sporadic human cancers. Paradoxically, chronic activation of this pathway in nontransformed cells promotes senescence, which acts as a significant barrier to malignant progression. Understanding how this oncogene-induced senescence is maintained in nontransformed cells and conversely how it is subverted in cancer cells will provide insight into cancer development and potentially identify novel therapeutic targets. High-throughput screening provides a powerful platform for target discovery. Here, we describe an approach to use RNAi transfection of a pre-established AKT-induced senescent cell population and subsequent high-content imaging to screen for senescence regulators. We have incorporated multiparametric readouts, including cell number, proliferation, and senescence-associated beta-galactosidase (SA-βGal) staining. Using machine learning and automated image analysis, we also describe methods to classify distinct phenotypes of cells with SA-βGal staining. These methods can be readily adaptable to high-throughput functional screens interrogating the mechanisms that maintain and prevent senescence in various contexts. PMID:27552145

  10. β-N-methylamino-l-alanine causes neurological and pathological phenotypes mimicking Amyotrophic Lateral Sclerosis (ALS): the first step towards an experimental model for sporadic ALS.

    PubMed

    de Munck, Estefanía; Muñoz-Sáez, Emma; Miguel, Begoña G; Solas, M Teresa; Ojeda, Irene; Martínez, Ana; Gil, Carmen; Arahuetes, Rosa Ma

    2013-09-01

    β-N-methylamino-l-alanine (L-BMAA) is a neurotoxic amino acid that has been related to various neurodegenerative diseases. The aim of this work was to analyze the biotoxicity produced by L-BMAA in vivo in rats, trying to elucidate its physiopathological mechanisms and to search for analogies between the found effects and pathologies like Amyotrophic Lateral Sclerosis (ALS). Our data demonstrated that the neurotoxic effects in vivo were dosage-dependent. For evaluating the state of the animals, a neurological evaluation scale was developed as well as a set of functional tests. Ultrastructural cell analysis of spinal motoneurons has revealed alterations both in endoplasmic reticulum and mitochondria. Since GSK3β could play a role in some neuropathological processes, we analyzed the alterations occurring in GSK3β levels in L-BMAA treated rats, we have observed an increase in the active form of GSK3β levels in lumbar spinal cord and motor cerebral cortex. On the other hand, (TAR)-DNA-binding protein 43 (TDP-43) increased in L-BMAA treated animals. Our results indicated that N-acetylaspartate (NAA) declined in animals treated with L-BMAA, and the ratio of N-acetylaspartate/choline (NAA/Cho), N-acetylaspartate/creatine (NAA/Cr) and N-acetylaspartate/choline+creatine (NAA/Cho+Cr) tended to decrease in lumbar spinal cord and motor cortex. This project offers some encouraging results that could help establishing the progress in the development of an animal model of sporadic ALS and L-BMAA could be a useful tool for this purpose. PMID:23688553

  11. Defining Disease Phenotypes in Primary Care Electronic Health Records by a Machine Learning Approach: A Case Study in Identifying Rheumatoid Arthritis

    PubMed Central

    Zhou, Shang-Ming; Fernandez-Gutierrez, Fabiola; Kennedy, Jonathan; Cooksey, Roxanne; Atkinson, Mark; Denaxas, Spiros; Siebert, Stefan; Dixon, William G.; O’Neill, Terence W.; Choy, Ernest; Sudlow, Cathie; Brophy, Sinead

    2016-01-01

    Objectives 1) To use data-driven method to examine clinical codes (risk factors) of a medical condition in primary care electronic health records (EHRs) that can accurately predict a diagnosis of the condition in secondary care EHRs. 2) To develop and validate a disease phenotyping algorithm for rheumatoid arthritis using primary care EHRs. Methods This study linked routine primary and secondary care EHRs in Wales, UK. A machine learning based scheme was used to identify patients with rheumatoid arthritis from primary care EHRs via the following steps: i) selection of variables by comparing relative frequencies of Read codes in the primary care dataset associated with disease case compared to non-disease control (disease/non-disease based on the secondary care diagnosis); ii) reduction of predictors/associated variables using a Random Forest method, iii) induction of decision rules from decision tree model. The proposed method was then extensively validated on an independent dataset, and compared for performance with two existing deterministic algorithms for RA which had been developed using expert clinical knowledge. Results Primary care EHRs were available for 2,238,360 patients over the age of 16 and of these 20,667 were also linked in the secondary care rheumatology clinical system. In the linked dataset, 900 predictors (out of a total of 43,100 variables) in the primary care record were discovered more frequently in those with versus those without RA. These variables were reduced to 37 groups of related clinical codes, which were used to develop a decision tree model. The final algorithm identified 8 predictors related to diagnostic codes for RA, medication codes, such as those for disease modifying anti-rheumatic drugs, and absence of alternative diagnoses such as psoriatic arthritis. The proposed data-driven method performed as well as the expert clinical knowledge based methods. Conclusion Data-driven scheme, such as ensemble machine learning methods, has

  12. Characterization of mutations in the CPO gene in British patients demonstrates absence of genotype-phenotype correlation and identifies relationship between hereditary coproporphyria and harderoporphyria.

    PubMed

    Lamoril, J; Puy, H; Whatley, S D; Martin, C; Woolf, J R; Da Silva, V; Deybach, J C; Elder, G H

    2001-05-01

    Hereditary coproporphyria (HCP) is the least common of the autosomal dominant acute hepatic porphyrias. It results from mutations in the CPO gene that encodes the mitochondrial enzyme, coproporphyrinogen oxidase. A few patients have also been reported who are homoallellic or heteroallelic for CPO mutations and are clinically distinct from those with HCP. In such patients the presence of a specific mutation (K404E) on one or both alleles produces a neonatal hemolytic anemia that is known as "harderoporphyria"; mutations on both alleles elsewhere in the gene give rise to the "homozygous" variant of HCP. The molecular relationship between these disorders and HCP has not been defined. We describe the molecular investigation and clinical features of 17 unrelated British patients with HCP. Ten novel and four previously reported CPO mutations, together with three previously unrecognized single-nucleotide polymorphisms, were identified in 15 of the 17 patients. HCP is more heterogeneous than other acute porphyrias, with all but one mutation being restricted to a single family, with a predominance of missense mutations (10 missense, 2 nonsense, 1 frameshift, and 1 splice site). Of the four known mutations, one (R331W) has previously been reported to cause disease only in homozygotes. Heterologous expression of another mutation (R401W) demonstrated functional properties similar to those of the K404E harderoporphyria mutation. In all patients, clinical presentation was uniform, in spite of the wide range (1%-64%) of residual coproporphyrinogen oxidase activity, as determined by heterologous expression. Our findings add substantially to knowledge of the molecular epidemiology of HCP, show that single copies of CPO mutations that are known or predicted to cause "homozygous" HCP or harderoporphyria can produce typical HCP in adults, and demonstrate that the severity of the phenotype does not correlate with the degree of inactivation by mutation of coproporphyrinogen oxidase

  13. Characterization of Mutations in the CPO Gene in British Patients Demonstrates Absence of Genotype-Phenotype Correlation and Identifies Relationship between Hereditary Coproporphyria and Harderoporphyria

    PubMed Central

    Lamoril, Jérôme; Puy, Hervé; Whatley, Sharon D.; Martin, Caroline; Woolf, Jacqueline R.; Da Silva, Vasco; Deybach, Jean-Charles; Elder, George H.

    2001-01-01

    Hereditary coproporphyria (HCP) is the least common of the autosomal dominant acute hepatic porphyrias. It results from mutations in the CPO gene that encodes the mitochondrial enzyme, coproporphyrinogen oxidase. A few patients have also been reported who are homoallellic or heteroallelic for CPO mutations and are clinically distinct from those with HCP. In such patients the presence of a specific mutation (K404E) on one or both alleles produces a neonatal hemolytic anemia that is known as “harderoporphyria”; mutations on both alleles elsewhere in the gene give rise to the “homozygous” variant of HCP. The molecular relationship between these disorders and HCP has not been defined. We describe the molecular investigation and clinical features of 17 unrelated British patients with HCP. Ten novel and four previously reported CPO mutations, together with three previously unrecognized single-nucleotide polymorphisms, were identified in 15 of the 17 patients. HCP is more heterogeneous than other acute porphyrias, with all but one mutation being restricted to a single family, with a predominance of missense mutations (10 missense, 2 nonsense, 1 frameshift, and 1 splice site). Of the four known mutations, one (R331W) has previously been reported to cause disease only in homozygotes. Heterologous expression of another mutation (R401W) demonstrated functional properties similar to those of the K404E harderoporphyria mutation. In all patients, clinical presentation was uniform, in spite of the wide range (1%–64%) of residual coproporphyrinogen oxidase activity, as determined by heterologous expression. Our findings add substantially to knowledge of the molecular epidemiology of HCP, show that single copies of CPO mutations that are known or predicted to cause “homozygous” HCP or harderoporphyria can produce typical HCP in adults, and demonstrate that the severity of the phenotype does not correlate with the degree of inactivation by mutation of

  14. Genome-Wide Association Study Identifies Chromosome 10q24.32 Variants Associated with Arsenic Metabolism and Toxicity Phenotypes in Bangladesh

    PubMed Central

    Pierce, Brandon L.; Kibriya, Muhammad G.; Tong, Lin; Jasmine, Farzana; Argos, Maria; Roy, Shantanu; Paul-Brutus, Rachelle; Rahaman, Ronald; Rakibuz-Zaman, Muhammad; Parvez, Faruque; Ahmed, Alauddin; Quasem, Iftekhar; Hore, Samar K.; Alam, Shafiul; Islam, Tariqul; Slavkovich, Vesna; Gamble, Mary V.; Yunus, Md; Rahman, Mahfuzar; Baron, John A.; Graziano, Joseph H.; Ahsan, Habibul

    2012-01-01

    Arsenic contamination of drinking water is a major public health issue in many countries, increasing risk for a wide array of diseases, including cancer. There is inter-individual variation in arsenic metabolism efficiency and susceptibility to arsenic toxicity; however, the basis of this variation is not well understood. Here, we have performed the first genome-wide association study (GWAS) of arsenic-related metabolism and toxicity phenotypes to improve our understanding of the mechanisms by which arsenic affects health. Using data on urinary arsenic metabolite concentrations and approximately 300,000 genome-wide single nucleotide polymorphisms (SNPs) for 1,313 arsenic-exposed Bangladeshi individuals, we identified genome-wide significant association signals (P<5×10−8) for percentages of both monomethylarsonic acid (MMA) and dimethylarsinic acid (DMA) near the AS3MT gene (arsenite methyltransferase; 10q24.32), with five genetic variants showing independent associations. In a follow-up analysis of 1,085 individuals with arsenic-induced premalignant skin lesions (the classical sign of arsenic toxicity) and 1,794 controls, we show that one of these five variants (rs9527) is also associated with skin lesion risk (P = 0.0005). Using a subset of individuals with prospectively measured arsenic (n = 769), we show that rs9527 interacts with arsenic to influence incident skin lesion risk (P = 0.01). Expression quantitative trait locus (eQTL) analyses of genome-wide expression data from 950 individual's lymphocyte RNA suggest that several of our lead SNPs represent cis-eQTLs for AS3MT (P = 10−12) and neighboring gene C10orf32 (P = 10−44), which are involved in C10orf32-AS3MT read-through transcription. This is the largest and most comprehensive genomic investigation of arsenic metabolism and toxicity to date, the only GWAS of any arsenic-related trait, and the first study to implicate 10q24.32 variants in both arsenic metabolism and arsenical skin

  15. Leaf mass per area is independent of vein length per area: avoiding pitfalls when modelling phenotypic integration (reply to Blonder et al. 2014)

    PubMed Central

    Sack, Lawren; Scoffoni, Christine; John, Grace P.; Poorter, Hendrik; Mason, Chase M.; Mendez-Alonzo, Rodrigo; Donovan, Lisa A.

    2014-01-01

    It has been recently proposed that leaf vein length per area (VLA) is the major determinant of leaf mass per area (LMA), and would thereby determine other traits of the leaf economic spectrum (LES), such as photosynthetic rate per mass (A mass), nitrogen concentration per mass (N mass) and leaf lifespan (LL). In a previous paper we argued that this ‘vein origin’ hypothesis was supported only by a mathematical model with predestined outcomes, and that we found no support for the ‘vein origin’ hypothesis in our analyses of compiled data. In contrast to the ‘vein origin’ hypothesis, empirical evidence indicated that VLA and LMA are independent mechanistically, and VLA (among other vein traits) contributes to a higher photosynthetic rate per area (A area), which scales up to driving a higher A mass, all independently of LMA, N mass and LL. In their reply to our paper, Blonder et al. (2014) raised questions about our analysis of their model, but did not address our main point, that the data did not support their hypothesis. In this paper we provide further analysis of an extended data set, which again robustly demonstrates the mechanistic independence of LMA from VLA, and thus does not support the ‘vein origin’ hypothesis. We also address the four specific points raised by Blonder et al. (2014) regarding our analyses. We additionally show how this debate provides critical guidance for improved modelling of LES traits and other networks of phenotypic traits that determine plant performance under contrasting environments. PMID:25118296

  16. Intensive field phenotyping of maize (Zea mays L.) root crowns identifies phenes and phene integration associated with plant growth and nitrogen acquisition.

    PubMed

    York, Larry M; Lynch, Jonathan P

    2015-09-01

    Root architecture is an important regulator of nitrogen (N) acquisition. Existing methods to phenotype the root architecture of cereal crops are generally limited to seedlings or to the outer roots of mature root crowns. The functional integration of root phenes is poorly understood. In this study, intensive phenotyping of mature root crowns of maize was conducted to discover phenes and phene modules related to N acquisition. Twelve maize genotypes were grown under replete and deficient N regimes in the field in South Africa and eight in the USA. An image was captured for every whorl of nodal roots in each crown. Custom software was used to measure root phenes including nodal occupancy, angle, diameter, distance to branching, lateral branching, and lateral length. Variation existed for all root phenes within maize root crowns. Size-related phenes such as diameter and number were substantially influenced by nodal position, while angle, lateral density, and distance to branching were not. Greater distance to branching, the length from the shoot to the emergence of laterals, is proposed to be a novel phene state that minimizes placing roots in already explored soil. Root phenes from both older and younger whorls of nodal roots contributed to variation in shoot mass and N uptake. The additive integration of root phenes accounted for 70% of the variation observed in shoot mass in low N soil. These results demonstrate the utility of intensive phenotyping of mature root systems, as well as the importance of phene integration in soil resource acquisition. PMID:26041317

  17. Intensive field phenotyping of maize (Zea mays L.) root crowns identifies phenes and phene integration associated with plant growth and nitrogen acquisition

    PubMed Central

    York, Larry M.; Lynch, Jonathan P.

    2015-01-01

    Root architecture is an important regulator of nitrogen (N) acquisition. Existing methods to phenotype the root architecture of cereal crops are generally limited to seedlings or to the outer roots of mature root crowns. The functional integration of root phenes is poorly understood. In this study, intensive phenotyping of mature root crowns of maize was conducted to discover phenes and phene modules related to N acquisition. Twelve maize genotypes were grown under replete and deficient N regimes in the field in South Africa and eight in the USA. An image was captured for every whorl of nodal roots in each crown. Custom software was used to measure root phenes including nodal occupancy, angle, diameter, distance to branching, lateral branching, and lateral length. Variation existed for all root phenes within maize root crowns. Size-related phenes such as diameter and number were substantially influenced by nodal position, while angle, lateral density, and distance to branching were not. Greater distance to branching, the length from the shoot to the emergence of laterals, is proposed to be a novel phene state that minimizes placing roots in already explored soil. Root phenes from both older and younger whorls of nodal roots contributed to variation in shoot mass and N uptake. The additive integration of root phenes accounted for 70% of the variation observed in shoot mass in low N soil. These results demonstrate the utility of intensive phenotyping of mature root systems, as well as the importance of phene integration in soil resource acquisition. PMID:26041317

  18. Hyperekplexia phenotype of glycine receptor alpha1 subunit mutant mice identifies Zn(2+) as an essential endogenous modulator of glycinergic neurotransmission.

    PubMed

    Hirzel, Klaus; Müller, Ulrike; Latal, A Tobias; Hülsmann, Swen; Grudzinska, Joanna; Seeliger, Mathias W; Betz, Heinrich; Laube, Bodo

    2006-11-22

    Zn(2+) is thought to modulate neurotransmission by affecting currents mediated by ligand-gated ion channels and transmitter reuptake by Na(+)-dependent transporter systems. Here, we examined the in vivo relevance of Zn(2+) neuromodulation by producing knockin mice carrying the mutation D80A in the glycine receptor (GlyR) alpha1 subunit gene (Glra1). This substitution selectively eliminates the potentiating effect of Zn(2+) on GlyR currents. Mice homozygous for Glra1(D80A) develop a severe neuromotor phenotype postnatally that resembles forms of human hyperekplexia (startle disease) caused by mutations in GlyR genes. In spinal neurons and brainstem slices from Glra1(D80A) mice, GlyR expression, synaptic localization, and basal glycinergic transmission were normal; however, potentiation of spontaneous glycinergic currents by Zn(2+) was significantly impaired. Thus, the hyperekplexia phenotype of Glra1(D80A) mice is due to the loss of Zn(2+) potentiation of alpha1 subunit containing GlyRs, indicating that synaptic Zn(2+) is essential for proper in vivo functioning of glycinergic neurotransmission. PMID:17114051

  19. Genetic variation of single nucleotide polymorphisms identified at the mating type locus correlates with form-specific disease phenotype in the barley net blotch fungus Pyrenophora teres

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mating-type (MAT) locus-specific single nucleotide polymorphisms (SNPs) have been shown to be sufficient for conventional PCR-based differentiation of Pyrenophora teres f. teres (Ptt) and P. teres f. maculata (Ptm), the cause of the net and spot form, respectively, of barley net blotch (Lu et al. 20...

  20. Structural in silico dissection of the collagen V interactome to identify genotype-phenotype correlations in classic Ehlers-Danlos Syndrome (EDS).

    PubMed

    Paladin, Lisanna; Tosatto, Silvio C E; Minervini, Giovanni

    2015-12-21

    Collagen V mutations are associated with Elhers-Danlos syndrome (EDS), a group of heritable collagenopathies. Collagen V structure is not available and the disease-causing mechanism is unclear. To address this issue, we manually curated missense mutations suspected to promote classic type EDS (cEDS) insurgence from the literature and performed a genotype-phenotype correlation study. Further, we generated a homology model of the collagen V triple helix to evaluate the pathogenic effects. The resulting structure was used to map known protein-protein interactions enriched with in silico predictions. An interaction network model for collagen V was created. We found that cEDS heterogeneous manifestations may be explained by the involvement in two different extracellular matrix pathways, related to cell adhesion and tissue repair or cell differentiation, growth and apoptosis. PMID:26608033

  1. Circulating MiRNAs of 'Asian Indian Phenotype' Identified in Subjects with Impaired Glucose Tolerance and Patients with Type 2 Diabetes.

    PubMed

    Prabu, Paramasivam; Rome, Sophie; Sathishkumar, Chandrakumar; Aravind, Sankaramoorthy; Mahalingam, Balakumar; Shanthirani, Coimbatore Subramanian; Gastebois, Caroline; Villard, Audrey; Mohan, Viswanathan; Balasubramanyam, Muthuswamy

    2015-01-01

    Several omics technologies are underway worldwide with an aim to unravel the pathophysiology of a complex phenotype such as type 2 diabetes mellitus (T2DM). While recent studies imply a clinically relevant and potential biomarker role of circulatory miRNAs in the etiology of T2DM, there is lack of data on this aspect in Indians--an ethnic population characterized to represent 'Asian Indian phenotype' known to be more prone to develop T2DM and cardiovascular disease than Europeans. We performed global serum miRNA profiling and the validation of candidate miRNAs by qRT-PCR in a cohort of subjects comprised of normal glucose tolerance (NGT), impaired glucose tolerance (IGT) and patients with T2DM. Our study revealed 4 differentially expressed miRNAs (miR-128, miR-130b-3p, miR-374a-5p, miR-423-5p) in subjects with IGT and T2DM patients compared to control subjects. They were positively or negatively correlated to cholesterol levels, HbA1C, HOMA-IR and fasting insulin. Interestingly, circulating level of miR-128 and miR-130b-3p were also altered in serum of diet-induced diabetic mice compared to control animals. Among the altered circulating miRNAs, miR-128 had never been described in previous studies/populations and appeared to be a 'New Lead' in Indians. It was positively correlated with cholesterol both in prediabetic subjects and in diet-induced diabetic mice, suggesting that its increased level might be associated with the development of dyslipedemia associated with T2DM. Our findings imply directionality towards biomarker potential of miRNAs in the prevention/diagnosis/treatment outcomes of diabetes. PMID:26020947

  2. Large-Scale Phenotyping of an Accurate Genetic Mouse Model of JNCL Identifies Novel Early Pathology Outside the Central Nervous System

    PubMed Central

    Staropoli, John F.; Haliw, Larissa; Biswas, Sunita; Garrett, Lillian; Hölter, Sabine M.; Becker, Lore; Skosyrski, Sergej; Da Silva-Buttkus, Patricia; Calzada-Wack, Julia; Neff, Frauke; Rathkolb, Birgit; Rozman, Jan; Schrewe, Anja; Adler, Thure; Puk, Oliver; Sun, Minxuan; Favor, Jack; Racz, Ildikó; Bekeredjian, Raffi; Busch, Dirk H.; Graw, Jochen; Klingenspor, Martin; Klopstock, Thomas; Wolf, Eckhard; Wurst, Wolfgang; Zimmer, Andreas; Lopez, Edith; Harati, Hayat; Hill, Eric; Krause, Daniela S.; Guide, Jolene; Dragileva, Ella; Gale, Evan; Wheeler, Vanessa C.; Boustany, Rose-Mary; Brown, Diane E.; Breton, Sylvie; Ruether, Klaus; Gailus-Durner, Valérie; Fuchs, Helmut; de Angelis, Martin Hrabě; Cotman, Susan L.

    2012-01-01

    Cln3Δex7/8 mice harbor the most common genetic defect causing juvenile neuronal ceroid lipofuscinosis (JNCL), an autosomal recessive disease involving seizures, visual, motor and cognitive decline, and premature death. Here, to more thoroughly investigate the manifestations of the common JNCL mutation, we performed a broad phenotyping study of Cln3Δex7/8 mice. Homozygous Cln3Δex7/8 mice, congenic on a C57BL/6N background, displayed subtle deficits in sensory and motor tasks at 10–14 weeks of age. Homozygous Cln3Δex7/8 mice also displayed electroretinographic changes reflecting cone function deficits past 5 months of age and a progressive decline of retinal post-receptoral function. Metabolic analysis revealed increases in rectal body temperature and minimum oxygen consumption in 12–13 week old homozygous Cln3Δex7/8mice, which were also seen to a lesser extent in heterozygous Cln3Δex7/8 mice. Heart weight was slightly increased at 20 weeks of age, but no significant differences were observed in cardiac function in young adults. In a comprehensive blood analysis at 15–16 weeks of age, serum ferritin concentrations, mean corpuscular volume of red blood cells (MCV), and reticulocyte counts were reproducibly increased in homozygous Cln3Δex7/8 mice, and male homozygotes had a relative T-cell deficiency, suggesting alterations in hematopoiesis. Finally, consistent with findings in JNCL patients, vacuolated peripheral blood lymphocytes were observed in homozygous Cln3Δex7/8 neonates, and to a greater extent in older animals. Early onset, severe vacuolation in clear cells of the epididymis of male homozygous Cln3Δex7/8 mice was also observed. These data highlight additional organ systems in which to study CLN3 function, and early phenotypes have been established in homozygous Cln3Δex7/8 mice that merit further study for JNCL biomarker development. PMID:22701626

  3. Identifying Mutations of the Tetratricopeptide Repeat Domain 37 (TTC37) Gene in Infants With Intractable Diarrhea and a Comparison of Asian and Non-Asian Phenotype and Genotype

    PubMed Central

    Lee, Wen-I; Huang, Jing-Long; Chen, Chien-Chang; Lin, Ju-Li; Wu, Ren-Chin; Jaing, Tang-Her; Ou, Liang-Shiou

    2016-01-01

    Abstract Syndromic diarrhea/tricho-hepato-enteric syndrome (SD/THE) is a rare, autosomal recessive and severe bowel disorder mainly caused by mutations in the tetratricopeptide repeat domain 37 (TTC37) gene which act as heterotetrameric cofactors to enhance aberrant mRNAs decay. The phenotype and immune profiles of SD/THE overlap those of primary immunodeficiency diseases (PIDs). Neonates with intractable diarrhea underwent immunologic assessments including immunoglobulin levels, lymphocyte subsets, lymphocyte proliferation, superoxide production, and IL-10 signaling function. Candidate genes for PIDs predisposing to inflammatory bowel disease were sequencing in this study. Two neonates, born to nonconsanguineous parents, suffered from intractable diarrhea, recurrent infections, and massive hematemesis from esopharyngeal varices due to liver cirrhosis or accompanying Trichorrhexis nodosa that developed with age and thus guided the diagnosis of SD/THE compatible to TTC37 mutations (homozygous DelK1155H, Fs∗2; heterozygous Y1169Ter and InsA1143, Fs∗3). Their immunologic evaluation showed normal mitogen-stimulated lymphocyte proliferation, superoxide production, and IL-10 signaling, but low IgG levels, undetectable antibody to hepatitis B surface antigen and decreased antigen-stimulated lymphocyte proliferation. A PubMed search for bi-allelic TTC37 mutations and phenotypes were recorded in 14 Asian and 12 non-Asian cases. They had similar presentations of infantile onset refractory diarrhea, facial dysmorphism, hair anomalies, low IgG, low birth weight, and consanguinity. A higher incidence of heart anomalies (8/14 vs 2/12; P = 0.0344, Chi-square), nonsense mutations (19 in 28 alleles), and hot-spot mutations (W936Ter, 2779-2G>A, and Y1169Ter) were found in the Asian compared with the non-Asian patients. Despite immunoglobulin therapy in 20 of the patients, 4 died from liver cirrhosis and 1 died from sepsis. Patients of all ethnicities with SD/THE with the

  4. Characterizing the functional consequences of haploinsufficiency of NELF-A (WHSC2) and SLBP identifies novel cellular phenotypes in Wolf-Hirschhorn syndrome.

    PubMed

    Kerzendorfer, Claudia; Hannes, Femke; Colnaghi, Rita; Abramowicz, Iga; Carpenter, Gillian; Vermeesch, Joris Robert; O'Driscoll, Mark

    2012-05-15

    Wolf-Hirschhorn syndrome (WHS) is a contiguous gene deletion disorder associated with the distal part of the short arm of chromosome 4 (4p16.3). Employing a unique panel of patient-derived cell lines with differing-sized 4p deletions, we provide evidence that haploinsufficiency of SLBP and/or WHSC2 (NELF-A) contributes to several novel cellular phenotypes of WHS, including delayed progression from S-phase into M-phase, reduced DNA replication in asynchronous culture and altered higher order chromatin assembly. The latter is evidenced by reduced histone-chromatin association, elevated levels of soluble chaperone-bound histone H3 and increased sensitivity to micrococcal nuclease digestion in WHS patient-derived cells. We also observed increased camptothecin-induced inhibition of DNA replication and hypersensitivity to killing. Our work provides a novel pathogenomic insight into the aetiology of WHS by describing it, for the first time, as a disorder of impaired chromatin reorganization. Delayed cell-cycle progression and impaired DNA replication likely underlie or contribute to microcephaly, pre- and postnatal growth retardation, which constitute the core clinical features of WHS. PMID:22328085

  5. Genome-wide association mapping in a wild avian population identifies a link between genetic and phenotypic variation in a life-history trait

    PubMed Central

    Husby, Arild; Kawakami, Takeshi; Rönnegård, Lars; Smeds, Linnéa; Ellegren, Hans; Qvarnström, Anna

    2015-01-01

    Understanding the genetic basis of traits involved in adaptation is a major challenge in evolutionary biology but remains poorly understood. Here, we use genome-wide association mapping using a custom 50 k single nucleotide polymorphism (SNP) array in a natural population of collared flycatchers to examine the genetic basis of clutch size, an important life-history trait in many animal species. We found evidence for an association on chromosome 18 where one SNP significant at the genome-wide level explained 3.9% of the phenotypic variance. We also detected two suggestive quantitative trait loci (QTLs) on chromosomes 9 and 26. Fitness differences among genotypes were generally weak and not significant, although there was some indication of a sex-by-genotype interaction for lifetime reproductive success at the suggestive QTL on chromosome 26. This implies that sexual antagonism may play a role in maintaining genetic variation at this QTL. Our findings provide candidate regions for a classic avian life-history trait that will be useful for future studies examining the molecular and cellular function of, as well as evolutionary mechanisms operating at, these loci. PMID:25833857

  6. Genome-wide linkage analysis to identify chromosomal regions affecting phenotypic traits in the chicken. I. Growth and average daily gain

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A genome scan was used to detect chromosomal regions and QTL that control quantitative traits of economic importance in chickens. Two unique F2 crosses generated from a commercial broiler male line and 2 genetically distinct inbred lines (Leghorn and Fayoumi) were used to identify QTL affecting BW a...

  7. Optically confined polarized resonance Raman studies in identifying crystalline orientation of sub-diffraction limited AlGaN nanostructure

    SciTech Connect

    Sivadasan, A. K. Patsha, Avinash; Dhara, Sandip

    2015-04-27

    An optical characterization tool of Raman spectroscopy with extremely weak scattering cross section tool is not popular to analyze scattered signal from a single nanostructure in the sub-diffraction regime. In this regard, plasmonic assisted characterization tools are only relevant in spectroscopic studies of nanoscale object in the sub-diffraction limit. We have reported polarized resonance Raman spectroscopic (RRS) studies with strong electron-phonon coupling to understand the crystalline orientation of a single AlGaN nanowire of diameter ∼100 nm. AlGaN nanowire is grown by chemical vapor deposition technique using the catalyst assisted vapor-liquid-solid process. The results are compared with the high resolution transmission electron microscopic analysis. As a matter of fact, optical confinement effect due to the dielectric contrast of nanowire with respect to that of surrounding media assisted with electron-phonon coupling of RRS is useful for the spectroscopic analysis in the sub-diffraction limit of 325 nm (λ/2N.A.) using an excitation wavelength (λ) of 325 nm and near ultraviolet 40× far field objective with a numerical aperture (N.A.) value of 0.50.

  8. Extreme-phenotype genome-wide association study (XP-GWAS): a method for identifying trait-associated variants by sequencing pools of individuals selected from a diversity panel.

    PubMed

    Yang, Jinliang; Jiang, Haiying; Yeh, Cheng-Ting; Yu, Jianming; Jeddeloh, Jeffrey A; Nettleton, Dan; Schnable, Patrick S

    2015-11-01

    Although approaches for performing genome-wide association studies (GWAS) are well developed, conventional GWAS requires high-density genotyping of large numbers of individuals from a diversity panel. Here we report a method for performing GWAS that does not require genotyping of large numbers of individuals. Instead XP-GWAS (extreme-phenotype GWAS) relies on genotyping pools of individuals from a diversity panel that have extreme phenotypes. This analysis measures allele frequencies in the extreme pools, enabling discovery of associations between genetic variants and traits of interest. This method was evaluated in maize (Zea mays) using the well-characterized kernel row number trait, which was selected to enable comparisons between the results of XP-GWAS and conventional GWAS. An exome-sequencing strategy was used to focus sequencing resources on genes and their flanking regions. A total of 0.94 million variants were identified and served as evaluation markers; comparisons among pools showed that 145 of these variants were statistically associated with the kernel row number phenotype. These trait-associated variants were significantly enriched in regions identified by conventional GWAS. XP-GWAS was able to resolve several linked QTL and detect trait-associated variants within a single gene under a QTL peak. XP-GWAS is expected to be particularly valuable for detecting genes or alleles responsible for quantitative variation in species for which extensive genotyping resources are not available, such as wild progenitors of crops, orphan crops, and other poorly characterized species such as those of ecological interest. PMID:26386250

  9. Development and application of a sensitive, phenotypic, high-throughput image-based assay to identify compound activity against Trypanosoma cruzi amastigotes

    PubMed Central

    Sykes, Melissa L.; Avery, Vicky M.

    2015-01-01

    We have developed a high content 384-well, image-based assay to estimate the effect of compound treatment on Trypanosoma cruzi amastigotes in 3T3 fibroblasts. In the same well, the effect of compound activity on host cells can also be determined, as an initial indicator of cytotoxicity. This assay has been used to identify active compounds from an in-house library of compounds with either known biological activity or that are FDA approved, and separately, from the Medicines for Malaria Venture Malaria Box collection. Active compounds were screened against T. cruzi trypomastigotes, utilising an assay developed with the viability dye resazurin. Twelve compounds with reconfirmed solid sample activity, with IC50 values of less than 10 μM and selectivity indices to T. cruzi amastigotes over 3T3 host cells of between >22 and 319 times were identified from these libraries. As 3T3 cells are contact inhibited, with limited proliferation in the assay, selective compounds of interest were profiled in a separate assay to estimate the viability of compound treated, replicating HEK293 cells. Selective compounds that were not previously reported in the literature were further profiled by extending the incubation time against amastigote infected 3T3 cells to determine if there were residual amastigotes post-treatment, important for the consideration of the exposure time required for further biological characterisation. The assay development process and the suitability of identified compounds as hit molecules for Chagas disease research are discussed. PMID:27120069

  10. Genome sequencing of the Trichoderma reesei QM9136 mutant identifies a truncation of the transcriptional regulator XYR1 as the cause for its cellulase-negative phenotype

    DOE PAGESBeta

    Lichius, Alexander; Bidard, Frédérique; Buchholz, Franziska; Le Crom, Stéphane; Martin, Joel; Schackwitz, Wendy; Austerlitz, Tina; Grigoriev, Igor V; Baker, Scott E; Margeot, Antoine; et al

    2015-04-20

    Trichoderma reesei is the main industrial source of cellulases and hemicellulases required for the hydrolysis of biomass to simple sugars, which can then be used in the production of biofuels and biorefineries. The highly productive strains in use today were generated by classical mutagenesis. As byproducts of this procedure, mutants were generated that turned out to be unable to produce cellulases. In order to identify the mutations responsible for this inability, we sequenced the genome of one of these strains, QM9136, and compared it to that of its progenitor T. reesei QM6a.

  11. Phenotypic switching in bacteria

    NASA Astrophysics Data System (ADS)

    Merrin, Jack

    Living matter is a non-equilibrium system in which many components work in parallel to perpetuate themselves through a fluctuating environment. Physiological states or functionalities revealed by a particular environment are called phenotypes. Transitions between phenotypes may occur either spontaneously or via interaction with the environment. Even in the same environment, genetically identical bacteria can exhibit different phenotypes of a continuous or discrete nature. In this thesis, we pursued three lines of investigation into discrete phenotypic heterogeneity in bacterial populations: the quantitative characterization of the so-called bacterial persistence, a theoretical model of phenotypic switching based on those measurements, and the design of artificial genetic networks which implement this model. Persistence is the phenotype of a subpopulation of bacteria with a reduced sensitivity to antibiotics. We developed a microfluidic apparatus, which allowed us to monitor the growth rates of individual cells while applying repeated cycles of antibiotic treatments. We were able to identify distinct phenotypes (normal and persistent) and characterize the stochastic transitions between them. We also found that phenotypic heterogeneity was present prior to any environmental cue such as antibiotic exposure. Motivated by the experiments with persisters, we formulated a theoretical model describing the dynamic behavior of several discrete phenotypes in a periodically varying environment. This theoretical framework allowed us to quantitatively predict the fitness of dynamic populations and to compare survival strategies according to environmental time-symmetries. These calculations suggested that persistence is a strategy used by bacterial populations to adapt to fluctuating environments. Knowledge of the phenotypic transition rates for persistence may provide statistical information about the typical environments of bacteria. We also describe a design of artificial

  12. Functional and molecular genetic analyses of nine newly identified XPD-deficient patients reveal a novel mutation resulting in TTD as well as in XP/CS complex phenotypes.

    PubMed

    Schäfer, Annika; Gratchev, Alexei; Seebode, Christina; Hofmann, Lars; Schubert, Steffen; Laspe, Petra; Apel, Antje; Ohlenbusch, Andreas; Tzvetkov, Mladen; Weishaupt, Carsten; Oji, Vinzenz; Schön, Michael P; Emmert, Steffen

    2013-07-01

    The xeroderma pigmentosum (XP) group D protein is involved in nucleotide excision repair (NER) as well as in basal transcription. Determined by the type of XPD mutation, six different clinical entities have been distinguished: XP, XP with neurological symptoms, trichothiodystrophy (TTD), XP⁄TTD complex, XP⁄Cockayne syndrome (CS) complex or the cerebro-oculo-facio-skeletal syndrome (COFS). We identified nine new XPD-deficient patients. Their fibroblasts showed reduced post-UV cell survival, reduced NER capacity, normal XPD mRNA expression and partly reduced XPD protein expression. Six patients exhibited a XP phenotype in accordance with established XP-causing mutations (c.2079G>A, p.R683Q; c.2078G>T, p.R683W; c.1833G>T, p.R601L; c.1878G>C, p.R616P; c.1878G>A, p.R616Q). One TTD patient was homozygous for the known TTD-causing mutation p.R722W (c.2195C>T). Two patients were compound heterozygous for a TTD-causing mutation (c.366G>A, p.R112H) and a novel p.D681H (c.2072G>C) amino acid exchange, but exhibited different TTD and XP/CS complex phenotypes, respectively. Interestingly, the XP/CS patient's cells exhibited a reduced but well detectable XPD protein expression compared with hardly detectable XPD expression of the TTD patient's cells. Same mutations with different clinical outcomes in NER-defective patients demonstrate the complexity of phenotype-genotype correlations, for example relating to additional genetic variations (parental consanguinity), different allelic expression due to SNPs or differences in the methylation status. PMID:23800062

  13. Exome sequencing of extreme clopidogrel response phenotypes identifies B4GALT2 as a determinant of on-treatment platelet reactivity.

    PubMed

    Scott, S A; Collet, J-P; Baber, U; Yang, Y; Peter, I; Linderman, M; Sload, J; Qiao, W; Kini, A S; Sharma, S K; Desnick, R J; Fuster, V; Hajjar, R J; Montalescot, G; Hulot, J-S

    2016-09-01

    Interindividual variability in platelet aggregation is common among patients treated with clopidogrel and both high on-treatment platelet reactivity (HTPR) and low on-treatment platelet reactivity (LTPR) increase risks for adverse clinical outcomes. CYP2C19 influences clopidogrel response but only accounts for ∼12% of the variability in platelet reactivity. To identify novel variants implicated in on-treatment platelet reactivity, patients with coronary artery disease (CAD) with extreme pharmacodynamic responses to clopidogrel and wild-type CYP2C19 were subjected to exome sequencing. Candidate variants that clustered in the LTPR subgroup subsequently were genotyped across the discovery cohort (n = 636). Importantly, carriers of B4GALT2 c.909C>T had lower on-treatment P2Y12 reaction units (PRUs; P = 0.0077) and residual platelet aggregation (P = 0.0008) compared with noncarriers, which remained significant after adjusting for CYP2C19 and other clinical variables in both the discovery (P = 0.0298) and replication (n = 160; PRU: P = 0.0001) cohorts. B4GALT2 is a platelet-expressed galactosyltransferase, indicating that B4GALT2 c.909C>T may influence clopidogrel sensitivity through atypical cell-surface glycoprotein processing and platelet adhesion. PMID:27213804

  14. Can we identify patients with high risk of osteoarthritis progression who will respond to treatment? A focus on epidemiology and phenotype of osteoarthritis.

    PubMed

    Bruyère, Olivier; Cooper, Cyrus; Arden, Nigel; Branco, Jaime; Brandi, Maria Luisa; Herrero-Beaumont, Gabriel; Berenbaum, Francis; Dennison, Elaine; Devogelaer, Jean-Pierre; Hochberg, Marc; Kanis, John; Laslop, Andrea; McAlindon, Tim; Reiter, Susanne; Richette, Pascal; Rizzoli, René; Reginster, Jean-Yves

    2015-03-01

    Osteoarthritis is a syndrome affecting a variety of patient profiles. A European Society for Clinical and Economic Aspects of Osteoporosis and Osteoarthritis and the European Union Geriatric Medicine Society working meeting explored the possibility of identifying different patient profiles in osteoarthritis. The risk factors for the development of osteoarthritis include systemic factors (e.g., age, sex, obesity, genetics, race, and bone density) and local biomechanical factors (e.g., obesity, sport, joint injury, and muscle weakness); most also predict disease progression, particularly joint injury, malalignment, and synovitis/effusion. The characterization of patient profiles should help to better orientate research, facilitate trial design, and define which patients are the most likely to benefit from treatment. There are a number of profile candidates. Generalized, polyarticular osteoarthritis and local, monoarticular osteoarthritis appear to be two different profiles; the former is a feature of osteoarthritis co-morbid with inflammation or the metabolic syndrome, while the latter is more typical of post-trauma osteoarthritis, especially in cases with severe malalignment. Other biomechanical factors may also define profiles, such as joint malalignment, loss of meniscal function, and ligament injury. Early- and late-stage osteoarthritis appear as separate profiles, notably in terms of treatment response. Finally, there is evidence that there are two separate profiles related to lesions in the subchondral bone, which may determine benefit from bone-active treatments. Decisions on appropriate therapy should be made considering clinical presentation, underlying pathophysiology, and stage of disease. Identification of patient profiles may lead to more personalized healthcare, with more targeted treatment for osteoarthritis. PMID:25701074

  15. Screening for phenotype selective activity in multidrug resistant cells identifies a novel tubulin active agent insensitive to common forms of cancer drug resistance

    PubMed Central

    2013-01-01

    Background Drug resistance is a common cause of treatment failure in cancer patients and encompasses a multitude of different mechanisms. The aim of the present study was to identify drugs effective on multidrug resistant cells. Methods The RPMI 8226 myeloma cell line and its multidrug resistant subline 8226/Dox40 was screened for cytotoxicity in response to 3,000 chemically diverse compounds using a fluorometric cytotoxicity assay (FMCA). Follow-up profiling was subsequently performed using various cellular and biochemical assays. Results One compound, designated VLX40, demonstrated a higher activity against 8226/Dox40 cells compared to its parental counterpart. VLX40 induced delayed cell death with apoptotic features. Mechanistic exploration was performed using gene expression analysis of drug exposed tumor cells to generate a drug-specific signature. Strong connections to tubulin inhibitors and microtubule cytoskeleton were retrieved. The mechanistic hypothesis of VLX40 acting as a tubulin inhibitor was confirmed by direct measurements of interaction with tubulin polymerization using a biochemical assay and supported by demonstration of G2/M cell cycle arrest. When tested against a broad panel of primary cultures of patient tumor cells (PCPTC) representing different forms of leukemia and solid tumors, VLX40 displayed high activity against both myeloid and lymphoid leukemias in contrast to the reference compound vincristine to which myeloid blast cells are often insensitive. Significant in vivo activity was confirmed in myeloid U-937 cells implanted subcutaneously in mice using the hollow fiber model. Conclusions The results indicate that VLX40 may be a useful prototype for development of novel tubulin active agents that are insensitive to common mechanisms of cancer drug resistance. PMID:23919498

  16. Emerging mechanisms of molecular pathology in ALS

    PubMed Central

    Peters, Owen M.; Ghasemi, Mehdi; Brown, Robert H.

    2015-01-01

    Amyotrophic lateral sclerosis (ALS) is a devastating degenerative disease characterized by progressive loss of motor neurons in the motor cortex, brainstem, and spinal cord. Although defined as a motor disorder, ALS can arise concurrently with frontotemporal lobal dementia (FTLD). ALS begins focally but disseminates to cause paralysis and death. About 10% of ALS cases are caused by gene mutations, and more than 40 ALS-associated genes have been identified. While important questions about the biology of this disease remain unanswered, investigations of ALS genes have delineated pathogenic roles for (a) perturbations in protein stability and degradation, (b) altered homeostasis of critical RNA- and DNA-binding proteins, (c) impaired cytoskeleton function, and (d) non-neuronal cells as modifiers of the ALS phenotype. The rapidity of progress in ALS genetics and the subsequent acquisition of insights into the molecular biology of these genes provide grounds for optimism that meaningful therapies for ALS are attainable. PMID:25932674

  17. Macrophage phenotypes in atherosclerosis.

    PubMed

    Colin, Sophie; Chinetti-Gbaguidi, Giulia; Staels, Bart

    2014-11-01

    Initiation and progression of atherosclerosis depend on local inflammation and accumulation of lipids in the vascular wall. Although many cells are involved in the development and progression of atherosclerosis, macrophages are fundamental contributors. For nearly a decade, the phenotypic heterogeneity and plasticity of macrophages has been studied. In atherosclerotic lesions, macrophages are submitted to a large variety of micro-environmental signals, such as oxidized lipids and cytokines, which influence the phenotypic polarization and activation of macrophages resulting in a dynamic plasticity. The macrophage phenotype spectrum is characterized, at the extremes, by the classical M1 macrophages induced by T-helper 1 (Th-1) cytokines and by the alternative M2 macrophages induced by Th-2 cytokines. M2 macrophages can be further classified into M2a, M2b, M2c, and M2d subtypes. More recently, additional plaque-specific macrophage phenotypes have been identified, termed as Mox, Mhem, and M4. Understanding the mechanisms and functional consequences of the phenotypic heterogeneity of macrophages will contribute to determine their potential role in lesion development and plaque stability. Furthermore, research on macrophage plasticity could lead to novel therapeutic approaches to counteract cardiovascular diseases such as atherosclerosis. The present review summarizes our current knowledge on macrophage subsets in atherosclerotic plaques and mechanism behind the modulation of the macrophage phenotype. PMID:25319333

  18. Retraction: "Over-expression of FoxM1 leads to epithelial-mesenchymal transition and cancer stem cell phenotype in pancreatic cancer cells" by Bao et al.

    PubMed

    2016-08-01

    The above article, published online on April 18, 2011 in Wiley Online Library (wileyonlinelibrary.com), has been retracted by agreement between the journal Editor in Chief, Gary S. Stein, and Wiley Periodicals, Inc. The retraction has been agreed following an investigation from Wayne State University involving the second author that found Figures 1C and 4C to be inappropriately re-used and re-labeled. REFERENCE Bao B, Wang Z, Ali S, Kong D, Banerjee S, Ahmad A, Li Y, Azmi AS, Miele L, Sarkar FH. 2011. Over-expression of FoxM1 leads to epithelial-mesenchymal transition and cancer stem cell phenotype in pancreatic cancer cells. J Cell Biochem 112:2296-2306; doi: 10.1002/jcb.23150. PMID:27301890

  19. The exome sequencing identified the mutation in YARS2 encoding the mitochondrial tyrosyl-tRNA synthetase as a nuclear modifier for the phenotypic manifestation of Leber's hereditary optic neuropathy-associated mitochondrial DNA mutation.

    PubMed

    Jiang, Pingping; Jin, Xiaofen; Peng, Yanyan; Wang, Meng; Liu, Hao; Liu, Xiaoling; Zhang, Zengjun; Ji, Yanchun; Zhang, Juanjuan; Liang, Min; Zhao, Fuxin; Sun, Yan-Hong; Zhang, Minglian; Zhou, Xiangtian; Chen, Ye; Mo, Jun Qin; Huang, Taosheng; Qu, Jia; Guan, Min-Xin

    2016-02-01

    Leber's hereditary optic neuropathy (LHON) is the most common mitochondrial disorder. Nuclear modifier genes are proposed to modify the phenotypic expression of LHON-associated mitochondrial DNA (mtDNA) mutations. By using an exome sequencing approach, we identified a LHON susceptibility allele (c.572G>T, p.191Gly>Val) in YARS2 gene encoding mitochondrial tyrosyl-tRNA synthetase, which interacts with m.11778G>A mutation to cause visual failure. We performed functional assays by using lymphoblastoid cell lines derived from members of Chinese families (asymptomatic individuals carrying m.11778G>A mutation, or both m.11778G>A and heterozygous p.191Gly>Val mutations and symptomatic subjects harboring m.11778G>A and homozygous p.191Gly>Val mutations) and controls lacking these mutations. The 191Gly>Val mutation reduced the YARS2 protein level in the mutant cells. The aminoacylated efficiency and steady-state level of tRNA(Tyr) were markedly decreased in the cell lines derived from patients both carrying homozygous YARS2 p.191Gly>Val and m.11778G>A mutations. The failure in tRNA(Tyr) metabolism impaired mitochondrial translation, especially for polypeptides with high content of tyrosine codon such as ND4, ND5, ND6 and COX2 in cells lines carrying homozygous YARS2 p.191Gly>Val and m.11778G>A mutations. The YARS2 p.191Gly>Val mutation worsened the respiratory phenotypes associated with m.11778G>A mutation, especially reducing activities of complexes I and IV. The respiratory deficiency altered the efficiency of mitochondrial ATP synthesis and increased the production of reactive oxygen species. Thus, mutated YARS2 aggravates mitochondrial dysfunctions associated with the m.11778G>A mutation, exceeding the threshold for the expression of blindness phenotype. Our findings provided new insights into the pathophysiology of LHON that were manifested by interaction between mtDNA mutation and mutated nuclear-modifier YARS2. PMID:26647310

  20. Circulating Endocannabinoids and the Polymorphism 385C>A in Fatty Acid Amide Hydrolase (FAAH) Gene May Identify the Obesity Phenotype Related to Cardiometabolic Risk: A Study Conducted in a Brazilian Population of Complex Interethnic Admixture.

    PubMed

    Martins, Cyro José de Moraes; Genelhu, Virginia; Pimentel, Marcia Mattos Gonçalves; Celoria, Bruno Miguel Jorge; Mangia, Rogerio Fabris; Aveta, Teresa; Silvestri, Cristoforo; Di Marzo, Vincenzo; Francischetti, Emilio Antonio

    2015-01-01

    The dysregulation of the endocannabinoid system is associated with cardiometabolic complications of obesity. Allelic variants in coding genes for this system components may contribute to differences in the susceptibility to obesity and related health hazards. These data have mostly been shown in Caucasian populations and in severely obese individuals. We investigated a multiethnic Brazilian population to study the relationships among the polymorphism 385C>A in an endocannabinoid degrading enzyme gene (FAAH), endocannabinoid levels and markers of cardiometabolic risk. Fasting plasma levels of endocannabinoids and congeners (anandamide, 2-arachidonoylglycerol, N-oleoylethanolamide and N-palmitoylethanolamide) were measured by liquid chromatography-mass spectrometry in 200 apparently healthy individuals of both genders with body mass indices from 22.5 ± 1.8 to 35.9 ± 5.5 kg/m2 (mean ± 1 SD) and ages between 18 and 60 years. All were evaluated for anthropometric parameters, blood pressure, metabolic variables, homeostatic model assessment of insulin resistance (HOMA-IR), adiponectin, leptin, C-reactive protein, and genotyping. The endocannabinoid levels increased as a function of obesity and insulin resistance. The homozygous genotype AA was associated with higher levels of anandamide and lower levels of adiponectin versus wild homozygous CC and heterozygotes combined. The levels of anandamide were independent and positively associated with the genotype AA position 385 of FAAH, C-reactive protein levels and body mass index. Our findings provide evidence for an endocannabinoid-related phenotype that may be identified by the combination of circulating anandamide levels with genotyping of the FAAH 385C>A; this phenotype is not exclusive to mono-ethnoracial populations nor to individuals with severe obesity. PMID:26561012

  1. Circulating Endocannabinoids and the Polymorphism 385C>A in Fatty Acid Amide Hydrolase (FAAH) Gene May Identify the Obesity Phenotype Related to Cardiometabolic Risk: A Study Conducted in a Brazilian Population of Complex Interethnic Admixture

    PubMed Central

    Martins, Cyro José de Moraes; Genelhu, Virginia; Pimentel, Marcia Mattos Gonçalves; Celoria, Bruno Miguel Jorge; Mangia, Rogerio Fabris; Aveta, Teresa; Silvestri, Cristoforo; Di Marzo, Vincenzo; Francischetti, Emilio Antonio

    2015-01-01

    The dysregulation of the endocannabinoid system is associated with cardiometabolic complications of obesity. Allelic variants in coding genes for this system components may contribute to differences in the susceptibility to obesity and related health hazards. These data have mostly been shown in Caucasian populations and in severely obese individuals. We investigated a multiethnic Brazilian population to study the relationships among the polymorphism 385C>A in an endocannabinoid degrading enzyme gene (FAAH), endocannabinoid levels and markers of cardiometabolic risk. Fasting plasma levels of endocannabinoids and congeners (anandamide, 2-arachidonoylglycerol, N-oleoylethanolamide and N-palmitoylethanolamide) were measured by liquid chromatography-mass spectrometry in 200 apparently healthy individuals of both genders with body mass indices from 22.5 ± 1.8 to 35.9 ± 5.5 kg/m2 (mean ± 1 SD) and ages between 18 and 60 years. All were evaluated for anthropometric parameters, blood pressure, metabolic variables, homeostatic model assessment of insulin resistance (HOMA-IR), adiponectin, leptin, C-reactive protein, and genotyping. The endocannabinoid levels increased as a function of obesity and insulin resistance. The homozygous genotype AA was associated with higher levels of anandamide and lower levels of adiponectin versus wild homozygous CC and heterozygotes combined. The levels of anandamide were independent and positively associated with the genotype AA position 385 of FAAH, C-reactive protein levels and body mass index. Our findings provide evidence for an endocannabinoid-related phenotype that may be identified by the combination of circulating anandamide levels with genotyping of the FAAH 385C>A; this phenotype is not exclusive to mono-ethnoracial populations nor to individuals with severe obesity. PMID:26561012

  2. A case of severe proximal focal femoral deficiency with overlapping phenotypes of Al-Awadi-Raas-Rothschild syndrome and Fuhrmann syndrome.

    PubMed

    Matsushita, Masaki; Kitoh, Hiroshi; Mishima, Kenichi; Nishida, Yoshihiro; Ishiguro, Naoki

    2014-12-01

    Proximal focal femoral deficiency (PFFD) is a heterogeneous disorder characterized by various degrees of femoral deficiencies and associated anomalies of the pelvis and lower limbs. The etiology of the disease has not been determined. We report on a 3-year-old boy with severe PFFD, who showed almost completely absent femora and fibulae, malformed pelvis and ectrodactyly of the left foot. These features were partially overlapped with those of Al-Awadi-Raas-Rothschild syndrome or Fuhrmann syndrome, both of which are caused by WNT7A mutations. Molecular analysis of our case, however, demonstrated no disease-causing mutations in the WNT7A gene. PMID:24839142

  3. Rescue of an In Vitro Neuron Phenotype Identified in Niemann-Pick Disease, Type C1 Induced Pluripotent Stem Cell-Derived Neurons by Modulating the WNT Pathway and Calcium Signaling

    PubMed Central

    Efthymiou, Anastasia G.; Steiner, Joe; Pavan, William J.; Wincovitch, Stephen; Larson, Denise M.; Porter, Forbes D.; Rao, Mahendra S.

    2015-01-01

    Niemann-Pick disease, type C1 (NPC1) is a familial disorder that has devastating consequences on postnatal development with multisystem effects, including neurodegeneration. There is no Food and Drug Administration-approved treatment option for NPC1; however, several potentially therapeutic compounds have been identified in assays using yeast, rodent models, and NPC1 human fibroblasts. Although these discoveries were made in fibroblasts from NPC1 subjects and were in some instances validated in animal models of the disease, testing these drugs on a cell type more relevant for NPC1 neurological disease would greatly facilitate both study of the disease and identification of more relevant therapeutic compounds. Toward this goal, we have generated an induced pluripotent stem cell line from a subject homozygous for the most frequent NPC1 mutation (p.I1061T) and subsequently created a stable line of neural stem cells (NSCs). These NSCs were then used to create neurons as an appropriate disease model. NPC1 neurons display a premature cell death phenotype, and gene expression analysis of these cells suggests dysfunction of important signaling pathways, including calcium and WNT. The clear readout from these cells makes them ideal candidates for high-throughput screening and will be a valuable tool to better understand the development of NPC1 in neural cells, as well as to develop better therapeutic options for NPC1. PMID:25637190

  4. A positive genotype-phenotype correlation in a large cohort of patients with Pseudohypoparathyroidism Type Ia and Pseudo-pseudohypoparathyroidism and 33 newly identified mutations in the GNAS gene.

    PubMed

    Thiele, Susanne; Werner, Ralf; Grötzinger, Joachim; Brix, Bettina; Staedt, Pia; Struve, Dagmar; Reiz, Benedikt; Farida, Jennane; Hiort, Olaf

    2015-03-01

    Maternally inherited inactivating GNAS mutations are the most common cause of parathyroid hormone (PTH) resistance and Albright hereditary osteodystrophy (AHO) leading to pseudohypoparathyroidism type Ia (PHPIa) due to Gsα deficiency. Paternally inherited inactivating mutations lead to isolated AHO signs characterizing pseudo-pseudohypoparathyroidism (PPHP). Mutations are distributed throughout the Gsα coding exons of GNAS and there is a lack of genotype-phenotype correlation. In this study, we sequenced exon 1-13 of GNAS in a large cohort of PHPIa- and PPHP patients and identified 58 different mutations in 88 patients and 27 relatives. Thirty-three mutations including 15 missense mutations were newly discovered. Furthermore, we found three hot spots: a known hotspot (p.D190MfsX14), a second at codon 166 (p.R166C), and a third at the exon 5 acceptor splice site (c.435 + 1G>A), found in 15, 5, and 4 unrelated patients, respectively. Comparing the clinical features to the molecular genetic data, a significantly higher occurrence of subcutaneous calcifications in patients harboring truncating versus missense mutations was demonstrated. Thus, in the largest cohort of PHPIa patients described to date, we extend the spectrum of known GNAS mutations and hot spots and demonstrate for the first time a correlation between the genetic defects and the expression of a clinical AHO-feature. PMID:25802881

  5. Rescue of an in vitro neuron phenotype identified in Niemann-Pick disease, type C1 induced pluripotent stem cell-derived neurons by modulating the WNT pathway and calcium signaling.

    PubMed

    Efthymiou, Anastasia G; Steiner, Joe; Pavan, William J; Wincovitch, Stephen; Larson, Denise M; Porter, Forbes D; Rao, Mahendra S; Malik, Nasir

    2015-03-01

    Niemann-Pick disease, type C1 (NPC1) is a familial disorder that has devastating consequences on postnatal development with multisystem effects, including neurodegeneration. There is no Food and Drug Administration-approved treatment option for NPC1; however, several potentially therapeutic compounds have been identified in assays using yeast, rodent models, and NPC1 human fibroblasts. Although these discoveries were made in fibroblasts from NPC1 subjects and were in some instances validated in animal models of the disease, testing these drugs on a cell type more relevant for NPC1 neurological disease would greatly facilitate both study of the disease and identification of more relevant therapeutic compounds. Toward this goal, we have generated an induced pluripotent stem cell line from a subject homozygous for the most frequent NPC1 mutation (p.I1061T) and subsequently created a stable line of neural stem cells (NSCs). These NSCs were then used to create neurons as an appropriate disease model. NPC1 neurons display a premature cell death phenotype, and gene expression analysis of these cells suggests dysfunction of important signaling pathways, including calcium and WNT. The clear readout from these cells makes them ideal candidates for high-throughput screening and will be a valuable tool to better understand the development of NPC1 in neural cells, as well as to develop better therapeutic options for NPC1. PMID:25637190

  6. An overlapping phenotype of Osteogenesis imperfecta and Ehlers-Danlos syndrome due to a heterozygous mutation in COL1A1 and biallelic missense variants in TNXB identified by whole exome sequencing.

    PubMed

    Mackenroth, Luisa; Fischer-Zirnsak, Björn; Egerer, Johannes; Hecht, Jochen; Kallinich, Tilmann; Stenzel, Werner; Spors, Birgit; von Moers, Arpad; Mundlos, Stefan; Kornak, Uwe; Gerhold, Kerstin; Horn, Denise

    2016-04-01

    Osteogenesis imperfecta (OI) and Ehlers-Danlos syndrome (EDS) are variable genetic disorders that overlap in different ways [Cole 1993; Grahame 1999]. Here, we describe a boy presenting with severe muscular hypotonia, multiple fractures, and joint hyperflexibility, features that are compatible with mild OI and hypermobility type EDS, respectively. By whole exome sequencing, we identified both a COL1A1 mutation (c.4006-1G > A) inherited from the patient's mildly affected mother and biallelic missense variants in TNXB (p.Val1213Ile, p.Gly2592Ser). Analysis of cDNA showed that the COL1A1 splice site mutation led to intron retention causing a frameshift (p.Phe1336Valfs*72). Type 1 collagen secretion by the patient's skin fibroblasts was reduced. Immunostaining of a muscle biopsy obtained from the patient revealed a clear reduction of tenascin-X in the extracellular matrix compared to a healthy control. These findings imply that the combination of the COL1A1 mutation with the TNXB variants might cause the patient's unique phenotype. PMID:26799614

  7. Translational profiling identifies a cascade of damage initiated in motor neurons and spreading to glia in mutant SOD1-mediated ALS

    PubMed Central

    Sun, Shuying; Sun, Ying; Ling, Shuo-Chien; Ferraiuolo, Laura; McAlonis-Downes, Melissa; Zou, Yiyang; Drenner, Kevin; Wang, Yin; Ditsworth, Dara; Tokunaga, Seiya; Kopelevich, Alex; Kaspar, Brian K.; Lagier-Tourenne, Clotilde; Cleveland, Don W.

    2015-01-01

    Ubiquitous expression of amyotrophic lateral sclerosis (ALS)-causing mutations in superoxide dismutase 1 (SOD1) provokes noncell autonomous paralytic disease. By combining ribosome affinity purification and high-throughput sequencing, a cascade of mutant SOD1-dependent, cell type-specific changes are now identified. Initial mutant-dependent damage is restricted to motor neurons and includes synapse and metabolic abnormalities, endoplasmic reticulum (ER) stress, and selective activation of the PRKR-like ER kinase (PERK) arm of the unfolded protein response. PERK activation correlates with what we identify as a naturally low level of ER chaperones in motor neurons. Early changes in astrocytes occur in genes that are involved in inflammation and metabolism and are targets of the peroxisome proliferator-activated receptor and liver X receptor transcription factors. Dysregulation of myelination and lipid signaling pathways and activation of ETS transcription factors occur in oligodendrocytes only after disease initiation. Thus, pathogenesis involves a temporal cascade of cell type-selective damage initiating in motor neurons, with subsequent damage within glia driving disease propagation. PMID:26621731

  8. Emerging molecular phenotypes of asthma.

    PubMed

    Ray, Anuradha; Oriss, Timothy B; Wenzel, Sally E

    2015-01-15

    Although asthma has long been considered a heterogeneous disease, attempts to define subgroups of asthma have been limited. In recent years, both clinical and statistical approaches have been utilized to better merge clinical characteristics, biology, and genetics. These combined characteristics have been used to define phenotypes of asthma, the observable characteristics of a patient determined by the interaction of genes and environment. Identification of consistent clinical phenotypes has now been reported across studies. Now the addition of various 'omics and identification of specific molecular pathways have moved the concept of clinical phenotypes toward the concept of molecular phenotypes. The importance of these molecular phenotypes is being confirmed through the integration of molecularly targeted biological therapies. Thus the global term asthma is poised to become obsolete, being replaced by terms that more specifically identify the pathology associated with the disease. PMID:25326577

  9. Genotypic susceptibility testing of Mycobacterium tuberculosis isolates for amikacin and kanamycin resistance by use of a rapid sloppy molecular beacon-based assay identifies more cases of low-level drug resistance than phenotypic Lowenstein-Jensen testing.

    PubMed

    Chakravorty, Soumitesh; Lee, Jong Seok; Cho, Eun Jin; Roh, Sandy S; Smith, Laura E; Lee, Jiim; Kim, Cheon Tae; Via, Laura E; Cho, Sang-Nae; Barry, Clifton E; Alland, David

    2015-01-01

    Resistance to amikacin (AMK) and kanamycin (KAN) in clinical Mycobacterium tuberculosis strains is largely determined by specific mutations in the rrs gene and eis gene promoter. We developed a rapid, multiplexed sloppy molecular beacon (SMB) assay to identify these mutations and then evaluated assay performance on 603 clinical M. tuberculosis DNA samples collected in South Korea. Assay performance was compared to gold-standard phenotypic drug susceptibility tests, including Lowenstein-Jensen (LJ) absolute concentration, mycobacterial growth indicator tubes (MGIT), and TREK Sensititre MycoTB MIC plate (MycoTB) methods. Target amplicons were also tested for mutations by Sanger sequencing. The SMB assay correctly detected 115/116 mutant and mixed sequences and 487/487 wild-type sequences (sensitivity and specificity of 99.1 and 100%, respectively). Using the LJ method as the reference, sensitivity and specificity for AMK resistance were 92.2% and 100%, respectively, and sensitivity and specificity for KAN resistance were 87.7% and 95.6%, respectively. Mutations in the rrs gene were unequivocally associated with high-level cross-resistance to AMK and KAN in all three conventional drug susceptibility testing methods. However, eis promoter mutations were associated with KAN resistance using the MGIT or MycoTB methods but not the LJ method. No testing method associated eis promoter mutations with AMK resistance. Among the discordant samples with AMK and/or KAN resistance but wild-type sequence at the target genes, we discovered four new mutations in the whiB7 5' untranslated region (UTR) in 6/22 samples. All six samples were resistant only to KAN, suggesting the possible role of these whiB7 5' UTR mutations in KAN resistance. PMID:25339395

  10. Identifying postmenopausal women at risk for cognitive decline within a healthy cohort using a panel of clinical metabolic indicators: potential for detecting an at-Alzheimer's risk metabolic phenotype.

    PubMed

    Rettberg, Jamaica R; Dang, Ha; Hodis, Howard N; Henderson, Victor W; St John, Jan A; Mack, Wendy J; Brinton, Roberta Diaz

    2016-04-01

    Detecting at-risk individuals within a healthy population is critical for preventing or delaying Alzheimer's disease. Systems biology integration of brain and body metabolism enables peripheral metabolic biomarkers to serve as reporters of brain bioenergetic status. Using clinical metabolic data derived from healthy postmenopausal women in the Early versus Late Intervention Trial with Estradiol (ELITE), we conducted principal components and k-means clustering analyses of 9 biomarkers to define metabolic phenotypes. Metabolic clusters were correlated with cognitive performance and analyzed for change over 5 years. Metabolic biomarkers at baseline generated 3 clusters, representing women with healthy, high blood pressure, and poor metabolic phenotypes. Compared with healthy women, poor metabolic women had significantly lower executive, global and memory cognitive performance. Hormone therapy provided metabolic benefit to women in high blood pressure and poor metabolic phenotypes. This panel of well-established clinical peripheral biomarkers represents an initial step toward developing an affordable, rapidly deployable, and clinically relevant strategy to detect an at-risk phenotype of late-onset Alzheimer's disease. PMID:26973115

  11. Multivariate Analysis of Genotype-Phenotype Association.

    PubMed

    Mitteroecker, Philipp; Cheverud, James M; Pavlicev, Mihaela

    2016-04-01

    With the advent of modern imaging and measurement technology, complex phenotypes are increasingly represented by large numbers of measurements, which may not bear biological meaning one by one. For such multivariate phenotypes, studying the pairwise associations between all measurements and all alleles is highly inefficient and prevents insight into the genetic pattern underlying the observed phenotypes. We present a new method for identifying patterns of allelic variation (genetic latent variables) that are maximally associated-in terms of effect size-with patterns of phenotypic variation (phenotypic latent variables). This multivariate genotype-phenotype mapping (MGP) separates phenotypic features under strong genetic control from less genetically determined features and thus permits an analysis of the multivariate structure of genotype-phenotype association, including its dimensionality and the clustering of genetic and phenotypic variables within this association. Different variants of MGP maximize different measures of genotype-phenotype association: genetic effect, genetic variance, or heritability. In an application to a mouse sample, scored for 353 SNPs and 11 phenotypic traits, the first dimension of genetic and phenotypic latent variables accounted for >70% of genetic variation present in all 11 measurements; 43% of variation in this phenotypic pattern was explained by the corresponding genetic latent variable. The first three dimensions together sufficed to account for almost 90% of genetic variation in the measurements and for all the interpretable genotype-phenotype association. Each dimension can be tested as a whole against the hypothesis of no association, thereby reducing the number of statistical tests from 7766 to 3-the maximal number of meaningful independent tests. Important alleles can be selected based on their effect size (additive or nonadditive effect on the phenotypic latent variable). This low dimensionality of the genotype-phenotype map

  12. [Intermediate phenotype studies in psychiatric disorder].

    PubMed

    Hashimoto, Ryota

    2016-02-01

    The concept of intermediate phenotype was proposed by Dr. Weinberger of the National Institute of Mental Health (NIMH). The risk genes for mental disorders define intermediate phenotypes, neurobiological characteristics observed in psychiatric disorders, and intermediate phenotypes increase the risk of mental disorders. The author worked at Dr. Weinberger's laboratory, and after returning home, introduced the concept to Japan, creating a term "Chukanhyogengata" to translate "intermediate phenotype". Intermediate phenotype has been proposed as a tool for the identification of risk genes for mental disorders, spreading the concept as a biomarker for the bridging between genes and behaviors. Intermediate phenotype studies later became one of the main pillars of psychiatric research. As a large number of data and samples are needed for intermediate phenotype research, we built a research resource database that combines the brain phenotype and bioresources. We performed genome-wide association analysis of cognitive decline in schizophrenia and identified the DEGS2 gene using this sample. This research resource database was developed for a multicenter study by COCORO (Cognitive Genetics Collaborative Research Organization). COCORO carried out genome-wide association analysis of the gray matter volume of the superior temporal gyrus and identified genome-wide significant loci. In this paper, we introduce the concept and history of intermediate phenotype study of mental illness and the latest trends. We hope to contribute to the future development of mental illness research through translational research. PMID:27044135

  13. Cation-Poor Complex Metallic Alloys in Ba(Eu)-Au-Al(Ga) Systems: Identifying the Keys that Control Structural Arrangements and Atom Distributions at the Atomic Level.

    PubMed

    Smetana, Volodymyr; Steinberg, Simon; Mudryk, Yaroslav; Pecharsky, Vitalij; Miller, Gordon J; Mudring, Anja-Verena

    2015-11-01

    Four complex intermetallic compounds BaAu(6±x)Ga(6±y) (x = 1, y = 0.9) (I), BaAu(6±x)Al(6±y) (x = 0.9, y = 0.6) (II), EuAu6.2Ga5.8 (III), and EuAu6.1Al5.9 (IV) have been synthesized, and their structures and homogeneity ranges have been determined by single crystal and powder X-ray diffraction. Whereas I and II originate from the NaZn13-type structure (cF104-112, Fm3̅c), III (tP52, P4/nbm) is derived from the tetragonal Ce2Ni17Si9-type, and IV (oP104, Pbcm) crystallizes in a new orthorhombic structure type. Both I and II feature formally anionic networks with completely mixed site occupation by Au and triel (Tr = Al, Ga) atoms, while a successive decrease of local symmetry from the parental structures of I and II to III and, ultimately, to IV correlates with increasing separation of Au and Tr on individual crystallographic sites. Density functional theory-based calculations were employed to determine the crystallographic site preferences of Au and the respective triel element to elucidate reasons for the atom distribution ("coloring scheme"). Chemical bonding analyses for two different "EuAu6Tr6" models reveal maximization of the number of heteroatomic Au-Tr bonds as the driving force for atom organization. The Fermi levels fall in broad pseudogaps for both models allowing some electronic flexibility. Spin-polarized band structure calculations on the "EuAu6Tr6" models hint to singlet ground states for europium and long-range magnetic coupling for both EuAu6.2Ga5.8 (III) and EuAu6.1Al5.9 (IV). This is substantiated by experimental evidence because both compounds show nearly identical magnetic behavior with ferromagnetic transitions at TC = 6 K and net magnetic moments of 7.35 μB/f.u. at 2 K. The effective moments of 8.3 μB/f.u., determined from Curie-Weiss fits, point to divalent oxidation states for europium in both III and IV. PMID:26479308

  14. Semiparametric Allelic Tests for Mapping Multiple Phenotypes: Binomial Regression and Mahalanobis Distance.

    PubMed

    Majumdar, Arunabha; Witte, John S; Ghosh, Saurabh

    2015-12-01

    Binary phenotypes commonly arise due to multiple underlying quantitative precursors and genetic variants may impact multiple traits in a pleiotropic manner. Hence, simultaneously analyzing such correlated traits may be more powerful than analyzing individual traits. Various genotype-level methods, e.g., MultiPhen (O'Reilly et al. []), have been developed to identify genetic factors underlying a multivariate phenotype. For univariate phenotypes, the usefulness and applicability of allele-level tests have been investigated. The test of allele frequency difference among cases and controls is commonly used for mapping case-control association. However, allelic methods for multivariate association mapping have not been studied much. In this article, we explore two allelic tests of multivariate association: one using a Binomial regression model based on inverted regression of genotype on phenotype (Binomial regression-based Association of Multivariate Phenotypes [BAMP]), and the other employing the Mahalanobis distance between two sample means of the multivariate phenotype vector for two alleles at a single-nucleotide polymorphism (Distance-based Association of Multivariate Phenotypes [DAMP]). These methods can incorporate both discrete and continuous phenotypes. Some theoretical properties for BAMP are studied. Using simulations, the power of the methods for detecting multivariate association is compared with the genotype-level test MultiPhen's. The allelic tests yield marginally higher power than MultiPhen for multivariate phenotypes. For one/two binary traits under recessive mode of inheritance, allelic tests are found to be substantially more powerful. All three tests are applied to two different real data and the results offer some support for the simulation study. We propose a hybrid approach for testing multivariate association that implements MultiPhen when Hardy-Weinberg Equilibrium (HWE) is violated and BAMP otherwise, because the allelic approaches assume HWE

  15. Phenotypic heterogeneity of Streptococcus mutans in dentin.

    PubMed

    Rupf, S; Hannig, M; Breitung, K; Schellenberger, W; Eschrich, K; Remmerbach, T; Kneist, S

    2008-12-01

    Information concerning phenotypic heterogeneity of Streptococcus mutans in carious dentin is sparse. Matrix-assisted laser-desorption/ionization-time-of-flight mass-spectrometry (MALDI-TOF-MS) facilitates the phenotypic differentiation of bacteria to the subspecies level. To verify a supposed influence of restorative treatment on the phenotypic heterogeneity of S. mutans, we isolated and compared a total of 222 S. mutans strains from dentin samples of 21 human deciduous molars during caries excavation (T(1)) and 8 wks (T(2)) after removal of the temporary restoration. Phenotypic heterogeneity was determined by MALDI-TOF-MS and hierarchical clustering. Thirty-six distinct S. mutans phenotypes could be identified. Although indistinguishable phenotypes were found in the same teeth at T(1) and T(2), as well as in different teeth of individual participants, the phenotypic heterogeneity increased significantly, from 1.4 phenotypes per S. mutans-positive dentin sample at T(1) to 2.2 phenotypes at T(2). We attribute this to an adaptation of S. mutans to the modified environment under the restoration following caries excavation. PMID:19029088

  16. Power matters in closing the phenotyping gap

    NASA Astrophysics Data System (ADS)

    Meyer, Carola W.; Elvert, Ralf; Scherag, André; Ehrhardt, Nicole; Gailus-Durner, Valerie; Fuchs, Helmut; Schäfer, Helmut; Hrabé de Angelis, Martin; Heldmaier, Gerhard; Klingenspor, Martin

    2007-05-01

    Much of our understanding of physiology and metabolism is derived from investigating mouse mutants and transgenic mice, and open-access platforms for standardized mouse phenotyping such as the German Mouse Clinic (GMC) are currently viewed as one powerful tool for identifying novel gene-function relationships. Phenotyping or phenotypic screening involves the comparison of wild-type control mice with their mutant or transgenic littermates. In our study, we explored the extent to which standardized phenotyping will succeed in detecting biologically relevant phenotypic differences in mice generated and provided by different collaborators. We analyzed quantitative metabolic data (body mass, energy intake, and energy metabolized) collected at the GMC under the current workflow, and used them for statistical power considerations. Our results demonstrate that there is substantial variability in these parameters among lines of wild-type C57BL/6 (B6) mice from different sources. Given this variable background noise in mice that serve as controls, subtle phenotypes in mutant or transgenic littermates may be overlooked. Furthermore, a phenotype observed in one cohort of a mutant line may not be reproducible (to the same extent) in mice coming from a different environment or supplier. In the light of these constraints, we encourage researchers to incorporate information on intrastrain variability into future study planning, or to perform advanced hierarchical analyses. Both will ultimately improve the detectability of novel phenotypes by phenotypic screening.

  17. Social Cognition, Social Skill, and the Broad Autism Phenotype

    ERIC Educational Resources Information Center

    Sasson, Noah J.; Nowlin, Rachel B.; Pinkham, Amy E.

    2013-01-01

    Social-cognitive deficits differentiate parents with the "broad autism phenotype" from non-broad autism phenotype parents more robustly than other neuropsychological features of autism, suggesting that this domain may be particularly informative for identifying genetic and brain processes associated with the phenotype. The current study…

  18. Systems Biology Analysis Merging Phenotype, Metabolomic and Genomic Data Identifies Non-SMC Condensin I Complex, Subunit G (NCAPG) and Cellular Maintenance Processes as Major Contributors to Genetic Variability in Bovine Feed Efficiency

    PubMed Central

    Widmann, Philipp; Reverter, Antonio; Weikard, Rosemarie; Suhre, Karsten; Hammon, Harald M.; Albrecht, Elke; Kuehn, Christa

    2015-01-01

    Feed efficiency is a paramount factor for livestock economy. Previous studies had indicated a substantial heritability of several feed efficiency traits. In our study, we investigated the genetic background of residual feed intake, a commonly used parameter of feed efficiency, in a cattle resource population generated from crossing dairy and beef cattle. Starting from a whole genome association analysis, we subsequently performed combined phenotype-metabolome-genome analysis taking a systems biology approach by inferring gene networks based on partial correlation and information theory approaches. Our data about biological processes enriched with genes from the feed efficiency network suggest that genetic variation in feed efficiency is driven by genetic modulation of basic processes relevant to general cellular functions. When looking at the predicted upstream regulators from the feed efficiency network, the Tumor Protein P53 (TP53) and Transforming Growth Factor beta 1 (TGFB1) genes stood out regarding significance of overlap and number of target molecules in the data set. These results further support the hypothesis that TP53 is a major upstream regulator for genetic variation of feed efficiency. Furthermore, our data revealed a significant effect of both, the Non-SMC Condensin I Complex, Subunit G (NCAPG) I442M (rs109570900) and the Growth /differentiation factor 8 (GDF8) Q204X (rs110344317) loci, on residual feed intake and feed conversion. For both loci, the growth promoting allele at the onset of puberty was associated with a negative, but favorable effect on residual feed intake. The elevated energy demand for increased growth triggered by the NCAPG 442M allele is obviously not fully compensated for by an increased efficiency in converting feed into body tissue. As a consequence, the individuals carrying the NCAPG 442M allele had an additional demand for energy uptake that is reflected by the association of the allele with increased daily energy intake as

  19. A new mutation in MC1R explains a coat color phenotype in 2 "old" breeds: Saluki and Afghan hound.

    PubMed

    Dreger, Dayna L; Schmutz, Sheila M

    2010-01-01

    Melanocortin 1 Receptor (MC1R) has been studied in a wide variety of domestic animals (Klungland et al. 1995; Marklund et al. 1996; Våge et al. 1997; Kijas et al. 1998; Newton et al. 2000; Våge et al. 2003), and also several wild animals (Robbins et al. 1993; Ritland et al. 2001; Eizirik et al. 2003; Nachman et al. 2003; McRobie et al. 2009) in relation to coat color variation. A variety of phenotypic changes have been reported including coat colors from pure black to pure red, as well as some phenotypes with hairs with red and black bands. One phenotype, called grizzle in Salukis and domino in Afghan Hounds, appears to be unique to these 2 old dog breeds. This pattern is characterized by a pale face with a widow's peak above the eyes. The body hairs on the dorsal surface of Salukis and Afghan Hounds have both phaeomelanin and eumelanin portions, even though they had an a(t)/a(t) genotype at ASIP. In addition, all had at least one copy of a newly identified mutation in MC1R, g.233G>T, resulting in p.Gly78Val. This new allele, that we suggest be designated as E(G), is dominant to the E and e (p.Arg306ter) alleles at MC1R but recessive to the E(M) (p.Met264Val) allele. The K(B) allele (p.Gly23del) at DEFB103 and the a(y) allele (p.Ala82Ser and p.Arg83His) of ASIP are epistatic to grizzle and domino. PMID:20525767

  20. Understanding COPD: A vision on phenotypes, comorbidities and treatment approach.

    PubMed

    Fragoso, E; André, S; Boleo-Tomé, J P; Areias, V; Munhá, J; Cardoso, J

    2016-01-01

    Chronic Obstructive Pulmonary Disease (COPD) phenotypes have become increasingly recognized as important for grouping patients with similar presentation and/or behavior, within the heterogeneity of the disease. The primary aim of identifying phenotypes is to provide patients with the best health care possible, tailoring the therapeutic approach to each patient. However, the identification of specific phenotypes has been hindered by several factors such as which specific attributes are relevant, which discriminant features should be used for assigning patients to specific phenotypes, and how relevant are they to the therapeutic approach, prognostic and clinical outcome. Moreover, the definition of phenotype is still not consensual. Comorbidities, risk factors, modifiable risk factors and disease severity, although not phenotypes, have impact across all COPD phenotypes. Although there are some identified phenotypes that are fairly consensual, many others have been proposed, but currently lack validation. The on-going debate about which instruments and tests should be used in the identification and definition of phenotypes has contributed to this uncertainty. In this paper, the authors review present knowledge regarding COPD phenotyping, discuss the role of phenotypes and comorbidities on the severity of COPD, propose new phenotypes and suggest a phenotype-based pharmacological therapeutic approach. The authors conclude that a patient-tailored treatment approach, which takes into account each patient's specific attributes and specificities, should be pursued. PMID:26827246

  1. Advanced phenotyping and phenotype data analysis for the study of plant growth and development

    PubMed Central

    Rahaman, Md. Matiur; Chen, Dijun; Gillani, Zeeshan; Klukas, Christian; Chen, Ming

    2015-01-01

    Due to an increase in the consumption of food, feed, fuel and to meet global food security needs for the rapidly growing human population, there is a necessity to breed high yielding crops that can adapt to the future climate changes, particularly in developing countries. To solve these global challenges, novel approaches are required to identify quantitative phenotypes and to explain the genetic basis of agriculturally important traits. These advances will facilitate the screening of germplasm with high performance characteristics in resource-limited environments. Recently, plant phenomics has offered and integrated a suite of new technologies, and we are on a path to improve the description of complex plant phenotypes. High-throughput phenotyping platforms have also been developed that capture phenotype data from plants in a non-destructive manner. In this review, we discuss recent developments of high-throughput plant phenotyping infrastructure including imaging techniques and corresponding principles for phenotype data analysis. PMID:26322060

  2. Genome sequencing of the Trichoderma reesei QM9136 mutant identifies a truncation of the transcriptional regulator XYR1 as the cause for its cellulase-negative phenotype

    SciTech Connect

    Lichius, Alexander; Bidard, Frédérique; Buchholz, Franziska; Le Crom, Stéphane; Martin, Joel; Schackwitz, Wendy; Austerlitz, Tina; Grigoriev, Igor V; Baker, Scott E; Margeot, Antoine; Seiboth, Bernhard; Kubicek, Christian P

    2015-04-20

    Trichoderma reesei is the main industrial source of cellulases and hemicellulases required for the hydrolysis of biomass to simple sugars, which can then be used in the production of biofuels and biorefineries. The highly productive strains in use today were generated by classical mutagenesis. As byproducts of this procedure, mutants were generated that turned out to be unable to produce cellulases. In order to identify the mutations responsible for this inability, we sequenced the genome of one of these strains, QM9136, and compared it to that of its progenitor T. reesei QM6a.

  3. Novel phenotypes of prediabetes?

    PubMed

    Häring, Hans-Ulrich

    2016-09-01

    This article describes phenotypes observed in a prediabetic population (i.e. a population with increased risk for type 2 diabetes) from data collected at the University hospital of Tübingen. We discuss the impact of genetic variation on insulin secretion, in particular the effect on compensatory hypersecretion, and the incretin-resistant phenotype of carriers of the gene variant TCF7L2 is described. Imaging studies used to characterise subphenotypes of fat distribution, metabolically healthy obesity and metabolically unhealthy obesity are described. Also discussed are ectopic fat stores in liver and pancreas that determine the phenotype of metabolically healthy and unhealthy fatty liver and the recently recognised phenotype of fatty pancreas. The metabolic impact of perivascular adipose tissue and pancreatic fat is discussed. The role of hepatokines, particularly that of fetuin-A, in the crosstalk between these organs is described. Finally, the role of brain insulin resistance in the development of the different prediabetes phenotypes is discussed. PMID:27344314

  4. Multidimensional Clinical Phenotyping of an Adult Cystic Fibrosis Patient Population

    PubMed Central

    Conrad, Douglas J.; Bailey, Barbara A.

    2015-01-01

    Background Cystic Fibrosis (CF) is a multi-systemic disease resulting from mutations in the Cystic Fibrosis Transmembrane Regulator (CFTR) gene and has major manifestations in the sino-pulmonary, and gastro-intestinal tracts. Clinical phenotypes were generated using 26 common clinical variables to generate classes that overlapped quantiles of lung function and were based on multiple aspects of CF systemic disease. Methods The variables included age, gender, CFTR mutations, FEV1% predicted, FVC% predicted, height, weight, Brasfield chest xray score, pancreatic sufficiency status and clinical microbiology results. Complete datasets were compiled on 211 subjects. Phenotypes were identified using a proximity matrix generated by the unsupervised Random Forests algorithm and subsequent clustering by the Partitioning around Medoids (PAM) algorithm. The final phenotypic classes were then characterized and compared to a similar dataset obtained three years earlier. Findings Clinical phenotypes were identified using a clustering strategy that generated four and five phenotypes. Each strategy identified 1) a low lung health scores phenotype, 2) a younger, well-nourished, male-dominated class, 3) various high lung health score phenotypes that varied in terms of age, gender and nutritional status. This multidimensional clinical phenotyping strategy identified classes with expected microbiology results and low risk clinical phenotypes with pancreatic sufficiency. Interpretation This study demonstrated regional adult CF clinical phenotypes using non-parametric, continuous, ordinal and categorical data with a minimal amount of subjective data to identify clinically relevant phenotypes. These studies identified the relative stability of the phenotypes, demonstrated specific phenotypes consistent with published findings and identified others needing further study. PMID:25822311

  5. Phenotypic Screens in Antimalarial Drug Discovery.

    PubMed

    Hovlid, Marisa L; Winzeler, Elizabeth A

    2016-09-01

    Phenotypic high-throughput screens are a valuable tool for identifying new chemical compounds with antimalarial activity. Traditionally, these screens have focused solely on the symptomatic asexual blood stage of the parasite life cycle; however, to discover new medicines for malaria treatment and prevention, robust screening technologies against other parasite life-cycle stages are required. This review highlights recent advances and progress toward phenotypic screening methodologies over the past several years, with a focus on exoerythrocytic stage screens. PMID:27247245

  6. Phenotypic deconstruction of gene circuitry

    NASA Astrophysics Data System (ADS)

    Lomnitz, Jason G.; Savageau, Michael A.

    2013-06-01

    It remains a challenge to obtain a global perspective on the behavioral repertoire of complex nonlinear gene circuits. In this paper, we describe a method for deconstructing complex systems into nonlinear sub-systems, based on mathematically defined phenotypes, which are then represented within a system design space that allows the repertoire of qualitatively distinct phenotypes of the complex system to be identified, enumerated, and analyzed. This method efficiently characterizes large regions of system design space and quickly generates alternative hypotheses for experimental testing. We describe the motivation and strategy in general terms, illustrate its use with a detailed example involving a two-gene circuit with a rich repertoire of dynamic behavior, and discuss experimental means of navigating the system design space.

  7. Genetic mapping of a mouse modifier gene that can prevent ALS onset.

    PubMed

    Kunst, C B; Messer, L; Gordon, J; Haines, J; Patterson, D

    2000-12-01

    Mutations in the cytoplasmic Cu/Zn superoxide dismutase (SOD1) gene on human chromosome 21q22.1 cause 10-20% of familial amyotrophic lateral sclerosis (ALS) cases. The expression of the ALS phenotype in mice carrying the murine G86R SOD1 mutation is highly dependent upon the mouse genetic background. This is similar to the phenotypic variation observed in ALS patients containing identical SOD1 mutations. In the FVB/N background, mice expressing mG86R SOD1 develop an ALS phenotype at approximately 100 days. However, when these mice were bred into a mixed background of C57Bl6/129Sv, the onset of the ALS phenotype was delayed (143 days to >2 years). Using 129 polymorphic autosomal markers in a whole genome scan, we have identified a major genetic modifier locus with a maximum lod score of 5.07 on mouse chromosome 13 between D13mit36 and D13mit76. This 5- to 8-cM interval contains the spinal muscular atrophy (SMA)-associated gene Smn (survival motor neuron) and seven copies of Naip (neuronal apoptosis inhibitory protein), suggesting a potential link between SMA and ALS. PMID:11112346

  8. The C9ORF72 expansion mutation: gene structure, phenotypic and diagnostic issues.

    PubMed

    Woollacott, Ione O C; Mead, Simon

    2014-03-01

    The discovery of the C9ORF72 hexanucleotide repeat expansion in 2011 and the immediate realisation of a remarkably high prevalence in both familial and sporadic frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS) triggered an explosion of interest in studies aiming to define the associated clinical and investigation phenotypes and attempts to develop technologies to measure more accurately the size of the repeat region. This article reviews progress in these areas over the subsequent 2 years, focussing on issues directly relevant to the practising physician. First, we summarise findings from studies regarding the global prevalence of the expansion, not only in FTLD and ALS cases, but also in other neurological diseases and its concurrence with other genetic mutations associated with FTLD and ALS. Second, we discuss the variability in normal repeat number in cases and controls and the theories regarding the relevance of intermediate and pathological repeat number for disease risk and clinical phenotype. Third, we discuss the usefulness of various features within the FTLD and ALS clinical phenotype in aiding differentiation between cases with and without the C9ORF72 expansion. Fourth, we review clinical investigations used to identify cases with the expansion, including neuroimaging and cerebrospinal fluid markers, and describe the mechanisms and limitations of the various diagnostic laboratory techniques used to quantify repeat number in cases and controls. Finally, we discuss the issues surrounding accurate clinical and technological diagnosis of patients with FTLD and/or ALS associated with the C9ORF72 expansion, and outline areas for future research that might aid better diagnosis and genetic counselling of patients with seemingly sporadic or familial FTLD or ALS and their relatives. PMID:24515836

  9. Semi-parametric Allelic Tests For Mapping Multiple Phenotypes: Binomial Regression And Mahalanobis Distance

    PubMed Central

    Majumdar, Arunabha; Witte, John S.; Ghosh, Saurabh

    2016-01-01

    Binary phenotypes commonly arise due to multiple underlying quantitative precursors. Genetic variants may impact multiple traits in a pleiotropic manner. Hence, simultaneously analyzing such correlated traits may be more powerful than analyzing individual traits. Various genotype-level methods, e.g. MultiPhen [O'Reilly et al., 2012], have been developed to identify genetic factors underlying a multivariate phenotype. For univariate phenotypes, the usefulness and applicability of allele-level tests have been investigated. The test of allele frequency difference among cases and controls is commonly used for mapping case-control association. However, allelic methods for multivariate association mapping have not been studied much. We explore two allelic tests of multivariate association: one using a Binomial regression model based on inverted regression of genotype on phenotype (BAMP), and the other employing the Mahalanobis distance between two sample means of the multivariate phenotype vector for two alleles at a SNP (DAMP). These methods can incorporate both discrete and continuous phenotypes. Some theoretical properties for BAMP are studied. Using simulations, the power of the methods for detecting multivariate association are compared with the genotype-level test MultiPhen. The allelic tests yield marginally higher power than MultiPhen for multivariate phenotypes. For one/two binary traits under recessive mode of inheritance, allelic tests are found substantially more powerful. All three tests are applied to two real data and the results offer some support for the simulation study. Since the allelic approaches assume Hardy-Weinberg Equilibrium (HWE), we propose a hybrid approach for testing multivariate association that implements MultiPhen when HWE is violated and BAMP otherwise. PMID:26493781

  10. Target deconvolution techniques in modern phenotypic profiling

    PubMed Central

    Lee, Jiyoun; Bogyo, Matthew

    2013-01-01

    The past decade has seen rapid growth in the use of diverse compound libraries in classical phenotypic screens to identify modulators of a given process. The subsequent process of identifying the molecular targets of active hits, also called ‘target deconvolution’, is an essential step for understanding compound mechanism of action and for using the identified hits as tools for further dissection of a given biological process. Recent advances in ‘omics’ technologies, coupled with in silico approaches and the reduced cost of whole genome sequencing, have greatly improved the workflow of target deconvolution and have contributed to a renaissance of ‘modern’ phenotypic profiling. In this review, we will outline how both new and old techniques are being used in the difficult process of target identification and validation as well as discuss some of the ongoing challenges remaining for phenotypic screening. PMID:23337810

  11. Geographically multifarious phenotypic divergence during speciation

    PubMed Central

    Gompert, Zachariah; Lucas, Lauren K; Nice, Chris C; Fordyce, James A; Alex Buerkle, C; Forister, Matthew L

    2013-01-01

    Speciation is an important evolutionary process that occurs when barriers to gene flow evolve between previously panmictic populations. Although individual barriers to gene flow have been studied extensively, we know relatively little regarding the number of barriers that isolate species or whether these barriers are polymorphic within species. Herein, we use a series of field and lab experiments to quantify phenotypic divergence and identify possible barriers to gene flow between the butterfly species Lycaeides idas and Lycaeides melissa. We found evidence that L. idas and L. melissa have diverged along multiple phenotypic axes. Specifically, we identified major phenotypic differences in female oviposition preference and diapause initiation, and more moderate divergence in mate preference. Multiple phenotypic differences might operate as barriers to gene flow, as shown by correlations between genetic distance and phenotypic divergence and patterns of phenotypic variation in admixed Lycaeides populations. Although some of these traits differed primarily between species (e.g., diapause initiation), several traits also varied among conspecific populations (e.g., male mate preference and oviposition preference). PMID:23532669

  12. Finding the target after screening the phenotype.

    PubMed

    Hart, Charles P

    2005-04-01

    Although most screening for new drug leads is being directed at known or emerging molecular targets, there has been a renaissance in screening based on changes in cell or organismal phenotypes. Phenotype-based screening is accompanied by the challenge of identifying the molecular target or targets bound by the drug leads and responsible for their pharmacological activity. A variety of technologies and approaches are being explored for target identification after phenotypic screening. Direct approaches employing affinity chromatography, expression cloning and protein microarrays analyze the compound bound to its target. Indirect approaches are based on comparison of the genome-wide activity profile of the compound with databases of the activity profiles of other compounds with known targets or activity profiles following specific genetic changes. This review will use case studies of target identification efforts and highlight the advantages and disadvantages of the various approaches to target identification after phenotypic screening. PMID:15809197

  13. Statistical models for trisomic phenotypes

    SciTech Connect

    Lamb, N.E.; Sherman, S.L.; Feingold, E.

    1996-01-01

    Certain genetic disorders are rare in the general population but more common in individuals with specific trisomies, which suggests that the genes involved in the etiology of these disorders may be located on the trisomic chromosome. As with all aneuploid syndromes, however, a considerable degree of variation exists within each phenotype so that any given trait is present only among a subset of the trisomic population. We have previously presented a simple gene-dosage model to explain this phenotypic variation and developed a strategy to map genes for such traits. The mapping strategy does not depend on the simple model but works in theory under any model that predicts that affected individuals have an increased likelihood of disomic homozygosity at the trait locus. This paper explores the robustness of our mapping method by investigating what kinds of models give an expected increase in disomic homozygosity. We describe a number of basic statistical models for trisomic phenotypes. Some of these are logical extensions of standard models for disomic phenotypes, and some are more specific to trisomy. Where possible, we discuss genetic mechanisms applicable to each model. We investigate which models and which parameter values give an expected increase in disomic homozygosity in individuals with the trait. Finally, we determine the sample sizes required to identify the increased disomic homozygosity under each model. Most of the models we explore yield detectable increases in disomic homozygosity for some reasonable range of parameter values, usually corresponding to smaller trait frequencies. It therefore appears that our mapping method should be effective for a wide variety of moderately infrequent traits, even though the exact mode of inheritance is unlikely to be known. 21 refs., 8 figs., 1 tab.

  14. Retraction: "Activated K-Ras and INK4a/Arf Deficiency Promote Aggressiveness of Pancreatic Cancer by Induction of EMT Consistent With Cancer Stem Cell Phenotype" by Wang et al.

    PubMed

    2016-10-01

    The above article, published online on November 23, 2012 in Wiley Online Library (wileyonlinelibrary.com), has been retracted by agreement between the journal Editor in Chief, Gary S. Stein, and Wiley Periodicals, Inc. The retraction has been agreed following an investigation from Wayne State University involving the first author and the corresponding author that found Figure 4B and C to be inappropriately manipulated and re-labeled. Literature Cited Wang Z, Ali S, Banerjee S, Bao B, Li Y, Azmi AS, Korc M, Sarkar FH. 2013. Activated K-Ras and INK4a/Arf deficiency promote aggressiveness of pancreatic cancer by induction of EMT consistent with cancer stem cell phenotype. J Cell Physiol 228:556-562; doi: 10.1002/jcp.24162. PMID:27315162

  15. Phenotypes of childhood asthma: are they real?

    PubMed

    Spycher, B D; Silverman, M; Kuehni, C E

    2010-08-01

    It has been suggested that there are several distinct phenotypes of childhood asthma or childhood wheezing. Here, we review the research relating to these phenotypes, with a focus on the methods used to define and validate them. Childhood wheezing disorders manifest themselves in a range of observable (phenotypic) features such as lung function, bronchial responsiveness, atopy and a highly variable time course (prognosis). The underlying causes are not sufficiently understood to define disease entities based on aetiology. Nevertheless, there is a need for a classification that would (i) facilitate research into aetiology and pathophysiology, (ii) allow targeted treatment and preventive measures and (iii) improve the prediction of long-term outcome. Classical attempts to define phenotypes have been one-dimensional, relying on few or single features such as triggers (exclusive viral wheeze vs. multiple trigger wheeze) or time course (early transient wheeze, persistent and late onset wheeze). These definitions are simple but essentially subjective. Recently, a multi-dimensional approach has been adopted. This approach is based on a wide range of features and relies on multivariate methods such as cluster or latent class analysis. Phenotypes identified in this manner are more complex but arguably more objective. Although phenotypes have an undisputed standing in current research on childhood asthma and wheezing, there is confusion about the meaning of the term 'phenotype' causing much circular debate. If phenotypes are meant to represent 'real' underlying disease entities rather than superficial features, there is a need for validation and harmonization of definitions. The multi-dimensional approach allows validation by replication across different populations and may contribute to a more reliable classification of childhood wheezing disorders and to improved precision of research relying on phenotype recognition, particularly in genetics. Ultimately, the underlying

  16. Biological Analysis of Human Immunodeficiency Virus Type 1 R5 Envelopes Amplified from Brain and Lymph Node Tissues of AIDS Patients with Neuropathology Reveals Two Distinct Tropism Phenotypes and Identifies Envelopes in the Brain That Confer an Enhanced Tropism and Fusigenicity for Macrophages

    PubMed Central

    Peters, Paul J.; Bhattacharya, Jayanta; Hibbitts, Samantha; Dittmar, Matthias T.; Simmons, Graham; Bell, Jeanne; Simmonds, Peter; Clapham, Paul R.

    2004-01-01

    Complete envelope genes were amplified from autopsy brain tissue of five individuals who had died of AIDS and had neurological complications. Lymph node samples were included for two of the patients. Nineteen different envelope clones from the five patients had distinct V1V2 sequences. Thirteen of the envelopes were functional and conferred fusigenicity and infectivity for CD4+ CCR5+ cells. Infectivity and cell-cell fusion assays showed that most envelopes used both CCR5 and CCR3. One brain-derived envelope used a broad range of coreceptors, while three other brain envelopes from one individual were restricted to CCR5. However, there was no correlation between tissue of origin and coreceptor use. Envelopes showed two very distinct phenotypes depending on their capacity to infect macrophages and to exploit low levels of CD4 and/or CCR5 for infection. Envelopes that were highly fusigenic and tropic for macrophages were identified in brain tissue from four of the five patients. The enhanced macrophage tropism correlated with reduced sensitivity to inhibition by Q4120, a CD4-specific antibody, but not with sensitivity to the CCR5 inhibitor, TAK779. The highly macrophage-tropic envelopes were able to infect cells expressing low levels of CD4 and/or CCR5. Comparison with several well-characterized macrophage-tropic envelopes showed that the four identified patient envelopes were at the top limit of macrophage tropism. In contrast, all four lymph node-derived envelopes exhibited a non-macrophage-tropic phenotype and required high levels of CD4 for infection. Our data support the presence of envelopes that are highly fusigenic and tropic for macrophages in the brains of patients with neurological complications. These envelopes are able to infect cells that express low levels of CD4 and/or CCR5 and may have adapted for replication in brain macrophages and microglia, which are known to express limited amounts of CD4. PMID:15194768

  17. The value of translational biomarkers to phenotypic assays

    PubMed Central

    Swinney, David C.

    2014-01-01

    Phenotypic assays are tools essential for drug discovery. Phenotypic assays have different types of endpoints depending on the goals; (1) empirical endpoints for basic research to understand the underlying biology that will lead to identification of translation biomarkers, (2) empirical endpoints to identify undesired effects related to toxicity of drug candidates, and (3) knowledge-based endpoints (biomarkers) for drug discovery which ideally are translational biomarkers that will be used to identify new drug candidates and their corresponding molecular mechanisms of action. The value of phenotypic assays is increased through effective alignment of phenotypic assay endpoints with the objectives of the relevant stage in the drug discovery and development cycle. PMID:25076910

  18. Automated tools for phenotype extraction from medical records.

    PubMed

    Yetisgen-Yildiz, Meliha; Bejan, Cosmin A; Vanderwende, Lucy; Xia, Fei; Evans, Heather L; Wurfel, Mark M

    2013-01-01

    Clinical research studying critical illness phenotypes relies on the identification of clinical syndromes defined by consensus definitions. Historically, identifying phenotypes has required manual chart review, a time and resource intensive process. The overall research goal of C ritical I llness PH enotype E xt R action (deCIPHER) project is to develop automated approaches based on natural language processing and machine learning that accurately identify phenotypes from EMR. We chose pneumonia as our first critical illness phenotype and conducted preliminary experiments to explore the problem space. In this abstract, we outline the tools we built for processing clinical records, present our preliminary findings for pneumonia extraction, and describe future steps. PMID:24303281

  19. Serum Biochemical Phenotypes in the Domestic Dog

    PubMed Central

    Chang, Yu-Mei; Hadox, Erin; Szladovits, Balazs; Garden, Oliver A.

    2016-01-01

    The serum or plasma biochemical profile is essential in the diagnosis and monitoring of systemic disease in veterinary medicine, but current reference intervals typically take no account of breed-specific differences. Breed-specific hematological phenotypes have been documented in the domestic dog, but little has been published on serum biochemical phenotypes in this species. Serum biochemical profiles of dogs in which all measurements fell within the existing reference intervals were retrieved from a large veterinary database. Serum biochemical profiles from 3045 dogs were retrieved, of which 1495 had an accompanying normal glucose concentration. Sixty pure breeds plus a mixed breed control group were represented by at least 10 individuals. All analytes, except for sodium, chloride and glucose, showed variation with age. Total protein, globulin, potassium, chloride, creatinine, cholesterol, total bilirubin, ALT, CK, amylase, and lipase varied between sexes. Neutering status significantly impacted all analytes except albumin, sodium, calcium, urea, and glucose. Principal component analysis of serum biochemical data revealed 36 pure breeds with distinctive phenotypes. Furthermore, comparative analysis identified 23 breeds with significant differences from the mixed breed group in all biochemical analytes except urea and glucose. Eighteen breeds were identified by both principal component and comparative analysis. Tentative reference intervals were generated for breeds with a distinctive phenotype identified by comparative analysis and represented by at least 120 individuals. This is the first large-scale analysis of breed-specific serum biochemical phenotypes in the domestic dog and highlights potential genetic components of biochemical traits in this species. PMID:26919479

  20. Serum Biochemical Phenotypes in the Domestic Dog.

    PubMed

    Chang, Yu-Mei; Hadox, Erin; Szladovits, Balazs; Garden, Oliver A

    2016-01-01

    The serum or plasma biochemical profile is essential in the diagnosis and monitoring of systemic disease in veterinary medicine, but current reference intervals typically take no account of breed-specific differences. Breed-specific hematological phenotypes have been documented in the domestic dog, but little has been published on serum biochemical phenotypes in this species. Serum biochemical profiles of dogs in which all measurements fell within the existing reference intervals were retrieved from a large veterinary database. Serum biochemical profiles from 3045 dogs were retrieved, of which 1495 had an accompanying normal glucose concentration. Sixty pure breeds plus a mixed breed control group were represented by at least 10 individuals. All analytes, except for sodium, chloride and glucose, showed variation with age. Total protein, globulin, potassium, chloride, creatinine, cholesterol, total bilirubin, ALT, CK, amylase, and lipase varied between sexes. Neutering status significantly impacted all analytes except albumin, sodium, calcium, urea, and glucose. Principal component analysis of serum biochemical data revealed 36 pure breeds with distinctive phenotypes. Furthermore, comparative analysis identified 23 breeds with significant differences from the mixed breed group in all biochemical analytes except urea and glucose. Eighteen breeds were identified by both principal component and comparative analysis. Tentative reference intervals were generated for breeds with a distinctive phenotype identified by comparative analysis and represented by at least 120 individuals. This is the first large-scale analysis of breed-specific serum biochemical phenotypes in the domestic dog and highlights potential genetic components of biochemical traits in this species. PMID:26919479

  1. Comprehensive Detection of Genes Causing a Phenotype Using Phenotype Sequencing and Pathway Analysis

    PubMed Central

    Harper, Marc; Gronenberg, Luisa; Liao, James; Lee, Christopher

    2014-01-01

    Discovering all the genetic causes of a phenotype is an important goal in functional genomics. We combine an experimental design for detecting independent genetic causes of a phenotype with a high-throughput sequencing analysis that maximizes sensitivity for comprehensively identifying them. Testing this approach on a set of 24 mutant strains generated for a metabolic phenotype with many known genetic causes, we show that this pathway-based phenotype sequencing analysis greatly improves sensitivity of detection compared with previous methods, and reveals a wide range of pathways that can cause this phenotype. We demonstrate our approach on a metabolic re-engineering phenotype, the PEP/OAA metabolic node in E. coli, which is crucial to a substantial number of metabolic pathways and under renewed interest for biofuel research. Out of 2157 mutations in these strains, pathway-phenoseq discriminated just five gene groups (12 genes) as statistically significant causes of the phenotype. Experimentally, these five gene groups, and the next two high-scoring pathway-phenoseq groups, either have a clear connection to the PEP metabolite level or offer an alternative path of producing oxaloacetate (OAA), and thus clearly explain the phenotype. These high-scoring gene groups also show strong evidence of positive selection pressure, compared with strictly neutral selection in the rest of the genome. PMID:24586303

  2. Gene Networks Underlying Convergent and Pleiotropic Phenotypes in a Large and Systematically-Phenotyped Cohort with Heterogeneous Developmental Disorders

    PubMed Central

    Vulto-van Silfhout, Anneke; Taylor, Avigail; Steinberg, Julia; Hehir-Kwa, Jayne; Pfundt, Rolph; de Leeuw, Nicole; de Vries, Bert B. A.; Webber, Caleb

    2015-01-01

    Readily-accessible and standardised capture of genotypic variation has revolutionised our understanding of the genetic contribution to disease. Unfortunately, the corresponding systematic capture of patient phenotypic variation needed to fully interpret the impact of genetic variation has lagged far behind. Exploiting deep and systematic phenotyping of a cohort of 197 patients presenting with heterogeneous developmental disorders and whose genomes harbour de novo CNVs, we systematically applied a range of commonly-used functional genomics approaches to identify the underlying molecular perturbations and their phenotypic impact. Grouping patients into 408 non-exclusive patient-phenotype groups, we identified a functional association amongst the genes disrupted in 209 (51%) groups. We find evidence for a significant number of molecular interactions amongst the association-contributing genes, including a single highly-interconnected network disrupted in 20% of patients with intellectual disability, and show using microcephaly how these molecular networks can be used as baits to identify additional members whose genes are variant in other patients with the same phenotype. Exploiting the systematic phenotyping of this cohort, we observe phenotypic concordance amongst patients whose variant genes contribute to the same functional association but note that (i) this relationship shows significant variation across the different approaches used to infer a commonly perturbed molecular pathway, and (ii) that the phenotypic similarities detected amongst patients who share the same inferred pathway perturbation result from these patients sharing many distinct phenotypes, rather than sharing a more specific phenotype, inferring that these pathways are best characterized by their pleiotropic effects. PMID:25781962

  3. Transcriptional profiling identifies the metabolic phenotype of gonococcal biofilms.

    PubMed

    Falsetta, Megan L; Bair, Thomas B; Ku, Shan Chi; Vanden Hoven, Rachel N; Steichen, Christopher T; McEwan, Alastair G; Jennings, Michael P; Apicella, Michael A

    2009-09-01

    Neisseria gonorrhoeae, the etiologic agent of gonorrhea, is frequently asymptomatic in women, often leading to chronic infections. One factor contributing to this may be biofilm formation. N. gonorrhoeae can form biofilms on glass and plastic surfaces. There is also evidence that biofilm formation may occur during natural cervical infection. To further study the mechanism of gonococcal biofilm formation, we compared transcriptional profiles of N. gonorrhoeae biofilms to planktonic profiles. Biofilm RNA was extracted from N. gonorrhoeae 1291 grown for 48 h in continuous-flow chambers over glass. Planktonic RNA was extracted from the biofilm runoff. In comparing biofilm with planktonic growth, 3.8% of the genome was differentially regulated. Genes that were highly upregulated in biofilms included aniA, norB, and ccp. These genes encode enzymes that are central to anaerobic respiratory metabolism and stress tolerance. Downregulated genes included members of the nuo gene cluster, which encodes the proton-translocating NADH dehydrogenase. Furthermore, it was observed that aniA, ccp, and norB insertional mutants were attenuated for biofilm formation on glass and transformed human cervical epithelial cells. These data suggest that biofilm formation by the gonococcus may represent a response that is linked to the control of nitric oxide steady-state levels during infection of cervical epithelial cells. PMID:19528210

  4. Online Phenotype Discovery in High-Content RNAi Screens using Gap Statistics

    NASA Astrophysics Data System (ADS)

    Yin, Zheng; Zhou, Xiaobo; Bakal, Chris; Li, Fuhai; Sun, Youxian; Perrimon, Norbert; Wong, Stephen T. C.

    2007-11-01

    Discovering and identifying novel phenotypes from images inputting online is a major challenge in high-content RNA interference (RNAi) screens. Discovered phenotypes should be visually distinct from existing ones and make biological sense. An online phenotype discovery method featuring adaptive phenotype modeling and iterative cluster merging using gap statistics is proposed. The method works well on discovering new phenotypes adaptively when applied to both of synthetic data sets and RNAi high content screen (HCS) images with ground truth labels.

  5. The Phenotype of Spontaneous Preterm Birth: Application of a Clinical Phenotyping Tool

    PubMed Central

    Manuck, Tracy A.; Esplin, M. Sean; Biggio, Joseph; Bukowski, Radek; Parry, Samuel; Zhang, Heping; Varner, Michael W.; Andrews, William; Saade, George; Sadovsky, Yoel; Reddy, Uma M.; Ilekis, John

    2015-01-01

    Objective Spontaneous preterm birth (SPTB) is a complex condition that is likely a final common pathway with multiple possible etiologies. We hypothesized that a comprehensive classification system could appropriately group women with similar STPB etiologies, and provide an explanation, at least in part, for the disparities in SPTB associated with race and gestational age at delivery. Study Design Planned analysis of a multicenter, prospective study of singleton SPTB. Women with SPTB < 34 weeks were included. We defined 9 potential SPTB phenotypes based on clinical data, including infection/inflammation, maternal stress, decidual hemorrhage, uterine distention, cervical insufficiency, placental dysfunction, premature rupture of the membranes, maternal comorbidities, and familial factors. Each woman was evaluated for each phenotype. Delivery gestational age was compared between those with and without each phenotype. Phenotype profiles were also compared between women with very early (20.0–27.9 weeks) SPTB vs. those with early SPTB (28.0–34.0 weeks), and between African-American and Caucasian women. Statistical analysis was by t-test and chi-square as appropriate. Results The phenotyping tool was applied to 1025 women with SPTB who delivered at a mean 30.0 (+/− 3.2) weeks gestation. Of these, 800 (78%) had ≥2 phenotypes. Only 43 (4.2%) had no phenotypes. The 281 women with early SPTB were more likely to have infection/inflammation, decidual hemorrhage, and cervical insufficiency phenotypes (all p≤0.001). African-American women had more maternal stress and cervical insufficiency but less decidual hemorrhage and placental dysfunction compared to Caucasian women (all p<0.05). Gestational age at delivery decreased as the number of phenotypes present increased. Conclusions Precise SPTB phenotyping classifies women with SPTB and identifies specific differences between very early and early SPTB and between African-Americans and Caucasians. PMID:25687564

  6. Genetic resources for phenotyping

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phenotyping of structured populations, along with molecular genotyping, will be essential for marker development in peanut. This research is essential for making the peanut genome sequence and genomic tools useful to breeders because it makes the connection between genes, gene markers, genetic maps...

  7. Down Syndrome: Cognitive Phenotype

    ERIC Educational Resources Information Center

    Silverman, Wayne

    2007-01-01

    Down syndrome is the most prevalent cause of intellectual impairment associated with a genetic anomaly, in this case, trisomy of chromosome 21. It affects both physical and cognitive development and produces a characteristic phenotype, although affected individuals vary considerably with respect to severity of specific impairments. Studies…

  8. Behavioural phenotypes predict disease susceptibility and infectiousness.

    PubMed

    Araujo, Alessandra; Kirschman, Lucas; Warne, Robin W

    2016-08-01

    Behavioural phenotypes may provide a means for identifying individuals that disproportionally contribute to disease spread and epizootic outbreaks. For example, bolder phenotypes may experience greater exposure and susceptibility to pathogenic infection because of distinct interactions with conspecifics and their environment. We tested the value of behavioural phenotypes in larval amphibians for predicting ranavirus transmission in experimental trials. We found that behavioural phenotypes characterized by latency-to-food and swimming profiles were predictive of disease susceptibility and infectiousness defined as the capacity of an infected host to transmit an infection by contacts. While viral shedding rates were positively associated with transmission, we also found an inverse relationship between contacts and infections. Together these results suggest intrinsic traits that influence behaviour and the quantity of pathogens shed during conspecific interactions may be an important contributor to ranavirus transmission. These results suggest that behavioural phenotypes provide a means to identify individuals more likely to spread disease and thus give insights into disease outbreaks that threaten wildlife and humans. PMID:27555652

  9. The Behavioural Phenotype of Angelman Syndrome

    ERIC Educational Resources Information Center

    Horsler, K.; Oliver, C.

    2006-01-01

    Background: The purpose of this review is to examine the notion of a behavioural phenotype for Angelman syndrome and identify methodological and conceptual influences on the accepted presentation. Methods: Studies examining the behavioural characteristics associated with Angelman syndrome are reviewed and methodology is described. Results:…

  10. Characterizing the ADHD Phenotype for Genetic Studies

    ERIC Educational Resources Information Center

    Stevenson, Jim; Asherson, Phil; Hay, David; Levy, Florence; Swanson, Jim; Thapar, Anita; Willcutt, Erik

    2005-01-01

    The genetic study of ADHD has made considerable progress. Further developments in the field will be reliant in part on identifying the most appropriate phenotypes for genetic analysis. The use of both categorical and dimensional measures of symptoms related to ADHD has been productive. The use of multiple reporters is a valuable feature of the…

  11. Fibrodysplasia Ossificans Progressiva: Clinical Course, Genetic Mutations and Genotype-Phenotype Correlation

    PubMed Central

    Hüning, Irina; Gillessen-Kaesbach, Gabriele

    2014-01-01

    Fibrodysplasia ossificans progressiva (FOP, MIM 135100) is a rare autosomal dominant genetic disorder and the most disabling condition of heterotopic (extraskeletal) ossification in humans. Mutations in the ACVR1 gene (MIM 102576) were identified as a genetic cause of FOP [Shore et al., 2006]. Most patients with FOP have the same recurrent single nucleotide change c.617G>A, p.R206H in the ACVR1 gene. Furthermore, 11 other mutations in the ACVR1 gene have been described as a cause of FOP. Here, we review phenotypic and molecular findings of 130 cases of FOP reported in the literature from 1982 to April 2014 and discuss possible genotype-phenotype correlations in FOP patients. PMID:25337067

  12. Maintenance of a bone collagen phenotype by osteoblast-like cells in 3D periodic porous titanium (Ti-6Al-4 V) structures fabricated by selective electron beam melting

    PubMed Central

    Hrabe, Nikolas W.; Heinl, Peter; Bordia, Rajendra K.; Körner, Carolin; Fernandes, Russell J.

    2013-01-01

    Regular 3D periodic porous Ti-6Al-4 V structures were fabricated by the selective electron beam melting method (EBM) over a range of relative densities (0.17–0.40) and pore sizes (500–1500 μm). Structures were seeded with human osteoblast-like cells (SAOS-2) and cultured for four weeks. Cells multiplied within these structures and extracellular matrix collagen content increased. Type I and type V collagens typically synthesized by osteoblasts were deposited in the newly formed matrix with time in culture. High magnification scanning electron microscopy revealed cells attached to surfaces on the interior of the structures with an increasingly fibrous matrix. The in-vitro results demonstrate that the novel EBM-processed porous structures, designed to address the effect of stress-shielding, are conducive to osteoblast attachment, proliferation and deposition of a collagenous matrix characteristic of bone. PMID:23869614

  13. Undiagnosed genetic muscle disease in the north of England: an in depth phenotype analysis.

    PubMed

    Harris, Elizabeth; Laval, Steve; Hudson, Judith; Barresi, Rita; De Waele, Liesbeth; Straub, Volker; Lochmüller, Hanns; Bushby, Kate; Sarkozy, Anna

    2013-01-01

    Advances in the molecular characterisation of genetic muscle disease has been rapid, as demonstrated by a recent analysis of these conditions in the north of England by Norwood et al (2009), in which a genetic diagnosis was achieved for 75.7% of patients. However, there remain many patients with suspected genetic muscle disease in who a diagnosis is not obtained, often despite considerable diagnostic effort, and these patients are now being considered for the application of new technologies such as next generation sequencing. This study aimed to provide an in-depth phenotype analysis of undiagnosed patients referred to the Northern region muscle clinic with suspected genetic muscle disease, with the intention of gaining insight into these conditions, identifing cases with a shared phenotype who may be amenable to collective diagnostic testing or research, and evaluating the strengths and limitations of our current diagnostic strategy. We used two approaches: a review of clinical findings in patients with undiagnosed muscle disease, and a hierarchical cluster analysis to provide an unbiased interpretation of the phenotype data. These joint approaches identified a correlation of phenotypic features according to the age of disease onset and also delineated several interesting groups of patients, as well as highlighting areas of frequent diagnostic difficulty that could benefit from the use of new high-throughput diagnostic techniques. Correspondence to: anna.sarkozy@ncl.ac.uk. PMID:23788081

  14. Undiagnosed Genetic Muscle Disease in the North of England: an in Depth Phenotype Analysis

    PubMed Central

    Harris, Elizabeth; Laval, Steve; Hudson, Judith; Barresi, Rita; De Waele, Liesbeth; Straub, Volker; Lochmüller, Hanns; Bushby, Kate; Sarkozy, Anna

    2013-01-01

    Advances in the molecular characterisation of genetic muscle disease has been rapid, as demonstrated by a recent analysis of these conditions in the north of England by Norwood et al (2009), in which a genetic diagnosis was achieved for 75.7% of patients. However, there remain many patients with suspected genetic muscle disease in who a diagnosis is not obtained, often despite considerable diagnostic effort, and these patients are now being considered for the application of new technologies such as next generation sequencing. This study aimed to provide an in-depth phenotype analysis of undiagnosed patients referred to the Northern region muscle clinic with suspected genetic muscle disease, with the intention of gaining insight into these conditions, identifing cases with a shared phenotype who may be amenable to collective diagnostic testing or research, and evaluating the strengths and limitations of our current diagnostic strategy. We used two approaches: a review of clinical findings in patients with undiagnosed muscle disease, and a hierarchical cluster analysis to provide an unbiased interpretation of the phenotype data. These joint approaches identified a correlation of phenotypic features according to the age of disease onset and also delineated several interesting groups of patients, as well as highlighting areas of frequent diagnostic difficulty that could benefit from the use of new high-throughput diagnostic techniques. Correspondence to: anna.sarkozy@ncl.ac.uk PMID:23788081

  15. Determining which phenotypes underlie a pleiotropic signal

    PubMed Central

    Majumdar, Arunabha; Haldar, Tanushree; Witte, John S.

    2016-01-01

    Discovering pleiotropic loci is important to understand the biological basis of seemingly distinct phenotypes. Most methods for assessing pleiotropy only test for the overall association between genetic variants and multiple phenotypes. To determine which specific traits are pleiotropic, we evaluate via simulation and application three different strategies. The first is model selection techniques based on the inverse regression of genotype on phenotypes. The second is a subset-based meta-analysis ASSET [Bhattacharjee et al., 2012], which provides an optimal subset of non-null traits. And the third is a modified Benjamini-Hochberg (B-H) procedure of controlling the expected false discovery rate [Benjamini and Hochberg, 1995] in the framework of phenome-wide association study. From our simulations we see that an inverse regression based approach MultiPhen [O’Reilly et al., 2012] is more powerful than ASSET for detecting overall pleiotropic association, except for when all the phenotypes are associated and have genetic effects in the same direction. For determining which specific traits are pleiotropic, the modified B-H procedure performs consistently better than the other two methods. The inverse regression based selection methods perform competitively with the modified B-H procedure only when the phenotypes are weakly correlated. The efficiency of ASSET is observed to lie below and in between the efficiency of the other two methods when the traits are weakly and strongly correlated, respectively. In our application to a large GWAS, we find that the modified B-H procedure also performs well, indicating that this may be an optimal approach for determining the traits underlying a pleiotropic signal. PMID:27238845

  16. Determining Which Phenotypes Underlie a Pleiotropic Signal.

    PubMed

    Majumdar, Arunabha; Haldar, Tanushree; Witte, John S

    2016-07-01

    Discovering pleiotropic loci is important to understand the biological basis of seemingly distinct phenotypes. Most methods for assessing pleiotropy only test for the overall association between genetic variants and multiple phenotypes. To determine which specific traits are pleiotropic, we evaluate via simulation and application three different strategies. The first is model selection techniques based on the inverse regression of genotype on phenotypes. The second is a subset-based meta analysis ASSET [Bhattacharjee et al., ], which provides an optimal subset of nonnull traits. And the third is a modified Benjamini-Hochberg (B-H) procedure of controlling the expected false discovery rate [Benjamini and Hochberg, ] in the framework of phenome-wide association study. From our simulations we see that an inverse regression-based approach MultiPhen [O'Reilly et al., ] is more powerful than ASSET for detecting overall pleiotropic association, except for when all the phenotypes are associated and have genetic effects in the same direction. For determining which specific traits are pleiotropic, the modified B-H procedure performs consistently better than the other two methods. The inverse regression-based selection methods perform competitively with the modified B-H procedure only when the phenotypes are weakly correlated. The efficiency of ASSET is observed to lie below and in between the efficiency of the other two methods when the traits are weakly and strongly correlated, respectively. In our application to a large GWAS, we find that the modified B-H procedure also performs well, indicating that this may be an optimal approach for determining the traits underlying a pleiotropic signal. PMID:27238845

  17. Rings Reconcile Genotypic and Phenotypic Evolution within the Proteobacteria.

    PubMed

    Lake, James A; Larsen, Joseph; Sarna, Brooke; de la Haba, Rafael R; Pu, Yiyi; Koo, HyunMin; Zhao, Jun; Sinsheimer, Janet S

    2015-12-01

    Although prokaryotes are usually classified using molecular phylogenies instead of phenotypes after the advent of gene sequencing, neither of these methods is satisfactory because the phenotypes cannot explain the molecular trees and the trees do not fit the phenotypes. This scientific crisis still exists and the profound disconnection between these two pillars of evolutionary biology--genotypes and phenotypes--grows larger. We use rings and a genomic form of goods thinking to resolve this conundrum (McInerney JO, Cummins C, Haggerty L. 2011. Goods thinking vs. tree thinking. Mobile Genet Elements. 1:304-308; Nelson-Sathi S, et al. 2015. Origins of major archaeal clades correspond to gene acquisitions from bacteria. Nature 517:77-80). The Proteobacteria is the most speciose prokaryotic phylum known. It is an ideal phylogenetic model for reconstructing Earth's evolutionary history. It contains diverse free living, pathogenic, photosynthetic, sulfur metabolizing, and symbiotic species. Due to its large number of species (Whitman WB, Coleman DC, Wiebe WJ. 1998. Prokaryotes: the unseen majority. Proc Nat Acad Sci U S A. 95:6578-6583) it was initially expected to provide strong phylogenetic support for a proteobacterial tree of life. But despite its many species, sequence-based tree analyses are unable to resolve its topology. Here we develop new rooted ring analyses and study proteobacterial evolution. Using protein family data and new genome-based outgroup rooting procedures, we reconstruct the complex evolutionary history of the proteobacterial rings (combinations of tree-like divergences and endosymbiotic-like convergences). We identify and map the origins of major gene flows within the rooted proteobacterial rings (P < 3.6 × 10(-6)) and find that the evolution of the "Alpha-," "Beta-," and "Gammaproteobacteria" is represented by a unique set of rings. Using new techniques presented here we also root these rings using outgroups. We also map the independent flows of

  18. hnRNPA2B1 and hnRNPA1 mutations are rare in patients with "multisystem proteinopathy" and frontotemporal lobar degeneration phenotypes.

    PubMed

    Le Ber, Isabelle; Van Bortel, Inge; Nicolas, Gael; Bouya-Ahmed, Kawtar; Camuzat, Agnès; Wallon, David; De Septenville, Anne; Latouche, Morwena; Lattante, Serena; Kabashi, Edor; Jornea, Ludmila; Hannequin, Didier; Brice, Alexis

    2014-04-01

    hnRNPA2B1 and hnRNPA1 mutations have been recently identified by exome sequencing in three families presenting with multisystem proteinopathy (MSP), a rare complex phenotype associating frontotemporal lobar degeneration (FTLD), Paget disease of bone (PDB), inclusion body myopathy (IBM), and amyotrophic lateral sclerosis (ALS). No study has evaluated the exact frequency of these genes in cohorts of MSP or FTD patients so far. We sequenced both genes in 17 patients with MSP phenotypes, and in 60 patients with FTLD and FTLD-ALS to test whether mutations could be implicated in the pathogenesis of these disorders. No disease-causing mutation was identified. We conclude that hnRNPA2B1 and hnRNPA1 mutations are rare in MSP and FTLD spectrum of diseases, although further investigations in larger populations are needed. PMID:24119545

  19. Intramolecular phenotypic capacitance in a modular RNA molecule

    PubMed Central

    Hayden, Eric J.; Bendixsen, Devin P.; Wagner, Andreas

    2015-01-01

    Phenotypic capacitance refers to the ability of a genome to accumulate mutations that are conditionally hidden and only reveal phenotype-altering effects after certain environmental or genetic changes. Capacitance has important implications for the evolution of novel forms and functions, but experimentally studied mechanisms behind capacitance are mostly limited to complex, multicomponent systems often involving several interacting protein molecules. Here we demonstrate phenotypic capacitance within a much simpler system, an individual RNA molecule with catalytic activity (ribozyme). This naturally occurring RNA molecule has a modular structure, where a scaffold module acts as an intramolecular chaperone that facilitates folding of a second catalytic module. Previous studies have shown that the scaffold module is not absolutely required for activity, but dramatically decreases the concentration of magnesium ions required for the formation of an active site. Here, we use an experimental perturbation of magnesium ion concentration that disrupts the folding of certain genetic variants of this ribozyme and use in vitro selection followed by deep sequencing to identify genotypes with altered phenotypes (catalytic activity). We identify multiple conditional mutations that alter the wild-type ribozyme phenotype under a stressful environmental condition of low magnesium ion concentration, but preserve the phenotype under more relaxed conditions. This conditional buffering is confined to the scaffold module, but controls the catalytic phenotype, demonstrating how modularity can enable phenotypic capacitance within a single macromolecule. RNA’s ancient role in life suggests that phenotypic capacitance may have influenced evolution since life’s origins. PMID:26401020

  20. Intramolecular phenotypic capacitance in a modular RNA molecule.

    PubMed

    Hayden, Eric J; Bendixsen, Devin P; Wagner, Andreas

    2015-10-01

    Phenotypic capacitance refers to the ability of a genome to accumulate mutations that are conditionally hidden and only reveal phenotype-altering effects after certain environmental or genetic changes. Capacitance has important implications for the evolution of novel forms and functions, but experimentally studied mechanisms behind capacitance are mostly limited to complex, multicomponent systems often involving several interacting protein molecules. Here we demonstrate phenotypic capacitance within a much simpler system, an individual RNA molecule with catalytic activity (ribozyme). This naturally occurring RNA molecule has a modular structure, where a scaffold module acts as an intramolecular chaperone that facilitates folding of a second catalytic module. Previous studies have shown that the scaffold module is not absolutely required for activity, but dramatically decreases the concentration of magnesium ions required for the formation of an active site. Here, we use an experimental perturbation of magnesium ion concentration that disrupts the folding of certain genetic variants of this ribozyme and use in vitro selection followed by deep sequencing to identify genotypes with altered phenotypes (catalytic activity). We identify multiple conditional mutations that alter the wild-type ribozyme phenotype under a stressful environmental condition of low magnesium ion concentration, but preserve the phenotype under more relaxed conditions. This conditional buffering is confined to the scaffold module, but controls the catalytic phenotype, demonstrating how modularity can enable phenotypic capacitance within a single macromolecule. RNA's ancient role in life suggests that phenotypic capacitance may have influenced evolution since life's origins. PMID:26401020

  1. Phenotype Standardization for Drug Induced Kidney Disease

    PubMed Central

    Mehta, Ravindra L; Awdishu, Linda; Davenport, Andrew; Murray, Patrick; Macedo, Etienne; Cerda, Jorge; Chakaravarthi, Raj; Holden, Arthur; Goldstein, Stuart L.

    2015-01-01

    Drug induced kidney disease is a frequent cause of renal dysfunction; however, there are no standards to identify and characterize the spectrum of these disorders. We convened a panel of international, adult and pediatric, nephrologists and pharmacists to develop standardized phenotypes for drug induced kidney disease as part of the phenotype standardization project initiated by the International Serious Adverse Events Consortium. We propose four phenotypes of drug induced kidney disease based on clinical presentation: acute kidney injury, glomerular, tubular and nephrolithiasis, along with primary and secondary clinical criteria to support the phenotype definition, and a time course based on the KDIGO/AKIN definitions of acute kidney injury, acute kidney disease and chronic kidney disease. Establishing causality in drug induced kidney disease is challenging and requires knowledge of the biological plausibility for the specific drug, mechanism of injury, time course and assessment of competing risk factors. These phenotypes provide a consistent framework for clinicians, investigators, industry and regulatory agencies to evaluate drug nephrotoxicity across various settings. We believe that this is first step to recognizing drug induced kidney disease and developing strategies to prevent and manage this condition. PMID:25853333

  2. Delineating the GRIN1 phenotypic spectrum

    PubMed Central

    Geider, Kirsten; Helbig, Katherine L.; Heyne, Henrike O.; Schütz, Hannah; Hentschel, Julia; Courage, Carolina; Depienne, Christel; Nava, Caroline; Heron, Delphine; Møller, Rikke S.; Hjalgrim, Helle; Lal, Dennis; Neubauer, Bernd A.; Nürnberg, Peter; Thiele, Holger; Kurlemann, Gerhard; Arnold, Georgianne L.; Bhambhani, Vikas; Bartholdi, Deborah; Pedurupillay, Christeen Ramane J.; Misceo, Doriana; Frengen, Eirik; Strømme, Petter; Dlugos, Dennis J.; Doherty, Emily S.; Bijlsma, Emilia K.; Ruivenkamp, Claudia A.; Hoffer, Mariette J.V.; Goldstein, Amy; Rajan, Deepa S.; Narayanan, Vinodh; Ramsey, Keri; Belnap, Newell; Schrauwen, Isabelle; Richholt, Ryan; Koeleman, Bobby P.C.; Sá, Joaquim; Mendonça, Carla; de Kovel, Carolien G.F.; Weckhuysen, Sarah; Hardies, Katia; De Jonghe, Peter; De Meirleir, Linda; Milh, Mathieu; Badens, Catherine; Lebrun, Marine; Busa, Tiffany; Francannet, Christine; Piton, Amélie; Riesch, Erik; Biskup, Saskia; Vogt, Heinrich; Dorn, Thomas; Helbig, Ingo; Michaud, Jacques L.; Laube, Bodo; Syrbe, Steffen

    2016-01-01

    Objective: To determine the phenotypic spectrum caused by mutations in GRIN1 encoding the NMDA receptor subunit GluN1 and to investigate their underlying functional pathophysiology. Methods: We collected molecular and clinical data from several diagnostic and research cohorts. Functional consequences of GRIN1 mutations were investigated in Xenopus laevis oocytes. Results: We identified heterozygous de novo GRIN1 mutations in 14 individuals and reviewed the phenotypes of all 9 previously reported patients. These 23 individuals presented with a distinct phenotype of profound developmental delay, severe intellectual disability with absent speech, muscular hypotonia, hyperkinetic movement disorder, oculogyric crises, cortical blindness, generalized cerebral atrophy, and epilepsy. Mutations cluster within transmembrane segments and result in loss of channel function of varying severity with a dominant-negative effect. In addition, we describe 2 homozygous GRIN1 mutations (1 missense, 1 truncation), each segregating with severe neurodevelopmental phenotypes in consanguineous families. Conclusions: De novo GRIN1 mutations are associated with severe intellectual disability with cortical visual impairment as well as oculomotor and movement disorders being discriminating phenotypic features. Loss of NMDA receptor function appears to be the underlying disease mechanism. The identification of both heterozygous and homozygous mutations blurs the borders of dominant and recessive inheritance of GRIN1-associated disorders. PMID:27164704

  3. Clinical interpretation of CNVs with cross-species phenotype data

    PubMed Central

    Czeschik, Johanna Christina; Doelken, Sandra C; Hehir-Kwa, Jayne Y; Ibn-Salem, Jonas; Mungall, Christopher J; Smedley, Damian; Haendel, Melissa A; Robinson, Peter N

    2015-01-01

    Background Clinical evaluation of CNVs identified via techniques such as array comparative genome hybridisation (aCGH) involves the inspection of lists of known and unknown duplications and deletions with the goal of distinguishing pathogenic from benign CNVs. A key step in this process is the comparison of the individual's phenotypic abnormalities with those associated with Mendelian disorders of the genes affected by the CNV. However, because often there is not much known about these human genes, an additional source of data that could be used is model organism phenotype data. Currently, almost 6000 genes in mouse and zebrafish are, when knocked out, associated with a phenotype in the model organism, but no disease is known to be caused by mutations in the human ortholog. Yet, searching model organism databases and comparing model organism phenotypes with patient phenotypes for identifying novel disease genes and medical evaluation of CNVs is hindered by the difficulty in integrating phenotype information across species and the lack of appropriate software tools. Methods Here, we present an integrated ranking scheme based on phenotypic matching, degree of overlap with known benign or pathogenic CNVs and the haploinsufficiency score for the prioritisation of CNVs responsible for a patient's clinical findings. Results We show that this scheme leads to significant improvements compared with rankings that do not exploit phenotypic information. We provide a software tool called PhenogramViz, which supports phenotype-driven interpretation of aCGH findings based on multiple data sources, including the integrated cross-species phenotype ontology Uberpheno, in order to visualise gene-to-phenotype relations. Conclusions Integrating and visualising cross-species phenotype information on the affected genes may help in routine diagnostics of CNVs. PMID:25280750

  4. Genetic Regulation of Phenotypic Plasticity and Canalisation in Yeast Growth.

    PubMed

    Yadav, Anupama; Dhole, Kaustubh; Sinha, Himanshu

    2016-01-01

    The ability of a genotype to show diverse phenotypes in different environments is called phenotypic plasticity. Phenotypic plasticity helps populations to evade extinctions in novel environments, facilitates adaptation and fuels evolution. However, most studies focus on understanding the genetic basis of phenotypic regulation in specific environments. As a result, while it's evolutionary relevance is well established, genetic mechanisms regulating phenotypic plasticity and their overlap with the environment specific regulators is not well understood. Saccharomyces cerevisiae is highly sensitive to the environment, which acts as not just external stimulus but also as signalling cue for this unicellular, sessile organism. We used a previously published dataset of a biparental yeast population grown in 34 diverse environments and mapped genetic loci regulating variation in phenotypic plasticity, plasticity QTL, and compared them with environment-specific QTL. Plasticity QTL is one whose one allele exhibits high plasticity whereas the other shows a relatively canalised behaviour. We mapped phenotypic plasticity using two parameters-environmental variance, an environmental order-independent parameter and reaction norm (slope), an environmental order-dependent parameter. Our results show a partial overlap between pleiotropic QTL and plasticity QTL such that while some plasticity QTL are also pleiotropic, others have a significant effect on phenotypic plasticity without being significant in any environment independently. Furthermore, while some plasticity QTL are revealed only in specific environmental orders, we identify large effect plasticity QTL, which are order-independent such that whatever the order of the environments, one allele is always plastic and the other is canalised. Finally, we show that the environments can be divided into two categories based on the phenotypic diversity of the population within them and the two categories have differential regulators of

  5. Echocardiographic diagnosis of the different phenotypes of hypertrophic cardiomyopathy.

    PubMed

    Parato, Vito Maurizio; Antoncecchi, Valeria; Sozzi, Fabiola; Marazia, Stefania; Zito, Annapaola; Maiello, Maria; Palmiero, Pasquale

    2016-01-01

    Hypertrophic Cardiomyopathy (HCM) is an inherited cardiovascular disorder of great genetic heterogeneity and has a prevalence of 0.1 - 0.2 % in the general population. Several hundred mutations in more than 27 genes, most of which encode sarcomeric structures, are associated with the HCM phenotype. Then, HCM is an extremely heterogeneous disease and several phenotypes have been described over the years. Originally only two phenotypes were considered, a more common, obstructive type (HOCM, 70 %) and a less common, non-obstructive type (HNCM, 30 %) (Maron BJ, et al. Am J Cardiol 48:418 -28, 1981). Wigle et al. (Circ 92:1680-92, 1995) considered three types of functional phenotypes: subaortic obstruction, midventricular obstruction and cavity obliteration. A leader american working group suggested that HCM should be defined genetically and not morphologically (Maron BJ, et al. Circ 113:1807-16, 2006). The European Society of Cardiology Working Group on Myocardial and Pericardial Diseases recommended otherwise a morphological classification (Elliott P, et al. Eur Heart J 29:270-6, 2008). Echocardiography is still the principal tool for the diagnosis, prognosis and clinical management of HCM. It is well known that the echocardiographic picture may have a clinical and prognostic impact. For this reason, in this article, we summarize the state of the art regarding the echocardiographic pattern of the HCM phenotypes and its impact on clinical course and prognosis. PMID:27519172

  6. Quality Control Test for Sequence-Phenotype Assignments

    PubMed Central

    Ortiz, Maria Teresa Lara; Rosario, Pablo Benjamín Leon; Luna-Nevarez, Pablo; Gamez, Alba Savin; Martínez-del Campo, Ana; Del Rio, Gabriel

    2015-01-01

    Relating a gene mutation to a phenotype is a common task in different disciplines such as protein biochemistry. In this endeavour, it is common to find false relationships arising from mutations introduced by cells that may be depurated using a phenotypic assay; yet, such phenotypic assays may introduce additional false relationships arising from experimental errors. Here we introduce the use of high-throughput DNA sequencers and statistical analysis aimed to identify incorrect DNA sequence-phenotype assignments and observed that 10–20% of these false assignments are expected in large screenings aimed to identify critical residues for protein function. We further show that this level of incorrect DNA sequence-phenotype assignments may significantly alter our understanding about the structure-function relationship of proteins. We have made available an implementation of our method at http://bis.ifc.unam.mx/en/software/chispas. PMID:25700273

  7. Quality control test for sequence-phenotype assignments.

    PubMed

    Ortiz, Maria Teresa Lara; Rosario, Pablo Benjamín Leon; Luna-Nevarez, Pablo; Gamez, Alba Savin; Martínez-del Campo, Ana; Del Rio, Gabriel

    2015-01-01

    Relating a gene mutation to a phenotype is a common task in different disciplines such as protein biochemistry. In this endeavour, it is common to find false relationships arising from mutations introduced by cells that may be depurated using a phenotypic assay; yet, such phenotypic assays may introduce additional false relationships arising from experimental errors. Here we introduce the use of high-throughput DNA sequencers and statistical analysis aimed to identify incorrect DNA sequence-phenotype assignments and observed that 10-20% of these false assignments are expected in large screenings aimed to identify critical residues for protein function. We further show that this level of incorrect DNA sequence-phenotype assignments may significantly alter our understanding about the structure-function relationship of proteins. We have made available an implementation of our method at http://bis.ifc.unam.mx/en/software/chispas. PMID:25700273

  8. Discovering phenotypic causal structure from nonexperimental data.

    PubMed

    Otsuka, J

    2016-06-01

    The evolutionary potential of organisms depends on how their parts are structured into a cohesive whole. A major obstacle for empirical studies of phenotypic organization is that observed associations among characters usually confound different causal pathways such as pleiotropic modules, interphenotypic causal relationships and environmental effects. The present article proposes causal search algorithms as a new tool to distinguish these different modes of phenotypic integration. Without assuming an a priori structure, the algorithms seek a class of causal hypotheses consistent with independence relationships holding in observational data. The technique can be applied to discover causal relationships among a set of measured traits and to distinguish genuine selection from spurious correlations. The former application is illustrated with a biological data set of rat morphological measurements previously analysed by Cheverud et al. (Evolution 1983, 37, 895). PMID:27007864

  9. Bioimaging for quantitative phenotype analysis.

    PubMed

    Chen, Weiyang; Xia, Xian; Huang, Yi; Chen, Xingwei; Han, Jing-Dong J

    2016-06-01

    With the development of bio-imaging techniques, an increasing number of studies apply these techniques to generate a myriad of image data. Its applications range from quantification of cellular, tissue, organismal and behavioral phenotypes of model organisms, to human facial phenotypes. The bio-imaging approaches to automatically detect, quantify, and profile phenotypic changes related to specific biological questions open new doors to studying phenotype-genotype associations and to precisely evaluating molecular changes associated with quantitative phenotypes. Here, we review major applications of bioimage-based quantitative phenotype analysis. Specifically, we describe the biological questions and experimental needs addressable by these analyses, computational techniques and tools that are available in these contexts, and the new perspectives on phenotype-genotype association uncovered by such analyses. PMID:26850283

  10. Cognitive and behavioral features of c9FTD/ALS

    PubMed Central

    2012-01-01

    Numerous kindreds with familial frontotemporal dementia or amyotrophic lateral sclerosis or both have been linked to chromosome 9 (c9FTD/ALS), and an expansion of the GGGGCC hexanucleotide repeat in the non-coding region of chromosome 9 open reading frame 72 (C9ORF72) was identified in the summer of 2011 as the pathogenic mechanism. An avalanche of papers on this disorder is in progress, and a relatively distinctive phenotype is taking form. In this review, we present an illustrative case and summarize the demographic, inheritance, clinical, and behavioral aspects and presumed pathologic underpinnings of c9FTD/ALS on the basis of the available data on more than 250 patients with frontotemporal lobar degeneration syndromes, parkinsonism, or ALS or a combination of these disorders. PMID:22817642

  11. Rings Reconcile Genotypic and Phenotypic Evolution within the Proteobacteria

    PubMed Central

    Lake, James A.; Larsen, Joseph; Sarna, Brooke; de la Haba, Rafael R.; Pu, Yiyi; Koo, HyunMin; Zhao, Jun; Sinsheimer, Janet S.

    2015-01-01

    Although prokaryotes are usually classified using molecular phylogenies instead of phenotypes after the advent of gene sequencing, neither of these methods is satisfactory because the phenotypes cannot explain the molecular trees and the trees do not fit the phenotypes. This scientific crisis still exists and the profound disconnection between these two pillars of evolutionary biology—genotypes and phenotypes—grows larger. We use rings and a genomic form of goods thinking to resolve this conundrum (McInerney JO, Cummins C, Haggerty L. 2011. Goods thinking vs. tree thinking. Mobile Genet Elements. 1:304–308; Nelson-Sathi S, et al. 2015. Origins of major archaeal clades correspond to gene acquisitions from bacteria. Nature 517:77–80). The Proteobacteria is the most speciose prokaryotic phylum known. It is an ideal phylogenetic model for reconstructing Earth’s evolutionary history. It contains diverse free living, pathogenic, photosynthetic, sulfur metabolizing, and symbiotic species. Due to its large number of species (Whitman WB, Coleman DC, Wiebe WJ. 1998. Prokaryotes: the unseen majority. Proc Nat Acad Sci U S A. 95:6578–6583) it was initially expected to provide strong phylogenetic support for a proteobacterial tree of life. But despite its many species, sequence-based tree analyses are unable to resolve its topology. Here we develop new rooted ring analyses and study proteobacterial evolution. Using protein family data and new genome-based outgroup rooting procedures, we reconstruct the complex evolutionary history of the proteobacterial rings (combinations of tree-like divergences and endosymbiotic-like convergences). We identify and map the origins of major gene flows within the rooted proteobacterial rings (P < 3.6 × 10−6) and find that the evolution of the “Alpha-,” “Beta-,” and “Gammaproteobacteria” is represented by a unique set of rings. Using new techniques presented here we also root these rings using outgroups. We also map

  12. The Genetic Basis of Mendelian Phenotypes: Discoveries, Challenges, and Opportunities

    PubMed Central

    Chong, Jessica X.; Buckingham, Kati J.; Jhangiani, Shalini N.; Boehm, Corinne; Sobreira, Nara; Smith, Joshua D.; Harrell, Tanya M.; McMillin, Margaret J.; Wiszniewski, Wojciech; Gambin, Tomasz; Coban Akdemir, Zeynep H.; Doheny, Kimberly; Scott, Alan F.; Avramopoulos, Dimitri; Chakravarti, Aravinda; Hoover-Fong, Julie; Mathews, Debra; Witmer, P. Dane; Ling, Hua; Hetrick, Kurt; Watkins, Lee; Patterson, Karynne E.; Reinier, Frederic; Blue, Elizabeth; Muzny, Donna; Kircher, Martin; Bilguvar, Kaya; López-Giráldez, Francesc; Sutton, V. Reid; Tabor, Holly K.; Leal, Suzanne M.; Gunel, Murat; Mane, Shrikant; Gibbs, Richard A.; Boerwinkle, Eric; Hamosh, Ada; Shendure, Jay; Lupski, James R.; Lifton, Richard P.; Valle, David; Nickerson, Deborah A.; Bamshad, Michael J.

    2015-01-01

    Discovering the genetic basis of a Mendelian phenotype establishes a causal link between genotype and phenotype, making possible carrier and population screening and direct diagnosis. Such discoveries also contribute to our knowledge of gene function, gene regulation, development, and biological mechanisms that can be used for developing new therapeutics. As of February 2015, 2,937 genes underlying 4,163 Mendelian phenotypes have been discovered, but the genes underlying ∼50% (i.e., 3,152) of all known Mendelian phenotypes are still unknown, and many more Mendelian conditions have yet to be recognized. This is a formidable gap in biomedical knowledge. Accordingly, in December 2011, the NIH established the Centers for Mendelian Genomics (CMGs) to provide the collaborative framework and infrastructure necessary for undertaking large-scale whole-exome sequencing and discovery of the genetic variants responsible for Mendelian phenotypes. In partnership with 529 investigators from 261 institutions in 36 countries, the CMGs assessed 18,863 samples from 8,838 families representing 579 known and 470 novel Mendelian phenotypes as of January 2015. This collaborative effort has identified 956 genes, including 375 not previously associated with human health, that underlie a Mendelian phenotype. These results provide insight into study design and analytical strategies, identify novel mechanisms of disease, and reveal the extensive clinical variability of Mendelian phenotypes. Discovering the gene underlying every Mendelian phenotype will require tackling challenges such as worldwide ascertainment and phenotypic characterization of families affected by Mendelian conditions, improvement in sequencing and analytical techniques, and pervasive sharing of phenotypic and genomic data among researchers, clinicians, and families. PMID:26166479

  13. Phenotypic approaches to drought in cassava: review

    PubMed Central

    Okogbenin, Emmanuel; Setter, Tim L.; Ferguson, Morag; Mutegi, Rose; Ceballos, Hernan; Olasanmi, Bunmi; Fregene, Martin

    2012-01-01

    Cassava is an important crop in Africa, Asia, Latin America, and the Caribbean. Cassava can be produced adequately in drought conditions making it the ideal food security crop in marginal environments. Although cassava can tolerate drought stress, it can be genetically improved to enhance productivity in such environments. Drought adaptation studies in over three decades in cassava have identified relevant mechanisms which have been explored in conventional breeding. Drought is a quantitative trait and its multigenic nature makes it very challenging to effectively manipulate and combine genes in breeding for rapid genetic gain and selection process. Cassava has a long growth cycle of 12–18 months which invariably contributes to a long breeding scheme for the crop. Modern breeding using advances in genomics and improved genotyping, is facilitating the dissection and genetic analysis of complex traits including drought tolerance, thus helping to better elucidate and understand the genetic basis of such traits. A beneficial goal of new innovative breeding strategies is to shorten the breeding cycle using minimized, efficient or fast phenotyping protocols. While high throughput genotyping have been achieved, this is rarely the case for phenotyping for drought adaptation. Some of the storage root phenotyping in cassava are often done very late in the evaluation cycle making selection process very slow. This paper highlights some modified traits suitable for early-growth phase phenotyping that may be used to reduce drought phenotyping cycle in cassava. Such modified traits can significantly complement the high throughput genotyping procedures to fast track breeding of improved drought tolerant varieties. The need for metabolite profiling, improved phenomics to take advantage of next generation sequencing technologies and high throughput phenotyping are basic steps for future direction to improve genetic gain and maximize speed for drought tolerance breeding. PMID

  14. Phenotypic approaches to drought in cassava: review.

    PubMed

    Okogbenin, Emmanuel; Setter, Tim L; Ferguson, Morag; Mutegi, Rose; Ceballos, Hernan; Olasanmi, Bunmi; Fregene, Martin

    2013-01-01

    Cassava is an important crop in Africa, Asia, Latin America, and the Caribbean. Cassava can be produced adequately in drought conditions making it the ideal food security crop in marginal environments. Although cassava can tolerate drought stress, it can be genetically improved to enhance productivity in such environments. Drought adaptation studies in over three decades in cassava have identified relevant mechanisms which have been explored in conventional breeding. Drought is a quantitative trait and its multigenic nature makes it very challenging to effectively manipulate and combine genes in breeding for rapid genetic gain and selection process. Cassava has a long growth cycle of 12-18 months which invariably contributes to a long breeding scheme for the crop. Modern breeding using advances in genomics and improved genotyping, is facilitating the dissection and genetic analysis of complex traits including drought tolerance, thus helping to better elucidate and understand the genetic basis of such traits. A beneficial goal of new innovative breeding strategies is to shorten the breeding cycle using minimized, efficient or fast phenotyping protocols. While high throughput genotyping have been achieved, this is rarely the case for phenotyping for drought adaptation. Some of the storage root phenotyping in cassava are often done very late in the evaluation cycle making selection process very slow. This paper highlights some modified traits suitable for early-growth phase phenotyping that may be used to reduce drought phenotyping cycle in cassava. Such modified traits can significantly complement the high throughput genotyping procedures to fast track breeding of improved drought tolerant varieties. The need for metabolite profiling, improved phenomics to take advantage of next generation sequencing technologies and high throughput phenotyping are basic steps for future direction to improve genetic gain and maximize speed for drought tolerance breeding. PMID

  15. Phenotypic variation of erythrocyte linker histone H1.c in a pheasant (Phasianus colchicus L.) population.

    PubMed

    Kowalski, Andrzej; Pa Yga, Jan; Górnicka-Michalska, Ewa; Bernacki, Zenon; Adamski, Marek

    2010-07-01

    Our goal was to characterize a phenotypic variation of the pheasant erythrocyte linker histone subtype H1.c. By using two-dimensional polyacrylamide gel electrophoresis three histone H1.c phenotypes were identified. The differently migrating allelic variants H1.c1 and H1.c2 formed either two homozygous phenotypes, c1 and c2, or a single heterozygous phenotype, c1c2. In the pheasant population screened, birds with phenotype c2 were the most common (frequency 0.761) while individuals with phenotype c1 were rare (frequency 0.043). PMID:21637419

  16. Phenotypic Signatures Arising from Unbalanced Bacterial Growth

    PubMed Central

    Tan, Cheemeng; Smith, Robert Phillip; Tsai, Ming-Chi; Schwartz, Russell; You, Lingchong

    2014-01-01

    Fluctuations in the growth rate of a bacterial culture during unbalanced growth are generally considered undesirable in quantitative studies of bacterial physiology. Under well-controlled experimental conditions, however, these fluctuations are not random but instead reflect the interplay between intra-cellular networks underlying bacterial growth and the growth environment. Therefore, these fluctuations could be considered quantitative phenotypes of the bacteria under a specific growth condition. Here, we present a method to identifyphenotypic signatures” by time-frequency analysis of unbalanced growth curves measured with high temporal resolution. The signatures are then applied to differentiate amongst different bacterial strains or the same strain under different growth conditions, and to identify the essential architecture of the gene network underlying the observed growth dynamics. Our method has implications for both basic understanding of bacterial physiology and for the classification of bacterial strains. PMID:25101949

  17. Phenotyping maize for adaptation to drought

    PubMed Central

    Araus, Jose L.; Serret, María D.; Edmeades, Gregory O.

    2012-01-01

    The need of a better adaptation of crops to drought is an issue of increasing urgency. However, enhancing the tolerance of maize has, therefore, proved to be somewhat elusive in terms of plant breeding. In that context, proper phenotyping remains as one of the main factors limiting breeding advance. Topics covered by this review include the conceptual framework for identifying secondary traits associated with yield response to drought and how to measure these secondary traits in practice. PMID:22934056

  18. AL Amyloidosis

    PubMed Central

    2012-01-01

    systemic nature of the disease, non-invasive biopsies such as abdominal fat aspiration should be considered before taking biopsies from involved organs, in order to reduce the risk of bleeding complications. Differential diagnosis Systemic AL amyloidosis should be distinguished from other diseases related to deposition of monoclonal LC, and from other forms of systemic amyloidosis. When pathological studies have failed to identify the nature of amyloid deposits, genetic studies should be performed to diagnose hereditary amyloidosis. Management Treatment of AL amyloidosis is based on chemotherapy, aimed at controlling the underlying plasma clone that produces amyloidogenic LC. The hematological response should be carefully checked by serial measurements of serum free LC. The association of an alkylating agent with high-dose dexamethasone has proven to be effective in two thirds of patients and is considered as the current reference treatment. New agents used in the treatment of multiple myeloma are under investigation and appear to increase hematological response rates. Symptomatic measures and supportive care is necessary in patients with organ failure. Noticeably, usual treatments for cardiac failure (i.e. calcium inhibitors, β-blockers, angiotensin converting enzyme inhibitors) are inefficient or even dangerous in patients with amyloid heart disease, that should be managed using diuretics. Amiodarone and pace maker implantation should be considered in patients with rhythm or conduction abnormalities. In selected cases, heart and kidney transplantation may be associated with prolonged patient and graft survival. Prognosis Survival in AL amyloidosis depends on the spectrum of organ involvement (amyloid heart disease being the main prognosis factor), the severity of individual organs involved and haematological response to treatment. PMID:22909024

  19. EHR Big Data Deep Phenotyping

    PubMed Central

    Lenert, L.; Lopez-Campos, G.

    2014-01-01

    Summary Objectives Given the quickening speed of discovery of variant disease drivers from combined patient genotype and phenotype data, the objective is to provide methodology using big data technology to support the definition of deep phenotypes in medical records. Methods As the vast stores of genomic information increase with next generation sequencing, the importance of deep phenotyping increases. The growth of genomic data and adoption of Electronic Health Records (EHR) in medicine provides a unique opportunity to integrate phenotype and genotype data into medical records. The method by which collections of clinical findings and other health related data are leveraged to form meaningful phenotypes is an active area of research. Longitudinal data stored in EHRs provide a wealth of information that can be used to construct phenotypes of patients. We focus on a practical problem around data integration for deep phenotype identification within EHR data. The use of big data approaches are described that enable scalable markup of EHR events that can be used for semantic and temporal similarity analysis to support the identification of phenotype and genotype relationships. Conclusions Stead and colleagues’ 2005 concept of using light standards to increase the productivity of software systems by riding on the wave of hardware/processing power is described as a harbinger for designing future healthcare systems. The big data solution, using flexible markup, provides a route to improved utilization of processing power for organizing patient records in genotype and phenotype research. PMID:25123744

  20. Quantifying the impact of development on phenotypic variation and evolution.

    PubMed

    Sears, Karen E

    2014-12-01

    A primary goal of evolutionary biology is to identify the factors that shape phenotypic evolution. According to the theory of natural selection, phenotypic evolution occurs through the differential survival and reproduction of individuals whose traits are selectively advantageous relative to other individuals in the population. This implies that evolution by natural selection is contingent upon the distribution and magnitude of phenotypic variation among individuals, which are in turn the products of developmental processes. Development therefore has the potential to affect the trajectory and rate of phenotypic evolution. Recent research in diverse systems (e.g., mammalian teeth, cichlid skulls, butterfly wings, and marsupial limbs) supports the hypothesis that development biases phenotypic variation and evolution, but suggests that these biases might be system-specific. PMID:25393554

  1. Association Tests of Multiple Phenotypes: ATeMP.

    PubMed

    Guo, Xiaobo; Li, Yixi; Ding, Xiaohu; He, Mingguang; Wang, Xueqin; Zhang, Heping

    2015-01-01

    Joint analysis of multiple phenotypes has gained growing attention in genome-wide association studies (GWASs), especially for the analysis of multiple intermediate phenotypes which measure the same underlying complex human disorder. One of the multivariate methods, MultiPhen (O' Reilly et al. 2012), employs the proportional odds model to regress a genotype on multiple phenotypes, hence ignoring the phenotypic distributions. Despite the flexibilities of MultiPhen, the properties and performance of MultiPhen are not well understood, especially when the phenotypic distributions are non-normal. In fact, it is well known in the statistical literature that the estimation is attenuated when the explanatory variables contain measurement errors. In this study, we first established an equivalence relationship between MultiPhen and the generalized Kendall tau association test, shedding light on why MultiPhen can perform well for joint association analysis of multiple phenotypes. Through the equivalence, we show that MultiPhen may lose power when the phenotypes are non-normal. To maintain the power, we propose two solutions (ATeMP-rn and ATeMP-or) to improve MultiPhen, and demonstrate their effectiveness through extensive simulation studies and a real case study from the Guangzhou Twin Eye Study. PMID:26479245

  2. Pseudomonas Aeruginosa Resistance Phenotypes and Phenotypic Highlighting Methods

    PubMed Central

    BĂLĂŞOIU, MARIA; BĂLĂŞOIU, A.T.; MĂNESCU, RODICA; AVRAMESCU, CARMEN; IONETE, OANA

    2014-01-01

    Pseudomonas aeruginosa genus bacteria are well known for their increased drug resistance (phenotypic ang genotypic resistance). The most important resistance mechanisms are: enzyme production, reduction of pore expression, reduction of the external membrane proteins expression, efflux systems, topoisomerase mutations. These mechanisms often accumulate and lead to multidrug ressitance strains emergence. The most frequent acquired resistance mechanisms are betalactamase-type enzyme production (ESBLs, AmpC, carbapenemases), which determine variable phenotypes of betalactamines resistance, phenotypes which are associated with aminoglycosides and quinolones resistance. The nonenzymatic drug resistance mechanisms are caused by efflux systems, pore reduction and penicillin-binding proteins (PBP) modification, which are often associated to other resistance mechanisms. Phenotypic methods used for testing these mechanisms are based on highlighting these phenotypes using Kirby Bauer antibiogram, clinical breakpoints, and “cut off” values recommended by EUCAST 2013 standard, version 3.1. PMID:25729587

  3. Contrasting Association Results between Existing PheWAS Phenotype Definition Methods and Five Validated Electronic Phenotypes

    PubMed Central

    Leader, Joseph B; Pendergrass, Sarah A; Verma, Anurag; Carey, David J; Hartzel, Dustin N; Ritchie, Marylyn D; Kirchner, H. Lester

    2015-01-01

    Phenome-Wide Association Studies (PheWAS) comprehensively investigate the association between genetic variation and a wide array of outcome traits. Electronic health record (EHR) based PheWAS uses various abstractions of International Classification of Diseases, Ninth Revision (ICD-9) codes to identify case/control status for diagnoses that are used as the phenotypic variables. However, there have not been comparisons within a PheWAS between results from high quality derived phenotypes and high-throughput but potentially inaccurate use of ICD-9 codes for case/control definition. For this study we first developed a group of high quality algorithms for five phenotypes. Next we evaluated the association of these “gold standard” phenotypes and 4,636,178 genetic variants with minor allele frequency > 0.01 and compared the results from high-throughput associations at the 3 digit, 5 digit, and PheWAS codes for defining case/control status. We found that certain diseases contained similar patient populations across phenotyping methods but had differences in PheWAS. PMID:26958218

  4. Phenotypic extremes in rare variant study designs.

    PubMed

    Peloso, Gina M; Rader, Daniel J; Gabriel, Stacey; Kathiresan, Sekar; Daly, Mark J; Neale, Benjamin M

    2016-06-01

    Currently, next-generation sequencing studies aim to identify rare and low-frequency variation that may contribute to disease. For a given effect size, as the allele frequency decreases, the power to detect genes or variants of interest also decreases. Although many methods have been proposed for the analysis of such data, study design and analytic issues still persist in data interpretation. In this study we present sequencing data for ABCA1 that has known rare variants associated with high-density lipoprotein cholesterol (HDL-C). We contrast empirical findings from two study designs: a phenotypic extreme sample and a population-based random sample. We found differing strengths of association with HDL-C across the two study designs (P=0.0006 with n=701 phenotypic extremes vs P=0.03 with n=1600 randomly sampled individuals). To explore this apparent difference in evidence for association, we performed a simulation study focused on the impact of phenotypic selection on power. We demonstrate that the power gain for an extreme phenotypic selection study design is much greater in rare variant studies than for studies of common variants. Our study confirms that studying phenotypic extremes is critical in rare variant studies because it boosts power in two ways: the typical increases from extreme sampling and increasing the proportion of relevant functional variants ascertained and thereby tested for association. Furthermore, we show that when combining statistical evidence through meta-analysis from an extreme-selected sample and a second separate population-based random sample, power is lower when a traditional sample size weighting is used compared with weighting by the noncentrality parameter. PMID:26350511

  5. Deciphering the Mechanisms of Developmental Disorders (DMDD): a new programme for phenotyping embryonic lethal mice.

    PubMed

    Mohun, Timothy; Adams, David J; Baldock, Richard; Bhattacharya, Shoumo; Copp, Andrew J; Hemberger, Myriam; Houart, Corinne; Hurles, Matt E; Robertson, Elizabeth; Smith, James C; Weaver, Tom; Weninger, Wolfgang

    2013-05-01

    International efforts to test gene function in the mouse by the systematic knockout of each gene are creating many lines in which embryonic development is compromised. These homozygous lethal mutants represent a potential treasure trove for the biomedical community. Developmental biologists could exploit them in their studies of tissue differentiation and organogenesis; for clinical researchers they offer a powerful resource for investigating the origins of developmental diseases that affect newborns. Here, we outline a new programme of research in the UK aiming to kick-start research with embryonic lethal mouse lines. The 'Deciphering the Mechanisms of Developmental Disorders' (DMDD) programme has the ambitious goal of identifying all embryonic lethal knockout lines made in the UK over the next 5 years, and will use a combination of comprehensive imaging and transcriptomics to identify abnormalities in embryo structure and development. All data will be made freely available, enabling individual researchers to identify lines relevant to their research. The DMDD programme will coordinate its work with similar international efforts through the umbrella of the International Mouse Phenotyping Consortium [see accompanying Special Article (Adams et al., 2013)] and, together, these programmes will provide a novel database for embryonic development, linking gene identity with molecular profiles and morphology phenotypes. PMID:23519034

  6. Plant Phenotype Characterization System

    SciTech Connect

    Daniel W McDonald; Ronald B Michaels

    2005-09-09

    This report is the final scientific report for the DOE Inventions and Innovations Project: Plant Phenotype Characterization System, DE-FG36-04GO14334. The period of performance was September 30, 2004 through July 15, 2005. The project objective is to demonstrate the viability of a new scientific instrument concept for the study of plant root systems. The root systems of plants are thought to be important in plant yield and thus important to DOE goals in renewable energy sources. The scientific study and understanding of plant root systems is hampered by the difficulty in observing root activity and the inadequacy of existing root study instrumentation options. We have demonstrated a high throughput, non-invasive, high resolution technique for visualizing plant root systems in-situ. Our approach is based upon low-energy x-ray radiography and the use of containers and substrates (artificial soil) which are virtually transparent to x-rays. The system allows us to germinate and grow plant specimens in our containers and substrates and to generate x-ray images of the developing root system over time. The same plant can be imaged at different times in its development. The system can be used for root studies in plant physiology, plant morphology, plant breeding, plant functional genomics and plant genotype screening.

  7. Citrullinemia: phenotypic variations.

    PubMed

    Whelan, D T; Brusso, T; Spate, M

    1976-06-01

    An 18-month-old female infant was found to have citrullinemia on routine plasma screening by the Scriver Method at 5 days of age. At 10 days of age, plasma citrulline concentration was 0.704mumol/ml (normal, 0.010 to 0.030mumol/ml) and has remained 60 to 80 times higher than normal. Urine citrulline concentration was markedly elevated. Hyperammonemia occurred at 1 month of age. The serum ammonia concentration was 473mug/100 ml (normal, 50 to 250 mug/100 ml) and rose to 770mug/100 ml at 4 months of age. Dietary protein was restricted to 1.6 gm/kg/day. Without further change in protein intake, the serum ammonia concentration decreased to 280mug/100 ml and, since then, it has returned to normal. The addition of three synthetic L-amino acids was required for a short time during dietary therapy. At 10 months of age, the infant was given a normal diet. At 18 months of age, her physical and mental development is normal. Activity of argininosuccinic acid synthetase measured in skin fibroblasts was 0.0037mumol of radioactive carbon dioxide per milligram of protein per hour. To demonstrate heterozygosity, fasting plasma citrulline concentrations were measured in five members of the family. Comparison of findings in this patient with those reported in the literature suggests phenotypical variation of the disease, probably due to genetic heterogeneity. PMID:934749

  8. Endothelial and Epithelial Cell Transition to a Mesenchymal Phenotype Was Delineated by Nestin Expression.

    PubMed

    Chabot, Andréanne; Hertig, Vanessa; Boscher, Elena; Nguyen, Quang Trinh; Boivin, Benoît; Chebli, Jasmine; Bissonnette, Lyse; Villeneuve, Louis; Brochiero, Emmanuelle; Dupuis, Jocelyn; Calderone, Angelino

    2016-07-01

    Cover: The cover image, by Angelino Calderone et al., is based on the Original Research Article Endothelial and Epithelial Cell Transition to a Mesenchymal Phenotype Was Delineated by Nestin Expression, DOI: 10.1002/jcp.25257. PMID:26995059

  9. Phenotypic Heterogeneity of Monogenic Frontotemporal Dementia

    PubMed Central

    Benussi, Alberto; Padovani, Alessandro; Borroni, Barbara

    2015-01-01

    Frontotemporal dementia (FTD) is a genetically and pathologically heterogeneous disorder characterized by personality changes, language impairment, and deficits of executive functions associated with frontal and temporal lobe degeneration. Different phenotypes have been defined on the basis of presenting clinical symptoms, i.e., the behavioral variant of FTD, the agrammatic variant of primary progressive aphasia, and the semantic variant of PPA. Some patients have an associated movement disorder, either parkinsonism, as in progressive supranuclear palsy and corticobasal syndrome, or motor neuron disease (FTD–MND). A family history of dementia is found in 40% of cases of FTD and about 10% have a clear autosomal-dominant inheritance. Genetic studies have identified several genes associated with monogenic FTD: microtubule-associated protein tau, progranulin, TAR DNA-binding protein 43, valosin-containing protein, charged multivesicular body protein 2B, fused in sarcoma, and the hexanucleotide repeat expansion in intron 1 of the chromosome 9 open reading frame 72. Patients often present with an extensive phenotypic variability, even among different members of the same kindred carrying an identical disease mutation. The objective of the present work is to review and evaluate available literature data in order to highlight recent advances in clinical, biological, and neuroimaging features of monogenic frontotemporal lobar degeneration and try to identify different mechanisms underlying the extreme phenotypic heterogeneity that characterizes this disease. PMID:26388768

  10. Expanding the phenotype of mosaic trisomy 20.

    PubMed

    Willis, Mary J H; Bird, Lynne M; Dell'Aquilla, Marie; Jones, Marilyn C

    2008-02-01

    Mosaic trisomy 20 is one of the more common cytogenetic abnormalities found on amniocentesis or chorionic villus sampling. Studies have shown that outcome is normal in 90-93% of prenatally diagnosed cases. There are however, reports in the literature of children with mosaic trisomy 20 described as having an assortment of dysmorphic features and varying levels of developmental delay. Unfortunately, the literature has not defined a specific phenotype for this entity. Here we report on three patients with mosaic trisomy 20, two of whom were identified prenatally. Over a number of years of follow-up it has become apparent that there are some striking similarities among the three. Comparison between our patients and the literature cases indicates a more consistent phenotype than has previously been suggested. Recurring features include; spinal abnormalities (including spinal stenosis, vertebral fusion, and kyphosis), hypotonia, lifelong constipation, sloped shoulders, and significant learning disabilities despite normal intelligence. These findings may be overlooked on routine history and physical exam or assumed to be standard pediatric problems. It is not our intention to suggest that there is a distinctive face for this entity but to suggest that a subtle phenotype does exist. We have attempted to identify a set of findings for which any child diagnosed with mosaic trisomy 20 should be assessed or followed even in the presence of an apparently normal physical exam at birth. PMID:18203170

  11. Cellular imaging: a key phenotypic screening strategy for predictive toxicology

    PubMed Central

    Xu, Jinghai J.

    2015-01-01

    Incorporating phenotypic screening as a key strategy enhances predictivity and translatability of drug discovery efforts. Cellular imaging serves as a “phenotypic anchor” to identify important toxicologic pathology that encompasses an array of underlying mechanisms, thus provides an effective means to reduce drug development failures due to insufficient safety. This mini-review highlights the latest advances in hepatotoxicity, cardiotoxicity, and genetic toxicity tests that utilized cellular imaging as a screening strategy, and recommends path forward for further improvement. PMID:26441648

  12. Expanding the phenotype of GMPPB mutations.

    PubMed

    Cabrera-Serrano, Macarena; Ghaoui, Roula; Ravenscroft, Gianina; Johnsen, Russell D; Davis, Mark R; Corbett, Alastair; Reddel, Stephen; Sue, Carolyn M; Liang, Christina; Waddell, Leigh B; Kaur, Simranpreet; Lek, Monkol; North, Kathryn N; MacArthur, Daniel G; Lamont, Phillipa J; Clarke, Nigel F; Laing, Nigel G

    2015-04-01

    Dystroglycanopathies are a heterogeneous group of diseases with a broad phenotypic spectrum ranging from severe disorders with congenital muscle weakness, eye and brain structural abnormalities and intellectual delay to adult-onset limb-girdle muscular dystrophies without mental retardation. Most frequently the disease onset is congenital or during childhood. The exception is FKRP mutations, in which adult onset is a common presentation. Here we report eight patients from five non-consanguineous families where next generation sequencing identified mutations in the GMPPB gene. Six patients presented as an adult or adolescent-onset limb-girdle muscular dystrophy, one presented with isolated episodes of rhabdomyolysis, and one as a congenital muscular dystrophy. This report expands the phenotypic spectrum of GMPPB mutations to include limb-girdle muscular dystrophies with adult onset with or without intellectual disability, or isolated rhabdomyolysis. PMID:25681410

  13. Advances in Human B Cell Phenotypic Profiling

    PubMed Central

    Kaminski, Denise A.; Wei, Chungwen; Qian, Yu; Rosenberg, Alexander F.; Sanz, Ignacio

    2012-01-01

    To advance our understanding and treatment of disease, research immunologists have been called-upon to place more centralized emphasis on impactful human studies. Such endeavors will inevitably require large-scale study execution and data management regulation (“Big Biology”), necessitating standardized and reliable metrics of immune status and function. A well-known example setting this large-scale effort in-motion is identifying correlations between eventual disease outcome and T lymphocyte phenotype in large HIV-patient cohorts using multiparameter flow cytometry. However, infection, immunodeficiency, and autoimmunity are also characterized by correlative and functional contributions of B lymphocytes, which to-date have received much less attention in the human Big Biology enterprise. Here, we review progress in human B cell phenotyping, analysis, and bioinformatics tools that constitute valuable resources for the B cell research community to effectively join in this effort. PMID:23087687

  14. The behavioral phenotype of FMR1 mutations.

    PubMed

    Boyle, Lia; Kaufmann, Walter E

    2010-11-15

    The purpose of this article is to provide an overview of the behavioral phenotype of FMR1 mutations, including fragile X syndrome (FXS) in order to better understand the clinical involvement of individuals affected by mutations in this gene. FXS is associated with a wide range of intellectual and behavioral problems, some relatively mild and others quite severe. FXS is the most common cause of inherited intellectual disability and one of the most prevalent genetic causes of autism spectrum disorder. Learning difficulties, attentional problems, anxiety, aggressive behavior, stereotypies, and mood disorders are also frequent in FXS. Recent studies of children and adults have identified associations between FMR1 premutation and many of the same disorders. We examine the neurobehavioral phenotypes of FXS and FMR1 premutation as they manifest across the lifespan of the individual. PMID:20981777

  15. Delineation of C12orf65-related phenotypes: a genotype–phenotype relationship

    PubMed Central

    Spiegel, Ronen; Mandel, Hanna; Saada, Ann; Lerer, Issy; Burger, Ayala; Shaag, Avraham; Shalev, Stavit A; Jabaly-Habib, Haneen; Goldsher, Dorit; Gomori, John M; Lossos, Alex; Elpeleg, Orly; Meiner, Vardiella

    2014-01-01

    C12orf65 participates in the process of mitochondrial translation and has been shown to be associated with a spectrum of phenotypes, including early onset optic atrophy, progressive encephalomyopathy, peripheral neuropathy, and spastic paraparesis.We used whole-genome homozygosity mapping as well as exome sequencing and targeted gene sequencing to identify novel C12orf65 disease-causing mutations in seven affected individuals originating from two consanguineous families. In four family members affected with childhood-onset optic atrophy accompanied by slowly progressive peripheral neuropathy and spastic paraparesis, we identified a homozygous frame shift mutation c.413_417 delAACAA, which predicts a truncated protein lacking the C-terminal portion. In the second family, we studied three affected individuals who presented with early onset optic atrophy, peripheral neuropathy, and spastic gait in addition to moderate intellectual disability. Muscle biopsy in two of the patients revealed decreased activities of the mitochondrial respiratory chain complexes I and IV. In these patients, we identified a homozygous splice mutation, g.21043 T>A (c.282+2 T>A) which leads to skipping of exon 2. Our study broadens the phenotypic spectrum of C12orf65 defects and highlights the triad of optic atrophy, axonal neuropathy and spastic paraparesis as its key clinical features. In addition, a clear genotype–phenotype correlation is anticipated in which deleterious mutations which disrupt the GGQ-containing domain in the first coding exon are expected to result in a more severe phenotype, whereas down-stream C-terminal mutations may result in a more favorable phenotype, typically lacking cognitive impairment. PMID:24424123

  16. ALS - resources

    MedlinePlus

    Resources - ALS ... The following organizations are good resources for information on amyotrophic lateral sclerosis : Muscular Dystrophy Association -- mda.org/disease/amyotrophic-lateral-sclerosis National Amyotrophic Lateral Sclerosis (ALS) Registry -- ...

  17. ALS Association

    MedlinePlus

    ... ALS. Find Out How Our Mission Leading the fight to treat and cure ALS through global research ... you participate, advocate, and donate, you advance the fight to find the cure and lead us toward ...

  18. Reporting phenotypes in mouse models when considering body size as a potential confounder.

    PubMed

    Oellrich, Anika; Meehan, Terrence F; Parkinson, Helen; Sarntivijai, Sirarat; White, Jacqueline K; Karp, Natasha A

    2016-01-01

    Genotype-phenotype studies aim to identify causative relationships between genes and phenotypes. The International Mouse Phenotyping Consortium is a high throughput phenotyping program whose goal is to collect phenotype data for a knockout mouse strain of every protein coding gene. The scale of the project requires an automatic analysis pipeline to detect abnormal phenotypes, and disseminate the resulting gene-phenotype annotation data into public resources. A body weight phenotype is a common result of knockout studies. As body weight correlates with many other biological traits, this challenges the interpretation of related gene-phenotype associations. Co-correlation can lead to gene-phenotype associations that are potentially misleading. Here we use statistical modelling to account for body weight as a potential confounder to assess the impact. We find that there is a considerable impact on previously established gene-phenotype associations due to an increase in sensitivity as well as the confounding effect. We investigated the existing ontologies to represent this phenotypic information and we explored ways to ontologically represent the results of the influence of confounders on gene-phenotype associations. With the scale of data being disseminated within the high throughput programs and the range of downstream studies that utilise these data, it is critical to consider how we improve the quality of the disseminated data and provide a robust ontological representation. PMID:26865945

  19. Phenotypic mapping and clinical ideology

    SciTech Connect

    Lurie, I.W.; Opitz, J.M.

    1995-07-17

    Scientists have been trying to determine whether the main clinical findings in the 4p deletion syndrome are due to a deletion of one small critical segment, or whether deletions of some particular segments of 4p are responsible for different phenotypic manifestations. This is the basic issue for the whole group of autosomal deletion syndromes, as well as for our understanding of mechanisms of the origin of the abnormal phenotype. All circumstances need to be taken into consideration when trying to apply molecular methods for the mapping of phenotypic findings in the 4p deletion or in any other autosomal deletion syndrome. 8 refs.

  20. ALS-linked protein disulfide isomerase variants cause motor dysfunction.

    PubMed

    Woehlbier, Ute; Colombo, Alicia; Saaranen, Mirva J; Pérez, Viviana; Ojeda, Jorge; Bustos, Fernando J; Andreu, Catherine I; Torres, Mauricio; Valenzuela, Vicente; Medinas, Danilo B; Rozas, Pablo; Vidal, Rene L; Lopez-Gonzalez, Rodrigo; Salameh, Johnny; Fernandez-Collemann, Sara; Muñoz, Natalia; Matus, Soledad; Armisen, Ricardo; Sagredo, Alfredo; Palma, Karina; Irrazabal, Thergiory; Almeida, Sandra; Gonzalez-Perez, Paloma; Campero, Mario; Gao, Fen-Biao; Henny, Pablo; van Zundert, Brigitte; Ruddock, Lloyd W; Concha, Miguel L; Henriquez, Juan P; Brown, Robert H; Hetz, Claudio

    2016-04-15

    Disturbance of endoplasmic reticulum (ER) proteostasis is a common feature of amyotrophic lateral sclerosis (ALS). Protein disulfide isomerases (PDIs) areERfoldases identified as possibleALSbiomarkers, as well as neuroprotective factors. However, no functional studies have addressed their impact on the disease process. Here, we functionally characterized fourALS-linked mutations recently identified in two majorPDIgenes,PDIA1 andPDIA3/ERp57. Phenotypic screening in zebrafish revealed that the expression of thesePDIvariants induce motor defects associated with a disruption of motoneuron connectivity. Similarly, the expression of mutantPDIs impaired dendritic outgrowth in motoneuron cell culture models. Cellular and biochemical studies identified distinct molecular defects underlying the pathogenicity of thesePDImutants. Finally, targetingERp57 in the nervous system led to severe motor dysfunction in mice associated with a loss of neuromuscular synapses. This study identifiesERproteostasis imbalance as a risk factor forALS, driving initial stages of the disease. PMID:26869642

  1. Sculpturing new muscle phenotypes

    NASA Technical Reports Server (NTRS)

    Babij, P.; Booth, F. W.

    1988-01-01

    Changes in the pattern of muscle activity are followed by new patterns of protein synthesis, both in the contractile elements and in the enzymes of energy metabolism. Although the signal transducers have not been identified, techniques of molecular biology have clearly shown that the adaptive responses are the regulated consequence of differential gene expression.

  2. Capturing phenotypes for precision medicine.

    PubMed

    Robinson, Peter N; Mungall, Christopher J; Haendel, Melissa

    2015-10-01

    Deep phenotyping followed by integrated computational analysis of genotype and phenotype is becoming ever more important for many areas of genomic diagnostics and translational research. The overwhelming majority of clinical descriptions in the medical literature are available only as natural language text, meaning that searching, analysis, and integration of medically relevant information in databases such as PubMed is challenging. The new journal Cold Spring Harbor Molecular Case Studies will require authors to select Human Phenotype Ontology terms for research papers that will be displayed alongside the manuscript, thereby providing a foundation for ontology-based indexing and searching of articles that contain descriptions of phenotypic abnormalities-an important step toward improving the ability of researchers and clinicians to get biomedical information that is critical for clinical care or translational research. PMID:27148566

  3. Finding Our Way through Phenotypes

    PubMed Central

    Deans, Andrew R.; Lewis, Suzanna E.; Huala, Eva; Anzaldo, Salvatore S.; Ashburner, Michael; Balhoff, James P.; Blackburn, David C.; Blake, Judith A.; Burleigh, J. Gordon; Chanet, Bruno; Cooper, Laurel D.; Courtot, Mélanie; Csösz, Sándor; Cui, Hong; Dahdul, Wasila; Das, Sandip; Dececchi, T. Alexander; Dettai, Agnes; Diogo, Rui; Druzinsky, Robert E.; Dumontier, Michel; Franz, Nico M.; Friedrich, Frank; Gkoutos, George V.; Haendel, Melissa; Harmon, Luke J.; Hayamizu, Terry F.; He, Yongqun; Hines, Heather M.; Ibrahim, Nizar; Jackson, Laura M.; Jaiswal, Pankaj; James-Zorn, Christina; Köhler, Sebastian; Lecointre, Guillaume; Lapp, Hilmar; Lawrence, Carolyn J.; Le Novère, Nicolas; Lundberg, John G.; Macklin, James; Mast, Austin R.; Midford, Peter E.; Mikó, István; Mungall, Christopher J.; Oellrich, Anika; Osumi-Sutherland, David; Parkinson, Helen; Ramírez, Martín J.; Richter, Stefan; Robinson, Peter N.; Ruttenberg, Alan; Schulz, Katja S.; Segerdell, Erik; Seltmann, Katja C.; Sharkey, Michael J.; Smith, Aaron D.; Smith, Barry; Specht, Chelsea D.; Squires, R. Burke; Thacker, Robert W.; Thessen, Anne; Fernandez-Triana, Jose; Vihinen, Mauno; Vize, Peter D.; Vogt, Lars; Wall, Christine E.; Walls, Ramona L.; Westerfeld, Monte; Wharton, Robert A.; Wirkner, Christian S.; Woolley, James B.; Yoder, Matthew J.; Zorn, Aaron M.; Mabee, Paula

    2015-01-01

    Despite a large and multifaceted effort to understand the vast landscape of phenotypic data, their current form inhibits productive data analysis. The lack of a community-wide, consensus-based, human- and machine-interpretable language for describing phenotypes and their genomic and environmental contexts is perhaps the most pressing scientific bottleneck to integration across many key fields in biology, including genomics, systems biology, development, medicine, evolution, ecology, and systematics. Here we survey the current phenomics landscape, including data resources and handling, and the progress that has been made to accurately capture relevant data descriptions for phenotypes. We present an example of the kind of integration across domains that computable phenotypes would enable, and we call upon the broader biology community, publishers, and relevant funding agencies to support efforts to surmount today's data barriers and facilitate analytical reproducibility. PMID:25562316

  4. Epigenetics in heart failure phenotypes.

    PubMed

    Berezin, Alexander

    2016-12-01

    Chronic heart failure (HF) is a leading clinical and public problem posing a higher risk of morbidity and mortality in different populations. HF appears to be in both phenotypic forms: HF with reduced left ventricular ejection fraction (HFrEF) and HF with preserved left ventricular ejection fraction (HFpEF). Although both HF phenotypes can be distinguished through clinical features, co-morbidity status, prediction score, and treatment, the clinical outcomes in patients with HFrEF and HFpEF are similar. In this context, investigation of various molecular and cellular mechanisms leading to the development and progression of both HF phenotypes is very important. There is emerging evidence that epigenetic regulation may have a clue in the pathogenesis of HF. This review represents current available evidence regarding the implication of epigenetic modifications in the development of different HF phenotypes and perspectives of epigenetic-based therapies of HF. PMID:27335803

  5. Capturing phenotypes for precision medicine

    PubMed Central

    Robinson, Peter N.; Mungall, Christopher J.; Haendel, Melissa

    2015-01-01

    Deep phenotyping followed by integrated computational analysis of genotype and phenotype is becoming ever more important for many areas of genomic diagnostics and translational research. The overwhelming majority of clinical descriptions in the medical literature are available only as natural language text, meaning that searching, analysis, and integration of medically relevant information in databases such as PubMed is challenging. The new journal Cold Spring Harbor Molecular Case Studies will require authors to select Human Phenotype Ontology terms for research papers that will be displayed alongside the manuscript, thereby providing a foundation for ontology-based indexing and searching of articles that contain descriptions of phenotypic abnormalities—an important step toward improving the ability of researchers and clinicians to get biomedical information that is critical for clinical care or translational research. PMID:27148566

  6. Finding our way through phenotypes.

    PubMed

    Deans, Andrew R; Lewis, Suzanna E; Huala, Eva; Anzaldo, Salvatore S; Ashburner, Michael; Balhoff, James P; Blackburn, David C; Blake, Judith A; Burleigh, J Gordon; Chanet, Bruno; Cooper, Laurel D; Courtot, Mélanie; Csösz, Sándor; Cui, Hong; Dahdul, Wasila; Das, Sandip; Dececchi, T Alexander; Dettai, Agnes; Diogo, Rui; Druzinsky, Robert E; Dumontier, Michel; Franz, Nico M; Friedrich, Frank; Gkoutos, George V; Haendel, Melissa; Harmon, Luke J; Hayamizu, Terry F; He, Yongqun; Hines, Heather M; Ibrahim, Nizar; Jackson, Laura M; Jaiswal, Pankaj; James-Zorn, Christina; Köhler, Sebastian; Lecointre, Guillaume; Lapp, Hilmar; Lawrence, Carolyn J; Le Novère, Nicolas; Lundberg, John G; Macklin, James; Mast, Austin R; Midford, Peter E; Mikó, István; Mungall, Christopher J; Oellrich, Anika; Osumi-Sutherland, David; Parkinson, Helen; Ramírez, Martín J; Richter, Stefan; Robinson, Peter N; Ruttenberg, Alan; Schulz, Katja S; Segerdell, Erik; Seltmann, Katja C; Sharkey, Michael J; Smith, Aaron D; Smith, Barry; Specht, Chelsea D; Squires, R Burke; Thacker, Robert W; Thessen, Anne; Fernandez-Triana, Jose; Vihinen, Mauno; Vize, Peter D; Vogt, Lars; Wall, Christine E; Walls, Ramona L; Westerfeld, Monte; Wharton, Robert A; Wirkner, Christian S; Woolley, James B; Yoder, Matthew J; Zorn, Aaron M; Mabee, Paula

    2015-01-01

    Despite a large and multifaceted effort to understand the vast landscape of phenotypic data, their current form inhibits productive data analysis. The lack of a community-wide, consensus-based, human- and machine-interpretable language for describing phenotypes and their genomic and environmental contexts is perhaps the most pressing scientific bottleneck to integration across many key fields in biology, including genomics, systems biology, development, medicine, evolution, ecology, and systematics. Here we survey the current phenomics landscape, including data resources and handling, and the progress that has been made to accurately capture relevant data descriptions for phenotypes. We present an example of the kind of integration across domains that computable phenotypes would enable, and we call upon the broader biology community, publishers, and relevant funding agencies to support efforts to surmount today's data barriers and facilitate analytical reproducibility. PMID:25562316

  7. Spinal Cord Neuronal Precursors Generate Multiple Neuronal Phenotypes in Culture

    PubMed Central

    Kalyani, Anjali J.; Piper, David; Mujtaba, Tahmina; Lucero, Mary T.; Rao, Mahendra S.

    2010-01-01

    Neuronal restricted precursors (NRPs) (Mayer-Proschel et al., 1997) can generate multiple neurotransmitter phenotypes during maturation in culture. Undifferentiated E-NCAM+ (embryonic neural cell adhesion molecule) immunoreactive NRPs are mitotically active and electrically immature, and they express only a subset of neuronal markers. Fully mature cells are postmitotic, process-bearing cells that are neurofilament-M and synaptophysin immunoreactive, and they synthesize and respond to different subsets of neurotransmitter molecules. Mature neurons that synthesize and respond to glycine, glutamate, GABA, dopamine, and acetylcholine can be identified by immunocytochemistry, RT-PCR, and calcium imaging in mass cultures. Individual NRPs also generate heterogeneous progeny as assessed by neurotransmitter response and synthesis, demonstrating the multipotent nature of the precursor cells. Differentiation can be modulated by sonic hedgehog (Shh) and bone morphogenetic protein (BMP)-2/4 molecules. Shh acts as a mitogen and inhibits differentiation (including cholinergic differentiation). BMP-2 and BMP-4, in contrast, inhibit cell division and promote differentiation (including cholinergic differentiation). Thus, a single neuronal precursor cell can differentiate into multiple classes of neurons, and this differentiation can be modulated by environmental signals. PMID:9742154

  8. Network motifs that stabilize the hybrid epithelial/mesenchymal phenotype

    NASA Astrophysics Data System (ADS)

    Jolly, Mohit Kumar; Jia, Dongya; Tripathi, Satyendra; Hanash, Samir; Mani, Sendurai; Ben-Jacob, Eshel; Levine, Herbert

    Epithelial to Mesenchymal Transition (EMT) and its reverse - MET - are hallmarks of cancer metastasis. While transitioning between E and M phenotypes, cells can also attain a hybrid epithelial/mesenchymal (E/M) phenotype that enables collective cell migration as a cluster of Circulating Tumor Cells (CTCs). These clusters can form 50-times more tumors than individually migrating CTCs, underlining their importance in metastasis. However, this hybrid E/M phenotype has been hypothesized to be only a transient one that is attained en route EMT. Here, via mathematically modeling, we identify certain `phenotypic stability factors' that couple with the core three-way decision-making circuit (miR-200/ZEB) and can maintain or stabilize the hybrid E/M phenotype. Further, we show experimentally that this phenotype can be maintained stably at a single-cell level, and knockdown of these factors impairs collective cell migration. We also show that these factors enable the association of hybrid E/M with high stemness or tumor-initiating potential. Finally, based on these factors, we deduce specific network motifs that can maintain the E/M phenotype. Our framework can be used to elucidate the effect of other players in regulating cellular plasticity during metastasis. This work was supported by NSF PHY-1427654 (Center for Theoretical Biological Physics) and the CPRIT Scholar in Cancer Research of the State of Texas at Rice University.

  9. Cation-poor complex metallic alloys in Ba(Eu)–Au–Al(Ga) systems: Identifying the keys that control structural arrangements and atom distributions at the atomic level

    DOE PAGESBeta

    Smetana, Volodymyr; Steinberg, Simon; Mudryk, Yaroslav; Pecharsky, Vitalij; Miller, Gordon J.; Mudring, Anja -Verena

    2015-10-19

    Four complex intermetallic compounds BaAu6±xGa6±y (x = 1, y = 0.9) (I), BaAu6±xAl6±y (x = 0.9, y = 0.6) (II), EuAu6.2Ga5.8 (III), and EuAu6.1Al5.9 (IV) have been synthesized, and their structures and homogeneity ranges have been determined by single crystal and powder X-ray diffraction. Whereas I and II originate from the NaZn13-type structure (cF104–112, Fm3C), III (tP52, P4/nbm) is derived from the tetragonal Ce2Ni17Si9-type, and IV (oP104, Pbcm) crystallizes in a new orthorhombic structure type. Both I and II feature formally anionic networks with completely mixed site occupation by Au and triel (Tr = Al, Ga) atoms, while a successivemore » decrease of local symmetry from the parental structures of I and II to III and, ultimately, to IV correlates with increasing separation of Au and Tr on individual crystallographic sites. Density functional theory-based calculations were employed to determine the crystallographic site preferences of Au and the respective triel element to elucidate reasons for the atom distribution (“coloring scheme”). Chemical bonding analyses for two different “EuAu6Tr6” models reveal maximization of the number of heteroatomic Au–Tr bonds as the driving force for atom organization. The Fermi levels fall in broad pseudogaps for both models allowing some electronic flexibility. Spin-polarized band structure calculations on the “EuAu6Tr6” models hint to singlet ground states for europium and long-range magnetic coupling for both EuAu6.2Ga5.8 (III) and EuAu6.1Al5.9 (IV). This is substantiated by experimental evidence because both compounds show nearly identical magnetic behavior with ferromagnetic transitions at TC = 6 K and net magnetic moments of 7.35 μB/f.u. at 2 K. As a result, the effective moments of 8.3 μB/f.u., determined from Curie–Weiss fits, point to divalent oxidation states for europium in both III and IV.« less

  10. Modeling the autism spectrum disorder phenotype.

    PubMed

    McCray, Alexa T; Trevvett, Philip; Frost, H Robert

    2014-04-01

    Autism Spectrum Disorder (ASD) is highly heritable, and although there has been active research in an attempt to discover the genetic factors underlying ASD, diagnosis still depends heavily on behavioral assessments. Recently, several large-scale initiatives, including those of the Autism Consortium, have contributed to the collection of extensive information from families affected by ASD. Our goal was to develop an ontology that can be used 1) to provide improved access to the data collected by those who study ASD and other neurodevelopmental disorders, and 2) to assess and compare the characteristics of the instruments that are used in the assessment of ASD. We analyzed two dozen instruments used to assess ASD, studying the nature of the questions asked and items assessed, the method of delivery, and the overall scope of the content. These data together with the extensive literature on ASD contributed to our iterative development of an ASD phenotype ontology. The final ontology comprises 283 concepts distributed across three high-level classes, 'Personal Traits', 'Social Competence', and 'Medical History'. The ontology is fully integrated with the Autism Consortium database, allowing researchers to pose ontology-based questions. The ontology also allows researchers to assess the degree of overlap among a set of candidate instruments according to several objective criteria. The ASD phenotype ontology has promise for use in research settings where extensive phenotypic data have been collected, allowing a concept-based approach to identifying behavioral features of importance and for correlating these with genotypic data. PMID:24163114

  11. Fryns syndrome phenotype and trisomy 22

    SciTech Connect

    Ladonne, J.M.; Gaillard, D.; Carre-Pigeon, F.; Gabriel, R.

    1996-01-02

    Trisomy 22 was detected in a 32-week-old fetus born to an overweight mother with hypertension. Severe intrauterine growth retardation was associated with phenotypic manifestations of Fryns Syndrome: Diaphragmatic hernia, facial defects, and nail hypoplasia with short distal fifth phalanges. This is the second report of congenital diaphragmatic hernia in trisomy 22. This case demonstrates the importance of karyotyping malformed fetuses or newborns, even if a nonchromosome syndrome seems identifiable on clinical grounds. To date, at least 10 cases of Fryns syndrome have been reported without chromosome analysis. 32 refs., 2 figs.

  12. Triple X syndrome with rare phenotypic presentation.

    PubMed

    Jagadeesh, Sujatha; Jabeen, Gazala; Bhat, Lathaa; Vasikarla, Madhavi; Suresh, Arvind; Seshadri, Suresh; Lata, S

    2008-06-01

    Triple X syndrome is a rare numerical chromosomal anomaly, occurring as a result of non dysjunction in meiosis I. Most cases have neurodevelopmental defects and functional problems. We report two cases diagnosed in our centre. The first was a fetus with cleft lip and palate, 47, XXX was identified by Fetal Blood Sampling. The second was a child with multisystem anomaly including cleft lip and palate, whose karyotype also revealed 47, XXX. Though isolated cases of associated abnormalities have been reported there have not been consistent phenotypic changes reported with this condition. PMID:18759093

  13. Intrinsic Membrane Hyperexcitability of ALS Patient-Derived Motor Neurons

    PubMed Central

    Wainger, Brian J.; Kiskinis, Evangelos; Mellin, Cassidy; Wiskow, Ole; Han, Steve S.W.; Sandoe, Jackson; Perez, Numa P.; Williams, Luis A.; Lee, Seungkyu; Boulting, Gabriella; Berry, James D.; Brown, Robert H.; Cudkowicz, Merit E.; Bean, Bruce P.; Eggan, Kevin; Woolf, Clifford J.

    2014-01-01

    SUMMARY Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease of the motor nervous system. We show using multi-electrode array and patch clamp recordings that hyperexcitability detected by clinical neurophysiological studies of ALS patients is recapitulated in induced pluripotent stem cell-derived motor neurons from ALS patients harboring superoxide dismutase 1 (SOD1), C9orf72 and fused-in-sarcoma mutations. Motor neurons produced from a genetically corrected, but otherwise isogenic, SOD1+/+ stem cell line do not display the hyperexcitability phenotype. SOD1A4V/+ ALS patient-derived motor neurons have reduced delayed-rectifier potassium current amplitudes relative to control-derived motor neurons, a deficit that may underlie their hyperexcitability. The Kv7 channel activator retigabine both blocks the hyperexcitability and improves motor neuron survival in vitro when tested in SOD1 mutant ALS cases. Therefore, electrophysiological characterization of human stem cell-derived neurons can reveal disease-related mechanisms and identify therapeutic candidates. PMID:24703839

  14. Distinguishing phenotypes of childhood wheeze and cough using latent class analysis.

    PubMed

    Spycher, B D; Silverman, M; Brooke, A M; Minder, C E; Kuehni, C E

    2008-05-01

    Airway disease in childhood comprises a heterogeneous group of disorders. Attempts to distinguish different phenotypes have generally considered few disease dimensions. The present study examines phenotypes of childhood wheeze and chronic cough, by fitting a statistical model to data representing multiple disease dimensions. From a population-based, longitudinal cohort study of 1,650 preschool children, 319 with parent-reported wheeze or chronic cough were included. Phenotypes were identified by latent class analysis using data on symptoms, skin-prick tests, lung function and airway responsiveness from two preschool surveys. These phenotypes were then compared with respect to outcome at school age. The model distinguished three phenotypes of wheeze and two phenotypes of chronic cough. Subsequent wheeze, chronic cough and inhaler use at school age differed clearly between the five phenotypes. The wheeze phenotypes shared features with previously described entities and partly reconciled discrepancies between existing sets of phenotype labels. This novel, multidimensional approach has the potential to identify clinically relevant phenotypes, not only in paediatric disorders but also in adult obstructive airway diseases, where phenotype definition is an equally important issue. PMID:18216047

  15. On identified predictive control

    NASA Technical Reports Server (NTRS)

    Bialasiewicz, Jan T.

    1993-01-01

    Self-tuning control algorithms are potential successors to manually tuned PID controllers traditionally used in process control applications. A very attractive design method for self-tuning controllers, which has been developed over recent years, is the long-range predictive control (LRPC). The success of LRPC is due to its effectiveness with plants of unknown order and dead-time which may be simultaneously nonminimum phase and unstable or have multiple lightly damped poles (as in the case of flexible structures or flexible robot arms). LRPC is a receding horizon strategy and can be, in general terms, summarized as follows. Using assumed long-range (or multi-step) cost function the optimal control law is found in terms of unknown parameters of the predictor model of the process, current input-output sequence, and future reference signal sequence. The common approach is to assume that the input-output process model is known or separately identified and then to find the parameters of the predictor model. Once these are known, the optimal control law determines control signal at the current time t which is applied at the process input and the whole procedure is repeated at the next time instant. Most of the recent research in this field is apparently centered around the LRPC formulation developed by Clarke et al., known as generalized predictive control (GPC). GPC uses ARIMAX/CARIMA model of the process in its input-output formulation. In this paper, the GPC formulation is used but the process predictor model is derived from the state space formulation of the ARIMAX model and is directly identified over the receding horizon, i.e., using current input-output sequence. The underlying technique in the design of identified predictive control (IPC) algorithm is the identification algorithm of observer/Kalman filter Markov parameters developed by Juang et al. at NASA Langley Research Center and successfully applied to identification of flexible structures.

  16. Physiological phenotyping of pediatric chronic obstructive airway diseases.

    PubMed

    Nyilas, Sylvia; Singer, Florian; Kumar, Nitin; Yammine, Sophie; Meier-Girard, Delphine; Koerner-Rettberg, Cordula; Casaulta, Carmen; Frey, Urs; Latzin, Philipp

    2016-07-01

    Inert tracer gas washout (IGW) measurements detect increased ventilation inhomogeneity (VI) in chronic lung diseases. Their suitability for different diseases, such as cystic fibrosis (CF) and primary ciliary dyskinesia (PCD), has already been shown. However, it is still unclear if physiological phenotypes based on different IGW variables can be defined independently of underlying disease. Eighty school-age children, 20 with CF, 20 with PCD, 20 former preterm children, and 20 healthy children, performed nitrogen multiple-breath washout, double-tracer gas (DTG) single-breath washout, and spirometry. Our primary outcome was the definition of physiological phenotypes based on IGW variables. We applied principal component analysis, hierarchical Ward's clustering, and enrichment analysis to compare clinical characteristics between the clusters. IGW variables used for clustering were lung clearance index (LCI) and convection-dependent [conductive ventilation heterogeneity index (Scond)] and diffusion-convection-dependent variables [acinar ventilation heterogeneity index (Sacin) and carbon dioxide and DTG phase III slopes]. Three main phenotypes were identified. Phenotype I (n = 38) showed normal values in all IGW outcome variables. Phenotype II (n = 21) was characterized by pronounced global and convection-dependent VI while diffusion-dependent VI was normal. Phenotype III (n = 21) was characterized by increased global and diffusion- and convection-dependent VI. Enrichment analysis revealed an overrepresentation of healthy children and former preterm children in phenotype I and of CF and PCD in phenotypes II and III. Patients in phenotype III showed the highest proportion and frequency of exacerbations and hospitalization in the year prior to the measurement. IGW techniques allow identification of clinically meaningful, disease-independent physiological clusters. Their predictive value of future disease outcomes remains to be determined. PMID:27231309

  17. Evolution of cooperation in a multidimensional phenotype space.

    PubMed

    Kroumi, Dhaker; Lessard, Sabin

    2015-06-01

    The emergence of cooperation in populations of selfish individuals is a fascinating topic that has inspired much theoretical work. An important model to study cooperation is the phenotypic model, where individuals are characterized by phenotypic properties that are visible to others. The phenotype of an individual can be represented for instance by a vector x = (x1,…,xn), where x1,…,xn are integers. The population can be well mixed in the sense that everyone is equally likely to interact with everyone else, but the behavioral strategies of the individuals can depend on their distance in the phenotype space. A cooperator can choose to help other individuals exhibiting the same phenotype and defects otherwise. Cooperation is said to be favored by selection if it is more abundant than defection in the stationary state. This means that the average frequency of cooperators in the stationary state strictly exceeds 1/2. Antal et al. (2009c) found conditions that ensure that cooperation is more abundant than defection in a one-dimensional (i.e. n = 1) and an infinite-dimensional (i.e. n = ∞) phenotype space in the case of the Prisoner's Dilemma under weak selection. However, reality lies between these two limit cases. In this paper, we derive the corresponding condition in the case of a phenotype space of any finite dimension. This is done by applying a perturbation method to study a mutation-selection equilibrium under weak selection. This condition is obtained in the limit of a large population size by using the ancestral process. The best scenario for cooperation to be more likely to evolve is found to be a high population-scaled phenotype mutation rate, a low population-scaled strategy mutation rate and a high phenotype space dimension. The biological intuition is that a high population-scaled phenotype mutation rate reduces the quantity of interactions between cooperators and defectors, while a high population-scaled strategy mutation rate introduces newly

  18. Exome sequencing reveals VCP mutations as a cause of familial ALS

    PubMed Central

    Johnson, Janel O.; Mandrioli, Jessica; Benatar, Michael; Abramzon, Yevgeniya; Van Deerlin, Vivianna M.; Trojanowski, John Q.; Gibbs, J Raphael; Brunetti, Maura; Gronka, Susan; Wuu, Joanne; Ding, Jinhui; McCluskey, Leo; Martinez-Lage, Maria; Falcone, Dana; Hernandez, Dena G.; Arepalli, Sampath; Chong, Sean; Schymick, Jennifer C.; Rothstein, Jeffrey; Landi, Francesco; Wang, Michael; Calvo, Andrea; Mora, Gabriele; Sabatelli, Mario; Monsurrò, Maria Rosaria; Battistini, Stefania; Salvi, Fabrizio; Spataro, Rossella; Sola, Patrizia; Borghero, Giuseppe; Galassi, Giuliana; Scholz, Sonja W.; Taylor, J. Paul; Restagno, Gabriella; Chiò, Adriano; Traynor, Bryan J.

    2010-01-01

    Summary Using exome sequencing, we identified a p.R191Q amino acid change in the valosin-containing protein (VCP) gene in an Italian family with autosomal dominantly inherited amyotrophic lateral sclerosis (ALS). Mutations in VCP have previously been identified in families with Inclusion Body Myopathy, Paget’s disease and Frontotemporal Dementia (IBMPFD). Screening of VCP in a cohort of 210 familial ALS cases and 78 autopsy-proven ALS cases identified four additional mutations including a p.R155H mutation in a pathologically-proven case of ALS. VCP protein is essential for maturation of ubiquitin-containing autophagosomes, and mutant VCP toxicity is partially mediated through its effect on TDP-43 protein, a major constituent of ubiquitin inclusions that neuropathologically characterize ALS. Our data broaden the phenotype of IBMPFD to include motor neuron degeneration, suggest that VCP mutations may account for ~1–2% of familial ALS, and represent the first evidence directly implicating defects in the ubiquitination/protein degradation pathway in motor neuron degeneration. PMID:21145000

  19. Use of Arrott plots to identify Néel temperature (T{sub N}) in metamagnetic Ni{sub 48}Co{sub 6}Mn{sub 26}Al{sub 20} polycrystalline ribbons

    SciTech Connect

    Singh, Rohit; Kumar Srivastava, Saurabh; Chatterjee, Ratnamala E-mail: rmala@physics.iitd.ac.in; Nigam, Arun K.; Khovaylo, Vladimir V.; Varga, Lajos K.

    2013-12-28

    (Ni{sub 48}Co{sub 6})Mn{sub 26}Al{sub 20} polycrystalline ribbons with B2 structure at room temperature are investigated. Considering the presence of competing magnetic interactions, Arrott-plot analysis gives T{sub N} ∼ 170 K. A broad ferromagnetic-paramagnetic transition (T{sub C}) is observed at ∼200 K. H-T phase-diagram is used to validate the presence of competing exchange interactions that persist till very close to T{sub C}. Based on Néel theory, a cluster model is used to explain the presence of ferromagnetic and antiferromagnetic clusters in the sample. Formation of ferromagnetic clusters can be understood in terms of positive exchange interactions among the Mn atoms that are neighboring Co atoms located at Ni sites.

  20. Cation-poor complex metallic alloys in Ba(Eu)–Au–Al(Ga) systems: Identifying the keys that control structural arrangements and atom distributions at the atomic level

    SciTech Connect

    Smetana, Volodymyr; Steinberg, Simon; Mudryk, Yaroslav; Pecharsky, Vitalij; Miller, Gordon J.; Mudring, Anja -Verena

    2015-10-19

    Four complex intermetallic compounds BaAu6±xGa6±y (x = 1, y = 0.9) (I), BaAu6±xAl6±y (x = 0.9, y = 0.6) (II), EuAu6.2Ga5.8 (III), and EuAu6.1Al5.9 (IV) have been synthesized, and their structures and homogeneity ranges have been determined by single crystal and powder X-ray diffraction. Whereas I and II originate from the NaZn13-type structure (cF104–112, Fm3C), III (tP52, P4/nbm) is derived from the tetragonal Ce2Ni17Si9-type, and IV (oP104, Pbcm) crystallizes in a new orthorhombic structure type. Both I and II feature formally anionic networks with completely mixed site occupation by Au and triel (Tr = Al, Ga) atoms, while a successive decrease of local symmetry from the parental structures of I and II to III and, ultimately, to IV correlates with increasing separation of Au and Tr on individual crystallographic sites. Density functional theory-based calculations were employed to determine the crystallographic site preferences of Au and the respective triel element to elucidate reasons for the atom distribution (“coloring scheme”). Chemical bonding analyses for two different “EuAu6Tr6” models reveal maximization of the number of heteroatomic Au–Tr bonds as the driving force for atom organization. The Fermi levels fall in broad pseudogaps for both models allowing some electronic flexibility. Spin-polarized band structure calculations on the “EuAu6Tr6” models hint to singlet ground states for europium and long-range magnetic coupling for both EuAu6.2Ga5.8 (III) and EuAu6.1Al5.9 (IV). This is substantiated by experimental evidence because both compounds show nearly identical magnetic behavior with ferromagnetic transitions at TC = 6 K and net magnetic moments of 7.35 μB/f.u. at 2 K. As a result, the effective moments

  1. PhenoMiner: from text to a database of phenotypes associated with OMIM diseases

    PubMed Central

    Collier, Nigel; Groza, Tudor; Smedley, Damian; Robinson, Peter N.; Oellrich, Anika; Rebholz-Schuhmann, Dietrich

    2015-01-01

    Analysis of scientific and clinical phenotypes reported in the experimental literature has been curated manually to build high-quality databases such as the Online Mendelian Inheritance in Man (OMIM). However, the identification and harmonization of phenotype descriptions struggles with the diversity of human expressivity. We introduce a novel automated extraction approach called PhenoMiner that exploits full parsing and conceptual analysis. Apriori association mining is then used to identify relationships to human diseases. We applied PhenoMiner to the BMC open access collection and identified 13 636 phenotype candidates. We identified 28 155 phenotype-disorder hypotheses covering 4898 phenotypes and 1659 Mendelian disorders. Analysis showed: (i) the semantic distribution of the extracted terms against linked ontologies; (ii) a comparison of term overlap with the Human Phenotype Ontology (HP); (iii) moderate support for phenotype-disorder pairs in both OMIM and the literature; (iv) strong associations of phenotype-disorder pairs to known disease-genes pairs using PhenoDigm. The full list of PhenoMiner phenotypes (S1), phenotype-disorder associations (S2), association-filtered linked data (S3) and user database documentation (S5) is available as supplementary data and can be downloaded at http://github.com/nhcollier/PhenoMiner under a Creative Commons Attribution 4.0 license. Database URL: phenominer.mml.cam.ac.uk PMID:26507285

  2. PhenoMiner: from text to a database of phenotypes associated with OMIM diseases.

    PubMed

    Collier, Nigel; Groza, Tudor; Smedley, Damian; Robinson, Peter N; Oellrich, Anika; Rebholz-Schuhmann, Dietrich

    2015-10-01

    Analysis of scientific and clinical phenotypes reported in the experimental literature has been curated manually to build high-quality databases such as the Online Mendelian Inheritance in Man (OMIM). However, the identification and harmonization of phenotype descriptions struggles with the diversity of human expressivity. We introduce a novel automated extraction approach called PhenoMiner that exploits full parsing and conceptual analysis. Apriori association mining is then used to identify relationships to human diseases. We applied PhenoMiner to the BMC open access collection and identified 13,636 phenotype candidates. We identified 28,155 phenotype-disorder hypotheses covering 4898 phenotypes and 1659 Mendelian disorders. Analysis showed: (i) the semantic distribution of the extracted terms against linked ontologies; (ii) a comparison of term overlap with the Human Phenotype Ontology (HP); (iii) moderate support for phenotype-disorder pairs in both OMIM and the literature; (iv) strong associations of phenotype-disorder pairs to known disease-genes pairs using PhenoDigm. The full list of PhenoMiner phenotypes (S1), phenotype-disorder associations (S2), association-filtered linked data (S3) and user database documentation (S5) is available as supplementary data and can be downloaded at http://github.com/nhcollier/PhenoMiner under a Creative Commons Attribution 4.0 license. Database URL: phenominer.mml.cam.ac.uk. PMID:26507285

  3. Linking Human Diseases to Animal Models Using Ontology-Based Phenotype Annotation

    PubMed Central

    Mungall, Christopher J.; Ashburner, Michael; Westerfield, Monte; Lewis, Suzanna E.

    2009-01-01

    Scientists and clinicians who study genetic alterations and disease have traditionally described phenotypes in natural language. The considerable variation in these free-text descriptions has posed a hindrance to the important task of identifying candidate genes and models for human diseases and indicates the need for a computationally tractable method to mine data resources for mutant phenotypes. In this study, we tested the hypothesis that ontological annotation of disease phenotypes will facilitate the discovery of new genotype-phenotype relationships within and across species. To describe phenotypes using ontologies, we used an Entity-Quality (EQ) methodology, wherein the affected entity (E) and how it is affected (Q) are recorded using terms from a variety of ontologies. Using this EQ method, we annotated the phenotypes of 11 gene-linked human diseases described in Online Mendelian Inheritance in Man (OMIM). These human annotations were loaded into our Ontology-Based Database (OBD) along with other ontology-based phenotype descriptions of mutants from various model organism databases. Phenotypes recorded with this EQ method can be computationally compared based on the hierarchy of terms in the ontologies and the frequency of annotation. We utilized four similarity metrics to compare phenotypes and developed an ontology of homologous and analogous anatomical structures to compare phenotypes between species. Using these tools, we demonstrate that we can identify, through the similarity of the recorded phenotypes, other alleles of the same gene, other members of a signaling pathway, and orthologous genes and pathway members across species. We conclude that EQ-based annotation of phenotypes, in conjunction with a cross-species ontology, and a variety of similarity metrics can identify biologically meaningful similarities between genes by comparing phenotypes alone. This annotation and search method provides a novel and efficient means to identify gene candidates

  4. Sample size calculation in metabolic phenotyping studies.

    PubMed

    Billoir, Elise; Navratil, Vincent; Blaise, Benjamin J

    2015-09-01

    The number of samples needed to identify significant effects is a key question in biomedical studies, with consequences on experimental designs, costs and potential discoveries. In metabolic phenotyping studies, sample size determination remains a complex step. This is due particularly to the multiple hypothesis-testing framework and the top-down hypothesis-free approach, with no a priori known metabolic target. Until now, there was no standard procedure available to address this purpose. In this review, we discuss sample size estimation procedures for metabolic phenotyping studies. We release an automated implementation of the Data-driven Sample size Determination (DSD) algorithm for MATLAB and GNU Octave. Original research concerning DSD was published elsewhere. DSD allows the determination of an optimized sample size in metabolic phenotyping studies. The procedure uses analytical data only from a small pilot cohort to generate an expanded data set. The statistical recoupling of variables procedure is used to identify metabolic variables, and their intensity distributions are estimated by Kernel smoothing or log-normal density fitting. Statistically significant metabolic variations are evaluated using the Benjamini-Yekutieli correction and processed for data sets of various sizes. Optimal sample size determination is achieved in a context of biomarker discovery (at least one statistically significant variation) or metabolic exploration (a maximum of statistically significant variations). DSD toolbox is encoded in MATLAB R2008A (Mathworks, Natick, MA) for Kernel and log-normal estimates, and in GNU Octave for log-normal estimates (Kernel density estimates are not robust enough in GNU octave). It is available at http://www.prabi.fr/redmine/projects/dsd/repository, with a tutorial at http://www.prabi.fr/redmine/projects/dsd/wiki. PMID:25600654

  5. Two Clinical Phenotypes in Polycythemia Vera

    PubMed Central

    Spivak, Jerry L.; Considine, Michael; Williams, Donna M.; Talbot, Conover C.; Rogers, Ophelia; Moliterno, Alison R.; Jie, Chunfa; Ochs, Michael F.

    2014-01-01

    BACKGROUND Polycythemia vera is the ultimate phenotypic consequence of the V617F mutation in Janus kinase 2 (encoded by JAK2), but the extent to which this mutation influences the behavior of the involved CD34+ hematopoietic stem cells is unknown. METHODS We analyzed gene expression in CD34+ peripheral-blood cells from 19 patients with polycythemia vera, using oligonucleotide microarray technology after correcting for potential confounding by sex, since the phenotypic features of the disease differ between men and women. RESULTS Men with polycythemia vera had twice as many up-regulated or down-regulated genes as women with polycythemia vera, in a comparison of gene expression in the patients and in healthy persons of the same sex, but there were 102 genes with differential regulation that was concordant in men and women. When these genes were used for class discovery by means of unsupervised hierarchical clustering, the 19 patients could be divided into two groups that did not differ significantly with respect to age, neutrophil JAK2 V617F allele burden, white-cell count, platelet count, or clonal dominance. However, they did differ significantly with respect to disease duration; hemoglobin level; frequency of thromboembolic events, palpable splenomegaly, and splenectomy; chemotherapy exposure; leukemic transformation; and survival. The unsupervised clustering was confirmed by a supervised approach with the use of a top-scoring-pair classifier that segregated the 19 patients into the same two phenotypic groups with 100% accuracy. CONCLUSIONS Removing sex as a potential confounder, we identified an accurate molecular method for classifying patients with polycythemia vera according to disease behavior, independently of their JAK2 V617F allele burden, and identified previously unrecognized molecular pathways in polycythemia vera outside the canonical JAK2 pathway that may be amenable to targeted therapy. PMID:25162887

  6. A systematic review of definitions of extreme phenotypes of HIV control and progression

    PubMed Central

    Gurdasani, Deepti; Iles, Louise; Dillon, David G.; Young, Elizabeth H.; Olson, Ashley D.; Naranbhai, Vivek; Fidler, Sarah; Gkrania-Klotsas, Effrossyni; Post, Frank A.; Kellam, Paul; Porter, Kholoud; Sandhu, Manjinder S.

    2014-01-01

    The study of individuals at opposite ends of the HIV clinical spectrum can provide invaluable insights into HIV biology. Heterogeneity in criteria used to define these individuals can introduce inconsistencies in results from research and make it difficult to identify biological mechanisms underlying these phenotypes. In this systematic review, we formally quantified the heterogeneity in definitions used for terms referring to extreme phenotypes in the literature, and identified common definitions and components used to describe these phenotypes. We assessed 714 definitions of HIV extreme phenotypes in 501 eligible studies published between 1 January 2000 and 15 March 2012, and identified substantial variation among these. This heterogeneity in definitions may represent important differences in biological endophenotypes and clinical progression profiles of individuals selected by these, suggesting the need for harmonized definitions. In this context, we were able to identify common components in existing definitions that may provide a framework for developing consensus definitions for these phenotypes in HIV infection. PMID:24149086

  7. Phenotypic MicroRNA Microarrays

    PubMed Central

    Kwon, Yong-Jun; Heo, Jin Yeong; Kim, Hi Chul; Kim, Jin Yeop; Liuzzi, Michel; Soloveva, Veronica

    2013-01-01

    Microarray technology has become a very popular approach in cases where multiple experiments need to be conducted repeatedly or done with a variety of samples. In our lab, we are applying our high density spots microarray approach to microscopy visualization of the effects of transiently introduced siRNA or cDNA on cellular morphology or phenotype. In this publication, we are discussing the possibility of using this micro-scale high throughput process to study the role of microRNAs in the biology of selected cellular models. After reverse-transfection of microRNAs and siRNA, the cellular phenotype generated by microRNAs regulated NF-κB expression comparably to the siRNA. The ability to print microRNA molecules for reverse transfection into cells is opening up the wide horizon for the phenotypic high content screening of microRNA libraries using cellular disease models.

  8. Optofluidic Detection for Cellular Phenotyping

    PubMed Central

    Tung, Yi-Chung; Huang, Nien-Tsu; Oh, Bo-Ram; Patra, Bishnubrata; Pan, Chi-Chun; Qiu, Teng; Paul, K. Chu; Zhang, Wenjun; Kurabayashi, Katsuo

    2012-01-01

    Quantitative analysis of the output of processes and molecular interactions within a single cell is highly critical to the advancement of accurate disease screening and personalized medicine. Optical detection is one of the most broadly adapted measurement methods in biological and clinical assays and serves cellular phenotyping. Recently, microfluidics has obtained increasing attention due to several advantages, such as small sample and reagent volumes, very high throughput, and accurate flow control in the spatial and temporal domains. Optofluidics, which is the attempt to integrate optics with microfluidic, shows great promise to enable on-chip phenotypic measurements with high precision, sensitivity, specificity, and simplicity. This paper reviews the most recent developments of optofluidic technologies for cellular phenotyping optical detection. PMID:22854915

  9. RIN2 syndrome: Expanding the clinical phenotype.

    PubMed

    Rosato, Simonetta; Syx, Delfien; Ivanovski, Ivan; Pollazzon, Marzia; Santodirocco, Daniela; De Marco, Loredana; Beltrami, Marina; Callewaert, Bert; Garavelli, Livia; Malfait, Fransiska

    2016-09-01

    Biallelic defects in the RIN2 gene, encoding the Ras and Rab interactor 2 protein, are associated with a rare autosomal recessive connective tissue disorder, with only nine patients from four independent families reported to date. The condition was initially termed MACS syndrome (macrocephaly, alopecia, cutis laxa, and scoliosis), based on the clinical features of the first identified family; however, with the expansion of the clinical phenotype in additional families, it was subsequently coined RIN2 syndrome. Hallmark features of this condition include dysmorphic facial features with striking, progressive facial coarsening, sparse hair, normal to enlarged occipitofrontal circumference, soft redundant and/or hyperextensible skin, and scoliosis. Patients with RIN2 syndrome present phenotypic overlap with other conditions, including EDS (especially the dermatosparaxis and kyphoscoliosis subtypes). Here, we describe a 10th patient, the first patient of Caucasian origin and the oldest reported patient so far, who harbors the previously identified homozygous RIN2 mutation c.1878dupC (p. (Ile627Hisfs*7)). Besides the hallmark features, this patient also presents problems not previously associated with RIN2 syndrome, including cervical vertebral fusion, mild hearing loss, and colonic fibrosis. We provide an overview of the clinical findings in all reported patients with RIN2 mutations and summarize some of the possible pathogenic mechanisms that may underlie this condition. © 2016 Wiley Periodicals, Inc. PMID:27277385

  10. Systematic discovery of nonobvious human disease models through orthologous phenotypes.

    PubMed

    McGary, Kriston L; Park, Tae Joo; Woods, John O; Cha, Hye Ji; Wallingford, John B; Marcotte, Edward M

    2010-04-01

    Biologists have long used model organisms to study human diseases, particularly when the model bears a close resemblance to the disease. We present a method that quantitatively and systematically identifies nonobvious equivalences between mutant phenotypes in different species, based on overlapping sets of orthologous genes from human, mouse, yeast, worm, and plant (212,542 gene-phenotype associations). These orthologous phenotypes, or phenologs, predict unique genes associated with diseases. Our method suggests a yeast model for angiogenesis defects, a worm model for breast cancer, mouse models of autism, and a plant model for the neural crest defects associated with Waardenburg syndrome, among others. Using these models, we show that SOX13 regulates angiogenesis, and that SEC23IP is a likely Waardenburg gene. Phenologs reveal functionally coherent, evolutionarily conserved gene networks-many predating the plant-animal divergence-capable of identifying candidate disease genes. PMID:20308572

  11. Network Analyses Reveal Novel Aspects of ALS Pathogenesis

    PubMed Central

    Sanhueza, Mario; Chai, Andrea; Smith, Colin; McCray, Brett A.; Simpson, T. Ian; Taylor, J. Paul; Pennetta, Giuseppa

    2015-01-01

    Amyotrophic Lateral Sclerosis (ALS) is a fatal neurodegenerative disease characterized by selective loss of motor neurons, muscle atrophy and paralysis. Mutations in the human VAMP-associated protein B (hVAPB) cause a heterogeneous group of motor neuron diseases including ALS8. Despite extensive research, the molecular mechanisms underlying ALS pathogenesis remain largely unknown. Genetic screens for key interactors of hVAPB activity in the intact nervous system, however, represent a fundamental approach towards understanding the in vivo function of hVAPB and its role in ALS pathogenesis. Targeted expression of the disease-causing allele leads to neurodegeneration and progressive decline in motor performance when expressed in the adult Drosophila, eye or in its entire nervous system, respectively. By using these two phenotypic readouts, we carried out a systematic survey of the Drosophila genome to identify modifiers of hVAPB-induced neurotoxicity. Modifiers cluster in a diverse array of biological functions including processes and genes that have been previously linked to hVAPB function, such as proteolysis and vesicular trafficking. In addition to established mechanisms, the screen identified endocytic trafficking and genes controlling proliferation and apoptosis as potent modifiers of ALS8-mediated defects. Surprisingly, the list of modifiers was mostly enriched for proteins linked to lipid droplet biogenesis and dynamics. Computational analysis reveals that most modifiers can be linked into a complex network of interacting genes, and that the human genes homologous to the Drosophila modifiers can be assembled into an interacting network largely overlapping with that in flies. Identity markers of the endocytic process were also found to abnormally accumulate in ALS patients, further supporting the relevance of the fly data for human biology. Collectively, these results not only lead to a better understanding of hVAPB function but also point to potentially

  12. Network analyses reveal novel aspects of ALS pathogenesis.

    PubMed

    Sanhueza, Mario; Chai, Andrea; Smith, Colin; McCray, Brett A; Simpson, T Ian; Taylor, J Paul; Pennetta, Giuseppa

    2015-03-01

    Amyotrophic Lateral Sclerosis (ALS) is a fatal neurodegenerative disease characterized by selective loss of motor neurons, muscle atrophy and paralysis. Mutations in the human VAMP-associated protein B (hVAPB) cause a heterogeneous group of motor neuron diseases including ALS8. Despite extensive research, the molecular mechanisms underlying ALS pathogenesis remain largely unknown. Genetic screens for key interactors of hVAPB activity in the intact nervous system, however, represent a fundamental approach towards understanding the in vivo function of hVAPB and its role in ALS pathogenesis. Targeted expression of the disease-causing allele leads to neurodegeneration and progressive decline in motor performance when expressed in the adult Drosophila, eye or in its entire nervous system, respectively. By using these two phenotypic readouts, we carried out a systematic survey of the Drosophila genome to identify modifiers of hVAPB-induced neurotoxicity. Modifiers cluster in a diverse array of biological functions including processes and genes that have been previously linked to hVAPB function, such as proteolysis and vesicular trafficking. In addition to established mechanisms, the screen identified endocytic trafficking and genes controlling proliferation and apoptosis as potent modifiers of ALS8-mediated defects. Surprisingly, the list of modifiers was mostly enriched for proteins linked to lipid droplet biogenesis and dynamics. Computational analysis reveals that most modifiers can be linked into a complex network of interacting genes, and that the human genes homologous to the Drosophila modifiers can be assembled into an interacting network largely overlapping with that in flies. Identity markers of the endocytic process were also found to abnormally accumulate in ALS patients, further supporting the relevance of the fly data for human biology. Collectively, these results not only lead to a better understanding of hVAPB function but also point to potentially

  13. Clinical phenotypes of COPD: identification, definition and implications for guidelines.

    PubMed

    Miravitlles, Marc; Calle, Myriam; Soler-Cataluña, Juan José

    2012-03-01

    The term phenotype in the field of COPD is defined as "a single or combination of disease attributes that describe differences between individuals with COPD as they relate to clinically meaningful outcomes". Among all phenotypes described, there are three that are associated with prognosis and especially are associated with a different response to currently available therapies. There phenotypes are: the exacerbator, the overlap COPD-asthma and the emphysema-hyperinflation. The exacerbator is characterised by the presence of, at least, two exacerbations the previous year, and on top of long-acting bronchodilators, may require the use of antiinflammatory drugs. The overlap phenotype presents symptoms of increased variability of airflow and incompletely reversible airflow obstruction. Due to the underlying inflammatory profile, it uses to have a good therapeutic response to inhaled corticosteroids in addition to bronchodilators. Lastly, the emphysema phenotype presents a poor therapeutic response to the existing antiinflammatory drugs and long-acting bronchodilators together with rehabilitation are the treatments of choice. Identifying the peculiarities of the different phenotypes of COPD will allow us to implement a more personalised treatment, in which the characteristics of the patients, together with their severity will be key to choose the best treatment option. PMID:22196477

  14. Diagnosis, assessment, and phenotyping of COPD: beyond FEV1

    PubMed Central

    Lange, Peter; Halpin, David M; O’Donnell, Denis E; MacNee, William

    2016-01-01

    COPD is now widely recognized as a complex heterogeneous syndrome, having both pulmonary and extrapulmonary features. In clinical practice, the diagnosis of COPD is based on the presence of chronic airflow limitation, as assessed by post-bronchodilator spirometry. The severity of the airflow limitation, as measured by percent predicted FEV1, provides important information to the physician to enable optimization of management. However, in order to accurately assess the complexity of COPD, there need to be other measures made beyond FEV1. At present, there is a lack of reliable and simple blood biomarkers to confirm and further assess the diagnosis of COPD. However, it is possible to identify patients who display different phenotypic characteristics of COPD that relate to clinically relevant outcomes. Currently, validated phenotypes of COPD include alpha-1 antitrypsin deficiency, and “frequent exacerbators”. Recently, a definition and assessment of a new phenotype comprising patients with overlapping features of asthma and COPD has been suggested and is known as “asthma COPD overlap syndrome”. Several other phenotypes have been proposed, but require validation against clinical outcomes. Defining phenotypes requires the assessment of multiple factors indicating disease severity, its impact, and its activity. Recognition and validation of COPD phenotypes has an important role to play in the selection of evidence-based targeted therapy in the future management of COPD, but regardless of the diagnostic terms, patients with COPD should be assessed and treated according to their individual treatable characteristics. PMID:26937185

  15. Automatic and controlled processing and the Broad Autism Phenotype.

    PubMed

    Camodeca, Amy; Voelker, Sylvia

    2016-01-30

    Research related to verbal fluency in the Broad Autism Phenotype (BAP) is limited and dated, but generally suggests intact abilities in the context of weaknesses in other areas of executive function (Hughes et al., 1999; Wong et al., 2006; Delorme et al., 2007). Controlled processing, the generation of search strategies after initial, automated responses are exhausted (Spat, 2013), has yet to be investigated in the BAP, and may be evidenced in verbal fluency tasks. One hundred twenty-nine participants completed the Delis-Kaplan Executive Function System Verbal Fluency test (D-KEFS; Delis et al., 2001) and the Broad Autism Phenotype Questionnaire (BAPQ; Hurley et al., 2007). The BAP group (n=53) produced significantly fewer total words during the 2nd 15" interval compared to the Non-BAP (n=76) group. Partial correlations indicated similar relations between verbal fluency variables for each group. Regression analyses predicting 2nd 15" interval scores suggested differentiation between controlled and automatic processing skills in both groups. Results suggest adequate automatic processing, but slowed development of controlled processing strategies in the BAP, and provide evidence for similar underlying cognitive constructs for both groups. Controlled processing was predictive of Block Design score for Non-BAP participants, and was predictive of Pragmatic Language score on the BAPQ for BAP participants. These results are similar to past research related to strengths and weaknesses in the BAP, respectively, and suggest that controlled processing strategy use may be required in instances of weak lower-level skills. PMID:26652842

  16. Bayesian Inference of the Evolution of a Phenotype Distribution on a Phylogenetic Tree

    PubMed Central

    Ansari, M. Azim; Didelot, Xavier

    2016-01-01

    The distribution of a phenotype on a phylogenetic tree is often a quantity of interest. Many phenotypes have imperfect heritability, so that a measurement of the phenotype for an individual can be thought of as a single realization from the phenotype distribution of that individual. If all individuals in a phylogeny had the same phenotype distribution, measured phenotypes would be randomly distributed on the tree leaves. This is, however, often not the case, implying that the phenotype distribution evolves over time. Here we propose a new model based on this principle of evolving phenotype distribution on the branches of a phylogeny, which is different from ancestral state reconstruction where the phenotype itself is assumed to evolve. We develop an efficient Bayesian inference method to estimate the parameters of our model and to test the evidence for changes in the phenotype distribution. We use multiple simulated data sets to show that our algorithm has good sensitivity and specificity properties. Since our method identifies branches on the tree on which the phenotype distribution has changed, it is able to break down a tree into components for which this distribution is unique and constant. We present two applications of our method, one investigating the association between HIV genetic variation and human leukocyte antigen and the other studying host range distribution in a lineage of Salmonella enterica, and we discuss many other potential applications. PMID:27412711

  17. A residue substitution in the plastid ribosomal protein L12/AL1 produces defective plastid ribosome and causes early seedling lethality in rice.

    PubMed

    Zhao, Dong-Sheng; Zhang, Chang-Quan; Li, Qian-Feng; Yang, Qing-Qing; Gu, Ming-Hong; Liu, Qiao-Quan

    2016-05-01

    The plastid ribosome is essential for chloroplast biogenesis as well as seedling formation. As the plastid ribosome closely resembles the prokaryotic 70S ribosome, many plastid ribosomal proteins (PRPs) have been identified in higher plants. However, their assembly in the chloroplast ribosome in rice remains unclear. In the present study, we identified a novel rice mutant, albino lethal 1 (al1), from a chromosome segment substitution line population. The al1 mutant displayed an albino phenotype at the seedling stage and did not survive past the three-leaf stage. No other apparent differences in plant morphology were observed in the al1 mutant. The albino phenotype of the al1 mutant was associated with decreased chlorophyll content and abnormal chloroplast morphology. Using fine mapping, AL1 was shown to encode the PRPL12, a protein localized in the chloroplasts of rice, and a spontaneous single-nucleotide mutation (C/T), resulting in a residue substitution from leucine in AL1 to phenylalanine in al1, was found to be responsible for the early seedling lethality. This point mutation is located at the L10 interface feature of the L12/AL1 protein. Yeast two-hybrid analysis showed that there was no physical interaction between al1 and PRPL10. In addition, the mutation had little effect on the transcript abundance of al1, but had a remarkable effect on the protein abundance of al1 and transcript abundance of chloroplast biogenesis-related and photosynthesis-related genes. These results provide a first glimpse into the molecular details of L12's function in rice. PMID:26873698

  18. Retrospective analysis of cohort database: Phenotypic variability in a large dataset of patients confirmed to have homozygous familial hypercholesterolemia.

    PubMed

    Raal, Frederick J; Sjouke, Barbara; Hovingh, G Kees; Isaac, Barton F

    2016-06-01

    These data describe the phenotypic variability in a large cohort of patients confirmed to have homozygous familial hypercholesterolemia. Herein, we describe the observed relationship of treated low-density lipoprotein cholesterol with age. We also overlay the low-density lipoprotein receptor gene (LDLR) functional status with these phenotypic data. A full description of these data is available in our recent study published in Atherosclerosis, "Phenotype Diversity Among Patients With Homozygous Familial Hypercholesterolemia: A Cohort Study" (Raal et al., 2016) [1]. PMID:27182539

  19. ELECTRORETINOGRAPHIC FEATURES OF THE RETINOPATHY, GLOBE ENLARGED (RGE) CHICK PHENOTYPE.

    EPA Science Inventory

    A manuscript examines the retinal changes in an avian model of inherited loss of vision. Avian models of eye diseases that affect humans have previously been identified. Characterizing the phenotype of the rge strain is a necessary step in determining whether the loss of vision...

  20. [Environmental factors in ALS].

    PubMed

    Juntas-Morales, Raul; Pageot, Nicolas; Corcia, Philippe; Camu, William

    2014-05-01

    ALS is likely to be a disorder of multifactorial origin. Among all the factors that may increase the risk of ALS, environmental ones are being studied for many years, but in the recent years, several advances have pointed to a new interest in their potential involvement in the disease process, especially for the cyanotoxin BMAA. Food containing BMAA has been found on Guam, a well-known focus of ALS/parkinsonism/dementia and high levels of BMAA have been identified into the brain of these patients. The BMAA cyanotoxin is potentially ubiquitous and have also been found into the food of patients who died from ALS both in Europe and USA. BMAA can be wrongly integrated into the protein structure during mRNA traduction, competing with serine. This may induce abnormal protein folding and a subsequent cell death. Heavy metals, such as lead or mercury may be directly toxic for neuronal cells. Several works have suggested an increased risk of ALS in individuals chronically exposed to these metals. Exposure to pesticides has been suggested to be linked to an increased risk of developing ALS. The mechanism of their toxicity is likely to be mediated by paraoxonases. These proteins are in charge of detoxifying the organism from toxins, and particularly organophosphates. To date, there are insufficient scientific data to suggest that exposure to electromagnetic fields may increase the risk of having ALS. We are particularly missing longitudinal cohorts to demonstrate that risk. PMID:24703731

  1. Phenotype of the fibroblast growth factor receptor 2 Ser351Cys mutation: Pfeiffer syndrome type III.

    PubMed

    Gripp, K W; Stolle, C A; McDonald-McGinn, D M; Markowitz, R I; Bartlett, S P; Katowitz, J A; Muenke, M; Zackai, E H

    1998-07-24

    We present a patient with pansynostosis, hydrocephalus, seizures, extreme proptosis with luxation of the eyes out of the lids, apnea and airway obstruction, intestinal non-rotation, and severe developmental delay. His skeletal abnormalities include bilateral elbow ankylosis, radial head dislocation, and unilateral broad and deviated first toe. The phenotype of this patient is consistent with that previously reported in Pfeiffer syndrome type III, but is unusual for the lack of broad thumbs. Our patient most closely resembles the case described by Kerr et al. [1996: Am J Med Genet 66:138-143] as Pfeiffer syndrome type III with normal thumbs. Mutations in the genes for fibroblast growth factor receptors (FGFR) 1 and 2 have previously been seen in patients with Pfeiffer syndrome type I. The mutation identified in our patient, Ser351Cys in FGFR2, represents the first reported cause of Pfeiffer syndrome type III. An identical mutation was described once previously by Pulleyn et al., in a patient whose brief clinical description included cloverleaf skull, significant developmental delay, and normal hands and feet [Eur. J. Hum. Genet. 4: 283-291, 1996]. In our patient, previously performed single-strand conformation polymorphism analysis failed to detect a band shift; the mutation was identified only after independent sequence analysis. PMID:9714439

  2. Modeling the Autism Spectrum Disorder Phenotype

    PubMed Central

    McCray, Alexa T.; Trevvett, Philip; Frost, H. Robert

    2013-01-01

    Background Autism Spectrum Disorder (ASD) is highly heritable, and although there has been active research in an attempt to discover the genetic factors underlying ASD, diagnosis still depends heavily on behavioral assessments. Recently, several large-scale initiatives, including those of the Autism Consortium, have contributed to the collection of extensive information from families affected by ASD. Purpose Our goal was to develop an ontology that can be used 1) to provide improved access to the data collected by those who study ASD and other neurodevelopmental disorders, and 2) to assess and compare the characteristics of the instruments that are used in the assessment of ASD. Materials and Methods We analyzed two dozen instruments used to assess ASD, studying the nature of the questions asked and items assessed, the method of delivery, and the overall scope of the content. These data together with the extensive literature on ASD contributed to our iterative development of an ASD phenotype ontology. Results The final ontology comprises 283 concepts distributed across three high-level classes, ‘Personal Traits’, ‘Social Competence’, and ‘Medical History’. The ontology is fully integrated with the Autism Consortium database, allowing researchers to pose ontology-based questions. The ontology also allows researchers to assess the degree of overlap among a set of candidate instruments according to several objective criteria. Conclusions The ASD phenotype ontology has promise for use in research settings where extensive phenotypic data have been collected, allowing a concept-based approach to identifying behavioral features of importance and for correlating these with genotypic data. PMID:24163114

  3. Identification of an Alu-repeat-mediated deletion of OPTN upstream region in a patient with a complex ocular phenotype.

    PubMed

    Schilter, Kala F; Reis, Linda M; Sorokina, Elena A; Semina, Elena V

    2015-11-01

    Genetic causes of ocular conditions remain largely unknown. To reveal the molecular basis for a congenital ocular phenotype associated with glaucoma we performed whole-exome sequencing (WES) and whole-genome copy number analyses of patient DNA. WES did not identify a causative variant. Copy number variation analysis identified a deletion of 10p13 in the patient and his unaffected father; the deletion breakpoint contained a single 37-bp sequence that is normally present in two distinct Alu repeats separated by ~181 kb. The deletion removed part of the upstream region of optineurin (OPTN) as well as the upstream sequence and two coding exons of coiled-coil domain containing 3 (CCDC3); analysis of the patient's second allele showed normal OPTN and CCDC3 sequences. Studies of zebrafish orthologs identified expression in the developing eye for both genes. OPTN is a known factor in dominant adult-onset glaucoma and Amyotrophic Lateral Sclerosis (ALS). The deletion eliminates 98 kb of the OPTN upstream sequence leaving only ~1 kb of the proximal promoter region. Comparison of transcriptional activation capability of the 3 kb normal and the rearranged del(10)(p13) OPTN promoter sequences demonstrated a statistically significant decrease for the deleted allele; sequence analysis of the entire deleted region identified multiple conserved elements with possible cis-regulatory activity. Additional screening of CCDC3 indicated that heterozygous loss-of-function alleles are unlikely to cause congenital ocular disease. In summary, we report the first regulatory region deletion involving OPTN, caused by Alu-mediated nonallelic homologous recombination and possibly contributing to the patient's ocular phenotype. In addition, our data indicate that Alu-mediated rearrangements of the OPTN upstream region may represent a new source of affected alleles in human conditions. Evaluation of the upstream OPTN sequences in additional ocular and ALS patients may help to determine the role

  4. Racial Identity, Phenotype, and Self-Esteem among Biracial Polynesian/White Individuals

    ERIC Educational Resources Information Center

    Allen, G. E. Kawika; Garriott, Patton O.; Reyes, Carla J.; Hsieh, Catherine

    2013-01-01

    This study examined racial identity, self-esteem, and phenotype among biracial Polynesian/White adults. Eighty-four Polynesian/White persons completed the Biracial Identity Attitude Scale, the Rosenberg Self-Esteem Inventory, and a Polynesian phenotype scale. Profile analyses showed participants identified more with their Polynesian parent. A…

  5. Phenotypic Differences in Individuals with Autism Spectrum Disorder Born Preterm and at Term Gestation

    ERIC Educational Resources Information Center

    Bowers, Katherine; Wink, Logan K.; Pottenger, Amy; McDougle, Christopher J.; Erickson, Craig

    2015-01-01

    The objective of the study was to characterize the phenotype of males and females with autism spectrum disorder born preterm versus those born at term. Descriptive statistical analyses identified differences between male and female autism spectrum disorder subjects born preterm compared to term for several phenotypic characteristics and…

  6. Phenotype and function of nasal dendritic cells

    PubMed Central

    Lee, Haekyung; Ruane, Darren; Law, Kenneth; Ho, Yan; Garg, Aakash; Rahman, Adeeb; Esterházy, Daria; Cheong, Cheolho; Goljo, Erden; Sikora, Andrew G.; Mucida, Daniel; Chen, Benjamin; Govindraj, Satish; Breton, Gaëlle; Mehandru, Saurabh

    2015-01-01

    Intranasal vaccination generates immunity across local, regional and distant sites. However, nasal dendritic cells (DC), pivotal for the induction of intranasal vaccine- induced immune responses, have not been studied in detail. Here, using a variety of parameters, we define nasal DCs in mice and humans. Distinct subsets of “classical” DCs, dependent on the transcription factor zbtb46 were identified in the murine nose. The murine nasal DCs were FLT3 ligand-responsive and displayed unique phenotypic and functional characteristics including the ability to present antigen, induce an allogeneic T cell response and migrate in response to LPS or live bacterial pathogens. Importantly, in a cohort of human volunteers, BDCA-1+ DCs were observed to be the dominant nasal DC population at steady state. During chronic inflammation, the frequency of both BDCA-1+ and BDCA-3hi DCs was reduced in the nasal tissue, associating the loss of these immune sentinels with chronic nasal inflammation. The present study is the first detailed description of the phenotypic, ontogenetic and functional properties of nasal DCs and will inform the design of preventative immunization strategies as well as therapeutic modalities against chronic rhinosinusitis. PMID:25669151

  7. Aneuploidy underlies a multicellular phenotypic switch

    PubMed Central

    Tan, Zhihao; Hays, Michelle; Cromie, Gareth A.; Jeffery, Eric W.; Scott, Adrian C.; Ahyong, Vida; Sirr, Amy; Skupin, Alexander; Dudley, Aimée M.

    2013-01-01

    Although microorganisms are traditionally used to investigate unicellular processes, the yeast Saccharomyces cerevisiae has the ability to form colonies with highly complex, multicellular structures. Colonies with the “fluffy” morphology have properties reminiscent of bacterial biofilms and are easily distinguished from the “smooth” colonies typically formed by laboratory strains. We have identified strains that are able to reversibly toggle between the fluffy and smooth colony-forming states. Using a combination of flow cytometry and high-throughput restriction-site associated DNA tag sequencing, we show that this switch is correlated with a change in chromosomal copy number. Furthermore, the gain of a single chromosome is sufficient to switch a strain from the fluffy to the smooth state, and its subsequent loss to revert the strain back to the fluffy state. Because copy number imbalance of six of the 16 S. cerevisiae chromosomes and even a single gene can modulate the switch, our results support the hypothesis that the state switch is produced by dosage-sensitive genes, rather than a general response to altered DNA content. These findings add a complex, multicellular phenotype to the list of molecular and cellular traits known to be altered by aneuploidy and suggest that chromosome missegregation can provide a quick, heritable, and reversible mechanism by which organisms can toggle between phenotypes. PMID:23812752

  8. Aneuploidy underlies a multicellular phenotypic switch.

    PubMed

    Tan, Zhihao; Hays, Michelle; Cromie, Gareth A; Jeffery, Eric W; Scott, Adrian C; Ahyong, Vida; Sirr, Amy; Skupin, Alexander; Dudley, Aimée M

    2013-07-23

    Although microorganisms are traditionally used to investigate unicellular processes, the yeast Saccharomyces cerevisiae has the ability to form colonies with highly complex, multicellular structures. Colonies with the "fluffy" morphology have properties reminiscent of bacterial biofilms and are easily distinguished from the "smooth" colonies typically formed by laboratory strains. We have identified strains that are able to reversibly toggle between the fluffy and smooth colony-forming states. Using a combination of flow cytometry and high-throughput restriction-site associated DNA tag sequencing, we show that this switch is correlated with a change in chromosomal copy number. Furthermore, the gain of a single chromosome is sufficient to switch a strain from the fluffy to the smooth state, and its subsequent loss to revert the strain back to the fluffy state. Because copy number imbalance of six of the 16 S. cerevisiae chromosomes and even a single gene can modulate the switch, our results support the hypothesis that the state switch is produced by dosage-sensitive genes, rather than a general response to altered DNA content. These findings add a complex, multicellular phenotype to the list of molecular and cellular traits known to be altered by aneuploidy and suggest that chromosome missegregation can provide a quick, heritable, and reversible mechanism by which organisms can toggle between phenotypes. PMID:23812752

  9. Analysis and predictive modeling of asthma phenotypes.

    PubMed

    Brasier, Allan R; Ju, Hyunsu

    2014-01-01

    Molecular classification using robust biochemical measurements provides a level of diagnostic precision that is unattainable using indirect phenotypic measurements. Multidimensional measurements of proteins, genes, or metabolites (analytes) can identify subtle differences in the pathophysiology of patients with asthma in a way that is not otherwise possible using physiological or clinical assessments. We overview a method for relating biochemical analyte measurements to generate predictive models of discrete (categorical) clinical outcomes, a process referred to as "supervised classification." We consider problems inherent in wide (small n and large p) high-dimensional data, including the curse of dimensionality, collinearity and lack of information content. We suggest methods for reducing the data to the most informative features. We describe different approaches for phenotypic modeling, using logistic regression, classification and regression trees, random forest and nonparametric regression spline modeling. We provide guidance on post hoc model evaluation and methods to evaluate model performance using ROC curves and generalized additive models. The application of validated predictive models for outcome prediction will significantly impact the clinical management of asthma. PMID:24162915

  10. Phenotypes and Emerging Endotypes of Chronic Rhinosinusitis.

    PubMed

    Bachert, Claus; Akdis, Cezmi A

    2016-01-01

    Chronic rhinosinusitis can be differentiated into several phenotypes based on clinical criteria; however, these phenotypes do not teach us much about the underlying inflammatory mechanisms. Thus, the use of nasal endoscopy and CT scanning, and eventually taking a swab or a biopsy, may not be sufficient to fully appreciate the individual patient's pathology. Endotyping of chronic rhinosinusitis on the basis of pathomechanisms, functionally and pathologically different from others by the involvement of specific molecules or cells, may in contrast provide us with information on the risk of disease progression or recurrence and on the best available treatment, and also helps us identifying innovative therapeutic targets for treatment. Endotyping may best be structured around T helper cells and their downstream events, such as tissue eosinophilia or neutrophilia; this approach involves the cytokines and chemokines related to specific T helper cell populations, and related markers such as IgE. Endotyping is of specific interest at the time of the arrival of new biologicals, confronting us with the challenge of the selection of eligible patients for treatment and predicting their therapeutic response; defining suitable biomarkers is therefore an urgent task. Failure to appreciate the underlying mechanisms and endotypes of chronic rhinosinusitis may limit progress in the management of the disease at present. PMID:27393777

  11. Normocalcaemic pseudohypoparathyroidism with unusual phenotype.

    PubMed

    Gertner, J M; Tomlinson, S; Gonzalez-Macias, J

    1978-04-01

    We describe a boy who presented at 4 years of age with radiological hyperparathyroidism, osteosclerosis, and necrosis of the femoral heads. Plasma biochemistry was normal but the parathyroid hormone (PTH) level was very high. He was deaf and had an unusual facies but did not have the phenotype of Albright's hereditary osteodystrophy. Plasma and urine cyclic AMP reponses to bovine PTH were markedly subnormal. Vitamin D produced sustained hypercalcaemia and a fall in plasma phosphorus. After four hyperplastic parathyroid glands were removed he became hypocalcaemic and plasma phosphorus rose. After operation he remained unresponsive to exogenous PTH; We suggest that he had a form of pseudohypoparathyroidism without the phenotype of Albright's hereditary osteodystrophy and with some residual skeletal and renal responsiveness to PTH. PMID:646442

  12. Identifying Mutations of the Tetratricopeptide Repeat Domain 37 (TTC37) Gene in Infants With Intractable Diarrhea and a Comparison of Asian and Non-Asian Phenotype and Genotype: A Global Case-report Study of a Well-Defined Syndrome With Immunodeficiency.

    PubMed

    Lee, Wen-I; Huang, Jing-Long; Chen, Chien-Chang; Lin, Ju-Li; Wu, Ren-Chin; Jaing, Tang-Her; Ou, Liang-Shiou

    2016-03-01

    Syndromic diarrhea/tricho-hepato-enteric syndrome (SD/THE) is a rare, autosomal recessive and severe bowel disorder mainly caused by mutations in the tetratricopeptide repeat domain 37 (TTC37) gene which act as heterotetrameric cofactors to enhance aberrant mRNAs decay. The phenotype and immune profiles of SD/THE overlap those of primary immunodeficiency diseases (PIDs). Neonates with intractable diarrhea underwent immunologic assessments including immunoglobulin levels, lymphocyte subsets, lymphocyte proliferation, superoxide production, and IL-10 signaling function. Candidate genes for PIDs predisposing to inflammatory bowel disease were sequencing in this study. Two neonates, born to nonconsanguineous parents, suffered from intractable diarrhea, recurrent infections, and massive hematemesis from esopharyngeal varices due to liver cirrhosis or accompanying Trichorrhexis nodosa that developed with age and thus guided the diagnosis of SD/THE compatible to TTC37 mutations (homozygous DelK1155H, Fs*2; heterozygous Y1169Ter and InsA1143, Fs*3). Their immunologic evaluation showed normal mitogen-stimulated lymphocyte proliferation, superoxide production, and IL-10 signaling, but low IgG levels, undetectable antibody to hepatitis B surface antigen and decreased antigen-stimulated lymphocyte proliferation. A PubMed search for bi-allelic TTC37 mutations and phenotypes were recorded in 14 Asian and 12 non-Asian cases. They had similar presentations of infantile onset refractory diarrhea, facial dysmorphism, hair anomalies, low IgG, low birth weight, and consanguinity. A higher incidence of heart anomalies (8/14 vs 2/12; P = 0.0344, Chi-square), nonsense mutations (19 in 28 alleles), and hot-spot mutations (W936Ter, 2779-2G>A, and Y1169Ter) were found in the Asian compared with the non-Asian patients. Despite immunoglobulin therapy in 20 of the patients, 4 died from liver cirrhosis and 1 died from sepsis. Patients of all ethnicities with SD/THE with the characteristic

  13. Use of a Machine Learning-Based High Content Analysis Approach to Identify Photoreceptor Neurite Promoting Molecules.

    PubMed

    Fuller, John A; Berlinicke, Cynthia A; Inglese, James; Zack, Donald J

    2016-01-01

    High content analysis (HCA) has become a leading methodology in phenotypic drug discovery efforts. Typical HCA workflows include imaging cells using an automated microscope and analyzing the data using algorithms designed to quantify one or more specific phenotypes of interest. Due to the richness of high content data, unappreciated phenotypic changes may be discovered in existing image sets using interactive machine-learning based software systems. Primary postnatal day four retinal cells from the photoreceptor (PR) labeled QRX-EGFP reporter mice were isolated, seeded, treated with a set of 234 profiled kinase inhibitors and then cultured for 1 week. The cells were imaged with an Acumen plate-based laser cytometer to determine the number and intensity of GFP-expressing, i.e. PR, cells. Wells displaying intensities and counts above threshold values of interest were re-imaged at a higher resolution with an INCell2000 automated microscope. The images were analyzed with an open source HCA analysis tool, PhenoRipper (Rajaram et al., Nat Methods 9:635-637, 2012), to identify the high GFP-inducing treatments that additionally resulted in diverse phenotypes compared to the vehicle control samples. The pyrimidinopyrimidone kinase inhibitor CHEMBL-1766490, a pan kinase inhibitor whose major known targets are p38α and the Src family member lck, was identified as an inducer of photoreceptor neuritogenesis by using the open-source HCA program PhenoRipper. This finding was corroborated using a cell-based method of image analysis that measures quantitative differences in the mean neurite length in GFP expressing cells. Interacting with data using machine learning algorithms may complement traditional HCA approaches by leading to the discovery of small molecule-induced cellular phenotypes in addition to those upon which the investigator is initially focusing. PMID:26427464

  14. Phenotypic variation in LADD syndrome.

    PubMed Central

    Thompson, E; Pembrey, M; Graham, J M

    1985-01-01

    A mother and son are reported with chronic dacrocystitis, cup shaped ears, hearing loss, abnormal teeth, and poor formation of saliva and tears. They are similar to previously reported cases of lacrimo-auriculo-dento-digital (LADD) syndrome. The variability of expression of this autosomal dominant syndrome is discussed, and it is suggested that poor saliva and tear formation be added to the phenotype. Images PMID:4078868

  15. Wine Expertise Predicts Taste Phenotype

    PubMed Central

    Hayes, John E; Pickering, Gary J

    2011-01-01

    Taste phenotypes have long been studied in relation to alcohol intake, dependence, and family history, with contradictory findings. However, on balance – with appropriate caveats about populations tested, outcomes measured and psychophysical methods used – an association between variation in taste responsiveness and some alcohol behaviors is supported. Recent work suggests super-tasting (operationalized via propylthiouracil (PROP) bitterness) not only associates with heightened response but also with more acute discrimination between stimuli. Here, we explore relationships between food and beverage adventurousness and taste phenotype. A convenience sample of wine drinkers (n=330) were recruited in Ontario and phenotyped for PROP bitterness via filter paper disk. They also filled out a short questionnaire regarding willingness to try new foods, alcoholic beverages and wines as well as level of wine involvement, which was used to classify them as a wine expert (n=110) or wine consumer (n=220). In univariate logisitic models, food adventurousness predicted trying new wines and beverages but not expertise. Likewise, wine expertise predicted willingness to try new wines and beverages but not foods. In separate multivariate logistic models, willingness to try new wines and beverages was predicted by expertise and food adventurousness but not PROP. However, mean PROP bitterness was higher among wine experts than wine consumers, and the conditional distribution functions differed between experts and consumers. In contrast, PROP means and distributions did not differ with food adventurousness. These data suggest individuals may self-select for specific professions based on sensory ability (i.e., an active gene-environment correlation) but phenotype does not explain willingness to try new stimuli. PMID:22888174

  16. [Plasticity of the cellular phenotype].

    PubMed

    Chneiweiss, Hervé

    2011-01-01

    The tragical consequences of the Hiroshima and Nagasaki atomic bombs in 1945 were to lead to the discovery of hematopoietic stem cells and their phenotypic plasticity, in response to environmental factors. These concepts were much later extended to the founding cells of other tissues. In the following collection of articles, the mechanisms underlying this plasticity, at the frontiers of developmental biology and oncology, are illustrated in the case of various cell types of neural origin and of some tumours. PMID:21501574

  17. Copy number variants (CNVs) analysis in a deeply phenotyped cohort of individuals with intellectual disability (ID)

    PubMed Central

    2014-01-01

    Background DNA copy number variants (CNVs) are found in 15% of subjects with ID but their association with phenotypic abnormalities has been predominantly studied in smaller cohorts of subjects with detailed yet non-systematically categorized phenotypes, or larger cohorts (thousands of cases) with smaller number of generalized phenotypes. Methods We evaluated the association of de novo, familial and common CNVs detected in 78 ID subjects with phenotypic abnormalities classified using the Winter-Baraitser Dysmorphology Database (WBDD) (formerly the London Dysmorphology Database). Terminology for 34 primary (coarse) and 169 secondary (fine) phenotype features were used to categorize the abnormal phenotypes and determine the prevalence of each phenotype in patients grouped by the type of CNV they had. Results In our cohort more than 50% of cases had abnormalities in primary categories related to head (cranium, forehead, ears, eye globes, eye associated structures, nose) as well as hands and feet. The median number of primary and secondary abnormalities was 12 and 18 per subject, respectively, indicating that the cohort consisted of subjects with a high number of phenotypic abnormalities (median De Vries score for the cohort was 5). The prevalence of each phenotypic abnormality was comparable in patients with de novo or familial CNVs in comparison to those with only common CNVs, although a trend for increased frequency of cranial and forehead abnormalities was noted in subjects with rare de novo and familial CNVs. Two clusters of subjects were identified based on the prevalence of each fine phenotypic feature, with an average of 28.3 and 13.5 abnormal phenotypes/subject in the two clusters respectively (P < 0.05). Conclusions Our study is a rare example of using standardized, deep morphologic phenotype clustering with phenotype/CNV correlation in a cohort of subjects with ID. The composition of the cohort inevitably influences the phenotype/genotype association

  18. Adaptive evolution of molecular phenotypes

    NASA Astrophysics Data System (ADS)

    Held, Torsten; Nourmohammad, Armita; Lässig, Michael

    2014-09-01

    Molecular phenotypes link genomic information with organismic functions, fitness, and evolution. Quantitative traits are complex phenotypes that depend on multiple genomic loci. In this paper, we study the adaptive evolution of a quantitative trait under time-dependent selection, which arises from environmental changes or through fitness interactions with other co-evolving phenotypes. We analyze a model of trait evolution under mutations and genetic drift in a single-peak fitness seascape. The fitness peak performs a constrained random walk in the trait amplitude, which determines the time-dependent trait optimum in a given population. We derive analytical expressions for the distribution of the time-dependent trait divergence between populations and of the trait diversity within populations. Based on this solution, we develop a method to infer adaptive evolution of quantitative traits. Specifically, we show that the ratio of the average trait divergence and the diversity is a universal function of evolutionary time, which predicts the stabilizing strength and the driving rate of the fitness seascape. From an information-theoretic point of view, this function measures the macro-evolutionary entropy in a population ensemble, which determines the predictability of the evolutionary process. Our solution also quantifies two key characteristics of adapting populations: the cumulative fitness flux, which measures the total amount of adaptation, and the adaptive load, which is the fitness cost due to a population's lag behind the fitness peak.

  19. Behavioral idiosyncrasy reveals genetic control of phenotypic variability

    PubMed Central

    Ayroles, Julien F.; Buchanan, Sean M.; O’Leary, Chelsea; Skutt-Kakaria, Kyobi; Grenier, Jennifer K.; Clark, Andrew G.; Hartl, Daniel L.; de Bivort, Benjamin L.

    2015-01-01

    Quantitative genetics has primarily focused on describing genetic effects on trait means and largely ignored the effect of alternative alleles on trait variability, potentially missing an important axis of genetic variation contributing to phenotypic differences among individuals. To study the genetic effects on individual-to-individual phenotypic variability (or intragenotypic variability), we used Drosophila inbred lines and measured the spontaneous locomotor behavior of flies walking individually in Y-shaped mazes, focusing on variability in locomotor handedness, an assay optimized to measure variability. We discovered that some lines had consistently high levels of intragenotypic variability among individuals, whereas lines with low variability behaved as although they tossed a coin at each left/right turn decision. We demonstrate that the degree of variability is itself heritable. Using a genome-wide association study (GWAS) for the degree of intragenotypic variability as the phenotype across lines, we identified several genes expressed in the brain that affect variability in handedness without affecting the mean. One of these genes, Ten-a, implicates a neuropil in the central complex of the fly brain as influencing the magnitude of behavioral variability, a brain region involved in sensory integration and locomotor coordination. We validated these results using genetic deficiencies, null alleles, and inducible RNAi transgenes. Our study reveals the constellation of phenotypes that can arise from a single genotype and shows that different genetic backgrounds differ dramatically in their propensity for phenotypic variabililty. Because traditional mean-focused GWASs ignore the contribution of variability to overall phenotypic variation, current methods may miss important links between genotype and phenotype. PMID:25953335

  20. Missing heritability of complex diseases: Enlightenment by genetic variants from intermediate phenotypes.

    PubMed

    Blanco-Gómez, Adrián; Castillo-Lluva, Sonia; Del Mar Sáez-Freire, María; Hontecillas-Prieto, Lourdes; Mao, Jian Hua; Castellanos-Martín, Andrés; Pérez-Losada, Jesus

    2016-07-01

    Diseases of complex origin have a component of quantitative genetics that contributes to their susceptibility and phenotypic variability. However, after several studies, a major part of the genetic component of complex phenotypes has still not been found, a situation known as "missing heritability." Although there have been many hypotheses put forward to explain the reasons for the missing heritability, its definitive causes remain unknown. Complex diseases are caused by multiple intermediate phenotypes involved in their pathogenesis and, very often, each one of these intermediate phenotypes also has a component of quantitative inheritance. Here we propose that at least part of the missing heritability can be explained by the genetic component of intermediate phenotypes that is not detectable at the level of the main complex trait. At the same time, the identification of the genetic component of intermediate phenotypes provides an opportunity to identify part of the missing heritability of complex diseases. PMID:27241833

  1. Phenotyping for drought tolerance of crops in the genomics era

    PubMed Central

    Tuberosa, Roberto

    2012-01-01

    Improving crops yield under water-limited conditions is the most daunting challenge faced by breeders. To this end, accurate, relevant phenotyping plays an increasingly pivotal role for the selection of drought-resilient genotypes and, more in general, for a meaningful dissection of the quantitative genetic landscape that underscores the adaptive response of crops to drought. A major and universally recognized obstacle to a more effective translation of the results produced by drought-related studies into improved cultivars is the difficulty in properly phenotyping in a high-throughput fashion in order to identify the quantitative trait loci that govern yield and related traits across different water regimes. This review provides basic principles and a broad set of references useful for the management of phenotyping practices for the study and genetic dissection of drought tolerance and, ultimately, for the release of drought-tolerant cultivars. PMID:23049510

  2. Inference on biological mechanisms using an integrated phenotype prediction model.

    PubMed

    Enomoto, Yumi; Ushijima, Masaru; Miyata, Satoshi; Matsuura, Masaaki; Ohtaki, Megu

    2008-03-01

    We propose a methodology for constructing an integrated phenotype prediction model that accounts for multiple pathways regulating a targeted phenotype. The method uses multiple prediction models, each expressing a particular pattern of gene-to-gene interrelationship, such as epistasis. We also propose a methodology using Gene Ontology annotations to infer a biological mechanism from the integrated phenotype prediction model. To construct the integrated models, we employed multiple logistic regression models using a two-step learning approach to examine a number of patterns of gene-to-gene interrelationships. We first selected individual prediction models with acceptable goodness of fit, and then combined the models. The resulting integrated model predicts phenotype as a logical sum of predicted results from the individual models. We used published microarray data on neuroblastoma from Ohira et al (2005) for illustration, constructing an integrated model to predict prognosis and infer the biological mechanisms controlling prognosis. Although the resulting integrated model comprised a small number of genes compared to a previously reported analysis of these data, the model demonstrated excellent performance, with an error rate of 0.12 in a validation analysis. Gene Ontology analysis suggested that prognosis of patients with neuroblastoma may be influenced by biological processes such as cell growth, G-protein signaling, phosphoinositide-mediated signaling, alcohol metabolism, glycolysis, neurophysiological processes, and catecholamine catabolism. PMID:18578362

  3. Phenotypic, transcriptomic, and genomic features of clonal plasma cells in light-chain amyloidosis.

    PubMed

    Paiva, Bruno; Martinez-Lopez, Joaquin; Corchete, Luis A; Sanchez-Vega, Beatriz; Rapado, Inmaculada; Puig, Noemi; Barrio, Santiago; Sanchez, Maria-Luz; Alignani, Diego; Lasa, Marta; García de Coca, Alfonso; Pardal, Emilia; Oriol, Alberto; Garcia, Maria-Esther Gonzalez; Escalante, Fernando; González-López, Tomás J; Palomera, Luis; Alonso, José; Prosper, Felipe; Orfao, Alberto; Vidriales, Maria-Belen; Mateos, María-Victoria; Lahuerta, Juan-Jose; Gutierrez, Norma C; San Miguel, Jesús F

    2016-06-16

    Immunoglobulin light-chain amyloidosis (AL) and multiple myeloma (MM) are 2 distinct monoclonal gammopathies that involve the same cellular compartment: clonal plasma cells (PCs). Despite the fact that knowledge about MM PC biology has significantly increased in the last decade, the same does not apply for AL. Here, we used an integrative phenotypic, molecular, and genomic approach to study clonal PCs from 24 newly diagnosed patients with AL. Through principal-component-analysis, we demonstrated highly overlapping phenotypic profiles between AL and both monoclonal gammopathy of undetermined significance and MM PCs. However, in contrast to MM, highly purified fluorescence-activated cell-sorted clonal PCs from AL (n = 9) showed almost normal transcriptome, with only 38 deregulated genes vs normal PCs; these included a few tumor-suppressor (CDH1, RCAN) and proapoptotic (GLIPR1, FAS) genes. Notwithstanding, clonal PCs in AL (n = 11) were genomically unstable, with a median of 9 copy number alterations (CNAs) per case, many of such CNAs being similar to those found in MM. Whole-exome sequencing (WES) performed in 5 AL patients revealed a median of 15 nonrecurrent mutations per case. Altogether, our results show that in the absence of a unifying mutation by WES, clonal PCs in AL display phenotypic and CNA profiles similar to MM, but their transcriptome is remarkably similar to that of normal PCs. PMID:27069257

  4. Atypical Ligon Lintless-2 Phenotype in Cotton

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The mutant Li2 is reported to be a dominant single gene mutation in cotton, Gossypium hirsutum L. It has normal vegetative phenotypic morphology and the phenotype of the seed cotton is reported to be fuzzy seed with short fibers. The objective of this research was to report on atypical phenotypes ob...

  5. Towards an informative mutant phenotype for every bacterial gene

    DOE PAGESBeta

    Deutschbauer, Adam; Price, Morgan N.; Wetmore, Kelly M.; Tarjan, Daniel R.; Xu, Zhuchen; Shao, Wenjen; Leon, Dacia; Arkin, Adam P.; Skerker, Jeffrey M.

    2014-08-11

    Mutant phenotypes provide strong clues to the functions of the underlying genes and could allow annotation of the millions of sequenced yet uncharacterized bacterial genes. However, it is not known how many genes have a phenotype under laboratory conditions, how many phenotypes are biologically interpretable for predicting gene function, and what experimental conditions are optimal to maximize the number of genes with a phenotype. To address these issues, we measured the mutant fitness of 1,586 genes of the ethanol-producing bacterium Zymomonas mobilis ZM4 across 492 diverse experiments and found statistically significant phenotypes for 89% of all assayed genes. Thus, inmore » Z. mobilis, most genes have a functional consequence under laboratory conditions. We demonstrate that 41% of Z. mobilis genes have both a strong phenotype and a similar fitness pattern (cofitness) to another gene, and are therefore good candidates for functional annotation using mutant fitness. Among 502 poorly characterized Z. mobilis genes, we identified a significant cofitness relationship for 174. For 57 of these genes without a specific functional annotation, we found additional evidence to support the biological significance of these gene-gene associations, and in 33 instances, we were able to predict specific physiological or biochemical roles for the poorly characterized genes. Last, we identified a set of 79 diverse mutant fitness experiments in Z. mobilis that are nearly as biologically informative as the entire set of 492 experiments. Therefore, our work provides a blueprint for the functional annotation of diverse bacteria using mutant fitness.« less

  6. Towards an informative mutant phenotype for every bacterial gene

    SciTech Connect

    Deutschbauer, Adam; Price, Morgan N.; Wetmore, Kelly M.; Tarjan, Daniel R.; Xu, Zhuchen; Shao, Wenjen; Leon, Dacia; Arkin, Adam P.; Skerker, Jeffrey M.

    2014-08-11

    Mutant phenotypes provide strong clues to the functions of the underlying genes and could allow annotation of the millions of sequenced yet uncharacterized bacterial genes. However, it is not known how many genes have a phenotype under laboratory conditions, how many phenotypes are biologically interpretable for predicting gene function, and what experimental conditions are optimal to maximize the number of genes with a phenotype. To address these issues, we measured the mutant fitness of 1,586 genes of the ethanol-producing bacterium Zymomonas mobilis ZM4 across 492 diverse experiments and found statistically significant phenotypes for 89% of all assayed genes. Thus, in Z. mobilis, most genes have a functional consequence under laboratory conditions. We demonstrate that 41% of Z. mobilis genes have both a strong phenotype and a similar fitness pattern (cofitness) to another gene, and are therefore good candidates for functional annotation using mutant fitness. Among 502 poorly characterized Z. mobilis genes, we identified a significant cofitness relationship for 174. For 57 of these genes without a specific functional annotation, we found additional evidence to support the biological significance of these gene-gene associations, and in 33 instances, we were able to predict specific physiological or biochemical roles for the poorly characterized genes. Last, we identified a set of 79 diverse mutant fitness experiments in Z. mobilis that are nearly as biologically informative as the entire set of 492 experiments. Therefore, our work provides a blueprint for the functional annotation of diverse bacteria using mutant fitness.

  7. Phenotype standardization for drug-induced kidney disease.

    PubMed

    Mehta, Ravindra L; Awdishu, Linda; Davenport, Andrew; Murray, Patrick T; Macedo, Etienne; Cerda, Jorge; Chakaravarthi, Raj; Holden, Arthur L; Goldstein, Stuart L

    2015-08-01

    Drug-induced kidney disease is a frequent cause of renal dysfunction; however, there are no standards to identify and characterize the spectrum of these disorders. We convened a panel of international, adult and pediatric, nephrologists and pharmacists to develop standardized phenotypes for drug-induced kidney disease as part of the phenotype standardization project initiated by the International Serious Adverse Events Consortium. We propose four phenotypes of drug-induced kidney disease based on clinical presentation: acute kidney injury, glomerular, tubular, and nephrolithiasis, along with the primary and secondary clinical criteria to support the phenotype definition, and a time course based on the KDIGO/AKIN definitions of acute kidney injury, acute kidney disease, and chronic kidney disease. Establishing causality in drug-induced kidney disease is challenging and requires knowledge of the biological plausibility for the specific drug, mechanism of injury, time course, and assessment of competing risk factors. These phenotypes provide a consistent framework for clinicians, investigators, industry, and regulatory agencies to evaluate drug nephrotoxicity across various settings. We believe that this is the first step to recognizing drug-induced kidney disease and developing strategies to prevent and manage this condition. PMID:25853333

  8. Strategy revealing phenotypic differences among synthetic oscillator designs.

    PubMed

    Lomnitz, Jason G; Savageau, Michael A

    2014-09-19

    Considerable progress has been made in identifying and characterizing the component parts of genetic oscillators, which play central roles in all organisms. Nonlinear interaction among components is sufficiently complex that mathematical models are required to elucidate their elusive integrated behavior. Although natural and synthetic oscillators exhibit common architectures, there are numerous differences that are poorly understood. Utilizing synthetic biology to uncover basic principles of simpler circuits is a way to advance understanding of natural circadian clocks and rhythms. Following this strategy, we address the following questions: What are the implications of different architectures and molecular modes of transcriptional control for the phenotypic repertoire of genetic oscillators? Are there designs that are more realizable or robust? We compare synthetic oscillators involving one of three architectures and various combinations of the two modes of transcriptional control using a methodology that provides three innovations: a rigorous definition of phenotype, a procedure for deconstructing complex systems into qualitatively distinct phenotypes, and a graphical representation for illuminating the relationship between genotype, environment, and the qualitatively distinct phenotypes of a system. These methods provide a global perspective on the behavioral repertoire, facilitate comparisons of alternatives, and assist the rational design of synthetic gene circuitry. In particular, the results of their application here reveal distinctive phenotypes for several designs that have been studied experimentally as well as a best design among the alternatives that has yet to be constructed and tested. PMID:25019938

  9. Natural Variation of Model Mutant Phenotypes in Ciona intestinalis

    PubMed Central

    Brown, Euan R.; Leccia, Nicola I.; Squarzoni, Paola; Tarallo, Raffaella; Alfano, Christian; Caputi, Luigi; D'Ambrosio, Palmira; Daniele, Paola; D'Aniello, Enrico; D'Aniello, Salvatore; Maiella, Sylvie; Miraglia, Valentina; Russo, Monia Teresa; Sorrenti, Gerarda; Branno, Margherita; Cariello, Lucio; Cirino, Paola; Locascio, Annamaria; Spagnuolo, Antonietta; Zanetti, Laura; Ristoratore, Filomena

    2008-01-01

    Background The study of ascidians (Chordata, Tunicata) has made a considerable contribution to our understanding of the origin and evolution of basal chordates. To provide further information to support forward genetics in Ciona intestinalis, we used a combination of natural variation and neutral population genetics as an approach for the systematic identification of new mutations. In addition to the significance of developmental variation for phenotype-driven studies, this approach can encompass important implications in evolutionary and population biology. Methodology/Principal Findings Here, we report a preliminary survey for naturally occurring mutations in three geographically interconnected populations of C. intestinalis. The influence of historical, geographical and environmental factors on the distribution of abnormal phenotypes was assessed by means of 12 microsatellites. We identified 37 possible mutant loci with stereotyped defects in embryonic development that segregate in a way typical of recessive alleles. Local populations were found to differ in genetic organization and frequency distribution of phenotypic classes. Conclusions/Significance Natural genetic polymorphism of C. intestinalis constitutes a valuable source of phenotypes for studying embryonic development in ascidians. Correlating genetic structure and the occurrence of abnormal phenotypes is a crucial focus for understanding the selective forces that shape natural finite populations, and may provide insights of great importance into the evolutionary mechanisms that generate animal diversity. PMID:18523552

  10. AB070. Mutations of SRD5A2 in Vietnamese patients: phenotype and genotype

    PubMed Central

    Dung, Vu Chi; Thao, Bui Phuong; Khanh, Nguyen Ngoc; Ngoc, Can Thi Bich; Fukami, Maki

    2015-01-01

    A rare form of the 46,XY disorders of sex development (DSD), 5α-reductase deficiency was first described in patients with pseudovaginal perineoscrotal hypospadias, microphallus, and cryptorchid testes in 1974 by Imperato-McGinley et al. and Walsh et al. This undervirilization in the male is due to an alteration in the 5α-reductase type 2 gene (SRD5A2), which encodes for 5α-reductase activity. Our registry of 750 patients with DSD showed no definitive diagnosis in 80% of cases with 46,XY DSD. Our aim is to identify mutations in SRD5A2 gene and to describe phenotype of detected mutative cases. Mutation analysis was performed for genomic DNA extracted from WBC of 10 patients with 46,XY DSD using PCR and direct sequencing. We identified mutations of SRD5A2 gene in two cases. The first case presented with isolated micropenis at birth, two palpable testes in the normal scrotum. Pelvic ultrasound showed no ovaries and uterus, karyotype was 46,XY and SRY was positive. Serum FSH level was 2.4 UI/L; LH level was 0.9 UI/L and testosterone level was 0.4 nmol/L at 8 years of age. A homozygous missense mutation (p.R237G) was identified in the SRD5A2 gene. The second case presented with microphallus, penoscrotal hypospadias, and gonad bilateral in labioscrotal folds. No uterus and ovaries were found by pelvic ultrasound. Karyotype was 46,XY and SRY was positive. A novel homozygous missense mutation (c.659C>T; p.S220L) was identified in the SRD5A2 gene. Mutation analysis of SRD5A2 gene helps to make definitive diagnosis for patients with 46,XY DSD.

  11. Phenotypic characteristics of early Wolfram syndrome

    PubMed Central

    2013-01-01

    Background Wolfram Syndrome (WFS:OMIM 222300) is an autosomal recessive, progressive, neurologic and endocrinologic degenerative disorder caused by mutations in the WFS1 gene, encoding the endoplasmic reticulum (ER) protein wolframin, thought to be involved in the regulation of ER stress. This paper reports a cross section of data from the Washington University WFS Research Clinic, a longitudinal study to collect detailed phenotypic data on a group of young subjects in preparation for studies of therapeutic interventions. Methods Eighteen subjects (ages 5.9–25.8, mean 14.2 years) with genetically confirmed WFS were identified through the Washington University International Wolfram Registry. Examinations included: general medical, neurologic, ophthalmologic, audiologic, vestibular, and urologic exams, cognitive testing and neuroimaging. Results Seventeen (94%) had diabetes mellitus with the average age of diabetes onset of 6.3 ± 3.5 years. Diabetes insipidus was diagnosed in 13 (72%) at an average age of 10.6 ± 3.3 years. Seventeen (94%) had optic disc pallor and defects in color vision, 14 (78%) had hearing loss and 13 (72%) had olfactory defects, eight (44%) had impaired vibration sensation. Enuresis was reported by four (22%) and nocturia by three (17%). Of the 11 tested for bladder emptying, five (45%) had elevated post-void residual bladder volume. Conclusions WFS causes multiple endocrine and neurologic deficits detectable on exam, even early in the course of the disease. Defects in olfaction have been underappreciated. The proposed mechanism of these deficits in WFS is ER stress-induced damage to neuronal and hormone-producing cells. This group of subjects with detailed clinical phenotyping provides a pool for testing proposed treatments for ER stress. Longitudinal follow-up is necessary for establishing the natural history and identifying potential biomarkers of progression. PMID:23981289

  12. Glucose metabolic phenotype of pancreatic cancer

    PubMed Central

    Chan, Anthony KC; Bruce, Jason IE; Siriwardena, Ajith K

    2016-01-01

    AIM: To construct a global “metabolic phenotype” of pancreatic ductal adenocarcinoma (PDAC) reflecting tumour-related metabolic enzyme expression. METHODS: A systematic review of the literature was performed using OvidSP and PubMed databases using keywords “pancreatic cancer” and individual glycolytic and mitochondrial oxidative phosphorylation (MOP) enzymes. Both human and animal studies investigating the oncological effect of enzyme expression changes and inhibitors in both an in vitro and in vivo setting were included in the review. Data reporting changes in enzyme expression and the effects on PDAC cells, such as survival and metastatic potential, were extracted to construct a metabolic phenotype. RESULTS: Seven hundred and ten papers were initially retrieved, and were screened to meet the review inclusion criteria. 107 unique articles were identified as reporting data involving glycolytic enzymes, and 28 articles involving MOP enzymes in PDAC. Data extraction followed a pre-defined protocol. There is consistent over-expression of glycolytic enzymes and lactate dehydrogenase in keeping with the Warburg effect to facilitate rapid adenosine-triphosphate production from glycolysis. Certain isoforms of these enzymes were over-expressed specifically in PDAC. Altering expression levels of HK, PGI, FBA, enolase, PK-M2 and LDA-A with metabolic inhibitors have shown a favourable effect on PDAC, thus identifying these as potential therapeutic targets. However, the Warburg effect on MOP enzymes is less clear, with different expression levels at different points in the Krebs cycle resulting in a fundamental change of metabolite levels, suggesting that other essential anabolic pathways are being stimulated. CONCLUSION: Further characterisation of the PDAC metabolic phenotype is necessary as currently there are few clinical studies and no successful clinical trials targeting metabolic enzymes. PMID:27022229

  13. Genetic Factors in Systemic Lupus Erythematosus: Contribution to Disease Phenotype

    PubMed Central

    Ceccarelli, Fulvia; Perricone, Carlo; Borgiani, Paola; Ciccacci, Cinzia; Rufini, Sara; Cipriano, Enrica; Alessandri, Cristiano; Spinelli, Francesca Romana; Sili Scavalli, Antonio; Novelli, Giuseppe; Valesini, Guido; Conti, Fabrizio

    2015-01-01

    Genetic factors exert an important role in determining Systemic Lupus Erythematosus (SLE) susceptibility, interplaying with environmental factors. Several genetic studies in various SLE populations have identified numerous susceptibility loci. From a clinical point of view, SLE is characterized by a great heterogeneity in terms of clinical and laboratory manifestations. As widely demonstrated, specific laboratory features are associated with clinical disease subset, with different severity degree. Similarly, in the last years, an association between specific phenotypes and genetic variants has been identified, allowing the possibility to elucidate different mechanisms and pathways accountable for disease manifestations. However, except for Lupus Nephritis (LN), no studies have been designed to identify the genetic variants associated with the development of different phenotypes. In this review, we will report data currently known about this specific association. PMID:26798662

  14. Phenotypic Screening of Primary Human Cell Culture Systems to Identify Potential for Compound Toxicity (CHI Phenotypic Screening)

    EPA Science Inventory

    Addressing safety aspects of drugs and environmental chemicals has historically been undertaken through animal testing. However, the quantity of chemicals needing assessment and the challenge of species extrapolation require development of alternative approaches. Assessing phenot...

  15. Accuracy of phenotyping children with autism based on parent report: what specifically do we gain phenotyping "rapidly"?

    PubMed

    Warren, Zachary; Vehorn, Alison; Dohrmann, Elizabeth; Nicholson, Amy; Sutcliffe, James S; Veenstra-Vanderweele, Jeremy

    2012-02-01

    Autism spectrum disorder (ASD) is considered among the most heritable of all neurodevelopmental and psychiatric disorders, but identification of etiologically significant genetic markers and risk variants has been hampered by a lack of sufficiently large samples. Rapid phenotyping procedures, where self-report measures are used instead of extensive clinical assessment, have been proposed as methods for amassing large genetic databases due to their hypothesized time-efficiency and affordability. We assessed the diagnostic accuracy of potential rapid phenotyping procedures using the Social Communication Questionnaire and the Social Responsiveness Scale in a sample of 333 children who also received extensive phenotypic assessments. While the rapid phenotyping measures were able to accurately identify a large number of children with ASD, they also frequently failed to differentiate children with ASD from children with other complex neurobehavioral profiles. These data support the continued need of expert clinical validation in combination with rapid phenotyping procedures in order to accurately amass large-scale genetic collections of children with ASD. PMID:21972233

  16. RNA-binding proteins with prion-like domains in ALS and FTLD-U.

    PubMed

    Gitler, Aaron D; Shorter, James

    2011-01-01

    Amyotrophic lateral sclerosis (ALS, also known as Lou Gehrig's disease) is a debilitating, and universally fatal, neurodegenerative disease that devastates upper and lower motor neurons. The causes of ALS are poorly understood. A central role for RNA-binding proteins and RNA metabolism in ALS has recently emerged. The RNA-binding proteins, TDP-43 and FUS, are principal components of cytoplasmic inclusions found in motor neurons of ALS patients and mutations in TDP-43 and FUS are linked to familial and sporadic ALS. Pathology and genetics also connect TDP-43 and FUS with frontotemporal lobar degeneration with ubiquitin-positive inclusions (FTLD-U). It was unknown whether mechanisms of FUS aggregation and toxicity were similar or different to those of TDP-43. To address this issue, we have employed yeast models and pure protein biochemistry to define mechanisms underlying TDP-43 and FUS aggregation and toxicity, and to identify genetic modifiers relevant for human disease. We have identified prion-like domains in FUS and TDP-43 and provide evidence that these domains are required for aggregation. Our studies have defined key similarities as well as important differences between the two proteins. Collectively, however, our findings lead us to suggest that FUS and TDP-43, though similar RNA-binding proteins, likely aggregate and confer disease phenotypes via distinct mechanisms. PMID:21847013

  17. NIH Mouse Metabolic Phenotyping Centers: the power of centralized phenotyping.

    PubMed

    Laughlin, Maren R; Lloyd, K C Kent; Cline, Gary W; Wasserman, David H

    2012-10-01

    The Mouse Metabolic Phenotyping Centers (MMPCs) were founded in 2001 by the National Institutes of Health (NIH) to advance biomedical research by providing the scientific community with standardized, high-quality phenotyping services for mouse models of diabetes, obesity, and their complications. The intent is to allow researchers to take optimum advantage of the many new mouse models produced in labs and in high-throughput public efforts. The six MMPCs are located at universities around the country and perform complex metabolic tests in intact mice and hormone and analyte assays in tissues on a fee-for-service basis. Testing is subsidized by the NIH in order to reduce the barriers for mouse researchers. Although data derived from these tests belong to the researcher submitting mice or tissues, these data are archived after publication in a public database run by the MMPC Coordinating and Bioinformatics Unit. It is hoped that data from experiments performed in many mouse models of metabolic diseases, using standard protocols, will be useful in understanding the nature of these complex disorders. The current areas of expertise include energy balance and body composition, insulin action and secretion, whole-body and tissue carbohydrate and lipid metabolism, cardiovascular and renal function, and metabolic pathway kinetics. In addition to providing services, the MMPC staff provides expertise and advice to researchers, and works to develop and refine test protocols to best meet the community's needs in light of current scientific developments. Test technology is disseminated by publications and through annual courses. PMID:22940748

  18. Al Composites

    NASA Astrophysics Data System (ADS)

    Chandanayaka, Tharaka; Azarmi, Fardad

    2014-05-01

    In the present study, cold spraying technique was used to fabricate a metal matrix composite (MMC) that consists of Ni matrix and 20 vol.% Ni3Al particles at two different particle sizes as reinforcement. This study intends to investigate the effect of reinforcement particle size on microstructural and mechanical properties of cold sprayed MMCs. Two different Ni3Al powders with nominal particle size of -45 to +5 and +45 to 100 μm were used as reinforcement in this study. Cold sprayed Ni-Ni3Al samples were subjected to the microstructural observation and characterization prior to any mechanical testing. Then, samples were tested using nano-indentation, Knoop hardness, Vickers hardness, and Resonance frequency to evaluate their mechanical properties. No significant changes were observed in microstructural characteristics due to different particle sizes. The results obtained from a variety of mechanical testings indicated that the increasing reinforcement particle size resulted in the slight reduction of mechanical properties such as elastic modulus and hardness in cold sprayed MMCs. The mechanical interlock between deposited particles defines the bonding strength in cold sprayed samples. Small size particles have a higher velocity and impact resulting in stronger interlock between deformed particles.

  19. Phenotypes and genotypes in epilepsy with febrile seizures plus.

    PubMed

    Ito, M; Yamakawa, K; Sugawara, T; Hirose, S; Fukuma, G; Kaneko, S

    2006-08-01

    In the last several years, mutations of sodium channel genes, SCN1A, SCN2A, and SCN1B, and GABA(A) receptor gene, GABRG2 were identified as causes of some febrile seizures related epilepsies. In 19 unrelated Japanese families whose probands had febrile seizures plus or epilepsy following febrile seizures plus, we identified 2 missense mutations of SCN1A to be responsible for the seizure phenotypes in two FS+ families and another mutation of SCN2A in one family. The combined frequency of SCN1A, SCN2A, SCN1B, SCN2B, and GABRG2 mutations in Japanese patients with FS+ was 15.8%. One family, which had R188W mutation in SCN2A, showed digenic inheritance, and another modifier gene was thought to take part in the seizure phenotype. The phenotypes of probands were FS+ in 5, FS+ and partial epilepsy in 10, FS+ and generalized epilepsy in 3, and FS+ and unclassified epilepsy in 1. We proposed the term epilepsy with febrile seizures plus (EFS+), because autosomal-dominant inheritance in EFS+ might be rare, and most of EFS+ display a complex pattern of inheritance, even when it appears to be an autosomal-dominant inheritance. There is a possibility of simultaneous involvement of multiple genes for seizure phenotypes. PMID:16884893

  20. Analysis of the human diseasome using phenotype similarity between common, genetic, and infectious diseases

    PubMed Central

    Hoehndorf, Robert; Schofield, Paul N.; Gkoutos, Georgios V.

    2015-01-01

    Phenotypes are the observable characteristics of an organism arising from its response to the environment. Phenotypes associated with engineered and natural genetic variation are widely recorded using phenotype ontologies in model organisms, as are signs and symptoms of human Mendelian diseases in databases such as OMIM and Orphanet. Exploiting these resources, several computational methods have been developed for integration and analysis of phenotype data to identify the genetic etiology of diseases or suggest plausible interventions. A similar resource would be highly useful not only for rare and Mendelian diseases, but also for common, complex and infectious diseases. We apply a semantic text-mining approach to identify the phenotypes (signs and symptoms) associated with over 6,000 diseases. We evaluate our text-mined phenotypes by demonstrating that they can correctly identify known disease-associated genes in mice and humans with high accuracy. Using a phenotypic similarity measure, we generate a human disease network in which diseases that have similar signs and symptoms cluster together, and we use this network to identify closely related diseases based on common etiological, anatomical as well as physiological underpinnings. PMID:26051359

  1. Analysis of the human diseasome using phenotype similarity between common, genetic, and infectious diseases

    NASA Astrophysics Data System (ADS)

    Hoehndorf, Robert; Schofield, Paul N.; Gkoutos, Georgios V.

    2015-06-01

    Phenotypes are the observable characteristics of an organism arising from its response to the environment. Phenotypes associated with engineered and natural genetic variation are widely recorded using phenotype ontologies in model organisms, as are signs and symptoms of human Mendelian diseases in databases such as OMIM and Orphanet. Exploiting these resources, several computational methods have been developed for integration and analysis of phenotype data to identify the genetic etiology of diseases or suggest plausible interventions. A similar resource would be highly useful not only for rare and Mendelian diseases, but also for common, complex and infectious diseases. We apply a semantic text-mining approach to identify the phenotypes (signs and symptoms) associated with over 6,000 diseases. We evaluate our text-mined phenotypes by demonstrating that they can correctly identify known disease-associated genes in mice and humans with high accuracy. Using a phenotypic similarity measure, we generate a human disease network in which diseases that have similar signs and symptoms cluster together, and we use this network to identify closely related diseases based on common etiological, anatomical as well as physiological underpinnings.

  2. Cholestatic phenotypes of autoimmune hepatitis.

    PubMed

    Czaja, Albert J

    2014-09-01

    Autoimmune hepatitis can have cholestatic features that are outside the codified diagnostic criteria. These features have uncertain effects on the clinical presentation and progression of disease. Patients with autoimmune hepatitis can have antimitochondrial antibodies and coincidental bile duct injury or loss (2%-13% of patients), focal biliary strictures and dilations based on cholangiography (2%-11%), or histologic changes of bile duct injury or loss in the absence of other features (5%-11%). These findings probably represent atypical manifestations of autoimmune hepatitis or variants of primary biliary cirrhosis or primary sclerosing cholangitis, depending on the predominant findings. Serum levels of alkaline phosphatase and γ-glutamyl transferase, histologic features of bile duct injury, and findings from cholangiography are associated with responsiveness to corticosteroid therapy and individualized alternative treatments. Corticosteroid therapy, in combination with low-dose ursodeoxycholic acid, has been promulgated by international societies, but these recommendations are not based on strong evidence. The frequency, variable outcomes, and uncertainties in diagnosis and management of the cholestatic phenotypes must be addressed by a collaborative investigational network. This network should define the genetic and pathologic features of these disorders, standardize their nomenclature, and establish a treatment algorithm. In this review, the different cholestatic phenotypes of autoimmune hepatitis, mechanisms of pathogenesis, current management strategies and outcomes, and opportunities for improving understanding and therapy are presented. PMID:24013108

  3. Phenotyping bananas for drought resistance

    PubMed Central

    Ravi, Iyyakkutty; Uma, Subbaraya; Vaganan, Muthu Mayil; Mustaffa, Mohamed M.

    2012-01-01

    Drought has emerged as one of the major constraints in banana production. Its effects are pronounced substantially in the tropics and sub-tropics of the world due to climate change. Bananas are quite sensitive to drought; however, genotypes with “B” genome are more tolerant to abiotic stresses than those solely based on “A” genome. In particular, bananas with “ABB” genomes are more tolerant to drought and other abiotic stresses than other genotypes. A good phenotyping plan is a prerequisite for any improvement program for targeted traits. In the present article, known drought tolerant traits of other crop plants are validated in bananas with different genomic backgrounds and presented. Since, banana is recalcitrant to breeding, strategies for making hybrids between different genomic backgrounds are also discussed. Stomatal conductance, cell membrane stability (CMS), leaf emergence rate, rate of leaf senescence, RWC, and bunch yield under soil moisture deficit stress are some of the traits associated with drought tolerance. Among these stress bunch yield under drought should be given top priority for phenotyping. In the light of recently released Musa genome draft sequence, the molecular breeders may have interest in developing molecular markers for drought resistance. PMID:23443573

  4. Phenotypic plasticity in bacterial plasmids.

    PubMed Central

    Turner, Paul E

    2004-01-01

    Plasmid pB15 was previously shown to evolve increased horizontal (infectious) transfer at the expense of reduced vertical (intergenerational) transfer and vice versa, a key trade-off assumed in theories of parasite virulence. Whereas the models predict that susceptible host abundance should determine which mode of transfer is selectively favored, host density failed to mediate the trade-off in pB15. One possibility is that the plasmid's transfer deviates from the assumption that horizontal spread (conjugation) occurs in direct proportion to cell density. I tested this hypothesis using Escherichia coli/pB15 associations in laboratory serial culture. Contrary to most models of plasmid transfer kinetics, my data show that pB15 invades static (nonshaking) bacterial cultures only at intermediate densities. The results can be explained by phenotypic plasticity in traits governing plasmid transfer. As cells become more numerous, the plasmid's conjugative transfer unexpectedly declines, while the trade-off between transmission routes causes vertical transfer to increase. Thus, at intermediate densities the plasmid's horizontal transfer can offset selection against plasmid-bearing cells, but at high densities pB15 conjugates so poorly that it cannot invade. I discuss adaptive vs. nonadaptive causes for the phenotypic plasticity, as well as potential mechanisms that may lead to complex transfer dynamics of plasmids in liquid environments. PMID:15166133

  5. Phenotypic Correlates of HIV-1 Macrophage Tropism

    PubMed Central

    Arrildt, Kathryn T.; LaBranche, Celia C.; Joseph, Sarah B.; Dukhovlinova, Elena N.; Graham, William D.; Ping, Li-Hua; Schnell, Gretja; Sturdevant, Christa B.; Kincer, Laura P.; Mallewa, Macpherson; Heyderman, Robert S.; Van Rie, Annelies; Cohen, Myron S.; Spudich, Serena; Price, Richard W.; Montefiori, David C.

    2015-01-01

    evolve and differ from CCR5-using T cell-tropic viruses may provide insights into viral evolution and pathogenesis within the central nervous system. We characterized the HIV-1 env viral entry gene from subject-matched macrophage-tropic and T cell-tropic viruses to identify entry features of macrophage-tropic viruses. We observed several differences between T cell-tropic and macrophage-tropic Env proteins, including functional differences with host CD4 receptor engagement and possible changes in the CD4 binding site and V1/V2 region. We also identified viruses with phenotypes between that of “true” macrophage-tropic and T cell-tropic viruses, which may represent evolutionary intermediates in a multistep process to macrophage tropism. PMID:26339058

  6. Nucleus Morphometry in Cultured Epithelial Cells Correlates with Phenotype.

    PubMed

    Khan, Ayyad Z; Utheim, Tor P; Jackson, Catherine J; Reppe, Sjur; Lyberg, Torstein; Eidet, Jon R

    2016-06-01

    Phenotype of cultured ocular epithelial transplants has been shown to affect clinical success rates following transplantation to the cornea. The purpose of this study was to evaluate the relationship between cell nucleus morphometry and phenotype in three types of cultured epithelial cells. This study provides knowledge for the development of a non-invasive method of determining the phenotype of cultured epithelium before transplantation. Cultured human conjunctival epithelial cells (HCjE), human epidermal keratinocytes (HEK), and human retinal pigment epithelial cells (HRPE) were analyzed by quantitative immunofluorescence. Assessments of nucleus morphometry and nucleus-to-cytoplasm ratio (N/C ratio) were performed using ImageJ. Spearman's correlation coefficient was employed for statistical analysis. Levels of the proliferation marker PCNA in HCjE, HEK, and HRPE correlated positively with nuclear area. Nuclear area correlated significantly with levels of the undifferentiated cell marker ABCG2 in HCjE. Bmi1 levels, but not p63α levels, correlated significantly with nuclear area in HEK. The N/C ratio did not correlate significantly with any of the immunomarkers in HCjE (ABCG2, CK7, and PCNA) and HRPE (PCNA). In HEK, however, the N/C ratio was negatively correlated with levels of the undifferentiated cell marker CK14 and positively correlated with Bmi1 expression. The size of the nuclear area correlated positively with proliferation markers in all three epithelia. Morphometric indicators of phenotype in cultured epithelia can be identified using ImageJ. Conversely, the N/C ratio did not show a uniform relationship with phenotype in HCjE, HEK, or HRPE. N/C ratio therefore, may not be a useful morphometric marker for in vitro assessment of phenotype in these three epithelia. PMID:27329312

  7. Limestone: high-throughput candidate phenotype generation via tensor factorization.

    PubMed

    Ho, Joyce C; Ghosh, Joydeep; Steinhubl, Steve R; Stewart, Walter F; Denny, Joshua C; Malin, Bradley A; Sun, Jimeng

    2014-12-01

    The rapidly increasing availability of electronic health records (EHRs) from multiple heterogeneous sources has spearheaded the adoption of data-driven approaches for improved clinical research, decision making, prognosis, and patient management. Unfortunately, EHR data do not always directly and reliably map to medical concepts that clinical researchers need or use. Some recent studies have focused on EHR-derived phenotyping, which aims at mapping the EHR data to specific medical concepts; however, most of these approaches require labor intensive supervision from experienced clinical professionals. Furthermore, existing approaches are often disease-centric and specialized to the idiosyncrasies of the information technology and/or business practices of a single healthcare organization. In this paper, we propose Limestone, a nonnegative tensor factorization method to derive phenotype candidates with virtually no human supervision. Limestone represents the data source interactions naturally using tensors (a generalization of matrices). In particular, we investigate the interaction of diagnoses and medications among patients. The resulting tensor factors are reported as phenotype candidates that automatically reveal patient clusters on specific diagnoses and medications. Using the proposed method, multiple phenotypes can be identified simultaneously from data. We demonstrate the capability of Limestone on a cohort of 31,815 patient records from the Geisinger Health System. The dataset spans 7years of longitudinal patient records and was initially constructed for a heart failure onset prediction study. Our experiments demonstrate the robustness, stability, and the conciseness of Limestone-derived phenotypes. Our results show that using only 40 phenotypes, we can outperform the original 640 features (169 diagnosis categories and 471 medication types) to achieve an area under the receiver operator characteristic curve (AUC) of 0.720 (95% CI 0.715 to 0.725). Moreover, in

  8. Identification of Loci Modulating the Cardiovascular and Skeletal Phenotypes of Marfan Syndrome in Mice

    PubMed Central

    Fernandes, Gustavo R.; Massironi, Silvia M. G.; Pereira, Lygia V.

    2016-01-01

    Marfan syndrome (MFS) is an autosomal dominant disease of the connective tissue, affecting mostly the skeletal, ocular and cardiovascular systems, caused by mutations in the FBN1 gene. The existence of modifier genes has been postulated based on the wide clinical variability of manifestations in patients, even among those with the same FBN1 mutation. Although isogenic mouse models of the disease were fundamental in dissecting the molecular mechanism of pathogenesis, they do not address the effect of genetic background on the disease phenotype. Here, we use a new mouse model, mgΔloxPneo, which presents different phenotype severity dependent on the genetic backgrounds, to identify genes involved in modulating MFS phenotype. F2 heterozygotes showed wide phenotypic variability, with no correlations between phenotypic severities of the different affected systems, indicating that each has its specific set of modifier genes. Individual analysis of the phenotypes, with SNP microarrays, identified two suggestive QTL each to the cardiovascular and skeletal, and one significant QTL to the skeletal phenotype. Epistatic interactions between the QTL account for 47.4% and 53.5% of variation in the skeletal and cardiovascular phenotypes, respectively. This is the first study that maps modifier loci for MFS, showing the complex genetic architecture underlying the disease. PMID:26927851

  9. Co-clustering phenome–genome for phenotype classification and disease gene discovery

    PubMed Central

    Hwang, TaeHyun; Atluri, Gowtham; Xie, MaoQiang; Dey, Sanjoy; Hong, Changjin; Kumar, Vipin; Kuang, Rui

    2012-01-01

    Understanding the categorization of human diseases is critical for reliably identifying disease causal genes. Recently, genome-wide studies of abnormal chromosomal locations related to diseases have mapped >2000 phenotype–gene relations, which provide valuable information for classifying diseases and identifying candidate genes as drug targets. In this article, a regularized non-negative matrix tri-factorization (R-NMTF) algorithm is introduced to co-cluster phenotypes and genes, and simultaneously detect associations between the detected phenotype clusters and gene clusters. The R-NMTF algorithm factorizes the phenotype–gene association matrix under the prior knowledge from phenotype similarity network and protein–protein interaction network, supervised by the label information from known disease classes and biological pathways. In the experiments on disease phenotype–gene associations in OMIM and KEGG disease pathways, R-NMTF significantly improved the classification of disease phenotypes and disease pathway genes compared with support vector machines and Label Propagation in cross-validation on the annotated phenotypes and genes. The newly predicted phenotypes in each disease class are highly consistent with human phenotype ontology annotations. The roles of the new member genes in the disease pathways are examined and validated in the protein–protein interaction subnetworks. Extensive literature review also confirmed many new members of the disease classes and pathways as well as the predicted associations between disease phenotype classes and pathways. PMID:22735708

  10. An interview study of phenotypic characterization of genetically-modified mice.

    PubMed

    Thon, R; Vondeling, H; Lassen, J; Hansen, A K; Ritskes-Hoitinga, M

    2009-07-01

    An interview study was carried out with the aim of clarifying the reasons for the limited use of phenotypic characterization of genetically-modified mice (GMM) and identifying issues hindering its implementation. A total of 15 users of GMM participated in semi-structured face-to-face interviews, which were audio-taped and transcribed. The results were extracted using content analysis by theme. The investigation confirmed that few animals were systematically phenotyped and an observational approach was found to be widespread. The primary interest of the interviewees was phenotyping for impaired animal welfare. The concept of phenotyping was widely understood and perceived as a scientific advantage. The comprehensiveness of the protocols and the resources required for phenotyping were seen as problematic. All participants addressed this issue, be it regarding lack of time, money or expertise. Also, among the negative statements were worries about the capability of the available protocols to produce the information needed by the individual scientist. Phenotyping was predicted to become much more widespread in the future and its success was expected to depend on the development of reliable, fast and inexpensive methods. The study identified different aims of phenotyping and the suitability of the published protocols for these purposes was discussed. The contradiction between the limited use of characterization and its advantages was also discussed and proposals for the improvement of future phenotyping strategies are formulated. PMID:19237456

  11. Neuroanatomical Phenotypes In The Reeler Mouse

    PubMed Central

    Badea, Alexandra; Nicholls, Peter J.; Johnson, G. Allan; Wetsel, William C.

    2007-01-01

    The reeler mouse (Reln) has been proposed as a neurodevelopmental model for certain neurological and psychiatric conditions and has been studied by qualitative histochemistry and electron microscopy. Using magnetic resonance microscopy (MRM), we have quantitated for the first time the neuromorphology of Reln mice at a resolution of 21.5 μm. The neuroanatomical phenotypes of heterozygous and homozygous mutant Reln mice were compared to those of wild type (WT) littermates using morphometry and texture analysis. The cortical, hippocampal, and cerebellar phenotypes of the heterozygous and homozygous mutant Reln mice were confirmed, and new features were revealed. The Relnrl/rl mice possessed a smaller brain, and both Relnrl/+ and Relnrl/rl mice had increased ventricles compared to WT controls. Shape differences were found between WT and Relnrl/rl brains, specifically in cerebellum, olfactory bulbs, dorsomedial frontal and parietal cortex, certain regions of temporal and occipital lobes, as well as in the lateral ventricles and ventral hippocampus. These findings suggest that certain brain regions may be more severely impacted by the Reln mutation than others. Gadolinium-based active-staining demonstrated that layers of the hippocampus were disorganized in Relnrl/rl mice and differences in thickness of these layers were identified between WT and Relnrl/rl mice. The intensity distributions characteristic to the dorsal, middle, and ventral hippocampus were altered in the Relnrl/rl, especially in the ventral hippocampus. These differences were quantified using skewness and modeling the intensity distributions with a Gaussian mixture. Our results suggest that structural features of Relnrl/rl brain most closely phenocopy those of patients with Norman-Roberts lissencephaly. PMID:17185001

  12. Phenotype heterogeneity in cancer cell populations

    NASA Astrophysics Data System (ADS)

    Almeida, Luis; Chisholm, Rebecca; Clairambault, Jean; Escargueil, Alexandre; Lorenzi, Tommaso; Lorz, Alexander; Trélat, Emmanuel

    2016-06-01

    Phenotype heterogeneity in cancer cell populations, be it of genetic, epigenetic or stochastic origin, has been identified as a main source of resistance to drug treatments and a major source of therapeutic failures in cancers. The molecular mechanisms of drug resistance are partly understood at the single cell level (e.g., overexpression of ABC transporters or of detoxication enzymes), but poorly predictable in tumours, where they are hypothesised to rely on heterogeneity at the cell population scale, which is thus the right level to describe cancer growth and optimise its control by therapeutic strategies in the clinic. We review a few results from the biological literature on the subject, and from mathematical models that have been published to predict and control evolution towards drug resistance in cancer cell populations. We propose, based on the latter, optimisation strategies of combined treatments to limit emergence of drug resistance to cytotoxic drugs in cancer cell populations, in the monoclonal situation, which limited as it is still retains consistent features of cell population heterogeneity. The polyclonal situation, that may be understood as "bet hedging" of the tumour, thus protecting itself from different sources of drug insults, may lie beyond such strategies and will need further developments. In the monoclonal situation, we have designed an optimised therapeutic strategy relying on a scheduled combination of cytotoxic and cytostatic treatments that can be adapted to different situations of cancer treatments. Finally, we review arguments for biological theoretical frameworks proposed at different time and development scales, the so-called atavistic model (diachronic view relying on Darwinian genotype selection in the coursof billions of years) and the Waddington-like epigenetic landscape endowed with evolutionary quasi-potential (synchronic view relying on Lamarckian phenotype instruction of a given genome by reversible mechanisms), to

  13. PREDICTING INTERMEDIATE PHENOTYPES IN ASTHMA USING BRONCHOALVEOLAR LAVAGE-DERIVED CYTOKINES

    PubMed Central

    Brasier, Allan R.; Victor, Sundar; Ju, Hyunsu; Busse, William W.; Curran-Everett, Douglas; Bleecker, Eugene; Castro, Mario; Chung, Kian Fan; Gaston, Benjamin; Israel, Elliot; Wenzel, Sally E.; Erzurum, Serpil C.; Jarjour, Nizar N.; Calhoun, William J.

    2011-01-01

    An important problem in realizing personalized medicine is the development of methods for identifying disease subtypes using quantitative proteomics. Recently we found that bronchoalveolar lavage (BAL) cytokine patterns contain information about dynamic lung responsiveness. In this study, we examined physiological data from 1048 subjects enrolled in the US Severe Asthma Research Program (SARP) to identify four largely separable, quantitative intermediate phenotypes. Upper extremes in the study population were identified for eosinophil- or neutrophil- predominant inflammation, bronchodilation in response to albuterol treatment, or methacholine sensitivity. We evaluated four different statistical (“machine”) learning methods to predict each intermediate phenotypes using BAL cytokine measurements on a 76 subject subset. Comparison of these models using area under the ROC curve and overall classification accuracy indicated that logistic regression and multivariate adaptive regression splines produced the most accurate methods to predict intermediate asthma phenotypes. These robust classification methods will aid future translational studies in asthma targeted at specific intermediate phenotypes. PMID:20718815

  14. Phenotypic variation and genotype-phenotype discordance in canine cone-rod dystrophy with an RPGRIP1 mutation

    PubMed Central

    Kato, Kumiko; Aguirre-Hernández, Jesús; Tokuriki, Tsuyoshi; Morimoto, Kyohei; Busse, Claudia; Barnett, Keith; Holmes, Nigel; Ogawa, Hiroyuki; Sasaki, Nobuo; Mellersh, Cathryn S.; Sargan, David R.

    2009-01-01

    Purpose Previously, a 44 bp insertion in exon 2 of retinitis pigmentosa GTPase interacting protein 1 (RPGRIP1) was identified as the cause of cone-rod dystrophy 1 (cord1), a recessive form of progressive retinal atrophy (PRA) in the Miniature Longhaired Dachshund (MLHD), a dog model for Leber congenital amaurosis. The cord1 locus was mapped using MLHDs from an inbred colony with a homogeneous early onset disease phenotype. In this paper, the MLHD pet population was studied to investigate phenotypic variation and genotype-phenotype correlation. Further, the cord1 locus was fine-mapped using PRA cases from the MLHD pet population to narrow the critical region. Other dog breeds were also screened for the RGPRIP1 insertion. Methods This study examined phenotypic variation in an MLHD pet population that included 59 sporadic PRA cases and 18 members of an extended family with shared environment and having six PRA cases. Ophthalmologic evaluations included behavioral abnormalities, responses to menace and light, fundoscopy, and electroretinography (ERG). The RPGRIP1 insertion was screened for in all cases and 200 apparently normal control MLHDs and in 510 dogs from 66 other breed. To fine-map the cord1 locus in the MLHD, 74 PRA cases and 86 controls aged 4 years or more were genotyped for 24 polymorphic markers within the previously mapped cord1 critical region of 14.15 Mb. Results Among sporadic PRA cases from the MLHD pet population, the age of onset varied from 4 months to 15 years old; MLHDs from the extended family also showed variable onset and rate of progression. Screening for the insertion in RPGRIP1 identified substantial genotype-phenotype discordance: 16% of controls were homozygous for the insertion (RPGRIP1−/−), while 20% of PRA cases were not homozygous for it. Four other breeds were identified to carry the insertion including English Springer Spaniels and Beagles with insertion homozygotes. The former breed included both controls and PRA cases, yet in

  15. Evolution of phenotypic plasticity in colonizing species.

    PubMed

    Lande, Russell

    2015-05-01

    I elaborate an hypothesis to explain inconsistent empirical findings comparing phenotypic plasticity in colonizing populations or species with plasticity from their native or ancestral range. Quantitative genetic theory on the evolution of plasticity reveals that colonization of a novel environment can cause a transient increase in plasticity: a rapid initial increase in plasticity accelerates evolution of a new optimal phenotype, followed by slow genetic assimilation of the new phenotype and reduction of plasticity. An association of colonization with increased plasticity depends on the difference in the optimal phenotype between ancestral and colonized environments, the difference in mean, variance and predictability of the environment, the cost of plasticity, and the time elapsed since colonization. The relative importance of these parameters depends on whether a phenotypic character develops by one-shot plasticity to a constant adult phenotype or by labile plasticity involving continuous and reversible development throughout adult life. PMID:25558898

  16. Distinct antennal lobe phenotypes in the leaf-cutting ant (Atta vollenweideri).

    PubMed

    Kuebler, L S; Kelber, C; Kleineidam, C J

    2010-02-01

    Leaf-cutting ants (Atta vollenweideri) express a remarkable size polymorphism across the two sexual castes (queens and males) but in particular within the worker caste. Worker size is related to behavior (alloethism), separating workers into behavioral subcastes. The neuronal mechanisms underlying differences in behavior within the worker caste are still unknown. In this study, we first compared selected neuropils, in particular, the antennal lobes (AL) in males, queens, and workers. The males' ALs contain three extremely large, sex-specific glomeruli (macroglomeruli; MGs) and in total comprise fewer glomeruli (242) than the ALs of queens (about 346 glomeruli). In contrast to males, the queen ALs contain only one large glomerulus at a lateral position. The largest number of glomeruli was found in workers (396-442). In a previous paper, we described an MG in the workers' AL, and, in the second part of this study, we show that within workers two distinct, size-related AL phenotypes exist: the MG phenotype (containing a macroglomerulus) and the RG phenotype, with all glomeruli of regular size. This neuroanatomical polyphenism is established during pupal development and separates the worker caste into two neuroanatomical subcastes. Third, we investigate the functional significance of the MG in workers. By using calcium imaging to monitor activity of AL projection neurons, we show that the releaser component of the trail pheromone is represented in the same region as the MG. We propose that phenotypic trait variation in the organization of the ALs leads to differences in odor information processing that finally result in size-related differences in trail-following behavior. PMID:19950119

  17. Evolving phenotypic networks in silico.

    PubMed

    François, Paul

    2014-11-01

    Evolved gene networks are constrained by natural selection. Their structures and functions are consequently far from being random, as exemplified by the multiple instances of parallel/convergent evolution. One can thus ask if features of actual gene networks can be recovered from evolutionary first principles. I review a method for in silico evolution of small models of gene networks aiming at performing predefined biological functions. I summarize the current implementation of the algorithm, insisting on the construction of a proper "fitness" function. I illustrate the approach on three examples: biochemical adaptation, ligand discrimination and vertebrate segmentation (somitogenesis). While the structure of the evolved networks is variable, dynamics of our evolved networks are usually constrained and present many similar features to actual gene networks, including properties that were not explicitly selected for. In silico evolution can thus be used to predict biological behaviours without a detailed knowledge of the mapping between genotype and phenotype. PMID:24956562

  18. Epithelial phenotype in total sclerocornea

    PubMed Central

    Yeh, Lung-Kun; Chen, Hung-Chi; Chang, Anna Marie; Ho, Yi-Ju; Chang, Shirley H.L.; Yang, Unique

    2014-01-01

    Purpose To understand whether the epithelial phenotype in total sclerocornea is corneal or conjunctival in origin. Methods Four cases of total sclerocornea (male:female = 1:3; mean age = 5.4±4.3; 1–11 years old) who received penetrating keratoplasty (PKP) at our hospital between 2008 and 2011 were included. Corneal buttons obtained during PKP were used for transmission electron microscopy (TEM) as well as immunoconfocal microscopy for cytokeratins 3, 12, and 13, goblet cell mucin MUC5AC, connexin 43, stem cell markers p63 and ABCG2, laminin-5, and fibronectin. Results After a mean follow-up period of 38.8±14.0 (12–54) months, the grafts remained clear in half of the patients. TEM examination revealed a markedly attenuated Bowman’s layer in the scleralized corneas, with irregular and variably thinned collagen lamellar layers, and disorganization and random distribution of collagen fibrils, which were much larger in diameter compared with a normal cornea. Immunoconfocal microscopy showed that keratin 3 was expressed in all four patients, while p63, ABCG2, and MUC5AC were all absent. Cornea-specific keratin 12 was universally expressed in Patients 1 to 3, while mucosa (including conjunctiva)-specific keratin 13 was negative in these patients. Interestingly, keratin 12 and 13 were expressed in Patient 4 in a mutually exclusive manner. Linear expression of laminin-5 in the basement membrane zone and similar expression of fibronectin were observed. Conclusions The epithelia in total sclerocornea are essentially corneal in phenotype, but in the event of massive corneal angiogenesis, invasion by the conjunctival epithelium is possible. PMID:24744607

  19. Latent phenotypes pervade gene regulatory circuits

    PubMed Central

    2014-01-01

    Background Latent phenotypes are non-adaptive byproducts of adaptive phenotypes. They exist in biological systems as different as promiscuous enzymes and genome-scale metabolic reaction networks, and can give rise to evolutionary adaptations and innovations. We know little about their prevalence in the gene expression phenotypes of regulatory circuits, important sources of evolutionary innovations. Results Here, we study a space of more than sixteen million three-gene model regulatory circuits, where each circuit is represented by a genotype, and has one or more functions embodied in one or more gene expression phenotypes. We find that the majority of circuits with single functions have latent expression phenotypes. Moreover, the set of circuits with a given spectrum of functions has a repertoire of latent phenotypes that is much larger than that of any one circuit. Most of this latent repertoire can be easily accessed through a series of small genetic changes that preserve a circuit’s main functions. Both circuits and gene expression phenotypes that are robust to genetic change are associated with a greater number of latent phenotypes. Conclusions Our observations suggest that latent phenotypes are pervasive in regulatory circuits, and may thus be an important source of evolutionary adaptations and innovations involving gene regulation. PMID:24884746

  20. High frequency of the expanded C9ORF72 hexanucleotide repeat in familial and sporadic Greek ALS patients

    PubMed Central

    Mok, Kin Y.; Koutsis, Georgios; Schottlaender, Lucia V.; Polke, James; Panas, Marios; Houlden, Henry

    2012-01-01

    An intronic expansion of a hexanucleotide GGGGCC repeat in the C9ORF72 gene has recently been shown to be an important cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) in familial and sporadic cases. The frequency has only been defined in a small number of populations where the highest sporadic rate was identified in Finland (21.1%) and the lowest in mainland Italy (4.1%). We examined the C9ORF72 expansion in a series of 146 Greek ALS cases, 10.95% (n = 16) of cases carried the pathological expansion defined as greater than 30 repeats. In the 10 familial ALS probands, 50% (n = 5) of them carried a pathologically large expansion. In the remaining 136 sporadic ALS cases, 11 were carriers (8.2%). None of the 228 Greek controls carried an expanded repeat. The phenotype of our cases was spinal (13/16) or bulbar (3/16) ALS, the familial cases were all spinal ALS and none of our cases had behavioral frontotemporal dementia. Expansions in the C9ORF72 gene therefore represent a common cause of ALS in Greece and this test will be diagnostically very important to implement in the Greek population. The frequency is higher than other populations with the exception of Finland and this may be due to Greece being a relatively isolated population. PMID:22445326

  1. PHOCOS: inferring multi-feature phenotypic crosstalk networks

    PubMed Central

    Deng, Yue; Altschuler, Steven J.; Wu, Lani F.

    2016-01-01

    Motivation: Quantification of cellular changes to perturbations can provide a powerful approach to infer crosstalk among molecular components in biological networks. Existing crosstalk inference methods conduct network-structure learning based on a single phenotypic feature (e.g. abundance) of a biomarker. These approaches are insufficient for analyzing perturbation data that can contain information about multiple features (e.g. abundance, activity or localization) of each biomarker. Results: We propose a computational framework for inferring phenotypic crosstalk (PHOCOS) that is suitable for high-content microscopy or other modalities that capture multiple phenotypes per biomarker. PHOCOS uses a robust graph-learning paradigm to predict direct effects from potential indirect effects and identify errors owing to noise or missing links. The result is a multi-feature, sparse network that parsimoniously captures direct and strong interactions across phenotypic attributes of multiple biomarkers. We use simulated and biological data to demonstrate the ability of PHOCOS to recover multi-attribute crosstalk networks from cellular perturbation assays. Availability and implementation: PHOCOS is available in open source at https://github.com/AltschulerWu-Lab/PHOCOS Contact: steven.altschuler@ucsf.edu or lani.wu@ucsf.edu PMID:27307643

  2. Genetic mechanisms involved in the phenotype of Down syndrome.

    PubMed

    Patterson, David

    2007-01-01

    Down syndrome (DS) is the most common genetic cause of significant intellectual disability in the human population, occurring in roughly 1 in 700 live births. The ultimate cause of DS is trisomy of all or part of the set of genes located on chromosome 21. How this trisomy leads to the phenotype of DS is unclear. The completion of the DNA sequencing and annotation of the long arm of chromosome 21 was a critical step towards understanding the genetics of the phenotype. However, annotation of the chromosome continues and the functions of many genes on chromosome 21 remain uncertain. Recent findings about the structure of the human genome and of chromosome 21, in particular, and studies on mechanisms of gene regulation indicate that various genetic mechanisms may be contributors to the phenotype of DS and to the variability of the phenotype. These include variability of gene expression, the activity of transcription factors both encoded on chromosome 21 and encoded elsewhere in the genome, copy number polymorphisms, the function of conserved nongenic regions, microRNA activities, RNA editing, and perhaps DNA methylation. In this manuscript, we describe current knowledge about these genetic complexities and their likely importance in the context of DS. We identify gaps in current knowledge and suggest priorities to fill these gaps. PMID:17910086

  3. Inherited PTEN mutations and the prediction of phenotype.

    PubMed

    Leslie, Nicholas R; Longy, Michel

    2016-04-01

    PTEN has been heavily studied due to its role as a tumour suppressor and as a core inhibitory component of the phosphoinositide 3-kinase (PI3K) signalling network. It is a broadly expressed phosphatase which displays complexity and diversity in both its functions and regulation and accordingly, in the laboratory numerous classes of functionally distinct mutations have been generated. Inherited loss of function mutations in the PTEN gene were originally identified in sufferers of Cowden disease, but later shown to associate with more diverse human pathologies, mostly relating to cell and tissue overgrowth, leading to the use of the broader term, PTEN Hamartoma Tumour Syndrome. Recent phenotypic analysis of clinical cohorts of PTEN mutation carriers, combined with laboratory studies of the consequences of these mutations implies that stable catalytically inactive PTEN mutants may lead to the most severe phenotypes, and conversely, that mutants retaining partial function associate more frequently with a milder phenotype, with autism spectrum disorder often being diagnosed. Future work will be needed to confirm and to refine these genotype-phenotype relationships and convert this developing knowledge into improved patient management and potentially treatment with emerging drugs which target the PI3K pathway. PMID:26827793

  4. A simple regression-based method to map quantitative trait loci underlying function-valued phenotypes.

    PubMed

    Kwak, Il-Youp; Moore, Candace R; Spalding, Edgar P; Broman, Karl W

    2014-08-01

    Most statistical methods for quantitative trait loci (QTL) mapping focus on a single phenotype. However, multiple phenotypes are commonly measured, and recent technological advances have greatly simplified the automated acquisition of numerous phenotypes, including function-valued phenotypes, such as growth measured over time. While methods exist for QTL mapping with function-valued phenotypes, they are generally computationally intensive and focus on single-QTL models. We propose two simple, fast methods that maintain high power and precision and are amenable to extensions with multiple-QTL models using a penalized likelihood approach. After identifying multiple QTL by these approaches, we can view the function-valued QTL effects to provide a deeper understanding of the underlying processes. Our methods have been implemented as a package for R, funqtl. PMID:24931408

  5. LGMD phenotype due to a new gene and dysferlinopathy investigated by next-generation sequencing.

    PubMed

    Angelini, Corrado I

    2015-12-01

    In this issue of Neurology® Genetics, Endo et al.(1) report 3 cases of limb-girdle muscular dystrophy (LGMD) phenotype with mental retardation or hyperCKemia found by next-generation sequencing (NGS) to have a variant in the POMGNT2 gene, which has so far been recognized only as causing congenital muscular dystrophy (CMD). PMID:27066575

  6. Tumor-Associated Neutrophils Show Phenotypic and Functional Divergence in Human Lung Cancer.

    PubMed

    Saha, Shilpi; Biswas, Subhra K

    2016-07-11

    Studies in murine cancer models have demonstrated the phenotypic and functional divergence of neutrophils; however, their role in pro- or anti-tumor responses in human remains elusive. In this issue of Cancer Cell, Singhal et al. report the existence of specialized subsets of neutrophils in human lung cancer with diverging functions. PMID:27411583

  7. The Broad Autism Phenotype Questionnaire: Mothers versus Fathers of Children with an Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Seidman, Ifat; Yirmiya, Nurit; Milshtein, Shahaf; Ebstein, Richard P.; Levi, Shlomit

    2012-01-01

    Parents of individuals with autism were examined using the Broad Autism Phenotype Questionnaire (BAPQ; Hurley et al. in "J Autism Dev Disord" 37:1679-1690, 2007) assessing BAP-related personality and language characteristics. The BAPQ was administered to parents as a self-report and as an informant (spouse)-based measure. Results indicated the…

  8. Mechanisms of developmental regression in autism and the broader phenotype: a neural network modeling approach.

    PubMed

    Thomas, Michael S C; Knowland, Victoria C P; Karmiloff-Smith, Annette

    2011-10-01

    Loss of previously established behaviors in early childhood constitutes a markedly atypical developmental trajectory. It is found almost uniquely in autism and its cause is currently unknown (Baird et al., 2008). We present an artificial neural network model of developmental regression, exploring the hypothesis that regression is caused by overaggressive synaptic pruning and identifying the mechanisms involved. We used a novel population-modeling technique to investigate developmental deficits, in which both neurocomputational parameters and the learning environment were varied across a large number of simulated individuals. Regression was generated by the atypical setting of a single pruning-related parameter. We observed a probabilistic relationship between the atypical pruning parameter and the presence of regression, as well as variability in the onset, severity, behavioral specificity, and recovery from regression. Other neurocomputational parameters that varied across the population modulated the risk that an individual would show regression. We considered a further hypothesis that behavioral regression may index an underlying anomaly characterizing the broader autism phenotype. If this is the case, we show how the model also accounts for several additional findings: shared gene variants between autism and language impairment (Vernes et al., 2008); larger brain size in autism but only in early development (Redcay & Courchesne, 2005); and the possibility of quasi-autism, caused by extreme environmental deprivation (Rutter et al., 1999). We make a novel prediction that the earliest developmental symptoms in the emergence of autism should be sensory and motor rather than social and review empirical data offering preliminary support for this prediction. PMID:21875243

  9. Genotype-Phenotype studies of VCP-associated Inclusion Body Myopathy with Paget Disease of Bone and/or Frontotemporal Dementia

    PubMed Central

    Mehta, Sarju G.; Khare, Manaswitha; Ramani, Rupal; Watts, Giles D. J.; Simon, Mariella; Osann, Kathryn E.; Donkervoort, Sandra; Dec, Eric; Nalbandian, Angele; Platt, Julia; Pasquali, Marzia; Wang, Annabel; Mozaffar, Tahseen; Smith, Charles D.; Kimonis, Virginia E.

    2012-01-01

    VCP disease associated with Inclusion body myopathy, Paget disease of the bone and frontotemporal dementia is a progressive autosomal dominant disorder caused by mutations in Valosin containing protein gene. To establish genotype-phenotype correlations we analyzed clinical and biochemical markers from a database of 190 members in 27 families harboring ten missense mutations. Individuals were grouped into three categories: symptomatic, presymptomatic carriers and non-carriers. The symptomatic families were further divided into ten groups based on their VCP mutations. There was marked intra and inter-familial variation; and significant genotype-phenotype correlations were difficult because of small numbers. Nevertheless when comparing the two most common mutations, R155C mutation was found to be more severe, with earlier onset of myopathy and Paget (p=0.03). Survival analysis of all subjects revealed an average life span after diagnosis of myopathy and Paget of 18 and 19 years respectively, and after dementia only 6 years. R155C had a reduced survival compared to the R155H mutation (p=0.03). We identified amyotrophic lateral sclerosis (ALS) in thirteen individuals (8.9%) and Parkinson’s disease in five individuals (3%); however there was no genotypic correlation. This study represents the largest dataset of patients with VCP disease and expands our understanding of natural history and provides genotype-phenotype correlations in this unique disease. PMID:22909335

  10. Novel strategies to enforce an epithelial phenotype in mesenchymal cells.

    PubMed

    Dragoi, Ana-Maria; Swiss, Rachel; Gao, Beile; Agaisse, Hervé

    2014-07-15

    E-cadherin downregulation in cancer cells is associated with epithelial-to-mesenchymal transition (EMT) and metastatic prowess, but the underlying mechanisms are incompletely characterized. In this study, we probed E-cadherin expression at the plasma membrane as a functional assay to identify genes involved in E-cadherin downregulation. The assay was based on the E-cadherin-dependent invasion properties of the intracellular pathogen Listeria monocytogenes. On the basis of a functional readout, automated microscopy and computer-assisted image analysis were used to screen siRNAs targeting 7,000 human genes. The validity of the screen was supported by its definition of several known regulators of E-cadherin expression, including ZEB1, HDAC1, and MMP14. We identified three new regulators (FLASH, CASP7, and PCGF1), the silencing of which was sufficient to restore high levels of E-cadherin transcription. In addition, we identified two new regulators (FBXL5 and CAV2), the silencing of which was sufficient to increase E-cadherin expression at a posttranscriptional level. FLASH silencing regulated the expression of E-cadherin and other ZEB1-dependent genes, through posttranscriptional regulation of ZEB1, but it also regulated the expression of numerous ZEB1-independent genes with functions predicted to contribute to a restoration of the epithelial phenotype. Finally, we also report the identification of siRNA duplexes that potently restored the epithelial phenotype by mimicking the activity of known and putative microRNAs. Our findings suggest new ways to enforce epithelial phenotypes as a general strategy to treat cancer by blocking invasive and metastatic phenotypes associated with EMT. PMID:24845104

  11. Novel strategies to enforce an epithelial phenotype in mesenchymal cells

    PubMed Central

    Dragoi, Ana-Maria; Swiss, Rachel; Gao, Beile; Agaisse, Hervé

    2014-01-01

    E-cadherin downregulation in cancer cells is associated with epithelial-to-mesenchymal transition (EMT) and metastatic prowess, but the underlying mechanisms are incompletely characterized. In this study, we probed E-cadherin expression at the plasma membrane as a functional assay to identify genes involved in E-cadherin downregulation. The assay was based on the E-cadherin-dependent invasion properties of the intracellular pathogen Listeria monocytogenes. On the basis of a functional readout, automated microscopy and computer-assisted image analysis were used to screen siRNAs targeting 7,000 human genes. The validity of the screen was supported by its definion of several known regulators of E-cadherin expression, including ZEB1, HDAC1 and MMP14. We identified three new regulators (FLASH, CASP7 and PCGF1), the silencing of which was sufficient to restore high levels of E-cadherin transcription. Additionally, we identified two new regulators (FBXL5 and CAV2), the silencing of which was sufficient to increase E-cadherin expression at a post-transcriptional level. FLASH silencing regulated the expression of E-cadherin and other ZEB1-dependent genes, through post-transcriptional regulation of ZEB1, but it also regulated the expression of numerous ZEB1-independent genes with functions predicted to contribute to a restoration of the epithelial phenotype. Finally, we also report the identification of siRNA duplexes that potently restored the epithelial phenotype by mimicking the activity of known and putative microRNAs. Our findings suggest new ways to enforce epithelial phenotypes as a general strategy to treat cancer by blocking invasive and metastatic phenotypes associated with EMT. PMID:24845104

  12. Genotype/Phenotype Correlations in Tuberous Sclerosis Complex.

    PubMed

    Curatolo, Paolo; Moavero, Romina; Roberto, Denis; Graziola, Federica

    2015-12-01

    Tuberous sclerosis complex (TSC) is an autosomal dominant disorder characterized by the development of widespread hamartomatous lesions in various organs, including brain, skin, kidneys, heart, and eyes. Central nervous system is almost invariably involved, with up to 85% of patients presenting with epilepsy, and at least half of patients having intellectual disability or other neuropsychiatric disorders including autism spectrum disorder. TSC is caused by the mutation in one of the 2 genes TSC1, at 9q34, and TSC2, at 16p13.3. They respectively encode for hamartin and tuberin, which form an intracellular complex inhibiting the mammalian target of rapamycin. Mammalian target of rapamycin overactivation following the genetic defect determines the cell growth and proliferation responsible for TSC-related lesions, as well as the alterations in neuronal excitability and synaptogenesis leading to epilepsy and neuropsychiatric disorders. A causative mutation for the disorder is identified in about 85% of patients with a clinical diagnosis of TSC. Mosaicism and technology limits likely explain most of the no mutation identified cases. This review confirms that patients with TSC2 mutations considered as a group usually present a more severe phenotype, characterized by higher number of tubers, earlier age at seizure onset and higher prevalence of intellectual disability. However, the clinical phenotype of the disease presents a high variability, thus making the prediction of the phenotype on an individual basis still challenging. The increasing application of new molecular techniques to subjects with TSC has the potential to significantly reduce the rate of patients with no mutation demonstrated and to identify an increasing higher number of mutations. This would hopefully allow a better characterization of higher risk mutations, which might help clinicians to plan individualized surveillance plans. Furthermore, the increasing availability of disease registries to collect

  13. Lineage Tracking for Probing Heritable Phenotypes at Single-Cell Resolution

    PubMed Central

    Cottinet, Denis; Condamine, Florence; Bremond, Nicolas; Griffiths, Andrew D.; Rainey, Paul B.; de Visser, J. Arjan G. M.; Baudry, Jean; Bibette, Jérôme

    2016-01-01

    Determining the phenotype and genotype of single cells is central to understand microbial evolution. DNA sequencing technologies allow the detection of mutants at high resolution, but similar approaches for phenotypic analyses are still lacking. We show that a drop-based millifluidic system enables the detection of heritable phenotypic changes in evolving bacterial populations. At time intervals, cells were sampled and individually compartmentalized in 100 nL drops. Growth through 15 generations was monitored using a fluorescent protein reporter. Amplification of heritable changes–via growth–over multiple generations yields phenotypically distinct clusters reflecting variation relevant for evolution. To demonstrate the utility of this approach, we follow the evolution of Escherichia coli populations during 30 days of starvation. Phenotypic diversity was observed to rapidly increase upon starvation with the emergence of heritable phenotypes. Mutations corresponding to each phenotypic class were identified by DNA sequencing. This scalable lineage-tracking technology opens the door to large-scale phenotyping methods with special utility for microbiology and microbial population biology. PMID:27077662

  14. NIBBS-Search for Fast and Accurate Prediction of Phenotype-Biased Metabolic Systems

    PubMed Central

    Padmanabhan, Kanchana; Shpanskaya, Yekaterina; Banfield, Jill; Scott, Kathleen; Mihelcic, James R.; Samatova, Nagiza F.

    2012-01-01

    Understanding of genotype-phenotype associations is important not only for furthering our knowledge on internal cellular processes, but also essential for providing the foundation necessary for genetic engineering of microorganisms for industrial use (e.g., production of bioenergy or biofuels). However, genotype-phenotype associations alone do not provide enough information to alter an organism's genome to either suppress or exhibit a phenotype. It is important to look at the phenotype-related genes in the context of the genome-scale network to understand how the genes interact with other genes in the organism. Identification of metabolic subsystems involved in the expression of the phenotype is one way of placing the phenotype-related genes in the context of the entire network. A metabolic system refers to a metabolic network subgraph; nodes are compounds and edges labels are the enzymes that catalyze the reaction. The metabolic subsystem could be part of a single metabolic pathway or span parts of multiple pathways. Arguably, comparative genome-scale metabolic network analysis is a promising strategy to identify these phenotype-related metabolic subsystems. Network Instance-Based Biased Subgraph Search (NIBBS) is a graph-theoretic method for genome-scale metabolic network comparative analysis that can identify metabolic systems that are statistically biased toward phenotype-expressing organismal networks. We set up experiments with target phenotypes like hydrogen production, TCA expression, and acid-tolerance. We show via extensive literature search that some of the resulting metabolic subsystems are indeed phenotype-related and formulate hypotheses for other systems in terms of their role in phenotype expression. NIBBS is also orders of magnitude faster than MULE, one of the most efficient maximal frequent subgraph mining algorithms that could be adjusted for this problem. Also, the set of phenotype-biased metabolic systems output by NIBBS comes very close to

  15. Daddy issues: paternal effects on phenotype.

    PubMed

    Rando, Oliver J

    2012-11-01

    The once popular and then heretical idea that ancestral environment can affect the phenotype of future generations is coming back into vogue due to advances in the field of epigenetic inheritance. How paternal environmental conditions influence the phenotype of progeny is now a tractable question, and researchers are exploring potential mechanisms underlying such effects. PMID:23141533

  16. Distribution of phenotypes among Bacillus thuringiensis strains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An extensive collection of Bacillus thuringiensis isolates from around the world were phenotypically profiled using standard biochemical tests. Six phenotypic traits occurred in 20-86% of the isolates and were useful in distinguishing isolates: production of urease (U; 20.5% of isolates), hydrolysis...

  17. Emerging semantics to link phenotype and environment

    PubMed Central

    Bunker, Daniel E.; Buttigieg, Pier Luigi; Cooper, Laurel D.; Dahdul, Wasila M.; Domisch, Sami; Franz, Nico M.; Jaiswal, Pankaj; Lawrence-Dill, Carolyn J.; Midford, Peter E.; Mungall, Christopher J.; Ramírez, Martín J.; Specht, Chelsea D.; Vogt, Lars; Vos, Rutger Aldo; Walls, Ramona L.; White, Jeffrey W.; Zhang, Guanyang; Deans, Andrew R.; Huala, Eva; Lewis, Suzanna E.; Mabee, Paula M.

    2015-01-01

    Understanding the interplay between environmental conditions and phenotypes is a fundamental goal of biology. Unfortunately, data that include observations on phenotype and environment are highly heterogeneous and thus difficult to find and integrate. One approach that is likely to improve the status quo involves the use of ontologies to standardize and link data about phenotypes and environments. Specifying and linking data through ontologies will allow researchers to increase the scope and flexibility of large-scale analyses aided by modern computing methods. Investments in this area would advance diverse fields such as ecology, phylogenetics, and conservation biology. While several biological ontologies are well-developed, using them to link phenotypes and environments is rare because of gaps in ontological coverage and limits to interoperability among ontologies and disciplines. In this manuscript, we present (1) use cases from diverse disciplines to illustrate questions that could be answered more efficiently using a robust linkage between phenotypes and environments, (2) two proof-of-concept analyses that show the value of linking phenotypes to environments in fishes and amphibians, and (3) two proposed example data models for linking phenotypes and environments using the extensible observation ontology (OBOE) and the Biological Collections Ontology (BCO); these provide a starting point for the development of a data model linking phenotypes and environments. PMID:26713234

  18. The Neuroanatomy of the Autistic Phenotype

    ERIC Educational Resources Information Center

    Fahim, Cherine; Meguid, Nagwa A.; Nashaat, Neveen H.; Yoon, Uicheul; Mancini-Marie, Adham; Evans, Alan C.

    2012-01-01

    The autism phenotype is associated with an excess of brain volume due in part to decreased pruning during development. Here we aimed at assessing brain volume early in development to further elucidate previous findings in autism and determine whether this pattern is restricted to idiopathic autism or shared within the autistic phenotype (fragile X…

  19. Emerging semantics to link phenotype and environment

    SciTech Connect

    Thessen, Anne E.; Bunker, Daniel E.; Buttigieg, Pier Luigi; Cooper, Laurel D.; Dahdul, Wasila M.; Domisch, Sami; Franz, Nico M.; Jaiswal, Pankaj; Lawrence-Dill, Carolyn J.; Midford, Peter E.; Mungall, Christopher J.; Ramirez, Martin J.; Specht, Chelsea D.; Vogt, Lars; Vos, Rutger Aldo; Walls, Ramona L.; White, Jeffrey W.; Zhang, Guanyang; Deans, Andrew R.; Huala, Eva; Lewis, Suzanna E.; Mabee, Paula M.

    2015-12-14

    Understanding the interplay between environmental conditions and phenotypes is a fundamental goal of biology. Unfortunately, data that include observations on phenotype and environment are highly heterogeneous and thus difficult to find and integrate. One approach that is likely to improve the status quo involves the use of ontologies to standardize and link data about phenotypes and environments. Specifying and linking data through ontologies will allow researchers to increase the scope and flexibility of large-scale analyses aided by modern computing methods. Investments in this area would advance diverse fields such as ecology, phylogenetics, and conservation biology. While several biological ontologies are well-developed, using them to link phenotypes and environments is rare because of gaps in ontological coverage and limits to interoperability among ontologies and disciplines. Lastly, in this manuscript, we present (1) use cases from diverse disciplines to illustrate questions that could be answered more efficiently using a robust linkage between phenotypes and environments, (2) two proof-of-concept analyses that show the value of linking phenotypes to environments in fishes and amphibians, and (3) two proposed example data models for linking phenotypes and environments using the extensible observation ontology (OBOE) and the Biological Collections Ontology (BCO); these provide a starting point for the development of a data model linking phenotypes and environments.

  20. The Cognitive Phenotype of Spina Bifida Meningomyelocele

    ERIC Educational Resources Information Center

    Dennis, Maureen; Barnes, Marcia A.

    2010-01-01

    A cognitive phenotype is a product of both assets and deficits that specifies what individuals with spina bifida meningomyelocele (SBM) can and cannot do and why they can or cannot do it. In this article, we review the cognitive phenotype of SBM and describe the processing assets and deficits that cut within and across content domains, sensory…

  1. Emerging semantics to link phenotype and environment

    DOE PAGESBeta

    Thessen, Anne E.; Bunker, Daniel E.; Buttigieg, Pier Luigi; Cooper, Laurel D.; Dahdul, Wasila M.; Domisch, Sami; Franz, Nico M.; Jaiswal, Pankaj; Lawrence-Dill, Carolyn J.; Midford, Peter E.; et al

    2015-12-14

    Understanding the interplay between environmental conditions and phenotypes is a fundamental goal of biology. Unfortunately, data that include observations on phenotype and environment are highly heterogeneous and thus difficult to find and integrate. One approach that is likely to improve the status quo involves the use of ontologies to standardize and link data about phenotypes and environments. Specifying and linking data through ontologies will allow researchers to increase the scope and flexibility of large-scale analyses aided by modern computing methods. Investments in this area would advance diverse fields such as ecology, phylogenetics, and conservation biology. While several biological ontologies aremore » well-developed, using them to link phenotypes and environments is rare because of gaps in ontological coverage and limits to interoperability among ontologies and disciplines. Lastly, in this manuscript, we present (1) use cases from diverse disciplines to illustrate questions that could be answered more efficiently using a robust linkage between phenotypes and environments, (2) two proof-of-concept analyses that show the value of linking phenotypes to environments in fishes and amphibians, and (3) two proposed example data models for linking phenotypes and environments using the extensible observation ontology (OBOE) and the Biological Collections Ontology (BCO); these provide a starting point for the development of a data model linking phenotypes and environments.« less

  2. Emerging semantics to link phenotype and environment.

    PubMed

    Thessen, Anne E; Bunker, Daniel E; Buttigieg, Pier Luigi; Cooper, Laurel D; Dahdul, Wasila M; Domisch, Sami; Franz, Nico M; Jaiswal, Pankaj; Lawrence-Dill, Carolyn J; Midford, Peter E; Mungall, Christopher J; Ramírez, Martín J; Specht, Chelsea D; Vogt, Lars; Vos, Rutger Aldo; Walls, Ramona L; White, Jeffrey W; Zhang, Guanyang; Deans, Andrew R; Huala, Eva; Lewis, Suzanna E; Mabee, Paula M

    2015-01-01

    Understanding the interplay between environmental conditions and phenotypes is a fundamental goal of biology. Unfortunately, data that include observations on phenotype and environment are highly heterogeneous and thus difficult to find and integrate. One approach that is likely to improve the status quo involves the use of ontologies to standardize and link data about phenotypes and environments. Specifying and linking data through ontologies will allow researchers to increase the scope and flexibility of large-scale analyses aided by modern computing methods. Investments in this area would advance diverse fields such as ecology, phylogenetics, and conservation biology. While several biological ontologies are well-developed, using them to link phenotypes and environments is rare because of gaps in ontological coverage and limits to interoperability among ontologies and disciplines. In this manuscript, we present (1) use cases from diverse disciplines to illustrate questions that could be answered more efficiently using a robust linkage between phenotypes and environments, (2) two proof-of-concept analyses that show the value of linking phenotypes to environments in fishes and amphibians, and (3) two proposed example data models for linking phenotypes and environments using the extensible observation ontology (OBOE) and the Biological Collections Ontology (BCO); these provide a starting point for the development of a data model linking phenotypes and environments. PMID:26713234

  3. Lactase persistence in central Asia: phenotype, genotype, and evolution.

    PubMed

    Heyer, Evelyne; Brazier, Lionel; Ségurel, Laure; Hegay, Tatiana; Austerlitz, Frédéric; Quintana-Murci, Lluis; Georges, Myriam; Pasquet, Patrick; Veuille, Michel

    2011-06-01

    The aim of the present study is to document the evolution of the lactase persistence trait in Central Asia, a geographical area that is thought to have been a region of long-term pastoralism. Several ethnic groups co-exist in this area: Indo-Iranian speakers who are traditionally agriculturist (Tajik) and Turkic speakers who used to be nomadic herders (Kazakh, Karakalpak, Kyrgyz, Turkmen). It was recently demonstrated that horse milking practice existed in the Botai culture of Kazakhstan as early as 5,500 BP ( Outram et al. 2009 ). However, the frequency of the lactase persistence trait and its genetic basis in Central Asian populations remain largely unknown. We propose here the first genotype-phenotype study of lactase persistence in Central Asia based on 183 individuals, as well as the estimation of the time of expansion of the lactase-persistence associated polymorphism. Our results show a remarkable genetic-phenotypic correlation, with the causal polymorphism being the same than in Europe (-13.910C>T, rs4988235). The lactase persistence trait is at low frequency in these populations: between 25% and 32% in the Kazakh population (traditionally herders), according to phenotype used, and between 11% and 30% in the Tajiko-Uzbek population (agriculturalists). The difference in lactase persistence between populations, even if small, is significant when using individuals concordant for both excretion of breath hydrogen and the lactose tolerance blood glucose test phenotypes (P = 0.018, 25% for Kazakh vs. 11% for Tajiko-Uzbeks), and the difference in frequency of the -13.910*T allele is almost significant (P = 0.06, 30% for Kazakhs vs. 19% for Tajiko-Uzbeks). Using the surrounding haplotype, we estimate a date of expansion of the T allele around 6,000-12,000 yrs ago, which is consistent with archaeological records for the emergence of agropastoralism and pastoralism in Central Asia. PMID:21740154

  4. Cytochrome P450 reaction-phenotyping: an industrial perspective.

    PubMed

    Zhang, Hongjian; Davis, Carl D; Sinz, Michael W; Rodrigues, A David

    2007-10-01

    It is now widely accepted that the fraction of the dose metabolized by a given drug-metabolizing enzyme is one of the major factors governing the magnitude of a drug interaction and the impact of a polymorphism on (total) drug clearance. Therefore, most pharmaceutical companies determine the enzymes involved in the metabolism of a new chemical entity (NCE) in vitro, in conjunction with human data on absorption, distribution, metabolism and excretion. This so called reaction-phenotyping, or isozyme-mapping, usually involves the use of multiple reagents (e.g., recombinant proteins, liver subcellular fractions, enzyme-selective chemical inhibitors and antibodies). For the human CYPs, reagents are readily available and in vitro reaction-phenotyping data are now routinely included in most regulatory documents. Ideally, the various metabolites have been definitively identified, incubation conditions have afforded robust kinetic analyses, and well characterized (high quality) reagents and human tissues have been employed. It is also important that the various in vitro data are consistent (e.g., scaled turnover with recombinant CYP proteins, CYP inhibition and correlation data with human liver microsomes) and enable an integrated in vitro CYP reaction-phenotype. Results of the in vitro CYP reaction-phenotyping are integrated with clinical data (e.g., human radiolabel and drug interaction studies) and a complete package is then submitted for regulatory review. If the NCE receives market approval, information on key routes of clearance and their associated potential for drug-drug interactions are included in the product label. The present review focuses on in vitro CYP reaction-phenotyping and the integration of data. Relatively simple strategies enabling the design and prioritization of follow up clinical studies are also discussed. PMID:17916054

  5. The puzzle of immune phenotypes of childhood asthma.

    PubMed

    Landgraf-Rauf, Katja; Anselm, Bettina; Schaub, Bianca

    2016-12-01

    Asthma represents the most common chronic childhood disease worldwide. Whereas preschool children present with wheezing triggered by different factors (multitrigger and viral wheeze), clinical asthma manifestation in school children has previously been classified as allergic and non-allergic asthma. For both, the underlying immunological mechanisms are not yet understood in depth in children. Treatment is still prescribed regardless of underlying mechanisms, and children are not always treated successfully. This review summarizes recent key findings on the complex mechanisms of the development and manifestation of childhood asthma. Whereas traditional classification of childhood asthma is primarily based on clinical symptoms like wheezing and atopy, novel approaches to specify asthma phenotypes are under way and face challenges such as including the stability of phenotypes over time and transition into adulthood. Epidemiological studies enclose more information on the patient's disease history and environmental influences. Latest studies define endotypes based on molecular and cellular mechanisms, for example defining risk and protective single nucleotide polymorphisms (SNPs) and new immune phenotypes, showing promising results. Also, regulatory T cells and recently discovered T helper cell subtypes such as Th9 and Th17 cells were shown to be important for the development of asthma. Innate lymphoid cells (ILC) could play a critical role in asthma patients as they produce different cytokines associated with asthma. Epigenetic findings showed different acetylation and methylation patterns for children with allergic and non-allergic asthma. On a posttranscriptional level, miRNAs are regulating factors identified to differ between asthma patients and healthy controls and also indicate differences within asthma phenotypes. Metabolomics is another exciting chapter important for endotyping asthmatic children. Despite the development of new biomarkers and the discovery of

  6. Neurocognitive Phenotypes and Genetic Dissection of Disorders of Brain and Behavior

    PubMed Central

    Congdon, Eliza; Poldrack, Russell A.; Freimer, Nelson B.

    2014-01-01

    Summary Elucidating the molecular mechanisms underlying quantitative neurocognitive phenotypes will further our understanding of the brain’s structural and functional architecture and advance the diagnosis and treatment of the psychiatric disorders that these traits underlie. Although many neurocognitive traits are highly heritable, little progress has been made in identifying genetic variants unequivocally associated with these phenotypes. A major obstacle to such progress is the difficulty in identifying heritable neurocognitive measures which are precisely defined, systematically assessed and represent unambiguous mental constructs, yet are amenable to the high-throughput phenotyping necessary to obtain adequate power for genetic association studies. In this perspective we compare the current status of genetic investigations of neurocognitive phenotypes to that of other categories of biomedically relevant traits and suggest strategies for genetically dissecting traits that may underlie disorders of brain and behavior. PMID:20955930

  7. Genome sequencing reveals loci under artificial selection that underlie disease phenotypes in the laboratory rat.

    PubMed

    Atanur, Santosh S; Diaz, Ana Garcia; Maratou, Klio; Sarkis, Allison; Rotival, Maxime; Game, Laurence; Tschannen, Michael R; Kaisaki, Pamela J; Otto, Georg W; Ma, Man Chun John; Keane, Thomas M; Hummel, Oliver; Saar, Kathrin; Chen, Wei; Guryev, Victor; Gopalakrishnan, Kathirvel; Garrett, Michael R; Joe, Bina; Citterio, Lorena; Bianchi, Giuseppe; McBride, Martin; Dominiczak, Anna; Adams, David J; Serikawa, Tadao; Flicek, Paul; Cuppen, Edwin; Hubner, Norbert; Petretto, Enrico; Gauguier, Dominique; Kwitek, Anne; Jacob, Howard; Aitman, Timothy J

    2013-08-01

    Large numbers of inbred laboratory rat strains have been developed for a range of complex disease phenotypes. To gain insights into the evolutionary pressures underlying selection for these phenotypes, we sequenced the genomes of 27 rat strains, including 11 models of hypertension, diabetes, and insulin resistance, along with their respective control strains. Altogether, we identified more than 13 million single-nucleotide variants, indels, and structural variants across these rat strains. Analysis of strain-specific selective sweeps and gene clusters implicated genes and pathways involved in cation transport, angiotensin production, and regulators of oxidative stress in the development of cardiovascular disease phenotypes in rats. Many of the rat loci that we identified overlap with previously mapped loci for related traits in humans, indicating the presence of shared pathways underlying these phenotypes in rats and humans. These data represent a step change in resources available for evolutionary analysis of complex traits in disease models. PMID:23890820

  8. Adjusting phenotypes by noise control.

    PubMed

    Kim, Kyung H; Sauro, Herbert M

    2012-01-01

    Genetically identical cells can show phenotypic variability. This is often caused by stochastic events that originate from randomness in biochemical processes involving in gene expression and other extrinsic cellular processes. From an engineering perspective, there have been efforts focused on theory and experiments to control noise levels by perturbing and replacing gene network components. However, systematic methods for noise control are lacking mainly due to the intractable mathematical structure of noise propagation through reaction networks. Here, we provide a numerical analysis method by quantifying the parametric sensitivity of noise characteristics at the level of the linear noise approximation. Our analysis is readily applicable to various types of noise control and to different types of system; for example, we can orthogonally control the mean and noise levels and can control system dynamics such as noisy oscillations. As an illustration we applied our method to HIV and yeast gene expression systems and metabolic networks. The oscillatory signal control was applied to p53 oscillations from DNA damage. Furthermore, we showed that the efficiency of orthogonal control can be enhanced by applying extrinsic noise and feedback. Our noise control analysis can be applied to any stochastic model belonging to continuous time Markovian systems such as biological and chemical reaction systems, and even computer and social networks. We anticipate the proposed analysis to be a useful tool for designing and controlling synthetic gene networks. PMID:22253584

  9. Ameloblastoma Phenotypes Reflected in Distinct Transcriptome Profiles

    PubMed Central

    Hu, Shijia; Parker, Joel; Divaris, Kimon; Padilla, Ricardo; Murrah, Valerie; Wright, John Timothy

    2016-01-01

    Ameloblastoma is a locally invasive benign neoplasm derived from odontogenic epithelium and presents with diverse phenotypes yet to be characterized molecularly. High recurrence rates of 50–80% with conservative treatment in some sub-types warrants radical surgical resections resulting in high morbidity. The objective of the study was to characterize the transcriptome of ameloblastoma and identify relevant genes and molecular pathways using normal odontogenic tissue (human “dentome”) for comparison. Laser capture microdissection was used to obtain neoplastic epithelial tissue from 17 tumors which were examined using the Agilent 44 k whole genome microarray. Ameloblastoma separated into 2 distinct molecular clusters that were associated with pre-secretory ameloblast and odontoblast. Within the pre-secretory cluster, 9/10 of samples were of the follicular type while 6/7 of the samples in the odontoblast cluster were of the plexiform type (p < 0.05). Common pathways altered in both clusters included cell-cycle regulation, inflammatory and MAPkinase pathways, specifically known cancer-driving genes such as TP53 and members of the MAPkinase pathways. The pre-secretory ameloblast cluster exhibited higher activation of inflammatory pathways while the odontoblast cluster showed greater disturbances in transcription regulators. Our results are suggestive of underlying inter-tumor molecular heterogeneity of ameloblastoma sub-types and have implications for the use of tailored treatment. PMID:27491308

  10. Discovery of rare variants for complex phenotypes.

    PubMed

    Kosmicki, Jack A; Churchhouse, Claire L; Rivas, Manuel A; Neale, Benjamin M

    2016-06-01

    With the rise of sequencing technologies, it is now feasible to assess the role rare variants play in the genetic contribution to complex trait variation. While some of the earlier targeted sequencing studies successfully identified rare variants of large effect, unbiased gene discovery using exome sequencing has experienced limited success for complex traits. Nevertheless, rare variant association studies have demonstrated that rare variants do contribute to phenotypic variability, but sample sizes will likely have to be even larger than those of common variant association studies to be powered for the detection of genes and loci. Large-scale sequencing efforts of tens of thousands of individuals, such as the UK10K Project and aggregation efforts such as the Exome Aggregation Consortium, have made great strides in advancing our knowledge of the landscape of rare variation, but there remain many considerations when studying rare variation in the context of complex traits. We discuss these considerations in this review, presenting a broad range of topics at a high level as an introduction to rare variant analysis in complex traits including the issues of power, study design, sample ascertainment, de novo variation, and statistical testing approaches. Ultimately, as sequencing costs continue to decline, larger sequencing studies will yield clearer insights into the biological consequence of rare mutations and may reveal which genes play a role in the etiology of complex traits. PMID:27221085

  11. Ameloblastoma Phenotypes Reflected in Distinct Transcriptome Profiles.

    PubMed

    Hu, Shijia; Parker, Joel; Divaris, Kimon; Padilla, Ricardo; Murrah, Valerie; Wright, John Timothy

    2016-01-01

    Ameloblastoma is a locally invasive benign neoplasm derived from odontogenic epithelium and presents with diverse phenotypes yet to be characterized molecularly. High recurrence rates of 50-80% with conservative treatment in some sub-types warrants radical surgical resections resulting in high morbidity. The objective of the study was to characterize the transcriptome of ameloblastoma and identify relevant genes and molecular pathways using normal odontogenic tissue (human "dentome") for comparison. Laser capture microdissection was used to obtain neoplastic epithelial tissue from 17 tumors which were examined using the Agilent 44 k whole genome microarray. Ameloblastoma separated into 2 distinct molecular clusters that were associated with pre-secretory ameloblast and odontoblast. Within the pre-secretory cluster, 9/10 of samples were of the follicular type while 6/7 of the samples in the odontoblast cluster were of the plexiform type (p < 0.05). Common pathways altered in both clusters included cell-cycle regulation, inflammatory and MAPkinase pathways, specifically known cancer-driving genes such as TP53 and members of the MAPkinase pathways. The pre-secretory ameloblast cluster exhibited higher activation of inflammatory pathways while the odontoblast cluster showed greater disturbances in transcription regulators. Our results are suggestive of underlying inter-tumor molecular heterogeneity of ameloblastoma sub-types and have implications for the use of tailored treatment. PMID:27491308

  12. Olmsted syndrome: exploration of the immunological phenotype

    PubMed Central

    2013-01-01

    Background Olmsted syndrome is a rare congenital skin disorder presenting with periorifical hyperkeratotic lesions and mutilating palmoplantar keratoderma, which is often associated with infections of the keratotic area. A recent study identified de novo mutations causing constitutive activation of TRPV3 as a cause of the keratotic manifestations of Olmsted syndrome. Methods Genetic, clinical and immunological profiling was performed on a case study patient with the clinical diagnosis of Olmsted syndrome. Results The patient was found to harbour a previously undescribed 1718G-C transversion in TRPV3, causing a G573A point mutation. In depth clinical and immunological analysis found multiple indicators of immune dysregulation, including frequent dermal infections, inflammatory infiltrate in the affected skin, hyper IgE production and elevated follicular T cells and eosinophils in the peripheral blood. Conclusions These results provide the first comprehensive assessment of the immunological features of Olmsted syndrome. The systemic phenotype of hyper IgE and persistent eosinophilia suggest a primary or secondary role of immunological processes in the pathogenesis of Olmsted syndrome, and have important clinical consequences with regard to the treatment of Olmsted syndrome patients. PMID:23692804

  13. STRAIN-SPECIFIC MODIFIER GENES GOVERNING CRANIOFACIAL PHENOTYPES

    PubMed Central

    Mukhopadhyay, Partha; Brock, Guy; Webb, Cynthia; Pisano, M. Michele; Greene, Robert M

    2012-01-01

    BACKGROUND The presence of strain-specific modifier genes is known to modulate the phenotype and pathophysiology of mice harboring genetically engineered mutations. Thus, identification of genetic modifier genes is requisite to understanding control of phenotypic expression. c-Ski is a transcriptional regulator. Ski−/− mice on a C57BL6J (B6) background exhibit facial clefting, while Ski−/− mice on a 129P3 (129) background present with exencephaly. METHODS In the present study, oligonucleotide-based gene expression profiling was utilized to identify potential strain-specific modifier gene candidates present in wild-type mice of B6 and 129 genetic backgrounds. Changes in gene expression were verified by TaqMan quantitative real-time PCR. RESULTS Steady-state levels of 89 genes demonstrated a significantly higher level of expression, and those of 68 genes demonstrated a significantly lower level of expression in the developing neural tubes from E8.5, B6 embryos when compared to expression levels in neural tubes derived from E8.5, 129 embryos. CONCLUSIONS Based on the results from the current comparative microarray study, and taking into consideration a number of relevant published reports, several potential strain-specific gene candidates, likely to modify the craniofacial phenotypes in various knockout mouse models have been identified. PMID:22371338

  14. The Nature of Stable Insomnia Phenotypes

    PubMed Central

    Pillai, Vivek; Roth, Thomas; Drake, Christopher L.

    2015-01-01

    Study Objectives: We examined the 1-y stability of four insomnia symptom profiles: sleep onset insomnia; sleep maintenance insomnia; combined onset and maintenance insomnia; and neither criterion (i.e., insomnia cases that do not meet quantitative thresholds for onset or maintenance problems). Insomnia cases that exhibited the same symptom profile over a 1-y period were considered to be phenotypes, and were compared in terms of clinical and demographic characteristics. Design: Longitudinal. Setting: Urban, community-based. Participants: Nine hundred fifty-four adults with Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition based current insomnia (46.6 ± 12.6 y; 69.4% female). Interventions: None. Measurements and results: At baseline, participants were divided into four symptom profile groups based on quantitative criteria. Follow-up assessment 1 y later revealed that approximately 60% of participants retained the same symptom profile, and were hence judged to be phenotypes. Stability varied significantly by phenotype, such that sleep onset insomnia (SOI) was the least stable (42%), whereas combined insomnia (CI) was the most stable (69%). Baseline symptom groups (cross-sectionally defined) differed significantly across various clinical indices, including daytime impairment, depression, and anxiety. Importantly, however, a comparison of stable phenotypes (longitudinally defined) did not reveal any differences in impairment or comorbid psychopathology. Another interesting finding was that whereas all other insomnia phenotypes showed evidence of an elevated wake drive both at night and during the day, the “neither criterion” phenotype did not; this latter phenotype exhibited significantly higher daytime sleepiness despite subthreshold onset and maintenance difficulties. Conclusions: By adopting a stringent, stability-based definition, this study offers timely and important data on the longitudinal trajectory of specific insomnia phenotypes. With

  15. Biomarkers to identify and isolate senescent cells.

    PubMed

    Matjusaitis, Mantas; Chin, Greg; Sarnoski, Ethan Anders; Stolzing, Alexandra

    2016-08-01

    Aging is the main risk factor for many degenerative diseases and declining health. Senescent cells are part of the underlying mechanism for time-dependent tissue dysfunction. These cells can negatively affect neighbouring cells through an altered secretory phenotype: the senescence-associated secretory phenotype (SASP). The SASP induces senescence in healthy cells, promotes tumour formation and progression, and contributes to other age-related diseases such as atherosclerosis, immune-senescence and neurodegeneration. Removal of senescent cells was recently demonstrated to delay age-related degeneration and extend lifespan. To better understand cell aging and to reap the benefits of senescent cell removal, it is necessary to have a reliable biomarker to identify these cells. Following an introduction to cellular senescence, we discuss several classes of biomarkers in the context of their utility in identifying and/or removing senescent cells from tissues. Although senescence can be induced by a variety of stimuli, senescent cells share some characteristics that enable their identification both in vitro and in vivo. Nevertheless, it may prove difficult to identify a single biomarker capable of distinguishing senescence in all cell types. Therefore, this will not be a comprehensive review of all senescence biomarkers but rather an outlook on technologies and markers that are most suitable to identify and isolate senescent cells. PMID:27212009

  16. Comparative Study Using Amplified Fragment Length Polymorphism Fingerprinting, PCR Genotyping, and Phenotyping To Differentiate Campylobacter fetus Strains Isolated from Animals

    PubMed Central

    Wagenaar, Jaap A.; van Bergen, Marcel A. P.; Newell, Diane G.; Grogono-Thomas, Rose; Duim, Birgitta

    2001-01-01

    A collection of Campylobacter fetus strains, including both C. fetus subsp. fetus and C. fetus subsp. venerealis, were phenotypically identified to the subspecies level and genotypically typed by PCR and amplified fragment length polymorphism (AFLP) analysis. Phenotypic subspecies determination methods were unreliable. Genotyping of the strains by PCR and AFLP showed a clear discrimination between the two subspecies. PMID:11376071

  17. Comparative catfish macrophage function in families expressing high and low survivor phenotype following experimental challenge with Edwardsiella ictaluri

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Two channel catfish families were identified as displaying a high (>90%) or low (<10%) survival phenotype in repeated experimental challenge with Edwardsiella ictaluri. In order to gain understanding of the biological basis of these phenotypes, primary macrophages were prepared from head kidney tiss...

  18. Phenolyzer: phenotype-based prioritization of candidate genes for human diseases.

    PubMed

    Yang, Hui; Robinson, Peter N; Wang, Kai

    2015-09-01

    Prior biological knowledge and phenotype information may help to identify disease genes from human whole-genome and whole-exome sequencing studies. We developed Phenolyzer (http://phenolyzer.usc.edu), a tool that uses prior information to implicate genes involved in diseases. Phenolyzer exhibits superior performance over competing methods for prioritizing Mendelian and complex disease genes, based on disease or phenotype terms entered as free text. PMID:26192085

  19. Improved human disease candidate gene prioritization using mouse phenotype

    PubMed Central

    Chen, Jing; Xu, Huan; Aronow, Bruce J; Jegga, Anil G

    2007-01-01

    Background The majority of common diseases are multi-factorial and modified by genetically and mechanistically complex polygenic interactions and environmental factors. High-throughput genome-wide studies like linkage analysis and gene expression profiling, tend to be most useful for classification and characterization but do not provide sufficient information to identify or prioritize specific disease causal genes. Results Extending on an earlier hypothesis that the majority of genes that impact or cause disease share membership in any of several functional relationships we, for the first time, show the utility of mouse phenotype data in human disease gene prioritization. We study the effect of different data integration methods, and based on the validation studies, we show that our approach, ToppGene , outperforms two of the existing candidate gene prioritization methods, SUSPECTS and ENDEAVOUR. Conclusion The incorporation of phenotype information for mouse orthologs of human genes greatly improves the human disease candidate gene analysis and prioritization. PMID:17939863

  20. Jagged 1 Rescues the Duchenne Muscular Dystrophy Phenotype.

    PubMed

    Vieira, Natassia M; Elvers, Ingegerd; Alexander, Matthew S; Moreira, Yuri B; Eran, Alal; Gomes, Juliana P; Marshall, Jamie L; Karlsson, Elinor K; Verjovski-Almeida, Sergio; Lindblad-Toh, Kerstin; Kunkel, Louis M; Zatz, Mayana

    2015-11-19

    Duchenne muscular dystrophy (DMD), caused by mutations at the dystrophin gene, is the most common form of muscular dystrophy. There is no cure for DMD and current therapeutic approaches to restore dystrophin expression are only partially effective. The absence of dystrophin in muscle results in dysregulation of signaling pathways, which could be targets for disease therapy and drug discovery. Previously, we identified two exceptional Golden Retriever muscular dystrophy (GRMD) dogs that are mildly affected, have functional muscle, and normal lifespan despite the complete absence of dystrophin. Now, our data on linkage, whole-genome sequencing, and transcriptome analyses of these dogs compared to severely affected GRMD and control animals reveals that increased expression of Jagged1 gene, a known regulator of the Notch signaling pathway, is a hallmark of the mild phenotype. Functional analyses demonstrate that Jagged1 overexpression ameliorates the dystrophic phenotype, suggesting that Jagged1 may represent a target for DMD therapy in a dystrophin-independent manner. PAPERCLIP. PMID:26582133

  1. Variable phenotypes are associated with PMP22 missense mutations.

    PubMed

    Russo, M; Laurá, M; Polke, J M; Davis, M B; Blake, J; Brandner, S; Hughes, R A C; Houlden, H; Bennett, D L H; Lunn, M P T; Reilly, M M

    2011-02-01

    Charcot-Marie-Tooth disease (CMT) is the commonest hereditary neuropathy encompassing a large group of clinically and genetically heterogeneous disorders. The commonest form of CMT, CMT1A, is usually caused by a 1.4 megabase duplication of chromosome 17 containing the PMP22 gene. Mutations of PMP22 are a less common cause of CMT. We describe clinical, electrophysiological and molecular findings of 10 patients carrying PMP22 missense mutations. The phenotype varied from mild hereditary neuropathy with liability to pressure palsies (HNPP) to severe CMT1. We identified six different point mutations, including two novel mutations. Three families were also found to harbour a Thr118Met mutation. Although PMP22 point mutations are not common, our findings highlight the importance of sequencing the PMP22 gene in patients with variable CMT phenotypes and also confirm that the PMP22 Thr118Met mutation is associated with a neuropathy albeit with reduced penetrance. PMID:21194947

  2. Sequential phenotypic constraints on social information use in wild baboons.

    PubMed

    Carter, Alecia J; Torrents Ticó, Miquel; Cowlishaw, Guy

    2016-01-01

    Social information allows the rapid dissemination of novel information among individuals. However, an individual's ability to use information is likely to be dependent on phenotypic constraints operating at three successive steps: acquisition, application, and exploitation. We tested this novel framework by quantifying the sequential process of social information use with experimental food patches in wild baboons (Papio ursinus). We identified phenotypic constraints at each step of the information use sequence: peripheral individuals in the proximity network were less likely to acquire and apply social information, while subordinate females were less likely to exploit it successfully. Social bonds and personality also played a limiting role along the sequence. As a result of these constraints, the average individual only acquired and exploited social information on. PMID:27067236

  3. Methods of integrating data to uncover genotype-phenotype interactions.

    PubMed

    Ritchie, Marylyn D; Holzinger, Emily R; Li, Ruowang; Pendergrass, Sarah A; Kim, Dokyoon

    2015-02-01

    Recent technological advances have expanded the breadth of available omic data, from whole-genome sequencing data, to extensive transcriptomic, methylomic and metabolomic data. A key goal of analyses of these data is the identification of effective models that predict phenotypic traits and outcomes, elucidating important biomarkers and generating important insights into the genetic underpinnings of the heritability of complex traits. There is still a need for powerful and advanced analysis strategies to fully harness the utility of these comprehensive high-throughput data, identifying true associations and reducing the number of false associations. In this Review, we explore the emerging approaches for data integration - including meta-dimensional and multi-staged analyses - which aim to deepen our understanding of the role of genetics and genomics in complex outcomes. With the use and further development of these approaches, an improved understanding of the relationship between genomic variation and human phenotypes may be revealed. PMID:25582081

  4. Genotype-Phenotype Interactions In Pediatric Obstructive Sleep Apnea

    PubMed Central

    Kheirandish-Gozal, Leila; Gozal, David

    2013-01-01

    Pediatric sleep disordered breathing (PSDB) is not only a very frequent condition affecting 2–4% of all children, but is also associated with an increased risk for a variety of manifestations underlying end-organ injury and dysfunction that impose both immediate and potentially long-term morbidities and corresponding inherent elevations in healthcare costs. One of the major problems with the creation of valid algorithms aiming to stratify diagnostic and treatment prioritization lies in our current inability to predict and identify those children who are most at-risk for PSDB-induced adverse consequences. Thus, improved our understanding of the mechanisms governing phenotype variance in PSDB is essential. Here, we examine some of the potential underpinnings of phenotypic variability in PSDB, and further propose a conceptual framework aimed at facilitating the process of advancing knowledge in this frequent disorder. PMID:23563156

  5. Phenotypic effects of membrane protein overexpression in Saccharomyces cerevisiae

    NASA Astrophysics Data System (ADS)

    Melén, Karin; Blomberg, Anders; von Heijne, Gunnar

    2006-07-01

    Large-scale protein overexpression phenotype screens provide an important complement to the more common gene knockout screens. Here, we have targeted the so far poorly understood Saccharomyces cerevisiae membrane proteome and report growth phenotypes for a strain collection overexpressing 600 C-terminally tagged integral membrane proteins grown both under normal and three different stress conditions. Although overexpression of most membrane proteins reduce the growth rate in synthetic defined medium, we identify a large number of proteins that, when overexpressed, confer specific resistance to various stress conditions. Our data suggest that regulation of glycosylphosphatidylinositol anchor biosynthesis and the Na+/K+ homeostasis system constitute major downstream targets of the yeast PKA/RAS pathway and point to a possible connection between the early secretory pathway and the cells' response to oxidative stress. We also have quantified the expression levels for >550 membrane proteins, facilitating the choice of well expressing proteins for future functional and structural studies. caffeine | paraquat | salt tolerance | yeast

  6. Mesenchymal stem cell subpopulations: phenotype, property and therapeutic potential.

    PubMed

    Mo, Miaohua; Wang, Shan; Zhou, Ying; Li, Hong; Wu, Yaojiong

    2016-09-01

    Mesenchymal stem cells (MSC) are capable of differentiating into cells of multiple cell lineages and have potent paracrine effects. Due to their easy preparation and low immunogenicity, MSC have emerged as an extremely promising therapeutic agent in regenerative medicine for diverse diseases. However, MSC are heterogeneous with respect to phenotype and function in current isolation and cultivation regimes, which often lead to incomparable experimental results. In addition, there may be specific stem cell subpopulations with definite differentiation capacity toward certain lineages in addition to stem cells with multi-differentiation potential. Recent studies have identified several subsets of MSC which exhibit distinct features and biological activities, and enhanced therapeutic potentials for certain diseases. In this review, we give an overview of these subsets for their phenotypic, biological and functional properties. PMID:27141940

  7. Transcriptomic Analysis of Phenotypic Changes in Birch (Betula platyphylla) Autotetraploids

    PubMed Central

    Mu, Huai-Zhi; Liu, Zi-Jia; Lin, Lin; Li, Hui-Yu; Jiang, Jing; Liu, Gui-Feng

    2012-01-01

    Plant breeders have focused much attention on polyploid trees because of their importance to forestry. To evaluate the impact of intraspecies genome duplication on the transcriptome, a series of Betula platyphylla autotetraploids and diploids were generated from four full-sib families. The phenotypes and transcriptomes of these autotetraploid individuals were compared with those of diploid trees. Autotetraploids were generally superior in breast-height diameter, volume, leaf, fruit and stoma and were generally inferior in height compared to diploids. Transcriptome data revealed numerous changes in gene expression attributable to autotetraploidization, which resulted in the upregulation of 7052 unigenes and the downregulation of 3658 unigenes. Pathway analysis revealed that the biosynthesis and signal transduction of indoleacetate (IAA) and ethylene were altered after genome duplication, which may have contributed to phenotypic changes. These results shed light on variations in birch autotetraploidization and help identify important genes for the genetic engineering of birch trees. PMID:23202935

  8. ALS and Oxidative Stress: The Neurovascular Scenario

    PubMed Central

    Thakur, Keshav; Gupta, Pawan Kumar

    2013-01-01

    Oxidative stress and angiogenic factors have been placed as the prime focus of scientific investigations after an establishment of link between vascular endothelial growth factor promoter (VEGF), hypoxia, and amyotrophic lateral sclerosis (ALS) pathogenesis. Deletion of the hypoxia-response element in the vascular endothelial growth factor promoter and mutant superoxide dismutase 1 (SOD1) which are characterised by atrophy and muscle weakness resulted in phenotype resembling human ALS in mice. This results in lower motor neurodegeneration thus establishing an important link between motor neuron degeneration, vasculature, and angiogenic molecules. In this review, we have presented human, animal, and in vitro studies which suggest that molecules like VEGF have a therapeutic, diagnostic, and prognostic potential in ALS. Involvement of vascular growth factors and hypoxia response elements also highlights the converging role of oxidative stress and neurovascular network for understanding and treatment of various neurodegenerative disorders like ALS. PMID:24367722

  9. Evolution and diversity of the mechanisms endowing resistance to herbicides inhibiting acetolactate-synthase (ALS) in corn poppy (Papaver rhoeas L.).

    PubMed

    Délye, Christophe; Pernin, Fanny; Scarabel, Laura

    2011-02-01

    We investigated the diversity of mechanisms conferring resistance to herbicides inhibiting acetolactate synthase (ALS) in corn poppy (Papaver rhoeas L.) and the processes underlying the selection for resistance. Six mutant ALS alleles, Arg₁₉₇, His₁₉₇, Leu₁₉₇, Ser₁₉₇, Thr₁₉₇ and Leu₅₇₄ were identified in five Italian populations. Different alleles were found in a same population or a same plant. Comparison of individual plant phenotype (herbicide sensitivity) and genotype (amino-acid substitution(s) at codon 197) showed that all mutant ALS alleles conferred dominant resistance to the field rate of the sulfonylurea tribenuron and moderate or no resistance to the field rate of the triazolopyrimidine florasulam. Depending on the allele, dominant or partially dominant resistance to the field rate of the imidazolinone imazamox was observed. Putative non-target-site resistance mechanisms were also likely present in the populations investigated. The derived Cleaved Amplified Polymorphic Sequence assays targeting ALS codons crucial for herbicide sensitivity developed in this work will facilitate the detection of resistance due to mutant ALS alleles. Nucleotide variation around codon 197 indicated that mutant ALS alleles evolved by multiple, independent appearances. Resistance to ALS inhibitors in P. rhoeas clearly evolved by redundant evolution of a set of mutant ALS alleles and likely of non-target-site mechanisms. PMID:21421378

  10. Phenotype MicroArrays for High-Throughput Phenotypic Testing and Assay of Gene Function

    PubMed Central

    Bochner, Barry R.; Gadzinski, Peter; Panomitros, Eugenia

    2001-01-01

    The bacterium Escherichia coli is used as a model cellular system to test and validate a new technology called Phenotype MicroArrays (PMs). PM technology is a high-throughput technology for simultaneous testing of a large number of cellular phenotypes. It consists of preconfigured well arrays in which each well tests a different cellular phenotype and an automated instrument that continuously monitors and records the response of the cells in all wells of the arrays. For example, nearly 700 phenotypes of E. coli can be assayed by merely pipetting a cell suspension into seven microplate arrays. PMs can be used to directly assay the effects of genetic changes on cells, especially gene knock-outs. Here, we provide data on phenotypic analysis of six strains and show that we can detect expected phenotypes as well as, in some cases, unexpected phenotypes. PMID:11435407

  11. Refined Phenotyping of Modic Changes

    PubMed Central

    Määttä, Juhani H.; Karppinen, Jaro; Paananen, Markus; Bow, Cora; Luk, Keith D.K.; Cheung, Kenneth M.C.; Samartzis, Dino

    2016-01-01

    Abstract Low back pain (LBP) is the world's most disabling condition. Modic changes (MC) are vertebral bone marrow changes adjacent to the endplates as noted on magnetic resonance imaging. The associations of specific MC types and patterns with prolonged, severe LBP and disability remain speculative. This study assessed the relationship of prolonged, severe LBP and back-related disability, with the presence and morphology of lumbar MC in a large cross-sectional population-based study of Southern Chinese. We addressed the topographical and morphological dimensions of MC along with other magnetic resonance imaging phenotypes (eg, disc degeneration and displacement) on the basis of axial T1 and sagittal T2-weighted imaging of L1-S1. Prolonged severe LBP was defined as LBP lasting ≥30 days during the past year, and a visual analog scale severest pain intensity of at least 6/10. An Oswestry Disability Index score of 15% was regarded as significant disability. We also assessed subject demographics, occupation, and lifestyle factors. In total, 1142 subjects (63% females, mean age 53 years) were assessed. Of these, 282 (24.7%) had MC (7.1% type I, 17.6% type II). MC subjects were older (P = 0.003), had more frequent disc displacements (P < 0.001) and greater degree of disc degeneration (P < 0.001) than non-MC subjects. In adjusted models, any MC (odds ratio [OR] 1.48, 95% confidence interval [CI] 1.01–2.18), MC affecting whole anterior-posterior length (OR 1.62, 95% CI 1.04–2.51), and MC affecting 2/3 posterior length (OR 2.79, 95% CI 1.17–6.65) were associated with prolonged severe LBP. Type I MC tended to associate with pain more strongly than type II MC (OR 1.80, 95% CI 0.94–3.44 vs OR 1.36, 95% CI 0.88–2.09, respectively). Any MC (OR 1.47, 95% CI 1.04–2.10), type II MC (OR 1.56, 95% CI 1.06–2.31), MC affecting 2/3 posterior length (OR 2.96, 95% CI 1.27–6.89), and extensive MC (OR 1.95, 95% CI 1.21–3.15) were associated with disability

  12. The use of whole-exome sequencing to disentangle complex phenotypes.

    PubMed

    Williams, Hywel J; Hurst, John R; Ocaka, Louise; James, Chela; Pao, Caroline; Chanudet, Estelle; Lescai, Francesco; Stanescu, Horia C; Kleta, Robert; Rosser, Elisabeth; Bacchelli, Chiara; Beales, Philip

    2016-02-01

    The success of whole-exome sequencing to identify mutations causing single-gene disorders has been well documented. In contrast whole-exome sequencing has so far had limited success in the identification of variants causing more complex phenotypes that seem unlikely to be due to the disruption of a single gene. We describe a family where two male offspring of healthy first cousin parents present a complex phenotype consisting of peripheral neuropathy and bronchiectasis that has not been described previously in the literature. Due to the fact that both children had the same problems in the context of parental consanguinity we hypothesised illness resulted from either X-linked or autosomal recessive inheritance. Through the use of whole-exome sequencing we were able to simplify this complex phenotype and identified a causative mutation (p.R1070*) in the gene periaxin (PRX), a gene previously shown to cause peripheral neuropathy (Dejerine-Sottas syndrome) when this mutation is present. For the bronchiectasis phenotype we were unable to identify a causal single mutation or compound heterozygote, reflecting the heterogeneous nature of this phenotype. In conclusion, in this study we show that whole-exome sequencing has the power to disentangle complex phenotypes through the identification of causative genetic mutations for distinct clinical disorders that were previously masked. PMID:26059842

  13. The use of whole-exome sequencing to disentangle complex phenotypes

    PubMed Central

    Williams, Hywel J; Hurst, John R; Ocaka, Louise; James, Chela; Pao, Caroline; Chanudet, Estelle; Lescai, Francesco; Stanescu, Horia C; Kleta, Robert; Rosser, Elisabeth; Bacchelli, Chiara; Beales, Philip

    2016-01-01

    The success of whole-exome sequencing to identify mutations causing single-gene disorders has been well documented. In contrast whole-exome sequencing has so far had limited success in the identification of variants causing more complex phenotypes that seem unlikely to be due to the disruption of a single gene. We describe a family where two male offspring of healthy first cousin parents present a complex phenotype consisting of peripheral neuropathy and bronchiectasis that has not been described previously in the literature. Due to the fact that both children had the same problems in the context of parental consanguinity we hypothesised illness resulted from either X-linked or autosomal recessive inheritance. Through the use of whole-exome sequencing we were able to simplify this complex phenotype and identified a causative mutation (p.R1070*) in the gene periaxin (PRX), a gene previously shown to cause peripheral neuropathy (Dejerine–Sottas syndrome) when this mutation is present. For the bronchiectasis phenotype we were unable to identify a causal single mutation or compound heterozygote, reflecting the heterogeneous nature of this phenotype. In conclusion, in this study we show that whole-exome sequencing has the power to disentangle complex phenotypes through the identification of causative genetic mutations for distinct clinical disorders that were previously masked. PMID:26059842

  14. What monozygotic twins discordant for phenotype illustrate about mechanisms influencing genetic forms of neurodegeneration.

    PubMed

    Ketelaar, M E; Hofstra, E M W; Hayden, M R

    2012-04-01

    As monozygotic (MZ) twins are believed to be genetically identical, discordance for disease phenotype between MZ twins has been used in genetic research to understand the contribution of genetic vs environmental factors in disease development. However, recent studies show that MZ twins can differ both genetically and epigenetically. Screening MZ twins for genetic and/or epigenetic differences could be a useful and novel approach to identify modifying factors influencing phenotypic expression of disease. MZ twins that are phenotypically discordant for monogenic diseases are of special interest. Such occurrences have been described for Huntington's disease, spinocerebellar ataxias, as well as for familial forms of Alzheimer's disease. By comparing MZ twins that are phenotypically discordant, crucial factors influencing the phenotypic expression of the disease could be identified, which may be of relevance for understanding disease pathogenesis and variability in disease phenotype. Overall, understanding the crucial factors in development of a neurodegenerative disorder will have relevance for predictive testing, preventive treatment and could help to identify novel therapeutic targets. PMID:21981075

  15. Evolution of molecular phenotypes under stabilizing selection

    NASA Astrophysics Data System (ADS)

    Nourmohammad, Armita; Schiffels, Stephan; Lässig, Michael

    2013-01-01

    Molecular phenotypes are important links between genomic information and organismic functions, fitness, and evolution. Complex phenotypes, which are also called quantitative traits, often depend on multiple genomic loci. Their evolution builds on genome evolution in a complicated way, which involves selection, genetic drift, mutations and recombination. Here we develop a coarse-grained evolutionary statistics for phenotypes, which decouples from details of the underlying genotypes. We derive approximate evolution equations for the distribution of phenotype values within and across populations. This dynamics covers evolutionary processes at high and low recombination rates, that is, it applies to sexual and asexual populations. In a fitness landscape with a single optimal phenotype value, the phenotypic diversity within populations and the divergence between populations reach evolutionary equilibria, which describe stabilizing selection. We compute the equilibrium distributions of both quantities analytically and we show that the ratio of mean divergence and diversity depends on the strength of selection in a universal way: it is largely independent of the phenotype’s genomic encoding and of the recombination rate. This establishes a new method for the inference of selection on molecular phenotypes beyond the genome level. We discuss the implications of our findings for the predictability of evolutionary processes.

  16. Efficient α, β-motif finder for identification of phenotype-related functional modules

    PubMed Central

    2011-01-01

    Background Microbial communities in their natural environments exhibit phenotypes that can directly cause particular diseases, convert biomass or wastewater to energy, or degrade various environmental contaminants. Understanding how these communities realize specific phenotypic traits (e.g., carbon fixation, hydrogen production) is critical for addressing health, bioremediation, or bioenergy problems. Results In this paper, we describe a graph-theoretical method for in silico prediction of the cellular subsystems that are related to the expression of a target phenotype. The proposed (α, β)-motif finder approach allows for identification of these phenotype-related subsystems that, in addition to metabolic subsystems, could include their regulators, sensors, transporters, and even uncharacterized proteins. By comparing dozens of genome-scale networks of functionally associated proteins, our method efficiently identifies those statistically significant functional modules that are in at least α networks of phenotype-expressing organisms but appear in no more than β networks of organisms that do not exhibit the target phenotype. It has been shown via various experiments that the enumerated modules are indeed related to phenotype-expression when tested with different target phenotypes like hydrogen production, motility, aerobic respiration, and acid-tolerance. Conclusion Thus, we have proposed a methodology that can identify potential statistically significant phenotype-related functional modules. The functional module is modeled as an (α, β)-clique, where α and β are two criteria introduced in this work. We also propose a novel network model, called the two-typed, divided network. The new network model and the criteria make the problem tractable even while very large networks are being compared. The code can be downloaded from http://www.freescience.org/cs/ABClique/ PMID:22078292

  17. CD4 T-helper cell cytokine phenotypes and antibody response following tetanus toxoid booster immunization

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Routine methods for enumerating antigen-specific T-helper cells may not identify low-frequency phenotypes such as Th2 cells. We compared methods of evaluating such responses to identify tetanus toxoid- (TT) specific Th1, Th2, Th17 and IL10+ cells. Eight healthy subjects were given a TT booster vacci...

  18. Comparative Proteomic Profiling of Divergent Phenotypes for Water Holding Capacity across the Post Mortem Ageing Period in Porcine Muscle Exudate

    PubMed Central

    Di Luca, Alessio; Hamill, Ruth M.; Mullen, Anne Maria; Slavov, Nikolai; Elia, Giuliano

    2016-01-01

    Two dimensional Difference Gel Electrophoresis (2-D DIGE) and mass spectrometry were applied to investigate the changes in metabolic proteins that occur over a seven day (day 1, 3 and 7) post mortem ageing period in porcine centrifugal exudate from divergent meat quality phenotypes. The objectives of the research were to enhance our understanding of the phenotype (water holding capacity) and search for biomarkers of this economically significant pork quality attribute. Major changes in protein abundance across nine phenotype-by-time conditions were observed. Proteomic patterns were dominated by post mortem ageing timepoint. Using a machine learning algorithm (l1-regularized logistic regression), a model was derived with the ability to discriminate between high drip and low drip phenotypes using a subset of 25 proteins with an accuracy of 63%. Models discriminating between divergent phenotypes with accuracy of 72% and 73% were also derived comparing respectively, high drip plus intermediate phenotype (considered as one phenotype) versus low drip and comparing low drip plus intermediate phenotype (considered as one phenotype) versus high drip. In all comparisons, the general classes of discriminatory proteins identified include metabolic enzymes, stress response, transport and structural proteins. In this research we have enhanced our understanding of the protein related processes underpinning this phenotype and provided strong data to work toward development of protein biomarkers for water holding capacity. PMID:26950297

  19. Retrospective analysis of cohort database: Phenotypic variability in a large dataset of patients confirmed to have homozygous familial hypercholesterolemia

    PubMed Central

    Raal, Frederick J.; Sjouke, Barbara; Hovingh, G. Kees; Isaac, Barton F.

    2016-01-01

    These data describe the phenotypic variability in a large cohort of patients confirmed to have homozygous familial hypercholesterolemia. Herein, we describe the observed relationship of treated low-density lipoprotein cholesterol with age. We also overlay the low-density lipoprotein receptor gene (LDLR) functional status with these phenotypic data. A full description of these data is available in our recent study published in Atherosclerosis, “Phenotype Diversity Among Patients With Homozygous Familial Hypercholesterolemia: A Cohort Study” (Raal et al., 2016) [1]. PMID:27182539

  20. Characterizing major depression phenotypes by presence and type of psychomotor disturbance in adolescents and young adults.

    PubMed

    Leventhal, Adam M; Pettit, Jeremy W; Lewinsohn, Peter M

    2008-01-01

    Major depressive disorder (MDD) is phenomenologically heterogeneous, which has prompted investigation of intermediate MDD phenotypes based on specific key symptoms. Presence and type of psychomotor disturbance may be an important psychopathologic feature that differentiates clinically distinct forms of juvenile MDD. This study examined the phenotypic status of three putative MDD phenotypes in a community sample of 941 youths: (1) agitated depression (MDD with psychomotor agitation), (2) retarded depression (MDD with psychomotor retardation), and (3) agitated-retarded depression (MDD with psychomotor agitation and retardation within an episode). Hasler et al.'s [2004: Neuropsychopharmacology 29:1765-1781] criteria of specificity (degree of association with relevant symptoms and conditions related to the disease of interest versus other psychiatric conditions), stability (degree of stability over time), and heritability (degree of familial aggregation with relevant conditions) were used to evaluate the phenotypic significance of these subtypes. Results were suggestive that agitated depression was a relatively specific phenotypic syndrome characterized by irritability, arousal, physical complaints, and vulnerability to anxiety disorders and alcohol dependence; low stability across depressive episodes; and low heritability. Agitated-retarded depression was relatively specific and characterized by increased severity, recurrence, vegetative symptoms, suicidal ideation, social impairment, endogeneity, and vulnerability to anxiety disorders and bulimia; low stability across episodes; and modest heritability. Although retarded depression was associated with some specific distinguishing characteristics, most associations were explained by the increased severity of this phenotype. Retarded depression evidenced little stability or heritability. These findings offer partial support of the phenotypic status of agitated and agitated-retarded depression in youths. PMID:17385727

  1. The Cognitive Phenotype Of Spina Bifida Meningomyelocele

    PubMed Central

    Dennis, Maureen; Barnes, Marcia A.

    2010-01-01

    A cognitive phenotype is a product of both assets and deficits that specifies what individuals with spina bifida meningomyelocele (SBM) can and cannot do and why they can or cannot do it. In this paper, we review the cognitive phenotype of SBM and describe the processing assets and deficits that cut within and across content domains, sensory modality, and material, including studies from our laboratory and other investigations. We discuss some implications of the SBM cognitive phenotype for assessment, rehabilitation, and research. PMID:20419769

  2. Aluminium distribution in ZSM-5 revisited: The role of Al-Al interactions

    SciTech Connect

    Ruiz-Salvador, A. Rabdel; Grau-Crespo, Ricardo; Gray, Aileen E.; Lewis, Dewi W.

    2013-02-15

    We present a theoretical study of the distribution of Al atoms in zeolite ZSM-5 with Si/Al=47, where we focus on the role of Al-Al interactions rather than on the energetics of Al/Si substitutions at individual sites. Using interatomic potential methods, we evaluate the energies of the full set of symmetrically independent configurations of Al siting in a Si{sub 94}Al{sub 2}O{sub 192} cell. The equilibrium Al distribution is determined by the interplay of two factors: the energetics of the Al/Si substitution at an individual site, which tends to populate particular T sites (e.g., the T14 site), and the Al-Al interaction, which at this Si/Al maximises Al-Al distances in general agreement with Dempsey's rule. However, it is found that the interaction energy changes approximately as the inverse of the square of the distance between the two Al atoms, rather than the inverse of the distance expected if this were merely charge repulsion. Moreover, we find that the anisotropic nature of the framework density plays an important role in determining the magnitude of the interactions, which are not simply dependent on Al-Al distances. - Graphical abstract: Role of Al-Al interactions in high silica ZSM-5 is shown to be anisotropic in nature and not dependent solely on Coulombic interactions. Highlights: Black-Right-Pointing-Pointer Si-Al distribution in ZSM-5 is revisited, stressing the role of the Al-Al interaction. Black-Right-Pointing-Pointer Coulomb interactions are not the key factors controlling the Al siting. Black-Right-Pointing-Pointer Anisotropy of the framework is identified as a source of departure from Dempsey's rule.

  3. Species identification of members of the Streptococcus milleri group isolated from the vagina by ID 32 Strep system and differential phenotypic characteristics.

    PubMed Central

    Ahmet, Z; Warren, M; Houang, E T

    1995-01-01

    The importance of bacterial vaginosis as a risk factor in obstetric and gynecological infections has recently been recognized. The bacterial vaginosis group of organisms includes members of the Streptococcus milleri group, the identification of which has caused much confusion. We prospectively surveyed the rates of carriage of S. milleri group organisms in 397 high vaginal swabs received in our laboratory. For the identification of 99 clinical isolates and 23 control strains, we compared the results obtained by the rapid ID 32 Strep system (Analytab Products) and by a scheme utilizing six differential phenotypic characteristics (presence of beta-N-acetylglucosaminidase, alpha-glucosidase, beta-D-fucosidase, beta-galactosidase, beta-N-acetylgalactosaminidase, and beta-glucosidase) as described by Whiley et al. (R. A. Whiley, H. Fraser, J. M. Hardie, and D. Beighton, J. Clin. Microbiol. 28:1497-1501, 1990). We identified Streptococcus anginosus in 18% and Streptococcus constellatus in 0.05% of the specimens examined. Of the isolates of S. anginosus that reacted with grouping antisera, 20 of 25 belonged to Lancefield group F. The incubation conditions for bacterial cultures and for reaction mixtures affected the results of phenotypic characterization in the production of alpha-glucosidase, beta-galactosidase, and beta-glucosidase. However, by using bacterial cultures grown under hypercapnic conditions and incubating the reaction mixtures aerobically, consistent phenotypic characteristics were obtained, allowing identification similar to that obtained by the ID 32 Strep system. We therefore recommend the phenotypic scheme as an inexpensive, reliable, and convenient method for the initial identification of species of the S. milleri group. PMID:7650193

  4. Phenotypic heterogeneity in hidradenitis suppurativa (acne inversa): classification is an essential step toward personalized therapy.

    PubMed

    Ingram, John R; Piguet, Vincent

    2013-06-01

    Awareness is increasing that there is phenotypic heterogeneity within the hidradenitis suppurativa (HS) disease spectrum. However, the few randomized HS trials that are available have not distinguished between the subtypes of the disease. In this issue, Canoui-Poitrine et al. used latent class (LC) analysis of the largest HS cohort described to date to generate three phenotypic subtypes. LC 1 correlates with "typical" European HS, mainly involving the axilla, groin, and, in women, the inframammary region. "Atypical" HS, which may be linked to γ-secretase gene mutations, was subdivided further into LC2 and LC3 subtypes. PMID:23673498

  5. Zebrafish behavioral profiling identifies multitarget antipsychotic-like compounds.

    PubMed

    Bruni, Giancarlo; Rennekamp, Andrew J; Velenich, Andrea; McCarroll, Matthew; Gendelev, Leo; Fertsch, Ethan; Taylor, Jack; Lakhani, Parth; Lensen, Dennis; Evron, Tama; Lorello, Paul J; Huang, Xi-Ping; Kolczewski, Sabine; Carey, Galen; Caldarone, Barbara J; Prinssen, Eric; Roth, Bryan L; Keiser, Michael J; Peterson, Randall T; Kokel, David

    2016-07-01

    Many psychiatric drugs act on multiple targets and therefore require screening assays that encompass a wide target space. With sufficiently rich phenotyping and a large sampling of compounds, it should be possible to identify compounds with desired mechanisms of action on the basis of behavioral profiles alone. Although zebrafish (Danio rerio) behavior has been used to rapidly identify neuroactive compounds, it is not clear what types of behavioral assays would be necessary to identify multitarget compounds such as antipsychotics. Here we developed a battery of behavioral assays in larval zebrafish to determine whether behavioral profiles can provide sufficient phenotypic resolution to identify and classify psychiatric drugs. Using the antipsychotic drug haloperidol as a test case, we found that behavioral profiles of haloperidol-treated zebrafish could be used to identify previously uncharacterized compounds with desired antipsychotic-like activities and multitarget mechanisms of action. PMID:27239787

  6. Computational models for prediction of yeast strain potential for winemaking from phenotypic profiles.

    PubMed

    Mendes, Inês; Franco-Duarte, Ricardo; Umek, Lan; Fonseca, Elza; Drumonde-Neves, João; Dequin, Sylvie; Zupan, Blaz; Schuller, Dorit

    2013-01-01

    Saccharomyces cerevisiae strains from diverse natural habitats harbour a vast amount of phenotypic diversity, driven by interactions between yeast and the respective environment. In grape juice fermentations, strains are exposed to a wide array of biotic and abiotic stressors, which may lead to strain selection and generate naturally arising strain diversity. Certain phenotypes are of particular interest for the winemaking industry and could be identified by screening of large number of different strains. The objective of the present work was to use data mining approaches to identify those phenotypic tests that are most useful to predict a strain's potential for winemaking. We have constituted a S. cerevisiae collection comprising 172 strains of worldwide geographical origins or technological applications. Their phenotype was screened by considering 30 physiological traits that are important from an oenological point of view. Growth in the presence of potassium bisulphite, growth at 40 °C, and resistance to ethanol were mostly contributing to strain variability, as shown by the principal component analysis. In the hierarchical clustering of phenotypic profiles the strains isolated from the same wines and vineyards were scattered throughout all clusters, whereas commercial winemaking strains tended to co-cluster. Mann-Whitney test revealed significant associations between phenotypic results and strain's technological application or origin. Naïve Bayesian classifier identified 3 of the 30 phenotypic tests of growth in iprodion (0.05 mg/mL), cycloheximide (0.1 µg/mL) and potassium bisulphite (150 mg/mL) that provided most information for the assignment of a strain to the group of commercial strains. The probability of a strain to be assigned to this group was 27% using the entire phenotypic profile and increased to 95%, when only results from the three tests were considered. Results show the usefulness of computational approaches to simplify strain selection

  7. Metabolic Phenotypes in Pancreatic Cancer

    PubMed Central

    Yu, Min; Zhou, Quanbo; Zhou, Yu; Fu, Zhiqiang; Tan, Langping; Ye, Xiao; Zeng, Bing; Gao, Wenchao; Zhou, Jiajia; Liu, Yimin; Li, Zhihua; Lin, Ye; Lin, Qing; Chen, Rufu

    2015-01-01

    Introduction The aim of present study was to profile the glucose-dependent and glutamine- dependent metabolism in pancreatic cancer. Methods We performed Immunohistochemical staining of GLUT1, CAIX, BNIP3, p62, LC3, GLUD1, and GOT1. Based on the expression of metabolism-related proteins, the metabolic phenotypes of tumors were classified into two categories, including glucose- and glutamine-dependent metabolism. There were Warburg type, reverse Warburg type, mixed type, and null type in glucose-dependent metabolism, and canonical type, non-canonical type, mixed type, null type in glutamine-dependent metabolism. Results Longer overall survival was associated with high expression of BNIP3 in tumor (p = 0.010). Shorter overall survival was associated with high expression of GLUT1 in tumor (P = 0.002) and GOT1 in tumor (p = 0.030). Warburg type of glucose-dependent metabolism had a highest percentage of tumors with nerve infiltration (P = 0.0003), UICC stage (P = 0.0004), and activated autophagic status in tumor (P = 0.0167). Mixed type of glucose-dependent metabolism comprised the highest percentage of tumors with positive marginal status (P<0.0001), lymphatic invasion (P<0.0001), and activated autophagic status in stroma (P = 0.0002). Mixed type and Warburg type had a significant association with shorter overall survival (P = 0.018). Non-canonical type and mixed type of glutamine-dependent metabolism comprised the highest percentage of tumors with vascular invasion (p = 0.0073), highest percentage of activated autophagy in tumors (P = 0.0034). Moreover, these two types of glutamine-dependent metabolism were significantly associated with shorter overall survival (P<0.001). Further analysis suggested that most of tumors were dependent on both glucose- and glutamine-dependent metabolism. After dividing the tumors according to the number of metabolism, we found that the increasing numbers of metabolism subtypes inversely associated with survival outcome. Conclusion

  8. Metabolic phenotype of bladder cancer.

    PubMed

    Massari, Francesco; Ciccarese, Chiara; Santoni, Matteo; Iacovelli, Roberto; Mazzucchelli, Roberta; Piva, Francesco; Scarpelli, Marina; Berardi, Rossana; Tortora, Giampaolo; Lopez-Beltran, Antonio; Cheng, Liang; Montironi, Rodolfo

    2016-04-01

    serine hydroxymethyltransferase-2 (SHMT2), resulting in an increased glycine and purine ring of nucleotides synthesis, thus supporting cells proliferation. A deep understanding of the metabolic phenotype of bladder cancer will provide novel opportunities for targeted therapeutic strategies. PMID:26975021

  9. GenoType NTM-DR for Identifying Mycobacterium abscessus Subspecies and Determining Molecular Resistance.

    PubMed

    Kehrmann, Jan; Kurt, Nermin; Rueger, Kai; Bange, Franz-Christoph; Buer, Jan

    2016-06-01

    We studied the performance of a new line probe assay for identifying the subspecies and determining the macrolide and aminoglycoside resistance levels of 50 Mycobacterium abscessus isolates. Agreement of GenoType NTM-DR results with sequencing and phenotypic resistance results was 92% for subspecies identification and 98% for determining molecular and phenotypic resistance. PMID:27030487

  10. The Role of Anti-Müllerian Hormone in the Characterization of the Different Polycystic Ovary Syndrome Phenotypes.

    PubMed

    Romualdi, Daniela; Di Florio, C; Tagliaferri, V; De Cicco, S; Gagliano, D; Immediata, V; Lanzone, A; Guido, M

    2016-05-01

    Rotterdam criteria identified 4 polycystic ovary syndrome (PCOS) phenotypes based on the combination of anovulation (ANOV), hyperandrogenism (HA), and polycystic ovaries (PCOs): phenotype 1 (ANOV + HA + PCO), phenotype 2 (ANOV + HA), phenotype 3 (HA + PCO), and phenotype 4 (ANOV + PCO). Anti-Müllerian hormone (AMH) was suggested to play a pathophysiologic and diagnostic role in this syndrome. The aim of this study was to compare AMH levels among the different phenotypes in relation to clinical, endocrine, and metabolic features. We enrolled 117 women with PCOS (body mass index: 25.89 ± 6.20 kg/m(2), age range: 18-37 years) and 24 controls. Anthropometric characteristics, hirsutism score, ultrasound ovarian features, and hormonal parameters, including AMH, were evaluated. Each participant also underwent an oral glucose tolerance test and an euglycemic-hyperinsulinemic clamp. The prevalence of phenotypes 1 to 4 was 62.4%, 8.6%, 11.1%, and 17.9%, respectively. Body mass index and insulin resistance indexes were similar among the groups. Phenotype 1 showed the highest luteinizing hormone, androgens levels, ovarian volume, and AMH concentrations (9.27 ± 8.17 ng/mL,P< .05) versus phenotype 2 and controls. Phenotype 2 women were hirsute, showed an intermediate free androgen index value, low ovarian volume, and low AMH levels (4.05 ± 4.12 ng/mL). Phenotype 3 showed an intermediate state of HA and slightly augmented AMH levels (5.87 ± 4.35 ng/mL). The clinical and endocrine characteristics of phenotype 4 resembled those of controls, except for higher ovarian volume and AMH levels (7.62 ± 3.85 ng/mL;P< .05). Our results highlight the heterogeneity of the association between increased AMH levels, menstrual dysfunction, and HA in the different PCOS phenotypes, thus offering a key to an understanding of the current controversy on the value of AMH measurement in PCOS. PMID:26718304

  11. Brain White Matter Shape Changes in Amyotrophic Lateral Sclerosis (ALS): A Fractal Dimension Study

    PubMed Central

    Allexandre, Didier; Zhang, Luduan; Wang, Xiao-Feng; Pioro, Erik P.; Yue, Guang H.

    2013-01-01

    Amyotrophic lateral sclerosis (ALS) is a fatal progressive neurodegenerative disorder. Current diagnosis time is about 12-months due to lack of objective methods. Previous brain white matter voxel based morphometry (VBM) studies in ALS reported inconsistent results. Fractal dimension (FD) has successfully been used to quantify brain WM shape complexity in various neurological disorders and aging, but not yet studied in ALS. Therefore, we investigated WM morphometric changes using FD analyses in ALS patients with different clinical phenotypes. We hypothesized that FD would better capture clinical features of the WM morphometry in different ALS phenotypes than VBM analysis. High resolution MRI T1-weighted images were acquired in controls (n = 11), and ALS patients (n = 89). ALS patients were assigned into four subgroups based on their clinical phenotypes.VBM analysis was carried out using SPM8. FD values were estimated for b