Science.gov

Sample records for altered glutamatergic synaptic

  1. Melamine Alters Glutamatergic Synaptic Transmission of CA3-CA1 Synapses Presynaptically Through Autophagy Activation in the Rat Hippocampus.

    PubMed

    Zhang, Hui; Wang, Hui; Xiao, Xi; Zhang, Tao

    2016-01-01

    Melamine is an industrial chemical that can cause central nervous system disorders including excitotoxicity and cognitive impairment. Its illegal use in powdered baby formula was the focus of a milk scandal in China in 2008. One of our previous studies showed that melamine impaired glutamatergic transmission in rat hippocampal CA1 pyramidal cells. However, the underlying mechanism of action of melamine is unclear, and it is unknown if the CA3-CA1 pathway is directly involved. In the present study, a whole-cell patch-clamp technique was employed to investigate the effect of melamine on the hippocampal CA3-CA1 pathway in vitro. Both the evoked excitatory postsynaptic current (eEPSC) and the paired-pulse ratio (PPR) were recorded. Furthermore, we examined whether autophagy was involved in glutamatergic transmission alterations induced by melamine. Our data showed that melamine significantly increased the amplitude of eEPSCs in a dose-dependent manner. Inhibition of the N-methyl-D-aspartic acid receptor did not prevent the increase in eEPSC amplitude. In addition, the PPR was remarkably decreased by a melamine concentration of 5 × 10(-5) g/mL. It was found that autophagy could be activated by melamine and an autophagy inhibitor, 3-MA, prevented the melamine-induced increase in eEPSC amplitude. Overall, our results show that melamine presynaptically alters glutamatergic synaptic transmission of hippocampal CA3-CA1 synapses in vitro and this is likely associated with autophagy alteration. PMID:26530910

  2. Glutamatergic synaptic plasticity in the mesocorticolimbic system in addiction

    PubMed Central

    van Huijstee, Aile N.; Mansvelder, Huibert D.

    2015-01-01

    Addictive drugs remodel the brain’s reward circuitry, the mesocorticolimbic dopamine (DA) system, by inducing widespread adaptations of glutamatergic synapses. This drug-induced synaptic plasticity is thought to contribute to both the development and the persistence of addiction. This review highlights the synaptic modifications that are induced by in vivo exposure to addictive drugs and describes how these drug-induced synaptic changes may contribute to the different components of addictive behavior, such as compulsive drug use despite negative consequences and relapse. Initially, exposure to an addictive drug induces synaptic changes in the ventral tegmental area (VTA). This drug-induced synaptic potentiation in the VTA subsequently triggers synaptic changes in downstream areas of the mesocorticolimbic system, such as the nucleus accumbens (NAc) and the prefrontal cortex (PFC), with further drug exposure. These glutamatergic synaptic alterations are then thought to mediate many of the behavioral symptoms that characterize addiction. The later stages of glutamatergic synaptic plasticity in the NAc and in particular in the PFC play a role in maintaining addiction and drive relapse to drug-taking induced by drug-associated cues. Remodeling of PFC glutamatergic circuits can persist into adulthood, causing a lasting vulnerability to relapse. We will discuss how these neurobiological changes produced by drugs of abuse may provide novel targets for potential treatment strategies for addiction. PMID:25653591

  3. Mice lacking brain/kidney phosphate-activated glutaminase (GLS1) have impaired glutamatergic synaptic transmission, altered breathing, disorganized goal-directed behavior and die shortly after birth

    PubMed Central

    Masson, Justine; Darmon, Michèle; Conjard, Agnès; Chuhma, Nao; Ropert, Nicole; Thoby-Brisson, Muriel; Foutz, Arthur S.; Parrot, Sandrine; Miller, Gretchen M.; Jorisch, Renée; Polan, Jonathan; Hamon, Michel; Hen, René; Rayport, Stephen

    2009-01-01

    Neurotransmitter glutamate has been thought to derive mainly from glutamine via the action of glutaminase type 1 (GLS1). To address the importance of this pathway in glutamatergic transmission, we knocked out GLS1 in mice. The insertion of a STOP cassette by homologous recombination produced a null allele that blocked transcription, encoded no immunoreactive protein and abolished GLS1 enzymatic activity. Null mutants were slightly smaller, were deficient in goal-directed behavior, hypoventilated and died in the first post-natal day. No gross or microscopic defects were detected in peripheral organs or in the central nervous system. In cultured neurons from the null mutants, miniature EPSC amplitude and duration were normal; however, the amplitude of evoked EPSCs decayed more rapidly with sustained 10 Hz stimulation, consistent with an observed reduction in depolarization-evoked glutamate release. Because of this activity-dependent impairment in glutamatergic transmission, we surmised that respiratory networks, which require temporal summation of synaptic input, would be particularly affected. We found that the amplitude of inspirations was decreased in vivo, chemosensitivity to CO2 was severely altered, and the frequency of pacemaker activity recorded in the respiratory generator in the Pre-Bötzinger complex, a glutamatergic brainstem network that can be isolated in vitro, was increased. Our results show that while alternate pathways to GLS1 glutamate synthesis support baseline glutamatergic transmission, the GLS1 pathway is essential for maintaining the function of active synapses, and so the mutation is associated with impaired respiratory function, abnormal goal-directed behavior and neonatal demise. PMID:16641247

  4. Gephyrin expression and clustering affects the size of glutamatergic synaptic contacts

    PubMed Central

    Yu, Wendou; De Blas, Angel L.

    2009-01-01

    We have recently shown that disrupting the expression and postsynaptic clustering of gephyrin in cultured hippocampal pyramidal cells, by either gephyrin RNAi (RNA interference) or overexpression of a dominant negative gephyrin-EGFP fusion protein, leads to decreased number of postsynaptic gephyrin and GABAA receptor clusters and to reduced GABAergic innervation of these cells. On the other hand, increasing gephyrin expression led to a small increase in the number of gephyrin and GABAA receptor clusters and to little or no effect on GABAergic innervation. We are now reporting that altering gephyrin expression and clustering affects the size but not the density of glutamatergic synaptic contacts. Knocking down gephyrin with gephyrin RNAi, or preventing gephyrin clustering by overexpression of the dominant negative gephyrin-EGFP fusion protein, leads to larger postsynaptic PSD-95 clusters and larger presynaptic glutamatergic terminals. On the other hand, overexpression of gephyrin leads to slightly smaller PSD-95 clusters and presynaptic glutamatergic terminals. The change in size of PSD-95 clusters were accompanied by a parallel change in the size of NR2-NMDA receptor clusters. It is concluded that the levels of expression and clustering of gephyrin, a protein that concentrates at the postsynaptic complex of the inhibitory synapses, not only has homotypic effects on GABAergic synaptic contacts, but also has heterotypic effects on glutamatergic synaptic contacts. We are proposing that gephyrin is a counterpart of the postsynaptic glutamatergic scaffold protein PSD-95 in regulating the number and/or size of the excitatory and inhibitory synaptic contacts. PMID:18199120

  5. Modulation of Synaptic Plasticity by Glutamatergic Gliotransmission: A Modeling Study

    PubMed Central

    De Pittà, Maurizio; Brunel, Nicolas

    2016-01-01

    Glutamatergic gliotransmission, that is, the release of glutamate from perisynaptic astrocyte processes in an activity-dependent manner, has emerged as a potentially crucial signaling pathway for regulation of synaptic plasticity, yet its modes of expression and function in vivo remain unclear. Here, we focus on two experimentally well-identified gliotransmitter pathways, (i) modulations of synaptic release and (ii) postsynaptic slow inward currents mediated by glutamate released from astrocytes, and investigate their possible functional relevance on synaptic plasticity in a biophysical model of an astrocyte-regulated synapse. Our model predicts that both pathways could profoundly affect both short- and long-term plasticity. In particular, activity-dependent glutamate release from astrocytes could dramatically change spike-timing-dependent plasticity, turning potentiation into depression (and vice versa) for the same induction protocol. PMID:27195153

  6. Analysis of Synaptic Gene Expression in the Neocortex of Primates Reveals Evolutionary Changes in Glutamatergic Neurotransmission

    PubMed Central

    Muntané, Gerard; Horvath, Julie E.; Hof, Patrick R.; Ely, John J.; Hopkins, William D.; Raghanti, Mary Ann; Lewandowski, Albert H.; Wray, Gregory A.; Sherwood, Chet C.

    2015-01-01

    Increased relative brain size characterizes the evolution of primates, suggesting that enhanced cognition plays an important part in the behavioral adaptations of this mammalian order. In addition to changes in brain anatomy, cognition can also be regulated by molecular changes that alter synaptic function, but little is known about modifications of synapses in primate brain evolution. The aim of the current study was to investigate the expression patterns and evolution of 20 synaptic genes from the prefrontal cortex of 12 primate species. The genes investigated included glutamate receptors, scaffolding proteins, synaptic vesicle components, as well as factors involved in synaptic vesicle release and structural components of the nervous system. Our analyses revealed that there have been significant changes during primate brain evolution in the components of the glutamatergic signaling pathway in terms of gene expression, protein expression, and promoter sequence changes. These results could entail functional modifications in the regulation of specific genes related to processes underlying learning and memory. PMID:24408959

  7. MeCP2 Controls Excitatory Synaptic Strength by Regulating Glutamatergic Synapse Number

    PubMed Central

    Chao, Hsiao-Tuan; Zoghbi, Huda Y.; Rosenmund, Christian

    2007-01-01

    SUMMARY MeCP2 is a transcriptional repressor critical for normal neurological function. Prior studies demonstrated that either loss or doubling of MeCP2 results in postnatal neurodevelopmental disorders. To understand the impact of MeCP2 expression on neuronal function, we studied the synaptic properties of individual neurons from mice that either lack or express twice the normal levels of MeCP2. Hippocampal glutamatergic neurons that lack MeCP2 display a 46% reduction in synaptic response whereas neurons with doubling of MeCP2 exhibit a two-fold enhancement in synaptic response. Further analysis shows that these changes were primarily due to the number of synapses formed. These results reveal that MeCP2 is a key rate-limiting factor in regulating glutamatergic synapse formation in early postnatal development, and that changes in excitatory synaptic strength may underlie global network alterations in neurological disorders due to altered MeCP2 levels. PMID:17920015

  8. Chronic hyperammonemia, glutamatergic neurotransmission and neurological alterations.

    PubMed

    Llansola, Marta; Montoliu, Carmina; Cauli, Omar; Hernández-Rabaza, Vicente; Agustí, Ana; Cabrera-Pastor, Andrea; Giménez-Garzó, Carla; González-Usano, Alba; Felipo, Vicente

    2013-06-01

    This mini-review focus on our studies on alterations in glutamatergic neurotransmission and their role in neurological alterations in rat models of chronic hyperammonemia and hepatic encephalopathy (HE). Hyperammonemia impairs the glutamate-nitric oxide (NO)-cGMP pathway in cerebellum, which is responsible for reduced learning ability. We studied the underlying mechanisms and designed treatments to restore the pathway and learning. This was achieved by treatment with: phosphodiesterase 5 inhibitors, cGMP, anti-inflammatories (ibuprofen), p38 inhibitors or GABAA receptor antagonists (bicuculline). Hyperammonemia alters signal transduction associated to metabotropic glutamate receptors (mGluRs). Hypokinesia in hyperammonemia and HE is due to increased extracellular glutamate and mGluR1 activation in substantia nigra; blocking this receptor restores motor activity. The motor responses to mGluRs activation in nucleus accumbens (NAcc) are altered in hyperammonemia and HE, with reduced dopamine and increased glutamate release. This leads to activation of different neuronal circuits and enhanced motor responses. These studies show that altered responses to activation of NMDA receptors and mGluRs play essential roles in cognitive and motor alterations in hyperammonemia and HE and provide new treatments restoring cognitive and motor function. PMID:23010935

  9. ADAR-mediated RNA editing suppresses sleep by acting as a brake on glutamatergic synaptic plasticity

    PubMed Central

    Robinson, J. E.; Paluch, J.; Dickman, D. K.; Joiner, W. J.

    2016-01-01

    It has been postulated that synaptic potentiation during waking is offset by a homoeostatic reduction in net synaptic strength during sleep. However, molecular mechanisms to support such a process are lacking. Here we demonstrate that deficiencies in the RNA-editing gene Adar increase sleep due to synaptic dysfunction in glutamatergic neurons in Drosophila. Specifically, the vesicular glutamate transporter is upregulated, leading to over-activation of NMDA receptors, and the reserve pool of glutamatergic synaptic vesicles is selectively expanded in Adar mutants. Collectively these changes lead to sustained neurotransmitter release under conditions that would otherwise result in synaptic depression. We propose that a shift in the balance from synaptic depression towards synaptic potentiation in sleep-promoting neurons underlies the increased sleep pressure of Adar-deficient animals. Our findings provide a plausible molecular mechanism linking sleep and synaptic plasticity. PMID:26813350

  10. MODELING GLUTAMATERGIC SYNAPSES: INSIGHTS INTO MECHANISMS REGULATING SYNAPTIC EFFICACY

    PubMed Central

    BOUTEILLER, JEAN-MARIE C.; BAUDRY, MICHEL; ALLAM, SUSHMITA L.; GREGET, RENAUD J.; BISCHOFF, SERGE; BERGER, THEODORE W.

    2010-01-01

    The hippocampal formation is critically involved for the long-term storage of various forms of information, and it is widely believed that the phenomenon of long-term potentiation (LTP) of synaptic transmission is a molecular/cellular mechanism participating in memory formation. Although several high level models of hippocampal function have been developed, they do not incorporate detailed molecular information of the type necessary to understand the contribution of individual molecular events to the mechanisms underlying LTP and learning and memory. We are therefore developing new technological tools based on mathematical modeling and computer simulation of the molecular processes taking place in realistic biological networks to reach such an understanding. This article briefly summarizes the approach we are using and illustrates it by presenting data regarding the effects of changing the number of AMPA receptors on various features of glutamatergic transmission, including NMDA receptor-mediated responses and paired-pulse facilitation. We conclude by discussing the significance of these results and providing some ideas for future directions with this approach. PMID:18763719

  11. M-type potassium channels modulate Schaffer collateral-CA1 glutamatergic synaptic transmission.

    PubMed

    Sun, Jianli; Kapur, Jaideep

    2012-08-15

    Previous studies have suggested that muscarinic receptor activation modulates glutamatergic transmission. M-type potassium channels mediate the effects of muscarinic activation in the hippocampus, and it has been proposed that they modulate glutamatergic synaptic transmission. We tested whether M1 muscarinic receptor activation enhances glutamatergic synaptic transmission via the inhibition of the M-type potassium channels that are present in Schaffer collateral axons and terminals. Miniature excitatory postsynaptic currents (mEPSCs) were recorded from CA1 pyramidal neurons. The M1 receptor agonist, NcN-A-343, increased the frequency of mEPSCs, but did not alter their amplitude. The M-channel blocker XE991 and its analogue linopirdine also increased the frequency of mEPSCs. Flupirtine, which opens M-channels, had the opposite effect. XE991 did not enhance mEPSCs frequency in a calcium-free external medium. Blocking P/Q- and N-type calcium channels abolished the effect of XE991 on mEPSCs. These data suggested that the inhibition of M-channels increases presynaptic calcium-dependent glutamate release in CA1 pyramidal neurons. The effects of these agents on the membrane potentials of presynaptic CA3 pyramidal neurons were studied using current clamp recordings; activation of M1 receptors and blocking M-channels depolarized neurons and increased burst firing. The input resistance of CA3 neurons was increased by the application of McN-A-343 and XE991; these effects were consistent with the closure of M-channels. Muscarinic activation inhibits M-channels in CA3 pyramidal neurons and its efferents – Schaffer collateral, which causes the depolarization, activates voltage-gated calcium channels, and ultimately elevates the intracellular calcium concentration to increase the release of glutamate on CA1 pyramidal neurons. PMID:22674722

  12. Pathophysiology of depression and innovative treatments: remodeling glutamatergic synaptic connections

    PubMed Central

    Duman, Ronald S.

    2014-01-01

    Despite the complexity and heterogeneity of mood disorders, basic and clinical research studies have begun to elucidate the pathophysiology of depression and to identify rapid, efficacious antidepressant agents. Stress and depression are associated with neuronal atrophy, characterized by loss of synaptic connections in key cortical and limbic brain regions implicated in depression. This is thought to occur in part via decreased expression and function of growth factors, such as brain-derived neurotrophic factor (BDNF), in the prefrontal cortex (PFC) and hippocampus. These structural alterations are difficult to reverse with typical antidepressants. However, recent studies demonstrate that ketamine, an N-methyl-D-aspartate (NMDA) receptor antagonist that produces rapid antidepressant actions in treatment-resistant depressed patients, rapidly increases spine synapses in the PFC and reverses the deficits caused by chronic stress. This is thought to occur by disinhibition of glutamate transmission, resulting in a rapid but transient burst of glutamate, followed by an increase in BDNF release and activation of downstream signaling pathways that stimulate synapse formation. Recent work demonstrates that the rapid-acting antidepressant effects of scopolamine, a muscarinic receptor antagonist, are also associated with increased glutamate transmission and synapse formation. These findings have resulted in testing and identification of additional targets and agents that influence glutamate transmission and have rapid antidepressant actions in rodent models and in clinical trials. Together these studies have created tremendous excitement and hope for a new generation of rapid, efficacious antidepressants. PMID:24733968

  13. The origin of glutamatergic synaptic inputs controls synaptic plasticity and its modulation by alcohol in mice nucleus accumbens.

    PubMed

    Ji, Xincai; Saha, Sucharita; Martin, Gilles E

    2015-01-01

    It is widely accepted that long-lasting changes of synaptic strength in the nucleus accumbens (NAc), a brain region involved in drug reward, mediate acute and chronic effects of alcohol. However, our understanding of the mechanisms underlying the effects of alcohol on synaptic plasticity is limited by the fact that the NAc receives glutamatergic inputs from distinct brain regions (e.g., the prefrontal cortex (PFCx), the amygdala and the hippocampus), each region providing different information (e.g., spatial, emotional and cognitive). Combining whole-cell patch-clamp recordings and the optogenetic technique, we examined synaptic plasticity, and its regulation by alcohol, at cortical, hippocampal and amygdala inputs in fresh slices of mouse tissue. We showed that the origin of synaptic inputs determines the basic properties of glutamatergic synaptic transmission, the expression of spike-timing dependent long-term depression (tLTD) and long-term potentiation (LTP) and long-term potentiation (tLTP) and their regulation by alcohol. While we observed both tLTP and tLTD at amygadala and hippocampal synapses, we showed that cortical inputs only undergo tLTD. Functionally, we provide evidence that acute Ethyl Alcohol (EtOH) has little effects on higher order information coming from the PFCx, while severely impacting the ability of emotional and contextual information to induce long-lasting changes of synaptic strength. PMID:26257641

  14. Effect of VGLUT inhibitors on glutamatergic synaptic transmission in the rodent hippocampus and prefrontal cortex.

    PubMed

    Neale, S A; Copeland, C S; Salt, T E

    2014-07-01

    Vesicular glutamate transporters (VGLUTs) are known to be important in the uptake of glutamate into vesicles in the presynaptic terminal; thereby playing a role in synaptic function. VGLUT dysfunction has also been suggested in neurological and psychiatric disorders such as epilepsy and schizophrenia. A number of compounds have been identified as VGLUT inhibitors; however, little is known as to how these compounds affect synaptic transmission. We therefore investigated the effects of structurally unrelated VGLUT inhibitors on synaptic transmission in the rodent hippocampus and prefrontal cortex. In the CA1 and dentate gyrus regions of the in vitro slice preparation of mouse hippocampus, AMPA receptor-mediated field excitatory postsynaptic potentials (fEPSPs) were evoked in response to Schaffer collateral/commissural pathway stimulation. Application of the VGLUT inhibitors Rose Bengal (RB), Congo Red (CR) or Chicago Sky Blue 6B (CB) resulted in a concentration-related reduction of fEPSP amplitudes. RB (30μM) or CB (300μM) also depressed NMDA receptor-mediated responses in the CA1 region. The naturally occurring kynurenine Xanthurenic Acid (XA) is reported to be a VGLUT inhibitor. We found XA attenuated both AMPA and NMDA receptor-mediated synaptic transmission. The potency order of the VGLUT inhibitors was consistent with literature Ki values for VGLUT inhibition. Impaired glutamatergic neurotransmission is believed to contribute to schizophrenia, and VGLUTs have also been implicated in this disease. We therefore investigated the effect of VGLUT inhibition in the prefrontal cortex. Application of the VGLUT inhibitors RB or CB resulted in a concentration-dependent reduction in the amplitude of glutamate receptor-mediated fEPSPs recorded in layer V/VI in response to stimulation in the forceps minor. We conclude that VGLUT inhibitors can modulate glutamatergic synaptic transmission in the PFC and hippocampus. This could be important in the pathophysiology of nervous

  15. Melatonin receptor activation increases glutamatergic synaptic transmission in the rat medial lateral habenula.

    PubMed

    Evely, Katherine M; Hudson, Randall L; Dubocovich, Margarita L; Haj-Dahmane, Samir

    2016-05-01

    Melatonin (MLT) is secreted from the pineal gland and mediates its physiological effects through activation of two G protein-coupled receptors, MT1 and MT2 . These receptors are expressed in several brain areas, including the habenular complex, a pair of nuclei that relay information from forebrain to midbrain and modulate a plethora of behaviors, including sleep, mood, and pain. However, so far, the precise mechanisms by which MLT control the function of habenula neurons remain unknown. Using whole cell recordings from male rat brain slices, we examined the effects of MLT on the excitability of medial lateral habenula (MLHb) neurons. We found that MLT had no significant effects on the intrinsic excitability of MLHb neurons, but profoundly increased the amplitude of glutamate-mediated evoked excitatory post-synaptic currents (EPSC). The increase in strength of glutamate synapses onto MLHb neurons was mediated by an increase in glutamate release. The MLT-induced increase in glutamatergic synaptic transmission was blocked by the competitive MT1 /MT2 receptor antagonist luzindole (LUZ). These results unravel a potential cellular mechanism by which MLT receptor activation enhances the excitability of MLHb neurons. The MLT-mediated control of glutamatergic inputs to the MLHb may play a key role in the modulation of various behaviors controlled by the habenular complex. PMID:26799638

  16. Stress-induced altered cholinergic-glutamatergic interactions in the mouse hippocampus.

    PubMed

    Pavlovsky, Lev; Bitan, Yifat; Shalev, Hadar; Serlin, Yonatan; Friedman, Alon

    2012-09-01

    Psychological stress may lead to long-lasting brain dysfunction, specifically altered emotional and cognitive capabilities. Previous studies have demonstrated persistent changes in the expression of key cholinergic genes in the neocortex and hippocampus following stress with muscarinic receptor-mediated enhanced excitability. In the present study we examined cholinergic-mediated glutamatergic transmission in the hippocampus of mice after exposure to stress and its potential role in synaptic plasticity and altered behavior. Adult male mice were tested one month after repeated forced swimming test. Non-treated age-matched animals served as controls. Electrophysiological recordings were performed in the acute in-vitro slice preparation. CA1 pyramidal neurons were recorded using whole cell patch configuration. Extracellular recordings were done in response to Shaffer collaterals (SC) or stratum orien (SO) stimulation. Animal behavior in response to inhibition of acetylcholinesterase (AChE) was tested in open field paradigms. In whole cell patch recordings the frequency of excitatory post-synaptic currents (EPSCs) was significantly increased in response to muscarinic activation in stress-exposed animals. This enhanced cholinergic-modulated excitatory transmission is associated with facilitation of long-term potentiation (LTP) in response to tetanic stimulation at the SO but not at the SC. Stress-related behavioral modulation via central cholinergic pathways was enhanced by the central AChE inhibitor, physostigmine, thus further supporting the notion that stress is associated with long lasting hypersensitivity to acetylcholine. Our results revealed a pathway-specific enhancement of cholinergic-dependent glutamatergic transmission in the hippocampus after stress. These changes may underlie specific hippocampal malfunction, including cognitive and emotional disturbances, as observed in patients with post-traumatic stress disorder (PTSD). PMID:22796599

  17. Synaptic and Behavioral Profile of Multiple Glutamatergic Inputs to the Nucleus Accumbens

    PubMed Central

    Britt, Jonathan P.; Benaliouad, Faiza; McDevitt, Ross A.; Stuber, Garret D.; Wise, Roy A.; Bonci, Antonello

    2013-01-01

    SUMMARY Excitatory afferents to the nucleus accumbens (NAc) are thought to facilitate reward seeking by encoding reward-associated cues. Selective activation of different glutamatergic inputs to the NAc can produce divergent physiological and behavioral responses, but mechanistic explanations for these pathway-specific effects are lacking. Here, we compared the innervation patterns and synaptic properties of ventral hippocampus, basolateral amygdala, and prefrontal cortex input to the NAc. Ventral hippocampal input was found to be uniquely localized to the medial NAc shell, where it was predominant and selectively potentiated following cocaine exposure. In vivo, bidirectional optogenetic manipulations of this pathway attenuated and enhanced cocaine-induced locomotion. Challenging the idea that any of these inputs encode motivationally-neutral information, activation of each discrete pathway reinforced instrumental behaviors. Finally, direct optical activation of medium spiny neurons proved to be capable of supporting self-stimulation, demonstrating that behavioral reinforcement is an explicit consequence of strong excitatory drive to the NAc. PMID:23177963

  18. Diversity of Glutamatergic Synaptic Strength in Lateral Prefrontal versus Primary Visual Cortices in the Rhesus Monkey

    PubMed Central

    Luebke, Jennifer I.

    2015-01-01

    Understanding commonalities and differences in glutamatergic synaptic signaling is essential for understanding cortical functional diversity, especially in the highly complex primate brain. Previously, we have shown that spontaneous EPSCs differed markedly in layer 3 pyramidal neurons of two specialized cortical areas in the rhesus monkey, the high-order lateral prefrontal cortex (LPFC) and the primary visual cortex (V1). Here, we used patch-clamp recordings and confocal and electron microscopy to determine whether these distinct synaptic responses are due to differences in firing rates of presynaptic neurons and/or in the features of presynaptic or postsynaptic entities. As with spontaneous EPSCs, TTX-insensitive (action potential-independent) miniature EPSCs exhibited significantly higher frequency, greater amplitude, and slower kinetics in LPFC compared with V1 neurons. Consistent with these physiological differences, LPFC neurons possessed higher densities of spines, and the mean width of large spines was greater compared with those on V1 neurons. Axospinous synapses in layers 2–3 of LPFC had larger postsynaptic density surface areas and a higher proportion of large perforated synapses compared with V1. Axonal boutons in LPFC were also larger in volume and contained ∼1.6× more vesicles than did those in V1. Further, LPFC had a higher density of AMPA GluR2 receptor labeling than V1. The properties of spines and synaptic currents of individual layer 3 pyramidal neurons measured here were significantly correlated, consistent with the idea that significantly more frequent and larger synaptic currents are likely due to more numerous, larger, and more powerful synapses in LPFC compared with V1. PMID:25568107

  19. The NG2 Protein Is Not Required for Glutamatergic Neuron-NG2 Cell Synaptic Signaling.

    PubMed

    Passlick, Stefan; Trotter, Jacqueline; Seifert, Gerald; Steinhäuser, Christian; Jabs, Ronald

    2016-01-01

    NG2 glial cells (as from now NG2 cells) are unique in receiving synaptic input from neurons. However, the components regulating formation and maintenance of these neuron-glia synapses remain elusive. The transmembrane protein NG2 has been considered a potential mediator of synapse formation and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) clustering, because it contains 2 extracellular Laminin G/Neurexin/Sex Hormone-Binding Globulin domains, which in neurons are crucial for formation of transsynaptic neuroligin-neurexin complexes. NG2 is connected via Glutamate Receptor-Interacting Protein with GluA2/3-containing AMPARs, thereby possibly mediating receptor clustering in glial postsynaptic density. To elucidate the role of NG2 in neuron-glia communication, we investigated glutamatergic synaptic transmission in juvenile and aged hippocampal NG2 cells of heterozygous and homozygous NG2 knockout mice. Neuron-NG2 cell synapses readily formed in the absence of NG2. Short-term plasticity, synaptic connectivity, postsynaptic AMPAR current kinetics, and density were not affected by NG2 deletion. During development, an NG2-independent acceleration of AMPAR current kinetics and decreased synaptic connectivity were observed. Our results indicate that the lack of NG2 does not interfere with genesis and basic properties of neuron-glia synapses. In addition, we demonstrate frequent expression of neuroligins 1-3 in juvenile and aged NG2 cells, suggesting a role of these molecules in synapse formation between NG2 glia and neurons. PMID:25100858

  20. Dysfunctional Astrocytic and Synaptic Regulation of Hypothalamic Glutamatergic Transmission in a Mouse Model of Early-Life Adversity: Relevance to Neurosteroids and Programming of the Stress Response

    PubMed Central

    Gunn, Benjamin G.; Cunningham, Linda; Cooper, Michelle A.; Corteen, Nicole L.; Seifi, Mohsen; Swinny, Jerome D.; Lambert, Jeremy J.

    2013-01-01

    Adverse early-life experiences, such as poor maternal care, program an abnormal stress response that may involve an altered balance between excitatory and inhibitory signals. Here, we explored how early-life stress (ELS) affects excitatory and inhibitory transmission in corticotrophin-releasing factor (CRF)-expressing dorsal-medial (mpd) neurons of the neonatal mouse hypothalamus. We report that ELS associates with enhanced excitatory glutamatergic transmission that is manifested as an increased frequency of synaptic events and increased extrasynaptic conductance, with the latter associated with dysfunctional astrocytic regulation of glutamate levels. The neurosteroid 5α-pregnan-3α-ol-20-one (5α3α-THPROG) is an endogenous, positive modulator of GABAA receptors (GABAARs) that is abundant during brain development and rises rapidly during acute stress, thereby enhancing inhibition to curtail stress-induced activation of the hypothalamic-pituitary-adrenocortical axis. In control mpd neurons, 5α3α-THPROG potently suppressed neuronal discharge, but this action was greatly compromised by prior ELS exposure. This neurosteroid insensitivity did not primarily result from perturbations of GABAergic inhibition, but rather arose functionally from the increased excitatory drive onto mpd neurons. Previous reports indicated that mice (dams) lacking the GABAAR δ subunit (δ0/0) exhibit altered maternal behavior. Intriguingly, δ0/0 offspring showed some hallmarks of abnormal maternal care that were further exacerbated by ELS. Moreover, in common with ELS, mpd neurons of δ0/0 pups exhibited increased synaptic and extrasynaptic glutamatergic transmission and consequently a blunted neurosteroid suppression of neuronal firing. This study reveals that increased synaptic and tonic glutamatergic transmission may be a common maladaptation to ELS, leading to enhanced excitation of CRF-releasing neurons, and identifies neurosteroids as putative early regulators of the stress

  1. Morphological, biophysical and synaptic properties of glutamatergic neurons of the mouse spinal dorsal horn

    PubMed Central

    Punnakkal, Pradeep; Schoultz, Carolin; Haenraets, Karen; Wildner, Hendrik; Zeilhofer, Hanns Ulrich

    2014-01-01

    Interneurons of the spinal dorsal horn are central to somatosensory and nociceptive processing. A mechanistic understanding of their function depends on profound knowledge of their intrinsic properties and their integration into dorsal horn circuits. Here, we have used BAC transgenic mice expressing enhanced green fluorescent protein (eGFP) under the control of the vesicular glutamate transporter (vGluT2) gene (vGluT2::eGFP mice) to perform a detailed electrophysiological and morphological characterisation of excitatory dorsal horn neurons, and to compare their properties to those of GABAergic (Gad67::eGFP tagged) and glycinergic (GlyT2::eGFP tagged) neurons. vGluT2::eGFP was detected in about one-third of all excitatory dorsal horn neurons and, as demonstrated by the co-expression of vGluT2::eGFP with different markers of subtypes of glutamatergic neurons, probably labelled a representative fraction of these neurons. Three types of dendritic tree morphologies (vertical, central, and radial), but no islet cell-type morphology, were identified in vGluT2::eGFP neurons. vGluT2::eGFP neurons had more depolarised action potential thresholds and longer action potential durations than inhibitory neurons, while no significant differences were found for the resting membrane potential, input resistance, cell capacitance and after-hyperpolarisation. Delayed firing and single action potential firing were the single most prevalent firing patterns in vGluT2::eGFP neurons of the superficial and deep dorsal horn, respectively. By contrast, tonic firing prevailed in inhibitory interneurons of the dorsal horn. Capsaicin-induced synaptic inputs were detected in about half of the excitatory and inhibitory neurons, and occurred more frequently in superficial than in deep dorsal horn neurons. Primary afferent-evoked (polysynaptic) inhibitory inputs were found in the majority of glutamatergic and glycinergic neurons, but only in less than half of the GABAergic population. Excitatory

  2. Interplay between glutamatergic and GABAergic neurotransmission alterations in cognitive and motor impairment in minimal hepatic encephalopathy.

    PubMed

    Llansola, Marta; Montoliu, Carmina; Agusti, Ana; Hernandez-Rabaza, Vicente; Cabrera-Pastor, Andrea; Gomez-Gimenez, Belen; Malaguarnera, Michele; Dadsetan, Sherry; Belghiti, Majedeline; Garcia-Garcia, Raquel; Balzano, Tiziano; Taoro, Lucas; Felipo, Vicente

    2015-09-01

    The cognitive and motor alterations in hepatic encephalopathy (HE) are the final result of altered neurotransmission and communication between neurons in neuronal networks and circuits. Different neurotransmitter systems cooperate to modulate cognitive and motor function, with a main role for glutamatergic and GABAergic neurotransmission in different brain areas and neuronal circuits. There is an interplay between glutamatergic and GABAergic neurotransmission alterations in cognitive and motor impairment in HE. This interplay may occur: (a) in different brain areas involved in specific neuronal circuits; (b) in the same brain area through cross-modulation of glutamatergic and GABAergic neurotransmission. We will summarize some examples of the (1) interplay between glutamatergic and GABAergic neurotransmission alterations in different areas in the basal ganglia-thalamus-cortex circuit in the motor alterations in minimal hepatic encephalopathy (MHE); (2) interplay between glutamatergic and GABAergic neurotransmission alterations in cerebellum in the impairment of cognitive function in MHE through altered function of the glutamate-nitric oxide-cGMP pathway. We will also comment the therapeutic implications of the above studies and the utility of modulators of glutamate and GABA receptors to restore cognitive and motor function in rats with hyperammonemia and hepatic encephalopathy. PMID:25447766

  3. Dissociation of μ- and δ-opioid inhibition of glutamatergic synaptic transmission in superficial dorsal horn

    PubMed Central

    2010-01-01

    Background There is anatomical and behavioural evidence that μ- and δ-opioid receptors modulate distinct nociceptive modalities within the superficial dorsal horn. The aim of the present study was to examine whether μ- and δ-opioid receptor activation differentially modulates TRP sensitive inputs to neurons within the superficial dorsal horn. To do this, whole cell patch clamp recordings were made from lamina I - II neurons in rat spinal cord slices in vitro to examine the effect of opioids on TRP agonist-enhanced glutamatergic spontaneous miniature excitatory postsynaptic currents (EPSCs). Results Under basal conditions the μ-opioid agonist DAMGO (3 μM) reduced the rate of miniature EPSCs in 68% of neurons, while the δ- and κ-opioid agonists deltorphin-II (300 nM) and U69593 (300 nM) did so in 13 - 17% of neurons tested. The TRP agonists menthol (400 μM) and icilin (100 μM) both produced a Ca2+-dependent increase in miniature EPSC rate which was unaffected by the voltage dependent calcium channel (VDCC) blocker Cd2+. The proportion of neurons in which deltorphin-II reduced the miniature EPSC rate was enhanced in the presence of icilin (83%), but not menthol (0%). By contrast, the proportion of DAMGO and U69593 responders was unaltered in the presence of menthol (57%, 0%), or icilin (57%, 17%). Conclusions These findings demonstrate that δ-opioid receptor activation selectively inhibits inputs activated by icilin, whereas μ-opioid receptor activation has a more widespread effect on synaptic inputs to neurons in the superficial dorsal horn. These findings suggest that δ-opioids may provide a novel analgesic approach for specific, TRPA1-like mediated pain modalities. PMID:20977770

  4. Effects of Fluoxetine and Visual Experience on Glutamatergic and GABAergic Synaptic Proteins in Adult Rat Visual Cortex.

    PubMed

    Beshara, Simon; Beston, Brett R; Pinto, Joshua G A; Murphy, Kathryn M

    2015-01-01

    Fluoxetine has emerged as a novel treatment for persistent amblyopia because in adult animals it reinstates critical period-like ocular dominance plasticity and promotes recovery of visual acuity. Translation of these results from animal models to the clinic, however, has been challenging because of the lack of understanding of how this selective serotonin reuptake inhibitor affects glutamatergic and GABAergic synaptic mechanisms that are essential for experience-dependent plasticity. An appealing hypothesis is that fluoxetine recreates a critical period (CP)-like state by shifting synaptic mechanisms to be more juvenile. To test this we studied the effect of fluoxetine treatment in adult rats, alone or in combination with visual deprivation [monocular deprivation (MD)], on a set of highly conserved presynaptic and postsynaptic proteins (synapsin, synaptophysin, VGLUT1, VGAT, PSD-95, gephyrin, GluN1, GluA2, GluN2B, GluN2A, GABAAα1, GABAAα3). We did not find evidence that fluoxetine shifted the protein amounts or balances to a CP-like state. Instead, it drove the balances in favor of the more mature subunits (GluN2A, GABAAα1). In addition, when fluoxetine was paired with MD it created a neuroprotective-like environment by normalizing the glutamatergic gain found in adult MDs. Together, our results suggest that fluoxetine treatment creates a novel synaptic environment dominated by GluN2A- and GABAAα1-dependent plasticity. PMID:26730408

  5. LRRK2 overexpression alters glutamatergic presynaptic plasticity, striatal dopamine tone, postsynaptic signal transduction, motor activity and memory.

    PubMed

    Beccano-Kelly, Dayne A; Volta, Mattia; Munsie, Lise N; Paschall, Sarah A; Tatarnikov, Igor; Co, Kimberley; Chou, Patrick; Cao, Li-Ping; Bergeron, Sabrina; Mitchell, Emma; Han, Heather; Melrose, Heather L; Tapia, Lucia; Raymond, Lynn A; Farrer, Matthew J; Milnerwood, Austen J

    2015-03-01

    Mutations in leucine-rich repeat kinase 2 (Lrrk2) are the most common genetic cause of Parkinson's disease (PD), a neurodegenerative disorder affecting 1-2% of those >65 years old. The neurophysiology of LRRK2 remains largely elusive, although protein loss suggests a role in glutamatergic synapse transmission and overexpression studies show altered dopamine release in aged mice. We show that glutamate transmission is unaltered onto striatal projection neurons (SPNs) of adult LRRK2 knockout mice and that adult animals exhibit no detectable cognitive or motor deficits. Basal synaptic transmission is also unaltered in SPNs of LRRK2 overexpressing mice, but they do exhibit clear alterations to D2-receptor-mediated short-term synaptic plasticity, behavioral hypoactivity and impaired recognition memory. These phenomena are associated with decreased striatal dopamine tone and abnormal dopamine- and cAMP-regulated phosphoprotein 32 kDa signal integration. The data suggest that LRRK2 acts at the nexus of dopamine and glutamate signaling in the adult striatum, where it regulates dopamine levels, presynaptic glutamate release via D2-dependent synaptic plasticity and dopamine-receptor signal transduction. PMID:25343991

  6. Alteration of synaptic connectivity of oligodendrocyte precursor cells following demyelination

    PubMed Central

    Sahel, Aurélia; Ortiz, Fernando C.; Kerninon, Christophe; Maldonado, Paloma P.; Angulo, María Cecilia; Nait-Oumesmar, Brahim

    2015-01-01

    Oligodendrocyte precursor cells (OPCs) are a major source of remyelinating oligodendrocytes in demyelinating diseases such as Multiple Sclerosis (MS). While OPCs are innervated by unmyelinated axons in the normal brain, the fate of such synaptic contacts after demyelination is still unclear. By combining electrophysiology and immunostainings in different transgenic mice expressing fluorescent reporters, we studied the synaptic innervation of OPCs in the model of lysolecithin (LPC)-induced demyelination of corpus callosum. Synaptic innervation of reactivated OPCs in the lesion was revealed by the presence of AMPA receptor-mediated synaptic currents, VGluT1+ axon-OPC contacts in 3D confocal reconstructions and synaptic junctions observed by electron microscopy. Moreover, 3D confocal reconstructions of VGluT1 and NG2 immunolabeling showed the existence of glutamatergic axon-OPC contacts in post-mortem MS lesions. Interestingly, patch-clamp recordings in LPC-induced lesions demonstrated a drastic decrease in spontaneous synaptic activity of OPCs early after demyelination that was not caused by an impaired conduction of compound action potentials. A reduction in synaptic connectivity was confirmed by the lack of VGluT1+ axon-OPC contacts in virtually all rapidly proliferating OPCs stained with EdU (50-ethynyl-20-deoxyuridine). At the end of the massive proliferation phase in lesions, the proportion of innervated OPCs rapidly recovers, although the frequency of spontaneous synaptic currents did not reach control levels. In conclusion, our results demonstrate that newly-generated OPCs do not receive synaptic inputs during their active proliferation after demyelination, but gain synapses during the remyelination process. Hence, glutamatergic synaptic inputs may contribute to inhibit OPC proliferation and might have a physiopathological relevance in demyelinating disorders. PMID:25852473

  7. Reduced sensory stimulation alters the molecular make-up of glutamatergic hair cell synapses in the developing cochlea.

    PubMed

    Barclay, M; Constable, R; James, N R; Thorne, P R; Montgomery, J M

    2016-06-14

    Neural activity during early development is known to alter innervation pathways in the central and peripheral nervous systems. We sought to examine how reduced sound-induced sensory activity in the cochlea affected the consolidation of glutamatergic synapses between inner hair cells (IHC) and the primary auditory neurons as these synapses play a primary role in transmitting sound information to the brain. A unilateral conductive hearing loss was induced prior to the onset of sound-mediated stimulation of the sensory hair cells, by rupturing the tympanic membrane and dislocating the auditory ossicles in the left ear of P11 mice. Auditory brainstem responses at P15 and P21 showed a 40-50-dB increase in thresholds for frequencies 8-32kHz in the dislocated ear relative to the control ear. Immunohistochemistry and confocal microscopy were subsequently used to examine the effect of this attenuation of sound stimulation on the expression of RIBEYE, which comprises the presynaptic ribbons, Shank-1, a postsynaptic scaffolding protein, and the GluA2/3 and 4 subunits of postsynaptic AMPA receptors. Our results show that dislocation did not alter the number of pre- or postsynaptic protein puncta. However, dislocation did increase the size of RIBEYE, GluA4, GluA2/3 and Shank-1 puncta, with postsynaptic changes preceding presynaptic changes. Our data suggest that a reduction in sound stimulation during auditory development induces plasticity in the molecular make-up of IHC glutamatergic synapses, but does not affect the number of these synapses. Up-regulation of synaptic proteins with sound attenuation may facilitate a compensatory increase in synaptic transmission due to the reduced sensory stimulation of the IHC. PMID:27012610

  8. Alteration of the Centromedial Amygdala Glutamatergic Synapses by the BDNF Val66Met Polymorphism.

    PubMed

    Galvin, Christopher; Lee, Francis S; Ninan, Ipe

    2015-08-01

    Fear expression is mediated by an activation of the centromedial amygdala (CEm), the major output nucleus of the amygdaloid complex. Consistently, fear extinction is associated with an increased synaptic inhibition as well as a suppression of the excitability of the CEm neurons. However, little is known about the role of CEm glutamatergic synapses in fear regulation and anxiety-like behaviors. The BDNF Val66Met, a single-nucleotide polymorphism in the human BDNF gene, impairs fear extinction and leads to anxiety-like symptoms. To determine whether the BDNF Val66Met polymorphism affects the CEm excitatory synapses, we examined basal glutamatergic synaptic transmission and plasticity in the CEm neurons of BDNF Val66Met knock-in (BDNF(Met/Met)) mice. The BDNF Val66Met single-nucleotide polymorphism exerted an opposite effect on non-NMDA and NMDA receptor transmission with a potentiation of the former and a suppression of the latter. In addition, the decay time of NMDA currents was decreased in BDNF(Met/Met) mice, suggesting a modification of NMDA receptor subunit composition. Unlike the wild-type mice that exhibited a potentiation of non-NMDA receptor transmission following fear conditioning and a depotentiation upon fear extinction, BDNF(Met/Met) mice failed to show this experience-dependent synaptic plasticity in the CEm neurons. Our results suggest that the elevated non-NMDA receptor transmission, the suppression of NMDA receptor transmission, and an impairment of synaptic plasticity in the CEm neurons might contribute to the fear extinction deficit and increased anxiety-like symptoms in BDNF Val66Met carriers. PMID:25786582

  9. Impairment of adenylyl cyclase-mediated glutamatergic synaptic plasticity in the periaqueductal grey in a rat model of neuropathic pain

    PubMed Central

    Ho, Yu-Cheng; Cheng, Jen-Kun; Chiou, Lih-Chu

    2015-01-01

    Key points Long-lasting neuropathic pain has been attributed to elevated neuronal plasticity changes in spinal, peripheral and cortical levels. Here, we found that reduced neuronal plasticity in the ventrolateral periaqueductal grey (vlPAG), a midbrain region important for initiating descending pain inhibition, may also contribute to neuropathic pain. Forskolin- and isoproterenol (isoprenaline)-elicited EPSC potentiation was impaired in the vlPAG of a rat model of neuropathic pain induced by spinal nerve injury. Down-regulation of adenylyl cyclase–cAMP– PKA signalling, due to impaired adenylyl cyclase, but not phosphodiesterase, in glutamatergic terminals may contribute to the hypofunction of excitatory synaptic plasticity in the vlPAG of neuropathic rats and the subsequent descending pain inhibition, ultimately leading to long-lasting neuropathic pain. Our results suggest that drugs that activate adenylyl cyclase in the vlPAG have the potential for relieving neuropathic pain. Abstract Neuropathic pain has been attributed to nerve injury-induced elevation of peripheral neuronal discharges and spinal excitatory synaptic plasticity while little is known about the contribution of neuroplasticity changes in the brainstem. Here, we examined synaptic plasticity changes in the ventrolateral (vl) periaqueductal grey (PAG), a crucial midbrain region for initiating descending pain inhibition, in spinal nerve ligation (SNL)-induced neuropathic rats. In vlPAG slices of sham-operated rats, forskolin, an adenylyl cyclase (AC) activator, produced long-lasting enhancement of EPSCs. This is a presynaptic effect since forskolin decreased the paired-pulse ratio and failure rate of EPSCs, and increased the frequency, but not the amplitude, of miniature EPSCs. Forskolin-induced EPSC potentiation was mimicked by a β-adrenergic agonist (isoproterenol (isoprenaline)), and prevented by an AC inhibitor (SQ 22536) and a cAMP-dependent protein kinase (PKA) inhibitor (H89), but not by a

  10. The effects of JM-20 on the glutamatergic system in synaptic vesicles, synaptosomes and neural cells cultured from rat brain.

    PubMed

    Nuñez-Figueredo, Yanier; Pardo Andreu, Gilberto L; Oliveira Loureiro, Samanta; Ganzella, Marcelo; Ramírez-Sánchez, Jeney; Ochoa-Rodríguez, Estael; Verdecia-Reyes, Yamila; Delgado-Hernández, René; Souza, Diogo O

    2015-02-01

    JM-20 (3-ethoxycarbonyl-2-methyl-4-(2-nitrophenyl)-4,11-dihydro-1H-pyrido[2,3-b][1,5]benzodiazepine) is a novel benzodiazepine dihydropyridine hybrid molecule, which has been shown to be a neuroprotective agent in brain disorders involving glutamate receptors. However, the effect of JM-20 on the functionality of the glutamatergic system has not been investigated. In this study, by using different in vitro preparations, we investigated the effects of JM-20 on (i) rat brain synaptic vesicles (L-[(3)H]-glutamate uptake, proton gradient built-up and bafilomycin-sensitive H(+)-ATPase activity), (ii) rat brain synaptosomes (glutamate release) and (iii) primary cultures of rat cortical neurons, astrocytes and astrocyte-neuron co-cultures (L-[(3)H]-glutamate uptake and glutamate release). We observed here that JM-20 impairs H(+)-ATPase activity and consequently reduces vesicular glutamate uptake. This molecule also inhibits glutamate release from brain synaptosomes and markedly increases glutamate uptake in astrocytes alone, and co-cultured neurons and astrocytes. The impairment of vesicular glutamate uptake by inhibition of the H(+)-ATPase caused by JM-20 could decrease the amount of the transmitter stored in synaptic vesicles, increase the cytosolic levels of glutamate, and will thus down-regulate neurotransmitter release. Together, these results contribute to explain the anti-excitotoxic effect of JM-20 and its strong neuroprotective effect observed in different in vitro and in vivo models of brain ischemia. PMID:25617730

  11. Repeated social defeat stress enhances glutamatergic synaptic plasticity in the VTA and cocaine place conditioning.

    PubMed

    Stelly, Claire E; Pomrenze, Matthew B; Cook, Jason B; Morikawa, Hitoshi

    2016-01-01

    Enduring memories of sensory cues associated with drug intake drive addiction. It is well known that stressful experiences increase addiction vulnerability. However, it is not clear how repeated stress promotes learning of cue-drug associations, as repeated stress generally impairs learning and memory processes unrelated to stressful experiences. Here, we show that repeated social defeat stress in rats causes persistent enhancement of long-term potentiation (LTP) of NMDA receptor-mediated glutamatergic transmission in the ventral tegmental area (VTA). Protein kinase A-dependent increase in the potency of inositol 1,4,5-triphosphate-induced Ca(2+) signaling underlies LTP facilitation. Notably, defeated rats display enhanced learning of contextual cues paired with cocaine experience assessed using a conditioned place preference (CPP) paradigm. Enhancement of LTP in the VTA and cocaine CPP in behaving rats both require glucocorticoid receptor activation during defeat episodes. These findings suggest that enhanced glutamatergic plasticity in the VTA may contribute, at least partially, to increased addiction vulnerability following repeated stressful experiences. PMID:27374604

  12. Repeated social defeat stress enhances glutamatergic synaptic plasticity in the VTA and cocaine place conditioning

    PubMed Central

    Stelly, Claire E; Pomrenze, Matthew B; Cook, Jason B; Morikawa, Hitoshi

    2016-01-01

    Enduring memories of sensory cues associated with drug intake drive addiction. It is well known that stressful experiences increase addiction vulnerability. However, it is not clear how repeated stress promotes learning of cue-drug associations, as repeated stress generally impairs learning and memory processes unrelated to stressful experiences. Here, we show that repeated social defeat stress in rats causes persistent enhancement of long-term potentiation (LTP) of NMDA receptor-mediated glutamatergic transmission in the ventral tegmental area (VTA). Protein kinase A-dependent increase in the potency of inositol 1,4,5-triphosphate-induced Ca2+ signaling underlies LTP facilitation. Notably, defeated rats display enhanced learning of contextual cues paired with cocaine experience assessed using a conditioned place preference (CPP) paradigm. Enhancement of LTP in the VTA and cocaine CPP in behaving rats both require glucocorticoid receptor activation during defeat episodes. These findings suggest that enhanced glutamatergic plasticity in the VTA may contribute, at least partially, to increased addiction vulnerability following repeated stressful experiences. DOI: http://dx.doi.org/10.7554/eLife.15448.001 PMID:27374604

  13. Developmental cuprizone exposure impairs oligodendrocyte lineages differentially in cortical and white matter tissues and suppresses glutamatergic neurogenesis signals and synaptic plasticity in the hippocampal dentate gyrus of rats.

    PubMed

    Abe, Hajime; Saito, Fumiyo; Tanaka, Takeshi; Mizukami, Sayaka; Hasegawa-Baba, Yasuko; Imatanaka, Nobuya; Akahori, Yumi; Yoshida, Toshinori; Shibutani, Makoto

    2016-01-01

    Developmental cuprizone (CPZ) exposure impairs rat hippocampal neurogenesis. Here, we captured the developmental neurotoxicity profile of CPZ using a region-specific expression microarray analysis in the hippocampal dentate gyrus, corpus callosum, cerebral cortex and cerebellar vermis of rat offspring exposed to 0, 0.1, or 0.4% CPZ in the maternal diet from gestation day 6 to postnatal day (PND) 21. Transcripts of those genes identified as altered were subjected to immunohistochemical analysis on PNDs 21 and 77. Our results showed that transcripts for myelinogenesis-related genes, including Cnp, were selectively downregulated in the cerebral cortex by CPZ at ≥0.1% or 0.4% on PND 21. CPZ at 0.4% decreased immunostaining intensity for 2',3'-cyclic-nucleotide 3'-phosphodiesterase (CNPase) and CNPase(+) and OLIG2(+) oligodendrocyte densities in the cerebral cortex, whereas CNPase immunostaining intensity alone was decreased in the corpus callosum. By contrast, a striking transcript upregulation for Klotho gene and an increased density of Klotho(+) oligodendrocytes were detected in the corpus callosum at ≥0.1%. In the dentate gyrus, CPZ at ≥0.1% or 0.4% decreased the transcript levels for Gria1, Grin2a and Ptgs2, genes related to the synapse and synaptic transmission, and the number of GRIA1(+) and GRIN2A(+) hilar γ-aminobutyric acid (GABA)-ergic interneurons and cyclooxygenase-2(+) granule cells. All changes were reversed at PND 77. Thus, developmental CPZ exposure reversibly decreased mature oligodendrocytes in both cortical and white matter tissues, and Klotho protected white matter oligodendrocyte growth. CPZ also reversibly targeted glutamatergic signals of GABAergic interneuron to affect dentate gyrus neurogenesis and synaptic plasticity in granule cells. PMID:26577399

  14. APOE genotype affects the pre-synaptic compartment of glutamatergic nerve terminals.

    PubMed

    Dumanis, Sonya B; DiBattista, Amanda M; Miessau, Matthew; Moussa, Charbel E H; Rebeck, G William

    2013-01-01

    Apolipoprotein E (APOE) genotype affects outcomes of Alzheimer's disease and other conditions of brain damage. Using APOE knock-in mice, we have previously shown that APOE-ε4 Targeted Replacement (TR) mice have fewer dendritic spines and reduced branching in cortical neurons. As dendritic spines are post-synaptic sites of excitatory neurotransmission, we used APOE TR mice to examine whether APOE genotype affected the various elements of the glutamate-glutamine cycle. We found that levels of glutamine synthetase and glutamate uptake transporters were unchanged among the APOE genotypes. However, compared with APOE-ε3 TR mice, APOE-ε4 TR mice had decreased glutaminase levels (18%, p < 0.05), suggesting decreased conversion of glutamine to glutamate. APOE-ε4 TR mice also had increased levels of the vesicular glutamate transporter 1 (20%, p < 0.05), suggesting that APOE genotype affects pre-synaptic terminal composition. To address whether these changes affected normal neurotransmission, we examined the production and metabolism of glutamate and glutamine at 4-5 months and 1 year. Using high-frequency (13)C/(1)H nuclear magnetic resonance spectroscopy, we found that APOE-ε4 TR mice have decreased production of glutamate and increased levels of glutamine. These factors may contribute to the increased risk of neurodegeneration associated with APOE-ε4, and also act as surrogate markers for Alzheimer's disease risk. PMID:22862561

  15. Calpain and the Glutamatergic Synapse

    PubMed Central

    Doshi, Shachee; Lynch, David R.

    2010-01-01

    Calpain is a ubiquitous protease found in different tissue types and in many organisms including mammals. It generally does not destroy its large variety of substrates, but more commonly disrupts their function. In neurons, many of its substrates become dysregulated as a result of cleavage of their regulatory domain by this protease, leading to altered signaling between cells. In glutamatergic synaptic transmission, direct targets of calpain include all of the major glutamate receptors: NMDA receptors, AMPA receptors and mGluR. By cleaving these receptors and associated intracellular proteins, calpain may regulate the physiology at glutamatergic synapses. As a result, calpain-mediated cleavage in neurons might not only be involved in pathological events like excitotoxicity, but may also have neuroprotective effects and roles in physiological synaptic transmission. PMID:19482714

  16. Synaptic underpinnings of altered hippocampal function in glutaminase-deficient mice during maturation.

    PubMed

    Gaisler-Salomon, Inna; Wang, Yvonne; Chuhma, Nao; Zhang, Hong; Golumbic, Yaela N; Mihali, Andra; Arancio, Ottavio; Sibille, Etienne; Rayport, Stephen

    2012-05-01

    Glutaminase-deficient mice (GLS1 hets), with reduced glutamate recycling, have a focal reduction in hippocampal activity, mainly in CA1, and manifest behavioral and neurochemical phenotypes suggestive of schizophrenia resilience. To address the basis for the hippocampal hypoactivity, we examined synaptic plastic mechanisms and glutamate receptor expression. Although baseline synaptic strength was unaffected in Schaffer collateral inputs to CA1, we found that long-term potentiation was attenuated. In wild-type (WT) mice, GLS1 gene expression was highest in the hippocampus and cortex, where it was reduced by about 50% in GLS1 hets. In other brain regions with lower WT GLS1 gene expression, there were no genotypic reductions. In adult GLS1 hets, NMDA receptor NR1 subunit gene expression was reduced, but not AMPA receptor GluR1 subunit gene expression. In contrast, juvenile GLS1 hets showed no reductions in NR1 gene expression. In concert with this, adult GLS1 hets showed a deficit in hippocampal-dependent contextual fear conditioning, whereas juvenile GLS1 hets did not. These alterations in glutamatergic synaptic function may partly explain the hippocampal hypoactivity seen in the GLS1 hets. The maturity-onset reduction in NR1 gene expression and in contextual learning supports the premise that glutaminase inhibition in adulthood should prove therapeutic in schizophrenia. PMID:22431402

  17. Glutamatergic axon-derived BDNF controls GABAergic synaptic differentiation in the cerebellum

    PubMed Central

    Chen, Albert I.; Zang, Keling; Masliah, Eliezer; Reichardt, Louis F.

    2016-01-01

    To study mechanisms that regulate the construction of inhibitory circuits, we examined the role of brain-derived neurotrophic factor (BDNF) in the assembly of GABAergic inhibitory synapses in the mouse cerebellar cortex. We show that within the cerebellum, BDNF-expressing cells are restricted to the internal granular layer (IGL), but that the BDNF protein is present within mossy fibers which originate from cells located outside of the cerebellum. In contrast to deletion of TrkB, the cognate receptor for BDNF, deletion of Bdnf from cerebellar cell bodies alone did not perturb the localization of pre- or postsynaptic constituents at the GABAergic synapses formed by Golgi cell axons on granule cell dendrites within the IGL. Instead, we found that BDNF derived from excitatory mossy fiber endings controls their differentiation. Our findings thus indicate that cerebellar BDNF is derived primarily from excitatory neurons—precerebellar nuclei/spinal cord neurons that give rise to mossy fibers—and promotes GABAergic synapse formation as a result of release from axons. Thus, within the cerebellum the preferential localization of BDNF to axons enhances the specificity through which BDNF promotes GABAergic synaptic differentiation. PMID:26830657

  18. Differential alterations of cortical glutamatergic binding sites in senile dementia of the Alzheimer type

    SciTech Connect

    Chalmers, D.T.; Dewar, D.; Graham, D.I.; Brooks, D.N.; McCulloch, J. )

    1990-02-01

    Involvement of cortical glutamatergic mechanisms in senile dementia of the Alzheimer type (SDAT) has been investigated with quantitative ligand-binding autoradiography. The distribution and density of Na(+)-dependent glutamate uptake sites and glutamate receptor subtypes--kainate, quisqualate, and N-methyl-D-aspartate--were measured in adjacent sections of frontal cortex obtained postmortem from six patients with SDAT and six age-matched controls. The number of senile plaques was determined in the same brain region. Binding of D-(3H)aspartate to Na(+)-dependent uptake sites was reduced by approximately 40% throughout SDAT frontal cortex relative to controls, indicating a general loss of glutamatergic presynaptic terminals. (3H)Kainate receptor binding was significantly increased by approximately 70% in deep layers of SDAT frontal cortex compared with controls, whereas this binding was unaltered in superficial laminae. There was a positive correlation (r = 0.914) between kainate binding and senile plaque number in deep cortical layers. Quisqualate receptors, as assessed by 2-amino-3-hydroxy-5-(3H)methylisoxazole-4-propionic acid binding, were unaltered in SDAT frontal cortex compared with controls. There was a small reduction (25%) in N-methyl-D-aspartate-sensitive (3H)glutamate binding only in superficial cortical layers of SDAT brains relative to control subjects. (3H)Glutamate binding in SDAT subjects was unrelated to senile plaque number in superficial cortical layers (r = 0.104). These results indicate that in the presence of cortical glutamatergic terminal loss in SDAT plastic alterations occur in some glutamate receptor subtypes but not in others.

  19. Modulatory effects of serotonin on glutamatergic synaptic transmission and long-term depression in the deep cerebellar nuclei.

    PubMed

    Murano, M; Saitow, F; Suzuki, H

    2011-01-13

    The deep cerebellar nuclei (DCN) are the terminal components of the cerebellar circuitry and constitute its primary output structure. Their activity is important for certain forms of motor learning as well as generation and control of movement. DCN neurons receive glutamatergic excitatory inputs from the pontine nuclei via mossy fibres (MFs) and concomitantly receive inputs from 5-HT-containing neurons of the raphe nuclei. We aimed to explore the roles of 5-HT at MF-DCN synapses by using cerebellar slices from 11 to 15-day-old rats. Bath application of 5-HT reversibly decreased the amplitude of stimulation-evoked excitatory postsynaptic currents (eEPSCs) via the activation of 5-HT1B receptors at the presynaptic terminals of the MFs. Burst stimulation of the MFs elicited long-term depression (LTD) at the MF-DCN synapses that require activation of the group I metabotropic glutamate receptor (mGluR). In the presence of 5-HT, the extent of burst-induced LTD of MF EPSCs was significantly reduced. Application of 5-HT also decreased the amplitude of mGluR-dependent slow EPSCs evoked by similar burst stimulation. Furthermore, (S)-3,5-dihydroxyphenylglycine (DHPG), a group I mGluR agonist, induced chemical LTD of MF EPSCs, and 5-HT had no significant effect on this LTD. Taken together, the results suggest that 5-HT not only has transitory inhibitory effects on MF EPSCs but also plays a role in regulating the long-term synaptic efficacy. PMID:20969929

  20. Synaptic protein levels altered in vascular dementia

    PubMed Central

    Sinclair, Lindsey I; Tayler, Hannah M; Love, Seth

    2015-01-01

    Introduction Cerebral ischaemia is the defining pathophysiological abnormality in most forms of vascular dementia (VAD), but the pathogenesis of the dementia remains poorly understood. In Alzheimer's disease (AD), there is early loss of synaptic proteins, but these have been little studied in VAD. Materials and Methods We measured synaptophysin, postsynaptic density protein 95 (PSD-95), drebrin, synaptosomal-associated protein 25 (SNAP-25) and vascular endothelial growth factor (VEGF) by enzyme-linked immunosorbent assays in superior temporal cortex from 11 patients with VAD and, initially, 11 non-dementia controls. We corrected for neuronal content by measurement of neuron-specific enolase. A further 11 controls were subsequently used in a validation study. Simulation of post-mortem delay found that PSD-95 was stable at 4°C but declined slightly at RT. SNAP-25 and drebrin showed good post-mortem stability. Previous studies had shown good post-mortem preservation of synaptophysin and VEGF. Results The VAD cases had lower synaptophysin (but P > 0.05 in initial study), significantly lower SNAP-25 (P = 0.024) and significantly higher drebrin (P = 0.020). On comparison with the second control group, the reduction in synaptophysin was significant (P = 0.008), and the other results were confirmed. Conclusion There is probably a reduction in presynaptic proteins in the temporal cortex in VAD, although not as marked as in AD. In VAD, there is also an increase in drebrin, which may be a response to reduced synaptic input. PMID:25559750

  1. Effects of Fluoxetine and Visual Experience on Glutamatergic and GABAergic Synaptic Proteins in Adult Rat Visual Cortex1,2,3

    PubMed Central

    Beshara, Simon; Beston, Brett R.; Pinto, Joshua G. A.

    2015-01-01

    Abstract Fluoxetine has emerged as a novel treatment for persistent amblyopia because in adult animals it reinstates critical period-like ocular dominance plasticity and promotes recovery of visual acuity. Translation of these results from animal models to the clinic, however, has been challenging because of the lack of understanding of how this selective serotonin reuptake inhibitor affects glutamatergic and GABAergic synaptic mechanisms that are essential for experience-dependent plasticity. An appealing hypothesis is that fluoxetine recreates a critical period (CP)-like state by shifting synaptic mechanisms to be more juvenile. To test this we studied the effect of fluoxetine treatment in adult rats, alone or in combination with visual deprivation [monocular deprivation (MD)], on a set of highly conserved presynaptic and postsynaptic proteins (synapsin, synaptophysin, VGLUT1, VGAT, PSD-95, gephyrin, GluN1, GluA2, GluN2B, GluN2A, GABAAα1, GABAAα3). We did not find evidence that fluoxetine shifted the protein amounts or balances to a CP-like state. Instead, it drove the balances in favor of the more mature subunits (GluN2A, GABAAα1). In addition, when fluoxetine was paired with MD it created a neuroprotective-like environment by normalizing the glutamatergic gain found in adult MDs. Together, our results suggest that fluoxetine treatment creates a novel synaptic environment dominated by GluN2A- and GABAAα1-dependent plasticity. PMID:26730408

  2. Mutation of the Dyslexia-Associated Gene Dcdc2 Enhances Glutamatergic Synaptic Transmission Between Layer 4 Neurons in Mouse Neocortex.

    PubMed

    Che, Alicia; Truong, Dongnhu T; Fitch, R Holly; LoTurco, Joseph J

    2016-09-01

    Variants in DCDC2 have been associated with reading disability in humans, and targeted mutation of Dcdc2 in mice causes impairments in both learning and sensory processing. In this study, we sought to determine whether Dcdc2 mutation affects functional synaptic circuitry in neocortex. We found mutation in Dcdc2 resulted in elevated spontaneous and evoked glutamate release from neurons in somatosensory cortex. The probability of release was decreased to wild-type level by acute application of N-methyl-d-aspartate receptor (NMDAR) antagonists when postsynaptic NMDARs were blocked by intracellular MK-801, and could not be explained by elevated ambient glutamate, suggesting altered, nonpostsynaptic NMDAR activation in the mutants. In addition, we determined that the increased excitatory transmission was present at layer 4-layer 4 but not thalamocortical connections in Dcdc2 mutants, and larger evoked synaptic release appeared to enhance the NMDAR-mediated effect. These results demonstrate an NMDAR activation-gated, increased functional excitatory connectivity between layer 4 lateral connections in somatosensory neocortex of the mutants, providing support for potential changes in cortical connectivity and activation resulting from mutation of dyslexia candidate gene Dcdc2. PMID:26250775

  3. AMPKα1 knockout enhances nociceptive behaviors and spinal glutamatergic synaptic activities via production of reactive oxygen species in the spinal dorsal horn.

    PubMed

    Maixner, Dylan W; Yan, Xisheng; Hooks, Shelley B; Weng, Han-Rong

    2016-06-21

    Emerging studies have shown that pharmacological activation of adenosine monophosphate-activated protein kinase (AMPK) produces potent analgesic effects in different animal pain models. Currently, the spinal molecular and synaptic mechanism by which AMPK regulates the pain signaling system remains unclear. To address this issue, we utilized the Cre-LoxP system to conditionally knockout the AMPKα1 gene in the nervous system of mice. We demonstrated that AMPKα1 is imperative for maintaining normal nociception, and mice deficient for AMPKα1 exhibit mechanical allodynia. This is concomitantly associated with increased glutamatergic synaptic activities in neurons located in the superficial spinal dorsal horn, which results from the increased glutamate release from presynaptic terminals and function of ligand-gated glutamate receptors at the postsynaptic neurons. Additionally, AMPKα1 knockout mice have increased activities of extracellular signal-regulated kinases (ERK) and p38 mitogen-activated protein kinases (p38), as well as elevated levels of interleukin-1β (IL-1β), reactive oxygen species (ROS), and heme oxygenase 1 (HO-1) in the spinal dorsal horn. Systemic administration of a non-specific ROS scavenger (phenyl-N-tert-butylnitrone, PBN) or a HO-1 activator (Cobalt protoporphyrin IX, CoPP) attenuated allodynia in AMPKα1 knockout mice. Bath-perfusion of the ROS scavenger or HO-1 activator effectively attenuated the increased ROS levels and glutamatergic synaptic activities in the spinal dorsal horn. Our findings suggest that ROS are the key down-stream signaling molecules mediating the behavioral hypersensitivity in AMPKα1 knockout mice. Thus, targeting AMPKα1 may represent an effective approach for the treatment of pathological pain conditions associated with neuroinflammation at the spinal dorsal horn. PMID:27058143

  4. Glutamatergic neuroplasticity in cocaine addiction.

    PubMed

    Uys, Joachim D; Reissner, Kathryn J

    2011-01-01

    Neuroadaptations among glutamatergic projections within the mesocorticolimbic circuits engaged by drugs of abuse have been described since the 1990s. There is now substantial evidence that drugs of abuse lead to long-term changes in glutamatergic signaling and encompass multiple levels of analysis. For example, cocaine induces changes in extracellular glutamate concentrations and in synaptic glutamatergic transmission. In addition, glutamate receptors are required for the expression of cocaine-related behaviors, and long-term changes have been reported in the expression of proteins at glutamatergic synapses, in glutamate-related redox regulation of neurons, and in glutamatergic synaptic and structural plasticity following chronic exposure to cocaine. In this chapter, we will describe the neurocircuitry involved, and will summarize evidence for adaptations in glutamatergic neuroplasticity as a mechanism for cocaine addiction. Finally, we will discuss progress in the development of glutamate-mediated pharmacotherapies for the treatment of cocaine dependence. PMID:21199777

  5. Cocaine-Induced Synaptic Alterations in Thalamus to Nucleus Accumbens Projection.

    PubMed

    Neumann, Peter A; Wang, Yicun; Yan, Yijin; Wang, Yao; Ishikawa, Masago; Cui, Ranji; Huang, Yanhua H; Sesack, Susan R; Schlüter, Oliver M; Dong, Yan

    2016-08-01

    Exposure to cocaine induces addiction-associated behaviors partially through remodeling neurocircuits in the nucleus accumbens (NAc). The paraventricular nucleus of thalamus (PVT), which projects to the NAc monosynaptically, is activated by cocaine exposure and has been implicated in several cocaine-induced emotional and motivational states. Here we show that disrupting synaptic transmission of select PVT neurons with tetanus toxin activated via retrograde trans-synaptic transport of cre from NAc efferents decreased cocaine self-administration in rats. This projection underwent complex adaptations after self-administration of cocaine (0.75 mg/kg/infusion; 2 h/d × 5 d, 1d overnight training). Specifically, 1d after cocaine self-administration, we observed increased levels of AMPA receptor (AMPAR)-silent glutamatergic synapses in this projection, accompanied by a decreased ratio of AMPAR-to-NMDA receptor (NMDAR)-mediated EPSCs. Furthermore, the decay kinetics of NMDAR EPSCs was significantly prolonged, suggesting insertion of new GluN2B-containing NMDARs to PVT-to-NAc synapses. After 45-d withdrawal, silent synapses within this projection returned to the basal levels, accompanied by a return of the AMPAR/NMDAR ratio and NMDAR decay kinetics to the basal levels. In amygdala and infralimbic prefrontal cortical projections to the NAc, a portion of cocaine-generated silent synapses becomes unsilenced by recruiting calcium-permeable AMPARs (CP-AMPARs) after drug withdrawal. However, the sensitivity of PVT-to-NAc synapses to CP-AMPAR-selective antagonists was not changed after withdrawal, suggesting that CP-AMPAR trafficking is not involved in the evolution of cocaine-generated silent synapses within this projection. Meanwhile, the release probability of PVT-to-NAc synapses was increased after short- and long-term cocaine withdrawal. These results reveal complex and profound alterations at PVT-to-NAc synapses after cocaine exposure and withdrawal. PMID:27074816

  6. Male-specific alteration in excitatory post-synaptic development and social interaction in pre-natal valproic acid exposure model of autism spectrum disorder.

    PubMed

    Kim, Ki Chan; Kim, Pitna; Go, Hyo Sang; Choi, Chang Soon; Park, Jin Hee; Kim, Hee Jin; Jeon, Se Jin; Dela Pena, Ike Campomayor; Han, Seol-Heui; Cheong, Jae Hoon; Ryu, Jong Hoon; Shin, Chan Young

    2013-03-01

    Autism spectrum disorder (ASD) is a pervasive developmental disorder characterized by three main behavioral symptoms including social deficits, impaired communication, and stereotyped and repetitive behaviors. ASD prevalence shows gender bias to male. Prenatal exposure to valproic acid (VPA), a drug used in epilepsy and bipolar disorder, induces autistic symptoms in both human and rodents. As we reported previously, prenatally VPA-exposed animals at E12 showed impairment in social behavior without any overt reproductive toxicity. Social interactions were not significantly different between male and female rats in control condition. However, VPA-exposed male offspring showed significantly impaired social interaction while female offspring showed only marginal deficits in social interaction. Similar male inclination was observed in hyperactivity behavior induced by VPA. In addition to the ASD-like behavioral phenotype, prenatally VPA-exposed rat offspring shows crooked tail phenotype, which was not different between male and female groups. Both male and female rat showed reduced GABAergic neuronal marker GAD and increased glutamatergic neuronal marker vGluT1 expression. Interestingly, despite of the similar increased expression of vGluT1, post-synaptic marker proteins such as PSD-95 and α-CAMKII expression was significantly elevated only in male offspring. Electron microscopy showed increased number of post-synapse in male but not in female at 4 weeks of age. These results might suggest that the altered glutamatergic neuronal differentiation leads to deranged post-synaptic maturation only in male offspring prenatally exposed to VPA. Consistent with the increased post-synaptic compartment, VPA-exposed male rats showed higher sensitivity to electric shock than VPA-exposed female rats. These results suggest that prenatally VPA-exposed rats show the male preponderance of ASD-like behaviors including defective social interaction similar to human autistic patients, which

  7. MC4R-expressing glutamatergic neurons in the paraventricular hypothalamus regulate feeding and are synaptically connected to the parabrachial nucleus

    PubMed Central

    Shah, Bhavik P.; Vong, Linh; Olson, David P.; Koda, Shuichi; Krashes, Michael J.; Ye, Chianping; Yang, Zongfang; Fuller, Patrick M.; Elmquist, Joel K.; Lowell, Bradford B.

    2014-01-01

    Activation of melanocortin-4 receptors (MC4Rs) restrains feeding and prevents obesity; however, the identity, location, and axonal projections of the neurons bearing MC4Rs that control feeding remain unknown. Reexpression of MC4Rs on single-minded 1 (SIM1)+ neurons in mice otherwise lacking MC4Rs is sufficient to abolish hyperphagia. Thus, MC4Rs on SIM1+ neurons, possibly in the paraventricular hypothalamus (PVH) and/or amygdala, regulate food intake. It is unknown, however, whether they are also necessary, a distinction required for excluding redundant sites of action. Hence, the location and nature of obesity-preventing MC4R-expressing neurons are unknown. Here, by deleting and reexpressing MC4Rs from cre-expressing neurons, establishing both necessity and sufficiency, we demonstrate that the MC4R-expressing neurons regulating feeding are SIM1+, located in the PVH, glutamatergic and not GABAergic, and do not express oxytocin, corticotropin-releasing hormone, vasopressin, or prodynorphin. Importantly, these excitatory MC4R-expressing PVH neurons are synaptically connected to neurons in the parabrachial nucleus, which relays visceral information to the forebrain. This suggests a basis for the feeding-regulating effects of MC4Rs. PMID:25157144

  8. Loss of D2 Dopamine Receptor Function Modulates Cocaine-Induced Glutamatergic Synaptic Potentiation in the Ventral Tegmental Area

    PubMed Central

    Madhavan, Anuradha; Argilli, Emanuela; Bonci, Antonello

    2013-01-01

    Potentiation of glutamate responses is a critical synaptic response to cocaine exposure in ventral tegmental area (VTA) neurons. However, the mechanism by which cocaine exposure promotes potentiation of NMDA receptors (NMDARs) and subsequently AMPA receptors (AMPARs) is not fully understood. In this study we demonstrate that repeated cocaine treatment causes loss of D2 dopamine receptor functional responses via interaction with lysosome-targeting G-protein-associated sorting protein1 (GASP1). We also show that the absence of D2 downregulation in GASP1-KO mice prevents cocaine-induced potentiation of NMDAR currents, elevation of the AMPA/NMDA ratio, and redistribution of NMDAR and AMPAR subunits to the membrane. As a pharmacological parallel, coadministration of the high-affinity D2 agonist, aripiprazole, reduces not only functional downregulation of D2s in response to cocaine but also potentiation of NMDAR and AMPAR responses in wild-type mice. Together these data suggest that functional loss of D2 receptors is a critical mechanism mediating cocaine-induced glutamate plasticity in VTA neurons. PMID:23884939

  9. Loss of D2 dopamine receptor function modulates cocaine-induced glutamatergic synaptic potentiation in the ventral tegmental area.

    PubMed

    Madhavan, Anuradha; Argilli, Emanuela; Bonci, Antonello; Whistler, Jennifer L

    2013-07-24

    Potentiation of glutamate responses is a critical synaptic response to cocaine exposure in ventral tegmental area (VTA) neurons. However, the mechanism by which cocaine exposure promotes potentiation of NMDA receptors (NMDARs) and subsequently AMPA receptors (AMPARs) is not fully understood. In this study we demonstrate that repeated cocaine treatment causes loss of D2 dopamine receptor functional responses via interaction with lysosome-targeting G-protein-associated sorting protein1 (GASP1). We also show that the absence of D2 downregulation in GASP1-KO mice prevents cocaine-induced potentiation of NMDAR currents, elevation of the AMPA/NMDA ratio, and redistribution of NMDAR and AMPAR subunits to the membrane. As a pharmacological parallel, coadministration of the high-affinity D2 agonist, aripiprazole, reduces not only functional downregulation of D2s in response to cocaine but also potentiation of NMDAR and AMPAR responses in wild-type mice. Together these data suggest that functional loss of D2 receptors is a critical mechanism mediating cocaine-induced glutamate plasticity in VTA neurons. PMID:23884939

  10. AMPA receptor antibodies in limbic encephalitis alter synaptic receptor location

    PubMed Central

    Lai, Meizan; Hughes, Ethan G.; Peng, Xiaoyu; Zhou, Lei; Gleichman, Amy J.; Shu, Huidy; Matà, Sabrina; Kremens, Daniel; Vitaliani, Roberta; Geschwind, Michael D.; Bataller, Luis; Kalb, Robert G.; Davis, Rebecca; Graus, Francesc; Lynch, David R.; Balice-Gordon, Rita; Dalmau, Josep

    2009-01-01

    Background Limbic encephalitis (LE) frequently associates with antibodies to cell surface antigens. Characterization of these antigens is important because it facilitates the diagnosis of those disorders that are treatment-responsive. We report a novel antigen of LE and the effect of patients' antibodies on neuronal cultures. Methods Clinical analysis of 10 patients with LE. Immunoprecipitation and mass spectrometry were used to identify the antigens. HEK293 cells expressing the antigens were used in immunocytochemistry and ELISA. The effect of patients' antibodies on cultures of live rat hippocampal neurons was determined with confocal microscopy. Results Median age was 60 years (38-87); 9 were women. Seven had tumors of the lung, breast or thymus. Nine patients responded to immunotherapy or oncological therapy but neurologic relapses, without tumor recurrence, were frequent and influenced the long-term outcome. One untreated patient died of LE. All patients had antibodies against neuronal cell surface antigens that by immunoprecipitation were found to be the GluR1 and GluR2 subunits of the AMPA receptor (AMPAR). HEK293 cells expressing GluR1/2 reacted with all patients' sera or CSF, providing a diagnostic test for the disorder. Application of antibodies to cultures of neurons significantly decreased the number of GluR2-containing AMPAR clusters at synapses with a smaller decrease in overall AMPAR cluster density; these effects were reversed after antibody removal. Conclusions Antibodies to GluR1/2 associate with LE that is often paraneoplastic, treatment-responsive, and has a tendency to relapse. Our findings support an antibody-mediated pathogenesis in which patients' antibodies alter the synaptic localization and number of AMPAR. PMID:19338055

  11. Aβ-Induced Synaptic Alterations Require the E3 Ubiquitin Ligase Nedd4-1

    PubMed Central

    Rodrigues, Elizabeth M.; Scudder, Samantha L.; Goo, Marisa S.

    2016-01-01

    Alzheimer's disease (AD) is a neurodegenerative disease in which patients experience progressive cognitive decline. A wealth of evidence suggests that this cognitive impairment results from synaptic dysfunction in affected brain regions caused by cleavage of amyloid precursor protein into the pathogenic peptide amyloid-β (Aβ). Specifically, it has been shown that Aβ decreases surface AMPARs, dendritic spine density, and synaptic strength, and also alters synaptic plasticity. The precise molecular mechanisms by which this occurs remain unclear. Here we demonstrate a role for ubiquitination in Aβ-induced synaptic dysfunction in cultured rat neurons. We find that Aβ promotes the ubiquitination of AMPARs, as well as the redistribution and recruitment of Nedd4-1, a HECT E3 ubiquitin ligase we previously demonstrated to target AMPARs for ubiquitination and degradation. Strikingly, we show that Nedd4-1 is required for Aβ-induced reductions in surface AMPARs, synaptic strength, and dendritic spine density. Our findings, therefore, indicate an important role for Nedd4-1 and ubiquitin in the synaptic alterations induced by Aβ. SIGNIFICANCE STATEMENT Synaptic changes in Alzheimer's disease (AD) include surface AMPAR loss, which can weaken synapses. In a cell culture model of AD, we found that AMPAR loss correlates with increased AMPAR ubiquitination. In addition, the ubiquitin ligase Nedd4-1, known to ubiquitinate AMPARs, is recruited to synapses in response to Aβ. Strikingly, reducing Nedd4-1 levels in this model prevented surface AMPAR loss and synaptic weakening. These findings suggest that, in AD, Nedd4-1 may ubiquitinate AMPARs to promote their internalization and weaken synaptic strength, similar to what occurs in Nedd4-1's established role in homeostatic synaptic scaling. This is the first demonstration of Aβ-mediated control of a ubiquitin ligase to regulate surface AMPAR expression. PMID:26843640

  12. Astrocyte activation in the anterior cingulate cortex and altered glutamatergic gene expression during paclitaxel-induced neuropathic pain in mice

    PubMed Central

    2015-01-01

    Spinal astrocyte activation contributes to the pathogenesis of paclitaxel-induced neuropathic pain (PINP) in animal models. We examined glial fibrillary acidic protein (GFAP; an astrocyte marker) immunoreactivity and gene expression of GFAP, glutamate transporters and receptor subunits by real time PCR in the anterior cingulate cortex (ACC) at 7 days post first administration of paclitaxel, a time point when mice had developed thermal hyperalgesia. The ACC, an area in the brain involved in pain perception and modulation, was chosen because changes in this area might contribute to the pathophysiology of PINP. GFAP transcripts levels were elevated by more than fivefold and GFAP immunoreactivity increased in the ACC of paclitaxel-treated mice. The 6 glutamate transporters (GLAST, GLT-1 EAAC1, EAAT4, VGLUT-1 and VGLUT-2) quantified were not significantly altered by paclitaxel treatment. Of the 12 ionotropic glutamate receptor subunits transcripts analysed 6 (GLuA1, GLuA3, GLuK2, GLuK3, GLuK5 and GLuN1) were significantly up-regulated, whereas GLuA2, GLuK1, GLuK4, GLuN2A and GLuN2B were not significantly altered and GLuA4 was lowly expressed. Amongst the 8 metabotropic receptor subunits analysed only mGLuR8 was significantly elevated. In conclusion, during PINP there is astrocyte activation, with no change in glutamate transporter expression and differential up-regulation of glutamate receptor subunits in the ACC. Thus, targeting astrocyte activation and the glutamatergic system might be another therapeutic avenue for management of PINP. PMID:26528412

  13. Morphological changes of glutamatergic synapses in animal models of Parkinson’s disease

    PubMed Central

    Villalba, Rosa M.; Mathai, Abraham; Smith, Yoland

    2015-01-01

    The striatum and the subthalamic nucleus (STN) are the main entry doors for extrinsic inputs to reach the basal ganglia (BG) circuitry. The cerebral cortex, thalamus and brainstem are the key sources of glutamatergic inputs to these nuclei. There is anatomical, functional and neurochemical evidence that glutamatergic neurotransmission is altered in the striatum and STN of animal models of Parkinson’s disease (PD) and that these changes may contribute to aberrant network neuronal activity in the BG-thalamocortical circuitry. Postmortem studies of animal models and PD patients have revealed significant pathology of glutamatergic synapses, dendritic spines and microcircuits in the striatum of parkinsonians. More recent findings have also demonstrated a significant breakdown of the glutamatergic corticosubthalamic system in parkinsonian monkeys. In this review, we will discuss evidence for synaptic glutamatergic dysfunction and pathology of cortical and thalamic inputs to the striatum and STN in models of PD. The potential functional implication of these alterations on synaptic integration, processing and transmission of extrinsic information through the BG circuits will be considered. Finally, the significance of these pathological changes in the pathophysiology of motor and non-motor symptoms in PD will be examined. PMID:26441550

  14. Synaptic plasticity, neural circuits, and the emerging role of altered short-term information processing in schizophrenia

    PubMed Central

    Crabtree, Gregg W.; Gogos, Joseph A.

    2014-01-01

    Synaptic plasticity alters the strength of information flow between presynaptic and postsynaptic neurons and thus modifies the likelihood that action potentials in a presynaptic neuron will lead to an action potential in a postsynaptic neuron. As such, synaptic plasticity and pathological changes in synaptic plasticity impact the synaptic computation which controls the information flow through the neural microcircuits responsible for the complex information processing necessary to drive adaptive behaviors. As current theories of neuropsychiatric disease suggest that distinct dysfunctions in neural circuit performance may critically underlie the unique symptoms of these diseases, pathological alterations in synaptic plasticity mechanisms may be fundamental to the disease process. Here we consider mechanisms of both short-term and long-term plasticity of synaptic transmission and their possible roles in information processing by neural microcircuits in both health and disease. As paradigms of neuropsychiatric diseases with strongly implicated risk genes, we discuss the findings in schizophrenia and autism and consider the alterations in synaptic plasticity and network function observed in both human studies and genetic mouse models of these diseases. Together these studies have begun to point toward a likely dominant role of short-term synaptic plasticity alterations in schizophrenia while dysfunction in autism spectrum disorders (ASDs) may be due to a combination of both short-term and long-term synaptic plasticity alterations. PMID:25505409

  15. Glutamatergic regulation prevents hippocampal-dependent age-related cognitive decline through dendritic spine clustering

    PubMed Central

    Pereira, Ana C.; Lambert, Hilary K.; Grossman, Yael S.; Dumitriu, Dani; Waldman, Rachel; Jannetty, Sophia K.; Calakos, Katina; Janssen, William G.; McEwen, Bruce S.; Morrison, John H.

    2014-01-01

    The dementia of Alzheimer’s disease (AD) results primarily from degeneration of neurons that furnish glutamatergic corticocortical connections that subserve cognition. Although neuron death is minimal in the absence of AD, age-related cognitive decline does occur in animals as well as humans, and it decreases quality of life for elderly people. Age-related cognitive decline has been linked to synapse loss and/or alterations of synaptic proteins that impair function in regions such as the hippocampus and prefrontal cortex. These synaptic alterations are likely reversible, such that maintenance of synaptic health in the face of aging is a critically important therapeutic goal. Here, we show that riluzole can protect against some of the synaptic alterations in hippocampus that are linked to age-related memory loss in rats. Riluzole increases glutamate uptake through glial transporters and is thought to decrease glutamate spillover to extrasynaptic NMDA receptors while increasing synaptic glutamatergic activity. Treated aged rats were protected against age-related cognitive decline displayed in nontreated aged animals. Memory performance correlated with density of thin spines on apical dendrites in CA1, although not with mushroom spines. Furthermore, riluzole-treated rats had an increase in clustering of thin spines that correlated with memory performance and was specific to the apical, but not the basilar, dendrites of CA1. Clustering of synaptic inputs is thought to allow nonlinear summation of synaptic strength. These findings further elucidate neuroplastic changes in glutamatergic circuits with aging and advance therapeutic development to prevent and treat age-related cognitive decline. PMID:25512503

  16. Glutamatergic regulation prevents hippocampal-dependent age-related cognitive decline through dendritic spine clustering.

    PubMed

    Pereira, Ana C; Lambert, Hilary K; Grossman, Yael S; Dumitriu, Dani; Waldman, Rachel; Jannetty, Sophia K; Calakos, Katina; Janssen, William G; McEwen, Bruce S; Morrison, John H

    2014-12-30

    The dementia of Alzheimer's disease (AD) results primarily from degeneration of neurons that furnish glutamatergic corticocortical connections that subserve cognition. Although neuron death is minimal in the absence of AD, age-related cognitive decline does occur in animals as well as humans, and it decreases quality of life for elderly people. Age-related cognitive decline has been linked to synapse loss and/or alterations of synaptic proteins that impair function in regions such as the hippocampus and prefrontal cortex. These synaptic alterations are likely reversible, such that maintenance of synaptic health in the face of aging is a critically important therapeutic goal. Here, we show that riluzole can protect against some of the synaptic alterations in hippocampus that are linked to age-related memory loss in rats. Riluzole increases glutamate uptake through glial transporters and is thought to decrease glutamate spillover to extrasynaptic NMDA receptors while increasing synaptic glutamatergic activity. Treated aged rats were protected against age-related cognitive decline displayed in nontreated aged animals. Memory performance correlated with density of thin spines on apical dendrites in CA1, although not with mushroom spines. Furthermore, riluzole-treated rats had an increase in clustering of thin spines that correlated with memory performance and was specific to the apical, but not the basilar, dendrites of CA1. Clustering of synaptic inputs is thought to allow nonlinear summation of synaptic strength. These findings further elucidate neuroplastic changes in glutamatergic circuits with aging and advance therapeutic development to prevent and treat age-related cognitive decline. PMID:25512503

  17. Medial prefrontal cortex neuronal activation and synaptic alterations after stress-induced reinstatement of palatable food seeking: a study using c-fos-GFP transgenic female rats

    PubMed Central

    Cifani, Carlo; Koya, Eisuke; Navarre, Brittany M.; Calu, Donna J.; Baumann, Michael H.; Marchant, Nathan J.; Liu, Qing-Rong; Khuc, Thi; Pickel, James; Lupica, Carl R.; Shaham, Yavin; Hope, Bruce T.

    2012-01-01

    Relapse to maladaptive eating habits during dieting is often provoked by stress and there is evidence for a role of ovarian hormones in stress responses and feeding. We studied the role of these hormones in stress-induced reinstatement of food seeking and medial prefrontal cortex (mPFC) neuronal activation in c-fos-GFP transgenic female rats, which express green fluorescent protein (GFP) in strongly activated neurons. Food-restricted ovariectomized or sham-operated c-fos-GFP rats were trained to lever-press for palatable food pellets. Subsequently, lever-pressing was extinguished and reinstatement of food seeking and mPFC neuronal activation was assessed after injections of the pharmacological stressor yohimbine (0.5–2 mg/kg) or pellet priming (1–4 non-contingent pellets). Estrous cycle effects on reinstatement were also assessed in wild-type rats. Yohimbine- and pellet-priming-induced reinstatement was associated with Fos and GFP induction in mPFC; both reinstatement and neuronal activation were minimally affected by ovarian hormones in both c-fos-GFP and wild-type rats. c-fos-GFP transgenic rats were then used to assess glutamatergic synaptic alterations within activated GFP-positive and non-activated GFP-negative mPFC neurons following yohimbine-induced reinstatement of food seeking. This reinstatement was associated with reduced AMPAR/NMDAR current ratios and increased paired-pulse facilitation in activated GFP-positive but not GFP-negative neurons. Together, while ovarian hormones do not appear to play a role in stress-induced relapse of food seeking in our rat model, this reinstatement was associated with unique synaptic alterations in strongly activated mPFC neurons. Our paper introduces the c-fos-GFP transgenic rat as a new tool to study unique synaptic changes in activated neurons during behavior. PMID:22723688

  18. Optogenetic Stimulation of Prefrontal Glutamatergic Neurons Enhances Recognition Memory

    PubMed Central

    Barker, Gareth R. I.; Stuart, Sarah A.; Roloff, Eva v. L.; Teschemacher, Anja G.; Warburton, E. Clea

    2016-01-01

    Finding effective cognitive enhancers is a major health challenge; however, modulating glutamatergic neurotransmission has the potential to enhance performance in recognition memory tasks. Previous studies using glutamate receptor antagonists have revealed that the medial prefrontal cortex (mPFC) plays a central role in associative recognition memory. The present study investigates short-term recognition memory using optogenetics to target glutamatergic neurons within the rodent mPFC specifically. Selective stimulation of glutamatergic neurons during the online maintenance of information enhanced associative recognition memory in normal animals. This cognitive enhancing effect was replicated by local infusions of the AMPAkine CX516, but not CX546, which differ in their effects on EPSPs. This suggests that enhancing the amplitude, but not the duration, of excitatory synaptic currents improves memory performance. Increasing glutamate release through infusions of the mGluR7 presynaptic receptor antagonist MMPIP had no effect on performance. SIGNIFICANCE STATEMENT These results provide new mechanistic information that could guide the targeting of future cognitive enhancers. Our work suggests that improved associative-recognition memory can be achieved by enhancing endogenous glutamatergic neuronal activity selectively using an optogenetic approach. We build on these observations to recapitulate this effect using drug treatments that enhance the amplitude of EPSPs; however, drugs that alter the duration of the EPSP or increase glutamate release lack efficacy. This suggests that both neural and temporal specificity are needed to achieve cognitive enhancement. PMID:27147648

  19. Altered gene regulation and synaptic morphology in Drosophila learning and memory mutants.

    PubMed

    Guan, Zhuo; Buhl, Lauren K; Quinn, William G; Littleton, J Troy

    2011-01-01

    Genetic studies in Drosophila have revealed two separable long-term memory pathways defined as anesthesia-resistant memory (ARM) and long-lasting long-term memory (LLTM). ARM is disrupted in radish (rsh) mutants, whereas LLTM requires CREB-dependent protein synthesis. Although the downstream effectors of ARM and LLTM are distinct, pathways leading to these forms of memory may share the cAMP cascade critical for associative learning. Dunce, which encodes a cAMP-specific phosphodiesterase, and rutabaga, which encodes an adenylyl cyclase, both disrupt short-term memory. Amnesiac encodes a pituitary adenylyl cyclase-activating peptide homolog and is required for middle-term memory. Here, we demonstrate that the Radish protein localizes to the cytoplasm and nucleus and is a PKA phosphorylation target in vitro. To characterize how these plasticity pathways may manifest at the synaptic level, we assayed synaptic connectivity and performed an expression analysis to detect altered transcriptional networks in rutabaga, dunce, amnesiac, and radish mutants. All four mutants disrupt specific aspects of synaptic connectivity at larval neuromuscular junctions (NMJs). Genome-wide DNA microarray analysis revealed ∼375 transcripts that are altered in these mutants, suggesting defects in multiple neuronal signaling pathways. In particular, the transcriptional target Lapsyn, which encodes a leucine-rich repeat cell adhesion protein, localizes to synapses and regulates synaptic growth. This analysis provides insights into the Radish-dependent ARM pathway and novel transcriptional targets that may contribute to memory processing in Drosophila. PMID:21422168

  20. Nicotine exposure during adolescence alters the rules for prefrontal cortical synaptic plasticity during adulthood

    PubMed Central

    Goriounova, Natalia A.; Mansvelder, Huibert D.

    2012-01-01

    The majority of adolescents report to have smoked a cigarette at least once. Adolescence is a critical period of brain development during which maturation of areas involved in cognitive functioning, such as the medial prefrontal cortex (mPFC), is still ongoing. Tobacco smoking during this age may compromise the normal course of prefrontal development and lead to cognitive impairments in later life. In addition, adolescent smokers suffer from attention deficits, which progress with the years of smoking. Recent studies in rodents reveal the molecular changes induced by adolescent nicotine exposure that alter the functioning of synapses in the PFC and underlie the lasting effects on cognitive function. In particular, the expression and function of metabotropic glutamate receptors (mGluRs) are changed and this has an impact on short- and long-term plasticity of glutamatergic synapses in the PFC and ultimately on the attention performance. Here, we review and discuss these recent findings. PMID:22876231

  1. Tau pathology induces loss of GABAergic interneurons leading to altered synaptic plasticity and behavioral impairments

    PubMed Central

    2013-01-01

    Background Tau is a microtubule stabilizing protein and is mainly expressed in neurons. Tau aggregation into oligomers and tangles is considered an important pathological event in tauopathies, such as frontotemporal dementia (FTD) and Alzheimer’s disease (AD). Tauopathies are also associated with deficits in synaptic plasticity such as long-term potentiation (LTP), but the specific role of tau in the manifestation of these deficiencies is not well-understood. We examined long lasting forms of synaptic plasticity in JNPL3 (BL6) mice expressing mutant tau that is identified in some inherited FTDs. Results We found that aged (>12 months) JNPL3 (BL6) mice exhibit enhanced hippocampal late-phase (L-LTP), while young JNPL3 (BL6) mice (age 6 months) displayed normal L-LTP. This enhanced L-LTP in aged JNPL3 (BL6) mice was rescued with the GABAAR agonist, zolpidem, suggesting a loss of GABAergic function. Indeed, we found that mutant mice displayed a reduction in hippocampal GABAergic interneurons. Finally, we also found that expression of mutant tau led to severe sensorimotor-gating and hippocampus-dependent memory deficits in the aged JNPL3 (BL6) mice. Conclusions We show for the first time that hippocampal GABAergic function is impaired by pathological tau protein, leading to altered synaptic plasticity and severe memory deficits. Increased understanding of the molecular mechanisms underlying the synaptic failure in AD and FTD is critical to identifying targets for therapies to restore cognitive deficiencies associated with tauopathies. PMID:24252661

  2. Interactions between behaviorally relevant rhythms and synaptic plasticity alter coding in the piriform cortex

    PubMed Central

    Urban, Nathaniel N.

    2012-01-01

    Understanding how neural and behavioral timescales interact to influence cortical activity and stimulus coding is an important issue in sensory neuroscience. In air-breathing animals, voluntary changes in respiratory frequency alter the temporal patterning olfactory input. In the olfactory bulb, these behavioral timescales are reflected in the temporal properties of mitral/tufted (M/T) cell spike trains. As the odor information contained in these spike trains is relayed from the bulb to the cortex, interactions between presynaptic spike timing and short-term synaptic plasticity dictate how stimulus features are represented in cortical spike trains. Here we demonstrate how the timescales associated with respiratory frequency, spike timing and short-term synaptic plasticity interact to shape cortical responses. Specifically, we quantified the timescales of short-term synaptic facilitation and depression at excitatory synapses between bulbar M/T cells and cortical neurons in slices of mouse olfactory cortex. We then used these results to generate simulated M/T population synaptic currents that were injected into real cortical neurons. M/T population inputs were modulated at frequencies consistent with passive respiration or active sniffing. We show how the differential recruitment of short-term plasticity at breathing versus sniffing frequencies alters cortical spike responses. For inputs at sniffing frequencies, cortical neurons linearly encoded increases in presynaptic firing rates with increased phase locked, firing rates. In contrast, at passive breathing frequencies, cortical responses saturated with changes in presynaptic rate. Our results suggest that changes in respiratory behavior can gate the transfer of stimulus information between the olfactory bulb and cortex. PMID:22553016

  3. Exposure to low-dose rotenone precipitates synaptic plasticity alterations in PINK1 heterozygous knockout mice.

    PubMed

    Martella, G; Madeo, G; Maltese, M; Vanni, V; Puglisi, F; Ferraro, E; Schirinzi, T; Valente, E M; Bonanni, L; Shen, J; Mandolesi, G; Mercuri, N B; Bonsi, P; Pisani, A

    2016-07-01

    Heterozygous mutations in the PINK1 gene are considered a susceptibility factor to develop early-onset Parkinson's disease (PD), as supported by dopamine hypometabolism in asymptomatic mutation carriers and subtle alterations of dopamine-dependent striatal synaptic plasticity in heterozygous PINK1 knockout (PINK1(+/-)) mice. The aim of the present study was to investigate whether exposure to low-dose rotenone of heterozygous PINK1(+/-) mice, compared to their wild-type PINK1(+/+) littermates, could impact on dopamine-dependent striatal synaptic plasticity, in the absence of apparent structural alterations. Mice were exposed to a range of concentrations of rotenone (0.01-1mg/kg). Chronic treatment with concentrations of rotenone up to 0.8mg/kg did not cause manifest neuronal loss or changes in ATP levels both in the striatum or substantia nigra of PINK1(+/-) and PINK1(+/+) mice. Moreover, rotenone (up to 0.8mg/kg) treatment did not induce mislocalization of the mitochondrial membrane protein Tom20 and release of cytochrome c in PINK1(+/-) striata. Accordingly, basic electrophysiological properties of nigral dopaminergic and striatal medium spiny neurons (MSNs) were normal. Despite the lack of gross alterations in neuronal viability in chronically-treated PINK1(+/-), a complete loss of both long-term depression (LTD) and long-term potentiation (LTP) was recorded in MSNs from PINK1(+/-) mice treated with a low rotenone (0.1mg/kg) concentration. Even lower concentrations (0.01mg/kg) blocked LTP induction in heterozygous PINK1(+/-) MSNs compared to PINK1(+/+) mice. Of interest, chronic pretreatment with the antioxidants alpha-tocopherol and Trolox, a water-soluble analog of vitamin E and powerful antioxidant, rescued synaptic plasticity impairment, confirming that, at the doses we utilized, rotenone did not induce irreversible alterations. In this model, chronic exposure to low-doses of rotenone was not sufficient to alter mitochondrial integrity and ATP production, but

  4. Altered Expression of Glial and Synaptic Markers in the Anterior Hippocampus of Behaviorally Depressed Female Monkeys

    PubMed Central

    Willard, Stephanie L.; Hemby, Scott E.; Register, Thomas C.; McIntosh, Scot; Shively, Carol A.

    2014-01-01

    The anterior hippocampus is associated with emotional functioning and hippocampal volume is reduced in depression. We reported reduced neuropil volume and number of glia in the dentate gyrus (DG) and cornu ammonis (CA)1 of the anterior hippocampus in behaviorally depressed adult female cynomolgus macaques. To determine the biochemical correlates of morphometric and behavioral differences between behaviorally depressed and nondepressed adult female monkeys, glial and synaptic transcripts and protein levels were assessed in the DG, CA3 and CA1 of the anterior hippocampus. Glial fibrillary acidic protein (GFAP) was increased whereas spinophilin and postsynaptic density (PSD)-95 protein were decreased in the CA1 of depressed monkeys. GFAP was reciprocally related to spinophilin and PSD-95 protein in the CA1. Gene expression of GFAP paralleled the protein changes observed in the CA1 and was inversely related to serum estradiol levels in depressed monkeys. These results suggest that behavioral depression in female primates is accompanied by astrocytic and synaptic protein alterations in the CA1. Moreover, these findings indicate a potential role for estrogen in modulating astrocyte-mediated impairments in synaptic plasticity. PMID:24440617

  5. Time-course of alterations in pre- and post-synaptic chemoreceptor function during developmental hyperoxia

    PubMed Central

    Donnelly, David F.; Bavis, Ryan W.; Kim, Insook; Dbouk, Hassan A; Carroll, John L.

    2009-01-01

    Postnatal hyperoxia exposure reduces the carotid body response to acute hypoxia and produces a long-lasting impairment of the ventilatory response to hypoxia. The present work investigated the time-course of pre- and post-synaptic alterations following exposure to hyperoxia (Fio2=0.6) for 1, 3, 5, 8 and 14 days (d) starting at postnatal day 7 (P7) as compared to age-matched controls. Hyperoxia exposure for 1d enhanced the nerve response and glomus cell calcium response to acute hypoxia, but exposure for 3-5d caused a significant reduction in both. Hypoxia-induced catecholamine release and nerve conduction velocity were significantly decreased by 5d hyperoxia. We conclude that hyperoxia exerts pre-synaptic (glomus cell calcium and secretory responses) and post-synaptic (afferent nerve excitability) actions to initially enhance and then reduce the chemoreceptor response to acute hypoxia. The parallel changes in glomus cell calcium response and nerve response suggest causality between the two and that environmental hyperoxia can affect the coupling between acute hypoxia and glomus cell calcium regulation. PMID:19465165

  6. Differential splicing and glycosylation of Apoer2 alters synaptic plasticity and fear learning

    PubMed Central

    Wasser, Catherine R.; Masiulis, Irene; Durakoglugil, Murat S.; Lane-Donovan, Courtney; Xian, Xunde; Beffert, Uwe; Agarwala, Anandita; Hammer, Robert E.; Herz, Joachim

    2015-01-01

    Apoer2 is an essential receptor in the central nervous system that binds to the apolipoprotein ApoE. Various splice variants of Apoer2 are produced. We showed that Apoer2 lacking exon 16, which encodes the O-linked sugar (OLS) domain, altered the proteolytic processing and abundance of Apoer2 in cells and synapse number and function in mice. In cultured cells expressing this splice variant, extracellular cleavage of OLS-deficient Apoer2 was reduced, consequently preventing γ-secretase-dependent release of the intracellular domain of Apoer2. Mice expressing Apoer2 lacking the OLS domain had increased Apoer2 abundance in the brain, hippocampal spine density, and glutamate receptor abundance, but decreased synaptic efficacy. Mice expressing a form of Apoer2 lacking the OLS domain and containing an alternatively spliced cytoplasmic tail region that promotes glutamate receptor signaling showed enhanced hippocampal long-term potentiation (LTP), a phenomenon associated with learning and memory. However, these mice did not display enhanced spatial learning in the Morris water maze, and cued fear conditioning was reduced. Reducing the expression of the mutant Apoer2 allele so that the abundance of the protein was similar to that of Apoer2 in wild-type mice normalized spine density, hippocampal LTP, and cued fear learning. These findings demonstrated a role for ApoE receptors as regulators of synaptic glutamate receptor activity and established differential receptor glycosylation as a potential regulator of synaptic function and memory. PMID:25429077

  7. Alzheimer's disease and type 2 diabetes-related alterations in brain mitochondria, autophagy and synaptic markers.

    PubMed

    Carvalho, Cristina; Santos, Maria S; Oliveira, Catarina R; Moreira, Paula I

    2015-08-01

    We aimed to investigate mitochondrial function, biogenesis and autophagy in the brain of type 2 diabetes (T2D) and Alzheimer's disease (AD) mice. Isolated brain mitochondria and homogenates from cerebral cortex and hippocampus of wild-type (WT), triple transgenic AD (3xTg-AD) and T2D mice were used to evaluate mitochondrial functional parameters and protein levels of mitochondrial biogenesis, autophagy and synaptic integrity markers, respectively. A significant decrease in mitochondrial respiration, membrane potential and energy levels was observed in T2D and 3xTg-AD mice. Also, a significant decrease in the levels of autophagy-related protein 7 (ATG7) and glycosylated lysosomal membrane protein 1 (LAMP1) was observed in cerebral cortex and hippocampus of T2D and 3xTg-AD mice. Moreover, both brain regions of 3xTg-AD mice present lower levels of nuclear respiratory factor (NRF) 1 while the levels of NRF2 are lower in both brain regions of T2D and 3xTg-AD mice. A decrease in mitochondrial encoded, nicotinamide adenine dinucleotide dehydrogenase subunit 1 (ND1) was also observed in T2D and 3xTg-AD mice although only statistically significant in T2D cortex. Furthermore, a decrease in the levels of postsynaptic density protein 95 (PSD95) in the cerebral cortex of 3xTg-AD mice and in hippocampus of T2D and 3xTg-AD mice and a decrease in the levels of synaptosomal-associated protein 25 (SNAP 25) in the hippocampus of T2D and 3xTg-AD mice were observed suggesting synaptic integrity loss. These results support the idea that alterations in mitochondrial function, biogenesis and autophagy cause synaptic damage in AD and T2D. PMID:25960150

  8. Alteration of AMPA Receptor-Mediated Synaptic Transmission by Alexa Fluor 488 and 594 in Cerebellar Stellate Cells.

    PubMed

    Maroteaux, Matthieu; Liu, Siqiong June

    2016-01-01

    The fluorescent dyes, Alexa Fluor 488 and 594 are commonly used to visualize dendritic structures and the localization of synapses, both of which are critical for the spatial and temporal integration of synaptic inputs. However, the effect of the dyes on synaptic transmission is not known. Here we investigated whether Alexa Fluor dyes alter the properties of synaptic currents mediated by two subtypes of AMPA receptors (AMPARs) at cerebellar stellate cell synapses. In naive mice, GluA2-lacking AMPAR-mediated synaptic currents displayed an inwardly rectifying current-voltage (I-V) relationship due to blockade by cytoplasmic spermine at depolarized potentials. We found that the inclusion of 100 µm Alexa Fluor dye, but not 10 µm, in the pipette solution led to a gradual increase in the amplitude of EPSCs at +40 mV and a change in the I-V relationship from inwardly rectifying to more linear. In mice exposed to an acute stress, AMPARs switched to GluA2-containing receptors, and 100 µm Alexa Fluor 594 did not alter the I-V relationship of synaptic currents. Therefore, a high concentration of Alexa Fluor dye changed the I-V relationship of EPSCs at GluA2-lacking AMPAR synapses. PMID:27280156

  9. Alteration of AMPA Receptor-Mediated Synaptic Transmission by Alexa Fluor 488 and 594 in Cerebellar Stellate Cells123

    PubMed Central

    2016-01-01

    Abstract The fluorescent dyes, Alexa Fluor 488 and 594 are commonly used to visualize dendritic structures and the localization of synapses, both of which are critical for the spatial and temporal integration of synaptic inputs. However, the effect of the dyes on synaptic transmission is not known. Here we investigated whether Alexa Fluor dyes alter the properties of synaptic currents mediated by two subtypes of AMPA receptors (AMPARs) at cerebellar stellate cell synapses. In naive mice, GluA2-lacking AMPAR-mediated synaptic currents displayed an inwardly rectifying current–voltage (I–V) relationship due to blockade by cytoplasmic spermine at depolarized potentials. We found that the inclusion of 100 µm Alexa Fluor dye, but not 10 µm, in the pipette solution led to a gradual increase in the amplitude of EPSCs at +40 mV and a change in the I–V relationship from inwardly rectifying to more linear. In mice exposed to an acute stress, AMPARs switched to GluA2-containing receptors, and 100 µm Alexa Fluor 594 did not alter the I–V relationship of synaptic currents. Therefore, a high concentration of Alexa Fluor dye changed the I–V relationship of EPSCs at GluA2-lacking AMPAR synapses. PMID:27280156

  10. Cognitive impairment in Gdi1-deficient mice is associated with altered synaptic vesicle pools and short-term synaptic plasticity, and can be corrected by appropriate learning training

    PubMed Central

    Bianchi, Veronica; Farisello, Pasqualina; Baldelli, Pietro; Meskenaite, Virginia; Milanese, Marco; Vecellio, Matteo; Mühlemann, Sven; Lipp, Hans Peter; Bonanno, Giambattista; Benfenati, Fabio; Toniolo, Daniela; D'Adamo, Patrizia

    2009-01-01

    The GDI1 gene, responsible in human for X-linked non-specific mental retardation, encodes αGDI, a regulatory protein common to all GTPases of the Rab family. Its alteration, leading to membrane accumulation of different Rab GTPases, may affect multiple steps in neuronal intracellular traffic. Using electron microscopy and electrophysiology, we now report that lack of αGDI impairs several steps in synaptic vesicle (SV) biogenesis and recycling in the hippocampus. Alteration of the SV reserve pool (RP) and a 50% reduction in the total number of SV in adult synapses may be dependent on a defective endosomal-dependent recycling and may lead to the observed alterations in short-term plasticity. As predicted by the synaptic characteristics of the mutant mice, the short-term memory deficit, observed when using fear-conditioning protocols with short intervals between trials, disappeared when the Gdi1 mutants were allowed to have longer intervals between sessions. Likewise, previously observed deficits in radial maze learning could be corrected by providing less challenging pre-training. This implies that an intact RP of SVs is necessary for memory processing under challenging conditions in mice. The possibility to correct the learning deficit in mice may have clinical implication for future studies in human. PMID:18829665

  11. Fmr1 deficiency promotes age-dependent alterations in the cortical synaptic proteome

    PubMed Central

    Tang, Bin; Wang, Tingting; Wan, Huida; Han, Li; Qin, Xiaoyan; Zhang, Yaoyang; Wang, Jian; Yu, Chunlei; Berton, Fulvia; Francesconi, Walter; Yates, John R.; Vanderklish, Peter W.; Liao, Lujian

    2015-01-01

    Fragile X syndrome (FXS) is an X-linked neurodevelopmental disorder characterized by severe intellectual disability and other symptoms including autism. Although caused by the silencing of a single gene, Fmr1 (fragile X mental retardation 1), the complexity of FXS pathogenesis is amplified because the encoded protein, FMRP, regulates the activity-dependent translation of numerous mRNAs. Although the mRNAs that associate with FMRP have been extensively studied, little is known regarding the proteins whose expression levels are altered, directly or indirectly, by loss of FMRP during brain development. Here we systematically measured protein expression in neocortical synaptic fractions from Fmr1 knockout (KO) and wild-type (WT) mice at both adolescent and adult stages. Although hundreds of proteins are up-regulated in the absence of FMRP in young mice, this up-regulation is largely diminished in adulthood. Up-regulated proteins included previously unidentified as well as known targets involved in synapse formation and function and brain development and others linked to intellectual disability and autism. Comparison with putative FMRP target mRNAs and autism susceptibility genes revealed substantial overlap, consistent with the idea that the autism endophenotype of FXS is due to a “multiple hit” effect of FMRP loss, particularly within the PSD95 interactome. Through studies of de novo protein synthesis in primary cortical neurons from KO and WT mice, we found that neurons lacking FMRP produce nascent proteins at higher rates, many of which are synaptic proteins and encoded by FMRP target mRNAs. Our results provide a greatly expanded view of protein changes in FXS and identify age-dependent effects of FMRP in shaping the neuronal proteome. PMID:26307763

  12. Third Trimester Equivalent Alcohol Exposure Reduces Modulation of Glutamatergic Synaptic Transmission by 5-HT1A Receptors in the Rat Hippocampal CA3 Region

    PubMed Central

    Morton, Russell A.; Valenzuela, C. Fernando

    2016-01-01

    Fetal alcohol exposure has been associated with many neuropsychiatric disorders that have been linked to altered serotonin (5-hydroxytryptamine; 5-HT) signaling, including depression and anxiety. During the first 2 weeks of postnatal life in rodents (equivalent to the third trimester of human pregnancy) 5-HT neurons undergo significant functional maturation and their axons reach target regions in the forebrain (e.g., cortex and hippocampus). The objective of this study was to identify the effects of third trimester ethanol (EtOH) exposure on hippocampal 5-HT signaling. Using EtOH vapor inhalation chambers, we exposed rat pups to EtOH for 4 h/day from postnatal day (P) 2 to P12. The average serum EtOH concentration in the pups was 0.13 ± 0.04 g/dl (legal intoxication limit in humans = 0.08 g/dl). We used brain slices to assess the modulatory actions of 5-HT on field excitatory postsynaptic potentials in the hippocampal CA3 region at P13-P15. Application of the GABAA/glycine receptor antagonist, picrotoxin, caused broadening of field excitatory postsynaptic potentials (fEPSPs), an effect that was reversed by application of 5-HT in slices from air exposed rats. However, this effect of 5-HT was absent in EtOH exposed animals. In slices from naïve animals, application of a 5-HT1A receptor antagonist blocked the effect of 5-HT on the fEPSPs recorded in presence of picrotoxin, suggesting that third trimester ethanol exposure acts by inhibiting the function of these receptors. Studies indicate that 5-HT1A receptors play a critical role in the development of hippocampal circuits. Therefore, inhibition of these receptors by third trimester ethanol exposure could contribute to the pathophysiology of fetal alcohol spectrum disorders. PMID:27375424

  13. Third Trimester Equivalent Alcohol Exposure Reduces Modulation of Glutamatergic Synaptic Transmission by 5-HT1A Receptors in the Rat Hippocampal CA3 Region.

    PubMed

    Morton, Russell A; Valenzuela, C Fernando

    2016-01-01

    Fetal alcohol exposure has been associated with many neuropsychiatric disorders that have been linked to altered serotonin (5-hydroxytryptamine; 5-HT) signaling, including depression and anxiety. During the first 2 weeks of postnatal life in rodents (equivalent to the third trimester of human pregnancy) 5-HT neurons undergo significant functional maturation and their axons reach target regions in the forebrain (e.g., cortex and hippocampus). The objective of this study was to identify the effects of third trimester ethanol (EtOH) exposure on hippocampal 5-HT signaling. Using EtOH vapor inhalation chambers, we exposed rat pups to EtOH for 4 h/day from postnatal day (P) 2 to P12. The average serum EtOH concentration in the pups was 0.13 ± 0.04 g/dl (legal intoxication limit in humans = 0.08 g/dl). We used brain slices to assess the modulatory actions of 5-HT on field excitatory postsynaptic potentials in the hippocampal CA3 region at P13-P15. Application of the GABAA/glycine receptor antagonist, picrotoxin, caused broadening of field excitatory postsynaptic potentials (fEPSPs), an effect that was reversed by application of 5-HT in slices from air exposed rats. However, this effect of 5-HT was absent in EtOH exposed animals. In slices from naïve animals, application of a 5-HT1A receptor antagonist blocked the effect of 5-HT on the fEPSPs recorded in presence of picrotoxin, suggesting that third trimester ethanol exposure acts by inhibiting the function of these receptors. Studies indicate that 5-HT1A receptors play a critical role in the development of hippocampal circuits. Therefore, inhibition of these receptors by third trimester ethanol exposure could contribute to the pathophysiology of fetal alcohol spectrum disorders. PMID:27375424

  14. Radiation-induced alterations in synaptic neurotransmission of dentate granule cells depend on the dose and species of charged particles.

    PubMed

    Marty, V N; Vlkolinsky, R; Minassian, N; Cohen, T; Nelson, G A; Spigelman, I

    2014-12-01

    The evaluation of potential health risks associated with neuronal exposure to space radiation is critical for future long duration space travel. The purpose of this study was to evaluate and compare the effects of low-dose proton and high-energy charged particle (HZE) radiation on electrophysiological parameters of the granule cells in the dentate gyrus (DG) of the hippocampus and its associated functional consequences. We examined excitatory and inhibitory neurotransmission in DG granule cells (DGCs) in dorsal hippocampal slices from male C57BL/6 mice at 3 months after whole body irradiation with accelerated proton, silicon or iron particles. Multielectrode arrays were used to investigate evoked field synaptic potentials, an extracellular measurement of synaptic excitability in the perforant path to DG synaptic pathway. Whole-cell patch clamp recordings were used to measure miniature excitatory postsynaptic currents (mEPSCs) and miniature inhibitory postsynaptic currents (mIPSCs) in DGCs. Exposure to proton radiation increased synaptic excitability and produced dose-dependent decreases in amplitude and charge transfer of mIPSCs, without affecting the expression of γ-aminobutyric acid type A receptor α2, β3 and γ2 subunits determined by Western blotting. Exposure to silicon radiation had no significant effects on synaptic excitability, mEPSCs or mIPSCs of DGCs. Exposure to iron radiation had no effect on synaptic excitability and mIPSCs, but significantly increased mEPSC frequency at 1 Gy, without changes in mEPSC kinetics, suggesting a presynaptic mechanism. Overall, the data suggest that proton and HZE exposure results in radiation dose- and species-dependent long-lasting alterations in synaptic neurotransmission, which could cause radiation-induced impairment of hippocampal-dependent cognitive functions. PMID:25402556

  15. Glutamatergic Transmission: A Matter of Three

    PubMed Central

    Martínez-Lozada, Zila; Ortega, Arturo

    2015-01-01

    Glutamatergic transmission in the vertebrate brain requires the involvement of glia cells, in a continuous molecular dialogue. Glial glutamate receptors and transporters are key molecules that sense synaptic activity and by these means modify their physiology in the short and long term. Posttranslational modifications that regulate protein-protein interactions and modulate transmitter removal are triggered in glial cells by neuronal released glutamate. Moreover, glutamate signaling cascades in these cells are linked to transcriptional and translational control and are critically involved in the control of the so-called glutamate/glutamine shuttle and by these means in glutamatergic neurotransmission. In this contribution, we summarize our current understanding of the biochemical consequences of glutamate synaptic activity in their surrounding partners and dissect the molecular mechanisms that allow neurons to take control of glia physiology to ensure proper glutamate-mediated neuronal communication. PMID:26345375

  16. Xyloside primed glycosaminoglycans alter hair bundle micromechanical coupling and synaptic transmission: Pharmacokinetics

    NASA Astrophysics Data System (ADS)

    Holman, Holly A.; Tran, Vy M.; Nguyen, Lynn Y.; Arungundram, Sailaja; Kalita, Mausam; Kuberan, Balagurunathan; Rabbitt, Richard D.

    2015-12-01

    Glycosaminoglycans (GAGs) are ubiquitous in the inner ear, and disorders altering their structure or production often result in debilitating hearing and balance deficits. The specific mechanisms responsible for loss of hair-cell function are not well understood. We recently reported that introduction of a novel BODIPY conjugated xyloside (BX) into the endolymph primes fluorescent GAGs in vivo [6, 15]. Confocal and two-photon fluorescence imaging revealed rapid turnover and assembly of a glycocalyx enveloping the kinocilia and extending into the cupula, a structure that presumably serves as a mechanical link between the hair bundle and the cupula. Extracellular fluorescence was also observed around the basolateral surface of hair cells and surrounding afferent nerve projections into the crista. Single unit afferent recordings during mechanical hair bundle stimulation revealed temporary interruption of synaptic transmission following BX administration followed by recovery, demonstrating an essential role for GAGs in function of the hair cell synapse. In the present work we present a pharmacokinetic model to quantify the time course of BX primed GAG production and turnover in the ear.

  17. Xyloside primed glycosaminoglycans alter hair bundle micromechanical coupling and synaptic transmission: Pharmacokinetics

    SciTech Connect

    Holman, Holly A.; Nguyen, Lynn Y.; Tran, Vy M.; Arungundram, Sailaja; Kalita, Mausam; Kuberan, Balagurunathan; Rabbitt, Richard D.

    2015-12-31

    Glycosaminoglycans (GAGs) are ubiquitous in the inner ear, and disorders altering their structure or production often result in debilitating hearing and balance deficits. The specific mechanisms responsible for loss of hair-cell function are not well understood. We recently reported that introduction of a novel BODIPY conjugated xyloside (BX) into the endolymph primes fluorescent GAGs in vivo [6, 15]. Confocal and two-photon fluorescence imaging revealed rapid turnover and assembly of a glycocalyx enveloping the kinocilia and extending into the cupula, a structure that presumably serves as a mechanical link between the hair bundle and the cupula. Extracellular fluorescence was also observed around the basolateral surface of hair cells and surrounding afferent nerve projections into the crista. Single unit afferent recordings during mechanical hair bundle stimulation revealed temporary interruption of synaptic transmission following BX administration followed by recovery, demonstrating an essential role for GAGs in function of the hair cell synapse. In the present work we present a pharmacokinetic model to quantify the time course of BX primed GAG production and turnover in the ear.

  18. Cholinergic Synaptic Transmissions Were Altered after Single Sevoflurane Exposure in Drosophila Pupa

    PubMed Central

    Chen, Rongfa; Zhang, Tao; Kuang, Liting; Chen, Zhen; Ran, Dongzhi; Niu, Yang; Gu, Huaiyu

    2015-01-01

    Purpose. Sevoflurane, one of the most used general anesthetics, is widely used in clinical practice all over the world. Previous studies indicated that sevoflurane could induce neuron apoptosis and neural deficit causing query in the safety of anesthesia using sevoflurane. The present study was designed to investigate the effects of sevoflurane on electrophysiology in Drosophila pupa whose excitatory neurotransmitter is acetylcholine early after sevoflurane exposure using whole brain recording technique. Methods. Wide types of Drosophila (canton-s flies) were allocated to control and sevoflurane groups randomly. Sevoflurane groups (1% sevoflurane; 2% sevoflurane; 3% sevoflurane) were exposed to sevoflurane and the exposure lasted 5 hours, respectively. All flies were subjected to electrophysiology experiment using patch clamp 24 hours after exposure. Results. The results showed that, 24 hours after sevoflurane exposure, frequency but not the amplitude of miniature excitatory postsynaptic currents (mEPSCs) was significantly reduced (P < 0.05). Furthermore, we explored the underlying mechanism and found that calcium currents density, which partially regulated the frequency of mEPSCs, was significantly reduced after sevoflurane exposure (P < 0.05). Conclusions. All these suggested that sevoflurane could alter the mEPSCs that are related to synaptic plasticity partially through modulating calcium channel early after sevoflurane exposure. PMID:25705662

  19. Acute and chronic ethanol exposure differentially regulate CB1 receptor function at glutamatergic synapses in the rat basolateral amygdala.

    PubMed

    Robinson, Stacey L; Alexander, Nancy J; Bluett, Rebecca J; Patel, Sachin; McCool, Brian A

    2016-09-01

    The endogenous cannabinoid (eCB) system has been suggested to play a key role in ethanol preference and intake, the acute effects of ethanol, and in the development of withdrawal symptoms following ethanol dependence. Ethanol-dependent alterations in glutamatergic signaling within the lateral/basolateral nucleus of the amygdala (BLA) are critical for the development and expression of withdrawal-induced anxiety. Notably, the eCB system significantly regulates both glutamatergic and GABAergic synaptic activity within the BLA. Chronic ethanol exposure significantly alters eCB system expression within regions critical to the expression of emotionality and anxiety-related behavior, including the BLA. Here, we investigated specific interactions between the BLA eCB system and its functional regulation of synaptic activity during acute and chronic ethanol exposure. In tissue from ethanol naïve-rats, a prolonged acute ethanol exposure caused a dose dependent inhibition of glutamatergic synaptic activity via a presynaptic mechanism that was occluded by CB1 antagonist/inverse agonists SR141716a and AM251. Importantly, this acute ethanol inhibition was attenuated following 10 day chronic intermittent ethanol vapor exposure (CIE). CIE exposure also significantly down-regulated CB1-mediated presynaptic inhibition at glutamatergic afferent terminals but spared CB1-inhibition of GABAergic synapses arising from local inhibitory-interneurons. CIE also significantly elevated BLA N-arachidonoylethanolamine (AEA or anandamide) levels and decreased CB1 receptor protein levels. Collectively, these data suggest a dynamic regulation of the BLA eCB system by acute and chronic ethanol. PMID:26707595

  20. Engrailed Alters the Specificity of Synaptic Connections of Drosophila Auditory Neurons with the Giant Fiber

    PubMed Central

    Pézier, Adeline; Jezzini, Sami H.; Marie, Bruno

    2014-01-01

    We show that a subset of sound-detecting Johnston's Organ neurons (JONs) in Drosophila melanogaster, which express the transcription factors Engrailed (En) and Invected (Inv), form mixed electrical and chemical synaptic inputs onto the giant fiber (GF) dendrite. These synaptic connections are detected by trans-synaptic Neurobiotin (NB) transfer and by colocalization of Bruchpilot-short puncta. We then show that misexpressing En postmitotically in a second subset of sound-responsive JONs causes them to form ectopic electrical and chemical synapses with the GF, in turn causing that postsynaptic neuron to redistribute its dendritic branches into the vicinity of these afferents. We also introduce a simple electrophysiological recording paradigm for quantifying the presynaptic and postsynaptic electrical activity at this synapse, by measuring the extracellular sound-evoked potentials (SEPs) from the antennal nerve while monitoring the likelihood of the GF firing an action potential in response to simultaneous subthreshold sound and voltage stimuli. Ectopic presynaptic expression of En strengthens the synaptic connection, consistent with there being more synaptic contacts formed. Finally, RNAi-mediated knockdown of En and Inv in postmitotic neurons reduces SEP amplitude but also reduces synaptic strength at the JON–GF synapse. Overall, these results suggest that En and Inv in JONs regulate both neuronal excitability and synaptic connectivity. PMID:25164665

  1. Archaerhodopsin Selectively and Reversibly Silences Synaptic Transmission through Altered pH.

    PubMed

    El-Gaby, Mohamady; Zhang, Yu; Wolf, Konstantin; Schwiening, Christof J; Paulsen, Ole; Shipton, Olivia A

    2016-08-23

    Tools that allow acute and selective silencing of synaptic transmission in vivo would be invaluable for understanding the synaptic basis of specific behaviors. Here, we show that presynaptic expression of the proton pump archaerhodopsin enables robust, selective, and reversible optogenetic synaptic silencing with rapid onset and offset. Two-photon fluorescence imaging revealed that this effect is accompanied by a transient increase in pH restricted to archaerhodopsin-expressing boutons. Crucially, clamping intracellular pH abolished synaptic silencing without affecting the archaerhodopsin-mediated hyperpolarizing current, indicating that changes in pH mediate the synaptic silencing effect. To verify the utility of this technique, we used trial-limited, archaerhodopsin-mediated silencing to uncover a requirement for CA3-CA1 synapses whose afferents originate from the left CA3, but not those from the right CA3, for performance on a long-term memory task. These results highlight optogenetic, pH-mediated silencing of synaptic transmission as a spatiotemporally selective approach to dissecting synaptic function in behaving animals. PMID:27524609

  2. More sensitivity of cortical GABAergic neurons than glutamatergic neurons in response to acidosis.

    PubMed

    Liu, Hua; Li, Fang; Wang, Chunyan; Su, Zhiqiang

    2016-05-25

    Acidosis impairs brain functions. Neuron-specific mechanisms underlying acidosis-induced brain dysfunction remain elusive. We studied the sensitivity of cortical GABAergic neurons and glutamatergic neurons to acidosis by whole-cell recording in brain slices. The acidification to the neurons was induced by perfusing artificial cerebral spinal fluid with lower pH. This acidification impairs excitability and synaptic transmission in the glutamatergic and GABAergic neurons. Acidosis impairs spiking capacity in the GABAergic neurons more than in the glutamatergic neurons. Acidosis also strengthens glutamatergic synaptic transmission and attenuates GABAergic synaptic transmission on the GABAergic neurons more than the glutamatergic neurons, which results in the functional impairment of these GABAergic neurons. This acidosis-induced dysfunction predominantly in the cortical GABAergic neurons drives the homeostasis of neuronal networks toward overexcitation and exacerbates neuronal impairment. PMID:27116702

  3. Dose-dependent changes in the synaptic strength on dopamine neurons and locomotor activity after cocaine exposure

    PubMed Central

    Wanat, M.J.; Bonci, A.

    2016-01-01

    Changes in synaptic strength on ventral tegmental area (VTA) dopamine neurons are thought to play a critical role in the development of addiction-related behaviors. However, it is unknown how a single injection of cocaine at different doses affects locomotor activity, behavioral sensitization, and glutamatergic synaptic strength on VTA dopamine neurons in mice. We observed that behavioral sensitization to a challenge cocaine injection scaled with the dose of cocaine received one day prior. Interestingly, the locomotor activity after the initial exposure to different doses of cocaine corresponded to the changes in glutamatergic strength on VTA dopamine neurons. These results in mice suggest that a single exposure to cocaine dose-dependently affects excitatory synapses on VTA dopamine neurons, and that this acute synaptic alteration is directly associated with the locomotor responses to cocaine and not to behavioral sensitization. PMID:18655120

  4. Glutamatergic Neurons Induce Expression of Functional Glutamatergic Synapses in Primary Myotubes

    PubMed Central

    Ettorre, Michele; Lorenzetto, Erika; Laperchia, Claudia; Baiguera, Cristina; Branca, Caterina; Benarese, Manuela; Spano, PierFranco; Pizzi, Marina; Buffelli, Mario

    2012-01-01

    Background The functioning of the nervous system depends upon the specificity of its synaptic contacts. The mechanisms triggering the expression of the appropriate receptors on postsynaptic membrane and the role of the presynaptic partner in the differentiation of postsynaptic structures are little known. Methods and Findings To address these questions we cocultured murine primary muscle cells with several glutamatergic neurons, either cortical, cerebellar or hippocampal. Immunofluorescence and electrophysiology analyses revealed that functional excitatory synaptic contacts were formed between glutamatergic neurons and muscle cells. Moreover, immunoprecipitation and immunofluorescence experiments showed that typical anchoring proteins of central excitatory synapses coimmunoprecipitate and colocalize with rapsyn, the acetylcholine receptor anchoring protein at the neuromuscular junction. Conclusions These results support an important role of the presynaptic partner in the induction and differentiation of the postsynaptic structures. PMID:22347480

  5. Alterations in Brain Inflammation, Synaptic Proteins, and Adult Hippocampal Neurogenesis during Epileptogenesis in Mice Lacking Synapsin2.

    PubMed

    Chugh, Deepti; Ali, Idrish; Bakochi, Anahita; Bahonjic, Elma; Etholm, Lars; Ekdahl, Christine T

    2015-01-01

    Synapsins are pre-synaptic vesicle-associated proteins linked to the pathogenesis of epilepsy through genetic association studies in humans. Deletion of synapsins causes an excitatory/inhibitory imbalance, exemplified by the epileptic phenotype of synapsin knockout mice. These mice develop handling-induced tonic-clonic seizures starting at the age of about 3 months. Hence, they provide an opportunity to study epileptogenic alterations in a temporally controlled manner. Here, we evaluated brain inflammation, synaptic protein expression, and adult hippocampal neurogenesis in the epileptogenic (1 and 2 months of age) and tonic-clonic (3.5-4 months) phase of synapsin 2 knockout mice using immunohistochemical and biochemical assays. In the epileptogenic phase, region-specific microglial activation was evident, accompanied by an increase in the chemokine receptor CX3CR1, interleukin-6, and tumor necrosis factor-α, and a decrease in chemokine keratinocyte chemoattractant/ growth-related oncogene. Both post-synaptic density-95 and gephyrin, scaffolding proteins at excitatory and inhibitory synapses, respectively, showed a significant up-regulation primarily in the cortex. Furthermore, we observed an increase in the inhibitory adhesion molecules neuroligin-2 and neurofascin and potassium chloride co-transporter KCC2. Decreased expression of γ-aminobutyric acid receptor-δ subunit and cholecystokinin was also evident. Surprisingly, hippocampal neurogenesis was reduced in the epileptogenic phase. Taken together, we report molecular alterations in brain inflammation and excitatory/inhibitory balance that could serve as potential targets for therapeutics and diagnostic biomarkers. In addition, the regional differences in brain inflammation and synaptic protein expression indicate an epileptogenic zone from where the generalized seizures in synapsin 2 knockout mice may be initiated or spread. PMID:26177381

  6. Maternal Dexamethasone Exposure Alters Synaptic Inputs to Gonadotropin-Releasing Hormone Neurons in the Early Postnatal Rat

    PubMed Central

    Lim, Wei Ling; Idris, Marshita Mohd; Kevin, Felix Suresh; Soga, Tomoko; Parhar, Ishwar S.

    2016-01-01

    Maternal dexamethasone [(DEX); a glucocorticoid receptor agonist] exposure delays pubertal onset and alters reproductive behavior in the adult offspring. However, little is known whether maternal DEX exposure affects the offspring’s reproductive function by disrupting the gonadotropin-releasing hormone (GnRH) neuronal function in the brain. Therefore, this study determined the exposure of maternal DEX on the GnRH neuronal spine development and synaptic cluster inputs to GnRH neurons using transgenic rats expressing enhanced green fluorescent protein (EGFP) under the control of GnRH promoter. Pregnant females were administered with DEX (0.1 mg/kg) or vehicle (VEH, water) daily during gestation day 13–20. Confocal imaging was used to examine the spine density of EGFP–GnRH neurons by three-dimensional rendering and synaptic cluster inputs to EGFP–GnRH neurons by synapsin I immunohistochemistry on postnatal day 0 (P0) males. The spine morphology and number on GnRH neurons did not change between the P0 males following maternal DEX and VEH treatment. The number of synaptic clusters within the organum vasculosum of the lamina terminalis (OVLT) was decreased by maternal DEX exposure in P0 males. Furthermore, the number and levels of synaptic cluster inputs in close apposition with GnRH neurons was decreased following maternal DEX exposure in the OVLT region of P0 males. In addition, the postsynaptic marker molecule, postsynaptic density 95, was observed in GnRH neurons following both DEX and VEH treatment. These results suggest that maternal DEX exposure alters neural afferent inputs to GnRH neurons during early postnatal stage, which could lead to reproductive dysfunction during adulthood.

  7. Expression of Glutamatergic Genes in Healthy Humans across 16 Brain Regions; Altered Expression in the Hippocampus after Chronic Exposure to Alcohol or Cocaine

    PubMed Central

    Enoch, Mary-Anne; Rosser, Alexandra A.; Zhou, Zhifeng; Mash, Deborah C.; Yuan, Qiaoping; Goldman, David

    2014-01-01

    We analyzed global patterns of expression in genes related to glutamatergic neurotransmission (glutamatergic genes) in healthy human adult brain before determining the effects of chronic alcohol and cocaine exposure on gene expression in the hippocampus. RNA-Seq data from ‘BrainSpan’ was obtained across 16 brain regions from nine control adults. We also generated RNA-Seq data from postmortem hippocampus from eight alcoholics, eight cocaine addicts and eight controls. Expression analyses were undertaken of 28 genes encoding glutamate ionotropic (AMPA, kainate, NMDA) and metabotropic receptor subunits, together with glutamate transporters. The expression of each gene was fairly consistent across the brain with the exception of the cerebellum, the thalamic mediodorsal nucleus and the striatum. GRIN1, encoding the essential NMDA subunit, had the highest expression across all brain regions. Six factors accounted for 84% of the variance in global gene expression. GRIN2B (encoding GluN2B), was up-regulated in both alcoholics and cocaine addicts (FDR corrected p = 0.008). Alcoholics showed up-regulation of three genes relative to controls and cocaine addicts: GRIA4 (encoding GluA4), GRIK3 (GluR7) and GRM4 (mGluR4). Expression of both GRM3 (mGluR3) and GRIN2D (GluN2D) was up-regulated in alcoholics and down-regulated in cocaine addicts relative to controls. Glutamatergic genes are moderately to highly expressed throughout the brain. Six factors explain nearly all the variance in global gene expression. At least in the hippocampus, chronic alcohol use largely up-regulates glutamatergic genes. The NMDA GluN2B receptor subunit might be implicated in a common pathway to addiction, possibly in conjunction with the GABAB1 receptor subunit. PMID:25262781

  8. Sleep loss alters synaptic and intrinsic neuronal properties in mouse prefrontal cortex

    PubMed Central

    Winters, Bradley D.; Huang, Yanhua H.; Dong, Yan; Krueger, James M.

    2011-01-01

    Despite sleep-loss-induced cognitive deficits, little is known about the cellular adaptations that occur with sleep loss. We used brain slices obtained from mice that were sleep deprived for 8 h to examine the electrophysiological effects of sleep deprivation (SD). We employed a modified pedestal (flowerpot) over water method for SD that eliminated rapid eye movement sleep and greatly reduced non-rapid eye movement sleep. In layer V/VI pyramidal cells of the medial prefrontal cortex, miniature excitatory post synaptic current amplitude was slightly reduced, miniature inhibitory post synaptic currents were unaffected, and intrinsic membrane excitability was increased after SD. PMID:21962531

  9. Modulation of swimming behavior in the medicinal leech. IV. Serotonin-induced alteration of synaptic interactions between neurons of the swim circuit.

    PubMed

    Mangan, P S; Cometa, A K; Friesen, W O

    1994-12-01

    Serotonin enhances the expression of swimming in the medicinal leech Hirudo medicinalis. These two reports examine the physiological causes underlying this modulation. The initial paper (Mangan et al. 1994) demonstrated that serotonin enhanced the participation of inhibitory swim motor neurons (MNs) in the generation of the swimming rhythm in the isolated nerve cord. In experiments reported here, we examined whether synaptic interactions between neurons of the swim circuit are altered by serotonin. Following exposure to 50 microM serotonin, pairwise intracellular recording revealed the presence of a time-dependent synaptic decrement. Synaptic decrement was characterized by: 1) a substantial decline in synaptic inhibition (half-decay time about 0.4 s) during constant presynaptic excitation; 2) a reduced half-time of recovery from synaptic inhibition; and 3) a strong dependence on the presynaptic neuron's membrane potential. We found little alteration in the physiology of synaptic transmission involving MNs following amine depletion in leech nerve cords. We propose that alterations in synaptic interactions resulting from exposure to elevated serotonin levels, coupled with the changes in MN cellular properties described earlier, are crucial to the increased efficacy of MNs in participating in generating and expressing the leech swimming rhythm. PMID:7807416

  10. Synaptic dysfunction in Parkinson's disease.

    PubMed

    Picconi, Barbara; Piccoli, Giovanni; Calabresi, Paolo

    2012-01-01

    Activity-dependent modifications in synaptic efficacy, such as long-term depression (LTD) and long-term potentiation (LTP), represent key cellular substrates for adaptive motor control and procedural memory. The impairment of these two forms of synaptic plasticity in the nucleus striatum could account for the onset and the progression of motor and cognitive symptoms of Parkinson's disease (PD), characterized by the massive degeneration of dopaminergic neurons. In fact, both LTD and LTP are peculiarly controlled and modulated by dopaminergic transmission coming from nigrostriatal terminals. Changes in corticostriatal and nigrostriatal neuronal excitability may influence profoundly the threshold for the induction of synaptic plasticity, and changes in striatal synaptic transmission efficacy are supposed to play a role in the occurrence of PD symptoms. Understanding of these maladaptive forms of synaptic plasticity has mostly come from the analysis of experimental animal models of PD. A series of cellular and synaptic alterations occur in the striatum of experimental parkinsonism in response to the massive dopaminergic loss. In particular, dysfunctions in trafficking and subunit composition of glutamatergic NMDA receptors on striatal efferent neurons contribute to the clinical features of the experimental parkinsonism. Interestingly, it has become increasingly evident that in striatal spiny neurons, the correct assembly of NMDA receptor complex at the postsynaptic site is a major player in early phases of PD, and it is sensitive to distinct degrees of DA denervation. The molecular defects at the basis of PD progression may be not confined just at the postsynaptic neuron: accumulating evidences have recently shown that the genes linked to PD play a critical role at the presynaptic site. DA release into the synaptic cleft relies on a proper presynaptic vesicular transport; impairment of SV trafficking, modification of DA flow, and altered presynaptic plasticity have

  11. Widespread alterations in the synaptic proteome of the adolescent cerebral cortex following prenatal immune activation in rats.

    PubMed

    Györffy, Balázs A; Gulyássy, Péter; Gellén, Barbara; Völgyi, Katalin; Madarasi, Dóra; Kis, Viktor; Ozohanics, Olivér; Papp, Ildikó; Kovács, Péter; Lubec, Gert; Dobolyi, Árpád; Kardos, József; Drahos, László; Juhász, Gábor; Kékesi, Katalin A

    2016-08-01

    An increasing number of studies have revealed associations between pre- and perinatal immune activation and the development of schizophrenia and autism spectrum disorders (ASDs). Accordingly, neuroimmune crosstalk has a considerably large impact on brain development during early ontogenesis. While a plethora of heterogeneous abnormalities have already been described in established maternal immune activation (MIA) rodent and primate animal models, which highly correlate to those found in human diseases, the underlying molecular background remains obscure. In the current study, we describe the long-term effects of MIA on the neocortical pre- and postsynaptic proteome of adolescent rat offspring in detail. Molecular differences were revealed in sub-synaptic fractions, which were first thoroughly characterized using independent methods. The widespread proteomic examination of cortical samples from offspring exposed to maternal lipopolysaccharide administration at embryonic day 13.5 was conducted via combinations of different gel-based proteomic techniques and tandem mass spectrometry. Our experimentally validated proteomic data revealed more pre- than postsynaptic protein level changes in the offspring. The results propose the relevance of altered synaptic vesicle recycling, cytoskeletal structure and energy metabolism in the presynaptic region in addition to alterations in vesicle trafficking, the cytoskeleton and signal transduction in the postsynaptic compartment in MIA offspring. Differing levels of the prominent signaling regulator molecule calcium/calmodulin-dependent protein kinase II in the postsynapse was validated and identified specifically in the prefrontal cortex. Finally, several potential common molecular regulators of these altered proteins, which are already known to be implicated in schizophrenia and ASD, were identified and assessed. In summary, unexpectedly widespread changes in the synaptic molecular machinery in MIA rats were demonstrated which

  12. Parental THC exposure leads to compulsive heroin-seeking and altered striatal synaptic plasticity in the subsequent generation.

    PubMed

    Szutorisz, Henrietta; DiNieri, Jennifer A; Sweet, Eric; Egervari, Gabor; Michaelides, Michael; Carter, Jenna M; Ren, Yanhua; Miller, Michael L; Blitzer, Robert D; Hurd, Yasmin L

    2014-05-01

    Recent attention has been focused on the long-term impact of cannabis exposure, for which experimental animal studies have validated causal relationships between neurobiological and behavioral alterations during the individual's lifetime. Here, we show that adolescent exposure to Δ(9)-tetrahydrocannabinol (THC), the main psychoactive component of cannabis, results in behavioral and neurobiological abnormalities in the subsequent generation of rats as a consequence of parental germline exposure to the drug. Adult F1 offspring that were themselves unexposed to THC displayed increased work effort to self-administer heroin, with enhanced stereotyped behaviors during the period of acute heroin withdrawal. On the molecular level, parental THC exposure was associated with changes in the mRNA expression of cannabinoid, dopamine, and glutamatergic receptor genes in the striatum, a key component of the neuronal circuitry mediating compulsive behaviors and reward sensitivity. Specifically, decreased mRNA and protein levels, as well as NMDA receptor binding were observed in the dorsal striatum of adult offspring as a consequence of germline THC exposure. Electrophysiologically, plasticity was altered at excitatory synapses of the striatal circuitry that is known to mediate compulsive and goal-directed behaviors. These findings demonstrate that parental history of germline THC exposure affects the molecular characteristics of the striatum, can impact offspring phenotype, and could possibly confer enhanced risk for psychiatric disorders in the subsequent generation. PMID:24385132

  13. Glutamatergic transmission aberration: a major cause of behavioral deficits in a murine model of Down's syndrome.

    PubMed

    Kaur, Gurjinder; Sharma, Ajay; Xu, Wenjin; Gerum, Scott; Alldred, Melissa J; Subbanna, Shivakumar; Basavarajappa, Balapal S; Pawlik, Monika; Ohno, Masuo; Ginsberg, Stephen D; Wilson, Donald A; Guilfoyle, David N; Levy, Efrat

    2014-04-01

    Trisomy 21, or Down's syndrome (DS), is the most common genetic cause of intellectual disability. Altered neurotransmission in the brains of DS patients leads to hippocampus-dependent learning and memory deficiency. Although genetic mouse models have provided important insights into the genes and mechanisms responsible for DS-specific changes, the molecular mechanisms leading to memory deficits are not clear. We investigated whether the segmental trisomy model of DS, Ts[Rb(12.1716)]2Cje (Ts2), exhibits hippocampal glutamatergic transmission abnormalities and whether these alterations cause behavioral deficits. Behavioral assays demonstrated that Ts2 mice display a deficit in nest building behavior, a measure of hippocampus-dependent nonlearned behavior, as well as dysfunctional hippocampus-dependent spatial memory tested in the object-placement and the Y-maze spontaneous alternation tasks. Magnetic resonance spectra measured in the hippocampi revealed a significantly lower glutamate concentration in Ts2 as compared with normal disomic (2N) littermates. The glutamate deficit accompanied hippocampal NMDA receptor1 (NMDA-R1) mRNA and protein expression level downregulation in Ts2 compared with 2N mice. In concert with these alterations, paired-pulse analyses suggested enhanced synaptic inhibition and/or lack of facilitation in the dentate gyrus of Ts2 compared with 2N mice. Ts2 mice also exhibited disrupted synaptic plasticity in slice recordings of the hippocampal CA1 region. Collectively, these findings imply that deficits in glutamate and NMDA-R1 may be responsible for impairments in synaptic plasticity in the hippocampus associated with behavioral dysfunctions in Ts2 mice. Thus, these findings suggest that glutamatergic deficits have a significant role in causing intellectual disabilities in DS. PMID:24719089

  14. Propofol, but not etomidate, increases corticosterone levels and induces long-term alteration in hippocampal synaptic activity in neonatal rats.

    PubMed

    Xu, Changqing; Seubert, Christoph N; Gravenstein, Nikolaus; Martynyuk, Anatoly E

    2016-04-01

    Animal studies provide strong evidence that general anesthetics (GAs), administered during the early postnatal period, induce long-term cognitive and neurological abnormalities. Because the brain growth spurt in rodents is delayed compared to that in humans, a fundamental question is whether the postnatal human brain is similarly vulnerable. Sevoflurane and propofol, GAs that share positive modulation of the gamma-aminobutyric acid type A receptor (GABAAR) function cause marked increase in corticosterone levels and induce long-term developmental alterations in synaptic activity in rodents. If synaptogenesis is affected, investigation of mechanisms of the synaptic effects of GAs is of high interest because synaptogenesis in humans continues for several years after birth. Here, we compared long-term synaptic effects of etomidate with those of propofol. Etomidate and propofol both positively modulate GABAAR activity, but in contrast to propofol, etomidate inhibits the adrenal synthesis of corticosterone. Postnatal day (P) 4, 5, or 6 rats received five injections of etomidate, propofol, or vehicle control during 5h of maternal separation. Endocrine effects of the anesthetics were evaluated by measuring serum levels of corticosterone immediately after anesthesia or maternal separation. The frequency and amplitude of miniature inhibitory postsynaptic currents (mIPSCs) in hippocampal CA1 pyramidal neurons were measured at P24-40 and P≥80. Only propofol caused a significant increase in serum corticosterone levels (F(4.26)=17.739, P<0.001). In contrast to increased frequency of mIPSCs in the propofol group (F(4.23)=8.731, p<0.001), mIPSC activity in the etomidate group was not different from that in the vehicle groups. The results of this study together with previously published data suggest that anesthetic-caused increase in corticosterone levels is required for GABAergic GAs to induce synaptic effects in the form of a long-term increase in the frequency of hippocampal m

  15. Alterations in synaptic plasticity coincide with deficits in spatial working memory in presymptomatic 3xTg-AD mice.

    PubMed

    Clark, Jason K; Furgerson, Matthew; Crystal, Jonathon D; Fechheimer, Marcus; Furukawa, Ruth; Wagner, John J

    2015-11-01

    Alzheimer's disease is a neurodegenerative condition believed to be initiated by production of amyloid-beta peptide, which leads to synaptic dysfunction and progressive memory loss. Using a mouse model of Alzheimer's disease (3xTg-AD), an 8-arm radial maze was employed to assess spatial working memory. Unexpectedly, the younger (3month old) 3xTg-AD mice were as impaired in the spatial working memory task as the older (8month old) 3xTg-AD mice when compared with age-matched NonTg control animals. Field potential recordings from the CA1 region of slices prepared from the ventral hippocampus were obtained to assess synaptic transmission and capability for synaptic plasticity. At 3months of age, the NMDA receptor-dependent component of LTP was reduced in 3xTg-AD mice. However, the magnitude of the non-NMDA receptor-dependent component of LTP was concomitantly increased, resulting in a similar amount of total LTP in 3xTg-AD and NonTg mice. At 8months of age, the NMDA receptor-dependent LTP was again reduced in 3xTg-AD mice, but now the non-NMDA receptor-dependent component was decreased as well, resulting in a significantly reduced total amount of LTP in 3xTg-AD compared with NonTg mice. Both 3 and 8month old 3xTg-AD mice exhibited reductions in paired-pulse facilitation and NMDA receptor-dependent LTP that coincided with the deficit in spatial working memory. The early presence of this cognitive impairment and the associated alterations in synaptic plasticity demonstrate that the onset of some behavioral and neurophysiological consequences can occur before the detectable presence of plaques and tangles in the 3xTg-AD mouse model of Alzheimer's disease. PMID:26385257

  16. Lead Exposure Impairs Hippocampus Related Learning and Memory by Altering Synaptic Plasticity and Morphology During Juvenile Period.

    PubMed

    Wang, Tao; Guan, Rui-Li; Liu, Ming-Chao; Shen, Xue-Feng; Chen, Jing Yuan; Zhao, Ming-Gao; Luo, Wen-Jing

    2016-08-01

    Lead (Pb) is an environmental neurotoxic metal. Pb exposure may cause neurobehavioral changes, such as learning and memory impairment, and adolescence violence among children. Previous animal models have largely focused on the effects of Pb exposure during early development (from gestation to lactation period) on neurobehavior. In this study, we exposed Sprague-Dawley rats during the juvenile stage (from juvenile period to adult period). We investigated the synaptic function and structural changes and the relationship of these changes to neurobehavioral deficits in adult rats. Our results showed that juvenile Pb exposure caused fear-conditioned memory impairment and anxiety-like behavior, but locomotion and pain behavior were indistinguishable from the controls. Electrophysiological studies showed that long-term potentiation induction was affected in Pb-exposed rats, and this was probably due to excitatory synaptic transmission impairment in Pb-exposed rats. We found that NMDA and AMPA receptor-mediated current was inhibited, whereas the GABA synaptic transmission was normal in Pb-exposed rats. NR2A and phosphorylated GluR1 expression decreased. Moreover, morphological studies showed that density of dendritic spines declined by about 20 % in the Pb-treated group. The spine showed an immature form in Pb-exposed rats, as indicated by spine size measurements. However, the length and arborization of dendrites were unchanged. Our results suggested that juvenile Pb exposure in rats is associated with alterations in the glutamate receptor, which caused synaptic functional and morphological changes in hippocampal CA1 pyramidal neurons, thereby leading to behavioral changes. PMID:26141123

  17. Loss of the Coffin-Lowry syndrome-associated gene RSK2 alters ERK activity, synaptic function and axonal transport in Drosophila motoneurons.

    PubMed

    Beck, Katherina; Ehmann, Nadine; Andlauer, Till F M; Ljaschenko, Dmitrij; Strecker, Katrin; Fischer, Matthias; Kittel, Robert J; Raabe, Thomas

    2015-11-01

    Plastic changes in synaptic properties are considered as fundamental for adaptive behaviors. Extracellular-signal-regulated kinase (ERK)-mediated signaling has been implicated in regulation of synaptic plasticity. Ribosomal S6 kinase 2 (RSK2) acts as a regulator and downstream effector of ERK. In the brain, RSK2 is predominantly expressed in regions required for learning and memory. Loss-of-function mutations in human RSK2 cause Coffin-Lowry syndrome, which is characterized by severe mental retardation and low IQ scores in affected males. Knockout of RSK2 in mice or the RSK ortholog in Drosophila results in a variety of learning and memory defects. However, overall brain structure in these animals is not affected, leaving open the question of the pathophysiological consequences. Using the fly neuromuscular system as a model for excitatory glutamatergic synapses, we show that removal of RSK function causes distinct defects in motoneurons and at the neuromuscular junction. Based on histochemical and electrophysiological analyses, we conclude that RSK is required for normal synaptic morphology and function. Furthermore, loss of RSK function interferes with ERK signaling at different levels. Elevated ERK activity was evident in the somata of motoneurons, whereas decreased ERK activity was observed in axons and the presynapse. In addition, we uncovered a novel function of RSK in anterograde axonal transport. Our results emphasize the importance of fine-tuning ERK activity in neuronal processes underlying higher brain functions. In this context, RSK acts as a modulator of ERK signaling. PMID:26398944

  18. Loss of the Coffin-Lowry syndrome-associated gene RSK2 alters ERK activity, synaptic function and axonal transport in Drosophila motoneurons

    PubMed Central

    Beck, Katherina; Ehmann, Nadine; Andlauer, Till F. M.; Ljaschenko, Dmitrij; Strecker, Katrin; Fischer, Matthias; Kittel, Robert J.; Raabe, Thomas

    2015-01-01

    ABSTRACT Plastic changes in synaptic properties are considered as fundamental for adaptive behaviors. Extracellular-signal-regulated kinase (ERK)-mediated signaling has been implicated in regulation of synaptic plasticity. Ribosomal S6 kinase 2 (RSK2) acts as a regulator and downstream effector of ERK. In the brain, RSK2 is predominantly expressed in regions required for learning and memory. Loss-of-function mutations in human RSK2 cause Coffin-Lowry syndrome, which is characterized by severe mental retardation and low IQ scores in affected males. Knockout of RSK2 in mice or the RSK ortholog in Drosophila results in a variety of learning and memory defects. However, overall brain structure in these animals is not affected, leaving open the question of the pathophysiological consequences. Using the fly neuromuscular system as a model for excitatory glutamatergic synapses, we show that removal of RSK function causes distinct defects in motoneurons and at the neuromuscular junction. Based on histochemical and electrophysiological analyses, we conclude that RSK is required for normal synaptic morphology and function. Furthermore, loss of RSK function interferes with ERK signaling at different levels. Elevated ERK activity was evident in the somata of motoneurons, whereas decreased ERK activity was observed in axons and the presynapse. In addition, we uncovered a novel function of RSK in anterograde axonal transport. Our results emphasize the importance of fine-tuning ERK activity in neuronal processes underlying higher brain functions. In this context, RSK acts as a modulator of ERK signaling. PMID:26398944

  19. Developmental Exposure to Perchlorate Alters Synaptic Transmission in Hippocampus of the Adult Rat

    PubMed Central

    Gilbert, Mary E.; Sui, Li

    2008-01-01

    Background Perchlorate is an environmental contaminant that blocks iodine uptake into the thyroid gland and reduces thyroid hormones. This action of perchlorate raises significant concern over its effects on brain development. Objectives The purpose of this study was to evaluate neurologic function in rats after developmental exposure to perchlorate. Methods Pregnant rats were exposed to 0, 30, 300, or 1,000 ppm perchlorate in drinking water from gestational day 6 until weaning. Adult male offspring were evaluated on a series of behavioral tasks and neurophysiologic measures of synaptic function in the hippocampus. Results At the highest perchlorate dose, triiodothyronine (T3) and thyroxine (T4) were reduced in pups on postnatal day 21. T4 in dams was reduced relative to controls by 16%, 28%, and 60% in the 30-, 300-, and 1,000-ppm dose groups, respectively. Reductions in T4 were associated with increases in thyroid-stimulating hormone in the high-dose group. No changes were seen in serum T3. Perchlorate did not impair motor activity, spatial learning, or fear conditioning. However, significant reductions in baseline synaptic transmission were observed in hippocampal field potentials at all dose levels. Reductions in inhibitory function were evident at 300 and 1,000 ppm, and augmentations in long-term potentiation were observed in the population spike measure at the highest dose. Conclusions Dose-dependent deficits in hippocampal synaptic function were detectable with relatively minor perturbations of the thyroid axis, indicative of an irreversible impairment in synaptic transmission in response to developmental exposure to perchlorate. PMID:18560531

  20. Glial abnormalities in substance use disorders and depression: Does shared glutamatergic dysfunction contribute to comorbidity?

    PubMed Central

    Niciu, Mark J.; Henter, Ioline D.; Sanacora, Gerard; Zarate, Carlos A.

    2014-01-01

    Objectives Preclinical and clinical research in neuropsychiatric disorders, particularly mood and substance use disorders, have historically focused on neurons; however, glial cells – astrocytes, microglia, and oligodendrocytes – also play key roles in these disorders. Methods Peer-reviewed PubMed/Medline articles published through December 2012 were identified using the following keyword combinations: glia, astrocytes, oligodendrocytes/glia, microglia, substance use, substance abuse, substance dependence, alcohol, opiate, opioid, cocaine, psychostimulants, stimulants, and glutamate. Results Depressive and substance use disorders are highly comorbid, suggesting a common or overlapping aetiology and pathophysiology. Reduced astrocyte cell number occurs in both disorders. Altered glutamate neurotransmission and metabolism – specifically changes in the levels/activity of transporters, receptors, and synaptic proteins potentially related to synaptic physiology – appear to be salient features of both disorders. Glial cell pathology may also underlie the pathophysiology of both disorders via impaired astrocytic production of neurotrophic factors. Microglial/neuroinflammatory pathology is also evident in both depressive and substance use disorders. Finally, oligodendrocyte impairment decreases myelination and impairs expression of myelin-related genes in both substance use and depressive disorders. Conclusions Glial-mediated glutamatergic dysfunction is a common neuropathological pathway in both substance use and depression. Therefore, glutamatergic neuromodulation is a rational drug target in this comorbidity. PMID:24024876

  1. Amyloid-β1-42 Disrupts Synaptic Plasticity by Altering Glutamate Recycling at the Synapse.

    PubMed

    Varga, Edina; Juhász, Gábor; Bozsó, Zsolt; Penke, Botond; Fülöp, Lívia; Szegedi, Viktor

    2015-01-01

    Alzheimer's disease (AD) is the most prevalent form of neurodegenerative disorders characterized by neuritic plaques containing amyloid-β peptide (Aβ) and neurofibrillary tangles. Evidence has been reported that Aβ(1-42) plays an essential pathogenic role in decreased spine density, impairment of synaptic plasticity, and neuronal loss with disruption of memory-related synapse function, all associated with AD. Experimentally, Aβ(1-42) oligomers perturb hippocampal long-term potentiation (LTP), an electrophysiological correlate of learning and memory. Aβ was also reported to perturb synaptic glutamate (Glu)-recycling by inhibiting excitatory-amino-acid-transporters. Elevated level of extracellular Glu leads to activation of perisynaptic receptors, including NR2B subunit containing NMDARs. These receptors were shown to induce impaired LTP and enhanced long-term depression and proapoptotic pathways, all central features of AD. In the present study, we investigated the role of Glu-recycling on Aβ(1-42)-induced LTP deficit in the CA1. We found that Aβ-induced LTP damage, which was mimicked by the Glu-reuptake inhibitor TBOA, could be rescued by blocking the NR2B subunit of NMDA receptors. Furthermore, decreasing the level of extracellular Glu using a Glu scavenger also restores TBOA or Aβ induces LTP damage. Overall, these results suggest that reducing ambient Glu in the brain can be protective against Aβ-induced synaptic disruption. PMID:25547631

  2. D-Serine and Serine Racemase Are Associated with PSD-95 and Glutamatergic Synapse Stability.

    PubMed

    Lin, Hong; Jacobi, Ariel A; Anderson, Stewart A; Lynch, David R

    2016-01-01

    D-serine is an endogenous coagonist at the glycine site of synaptic NMDA receptors (NMDARs), synthesized by serine racemase (SR) through conversion of L-serine. It is crucial for synaptic plasticity and is implicated in schizophrenia. Our previous studies demonstrated specific loss of SR, D-serine-responsive synaptic NMDARs, and glutamatergic synapses in cortical neurons lacking α7 nicotinic acetylcholine receptors, which promotes glutamatergic synapse formation and maturation during development. We thus hypothesize that D-serine and SR (D-serine/SR) are associated with glutamatergic synaptic development. Using morphological and molecular studies in cortical neuronal cultures, we demonstrate that D-serine/SR are associated with PSD-95 and NMDARs in postsynaptic neurons and with glutamatergic synapse stability during synaptic development. Endogenous D-serine and SR colocalize with PSD-95, but not presynaptic vesicular glutamate transporter 1 (VGLUT1), in glutamatergic synapses of cultured cortical neurons. Low-density astrocytes in cortical neuronal cultures lack SR expression but contain enriched D-serine in large vesicle-like structures, suggesting possible synthesis of D-serine in postsynaptic neurons and storage in astrocytes. More interestingly, endogenous D-serine and SR colocalize with PSD-95 in the postsynaptic terminals of glutamatergic synapses during early and late synaptic development, implicating involvement of D-serine/SR in glutamatergic synaptic development. Exogenous application of D-serine enhances the interactions of SR with PSD-95 and NR1, and increases the number of VGLUT1- and PSD-95-positive glutamatergic synapses, suggesting that exogenous D-serine enhances postsynaptic SR/PSD-95 signaling and stabilizes glutamatergic synapses during cortical synaptic development. This is blocked by NMDAR antagonist 2-amino-5-phosphonopentanoic acid (AP5) and 7-chlorokynurenic acid (7-CK), a specific antagonist at the glycine site of NMDARs, demonstrating

  3. D-Serine and Serine Racemase Are Associated with PSD-95 and Glutamatergic Synapse Stability

    PubMed Central

    Lin, Hong; Jacobi, Ariel A.; Anderson, Stewart A.; Lynch, David R.

    2016-01-01

    D-serine is an endogenous coagonist at the glycine site of synaptic NMDA receptors (NMDARs), synthesized by serine racemase (SR) through conversion of L-serine. It is crucial for synaptic plasticity and is implicated in schizophrenia. Our previous studies demonstrated specific loss of SR, D-serine-responsive synaptic NMDARs, and glutamatergic synapses in cortical neurons lacking α7 nicotinic acetylcholine receptors, which promotes glutamatergic synapse formation and maturation during development. We thus hypothesize that D-serine and SR (D-serine/SR) are associated with glutamatergic synaptic development. Using morphological and molecular studies in cortical neuronal cultures, we demonstrate that D-serine/SR are associated with PSD-95 and NMDARs in postsynaptic neurons and with glutamatergic synapse stability during synaptic development. Endogenous D-serine and SR colocalize with PSD-95, but not presynaptic vesicular glutamate transporter 1 (VGLUT1), in glutamatergic synapses of cultured cortical neurons. Low-density astrocytes in cortical neuronal cultures lack SR expression but contain enriched D-serine in large vesicle-like structures, suggesting possible synthesis of D-serine in postsynaptic neurons and storage in astrocytes. More interestingly, endogenous D-serine and SR colocalize with PSD-95 in the postsynaptic terminals of glutamatergic synapses during early and late synaptic development, implicating involvement of D-serine/SR in glutamatergic synaptic development. Exogenous application of D-serine enhances the interactions of SR with PSD-95 and NR1, and increases the number of VGLUT1- and PSD-95-positive glutamatergic synapses, suggesting that exogenous D-serine enhances postsynaptic SR/PSD-95 signaling and stabilizes glutamatergic synapses during cortical synaptic development. This is blocked by NMDAR antagonist 2-amino-5-phosphonopentanoic acid (AP5) and 7-chlorokynurenic acid (7-CK), a specific antagonist at the glycine site of NMDARs, demonstrating

  4. Executive function deficits and glutamatergic protein alterations in a progressive 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson's disease.

    PubMed

    Pflibsen, Lacey; Stang, Katherine A; Sconce, Michelle D; Wilson, Vanessa B; Hood, Rebecca L; Meshul, Charles K; Mitchell, Suzanne H

    2015-12-01

    Changes in executive function are at the root of most cognitive problems associated with Parkinson's disease. Because dopaminergic treatment does not necessarily alleviate deficits in executive function, it has been hypothesized that dysfunction of neurotransmitters/systems other than dopamine (DA) may be associated with this decrease in cognitive function. We have reported decreases in motor function and dopaminergic/glutamatergic biomarkers in a progressive 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) Parkinson's mouse model. Assessment of executive function and dopaminergic/glutamatergic biomarkers within the limbic circuit has not previously been explored in our model. Our results show progressive behavioral decline in a cued response task (a rodent model for frontal cortex cognitive function) with increasing weekly doses of MPTP. Although within the dorsolateral (DL) striatum mice that had been given MPTP showed a 63% and 83% loss of tyrosine hydroxylase and dopamine transporter expression, respectively, there were no changes in the nucleus accumbens or medial prefrontal cortex (mPFC). Furthermore, dopamine-1 receptor and vesicular glutamate transporter (VGLUT)-1 expression increased in the mPFC following DA loss. There were significant MPTP-induced decreases and increases in VGLUT-1 and VGLUT-2 expression, respectively, within the DL striatum. We propose that the behavioral decline following MPTP treatment may be associated with a change not only in cortical-cortical (VGLUT-1) glutamate function but also in striatal DA and glutamate (VGLUT-1/VGLUT-2) input. PMID:26332770

  5. Distinct Defects in Synaptic Differentiation of Neocortical Neurons in Response to Prenatal Valproate Exposure.

    PubMed

    Iijima, Yoko; Behr, Katharina; Iijima, Takatoshi; Biemans, Barbara; Bischofberger, Josef; Scheiffele, Peter

    2016-01-01

    Autism spectrum disorders (ASDs) are a heterogeneous group of neurodevelopmental disorders characterized by impairments in social interactions and stereotyped behaviors. Valproic acid (VPA) is frequently used to treat epilepsy and bipolar disorders. When taken during pregnancy, VPA increases the risk of the unborn child to develop an ASD. In rodents, in utero VPA exposure can precipitate behavioral phenotypes related to ASD in the offspring. Therefore, such rodent models may allow for identification of synaptic pathophysiology underlying ASD risk. Here, we systematically probed alterations in synaptic proteins that might contribute to autism-related behavior in the offspring of in utero VPA-exposed mice. Moreover, we tested whether direct VPA exposure of cultured neocortical neurons may recapitulate the molecular alterations seen in vivo. VPA-exposed neurons in culture exhibit a significant increase in the number of glutamatergic synapses accompanied by a significant decrease in the number of GABAergic synapses. This shift in excitatory/inhibitory balance results in substantially increased spontaneous activity in neuronal networks arising from VPA-exposed neurons. Pharmacological experiments demonstrate that the alterations in GABAergic and glutamatergic synaptic proteins and structures are largely caused by inhibition of histone deacetylases. Therefore, our study highlights an epigenetic mechanism underlying the synaptic pathophysiology in this ASD model. PMID:27264355

  6. Distinct Defects in Synaptic Differentiation of Neocortical Neurons in Response to Prenatal Valproate Exposure

    PubMed Central

    Iijima, Yoko; Behr, Katharina; Iijima, Takatoshi; Biemans, Barbara; Bischofberger, Josef; Scheiffele, Peter

    2016-01-01

    Autism spectrum disorders (ASDs) are a heterogeneous group of neurodevelopmental disorders characterized by impairments in social interactions and stereotyped behaviors. Valproic acid (VPA) is frequently used to treat epilepsy and bipolar disorders. When taken during pregnancy, VPA increases the risk of the unborn child to develop an ASD. In rodents, in utero VPA exposure can precipitate behavioral phenotypes related to ASD in the offspring. Therefore, such rodent models may allow for identification of synaptic pathophysiology underlying ASD risk. Here, we systematically probed alterations in synaptic proteins that might contribute to autism-related behavior in the offspring of in utero VPA-exposed mice. Moreover, we tested whether direct VPA exposure of cultured neocortical neurons may recapitulate the molecular alterations seen in vivo. VPA-exposed neurons in culture exhibit a significant increase in the number of glutamatergic synapses accompanied by a significant decrease in the number of GABAergic synapses. This shift in excitatory/inhibitory balance results in substantially increased spontaneous activity in neuronal networks arising from VPA-exposed neurons. Pharmacological experiments demonstrate that the alterations in GABAergic and glutamatergic synaptic proteins and structures are largely caused by inhibition of histone deacetylases. Therefore, our study highlights an epigenetic mechanism underlying the synaptic pathophysiology in this ASD model. PMID:27264355

  7. Knockout of Cyclophilin-D Provides Partial Amelioration of Intrinsic and Synaptic Properties Altered by Mild Traumatic Brain Injury.

    PubMed

    Sun, Jianli; Jacobs, Kimberle M

    2016-01-01

    Mitochondria are central to cell survival and Ca(2+) homeostasis due to their intracellular buffering capabilities. Mitochondrial dysfunction resulting in mitochondrial permeability transition pore (mPTP) opening has been reported after mild traumatic brain injury (mTBI). Cyclosporine A provides protection against the mPTP opening through its interaction with cyclophilin-D (CypD). A recent study has found that the extent of axonal injury after mTBI was diminished in neocortex in cyclophilin-D knockout (CypDKO) mice. Here we tested whether this CypDKO could also provide protection from the increased intrinsic and synaptic neuronal excitability previously described after mTBI in a mild central fluid percussion injury mice model. CypDKO mice were crossed with mice expressing yellow fluorescent protein (YFP) in layer V pyramidal neurons in neocortex to create CypDKO/YFP-H mice. Whole cell patch clamp recordings from axotomized (AX) and intact (IN) YFP+ layer V pyramidal neurons were made 1 and 2 days after sham or mTBI in slices from CypDKO/YFP-H mice. Both excitatory post synaptic currents (EPSCs) recorded in voltage clamp and intrinsic cellular properties, including action potential (AP), afterhyperpolarization (AHP), and depolarizing after potential (DAP) characteristics recorded in current clamp were evaluated. There was no significant difference between sham and mTBI for either spontaneous or miniature EPSC frequency, suggesting that CypDKO ameliorates excitatory synaptic abnormalities. There was a partial amelioration of intrinsic properties altered by mTBI. Alleviated were the increased slope of the AP frequency vs. injected current plot, the increased AP, AHP and DAP amplitudes. Other properties that saw a reversal that became significant in the opposite direction include the current rheobase and AP overshoot. The AP threshold remained depolarized and the input resistance remained increased in mTBI compared to sham. Additional altered properties suggest that

  8. Knockout of Cyclophilin-D Provides Partial Amelioration of Intrinsic and Synaptic Properties Altered by Mild Traumatic Brain Injury

    PubMed Central

    Sun, Jianli; Jacobs, Kimberle M.

    2016-01-01

    Mitochondria are central to cell survival and Ca2+ homeostasis due to their intracellular buffering capabilities. Mitochondrial dysfunction resulting in mitochondrial permeability transition pore (mPTP) opening has been reported after mild traumatic brain injury (mTBI). Cyclosporine A provides protection against the mPTP opening through its interaction with cyclophilin-D (CypD). A recent study has found that the extent of axonal injury after mTBI was diminished in neocortex in cyclophilin-D knockout (CypDKO) mice. Here we tested whether this CypDKO could also provide protection from the increased intrinsic and synaptic neuronal excitability previously described after mTBI in a mild central fluid percussion injury mice model. CypDKO mice were crossed with mice expressing yellow fluorescent protein (YFP) in layer V pyramidal neurons in neocortex to create CypDKO/YFP-H mice. Whole cell patch clamp recordings from axotomized (AX) and intact (IN) YFP+ layer V pyramidal neurons were made 1 and 2 days after sham or mTBI in slices from CypDKO/YFP-H mice. Both excitatory post synaptic currents (EPSCs) recorded in voltage clamp and intrinsic cellular properties, including action potential (AP), afterhyperpolarization (AHP), and depolarizing after potential (DAP) characteristics recorded in current clamp were evaluated. There was no significant difference between sham and mTBI for either spontaneous or miniature EPSC frequency, suggesting that CypDKO ameliorates excitatory synaptic abnormalities. There was a partial amelioration of intrinsic properties altered by mTBI. Alleviated were the increased slope of the AP frequency vs. injected current plot, the increased AP, AHP and DAP amplitudes. Other properties that saw a reversal that became significant in the opposite direction include the current rheobase and AP overshoot. The AP threshold remained depolarized and the input resistance remained increased in mTBI compared to sham. Additional altered properties suggest that the

  9. Flotillin-1 promotes formation of glutamatergic synapses in hippocampal neurons.

    PubMed

    Swanwick, Catherine Croft; Shapiro, Marietta E; Vicini, Stefano; Wenthold, Robert J

    2010-11-01

    Synapse malformation underlies numerous neurodevelopmental illnesses, including autism spectrum disorders. Here we identify the lipid raft protein flotillin-1 as a promoter of glutamatergic synapse formation. We cultured neurons from the hippocampus, a brain region important for learning and memory, and examined them at two weeks in vitro, a time period rich with synapse formation. Double-label immunocytochemistry of native flot-1 with glutamatergic and GABAergic synapse markers showed that flot-1 was preferentially colocalized with the glutamatergic presynaptic marker vesicular glutamate transporter 1 (VGLUT1), compared to the GABAergic presynaptic marker glutamic acid decarboxylase-65 (GAD-65). Triple-label immunocytochemistry of native flot-1, VGLUT1, and NR1, the obligatory subunit of NMDA receptors, indicates that Flot-1 was preferentially localized to synaptic rather than extrasynaptic NR1. Furthermore, electrophysiological results using whole-cell patch clamp showed that Flot-1 increased the frequency of miniature excitatory postsynaptic currents (mEPSCs) but not miniature inhibitory postsynaptic currents (mIPSCs), whereas amplitude and decay kinetics of either type of synaptic current was not affected. Corresponding immunocytochemical data confirmed that the number of glutamatergic synapses increased with flot-1 overexpression. Overall, our anatomical and physiological results show that flot-1 enhances the formation of glutamatergic synapses but not GABAergic synapses, suggesting that the role of flot-1 in neurodevelopmental disorders should be explored. PMID:20669324

  10. Differential Control of Cocaine Self-Administration by GABAergic and Glutamatergic CB1 Cannabinoid Receptors.

    PubMed

    Martín-García, Elena; Bourgoin, Lucie; Cathala, Adeline; Kasanetz, Fernando; Mondesir, Miguel; Gutiérrez-Rodriguez, Ana; Reguero, Leire; Fiancette, Jean-François; Grandes, Pedro; Spampinato, Umberto; Maldonado, Rafael; Piazza, Pier Vincenzo; Marsicano, Giovanni; Deroche-Gamonet, Véronique

    2016-08-01

    The type 1 cannabinoid receptor (CB1) modulates numerous neurobehavioral processes and is therefore explored as a target for the treatment of several mental and neurological diseases. However, previous studies have investigated CB1 by targeting it globally, regardless of its two main neuronal localizations on glutamatergic and GABAergic neurons. In the context of cocaine addiction this lack of selectivity is critical since glutamatergic and GABAergic neuronal transmission is involved in different aspects of the disease. To determine whether CB1 exerts different control on cocaine seeking according to its two main neuronal localizations, we used mutant mice with deleted CB1 in cortical glutamatergic neurons (Glu-CB1) or in forebrain GABAergic neurons (GABA-CB1). In Glu-CB1, gene deletion concerns the dorsal telencephalon, including neocortex, paleocortex, archicortex, hippocampal formation and the cortical portions of the amygdala. In GABA-CB1, it concerns several cortical and non-cortical areas including the dorsal striatum, nucleus accumbens, thalamic, and hypothalamic nuclei. We tested complementary components of cocaine self-administration, separating the influence of primary and conditioned effects. Mechanisms underlying each phenotype were explored using in vivo microdialysis and ex vivo electrophysiology. We show that CB1 expression in forebrain GABAergic neurons controls mouse sensitivity to cocaine, while CB1 expression in cortical glutamatergic neurons controls associative learning processes. In accordance, in the nucleus accumbens, GABA-CB1 receptors control cocaine-induced dopamine release and Glu-CB1 receptors control AMPAR/NMDAR ratio; a marker of synaptic plasticity. Our findings demonstrate a critical distinction of the altered balance of Glu-CB1 and GABA-CB1 activity that could participate in the vulnerability to cocaine abuse and addiction. Moreover, these novel insights advance our understanding of CB1 neuropathophysiology. PMID:26612422

  11. Evolution of Network Synchronization during Early Epileptogenesis Parallels Synaptic Circuit Alterations

    PubMed Central

    Lillis, Kyle P.; Wang, Zemin; Mail, Michelle; Zhao, Grace Q.; Berdichevsky, Yevgeny; Bacskai, Brian

    2015-01-01

    In secondary epilepsy, a seizure-prone neural network evolves during the latent period between brain injury and the onset of spontaneous seizures. The nature of the evolution is largely unknown, and even its completeness at the onset of seizures has recently been challenged by measures of gradually decreasing intervals between subsequent seizures. Sequential calcium imaging of neuronal activity, in the pyramidal cell layer of mouse hippocampal in vitro preparations, during early post-traumatic epileptogenesis demonstrated rapid increases in the fraction of neurons that participate in interictal activity. This was followed by more gradual increases in the rate at which individual neurons join each developing seizure, the pairwise correlation of neuronal activities as a function of the distance separating the pair, and network-wide measures of functional connectivity. These data support the continued evolution of synaptic connectivity in epileptic networks beyond the latent period: early seizures occur when recurrent excitatory pathways are largely polysynaptic, while ongoing synaptic remodeling after the onset of epilepsy enhances intranetwork connectivity as well as the onset and spread of seizure activity. PMID:26156993

  12. Evolution of Network Synchronization during Early Epileptogenesis Parallels Synaptic Circuit Alterations.

    PubMed

    Lillis, Kyle P; Wang, Zemin; Mail, Michelle; Zhao, Grace Q; Berdichevsky, Yevgeny; Bacskai, Brian; Staley, Kevin J

    2015-07-01

    In secondary epilepsy, a seizure-prone neural network evolves during the latent period between brain injury and the onset of spontaneous seizures. The nature of the evolution is largely unknown, and even its completeness at the onset of seizures has recently been challenged by measures of gradually decreasing intervals between subsequent seizures. Sequential calcium imaging of neuronal activity, in the pyramidal cell layer of mouse hippocampal in vitro preparations, during early post-traumatic epileptogenesis demonstrated rapid increases in the fraction of neurons that participate in interictal activity. This was followed by more gradual increases in the rate at which individual neurons join each developing seizure, the pairwise correlation of neuronal activities as a function of the distance separating the pair, and network-wide measures of functional connectivity. These data support the continued evolution of synaptic connectivity in epileptic networks beyond the latent period: early seizures occur when recurrent excitatory pathways are largely polysynaptic, while ongoing synaptic remodeling after the onset of epilepsy enhances intranetwork connectivity as well as the onset and spread of seizure activity. PMID:26156993

  13. Molecular cause and functional impact of altered synaptic lipid signaling due to a prg-1 gene SNP.

    PubMed

    Vogt, Johannes; Yang, Jenq-Wei; Mobascher, Arian; Cheng, Jin; Li, Yunbo; Liu, Xingfeng; Baumgart, Jan; Thalman, Carine; Kirischuk, Sergei; Unichenko, Petr; Horta, Guilherme; Radyushkin, Konstantin; Stroh, Albrecht; Richers, Sebastian; Sahragard, Nassim; Distler, Ute; Tenzer, Stefan; Qiao, Lianyong; Lieb, Klaus; Tüscher, Oliver; Binder, Harald; Ferreiros, Nerea; Tegeder, Irmgard; Morris, Andrew J; Gropa, Sergiu; Nürnberg, Peter; Toliat, Mohammad R; Winterer, Georg; Luhmann, Heiko J; Huai, Jisen; Nitsch, Robert

    2016-01-01

    Loss of plasticity-related gene 1 (PRG-1), which regulates synaptic phospholipid signaling, leads to hyperexcitability via increased glutamate release altering excitation/inhibition (E/I) balance in cortical networks. A recently reported SNP in prg-1 (R345T/mutPRG-1) affects ~5 million European and US citizens in a monoallelic variant. Our studies show that this mutation leads to a loss-of-PRG-1 function at the synapse due to its inability to control lysophosphatidic acid (LPA) levels via a cellular uptake mechanism which appears to depend on proper glycosylation altered by this SNP. PRG-1(+/-) mice, which are animal correlates of human PRG-1(+/mut) carriers, showed an altered cortical network function and stress-related behavioral changes indicating altered resilience against psychiatric disorders. These could be reversed by modulation of phospholipid signaling via pharmacological inhibition of the LPA-synthesizing molecule autotaxin. In line, EEG recordings in a human population-based cohort revealed an E/I balance shift in monoallelic mutPRG-1 carriers and an impaired sensory gating, which is regarded as an endophenotype of stress-related mental disorders. Intervention into bioactive lipid signaling is thus a promising strategy to interfere with glutamate-dependent symptoms in psychiatric diseases. PMID:26671989

  14. Alterations in the motor cortical and striatal glutamatergic system and D-serine levels in the bilateral 6-hydroxydopamine rat model for Parkinson's disease.

    PubMed

    El Arfani, Anissa; Albertini, Giulia; Bentea, Eduard; Demuyser, Thomas; Van Eeckhaut, Ann; Smolders, Ilse; Massie, Ann

    2015-09-01

    Parkinson's disease (PD) is hallmarked by progressive degeneration of the substantia nigra pars compacta (SNc) neurons and is associated with aberrant glutamatergic activity. However, studies on the glutamatergic system in the motor cortex and striatum, two motor loop-related areas, are lacking in the clinically relevant bilateral SNc 6-hydroxydopamine (6-OHDA) rat model, and therefore led to the rationale behind the present investigations. Using Western blotting, the expression levels of the glial glutamate transporters, GLT-1 and GLAST, as well as xCT, the specific subunit of system xc(-), and the vesicular glutamate transporters, VGLUT1 and 2 were investigated at two different time points (1 week and 2 weeks) post-lesion. In addition, the total content of glutamate was measured. Moreover, the total D-serine levels were, to the best of our knowledge, studied for the first time in these two PD-related areas in the bilateral 6-OHDA rat model. In the motor cortex, no significant changes were observed in the different glutamate transporter expression levels in the bilaterally-lesioned rats. In the striatum, GLAST expression was significantly decreased at both time points whereas VGLUT1 and 2 expressions were significantly decreased 2 weeks after bilateral 6-OHDA lesion. Interestingly, bilateral 6-OHDA SNc lesion resulted in an enhancement of the total d-serine content in both motor cortex and striatum at 1 week post-lesion suggesting its possible involvement in the pathophysiology of PD. In conclusion, this study demonstrates disturbed glutamate and D-serine regulation in the bilateral SNc-lesioned brain which could contribute to the behavioral impairments in PD. PMID:26172319

  15. mTORC1 Inhibition Corrects Neurodevelopmental and Synaptic Alterations in a Human Stem Cell Model of Tuberous Sclerosis.

    PubMed

    Costa, Veronica; Aigner, Stefan; Vukcevic, Mirko; Sauter, Evelyn; Behr, Katharina; Ebeling, Martin; Dunkley, Tom; Friedlein, Arno; Zoffmann, Sannah; Meyer, Claas A; Knoflach, Frédéric; Lugert, Sebastian; Patsch, Christoph; Fjeldskaar, Fatiha; Chicha-Gaudimier, Laurie; Kiialainen, Anna; Piraino, Paolo; Bedoucha, Marc; Graf, Martin; Jessberger, Sebastian; Ghosh, Anirvan; Bischofberger, Josef; Jagasia, Ravi

    2016-04-01

    Hyperfunction of the mTORC1 pathway has been associated with idiopathic and syndromic forms of autism spectrum disorder (ASD), including tuberous sclerosis, caused by loss of either TSC1 or TSC2. It remains largely unknown how developmental processes and biochemical signaling affected by mTORC1 dysregulation contribute to human neuronal dysfunction. Here, we have characterized multiple stages of neurogenesis and synapse formation in human neurons derived from TSC2-deleted pluripotent stem cells. Homozygous TSC2 deletion causes severe developmental abnormalities that recapitulate pathological hallmarks of cortical malformations in patients. Both TSC2(+/-) and TSC2(-/-) neurons display altered synaptic transmission paralleled by molecular changes in pathways associated with autism, suggesting the convergence of pathological mechanisms in ASD. Pharmacological inhibition of mTORC1 corrects developmental abnormalities and synaptic dysfunction during independent developmental stages. Our results uncouple stage-specific roles of mTORC1 in human neuronal development and contribute to a better understanding of the onset of neuronal pathophysiology in tuberous sclerosis. PMID:27052171

  16. DEVELOPMENTAL HYPOTHYROIDISM ALTERS SYNAPTIC TRANSMISSION IN DENTATE GYRUS AND AREA CA1 OF HIPPOCAMPUS.

    EPA Science Inventory

    Hypothyroidism during critical periods of brain developmental leads to learning deficits and alterations in hippocampal structure. Neurophysiological properties of the hippocampus, however, have not been well characterized. The present study examined field potentials evoked in...

  17. Glutamatergic Retinal Waves

    PubMed Central

    Kerschensteiner, Daniel

    2016-01-01

    Spontaneous activity patterns propagate through many parts of the developing nervous system and shape the wiring of emerging circuits. Prior to vision, waves of activity originating in the retina propagate through the lateral geniculate nucleus (LGN) of the thalamus to primary visual cortex (V1). Retinal waves have been shown to instruct the wiring of ganglion cell axons in LGN and of thalamocortical axons in V1 via correlation-based plasticity rules. Across species, retinal waves mature in three stereotypic stages (I–III), in which distinct circuit mechanisms give rise to unique activity patterns that serve specific functions in visual system refinement. Here, I review insights into the patterns, mechanisms, and functions of stage III retinal waves, which rely on glutamatergic signaling. As glutamatergic waves spread across the retina, neighboring ganglion cells with opposite light responses (ON vs. OFF) are activated sequentially. Recent studies identified lateral excitatory networks in the inner retina that generate and propagate glutamatergic waves, and vertical inhibitory networks that desynchronize the activity of ON and OFF cells in the wavefront. Stage III wave activity patterns may help segregate axons of ON and OFF ganglion cells in the LGN, and could contribute to the emergence of orientation selectivity in V1. PMID:27242446

  18. A Rat Model of Alzheimer’s Disease Based on Abeta42 and Pro-oxidative Substances Exhibits Cognitive Deficit and Alterations in Glutamatergic and Cholinergic Neurotransmitter Systems

    PubMed Central

    Petrasek, Tomas; Skurlova, Martina; Maleninska, Kristyna; Vojtechova, Iveta; Kristofikova, Zdena; Matuskova, Hana; Sirova, Jana; Vales, Karel; Ripova, Daniela; Stuchlik, Ales

    2016-01-01

    Alzheimer’s disease (AD) is one of the most serious human, medical, and socioeconomic burdens. Here we tested the hypothesis that a rat model of AD (Samaritan; Taconic Pharmaceuticals, USA) based on the application of amyloid beta42 (Abeta42) and the pro-oxidative substances ferrous sulfate heptahydrate and L-buthionine-(S, R)-sulfoximine, will exhibit cognitive deficits and disruption of the glutamatergic and cholinergic systems in the brain. Behavioral methods included the Morris water maze (MWM; long-term memory version) and the active allothetic place avoidance (AAPA) task (acquisition and reversal), testing spatial memory and different aspects of hippocampal function. Neurochemical methods included testing of the NR1/NR2A/NR2B subunits of NMDA receptors in the frontal cortex and CHT1 transporters in the hippocampus, in both cases in the right and left hemisphere separately. Our results show that Samaritan rats™ exhibit marked impairment in both the MWM and active place avoidance tasks, suggesting a deficit of spatial learning and memory. Moreover, Samaritan rats exhibited significant changes in NR2A expression and CHT1 activity compared to controls rats, mimicking the situation in patients with early stage AD. Taken together, our results corroborate the hypothesis that Samaritan rats are a promising model of AD in its early stages. PMID:27148049

  19. Obesity diminishes synaptic markers, alters microglial morphology, and impairs cognitive function

    PubMed Central

    Bocarsly, Miriam E.; Fasolino, Maria; Kane, Gary A.; LaMarca, Elizabeth A.; Kirschen, Gregory W.; Karatsoreos, Ilia N.; McEwen, Bruce S.; Gould, Elizabeth

    2015-01-01

    Obesity is a major public health problem affecting overall physical and emotional well-being. Despite compelling data suggesting an association between obesity and cognitive dysfunction, this phenomenon has received relatively little attention. Neuroimaging studies in obese humans report reduced size of brain regions involved in cognition, but few studies have investigated the cellular processes underlying cognitive decline in obesity or the influence of obesity on cognition in the absence of obesity-related illnesses. Here, a rat model of diet-induced obesity was used to explore changes in brain regions important for cognition. Obese rats showed deficits on cognitive tasks requiring the prefrontal and perirhinal cortex. Cognitive deficits were accompanied by decreased dendritic spine density and synaptic marker expression in both brain regions. Microglial morphology was also changed in the prefrontal cortex. Detrimental changes in the prefrontal cortex and perirhinal cortex occurred before metabolic syndrome or diabetes, suggesting that these brain regions may be particularly vulnerable to early stage obesity. PMID:26644559

  20. Obesity diminishes synaptic markers, alters microglial morphology, and impairs cognitive function.

    PubMed

    Bocarsly, Miriam E; Fasolino, Maria; Kane, Gary A; LaMarca, Elizabeth A; Kirschen, Gregory W; Karatsoreos, Ilia N; McEwen, Bruce S; Gould, Elizabeth

    2015-12-22

    Obesity is a major public health problem affecting overall physical and emotional well-being. Despite compelling data suggesting an association between obesity and cognitive dysfunction, this phenomenon has received relatively little attention. Neuroimaging studies in obese humans report reduced size of brain regions involved in cognition, but few studies have investigated the cellular processes underlying cognitive decline in obesity or the influence of obesity on cognition in the absence of obesity-related illnesses. Here, a rat model of diet-induced obesity was used to explore changes in brain regions important for cognition. Obese rats showed deficits on cognitive tasks requiring the prefrontal and perirhinal cortex. Cognitive deficits were accompanied by decreased dendritic spine density and synaptic marker expression in both brain regions. Microglial morphology was also changed in the prefrontal cortex. Detrimental changes in the prefrontal cortex and perirhinal cortex occurred before metabolic syndrome or diabetes, suggesting that these brain regions may be particularly vulnerable to early stage obesity. PMID:26644559

  1. APOE genotype alters glial activation and loss of synaptic markers in mice

    PubMed Central

    Zhu, Yuangui; Nwabuisi-Heath, Evelyn; Dumanis, Sonya B.; Tai, Leon; Yu, Chunjiang; Rebeck, G. William; Jo LaDu, Mary

    2011-01-01

    The E4 allele of the Apolipoprotein E (APOE) gene is the strongest genetic risk factor for late-onset Alzheimer's disease (AD), and affects clinical outcomes of chronic and acute brain damages. The mechanisms by which apoE affect diverse diseases and disorders may involve modulation of the glial response to various types of brain damages. We examined glial activation in a mouse model where each of the human APOE alleles are expressed under the endogenous mouse APOE promoter, as well as in APOE knock-out mice. APOE4 mice displayed increased glial activation in response to intracerebroventricular lipopolysaccharide (LPS) compared to APOE2 and APOE3 mice by several measures. There were higher levels of microglia/macrophage, astrocytes, and invading T-cells after LPS injection in APOE4 mice. APOE4 mice also displayed greater and more prolonged increases of cytokines (IL-1β, IL-6, TNF-α) than APOE2 and APOE3 mice. We found that APOE4 mice had greater synaptic protein loss after LPS injection, as measured by three different markers: PSD-95, Drebin, and synaptophysin. In all assays, APOE knock-out mice responded similar to APOE4 mice, suggesting that the apoE4 protein may lack anti-inflammatory characteristics of apoE2 and apoE3. Together, these findings demonstrate that APOE4 predisposes to inflammation, which could contribute to its association with Alzheimer's disease and other disorders. PMID:22228589

  2. Progressive accumulation of amyloid-β oligomers in Alzheimer’s disease and APP transgenic mice is accompanied by selective alterations in synaptic scaffold proteins

    PubMed Central

    Pham, Emiley; Crews, Leslie; Ubhi, Kiren; Hansen, Lawrence; Adame, Anthony; Cartier, Anna; Salmon, David; Galasko, Douglas; Michael, Sarah; Savas, Jeffrey N.; Yates, John R.; Glabe, Charles; Masliah, Eliezer

    2010-01-01

    The cognitive impairment in patients with Alzheimer’s disease is closely associated with synaptic loss in the neocortex and limbic system. Although the neurotoxic effects of aggregated amyloid-β (Aβ) oligomers in Alzheimer’s disease have been widely studied in experimental models, less is known about the characteristics of these aggregates across the spectrum of Alzheimer’s disease. Here, postmortem frontal cortex samples from control and Alzheimer’s disease patients were fractioned and analyzed for levels of oligomers and synaptic proteins. We found that levels of oligomers correlated with the severity of cognitive impairment (Blessed score and Mini-Mental), and with the loss of synaptic markers. Reduced levels of the synaptic vesicle protein vesicle-associated membrane protein-2 and the postsynaptic protein post-synaptic density-95 (PSD95) correlated with levels of oligomers in the various fractions analyzed. The strongest associations were found with Aβ dimers and pentamers. Co-immunoprecipitation and double-labeling experiments support the possibility that Aβ and PSD95 interact at the synaptic sites. Similarly, in transgenic mice expressing high levels of neuronal amyloid precursor protein (APP), Aβ co-immunoprecipitated with PSD95. This was accompanied by a reduction in the levels of the post-synaptic proteins Shank1 and 3 in Alzheimer’s disease patients and in the brains of APP transgenic mice. In conclusion, this study suggests that the presence of a subpopulation of Aβ oligomers in the brains of patients with Alzheimer’s disease might be related to alterations in selected synaptic proteins and cognitive impairment. PMID:20573181

  3. Altered Cortical Dynamics and Cognitive Function upon Haploinsufficiency of the Autism-Linked Excitatory Synaptic Suppressor MDGA2.

    PubMed

    Connor, Steven A; Ammendrup-Johnsen, Ina; Chan, Allen W; Kishimoto, Yasushi; Murayama, Chiaki; Kurihara, Naokazu; Tada, Atsushi; Ge, Yuan; Lu, Hong; Yan, Ryan; LeDue, Jeffrey M; Matsumoto, Hirotaka; Kiyonari, Hiroshi; Kirino, Yutaka; Matsuzaki, Fumio; Suzuki, Toshiharu; Murphy, Timothy H; Wang, Yu Tian; Yamamoto, Tohru; Craig, Ann Marie

    2016-09-01

    Mutations in a synaptic organizing pathway contribute to autism. Autism-associated mutations in MDGA2 (MAM domain containing glycosylphosphatidylinositol anchor 2) are thought to reduce excitatory/inhibitory transmission. However, we show that mutation of Mdga2 elevates excitatory transmission, and that MDGA2 blocks neuroligin-1 interaction with neurexins and suppresses excitatory synapse development. Mdga2(+/-) mice, modeling autism mutations, demonstrated increased asymmetric synapse density, mEPSC frequency and amplitude, and altered LTP, with no change in measures of inhibitory synapses. Behavioral assays revealed an autism-like phenotype including stereotypy, aberrant social interactions, and impaired memory. In vivo voltage-sensitive dye imaging, facilitating comparison with fMRI studies in autism, revealed widespread increases in cortical spontaneous activity and intracortical functional connectivity. These results suggest that mutations in MDGA2 contribute to altered cortical processing through the dual disadvantages of elevated excitation and hyperconnectivity, and indicate that perturbations of the NRXN-NLGN pathway in either direction from the norm increase risk for autism. PMID:27608760

  4. Altered Striatal Synaptic Function and Abnormal Behaviour in Shank3 Exon4-9 Deletion Mouse Model of Autism.

    PubMed

    Jaramillo, Thomas C; Speed, Haley E; Xuan, Zhong; Reimers, Jeremy M; Liu, Shunan; Powell, Craig M

    2016-03-01

    Shank3 is a multi-domain, synaptic scaffolding protein that organizes proteins in the postsynaptic density of excitatory synapses. Clinical studies suggest that ∼ 0.5% of autism spectrum disorder (ASD) cases may involve SHANK3 mutation/deletion. Patients with SHANK3 mutations exhibit deficits in cognition along with delayed/impaired speech/language and repetitive and obsessive/compulsive-like (OCD-like) behaviors. To examine how mutation/deletion of SHANK3 might alter brain function leading to ASD, we have independently created mice with deletion of Shank3 exons 4-9, a region implicated in ASD patients. We find that homozygous deletion of exons 4-9 (Shank3(e4-9) KO) results in loss of the two highest molecular weight isoforms of Shank3 and a significant reduction in other isoforms. Behaviorally, both Shank3(e4-9) heterozygous (HET) and Shank3(e4-9) KO mice display increased repetitive grooming, deficits in novel and spatial object recognition learning and memory, and abnormal ultrasonic vocalizations. Shank3(e4-9) KO mice also display abnormal social interaction when paired with one another. Analysis of synaptosome fractions from striata of Shank3(e4-9) KO mice reveals decreased Homer1b/c, GluA2, and GluA3 expression. Both Shank3(e4-9) HET and KO demonstrated a significant reduction in NMDA/AMPA ratio at excitatory synapses onto striatal medium spiny neurons. Furthermore, Shank3(e4-9) KO mice displayed reduced hippocampal LTP despite normal baseline synaptic transmission. Collectively these behavioral, biochemical and physiological changes suggest Shank3 isoforms have region-specific roles in regulation of AMPAR subunit localization and NMDAR function in the Shank3(e4-9) mutant mouse model of autism. PMID:26559786

  5. Early mood behavioral changes following exposure to monotonous environment during isolation stress is associated with altered hippocampal synaptic plasticity in male rats.

    PubMed

    Das, Saroj Kumar; Baitharu, Iswar; Barhwal, Kalpana; Hota, Sunil Kumar; Singh, Shashi Bala

    2016-01-26

    Social isolation stress and its effect on mood have been well reported, but the effect of monotony (a state of repetition of events for a considerable period of time without variation) on mood and hippocampal synaptic plasticity needs to be addressed. Present study was conducted on male Sprague-Dawley rats. Singly housed (SH) rats were subjected to monotony stress by physical, visual and pheromonal separation in specially designed animal segregation chamber. Fluoxetine (a selective serotonin reuptake inhibitor) was administered orally. Behavioral assessment showed anxiety and depression like traits in SH group. Monotony stress exposure to SH group resulted in increased pyknosis, decreased apical dendritic arborization and increased asymmetric (excitatory) synapses with the corresponding decrease in the symmetric (inhibitory) synapses in the hippocampal CA3 region. Monotonous environment during isolation stress also decreased the serotonin level and reduced the expression of synaptophysin and pCREB in the hippocampus. Fluoxetine administration to singly housed rats resulted in amelioration of altered mood along with improvement in serotonin and decrease in excitatory synaptic density but no change in altered inhibitory synaptic density in the hippocampus. These findings suggest that monotony during isolation contributes to early impairment in mood state by altering hippocampal synaptic density and neuronal morphology. PMID:26724221

  6. Altered short-term synaptic plasticity and reduced muscle strength in mice with impaired regulation of presynaptic CaV2.1 Ca2+ channels.

    PubMed

    Nanou, Evanthia; Yan, Jin; Whitehead, Nicholas P; Kim, Min Jeong; Froehner, Stanley C; Scheuer, Todd; Catterall, William A

    2016-01-26

    Facilitation and inactivation of P/Q-type calcium (Ca(2+)) currents through the regulation of voltage-gated Ca(2+) (CaV) 2.1 channels by Ca(2+) sensor (CaS) proteins contributes to the facilitation and rapid depression of synaptic transmission in cultured neurons that transiently express CaV2.1 channels. To examine the modulation of endogenous CaV2.1 channels by CaS proteins in native synapses, we introduced a mutation (IM-AA) into the CaS protein-binding site in the C-terminal domain of CaV2.1 channels in mice, and tested synaptic facilitation and depression in neuromuscular junction synapses that use exclusively CaV2.1 channels for Ca(2+) entry that triggers synaptic transmission. Even though basal synaptic transmission was unaltered in the neuromuscular synapses in IM-AA mice, we found reduced short-term facilitation in response to paired stimuli at short interstimulus intervals in IM-AA synapses. In response to trains of action potentials, we found increased facilitation at lower frequencies (10-30 Hz) in IM-AA synapses accompanied by slowed synaptic depression, whereas synaptic facilitation was reduced at high stimulus frequencies (50-100 Hz) that would induce strong muscle contraction. As a consequence of altered regulation of CaV2.1 channels, the hindlimb tibialis anterior muscle in IM-AA mice exhibited reduced peak force in response to 50 Hz stimulation and increased muscle fatigue. The IM-AA mice also had impaired motor control, exercise capacity, and grip strength. Taken together, our results indicate that regulation of CaV2.1 channels by CaS proteins is essential for normal synaptic plasticity at the neuromuscular junction and for muscle strength, endurance, and motor coordination in mice in vivo. PMID:26755585

  7. The functional nature of synaptic circuitry is altered in area CA3 of the hippocampus in a mouse model of Down's syndrome

    PubMed Central

    Hanson, Jesse E; Blank, Martina; Valenzuela, Ricardo A; Garner, Craig C; Madison, Daniel V

    2007-01-01

    Down's syndrome (DS) is the most common cause of mental retardation, and memory impairments are more severe in DS than in most if not all other causes of mental retardation. The Ts65Dn mouse, a genetic model of DS, exhibits phenotypes of DS, including memory impairments indicative of hippocampal dysfunction. We examined functional synaptic connectivity in area CA3 of the hippocampus of Ts65Dn mice using organotypic slice cultures as a model. We found reductions in multiple measures of synaptic function in both excitatory and inhibitory inputs to pyramidal neurons in CA3 of the Ts65Dn hippocampus. However, associational synaptic connections between pyramidal neurons were more abundant and more likely to be active rather than silent in the Ts65Dn hippocampus. Synaptic potentiation was normal in these associational connections. Decreased overall functional synaptic input onto pyramidal neurons expressed along with the specific hyperconnectivity of associational connections between pyramidal neurons will result in predictable alterations of CA3 network function, which may contribute to the memory impairments seen in DS. PMID:17158177

  8. Proton radiation alters intrinsic and synaptic properties of CA1 pyramidal neurons of the mouse hippocampus.

    PubMed

    Sokolova, Irina V; Schneider, Calvin J; Bezaire, Marianne; Soltesz, Ivan; Vlkolinsky, Roman; Nelson, Gregory A

    2015-02-01

    High-energy protons constitute at least 85% of the fluence of energetic ions in interplanetary space. Although protons are only sparsely ionizing compared to higher atomic mass ions, they nevertheless significantly contribute to the delivered dose received by astronauts that can potentially affect central nervous system function at high fluence, especially during prolonged deep space missions such as to Mars. Here we report on the long-term effects of 1 Gy proton irradiation on electrophysiological properties of CA1 pyramidal neurons in the mouse hippocampus. The hippocampus is a key structure for the formation of long-term episodic memory, for spatial orientation and for information processing in a number of other cognitive tasks. CA1 pyramidal neurons form the last and critical relay point in the trisynaptic circuit of the hippocampal principal neurons through which information is processed before being transferred to other brain areas. Proper functioning of CA1 pyramidal neurons is crucial for hippocampus-dependent tasks. Using the patch-clamp technique to evaluate chronic effects of 1 Gy proton irradiation on CA1 pyramidal neurons, we found that the intrinsic membrane properties of CA1 pyramidal neurons were chronically altered at 3 months postirradiation, resulting in a hyperpolarization of the resting membrane potential (VRMP) and a decrease in input resistance (Rin). These small but significant alterations in intrinsic properties decreased the excitability of CA1 pyramidal neurons, and had a dramatic impact on network function in a computational model of the CA1 microcircuit. We also found that proton-radiation exposure upregulated the persistent Na(+) current (INaP) and increased the rate of miniature excitatory postsynaptic currents (mEPSCs). Both the INaP and the heightened rate of mEPSCs contribute to neuronal depolarization and excitation, and at least in part, could compensate for the reduced excitability resulting from the radiation effects on the

  9. Altered neuronal intrinsic properties and reduced synaptic transmission of the rat's medial geniculate body in salicylate-induced tinnitus.

    PubMed

    Su, Yan-Yan; Luo, Bin; Jin, Yan; Wu, Shu-Hui; Lobarinas, Edward; Salvi, Richard J; Chen, Lin

    2012-01-01

    Sodium salicylate (NaSal), an aspirin metabolite, can cause tinnitus in animals and human subjects. To explore neural mechanisms underlying salicylate-induced tinnitus, we examined effects of NaSal on neural activities of the medial geniculate body (MGB), an auditory thalamic nucleus that provides the primary and immediate inputs to the auditory cortex, by using the whole-cell patch-clamp recording technique in MGB slices. Rats treated with NaSal (350 mg/kg) showed tinnitus-like behavior as revealed by the gap prepulse inhibition of acoustic startle (GPIAS) paradigm. NaSal (1.4 mM) decreased the membrane input resistance, hyperpolarized the resting membrane potential, suppressed current-evoked firing, changed the action potential, and depressed rebound depolarization in MGB neurons. NaSal also reduced the excitatory and inhibitory postsynaptic response in the MGB evoked by stimulating the brachium of the inferior colliculus. Our results demonstrate that NaSal alters neuronal intrinsic properties and reduces the synaptic transmission of the MGB, which may cause abnormal thalamic outputs to the auditory cortex and contribute to NaSal-induced tinnitus. PMID:23071681

  10. Glycoprotein M6a is present in glutamatergic axons in adult rat forebrain and cerebellum.

    PubMed

    Cooper, Ben; Werner, Hauke B; Flügge, Gabriele

    2008-03-01

    Glycoprotein M6a is a neuronally expressed member of the proteolipid protein (PLP) family of tetraspans. In vitro studies suggested a potential role in neurite outgrowth and spine formation and previous investigations have identified M6a as a stress-regulated gene. To investigate whether the distribution of M6a correlates with neuronal structures susceptible to alterations in response to stress, we localized M6a expression in neurons of hippocampal formation, prefrontal cortex and cerebellum using in situ hybridization and confocal immunofluorescence microscopy. In situ hybridization confirmed that M6a is expressed in dentate gyrus and cerebellar granule neurons and in hippocampal and cortical pyramidal neurons. Confocal microscopy localized M6a immunoreactivity to distinct sites within axonal membranes, but not in dendrites or neuronal somata. Moreover, M6a colocalized with synaptic markers of glutamatergic, but not GABAergic nerve terminals. M6a expression in the adult brain is particularly strong in unmyelinated axonal fibers, i.e. cerebellar parallel and hippocampal mossy fibers. In contrast, myelinated axons exhibit only minimal M6a immunoreactivity localized exclusively to terminal regions. The present neuroanatomical data demonstrate that M6a is an axonal component of glutamatergic neurons and that it is localized to distinct sites of the axonal plasma membrane of pyramidal and granule cells. PMID:18241840

  11. Glutamatergic and gabaergic neurotransmission and neuronal circuits in hepatic encephalopathy.

    PubMed

    Cauli, Omar; Rodrigo, Regina; Llansola, Marta; Montoliu, Carmina; Monfort, Pilar; Piedrafita, Blanca; El Mlili, Nisrin; Boix, Jordi; Agustí, Ana; Felipo, Vicente

    2009-03-01

    Patients with hepatic encephalopathy (HE) may present different neurological alterations including impaired cognitive function and altered motor activity and coordination. HE may lead to coma and death. Many of these neurological alterations are the consequence of altered neurotransmission. Hyperammonemia is a main contributor to the alterations in neurotransmission and in neurological functions in HE. Both glutamatergic and GABAergic neurotransmission are altered in animal models of HE. We review some of these alterations, especially those alterations in glutamatergic neurotransmission responsible for some specific neurological alterations in hyperammonemia and HE: the role 1) of excessive NMDA receptors activation in death induced by acute hyperammonemia; 2) of impaired function of the glutamate-nitric oxide-cGMP pathway, associated to NMDA receptors, in cognitive impairment in chronic HE; 3) of increased extracellular glutamate and activation of metabotropic glutamate receptors in substantia nigra in hypokinesia in chronic HE. The therapeutic implications are discussed. We also review the alterations in the function of the neuronal circuits between basal ganglia-thalamus-cortex modulating motor activity and the role of sequential alterations in glutamatergic and GABAergic neurotransmission in these alterations. HE would be a consequence of altered neuronal communication due to alterations in general neurotransmission involving different neurotransmitter systems in different neurons. PMID:19085094

  12. Glutamatergic synapse formation is promoted by α7-containing nicotinic acetylcholine receptors.

    PubMed

    Lozada, Adrian F; Wang, Xulong; Gounko, Natalia V; Massey, Kerri A; Duan, Jingjing; Liu, Zhaoping; Berg, Darwin K

    2012-05-30

    Glutamate is the primary excitatory transmitter in adult brain, acting through synapses on dendritic spines and shafts. Early in development, however, when glutamatergic synapses are only beginning to form, nicotinic cholinergic excitation is already widespread; it is mediated by acetylcholine activating nicotinic acetylcholine receptors (nAChRs) that generate waves of activity across brain regions. A major class of nAChRs contributing at this time is a species containing α7 subunits (α7-nAChRs). These receptors are highly permeable to calcium, influence a variety of calcium-dependent events, and are diversely distributed throughout the developing CNS. Here we show that α7-nAChRs unexpectedly promote formation of glutamatergic synapses during development. The dependence on α7-nAChRs becomes clear when comparing wild-type (WT) mice with mice constitutively lacking the α7-nAChR gene. Ultrastructural analysis, immunostaining, and patch-clamp recording all reveal synaptic deficits when α7-nAChR input is absent. Similarly, nicotinic activation of α7-nAChRs in WT organotypic culture, as well as cell culture, increases the number of glutamatergic synapses. RNA interference demonstrates that the α7-nAChRs must be expressed in the neuron being innervated for normal innervation to occur. Moreover, the deficits persist throughout the developmental period of major de novo synapse formation and are still fully apparent in the adult. GABAergic synapses, in contrast, are undiminished in number under such conditions. As a result, mice lacking α7-nAChRs have an altered balance in the excitatory/inhibitory input they receive. This ratio represents a fundamental feature of neural networks and shows for the first time that endogenous nicotinic cholinergic signaling plays a key role in network construction. PMID:22649244

  13. Impaired synaptic plasticity in the prefrontal cortex of mice with developmentally decreased number of interneurons.

    PubMed

    Konstantoudaki, X; Chalkiadaki, K; Tivodar, S; Karagogeos, D; Sidiropoulou, K

    2016-05-13

    Interneurons are inhibitory neurons, which protect neural tissue from excessive excitation. They are interconnected with glutamatergic pyramidal neurons in the cerebral cortex and regulate their function. Particularly in the prefrontal cortex (PFC), interneurons have been strongly implicated in regulating pathological states which display deficits in the PFC. The aim of this study is to investigate the adaptations in the adult glutamatergic system, when defects in interneuron development do not allow adequate numbers of interneurons to reach the cerebral cortex. To this end, we used a mouse model that displays ∼50% fewer cortical interneurons due to the Rac1 protein loss from Nkx2.1/Cre expressing cells (Rac1 conditional knockout (cKO) mice), to examine how the developmental loss of interneurons may affect basal synaptic transmission, synaptic plasticity and neuronal morphology in the adult PFC. Despite the decrease in the number of interneurons, basal synaptic transmission, as examined by recording field excitatory postsynaptic potentials (fEPSPs) from layer II networks, is not altered in the PFC of Rac1 cKO mice. However, there is decreased paired-pulse ratio (PPR) and decreased long-term potentiation (LTP), in response to tetanic stimulation, in the layer II PFC synapses of Rac1 cKO mice. Furthermore, expression of N-methyl-d-aspartate (NMDA) subunits is decreased and dendritic morphology is altered, changes that could underlie the decrease in LTP in the Rac1 cKO mice. Finally, we find that treating Rac1 cKO mice with diazepam in early postnatal life can reverse changes in dendritic morphology observed in non-treated Rac1 cKO mice. Therefore, our data show that disruption in GABAergic inhibition alters glutamatergic function in the adult PFC, an effect that could be reversed by enhancement of GABAergic function during an early postnatal period. PMID:26926965

  14. Synaptic activity regulates AMPA receptor trafficking through different recycling pathways.

    PubMed

    Zheng, Ning; Jeyifous, Okunola; Munro, Charlotte; Montgomery, Johanna M; Green, William N

    2015-01-01

    Changes in glutamatergic synaptic strength in brain are dependent on AMPA-type glutamate receptor (AMPAR) recycling, which is assumed to occur through a single local pathway. In this study, we present evidence that AMPAR recycling occurs through different pathways regulated by synaptic activity. Without synaptic stimulation, most AMPARs recycled in dynamin-independent endosomes containing the GTPase, Arf6. Few AMPARs recycled in dynamin-dependent endosomes labeled by transferrin receptors (TfRs). AMPAR recycling was blocked by alterations in the GTPase, TC10, which co-localized with Arf6 endosomes. TC10 mutants that reduced AMPAR recycling had no effect on increased AMPAR levels with long-term potentiation (LTP) and little effect on decreased AMPAR levels with long-term depression. However, internalized AMPAR levels in TfR-containing recycling endosomes increased after LTP, indicating increased AMPAR recycling through the dynamin-dependent pathway with synaptic plasticity. LTP-induced AMPAR endocytosis is inconsistent with local recycling as a source of increased surface receptors, suggesting AMPARs are trafficked from other sites. PMID:25970033

  15. New medications for drug addiction hiding in glutamatergic neuroplasticity.

    PubMed

    Kalivas, P W; Volkow, N D

    2011-10-01

    The repeated use of drugs that directly or indirectly stimulate dopamine transmission carry addiction liability and produce enduring pathological changes in the brain circuitry that normally regulates adaptive behavioral responding to a changing environment. This circuitry is rich in glutamatergic projections, and addiction-related behaviors in animal models have been linked to impairments in excitatory synaptic plasticity. Among the best-characterized glutamatergic projection in this circuit is the prefrontal efferent to the nucleus accumbens. A variety of molecular adaptations have been identified in the prefrontal glutamate synapses in the accumbens, many of which are induced by different classes of addictive drugs. Based largely on work with cocaine, we hypothesize that the drug-induced adaptations impair synaptic plasticity in the cortico-accumbens projection, and thereby dysregulate the ability of addicts to control their drug-taking habits. Accordingly, we go on to describe the literature implicating the drug-induced changes in protein content or function that impinge upon synaptic plasticity and have been targeted in preclinical models of relapse and, in some cases, in pilot clinical trials. Based upon modeling drug-induced impairments in neuroplasticity in the cortico-accumbens pathway, we argue for a concerted effort to clinically evaluate the hypothesis that targeting glial and neuronal proteins regulating excitatory synaptic plasticity may prove beneficial in treating addiction. PMID:21519339

  16. New medications for drug addiction hiding in glutamatergic neuroplasticity

    PubMed Central

    Kalivas, PW; Volkow, ND

    2011-01-01

    The repeated use of drugs that directly or indirectly stimulate dopamine transmission carry addiction liability and produce enduring pathological changes in the brain circuitry that normally regulates adaptive behavioral responding to a changing environment. This circuitry is rich in glutamatergic projections, and addiction-related behaviors in animal models have been linked to impairments in excitatory synaptic plasticity. Among the best-characterized glutamatergic projection in this circuit is the prefrontal efferent to the nucleus accumbens. A variety of molecular adaptations have been identified in the prefrontal glutamate synapses in the accumbens, many of which are induced by different classes of addictive drugs. Based largely on work with cocaine, we hypothesize that the drug-induced adaptations impair synaptic plasticity in the cortico-accumbens projection, and thereby dysregulate the ability of addicts to control their drug-taking habits. Accordingly, we go on to describe the literature implicating the drug-induced changes in protein content or function that impinge upon synaptic plasticity and have been targeted in preclinical models of relapse and, in some cases, in pilot clinical trials. Based upon modeling drug-induced impairments in neuroplasticity in the cortico-accumbens pathway, we argue for a concerted effort to clinically evaluate the hypothesis that targeting glial and neuronal proteins regulating excitatory synaptic plasticity may prove beneficial in treating addiction. PMID:21519339

  17. ACUTE ETHANOL SUPPRESSES GLUTAMATERGIC NEUROTRANSMISSION THROUGH ENDOCANNABINOIDS IN HIPPOCAMPAL NEURONS

    PubMed Central

    Basavarajappa, Balapal S.; Ninan, Ipe; Arancio, Ottavio

    2008-01-01

    Ethanol exposure during fetal development is a leading cause of long-term cognitive impairments. Studies suggest that ethanol exposure have deleterious effects on the hippocampus, a brain region that is important for learning and memory. Ethanol exerts its effects, in part, via alterations in glutamatergic neurotransmission, which is critical for the maturation of neuronal circuits during development. The current literature strongly supports the growing evidence that ethanol inhibits glutamate release in the neonatal CA1 hippocampal region. However, the exact molecular mechanism responsible for this effect is not well understood. In this study, we show that ethanol enhances endocannabinoid (EC) levels in cultured hippocampal neurons, possibly through calcium pathways. Acute ethanol depresses miniature postsynaptic current (mEPSC) frequencies without affecting their amplitude. This suggests that ethanol inhibits glutamate release. The CB1 receptors (CB1Rs) present on presynaptic neurons are not altered by acute ethanol. The CB1R antagonist SR 141716A reverses ethanol-induced depression of mEPSC frequency. Drugs that are known to enhance the in vivo function of ECs occlude ethanol effects on mEPSC frequency. Chelation of postsynaptic calcium by EGTA antagonizes ethanol-induced depression of mEPSC frequency. The activation of CB1R with the selective agonist WIN55,212-2 also suppresses the mEPSC frequency. This WIN55,212-2 effect is similar to the ethanol effects and is reversed by SR141716A. In addition, tetani-induced excitatory postsynaptic currents (EPSCs) are depressed by acute ethanol. SR141716A significantly reverses ethanol effects on evoked EPSC amplitude in a dual recording preparation. These observations, taken together, suggest the participation of ECs as retrograde messengers in the ethanol-induced depression of synaptic activities. PMID:18796007

  18. Age-related alterations in the expression of genes and synaptic plasticity associated with nitric oxide signaling in the mouse dorsal striatum.

    PubMed

    Chepkova, Aisa N; Schönfeld, Susanne; Sergeeva, Olga A

    2015-01-01

    Age-related alterations in the expression of genes and corticostriatal synaptic plasticity were studied in the dorsal striatum of mice of four age groups from young (2-3 months old) to old (18-24 months of age) animals. A significant decrease in transcripts encoding neuronal nitric oxide (NO) synthase and receptors involved in its activation (NR1 subunit of the glutamate NMDA receptor and D1 dopamine receptor) was found in the striatum of old mice using gene array and real-time RT-PCR analysis. The old striatum showed also a significantly higher number of GFAP-expressing astrocytes and an increased expression of astroglial, inflammatory, and oxidative stress markers. Field potential recordings from striatal slices revealed age-related alterations in the magnitude and dynamics of electrically induced long-term depression (LTD) and significant enhancement of electrically induced long-term potentiation in the middle-aged striatum (6-7 and 12-13 months of age). Corticostriatal NO-dependent LTD induced by pharmacological activation of group I metabotropic glutamate receptors underwent significant reduction with aging and could be restored by inhibition of cGMP hydrolysis indicating that its age-related deficit is caused by an altered NO-cGMP signaling cascade. It is suggested that age-related alterations in corticostriatal synaptic plasticity may result from functional alterations in receptor-activated signaling cascades associated with increasing neuroinflammation and a prooxidant state. PMID:25821602

  19. Serotonin modulates glutamatergic transmission to neurons in the lateral habenula

    PubMed Central

    Xie, Guiqin; Zuo, Wanhong; Wu, Liangzhi; Li, Wenting; Wu, Wei; Bekker, Alex; Ye, Jiang-Hong

    2016-01-01

    The lateral habenula (LHb) is bilaterally connected with serotoninergic raphe nuclei, and expresses high density of serotonin receptors. However, actions of serotonin on the excitatory synaptic transmission to LHb neurons have not been thoroughly investigated. The LHb contains two anatomically and functionally distinct regions: lateral (LHbl) and medial (LHbm) divisions. We compared serotonin’s effects on glutamatergic transmission across the LHb in rat brains. Serotonin bi-directionally and differentially modulated glutamatergic transmission. Serotonin inhibited glutamatergic transmission in higher percentage of LHbl neurons but potentiated in higher percentage of LHbm neurons. Magnitude of potentiation was greater in LHbm than in LHbl. Type 2 and 3 serotonin receptor antagonists attenuated serotonin’s potentiation. The serotonin reuptake blocker, and the type 2 and 3 receptor agonists facilitated glutamatergic transmission in both LHbl and LHbm neurons. Thus, serotonin via activating its type 2, 3 receptors, increased glutamate release at nerve terminals in some LHb neurons. Our data demonstrated that serotonin affects both LHbm and LHbl. Serotonin might play an important role in processing information between the LHb and its downstream-targeted structures during decision-making. It may also contribute to a homeostatic balance underlying the neural circuitry between the LHb and raphe nuclei. PMID:27033153

  20. Altered GluN2B NMDA receptor function and synaptic plasticity during early pathology in the PS2APP mouse model of Alzheimer’s disease

    PubMed Central

    Hanson, Jesse E.; Pare, Jean-Francois; Deng, Lunbin; Smith, Yoland; Zhou, Qiang

    2015-01-01

    GluN2B subunit containing NMDARs (GluN2B-NMDARs) mediate pathophysiological effects of acutely applied amyloid beta (Aβ), including impaired long-term potentiation (LTP). However, in transgenic Alzheimer’s disease (AD) mouse models which feature gradual Aβ accumulation, the function of GluN2B-NMDARs and their contribution to synaptic plasticity are unknown. Therefore, we examined the role of GluN2B-NMDARs in synaptic function and plasticity in the hippocampus of PS2APP transgenic mice. Although LTP induced by theta burst stimulation (TBS) was normal in PS2APP mice, it was significantly reduced by the selective GluN2B-NMDAR antagonist Ro25-6981 (Ro25) in PS2APP mice, but not wild type (wt) mice. While NMDARs activated by single synaptic stimuli were not blocked by Ro25, NMDARs recruited during burst stimulation showed larger blockade by Ro25 in PS2APP mice. Thus, the unusual dependence of LTP on GluN2B-NMDARs in PS2APP mice suggests that non-synaptic GluN2B-NMDARs are activated by glutamate that spills out of synaptic cleft during the burst stimulation used to induce LTP. While long-term depression (LTD) was normal in PS2APP mice, and Ro25 had no impact on LTD in wt mice, Ro25 impaired LTD in PS2APP mice, again demonstrating aberrant GluN2B-NMDAR function during plasticity. Together these results demonstrate altered GluN2B-NMDAR function in a model of early AD pathology that has implications for the therapeutic targeting of NMDARs in AD. PMID:25484285

  1. Lrp4 in astrocytes modulates glutamatergic transmission.

    PubMed

    Sun, Xiang-Dong; Li, Lei; Liu, Fang; Huang, Zhi-Hui; Bean, Jonathan C; Jiao, Hui-Feng; Barik, Arnab; Kim, Seon-Myung; Wu, Haitao; Shen, Chengyong; Tian, Yun; Lin, Thiri W; Bates, Ryan; Sathyamurthy, Anupama; Chen, Yong-Jun; Yin, Dong-Min; Xiong, Lei; Lin, Hui-Ping; Hu, Jin-Xia; Li, Bao-Ming; Gao, Tian-Ming; Xiong, Wen-Cheng; Mei, Lin

    2016-08-01

    Neurotransmission requires precise control of neurotransmitter release from axon terminals. This process is regulated by glial cells; however, the underlying mechanisms are not fully understood. We found that glutamate release in the brain was impaired in mice lacking low-density lipoprotein receptor-related protein 4 (Lrp4), a protein that is critical for neuromuscular junction formation. Electrophysiological studies revealed compromised release probability in astrocyte-specific Lrp4 knockout mice. Lrp4 mutant astrocytes suppressed glutamatergic transmission by enhancing the release of ATP, whose level was elevated in the hippocampus of Lrp4 mutant mice. Consequently, the mutant mice were impaired in locomotor activity and spatial memory and were resistant to seizure induction. These impairments could be ameliorated by blocking the adenosine A1 receptor. The results reveal a critical role for Lrp4, in response to agrin, in modulating astrocytic ATP release and synaptic transmission. Our findings provide insight into the interaction between neurons and astrocytes for synaptic homeostasis and/or plasticity. PMID:27294513

  2. The neurotoxin 1-methyl-4-phenylpyridinium (MPP(+)) alters hippocampal excitatory synaptic transmission by modulation of the GABAergic system.

    PubMed

    Huang, YuYing; Chen, JunFang; Chen, Ying; Zhuang, YingHan; Sun, Mu; Behnisch, Thomas

    2015-01-01

    The neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) induces Parkinson's disease-like symptoms following administration to mice, monkeys, and humans. A common view is that MPTP is metabolized to 1-methyl-4-phenylpyridinium ion (MPP(+)) to induce its neurodegenerative effects on dopaminergic neurons in the substantia nigra (SN). Moreover, the hippocampus contains dopaminergic fibers, which are projecting from the ventral tegmental area, SN and pars compacta and contain the whole machinery required for dopamine synthesis making them sensitive to MPTP and MPP(+). Here, we present data showing that acute bath-application of MPP(+) elicited a dose-dependent facilitation followed by a depression of synaptic transmission of hippocampal Schaffer collaterals-CA1 synapses in mice. The effects of MPP(+) were not mediated by D1/D5- and D2-like receptor activation. Inhibition of the dopamine transporters did not prevent but increased the depression of excitatory post-synaptic field potentials. In the search for a possible mechanism, we observed that MPP(+) reduced the appearance of polyspikes in population spikes recorded in str. pyramidale and increased the frequency of miniature inhibitory post-synaptic currents. The acute effect of MPP(+) on synaptic transmission was attenuated by co-application of a GABAA receptor antagonist. Taking these data together, we suggest that MPP(+) affects hippocampal synaptic transmission by enhancing some aspects of the hippocampal GABAergic system. PMID:26300734

  3. Prenatal immune challenge in rats: altered responses to dopaminergic and glutamatergic agents, prepulse inhibition of acoustic startle, and reduced route-based learning as a function of maternal body weight gain after prenatal exposure to poly IC.

    PubMed

    Vorhees, Charles V; Graham, Devon L; Braun, Amanda A; Schaefer, Tori L; Skelton, Matthew R; Richtand, Neil M; Williams, Michael T

    2012-08-01

    Prenatal maternal immune activation has been used to test the neurodevelopmental hypothesis of schizophrenia. Most of the data are in mouse models; far less is available for rats. We previously showed that maternal weight change in response to the immune activator polyinosinic-polycytidylic acid (Poly IC) in rats differentially affects offspring. Therefore, we treated gravid Harlan Sprague-Dawley rats i.p. on embryonic day 14 with 8 mg/kg of Poly IC or Saline. The Poly IC group was divided into those that lost or gained the least weight, Poly IC (L), versus those that gained the most weight, Poly IC (H), following treatment. The study design controlled for litter size, litter sampling, sex distribution, and test experience. We found no effects of Poly IC on elevated zero maze, open-field activity, object burying, light-dark test, straight channel swimming, Morris water maze spatial acquisition, reversal, or shift navigation or spatial working or reference memory, or conditioned contextual or cued fear or latent inhibition. The Poly IC (H) group showed a significant decrease in the rate of route-based learning when visible cues were unavailable in the Cincinnati water maze and reduced prepulse inhibition of acoustic startle in females, but not males. The Poly IC (L) group exhibited altered responses to acute pharmacological challenges: exaggerated hyperactivity in response to (+)-amphetamine and an attenuated hyperactivity in response to MK-801. This model did not exhibit the cognitive, or latent inhibition deficits reported in Poly IC-treated rats but showed changes in response to drugs acting on neurotransmitter systems implicated in the pathophysiology of schizophrenia (dopaminergic hyperfunction and glutamatergic hypofunction). PMID:22473973

  4. Prenatal immune challenge in rats: Altered responses to dopaminergic and glutamatergic agents, prepulse inhibition of acoustic startle, and reduced route-based learning as a function of maternal body weight gain after prenatal exposure to Poly IC

    PubMed Central

    Vorhees, Charles V.; Graham, Devon L.; Braun, Amanda A.; Schaefer, Tori L.; Skelton, Matthew R.; Richtand, Neil M.; Williams, Michael T.

    2012-01-01

    Prenatal maternal immune activation has been used to test the neurodevelopmental hypothesis of schizophrenia. Most of the data are in mouse models; far less is available for rats. We previously showed that maternal weight change in response to the immune activator polyinosinic-polycytidylic (Poly IC) in rats differentially affects offspring. Therefore, we treated gravid Harlan Sprague-Dawley rats i.p. on embryonic day 14 with 8 mg/kg of Poly IC or Saline. The Poly IC group was divided into those that lost or gained the least weight, Poly IC (L), versus those that gained the most weight, Poly IC (H), following treatment. The study design controlled for litter size, litter sampling, sex distribution, and test experience. We found no effects of Poly IC on elevated zero-maze, open-field activity, object burying, light-dark test, straight channel swimming, Morris water maze spatial acquisition, reversal, or shift navigation or spatial working or reference memory, or conditioned contextual or cued fear or latent inhibition. The Poly IC (H) group showed a significant decrease in the rate of route-based learning when visible cues unavailable in the Cincinnati water maze and reduced prepulse inhibition of acoustic startle in females, but not males. The Poly IC (L) group exhibited altered responses to acute pharmacological challenges: exaggerated hyperactivity in response to (+)-amphetamine and an attenuated hyperactivity in response to MK-801. This model did not exhibit the cognitive, acoustic startle, or latent inhibition deficits reported in Poly IC-treated rats, but showed changes in response to drugs acting on neurotransmitter systems implicated in the pathophysiology of schizophrenia (dopaminergic hyperfunction and glutamatergic hypofunction). PMID:22473973

  5. Dopamine alters AMPA receptor synaptic expression and subunit composition in dopamine neurons of the ventral tegmental area cultured with prefrontal cortex neurons.

    PubMed

    Gao, Can; Wolf, Marina E

    2007-12-26

    Excitatory synapses onto dopamine (DA) neurons of the ventral tegmental area (VTA) represent a critical site of psychostimulant-induced synaptic plasticity. This plasticity involves alterations in synaptic strength through AMPA receptor (AMPAR) redistribution. Here, we report an in vitro model for studying regulation of AMPAR trafficking in DA neurons under control conditions and after elevation of DA levels, mimicking cocaine exposure. We used cocultures containing rat VTA neurons and prefrontal cortex (PFC) neurons from enhanced cyan fluorescent protein-expressing mice. In VTA-PFC cocultures, D1 receptor activation (10 min) increased synaptic and nonsynaptic glutamate receptor subunit 1 (GluR1) and GluR2 surface expression on DA neurons. NMDA or AMPA receptor antagonists blocked this effect, and it was not observed in pure VTA cultures, suggesting that DA agonists acted on D1 receptors on PFC neurons, altering their excitatory transmission onto VTA DA neurons and, thus, influencing AMPARs. To mimic the longer elevation in extracellular DA levels produced by systemic cocaine, cocultures were incubated with DA for 1 h. Synaptic GluR1 was increased 24 h later, reminiscent of the increased AMPA/NMDA ratio at excitatory synapses onto VTA DA neurons 24 h after cocaine injection (Ungless et al., 2001). In contrast, GluR2 was unchanged. Analysis of colocalization of surface GluR1-3 labeling suggested that control DA neurons express a substantial number of GluR1/2, GluR2/3, and homomeric GluR1 receptors and that the increase in surface AMPARs 24 h after DA exposure may in part reflect increased GluR1/3-containing receptors. These results help define the cellular basis for plasticity underlying the development of behavioral sensitization. PMID:18160635

  6. Contrasting alterations to synaptic and intrinsic properties in upper-cervical superficial dorsal horn neurons following acute neck muscle inflammation

    PubMed Central

    2014-01-01

    Background Acute and chronic pain in axial structures, like the back and neck, are difficult to treat, and have incidence as high as 15%. Surprisingly, most preclinical work on pain mechanisms focuses on cutaneous structures in the limbs and animal models of axial pain are not widely available. Accordingly, we developed a mouse model of acute cervical muscle inflammation and assessed the functional properties of superficial dorsal horn (SDH) neurons. Results Male C57/Bl6 mice (P24-P40) were deeply anaesthetised (urethane 2.2 g/kg i.p) and the rectus capitis major muscle (RCM) injected with 40 μl of 2% carrageenan. Sham animals received vehicle injection and controls remained anaesthetised for 2 hrs. Mice in each group were sacrificed at 2 hrs for analysis. c-Fos staining was used to determine the location of activated neurons. c-Fos labelling in carrageenan-injected mice was concentrated within ipsilateral (87% and 63% of labelled neurons in C1 and C2 segments, respectively) and contralateral laminae I - II with some expression in lateral lamina V. c-Fos expression remained below detectable levels in control and sham animals. In additional experiments, whole cell recordings were obtained from visualised SDH neurons in transverse slices in the ipsilateral C1 and C2 spinal segments. Resting membrane potential and input resistance were not altered. Mean spontaneous EPSC amplitude was reduced by ~20% in neurons from carrageenan-injected mice versus control and sham animals (20.63 ± 1.05 vs. 24.64 ± 0.91 and 25.87 ± 1.32 pA, respectively). The amplitude (238 ± 33 vs. 494 ± 96 and 593 ± 167 pA) and inactivation time constant (12.9 ± 1.5 vs. 22.1 ± 3.6 and 15.3 ± 1.4 ms) of the rapid A type potassium current (IAr), the dominant subthreshold current in SDH neurons, were reduced in carrageenan-injected mice. Conclusions Excitatory synaptic drive onto, and important intrinsic properties (i.e., IAr) within SDH neurons are

  7. Reduced Anterior Cingulate Cortex Glutamatergic Concentrations in Childhood Major Depression

    ERIC Educational Resources Information Center

    Mirza, Yousha; Tang, Jennifer; Russell, Aileen; Banerjee, S. Preeya; Bhandari, Rashmi; Ivey, Jennifer; Rose, Michelle; Moore, Gregory J.; Rosenberg, David R.

    2004-01-01

    Objective: To examine in vivo glutamatergic neurochemical alterations in the anterior cingulate cortex of children with major depressive disorder (MDD). Method: Single-voxel proton magnetic resonance spectroscopic ([.sup.1]H-MRS) examinations of the anterior cingulate cortex were conducted in 13 psychotropic-naive children and adolescents with MDD…

  8. Glutamatergic signaling at the vestibular hair cell calyx synapse.

    PubMed

    Sadeghi, Soroush G; Pyott, Sonja J; Yu, Zhou; Glowatzki, Elisabeth

    2014-10-29

    In the vestibular periphery a unique postsynaptic terminal, the calyx, completely covers the basolateral walls of type I hair cells and receives input from multiple ribbon synapses. To date, the functional role of this specialized synapse remains elusive. There is limited data supporting glutamatergic transmission, K(+) or H(+) accumulation in the synaptic cleft as mechanisms of transmission. Here the role of glutamatergic transmission at the calyx synapse is investigated. Whole-cell patch-clamp recordings from calyx endings were performed in an in vitro whole-tissue preparation of the rat vestibular crista, the sensory organ of the semicircular canals that sense head rotation. AMPA-mediated EPSCs showed an unusually wide range of decay time constants, from <5 to >500 ms. Decay time constants of EPSCs increased (or decreased) in the presence of a glutamate transporter blocker (or a competitive glutamate receptor blocker), suggesting a role for glutamate accumulation and spillover in synaptic transmission. Glutamate accumulation caused slow depolarizations of the postsynaptic membrane potentials, and thereby substantially increased calyx firing rates. Finally, antibody labelings showed that a high percentage of presynaptic ribbon release sites and postsynaptic glutamate receptors were not juxtaposed, favoring a role for spillover. These findings suggest a prominent role for glutamate spillover in integration of inputs and synaptic transmission in the vestibular periphery. We propose that similar to other brain areas, such as the cerebellum and hippocampus, glutamate spillover may play a role in gain control of calyx afferents and contribute to their high-pass properties. PMID:25355208

  9. Glia plasma membrane transporters: Key players in glutamatergic neurotransmission.

    PubMed

    Flores-Méndez, Marco; Mendez-Flores, Orquidia G; Ortega, Arturo

    2016-09-01

    Glutamate, the main excitatory amino acid in the central nervous system, elicits its functions through the activation of specific membrane receptors that are expressed in neurons and glial cells. The re-cycling of this amino acid is carried out mostly through a continuous interplay between neurons and glia cells, given the fact that the removal of glutamate from the synaptic cleft depends mainly on glial glutamate transporters. Therefore, a functional and physical interaction between membrane transporters links glutamate uptake, transformation to glutamine and its release to the extra-synaptic space and its uptake to the pre-synaptic terminal. This sequence of events, best known as the glutamate/glutamine shuttle is central to glutamatergic transmission. In this sense, the uptake process triggers a complex series of biochemical cascades that modify the physiology of glial cells in the immediate, short and long term so as to be capable to take up, transform and release these amino acids in a regulated amount and in an appropriate time frame to sustain glutamatergic neurotransmission. Among the signaling cascades activated in glial cells by glutamate transporters, a sustained Na(+) and Ca(2+) influx, protein posttranslational modifications and gene expression regulation at the transcriptional and translational levels are present. Therefore, it is clear that the pivotal role of glial cells in the context of excitatory transmission has been constantly underestimated. PMID:27083407

  10. Prenatal alcohol exposure alters synaptic activity of adult hippocampal dentate granule cells under conditions of enriched environment.

    PubMed

    Kajimoto, Kenta; Valenzuela, C Fernando; Allan, Andrea M; Ge, Shaoyu; Gu, Yan; Cunningham, Lee Anna

    2016-08-01

    Prenatal alcohol exposure (PAE) results in fetal alcohol spectrum disorder (FASD), which is characterized by a wide range of cognitive and behavioral deficits that may be linked to impaired hippocampal function and adult neurogenesis. Preclinical studies in mouse models of FASD indicate that PAE markedly attenuates enrichment-mediated increases in the number of adult-generated hippocampal dentate granule cells (aDGCs), but whether synaptic activity is also affected has not been studied. Here, we utilized retroviral birth-dating coupled with whole cell patch electrophysiological recordings to assess the effects of PAE on enrichment-mediated changes in excitatory and inhibitory synaptic activity as a function of DGC age. We found that exposure to an enriched environment (EE) had no effect on baseline synaptic activity of 4- or 8-week-old aDGCs from control mice, but significantly enhanced the excitatory/inhibitory ratio of synaptic activity in 8-week-old aDGCs from PAE mice. In contrast, exposure to EE significantly enhanced the excitatory/inhibitory ratio of synaptic activity in older pre-existing DGCs situated in the outer dentate granule cell layer (i.e., those generated during embryonic development; dDGCs) in control mice, an effect that was blunted in PAE mice. These findings indicate distinct electrophysiological responses of hippocampal DGCs to behavioral challenge based on cellular ontogenetic age, and suggest that PAE disrupts EE-mediated changes in overall hippocampal network activity. These findings may have implications for future therapeutic targeting of hippocampal dentate circuitry in clinical FASD. © 2016 Wiley Periodicals, Inc. PMID:27009742

  11. Cannabinoid agonists rearrange synaptic vesicles at excitatory synapses and depress motoneuron activity in vivo.

    PubMed

    García-Morales, Victoria; Montero, Fernando; Moreno-López, Bernardo

    2015-05-01

    Impairment of motor skills is one of the most common acute adverse effects of cannabis. Related studies have focused mainly on psychomotor alterations, and little is known about the direct impact of cannabinoids (CBs) on motoneuron physiology. As key modulators of synaptic function, CBs regulate multiple neuronal functions and behaviors. Presynaptic CB1 mediates synaptic strength depression by inhibiting neurotransmitter release, via a poorly understood mechanism. The present study examined the effect of CB agonists on excitatory synaptic inputs incoming to hypoglossal motoneurons (HMNs) in vitro and in vivo. The endocannabinoid anandamide (AEA) and the synthetic CB agonist WIN 55,212-2 rapidly and reversibly induced short-term depression (STD) of glutamatergic synapses on motoneurons by a presynaptic mechanism. Presynaptic effects were fully reversed by the CB1-selective antagonist AM281. Electrophysiological and electron microscopy analysis showed that WIN 55,212-2 reduced the number of synaptic vesicles (SVs) docked to active zones in excitatory boutons. Given that AM281 fully abolished depolarization-induced depression of excitation, motoneurons can be feasible sources of CBs, which in turn act as retrograde messengers regulating synaptic function. Finally, microiontophoretic application of the CB agonist O-2545 reversibly depressed, presumably via CB1, glutamatergic inspiratory-related activity of HMNs in vivo. Therefore, evidence support that CBs, via presynaptic CB1, induce excitatory STD by reducing the readily releasable pool of SVs at excitatory synapses, then attenuating motoneuron activity. These outcomes contribute a possible mechanistic basis for cannabis-associated motor performance disturbances such as ataxia, dysarthria and dyscoordination. PMID:25595101

  12. Apolipoprotein E*4 (APOE*4) Genotype Is Associated with Altered Levels of Glutamate Signaling Proteins and Synaptic Coexpression Networks in the Prefrontal Cortex in Mild to Moderate Alzheimer Disease.

    PubMed

    Sweet, Robert A; MacDonald, Matthew L; Kirkwood, Caitlin M; Ding, Ying; Schempf, Tadhg; Jones-Laughner, Jackie; Kofler, Julia; Ikonomovic, Milos D; Lopez, Oscar L; Garver, Megan E; Fitz, Nicholas F; Koldamova, Radosveta; Yates, Nathan A

    2016-07-01

    It has been hypothesized that Alzheimer disease (AD) is primarily a disorder of the synapse. However, assessment of the synaptic proteome in AD subjects has been limited to a small number of proteins and often included subjects with end-stage pathology. Protein from prefrontal cortex gray matter of 59 AD subjects with mild to moderate dementia and 12 normal elderly subjects was assayed using targeted mass spectrometry to quantify 191 synaptically expressed proteins. The profile of synaptic protein expression clustered AD subjects into two groups. One of these was characterized by reduced expression of glutamate receptor proteins, significantly increased synaptic protein network coexpression, and associated withApolipoprotein E*4 (APOE*4) carrier status. The second group, by contrast, showed few differences from control subjects. A subset of AD subjects had altered prefrontal cortex synaptic proteostasis for glutamate receptors and their signaling partners. Efforts to therapeutically target glutamate receptors in AD may have outcomes dependent on APOE*4 genotype. PMID:27103636

  13. Astroglial Metabolic Networks Sustain Hippocampal Synaptic Transmission

    NASA Astrophysics Data System (ADS)

    Rouach, Nathalie; Koulakoff, Annette; Abudara, Veronica; Willecke, Klaus; Giaume, Christian

    2008-12-01

    Astrocytes provide metabolic substrates to neurons in an activity-dependent manner. However, the molecular mechanisms involved in this function, as well as its role in synaptic transmission, remain unclear. Here, we show that the gap-junction subunit proteins connexin 43 and 30 allow intercellular trafficking of glucose and its metabolites through astroglial networks. This trafficking is regulated by glutamatergic synaptic activity mediated by AMPA receptors. In the absence of extracellular glucose, the delivery of glucose or lactate to astrocytes sustains glutamatergic synaptic transmission and epileptiform activity only when they are connected by gap junctions. These results indicate that astroglial gap junctions provide an activity-dependent intercellular pathway for the delivery of energetic metabolites from blood vessels to distal neurons.

  14. A computational model to investigate astrocytic glutamate uptake influence on synaptic transmission and neuronal spiking.

    PubMed

    Allam, Sushmita L; Ghaderi, Viviane S; Bouteiller, Jean-Marie C; Legendre, Arnaud; Ambert, Nicolas; Greget, Renaud; Bischoff, Serge; Baudry, Michel; Berger, Theodore W

    2012-01-01

    Over the past decades, our view of astrocytes has switched from passive support cells to active processing elements in the brain. The current view is that astrocytes shape neuronal communication and also play an important role in many neurodegenerative diseases. Despite the growing awareness of the importance of astrocytes, the exact mechanisms underlying neuron-astrocyte communication and the physiological consequences of astrocytic-neuronal interactions remain largely unclear. In this work, we define a modeling framework that will permit to address unanswered questions regarding the role of astrocytes. Our computational model of a detailed glutamatergic synapse facilitates the analysis of neural system responses to various stimuli and conditions that are otherwise difficult to obtain experimentally, in particular the readouts at the sub-cellular level. In this paper, we extend a detailed glutamatergic synaptic model, to include astrocytic glutamate transporters. We demonstrate how these glial transporters, responsible for the majority of glutamate uptake, modulate synaptic transmission mediated by ionotropic AMPA and NMDA receptors at glutamatergic synapses. Furthermore, we investigate how these local signaling effects at the synaptic level are translated into varying spatio-temporal patterns of neuron firing. Paired pulse stimulation results reveal that the effect of astrocytic glutamate uptake is more apparent when the input inter-spike interval is sufficiently long to allow the receptors to recover from desensitization. These results suggest an important functional role of astrocytes in spike timing dependent processes and demand further investigation of the molecular basis of certain neurological diseases specifically related to alterations in astrocytic glutamate uptake, such as epilepsy. PMID:23060782

  15. Differential regulation of neurexin at glutamatergic and GABAergic synapses

    PubMed Central

    Pregno, Giulia; Frola, Elena; Graziano, Stefania; Patrizi, Annarita; Bussolino, Federico; Arese, Marco; Sassoè-Pognetto, Marco

    2013-01-01

    Neurexins (Nrxs) have emerged as potential determinants of synaptic specificity, but little is known about their localization at central synapses. Here we show that Nrxs have a remarkably selective localization at distinct types of glutamatergic synapses and we reveal an unexpected ontogenetic regulation of Nrx expression at GABAergic synapses. Our data indicate that synapses are specified by molecular interactions that involve both Nrx-dependent and Nrx-independent mechanisms. We propose that differences in the spatio-temporal profile of Nrx expression may contribute to specify the molecular identity of synapses. PMID:23576952

  16. Proteomic screening of glutamatergic mouse brain synaptosomes isolated by fluorescence activated sorting

    PubMed Central

    Biesemann, Christoph; Grønborg, Mads; Luquet, Elisa; Wichert, Sven P; Bernard, Véronique; Bungers, Simon R; Cooper, Ben; Varoqueaux, Frédérique; Li, Liyi; Byrne, Jennifer A; Urlaub, Henning; Jahn, Olaf; Brose, Nils; Herzog, Etienne

    2014-01-01

    For decades, neuroscientists have used enriched preparations of synaptic particles called synaptosomes to study synapse function. However, the interpretation of corresponding data is problematic as synaptosome preparations contain multiple types of synapses and non-synaptic neuronal and glial contaminants. We established a novel Fluorescence Activated Synaptosome Sorting (FASS) method that substantially improves conventional synaptosome enrichment protocols and enables high-resolution biochemical analyses of specific synapse subpopulations. Employing knock-in mice with fluorescent glutamatergic synapses, we show that FASS isolates intact ultrapure synaptosomes composed of a resealed presynaptic terminal and a postsynaptic density as assessed by light and electron microscopy. FASS synaptosomes contain bona fide glutamatergic synapse proteins but are almost devoid of other synapse types and extrasynaptic or glial contaminants. We identified 163 enriched proteins in FASS samples, of which FXYD6 and Tpd52 were validated as new synaptic proteins. FASS purification thus enables high-resolution biochemical analyses of specific synapse subpopulations in health and disease. PMID:24413018

  17. Remodeling of glial coverage of glutamatergic synapses in the rat nucleus tractus solitarii after ozone inhalation.

    PubMed

    Chounlamountry, Keodavanh; Boyer, Bénédicte; Penalba, Virginie; François-Bellan, Anne-Marie; Bosler, Olivier; Kessler, Jean-Pierre; Strube, Caroline

    2015-09-01

    Besides the well-described inflammatory and dysfunction effects on the respiratory tract, accumulating evidence indicates that ozone (O3 ) exposure also affects central nervous system functions. However, the mechanisms through which O3 exerts toxic effects on the brain remain poorly understood. We previously showed that O3 exposure caused a neuronal activation in regions of the rat nucleus tractus solitarii (NTS) overlapping terminal fields of vagal lung afferents. Knowing that O3 exposure can impact astrocytic protein expression, we decided to investigate whether it may induce astroglial cellular alterations in the NTS. Using electron microscopy and immunoblot techniques, we showed that in O3 -exposed animals, the astrocytic coverage of NTS glutamatergic synapses was 19% increased while the astrocyte volume fraction and membrane density were not modified. Moreover, the expression of glial fibrillary acidic protein and S100β, which are known to be increased in reactive astroglia, did not change. These results indicate that O3 inhalation induces a glial plasticity that is restricted to the peri-synaptic coverage without overall astroglial activation. Taken together, these findings, along with our previous observations, support the conclusion that O3 -induced pulmonary inflammation results in a specific activation of vagal lung afferents rather than non-specific overall brain alterations mediated by blood-borne agents. Exposure to ozone, a major atmospheric pollutant, induces an increase in the glial coverage of neurons that is restricted to peri-synaptic compartments. This observation does not support the view that the ozone-induced neuronal disorders are related to non-specific overall brain alterations. It rather argues for a specific activation of the vagus nerve in response to pulmonary inflammation. PMID:26083406

  18. Modulation of Glutamatergic Transmission by Sulfated Steroids: Role in Fetal Alcohol Spectrum Disorder

    PubMed Central

    Valenzuela, C. Fernando; Partridge, L. Donald; Mameli, Manuel; Meyer, Douglas A.

    2008-01-01

    It is well established that sulfated steroids regulate synaptic transmission by altering the function of postsynaptic neurotransmitter receptors. In recent years, evidence from several laboratories indicates that these agents also regulate glutamatergic synaptic transmission at the presynaptic level in an age-dependent manner. In developing neurons, pregnenolone sulfate (PREGS) increases the probability of glutamate release, as evidenced by an increase in the frequency of AMPA receptor-mediated miniature excitatory postsynaptic currents and a decrease in paired-pulse facilitation. In hippocampal slices from postnatal day 3–5 rats, this effect is mediated by an increase in Ca2+ levels in the axonal terminal that depends on presynaptic NMDA receptors. This is followed by delayed potentiation of postsynaptic AMPA receptor currents. Importantly, depolarization of postsynaptic neurons, inhibition of hydroxysteroid sulfatase activity and acute exposure to ethanol mimics the effect of exogenous PREGS application. This developmental form of synaptic plasticity cannot be observed in slices from rats older than postnatal day 6, when presynaptic NMDA receptors are no longer expressed in CA1 hippocampal region. Both in the CA1 hippocampal region and the dentate gyrus of more mature rats, PREGS, dehydroepiandrosterone sulfate and hydroxysteroid sulfatase inhibitors increase paired-pulse facilitation, without affecting basal glutamate release probability. This effect depends on activation of σ1-like receptors and Gi/o and involves a target in the release machinery that is downstream of residual Ca2+. These presynaptic actions of sulfated steroids could play important roles in physiological processes ranging from synapse maturation to learning and memory, as well as pathophysiological conditions such as fetal alcohol spectrum disorder. PMID:17597219

  19. Neuroligin 1 modulates striatal glutamatergic neurotransmission in a pathway and NMDAR subunit-specific manner

    PubMed Central

    Espinosa, Felipe; Xuan, Zhong; Liu, Shunan; Powell, Craig M.

    2015-01-01

    Together with its presynaptic partner Neurexin 1 (Nxn1), Neuroligin 1 (NL1) participates in synapse specification and synapse maintenance. We and others have shown that NL1 can also modulate glutamatergic synaptic function in the central nervous system of rodent models. These molecular/cellular changes can translate into altered animal behaviors that are thought to be analogous to symptomatology of neuropsychiatric disorders. For example, in dorsal striatum of NL1 deletion mice, we previously reported that the ratio N-methyl-D-aspartate receptor (NMDAR) mediated synaptic currents to α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate receptor (AMPAR) mediated synaptic currents (NMDA/AMPA) is reduced in medium spiny neuron (MSNs). Importantly, this reduction in NMDA/AMPA ratio correlated with increased repetitive grooming. The striatum is the input nucleus of the basal ganglia (BG). Classical models of this circuitry imply that there are two principal pathways that render distinct and somewhat opposite striatal outputs critical to the function of these nuclei in modulating motor behavior. Thus, we set out to better characterize the effects of NL1 deletion on direct and indirect pathways of the dorsal striatum by genetically labeling MSNs participating in the direct and indirect pathways. We demonstrate that a decrease in NMDAR-mediated currents is limited to MSNs of the direct pathway. Furthermore, the decrease in NMDAR-mediated currents is largely due to a reduction in function of NMDARs containing the GluN2A subunit. In contrast, indirect pathway MSNs in NL1 knockout (KO) mice showed a reduction in the frequency of miniature excitatory neurotransmission not observed in the direct pathway. Thus, NL1 deletion differentially affects direct and indirect pathway MSNs in dorsal striatum. These findings have potential implications for striatal function in NL1 KO mice. PMID:26283958

  20. Role of nucleus accumbens glutamatergic plasticity in drug addiction

    PubMed Central

    Quintero, Gabriel C

    2013-01-01

    Substance dependence is characterized by a group of symptoms, according to the Diagnostic and Statistical Manual of Mental Disorders, 4th Edition, Text Revision (DSM-IV-TR). These symptoms include tolerance, withdrawal, drug consumption for alleviating withdrawal, exaggerated consumption beyond original intention, failure to reduce drug consumption, expending a considerable amount of time obtaining or recovering from the substance’s effects, disregard of basic aspects of life (for example, family), and maintenance of drug consumption, despite facing adverse consequences. The nucleus accumbens (NAc) is a brain structure located in the basal forebrain of vertebrates, and it has been the target of addictive drugs. Different neurotransmitter systems at the level of the NAc circuitry have been linked to the different problems of drug addiction, like compulsive use and relapse. The glutamate system has been linked mainly to relapse after drug-seeking extinction. The dopamine system has been linked mainly to compulsive drug use. The glutamate homeostasis hypothesis centers around the dynamics of synaptic and extrasynaptic levels of glutamate, and their impact on circuitry from the prefrontal cortex (PFC) to the NAc. After repetitive drug use, deregulation of this homeostasis increases the release of glutamate from the PFC to the NAc during drug relapse. Glial cells also play a fundamental role in this hypothesis; glial cells shape the interactions between the PFC and the NAc by means of altering glutamate levels in synaptic and extrasynaptic spaces. On the other hand, cocaine self-administration and withdrawal increases the surface expression of subunit glutamate receptor 1 (GluA1) of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors at the level of the NAc. Also, cocaine self-administration and withdrawal induce the formation of subunit glutamate receptor 2 (GluA2), lacking the Ca2+-permeable AMPA receptors (CP-AMPARs) at the level of the NAc

  1. Role of nucleus accumbens glutamatergic plasticity in drug addiction.

    PubMed

    Quintero, Gabriel C

    2013-01-01

    Substance dependence is characterized by a group of symptoms, according to the Diagnostic and Statistical Manual of Mental Disorders, 4th Edition, Text Revision (DSM-IV-TR). These symptoms include tolerance, withdrawal, drug consumption for alleviating withdrawal, exaggerated consumption beyond original intention, failure to reduce drug consumption, expending a considerable amount of time obtaining or recovering from the substance's effects, disregard of basic aspects of life (for example, family), and maintenance of drug consumption, despite facing adverse consequences. The nucleus accumbens (NAc) is a brain structure located in the basal forebrain of vertebrates, and it has been the target of addictive drugs. Different neurotransmitter systems at the level of the NAc circuitry have been linked to the different problems of drug addiction, like compulsive use and relapse. The glutamate system has been linked mainly to relapse after drug-seeking extinction. The dopamine system has been linked mainly to compulsive drug use. The glutamate homeostasis hypothesis centers around the dynamics of synaptic and extrasynaptic levels of glutamate, and their impact on circuitry from the prefrontal cortex (PFC) to the NAc. After repetitive drug use, deregulation of this homeostasis increases the release of glutamate from the PFC to the NAc during drug relapse. Glial cells also play a fundamental role in this hypothesis; glial cells shape the interactions between the PFC and the NAc by means of altering glutamate levels in synaptic and extrasynaptic spaces. On the other hand, cocaine self-administration and withdrawal increases the surface expression of subunit glutamate receptor 1 (GluA1) of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors at the level of the NAc. Also, cocaine self-administration and withdrawal induce the formation of subunit glutamate receptor 2 (GluA2), lacking the Ca(2+)-permeable AMPA receptors (CP-AMPARs) at the level of the NAc

  2. Excitatory synaptic function and plasticity is persistently altered in ventral tegmental area dopamine neurons after prenatal ethanol exposure.

    PubMed

    Hausknecht, Kathryn; Haj-Dahmane, Samir; Shen, Ying-Ling; Vezina, Paul; Dlugos, Cynthia; Shen, Roh-Yu

    2015-03-01

    Prenatal ethanol exposure (PE) is one of the developmental factors leading to increased addiction propensity (risk). However, the neuronal mechanisms underlying this effect remain unknown. We examined whether increased excitatory synaptic transmission in ventral tegmental area (VTA) dopamine (DA) neurons, which is associated with drug addiction, was impacted by PE. Pregnant rats were exposed to ethanol (0 or 6 g/kg/day) via intragastric intubation from gestational day 8-20. Amphetamine self-administration, whole-cell recordings, and electron microscopy were performed in male offspring between 2 and 12-week-old. The results showed enhanced amphetamine self-administration in PE animals. In PE animals, we observed a persistent augmentation in calcium-permeable AMPA receptor (CP-AMPAR) expression, indicated by increased rectification and reduced decay time of AMPAR-mediated excitatory postsynaptic currents (AMPAR-EPSCs), enhanced depression of AMPAR-EPSCs by NASPM (a selective CP-AMPAR antagonist), and increased GluA3 subunits in VTA DA neuron dendrites. Increased CP-AMPAR expression in PE animals led to enhanced excitatory synaptic strength and the induction of CP-AMPAR-dependent long-term potentiation (LTP), an anti-Hebbian form of LTP. These observations suggest that, in PE animals, increased excitatory synaptic strength in VTA DA neurons might be susceptible to further strengthening even in the absence of impulse flow. The PE-induced persistent increase in CP-AMPAR expression, the resulting enhancement in excitatory synaptic strength, and CP-AMPAR-dependent LTP are similar to effects observed after repeated exposure to drugs of abuse, conditions known to increase addiction risk. Therefore, these mechanisms could be important neuronal substrates underlying PE-induced enhancement in amphetamine self-administration and increased addiction risk in individuals with fetal alcohol spectrum disorders. PMID:25284318

  3. SYN2 is an autism predisposing gene: loss-of-function mutations alter synaptic vesicle cycling and axon outgrowth

    PubMed Central

    Corradi, Anna; Fadda, Manuela; Piton, Amélie; Patry, Lysanne; Marte, Antonella; Rossi, Pia; Cadieux-Dion, Maxime; Gauthier, Julie; Lapointe, Line; Mottron, Laurent; Valtorta, Flavia; Rouleau, Guy A.; Fassio, Anna; Benfenati, Fabio; Cossette, Patrick

    2014-01-01

    An increasing number of genes predisposing to autism spectrum disorders (ASDs) has been identified, many of which are implicated in synaptic function. This ‘synaptic autism pathway’ notably includes disruption of SYN1 that is associated with epilepsy, autism and abnormal behavior in both human and mice models. Synapsins constitute a multigene family of neuron-specific phosphoproteins (SYN1-3) present in the majority of synapses where they are implicated in the regulation of neurotransmitter release and synaptogenesis. Synapsins I and II, the major Syn isoforms in the adult brain, display partially overlapping functions and defects in both isoforms are associated with epilepsy and autistic-like behavior in mice. In this study, we show that nonsense (A94fs199X) and missense (Y236S and G464R) mutations in SYN2 are associated with ASD in humans. The phenotype is apparent in males. Female carriers of SYN2 mutations are unaffected, suggesting that SYN2 is another example of autosomal sex-limited expression in ASD. When expressed in SYN2  knockout neurons, wild-type human Syn II fully rescues the SYN2 knockout phenotype, whereas the nonsense mutant is not expressed and the missense mutants are virtually unable to modify the SYN2 knockout phenotype. These results identify for the first time SYN2  as a novel predisposing gene for ASD and strengthen the hypothesis that a disturbance of synaptic homeostasis underlies ASD. PMID:23956174

  4. SYN2 is an autism predisposing gene: loss-of-function mutations alter synaptic vesicle cycling and axon outgrowth.

    PubMed

    Corradi, Anna; Fadda, Manuela; Piton, Amélie; Patry, Lysanne; Marte, Antonella; Rossi, Pia; Cadieux-Dion, Maxime; Gauthier, Julie; Lapointe, Line; Mottron, Laurent; Valtorta, Flavia; Rouleau, Guy A; Fassio, Anna; Benfenati, Fabio; Cossette, Patrick

    2014-01-01

    An increasing number of genes predisposing to autism spectrum disorders (ASDs) has been identified, many of which are implicated in synaptic function. This 'synaptic autism pathway' notably includes disruption of SYN1 that is associated with epilepsy, autism and abnormal behavior in both human and mice models. Synapsins constitute a multigene family of neuron-specific phosphoproteins (SYN1-3) present in the majority of synapses where they are implicated in the regulation of neurotransmitter release and synaptogenesis. Synapsins I and II, the major Syn isoforms in the adult brain, display partially overlapping functions and defects in both isoforms are associated with epilepsy and autistic-like behavior in mice. In this study, we show that nonsense (A94fs199X) and missense (Y236S and G464R) mutations in SYN2 are associated with ASD in humans. The phenotype is apparent in males. Female carriers of SYN2 mutations are unaffected, suggesting that SYN2 is another example of autosomal sex-limited expression in ASD. When expressed in SYN2  knockout neurons, wild-type human Syn II fully rescues the SYN2 knockout phenotype, whereas the nonsense mutant is not expressed and the missense mutants are virtually unable to modify the SYN2 knockout phenotype. These results identify for the first time SYN2  as a novel predisposing gene for ASD and strengthen the hypothesis that a disturbance of synaptic homeostasis underlies ASD. PMID:23956174

  5. Lateral Hypothalamic Area Glutamatergic Neurons and Their Projections to the Lateral Habenula Regulate Feeding and Reward

    PubMed Central

    Stamatakis, Alice M.; Van Swieten, Maaike; Basiri, Marcus L.; Blair, Grace A.; Kantak, Pranish

    2016-01-01

    The overconsumption of calorically dense, highly palatable foods is thought to be a major contributor to the worldwide obesity epidemic; however, the precise neural circuits that directly regulate hedonic feeding remain elusive. Here, we show that lateral hypothalamic area (LHA) glutamatergic neurons, and their projections to the lateral habenula (LHb), negatively regulate the consumption of palatable food. Genetic ablation of LHA glutamatergic neurons increased daily caloric intake and produced weight gain in mice that had access to a high-fat diet, while not altering general locomotor activity. Anterior LHA glutamatergic neurons send a functional glutamatergic projection to the LHb, a brain region involved in processing aversive stimuli and negative reward prediction outcomes. Pathway-specific, optogenetic stimulation of glutamatergic LHA-LHb circuit resulted in detectable glutamate-mediated EPSCs as well as GABA-mediated IPSCs, although the net effect of neurotransmitter release was to increase the firing of most LHb neurons. In vivo optogenetic inhibition of LHA-LHb glutamatergic fibers produced a real-time place preference, whereas optogenetic stimulation of LHA-LHb glutamatergic fibers had the opposite effect. Furthermore, optogenetic inhibition of LHA-LHb glutamatergic fibers acutely increased the consumption of a palatable liquid caloric reward. Collectively, these results demonstrate that LHA glutamatergic neurons are well situated to bidirectionally regulate feeding and potentially other behavioral states via their functional circuit connectivity with the LHb and potentially other brain regions. SIGNIFICANCE STATEMENT In this study, we show that the genetic ablation of LHA glutamatergic neurons enhances caloric intake. Some of these LHA glutamatergic neurons project to the lateral habenula, a brain area important for generating behavioral avoidance. Optogenetic stimulation of this circuit has net excitatory effects on postsynaptic LHb neurons. This is the

  6. Protection against β-amyloid-induced synaptic and memory impairments via altering β-amyloid assembly by bis(heptyl)-cognitin

    PubMed Central

    Chang, Lan; Cui, Wei; Yang, Yong; Xu, Shujun; Zhou, Wenhua; Fu, Hongjun; Hu, Shengquan; Mak, Shinghung; Hu, Juwei; Wang, Qin; Pui-Yan Ma, Victor; Chung-lit Choi, Tony; Dik-lung Ma, Edmond; Tao, Liang; Pang, Yuanping; Rowan, Michael J.; Anwyl, Roger; Han, Yifan; Wang, Qinwen

    2015-01-01

    β-amyloid (Aβ) oligomers have been closely implicated in the pathogenesis of Alzheimer’s disease (AD). We found, for the first time, that bis(heptyl)-cognitin, a novel dimeric acetylcholinesterase (AChE) inhibitor derived from tacrine, prevented Aβ oligomers-induced inhibition of long-term potentiation (LTP) at concentrations that did not interfere with normal LTP. Bis(heptyl)-cognitin also prevented Aβ oligomers-induced synaptotoxicity in primary hippocampal neurons. In contrast, tacrine and donepezil, typical AChE inhibitors, could not prevent synaptic impairments in these models, indicating that the modification of Aβ oligomers toxicity by bis(heptyl)-cognitin might be attributed to a mechanism other than AChE inhibition. Studies by using dot blotting, immunoblotting, circular dichroism spectroscopy, and transmission electron microscopy have shown that bis(heptyl)-cognitin altered Aβ assembly via directly inhibiting Aβ oligomers formation and reducing the amount of preformed Aβ oligomers. Molecular docking analysis further suggested that bis(heptyl)-cognitin presumably interacted with the hydrophobic pockets of Aβ, which confers stabilizing powers and assembly alteration effects on Aβ. Most importantly, bis(heptyl)-cognitin significantly reduced cognitive impairments induced by intra-hippocampal infusion of Aβ oligomers in mice. These results clearly demonstrated how dimeric agents prevent Aβ oligomers-induced synaptic and memory impairments, and offered a strong support for the beneficial therapeutic effects of bis(heptyl)-cognitin in the treatment of AD. PMID:26194093

  7. Protection against β-amyloid-induced synaptic and memory impairments via altering β-amyloid assembly by bis(heptyl)-cognitin.

    PubMed

    Chang, Lan; Cui, Wei; Yang, Yong; Xu, Shujun; Zhou, Wenhua; Fu, Hongjun; Hu, Shengquan; Mak, Shinghung; Hu, Juwei; Wang, Qin; Ma, Victor Pui-Yan; Choi, Tony Chung-lit; Ma, Edmond Dik-lung; Tao, Liang; Pang, Yuanping; Rowan, Michael J; Anwyl, Roger; Han, Yifan; Wang, Qinwen

    2015-01-01

    β-amyloid (Aβ) oligomers have been closely implicated in the pathogenesis of Alzheimer's disease (AD). We found, for the first time, that bis(heptyl)-cognitin, a novel dimeric acetylcholinesterase (AChE) inhibitor derived from tacrine, prevented Aβ oligomers-induced inhibition of long-term potentiation (LTP) at concentrations that did not interfere with normal LTP. Bis(heptyl)-cognitin also prevented Aβ oligomers-induced synaptotoxicity in primary hippocampal neurons. In contrast, tacrine and donepezil, typical AChE inhibitors, could not prevent synaptic impairments in these models, indicating that the modification of Aβ oligomers toxicity by bis(heptyl)-cognitin might be attributed to a mechanism other than AChE inhibition. Studies by using dot blotting, immunoblotting, circular dichroism spectroscopy, and transmission electron microscopy have shown that bis(heptyl)-cognitin altered Aβ assembly via directly inhibiting Aβ oligomers formation and reducing the amount of preformed Aβ oligomers. Molecular docking analysis further suggested that bis(heptyl)-cognitin presumably interacted with the hydrophobic pockets of Aβ, which confers stabilizing powers and assembly alteration effects on Aβ. Most importantly, bis(heptyl)-cognitin significantly reduced cognitive impairments induced by intra-hippocampal infusion of Aβ oligomers in mice. These results clearly demonstrated how dimeric agents prevent Aβ oligomers-induced synaptic and memory impairments, and offered a strong support for the beneficial therapeutic effects of bis(heptyl)-cognitin in the treatment of AD. PMID:26194093

  8. Impaired attention and synaptic senescence of the prefrontal cortex involves redox regulation of NMDA receptors.

    PubMed

    Guidi, Michael; Kumar, Ashok; Foster, Thomas C

    2015-03-01

    Young (3-6 months) and middle-age (10-14 months) rats were trained on the five-choice serial reaction time task. Attention and executive function deficits were apparent in middle-age animals observed as a decrease in choice accuracy, increase in omissions, and increased response latency. The behavioral differences were not due to alterations in sensorimotor function or a diminished motivational state. Electrophysiological characterization of synaptic transmission in slices from the mPFC indicated an age-related decrease in glutamatergic transmission. In particular, a robust decrease in N-methyl-D-aspartate receptor (NMDAR)-mediated synaptic responses in the mPFC was correlated with several measures of attention. The decrease in NMDAR function was due in part to an altered redox state as bath application of the reducing agent, dithiothreitol, increased the NMDAR component of the synaptic response to a greater extent in middle-age animals. Together with previous work indicating that redox state mediates senescent physiology in the hippocampus, the results indicate that redox changes contribute to senescent synaptic function in vulnerable brain regions involved in age-related cognitive decline. PMID:25740525

  9. Impaired Attention and Synaptic Senescence of the Prefrontal Cortex Involves Redox Regulation of NMDA Receptors

    PubMed Central

    Guidi, Michael

    2015-01-01

    Young (3–6 months) and middle-age (10–14 months) rats were trained on the five-choice serial reaction time task. Attention and executive function deficits were apparent in middle-age animals observed as a decrease in choice accuracy, increase in omissions, and increased response latency. The behavioral differences were not due to alterations in sensorimotor function or a diminished motivational state. Electrophysiological characterization of synaptic transmission in slices from the mPFC indicated an age-related decrease in glutamatergic transmission. In particular, a robust decrease in N-methyl-d-aspartate receptor (NMDAR)-mediated synaptic responses in the mPFC was correlated with several measures of attention. The decrease in NMDAR function was due in part to an altered redox state as bath application of the reducing agent, dithiothreitol, increased the NMDAR component of the synaptic response to a greater extent in middle-age animals. Together with previous work indicating that redox state mediates senescent physiology in the hippocampus, the results indicate that redox changes contribute to senescent synaptic function in vulnerable brain regions involved in age-related cognitive decline. PMID:25740525

  10. Peripherally restricted viral challenge elevates extracellular glutamate and enhances synaptic transmission in the hippocampus.

    PubMed

    Hunsberger, Holly C; Wang, Desheng; Petrisko, Tiffany J; Alhowail, Ahmad; Setti, Sharay E; Suppiramaniam, Vishnu; Konat, Gregory W; Reed, Miranda N

    2016-07-01

    Peripheral infections increase the propensity and severity of seizures in susceptible populations. We have previously shown that intraperitoneal injection of a viral mimic, polyinosinic-polycytidylic acid (PIC), elicits hypersusceptibility of mice to kainic acid (KA)-induced seizures. This study was undertaken to determine whether this seizure hypersusceptibility entails alterations in glutamate signaling. Female C57BL/6 mice were intraperitoneally injected with PIC, and after 24 h, glutamate homeostasis in the hippocampus was monitored using the enzyme-based microelectrode arrays. PIC challenge robustly increased the level of resting extracellular glutamate. While pre-synaptic potassium-evoked glutamate release was not affected, glutamate uptake was profoundly impaired and non-vesicular glutamate release was augmented, indicating functional alterations of astrocytes. Electrophysiological examination of hippocampal slices from PIC-challenged mice revealed a several fold increase in the basal synaptic transmission as compared to control slices. PIC challenge also increased the probability of pre-synaptic glutamate release as seen from a reduction of paired-pulse facilitation and synaptic plasticity as seen from an enhancement of long-term potentiation. Altogether, our results implicate a dysregulation of astrocytic glutamate metabolism and an alteration of excitatory synaptic transmission as the underlying mechanism for the development of hippocampal hyperexcitability, and consequently seizure hypersusceptibility following peripheral PIC challenge. Peripheral infections/inflammations enhance seizure susceptibility. Here, we explored the effect of peritoneal inflammation induced by a viral mimic on glutamate homeostasis and glutamatergic neurotransmission in the mouse hippocampus. We found that peritoneal inflammation elevated extracellular glutamate concentration and enhanced the probability of pre-synaptic glutamate release resulting in hyperexcitability of

  11. Sex-dependent alterations in social behaviour and cortical synaptic activity coincide at different ages in a model of Alzheimer's disease.

    PubMed

    Bories, Cyril; Guitton, Matthieu J; Julien, Carl; Tremblay, Cyntia; Vandal, Milène; Msaid, Meriem; De Koninck, Yves; Calon, Frédéric

    2012-01-01

    Besides memory deficits, Alzheimer's disease (AD) patients suffer from neuropsychiatric symptoms, including alterations in social interactions, which are subject of a growing number of investigations in transgenic models of AD. Yet the biological mechanisms underlying these behavioural alterations are poorly understood. Here, a social interaction paradigm was used to assess social dysfunction in the triple-transgenic mouse model of AD (3xTg-AD). We observed that transgenic mice displayed dimorphic behavioural abnormalities at different ages. Social disinhibition was observed in 18 months old 3xTg-AD males compared to age and sex-matched control mice. In 3xTg-AD females, social disinhibition was present at 12 months followed by reduced social interactions at 18 months. These dimorphic behavioural alterations were not associated with alterations in AD neuropathological markers such as Aβ or tau levels in the frontal cortex. However, patch-clamp recordings revealed that enhanced social interactions coincided temporally with an increase in both excitatory and inhibitory basal synaptic inputs to layer 2-3 pyramidal neurons in the prefrontal cortex. These findings uncover a novel pattern of occurrence of psychiatric-like symptoms between sexes in an AD model. Our results also reveal that functional alterations in synapse activity appear as a potentially significant substrate underlying behavioural correlates of AD. PMID:23029404

  12. Glutamatergic postsynaptic block by Pamphobeteus spider venoms in crayfish.

    PubMed

    Araque, A; Ferreira, W; Lucas, S; Buño, W

    1992-01-31

    The effects of toxins from venom glands of two south american spiders (Pamphobeteus platyomma and P. soracabae) on glutamatergic excitatory synaptic transmission were studied in the neuromuscular junction of the opener muscle of crayfish. The toxins selectively and reversibly blocked both excitatory postsynaptic currents and potentials in a dose-dependent manner. They also reversibly abolished glutamate-induced postsynaptic membrane depolarization. They had no effect on resting postsynaptic membrane conductance nor on postsynaptic voltage-gated currents. The synaptic facilitation and the frequency of miniature postsynaptic potentials were unaffected by the toxins, indicating that presynaptic events were not modified. Picrotoxin, a selective antagonist of the gamma-aminobutyric acid (GABA)A receptor, did not modify toxin effects. We conclude that both toxins specifically block the postsynaptic glutamate receptor-channel complex. PMID:1319261

  13. Modulation of the glutamatergic transmission by Dopamine: a focus on Parkinson, Huntington and Addiction diseases

    PubMed Central

    Gardoni, Fabrizio; Bellone, Camilla

    2015-01-01

    Dopamine (DA) plays a major role in motor and cognitive functions as well as in reward processing by regulating glutamatergic inputs. In particular in the striatum the release of DA rapidly influences synaptic transmission modulating both AMPA and NMDA receptors. Several neurodegenerative and neuropsychiatric disorders, including Parkinson, Huntington and addiction-related diseases, manifest a dysregulation of glutamate and DA signaling. Here, we will focus our attention on the mechanisms underlying the modulation of the glutamatergic transmission by DA in striatal circuits. PMID:25784855

  14. Naturally occurring compounds affect glutamatergic neurotransmission in rat brain.

    PubMed

    Martini, Lucia Helena; Jung, Fernanda; Soares, Felix Antunes; Rotta, Liane Nanci; Vendite, Deusa Aparecida; Frizzo, Marcos Emilio dos Santos; Yunes, Rosendo A; Calixto, João Batista; Wofchuk, Susana; Souza, Diogo O

    2007-11-01

    Natural products, including those derived from plants, have largely contributed to the development of therapeutic drugs. Glutamate is the main excitatory neurotransmitter in the central nervous system and it is also considered a nociceptive neurotransmitter, by acting on peripheral nervous system. For this reason, in this study we investigated the effects of the hydroalcoholic extracts from Drymis winteri (polygodial and drimanial), Phyllanthus (rutin and quercetine), Jathopha elliptica (jatrophone), Hedyosmum brasiliense (13HDS), Ocotea suaveolens (Tormentic acid), Protium kleinii (alphabeta-amyrin), Citrus paradise (naringin), soybean (genistein) and Crataeva nurvala (lupeol), described as having antinociceptive effects, on glutamatergic transmission parameters, such as [(3)H]glutamate binding, [(3)H]glutamate uptake by synaptic vesicles and astrocyte cultures, and synaptosomal [(3)H]glutamate release. All the glutamatergic parameters were affected by one or more of these compounds. Specifically, drimanial and polygodial presented more broad and profound effects, requiring more investigation on their mechanisms. The putative central side effects of these compounds, via the glutamatergic system, are discussed. PMID:17577666

  15. Susceptibility for homeostatic plasticity is down-regulated in parallel with maturation of the rat hippocampal synaptic circuitry

    PubMed Central

    Huupponen, J; Molchanova, S M; Taira, T; Lauri, S E

    2007-01-01

    Homeostatic regulation, i.e. the ability of neurons and neuronal networks to adjust their output in response to chronic alterations in electrical activity is a prerequisite for the pronounced functional plasticity in the developing brain. Cellular mechanisms of homeostatic plasticity have mainly been studied in cultured preparations. To understand the developmental time frame and properties of homeostatic plasticity under more physiological conditions, we have here compared the effects of activity deprivation on synaptic transmission in acutely isolated and cultured hippocampal slices at different stages of development. We find that transmission at both glutamatergic and GABAergic synapses is strongly and rapidly (15 h) regulated in the opposite directions in response to inactivity during narrow, separated time windows early in development. Following this critical period of synaptic development, induction of the homeostatic response requires longer periods (40 h) of inactivity. At glutamatergic synapses, activity blockade led to an increase in the amplitude and frequency of mEPSCs, and the threshold for induction of this response was increased during development. In contrast, homeostatic regulation at GABAergic synapses was expressed in a qualitatively distinct manner at different developmental stages. Immature neurons responded rapidly to inactivity by regulating mIPSC frequency, while longer activity blockade led to a decrease in the mIPSC amplitude independent of the neuronal maturation. The susceptibility of immature networks to homeostatic regulation may serve as a safety mechanism against rapid runaway destability during the time of intense remodelling of the synaptic circuitry. PMID:17347263

  16. Susceptibility for homeostatic plasticity is down-regulated in parallel with maturation of the rat hippocampal synaptic circuitry.

    PubMed

    Huupponen, J; Molchanova, S M; Taira, T; Lauri, S E

    2007-06-01

    Homeostatic regulation, i.e. the ability of neurons and neuronal networks to adjust their output in response to chronic alterations in electrical activity is a prerequisite for the pronounced functional plasticity in the developing brain. Cellular mechanisms of homeostatic plasticity have mainly been studied in cultured preparations. To understand the developmental time frame and properties of homeostatic plasticity under more physiological conditions, we have here compared the effects of activity deprivation on synaptic transmission in acutely isolated and cultured hippocampal slices at different stages of development. We find that transmission at both glutamatergic and GABAergic synapses is strongly and rapidly (15 h) regulated in the opposite directions in response to inactivity during narrow, separated time windows early in development. Following this critical period of synaptic development, induction of the homeostatic response requires longer periods (40 h) of inactivity. At glutamatergic synapses, activity blockade led to an increase in the amplitude and frequency of mEPSCs, and the threshold for induction of this response was increased during development. In contrast, homeostatic regulation at GABAergic synapses was expressed in a qualitatively distinct manner at different developmental stages. Immature neurons responded rapidly to inactivity by regulating mIPSC frequency, while longer activity blockade led to a decrease in the mIPSC amplitude independent of the neuronal maturation. The susceptibility of immature networks to homeostatic regulation may serve as a safety mechanism against rapid runaway destability during the time of intense remodelling of the synaptic circuitry. PMID:17347263

  17. Glutamatergic dysfunctioning in Alzheimer's disease and related therapeutic targets.

    PubMed

    Zádori, Dénes; Veres, Gábor; Szalárdy, Levente; Klivényi, Péter; Toldi, József; Vécsei, László

    2014-01-01

    The impairment of glutamatergic neurotransmission plays an important role in the development of Alzheimer's disease (AD). The pathological process, which involves the production of amyloid-β peptides and hyperphosphorylated tau proteins, spreads over well-delineated neuroanatomical circuits. The gradual deterioration of proper synaptic functioning (via GluN2A-containing N-methyl-D-aspartate receptors, NMDARs) and the development of excitotoxicity (via GluN2B-containing NMDARs) in these structures both accompany the disease pathogenesis. Although one of the most important therapeutic targets would be glutamate excitotoxicity, the application of conventional anti-glutamatergic agents could result in further deterioration of synaptic transmission and intolerable side-effects. With regard to NMDAR antagonists with tolerable side-effects, ion channel blockers with low affinity, glycine site agents, and specific antagonists of polyamine site and GluN2B subunit may come into play. However, in the mirror of experimental data, only the application of ion channel blockers with pronounced voltage dependency, low affinity, and rapid unblocking kinetics (e.g., memantine) and specific antagonists of the GluN2B subunit (e.g., ifenprodil and certain kynurenic acid amides) resulted in desirable symptom amelioration. Therefore we propose that these kinds of chemical agents may have therapeutic potential for present and future drug development. PMID:24670398

  18. Early Fear Memory Defects Are Associated with Altered Synaptic Plasticity and Molecular Architecture in the TgCRND8 Alzheimer's Disease Mouse Model

    PubMed Central

    Steele, John W.; Brautigam, Hannah; Short, Jennifer A.; Sowa, Allison; Shi, Mengxi; Yadav, Aniruddha; Weaver, Christina M.; Westaway, David; Fraser, Paul E.; St George-Hyslop, Peter H.; Gandy, Sam; Hof, Patrick R.; Dickstein, Dara L.

    2014-01-01

    Alzheimer's disease (AD) is a complex and slowly progressing dementing disorder that results in neuronal and synaptic loss, deposition in brain of aberrantly folded proteins, and impairment of spatial and episodic memory. Most studies of mouse models of AD have employed analyses of cognitive status and assessment of amyloid burden, gliosis, and molecular pathology during disease progression. Here, we sought to understand the behavioral, cellular, ultrastructural, and molecular changes that occur at a pathological stage equivalent to early stages of human AD. We studied the TgCRND8 mouse, a model of aggressive AD amyloidosis, at an early stage of plaque pathology (3 months of age) in comparison to their wild-type littermates and assessed changes in cognition, neuron and spine structure, and expression of synaptic glutamate receptor proteins. We found that, at this age, TgCRND8 mice display substantial plaque deposition in the neocortex and hippocampus and impairment on cued and contextual memory tasks. Of particular interest, we also observed a significant decrease in the number of neurons in the hippocampus. Furthermore, analysis of CA1 neurons revealed significant changes in apical and basal dendritic spine types, as well as altered expression of GluN1 and GluA2 receptors. This change in molecular architecture within the hippocampus may reflect a rising representation of inherently less stable thin spine populations, which can cause cognitive decline. These changes, taken together with toxic insults from amyloid-β protein, may underlie the observed neuronal loss. PMID:24415002

  19. Prenatal inhibition of the tryptophan-kynurenine pathway alters synaptic plasticity and protein expression in the rat hippocampus.

    PubMed

    Forrest, Caroline M; Khalil, Omari S; Pisar, Mazura; Darlington, L Gail; Stone, Trevor W

    2013-04-01

    Glutamate receptors sensitive to N-methyl-d-aspartate (NMDA) are important in early brain development, influencing cell proliferation and migration, neuritogenesis, axon guidance and synapse formation. The kynurenine pathway of tryptophan metabolism includes an agonist (quinolinic acid) and an antagonist (kynurenic acid) at these receptors. Rats were treated in late gestation with 3,4-dimethoxy-N-[4-(3-nitrophenyl)thiazol-2-yl]-benzene-sulphonamide (Ro61-8048), an inhibitor of kynurenine-3-monoxygenase which diverts kynurenine metabolism to kynurenic acid. Within 5h of drug administration, there was a significant decrease in GluN2A expression and increased GluN2B in the embryo brains, with changes in sonic hedgehog at 24h. When injected dams were allowed to litter normally, the brains of offspring were removed at postnatal day 21 (P21). Recordings of hippocampal field excitatory synaptic potentials (fEPSPs) showed that prenatal exposure to Ro61-8048 increased neuronal excitability and paired-pulse facilitation. Long-term potentiation was also increased, with no change in long-term depression. At this time, levels of GluN2A, GluN2B and postsynaptic density protein PSD-95 were all increased. Among several neurodevelopmental proteins, the expression of sonic hedgehog was increased, but DISC1 and dependence receptors were unaffected, while raised levels of doublecortin and Proliferating Cell Nuclear Antigen (PCNA) suggested increased neurogenesis. The results reveal that inhibiting the kynurenine pathway in utero leads to molecular and functional synaptic changes in the embryos and offspring, indicating that the pathway is active during gestation and plays a significant role in the normal early development of the embryonic and neonatal nervous system. PMID:23353758

  20. Overexpression of Isoforms of Nitric Oxide Synthase 1 Adaptor Protein, Encoded by a Risk Gene for Schizophrenia, Alters Actin Dynamics and Synaptic Function

    PubMed Central

    Hernandez, Kristina; Swiatkowski, Przemyslaw; Patel, Mihir V.; Liang, Chen; Dudzinski, Natasha R.; Brzustowicz, Linda M.; Firestein, Bonnie L.

    2016-01-01

    Proper communication between neurons depends upon appropriate patterning of dendrites and correct distribution and structure of spines. Schizophrenia is a neuropsychiatric disorder characterized by alterations in dendrite branching and spine density. Nitric oxide synthase 1 adaptor protein (NOS1AP), a risk gene for schizophrenia, encodes proteins that are upregulated in the dorsolateral prefrontal cortex (DLPFC) of individuals with schizophrenia. To elucidate the effects of NOS1AP overexpression observed in individuals with schizophrenia, we investigated changes in actin dynamics and spine development when a long (NOS1AP-L) or short (NOS1AP-S) isoform of NOS1AP is overexpressed. Increased NOS1AP-L protein promotes the formation of immature spines when overexpressed in rat cortical neurons from day in vitro (DIV) 14 to DIV 17 and reduces the amplitude of miniature excitatory postsynaptic currents (mEPSCs). In contrast, increased NOS1AP-S protein increases the rate of actin polymerization and the number of immature and mature spines, which may be attributed to a decrease in total Rac1 expression and a reduction in the levels of active cofilin. The increase in the number of mature spines by overexpression of NOS1AP-S is accompanied by an increase in the frequency of mEPSCs. Our findings show that overexpression of NOS1AP-L or NOS1AP-S alters the actin cytoskeleton and synaptic function. However, the mechanisms by which these isoforms induce these changes are distinct. These results are important for understanding how increased expression of NOS1AP isoforms can influence spine development and synaptic function. PMID:26869880

  1. Overexpression of Isoforms of Nitric Oxide Synthase 1 Adaptor Protein, Encoded by a Risk Gene for Schizophrenia, Alters Actin Dynamics and Synaptic Function.

    PubMed

    Hernandez, Kristina; Swiatkowski, Przemyslaw; Patel, Mihir V; Liang, Chen; Dudzinski, Natasha R; Brzustowicz, Linda M; Firestein, Bonnie L

    2016-01-01

    Proper communication between neurons depends upon appropriate patterning of dendrites and correct distribution and structure of spines. Schizophrenia is a neuropsychiatric disorder characterized by alterations in dendrite branching and spine density. Nitric oxide synthase 1 adaptor protein (NOS1AP), a risk gene for schizophrenia, encodes proteins that are upregulated in the dorsolateral prefrontal cortex (DLPFC) of individuals with schizophrenia. To elucidate the effects of NOS1AP overexpression observed in individuals with schizophrenia, we investigated changes in actin dynamics and spine development when a long (NOS1AP-L) or short (NOS1AP-S) isoform of NOS1AP is overexpressed. Increased NOS1AP-L protein promotes the formation of immature spines when overexpressed in rat cortical neurons from day in vitro (DIV) 14 to DIV 17 and reduces the amplitude of miniature excitatory postsynaptic currents (mEPSCs). In contrast, increased NOS1AP-S protein increases the rate of actin polymerization and the number of immature and mature spines, which may be attributed to a decrease in total Rac1 expression and a reduction in the levels of active cofilin. The increase in the number of mature spines by overexpression of NOS1AP-S is accompanied by an increase in the frequency of mEPSCs. Our findings show that overexpression of NOS1AP-L or NOS1AP-S alters the actin cytoskeleton and synaptic function. However, the mechanisms by which these isoforms induce these changes are distinct. These results are important for understanding how increased expression of NOS1AP isoforms can influence spine development and synaptic function. PMID:26869880

  2. Third trimester-equivalent ethanol exposure increases anxiety-like behavior and glutamatergic transmission in the basolateral amygdala.

    PubMed

    Baculis, Brian C; Diaz, Marvin R; Valenzuela, C Fernando

    2015-10-01

    Ethanol consumption during pregnancy produces a wide range of morphological and behavioral alterations known as fetal alcohol spectrum disorder (FASD). Among the behavioral deficits associated with FASD is an increased probability of developing anxiety disorders. Studies with animal models of FASD have demonstrated that ethanol exposure during the equivalent to the 1(st) and 2(nd) trimesters of human pregnancy increases anxiety-like behavior. Here, we examined the impact on this type of behavior of exposure to high doses of ethanol in vapor inhalation chambers during the rat equivalent to the human 3rd trimester of pregnancy (i.e., neonatal period in these animals). We evaluated anxiety-like behavior with the elevated plus maze. Using whole-cell patch-clamp electrophysiological techniques in brain slices, we also characterized glutamatergic and GABAergic synaptic transmission in the basolateral amygdala, a brain region that has been implicated to play a role in emotional behavior. We found that ethanol-exposed adolescent offspring preferred the closed arms over the open arms in the elevated plus maze and displayed lower head dipping activity than controls. Electrophysiological measurements showed an increase in the frequency of spontaneous and miniature excitatory postsynaptic currents in pyramidal neurons from the ethanol group. These findings suggest that high-dose ethanol exposure during the equivalent to the last trimester of human pregnancy can persistently increase excitatory synaptic inputs to principal neurons in the basolateral amygdala, leading to an increase in anxiety-like behaviors. PMID:26284742

  3. Upward synaptic scaling is dependent on neurotransmission rather than spiking

    PubMed Central

    Fong, Ming-fai; Newman, Jonathan P.; Potter, Steve M.; Wenner, Peter

    2015-01-01

    Homeostatic plasticity encompasses a set of mechanisms that are thought to stabilize firing rates in neural circuits. The most widely studied form of homeostatic plasticity is upward synaptic scaling (upscaling), characterized by a multiplicative increase in the strength of excitatory synaptic inputs to a neuron as a compensatory response to chronic reductions in firing rate. While reduced spiking is thought to trigger upscaling, an alternative possibility is that reduced glutamatergic transmission generates this plasticity directly. However, spiking and neurotransmission are tightly coupled, so it has been difficult to determine their independent roles in the scaling process. Here we combined chronic multielectrode recording, closed-loop optogenetic stimulation, and pharmacology to show that reduced glutamatergic transmission directly triggers cell-wide synaptic upscaling. This work highlights the importance of synaptic activity in initiating signalling cascades that mediate upscaling. Moreover, our findings challenge the prevailing view that upscaling functions to homeostatically stabilize firing rates. PMID:25751516

  4. Enhanced corticosteroid signaling alters synaptic plasticity in the dentate gyrus in mice lacking the fragile X mental retardation protein.

    PubMed

    Ghilan, M; Hryciw, B N; Brocardo, P S; Bostrom, C A; Gil-Mohapel, J; Christie, B R

    2015-05-01

    The fragile X mental retardation protein (FMRP) is an important regulator of protein translation, and a lack of FMRP expression leads to a cognitive disorder known as fragile X syndrome (FXS). Clinical symptoms characterizing FXS include learning impairments and heightened anxiety in response to stressful situations. Here, we report that, in response to acute stress, mice lacking FMRP show a faster elevation of corticosterone and a more immediate impairment in N-methyl-d-aspartate receptor (NMDAR) dependent long-term potentiation (LTP) in the dentate gyrus (DG). These stress-induced LTP impairments were rescued by administering the glucocorticoid receptor (GR) antagonist RU38486. Administration of RU38486 also enhanced LTP in Fmr1(-/y) mice in the absence of acute stress to wild-type levels, and this enhancement was blocked by application of the NMDAR antagonist 2-amino-5-phosphonopentanoic acid. These results suggest that a loss of FMPR results in enhanced GR signaling that may adversely affect NMDAR dependent synaptic plasticity in the DG. PMID:25731748

  5. Endogenous zinc depresses GABAergic transmission via T-type Ca2+ channels and broadens the time window for integration of glutamatergic inputs in dentate granule cells

    PubMed Central

    Grauert, Antonia; Engel, Dominique; Ruiz, Arnaud J

    2014-01-01

    Abstract Zinc actions on synaptic transmission span the modulation of neurotransmitter receptors, transporters, activation of intracellular cascades and alterations in gene expression. Whether and how zinc affects inhibitory synaptic signalling in the dentate gyrus remains largely unexplored. We found that mono- and di-synaptic GABAergic inputs onto dentate granule cells were reversibly depressed by exogenous zinc application and enhanced by zinc chelation. Blocking T-type Ca2+ channels prevented the effect of zinc chelation. When recording from dentate fast-spiking interneurones, zinc chelation facilitated T-type Ca2+ currents, increased action potential half-width and decreased spike threshold. It also increased the offset of the input–output relation in a manner consistent with enhanced excitability. In granule cells, chelation of zinc reduced the time window for the integration of glutamatergic inputs originating from perforant path synapses, resulting in reduced spike transfer. Thus, zinc-mediated modulation of dentate interneurone excitability and GABA release regulates information flow to local targets and hippocampal networks. PMID:24081159

  6. Isoflurane inhibits synaptic vesicle exocytosis through reduced Ca2+ influx, not Ca2+-exocytosis coupling

    PubMed Central

    Baumgart, Joel P.; Zhou, Zhen-Yu; Hara, Masato; Cook, Daniel C.; Hoppa, Michael B.; Ryan, Timothy A.; Hemmings, Hugh C.

    2015-01-01

    Identifying presynaptic mechanisms of general anesthetics is critical to understanding their effects on synaptic transmission. We show that the volatile anesthetic isoflurane inhibits synaptic vesicle (SV) exocytosis at nerve terminals in dissociated rat hippocampal neurons through inhibition of presynaptic Ca2+ influx without significantly altering the Ca2+ sensitivity of SV exocytosis. A clinically relevant concentration of isoflurane (0.7 mM) inhibited changes in [Ca2+]i driven by single action potentials (APs) by 25 ± 3%, which in turn led to 62 ± 3% inhibition of single AP-triggered exocytosis at 4 mM extracellular Ca2+ ([Ca2+]e). Lowering external Ca2+ to match the isoflurane-induced reduction in Ca2+ entry led to an equivalent reduction in exocytosis. These data thus indicate that anesthetic inhibition of neurotransmitter release from small SVs occurs primarily through reduced axon terminal Ca2+ entry without significant direct effects on Ca2+-exocytosis coupling or on the SV fusion machinery. Isoflurane inhibition of exocytosis and Ca2+ influx was greater in glutamatergic compared with GABAergic nerve terminals, consistent with selective inhibition of excitatory synaptic transmission. Such alteration in the balance of excitatory to inhibitory transmission could mediate reduced neuronal interactions and network-selective effects observed in the anesthetized central nervous system. PMID:26351670

  7. Isoflurane inhibits synaptic vesicle exocytosis through reduced Ca2+ influx, not Ca2+-exocytosis coupling.

    PubMed

    Baumgart, Joel P; Zhou, Zhen-Yu; Hara, Masato; Cook, Daniel C; Hoppa, Michael B; Ryan, Timothy A; Hemmings, Hugh C

    2015-09-22

    Identifying presynaptic mechanisms of general anesthetics is critical to understanding their effects on synaptic transmission. We show that the volatile anesthetic isoflurane inhibits synaptic vesicle (SV) exocytosis at nerve terminals in dissociated rat hippocampal neurons through inhibition of presynaptic Ca(2+) influx without significantly altering the Ca(2+) sensitivity of SV exocytosis. A clinically relevant concentration of isoflurane (0.7 mM) inhibited changes in [Ca(2+)]i driven by single action potentials (APs) by 25 ± 3%, which in turn led to 62 ± 3% inhibition of single AP-triggered exocytosis at 4 mM extracellular Ca(2+) ([Ca(2+)]e). Lowering external Ca(2+) to match the isoflurane-induced reduction in Ca(2+) entry led to an equivalent reduction in exocytosis. These data thus indicate that anesthetic inhibition of neurotransmitter release from small SVs occurs primarily through reduced axon terminal Ca(2+) entry without significant direct effects on Ca(2+)-exocytosis coupling or on the SV fusion machinery. Isoflurane inhibition of exocytosis and Ca(2+) influx was greater in glutamatergic compared with GABAergic nerve terminals, consistent with selective inhibition of excitatory synaptic transmission. Such alteration in the balance of excitatory to inhibitory transmission could mediate reduced neuronal interactions and network-selective effects observed in the anesthetized central nervous system. PMID:26351670

  8. Altered Intrinsic Pyramidal Neuron Properties and Pathway-Specific Synaptic Dysfunction Underlie Aberrant Hippocampal Network Function in a Mouse Model of Tauopathy

    PubMed Central

    Booth, Clair A.; Witton, Jonathan; Nowacki, Jakub; Tsaneva-Atanasova, Krasimira; Jones, Matthew W.; Randall, Andrew D.

    2016-01-01

    The formation and deposition of tau protein aggregates is proposed to contribute to cognitive impairments in dementia by disrupting neuronal function in brain regions, including the hippocampus. We used a battery of in vivo and in vitro electrophysiological recordings in the rTg4510 transgenic mouse model, which overexpresses a mutant form of human tau protein, to investigate the effects of tau pathology on hippocampal neuronal function in area CA1 of 7- to 8-month-old mice, an age point at which rTg4510 animals exhibit advanced tau pathology and progressive neurodegeneration. In vitro recordings revealed shifted theta-frequency resonance properties of CA1 pyramidal neurons, deficits in synaptic transmission at Schaffer collateral synapses, and blunted plasticity and imbalanced inhibition at temporoammonic synapses. These changes were associated with aberrant CA1 network oscillations, pyramidal neuron bursting, and spatial information coding in vivo. Our findings relate tauopathy-associated changes in cellular neurophysiology to altered behavior-dependent network function. SIGNIFICANCE STATEMENT Dementia is characterized by the loss of learning and memory ability. The deposition of tau protein aggregates in the brain is a pathological hallmark of dementia; and the hippocampus, a brain structure known to be critical in processing learning and memory, is one of the first and most heavily affected regions. Our results show that, in area CA1 of hippocampus, a region involved in spatial learning and memory, tau pathology is associated with specific disturbances in synaptic, cellular, and network-level function, culminating in the aberrant encoding of spatial information and spatial memory impairment. These studies identify several novel ways in which hippocampal information processing may be disrupted in dementia, which may provide targets for future therapeutic intervention. PMID:26758828

  9. Synaptic Cell Adhesion Molecules in Alzheimer's Disease

    PubMed Central

    Leshchyns'ka, Iryna

    2016-01-01

    Alzheimer's disease (AD) is a neurodegenerative brain disorder associated with the loss of synapses between neurons in the brain. Synaptic cell adhesion molecules are cell surface glycoproteins which are expressed at the synaptic plasma membranes of neurons. These proteins play key roles in formation and maintenance of synapses and regulation of synaptic plasticity. Genetic studies and biochemical analysis of the human brain tissue, cerebrospinal fluid, and sera from AD patients indicate that levels and function of synaptic cell adhesion molecules are affected in AD. Synaptic cell adhesion molecules interact with Aβ, a peptide accumulating in AD brains, which affects their expression and synaptic localization. Synaptic cell adhesion molecules also regulate the production of Aβ via interaction with the key enzymes involved in Aβ formation. Aβ-dependent changes in synaptic adhesion affect the function and integrity of synapses suggesting that alterations in synaptic adhesion play key roles in the disruption of neuronal networks in AD. PMID:27242933

  10. Working memory impairment in calcineurin knock-out mice is associated with alterations in synaptic vesicle cycling and disruption of high-frequency synaptic and network activity in prefrontal cortex.

    PubMed

    Cottrell, Jeffrey R; Levenson, Jonathan M; Kim, Sung Hyun; Gibson, Helen E; Richardson, Kristen A; Sivula, Michael; Li, Bing; Ashford, Crystle J; Heindl, Karen A; Babcock, Ryan J; Rose, David M; Hempel, Chris M; Wiig, Kjesten A; Laeng, Pascal; Levin, Margaret E; Ryan, Timothy A; Gerber, David J

    2013-07-01

    Working memory is an essential component of higher cognitive function, and its impairment is a core symptom of multiple CNS disorders, including schizophrenia. Neuronal mechanisms supporting working memory under normal conditions have been described and include persistent, high-frequency activity of prefrontal cortical neurons. However, little is known about the molecular and cellular basis of working memory dysfunction in the context of neuropsychiatric disorders. To elucidate synaptic and neuronal mechanisms of working memory dysfunction, we have performed a comprehensive analysis of a mouse model of schizophrenia, the forebrain-specific calcineurin knock-out mouse. Biochemical analyses of cortical tissue from these mice revealed a pronounced hyperphosphorylation of synaptic vesicle cycling proteins known to be necessary for high-frequency synaptic transmission. Examination of the synaptic vesicle cycle in calcineurin-deficient neurons demonstrated an impairment of vesicle release enhancement during periods of intense stimulation. Moreover, brain slice and in vivo electrophysiological analyses showed that loss of calcineurin leads to a gene dose-dependent disruption of high-frequency synaptic transmission and network activity in the PFC, correlating with selective working memory impairment. Finally, we showed that levels of dynamin I, a key presynaptic protein and calcineurin substrate, are significantly reduced in prefrontal cortical samples from schizophrenia patients, extending the disease relevance of our findings. Our data provide support for a model in which impaired synaptic vesicle cycling represents a critical node for disease pathologies underlying the cognitive deficits in schizophrenia. PMID:23825400

  11. Familial hemiplegic migraine type-1 mutated cav2.1 calcium channels alter inhibitory and excitatory synaptic transmission in the lateral superior olive of mice.

    PubMed

    Inchauspe, Carlota González; Pilati, Nadia; Di Guilmi, Mariano N; Urbano, Francisco J; Ferrari, Michel D; van den Maagdenberg, Arn M J M; Forsythe, Ian D; Uchitel, Osvaldo D

    2015-01-01

    CaV2.1 Ca(2+) channels play a key role in triggering neurotransmitter release and mediating synaptic transmission. Familial hemiplegic migraine type-1 (FHM-1) is caused by missense mutations in the CACNA1A gene that encodes the α1A pore-forming subunit of CaV2.1 Ca(2+) channels. We used knock-in (KI) transgenic mice harbouring the pathogenic FHM-1 mutation R192Q to study inhibitory and excitatory neurotransmission in the principle neurons of the lateral superior olive (LSO) in the auditory brainstem. We tested if the R192Q FHM-1 mutation differentially affects excitatory and inhibitory synaptic transmission, disturbing the normal balance between excitation and inhibition in this nucleus. Whole cell patch-clamp was used to measure neurotransmitter elicited excitatory (EPSCs) and inhibitory (IPSCs) postsynaptic currents in wild-type (WT) and R192Q KI mice. Our results showed that the FHM-1 mutation in CaV2.1 channels has multiple effects. Evoked EPSC amplitudes were smaller whereas evoked and miniature IPSC amplitudes were larger in R192Q KI compared to WT mice. In addition, in R192Q KI mice, the release probability was enhanced compared to WT, at both inhibitory (0.53 ± 0.02 vs. 0.44 ± 0.01, P = 2.10(-5), Student's t-test) and excitatory synapses (0.60 ± 0.03 vs. 0.45 ± 0.02, P = 4 10(-6), Student's t-test). Vesicle pool size was diminished in R192Q KI mice compared to WT mice (68 ± 6 vs 91 ± 7, P = 0.008, inhibitory; 104 ± 13 vs 335 ± 30, P = 10(-6), excitatory, Student's t-test). R192Q KI mice present enhanced short-term plasticity. Repetitive stimulation of the afferent axons caused short-term depression (STD) of E/IPSCs that recovered significantly faster in R192Q KI mice compared to WT. This supports the hypothesis of a gain-of-function of the CaV2.1 channels in R192Q KI mice, which alters the balance of excitatory/inhibitory inputs and could also have implications in the altered cortical excitability responsible for FHM

  12. BCL-xL regulates synaptic plasticity.

    PubMed

    Jonas, Elizabeth

    2006-08-01

    Mitochondria are the predominant organelle within many presynaptic terminals. During times of high synaptic activity, they affect intracellular calcium homeostasis and provide the energy needed for synaptic vesicle recycling and for the continued operation of membrane ion pumps. Recent discoveries have altered our ideas about the role of mitochondria in the synapse. Mitochondrial localization, morphology, and docking at synaptic sites may indeed alter the kinetics of transmitter release and calcium homeostasis in the presynaptic terminal. In addition, the mitochondrial ion channel BCL-xL, known as a protector against programmed cell death, regulates mitochondrial membrane conductance and bioenergetics in the synapse and can thereby alter synaptic transmitter release and the recycling of pools of synaptic vesicles. BCL-xL, therefore, not only affects the life and death of the cell soma, but its actions in the synapse may underlie the regulation of basic synaptic processes that subtend learning, memory and synaptic development. PMID:16960143

  13. A truncating mutation in Alzheimer's disease inactivates neuroligin-1 synaptic function.

    PubMed

    Tristán-Clavijo, Enriqueta; Camacho-Garcia, Rafael J; Robles-Lanuza, Estefanía; Ruiz, Agustín; van der Zee, Julie; Van Broeckhoven, Christine; Hernandez, Isabel; Martinez-Mir, Amalia; Scholl, Francisco G

    2015-12-01

    Neuroligins (NLs) are cell-adhesion proteins that regulate synapse formation and function. Neuroligin 1 (NL1) promotes the formation of glutamatergic synapses and mediates long-term potentiation in mouse models. Thus, altered NL1 function could mediate the synaptic and memory deficits associated with Alzheimer's disease (AD). Here, we describe a frameshift mutation, c.875_876insTT, in the neuroligin 1 gene (NLGN1) in a patient with AD and familial history of AD. The insertion generates a premature stop codon in the extracellular domain of NL1 (p.Thr271fs). Expression of mutant NL1 shows accumulation of truncated NL1 proteins in the endoplasmic reticulum. In hippocampal neurons, the p.Thr271fs mutation abolishes the ability of NL1 to promote the formation of glutamatergic synapses. Our data support a role for inactivating mutations in NLGN1 in AD. Previous studies have reported rare mutations in X-linked NLGNL3 and NLGNL4 genes in patients with autism, which result in the inactivation of the mutant alleles. Therefore, together with a role in neurodevelopmental disorders, altered NL function could underlie the molecular mechanisms associated with brain diseases in the elderly. PMID:26440732

  14. SYNAPTIC VESICLE PROTEIN TRAFFICKING AT THE GLUTAMATE SYNAPSE

    PubMed Central

    Santos, Magda S.; Li, Haiyan; Voglmaier, Susan M.

    2009-01-01

    Expression of the integral and associated proteins of synaptic vesicles is subject to regulation over time, by region, and in response to activity. The process by which changes in protein levels and isoforms result in different properties of neurotransmitter release involves protein trafficking to the synaptic vesicle. How newly synthesized proteins are incorporated into synaptic vesicles at the presynaptic bouton is poorly understood. During synaptogenesis, synaptic vesicle proteins sort through the secretory pathway and are transported down the axon in precursor vesicles that undergo maturation to form synaptic vesicles. Changes in protein content of synaptic vesicles could involve the formation of new vesicles that either mix with the previous complement of vesicles or replace them, presumably by their degradation or inactivation. Alternatively, new proteins could individually incorporate into existing synaptic vesicles, changing their functional properties. Glutamatergic vesicles likely express many of the same integral membrane proteins and share certain common mechanisms of biogenesis, recycling, and degradation with other synaptic vesicles. However, glutamatergic vesicles are defined by their ability to package glutamate for release, a property conferred by the expression of a vesicular glutamate transporter (VGLUT). VGLUTs are subject to regional, developmental, and activity-dependent changes in expression. In addition, VGLUT isoforms differ in their trafficking, which may target them to different pathways during biogenesis or after recycling, which may in turn sort them to different vesicle pools. Emerging data indicate that differences in the association of VGLUTs and other synaptic vesicle proteins with endocytic adaptors may influence their trafficking. These observations indicate that independent regulation of synaptic vesicle protein trafficking has the potential to influence synaptic vesicle protein composition, the maintenance of synaptic vesicle

  15. Rewarding Effects of Optical Stimulation of Ventral Tegmental Area Glutamatergic Neurons.

    PubMed

    Wang, Hui-Ling; Qi, Jia; Zhang, Shiliang; Wang, Huikun; Morales, Marisela

    2015-12-01

    Ventral tegmental area (VTA) neurons play roles in reward and aversion. The VTA has three major neuronal phenotypes: dopaminergic, GABAergic, and glutamatergic. VTA glutamatergic neurons--expressing vesicular glutamate transporter-2 (VGluT2)--project to limbic and cortical regions, but also excite neighboring dopaminergic neurons. Here, we test whether local photoactivation of VTA VGluT2 neurons expressing Channelrhodopsin-2 (ChR2) under the VGluT2 promoter causes place preference and supports operant responding for the stimulation. By using a Cre-dependent viral vector, ChR2 (tethered to mCherry) was expressed in VTA glutamatergic neurons of VGluT2::Cre mice. The mCherry distribution was evaluated by immunolabeling. By confocal microscopy, we detected expression of mCherry in VTA cell bodies and local processes. In contrast, VGluT2 expression was restricted to varicosities, some of them coexpressing mCherry. By electron microscopy, we determined that mCherry-VGluT2 varicosities correspond to axon terminals, forming asymmetric synapses on neighboring dopaminergic neurons. These findings indicate that ChR2 was present in terminals containing glutamatergic synaptic vesicles and involved in local synaptic connections. Photoactivation of VTA slices from ChR2-expressing mice induced AMPA/NMDA receptor-dependent firing of dopaminergic neurons projecting to the nucleus accumbens. VTA photoactivation of ChR2-expressing mice reinforced instrumental behavior and established place preferences. VTA injections of AMPA or NMDA receptor antagonists blocked optical self-stimulation and place preference. These findings suggest a role in reward function for VTA glutamatergic neurons through local excitatory synapses on mesoaccumbens dopaminergic neurons. PMID:26631475

  16. Excitatory synapses are stronger in the hippocampus of Rett syndrome mice due to altered synaptic trafficking of AMPA-type glutamate receptors.

    PubMed

    Li, Wei; Xu, Xin; Pozzo-Miller, Lucas

    2016-03-15

    Deficits in long-term potentiation (LTP) at central excitatory synapses are thought to contribute to cognitive impairments in neurodevelopmental disorders associated with intellectual disability and autism. Using the methyl-CpG-binding protein 2 (Mecp2) knockout (KO) mouse model of Rett syndrome, we show that naïve excitatory synapses onto hippocampal pyramidal neurons of symptomatic mice have all of the hallmarks of potentiated synapses. Stronger Mecp2 KO synapses failed to undergo LTP after either theta-burst afferent stimulation or pairing afferent stimulation with postsynaptic depolarization. On the other hand, basal synaptic strength and LTP were not affected in slices from younger presymptomatic Mecp2 KO mice. Furthermore, spine synapses in pyramidal neurons from symptomatic Mecp2 KO are larger and do not grow in size or incorporate GluA1 subunits after electrical or chemical LTP. Our data suggest that LTP is occluded in Mecp2 KO mice by already potentiated synapses. The higher surface levels of GluA1-containing receptors are consistent with altered expression levels of proteins involved in AMPA receptor trafficking, suggesting previously unidentified targets for therapeutic intervention for Rett syndrome and other MECP2-related disorders. PMID:26929363

  17. Blockade of presynaptic 4-aminopyridine-sensitive potassium channels increases initial neurotransmitter release probability, reinstates synaptic transmission altered by GABAB receptor activation in rat midbrain periaqueductal gray.

    PubMed

    Li, Guangying; Liu, Zhi-Liang; Zhang, Wei-Ning; Yang, Kun

    2016-01-01

    The activation of γ-aminobutyric acid receptor subtype B (GABAB) receptors in the midbrain ventrolateral periaqueductal gray (vlPAG) induces both postsynaptic and presynaptic inhibition. Whereas the postsynaptic inhibition is mediated by G protein-coupled inwardly rectifying K channels, the presynaptic inhibition of neurotransmitter release is primarily mediated by voltage-gated calcium channels. Using whole-cell recordings from acute rat PAG slices, we report here that the bath application of 4-aminopyridine, a voltage-gated K channel blocker, increases the initial GABA and glutamate release probability (P) and reinstates P depressed by presynaptic GABAB receptor activation at inhibitory and excitatory synapses, respectively. However, Ba, which blocks G protein-coupled inwardly rectifying K channels, does not produce similar effects. Our data suggest that the blockade of presynaptic 4-aminopyridine-sensitive K channels in vlPAG facilitates neurotransmitter release and reinstates synaptic transmission that has been altered by presynaptic GABAB receptor activation. Because vlPAG is involved in the descending pain control system, the present results may have potential therapeutic applications. PMID:26575285

  18. Prenatal minocycline treatment alters synaptic protein expression, and rescues reduced mother call rate in oxytocin receptor-knockout mice.

    PubMed

    Miyazaki, Shinji; Hiraoka, Yuichi; Hidema, Shizu; Nishimori, Katsuhiko

    2016-04-01

    Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by impaired communication, difficulty in companionship, repetitive behaviors and restricted interests. Recent studies have shown amelioration of ASD symptoms by intranasal administration of oxytocin and demonstrated the association of polymorphisms in the oxytocin receptor (Oxtr) gene with ASD patients. Deficient pruning of synapses by microglial cells in the brain has been proposed as potential mechanism of ASD. Other researchers have shown specific activation of microglial cells in brain regions related to sociality in patients with ASD. Although the roles of Oxtr and microglia in ASD are in the spotlight, the relationship between them remains to be elucidated. In this study, we found abnormal activation of microglial cells and a reduction of postsynaptic density protein PSD95 expression in the Oxtr-deficient brain. Moreover, pharmacological inhibition of microglia during development can alter the expression of PSD95 and ameliorate abnormal mother-infant communication in Oxtr-deficient mice. Our results suggest that microglial abnormality is a potential mechanism of the development of Oxt/Oxtr mediated ASD-like phenotypes. PMID:26926566

  19. Calcium sensor regulation of the CaV2.1 Ca2+ channel contributes to short-term synaptic plasticity in hippocampal neurons.

    PubMed

    Nanou, Evanthia; Sullivan, Jane M; Scheuer, Todd; Catterall, William A

    2016-01-26

    Short-term synaptic plasticity is induced by calcium (Ca(2+)) accumulating in presynaptic nerve terminals during repetitive action potentials. Regulation of voltage-gated CaV2.1 Ca(2+) channels by Ca(2+) sensor proteins induces facilitation of Ca(2+) currents and synaptic facilitation in cultured neurons expressing exogenous CaV2.1 channels. However, it is unknown whether this mechanism contributes to facilitation in native synapses. We introduced the IM-AA mutation into the IQ-like motif (IM) of the Ca(2+) sensor binding site. This mutation does not alter voltage dependence or kinetics of CaV2.1 currents, or frequency or amplitude of spontaneous miniature excitatory postsynaptic currents (mEPSCs); however, synaptic facilitation is completely blocked in excitatory glutamatergic synapses in hippocampal autaptic cultures. In acutely prepared hippocampal slices, frequency and amplitude of mEPSCs and amplitudes of evoked EPSCs are unaltered. In contrast, short-term synaptic facilitation in response to paired stimuli is reduced by ∼ 50%. In the presence of EGTA-AM to prevent global increases in free Ca(2+), the IM-AA mutation completely blocks short-term synaptic facilitation, indicating that synaptic facilitation by brief, local increases in Ca(2+) is dependent upon regulation of CaV2.1 channels by Ca(2+) sensor proteins. In response to trains of action potentials, synaptic facilitation is reduced in IM-AA synapses in initial stimuli, consistent with results of paired-pulse experiments; however, synaptic depression is also delayed, resulting in sustained increases in amplitudes of later EPSCs during trains of 10 stimuli at 10-20 Hz. Evidently, regulation of CaV2.1 channels by CaS proteins is required for normal short-term plasticity and normal encoding of information in native hippocampal synapses. PMID:26755594

  20. Reorganization of Synaptic Connections and Perineuronal Nets in the Deep Cerebellar Nuclei of Purkinje Cell Degeneration Mutant Mice

    PubMed Central

    Blosa, M.; Bursch, C.; Weigel, S.; Holzer, M.; Jäger, C.; Janke, C.; Matthews, R. T.; Arendt, T.; Morawski, M.

    2016-01-01

    The perineuronal net (PN) is a subtype of extracellular matrix appearing as a net-like structure around distinct neurons throughout the whole CNS. PNs surround the soma, proximal dendrites, and the axonal initial segment embedding synaptic terminals on the neuronal surface. Different functions of the PNs are suggested which include support of synaptic stabilization, inhibition of axonal sprouting, and control of neuronal plasticity. A number of studies provide evidence that removing PNs or PN-components results in renewed neurite growth and synaptogenesis. In a mouse model for Purkinje cell degeneration, we examined the effect of deafferentation on synaptic remodeling and modulation of PNs in the deep cerebellar nuclei. We found reduced GABAergic, enhanced glutamatergic innervations at PN-associated neurons, and altered expression of the PN-components brevican and hapln4. These data refer to a direct interaction between ECM and synapses. The altered brevican expression induced by activated astrocytes could be required for an adequate regeneration by promoting neurite growth and synaptogenesis. PMID:26819763

  1. Reorganization of Synaptic Connections and Perineuronal Nets in the Deep Cerebellar Nuclei of Purkinje Cell Degeneration Mutant Mice.

    PubMed

    Blosa, M; Bursch, C; Weigel, S; Holzer, M; Jäger, C; Janke, C; Matthews, R T; Arendt, T; Morawski, M

    2016-01-01

    The perineuronal net (PN) is a subtype of extracellular matrix appearing as a net-like structure around distinct neurons throughout the whole CNS. PNs surround the soma, proximal dendrites, and the axonal initial segment embedding synaptic terminals on the neuronal surface. Different functions of the PNs are suggested which include support of synaptic stabilization, inhibition of axonal sprouting, and control of neuronal plasticity. A number of studies provide evidence that removing PNs or PN-components results in renewed neurite growth and synaptogenesis. In a mouse model for Purkinje cell degeneration, we examined the effect of deafferentation on synaptic remodeling and modulation of PNs in the deep cerebellar nuclei. We found reduced GABAergic, enhanced glutamatergic innervations at PN-associated neurons, and altered expression of the PN-components brevican and hapln4. These data refer to a direct interaction between ECM and synapses. The altered brevican expression induced by activated astrocytes could be required for an adequate regeneration by promoting neurite growth and synaptogenesis. PMID:26819763

  2. Low level postnatal methylmercury exposure in vivo alters developmental forms of short-term synaptic plasticity in the visual cortex of rat

    PubMed Central

    Dasari, Sameera; Yuan, Yukun

    2009-01-01

    Methylmercury (MeHg) has been previously shown to affect neurotransmitter release. Short-term synaptic plasticity (STP) is primarily related to changes in the probability of neurotransmitter release. To determine if MeHg affects STP development, we examined STP forms in the visual cortex of rat following in vivo MeHg exposure. Neonatal rats received 0 (0.9% NaCl), 0.75 or 1.5 mg/kg/day MeHg subcutaneously for 15 or 30 days beginning on postnatal day 5, after which visual cortical slices were prepared for field potential recordings. In slices prepared from rats treated with vehicle, field excitatory postsynaptic potentials (fEPSPs) evoked by paired-pulse stimulation at 20 - 200 ms inter-stimulus intervals showed a depression (PPD) of the second fEPSP (fEPSP2). PPD was also seen in slices prepared from rats after 15 day treatment with 0.75 or 1.5 mg/kg/day MeHg. However, longer duration treatment (30 days) with either dose of MeHg resulted in paired-pulse facilitation (PPF) of fEPSP2 in the majority of slices examined. PPF remained observable in slices prepared from animals in which MeHg exposure had been terminated for 30 days after completion of the initial 30 day MeHg treatment, whereas slices from control animals still showed PPD. MeHg did not cause any frequency- or region-preferential effect on STP. Manipulations of [Ca2+]e or application of the GABAA receptor antagonist bicuculline could alter the strength and polarity of MeHg-induced changes in STP. Thus, these data suggest that low level postnatal MeHg exposure interferes with the developmental transformation of STP in the visual cortex, which is a long-lasting effect. PMID:19664649

  3. Low level postnatal methylmercury exposure in vivo alters developmental forms of short-term synaptic plasticity in the visual cortex of rat

    SciTech Connect

    Dasari, Sameera; Yuan, Yukun

    2009-11-01

    Methylmercury (MeHg) has been previously shown to affect neurotransmitter release. Short-term synaptic plasticity (STP) is primarily related to changes in the probability of neurotransmitter release. To determine if MeHg affects STP development, we examined STP forms in the visual cortex of rat following in vivo MeHg exposure. Neonatal rats received 0 (0.9% NaCl), 0.75 or 1.5 mg/kg/day MeHg subcutaneously for 15 or 30 days beginning on postnatal day 5, after which visual cortical slices were prepared for field potential recordings. In slices prepared from rats treated with vehicle, field excitatory postsynaptic potentials (fEPSPs) evoked by paired-pulse stimulation at 20-200 ms inter-stimulus intervals showed a depression (PPD) of the second fEPSP (fEPSP2). PPD was also seen in slices prepared from rats after 15 day treatment with 0.75 or 1.5 mg/kg/day MeHg. However, longer duration treatment (30 days) with either dose of MeHg resulted in paired-pulse facilitation (PPF) of fEPSP2 in the majority of slices examined. PPF remained observable in slices prepared from animals in which MeHg exposure had been terminated for 30 days after completion of the initial 30 day MeHg treatment, whereas slices from control animals still showed PPD. MeHg did not cause any frequency- or region-preferential effect on STP. Manipulations of [Ca{sup 2+}]{sub e} or application of the GABA{sub A} receptor antagonist bicuculline could alter the strength and polarity of MeHg-induced changes in STP. Thus, these data suggest that low level postnatal MeHg exposure interferes with the developmental transformation of STP in the visual cortex, which is a long-lasting effect.

  4. VGluT1+ Neuronal Glutamatergic Signaling Regulates Postnatal Developmental Maturation of Cortical Protoplasmic Astroglia

    PubMed Central

    Morel, Lydie; Higashimori, Haruki; Tolman, Michaela

    2014-01-01

    Functional maturation of astroglia is characterized by the development of a unique, ramified morphology and the induction of important functional proteins, such as glutamate transporter GLT1. Although pathways regulating the early fate specification of astroglia have been characterized, mechanisms regulating postnatal maturation of astroglia remain essentially unknown. Here we used a new in vivo approach to illustrate and quantitatively analyze developmental arborization of astroglial processes. Our analysis found a particularly high increase in the number of VGluT1+ neuronal glutamatergic synapses that are ensheathed by processes from individual developing astroglia from postnatal day (P) 14 to P26, when astroglia undergo dramatic postnatal maturation. Subsequent silencing of VGluT1+ synaptic activity in VGluT1 KO mice significantly reduces astroglial domain growth and the induction of GLT1 in the cortex, but has no effect on astroglia in the hypothalamus, where non-VGluT1+ synaptic signaling predominates. In particular, electron microscopy analysis showed that the loss of VGluT1+ synaptic signaling significantly decreases perisynaptic enshealthing of astroglial processes on synapses. To further determine whether synaptically released glutamate mediates VGluT1+ synaptic signaling, we pharmacologically inhibited and genetically ablated metabotropic glutamate receptors (mGluRs, especially mGluR5) in developing cortical astroglia and found that developmental arborization of astroglial processes and expression of functional proteins, such as GLT1, is significantly decreased. In summary, our genetic analysis provides new in vivo evidence that VGluT1+ glutamatergic signaling, mediated by the astroglial mGluR5 receptor, regulates the functional maturation of cortical astroglia during development. These results elucidate a new mechanism for regulating the developmental formation of functional neuron-glia synaptic units. PMID:25122895

  5. Rapid, Transient Synaptic Plasticity in Addiction

    PubMed Central

    Kupchik, Yonatan M.; Kalivas, Peter W.

    2013-01-01

    Chronic use of addictive drugs produces enduring neuroadaptations in the corticostriatal glutamatergic brain circuitry. The nucleus accumbens (NAc), which integrates cortical information and regulates goal-directed behavior, undergoes long-term morphological and electrophysiological changes that may underlie the increased susceptibility for relapse in drug-experienced individuals even after long periods of withdrawal. Additionally, it has recently been shown that exposure to cues associated with drug use elicits rapid and transient morphological and electrophysiological changes in glutamatergic synapses in the NAc. This review highlights these dynamic drug-induced changes in this pathway that are specific to a drug seeking neuropathology, as well as how these changes impair normal information processing and thereby contribute to the uncontrollable motivation to relapse. Future directions for relapse prevention and pharmacotherapeutic targeting of the rapid, transient synaptic plasticity in relapse are discussed. PMID:23639436

  6. Altered synaptic transmission at olfactory and vomeronasal nerve terminals in mice lacking N-type calcium channel Cav2.2.

    PubMed

    Weiss, Jan; Pyrski, Martina; Weissgerber, Petra; Zufall, Frank

    2014-11-01

    We investigated the role of voltage-activated calcium (Cav) channels for synaptic transmission at mouse olfactory and vomeronasal nerve terminals at the first synapse of the main and accessory olfactory pathways, respectively. We provided evidence for a central role of the N-type Cav channel subunit Cav2.2 in presynaptic transmitter release at these synapses. Striking Cav2.2 immunoreactivity was localised to the glomerular neuropil of the main olfactory bulb (MOB) and accessory olfactory bulb (AOB), and co-localised with presynaptic molecules such as bassoon. Voltage-clamp recordings of sensory nerve-evoked, excitatory postsynaptic currents (EPSCs) in mitral/tufted (M/T) and superficial tufted cells of the MOB and mitral cells of the AOB, in combination with established subtype-specific Cav channel toxins, indicated a predominant role of N-type channels in transmitter release at these synapses, whereas L-type, P/Q-type, and R-type channels had either no or only relatively minor contributions. In Cacna1b mutant mice lacking the Cav2.2 (α1B) subunit of N-type channels, olfactory nerve-evoked M/T cell EPSCs were not reduced but became blocker-resistant, thus indicating a major reorganisation and compensation of Cav channel subunits as a result of the Cav2.2 deletion at this synapse. Cav2.2-deficient mice also revealed that Cav2.2 was critically required for paired-pulse depression of olfactory nerve-evoked EPSCs in M/T cells of the MOB, and they demonstrated an essential requirement for Cav2.2 in vomeronasal nerve-evoked EPSCs of AOB mitral cells. Thus, Cacna1b loss-of-function mutations are unlikely to cause general anosmia but Cacna1b emerges as a strong candidate in the search for mutations causing altered olfactory perception, such as changes in general olfactory sensitivity and altered social responses to chemostimuli. PMID:25195871

  7. Synaptic mechanisms of adenosine A2A receptor-mediated hyperexcitability in the hippocampus.

    PubMed

    Rombo, Diogo M; Newton, Kathryn; Nissen, Wiebke; Badurek, Sylvia; Horn, Jacqueline M; Minichiello, Liliana; Jefferys, John G R; Sebastiao, Ana M; Lamsa, Karri P

    2015-05-01

    Adenosine inhibits excitatory neurons widely in the brain through adenosine A1 receptor, but activation of adenosine A2A receptor (A2A R) has an opposite effect promoting discharge in neuronal networks. In the hippocampus A2A R expression level is low, and the receptor's effect on identified neuronal circuits is unknown. Using optogenetic afferent stimulation and whole-cell recording from identified postsynaptic neurons we show that A2A R facilitates excitatory glutamatergic Schaffer collateral synapses to CA1 pyramidal cells, but not to GABAergic inhibitory interneurons. In addition, A2A R enhances GABAergic inhibitory transmission between CA1 area interneurons leading to disinhibition of pyramidal cells. Adenosine A2A R has no direct modulatory effect on GABAergic synapses to pyramidal cells. As a result adenosine A2A R activation alters the synaptic excitation - inhibition balance in the CA1 area resulting in increased pyramidal cell discharge to glutamatergic Schaffer collateral stimulation. In line with this, we show that A2A R promotes synchronous pyramidal cell firing in hyperexcitable conditions where extracellular potassium is elevated or following high-frequency electrical stimulation. Our results revealed selective synapse- and cell type specific adenosine A2A R effects in hippocampal CA1 area. The uncovered mechanisms help our understanding of A2A R's facilitatory effect on cortical network activity. PMID:25402014

  8. The multiple roles of the α7 nicotinic acetylcholine receptor in modulating glutamatergic systems in the normal and diseased nervous system.

    PubMed

    Koukouli, Fani; Maskos, Uwe

    2015-10-15

    Neuronal nicotinic acetylcholine receptors (nAChRs) play an important role in a variety of modulatory and regulatory processes including neurotransmitter release and synaptic transmission in various brain regions of the central nervous system (CNS). Glutamate is the principal excitatory neurotransmitter in the brain and the glutamatergic system participates in the pathophysiology of several neuropsychiatric disorders. Underpinning the importance of nAChRs, many studies demonstrated that nAChRs containing the α7 subunit facilitate glutamate release. Here, we review the currently available body of experimental evidence pertaining to α7 subunit containing nAChRs in their contribution to the modulation of glutamatergic neurotransmission, and we highlight the role of α7 in synaptic plasticity, the morphological and functional maturation of the glutamatergic system and therefore its important contribution in the modulation of neural circuits of the CNS. PMID:26206184

  9. Developmental Changes in Synaptic Distribution in Arcuate Nucleus Neurons

    PubMed Central

    Kirigiti, Melissa A.; Baquero, Karalee C.; Lee, Shin J.; Smith, M. Susan; Grove, Kevin L.

    2015-01-01

    Neurons coexpressing neuropeptide Y, agouti-related peptide, and GABA (NAG) play an important role in ingestive behavior and are located in the arcuate nucleus of the hypothalamus. NAG neurons receive both GABAergic and glutamatergic synaptic inputs, however, the developmental time course of synaptic input organization of NAG neurons in mice is unknown. In this study, we show that these neurons have low numbers of GABAergic synapses and that GABA is inhibitory to NAG neurons during early postnatal period. In contrast, glutamatergic inputs onto NAG neurons are relatively abundant by P13 and are comparatively similar to the levels observed in the adult. As mice reach adulthood (9–10 weeks), GABAergic tone onto NAG neurons increases. At this age, NAG neurons received similar numbers of inhibitory and EPSCs. To further differentiate age-associated changes in synaptic distribution, 17- to 18-week-old lean and diet-induced obesity (DIO) mice were studied. Surprisingly, NAG neurons from lean adult mice exhibit a reduction in the GABAergic synapses compared with younger adults. Conversely, DIO mice display reductions in the number of GABAergic and glutamatergic inputs onto NAG neurons. Based on these experiments, we propose that synaptic distribution in NAG neurons is continuously restructuring throughout development to accommodate the animals' energy requirements. PMID:26041922

  10. Tissue Plasminogen Activator Expression Is Restricted to Subsets of Excitatory Pyramidal Glutamatergic Neurons.

    PubMed

    Louessard, Morgane; Lacroix, Alexandre; Martineau, Magalie; Mondielli, Gregoire; Montagne, Axel; Lesept, Flavie; Lambolez, Bertrand; Cauli, Bruno; Mothet, Jean-Pierre; Vivien, Denis; Maubert, Eric

    2016-09-01

    Although the extracellular serine protease tissue plasminogen activator (tPA) is involved in pathophysiological processes such as learning and memory, anxiety, epilepsy, stroke, and Alzheimer's disease, information about its regional, cellular, and subcellular distribution in vivo is lacking. In the present study, we observed, in healthy mice and rats, the presence of tPA in endothelial cells, oligodendrocytes, mastocytes, and ependymocytes, but not in pericytes, microglial cells, and astrocytes. Moreover, blockage of the axo-dendritic transport unmasked tPA expression in neurons of cortical and hippocampal areas. Interestingly, combined electrophysiological recordings, single-cell reverse transcription polymerase chain reaction (RT-PCR), and immunohistological analyses revealed that the presence of tPA is restricted to subsets of excitatory pyramidal glutamatergic neurons. We further evidenced that tPA is stored in synaptobrevin-2-positive glutamatergic synaptic vesicles. Based on all these data, we propose the existence of tPA-ergic neurons in the mature brain. PMID:26377106

  11. Reduced Anterior Cingulate Glutamatergic Concentrations in Childhood Ocd and Major Depression Versus Healthy Controls

    ERIC Educational Resources Information Center

    Rosenberg, David R.; Mirza, Yousha; Russell, Aileen; Tang, Jennifer; Smith, Janet M.; Banerjee, Preeya S.; Bhandari, Rashmi; Rose, Michelle; Ivey, Jennifer; Boyd, Courtney; Moore, Gregory J.

    2004-01-01

    Objective: To examine in vivo glutamatergic neurochemical alterations in the anterior cingulate cortex of pediatric patients with obsessive-compulsive disorder (OCD) without major depressive disorder (MDD) versus pediatric patients with MDD without OCD and healthy controls. Method: Single-voxel proton magnetic resonance spectroscopic examinations…

  12. PRG-1 Regulates Synaptic Plasticity via Intracellular PP2A/β1-Integrin Signaling.

    PubMed

    Liu, Xingfeng; Huai, Jisen; Endle, Heiko; Schlüter, Leslie; Fan, Wei; Li, Yunbo; Richers, Sebastian; Yurugi, Hajime; Rajalingam, Krishnaraj; Ji, Haichao; Cheng, Hong; Rister, Benjamin; Horta, Guilherme; Baumgart, Jan; Berger, Hendrik; Laube, Gregor; Schmitt, Ulrich; Schmeisser, Michael J; Boeckers, Tobias M; Tenzer, Stefan; Vlachos, Andreas; Deller, Thomas; Nitsch, Robert; Vogt, Johannes

    2016-08-01

    Alterations in dendritic spine numbers are linked to deficits in learning and memory. While we previously revealed that postsynaptic plasticity-related gene 1 (PRG-1) controls lysophosphatidic acid (LPA) signaling at glutamatergic synapses via presynaptic LPA receptors, we now show that PRG-1 also affects spine density and synaptic plasticity in a cell-autonomous fashion via protein phosphatase 2A (PP2A)/β1-integrin activation. PRG-1 deficiency reduces spine numbers and β1-integrin activation, alters long-term potentiation (LTP), and impairs spatial memory. The intracellular PRG-1 C terminus interacts in an LPA-dependent fashion with PP2A, thus modulating its phosphatase activity at the postsynaptic density. This results in recruitment of adhesome components src, paxillin, and talin to lipid rafts and ultimately in activation of β1-integrins. Consistent with these findings, activation of PP2A with FTY720 rescues defects in spine density and LTP of PRG-1-deficient animals. These results disclose a mechanism by which bioactive lipid signaling via PRG-1 could affect synaptic plasticity and memory formation. PMID:27453502

  13. Calpains and neuronal damage in the ischemic brain: The swiss knife in synaptic injury.

    PubMed

    Curcio, Michele; Salazar, Ivan L; Mele, Miranda; Canzoniero, Lorella M T; Duarte, Carlos B

    2016-08-01

    The excessive extracellular accumulation of glutamate in the ischemic brain leads to an overactivation of glutamate receptors with consequent excitotoxic neuronal death. Neuronal demise is largely due to a sustained activation of NMDA receptors for glutamate, with a consequent increase in the intracellular Ca(2+) concentration and activation of calcium- dependent mechanisms. Calpains are a group of Ca(2+)-dependent proteases that truncate specific proteins, and some of the cleavage products remain in the cell, although with a distinct function. Numerous studies have shown pre- and post-synaptic effects of calpains on glutamatergic and GABAergic synapses, targeting membrane- associated proteins as well as intracellular proteins. The resulting changes in the presynaptic proteome alter neurotransmitter release, while the cleavage of postsynaptic proteins affects directly or indirectly the activity of neurotransmitter receptors and downstream mechanisms. These alterations also disturb the balance between excitatory and inhibitory neurotransmission in the brain, with an impact in neuronal demise. In this review we discuss the evidence pointing to a role for calpains in the dysregulation of excitatory and inhibitory synapses in brain ischemia, at the pre- and post-synaptic levels, as well as the functional consequences. Although targeting calpain-dependent mechanisms may constitute a good therapeutic approach for stroke, specific strategies should be developed to avoid non-specific effects given the important regulatory role played by these proteases under normal physiological conditions. PMID:27283248

  14. Blockade of glutamatergic and GABAergic receptor channels by trimethyltin chloride

    PubMed Central

    Krüger, Katharina; Diepgrond, Victoria; Ahnefeld, Maria; Wackerbeck, Christina; Madeja, Michael; Binding, Norbert; Musshoff, Ulrich

    2005-01-01

    Organotin compounds such as trimethyltin chloride (TMT) are among the most toxic of the organometallics. As their main target for toxicity is the central nervous system, the aim of the present study was to investigate the effects of TMT on receptor channels involved in various processes of synaptic transmission. The Xenopus oocyte expression system was chosen for direct assessment of TMT effects on voltage-operated potassium channels and glutamatergic and GABAergic receptors, and hippocampal slices from rat brain for analyzing TMT effects on identified synaptic sites. TMT was found to be ineffective, at 100 μmol l−1, against several potassium- and sodium-operated ion channel functions as well as the metabotropic glutamate receptor. The functions of the ionotropic glutamate and the GABAA receptor channels were inhibited by TMT in micromolar concentrations. Thus, at a maximum concentration of 100 μmol l−1, around 20–30% of the α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid and GABAA receptor-mediated ion currents and 35% of the N-methyl-D-aspartate receptor-mediated ion currents were blocked. In the hippocampal slice model, the inhibitory effects of TMT were much stronger than expected from the results on the ion channels. Bath application of TMT significantly reduced the amplitudes of evoked excitatory postsynaptic field potentials in a concentration-dependent and nonreversible manner.  Induction of long-term potentiation, recorded from the CA1 dendritic region, was inhibited by TMT and failed completely at a concentration of 10 μmol l−1. In general, TMT affects the excitatory and inhibitory synaptic processes in a receptor specific manner and is able to disturb the activity within a neuronal network. PMID:15655511

  15. Reduced glycine transporter type 1 expression leads to major changes in glutamatergic neurotransmission of CA1 hippocampal neurones in mice

    PubMed Central

    Martina, Marzia; Turcotte, Marie-Eve B; Halman, Samantha; Tsai, Guochuan; Tiberi, Mario; Coyle, Joseph T; Bergeron, Richard

    2005-01-01

    To investigate the effects of persistent elevation of synaptic glycine at Schaffer collateral–CA1 synapses of the hippocampus, we studied the glutamatergic synaptic transmission in acute brain slices from mice with reduced expression of glycine transporter type 1 (GlyT1+/−) as compared to wild type (WT) littermates using whole-cell patch-clamp recordings of CA1 pyramidal cells. We observed faster decay kinetics, reduced ifenprodil sensitivity and increased zinc-induced antagonism in N-methyl-d-aspartate receptor (NMDAR) currents of GlyT1+/− mice. Moreover, the ratio α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor (AMPAR)/NMDAR was decreased in mutants compared to WT. Surprisingly, this change was associated with a reduction in the number of AMPARs expressed at the CA1 synapses in the mutants compared to WT. Overall, these findings highlight the importance of GlyT1 in regulating glutamatergic neurotransmission. PMID:15661817

  16. Synaptic function is modulated by LRRK2 and glutamate release is increased in cortical neurons of G2019S LRRK2 knock-in mice

    PubMed Central

    Beccano-Kelly, Dayne A.; Kuhlmann, Naila; Tatarnikov, Igor; Volta, Mattia; Munsie, Lise N.; Chou, Patrick; Cao, Li-Ping; Han, Heather; Tapia, Lucia; Farrer, Matthew J.; Milnerwood, Austen J.

    2014-01-01

    Mutations in Leucine-Rich Repeat Kinase-2 (LRRK2) result in familial Parkinson's disease and the G2019S mutation alone accounts for up to 30% in some ethnicities. Despite this, the function of LRRK2 is largely undetermined although evidence suggests roles in phosphorylation, protein interactions, autophagy and endocytosis. Emerging reports link loss of LRRK2 to altered synaptic transmission, but the effects of the G2019S mutation upon synaptic release in mammalian neurons are unknown. To assess wild type and mutant LRRK2 in established neuronal networks, we conducted immunocytochemical, electrophysiological and biochemical characterization of >3 week old cortical cultures of LRRK2 knock-out, wild-type overexpressing and G2019S knock-in mice. Synaptic release and synapse numbers were grossly normal in LRRK2 knock-out cells, but discretely reduced glutamatergic activity and reduced synaptic protein levels were observed. Conversely, synapse density was modestly but significantly increased in wild-type LRRK2 overexpressing cultures although event frequency was not. In knock-in cultures, glutamate release was markedly elevated, in the absence of any change to synapse density, indicating that physiological levels of G2019S LRRK2 elevate probability of release. Several pre-synaptic regulatory proteins shown by others to interact with LRRK2 were expressed at normal levels in knock-in cultures; however, synapsin 1 phosphorylation was significantly reduced. Thus, perturbations to the pre-synaptic release machinery and elevated synaptic transmission are early neuronal effects of LRRK2 G2019S. Furthermore, the comparison of knock-in and overexpressing cultures suggests that one copy of the G2019S mutation has a more pronounced effect than an ~3-fold increase in LRRK2 protein. Mutant-induced increases in transmission may convey additional stressors to neuronal physiology that may eventually contribute to the pathogenesis of Parkinson's disease. PMID:25309331

  17. Osmolality-induced changes in extracellular volume alter epileptiform bursts independent of chemical synapses in the rat: importance of non-synaptic mechanisms in hippocampal epileptogenesis.

    PubMed

    Dudek, F E; Obenaus, A; Tasker, J G

    1990-12-11

    The contribution of non-synaptic mechanisms to the seizure susceptibility of rat CA1 hippocampal pyramidal cells was examined in vitro by testing the effects of osmolality on synchronous neuronal activity, using solutions which blocked chemical synaptic transmission both pre- and post-synaptically. Decreases in osmolality, which shrink the extracellular volume, caused or enhanced epileptiform bursting. Increases in osmolality with membrane-impermeant solutes, which expand the extracellular volume, blocked or greatly reduced epileptiform discharges. Reductions in the extracellular volume, therefore, can enhance synchronization among CA1 hippocampal neurons through non-synaptic mechanisms. Since similar osmotic treatments are known to modify epileptiform discharges in several models of epilepsy, non-synaptic mechanisms are probably more important in hippocampal epileptogenesis than previously realized and may contribute to the high susceptibility of this brain region to epileptic seizures in animals and humans. These data also provide a possible explanation for the observation in humans that decreased plasma osmolality, which can be associated with a wide range of clinical syndromes, leads to seizures. PMID:2293114

  18. Postsynaptic mGluR5 promotes evoked AMPAR-mediated synaptic transmission onto neocortical layer 2/3 pyramidal neurons during development

    PubMed Central

    Loerwald, Kristofer W.; Patel, Ankur B.; Huber, Kimberly M.

    2014-01-01

    Both short- and long-term roles for the group I metabotropic glutamate receptor number 5 (mGluR5) have been examined for the regulation of cortical glutamatergic synapses. However, how mGluR5 sculpts neocortical networks during development still remains unclear. Using a single cell deletion strategy, we examined how mGluR5 regulates glutamatergic synaptic pathways in neocortical layer 2/3 (L2/3) during development. Electrophysiological measurements were made in acutely prepared slices to obtain a functional understanding of the effects stemming from loss of mGluR5 in vivo. Loss of postsynaptic mGluR5 results in an increase in the frequency of action potential-independent synaptic events but, paradoxically, results in a decrease in evoked transmission in two separate synaptic pathways providing input to the same pyramidal neurons. Synaptic transmission through α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors, but not N-methyl-d-aspartate (NMDA) receptors, is specifically decreased. In the local L2/3 pathway, the decrease in evoked transmission appears to be largely due to a decrease in cell-to-cell connectivity and not in the strength of individual cell-to-cell connections. This decrease in evoked transmission correlates with a decrease in the total dendritic length in a region of the dendritic arbor that likely receives substantial input from these two pathways, thereby suggesting a morphological correlate to functional alterations. These changes are accompanied by an increase in intrinsic membrane excitability. Our data indicate that total mGluR5 function, incorporating both short- and long-term processes, promotes the strengthening of AMPA receptor-mediated transmission in multiple neocortical pathways. PMID:25392167

  19. Noradrenergic refinement of glutamatergic neuronal circuits in the lateral superior olivary nucleus before hearing onset

    PubMed Central

    Hirao, Kenzo; Eto, Kei; Nakahata, Yoshihisa; Ishibashi, Hitoshi; Nagai, Taku

    2015-01-01

    Neuronal circuit plasticity during development is fundamental for precise network formation. Pioneering studies of the developmental visual cortex indicated that noradrenaline (NA) is crucial for ocular dominance plasticity during the critical period in the visual cortex. Recent research demonstrated tonotopic map formation by NA during the critical period in the auditory system, indicating that NA also contributes to synaptic plasticity in this system. The lateral superior olive (LSO) in the auditory system receives glutamatergic input from the ventral cochlear nucleus (VCN) and undergoes circuit remodeling during postnatal development. LSO is innervated by noradrenergic afferents and is therefore a suitable model to study the function of NA in refinement of neuronal circuits. Chemical lesions of the noradrenergic system and chronic inhibition of α2-adrenoceptors in vivo during postnatal development in mice disrupted functional elimination and strengthening of VCN-LSO afferents. This was potentially mediated by activation of presynaptic α2-adrenoceptors and inhibition of glutamate release because NA presynaptically suppressed excitatory postsynaptic current (EPSC) through α2-adrenoceptors during the first two postnatal weeks in an in vitro study. Furthermore, NA and α2-adrenoceptor agonist induced long-term suppression of EPSCs and decreased glutamate release. These results suggest that NA has a critical role in synaptic refinement of the VCN-LSO glutamatergic pathway through failure of synaptic transmission. Because of the ubiquitous distribution of NA afferents and the extensive expression of α2-adrenoceptors throughout the immature brain, this phenomenon might be widespread in the developing central nervous system. PMID:26203112

  20. Noradrenergic refinement of glutamatergic neuronal circuits in the lateral superior olivary nucleus before hearing onset.

    PubMed

    Hirao, Kenzo; Eto, Kei; Nakahata, Yoshihisa; Ishibashi, Hitoshi; Nagai, Taku; Nabekura, Junichi

    2015-09-01

    Neuronal circuit plasticity during development is fundamental for precise network formation. Pioneering studies of the developmental visual cortex indicated that noradrenaline (NA) is crucial for ocular dominance plasticity during the critical period in the visual cortex. Recent research demonstrated tonotopic map formation by NA during the critical period in the auditory system, indicating that NA also contributes to synaptic plasticity in this system. The lateral superior olive (LSO) in the auditory system receives glutamatergic input from the ventral cochlear nucleus (VCN) and undergoes circuit remodeling during postnatal development. LSO is innervated by noradrenergic afferents and is therefore a suitable model to study the function of NA in refinement of neuronal circuits. Chemical lesions of the noradrenergic system and chronic inhibition of α2-adrenoceptors in vivo during postnatal development in mice disrupted functional elimination and strengthening of VCN-LSO afferents. This was potentially mediated by activation of presynaptic α2-adrenoceptors and inhibition of glutamate release because NA presynaptically suppressed excitatory postsynaptic current (EPSC) through α2-adrenoceptors during the first two postnatal weeks in an in vitro study. Furthermore, NA and α2-adrenoceptor agonist induced long-term suppression of EPSCs and decreased glutamate release. These results suggest that NA has a critical role in synaptic refinement of the VCN-LSO glutamatergic pathway through failure of synaptic transmission. Because of the ubiquitous distribution of NA afferents and the extensive expression of α2-adrenoceptors throughout the immature brain, this phenomenon might be widespread in the developing central nervous system. PMID:26203112

  1. Characterization of glutamatergic neurons in the rat atrial intrinsic cardiac ganglia that project to the cardiac ventricular wall.

    PubMed

    Wang, Ting; Miller, Kenneth E

    2016-08-01

    The intrinsic cardiac nervous system modulates cardiac function by acting as an integration site for regulating autonomic efferent cardiac output. This intrinsic system is proposed to be composed of a short cardio-cardiac feedback control loop within the cardiac innervation hierarchy. For example, electrophysiological studies have postulated the presence of sensory neurons in intrinsic cardiac ganglia (ICG) for regional cardiac control. There is still a knowledge gap, however, about the anatomical location and neurochemical phenotype of sensory neurons inside ICG. In the present study, rat ICG neurons were characterized neurochemically with immunohistochemistry using glutamatergic markers: vesicular glutamate transporters 1 and 2 (VGLUT1; VGLUT2), and glutaminase (GLS), the enzyme essential for glutamate production. Glutamatergic neurons (VGLUT1/VGLUT2/GLS) in the ICG that have axons to the ventricles were identified by retrograde tracing of wheat germ agglutinin-horseradish peroxidase (WGA-HRP) injected in the ventricular wall. Co-labeling of VGLUT1, VGLUT2, and GLS with the vesicular acetylcholine transporter (VAChT) was used to evaluate the relationship between post-ganglionic autonomic neurons and glutamatergic neurons. Sequential labeling of VGLUT1 and VGLUT2 in adjacent tissue sections was used to evaluate the co-localization of VGLUT1 and VGLUT2 in ICG neurons. Our studies yielded the following results: (1) ICG contain glutamatergic neurons with GLS for glutamate production and VGLUT1 and 2 for transport of glutamate into synaptic vesicles; (2) atrial ICG contain neurons that project to ventricle walls and these neurons are glutamatergic; (3) many glutamatergic ICG neurons also were cholinergic, expressing VAChT; (4) VGLUT1 and VGLUT2 co-localization occurred in ICG neurons with variation of their protein expression level. Investigation of both glutamatergic and cholinergic ICG neurons could help in better understanding the function of the intrinsic cardiac

  2. Glutamatergic Model Psychoses: Prediction Error, Learning, and Inference

    PubMed Central

    Corlett, Philip R; Honey, Garry D; Krystal, John H; Fletcher, Paul C

    2011-01-01

    Modulating glutamatergic neurotransmission induces alterations in conscious experience that mimic the symptoms of early psychotic illness. We review studies that use intravenous administration of ketamine, focusing on interindividual variability in the profundity of the ketamine experience. We will consider this individual variability within a hypothetical model of brain and cognitive function centered upon learning and inference. Within this model, the brains, neural systems, and even single neurons specify expectations about their inputs and responding to violations of those expectations with new learning that renders future inputs more predictable. We argue that ketamine temporarily deranges this ability by perturbing both the ways in which prior expectations are specified and the ways in which expectancy violations are signaled. We suggest that the former effect is predominantly mediated by NMDA blockade and the latter by augmented and inappropriate feedforward glutamatergic signaling. We suggest that the observed interindividual variability emerges from individual differences in neural circuits that normally underpin the learning and inference processes described. The exact source for that variability is uncertain, although it is likely to arise not only from genetic variation but also from subjects' previous experiences and prior learning. Furthermore, we argue that chronic, unlike acute, NMDA blockade alters the specification of expectancies more profoundly and permanently. Scrutinizing individual differences in the effects of acute and chronic ketamine administration in the context of the Bayesian brain model may generate new insights about the symptoms of psychosis; their underlying cognitive processes and neurocircuitry. PMID:20861831

  3. Zinc in the Glutamatergic Theory of Depression

    PubMed Central

    Młyniec, Katarzyna

    2015-01-01

    Depression is a serious psychiatric illness that affects millions of people worldwide. Weeks of antidepressant therapy are required to relieve depressive symptoms, and new drugs are still being extensively researched. The latest studies have shown that in depression, there is an imbalance between the main excitatory (glutamatergic) and inhibitory (GABAergic) systems. Administration of antagonists of the glutamatergic system, including zinc, has shown an antidepressant effect in preclinical as well as clinical studies. Zinc inhibits the NMDA receptor via its binding site located on one of its subunits. This is thought to be the main mechanism explaining the antidepressant properties of zinc. In the present review, a link between zinc and the glutamatergic system is discussed in the context of depressive disorder. PMID:26412070

  4. NR2A/B-containing NMDA receptors mediate cocaine-induced synaptic plasticity in the VTA and cocaine psychomotor sensitization.

    PubMed

    Schumann, Johanna; Matzner, Henry; Michaeli, Avner; Yaka, Rami

    2009-09-18

    Cocaine-induced modifications of glutamatergic synaptic transmission in the mesolimbic system play a key role in adaptations that promote addictive behaviors. In particular, the activation of ionotropic glutamate N-methyl-D-aspartate receptor (NMDAR) in the ventral tegmental area (VTA) is critical for both cocaine-induced synaptic plasticity induced by a single cocaine injection and for the initiation of cocaine psychomotor sensitization. In this study, we set to determine whether the NR2 subunits of the NMDAR play a specific role in triggering cocaine-induced alterations in synaptic plasticity and the development of psychomotor sensitization. We found that inhibition of NR2A-containing NMDARs by NVP-AAM077, or NR2B-containing receptors by ifenprodil, blocked cocaine-induced increase in the AMPAR/NMDAR currents ratio, a measure of long-term potentiation (LTP) in vivo, in VTA neurons 24h following a single cocaine injection. Furthermore, inhibition of the NR2A subunit during the development of psychomotor sensitization attenuated the enhanced locomotor activity following repeated cocaine injections. Together, these results suggest that NR2-containing NMDA receptors play an important role in the machinery that triggers synaptic and behavioral adaptations to drugs of abuse such as cocaine. PMID:19524640

  5. Chronic Intermittent Ethanol Exposure Enhances the Excitability and Synaptic Plasticity of Lateral Orbitofrontal Cortex Neurons and Induces a Tolerance to the Acute Inhibitory Actions of Ethanol.

    PubMed

    Nimitvilai, Sudarat; Lopez, Marcelo F; Mulholland, Patrick J; Woodward, John J

    2016-03-01

    Alcoholism is associated with changes in brain reward and control systems, including the prefrontal cortex. In prefrontal areas, the orbitofrontal cortex (OFC) has been suggested to have an important role in the development of alcohol-abuse disorders and studies from this laboratory demonstrate that OFC-mediated behaviors are impaired in alcohol-dependent animals. However, it is not known whether chronic alcohol (ethanol) exposure alters the fundamental properties of OFC neurons. In this study, mice were exposed to repeated cycles of chronic intermittent ethanol (CIE) exposure to induce dependence and whole-cell patch-clamp electrophysiology was used to examine the effects of CIE treatment on lateral OFC (lOFC) neuron excitability, synaptic transmission, and plasticity. Repeated cycles of CIE exposure and withdrawal enhanced current-evoked action potential (AP) spiking and this was accompanied by a reduction in the after-hyperpolarization and a decrease in the functional activity of SK channels. CIE mice also showed an increase in the AMPA/NMDA ratio, and this was associated with an increase in GluA1/GluA2 AMPA receptor expression and a decrease in GluN2B NMDA receptor subunits. Following CIE treatment, lOFC neurons displayed a persistent long-term potentiation of glutamatergic synaptic transmission following a spike-timing-dependent protocol. Lastly, CIE treatment diminished the inhibitory effect of acute ethanol on AP spiking of lOFC neurons and reduced expression of the GlyT1 transporter. Taken together, these results suggest that chronic exposure to ethanol leads to enhanced intrinsic excitability and glutamatergic synaptic signaling of lOFC neurons. These alterations may contribute to the impairment of OFC-dependent behaviors in alcohol-dependent individuals. PMID:26286839

  6. Removal of S6K1 and S6K2 Leads to Divergent Alterations in Learning, Memory, and Synaptic Plasticity

    ERIC Educational Resources Information Center

    Antion, Marcia D.; Merhav, Maayan; Hoeffer, Charles A.; Reis, Gerald; Kozma, Sara C.; Thomas, George; Schuman Erin M.; Rosenblum, Kobi; Klann, Eric

    2008-01-01

    Protein synthesis is required for the expression of enduring memories and long-lasting synaptic plasticity. During cellular proliferation and growth, S6 kinases (S6Ks) are activated and coordinate the synthesis of de novo proteins. We hypothesized that protein synthesis mediated by S6Ks is critical for the manifestation of learning, memory, and…

  7. Amygdalar glutamatergic neuronal systems play a key role on the hibernating state of hamsters

    PubMed Central

    2011-01-01

    Background Excitatory transmitting mechanisms are proving to play a critical role on neuronal homeostasis conditions of facultative hibernators such as the Syrian golden hamster. Indeed works have shown that the glutamatergic system of the main olfactory brain station (amygdala) is capable of controlling thermoregulatory responses, which are considered vital for the different hibernating states. In the present study the role of amygdalar glutamatergic circuits on non-hibernating (NHIB) and hibernating (HIB) hamsters were assessed on drinking stimuli and subsequently compared to expression variations of some glutamatergic subtype mRNA levels in limbic areas. For this study the two major glutamatergic antagonists and namely that of N-methyl-D-aspartate receptor (NMDAR), 3-(+)-2-carboxypiperazin-4-yl-propyl-1-phosphonate (CPP) plus that of the acid α-amine-3-hydroxy-5-metil-4-isoxazol-propionic receptor (AMPAR) site, cyano-7-nitro-quinoxaline-2,3-dione (CNQX) were infused into the basolateral amygdala nucleus. Attempts were made to establish the type of effects evoked by amygdalar glutamatergic cross-talking processes during drinking stimuli, a response that may corroborate their major role at least during some stages of this physiological activity in hibernators. Results From the behavioral results it appears that the two glutamatergic compounds exerted distinct effects. In the first case local infusion of basolateral complexes (BLA) with NMDAR antagonist caused very great (p < 0.001) drinking rhythms while moderately increased feeding (p < 0.05) responses during arousal with respect to moderately increased drinking levels in euthermics. Conversely, treatment with CNQX did not modify drinking rhythms and so animals spent more time executing exploratory behaviors. These same antagonists accounted for altered glutamatergic transcription activities as displayed by greatly reduced GluR1, NR1 and GluR2 levels in hippocampus, ventromedial hypothalamic nucleus (VMN) and

  8. Synaptic gene dysregulation within hippocampal CA1 pyramidal neurons in mild cognitive impairment

    PubMed Central

    Counts, Scott E.; Alldred, Melissa J.; Che, Shaoli; Ginsberg, Stephen D.; Mufson, Elliott J.

    2014-01-01

    Clinical neuropathologic studies suggest that the selective vulnerability of hippocampal CA1 pyramidal projection neurons plays a key role in the onset of cognitive impairment during the early phases of Alzheimer’s disease (AD). Disruption of this neuronal population likely affects hippocampal pre- and postsynaptic efficacy underlying episodic memory circuits. Therefore, identifying perturbations in the expression of synaptic gene products within CA1 neurons prior to frank AD is crucial for the development of disease modifying therapies. Here we used custom-designed microarrays to examine progressive alterations in synaptic gene expression within CA1 neurons in cases harvested from the Rush Religious Orders Study who died with a clinical diagnosis of no cognitive impairment (NCI), mild cognitive impairment (MCI, a putative prodromal AD stage), or mild/moderate AD. Quantitative analysis revealed that 21 out of 28 different transcripts encoding regulators of synaptic function were significantly downregulated (1.4 to 1.8 fold) in CA1 neurons in MCI and AD compared to NCI, whereas synaptic transcript levels were not significantly different between MCI and AD. The downregulated transcripts encoded regulators of presynaptic vesicle trafficking, including synaptophysin and synaptogyrin, regulators of vesicle docking and fusion/release, such as synaptotagmin and syntaxin 1, and regulators of glutamatergic postsynaptic function, including PSD-95 and synaptopodin. Clinical pathologic correlation analysis revealed that downregulation of these synaptic markers was strongly associated with poorer antemortem cognitive status and postmortem AD pathological criteria such as Braak stage, NIA-Reagan, and CERAD diagnosis. In contrast to the widespread loss of synaptic gene expression observed in CA1 neurons in MCI, transcripts encoding β-amyloid precursor protein (APP), APP family members, and regulators of APP metabolism were not differentially regulated in CA1 neurons across the

  9. Pregnenolone sulfate as a modulator of synaptic plasticity

    PubMed Central

    Smith, Conor C.; Gibbs, Terrell T.

    2015-01-01

    Rationale The neurosteroid pregnenolone sulfate (PregS) acts as a cognitive enhancer and modulator of neurotransmission, yet aligning its pharmacological and physiological effects with reliable measurements of endogenous local concentrations and pharmacological and therapeutic targets has remained elusive for over 20 years. Objectives New basic and clinical research concerning neurosteroid modulation of the central nervous system (CNS) function has emerged over the past 5 years, including important data involving pregnenolone and various neurosteroid precursors of PregS that point to a need for a critical status update. Results Highly specific actions of PregS affecting excitatory N-methyl-D-aspartate receptor (NMDAR)-mediated synaptic transmission and the pharmacological effects of PregS on various receptors and ion channels are discussed. The discovery of a high potency (nanomolar) signal transduction pathway for PregS-induced NMDAR trafficking to the cell surface via a Ca2+- and G protein-coupled receptor (GPCR)-dependent mechanism and a potent (EC50 ~2 pM) direct enhancement of intracellular Ca2+ levels is discussed in terms of its agonist effects on long-term potentiation (LTP) and memory. Lastly, preclinical and clinical studies assessing the promnestic effects of PregS and pregnenolone toward cognitive dysfunction in schizophrenia, and altered serum levels in epilepsy and alcohol dependence, are reviewed. Conclusions PregS is present in human and rodent brain at physiologically relevant concentrations and meets most of the criteria for an endogenous neurotransmitter/neuromodulator. PregS likely plays a significant role in modulation of glutamatergic excitatory synaptic transmission underlying learning and memory, yet the molecular target(s) for its action awaits identification. PMID:24997854

  10. Changes in hippocampal synaptic functions and protein expression in monosodium glutamate-treated obese mice during development of glucose intolerance.

    PubMed

    Sasaki-Hamada, Sachie; Hojo, Yuki; Koyama, Hajime; Otsuka, Hayuma; Oka, Jun-Ichiro

    2015-05-01

    Glucose is the sole neural fuel for the brain and is essential for cognitive function. Abnormalities in glucose tolerance may be associated with impairments in cognitive function. Experimental obese model mice can be generated by an intraperitoneal injection of monosodium glutamate (MSG; 2 mg/g) once a day for 5 days from 1 day after birth. MSG-treated mice have been shown to develop glucose intolerance and exhibit chronic neuroendocrine dysfunction associated with marked cognitive malfunctions at 28-29  weeks old. Although hippocampal synaptic plasticity is impaired in MSG-treated mice, changes in synaptic transmission remain unknown. Here, we investigated whether glucose intolerance influenced cognitive function, synaptic properties and protein expression in the hippocampus. We demonstrated that MSG-treated mice developed glucose intolerance due to an impairment in the effectiveness of insulin actions, and showed cognitive impairments in the Y-maze test. Moreover, long-term potentiation (LTP) at Schaffer collateral-CA1 pyramidal synapses in hippocampal slices was impaired, and the relationship between the slope of extracellular field excitatory postsynaptic potential and stimulus intensity of synaptic transmission was weaker in MSG-treated mice. The protein levels of vesicular glutamate transporter 1 and GluA1 glutamate receptor subunits decreased in the CA1 region of MSG-treated mice. These results suggest that deficits in glutamatergic presynapses as well as postsynapses lead to impaired synaptic plasticity in MSG-treated mice during the development of glucose intolerance, though it remains unknown whether impaired LTP is due to altered inhibitory transmission. It may be important to examine changes in glucose tolerance in order to prevent cognitive malfunctions associated with diabetes. PMID:25851080

  11. Synaptic plasticity in the pathophysiology and treatment of bipolar disorder.

    PubMed

    Du, Jing; Machado-Vieira, Rodrigo; Khairova, Rushaniya

    2011-01-01

    Emerging evidence suggests that synaptic plasticity is intimately involved in the pathophysiology and treatment of bipolar disorder (BPD). Under certain conditions, over-strengthened and/or weakened synapses at different circuits in the brain could disturb brain functions in parallel, causing manic-like or depressive-like behaviors in animal models. In this chapter, we summarize the regulation of synaptic plasticity by medications, psychological conditions, hormones, and neurotrophic factors, and their correlation with mood-associated animal behaviors. We conclude that increased serotonin, norepinephrine, dopamine, brain-derived neurotrophic factor (BDNF), acute corticosterone, and antidepressant treatments lead to enhanced synaptic strength in the hippocampus and also correlate with antidepressant-like behaviors. In contrast, inhibiting monoaminergic signaling, long-term stress, and pathophysiological concentrations of cytokines weakens glutamatergic synaptic strength in the hippocampus and is associated with depressive-like symptoms. PMID:25236555

  12. EDITORIAL: Synaptic electronics Synaptic electronics

    NASA Astrophysics Data System (ADS)

    Demming, Anna; Gimzewski, James K.; Vuillaume, Dominique

    2013-09-01

    Conventional computers excel in logic and accurate scientific calculations but make hard work of open ended problems that human brains handle easily. Even von Neumann—the mathematician and polymath who first developed the programming architecture that forms the basis of today's computers—was already looking to the brain for future developments before his death in 1957 [1]. Neuromorphic computing uses approaches that better mimic the working of the human brain. Recent developments in nanotechnology are now providing structures with very accommodating properties for neuromorphic approaches. This special issue, with guest editors James K Gimzewski and Dominique Vuillaume, is devoted to research at the serendipitous interface between the two disciplines. 'Synaptic electronics', looks at artificial devices with connections that demonstrate behaviour similar to synapses in the nervous system allowing a new and more powerful approach to computing. Synapses and connecting neurons respond differently to incident signals depending on the history of signals previously experienced, ultimately leading to short term and long term memory behaviour. The basic characteristics of a synapse can be replicated with around ten simple transistors. However with the human brain having around 1011 neurons and 1015 synapses, artificial neurons and synapses from basic transistors are unlikely to accommodate the scalability required. The discovery of nanoscale elements that function as 'memristors' has provided a key tool for the implementation of synaptic connections [2]. Leon Chua first developed the concept of the 'The memristor—the missing circuit element' in 1971 [3]. In this special issue he presents a tutorial describing how memristor research has fed into our understanding of synaptic behaviour and how they can be applied in information processing [4]. He also describes, 'The new principle of local activity, which uncovers a minuscule life-enabling "Goldilocks zone", dubbed the

  13. EDITORIAL: Synaptic electronics Synaptic electronics

    NASA Astrophysics Data System (ADS)

    Demming, Anna; Gimzewski, James K.; Vuillaume, Dominique

    2013-09-01

    Conventional computers excel in logic and accurate scientific calculations but make hard work of open ended problems that human brains handle easily. Even von Neumann—the mathematician and polymath who first developed the programming architecture that forms the basis of today's computers—was already looking to the brain for future developments before his death in 1957 [1]. Neuromorphic computing uses approaches that better mimic the working of the human brain. Recent developments in nanotechnology are now providing structures with very accommodating properties for neuromorphic approaches. This special issue, with guest editors James K Gimzewski and Dominique Vuillaume, is devoted to research at the serendipitous interface between the two disciplines. 'Synaptic electronics', looks at artificial devices with connections that demonstrate behaviour similar to synapses in the nervous system allowing a new and more powerful approach to computing. Synapses and connecting neurons respond differently to incident signals depending on the history of signals previously experienced, ultimately leading to short term and long term memory behaviour. The basic characteristics of a synapse can be replicated with around ten simple transistors. However with the human brain having around 1011 neurons and 1015 synapses, artificial neurons and synapses from basic transistors are unlikely to accommodate the scalability required. The discovery of nanoscale elements that function as 'memristors' has provided a key tool for the implementation of synaptic connections [2]. Leon Chua first developed the concept of the 'The memristor—the missing circuit element' in 1971 [3]. In this special issue he presents a tutorial describing how memristor research has fed into our understanding of synaptic behaviour and how they can be applied in information processing [4]. He also describes, 'The new principle of local activity, which uncovers a minuscule life-enabling "Goldilocks zone", dubbed the

  14. The NMDA receptor complex: a multifunctional machine at the glutamatergic synapse

    PubMed Central

    Fan, Xuelai; Jin, Wu Yang; Wang, Yu Tian

    2014-01-01

    The N-methyl-D-aspartate receptors (NMDARs) are part of a large multiprotein complex at the glutamatergic synapse. The assembly of NMDARs with synaptic proteins offers a means to regulate NMDAR channel properties and receptor trafficking, and couples NMDAR activation to distinct intracellular signaling pathways, thus contributing to the versatility of NMDAR functions. Receptor-protein interactions at the synapse provide a dynamic and powerful mechanism for regulating synaptic efficacy, but can also contribute to NMDAR overactivation-induced excitotoxicity and cellular damage under pathological conditions. An emerging concept is that by understanding the mechanisms and functions of disease-specific protein-protein interactions in the NMDAR complex, we may be able to develop novel therapies based on protein-NMDAR interactions for the treatment of brain diseases in which NMDAR dysfunction is at the root of their pathogenesis. PMID:24959120

  15. BMP signaling and microtubule organization regulate synaptic strength

    PubMed Central

    Ball, Robin W.; Peled, Einat; Guerrero, Giovanna; Isacoff, Ehud Y.

    2015-01-01

    The strength of synaptic transmission between a neuron and multiple postsynaptic partners can vary considerably. We have studied synaptic heterogeneity using the glutamatergic Drosophila neuromuscular junction (NMJ), which contains multiple synaptic connections of varying strength between a motor axon and muscle fiber. In larval NMJs, there is a gradient of synaptic transmission from weak proximal to strong distal boutons. We imaged synaptic transmission with the postsynaptically targeted fluorescent calcium sensor SynapCam, to investigate the molecular pathways that determine synaptic strength and set up this gradient. We discovered that mutations in the Bone Morphogenetic Protein (BMP) signaling pathway disrupt production of strong distal boutons. We find that strong connections contain unbundled microtubules in the boutons, suggesting a role for microtubule organization in transmission strength. The spastin mutation, which disorganizes microtubules, disrupted the transmission gradient, supporting this interpretation. We propose that the BMP pathway, shown previously to function in the homeostatic regulation of synaptic growth, also boosts synaptic transmission in a spatially selective manner that depends on the microtubule system. PMID:25681521

  16. Loss of estrogen-related receptor alpha disrupts ventral-striatal synaptic function in female mice.

    PubMed

    De Jesús-Cortés, Héctor; Lu, Yuan; Anderson, Rachel M; Khan, Michael Z; Nath, Varun; McDaniel, Latisha; Lutter, Michael; Radley, Jason J; Pieper, Andrew A; Cui, Huxing

    2016-08-01

    Eating disorders (EDs), including anorexia nervosa, bulimia nervosa and binge-ED, are mental illnesses characterized by high morbidity and mortality. While several studies have identified neural deficits in patients with EDs, the cellular and molecular basis of the underlying dysfunction has remained poorly understood. We previously identified a rare missense mutation in the transcription factor estrogen-related receptor alpha (ESRRA) associated with development of EDs. Because ventral-striatal signaling is related to the reward and motivation circuitry thought to underlie EDs, we performed functional and structural analysis of ventral-striatal synapses in Esrra-null mice. Esrra-null female, but not male, mice exhibit altered miniature excitatory postsynaptic currents on medium spiny neurons (MSNs) in the ventral striatum, including increased frequency, increased amplitude, and decreased paired pulse ratio. These electrophysiological measures are associated with structural and molecular changes in synapses of MSNs in the ventral striatum, including fewer pre-synaptic glutamatergic vesicles and enhanced GluR1 function. Neuronal Esrra is thus required for maintaining normal synaptic function in the ventral striatum, which may offer mechanistic insights into the behavioral deficits observed in Esrra-null mice. PMID:27155145

  17. Glutamatergic Monopolar Interneurons Provide a Novel Pathway of Excitation in the Mouse Retina.

    PubMed

    Della Santina, Luca; Kuo, Sidney P; Yoshimatsu, Takeshi; Okawa, Haruhisa; Suzuki, Sachihiro C; Hoon, Mrinalini; Tsuboyama, Kotaro; Rieke, Fred; Wong, Rachel O L

    2016-08-01

    Excitatory and inhibitory neurons in the CNS are distinguished by several features, including morphology, transmitter content, and synapse architecture [1]. Such distinctions are exemplified in the vertebrate retina. Retinal bipolar cells are polarized glutamatergic neurons receiving direct photoreceptor input, whereas amacrine cells are usually monopolar inhibitory interneurons with synapses almost exclusively in the inner retina [2]. Bipolar but not amacrine cell synapses have presynaptic ribbon-like structures at their transmitter release sites. We identified a monopolar interneuron in the mouse retina that resembles amacrine cells morphologically but is glutamatergic and, unexpectedly, makes ribbon synapses. These glutamatergic monopolar interneurons (GluMIs) do not receive direct photoreceptor input, and their light responses are strongly shaped by both ON and OFF pathway-derived inhibitory input. GluMIs contact and make almost as many synapses as type 2 OFF bipolar cells onto OFF-sustained A-type (AOFF-S) retinal ganglion cells (RGCs). However, GluMIs and type 2 OFF bipolar cells possess functionally distinct light-driven responses and may therefore mediate separate components of the excitatory synaptic input to AOFF-S RGCs. The identification of GluMIs thus unveils a novel cellular component of excitatory circuits in the vertebrate retina, underscoring the complexity in defining cell types even in this well-characterized region of the CNS. PMID:27426514

  18. Plasticity-Related Gene 1 Affects Mouse Barrel Cortex Function via Strengthening of Glutamatergic Thalamocortical Transmission

    PubMed Central

    Unichenko, Petr; Kirischuk, Sergei; Yang, Jenq-Wei; Baumgart, Jan; Roskoden, Thomas; Schneider, Patrick; Sommer, Angela; Horta, Guilherme; Radyushkin, Konstantin; Nitsch, Robert; Vogt, Johannes; Luhmann, Heiko J.

    2016-01-01

    Plasticity-related gene-1 (PRG-1) is a brain-specific protein that modulates glutamatergic synaptic transmission. Here we investigated the functional role of PRG-1 in adolescent and adult mouse barrel cortex both in vitro and in vivo. Compared with wild-type (WT) animals, PRG-1-deficient (KO) mice showed specific behavioral deficits in tests assessing sensorimotor integration and whisker-based sensory discrimination as shown in the beam balance/walking test and sandpaper tactile discrimination test, respectively. At P25-31, spontaneous network activity in the barrel cortex in vivo was higher in KO mice compared with WT littermates, but not at P16-19. At P16-19, sensory evoked cortical responses in vivo elicited by single whisker stimulation were comparable in KO and WT mice. In contrast, at P25-31 evoked responses were smaller in amplitude and longer in duration in WT animals, whereas KO mice revealed no such developmental changes. In thalamocortical slices from KO mice, spontaneous activity was increased already at P16-19, and glutamatergic thalamocortical inputs to Layer 4 spiny stellate neurons were potentiated. We conclude that genetic ablation of PRG-1 modulates already at P16-19 spontaneous and evoked excitability of the barrel cortex, including enhancement of thalamocortical glutamatergic inputs to Layer 4, which distorts sensory processing in adulthood. PMID:26980613

  19. Plasticity-Related Gene 1 Affects Mouse Barrel Cortex Function via Strengthening of Glutamatergic Thalamocortical Transmission.

    PubMed

    Unichenko, Petr; Kirischuk, Sergei; Yang, Jenq-Wei; Baumgart, Jan; Roskoden, Thomas; Schneider, Patrick; Sommer, Angela; Horta, Guilherme; Radyushkin, Konstantin; Nitsch, Robert; Vogt, Johannes; Luhmann, Heiko J

    2016-07-01

    Plasticity-related gene-1 (PRG-1) is a brain-specific protein that modulates glutamatergic synaptic transmission. Here we investigated the functional role of PRG-1 in adolescent and adult mouse barrel cortex both in vitro and in vivo. Compared with wild-type (WT) animals, PRG-1-deficient (KO) mice showed specific behavioral deficits in tests assessing sensorimotor integration and whisker-based sensory discrimination as shown in the beam balance/walking test and sandpaper tactile discrimination test, respectively. At P25-31, spontaneous network activity in the barrel cortex in vivo was higher in KO mice compared with WT littermates, but not at P16-19. At P16-19, sensory evoked cortical responses in vivo elicited by single whisker stimulation were comparable in KO and WT mice. In contrast, at P25-31 evoked responses were smaller in amplitude and longer in duration in WT animals, whereas KO mice revealed no such developmental changes. In thalamocortical slices from KO mice, spontaneous activity was increased already at P16-19, and glutamatergic thalamocortical inputs to Layer 4 spiny stellate neurons were potentiated. We conclude that genetic ablation of PRG-1 modulates already at P16-19 spontaneous and evoked excitability of the barrel cortex, including enhancement of thalamocortical glutamatergic inputs to Layer 4, which distorts sensory processing in adulthood. PMID:26980613

  20. The First Alcohol Drink Triggers mTORC1-Dependent Synaptic Plasticity in Nucleus Accumbens Dopamine D1 Receptor Neurons.

    PubMed

    Beckley, Jacob T; Laguesse, Sophie; Phamluong, Khanhky; Morisot, Nadege; Wegner, Scott A; Ron, Dorit

    2016-01-20

    Early binge-like alcohol drinking may promote the development of hazardous intake. However, the enduring cellular alterations following the first experience with alcohol consumption are not fully understood. We found that the first binge-drinking alcohol session produced enduring enhancement of excitatory synaptic transmission onto dopamine D1 receptor-expressing neurons (D1+ neurons) in the nucleus accumbens (NAc) shell but not the core in mice, which required D1 receptors (D1Rs) and mechanistic target of rapamycin complex 1 (mTORC1). Furthermore, inhibition of mTORC1 activity during the first alcohol drinking session reduced alcohol consumption and preference of a subsequent drinking session. mTORC1 is critically involved in RNA-to-protein translation, and we found that the first alcohol session rapidly activated mTORC1 in NAc shell D1+ neurons and increased synaptic expression of the AMPAR subunit GluA1 and the scaffolding protein Homer. Finally, D1R stimulation alone was sufficient to activate mTORC1 in the NAc to promote mTORC1-dependent translation of the synaptic proteins GluA1 and Homer. Together, our results indicate that the first alcohol drinking session induces synaptic plasticity in NAc D1+ neurons via enhanced mTORC1-dependent translation of proteins involved in excitatory synaptic transmission that in turn drives the reinforcement learning associated with the first alcohol experience. Thus, the alcohol-dependent D1R/mTORC1-mediated increase in synaptic function in the NAc may reflect a neural imprint of alcohol's reinforcing properties, which could promote subsequent alcohol intake. Significance statement: Consuming alcohol for the first time is a learning event that drives further drinking. Here, we identified a mechanism that may underlie the reinforcing learning associated with the initial alcohol experience. We show that the first alcohol experience induces a persistent enhancement of excitatory synaptic transmission on NAc shell D1+ neurons

  1. The First Alcohol Drink Triggers mTORC1-Dependent Synaptic Plasticity in Nucleus Accumbens Dopamine D1 Receptor Neurons

    PubMed Central

    Beckley, Jacob T.; Laguesse, Sophie; Phamluong, Khanhky; Morisot, Nadege; Wegner, Scott A.

    2016-01-01

    Early binge-like alcohol drinking may promote the development of hazardous intake. However, the enduring cellular alterations following the first experience with alcohol consumption are not fully understood. We found that the first binge-drinking alcohol session produced enduring enhancement of excitatory synaptic transmission onto dopamine D1 receptor-expressing neurons (D1+ neurons) in the nucleus accumbens (NAc) shell but not the core in mice, which required D1 receptors (D1Rs) and mechanistic target of rapamycin complex 1 (mTORC1). Furthermore, inhibition of mTORC1 activity during the first alcohol drinking session reduced alcohol consumption and preference of a subsequent drinking session. mTORC1 is critically involved in RNA-to-protein translation, and we found that the first alcohol session rapidly activated mTORC1 in NAc shell D1+ neurons and increased synaptic expression of the AMPAR subunit GluA1 and the scaffolding protein Homer. Finally, D1R stimulation alone was sufficient to activate mTORC1 in the NAc to promote mTORC1-dependent translation of the synaptic proteins GluA1 and Homer. Together, our results indicate that the first alcohol drinking session induces synaptic plasticity in NAc D1+ neurons via enhanced mTORC1-dependent translation of proteins involved in excitatory synaptic transmission that in turn drives the reinforcement learning associated with the first alcohol experience. Thus, the alcohol-dependent D1R/mTORC1-mediated increase in synaptic function in the NAc may reflect a neural imprint of alcohol's reinforcing properties, which could promote subsequent alcohol intake. SIGNIFICANCE STATEMENT Consuming alcohol for the first time is a learning event that drives further drinking. Here, we identified a mechanism that may underlie the reinforcing learning associated with the initial alcohol experience. We show that the first alcohol experience induces a persistent enhancement of excitatory synaptic transmission on NAc shell D1+ neurons

  2. Microtubule-associated protein 1B (MAP1B)-deficient neurons show structural presynaptic deficiencies in vitro and altered presynaptic physiology.

    PubMed

    Bodaleo, Felipe J; Montenegro-Venegas, Carolina; Henríquez, Daniel R; Court, Felipe A; Gonzalez-Billault, Christian

    2016-01-01

    Microtubule-associated protein 1B (MAP1B) is expressed predominantly during the early stages of development of the nervous system, where it regulates processes such as axonal guidance and elongation. Nevertheless, MAP1B expression in the brain persists in adult stages, where it participates in the regulation of the structure and physiology of dendritic spines in glutamatergic synapses. Moreover, MAP1B expression is also found in presynaptic synaptosomal preparations. In this work, we describe a presynaptic phenotype in mature neurons derived from MAP1B knockout (MAP1B KO) mice. Mature neurons express MAP1B, and its deficiency does not alter the expression levels of a subgroup of other synaptic proteins. MAP1B KO neurons display a decrease in the density of presynaptic and postsynaptic terminals, which involves a reduction in the density of synaptic contacts, and an increased proportion of orphan presynaptic terminals. Accordingly, MAP1B KO neurons present altered synaptic vesicle fusion events, as shown by FM4-64 release assay, and a decrease in the density of both synaptic vesicles and dense core vesicles at presynaptic terminals. Finally, an increased proportion of excitatory immature symmetrical synaptic contacts in MAP1B KO neurons was detected. Altogether these results suggest a novel role for MAP1B in presynaptic structure and physiology regulation in vitro. PMID:27425640

  3. Microtubule-associated protein 1B (MAP1B)-deficient neurons show structural presynaptic deficiencies in vitro and altered presynaptic physiology

    PubMed Central

    Bodaleo, Felipe J.; Montenegro-Venegas, Carolina; Henríquez, Daniel R.; Court, Felipe A.; Gonzalez-Billault, Christian

    2016-01-01

    Microtubule-associated protein 1B (MAP1B) is expressed predominantly during the early stages of development of the nervous system, where it regulates processes such as axonal guidance and elongation. Nevertheless, MAP1B expression in the brain persists in adult stages, where it participates in the regulation of the structure and physiology of dendritic spines in glutamatergic synapses. Moreover, MAP1B expression is also found in presynaptic synaptosomal preparations. In this work, we describe a presynaptic phenotype in mature neurons derived from MAP1B knockout (MAP1B KO) mice. Mature neurons express MAP1B, and its deficiency does not alter the expression levels of a subgroup of other synaptic proteins. MAP1B KO neurons display a decrease in the density of presynaptic and postsynaptic terminals, which involves a reduction in the density of synaptic contacts, and an increased proportion of orphan presynaptic terminals. Accordingly, MAP1B KO neurons present altered synaptic vesicle fusion events, as shown by FM4-64 release assay, and a decrease in the density of both synaptic vesicles and dense core vesicles at presynaptic terminals. Finally, an increased proportion of excitatory immature symmetrical synaptic contacts in MAP1B KO neurons was detected. Altogether these results suggest a novel role for MAP1B in presynaptic structure and physiology regulation in vitro. PMID:27425640

  4. Impairment of bidirectional synaptic plasticity in the striatum of a mouse model of DYT1 dystonia: role of endogenous acetylcholine

    PubMed Central

    Martella, Giuseppina; Tassone, Annalisa; Sciamanna, Giuseppe; Platania, Paola; Cuomo, Dario; Viscomi, Maria Teresa; Bonsi, Paola; Cacci, Emanuele; Biagioni, Stefano; Usiello, Alessandro; Bernardi, Giorgio; Sharma, Nutan

    2009-01-01

    DYT1 dystonia is a severe form of inherited dystonia, characterized by involuntary twisting movements and abnormal postures. It is linked to a deletion in the dyt1 gene, resulting in a mutated form of the protein torsinA. The penetrance for dystonia is incomplete, but both clinically affected and non-manifesting carriers of the DYT1 mutation exhibit impaired motor learning and evidence of altered motor plasticity. Here, we characterized striatal glutamatergic synaptic plasticity in transgenic mice expressing either the normal human torsinA or its mutant form, in comparison to non-transgenic (NT) control mice. Medium spiny neurons recorded from both NT and normal human torsinA mice exhibited normal long-term depression (LTD), whereas in mutant human torsinA littermates LTD could not be elicited. In addition, although long-term potentiation (LTP) could be induced in all the mice, it was greater in magnitude in mutant human torsinA mice. Low-frequency stimulation (LFS) can revert potentiated synapses to resting levels, a phenomenon termed synaptic depotentiation. LFS induced synaptic depotentiation (SD) both in NT and normal human torsinA mice, but not in mutant human torsinA mice. Since anti-cholinergic drugs are an effective medical therapeutic option for the treatment of human dystonia, we reasoned that an excess in endogenous acetylcholine could underlie the synaptic plasticity impairment. Indeed, both LTD and SD were rescued in mutant human torsinA mice either by lowering endogenous acetylcholine levels or by antagonizing muscarinic M1 receptors. The presence of an enhanced acetylcholine tone was confirmed by the observation that acetylcholinesterase activity was significantly increased in the striatum of mutant human torsinA mice, as compared with both normal human torsinA and NT littermates. Moreover, we found similar alterations of synaptic plasticity in muscarinic M2/M4 receptor knockout mice, in which an increased striatal acetylcholine level has been

  5. Impairment of bidirectional synaptic plasticity in the striatum of a mouse model of DYT1 dystonia: role of endogenous acetylcholine.

    PubMed

    Martella, Giuseppina; Tassone, Annalisa; Sciamanna, Giuseppe; Platania, Paola; Cuomo, Dario; Viscomi, Maria Teresa; Bonsi, Paola; Cacci, Emanuele; Biagioni, Stefano; Usiello, Alessandro; Bernardi, Giorgio; Sharma, Nutan; Standaert, David G; Pisani, Antonio

    2009-09-01

    DYT1 dystonia is a severe form of inherited dystonia, characterized by involuntary twisting movements and abnormal postures. It is linked to a deletion in the dyt1 gene, resulting in a mutated form of the protein torsinA. The penetrance for dystonia is incomplete, but both clinically affected and non-manifesting carriers of the DYT1 mutation exhibit impaired motor learning and evidence of altered motor plasticity. Here, we characterized striatal glutamatergic synaptic plasticity in transgenic mice expressing either the normal human torsinA or its mutant form, in comparison to non-transgenic (NT) control mice. Medium spiny neurons recorded from both NT and normal human torsinA mice exhibited normal long-term depression (LTD), whereas in mutant human torsinA littermates LTD could not be elicited. In addition, although long-term potentiation (LTP) could be induced in all the mice, it was greater in magnitude in mutant human torsinA mice. Low-frequency stimulation (LFS) can revert potentiated synapses to resting levels, a phenomenon termed synaptic depotentiation. LFS induced synaptic depotentiation (SD) both in NT and normal human torsinA mice, but not in mutant human torsinA mice. Since anti-cholinergic drugs are an effective medical therapeutic option for the treatment of human dystonia, we reasoned that an excess in endogenous acetylcholine could underlie the synaptic plasticity impairment. Indeed, both LTD and SD were rescued in mutant human torsinA mice either by lowering endogenous acetylcholine levels or by antagonizing muscarinic M1 receptors. The presence of an enhanced acetylcholine tone was confirmed by the observation that acetylcholinesterase activity was significantly increased in the striatum of mutant human torsinA mice, as compared with both normal human torsinA and NT littermates. Moreover, we found similar alterations of synaptic plasticity in muscarinic M2/M4 receptor knockout mice, in which an increased striatal acetylcholine level has been

  6. Transgenic Expression of Glud1 (Glutamate Dehydrogenase 1) in Neurons: In Vivo Model of Enhanced Glutamate Release, Altered Synaptic Plasticity, and Selective Neuronal Vulnerability

    PubMed Central

    Bao, Xiaodong; Pal, Ranu; Hascup, Kevin N.; Wang, Yongfu; Wang, Wen-Tung; Xu, Wenhao; Hui, Dongwei; Agbas, Abdulbaki; Wang, Xinkun; Michaelis, Mary L.; Choi, In-Young; Belousov, Andrei B.; Gerhardt, Greg A.; Michaelis, Elias K.

    2010-01-01

    The effects of lifelong, moderate excess release of glutamate (Glu) in the CNS have not been previously characterized. We created a transgenic (Tg) mouse model of lifelong excess synaptic Glu release in the CNS by introducing the gene for glutamate dehydrogenase 1 (Glud1) under the control of the neuron-specific enolase promoter. Glud1 is, potentially, an important enzyme in the pathway of Glu synthesis in nerve terminals. Increased levels of GLUD protein and activity in CNS neurons of hemizygous Tg mice were associated with increases in the in vivo release of Glu after neuronal depolarization in striatum and in the frequency and amplitude of miniature EPSCs in the CA1 region of the hippocampus. Despite overexpression of Glud1 in all neurons of the CNS, the Tg mice suffered neuronal losses in select brain regions (e.g., the CA1 but not the CA3 region). In vulnerable regions, Tg mice had decreases in MAP2A labeling of dendrites and in synaptophysin labeling of presynaptic terminals; the decreases in neuronal numbers and dendrite and presynaptic terminal labeling increased with advancing age. In addition, the Tg mice exhibited decreases in long-term potentiation of synaptic activity and in spine density in dendrites of CA1 neurons. Behaviorally, the Tg mice were significantly more resistant than wild-type mice to induction and duration of anesthesia produced by anesthetics that suppress Glu neurotransmission. The Glud1 mouse might be a useful model for the effects of lifelong excess synaptic Glu release on CNS neurons and for age-associated neurodegenerative processes. PMID:19890003

  7. Overview of Glutamatergic Dysregulation in Central Pathologies

    PubMed Central

    Miladinovic, Tanya; Nashed, Mina G.; Singh, Gurmit

    2015-01-01

    As the major excitatory neurotransmitter in the mammalian central nervous system, glutamate plays a key role in many central pathologies, including gliomas, psychiatric, neurodevelopmental, and neurodegenerative disorders. Post-mortem and serological studies have implicated glutamatergic dysregulation in these pathologies, and pharmacological modulation of glutamate receptors and transporters has provided further validation for the involvement of glutamate. Furthermore, efforts from genetic, in vitro, and animal studies are actively elucidating the specific glutamatergic mechanisms that contribute to the aetiology of central pathologies. However, details regarding specific mechanisms remain sparse and progress in effectively modulating glutamate to alleviate symptoms or inhibit disease states has been relatively slow. In this report, we review what is currently known about glutamate signalling in central pathologies. We also discuss glutamate’s mediating role in comorbidities, specifically cancer-induced bone pain and depression. PMID:26569330

  8. Optogenetic stimulation reveals distinct modulatory properties of thalamostriatal vs corticostriatal glutamatergic inputs to fast-spiking interneurons

    PubMed Central

    Sciamanna, Giuseppe; Ponterio, Giulia; Mandolesi, Georgia; Bonsi, Paola; Pisani, Antonio

    2015-01-01

    Parvalbumin-containing fast-spiking interneurons (FSIs) exert a powerful feed-forward GABAergic inhibition on striatal medium spiny neurons (MSNs), playing a critical role in timing striatal output. However, how glutamatergic inputs modulate their firing activity is still unexplored. Here, by means of a combined optogenetic and electrophysiological approach, we provide evidence for a differential modulation of cortico- vs thalamo-striatal synaptic inputs to FSIs in transgenic mice carrying light-gated ion channels channelrhodopsin-2 (ChR2) in glutamatergic fibers. Corticostriatal synapses show a postsynaptic facilitation, whereas thalamostriatal synapses present a postsynaptic depression. Moreover, thalamostriatal synapses exhibit more prominent AMPA-mediated currents than corticostriatal synapses, and an increased release probability. Furthermore, during current-evoked firing activity, simultaneous corticostriatal stimulation increases bursting activity. Conversely, thalamostriatal fiber activation shifts the canonical burst-pause activity to a more prolonged, regular firing pattern. However, this change in firing pattern was accompanied by a significant rise in the frequency of membrane potential oscillations. Notably, the responses to thalamic stimulation were fully abolished by blocking metabotropic glutamate 1 (mGlu1) receptor subtype, whereas both acetylcholine and dopamine receptor antagonists were ineffective. Our findings demonstrate that cortical and thalamic glutamatergic input differently modulate FSIs firing activity through specific intrinsic and synaptic properties, exerting a powerful influence on striatal outputs. PMID:26572101

  9. Synaptic plasticity and phosphorylation

    PubMed Central

    Lee, Hey-Kyoung

    2009-01-01

    A number of neuronal functions, including synaptic plasticity, depend on proper regulation of synaptic proteins, many of which can be rapidly regulated by phosphorylation. Neuronal activity controls the function of these synaptic proteins by exquisitely regulating the balance of various protein kinase and protein phosphatase activity. Recent understanding of synaptic plasticity mechanisms underscores important roles that these synaptic phosphoproteins play in regulating both pre- and post-synaptic functions. This review will focus on key postsynaptic phosphoproteins that have been implicated to play a role in synaptic plasticity. PMID:16904750

  10. Drosophila mutants of the autism candidate gene neurobeachin (rugose) exhibit neuro-developmental disorders, aberrant synaptic properties, altered locomotion, impaired adult social behavior and activity patterns

    PubMed Central

    Wise, Alexandra; Tenezaca, Luis; Fernandez, Robert W.; Schatoff, Emma; Flores, Julian; Ueda, Atsushi; Zhong, Xiaotian; Wu, Chun-Fang; Simon, Anne F.; Venkatesh, Tadmiri

    2016-01-01

    Autism spectrum disorder (ASD) is a neurodevelopmental disorder in humans characterized by complex behavioral deficits, including intellectual disability, impaired social interactions and hyperactivity. ASD exhibits a strong genetic component with underlying multi-gene interactions. Candidate gene studies have shown that the neurobeachin gene is disrupted in human patients with idiopathic autism (Castermans et al., 2003). The gene for neurobeachin (NBEA) spans the common fragile site FRA 13A and encodes a signal scaffold protein (Savelyeva et al., 2006). In mice, NBEA has been shown to be involved in the trafficking and function of a specific subset of synaptic vesicles. (Medrihan et al., 2009; Savelyeva, Sagulenko, Schmitt, & Schwab, 2006). rugose (rg) is the Drosophila homologue of the mammalian and human neurobeachin. Our previous genetic and molecular analyses have shown that rg encodes an A kinase anchor protein (DAKAP 550), which interacts with components of the EGFR and Notch mediated signaling pathways, facilitating cross-talk between these and other pathways (Shamloula et al., 2002). We now present functional data from studies on the larval neuromuscular junction that reveal abnormal synaptic architecture and physiology. In addition, adult rg loss-of-function mutants exhibit defective social interactions, impaired habituation, aberrant locomotion and hyperactivity. These results demonstrate that Drosophila neurobeachin (rugose) mutants exhibit phenotypic characteristics reminiscent of human ASD and thus could serve as a genetic model for studying autism spectrum disorders. PMID:26100104