Science.gov

Sample records for alternate magnetic fusion

  1. Review of alternative concepts for magnetic fusion

    SciTech Connect

    Krakowski, R.A.; Miller, R.L.; Hagenson, R.L.

    1980-01-01

    Although the Tokamak represents the mainstay of the world's quest for magnetic fusion power, with the tandem mirror serving as a primary backup concept in the US fusion program, a wide range of alternative fusion concepts (AFC's) have been and are being pursued. This review presents a summary of past and present reactor projections of a majority of AFC's. Whenever possible, quantitative results are given.

  2. Integrated simulation and modeling capability for alternate magnetic fusion concepts

    SciTech Connect

    Cohen, B. I.; Hooper, E.B.; Jarboe, T. R.; LoDestro, L. L.; Pearlstein, L. D.; Prager, S. C.; Sarff, J. S.

    1998-11-03

    This document summarizes a strategic study addressing the development of a comprehensive modeling and simulation capability for magnetic fusion experiments with particular emphasis on devices that are alternatives to the mainline tokamak device. A code development project in this area supports two defined strategic thrust areas in the Magnetic Fusion Energy Program: (1) comprehensive simulation and modeling of magnetic fusion experiments and (2) development, operation, and modeling of magnetic fusion alternate- concept experiment

  3. Magnetic-confinement fusion

    NASA Astrophysics Data System (ADS)

    Ongena, J.; Koch, R.; Wolf, R.; Zohm, H.

    2016-05-01

    Our modern society requires environmentally friendly solutions for energy production. Energy can be released not only from the fission of heavy nuclei but also from the fusion of light nuclei. Nuclear fusion is an important option for a clean and safe solution for our long-term energy needs. The extremely high temperatures required for the fusion reaction are routinely realized in several magnetic-fusion machines. Since the early 1990s, up to 16 MW of fusion power has been released in pulses of a few seconds, corresponding to a power multiplication close to break-even. Our understanding of the very complex behaviour of a magnetized plasma at temperatures between 150 and 200 million °C surrounded by cold walls has also advanced substantially. This steady progress has resulted in the construction of ITER, a fusion device with a planned fusion power output of 500 MW in pulses of 400 s. ITER should provide answers to remaining important questions on the integration of physics and technology, through a full-size demonstration of a tenfold power multiplication, and on nuclear safety aspects. Here we review the basic physics underlying magnetic fusion: past achievements, present efforts and the prospects for future production of electrical energy. We also discuss questions related to the safety, waste management and decommissioning of a future fusion power plant.

  4. Magnetized Target Fusion

    NASA Technical Reports Server (NTRS)

    Griffin, Steven T.

    2002-01-01

    Magnetized target fusion (MTF) is under consideration as a means of building a low mass, high specific impulse, and high thrust propulsion system for interplanetary travel. This unique combination is the result of the generation of a high temperature plasma by the nuclear fusion process. This plasma can then be deflected by magnetic fields to provide thrust. Fusion is initiated by a small traction of the energy generated in the magnetic coils due to the plasma's compression of the magnetic field. The power gain from a fusion reaction is such that inefficiencies due to thermal neutrons and coil losses can be overcome. Since the fusion reaction products are directly used for propulsion and the power to initiate the reaction is directly obtained from the thrust generation, no massive power supply for energy conversion is required. The result should be a low engine mass, high specific impulse and high thrust system. The key is to successfully initiate fusion as a proof-of-principle for this application. Currently MSFC is implementing MTF proof-of-principle experiments. This involves many technical details and ancillary investigations. Of these, selected pertinent issues include the properties, orientation and timing of the plasma guns and the convergence and interface development of the "pusher" plasma. Computer simulations of the target plasma's behavior under compression and the convergence and mixing of the gun plasma are under investigation. This work is to focus on the gun characterization and development as it relates to plasma initiation and repeatability.

  5. Fusion, magnetic confinement

    SciTech Connect

    Berk, H.L.

    1992-08-06

    An overview is presented of the principles of magnetic confinement of plasmas for the purpose of achieving controlled fusion conditions. Sec. 1 discusses the different nuclear fusion reactions which can be exploited in prospective fusion reactors and explains why special technologies need to be developed for the supply of tritium or {sup 3}He, the probable fuels. In Sec. 2 the Lawson condition, a criterion that is a measure of the quality of confinement relative to achieving fusion conditions, is explained. In Sec. 3 fluid equations are used to describe plasma confinement. Specific confinement configurations are considered. In Sec. 4 the orbits of particle sin magneti and electric fields are discussed. In Sec. 5 stability considerations are discussed. It is noted that confinement systems usually need to satisfy stability constraints imposed by ideal magnetohydrodynamic (MHD) theory. The paper culminates with a summary of experimental progress in magnetic confinement. Present experiments in tokamaks have reached the point that the conditions necessary to achieve fusion are being satisfied.

  6. Generic magnetic fusion rocket model

    SciTech Connect

    Santarius, J.F.; Logan, B.G.

    1993-06-01

    A generic magnetic fusion rocket model is developed and used to explore the limits of fusion propulsion systems. Two fusion fuels are examined, D-T and D-(He-3), and the D-(He-3) fuel cycle is found to give a higher specific power in almost all parameter regimes. The key findings are that (1) magnetic fusion should ultimately be able to deliver specific powers of about 10 kW/kg and (2) specific powers of 15 kW/kg could be achieved with only modest extrapolations of present technology. 9 refs.

  7. Magnetic fusion energy and computers

    SciTech Connect

    Killeen, J.

    1982-01-01

    The application of computers to magnetic fusion energy research is essential. In the last several years the use of computers in the numerical modeling of fusion systems has increased substantially. There are several categories of computer models used to study the physics of magnetically confined plasmas. A comparable number of types of models for engineering studies are also in use. To meet the needs of the fusion program, the National Magnetic Fusion Energy Computer Center has been established at the Lawrence Livermore National Laboratory. A large central computing facility is linked to smaller computer centers at each of the major MFE laboratories by a communication network. In addition to providing cost effective computing services, the NMFECC environment stimulates collaboration and the sharing of computer codes among the various fusion research groups.

  8. Superconducting magnets for fusion applications

    SciTech Connect

    Henning, C.D.

    1987-07-02

    Fusion magnet technology has made spectacular advances in the past decade; to wit, the Mirror Fusion Test Facility and the Large Coil Project. However, further advances are still required for advanced economical fusion reactors. Higher fields to 14 T and radiation-hardened superconductors and insulators will be necessary. Coupled with high rates of nuclear heating and pulsed losses, the next-generation magnets will need still higher current density, better stability and quench protection. Cable-in-conduit conductors coupled with polyimide insulations and better steels seem to be the appropriate path. Neutron fluences up to 10/sup 19/ neutrons/cm/sup 2/ in niobium tin are achievable. In the future, other amorphous superconductors could raise these limits further to extend reactor life or decrease the neutron shielding and corresponding reactor size.

  9. Microwave kinoform for magnetic fusion

    SciTech Connect

    Gallagher, N.C. Jr.; Sweeney, D.W.

    1983-07-19

    A microwave kinoform that modifies both the phase and polarization of an incident wavefront has been designed. This kinoform for the TMX-U magnetic fusion experiment has been fabricated and tested. The design procedure, method of fabrication, and experimental test results are discussed.

  10. Fusion in Magnetically Compressed Targets

    NASA Astrophysics Data System (ADS)

    Mokhov, V. N.

    2004-11-01

    A comparative analysis is presented of the positive and negative features of systems using magnetic compression of the thermonuclear fusion target (MAGO/MTF) aimed at solving the controlled thermonuclear fusion (CTF) problem. The niche for the MAGO/MTF system, among the other CTF systems, in the parameter space of the energy delivered to the target, and its input time to the target, is shown. This approach was investigated at RFNC-VNIIEF for more than 15 years using the unique technique of applying explosive magnetic generators (EMG) as the energy source to preheat fusion plasma, and accelerate a liner to compress the preheated fusion plasma to the parameters required for ignition. EMG based systems produce already fusion neutrons, and their relatively low cost and record energy yield enable full scale experiments to study the possibility of achieving ignition threshold without constructing expensive stationary installations. A short review of the milestone results on the road to solving the CTF problem in the MAGO/MTF system is given.

  11. Magnetic systems for fusion devices

    SciTech Connect

    Henning, C.D.

    1985-02-01

    Mirror experiments have led the way in applying superconductivity to fusion research because of unique requirements for high and steady magnetic fields. The first significant applications were Baseball II at LLNL and IMP at ORNL. More recently, the MFTF-B yin-yang coil was successfully tested and the entire tandem configuration is nearing completion. Tokamak magnets have also enjoyed recent success with the large coil project tests at ORNL, preceded by single coil tests in Japan and Germany. In the USSR, the T-7 Tokamak has been operational for many years and the T-15 Tokamak is under construction, with the TF coils nearing completion. Also the Tore Supra is being built in France.

  12. Ion Rings for Magnetic Fusion

    SciTech Connect

    Greenly, John, B.

    2005-07-31

    This Final Technical Report presents the results of the program, Ion Rings for Magnetic Fusion, which was carried out under Department of Energy funding during the period August, 1993 to January, 2005. The central objective of the program was to study the properties of field-reversed configurations formed by ion rings. In order to reach this objective, our experimental program, called the Field-reversed Ion Ring Experiment, FIREX, undertook to develop an efficient, economical technology for the production of field-reversed ion rings. A field-reversed configuration (FRC) in which the azimuthal (field-reversing) current is carried by ions with gyro-radius comparable to the magnetic separatrix radius is called a field-reversed ion ring. A background plasma is required for charge neutralization of the ring, and this plasma will be confined within the ring's closed magnetic flux. Ion rings have long been of interest as the basis of compact magnetic fusion reactors, as the basis for a high-power accelerator for an inertial fusion driver, and for other applications of high power ion beams or plasmas of high energy density. Specifically, the FIREX program was intended to address the longstanding question of the contribution of large-orbit ions to the observed stability of experimental FRCs to the MHD tilt mode. Typical experimental FRCs with s {approx} 2-4, where s is the ratio of separatrix radius to ion gyro-radius, have been stable to tilting, but desired values for a fusion reactor, s > 20, should be unstable. The FIREX ring would consist of a plasma with large s for the background ions, but with s {approx} 1 for the ring ions. By varying the proportions of these two populations, the minimum proportion of large-orbit ions necessary for stability could be determined. The incorporation of large-orbit ions, perhaps by neutral-beam injection, into an FRC has been advanced for the purpose of stabilizing, heating, controlling angular momentum, and aiding the formation of a

  13. LiWall Fusion - The New Concept of Magnetic Fusion

    SciTech Connect

    L.E. Zakharov

    2011-01-12

    Utilization of the outstanding abilities of a liquid lithium layer in pumping hydrogen isotopes leads to a new approach to magnetic fusion, called the LiWall Fusion. It relies on innovative plasma regimes with low edge density and high temperature. The approach combines fueling the plasma by neutral injection beams with the best possible elimination of outside neutral gas sources, which cools down the plasma edge. Prevention of cooling the plasma edge suppresses the dominant, temperature gradient related turbulence in the core. Such an approach is much more suitable for controlled fusion than the present practice, relying on high heating power for compensating essentially unlimited turbulent energy losses.

  14. Magnetic-fusion energy and computers

    SciTech Connect

    Killeen, J.

    1982-01-01

    The application of computers to magnetic fusion energy research is essential. In the last several years the use of computers in the numerical modeling of fusion systems has increased substantially. There are several categories of computer models used to study the physics of magnetically confined plasmas. A comparable number of types of models for engineering studies are also in use. To meet the needs of the fusion program, the National Magnetic Fusion Energy Computer Center has been established at the Lawrence Livermore National Laboratory. A large central computing facility is linked to smaller computer centers at each of the major MFE laboratories by a communication network. In addition to providing cost effective computing services, the NMFECC environment stimulates collaboration and the sharing of computer codes among the various fusion research groups.

  15. Generic Magnetic Fusion Reactor Revisited

    NASA Astrophysics Data System (ADS)

    Sheffield, John; Milora, Stanley

    2015-11-01

    The original Generic Magnetic Fusion Reactor paper was published in 1986. This update describes what has changed in 30 years. Notably, the construction of ITER is providing important benchmark numbers for technologies and costs. In addition, we use a more conservative neutron wall flux and fluence. But these cost-increasing factors are offset by greater optimism on the thermal-electric conversion efficiency and potential availability. The main examples show the cost of electricity (COE) as a function of aspect ratio and neutron flux to the first wall. The dependence of the COE on availability, thermo-electric efficiency, electrical power output, and the present day's low interest rates is also discussed. Interestingly, at fixed aspect ratio there is a shallow minimum in the COE at neutron flux around 2.5 MW/m2. The possibility of operating with only a small COE penalty at even lower wall loadings (to 1.0 MW/m2 at larger plant size) and the use of niobium-titanium coils are also investigated. J. Sheffield was supported by ORNL subcontract 4000088999 with the University of Tennessee.

  16. Magnetized Target Fusion Driven by Plasma Liners

    NASA Technical Reports Server (NTRS)

    Thio, Y. C. Francis; Kirkpatrick, Ronald C.; Knapp, Charles E.; Rodgers, Stephen L. (Technical Monitor)

    2002-01-01

    Magnetized target fusion is an emerging, relatively unexplored approach to fusion for electrical power and propulsion application. The physical principles of the concept are founded upon both inertial confinement fusion (ICF) and magnetic confinement fusion (MCF). It attempts to combine the favorable attributes of both these orthogonal approaches to fusion, but at the same time, avoiding the extreme technical challenges of both by exploiting a fusion regime intermediate between them. It uses a material liner to compress, heat and contain the fusion reacting plasma (the target plasma) mentally. By doing so, the fusion burn could be made to occur at plasma densities as high as six orders of magnitude higher than conventional MCF such as tokamak, thus leading to an approximately three orders of magnitude reduction in the plasma energy required for ignition. It also uses a transient magnetic field, compressed to extremely high intensity (100's T to 1000T) in the target plasma, to slow down the heat transport to the liner and to increase the energy deposition of charged-particle fusion products. This has several compounding beneficial effects. It leads to longer energy confinement time compared with conventional ICF without magnetized target, and thus permits the use of much lower plasma density to produce reasonable burn-up fraction. The compounding effects of lower plasma density and the magneto-insulation of the target lead to greatly reduced compressional heating power on the target. The increased energy deposition rate of charged-particle fusion products also helps to lower the energy threshold required for ignition and increasing the burn-up fraction. The reduction in ignition energy and the compressional power compound to lead to reduced system size, mass and R&D cost. It is a fusion approach that has an affordable R&D pathway, and appears attractive for propulsion application in the nearer term.

  17. An Alternate View Of Munition Sensor Fusion

    NASA Astrophysics Data System (ADS)

    Mayersak, J. R.

    1988-08-01

    An alternate multimode sensor fusion scheme is treated. The concept is designed to acquire and engage high value relocatable targets in a lock-on-after-launch sequence. The approach uses statistical decision concepts to determine the authority to be assigned to each mode in the acquisition sequence voting and decision process. Statistical target classification and recognition in the engagement sequence is accomplished through variable length feature vectors set by adaptive logics. The approach uses multiple decision for acquisition and classification, in the number of spaces selected, is adaptively weighted and adjusted. The scheme uses type of climate -- arctic, temperate, desert, and equatorial -- diurnal effects --- time of day -- type of background, type of countermeasures present -- signature suppresssion or obscuration, false target decoy or electronic warfare -- and other factors to make these selections. The approach is discussed in simple terms. Voids and deficiencies in the statistical data base used to train such algorithms is discussed. The approach is being developed to engage deep battle targets such as surface-to-surface missile systems, air defense units and self-propelled artillery.

  18. Economic potential of magnetic fusion energy

    SciTech Connect

    Henning, C.D.

    1981-03-10

    Scientific feasibility of magnetic fusion is no longer seriously in doubt. Rapid advances have been made in both tokamak and mirror research, leading to a demonstration in the TFTR tokamak at Princeton in 1982 and the tandem mirror MFTF-B at Livermore in 1985. Accordingly, the basis is established for an aggressive engineering thrust to develop a reactor within this century. However, care must be taken to guide the fusion program towards an economically and environmentally viable goal. While the fusion fuels are essentially free, capital costs of reactors appear to be at least as large as current power plants. Accordingly, the price of electricity will not decline, and capital availability for reactor constructions will be important. Details of reactor cost projections are discussed and mechanisms suggested for fusion power implementation. Also discussed are some environmental and safety aspects of magnetic fusion.

  19. Magnet operating experience review for fusion applications

    SciTech Connect

    Cadwallader, L.C.

    1991-11-01

    This report presents a review of magnet operating experiences for normal-conducting and superconducting magnets from fusion, particle accelerator, medical technology, and magnetohydrodynamics research areas. Safety relevant magnet operating experiences are presented to provide feedback on field performance of existing designs and to point out the operational safety concerns. Quantitative estimates of magnet component failure rates and accident event frequencies are also presented, based on field experience and on performance of similar components in other industries.

  20. Magnetized Target Fusion in Advanced Propulsion Research

    NASA Technical Reports Server (NTRS)

    Cylar, Rashad

    2003-01-01

    The Magnetized Target Fusion (MTF) Propulsion lab at NASA Marshall Space Flight Center in Huntsville, Alabama has a program in place that has adopted to attempt to create a faster, lower cost and more reliable deep space transportation system. In this deep space travel the physics and development of high velocity plasma jets must be understood. The MTF Propulsion lab is also in attempt to open up the solar system for human exploration and commercial use. Fusion, as compared to fission, is just the opposite. Fusion involves the light atomic nuclei combination to produce denser nuclei. In the process, the energy is created by destroying the mass according to the distinguished equation: E = mc2 . Fusion energy development is being pursued worldwide as a very sustainable form of energy that is environmentally friendly. For the purposes of space exploration fusion reactions considered include the isotopes of hydrogen-deuterium (D2) and tritium (T3). Nuclei have an electrostatic repulsion between them and in order for the nuclei to fuse this repulsion must be overcome. One technique to bypass repulsion is to heat the nuclei to very high temperatures. The temperatures vary according to the type of reactions. For D-D reactions, one billion degrees Celsius is required, and for D-T reactions, one hundred million degrees is sufficient. There has to be energy input for useful output to be obtained form the fusion To make fusion propulsion practical, the mass, the volume, and the cost of the equipment to produce the reactions (generally called the reactor) need to be reduced by an order of magnitude or two from the state-of-the-art fusion machines. Innovations in fusion schemes are therefore required, especially for obtaining thrust for propulsive applications. Magnetized target fusion (MTF) is one of the innovative fusion concepts that have emerged over the last several years. MSFC is working with Los Alamos National Laboratory and other research groups in studying the

  1. Magnetized Target Fusion: Prospects for Low-Cost Fusion Energy

    NASA Technical Reports Server (NTRS)

    Siemon, Richard E.; Turchi, Peter J.; Barnes, Daniel C.; Degnan, James; Parks, Paul; Ryutov, Dmitri D.; Thio, Y. C. Francis; Schafer, Charles (Technical Monitor)

    2001-01-01

    Magnetized Target Fusion (MTF) has attracted renewed interest in recent years because it has the potential to resolve one of the major problems with conventional fusion energy research - the high cost of facilities to do experiments and in general develop practical fusion energy. The requirement for costly facilities can be traced to fundamental constraints. The Lawson condition implies large system size in the case of conventional magnetic confinement, or large heating power in the case of conventional inertial confinement. The MTF approach is to use much higher fuel density than with conventional magnetic confinement (corresponding to megabar pressures), which results in a much-reduced system size to achieve Lawson conditions. Intrinsically the system must be pulsed because the pressures exceed the strength of any known material. To facilitate heating the fuel (or "target") to thermonuclear conditions with a high-power high-intensity source of energy, magnetic fields are used to insulate the high-pressure fuel from material surroundings (thus "magnetized target"). Because of magnetic insulation, the required heating power intensity is reduced by many orders of magnitude compared to conventional inertial fusion, even with relatively poor energy confinement in the magnetic field, such as that characterized by Bohm diffusion. In this paper we show semi-quantitatively why MTF-should allow fusion energy production without costly facilities within the same generally accepted physical constraints used for conventional magnetic and inertial fusion. We also briefly discuss potential applications of this technology ranging from nuclear rockets for space propulsion to a practical commercial energy system. Finally, we report on the exploratory research underway, and the interesting physics issues that arise in the MTF regime of parameters. Experiments at Los Alamos are focused on formation of a suitable plasma target for compression, utilizing the knowledge base for compact

  2. Safety of magnetic fusion facilities: Guidance

    SciTech Connect

    1996-05-01

    This document provides guidance for the implementation of the requirements identified in DOE-STD-6002-96, Safety of Magnetic Fusion Facilities: Requirements. This guidance is intended for the managers, designers, operators, and other personnel with safety responsibilities for facilities designated as magnetic fusion facilities. While the requirements in DOE-STD-6002-96 are generally applicable to a wide range of fusion facilities, this Standard, DOE-STD-6003-96, is concerned mainly with the implementation of those requirements in large facilities such as the International Thermonuclear Experimental Reactor (ITER). Using a risk-based prioritization, the concepts presented here may also be applied to other magnetic fusion facilities. This Standard is oriented toward regulation in the Department of Energy (DOE) environment as opposed to regulation by other regulatory agencies. As the need for guidance involving other types of fusion facilities or other regulatory environments emerges, additional guidance volumes should be prepared. The concepts, processes, and recommendations set forth here are for guidance only. They will contribute to safety at magnetic fusion facilities.

  3. Magnetic mirror fusion: status and prospects

    SciTech Connect

    Post, R.F.

    1980-02-11

    Two improved mirror systems, the tandem mirror (TM) and the field-reversed mirror (FRM) are being intensively studied. The twin practical aims of these studies: to improve the economic prospects for mirror fusion power plants and to reduce the size and/or complexity of such plants relative to earlier approaches to magnetic fusion. While at the present time the program emphasis is still strongly oriented toward answering scientific questions, the emphasis is shifting as the data accumulates and as larger facilities - ones with a heavy technological and engineering orientation - are being prepared. The experimental and theoretical progress that led to the new look in mirror fusion research is briefly reviewed, the new TM and the FRM ideas are outlined, and the projected future course of mirror fusion research is discussed.

  4. Low-Convergence Magnetized Liner Inertial Fusion

    NASA Astrophysics Data System (ADS)

    Slutz, Stephen; Vesey, Roger; Sinars, Daniel; Sefkow, Adam

    2013-10-01

    Numerical simulations indicate that pulsed-power driven liner-implosions could produce substantial fusion yields if the deuterium-tritium (DT) fuel is first magnetized and preheated [S.A. Slutz et al., Phys. Plasmas 17, 056303 (2010)]. As with all inertial fusion, the implosions could be degraded by the Rayleigh-Taylor instability. Since highly convergent implosions are more susceptible to this instability, we have explored the necessary conditions to obtain significant fusion yield with low-convergence liner-implosions. Such low-convergence implosions can be obtained if the fuel is sufficiently preheated and magnetized. We present analytic and numerical studies of laser plasma heating, which indicate that low convergence implosions should be possible with sufficient laser energy. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contra.

  5. Generic Stellarator-like Magnetic Fusion Reactor

    NASA Astrophysics Data System (ADS)

    Sheffield, John; Spong, Donald

    2015-11-01

    The Generic Magnetic Fusion Reactor paper, published in 1985, has been updated, reflecting the improved science and technology base in the magnetic fusion program. Key changes beyond inflation are driven by important benchmark numbers for technologies and costs from ITER construction, and the use of a more conservative neutron wall flux and fluence in modern fusion reactor designs. In this paper the generic approach is applied to a catalyzed D-D stellarator-like reactor. It is shown that an interesting power plant might be possible if the following parameters could be achieved for a reference reactor: R/ < a > ~ 4 , confinement factor, fren = 0.9-1.15, < β > ~ 8 . 0 -11.5 %, Zeff ~ 1.45 plus a relativistic temperature correction, fraction of fast ions lost ~ 0.07, Bm ~ 14-16 T, and R ~ 18-24 m. J. Sheffield was supported under ORNL subcontract 4000088999 with the University of Tennessee.

  6. Alternative approaches to fusion. [reactor design and reactor physics for Tokamak fusion reactors

    NASA Technical Reports Server (NTRS)

    Roth, R. J.

    1976-01-01

    The limitations of the Tokamak fusion reactor concept are discussed and various other fusion reactor concepts are considered that employ the containment of thermonuclear plasmas by magnetic fields (i.e., stellarators). Progress made in the containment of plasmas in toroidal devices is reported. Reactor design concepts are illustrated. The possibility of using fusion reactors as a power source in interplanetary space travel and electric power plants is briefly examined.

  7. Alternative Approaches to High Energy Density Fusion

    NASA Astrophysics Data System (ADS)

    Hammer, J.

    2016-03-01

    This paper explores selected approaches to High Energy Density (HED) fusion, beginning with discussion of ignition requirements at the National Ignition Facility (NIF). The needed improvements to achieve ignition are closely tied to the ability to concentrate energy in the implosion, manifested in the stagnation pressure, Pstag . The energy that must be assembled in the imploded state to ignite varies roughly as Pstag -2, so among other requirements, there is a premium on reaching higher Pstag to achieve ignition with the available laser energy. The U.S. inertial confinement fusion program (ICF) is pursuing higher Pstag on NIF through improvements to capsule stability and symmetry. One can argue that recent experiments place an approximate upper bound on the ultimate ignition energy requirement. Scaling the implosions consistently in spatial, temporal and energy scales shows that implosions of the demonstrated quality ignite robustly at 9-15 times the current energy of NIF. While lasers are unlikely to reach that bounding energy, it appears that pulsed-power sources could plausibly do so, giving a range of paths forward for ICF depending on success in improving energy concentration. In this paper, I show the scaling arguments then discuss topics from my own involvement in HED fusion. The recent Viewfactor experiments at NIF have shed light on both the observed capsule drive deficit and errors in the detailed modelling of hohlraums. The latter could be important factors in the inability to achieve the needed symmetry and energy concentration. The paper then recounts earlier work in Fast Ignition and the uses of pulsed- power for HED and fusion applications. It concludes with a description of a method for improving pulsed-power driven hohlraums that could potentially provide a factor of 10 in energy at NIF-like drive conditions and reach the energy bound for indirect drive ICF.

  8. Thermomagnetic burn control for magnetic fusion reactor

    DOEpatents

    Rawls, J.M.; Peuron, A.U.

    1980-07-01

    Apparatus is provided for controlling the plasma energy production rate of a magnetic-confinement fusion reactor, by controlling the magnetic field ripple. The apparatus includes a group of shield sectors formed of ferromagnetic material which has a temperature-dependent saturation magnetization, with each shield lying between the plasma and a toroidal field coil. A mechanism for controlling the temperature of the magnetic shields, as by controlling the flow of cooling water therethrough, thereby controls the saturation magnetization of the shields and therefore the amount of ripple in the magnetic field that confines the plasma, to thereby control the amount of heat loss from the plasma. This heat loss in turn determines the plasma state and thus the rate of energy production.

  9. Thermomagnetic burn control for magnetic fusion reactor

    DOEpatents

    Rawls, John M.; Peuron, Unto A.

    1982-01-01

    Apparatus is provided for controlling the plasma energy production rate of a magnetic-confinement fusion reactor, by controlling the magnetic field ripple. The apparatus includes a group of shield sectors (30a, 30b, etc.) formed of ferromagnetic material which has a temperature-dependent saturation magnetization, with each shield lying between the plasma (12) and a toroidal field coil (18). A mechanism (60) for controlling the temperature of the magnetic shields, as by controlling the flow of cooling water therethrough, thereby controls the saturation magnetization of the shields and therefore the amount of ripple in the magnetic field that confines the plasma, to thereby control the amount of heat loss from the plasma. This heat loss in turn determines the plasma state and thus the rate of energy production.

  10. Fusion proteins as alternate crystallization paths to difficult structure problems

    NASA Technical Reports Server (NTRS)

    Carter, Daniel C.; Rueker, Florian; Ho, Joseph X.; Lim, Kap; Keeling, Kim; Gilliland, Gary; Ji, Xinhua

    1994-01-01

    The three-dimensional structure of a peptide fusion product with glutathione transferase from Schistosoma japonicum (SjGST) has been solved by crystallographic methods to 2.5 A resolution. Peptides or proteins can be fused to SjGST and expressed in a plasmid for rapid synthesis in Escherichia coli. Fusion proteins created by this commercial method can be purified rapidly by chromatography on immobilized glutathione. The potential utility of using SjGST fusion proteins as alternate paths to the crystallization and structure determination of proteins is demonstrated.

  11. Realizing Technologies for Magnetized Target Fusion

    SciTech Connect

    Wurden, Glen A.

    2012-08-24

    Researchers are making progress with a range of magneto-inertial fusion (MIF) concepts. All of these approaches use the addition of a magnetic field to a target plasma, and then compress the plasma to fusion conditions. The beauty of MIF is that driver power requirements are reduced, compared to classical inertial fusion approaches, and simultaneously the compression timescales can be longer, and required implosion velocities are slower. The presence of a sufficiently large Bfield expands the accessibility to ignition, even at lower values of the density-radius product, and can confine fusion alphas. A key constraint is that the lifetime of the MIF target plasma has to be matched to the timescale of the driver technology (whether liners, heavy ions, or lasers). To achieve sufficient burn-up fraction, scaling suggests that larger yields are more effective. To handle the larger yields (GJ level), thick liquid wall chambers are certainly desired (no plasma/neutron damage materials problem) and probably required. With larger yields, slower repetition rates ({approx}0.1-1 Hz) for this intrinsically pulsed approach to fusion are possible, which means that chamber clearing between pulses can be accomplished on timescales that are compatible with simple clearing techniques (flowing liquid droplet curtains). However, demonstration of the required reliable delivery of hundreds of MJ of energy, for millions of pulses per year, is an ongoing pulsed power technical challenge.

  12. Magnetized Target Fusion Integrated Engineering Test Shot

    NASA Astrophysics Data System (ADS)

    Intrator, T.; Sears, J.; Turchi, P. J.; Waganaar, W. J.; Weber, T.; Wurden, G. A.; Degnan, J. H.; Domonkos, M.; Grabowski, C.; Ruden, E. L.; White, W.; Gale, D.; Kostora, M.; Parker, J.; Frese, M. H.; Frese, S. D.; Camacho, J. F.; Coffey, S. K.; Makhin, V.; Siemon, R. E.; Fuelling, S.; Bauer, B. S.; Lynn, A. G.; Roderick, N. F.

    2010-11-01

    The LANL & AFRL collaboration has carried out the first engineering shakedown demonstration of a Magnetized Target Fusion (MTF) shot. We used a solid, cylinder aluminum flux compressor. The target plasma was created as a high density Field Reversed Configuration (FRC) with closed flux surfaces. After formation, the FRC was expelled to a compression region at 15km/sec. We show some initial data that characterize the target FRC, including some translation data from the Los Alamos FRC experiment FRXL and the FRCHX experiment at AFRL. Data from the implosion shot show that we achieved all our initial objectives. The solid liner realization of Magneto Inertial Fuson is only one of several magnetized, pulsed, fusion schemes that are being pursued.

  13. Electron cyclotron emission imaging and applications in magnetic fusion energy

    NASA Astrophysics Data System (ADS)

    Tobias, Benjamin John

    Energy production through the burning of fossil fuels is an unsustainable practice. Exponentially increasing energy consumption and dwindling natural resources ensure that coal and gas fueled power plants will someday be a thing of the past. However, even before fuel reserves are depleted, our planet may well succumb to disastrous side effects, namely the build up of carbon emissions in the environment triggering world-wide climate change and the countless industrial spills of pollutants that continue to this day. Many alternatives are currently being developed, but none has so much promise as fusion nuclear energy, the energy of the sun. The confinement of hot plasma at temperatures in excess of 100 million Kelvin by a carefully arranged magnetic field for the realization of a self-sustaining fusion power plant requires new technologies and improved understanding of fundamental physical phenomena. Imaging of electron cyclotron radiation lends insight into the spatial and temporal behavior of electron temperature fluctuations and instabilities, providing a powerful diagnostic for investigations into basic plasma physics and nuclear fusion reactor operation. This dissertation presents the design and implementation of a new generation of Electron Cyclotron Emission Imaging (ECEI) diagnostics on toroidal magnetic fusion confinement devices, or tokamaks, around the world. The underlying physics of cyclotron radiation in fusion plasmas is reviewed, and a thorough discussion of millimeter wave imaging techniques and heterodyne radiometry in ECEI follows. The imaging of turbulence and fluid flows has evolved over half a millennium since Leonardo da Vinci's first sketches of cascading water, and applications for ECEI in fusion research are broad ranging. Two areas of physical investigation are discussed in this dissertation: the identification of poloidal shearing in Alfven eigenmode structures predicted by hybrid gyrofluid-magnetohydrodynamic (gyrofluid-MHD) modeling, and

  14. Magnetic mirror fusion systems: Characteristics and distinctive features

    SciTech Connect

    Post, R.F.

    1987-08-10

    A tutorial account is given of the main characteristics and distinctive features of conceptual magnetic fusion systems employing the magnetic mirror principle. These features are related to the potential advantages that mirror-based fusion systems may exhibit for the generation of economic fusion power.

  15. Innovative insulation systems for superconducting fusion magnets

    NASA Astrophysics Data System (ADS)

    Humer, K.; Bittner-Rohrhofer, K.; Fillunger, H.; Maix, R. K.; Prokopec, R.; Weber, H. W.

    2006-03-01

    Glass fibre reinforced plastics (GFRPs) are usually employed as insulating materials for the superconducting coils of large fusion magnets, e.g. of the International Thermonuclear Experimental Reactor (ITER). Both the radiation spectrum and the stresses at the magnet location significantly influence the mechanical behaviour of the magnet insulation and, therefore, impose high demands on the material performance. During the last few decades, advanced epoxy based GFRPs with improved mechanical properties and radiation hardness were introduced into fusion technology. More recently, cyanate ester (CE) matrix systems have become of special interest. In this paper, various magnet insulation systems containing boron-free R-glass fibre reinforcements in commercial and new epoxies as well as in pure CE and CE/epoxy blended matrix systems are presented. All systems were irradiated in a fission reactor at ambient temperature (~340 K) to a fast neutron fluence of 1 × 1022 m-2 (E>0.1 MeV). The mechanical properties were assessed at 77 K in tension as well as in interlaminar shear prior to and after irradiation under static and dynamic conditions.

  16. Progress in magnetic fusion energy research

    NASA Astrophysics Data System (ADS)

    Thomassen, Keith I.

    1993-03-01

    Remarkable scientific progress has been made in the Magnetic Fusion Energy Program since its inception 40 years ago. A key energy confinement parameter reflecting that progress has been improved 10,000,000-fold in that time. A formalized international collaborative effort of design and development for a 1000-MW experimental reactor (ITER) has been entered into by the United States, Russia, Japan, and the European Community. In the United States, a national project to build a superconducting steady-state advanced tokamak (SSAT) to improve the reactor prospects of fusion is underway. (The device has been newly renamed the Tokamak Physics Experiment.) Despite this very encouraging progress, the outlook for fusion as an energy source remains unclear, with both economic and technological attractiveness yet to be determined. However, with only limited options for long-term energy supplies, and with environmental consequences yet to play a more dominant role in our choices, the world can ill afford not to develop the potential of fusion in the decades to come.

  17. Understanding and accepting fusion as an alternative energy source

    SciTech Connect

    Goerz, D.A.

    1987-12-10

    Fusion, the process that powers our sun, has long promised to be a virtually inexhaustible source of energy for mankind. No other alternative energy source holds such bright promise, and none has ever presentd such formidable scientific and engineering challenges. Serious research efforts have continued for over 30 years in an attempt to harness and control fusion here on earth. Scientists have made considerable progress in the last decade toward achieving the conditions required for fusion power, and recent experimental results and technological progress have made the scientific feasibility of fusion a virtual certainty. With this knowledge and confidence, the emphasis can now shift toward developing power plants that are practical and economical. Although the necessary technology is not in hand today, the extension to an energy producing system in 20 years is just as attainable as was putting a man on the moon. In the next few decades, the world's population will likely double while the demand for energy will nearly quadruple. Realistic projections show that within the next generation a significant fraction of our electric power must come from alternative energy sources. Increasing environmental concerns may further accelerate this timetable in which new energy sources must be introduced. The continued development of fusion systems to help meet the energy needs of the future will require greater public understanding and support of this technology. The fusion community must do more to make the public aware of the fact that energy is a critical international issue and that fusion is a viable and necessary energy technology that will be safe and economical. 12 refs., 8 figs.

  18. Improved Magnetic Fusion Energy Economics via Massive Resistive Electromagnets

    SciTech Connect

    Woolley, R.D.

    1998-08-19

    Abandoning superconductors for magnetic fusion reactors and instead using resistive magnet designs based on cheap copper or aluminum conductor material operating at "room temperature" (300 K) can reduce the capital cost per unit fusion power and simplify plant operations. By increasing unit size well beyond that of present magnetic fusion energy conceptual designs using superconducting electromagnets, the recirculating power fraction needed to operate resistive electromagnets can be made as close to zero as needed for economy without requiring superconductors. Other advantages of larger fusion plant size, such as very long inductively driven pulses, may also help reduce the cost per unit fusion power.

  19. Magnetized Target Fusion Collaboration. Final report

    SciTech Connect

    Slough, John

    2012-04-18

    Nuclear fusion has the potential to satisfy the prodigious power that the world will demand in the future, but it has yet to be harnessed as a practical energy source. The entry of fusion as a viable, competitive source of power has been stymied by the challenge of finding an economical way to provide for the confinement and heating of the plasma fuel. It is the contention here that a simpler path to fusion can be achieved by creating fusion conditions in a different regime at small scale (~ a few cm). One such program now under study, referred to as Magnetized Target Fusion (MTF), is directed at obtaining fusion in this high energy density regime by rapidly compressing a compact toroidal plasmoid commonly referred to as a Field Reversed Configuration (FRC). To make fusion practical at this smaller scale, an efficient method for compressing the FRC to fusion gain conditions is required. In one variant of MTF a conducting metal shell is imploded electrically. This radially compresses and heats the FRC plasmoid to fusion conditions. The closed magnetic field in the target plasmoid suppresses the thermal transport to the confining shell, thus lowering the imploding power needed to compress the target. The undertaking described in this report was to provide a suitable target FRC, as well as a simple and robust method for inserting and stopping the FRC within the imploding liner. The FRC must also survive during the time it takes for the metal liner to compress the FRC target. The initial work at the UW was focused on developing adequate preionization and flux trapping that were found to be essential in past experiments for obtaining the density, flux and most critically, FRC lifetime required for MTF. The timescale for testing and development of such a source can be rapidly accelerated by taking advantage of a new facility funded by the Department of Energy. At this facility, two inductive plasma accelerators (IPA) were constructed and tested. Recent experiments with

  20. Suppression of magnetic relaxation by a transverse alternating magnetic field

    SciTech Connect

    Voloshin, I. F.; Kalinov, A. V.; Fisher, L. M. Yampol'skii, V. A.

    2007-07-15

    The evolution of the spatial distribution of the magnetic induction in a superconductor after the action of the alternating magnetic field perpendicular to the trapped magnetic flux has been analyzed. The observed stabilization of the magnetic induction profile is attributed to the increase in the pinning force, so that the screening current density becomes subcritical. The last statement is corroborated by direct measurements.

  1. Magnetized Target Fusion Driven by Plasma Liners

    NASA Technical Reports Server (NTRS)

    Thio, Y. C. Francis; Eskridge, Richard; Smith, James; Lee, Michael; Richeson, Jeff; Schmidt, George; Knapp, Charles E.; Kirkpatrick, Ronald C.; Turchi, Peter J.; Rodgers, Stephen L. (Technical Monitor)

    2001-01-01

    Magnetized target fusion (MTF) attempts to combine the favorable attributes of magnetic confinement fusion (MCF) for energy confinement with the attributes of inertial confinement fusion (ICF) for efficient compression heating and wall-free containment of the fusing plasma. It uses a material liner to compress and contain a magnetized plasma. For practical applications, standoff drivers to deliver the imploding momentum flux to the target plasma remotely are required. Spherically converging plasma jets have been proposed as standoff drivers for this purpose. The concept involves the dynamic formation of a spherical plasma liner by the merging of plasma jets, and the use of the liner so formed to compress a spheromak or a field reversed configuration (FRC). For the successful implementation of the scheme, plasma jets of the requisite momentum flux density need to be produced. Their transport over sufficiently large distances (a few meters) needs to be assured. When they collide and merge into a liner, relative differences in velocity, density and temperature of the jets could give rise to instabilities in the development of the liner. Variation in the jet properties must be controlled to ensure that the growth rate of the instabilities are not significant over the time scale of the liner formation before engaging with the target plasma. On impact with the target plasma, some plasma interpenetration might occur between the liner and the target. The operating parameter space needs to be identified to ensure that a reasonably robust and conducting contact surface is formed between the liner and the target. A mismatch in the "impedance" between the liner and the target plasma could give rise to undesirable shock heating of the liner leading to increased entropy (thermal losses) in the liner. Any irregularities in the liner will accentuate the Rayleigh-Taylor instabilities during the compression of the target plasma by the liner.

  2. Microwave generation for magnetic fusion energy applications

    SciTech Connect

    Antonsen, T.M. Jr.; Destler, W.W.; Granatstein, V.L.; Levush, B.

    1992-01-01

    This progress report encompasses work on two separate projects, both related to developing sources for electron cyclotron resonance heating of magnetic fusion plasmas. The report is therefore divided into two parts as follows: Free electron laser with small period wigglers; and theory and modeling of high frequency, high power gryotron operation. Task A is experimental and eventually aims at developing continuously tunable, cw sources for ECRH with power per unit as high as 5 megawatts. Task B provides gryotron theory and modeling in support of the gryotron development programs at MIT and Varian.

  3. Thermochemical hydrogen production based on magnetic fusion

    SciTech Connect

    Krikorian, O.H.; Brown, L.C.

    1982-06-10

    Conceptual design studies have been carried out on an integrated fusion/chemical plant system using a Tandem Mirror Reactor fusion energy source to drive the General Atomic Sulfur-Iodine Water-Splitting Cycle and produce hydrogen as a future feedstock for synthetic fuels. Blanket design studies for the Tandem Mirror Reactor show that several design alternatives are available for providing heat at sufficiently high temperatures to drive the General Atomic Cycle. The concept of a Joule-boosted decomposer is introduced in one of the systems investigated to provide heat electrically for the highest temperature step in the cycle (the SO/sub 3/ decomposition step), and thus lower blanket design requirements and costs. Flowsheeting and conceptual process designs have been developed for a complete fusion-driven hydrogen plant, and the information has been used to develop a plot plan for the plant and to estimate hydrogen production costs. Both public and private utility financing approaches have been used to obtain hydrogen production costs of $12-14/GJ based on July 1980 dollars.

  4. Role of supercomputers in magnetic fusion and energy research programs

    SciTech Connect

    Killeen, J.

    1985-06-01

    The importance of computer modeling in magnetic fusion (MFE) and energy research (ER) programs is discussed. The need for the most advanced supercomputers is described, and the role of the National Magnetic Fusion Energy Computer Center in meeting these needs is explained.

  5. General principles of magnetic fusion confinement

    SciTech Connect

    Hogan, J.T.

    1980-01-01

    A few of the areas are described in which there is close interaction between atomic/molecular (A and M) and magnetic fusion physics. The comparisons between predictions of neoclassical transport theory and experiment depend on knowledge of ionization and recombination rate coefficients. Modeling of divertor/scrapeoff plasmas requires better low energy charge exchange cross sections for H + A/sup n+/ collisions. The range of validity of neutral beam trapping cross sections must be broadened, both to encompass the energies typical of present injection experiments and to deal with the problem of prompt trapping of highly excited beam atoms at high energy. Plasma fueling models present certain anomalies that could be resolved by calculation and measurement of low energy (<1 keV) charge exchange cross sections.

  6. Review of the magnetic fusion program by the 1986 ERAB Fusion Panel

    NASA Astrophysics Data System (ADS)

    Davidson, Ronald C.

    1987-09-01

    The 1986 ERAB Fusion Panel finds that fusion energy continues to be an attractive energy source with great potential for the future, and that the magnetic fusion program continues to make substantial technical progress. In addition, fusion research advances plasma physics, a sophisticated and useful branch of applied science, as well as technologies important to industry and defense. These factors fully justify the substantial expenditures by the Department of Energy in fusion research and development (R&D). The Panel endorses the overall program direction, strategy, and plans, and recognizes the importance and timeliness of proceeding with a burning plasma experiment, such as the proposed Compact Ignition Tokamak (CIT) experiment.

  7. The Path to Magnetic Fusion Energy

    SciTech Connect

    Prager, Stewart

    2011-05-04

    When the possibility of fusion as an energy source for electricity generation was realized in the 1950s, understanding of the plasma state was primitive. The fusion goal has been paced by, and has stimulated, the development of plasma physics. Our understanding of complex, nonlinear processes in plasmas is now mature. We can routinely produce and manipulate 100 million degree plasmas with remarkable finesse, and we can identify a path to commercial fusion power. The international experiment, ITER, will create a burning (self-sustained) plasma and produce 500 MW of thermal fusion power. This talk will summarize the progress in fusion research to date, and the remaining steps to fusion power.

  8. Magnetic-compression/magnetized-target fusion (MAGO/MTF): A marriage of inertial and magnetic confinement

    SciTech Connect

    Lindemuth, I.R.; Ekdahl, C.A.; Kirkpatrick, R.C.

    1996-12-31

    Intermediate between magnetic confinement (MFE) and inertial confinement (ICF) in time and density scales is an area of research now known in the US as magnetized target fusion (MTF) and in Russian as MAGO (MAGnitnoye Obzhatiye--magnetic compression). MAGO/MTF uses a magnetic field and preheated, wall-confined plasma fusion fuel within an implodable fusion target. The magnetic field suppresses thermal conduction losses in the fuel during the target implosion and hydrodynamic compression heating process. In contrast to direct, hydrodynamic compression of initially ambient-temperature fuel (i.e., ICF), MAGO/MTF involves two steps: (a) formation of a warm (e.g., 100 eV or higher), magnetized (e.g., 100 kG) plasma within a fusion target prior to implosion; (b) subsequent quasi-adiabatic compression by an imploding pusher, of which a magnetically driven imploding liner is one example. In this paper, the authors present ongoing activities and potential future activities in this relatively unexplored area of controlled thermonuclear fusion.

  9. REACT: Alternatives to Critical Materials in Magnets

    SciTech Connect

    2012-01-01

    REACT Project: The 14 projects that comprise ARPA-E’s REACT Project, short for “Rare Earth Alternatives in Critical Technologies”, are developing cost-effective alternatives to rare earths, the naturally occurring minerals with unique magnetic properties that are used in electric vehicle (EV) motors and wind generators. The REACT projects will identify low-cost and abundant replacement materials for rare earths while encouraging existing technologies to use them more efficiently. These alternatives would facilitate the widespread use of EVs and wind power, drastically reducing the amount of greenhouse gases released into the atmosphere.

  10. Preliminary analysis of patent trends for magnetic fusion technology

    SciTech Connect

    Levine, L.O.; Ashton, W.B.; Campbell, R.S.

    1984-02-01

    This study presents a preliminary analysis of development trends in magnetic fusion technology based on data from US patents. The research is limited to identification and description of general patent activity and ownership characteristics for 373 patents. The results suggest that more detailed studies of fusion patents could provide useful R and D planning information.

  11. Superconducting magnets for toroidal fusion reactors

    SciTech Connect

    Haubenreich, P.N.

    1980-01-01

    Fusion reactors will soon be employing superconducting magnets to confine plasma in which deuterium and tritium (D-T) are fused to produce usable energy. At present there is one small confinement experiment with superconducting toroidal field (TF) coils: Tokamak 7 (T-7), in the USSR, which operates at 4 T. By 1983, six different 2.5 x 3.5-m D-shaped coils from six manufacturers in four countries will be assembled in a toroidal array in the Large Coil Test Facility (LCTF) at Oak Ridge National Laboratory (ORNL) for testing at fields up to 8 T. Soon afterwards ELMO Bumpy Torus (EBT-P) will begin operation at Oak Ridge with superconducting TF coils. At the same time there will be tokamaks with superconducting TF coils 2 to 3 m in diameter in the USSR and France. Toroidal field strength in these machines will range from 6 to 9 T. NbTi and Nb/sub 3/Sn, bath cooling and forced flow, cryostable and metastable - various designs are being tried in this period when this new application of superconductivity is growing and maturing.

  12. Passive levitation in alternating magnetic fields

    DOEpatents

    Romero, Louis; Christenson, Todd; Aronson, Eugene A.

    2009-06-16

    Stable levitation of an object in an alternating magnetic field can be achieved by eliminating coupling between the rotational and translational forces acting on the object. Stable levitation can also be achieved by varying the coupling between the rotational and translational forces acting on the object, while maintaining one or more of the rotational and translational forces steady in time.

  13. Passive levitation in alternating magnetic fields

    DOEpatents

    Romero, Louis; Christenson, Todd; Aronson, Eugene A.

    2010-09-14

    Stable levitation of an object in an alternating magnetic field can be achieved by eliminating coupling between the rotational and translational forces acting on the object. Stable levitation can also be achieved by varying the coupling between the rotational and translational forces acting on the object, while maintaining one or more of the rotational and translational forces steady in time.

  14. Levitation of a magnet by an alternating magnetic field

    NASA Astrophysics Data System (ADS)

    Gough, W.; Hunt, M. O.; Summerskill, W. S. H.

    2013-01-01

    An experiment is described in which a small strong cylindrical magnet is levitated by a vertical non-uniform alternating magnetic field. Surprisingly, no superimposed constant field is necessary, but the levitation can be explained when the vertical motion of the magnet is taken into account. The theoretical mean levitation force is (0.26 ± 0.06) N, which is in good agreement with the levitated weight of (0.239 ± 0.001) N. This experiment is suitable for an undergraduate laboratory, particularly as a final year project. Students have found it interesting, and it sharpens up knowledge of basic magnetism.

  15. Soft X-ray measurements in magnetic fusion plasma physics

    NASA Astrophysics Data System (ADS)

    Botrugno, A.; Gabellieri, L.; Mazon, D.; Pacella, D.; Romano, A.

    2010-11-01

    Soft X-ray diagnostic systems and their successful application in the field of magnetic fusion plasma physics are discussed. Radiation with wavelength in the region of Soft X-Ray (1-30 keV) is largely produced by high temperature plasmas, carrying important information on many processes during a plasma discharge. Soft X-ray diagnostics are largely used in various fusion devices all over the world. These diagnostic systems are able to obtain information on electron temperature, electron density, impurity transport, Magneto Hydro Dynamic instabilities. We will discuss the SXR diagnostic installed on FTU in Frascati (Italy) and on Tore Supra in Cadarache (France), with special emphasis on diagnostic performances. Moreover, we will discuss the two different inversion methods for tomographic reconstruction used in Frascati and in Cadarache, the first one is relied on a guessed topology of iso-emissivity surfaces, the second one on regularization techniques, like minimum Fisher or maximum entropy. Finally, a new and very fast 2D imaging system with energy discrimination and high time resolution will be summarized as an alternative approach of SXR detection system.

  16. Diagnosing magnetized liner inertial fusion experiments on Za)

    NASA Astrophysics Data System (ADS)

    Hansen, S. B.; Gomez, M. R.; Sefkow, A. B.; Slutz, S. A.; Sinars, D. B.; Hahn, K. D.; Harding, E. C.; Knapp, P. F.; Schmit, P. F.; Awe, T. J.; McBride, R. D.; Jennings, C. A.; Geissel, M.; Harvey-Thompson, A. J.; Peterson, K. J.; Rovang, D. C.; Chandler, G. A.; Cooper, G. W.; Cuneo, M. E.; Herrmann, M. C.; Hess, M. H.; Johns, O.; Lamppa, D. C.; Martin, M. R.; Porter, J. L.; Robertson, G. K.; Rochau, G. A.; Ruiz, C. L.; Savage, M. E.; Smith, I. C.; Stygar, W. A.; Vesey, R. A.; Blue, B. E.; Ryutov, D.; Schroen, D. G.; Tomlinson, K.

    2015-05-01

    Magnetized Liner Inertial Fusion experiments performed at Sandia's Z facility have demonstrated significant thermonuclear fusion neutron yields (˜1012 DD neutrons) from multi-keV deuterium plasmas inertially confined by slow (˜10 cm/μs), stable, cylindrical implosions. Effective magnetic confinement of charged fusion reactants and products is signaled by high secondary DT neutron yields above 1010. Analysis of extensive power, imaging, and spectroscopic x-ray measurements provides a detailed picture of ˜3 keV temperatures, 0.3 g/cm3 densities, gradients, and mix in the fuel and liner over the 1-2 ns stagnation duration.

  17. Diagnosing magnetized liner inertial fusion experiments on Z

    SciTech Connect

    Hansen, S. B. Gomez, M. R.; Sefkow, A. B.; Slutz, S. A.; Sinars, D. B.; Hahn, K. D.; Harding, E. C.; Knapp, P. F.; Schmit, P. F.; Awe, T. J.; McBride, R. D.; Jennings, C. A.; Geissel, M.; Harvey-Thompson, A. J.; Peterson, K. J.; Rovang, D. C.; Chandler, G. A.; Cooper, G. W.; Cuneo, M. E.; Hess, M. H.; and others

    2015-05-15

    Magnetized Liner Inertial Fusion experiments performed at Sandia's Z facility have demonstrated significant thermonuclear fusion neutron yields (∼10{sup 12} DD neutrons) from multi-keV deuterium plasmas inertially confined by slow (∼10 cm/μs), stable, cylindrical implosions. Effective magnetic confinement of charged fusion reactants and products is signaled by high secondary DT neutron yields above 10{sup 10}. Analysis of extensive power, imaging, and spectroscopic x-ray measurements provides a detailed picture of ∼3 keV temperatures, 0.3 g/cm{sup 3} densities, gradients, and mix in the fuel and liner over the 1–2 ns stagnation duration.

  18. Safety of magnetic fusion facilities: Volume 2, Guidance

    SciTech Connect

    1995-07-01

    This document provides guidance for the implementation of the requirements identified in Vol. 1 of this Standard. This guidance is intended for the managers, designers, operators, and other personnel with safety responsibilities for facilities designated as magnetic fusion facilities. While Vol. 1 is generally applicable in that requirements there apply to a wide range of fusion facilities, this volume is concerned mainly with large facilities such as the International Thermonuclear Experimental Reactor (ITER). Using a risk-based prioritization, the concepts presented here may also be applied to other magnetic fusion facilities. This volume is oriented toward regulation in the Department of Energy (DOE) environment.

  19. Diagnosing magnetized liner inertial fusion experiments on Z

    SciTech Connect

    Hansen, Stephanie B.; Gomez, Matthew R.; Sefkow, Adam B.; Slutz, Stephen A.; Sinars, Daniel Brian; Hahn, Kelly; Harding, Eric; Knapp, Patrick; Schmit, Paul; Awe, Thomas James; McBride, Ryan D.; Jennings, Christopher; Geissel, Matthias; Harvey-Thompson, Adam James; Peterson, K. J.; Rovang, Dean C.; Chandler, Gordon A.; Cooper, Gary Wayne; Cuneo, Michael Edward; Herrmann, Mark C.; Mark Harry Hess; Johns, Owen; Lamppa, Derek C.; Martin, Matthew; Porter, J. L.; Robertson, G. K.; Rochau, G. A.; Ruiz, C. L.; Savage, M. E.; Smith, I. C.; Stygar, W. A.; Vesey, R. A.; Blue, B. E.; Ryutov, D.; Schroen, Diana; Tomlinson, K.

    2015-05-14

    The Magnetized Liner Inertial Fusion experiments performed at Sandia's Z facility have demonstrated significant thermonuclear fusion neutron yields (~1012 DD neutrons) from multi-keV deuterium plasmasinertially confined by slow (~10 cm/μs), stable, cylindrical implosions. Moreover, effective magnetic confinement of charged fusion reactants and products is signaled by high secondary DT neutron yields above 1010. Further analysis of extensive power, imaging, and spectroscopicx-ray measurements provides a detailed picture of ~3 keV temperatures, 0.3 g/cm3 densities, gradients, and mix in the fuel and liner over the 1–2 ns stagnation duration.

  20. Diagnosing magnetized liner inertial fusion experiments on Z

    DOE PAGESBeta

    Hansen, Stephanie B.; Gomez, Matthew R.; Sefkow, Adam B.; Slutz, Stephen A.; Sinars, Daniel Brian; Hahn, Kelly; Harding, Eric; Knapp, Patrick; Schmit, Paul; Awe, Thomas James; et al

    2015-05-14

    The Magnetized Liner Inertial Fusion experiments performed at Sandia's Z facility have demonstrated significant thermonuclear fusion neutron yields (~1012 DD neutrons) from multi-keV deuterium plasmasinertially confined by slow (~10 cm/μs), stable, cylindrical implosions. Moreover, effective magnetic confinement of charged fusion reactants and products is signaled by high secondary DT neutron yields above 1010. Further analysis of extensive power, imaging, and spectroscopicx-ray measurements provides a detailed picture of ~3 keV temperatures, 0.3 g/cm3 densities, gradients, and mix in the fuel and liner over the 1–2 ns stagnation duration.

  1. Alternating current driven instability in magnetic junctions.

    PubMed

    Epshtein, E M; Zilberman, P E

    2009-04-01

    An effect is considered of alternating (high-frequency) current on the spin-valve-type magnetic junction configuration. The stability with respect to small fluctuations is investigated in the macrospin approximation. When the current frequency is close to the eigenfrequency (precession frequency) of the free layer, parametric resonance occurs. Both collinear configurations, antiparallel and parallel, can become unstable under resonance conditions. The antiparallel configuration can also become unstable under non-resonant conditions. The threshold current density amplitude is of the order of the dc current density for switching of the magnetic junction. PMID:21825350

  2. Fusion yield enhancement in magnetized laser-driven implosions.

    PubMed

    Chang, P Y; Fiksel, G; Hohenberger, M; Knauer, J P; Betti, R; Marshall, F J; Meyerhofer, D D; Séguin, F H; Petrasso, R D

    2011-07-15

    Enhancement of the ion temperature and fusion yield has been observed in magnetized laser-driven inertial confinement fusion implosions on the OMEGA Laser Facility. A spherical CH target with a 10 atm D2 gas fill was imploded in a polar-drive configuration. A magnetic field of 80 kG was embedded in the target and was subsequently trapped and compressed by the imploding conductive plasma. As a result of the hot-spot magnetization, the electron radial heat losses were suppressed and the observed ion temperature and neutron yield were enhanced by 15% and 30%, respectively. PMID:21838372

  3. Fusion Yield Enhancement in Magnetized Laser-Driven Implosions

    NASA Astrophysics Data System (ADS)

    Chang, P. Y.; Fiksel, G.; Hohenberger, M.; Knauer, J. P.; Betti, R.; Marshall, F. J.; Meyerhofer, D. D.; Séguin, F. H.; Petrasso, R. D.

    2011-07-01

    Enhancement of the ion temperature and fusion yield has been observed in magnetized laser-driven inertial confinement fusion implosions on the OMEGA Laser Facility. A spherical CH target with a 10 atm D2 gas fill was imploded in a polar-drive configuration. A magnetic field of 80 kG was embedded in the target and was subsequently trapped and compressed by the imploding conductive plasma. As a result of the hot-spot magnetization, the electron radial heat losses were suppressed and the observed ion temperature and neutron yield were enhanced by 15% and 30%, respectively.

  4. Engineering of the Magnetized Target Fusion Propulsion System

    NASA Technical Reports Server (NTRS)

    Statham, G.; White, S.; Adams, R. B.; Thio, Y. C. F.; Santarius, J.; Alexander, R.; Chapman, J.; Fincher, S.; Philips, A.; Polsgrove, T.

    2003-01-01

    Engineering details are presented for a magnetized target fusion (MTF) propulsion system designed to support crewed missions to the outer solar system. Basic operation of an MTF propulsion system is introduced. Structural, thermal, radiation-management and electrical design details are presented. The propellant storage and supply system design is also presented. A propulsion system mass estimate and associated performance figures are given. The advantages of helium-3 as a fusion fuel for an advanced MTF system are discussed.

  5. Computational problems in magnetic fusion research

    SciTech Connect

    Killeen, J.

    1981-08-31

    Numerical calculations have had an important role in fusion research since its beginning, but the application of computers to plasma physics has advanced rapidly in the last few years. One reason for this is the increasing sophistication of the mathematical models of plasma behavior, and another is the increased speed and memory of the computers which made it reasonable to consider numerical simulation of fusion devices. The behavior of a plasma is simulated by a variety of numerical models. Some models used for short times give detailed knowledge of the plasma on a microscopic scale, while other models used for much longer times compute macroscopic properties of the plasma dynamics. The computer models used in fusion research are surveyed. One of the most active areas of research is in time-dependent, three-dimensional, resistive magnetohydrodynamic models. These codes are reviewed briefly.

  6. Evolution towards Economically Viable Magnetic Fusion Reactors

    NASA Astrophysics Data System (ADS)

    Furth, H. P.

    1996-11-01

    Large pedestrian dinosaurs have long been extinct, while flying dinosaurs have evolved from the archaeopteryx to the common sparrow. Removal of superfluous constraints was the key. In order for soi-disant intelligent life to have emerged on Earth, fusion-power emission from our Sun must have been kept sufficiently feeble and slow-changing (c.f., Bethe's Carbon-Cycle) so as to allow time for non-trivial evolution. By contrast, any economically viable fusion-reactor scheme must use some fast-burning fuel (e.g. D-D,D-T,etc.), so as to elude the economic constraints of excessive single-unit size and cost. The quest for livelier fusion fuel tends to motivate various departures from a strictly thermalized ``Maxwellian'' reactor-plasma distribution. Illustrative material will include specific options for applying the joint resources of the international ``Three-Large-Tokamak Collaboration''.

  7. Progress In Magnetized Target Fusion Driven by Plasma Liners

    NASA Technical Reports Server (NTRS)

    Thio, Francis Y. C.; Kirkpatrick, Ronald C.; Knapp, Charles E.; Cassibry, Jason; Eskridge, Richard; Lee, Michael; Smith, James; Martin, Adam; Wu, S. T.; Schmidt, George; Rodgers, Stephen L. (Technical Monitor)

    2001-01-01

    Magnetized target fusion (MTF) attempts to combine the favorable attributes of magnetic confinement fusion (MCF) for energy confinement with the attributes of inertial confinement fusion (ICF) for efficient compression heating and wall-free containment of the fusing plasma. It uses a material liner to compress and contain a magnetized plasma. For practical applications, standoff drivers to deliver the imploding momentum flux to the target plasma remotely are required. Spherically converging plasma jets have been proposed as standoff drivers for this purpose. The concept involves the dynamic formation of a spherical plasma liner by the merging of plasma jets, and the use of the liner so formed to compress a spheromak or a field reversed configuration (FRC).

  8. The Magnetic Dipole as an Attractive Fusion Reactor

    NASA Astrophysics Data System (ADS)

    Dawson, John M.

    1997-11-01

    Stability for low β plasma confined by closed B field lines is PV^γ = C_0, P = pressure, V = flux tube volume, γ is c_p/cv = 5/3. Kesner(J. Kesner, Innovative Confinement Concepts Workshop, Mar. 3-6, 1997) proposed a levitated current ring with the plasma stabilized by this condition as an alternate fusion reactor. Such a reactor has many attractive features; at radii large compared to the ring radius, V goes like r^4; the stability condition is Pr^20/3 = C_1. If nr^4 = C_2, then interchanges keep the density constant. The temperature can drop according to Tr^8/3 = C_3. If the chamber is ten times the ring radius, the density can drop from 10^14 near the ring to 10^10 at the edge and the temperature can drop from 50 keV near the ring to 100 eV at the edge. This plasma should present no problems for a divertor. Reacting plasma near the ring will heat it, upsetting the stability relation and cause convection to carry burnt plasma out; it will cool as it expands. At the same time the convection will bring in fresh fuel from the outside which will be compressed and heated to ignition. A super conducting ring design that can float in reacting D-He^3 for 16 hours exists(J.M. Dawson, FUSION, edited by Edward Teller, Vol. 1, Magnetic Confinement, Part, Ch. 16, Academic Press, 1981).

  9. Overview of the US Magnetic Fusion Energy Program

    SciTech Connect

    Wiffen, F.W. ); Dowling, R.J.; Marton, W.A.; Eckstrand, S.A. . Office of Fusion Energy)

    1990-01-01

    Since the 1988 Symposium on Fusion Technology, steady progress has been made in the US Magnetic Fusion Energy Program. The large US tokamaks have reached new levels of plasma performance with associated improvements in the understanding of transport. The technology support for ongoing and future devices is similarly advancing with notable advances in magnetic, rf heating tubes, pellet injector, plasma interactive materials, tritium handling, structural materials, and system studies. Currently, a high level DOE review of the program is underway to provide recommendations for a strategic plan.

  10. Magneto-inertial Fusion: An Emerging Concept for Inertial Fusion and Dense Plasmas in Ultrahigh Magnetic Fields

    SciTech Connect

    Thio, Francis Y.C.

    2008-01-01

    An overview of the U.S. program in magneto-inertial fusion (MIF) is given in terms of its technical rationale, scientific goals, vision, research plans, needs, and the research facilities currently available in support of the program. Magneto-inertial fusion is an emerging concept for inertial fusion and a pathway to the study of dense plasmas in ultrahigh magnetic fields (magnetic fields in excess of 500 T). The presence of magnetic field in an inertial fusion target suppresses cross-field thermal transport and potentially could enable more attractive inertial fusion energy systems. A vigorous program in magnetized high energy density laboratory plasmas (HED-LP) addressing the scientific basis of magneto-inertial fusion has been initiated by the Office of Fusion Energy Sciences of the U.S. Department of Energy involving a number of universities, government laboratories and private institutions.

  11. Magnet design considerations for Fusion Nuclear Science Facility

    DOE PAGESBeta

    Zhai, Yuhu; Kessel, Chuck; El-guebaly, Laila; Titus, Peter

    2016-02-25

    The Fusion Nuclear Science Facility (FNSF) is a nuclear confinement facility to provide a fusion environment with components of the reactor integrated together to bridge the technical gaps of burning plasma and nuclear science between ITER and the demonstration power plant (DEMO). Compared to ITER, the FNSF is smaller in size but generates much higher magnetic field, 30 times higher neutron fluence with 3 orders of magnitude longer plasma operation at higher operating temperatures for structures surrounding the plasma. Input parameters to the magnet design from system code analysis include magnetic field of 7.5 T at the plasma center withmore » plasma major radius of 4.8 m and minor radius of 1.2 m, and a peak field of 15.5 T on the TF coils for FNSF. Both low temperature superconductor (LTS) and high temperature superconductor (HTS) are considered for the FNSF magnet design based on the state-of-the-art fusion magnet technology. The higher magnetic field can be achieved by using the high performance ternary Restack Rod Process (RRP) Nb3Sn strands for toroidal field (TF) magnets. The circular cable-in-conduit conductor (CICC) design similar to ITER magnets and a high aspect ratio rectangular CICC design are evaluated for FNSF magnets but low activation jacket materials may need to be selected. The conductor design concept and TF coil winding pack composition and dimension based on the horizontal maintenance schemes are discussed. Neutron radiation limits for the LTS and HTS superconductors and electrical insulation materials are also reviewed based on the available materials previously tested. As a result, the material radiation limits for FNSF magnets are defined as part of the conceptual design studies for FNSF magnets.« less

  12. Superconducting (radiation hardened) magnets for mirror fusion devices

    SciTech Connect

    Henning, C.D.; Dalder, E.N.C.; Miller, J.R.; Perkins, J.R.

    1983-12-07

    Superconducting magnets for mirror fusion have evolved considerably since the Baseball II magnet in 1970. Recently, the Mirror Fusion Test Facility (MFTF-B) yin-yang has been tested to a full field of 7.7 T with radial dimensions representative of a full scale reactor. Now the emphasis has turned to the manufacture of very high field solenoids (choke coils) that are placed between the tandem mirror central cell and the yin-yang anchor-plug set. For MFTF-B the choke coil field reaches 12 T, while in future devices like the MFTF-Upgrade, Fusion Power Demonstration and Mirror Advanced Reactor Study (MARS) reactor the fields are doubled. Besides developing high fields, the magnets must be radiation hardened. Otherwise, thick neutron shields increase the magnet size to an unacceptable weight and cost. Neutron fluences in superconducting magnets must be increased by an order of magnitude or more. Insulators must withstand 10/sup 10/ to 10/sup 11/ rads, while magnet stability must be retained after the copper has been exposed to fluence above 10/sup 19/ neutrons/cm/sup 2/.

  13. Engineering of the Magnetized Target Fusion Propulsion System

    NASA Technical Reports Server (NTRS)

    Statham, G.; White, S.; Adams, R. B.; Thio, Y. C. F.; Santarius, J.; Alexander, R.; Fincher, S.; Polsgrove, T.; Chapman, J.; Philips, A.

    2002-01-01

    Engineering details are presented for a magnetized target fusion (MTF) propulsion system designed to support crewed missions to the outer solar system. Structural, thermal and radiation-management design details are presented. Propellant storage and supply options are also discussed and a propulsion system mass estimate is given.

  14. Alternative fusion concepts and the prospects for improved reactors

    NASA Astrophysics Data System (ADS)

    Krakowski, R. A.

    1985-05-01

    Past trends, present status, and future directions in the search for an improved fusion reactor are reviewed, and promising options available to both the principle tokamak and other supporting concept are summarized.

  15. Nonlinear Laser-Plasma Interaction in Magnetized Liner Inertial Fusion

    DOE PAGESBeta

    Geissel, Matthias; Awe, Thomas James; Bliss, David E.; Campbell, Edward Michael; Gomez, Matthew R.; Harding, Eric; Harvey-Thompson, Adam James; Hansen, Stephanie B.; Jennings, Christopher Ashley; Kimmel, Mark W.; et al

    2016-03-04

    Sandia National Laboratories is pursuing a variation of Magneto-Inertial Fusion called Magnetized Liner Inertial Fusion, or MagLIF. The MagLIF approach requires magnetization of the deuterium fuel, which is accomplished by an initial external B-Field and laser-driven pre-heat. Although magnetization is crucial to the concept, it is challenging to couple sufficient energy to the fuel, since laser-plasma instabilities exist, and a compromise between laser spot size, laser entrance window thickness, and fuel density must be found. Ultimately, nonlinear processes in laser plasma interaction, or laser-plasma instabilities (LPI), complicate the deposition of laser energy by enhanced absorption, backscatter, filamentation and beam-spray. Wemore » determine and discuss key LPI processes and mitigation methods. Results with and without improvement measures are presented.« less

  16. Nonlinear laser-plasma interaction in magnetized liner inertial fusion

    NASA Astrophysics Data System (ADS)

    Geissel, Matthias; Awe, T. J.; Bliss, D. E.; Campbell, M. E.; Gomez, M. R.; Harding, E.; Harvey-Thompson, A. J.; Hansen, S. B.; Jennings, C.; Kimmel, M. W.; Knapp, P.; Lewis, S. M.; McBride, R. D.; Peterson, K.; Schollmeier, M.; Scoglietti, D. J.; Sefkow, A. B.; Shores, J. E.; Sinars, D. B.; Slutz, S. A.; Smith, I. C.; Speas, C. S.; Vesey, R. A.; Porter, J. L.

    2016-03-01

    Sandia National Laboratories is pursuing a variation of Magneto-Inertial Fusion called Magnetized Liner Inertial Fusion, or MagLIF. The MagLIF approach requires magnetization of the deuterium fuel, which is accomplished by an initial external B-Field and laser-driven pre-heat. While magnetization is crucial to the concept, it is challenging to couple sufficient energy to the fuel, since laser-plasma instabilities exist, and a compromise between laser spot size, laser entrance window thickness, and fuel density must be found. Nonlinear processes in laser plasma interaction, or laser-plasma instabilities (LPI), complicate the deposition of laser energy by enhanced absorption, backscatter, filamentation and beam-spray. Key LPI processes are determined, and mitigation methods are discussed. Results with and without improvement measures are presented.

  17. Open-ended magnetic confinement systems for fusion

    SciTech Connect

    Post, R.F.; Ryutov, D.D.

    1995-05-01

    Magnetic confinement systems that use externally generated magnetic fields can be divided topologically into two classes: ``closed`` and `open``. The tokamak, the stellarator, and the reversed-field-pinch approaches are representatives of the first category, while mirror-based systems and their variants are of the second category. While the recent thrust of magnetic fusion research, with its emphasis on the tokamak, has been concentrated on closed geometry, there are significant reasons for the continued pursuit of research into open-ended systems. The paper discusses these reasons, reviews the history and the present status of open-ended systems, and suggests some future directions for the research.

  18. Characteristics of a magnetic fluid under an orthogonal alternating magnetic field

    NASA Astrophysics Data System (ADS)

    Zhao, M.; Hu, J. H.; Zou, J. B.; Zhao, B.; Li, Y.

    2016-07-01

    Nonlinearity is a primary characteristic of a magnetic fluid. Under an orthogonal alternating magnetic field, the magnetization characteristics change, which produce a variable magnetic field in the magnetic fluid region. A mathematical model of a magnetic fluid under an orthogonal alternating magnetic field is here proposed. The model is solved by an analytic method, and the validity of the solution is verified using the finite element method in addition to experimental results. It is shown that the frequency of the magnetic field in a magnetic fluid is twice that of the orthogonal alternating magnetic field.

  19. FIRE, A Next Step Option for Magnetic Fusion

    SciTech Connect

    Meade, D.M.

    2002-09-12

    The next major frontier in magnetic fusion physics is to explore and understand the strong nonlinear coupling among confinement, MHD stability, self-heating, edge physics, and wave-particle interactions that is fundamental to fusion plasma behavior. The Fusion Ignition Research Experiment (FIRE) Design Study has been undertaken to define the lowest cost facility to attain, explore, understand, and optimize magnetically confined fusion-dominated plasmas. The FIRE is envisioned as an extension of the existing Advanced Tokamak Program that could lead to an attractive magnetic fusion reactor. The FIRE activities have focused on the physics and engineering assessment of a compact, high-field tokamak with the capability of achieving Q approximately equal to 10 in the ELMy H-mode for a duration of about 1.5 plasma current redistribution times (skin times) during an initial burning-plasma science phase, and the flexibility to add Advanced Tokamak hardware (e.g., lower-hybrid current drive) later. The configuration chosen for FIRE is similar to that of ARIES-RS, the U.S. Fusion Power Plant study utilizing an Advanced Tokamak reactor. The key ''Advanced Tokamak'' features are: strong plasma shaping, double-null pumping divertors, low toroidal field ripple (<0.3%), internal control coils, and space for wall stabilization capabilities. The reference design point is R subscript ''o'' = 2.14 m, a = 0.595 m, B subscript ''t''(R subscript ''o'') = 10 T, I subscript ''p'' = 7.7 MA with a flattop time of 20 s for 150 MW of fusion power. The baseline magnetic fields and pulse lengths can be provided by wedged BeCu/OFHC toroidal-field (TF) coils and OFHC poloidal-field (PF) coils that are pre-cooled to 80 K prior to the pulse and allowed to warm up to 373 K at the end of the pulse. A longer-term goal of FIRE is to explore Advanced Tokamak regimes sustained by noninductive current drive (e.g., lower-hybrid current drive) at high fusion gain (Q > 5) for a duration of 1 to 3 current

  20. Personnel Safety for Future Magnetic Fusion Power Plants

    SciTech Connect

    Lee Cadwallader

    2009-07-01

    The safety of personnel at existing fusion experiments is an important concern that requires diligence. Looking to the future, fusion experiments will continue to increase in power and operating time until steady state power plants are achieved; this causes increased concern for personnel safety. This paper addresses four important aspects of personnel safety in the present and extrapolates these aspects to future power plants. The four aspects are personnel exposure to ionizing radiation, chemicals, magnetic fields, and radiofrequency (RF) energy. Ionizing radiation safety is treated well for present and near-term experiments by the use of proven techniques from other nuclear endeavors. There is documentation that suggests decreasing the annual ionizing radiation exposure limits that have remained constant for several decades. Many chemicals are used in fusion research, for parts cleaning, as use as coolants, cooling water cleanliness control, lubrication, and other needs. In present fusion experiments, a typical chemical laboratory safety program, such as those instituted in most industrialized countries, is effective in protecting personnel from chemical exposures. As fusion facilities grow in complexity, the chemical safety program must transition from a laboratory scale to an industrial scale program that addresses chemical use in larger quantity. It is also noted that allowable chemical exposure concentrations for workers have decreased over time and, in some cases, now pose more stringent exposure limits than those for ionizing radiation. Allowable chemical exposure concentrations have been the fastest changing occupational exposure values in the last thirty years. The trend of more restrictive chemical exposure regulations is expected to continue into the future. Other issues of safety importance are magnetic field exposure and RF energy exposure. Magnetic field exposure limits are consensus values adopted as best practices for worker safety; a typical

  1. Sidewall containment of liquid metal with vertical alternating magnetic fields

    DOEpatents

    Lari, R.J.; Praeg, W.F.; Turner, L.R.; Battles, J.E.; Hull, J.R.; Rote, D.M.

    1988-06-17

    An apparatus for containing molten metal using a magnet producing vertical alternating magnetic field positioned adjacent to the area in which the molten metal is to be confined. This invention can be adapted particularly to the casting of metal between counter-rotating rollers with the vertical alternating magnetic field used to confine the molten metal at the edges of the rollers. Alternately, the vertical alternating magnetic field can be used as a flow regulator in casting molten metal from an opening in a channel. 8 figs.

  2. Sidewall containment of liquid metal with vertical alternating magnetic fields

    DOEpatents

    Lari, R.J.; Praeg, W.F.; Turner, L.R.; Battles, J.E.; Hull, J.R.; Rote, D.M.

    1990-12-04

    An apparatus is disclosed for containing molten metal using a magnet producing vertical alternating magnetic field positioned adjacent the area in which the molten metal is to be confined. This invention can be adapted particularly to the casting of metal between counter-rotating rollers with the vertical alternating magnetic field used to confine the molten metal at the edges of the rollers. Alternately, the vertical alternating magnetic field can be used as a flow regulator in casting molten metal from an opening in a channel. 9 figs.

  3. Sidewall containment of liquid metal with vertical alternating magnetic fields

    DOEpatents

    Lari, Robert J.; Praeg, Walter F.; Turner, Larry R.; Battles, James E.; Hull, John R.; Rote, Donald M.

    1990-01-01

    An apparatus for containing molten metal using a magnet producing vertical alternating magnetic field positioned adjacent the area in which the molten metal is to be confined. This invention can be adapted particularly to the casting of metal between counter-rotating rollers with the vertical alternating magnetic field used to confine the molten metal at the edges of the rollers. Alternately, the vertical alternating magnetic field can be used as a flow regulator in casting molten metal from an opening in a channel.

  4. The ignition design space of magnetized target fusion

    NASA Astrophysics Data System (ADS)

    Lindemuth, Irvin R.

    2015-12-01

    The simple magnetized target implosion model of Lindemuth and Kirkpatrick [Nucl. Fusion 23, 263 (1983)] has been extended to survey the potential parameter space in which three types of magnetized targets—cylindrical with axial magnetic field, cylindrical with azimuthal magnetic field, and spherical with azimuthal magnetic field—might achieve ignition and produce large gain at achievable radial convergence ratios. The model has been used to compute the dynamic, time-dependent behavior of many initial parameter sets that have been based upon projected ignition conditions using the quasi-adiabatic and quasi-flux-conserving properties of magnetized target implosions. The time-dependent calculations have shown that energy gains greater than 30 can potentially be achieved for each type of target. By example, it is shown that high gain may be obtained at extremely low convergence ratios, e.g., less than 15, for appropriate initial conditions. It is also shown that reaching the ignition condition, i.e., when fusion deposition rates equal total loss rates, does not necessarily lead to high gain and high fuel burn-up. At the lower densities whereby fusion temperatures can be reached in magnetized targets, the fusion burn rate may be only comparable with the hydrodynamic heating/cooling rates. On the other hand, when the fusion burn rates significantly exceed the hydrodynamic rates, the calculations show a characteristic rapid increase in temperature due to alpha particle deposition with a subsequent increased burn rate and high gain. A major result of this paper is that each type of target operates in a different initial density-energy-velocity range. The results of this paper provide initial target plasma parameters and driver parameters that can be used to guide plasma formation and driver development for magnetized targets. The results indicate that plasmas for spherical, cylindrical with azimuthal field, and cylindrical with axial field targets must have an initial

  5. The ignition design space of magnetized target fusion

    SciTech Connect

    Lindemuth, Irvin R.

    2015-12-15

    The simple magnetized target implosion model of Lindemuth and Kirkpatrick [Nucl. Fusion 23, 263 (1983)] has been extended to survey the potential parameter space in which three types of magnetized targets—cylindrical with axial magnetic field, cylindrical with azimuthal magnetic field, and spherical with azimuthal magnetic field—might achieve ignition and produce large gain at achievable radial convergence ratios. The model has been used to compute the dynamic, time-dependent behavior of many initial parameter sets that have been based upon projected ignition conditions using the quasi-adiabatic and quasi-flux-conserving properties of magnetized target implosions. The time-dependent calculations have shown that energy gains greater than 30 can potentially be achieved for each type of target. By example, it is shown that high gain may be obtained at extremely low convergence ratios, e.g., less than 15, for appropriate initial conditions. It is also shown that reaching the ignition condition, i.e., when fusion deposition rates equal total loss rates, does not necessarily lead to high gain and high fuel burn-up. At the lower densities whereby fusion temperatures can be reached in magnetized targets, the fusion burn rate may be only comparable with the hydrodynamic heating/cooling rates. On the other hand, when the fusion burn rates significantly exceed the hydrodynamic rates, the calculations show a characteristic rapid increase in temperature due to alpha particle deposition with a subsequent increased burn rate and high gain. A major result of this paper is that each type of target operates in a different initial density-energy-velocity range. The results of this paper provide initial target plasma parameters and driver parameters that can be used to guide plasma formation and driver development for magnetized targets. The results indicate that plasmas for spherical, cylindrical with azimuthal field, and cylindrical with axial field targets must have an initial

  6. Impact of target modifications on Magnetized Liner Inertial Fusion performance

    NASA Astrophysics Data System (ADS)

    Gomez, Matthew; Knapp, Patrick; Sefkow, Adam; Slutz, Stephen; Awe, Thomas; Hansen, Stephanie; Hahn, Kelly; Harding, Eric; Jennings, Christopher; McBride, Ryan; Sinars, Daniel; Rochau, Gregory; Peterson, Kyle

    2015-11-01

    Magnetized Liner Inertial Fusion (MagLIF) is a magnetically-driven fusion concept in which an axial magnetic field and laser heating are used to relax the implosion requirements of inertial confinement fusion. Initial experiments demonstrated the promise of the concept with relatively high yields (primary DD = 2e12), ion temperatures (2.5 keV), and magnetic field-radius products (>0.3 MG-cm). In order to better understand the portions of parameter space in which MagLIF can operate effectively, a series of experiments are being conducted to test the impact of various changes (e.g., laser-entrance-hole window thickness, imploding height of the target, endcap material, laser energy, laser spot size, initial fuel density). The impact of these changes on target performance (primary neutron yield, ion temperature, stagnation volume, etc.) will be discussed. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000.

  7. Tritium projectiles for fueling magnetic fusion plasmas

    SciTech Connect

    Fisher, P.W.; Gouge, M.J.

    1995-12-31

    As part of the International Thermonuclear Engineering Reactor (ITER) plasma fueling development program, Oak Ridge National Laboratory (ORNL) has fabricated a pellet (cylindrical projectile of frozen hydrogenic gas at a temperature in the range 6--16 K) injection system to test the mechanical and thermal properties of extruded tritium, a radioactive isotope of hydrogen. This repeating, single-stage, pneumatic injector, called the Tritium-Proof-of-Principle Phase 2 (TPOP-2) Pellet Injector, has a piston-driven mechanical extruder and is designed to extrude and accelerate hydrogenic pellets sized for the ITER device. The TPOP-2 program has the following development goals: evaluate the feasibility of extruding tritium and deuterium-tritium (D-T) mixtures for use in future pellet injection systems; determine the mechanical and thermal properties of tritium and D-T extrusions; integrate, test, and evaluate the extruder in a repeating, single-stage light gas gun that is sized for the ITER application (pellet diameter {approximately} 7 to 8 mm); evaluate options for recycling propellant and extruder exhaust gas; evaluate operability and reliability of ITER prototypical fueling systems in an environment of significant tritium inventory that requires secondary and room containment systems. In initial tests with deuterium feed at ORNL, up to 13 pellets have been extruded at rates up to 1 Hz and accelerated to speeds of 1.0 to 1.1 km/s, using hydrogen propellant gas at a supply pressure of 65 bar. The pellets, typically 7.4 mm in diameter and up to 11 mm in length, are the largest cryogenic pellets produced by the fusion program to date. These pellets represent about a 11% density perturbation to ITER. Hydrogenic pellets will be used in ITER to sustain the fusion power in the plasma core and may be crucial in reducing first-wall tritium inventories by a process called isotopic fueling in which tritium-rich pellets fuel the burning plasma core and deuterium gas fuels the edge.

  8. Organic insulators and the copper stabilizer for fusion-reactor magnets

    SciTech Connect

    Coltman, R.R. Jr.

    1981-11-01

    The materials which compose the large composite superconducting fusion reactor magnets are subjected to mechanical stress, neutron and gamma-ray radiation with broad energy spectra, high magnetic fields, and thermal cycling from 4 to 300 K. Of the materials now considered for use in the magnets, results show that the organic insulators and the Cu stabilizer are the most sensitive to this environment. In response to the need for stabilizer data, magnetoresistivity changes were studied in eight variously prepared specimens of Cu throughout five cycles of an alternate neutron irradiation (4.0 K) and annealing (14 h at 307 K) program. The results were combined with those on the radiation behavior of epoxy and polyimide organic insulators to provide a preliminary assessment of their comparative radiation resistance in a typical magnet location of the Experimental Power Reactor (EPR).

  9. Overview of NASA Magnet and Linear Alternator Research Efforts

    NASA Technical Reports Server (NTRS)

    Geng, Steven M.; Niedra, Janis M.; Schwarze, Gene E.

    2005-01-01

    The Department of Energy, Lockheed Martin, Stirling Technology Company, and NASA Glenn Research Center are developing a high-efficiency, 110 watt Stirling Radioisotope Generator (SRG110) for NASA Space Science missions. NASA Glenn is conducting in-house research on rare earth permanent magnets and on linear alternators to assist in developing a free-piston Stirling convertor for the SRG110 and for developing advanced technology. The permanent magnet research efforts include magnet characterization, short-term magnet aging tests, and long-term magnet aging tests. Linear alternator research efforts have begun just recently at GRC with the characterization of a moving iron type linear alternator using GRC's alternator test rig. This paper reports on the progress and future plans of GRC's magnet and linear alternator research efforts.

  10. Overview of NASA Magnet and Linear Alternator Research Efforts

    NASA Astrophysics Data System (ADS)

    Geng, Steven M.; Niedra, Janis M.; Schwarze, Gene E.

    2005-02-01

    The Department of Energy, Lockheed Martin, Stirling Technology Company, and NASA Glenn Research Center are developing a high-efficiency, 110 watt Stirling Radioisotope Generator (SRG110) for NASA Space Science missions. NASA Glenn is conducting in-house research on rare earth permanent magnets and on linear alternators to assist in developing a free-piston Stirling convertor for the SRG110 and for developing advanced technology. The permanent magnet research efforts include magnet characterization, short-term magnet aging tests, and long-term magnet aging tests. Linear alternator research efforts have begun just recently at GRC with the characterization of a moving iron type linear alternator using GRC's alternator test rig. This paper reports on the progress and future plans of GRC's magnet and linear alternator research efforts.

  11. High magnetic field induced otolith fusion in the zebrafish larvae.

    PubMed

    Pais-Roldán, Patricia; Singh, Ajeet Pratap; Schulz, Hildegard; Yu, Xin

    2016-01-01

    Magnetoreception in animals illustrates the interaction of biological systems with the geomagnetic field (geoMF). However, there are few studies that identified the impact of high magnetic field (MF) exposure from Magnetic Resonance Imaging (MRI) scanners (>100,000 times of geoMF) on specific biological targets. Here, we investigated the effects of a 14 Tesla MRI scanner on zebrafish larvae. All zebrafish larvae aligned parallel to the B0 field, i.e. the static MF, in the MRI scanner. The two otoliths (ear stones) in the otic vesicles of zebrafish larvae older than 24 hours post fertilization (hpf) fused together after the high MF exposure as short as 2 hours, yielding a single-otolith phenotype with aberrant swimming behavior. The otolith fusion was blocked in zebrafish larvae under anesthesia or embedded in agarose. Hair cells may play an important role on the MF-induced otolith fusion. This work provided direct evidence to show that high MF interacts with the otic vesicle of zebrafish larvae and causes otolith fusion in an "all-or-none" manner. The MF-induced otolith fusion may facilitate the searching for MF sensors using genetically amenable vertebrate animal models, such as zebrafish. PMID:27063288

  12. High magnetic field induced otolith fusion in the zebrafish larvae

    PubMed Central

    Pais-Roldán, Patricia; Singh, Ajeet Pratap; Schulz, Hildegard; Yu, Xin

    2016-01-01

    Magnetoreception in animals illustrates the interaction of biological systems with the geomagnetic field (geoMF). However, there are few studies that identified the impact of high magnetic field (MF) exposure from Magnetic Resonance Imaging (MRI) scanners (>100,000 times of geoMF) on specific biological targets. Here, we investigated the effects of a 14 Tesla MRI scanner on zebrafish larvae. All zebrafish larvae aligned parallel to the B0 field, i.e. the static MF, in the MRI scanner. The two otoliths (ear stones) in the otic vesicles of zebrafish larvae older than 24 hours post fertilization (hpf) fused together after the high MF exposure as short as 2 hours, yielding a single-otolith phenotype with aberrant swimming behavior. The otolith fusion was blocked in zebrafish larvae under anesthesia or embedded in agarose. Hair cells may play an important role on the MF-induced otolith fusion. This work provided direct evidence to show that high MF interacts with the otic vesicle of zebrafish larvae and causes otolith fusion in an “all-or-none” manner. The MF-induced otolith fusion may facilitate the searching for MF sensors using genetically amenable vertebrate animal models, such as zebrafish. PMID:27063288

  13. Measurements of fusion neutrons from Magnetized Liner Inertial Fusion Experiments on the Z accelerator

    NASA Astrophysics Data System (ADS)

    Hahn, K. D.; Chandler, G. A.; Ruiz, C. L.; Gomez, M. R.; Slutz, S. A.; Sefkow, A. B.; Sinars, D. B.; Hansen, S. B.; Knapp, P. F.; Schmit, P. F.; Harding, E. C.; Awe, T. J.; Torres, J. A.; Jones, B.; Bur, J. A.; Cooper, G. W.; Styron, J. D.; Glebov, V. Yu.

    2015-11-01

    Strong evidence of thermonuclear neutron production has been observed during Magnetized Liner Inertial Fusion (MagLIF) experiments on the Z accelerator. So far, these experiments have utilized deuterium fuel and produced primary DD fusion neutron yields up to 2e12 with electron and ion stagnation temperatures in the 2-3 keV range. We present MagLIF neutron measurements and compare to other data and implosion simulations. In addition to primary DD and secondary DT yields and ion temperatures, other complex physics regarding the degree of fuel magnetization and liner density are elucidated by the neutron measurements. Neutron diagnostic development for deuterium and future deuterium-tritium fuel experiments are also discussed. Sandia is sponsored by the U.S. DOE's NNSA under contract DE-AC04-94AL85000.

  14. The theory of the failure of magnetic fusion

    NASA Astrophysics Data System (ADS)

    Zakharov, Leonid E.

    2007-11-01

    In the physics of the 20th century, fusion represents an extraordinary failure which eroded expectations of society on an ``unexhaustible'' energy source. The question is if these 50 years of research did really prove that fusion will be forever a ``carrot'' on a stick and always 35 years from its implementation. When a person is asking fusion people why this program is full of broken promises, he (besides conventional complaints on the lack of funding) is typically getting the answer that the problem itself is the most difficult one that physics ever faced. In the FSU, such characterizations were done as early as in the 60s by Lev Artsimovich, the leader in the field. This view is only partially applicable in the 21st century. Since the times of Artsimovich, fusion, as a ``difficult'' problem, has been converted into the ``complicated'' one. The presented theory makes a clear distinction between these two kinds of problems, which require significantly different management approaches, and explains the current stagnation in magnetic fusion by the lack of understanding this crucial difference.

  15. Image fusion for dynamic contrast enhanced magnetic resonance imaging

    PubMed Central

    Twellmann, Thorsten; Saalbach, Axel; Gerstung, Olaf; Leach, Martin O; Nattkemper, Tim W

    2004-01-01

    Background Multivariate imaging techniques such as dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) have been shown to provide valuable information for medical diagnosis. Even though these techniques provide new information, integrating and evaluating the much wider range of information is a challenging task for the human observer. This task may be assisted with the use of image fusion algorithms. Methods In this paper, image fusion based on Kernel Principal Component Analysis (KPCA) is proposed for the first time. It is demonstrated that a priori knowledge about the data domain can be easily incorporated into the parametrisation of the KPCA, leading to task-oriented visualisations of the multivariate data. The results of the fusion process are compared with those of the well-known and established standard linear Principal Component Analysis (PCA) by means of temporal sequences of 3D MRI volumes from six patients who took part in a breast cancer screening study. Results The PCA and KPCA algorithms are able to integrate information from a sequence of MRI volumes into informative gray value or colour images. By incorporating a priori knowledge, the fusion process can be automated and optimised in order to visualise suspicious lesions with high contrast to normal tissue. Conclusion Our machine learning based image fusion approach maps the full signal space of a temporal DCE-MRI sequence to a single meaningful visualisation with good tissue/lesion contrast and thus supports the radiologist during manual image evaluation. PMID:15494072

  16. Progress and Future Directions in Confined Magnetic Fusion Simulation

    NASA Astrophysics Data System (ADS)

    Chan, V. S.

    2004-05-01

    The complexity of fusion plasmas makes the goal of integrated predictive simulation for optimization of fusion systems extremely challenging. Sophisticated computational models are under development for individual features of magnetically confined plasmas, enabled by increased scientific understanding and improvements in computer technology. Simulation codes, particle- and continuum-based, are being developed to elucidate the ability of fusion devices to contain mass, heat and momentum. Rigorous benchmarking among different codes has resulted in increased confidence in the predictive capability. Advances made in extended MHD simulations of actual experiments have led to deeper understanding of the nonlinear evolution of MHD instabilities that set the pressure limit of fusion devices. Simulation of the plasma edge, which controls the overall fusion performance, is especially difficult due to the wide range of spatial and temporal scales involved, as well as the need for a physics model that accurately describes collisionless and collisional plasma. We highlight encouraging progress in plasma microturbulence and extended MHD and a new challenge in simulation of the plasma edge.

  17. Magnetized Target Fusion Propulsion: Plasma Injectors for MTF Guns

    NASA Technical Reports Server (NTRS)

    Griffin, Steven T.

    2003-01-01

    To achieve increased payload size and decreased trip time for interplanetary travel, a low mass, high specific impulse, high thrust propulsion system is required. This suggests the need for research into fusion as a source of power and high temperature plasma. The plasma would be deflected by magnetic fields to provide thrust. Magnetized Target Fusion (MTF) research consists of several related investigations into these topics. These include the orientation and timing of the plasma guns and the convergence and interface development of the "pusher" plasma. Computer simulations of the gun as it relates to plasma initiation and repeatability are under investigation. One of the items under development is the plasma injector. This is a surface breakdown driven plasma generator designed to function at very low pressures. The performance, operating conditions and limitations of these injectors need to be determined.

  18. Failure modes and effects analysis of fusion magnet systems

    SciTech Connect

    Zimmermann, M; Kazimi, M S; Siu, N O; Thome, R J

    1988-12-01

    A failure modes and consequence analysis of fusion magnet system is an important contributor towards enhancing the design by improving the reliability and reducing the risk associated with the operation of magnet systems. In the first part of this study, a failure mode analysis of a superconducting magnet system is performed. Building on the functional breakdown and the fault tree analysis of the Toroidal Field (TF) coils of the Next European Torus (NET), several subsystem levels are added and an overview of potential sources of failures in a magnet system is provided. The failure analysis is extended to the Poloidal Field (PF) magnet system. Furthermore, an extensive analysis of interactions within the fusion device caused by the operation of the PF magnets is presented in the form of an Interaction Matrix. A number of these interactions may have significant consequences for the TF magnet system particularly interactions triggered by electrical failures in the PF magnet system. In the second part of this study, two basic categories of electrical failures in the PF magnet system are examined: short circuits between the terminals of external PF coils, and faults with a constant voltage applied at external PF coil terminals. An electromagnetic model of the Compact Ignition Tokamak (CIT) is used to examine the mechanical load conditions for the PF and the TF coils resulting from these fault scenarios. It is found that shorts do not pose large threats to the PF coils. Also, the type of plasma disruption has little impact on the net forces on the PF and the TF coils. 39 refs., 30 figs., 12 tabs.

  19. Spectral Line Shapes as a Diagnostic Tool in Magnetic Fusion

    SciTech Connect

    Stamm, R; Capes, H; Demura, A; Godbert-Mouret, L; Koubiti, M; Marandet, Y; Mattioli, M; Rosato, J; Rosmej, F; Fournier, K B

    2006-07-22

    Spectral line shapes and intensities are used for obtaining information on the various regions of magnetic fusion devices. Emission from low principal quantum numbers of hydrogen isotopes is analyzed for understanding the complex recycling mechanism. Lines emitted from high principal quantum numbers of hydrogen and helium are dominated by Stark effect, allowing an electronic density diagnostic in the divertor. Intensities of lines emitted by impurities are fitted for a better knowledge of ion transport in the confined plasma.

  20. Neutral-beam systems for magnetic-fusion reactors

    SciTech Connect

    Fink, J. H.

    1981-08-10

    Neutral beams for magnetic fusion reactors are at an early stage of development, and require considerable effort to make them into the large, reliable, and efficient systems needed for future power plants. To optimize their performance to establish specific goals for component development, systematic analysis of the beamlines is essential. Three ion source characteristics are discussed: arc-cathode life, gas efficiency, and beam divergence, and their significance in a high-energy neutral-beam system is evaluated.

  1. A Magnetic Diagnostic Code for 3D Fusion Equilibria

    SciTech Connect

    Samuel Aaron Lazerson

    2012-07-27

    A synthetic magnetic diagnostics code for fusion equilibria is presented. This code calculates the response of various magnetic diagnostics to the equilibria produced by the VMEC and PIES codes. This allows for treatment of equilibria with both good nested flux surfaces and those with stochastic regions. DIAGNO v2.0 builds upon previous codes through the implementation of a virtual casing principle. The codes is validated against a vacuum shot on the Large Helical Device where the vertical field was ramped. As an exercise of the code, the diagnostic response for various equilibria are calculated on the Large Helical Device (LHD).

  2. A Magnetic Diagnostic Code for 3D Fusion Equilibria

    SciTech Connect

    Samuel A. Lazerson, S. Sakakibara and Y. Suzuki

    2013-03-12

    A synthetic magnetic diagnostics code for fusion equilibria is presented. This code calculates the response of various magnetic diagnostics to the equilibria produced by the VMEC and PIES codes. This allows for treatment of equilibria with both good nested flux surfaces and those with stochastic regions. DIAGNO v2.0 builds upon previous codes through the implementation of a virtual casing principle. The code is validated against a vacuum shot on the Large Helical Device (LHD) where the vertical field was ramped. As an exercise of the code, the diagnostic response for various equilibria are calculated on the LHD.

  3. Progress with developing a target for magnetized target fusion

    SciTech Connect

    Wysocki, F.J.; Chrien, R.E.; Idzorek, G.; Oona, H.; Whiteson, D.O.; Kirkpatrick, R.C.; Lindemuth, I.R.; Sheehey, P.T.

    1997-09-01

    Magnetized Target Fusion (MTF) is an approach to fusion where a preheated and magnetized plasma is adiabatically compressed to fusion conditions. Successful MTF requires a suitable initial target plasma with an embedded magnetic field of at least 5 T in a closed-field-line topology, a density of roughly 10{sup 18} cm{sup {minus}3}, a temperature of at least 50 eV, and must be free of impurities which would raise radiation losses. Target plasma generation experiments are underway at Los Alamos National Laboratory using the Colt facility; a 0.25 MJ, 2--3 {micro}s rise-time capacitor bank. The goal of these experiments is to demonstrate plasma conditions meeting the minimum requirements for a MTF initial target plasma. In the first experiments, a Z-pinch is produced in a 2 cm radius by 2 cm high conducting wall using a static gas-fill of hydrogen or deuterium gas in the range of 0.5 to 2 torr. Thus far, the diagnostics include an array of 12 B-dot probes, framing camera, gated OMA visible spectrometer, time-resolved monochrometer, filtered silicon photodiodes, neutron yield, and plasma-density interferometer. These diagnostics show that a plasma is produced in the containment region that lasts roughly 10 to 20 {micro}s with a maximum plasma density exceeding 10{sup 18} cm{sup {minus}3}. The experimental design and data are presented.

  4. High-Energy Space Propulsion Based on Magnetized Target Fusion

    NASA Technical Reports Server (NTRS)

    Thio, Y. C. F.; Landrum, D. B.; Freeze, B.; Kirkpatrick, R. C.; Gerrish, H.; Schmidt, G. R.

    1999-01-01

    Magnetized target fusion is an approach in which a magnetized target plasma is compressed inertially by an imploding material wall. A high energy plasma liner may be used to produce the required implosion. The plasma liner is formed by the merging of a number of high momentum plasma jets converging towards the center of a sphere where two compact toroids have been introduced. Preliminary 3-D hydrodynamics modeling results using the SPHINX code of Los Alamos National Laboratory have been very encouraging and confirm earlier theoretical expectations. The concept appears ready for experimental exploration and plans for doing so are being pursued. In this talk, we explore conceptually how this innovative fusion approach could be packaged for space propulsion for interplanetary travel. We discuss the generally generic components of a baseline propulsion concept including the fusion engine, high velocity plasma accelerators, generators of compact toroids using conical theta pinches, magnetic nozzle, neutron absorption blanket, tritium reprocessing system, shock absorber, magnetohydrodynamic generator, capacitor pulsed power system, thermal management system, and micrometeorite shields.

  5. High-Energy Space Propulsion Based on Magnetized Target Fusion

    NASA Technical Reports Server (NTRS)

    Thio, Y. C. F.; Freeze, B.; Kirkpatrick, R. C.; Landrum, B.; Gerrish, H.; Schmidt, G. R.

    1999-01-01

    A conceptual study is made to explore the feasibility of applying magnetized target fusion (MTF) to space propulsion for omniplanetary travel. Plasma-jet driven MTF not only is highly amenable to space propulsion, but also has a number of very attractive features for this application: 1) The pulsed fusion scheme provides in situ a very dense hydrogenous liner capable of moderating the neutrons, converting more than 97% of the neutron energy into charged particle energy of the fusion plasma available for propulsion. 2) The fusion yield per pulse can be maintained at an attractively low level (< 1 GJ) despite a respectable gain in excess of 70. A compact, low-weight engine is the result. An engine with a jet power of 25 GW, a thrust of 66 kN, and a specific impulse of 77,000 s, can be achieved with an overall engine mass of about 41 metric tons, with a specific power density of 605 kW/kg, and a specific thrust density of 1.6 N/kg. The engine is rep-rated at 40 Hz to provide this power and thrust level. At a practical rep-rate limit of 200 Hz, the engine can deliver 128 GW jet power and 340 kN of thrust, at specific power and thrust density of 1,141 kW/kg and 3 N/kg respectively. 3) It is possible to operate the magnetic nozzle as a magnetic flux compression generator in this scheme, while attaining a high nozzle efficiency of 80% in converting the spherically radial momentum of the fusion plasma to an axial impulse. 4) A small fraction of the electrical energy generated from the flux compression is used directly to recharge the capacitor bank and other energy storage equipment, without the use of a highvoltage DC power supply. A separate electrical generator is not necessary. 5) Due to the simplicity of the electrical circuit and the components, involving mainly inductors, capacitors, and plasma guns, which are connected directly to each other without any intermediate equipment, a high rep-rate (with a maximum of 200 Hz) appears practicable. 6) All fusion related

  6. A semi-analytic model of magnetized liner inertial fusion

    SciTech Connect

    McBride, Ryan D.; Slutz, Stephen A.

    2015-05-15

    Presented is a semi-analytic model of magnetized liner inertial fusion (MagLIF). This model accounts for several key aspects of MagLIF, including: (1) preheat of the fuel (optionally via laser absorption); (2) pulsed-power-driven liner implosion; (3) liner compressibility with an analytic equation of state, artificial viscosity, internal magnetic pressure, and ohmic heating; (4) adiabatic compression and heating of the fuel; (5) radiative losses and fuel opacity; (6) magnetic flux compression with Nernst thermoelectric losses; (7) magnetized electron and ion thermal conduction losses; (8) end losses; (9) enhanced losses due to prescribed dopant concentrations and contaminant mix; (10) deuterium-deuterium and deuterium-tritium primary fusion reactions for arbitrary deuterium to tritium fuel ratios; and (11) magnetized α-particle fuel heating. We show that this simplified model, with its transparent and accessible physics, can be used to reproduce the general 1D behavior presented throughout the original MagLIF paper [S. A. Slutz et al., Phys. Plasmas 17, 056303 (2010)]. We also discuss some important physics insights gained as a result of developing this model, such as the dependence of radiative loss rates on the radial fraction of the fuel that is preheated.

  7. Heavy-ion fusion final focus magnet shielding designs

    SciTech Connect

    Latkowski, J F; Meier, W R

    2000-10-11

    At the Thirteenth International Symposium on Heavy Ion Inertial Fusion (HIF Symposium), we presented magnet shielding calculations for 72-, 128, 200, and 288-beam versions of the HYLIFE-II power plant design. In all cases, we found the radiation-limited lifetimes of the last set of final focusing magnets to be unacceptably short. Since that time, we have completed follow-on calculations to improve the lifetime of the 72-beam case. Using a self-consistent final focusing model, we vary parameters such as the shielding thicknesses and compositions, focusing length, angle-of-attack to the target, and the geometric representation of the flibe pocket, chamber, and blanket. By combining many of these shielding features, we are able to demonstrate a magnet shielding design that would enable the last set of final focusing magnets to survive for the lifetime of the power plant.

  8. Lithium As Plasma Facing Component for Magnetic Fusion Research

    SciTech Connect

    Masayuki Ono

    2012-09-10

    The use of lithium in magnetic fusion confinement experiments started in the 1990's in order to improve tokamak plasma performance as a low-recycling plasma-facing component (PFC). Lithium is the lightest alkali metal and it is highly chemically reactive with relevant ion species in fusion plasmas including hydrogen, deuterium, tritium, carbon, and oxygen. Because of the reactive properties, lithium can provide strong pumping for those ions. It was indeed a spectacular success in TFTR where a very small amount (~ 0.02 gram) of lithium coating of the PFCs resulted in the fusion power output to improve by nearly a factor of two. The plasma confinement also improved by a factor of two. This success was attributed to the reduced recycling of cold gas surrounding the fusion plasma due to highly reactive lithium on the wall. The plasma confinement and performance improvements have since been confirmed in a large number of fusion devices with various magnetic configurations including CDX-U/LTX (US), CPD (Japan), HT-7 (China), EAST (China), FTU (Italy), NSTX (US), T-10, T-11M (Russia), TJ-II (Spain), and RFX (Italy). Additionally, lithium was shown to broaden the plasma pressure profile in NSTX, which is advantageous in achieving high performance H-mode operation for tokamak reactors. It is also noted that even with significant applications (up to 1,000 grams in NSTX) of lithium on PFCs, very little contamination (< 0.1%) of lithium fraction in main fusion plasma core was observed even during high confinement modes. The lithium therefore appears to be a highly desirable material to be used as a plasma PFC material from the magnetic fusion plasma performance and operational point of view. An exciting development in recent years is the growing realization of lithium as a potential solution to solve the exceptionally challenging need to handle the fusion reactor divertor heat flux, which could reach 60 MW/m2 . By placing the liquid lithium (LL) surface in the path of the main

  9. High temperature superconducting current leads for fusion magnet systems

    NASA Astrophysics Data System (ADS)

    Wu, J. L.; Dederer, J. T.; Singh, S. K.; Hull, J. R.

    Superconducting magnets for fusion applications typically have very high operating currents. These currents are transmitted from the room temperature power supplies to the low temperature superconducting coils by way of helium-vapor-cooled current leads. Because of the high current magnitude and the resistive characteristics associated with the normal metallic lead conductors, a substantial amount of power is dissipated in the lead. To maintain a stable operation, a high rate of helium vapor flow, generated by the boil-off of liquid helium, is required to cool the lead conductors. This helium boil-off substantially increases both the installation capacity and the operating cost of the helium refrigerator/liquefier. The boil-off of liquid helium can be significantly reduced by employing ceramic high temperature superconductors, such as Y-Ba-Cu-O, in the low temperature part of the lead conductor structure. This concept utilizes the superconducting, as well as the low thermal conductivity properties of the superconductor materials in eliminating power dissipation in part of the current lead and in inhibiting heat conduction into the liquid helium pool, resulting in reduced helium boil-off. This design concept has been conclusively demonstrated by a 2-kA current lead test model using Y-Ba-Cu-O (123) material which, although not optimized in design, has significantly reduced the rate of helium boil-off in comparison to optimized conventional leads. There appear to be no major technological barriers for scaling up this design to higher current levels for applications in fusion magnet systems or in fusion related testing activities. The theoretical basis of the current lead concept, as well as the important design and technology issues are addressed. The potential cost saving derived from employing these leads in fusion magnets is also discussed. In addition, a design concept for a 10-kA lead is presented.

  10. Magnetized Target Fusion and Prospects for Truly Low-Cost Energy

    NASA Astrophysics Data System (ADS)

    Simon, Richard E.

    1998-04-01

    As the world population grows, and standards of living improve, the demand for energy will increase considerably. At the same time, the importance of shifting away from burning fossil fuel and reducing emissions of CO2 is becoming widely recognized. Many technologies are possible in principle, but nuclear fission or nuclear fusion are among the more promising. Fission is technically well established, continues to be improved in its economics, reliability and safety, and in this speaker's opinion is bound to play a major role. Fusion is generally viewed as a long shot that remains to be proven technically. Not everyone realizes that fusion tokamak devices studied around the world have demonstrated impressive scientific advances. In recent years, tokamaks TFTR at Princeton and JET at Culham have come close to demonstrating energy break even. Some recent tokamak data will be described. The main problem with the tokamak is that it must operate with a very large unit size (many Gigawatts) for well-understood fundamental reasons. Consequently, tokamak cost of development is high, even invoking international collaborations to build future facilities such as the proposed 10-billion dollar International Thermonuclear Tokamak Reactor. An exciting alternative approach to fusion being examined at Los Alamos in collaboration with LLNL, SNL, AFRL, GA, PPPL, and other institutions is called Magnetized Target Fusion. The basic idea is to burn a small amount of DT fuel in a short very-high-pressure pulse. The 14-MeV neutrons produced by the fusion reactions could then be used to flash heat a blanket of lithium or lithium-containing material to a temperature of 10,000 to 20,000 degrees Kelvin. The vaporized neutron-absorbing blanket thus becomes a hot working fluid, which can be used to create electricity by passing it through a magnetohydrodynamic generator. Estimates of the capital cost for such a system are even lower than for fission reactors, suggesting 2-cent

  11. Applications of high-speed dust injection to magnetic fusion

    SciTech Connect

    Wang, Zhehui; Li, Yangfang

    2012-08-08

    It is now an established fact that a significant amount of dust is produced in magnetic fusion devices due to plasma-wall interactions. Dust inventory must be controlled, in particular for the next-generation steady-state fusion machines like ITER, as it can pose significant safety hazards and degrade performance. Safety concerns are due to tritium retention, dust radioactivity, toxicity, and flammability. Performance concerns include high-Z impurities carried by dust to the fusion core that can reduce plasma temperature and may even induce sudden termination of the plasma. We have recognized that dust transport, dust-plasma interactions in magnetic fusion devices can be effectively studied experimentally by injection of dust with known properties into fusion plasmas. Other applications of injected dust include diagnosis of fusion plasmas and edge localized mode (ELM)'s pacing. In diagnostic applications, dust can be regarded as a source of transient neutrals before complete ionization. ELM's pacing is a promising scheme to prevent disruptions and type I ELM's that can cause catastrophic damage to fusion machines. Different implementation schemes are available depending on applications of dust injection. One of the simplest dust injection schemes is through gravitational acceleration of dust in vacuum. Experiments at Los Alamos and Princeton will be described, both of which use piezoelectric shakers to deliver dust to plasma. In Princeton experiments, spherical particles (40 micron) have been dropped in a systematic and reproducible manner using a computer-controlled piezoelectric bending actuator operating at an acoustic (0,2) resonance. The circular actuator was constructed with a 2.5 mm diameter central hole. At resonance ({approx} 2 kHz) an applied sinusoidal voltage has been used to control the flux of particles exiting the hole. A simple screw throttle located {approx}1mm above the hole has been used to set the magnitude of the flux achieved for a given

  12. Magnetic-Nozzle Studies for Fusion Propulsion Applications: Gigawatt Plasma Source Operation and Magnetic Nozzle Analysis

    NASA Technical Reports Server (NTRS)

    Gilland, James H.; Mikekkides, Ioannis; Mikellides, Pavlos; Gregorek, Gerald; Marriott, Darin

    2004-01-01

    This project has been a multiyear effort to assess the feasibility of a key process inherent to virtually all fusion propulsion concepts: the expansion of a fusion-grade plasma through a diverging magnetic field. Current fusion energy research touches on this process only indirectly through studies of plasma divertors designed to remove the fusion products from a reactor. This project was aimed at directly addressing propulsion system issues, without the expense of constructing a fusion reactor. Instead, the program designed, constructed, and operated a facility suitable for simulating fusion reactor grade edge plasmas, and to examine their expansion in an expanding magnetic nozzle. The approach was to create and accelerate a dense (up to l0(exp 20)/m) plasma, stagnate it in a converging magnetic field to convert kinetic energy to thermal energy, and examine the subsequent expansion of the hot (100's eV) plasma in a subsequent magnetic nozzle. Throughout the project, there has been a parallel effort between theoretical and numerical design and modelling of the experiment and the experiment itself. In particular, the MACH2 code was used to design and predict the performance of the magnetoplasmadynamic (MPD) plasma accelerator, and to design and predict the design and expected behavior for the magnetic field coils that could be added later. Progress to date includes the theoretical accelerator design and construction, development of the power and vacuum systems to accommodate the powers and mass flow rates of interest to out research, operation of the accelerator and comparison to theoretical predictions, and computational analysis of future magnetic field coils and the expected performance of an integrated source-nozzle experiment.

  13. High-Yield Magnetized Liner Fusion Explosions and Blast Mitigation

    NASA Astrophysics Data System (ADS)

    Slutz, Stephen; Vesey, Roger; Cuneo, Michael

    2011-10-01

    Cylindrical liner implosions with preheated and magnetized deuterium-tritium (DT) are predicted to reach fusion conditions on present pulsed power machines [S.A. Slutz et al Phys. Plasmas 17, 056303 (2010)]. We present simulations indicating that high yields (1-10 GJ) and gains (100-1000) may be possible at currents of about 60-70 MA if a cryogenic layer of solid DT is provided on the inside surface of the metal liner. A hot spot is formed from the central preheated magnetized low-density gas and a burn wave propagates radially into the surrounding cold dense fuel. These yields and gains are more than adequate for inertial fusion energy. However, the pulsed-power driver must be protected from the blast of these high-yield explosions. Numerical simulations are presented which show that the blast can be deflected and the fusion neutrons absorbed by a blanket that partially surrounds the liner. Thus a modest length transmission line can be used to deliver power to the liner. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  14. Experimental progress in magnetic-mirror fusion research

    NASA Astrophysics Data System (ADS)

    Simonen, T. C.

    1981-08-01

    This paper discusses experimental progress in the control, confinement, and understanding of magnetic-mirror confined plasmas. A summary is given of the data base established in previous experiments on which magnetic-mirror principles are based. It includes a detailed description of present tandem and field-reversed mirror experimental results. The discussion also includes the concepts and parameters of experiments now under construction; it is shown how these experiments can both test new thermal-barrier concepts and bridge the gap between existing facilities and eventual power producers. Consideration is given to small-scale physics-oriented experiments, aimed at testing new ideas and refining the knowledge of mirror confinement. The paper concludes with an extensive bibliography of reports from the field of magnetic-mirror fusion.

  15. Prospects for x-ray polarimetry measurements of magnetic fields in magnetized liner inertial fusion plasmas

    SciTech Connect

    Lynn, Alan G. Gilmore, Mark

    2014-11-15

    Magnetized Liner Inertial Fusion (MagLIF) experiments, where a metal liner is imploded to compress a magnetized seed plasma may generate peak magnetic fields ∼10{sup 4} T (100 Megagauss) over small volumes (∼10{sup −10}m{sup 3}) at high plasma densities (∼10{sup 28}m{sup −3}) on 100 ns time scales. Such conditions are extremely challenging to diagnose. We discuss the possibility of, and issues involved in, using polarimetry techniques at x-ray wavelengths to measure magnetic fields under these extreme conditions.

  16. Experimental progress toward magnetized liner inertial fusion on Z

    NASA Astrophysics Data System (ADS)

    Sinars, Daniel; Herrmann, Mark; Cuneo, Michael; Lamppa, Derek; Lopez, Andrew; McBride, Ryan; Rovang, Dean; Hanson, David; Harding, Eric; Nakhleh, Charles; Slutz, Stephen; Vesey, Roger; Sefkow, Adam; Peterson, Kyle

    2011-10-01

    Yields exceeding 100 kJ may be possible on the 25 MA Z facility at Sandia using the implosion of cylindrical metal liners onto magnetized (>10 T) and preheated (100-500 eV) deuterium-tritium fuel [S.A. Slutz et al., Phys. Plasmas 17, 056303 (2010)]. The fusion fuel in such targets absorbs about 100 kJ, so a 100 kJ yield would be `scientific breakeven.' Suitable liner targets (Al and Be) have been fabricated and used in experiments on the magneto-Rayleigh-Taylor instability. Magnetic field coil prototypes for >10 T axial fields are being tested. Preheat experiments using the multi-kJ Z-Beamlet laser are planned. Cryogenic deuterium fuel systems have been developed. Integrated magnetized liner inertial fusion (MagLIF) tests using deuterium fuel are expected in 2013. Sandia is a multiprogram laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  17. Neutronic analysis of alternative structural materials for fusion reactor blankets

    NASA Astrophysics Data System (ADS)

    Santos, Raul dos

    1988-07-01

    The neutronic performance of the International Tokamak Reactor (INTOR) blanket was studied when several alternative structural materials were used instead of the INTOR reference structural material, type 316 stainless steel. The alternative structural materials included: ferritic-, vanadium-, titanium-, long range ordered-, manganese austenitic-, and nimonic-alloys. All were treated both with and without a first-wall coating of beryllium or graphite. The tritium breeding ratio, the nuclear heating, and the gas (hydrogen and helium) production rates in the structural materials were calculated for the possible combinations of structural material and first-wall coating. These parameters were compared with those obtained by using SS-316. The nimonic alloy was the only one with worse neutronic performance than the SS-316.

  18. Magnetic-mirror principle as applied to fusion research

    SciTech Connect

    Post, R.F.

    1983-08-11

    A tutorial account is given of the key physics issues in the confinement of high temperature plasma in magnetic mirror systems. The role of adiabatic invariants and particle drifts and their relationship to equilibrium and stability are discussed, in the context of the various forms of mirror field geometry. Collisional effects and the development and the control of ambipolar potentials are reviewed. The topic of microinstabilities is discussed together with the means for their control. The properties and advantages for fusion power purposes of various special embodiments of the mirror idea, including tandem mirrors, are discussed.

  19. Understanding of Edge Plasmas in Magnetic Fusion Energy Devices

    SciTech Connect

    Rognlien, T

    2004-11-01

    A limited overview is given of the theoretical understanding of edge plasmas in fusion devices. This plasma occupies the thin region between the hot core plasma and material walls in magnetically confinement configurations. The region is often formed by a change in magnetic topology from close magnetic field lines (i.e., the core region) and open field lines that contact material surfaces (i.e., the scrape-off layer [SOL]), with the most common example being magnetically diverted tokamaks. The physics of this region is determined by the interaction of plasma with neutral gas in the presence of plasma turbulence, with impurity radiation being an important component. Recent advances in modeling strong, intermittent micro-turbulent edge-plasma transport is given, and the closely coupled self-consistent evolution of the edge-plasma profiles in tokamaks. In addition, selected new results are given for the characterization of edge-plasmas behavior in the areas of edge-pedestal relaxation and SOL transport via Edge-Localize Modes (ELMs), impurity formation including dust, and magnetic field-line stochasticity in tokamaks.

  20. Beryllium pressure vessels for creep tests in magnetic fusion energy

    SciTech Connect

    Neef, W.S.

    1990-07-20

    Beryllium has interesting applications in magnetic fusion experimental machines and future power-producing fusion reactors. Chief among the properties of beryllium that make these applications possible is its ability to act as a neutron multiplier, thereby increasing the tritium breeding ability of energy conversion blankets. Another property, the behavior of beryllium in a 14-MeV neutron environment, has not been fully investigated, nor has the creep behavior of beryllium been studied in an energetic neutron flux at thermodynamically interesting temperatures. This small beryllium pressure vessel could be charged with gas to test pressures around 3, 000 psi to produce stress in the metal of 15,000 to 20,000 psi. Such stress levels are typical of those that might be reached in fusion blanket applications of beryllium. After contacting R. Powell at HEDL about including some of the pressure vessels in future test programs, we sent one sample pressure vessel with a pressurizing tube attached (Fig. 1) for burst tests so the quality of the diffusion bond joints could be evaluated. The gas used was helium. Unfortunately, budget restrictions did not permit us to proceed in the creep test program. The purpose of this engineering note is to document the lessons learned to date, including photographs of the test pressure vessel that show the tooling necessary to satisfactorily produce the diffusion bonds. This document can serve as a starting point for those engineers who resume this task when funds become available.

  1. Fusion-neutron measurements for magnetized liner inertial fusion experiments on the Z accelerator

    NASA Astrophysics Data System (ADS)

    Hahn, K. D.; Chandler, G. A.; Ruiz, C. L.; Cooper, G. W.; Gomez, M. R.; Slutz, S.; Sefkow, A. B.; Sinars, D. B.; Hansen, S. B.; Knapp, P. F.; Schmit, P. F.; Harding, E.; Jennings, C. A.; Awe, T. J.; Geissel, M.; Rovang, D. C.; Torres, J. A.; Bur, J. A.; Cuneo, M. E.; Glebov, V. Yu; Harvey-Thompson, A. J.; Herrman, M. C.; Hess, M. H.; Johns, O.; Jones, B.; Lamppa, D. C.; Lash, J. S.; Martin, M. R.; McBride, R. D.; Peterson, K. J.; Porter, J. L.; Reneker, J.; Robertson, G. K.; Rochau, G. A.; Savage, M. E.; Smith, I. C.; Styron, J. D.; Vesey, R. A.

    2016-05-01

    Several magnetized liner inertial fusion (MagLIF) experiments have been conducted on the Z accelerator at Sandia National Laboratories since late 2013. Measurements of the primary DD (2.45 MeV) neutrons for these experiments suggest that the neutron production is thermonuclear. Primary DD yields up to 3e12 with ion temperatures ∼2-3 keV have been achieved. Measurements of the secondary DT (14 MeV) neutrons indicate that the fuel is significantly magnetized. Measurements of down-scattered neutrons from the beryllium liner suggest ρRliner∼1g/cm2. Neutron bang times, estimated from neutron time-of-flight (nTOF) measurements, coincide with peak x-ray production. Plans to improve and expand the Z neutron diagnostic suite include neutron burn-history diagnostics, increased sensitivity and higher precision nTOF detectors, and neutron recoil-based yield and spectral measurements.

  2. Demonstration of thermonuclear conditions in magnetized liner inertial fusion experimentsa)

    NASA Astrophysics Data System (ADS)

    Gomez, M. R.; Slutz, S. A.; Sefkow, A. B.; Hahn, K. D.; Hansen, S. B.; Knapp, P. F.; Schmit, P. F.; Ruiz, C. L.; Sinars, D. B.; Harding, E. C.; Jennings, C. A.; Awe, T. J.; Geissel, M.; Rovang, D. C.; Smith, I. C.; Chandler, G. A.; Cooper, G. W.; Cuneo, M. E.; Harvey-Thompson, A. J.; Herrmann, M. C.; Hess, M. H.; Lamppa, D. C.; Martin, M. R.; McBride, R. D.; Peterson, K. J.; Porter, J. L.; Rochau, G. A.; Savage, M. E.; Schroen, D. G.; Stygar, W. A.; Vesey, R. A.

    2015-05-01

    The magnetized liner inertial fusion concept [S. A. Slutz et al., Phys. Plasmas 17, 056303 (2010)] utilizes a magnetic field and laser heating to relax the pressure requirements of inertial confinement fusion. The first experiments to test the concept [M. R. Gomez et al., Phys. Rev. Lett. 113, 155003 (2014)] were conducted utilizing the 19 MA, 100 ns Z machine, the 2.5 kJ, 1 TW Z Beamlet laser, and the 10 T Applied B-field on Z system. Despite an estimated implosion velocity of only 70 km/s in these experiments, electron and ion temperatures at stagnation were as high as 3 keV, and thermonuclear deuterium-deuterium neutron yields up to 2 × 1012 have been produced. X-ray emission from the fuel at stagnation had widths ranging from 50 to 110 μm over a roughly 80% of the axial extent of the target (6-8 mm) and lasted approximately 2 ns. X-ray yields from these experiments are consistent with a stagnation density of the hot fuel equal to 0.2-0.4 g/cm3. In these experiments, up to 5 × 1010 secondary deuterium-tritium neutrons were produced. Given that the areal density of the plasma was approximately 1-2 mg/cm2, this indicates the stagnation plasma was significantly magnetized, which is consistent with the anisotropy observed in the deuterium-tritium neutron spectra. Control experiments where the laser and/or magnetic field were not utilized failed to produce stagnation temperatures greater than 1 keV and primary deuterium-deuterium yields greater than 1010. An additional control experiment where the fuel contained a sufficient dopant fraction to substantially increase radiative losses also failed to produce a relevant stagnation temperature. The results of these experiments are consistent with a thermonuclear neutron source.

  3. Demonstration of thermonuclear conditions in magnetized liner inertial fusion experiments

    DOE PAGESBeta

    Gomez, Matthew R.; Slutz, Stephen A.; Sefkow, Adam B.; Hahn, Kelly D.; Hansen, Stephanie B.; Knapp, Patrick F.; Schmit, Paul F.; Ruiz, Carlos L.; Sinars, Daniel Brian; Harding, Eric C.; et al

    2015-04-29

    In this study, the magnetized liner inertial fusion concept [S. A. Slutz et al., Phys. Plasmas17, 056303 (2010)] utilizes a magnetic field and laser heating to relax the pressure requirements of inertial confinement fusion. The first experiments to test the concept [M. R. Gomez et al., Phys. Rev. Lett. 113, 155003 (2014)] were conducted utilizing the 19 MA, 100 ns Z machine, the 2.5 kJ, 1 TW Z Beamlet laser, and the 10 T Applied B-field on Z system. Despite an estimated implosion velocity of only 70 km/s in these experiments, electron and ion temperatures at stagnation were as highmore » as 3 keV, and thermonuclear deuterium-deuterium neutron yields up to 2 × 1012 have been produced. X-ray emission from the fuel at stagnation had widths ranging from 50 to 110 μm over a roughly 80% of the axial extent of the target (6–8 mm) and lasted approximately 2 ns. X-ray yields from these experiments are consistent with a stagnation density of the hot fuel equal to 0.2–0.4 g/cm3. In these experiments, up to 5 ×1010 secondary deuterium-tritium neutrons were produced. Given that the areal density of the plasma was approximately 1–2 mg/cm2, this indicates the stagnation plasma was significantly magnetized, which is consistent with the anisotropy observed in the deuterium-tritium neutron spectra. Control experiments where the laser and/or magnetic field were not utilized failed to produce stagnation temperatures greater than 1 keV and primary deuterium-deuterium yields greater than 1010. An additional control experiment where the fuel contained a sufficient dopant fraction to substantially increase radiative losses also failed to produce a relevant stagnation temperature. The results of these experiments are consistent with a thermonuclear neutron source.« less

  4. Experimental demonstration of fusion-relevant conditions in magnetized liner inertial fusion.

    PubMed

    Gomez, M R; Slutz, S A; Sefkow, A B; Sinars, D B; Hahn, K D; Hansen, S B; Harding, E C; Knapp, P F; Schmit, P F; Jennings, C A; Awe, T J; Geissel, M; Rovang, D C; Chandler, G A; Cooper, G W; Cuneo, M E; Harvey-Thompson, A J; Herrmann, M C; Hess, M H; Johns, O; Lamppa, D C; Martin, M R; McBride, R D; Peterson, K J; Porter, J L; Robertson, G K; Rochau, G A; Ruiz, C L; Savage, M E; Smith, I C; Stygar, W A; Vesey, R A

    2014-10-10

    This Letter presents results from the first fully integrated experiments testing the magnetized liner inertial fusion concept [S. A. Slutz et al., Phys. Plasmas 17, 056303 (2010)], in which a cylinder of deuterium gas with a preimposed 10 Taxial magnetic field is heated by Z beamlet, a 2.5 kJ, 1 TW laser, and magnetically imploded by a 19 MA, 100 ns rise time current on the Z facility. Despite a predicted peak implosion velocity of only 70 km = s, the fuel reaches a stagnation temperature of approximately 3 keV, with T(e) ≈ T(i), and produces up to 2 x 10(12) thermonuclear deuterium-deuterium neutrons. X-ray emission indicates a hot fuel region with full width at half maximum ranging from 60 to 120 μm over a 6 mm height and lasting approximately 2 ns. Greater than 10(10) secondary deuterium-tritium neutrons were observed, indicating significant fuel magnetization given that the estimated radial areal density of the plasma is only 2 mg = cm(2). PMID:25375714

  5. Experimental Demonstration of Fusion-Relevant Conditions in Magnetized Liner Inertial Fusion

    NASA Astrophysics Data System (ADS)

    Gomez, M. R.; Slutz, S. A.; Sefkow, A. B.; Sinars, D. B.; Hahn, K. D.; Hansen, S. B.; Harding, E. C.; Knapp, P. F.; Schmit, P. F.; Jennings, C. A.; Awe, T. J.; Geissel, M.; Rovang, D. C.; Chandler, G. A.; Cooper, G. W.; Cuneo, M. E.; Harvey-Thompson, A. J.; Herrmann, M. C.; Hess, M. H.; Johns, O.; Lamppa, D. C.; Martin, M. R.; McBride, R. D.; Peterson, K. J.; Porter, J. L.; Robertson, G. K.; Rochau, G. A.; Ruiz, C. L.; Savage, M. E.; Smith, I. C.; Stygar, W. A.; Vesey, R. A.

    2014-10-01

    This Letter presents results from the first fully integrated experiments testing the magnetized liner inertial fusion concept [S. A. Slutz et al., Phys. Plasmas 17, 056303 (2010)], in which a cylinder of deuterium gas with a preimposed 10 T axial magnetic field is heated by Z beamlet, a 2.5 kJ, 1 TW laser, and magnetically imploded by a 19 MA, 100 ns rise time current on the Z facility. Despite a predicted peak implosion velocity of only 70 km/s, the fuel reaches a stagnation temperature of approximately 3 keV, with Te≈Ti, and produces up to 2×1012 thermonuclear deuterium-deuterium neutrons. X-ray emission indicates a hot fuel region with full width at half maximum ranging from 60 to 120 μm over a 6 mm height and lasting approximately 2 ns. Greater than 1010 secondary deuterium-tritium neutrons were observed, indicating significant fuel magnetization given that the estimated radial areal density of the plasma is only 2 mg/cm2.

  6. Experimental demonstration of fusion-relevant conditions in magnetized liner inertial fusion

    DOE PAGESBeta

    Gomez, Matthew R.; Slutz, Stephen A..; Sefkow, Adam B.; Sinars, Daniel B.; Hahn, Kelly D.; Hansen, Stephanie B.; Harding, Eric C.; Knapp, Patrick F.; Schmit, Paul F.; Jennings, Christopher A.; et al

    2014-10-06

    This Letter presents results from the first fully integrated experiments testing the magnetized liner inertial fusion concept [S.A. Slutz et al., Phys. Plasmas 17, 056303 (2010)], in which a cylinder of deuterium gas with a preimposed axial magnetic field of 10 T is heated by Z beamlet, a 2.5 kJ, 1 TW laser, and magnetically imploded by a 19 MA current with 100 ns rise time on the Z facility. Despite a predicted peak implosion velocity of only 70 km/s, the fuel reaches a stagnation temperature of approximately 3 keV, with Te ≈ Ti, and produces up to 2e12 thermonuclearmore » DD neutrons. In this study, X-ray emission indicates a hot fuel region with full width at half maximum ranging from 60 to 120 μm over a 6 mm height and lasting approximately 2 ns. The number of secondary deuterium-tritium neutrons observed was greater than 1010, indicating significant fuel magnetization given that the estimated radial areal density of the plasma is only 2 mg/cm2.« less

  7. Experimental demonstration of fusion-relevant conditions in magnetized liner inertial fusion

    SciTech Connect

    Gomez, Matthew R.; Slutz, Stephen A..; Sefkow, Adam B.; Sinars, Daniel B.; Hahn, Kelly D.; Hansen, Stephanie B.; Harding, Eric C.; Knapp, Patrick F.; Schmit, Paul F.; Jennings, Christopher A.; Awe, Thomas James; Geissel, Matthias; Rovang, Dean C.; Chandler, Gordon A.; Cooper, Gary Wayne; Cuneo, Michael Edward; Harvey-Thompson, Adam James; Herrmann, Mark; Hess, M. H.; Johns, Owen; Lamppa, Derek C.; Martin, Matthew R.; McBride, Ryan D.; Peterson, Kyle J.; Porter, John L.; Robertson, Grafton Kincannon; Rochau, Gregory A.; Ruiz, Carlos L.; Savage, Mark E.; Smith, Ian C.; Stygar, William A.; Vesey, Roger A.

    2014-10-06

    This Letter presents results from the first fully integrated experiments testing the magnetized liner inertial fusion concept [S.A. Slutz et al., Phys. Plasmas 17, 056303 (2010)], in which a cylinder of deuterium gas with a preimposed axial magnetic field of 10 T is heated by Z beamlet, a 2.5 kJ, 1 TW laser, and magnetically imploded by a 19 MA current with 100 ns rise time on the Z facility. Despite a predicted peak implosion velocity of only 70 km/s, the fuel reaches a stagnation temperature of approximately 3 keV, with Te ≈ Ti, and produces up to 2e12 thermonuclear DD neutrons. In this study, X-ray emission indicates a hot fuel region with full width at half maximum ranging from 60 to 120 μm over a 6 mm height and lasting approximately 2 ns. The number of secondary deuterium-tritium neutrons observed was greater than 1010, indicating significant fuel magnetization given that the estimated radial areal density of the plasma is only 2 mg/cm2.

  8. Magnetic refrigeration: recent developments and alternative configurations

    NASA Astrophysics Data System (ADS)

    Almanza, Morgan; Kedous-Lebouc, Afef; Yonnet, Jean-Paul; Legait, Ulrich; Roudaut, Julien

    2015-07-01

    Magnetic refrigeration, based on magnetocaloric effect, is an upcoming environmentaly friendly technology with a high potential to improve energy efficiency and to reduce greenhouse gas emission. It is a multidisciplinary research theme and its real emergence requires, to overcome scientific and technical issues related to both material and system. This paper presents the state of the art in magnetic cooling, the main recent works achieved and discusses in more details the thermodynamic phenomenon according to the G2Elab experience in the field. Contribution to the topical issue "Electrical Engineering Symposium (SGE 2014)", edited by Adel Razek

  9. Effects of magnetization on fusion product trapping and secondary neutron spectra

    SciTech Connect

    Knapp, Patrick F.; Schmit, Paul F.; Hansen, Stephanie B.; Gomez, Matthew R.; Hahn, Kelly D.; Sinars, Daniel Brian; Peterson, Kyle J.; Slutz, Stephen A.; Sefkow, Adam B.; Awe, Thomas James; Harding, Eric; Jennings, Christopher A.; Desjarlais, M. P.; Chandler, Gordon A.; Cooper, Gary Wayne; Cuneo, Michael Edward; Geissel, Matthias; Harvey-Thompson, Adam James; Porter, John L.; Rochau, Gregory A.; Rovang, Dean C.; Ruiz, Carlos L.; Savage, Mark E.; Smith, Ian C.; Stygar, William A.; Herrmann, Mark

    2015-05-14

    In magnetizing the fusion fuel in inertial confinement fusion (ICF) systems, we found that the required stagnation pressure and density can be relaxed dramatically. This happens because the magnetic field insulates the hot fuel from the cold pusher and traps the charged fusion burn products. This trapping allows the burn products to deposit their energy in the fuel, facilitating plasma self-heating. Here, we report on a comprehensive theory of this trapping in a cylindrical DD plasma magnetized with a purely axial magnetic field. Using this theory, we are able to show that the secondary fusion reactions can be used to infer the magnetic field-radius product, BR, during fusion burn. This parameter, not ρR, is the primary confinement parameter in magnetized ICF. Using this method, we analyze data from recent Magnetized Liner InertialFusion experiments conducted on the Z machine at Sandia National Laboratories. Furthermore, we show that in these experiments BR ≈ 0.34(+0.14/-0.06) MG · cm, a ~ 14× increase in BR from the initial value, and confirming that the DD-fusion tritons are magnetized at stagnation. Lastly, this is the first experimental verification of charged burn product magnetization facilitated by compression of an initial seed magnetic flux.

  10. Effects of magnetization on fusion product trapping and secondary neutron spectra

    DOE PAGESBeta

    Knapp, Patrick F.; Schmit, Paul F.; Hansen, Stephanie B.; Gomez, Matthew R.; Hahn, Kelly D.; Sinars, Daniel Brian; Peterson, Kyle J.; Slutz, Stephen A.; Sefkow, Adam B.; Awe, Thomas James; et al

    2015-05-14

    In magnetizing the fusion fuel in inertial confinement fusion (ICF) systems, we found that the required stagnation pressure and density can be relaxed dramatically. This happens because the magnetic field insulates the hot fuel from the cold pusher and traps the charged fusion burn products. This trapping allows the burn products to deposit their energy in the fuel, facilitating plasma self-heating. Here, we report on a comprehensive theory of this trapping in a cylindrical DD plasma magnetized with a purely axial magnetic field. Using this theory, we are able to show that the secondary fusion reactions can be used tomore » infer the magnetic field-radius product, BR, during fusion burn. This parameter, not ρR, is the primary confinement parameter in magnetized ICF. Using this method, we analyze data from recent Magnetized Liner InertialFusion experiments conducted on the Z machine at Sandia National Laboratories. Furthermore, we show that in these experiments BR ≈ 0.34(+0.14/-0.06) MG · cm, a ~ 14× increase in BR from the initial value, and confirming that the DD-fusion tritons are magnetized at stagnation. Lastly, this is the first experimental verification of charged burn product magnetization facilitated by compression of an initial seed magnetic flux.« less

  11. Effects of magnetization on fusion product trapping and secondary neutron spectraa)

    NASA Astrophysics Data System (ADS)

    Knapp, P. F.; Schmit, P. F.; Hansen, S. B.; Gomez, M. R.; Hahn, K. D.; Sinars, D. B.; Peterson, K. J.; Slutz, S. A.; Sefkow, A. B.; Awe, T. J.; Harding, E.; Jennings, C. A.; Desjarlais, M. P.; Chandler, G. A.; Cooper, G. W.; Cuneo, M. E.; Geissel, M.; Harvey-Thompson, A. J.; Porter, J. L.; Rochau, G. A.; Rovang, D. C.; Ruiz, C. L.; Savage, M. E.; Smith, I. C.; Stygar, W. A.; Herrmann, M. C.

    2015-05-01

    By magnetizing the fusion fuel in inertial confinement fusion (ICF) systems, the required stagnation pressure and density can be relaxed dramatically. This happens because the magnetic field insulates the hot fuel from the cold pusher and traps the charged fusion burn products. This trapping allows the burn products to deposit their energy in the fuel, facilitating plasma self-heating. Here, we report on a comprehensive theory of this trapping in a cylindrical DD plasma magnetized with a purely axial magnetic field. Using this theory, we are able to show that the secondary fusion reactions can be used to infer the magnetic field-radius product, BR, during fusion burn. This parameter, not ρR, is the primary confinement parameter in magnetized ICF. Using this method, we analyze data from recent Magnetized Liner Inertial Fusion experiments conducted on the Z machine at Sandia National Laboratories. We show that in these experiments BR ≈ 0.34(+0.14/-0.06) MG . cm, a ˜ 14× increase in BR from the initial value, and confirming that the DD-fusion tritons are magnetized at stagnation. This is the first experimental verification of charged burn product magnetization facilitated by compression of an initial seed magnetic flux.

  12. Effects of magnetization on fusion product trapping and secondary neutron spectra

    SciTech Connect

    Knapp, P. F.; Schmit, P. F.; Hansen, S. B.; Gomez, M. R.; Hahn, K. D.; Sinars, D. B.; Peterson, K. J.; Slutz, S. A.; Sefkow, A. B.; Awe, T. J.; Harding, E.; Jennings, C. A.; Desjarlais, M. P.; Chandler, G. A.; Cooper, G. W.; Cuneo, M. E.; Geissel, M.; Harvey-Thompson, A. J.; Porter, J. L.; Rochau, G. A.; and others

    2015-05-15

    By magnetizing the fusion fuel in inertial confinement fusion (ICF) systems, the required stagnation pressure and density can be relaxed dramatically. This happens because the magnetic field insulates the hot fuel from the cold pusher and traps the charged fusion burn products. This trapping allows the burn products to deposit their energy in the fuel, facilitating plasma self-heating. Here, we report on a comprehensive theory of this trapping in a cylindrical DD plasma magnetized with a purely axial magnetic field. Using this theory, we are able to show that the secondary fusion reactions can be used to infer the magnetic field-radius product, BR, during fusion burn. This parameter, not ρR, is the primary confinement parameter in magnetized ICF. Using this method, we analyze data from recent Magnetized Liner Inertial Fusion experiments conducted on the Z machine at Sandia National Laboratories. We show that in these experiments BR ≈ 0.34(+0.14/−0.06) MG · cm, a ∼ 14× increase in BR from the initial value, and confirming that the DD-fusion tritons are magnetized at stagnation. This is the first experimental verification of charged burn product magnetization facilitated by compression of an initial seed magnetic flux.

  13. Magnetized Inertial Fusion (MIF) Research at the Shiva Star Facility

    NASA Astrophysics Data System (ADS)

    Degnan, James; Grabowski, C.; Domonkos, M.; Ruden, E. L.; Amdahl, D. J.; White, W. M.; Frese, M. H.; Frese, S. D.; Wurden, G. A.; Weber, T. E.

    2015-11-01

    The AFRL Shiva Star capacitor bank (1300 μF, up to 120 kV) used typically at 4 to 5 MJ stored energy, 10 to 15 MA current, 10 μs current rise time, has been used to drive metal shell (solid liner) implosions for compression of axial magnetic fields to multi-megagauss levels, suitable for compressing magnetized plasmas to MIF conditions. MIF approaches use magnetic field to reduce thermal conduction relative to inertial confinement fusion (ICF). MIF substantially reduces required implosion speed and convergence. Using profiled thickness liner enables large electrode apertures and field-reversed configuration (FRC) injection. Using a longer capture region, FRC trapped flux lifetime was made comparable to implosion time and an integrated compression test was conducted. The FRC was radially compressed a factor of ten, to 100x density >1018 cm-3 (a world FRC record), but temperatures were only 300-400 eV, compared to intended several keV. Compression to megabar pressures was inferred by the observed liner rebound, but the heating rate during the first half of the compression was less than the normal FRC decay rate. Principal diagnostics were soft x-ray imaging, soft x-ray diodes, and neutron measurements. This work has been supported by DOE-OFES.

  14. Magnetized Target Fusion With Centimeter-Size Liner

    SciTech Connect

    Ryutov, D

    2005-07-21

    The author concentrates on the version of magnetized target fusion (MTF) that involves 3D implosions of a wall-confined plasma with the density in the compressed state {approx} 10{sup 21}-10{sup 22} cm{sup -3}. Possible plasma configurations suitable for this approach are identified. The main physics issues are outlined (equilibrium, stability, transport, plasma-liner interaction, etc). Specific parameters of the experiment reaching the plasma Q{approx}1 are presented (Q is the ratio of the fusion yield to the energy delivered to the plasma). It is emphasized that there exists a synergy between the physics and technology of MTF and dense Z-pinches (DZP). Specific areas include the particle and heat transport in a high-beta plasma, plasma-liner interaction, liner stability, stand-off problem for the power source, reaching a rep-rate regime in the energy-producing reactor, etc. Possible use of existing pulsed-power facilities for addressing these issues is discussed.

  15. Space propulsion by fusion in a magnetic dipole

    SciTech Connect

    Teller, E.; Glass, A.J.; Fowler, T.K. ); Hasegawa, A. ); Santarius, J.F. . Fusion Technology Inst.)

    1991-07-15

    The unique advantages of fusion rocket propulsion systems for distant missions are explored using the magnetic dipole configurations as an example. The dipole is found to have features well suited to space applications. Parameters are presented for a system producing a specific power of kW/kg, capable of interplanetary flights to Mars in 90 days and to Jupiter in a year, and of extra-solar-system flights to 1000 astronomical units (the Tau mission) in 20 years. This is about 10 times better specific power performance than nuclear electric fission systems. Possibilities to further increase the specific power toward 10 kW/kg are discussed, as is an approach to implementing the concept through proof-testing on the moon. 20 refs., 14 figs., 2 tabs.

  16. Space propulsion by fusion in a magnetic dipole

    SciTech Connect

    Teller, E.; Glass, A.J.; Fowler, T.K. ); Hasegawa, A. ); Santarius, J.F. . Fusion Technology Inst.)

    1991-04-12

    A conceptual design is discussed for a fusion rocket propulsion system based on the magnetic dipole configuration. The dipole is found to have features well suited to space applications. Example parameters are presented for a system producing a specific power of 1 kW/kg, capable of interplanetary flights to Mars in 90 days and to Jupiter in a year, and of extra-solar-system flights to 1000 astronomical units (the Tau mission) in 20 years. This is about 10 times better specific power toward 10 kW/kg are discussed, as in an approach to implementing the concept through proof-testing on the moon. 21 refs., 14 figs., 2 tabs.

  17. Passive Spectroscopic Diagnostics for Magnetically-confined Fusion Plasmas

    SciTech Connect

    Stratton, B. C.; Biter, M.; Hill, K. W.; Hillis, D. L.; Hogan, J. T.

    2007-07-18

    Spectroscopy of radiation emitted by impurities and hydrogen isotopes plays an important role in the study of magnetically-confined fusion plasmas, both in determining the effects of impurities on plasma behavior and in measurements of plasma parameters such as electron and ion temperatures and densities, particle transport, and particle influx rates. This paper reviews spectroscopic diagnostics of plasma radiation that are excited by collisional processes in the plasma, which are termed 'passive' spectroscopic diagnostics to distinguish them from 'active' spectroscopic diagnostics involving injected particle and laser beams. A brief overview of the ionization balance in hot plasmas and the relevant line and continuum radiation excitation mechanisms is given. Instrumentation in the soft X-ray, vacuum ultraviolet, ultraviolet, visible, and near-infrared regions of the spectrum is described and examples of measurements are given. Paths for further development of these measurements and issues for their implementation in a burning plasma environment are discussed.

  18. Demonstration of thermonuclear conditions in magnetized liner inertial fusion experiments

    SciTech Connect

    Gomez, M. R.; Slutz, S. A.; Sefkow, A. B.; Hahn, K. D.; Hansen, S. B.; Knapp, P. F.; Schmit, P. F.; Ruiz, C. L.; Sinars, D. B.; Harding, E. C.; Jennings, C. A.; Awe, T. J.; Geissel, M.; Rovang, D. C.; Smith, I. C.; Chandler, G. A.; Cooper, G. W.; Cuneo, M. E.; Harvey-Thompson, A. J.; Hess, M. H.; and others

    2015-05-15

    The magnetized liner inertial fusion concept [S. A. Slutz et al., Phys. Plasmas 17, 056303 (2010)] utilizes a magnetic field and laser heating to relax the pressure requirements of inertial confinement fusion. The first experiments to test the concept [M. R. Gomez et al., Phys. Rev. Lett. 113, 155003 (2014)] were conducted utilizing the 19 MA, 100 ns Z machine, the 2.5 kJ, 1 TW Z Beamlet laser, and the 10 T Applied B-field on Z system. Despite an estimated implosion velocity of only 70 km/s in these experiments, electron and ion temperatures at stagnation were as high as 3 keV, and thermonuclear deuterium-deuterium neutron yields up to 2 × 10{sup 12} have been produced. X-ray emission from the fuel at stagnation had widths ranging from 50 to 110 μm over a roughly 80% of the axial extent of the target (6–8 mm) and lasted approximately 2 ns. X-ray yields from these experiments are consistent with a stagnation density of the hot fuel equal to 0.2–0.4 g/cm{sup 3}. In these experiments, up to 5 × 10{sup 10} secondary deuterium-tritium neutrons were produced. Given that the areal density of the plasma was approximately 1–2 mg/cm{sup 2}, this indicates the stagnation plasma was significantly magnetized, which is consistent with the anisotropy observed in the deuterium-tritium neutron spectra. Control experiments where the laser and/or magnetic field were not utilized failed to produce stagnation temperatures greater than 1 keV and primary deuterium-deuterium yields greater than 10{sup 10}. An additional control experiment where the fuel contained a sufficient dopant fraction to substantially increase radiative losses also failed to produce a relevant stagnation temperature. The results of these experiments are consistent with a thermonuclear neutron source.

  19. Demonstration of thermonuclear conditions in magnetized liner inertial fusion experiments

    SciTech Connect

    Gomez, Matthew R.; Slutz, Stephen A.; Sefkow, Adam B.; Hahn, Kelly D.; Hansen, Stephanie B.; Knapp, Patrick F.; Schmit, Paul F.; Ruiz, Carlos L.; Sinars, Daniel Brian; Harding, Eric C.; Jennings, Christopher A.; Awe, Thomas James; Geissel, Matthias; Rovang, Dean C.; Smith, Ian C.; Chandler, Gordon A.; Cooper, Gary Wayne; Cuneo, Michael Edward; Harvey-Thompson, Adam James; Herrmann, Mark C.; Mark Harry Hess; Lamppa, Derek C.; Martin, Matthew R.; McBride, Ryan D.; Peterson, Kyle J.; Porter, John L.; Rochau, Gregory A.; Savage, Mark E.; Schroen, Diana G.; Stygar, William A.; Vesey, Roger Alan

    2015-04-29

    In this study, the magnetized liner inertial fusion concept [S. A. Slutz et al., Phys. Plasmas17, 056303 (2010)] utilizes a magnetic field and laser heating to relax the pressure requirements of inertial confinement fusion. The first experiments to test the concept [M. R. Gomez et al., Phys. Rev. Lett. 113, 155003 (2014)] were conducted utilizing the 19 MA, 100 ns Z machine, the 2.5 kJ, 1 TW Z Beamlet laser, and the 10 T Applied B-field on Z system. Despite an estimated implosion velocity of only 70 km/s in these experiments, electron and ion temperatures at stagnation were as high as 3 keV, and thermonuclear deuterium-deuterium neutron yields up to 2 × 1012 have been produced. X-ray emission from the fuel at stagnation had widths ranging from 50 to 110 μm over a roughly 80% of the axial extent of the target (6–8 mm) and lasted approximately 2 ns. X-ray yields from these experiments are consistent with a stagnation density of the hot fuel equal to 0.2–0.4 g/cm3. In these experiments, up to 5 ×1010 secondary deuterium-tritium neutrons were produced. Given that the areal density of the plasma was approximately 1–2 mg/cm2, this indicates the stagnation plasma was significantly magnetized, which is consistent with the anisotropy observed in the deuterium-tritium neutron spectra. Control experiments where the laser and/or magnetic field were not utilized failed to produce stagnation temperatures greater than 1 keV and primary deuterium-deuterium yields greater than 1010. An additional control experiment where the fuel contained a sufficient dopant fraction to substantially increase radiative losses also failed to produce a relevant stagnation temperature. The results of these experiments are consistent with a thermonuclear neutron source.

  20. Dense Plasma Focus - From Alternative Fusion Source to Versatile High Energy Density Plasma Source for Plasma Nanotechnology

    NASA Astrophysics Data System (ADS)

    Rawat, R. S.

    2015-03-01

    The dense plasma focus (DPF), a coaxial plasma gun, utilizes pulsed high current electrical discharge to heat and compress the plasma to very high density and temperature with energy densities in the range of 1-10 × 1010 J/m3. The DPF device has always been in the company of several alternative magnetic fusion devices as it produces intense fusion neutrons. Several experiments conducted on many different DPF devices ranging over several order of storage energy have demonstrated that at higher storage energy the neutron production does not follow I4 scaling laws and deteriorate significantly raising concern about the device's capability and relevance for fusion energy. On the other hand, the high energy density pinch plasma in DPF device makes it a multiple radiation source of ions, electron, soft and hard x-rays, and neutrons, making it useful for several applications in many different fields such as lithography, radiography, imaging, activation analysis, radioisotopes production etc. Being a source of hot dense plasma, strong shockwave, intense energetic beams and radiation, etc, the DPF device, additionally, shows tremendous potential for applications in plasma nanoscience and plasma nanotechnology. In the present paper, the key features of plasma focus device are critically discussed to understand the novelties and opportunities that this device offers in processing and synthesis of nanophase materials using, both, the top-down and bottom-up approach. The results of recent key experimental investigations performed on (i) the processing and modification of bulk target substrates for phase change, surface reconstruction and nanostructurization, (ii) the nanostructurization of PLD grown magnetic thin films, and (iii) direct synthesis of nanostructured (nanowire, nanosheets and nanoflowers) materials using anode target material ablation, ablated plasma and background reactive gas based synthesis and purely gas phase synthesis of various different types of

  1. Report of the Fusion Energy Sciences Advisory Committee. Panel on Integrated Simulation and Optimization of Magnetic Fusion Systems

    SciTech Connect

    Dahlburg, Jill; Corones, James; Batchelor, Donald; Bramley, Randall; Greenwald, Martin; Jardin, Stephen; Krasheninnikov, Sergei; Laub, Alan; Leboeuf, Jean-Noel; Lindl, John; Lokke, William; Rosenbluth, Marshall; Ross, David; Schnack, Dalton

    2002-11-01

    Fusion is potentially an inexhaustible energy source whose exploitation requires a basic understanding of high-temperature plasmas. The development of a science-based predictive capability for fusion-relevant plasmas is a challenge central to fusion energy science, in which numerical modeling has played a vital role for more than four decades. A combination of the very wide range in temporal and spatial scales, extreme anisotropy, the importance of geometric detail, and the requirement of causality which makes it impossible to parallelize over time, makes this problem one of the most challenging in computational physics. Sophisticated computational models are under development for many individual features of magnetically confined plasmas and increases in the scope and reliability of feasible simulations have been enabled by increased scientific understanding and improvements in computer technology. However, full predictive modeling of fusion plasmas will require qualitative improvements and innovations to enable cross coupling of a wider variety of physical processes and to allow solution over a larger range of space and time scales. The exponential growth of computer speed, coupled with the high cost of large-scale experimental facilities, makes an integrated fusion simulation initiative a timely and cost-effective opportunity. Worldwide progress in laboratory fusion experiments provides the basis for a recent FESAC recommendation to proceed with a burning plasma experiment (see FESAC Review of Burning Plasma Physics Report, September 2001). Such an experiment, at the frontier of the physics of complex systems, would be a huge step in establishing the potential of magnetic fusion energy to contribute to the world’s energy security. An integrated simulation capability would dramatically enhance the utilization of such a facility and lead to optimization of toroidal fusion plasmas in general. This science-based predictive capability, which was cited in the FESAC

  2. Fusion-neutron measurements for magnetized liner inertial fusion experiments on the Z accelerator

    DOE PAGESBeta

    Hahn, K. D.; Chandler, G. A.; Ruiz, C. L.; Cooper, G. W.; Gomez, M. R.; Slutz, S.; Sefkow, A. B.; Sinars, D. B.; Hansen, S. B.; Knapp, P. F.; et al

    2016-05-01

    Several magnetized liner inertial fusion (MagLIF) experiments have been conducted on the Z accelerator at Sandia National Laboratories since late 2013. Measurements of the primary DD (2.45 MeV) neutrons for these experiments suggest that the neutron production is thermonuclear. Primary DD yields up to 3e12 with ion temperatures ~2-3 keV have been achieved. Measurements of the secondary DT (14 MeV) neutrons indicate that the fuel is significantly magnetized. Measurements of down-scattered neutrons from the beryllium liner suggest ρRliner ~ 1g/cm2. Neutron bang times, estimated from neutron time-of-flight (nTOF) measurements, coincide with peak x-ray production. Furthermore, plans to improve and expandmore » the Z neutron diagnostic suite include neutron burn-history diagnostics, increased sensitivity and higher precision nTOF detectors, and neutron recoil-based yield and spectral measurements.« less

  3. Computational challenges in magnetic-confinement fusion physics

    NASA Astrophysics Data System (ADS)

    Fasoli, A.; Brunner, S.; Cooper, W. A.; Graves, J. P.; Ricci, P.; Sauter, O.; Villard, L.

    2016-05-01

    Magnetic-fusion plasmas are complex self-organized systems with an extremely wide range of spatial and temporal scales, from the electron-orbit scales (~10-11 s, ~ 10-5 m) to the diffusion time of electrical current through the plasma (~102 s) and the distance along the magnetic field between two solid surfaces in the region that determines the plasma-wall interactions (~100 m). The description of the individual phenomena and of the nonlinear coupling between them involves a hierarchy of models, which, when applied to realistic configurations, require the most advanced numerical techniques and algorithms and the use of state-of-the-art high-performance computers. The common thread of such models resides in the fact that the plasma components are at the same time sources of electromagnetic fields, via the charge and current densities that they generate, and subject to the action of electromagnetic fields. This leads to a wide variety of plasma modes of oscillations that resonate with the particle or fluid motion and makes the plasma dynamics much richer than that of conventional, neutral fluids.

  4. Microfabricated Ion Beam Drivers for Magnetized Target Fusion

    NASA Astrophysics Data System (ADS)

    Persaud, Arun; Seidl, Peter; Ji, Qing; Ardanuc, Serhan; Miller, Joseph; Lal, Amit; Schenkel, Thomas

    2015-11-01

    Efficient, low-cost drivers are important for Magnetized Target Fusion (MTF). Ion beams offer a high degree of control to deliver the required mega joules of driver energy for MTF and they can be matched to several types of magnetized fuel targets, including compact toroids and solid targets. We describe an ion beam driver approach based on the MEQALAC concept (Multiple Electrostatic Quadrupole Array Linear Accelerator) with many beamlets in an array of micro-fabricated channels. The channels consist of a lattice of electrostatic quadrupoles (ESQ) for focusing and of radio-frequency (RF) electrodes for ion acceleration. Simulations with particle-in-cell and beam envelope codes predict >10x higher current densities compared to state-of-the-art ion accelerators. This increase results from dividing the total ion beam current up into many beamlets to control space charge forces. Focusing elements can be biased taking advantage of high breakdown electric fields in sub-mm structures formed using MEMS techniques (Micro-Electro-Mechanical Systems). We will present results on ion beam transport and acceleration in MEMS based beamlets. Acknowledgments: This work is supported by the U.S. DOE under Contract No. DE-AC02-05CH11231.

  5. Considerations of the high magnetic field tokamak path on the approach to fusion energy

    NASA Astrophysics Data System (ADS)

    Marmar, Earl

    2015-11-01

    This tutorial will review the physics basis, and its applications, for high magnetic field, compact visions of steady-state pilot plants and fusion reactors. This includes: energy and particle confinement; transport barriers; heating and current drive; scrape-off layer and divertor physics including implications for power handling, and ash/impurity control. The development of new technologies, particularly high-temperature, high critical magnetic field superconducting materials opens a new opportunity to consider the leverage of on-axis magnetic fields of 10T or more, enabling the feasibility of smaller sized devices on the path to fusion energy, including a pilot plant which could produce hundreds of megawatts of net electricity in a 10T tokamak with major radius of order 3 meter. Incorporating jointed magnetic coils, also made feasible by the high temperature superconductors, can dramatically improve flexibility of experimental superconducting facilities, and ultimately maintainability for reactor systems. Steady-state requires high bootstrap fraction, combined with efficient off-axis current drive, and existing and new approaches for RF sustainment will be covered, including Lower Hybrid Current Drive (both from the low- and high-field side), ECCD, and fast-wave techniques. External torque drive from neutral beams, routinely used in most present-day experiments to enhance confinement and suppress instabilities, will be weak or absent in reactors. Alternative, RF-based flow drive, using mode-converted ICRF waves will be discussed. All reactor concepts have extraordinary power handling requirements, combined with stringent limits on PFC erosion and impurity sources; the current state of the art in divertor configurations will be compared with emerging and new concepts, including snowflake, x-point, x-divertor and liquid metals, to meet these challenges. Supported by USDOE.

  6. Experimental Study on Current Decay Characteristics of Persistent Current HTS Magnet by Alternating Magnetic Field

    NASA Astrophysics Data System (ADS)

    Park, Young Gun; Lee, Chang Young; Hwang, Young Jin; Lee, Woo Seung; Lee, Jiho; Jo, Hyun Chul; Chung, Yoon Do; Ko, Tae Kuk

    This paper deals with a current decay characteristics of a high temperature superconducting (HTS) magnet operated in persistent current mode (PCM). In superconducting synchronous machine applications such as linear synchronous motor (LSM), the superconducting coil is designed to operate in the PCM to obtain steady magnetic field with DC transport current. This superconducting magnet operates on a direct current, but it can be exposed to alternating magnetic field due to the armature winding. When the magnet is subjected to an external time-varying magnetic field, it is possible to result in a decay of the current in PCM system due to AC loss. In this research, a PCM system with armature coil which generates time-varying magnetic field was fabricated to verify current decay characteristics by external alternating magnetic field. The current decay rate was measured by using a hall sensor as functions of amplitude and frequency of armature coil.

  7. Flyer-Plate-Based Current Diagnostic for Magnetized Liner Inertial Fusion Experiments

    NASA Astrophysics Data System (ADS)

    Reneker, Joseph; Gomez, Matthew; Hess, Mark; Jennings, Christopher

    2015-11-01

    Accurate measurements of the current delivered to Magnetized Liner Inertial Fusion (MagLIF) loads on the Z machine are important for understanding the dynamics of liner implosions. Difficulty acquiring a reliable load current measurement with the standard Z load B-dots has spurred the development of alternative load current diagnostics. Velocimetry of an electromagnetically-accelerated flyer plate can be used to infer the drive current on a flyer surface. A load current diagnostic design is proposed using a cylindrical flyer plate in series with the MagLIF target. Aspects of the flyer plate design were optimized using magnetohydrodynamic simulations. Design and preliminary results will be presented. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  8. Diagnosing laser-preheated magnetized plasmas relevant to magnetized liner inertial fusion

    SciTech Connect

    Harvey-Thompson, Adam James; Sefkow, Adam B.; Nagayama, Taisuke N.; Wei, Mingsheng; Campbell, Edward Michael; Fiksel, Gennady; Chang, Po -Yu; Davies, Jonathan R.; Barnak, Daniel H.; Glebov, Vladimir Y.; Fitzsimmons, Paul; Fooks, Julie; Blue, Brent E.

    2015-12-22

    In this paper, we present a platform on the OMEGA EP Laser Facility that creates and diagnoses the conditions present during the preheat stage of the MAGnetized Liner Inertial Fusion (MagLIF) concept. Experiments were conducted using 9 kJ of 3ω (355 nm) light to heat an underdense deuterium gas (electron density: 2.5 × 1020 cm-3 = 0.025 of critical density) magnetized with a 10 T axial field. Results show that the deuterium plasma reached a peak electron temperature of 670 ± 140 eV, diagnosed using streaked spectroscopy of an argon dopant. The results demonstrate that plasmas relevant to the preheat stage of MagLIF can be produced at multiple laser facilities, thereby enabling more rapid progress in understanding magnetized preheat. Results are compared with magneto-radiation-hydrodynamics simulations, and plans for future experiments are described.

  9. Diagnosing laser-preheated magnetized plasmas relevant to magnetized liner inertial fusion

    DOE PAGESBeta

    Harvey-Thompson, Adam James; Sefkow, Adam B.; Nagayama, Taisuke N.; Wei, Mingsheng; Campbell, Edward Michael; Fiksel, Gennady; Chang, Po -Yu; Davies, Jonathan R.; Barnak, Daniel H.; Glebov, Vladimir Y.; et al

    2015-12-22

    In this paper, we present a platform on the OMEGA EP Laser Facility that creates and diagnoses the conditions present during the preheat stage of the MAGnetized Liner Inertial Fusion (MagLIF) concept. Experiments were conducted using 9 kJ of 3ω (355 nm) light to heat an underdense deuterium gas (electron density: 2.5 × 1020 cm-3 = 0.025 of critical density) magnetized with a 10 T axial field. Results show that the deuterium plasma reached a peak electron temperature of 670 ± 140 eV, diagnosed using streaked spectroscopy of an argon dopant. The results demonstrate that plasmas relevant to the preheatmore » stage of MagLIF can be produced at multiple laser facilities, thereby enabling more rapid progress in understanding magnetized preheat. Results are compared with magneto-radiation-hydrodynamics simulations, and plans for future experiments are described.« less

  10. Use of the Nanofitin Alternative Scaffold as a GFP-Ready Fusion Tag.

    PubMed

    Huet, Simon; Gorre, Harmony; Perrocheau, Anaëlle; Picot, Justine; Cinier, Mathieu

    2015-01-01

    With the continuous diversification of recombinant DNA technologies, the possibilities for new tailor-made protein engineering have extended on an on-going basis. Among these strategies, the use of the green fluorescent protein (GFP) as a fusion domain has been widely adopted for cellular imaging and protein localization. Following the lead of the direct head-to-tail fusion of GFP, we proposed to provide additional features to recombinant proteins by genetic fusion of artificially derived binders. Thus, we reported a GFP-ready fusion tag consisting of a small and robust fusion-friendly anti-GFP Nanofitin binding domain as a proof-of-concept. While limiting steric effects on the carrier, the GFP-ready tag allows the capture of GFP or its blue (BFP), cyan (CFP) and yellow (YFP) alternatives. Here, we described the generation of the GFP-ready tag from the selection of a Nanofitin variant binding to the GFP and its spectral variants with a nanomolar affinity, while displaying a remarkable folding stability, as demonstrated by its full resistance upon thermal sterilization process or the full chemical synthesis of Nanofitins. To illustrate the potential of the Nanofitin-based tag as a fusion partner, we compared the expression level in Escherichia coli and activity profile of recombinant human tumor necrosis factor alpha (TNFα) constructs, fused to a SUMO or GFP-ready tag. Very similar expression levels were found with the two fusion technologies. Both domains of the GFP-ready tagged TNFα were proved fully active in ELISA and interferometry binding assays, allowing the simultaneous capture by an anti-TNFα antibody and binding to the GFP, and its spectral mutants. The GFP-ready tag was also shown inert in a L929 cell based assay, demonstrating the potent TNFα mediated apoptosis induction by the GFP-ready tagged TNFα. Eventually, we proposed the GFP-ready tag as a versatile capture and labeling system in addition to expected applications of anti-GFP Nanofitins (as

  11. Use of the Nanofitin Alternative Scaffold as a GFP-Ready Fusion Tag

    PubMed Central

    Huet, Simon; Gorre, Harmony; Perrocheau, Anaëlle; Picot, Justine; Cinier, Mathieu

    2015-01-01

    With the continuous diversification of recombinant DNA technologies, the possibilities for new tailor-made protein engineering have extended on an on-going basis. Among these strategies, the use of the green fluorescent protein (GFP) as a fusion domain has been widely adopted for cellular imaging and protein localization. Following the lead of the direct head-to-tail fusion of GFP, we proposed to provide additional features to recombinant proteins by genetic fusion of artificially derived binders. Thus, we reported a GFP-ready fusion tag consisting of a small and robust fusion-friendly anti-GFP Nanofitin binding domain as a proof-of-concept. While limiting steric effects on the carrier, the GFP-ready tag allows the capture of GFP or its blue (BFP), cyan (CFP) and yellow (YFP) alternatives. Here, we described the generation of the GFP-ready tag from the selection of a Nanofitin variant binding to the GFP and its spectral variants with a nanomolar affinity, while displaying a remarkable folding stability, as demonstrated by its full resistance upon thermal sterilization process or the full chemical synthesis of Nanofitins. To illustrate the potential of the Nanofitin-based tag as a fusion partner, we compared the expression level in Escherichia coli and activity profile of recombinant human tumor necrosis factor alpha (TNFα) constructs, fused to a SUMO or GFP-ready tag. Very similar expression levels were found with the two fusion technologies. Both domains of the GFP-ready tagged TNFα were proved fully active in ELISA and interferometry binding assays, allowing the simultaneous capture by an anti-TNFα antibody and binding to the GFP, and its spectral mutants. The GFP-ready tag was also shown inert in a L929 cell based assay, demonstrating the potent TNFα mediated apoptosis induction by the GFP-ready tagged TNFα. Eventually, we proposed the GFP-ready tag as a versatile capture and labeling system in addition to expected applications of anti-GFP Nanofitins (as

  12. Accelerated Hydrolysis of Aspirin Using Alternating Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Reinscheid, Uwe M.

    2009-08-01

    The major problem of current drug-based therapy is selectivity. As in other areas of science, a combined approach might improve the situation decisively. The idea is to use the pro-drug principle together with an alternating magnetic field as physical stimulus, which can be applied in a spatially and temporarily controlled manner. As a proof of principle, the neutral hydrolysis of aspirin in physiological phosphate buffer of pH 7.5 at 40 °C was chosen. The sensor and actuator system is a commercially available gold nanoparticle (NP) suspension which is approved for animal usage, stable in high concentrations and reproducibly available. Applying the alternating magnetic field of a conventional NMR magnet system accelerated the hydrolysis of aspirin in solution.

  13. Non-superconducting magnet structures for near-term, large fusion experimental devices

    SciTech Connect

    File, J.; Knutson, D.S.; Marino, R.E.; Rappe, G.H.

    1980-10-01

    This paper describes the magnet and structural design in the following American tokamak devices: the Princeton Large Torus (PLT), the Princeton Divertor Experiment (PDX), and the Tokamak Fusion Test Reactor (TFTR). The Joint European Torus (JET), also presented herein, has a magnet structure evolved from several European programs and, like TFTR, represents state of the art magnet and structure design.

  14. Assessment of some of the problems in the USA of superconducting magnets for fusion research

    SciTech Connect

    Cornish, D.N.

    1981-11-05

    This paper discusses some of the general difficulties and problems encountered during the development of the technology of superconductors and superconducting magnets for fusion and expresses some personal concerns.

  15. MR and CT image fusion of the cervical spine: a noninvasive alternative to CT-myelography

    NASA Astrophysics Data System (ADS)

    Hu, Yangqiu; Mirza, Sohail K.; Jarvik, Jeffrey G.; Heagerty, Patrick J.; Haynor, David R.

    2005-04-01

    CT-Myelography (CTM) is routinely used for planning surgery for degenerative disease of the spine, but its invasive nature, significant potential morbidity, and high costs make a noninvasive substitute desirable. We report our work on evaluating CT and MR image fusion as an alternative to CTM. Because the spine is only piecewise rigid, a multi-rigid approach to the registration of spinal CT and MR images was developed (SPIE 2004), in which the spine on CT images is first segmented into separate vertebrae, each of which is then rigidly registered with the corresponding vertebra on MR images. The results are then blended to obtain fusion images. Since they contain information from both modalities, we hypothesized that fusion images would be equivalent to CTM. To test this we selected 34 patients who had undergone MRI and CTM for degenerative disease of the cervical spine, and used the multi-rigid approach to produce fused images. A clinical vignette for each patient was created and presented along with either CT/MR fusion images or CTM images. A group of spine surgeons are asked to formulate detailed surgical plans based on each set of images, and the surgical plans are compared. A similar study assessing diagnostic agreement is being performed with neuroradiologists, who also assess the accuracy of registration. Our work to date has demonstrated the feasibility of segmentation and multi-rigid fusion in clinical cases and the acceptability of the questionnaire to physicians. Preliminary analysis of one surgeon's and one neuroradiologist"s evaluation has been performed.

  16. Steady State Turbulent Transport in Magnetic Fusion Plasmas

    SciTech Connect

    Lee, W. W.; Ethier, S.; Kolesnikov, R.; Wang, W. X.; Tang, W. M.

    2007-12-20

    For more than a decade, the study of microturbulence, driven by ion temperature gradient (ITG) drift instabilities in tokamak devices, has been an active area of research in magnetic fusion science for both experimentalists and theorists alike. One of the important impetus for this avenue of research was the discovery of the radial streamers associated the ITG modes in the early nineties using a Particle-In-Cell (PIC) code. Since then, ITG simulations based on the codes with increasing realism have become possible with the dramatic increase in computing power. The notable examples were the demonstration of the importance of nonlinearly generated zonal flows in regulating ion thermal transport and the transition from Bohm to GyroBoham scaling with increased device size. In this paper, we will describe another interesting nonlinear physical process associated with the parallel acceleration of the ions, that is found to play an important role for the steady state turbulent transport. Its discovery is again through the use of the modern massively parallel supercomputers.

  17. Interfacial Stability of Converging Plasma Jets for Magnetized Target Fusion

    NASA Technical Reports Server (NTRS)

    Cassibry, J. T.; Thio, Y. C. F.; Wu, S. T.; Rodgers, Stephen L. (Technical Monitor)

    2001-01-01

    The merging of a spherical distribution of plasma jets to dynamically form a gaseous liner has been proposed for use in magnetized target fusion propulsion. In this paper, a study is made of the interfacial stability of the interaction of these jets. Specifically, the Orr-Sommerfeld equation is integrated to obtain the growth rate of a perturbation to the primary flow at the interface between the colliding jets. The analysis lead to an estimate on the tolerances on the relative flow velocities of the merging plasma jets to form a stable, imploding liner. The results show that during the merging of the jets to form a liner and before contact with the target plasma the growth of the perturbed flow at the jet interface is not likely to destabilize the liner. These data suggest that, as far as the stability of the interface between the merging jets is concerned, the formation of liner can withstand velocity variation up to 50% between the neighboring jets over the density and temperature ranges investigated.

  18. Field Reversed Configuration Translation and the Magnetized Target Fusion Collaboration

    NASA Astrophysics Data System (ADS)

    Intrator, T. P.; Wurden, G. A.; Sieck, P. E.; Waganaar, W. J.; Dorf, L.; Kostora, M.; Cortez, R. J.; Degnan, J. H.; Ruden, E. L.; Domonkos, M.; Adamson, P.; Grabowski, C.; Gale, D. G.; Kostora, M.; Sommars, W.; Frese, M.; Frese, S.; Camacho, J. F.; Parks, P.; Siemon, R. E.; Awe, T.; Lynn, A. G.; Gribble, R.

    2009-06-01

    After considerable design and construction, we describe the status of a physics exploration of magnetized target fusion (MTF) that will be carried out with the first flux conserving compression of a high pressure field-reversed configuration (FRC). The upgraded Los Alamos (LANL) high density FRC experiment FRXL has demonstrated that an appropriate FRC plasma target can be created and translated on a time scale fast enough to be useful for MTF. Compression to kilovolt temperature is expected to form a Mbar pressure, high energy density laboratory plasma (HEDLP). Integrated hardware on the new Field Reversed Compression and Heating Experiment (FRCHX) at the Air Force Research Laboratory Shiva Star facility, has formed initial FRC's and will radially compress them within a cylindrically symmetric aluminum "liner". FRXL has shown that time scales for FRC translation to the target region are significantly shorter than the typical FRC lifetime. The hardware, diagnostics, and design rationales are presented. Pre-compression plasma formation and trapping experimental data from FRXL and FRCHX are shown.

  19. Implications of NSTX Lithium Results for Magnetic Fusion Research

    SciTech Connect

    M. Ono, M.G. Bell, R.E. Bell, R. Kaita, H.W. Kugel, B.P. LeBlanc, J.M. Canik, S. Diem, S.P.. Gerhardt, J. Hosea, S. Kaye, D. Mansfield, R. Maingi, J. Menard, S. F. Paul, R. Raman, S.A. Sabbagh, C.H. Skinner, V. Soukhanovskii, G. Taylor, and the NSTX Research Team

    2010-01-14

    Lithium wall coating techniques have been experimentally explored on NSTX for the last five years. The lithium experimentation on NSTX started with a few milligrams of lithium injected into the plasma as pellets and it has evolved to a lithium evaporation system which can evaporate up to ~ 100 g of lithium onto the lower divertor plates between lithium reloadings. The unique feature of the lithium research program on NSTX is that it can investigate the effects of lithium in H-mode divertor plasmas. This lithium evaporation system thus far has produced many intriguing and potentially important results; the latest of these are summarized in a companion paper by H. Kugel. In this paper, we suggest possible implications and applications of the NSTX lithium results on the magnetic fusion research which include electron and global energy confinement improvements, MHD stability enhancement at high beta, ELM control, H-mode power threshold reduction, improvements in radio frequency heating and non-inductive plasma start-up performance, innovative divertor solutions and improved operational efficiency.

  20. Mirror fusion propulsion system: A performance comparison with alternate propulsion systems for the manned Mars Mission

    NASA Technical Reports Server (NTRS)

    Schulze, Norman R.; Carpenter, Scott A.; Deveny, Marc E.; Oconnell, T.

    1993-01-01

    The performance characteristics of several propulsion technologies applied to piloted Mars missions are compared. The characteristics that are compared are Initial Mass in Low Earth Orbit (IMLEO), mission flexibility, and flight times. The propulsion systems being compared are both demonstrated and envisioned: Chemical (or Cryogenic), Nuclear Thermal Rocket (NTR) solid core, NTR gas core, Nuclear Electric Propulsion (NEP), and a mirror fusion space propulsion system. The proposed magnetic mirror fusion reactor, known as the Mirror Fusion Propulsion System (MFPS), is described. The description is an overview of a design study that was conducted to convert a mirror reactor experiment at Lawrence Livermore National Lab (LLNL) into a viable space propulsion system. Design principles geared towards minimizing mass and maximizing power available for thrust are identified and applied to the LLNL reactor design, resulting in the MFPS. The MFPS' design evolution, reactor and fuel choices, and system configuration are described. Results of the performance comparison shows that the MFPS minimizes flight time to 60 to 90 days for flights to Mars while allowing continuous return-home capability while at Mars. Total MFPS IMLEO including propellant and payloads is kept to about 1,000 metric tons.

  1. Mirror fusion propulsion system: A performance comparison with alternate propulsion systems for the manned Mars Mission

    SciTech Connect

    Schulze, N.R.; Carpenter, S.A.; Deveny, M.E.; Oconnell, T.

    1993-06-01

    The performance characteristics of several propulsion technologies applied to piloted Mars missions are compared. The characteristics that are compared are Initial Mass in Low Earth Orbit (IMLEO), mission flexibility, and flight times. The propulsion systems being compared are both demonstrated and envisioned: Chemical (or Cryogenic), Nuclear Thermal Rocket (NTR) solid core, NTR gas core, Nuclear Electric Propulsion (NEP), and a mirror fusion space propulsion system. The proposed magnetic mirror fusion reactor, known as the Mirror Fusion Propulsion System (MFPS), is described. The description is an overview of a design study that was conducted to convert a mirror reactor experiment at Lawrence Livermore National Lab (LLNL) into a viable space propulsion system. Design principles geared towards minimizing mass and maximizing power available for thrust are identified and applied to the LLNL reactor design, resulting in the MFPS. The MFPS' design evolution, reactor and fuel choices, and system configuration are described. Results of the performance comparison shows that the MFPS minimizes flight time to 60 to 90 days for flights to Mars while allowing continuous return-home capability while at Mars. Total MFPS IMLEO including propellant and payloads is kept to about 1,000 metric tons.

  2. Mirror fusion propulsion system - A performance comparison with alternate propulsion systems for the manned Mars mission

    SciTech Connect

    Deveny, M.; Carpenter, S.; O'connell, T.; Schulze, N.

    1993-06-01

    The performance characteristics of several propulsion technologies applied to piloted Mars missions are compared. The characteristics that are compared are Initial Mass in Low Earth Orbit (IMLEO), mission flexibility, and flight times. The propulsion systems being compared are both demonstrated and envisioned: Chemical (or Cryogenic), Nuclear Thermal Rocket (NTR) solid core, NTR gas core, Nuclear Electric Propulsion (NEP), and a mirror fusion space propulsion system. The proposed magnetic mirror fusion reactor, known as the Mirror Fusion Propulsion System (MFPS), is described. The description is an overview of a design study that was conducted to convert a mirror reactor experiment at Lawrence Livermore National Lab (LLNL) into a viable space propulsion system. Design principles geared towards minimizing mass and maximizing power available for thrust are identified and applied to the LLNL reactor design, resulting in the MFPS. The MFPS' design evolution, reactor and fuel choices, and system configuration are described. Results of the performance comparison shows that the MFPS minimizes flight time to 60 to 90 days for flights to Mars while allowing continuous return-home capability while at Mars. Total MFPS IMLEO including propellant and payloads is kept to about 1,000 metric tons. 50 refs.

  3. Mirror fusion propulsion system - A performance comparison with alternate propulsion systems for the manned Mars mission

    NASA Technical Reports Server (NTRS)

    Deveny, M.; Carpenter, S.; O'Connell, T.; Schulze, N.

    1993-01-01

    The performance characteristics of several propulsion technologies applied to piloted Mars missions are compared. The characteristics that are compared are Initial Mass in Low Earth Orbit (IMLEO), mission flexibility, and flight times. The propulsion systems being compared are both demonstrated and envisioned: Chemical (or Cryogenic), Nuclear Thermal Rocket (NTR) solid core, NTR gas core, Nuclear Electric Propulsion (NEP), and a mirror fusion space propulsion system. The proposed magnetic mirror fusion reactor, known as the Mirror Fusion Propulsion System (MFPS), is described. The description is an overview of a design study that was conducted to convert a mirror reactor experiment at Lawrence Livermore National Lab (LLNL) into a viable space propulsion system. Design principles geared towards minimizing mass and maximizing power available for thrust are identified and applied to the LLNL reactor design, resulting in the MFPS. The MFPS' design evolution, reactor and fuel choices, and system configuration are described. Results of the performance comparison shows that the MFPS minimizes flight time to 60 to 90 days for flights to Mars while allowing continuous return-home capability while at Mars. Total MFPS IMLEO including propellant and payloads is kept to about 1,000 metric tons.

  4. Computational modeling of joint U.S.-Russian experiments relevant to magnetic compression/magnetized target fusion (MAGO/MTF)

    SciTech Connect

    Sheehey, P.T.; Faehl, R.J.; Kirkpatrick, R.C.; Lindemuth, I.R.

    1997-12-31

    Magnetized Target Fusion (MTF) experiments, in which a preheated and magnetized target plasma is hydrodynamically compressed to fusion conditions, present some challenging computational modeling problems. Recently, joint experiments relevant to MTF (Russian acronym MAGO, for Magnitnoye Obzhatiye, or magnetic compression) have been performed by Los Alamos National Laboratory and the All-Russian Scientific Research Institute of Experimental Physics (VNIIEF). Modeling of target plasmas must accurately predict plasma densities, temperatures, fields, and lifetime; dense plasma interactions with wall materials must be characterized. Modeling of magnetically driven imploding solid liners, for compression of target plasmas, must address issues such as Rayleigh-Taylor instability growth in the presence of material strength, and glide plane-liner interactions. Proposed experiments involving liner-on-plasma compressions to fusion conditions will require integrated target plasma and liner calculations. Detailed comparison of the modeling results with experiment will be presented.

  5. Alternative magnetic flux leakage modalities for pipeline inspection

    SciTech Connect

    Katragadda, G.; Lord, W.; Sun, Y.S.; Udpa, S.; Udpa, L.

    1996-05-01

    Increasing quality consciousness is placing higher demands on the accuracy and reliability of inspection systems used in defect detection and characterization. Nondestructive testing techniques often rely on using multi-transducer approaches to obtain greater defect sensitivity. This paper investigates the possibility of taking advantage of alternative modalities associated with the standard magnetic flux leakage tool to obtain additional defect information, while still using a single excitation source.

  6. Magnetized target fusion: An ultra high energy approach in an unexplored parameter space

    NASA Astrophysics Data System (ADS)

    Lindemuth, I. R.

    Magnetized target fusion is a concept that may lead to practical fusion applications in a variety of settings. However, the crucial first step is to demonstrate that it works as advertised. Among the possibilities for doing this is an ultrahigh energy approach to magnetized target fusion, one powered by explosive pulsed power generators that have become available for application to thermonuclear fusion research. In a collaborative effort between Los Alamos and the All-Russian Scientific Institute for Experimental Physics (VNIIEF) a very powerful helical generator with explosive power switching has been used to produce an energetic magnetized plasma. Several diagnostics have been fielded to ascertain the properties of this plasma. We are intensively studying the results of the experiments and calculationally analyzing the performance of this experiment.

  7. Thick Liquid-Walled Spheromak Magnetic Fusion Power Plant

    SciTech Connect

    Moir, R W; Bulmer, R H; Fowler, T K; Youssef, M Z

    2002-04-08

    We assume a spheromak configuration can be made and sustained by a steady gun current, which injects particles, current and magnetic field, i.e., helicity injection. The equilibrium is calculated with an MHD equilibrium code, where an average beta of 10% is found. The toroidal current of 40 MA is sustained by an injection current of 100 kA (125 MW of gun power). The flux linking the gun is 1/1000th that of the flux in the spheromak. The geometry allows a flow of liquid, either molten salt, (flibe-Li{sub 2}BeF{sub 4} or flinabe-LiNaBeF{sub 4}) or liquid metal such as SnLi which protects most of the walls and structures from neutron damage. The free surface between the liquid and the burning plasma is heated by bremsstrahlung and optical radiation and neutrons from the plasma. The temperature of the free surface of the liquid is calculated and then the evaporation rate is estimated. The impurity concentration in the burning plasma is estimated and limited to a 20% reduction in the fusion power. For a high radiating edge plasma, the divertor power density of 460 MW/m{sup 2} is handled by high-speed (20 m/s), liquid jets. For low radiating edge plasmas, the divertor-power density of 1860 MW/m{sup 2} is too high to handle for flibe but possibly acceptable for SnLi with jets of 100 m/s flow speed. Calculations show the tritium breeding is adequate with enriched Li and appropriate design of the walls not covered by flowing liquid 15% of the total. We have come up with a number of problem areas needing further study to make the design self consistent and workable.

  8. Study on ultra-precision magnetic abrasive finishing process using low frequency alternating magnetic field

    NASA Astrophysics Data System (ADS)

    Wu, Jinzhong; Zou, Yanhua; Sugiyama, Hitoshi

    2015-07-01

    We proposed a new ultra-precision magnetic abrasive finishing (MAF) process using low frequency alternating magnetic field in this paper. Magnetic cluster themselves may produce the up and down movement change under alternating magnetic force. The movement may not only promote the dispersion of micro-magnetic particles, but also improve stirring effect and cross-cutting effects of the abrasives, achieving circulation and update to ensure the stability of grinding tools. This process is considered to be able to efficiently apply in ultra-precision finishing of plane and complicated micro-surfaces. In this study, we investigated the effects of alternating magnetic field on magnetic field distribution, finishing force and abrasive behavior. Furthermore, a set of experimental devices have been designed for finishing SUS304 stainless steel plate. The present work is aimed at understanding finishing particularity of this process and studying impacts of important process parameters namely grinding fluid, rotational speed of magnetic pole, current frequency on change in finish surface and material removal. Experimental results indicate that the process can realize ultra-precision finishing of plane by using oily grinding fluid. In the present research, the surface roughness of SUS304 stainless steel plate was improved from 240.24 nm to 4.38 nm by this process.

  9. Magnetic properties of multisegmented cylindrical nanoparticles with alternating magnetic wire and tube segments

    NASA Astrophysics Data System (ADS)

    Salazar-Aravena, D.; Corona, R. M.; Goerlitz, D.; Nielsch, K.; Escrig, J.

    2013-11-01

    The magnetic properties in multisegmented cylindrical nanostructures comprised of nanowire and nanotube segments are investigated numerically as a function of their geometry. In this work we report systematic changes in the coercivity and remanence in these systems. Besides, we have found the ideal conditions for a magnetic configuration with two antiparallel domains that could be used to help to stabilize magnetic nanoparticles inside ferromagnetic multisegmented cylindrical nanoparticles. This magnetic behavior is due to the fact that the tube segment reverses its magnetization before the wire segment, allowing the control of the magnetic domain walls motion between two segments. In this way, these magnetic nanoobjects can be an alternative to store information or even perform logic functions.

  10. Measurements of temperature and density in magnetic confinement fusion devices

    NASA Astrophysics Data System (ADS)

    Udintsev, Victor S.

    2010-11-01

    Controlled thermonuclear fusion can fulfil the demand of mankind to have an inexhaustible source of energy that does not cause any serious environmental pollution. The aim of fusion research is to build a continuously operating reactor in which the energy released by the fusion reactions is sufficiently high to keep the plasma hot and to produce more fusion reactions. The knowledge of the plasma temperature and density, together with the energy confinement time, is therefore very important for the effective control of the self-sustained fusion reactor. Various methods and diagnostics for measurements of the plasma temperature and density in present experimental fusion devices, as well as requirements for the future fusion reactors, will be discussed. A special attention will be given to the temperature and density diagnostics in ITER tokamak, which is presently under construction by several international partners at Cadarache in France. Development of these diagnostics is a major challenge because of severe environment, strict engineering requirements, safety issues and the need for high reliability in the measurements.

  11. Fusion energy in an inertial electrostatic confinement device using a magnetically shielded grid

    SciTech Connect

    Hedditch, John Bowden-Reid, Richard Khachan, Joe

    2015-10-15

    Theory for a gridded inertial electrostatic confinement (IEC) fusion system is presented, which shows a net energy gain is possible if the grid is magnetically shielded from ion impact. A simplified grid geometry is studied, consisting of two negatively biased coaxial current-carrying rings, oriented such that their opposing magnetic fields produce a spindle cusp. Our analysis indicates that better than break-even performance is possible even in a deuterium-deuterium system at bench-top scales. The proposed device has the unusual property that it can avoid both the cusp losses of traditional magnetic fusion systems and the grid losses of traditional IEC configurations.

  12. Radiation-induced electrical breakdown of helium in fusion reactor superconducting magnet systems

    SciTech Connect

    Perkins, L.J.

    1983-12-02

    A comprehensive theoretical study has been performed on the reduction of the electrical breakdown potential of liquid and gaseous helium under neutron and gamma radiation. Extension of the conventional Townsend breakdown theory indicates that radiation fields at the superconducting magnets of a typical fusion reactor are potentially capable of significantly reducing currently established (i.e., unirradiated) helium breakdown voltages. Emphasis is given to the implications of these results including future deployment choices of magnet cryogenic methods (e.g., pool-boiling versus forced-flow), the possible impact on magnet shielding requirements and the analogous situation for radiation-induced electrical breakdown in fusion RF transmission systems.

  13. [Degenerative disorders of the lumbar spine Total disc replacement as an alternative to lumbar fusion?].

    PubMed

    Mayer, H M

    2005-10-01

    Spinal fusion is accepted worldwide as a therapeutic option for the treatment of degenerative disorders of the lumbar spine. Because there are only few evidence-based data available supporting the usefulness of lumbar spinal fusion, its questionable benefit as well as the potential for complications are the reasons for an ongoing discussion. In recent years, total disc replacement with implants has emerged as an alternative treatment. Although early results are promising, there is still a lack of evidence-based data as well as of long-term results for this technology. This article gives a critical update on the implant systems currently in use (SB Charité, Prodisc II L, Maverick, Flexicore, Mobidisc), which all have to be considered as "first-generation" implants. Morphological and clinical sequelae of the different biomechanical properties, designs, and materials have not yet been sufficiently investigated. There is no international consensus on the indication spectrum and on the preoperative diagnosis of discogenic low back pain. The same is true for the (minimally invasive) surgical access strategies. Complication rates seem to be somewhat lower compared to spinal fusion techniques. There are no standardized revision concepts in cases of implant failure. Lumbar disc replacement has opened a new era in spinal surgery with a still unproven benefit for the patient. It is strongly recommended that these techniques should only be applied by experienced and well-trained spine surgeons. Until evidence-based data are available, all patients should be treated under scientific study conditions with close postoperative follow-up. PMID:16034627

  14. Development of motion capture system using alternating magnetic field

    NASA Astrophysics Data System (ADS)

    Kumagai, Masaaki; Akamatsu, Kazuyoshi

    2005-12-01

    Motion capture systems are widely used for virtual reality, motion acquisition for medical researches, for humanoid robots, for video games, etc. Several types of them have been developed and used for applications considering their advantages and restrictions. Another type of motion capture system that uses alternating magnetic field is proposed in this paper. The system uses a field exciting coil that covers measuring area and a pickup coil attached to target. First, six alternating fields are generated simultaneously in measuring area, and signals are induced on pickup coils according to attitude and position of it. These signals are processed to extract amplitude of exciting components, and state of the pickup coil is calculated from those components. It can detect attitude and displacement of target with high resolution and fast response speed. The principles of detection and brief experimental results are described.

  15. Identification of Alternative Splicing and Fusion Transcripts in Non-Small Cell Lung Cancer by RNA Sequencing

    PubMed Central

    Hong, Yoonki; Bang, Chi Young; Lee, Jae Cheol; Oh, Yeon-Mok

    2016-01-01

    Background Lung cancer is the most common cause of cancer related death. Alterations in gene sequence, structure, and expression have an important role in the pathogenesis of lung cancer. Fusion genes and alternative splicing of cancer-related genes have the potential to be oncogenic. In the current study, we performed RNA-sequencing (RNA-seq) to investigate potential fusion genes and alternative splicing in non-small cell lung cancer. Methods RNA was isolated from lung tissues obtained from 86 subjects with lung cancer. The RNA samples from lung cancer and normal tissues were processed with RNA-seq using the HiSeq 2000 system. Fusion genes were evaluated using Defuse and ChimeraScan. Candidate fusion transcripts were validated by Sanger sequencing. Alternative splicing was analyzed using multivariate analysis of transcript sequencing and validated using quantitative real time polymerase chain reaction. Results RNA-seq data identified oncogenic fusion genes EML4-ALK and SLC34A2-ROS1 in three of 86 normal-cancer paired samples. Nine distinct fusion transcripts were selected using DeFuse and ChimeraScan; of which, four fusion transcripts were validated by Sanger sequencing. In 33 squamous cell carcinoma, 29 tumor specific skipped exon events and six mutually exclusive exon events were identified. ITGB4 and PYCR1 were top genes that showed significant tumor specific splice variants. Conclusion In conclusion, RNA-seq data identified novel potential fusion transcripts and splice variants. Further evaluation of their functional significance in the pathogenesis of lung cancer is required. PMID:27066085

  16. Renal perfusion evaluation by alternating current biosusceptometry of magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Quini, Caio C.; Matos, Juliana F.; Próspero, André G.; Calabresi, Marcos Felipe F.; Zufelato, Nicholas; Bakuzis, Andris F.; Baffa, Oswaldo; Miranda, José Ricardo A.

    2015-04-01

    Alternating current susceptometry, a simple and affordable technique, was employed to study the sensitivity of this approach to assess rat kidney perfusion by the injection of 200 μL of magnetic nanoparticles with a concentration of 23 mg/mL in the femoral vein and the measurement of the signal above the kidney. The instrument was able to detect the signal and the transit time of the first and second pass were measured in five animals with average values of 13.6±4.3 s and 20.6±7.1 s.

  17. Demountable Toroidal Field Magnets for Use in a Compact Modular Fusion Reactor

    NASA Astrophysics Data System (ADS)

    Mangiarotti, F. J.; Goh, J.; Takayasu, M.; Bromberg, L.; Minervini, J. V.; Whyte, D.

    2014-05-01

    A concept of demountable toroidal field magnets for a compact fusion reactor is discussed. The magnets generate a magnetic field of 9.2 T on axis, in a 3.3 m major radius tokamak. Subcooled YBCO conductors have a critical current density adequate to provide this large magnetic field, while operating at 20 K reduces thermodynamic cooling cost of the resistive electrical joints. Demountable magnets allow for vertical replacement and maintenance of internal components, potentially reducing cost and time of maintenance when compared to traditional sector maintenance. Preliminary measurements of contact resistance of a demountable YBCO electrical joint between are presented.

  18. Inertial confinement fusion with direct electric generation by magnetic flux comparession

    SciTech Connect

    Lasche, G.P.

    1983-01-01

    A high-power-density laser-fusion-reactor concept in investigated in which directed kinetic enery imparted to a large mass of liquid lithium--in which the fusion target is centrally located--is maximized. In turn, this kinetic energy is converted directly to electricity with, potentially, very high efficiency by work done against a pulsed magnetic field applied exterior to the lithium. Because the concept maximizes the blanket thickness per unit volume of lithium, neutron-induced radioactivities in the reaction chamber wall can be many orders of magnitude less than is typical of D-T fusion reactor concepts.

  19. Design of magnetic molecularly imprinted polymer nanoparticles for controlled release of doxorubicin under an alternative magnetic field in athermal conditions.

    PubMed

    Griffete, N; Fresnais, J; Espinosa, A; Wilhelm, C; Bée, A; Ménager, C

    2015-12-01

    An innovative magnetic delivery nanomaterial for triggered cancer therapy showing active control over drug release by using an alternative magnetic field is proposed. In vitro and In vivo release of doxorubicin (DOX) were investigated and showed a massive DOX release under an alternative magnetic field without temperature elevation of the medium. PMID:26515533

  20. The role of Z-pinches and related configurations in magnetized target fusion

    SciTech Connect

    Lindemuth, I.R.

    1997-07-10

    The use of a magnetic field within a fusion target is now known as Magnetized Target Fusion in the US and as MAGO (Magnitnoye Obzhatiye, or magnetic compression) in Russia. In contrast to direct, hydrodynamic compression of initially ambient-temperature fuel (e.g., ICF), MTF involves two steps: (a) formation of a warm, magnetized, wall-confined plasma of intermediate density within a fusion target prior to implosion; (b) subsequent quasi-adiabatic compression and heating of the plasma by imploding the confining wall, or pusher. In many ways, MTF can be considered a marriage between the more mature MFE and ICF approaches, and this marriage potentially eliminates some of the hurdles encountered in the other approaches. When compared to ICF, MTF requires lower implosion velocity, lower initial density, significantly lower radial convergence, and larger targets, all of which lead to substantially reduced driver intensity, power, and symmetry requirements. When compared to MFE, MTF does not require a vacuum separating the plasma from the wall, and, in fact, complete magnetic confinement, even if possible, may not be desirable. The higher density of MTF and much shorter confinement times should make magnetized plasma formation a much less difficult step than in MFE. The substantially lower driver requirements and implosion velocity of MTF make z-pinch magnetically driven liners, magnetically imploded by existing modern pulsed power electrical current sources, a leading candidate for the target pusher of an MTF system.

  1. Understanding Fuel Magnetization and Mix Using Secondary Nuclear Reactions in Magneto-Inertial Fusion

    NASA Astrophysics Data System (ADS)

    Schmit, P. F.; Knapp, P. F.; Hansen, S. B.; Gomez, M. R.; Hahn, K. D.; Sinars, D. B.; Peterson, K. J.; Slutz, S. A.; Sefkow, A. B.; Awe, T. J.; Harding, E.; Jennings, C. A.; Chandler, G. A.; Cooper, G. W.; Cuneo, M. E.; Geissel, M.; Harvey-Thompson, A. J.; Herrmann, M. C.; Hess, M. H.; Johns, O.; Lamppa, D. C.; Martin, M. R.; McBride, R. D.; Porter, J. L.; Robertson, G. K.; Rochau, G. A.; Rovang, D. C.; Ruiz, C. L.; Savage, M. E.; Smith, I. C.; Stygar, W. A.; Vesey, R. A.

    2014-10-01

    Magnetizing the fuel in inertial confinement fusion relaxes ignition requirements by reducing thermal conductivity and changing the physics of burn product confinement. Diagnosing the level of fuel magnetization during burn is critical to understanding target performance in magneto-inertial fusion (MIF) implosions. In pure deuterium fusion plasma, 1.01 MeV tritons are emitted during deuterium-deuterium fusion and can undergo secondary deuterium-tritium reactions before exiting the fuel. Increasing the fuel magnetization elongates the path lengths through the fuel of some of the tritons, enhancing their probability of reaction. Based on this feature, a method to diagnose fuel magnetization using the ratio of overall deuterium-tritium to deuterium-deuterium neutron yields is developed. Analysis of anisotropies in the secondary neutron energy spectra further constrain the measurement. Secondary reactions also are shown to provide an upper bound for the volumetric fuel-pusher mix in MIF. The analysis is applied to recent MIF experiments [M. R. Gomez et al., Phys. Rev. Lett. 113, 155003 (2014), 10.1103/PhysRevLett.113.155003] on the Z Pulsed Power Facility, indicating that significant magnetic confinement of charged burn products was achieved and suggesting a relatively low-mix environment. Both of these are essential features of future ignition-scale MIF designs.

  2. Understanding fuel magnetization and mix using secondary nuclear reactions in magneto-inertial fusion.

    PubMed

    Schmit, P F; Knapp, P F; Hansen, S B; Gomez, M R; Hahn, K D; Sinars, D B; Peterson, K J; Slutz, S A; Sefkow, A B; Awe, T J; Harding, E; Jennings, C A; Chandler, G A; Cooper, G W; Cuneo, M E; Geissel, M; Harvey-Thompson, A J; Herrmann, M C; Hess, M H; Johns, O; Lamppa, D C; Martin, M R; McBride, R D; Porter, J L; Robertson, G K; Rochau, G A; Rovang, D C; Ruiz, C L; Savage, M E; Smith, I C; Stygar, W A; Vesey, R A

    2014-10-10

    Magnetizing the fuel in inertial confinement fusion relaxes ignition requirements by reducing thermal conductivity and changing the physics of burn product confinement. Diagnosing the level of fuel magnetization during burn is critical to understanding target performance in magneto-inertial fusion (MIF) implosions. In pure deuterium fusion plasma, 1.01 MeV tritons are emitted during deuterium-deuterium fusion and can undergo secondary deuterium-tritium reactions before exiting the fuel. Increasing the fuel magnetization elongates the path lengths through the fuel of some of the tritons, enhancing their probability of reaction. Based on this feature, a method to diagnose fuel magnetization using the ratio of overall deuterium-tritium to deuterium-deuterium neutron yields is developed. Analysis of anisotropies in the secondary neutron energy spectra further constrain the measurement. Secondary reactions also are shown to provide an upper bound for the volumetric fuel-pusher mix in MIF. The analysis is applied to recent MIF experiments [M. R. Gomez et al., Phys. Rev. Lett. 113, 155003 (2014)] on the Z Pulsed Power Facility, indicating that significant magnetic confinement of charged burn products was achieved and suggesting a relatively low-mix environment. Both of these are essential features of future ignition-scale MIF designs. PMID:25375715

  3. Thin film metallic sensors in an alternating magnetic field for magnetic nanoparticle hyperthermia cancer therapy

    NASA Astrophysics Data System (ADS)

    Hussein, Z. A.; Boekelheide, Z.

    In magnetic nanoparticle hyperthermia in an alternating magnetic field for cancer therapy, it is important to monitor the temperature in situ. This can be done optically or electrically, but electronic measurements can be problematic because conducting parts heat up in a changing magnetic field. Microfabricated thin film sensors may be advantageous because eddy current heating is a function of size, and are promising for further miniaturization of sensors and fabrication of arrays of sensors. Thin films could also be used for in situ magnetic field sensors or for strain sensors. For a proof of concept, we fabricated a metallic thin film resistive thermometer by photolithographically patterning a 500Å Au/100Å Cr thin film on a glass substrate. Measurements were taken in a solenoidal coil supplying 0.04 T (rms) at 235 kHz with the sensor parallel and perpendicular to the magnetic field. In the parallel orientation, the resistive thermometer mirrored the background heating from the coil, while in the perpendicular orientation self-heating was observed due to eddy current heating of the conducting elements by Faraday's law. This suggests that metallic thin film sensors can be used in an alternating magnetic field, parallel to the field, with no significant self-heating.

  4. The plasma formation stage in magnetic compression/magnetized target fusion (MAGO/MTF)

    SciTech Connect

    Lindemuth, I.R.; Reinovsky, R.E.; Chrien, R.E.

    1996-12-31

    In early 1992, emerging governmental policy in the US and Russia began to encourage ``lab-to-lab`` interactions between the All- Russian Scientific Research Institute of Experimental Physics (VNIIEF) and the Los Alamos National Laboratory (LANL). As nuclear weapons stockpiles and design activities were being reduced, highly qualified scientists become for fundamental scientific research of interest to both nations. VNIIEF and LANL found a common interest in the technology and applications of magnetic flux compression, the technique for converting the chemical energy released by high-explosives into intense electrical pulses and intensely concentrated magnetic energy. Motivated originally to evaluate any possible defense applications of flux compression technology, the two teams worked independently for many years, essentially unaware of the others` accomplishments. But, an early US publication stimulated Soviet work, and the Soviets followed with a report of the achievement of 25 MG. During the cold war, a series of conferences on Megagauss Magnetic Field Generation and Related Topics became a forum for scientific exchange of ideas and accomplishments. Because of relationships established at the Megagauss conferences, VNIIEF and LANL were able to respond quickly to the initiatives of their respective governments. In late 1992, following the Megagauss VI conference, the two institutions agreed to combine resources to perform a series of experiments that essentially could not be performed by each institution independently. Beginning in September, 1993, the two institutions have performed eleven joint experimental campaigns, either at VNIIEF or at LANL. Megagauss- VII has become the first of the series to include papers with joint US and Russian authorship. In this paper, we review the joint LANL/VNIIEF experimental work that has relevance to a relatively unexplored approach to controlled thermonuclear fusion.

  5. Magnetic Probe to Study Plasma Jets for Magneto-Inertial Fusion

    SciTech Connect

    Martens, Daniel; Hsu, Scott C.

    2012-08-16

    A probe has been constructed to measure the magnetic field of a plasma jet generated by a pulsed plasma rail-gun. The probe consists of two sets of three orthogonally-oriented commercial chip inductors to measure the three-dimensional magnetic field vector at two separate positions in order to give information about the magnetic field evolution within the jet. The strength and evolution of the magnetic field is one of many factors important in evaluating the use of supersonic plasma jets for forming imploding spherical plasma liners as a standoff driver for magneto-inertial fusion.

  6. Direct measurement of the impulse in a magnetic thrust chamber system for laser fusion rocket

    SciTech Connect

    Maeno, Akihiro; Yamamoto, Naoji; Nakashima, Hideki; Fujioka, Shinsuke; Johzaki, Tomoyuki; Mori, Yoshitaka; Sunahara, Atsushi

    2011-08-15

    An experiment is conducted to measure an impulse for demonstrating a magnetic thrust chamber system for laser fusion rocket. The impulse is produced by the interaction between plasma and magnetic field. In the experiment, the system consists of plasma and neodymium permanent magnets. The plasma is created by a single-beam laser aiming at a polystyrene spherical target. The impulse is 1.5 to 2.2 {mu}Ns by means of a pendulum thrust stand, when the laser energy is 0.7 J. Without magnetic field, the measured impulse is found to be zero. These results indicate that the system for generating impulse is working.

  7. Fusion

    NASA Astrophysics Data System (ADS)

    Herman, Robin

    1990-10-01

    The book abounds with fascinating anecdotes about fusion's rocky path: the spurious claim by Argentine dictator Juan Peron in 1951 that his country had built a working fusion reactor, the rush by the United States to drop secrecy and publicize its fusion work as a propaganda offensive after the Russian success with Sputnik; the fortune Penthouse magazine publisher Bob Guccione sank into an unconventional fusion device, the skepticism that met an assertion by two University of Utah chemists in 1989 that they had created "cold fusion" in a bottle. Aimed at a general audience, the book describes the scientific basis of controlled fusion--the fusing of atomic nuclei, under conditions hotter than the sun, to release energy. Using personal recollections of scientists involved, it traces the history of this little-known international race that began during the Cold War in secret laboratories in the United States, Great Britain and the Soviet Union, and evolved into an astonishingly open collaboration between East and West.

  8. Cerebral magnetic resonance image segmentation using data fusion

    SciTech Connect

    Rajapakse, J.C.; Giedd, J.N.; Krain, A.L.; Hamburger, S.D.; Rapoport, J.L.; DeCarli, C.

    1996-03-01

    A semiautomated method is described for segmenting dual echo MR head scans into gray and white matter and CSF. The method is applied to brain scans of 80 healthy children and adolescents. A probabilistic data fusion equation was used to combine simultaneously acquired T2-weighted and proton density head scans for tissue segmentation. The fusion equation optimizes the probability of a voxel being a particular tissue type, given the corresponding probabilities from both images. The algorithm accounts for the intensity inhomogeneities present in the images by fusion of local regions of the images. The method was validated using a phantom (agarose gel with iron oxide particles) and hand-segmented imager. Gray and white matter volumes for subjects aged 20-30 years were close to those previously published. White matter and CSF volume increased and gray matter volume decreased significantly across ages 4-18 years. White matter, gray matter, and CSF volumes were larger for males than for females. Males and females showed similar change of gray and white matter volumes with age. This simple, reliable, and valid method can be employed in clinical research for quantification of gray and white matter and CSF volumes in MR head scans. Increase in white matter volume may reflect ongoing axonal growth and myelination, and gray matter reductions may reflect synaptic pruning or cell death in the age span of 4-18 years. 41 refs., 5 figs., 3 tabs.

  9. Proliferation risks of magnetic fusion energy: clandestine production, covert production and breakout

    NASA Astrophysics Data System (ADS)

    Glaser, A.; Goldston, R. J.

    2012-04-01

    Nuclear proliferation risks from magnetic fusion energy associated with access to weapon-usable materials can be divided into three main categories: (1) clandestine production of weapon-usable material in an undeclared facility, (2) covert production of such material in a declared facility and (3) use of a declared facility in a breakout scenario, in which a state begins production of fissile material without concealing the effort. In this paper, we address each of these categories of risks from fusion. For each case, we find that the proliferation risk from fusion systems can be much lower than the equivalent risk from fission systems, if the fusion system is designed to accommodate appropriate safeguards.

  10. Laser or charged-particle-beam fusion reactor with direct electric generation by magnetic flux compression

    DOEpatents

    Lasche, George P.

    1988-01-01

    A high-power-density laser or charged-particle-beam fusion reactor system maximizes the directed kinetic energy imparted to a large mass of liquid lithium by a centrally located fusion target. A fusion target is embedded in a large mass of lithium, of sufficient radius to act as a tritium breeding blanket, and provided with ports for the access of beam energy to implode the target. The directed kinetic energy is converted directly to electricity with high efficiency by work done against a pulsed magnetic field applied exterior to the lithium. Because the system maximizes the blanket thickness per unit volume of lithium, neutron-induced radioactivities in the reaction chamber wall are several orders of magnitude less than is typical of other fusion reactor systems.

  11. Laser or charged-particle-beam fusion reactor with direct electric generation by magnetic flux compression

    DOEpatents

    Lasche, G.P.

    1987-02-20

    A high-power-density-laser or charged-particle-beam fusion reactor system maximizes the directed kinetic energy imparted to a large mass of liquid lithium by a centrally located fusion target. A fusion target is embedded in a large mass of lithium, of sufficient radius to act as a tritium breeding blanket, and provided with ports for the access of beam energy to implode the target. The directed kinetic energy is converted directly to electricity with high efficiency by work done against a pulsed magnetic field applied exterior to the lithium. Because the system maximizes the blanket thickness per unit volume of lithium, neutron-induced radioactivities in the reaction chamber wall are several orders of magnitude less than is typical of other fusion reactor systems. 25 figs.

  12. A Study of Liquid Metal Film Flow, Under Fusion Relevant Magnetic Fields

    SciTech Connect

    Narula, M.; Ying, A.; Abdou, M.A.

    2005-04-15

    The use of flowing liquid metal streams or 'liquid walls' as a plasma contact surface is a very attractive option and has received considerable attention over the past several years both in the plasma physics and fusion engineering programs. A key issue for the feasibility of flowing liquid metal plasma facing component (PFC) systems, lies in their magnetohydrodynamic (MHD) behavior. The spatially varying magnetic field environment, typical of a fusion device can lead to serious flow disrupting MHD forces that hinder the development of a smooth and controllable flow needed for PFC applications. The present study builds up on the ongoing research effort at UCLA, directed towards providing qualitative and quantitative data on liquid metal free surface flow behavior under fusion relevant magnetic fields, to aid in better understanding of flowing liquid metal PFC systems.

  13. EAST alternative magnetic configurations: modelling and first experiments

    NASA Astrophysics Data System (ADS)

    Calabrò, G.; Xiao, B. J.; Chen, S. L.; Duan, Y. M.; Guo, Y.; Li, J. G.; Liu, L.; Luo, Z. P.; Wang, L.; Xu, J.; Zhang, B.; Albanese, R.; Ambrosino, R.; Crisanti, F.; Pericoli Ridolfini, V.; Villone, F.; Viola, B.; Barbato, L.; De Magistris, M.; De Tommasi, G.; Giovannozzi, E.; Mastrostefano, S.; Minucci, S.; Pironti, A.; Ramogida, G.; Tuccillo, A. A.; Zagórski, R.

    2015-08-01

    Heat and particle loads on the plasma facing components are among the most challenging issues to be solved for a reactor design. Alternative magnetic configurations may enable tokamak operation with a lower peak heat load than a standard single null (SN) divertor. This papers reports on the creation and control of one of such alternatives: a two-null nearby divertor configuration. An important element of this study is that this two-null divertor was produced on a large superconducting tokamak as an experimental advanced superconducting tokamak. A preliminary experiment with the second null forming a configuration with significant distance between the two nulls and a contracting geometry near the target plates was performed in 2014. These configurations have been designed using the FIXFREE code and optimized with CREATE-NL tools and are discussed in the paper. Predictive edge simulations using the TECXY code are also presented by comparing the advanced divertor and SN configuration. Finally, the experimental results of ohmic and low confinement (L-mode) two-null divertor and SN discharges and interpretative two-dimensional edge simulations are discussed. Future experiments will be devoted to varying the distance between the two nulls in high confinement (H-mode) discharges.

  14. Magnetic flux and heat losses by diffusive, advective, and Nernst effects in magnetized liner inertial fusion-like plasma

    NASA Astrophysics Data System (ADS)

    Velikovich, A. L.; Giuliani, J. L.; Zalesak, S. T.

    2015-04-01

    The magnetized liner inertial fusion (MagLIF) approach to inertial confinement fusion [Slutz et al., Phys. Plasmas 17, 056303 (2010); Cuneo et al., IEEE Trans. Plasma Sci. 40, 3222 (2012)] involves subsonic/isobaric compression and heating of a deuterium-tritium plasma with frozen-in magnetic flux by a heavy cylindrical liner. The losses of heat and magnetic flux from the plasma to the liner are thereby determined by plasma advection and gradient-driven transport processes, such as thermal conductivity, magnetic field diffusion, and thermomagnetic effects. Theoretical analysis based on obtaining exact self-similar solutions of the classical collisional Braginskii's plasma transport equations in one dimension demonstrates that the heat loss from the hot compressed magnetized plasma to the cold liner is dominated by transverse heat conduction and advection, and the corresponding loss of magnetic flux is dominated by advection and the Nernst effect. For a large electron Hall parameter ( ωeτe≫1 ), the effective diffusion coefficients determining the losses of heat and magnetic flux to the liner wall are both shown to decrease with ωeτe as does the Bohm diffusion coefficient c T /(16 e B ) , which is commonly associated with low collisionality and two-dimensional transport. We demonstrate how this family of exact solutions can be used for verification of codes that model the MagLIF plasma dynamics.

  15. Magnetic flux and heat losses by diffusive, advective, and Nernst effects in magnetized liner inertial fusion-like plasma

    SciTech Connect

    Velikovich, A. L.; Giuliani, J. L.; Zalesak, S. T.

    2015-04-15

    The magnetized liner inertial fusion (MagLIF) approach to inertial confinement fusion [Slutz et al., Phys. Plasmas 17, 056303 (2010); Cuneo et al., IEEE Trans. Plasma Sci. 40, 3222 (2012)] involves subsonic/isobaric compression and heating of a deuterium-tritium plasma with frozen-in magnetic flux by a heavy cylindrical liner. The losses of heat and magnetic flux from the plasma to the liner are thereby determined by plasma advection and gradient-driven transport processes, such as thermal conductivity, magnetic field diffusion, and thermomagnetic effects. Theoretical analysis based on obtaining exact self-similar solutions of the classical collisional Braginskii's plasma transport equations in one dimension demonstrates that the heat loss from the hot compressed magnetized plasma to the cold liner is dominated by transverse heat conduction and advection, and the corresponding loss of magnetic flux is dominated by advection and the Nernst effect. For a large electron Hall parameter (ω{sub e}τ{sub e}≫1), the effective diffusion coefficients determining the losses of heat and magnetic flux to the liner wall are both shown to decrease with ω{sub e}τ{sub e} as does the Bohm diffusion coefficient cT/(16eB), which is commonly associated with low collisionality and two-dimensional transport. We demonstrate how this family of exact solutions can be used for verification of codes that model the MagLIF plasma dynamics.

  16. Alternative explanation for intermediate--wavelength magnetic anomalies

    SciTech Connect

    Shure, L.; Parker, R.L.

    1981-12-10

    Harrison and Carle and others have examined very long profiles of the magnetic field and have calculated one-dimensional power spectra. In these they expect to see, but do not find, a minimum in power at intermediate wavelengths, between 65 and 150 km. Conventional one-dimensional models of the field predict very little power in this band, which lies between the spectral peaks arising from sources in the crust and the core. Mantle sources or high-intensity, long-wavelength magnetizations have been proposed to account for the observations. An alternative, more plausible explanation is that one-dimensional spectra of two-dimensional fields contain contributions from wavenumbers in the perpendicular (i.e., nonsampled) direction. Unless the seafloor spreading anomalies are perfectly lineated at right angles to the profile, some low-wavenumber energy must be attributed to this effect; we propose that such directional aliasing is a major factor in the power spectra. To support this idea we discuss theoretical models and analyze a large-scale marine survey.

  17. Magnetized Inertial Confinement Fusion on the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Perkins, L. John; Logan, G.; Rhodes, M.; Zimmermann, G.; Ho, D.; Strozzi, D.; Blackfield, D.; Hawkins, S.

    2015-11-01

    We are assessing the potential of imposed magnetic fields on ignition targets for the National Ignition Facility. Both magnetized room-temperature DT gas targets and CH/diamond cryo-ignition capsules are under study. Initial applied fields of 30-70T that compress to greater than 10,000T (100MG) under capsule implosion may relax conditions required for ignition and burn due to suppression of electron heat conduction, reduction of alpha deposition range and stabilization of hydro instabilities. This may permit recovery of ignition, or at least significant alpha particle heating, in otherwise submarginal capsules. We will report on the design and performance simulations of magnetized ignition targets and hohlraum physics, and summarize present experiments testing the attainable magnetic field limits in hohlraum-coil systems driven by a pulsed power supply. Work performed under auspices of U.S. DOE by LLNL under DE-AC52-07NA27344 and LDRD 14-ERD-028.

  18. Performance of the High Field Fusion Reactor (FIRE) and a Proposed Alternate Design

    NASA Astrophysics Data System (ADS)

    Kritz, Arnold H.; Onjun, Thawatchai; Bateman, Glenn; Mazzucato, Ernesto

    2000-10-01

    Predictions of α-power production in FIRE and the Mazzucato proposed high-field tokamaks are examined using the Multi-Mode-95 (MMM95) and the Mixed-Bohm/gyro-Bohm (JETTO) transport models in the BALDUR transport code. Simulations of plasma evolution in the proposed tokamaks using the MMM95 model predict, after 16 seconds of 30 MW auxiliary heating, a fusion Q of 2.7 (for the FIRE design) and 8.2 (for the Mazzucato design) assuming an edge temperature of 2 keV. Our simulations show that significantly higher values Q result when the plasma current together with the magnetic field are increased, or when the plasma edge temperature is increased. The performance is moderately improved with density peaking; whereas, performance is degraded with increased Z_eff. The α-power production is found to depend on the rate at which the auxiliary heating power is turned off. The α-power remains higher when the auxiliary power is reduced gradually rather than abruptly. For plasmas with central ion temperatures greater than 10 keV, it is possible to turn off the auxiliary power with α-power remaining finite.

  19. Electronic measurements in an alternating magnetic field (AMF) for studying magnetic nanoparticle hyperthermia

    NASA Astrophysics Data System (ADS)

    Boekelheide, Z.; Hussein, Z. A.; Hartzell, S.

    Magnetic nanoparticle hyperthermia is a promising cancer treatment in which magnetic nanoparticles are injected into a tumor and then exposed to an alternating magnetic field (AMF). This process releases heat and damages tumor cells, but the exact mechanisms behind the effectiveness of this therapy are still unclear. Accurate sensors are required to monitor the temperature and, potentially, other parameters such as magnetic field or mechanical stress during clinical therapy or lab research. Often, optical rather than electronic temperature sensors are used to avoid eddy current self-heating in conducting parts in the AMF. However, eddy current heating is strongly dependent on the size and geometry of the conducting part, thus micro- and nano-scale electronics are a promising possibility for further exploration into magnetic nanoparticle hyperthermia. This presentation quantitatively discusses the eddy current self-heating of thin wires (thermocouples) and will also present a proof of concept thin film resistive thermometer and magnetic field sensor along with measurements of their eddy current self-heating. The results show that electronic measurements are feasible in an AMF with both thin wires and patterned thin film sensors under certain conditions.

  20. Application of Magnetized Target Fusion to High-Energy Space Propulsion

    NASA Technical Reports Server (NTRS)

    Thio, Y. C. F.; Schmidt, G. R.; Kirkpatrick, R. C.; Rodgers, Stephen L. (Technical Monitor)

    2001-01-01

    Most fusion propulsion concepts that have been investigated in the past employ some form of inertial or magnetic confinement. Although the prospective performance of these concepts is excellent, the fusion processes on which these concepts are based still require considerable development before they can be seriously considered for actual applications. Furthermore, these processes are encumbered by the need for sophisticated plasma and power handling systems that are generally quite inefficient and have historically resulted in large, massive spacecraft designs. Here we present a comparatively new approach, Magnetized Target Fusion (MTF), which offers a nearer-term avenue for realizing the tremendous performance benefits of fusion propulsion'. The key advantage of MTF is its less demanding requirements for driver energy and power processing. Additional features include: 1) very low system masses and volumes, 2) high gain and relatively low waste heat, 3) substantial utilization of energy from product neutrons, 4) efficient, low peak-power drivers based on existing pulsed power technology, and 5) very high Isp, specific power and thrust. MTF overcomes many of the problems associated with traditional fusion techniques, thus making it particularly attractive for space applications. Isp greater than 50,000 seconds and specific powers greater than 50 kilowatts/kilogram appear feasible using relatively near-term pulse power and plasma gun technology.

  1. Ultrasound generation and high-frequency motion of magnetic nanoparticles in an alternating magnetic field: Toward intracellular ultrasound therapy?

    NASA Astrophysics Data System (ADS)

    Carrey, J.; Connord, V.; Respaud, M.

    2013-06-01

    We show theoretically that, in an inhomogeneous alternating magnetic field of frequency f, due to the alternating gradient, magnetic nanoparticles oscillate mechanically and generate ultrasound waves. This effect is maximized and better controlled if a static magnetic field is superimposed to an alternating gradient. It makes possible the generation of ultrasounds intracellularly and might also explain recent experiments in magnetic hyperthermia in which cells have been killed without any global temperature increase. Combined to an efficient targeting, it could permit ultrasound therapy with an unprecedented spatial resolution.

  2. Magnetic Nanoparticles with High Specific Absorption Rate at Low Alternating Magnetic Field

    PubMed Central

    Kekalo, K.; Baker, I.; Meyers, R.; Shyong, J.

    2015-01-01

    This paper describes the synthesis and properties of a new type of magnetic nanoparticle (MNP) for use in the hyperthermia treatment of tumors. These particles consist of 2–4 nm crystals of gamma-Fe2O3 gathered in 20–40 nm aggregates with a coating of carboxymethyl-dextran, producing a zetasize of 110–120 nm. Despite their very low saturation magnetization (1.5–6.5 emu/g), the specific absorption rate (SAR) of the nanoparticles is 22–200 W/g at applied alternating magnetic field (AMF) with strengths of 100–500 Oe at a frequency of 160 kHz. PMID:26884816

  3. Specific heating power of fatty acid and phospholipid stabilized magnetic fluids in an alternating magnetic field

    NASA Astrophysics Data System (ADS)

    DeCuyper, M.; Hodenius, M.; Ivanova, G.; Baumann, M.; Paciok, E.; Eckert, T.; Soenen, S. J. H.; Schmitz-Rode, T.

    2008-05-01

    Magnetic fluids (MFs) with a similar narrow size distribution of the iron oxide core were stabilized with lauric acid (MF 1), oleate (MF 2) or, after dialysis in the presence of liposomes, with phospholipid molecules (MF 3 and MF 4, respectively). The hydrodynamic sizes of the MF 1 and MF 3 were half those found for MF 2 and MF 4. The MFs were exposed to inductive heating in an alternating magnetic field at a frequency of 200 kHz and a maximum magnetic field strength of 3.8 kA m-1. Specific absorption rates (SAR) of 294 ± 42 (MF 1), 214 ± 16 (MF 2), 297 ± 13 (MF 3) and 213 ± 6 W g-1 Fe (MF 4) were obtained. The data for MF 2 and MF 4 were identical to those found for the commercially available ferucarbotran. The biomedical relevance of the phospholipid-coated MFs is briefly discussed.

  4. Simulating the magnetized liner inertial fusion plasma confinement with smaller-scale experiments

    SciTech Connect

    Ryutov, D. D.; Cuneo, M. E.; Herrmann, M. C.; Sinars, D. B.; Slutz, S. A.

    2012-06-15

    The recently proposed magnetized liner inertial fusion approach to a Z-pinch driven fusion [Slutz et al., Phys. Plasmas 17, 056303 (2010)] is based on the use of an axial magnetic field to provide plasma thermal insulation from the walls of the imploding liner. The characteristic plasma transport regimes in the proposed approach cover parameter domains that have not been studied yet in either magnetic confinement or inertial confinement experiments. In this article, an analysis is presented of the scalability of the key physical processes that determine the plasma confinement. The dimensionless scaling parameters are identified and conclusion is drawn that the plasma behavior in scaled-down experiments can correctly represent the full-scale plasma, provided these parameters are approximately the same in two systems. This observation is important in that smaller-scale experiments typically have better diagnostic access and more experiments per year are possible.

  5. Magnetic field generation in Rayleigh-Taylor unstable inertial confinement fusion plasmas.

    PubMed

    Srinivasan, Bhuvana; Dimonte, Guy; Tang, Xian-Zhu

    2012-04-20

    Rayleigh-Taylor instabilities (RTI) in inertial confinement fusion implosions are expected to generate magnetic fields. A Hall-MHD model is used to study the field generation by 2D single-mode and multimode RTI in a stratified two-fluid plasma. Self-generated magnetic fields are predicted and these fields grow as the RTI progresses via the ∇n(e)×∇T(e) term in the generalized Ohm's law. Scaling studies are performed to determine the growth of the self-generated magnetic field as a function of density, acceleration, Atwood number, and perturbation wavelength. PMID:22680725

  6. Assessment of liquid hydrogen cooled MgB2 conductors for magnetically confined fusion

    NASA Astrophysics Data System (ADS)

    Glowacki, B. A.; Nuttall, W. J.

    2008-02-01

    Importantly environmental factors are not the only policy-driver for the hydrogen economy. Over the timescale of the development of fusion energy systems, energy security issues are likely to motivate a shift towards both hydrogen production and fusion as an energy source. These technologies combine local control of the system with the collaborative research interests of the major energy users in the global economy. A concept Fusion Island Reactor that might be used to generate H2 (rather than electricity) is presented. Exploitation of produced hydrogen as a coolant and as a fuel is proposed in conjunction with MgB2 conductors for the tokomak magnets windings, and electrotechnical devices for Fusion Island's infrastructure. The benefits of using MgB2 over the Nb-based conductors during construction, operation and decommissioning of the Fusion Island Reactor are presented. The comparison of Nb3Sn strands for ITER fusion magnet with newly developed high field composite MgB2 PIT conductors has shown that at 14 Tesla MgB2 possesses better properties than any of the Nb3Sn conductors produced. In this paper the potential of MgB2 conductors is examined for tokamaks of both the conventional ITER type and a Spherical Tokamak geometry. In each case MgB2 is considered as a conductor for a range of field coil applications and the potential for operation at both liquid helium and liquid hydrogen temperatures is considered. Further research plans concerning the application of MgB2 conductors for Fusion Island are also considered.

  7. Low-energy nuclear fusion data and their relation to magnetic and laser fusion

    SciTech Connect

    Jarmie, N.

    1980-04-01

    The accuracy of the basic fusion data for the T(d,n)/sup 4/He, /sup 3/He(d,p)/sup 4/He, T(t,2n)/sup 4/He, D(d,n)/sup 3/He, and D(d,p)T reactions was investigated in the 10- to 100-keV bombarding energy region, and the effects of inaccuracies on the design of fusion reactors were assessed. The data base for these reactions (particularly, the most critical T(d,n)/sup 4/He reaction) rests on 25-year-old experiments the accuracy (often assumed to be +- 5%) of which has rarely been questioned: yet, in all except the d + d reactions, there are significant differences among data sets. The errors in the basic data sets may be considerably larger than previously expected, and the effect on design calculations should be significant. Much of the trouble apparently lies in the accuracy of the energy measurements, which are difficult at low energies. Systematic errors of up to 50% are possible in the reactivity values of the present T(d,n)/sup 4/He data base. The errors in the reactivity will propagate proportionately into the errors in fusion probabilities in reactor calculations. /sup 3/He(d,p)/sup 4/He reaction cross sections could be in error by as much as 50% in the low-energy region. The D(d,n)/sup 3/He and D(d,p)T cross sections appear to be well known and consistent. The T(t,2n)/sup 4/He cross section is poorly known and may be subject to large systematic errors. Improved absolute measurements for all the reactions in the low bombarding energy region (10 to 100 keV) are needed, but until they are done, the data sets should be left as they are (except for T(t,2n)/sup 4/He data, which could be lowered by about 50%). The apparent uncertainties of these data sets should be kept in mind. 14 figures.

  8. Design of magnetic molecularly imprinted polymer nanoparticles for controlled release of doxorubicin under an alternative magnetic field in athermal conditions

    NASA Astrophysics Data System (ADS)

    Griffete, N.; Fresnais, J.; Espinosa, A.; Wilhelm, C.; Bée, A.; Ménager, C.

    2015-11-01

    An innovative magnetic delivery nanomaterial for triggered cancer therapy showing active control over drug release by using an alternative magnetic field is proposed. In vitro and In vivo release of doxorubicin (DOX) were investigated and showed a massive DOX release under an alternative magnetic field without temperature elevation of the medium.An innovative magnetic delivery nanomaterial for triggered cancer therapy showing active control over drug release by using an alternative magnetic field is proposed. In vitro and In vivo release of doxorubicin (DOX) were investigated and showed a massive DOX release under an alternative magnetic field without temperature elevation of the medium. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr06133d

  9. A National Collaboratory to Advance the Science of High Temperature Plasma Physics for Magnetic Fusion

    SciTech Connect

    Schissel, David P.; Abla, G.; Burruss, J. R.; Feibush, E.; Fredian, T. W.; Goode, M. M.; Greenwald, M. J.; Keahey, K.; Leggett, T.; Li, K.; McCune, D. C.; Papka, M. E.; Randerson, L.; Sanderson, A.; Stillerman, J.; Thompson, M. R.; Uram, T.; Wallace, G.

    2012-12-20

    This report summarizes the work of the National Fusion Collaboratory (NFC) Project to develop a persistent infrastructure to enable scientific collaboration for magnetic fusion research. The original objective of the NFC project was to develop and deploy a national FES Grid (FusionGrid) that would be a system for secure sharing of computation, visualization, and data resources over the Internet. The goal of FusionGrid was to allow scientists at remote sites to participate as fully in experiments and computational activities as if they were working on site thereby creating a unified virtual organization of the geographically dispersed U.S. fusion community. The vision for FusionGrid was that experimental and simulation data, computer codes, analysis routines, visualization tools, and remote collaboration tools are to be thought of as network services. In this model, an application service provider (ASP provides and maintains software resources as well as the necessary hardware resources. The project would create a robust, user-friendly collaborative software environment and make it available to the US FES community. This Grid's resources would be protected by a shared security infrastructure including strong authentication to identify users and authorization to allow stakeholders to control their own resources. In this environment, access to services is stressed rather than data or software portability.

  10. Magnet and conductor developments for the Mirror Fusion Program

    SciTech Connect

    Cornish, D.N.

    1981-10-09

    The conductor development and the magnet design and construction for the MFTF are described. Future plans for the Mirror Program and their influence on the associated superconductor development program are discussed. Included is a summary of the progress being made to develop large, high-field, multifilamentary Nb/sub 3/Sn superconductors and the feasibility of building a 12-T yin-yang set of coils for the machine to follow MFTF. In a further look into the future, possible magnetic configurations and requirements for mirror reactors are surveyed.

  11. Mirror fusion test facility magnet system. Final design report

    SciTech Connect

    Henning, C.D.; Hodges, A.J.; VanSant, J.H.; Dalder, E.N.; Hinkle, R.E.; Horvath, J.A.; Scanlan, R.M.; Shimer, D.W.; Baldi, R.W.; Tatro, R.E.

    1980-09-03

    Information is given on each of the following topics: (1) magnet description, (2) superconducting manufacture, (3) mechanical behavior of conductor winding, (4) coil winding, (5) thermal analysis, (6) cryogenic system, (7) power supply system, (8) structural analysis, (9) structural finite element analysis refinement, (10) structural case fault analysis, and (11) structural metallurgy. (MOW)

  12. Production of muons for fusion catalysis in a magnetic mirror configuration. Revision 1

    SciTech Connect

    Moir, R.W.; Chapline, G.F. Jr.

    1986-07-25

    For muon-catalyzed fusion to be of practical interest, a very efficient means of producing muons must be found. We describe a scheme for producing muons that may be more energy efficient than any heretofore proposed. There are, in particular, some potential advantages of creating muons from collisions of high energy tritons confined in a magnetic mirror configuration. If one could catalyze 200 fusions per muon and employ a uranium blanket that would multiply the neutron energy by a factor of 10, one might produce electricity with an overall plant efficiency (ratio of electric energy produced to nuclear energy released) approaching 30%. One possible near term application of a muon-producing magnetic-mirror scheme would be to build a high-flux neutron source for radiation damage studies. The careful arrangement of triton orbits will result in many of the ..pi../sup -/'s being produced near the axis of the magnetic mirror. The pions quickly decay into muons, which are transported into a small (few-cm-diameter) reactor chamber producing approximately 1-MW/m/sup 2/ neutron flux on the chamber walls, using a laboratory accelerator and magnetic mirror. The costs of construction and operation of the triton injection accelerator probably introduces most of the uncertainty in the viability of this scheme. If a 10-..mu..A, 600 MeV neutral triton accelerator could be built for less than $100 million and operated cheaply enough, one might well bring muon-catalyzed fusion into practical use.

  13. A superconducting quadrupole magnet array for a heavy ion fusion driver

    SciTech Connect

    Caspi, S.; Bangerter, r.; Chow, K.; Faltens, A.; Gourley, S.; Hinkins, R.; Gupta, R.; Lee, E.; McInturff, A.; Scanlan, R.; Taylor, C.; Wolgast, D.

    2000-06-27

    A multi-channel quadrupole array has been proposed to increase beam intensity and reduce space charge effects in a Heavy Ion Fusion Driver. A single array unit composed of several quadrupole magnets, each with its own beam line, will be placed within a ferromagnetic accelerating core whose cost is directly affected by the array size. A large number of focusing arrays will be needed along the accelerating path. The use of a superconducting quadrupole magnet array will increase the field and reduce overall cost. We report here on the design of a compact 3 x 3 superconducting quadrupole magnet array. The overall array diameter and length including the cryostat is 900 x 700 mm. Each of the 9 quadrupole magnets has a 78 mm warm bore and an operating gradient of 50 T/m over an effective magnetic length of 320 mm.

  14. Alternative hot spot formation techniques using liquid deuterium-tritium layer inertial confinement fusion capsules

    SciTech Connect

    Olson, R. E.; Leeper, R. J.

    2013-09-15

    The baseline DT ice layer inertial confinement fusion (ICF) ignition capsule design requires a hot spot convergence ratio of ∼34 with a hot spot that is formed from DT mass originally residing in a very thin layer at the inner DT ice surface. In the present paper, we propose alternative ICF capsule designs in which the hot spot is formed mostly or entirely from mass originating within a spherical volume of DT vapor. Simulations of the implosion and hot spot formation in two DT liquid layer ICF capsule concepts—the DT wetted hydrocarbon (CH) foam concept and the “fast formed liquid” (FFL) concept—are described and compared to simulations of standard DT ice layer capsules. 1D simulations are used to compare the drive requirements, the optimal shock timing, the radial dependence of hot spot specific energy gain, and the hot spot convergence ratio in low vapor pressure (DT ice) and high vapor pressure (DT liquid) capsules. 2D simulations are used to compare the relative sensitivities to low-mode x-ray flux asymmetries in the DT ice and DT liquid capsules. It is found that the overall thermonuclear yields predicted for DT liquid layer capsules are less than yields predicted for DT ice layer capsules in simulations using comparable capsule size and absorbed energy. However, the wetted foam and FFL designs allow for flexibility in hot spot convergence ratio through the adjustment of the initial cryogenic capsule temperature and, hence, DT vapor density, with a potentially improved robustness to low-mode x-ray flux asymmetry.

  15. Alternative hot spot formation techniques using liquid deuterium-tritium layer inertial confinement fusion capsules

    NASA Astrophysics Data System (ADS)

    Olson, R. E.; Leeper, R. J.

    2013-09-01

    The baseline DT ice layer inertial confinement fusion (ICF) ignition capsule design requires a hot spot convergence ratio of ˜34 with a hot spot that is formed from DT mass originally residing in a very thin layer at the inner DT ice surface. In the present paper, we propose alternative ICF capsule designs in which the hot spot is formed mostly or entirely from mass originating within a spherical volume of DT vapor. Simulations of the implosion and hot spot formation in two DT liquid layer ICF capsule concepts—the DT wetted hydrocarbon (CH) foam concept and the "fast formed liquid" (FFL) concept—are described and compared to simulations of standard DT ice layer capsules. 1D simulations are used to compare the drive requirements, the optimal shock timing, the radial dependence of hot spot specific energy gain, and the hot spot convergence ratio in low vapor pressure (DT ice) and high vapor pressure (DT liquid) capsules. 2D simulations are used to compare the relative sensitivities to low-mode x-ray flux asymmetries in the DT ice and DT liquid capsules. It is found that the overall thermonuclear yields predicted for DT liquid layer capsules are less than yields predicted for DT ice layer capsules in simulations using comparable capsule size and absorbed energy. However, the wetted foam and FFL designs allow for flexibility in hot spot convergence ratio through the adjustment of the initial cryogenic capsule temperature and, hence, DT vapor density, with a potentially improved robustness to low-mode x-ray flux asymmetry.

  16. Current-carrying element based on second-generation high-temperature superconductor for the magnet system of a fusion neutron source

    NASA Astrophysics Data System (ADS)

    Novikov, M. S.; Ivanov, D. P.; Novikov, S. I.; Shuvaev, S. A.

    2015-12-01

    Application of current-carrying elements (CCEs) made of second-generation high-temperature superconductor (2G HTS) in magnet systems of a fusion neutron source (FNS) and other fusion devices will allow their magnetic field and thermodynamic stability to be increased substantially in comparison with those of low-temperature superconductor (LTS) magnets. For a toroidal magnet of the FNS, a design of a helical (partially transposed) CCE made of 2G HTS is under development with forced-flow cooling by helium gas, a current of 20-30 kA, an operating temperature of 10-20 K, and a magnetic field on the winding of 12-15 T (prospectively ~20 T). Short-sized samples of the helical flexible heavy-current CCE are being fabricated and investigated; a pilot-line unit for production of long-sized CCE pieces is under construction. The applied fabrication technique allows the CCE to be produced which combines a high operating current, thermal and mechanical stability, manufacturability, and low losses in the alternating modes. The possibility of fabricating the CCE with the outer dimensions and values of the operating parameter required for the FNS (and with a significant margin) using already available serial 2G HTS tapes is substantiated. The maximum field of toroidal magnets with CCEs made of 2G HTS will be limited only by mechanical properties of the magnet's casing and structure, while the thermal stability will be approximately two orders of magnitude higher than that of toroidal magnets with LTS-based CCEs. The helical CCE made of 2G HTS is very promising for fusion and hybrid electric power plants, and its design and technologies of production, as well as the prototype coils made of it for the FNS and other tokamaks, are worth developing now.

  17. Laser or charged-particle-beam fusion reactor with direct electric generation by magnetic flux compression

    DOEpatents

    Lasche, G.P.

    1983-09-29

    The invention is a laser or particle-beam-driven fusion reactor system which takes maximum advantage of both the very short pulsed nature of the energy release of inertial confinement fusion (ICF) and the very small volumes within which the thermonuclear burn takes place. The pulsed nature of ICF permits dynamic direct energy conversion schemes such as magnetohydrodynamic (MHD) generation and magnetic flux compression; the small volumes permit very compact blanket geometries. By fully exploiting these characteristics of ICF, it is possible to design a fusion reactor with exceptionally high power density, high net electric efficiency, and low neutron-induced radioactivity. The invention includes a compact blanket design and method and apparatus for obtaining energy utilizing the compact blanket.

  18. Alternating magnetic field optimization for IONP hyperthermia cancer treatment

    NASA Astrophysics Data System (ADS)

    Kastner, Elliot J.; Reeves, Russell; Bennett, William; Misra, Aditi; Petryk, Jim D.; Petryk, Alicia A.; Hoopes, P. Jack

    2015-03-01

    Iron oxide nanoparticles (IONP) have therapeutic potential to deliver a thermal dose to tumors when activated in an alternating magnetic field (AMF). Through various targeting methods such as antibody labeling or injection site choice, delivery of IONPs to tumors yields enhanced treatment accuracy and efficacy. Despite this advantage, delivery an AMF, which is sufficient to result in clinically relevant IONP heating, can result in nonspecific tissue heating via the generation of eddy currents and tissue permeated by local electric fields (joule heating). The production of eddy current heating is a function of tissue size, geometry and composition as well as coil design and operation. The purpose of this research is to increase the level of energy deposited into the IONPs versus the non-target tissue (power ratio/PR)1 in order to improve target heating and reduce nonspecific tissue damage. We propose to improve the PR using two primary concepts: (1) reduce power deposition into non-target tissue by manipulating the fields and eddy current flow and (2) enhance heat removal from non-target tissue. We have shown that controlling tissue placement within the AMF field, accounting for tissue geometry, utilizing external cooling devices, and modifying the field properties can decrease non-target heating by more than 50%, at clinically relevant AMF levels, thereby allowing for an increase in thermal dose to the tumor and increasing the therapeutic ratio.

  19. A NATIONAL COLLABORATORY TO ADVANCE THE SCIENCE OF HIGH TEMPERATURE PLASMA PHYSICS FOR MAGNETIC FUSION

    SciTech Connect

    Allen R. Sanderson; Christopher R. Johnson

    2006-08-01

    This report summarizes the work of the University of Utah, which was a member of the National Fusion Collaboratory (NFC) Project funded by the United States Department of Energy (DOE) under the Scientific Discovery through Advanced Computing Program (SciDAC) to develop a persistent infrastructure to enable scientific collaboration for magnetic fusion research. A five year project that was initiated in 2001, it the NFC built on the past collaborative work performed within the U.S. fusion community and added the component of computer science research done with the USDOE Office of Science, Office of Advanced Scientific Computer Research. The project was itself a collaboration, itself uniting fusion scientists from General Atomics, MIT, and PPPL and computer scientists from ANL, LBNL, and Princeton University, and the University of Utah to form a coordinated team. The group leveraged existing computer science technology where possible and extended or created new capabilities where required. The complete finial report is attached as an addendum. The In the collaboration, the primary technical responsibility of the University of Utah in the collaboration was to develop and deploy an advanced scientific visualization service. To achieve this goal, the SCIRun Problem Solving Environment (PSE) is used on FusionGrid for an advanced scientific visualization service. SCIRun is open source software that gives the user the ability to create complex 3D visualizations and 2D graphics. This capability allows for the exploration of complex simulation results and the comparison of simulation and experimental data. SCIRun on FusionGrid gives the scientist a no-license-cost visualization capability that rivals present day commercial visualization packages. To accelerate the usage of SCIRun within the fusion community, a stand-alone application built on top of SCIRun was developed and deployed. This application, FusionViewer, allows users who are unfamiliar with SCIRun to quickly create

  20. Perspective on the Role of Negative Ions and Ion-Ion Plasmas in Heavy Ion Fusion Science, Magnetic Fusion Energy,and Related Fields

    SciTech Connect

    Grisham, L. R.; Kwan, J. W.

    2008-08-01

    Some years ago it was suggested that halogen negative ions could offer a feasible alternative path to positive ions as a heavy ion fusion driver beam which would not suffer degradation due to electron accumulation in the accelerator and beam transport system, and which could be converted to a neutral beam by photodetachment near the chamber entrance if desired. Since then, experiments have demonstrated that negative halogen beams can be extracted and accelerated away from the gas plume near the source with a surviving current density close to what could be achieved with a positive ion of similar mass, and with comparable optical quality. In demonstrating the feasibility of halogen negative ions as heavy ion driver beams, ion - ion plasmas, an interesting and somewhat novel state of matter, were produced. These plasmas, produced near the extractor plane of the sources, appear, based upon many lines of experimental evidence, to consist of almost equal densities of positive and negative chlorine ions, with only a small component of free electrons. Serendipitously, the need to extract beams from this plasma for driver development provides a unique diagnostic tool to investigate the plasma, since each component - positive ions, negative ions, and electrons - can be extracted and measured separately. We discuss the relevance of these observations to understanding negative ion beam extraction from electronegative plasmas such as halogens, or the more familiar hydrogen of magnetic fusion ion sources. We suggest a concept which might improve negative hydrogen extraction by the addition of a halogen. The possibility and challenges of producing ion - ion plasmas with thin targets of halogens or, perhaps, salt, is briefly addressed.

  1. Perspective on the Role of Negative Ions and Ion-Ion Plasmas in Heavy Ion Fusion Science, Magnetic Fusion Energy, and Related Fields

    SciTech Connect

    Grisham, L.R.; Kwan, J.W.

    2008-08-01

    Some years ago it was suggested that halogen negative ions [1]could offer a feasible alternative path to positive ions as a heavy ion fusion driver beam which would not suffer degradation due to electron accumulation in the accelerator and beam transport system, and which could be converted to a neutral beam by photodetachment near the chamber entrance if desired. Since then, experiments have demonstrated that negative halogen beams can be extracted and accelerated away from the gas plume near the source with a surviving current density close to what could be achieved with a positive ion of similar mass, and with comparable optical quality. In demonstrating the feasibility of halogen negative ions as heavy ion driver beams, ion - ion plasmas, an interesting and somewhat novel state of matter, were produced. These plasmas, produced near the extractor plane of the sources, appear, based upon many lines of experimental evidence, to consist of almost equal densities of positive and negative chlorine ions, with only a small component of free electrons. Serendipitously, the need to extract beams from this plasma for driver development provides a unique diagnostic tool to investigate the plasma, since each component - positive ions, negative ions, and electrons -- can be extracted and measured separately. We discuss the relevance of these observations to understanding negative ion beam extraction from electronegative plasmas such as halogens, or the more familiar hydrogen of magnetic fusion ion sources. We suggest a concept which might improve negative hydrogen extraction by the addition of a halogen. The possibility and challenges of producing ion-ion plasmas with thin targets of halogens or, perhaps, salt, is briefly addressed.

  2. Perspective on the Role of Negative Ions and Ion-Ion Plasmas in Heavy Ion Fusion Science, Magnetic Fusion Energy, and Related Fields

    SciTech Connect

    L. Grisham and J.W. Kwan

    2008-08-12

    Some years ago it was suggested that halogen negative ions [1] could offer a feasible alternative path to positive ions as a heavy ion fusion driver beam which would not suffer degradation due to electron accumulation in the accelerator and beam transport system, and which could be converted to a neutral beam by photodetachment near the chamber entrance if desired. Since then, experiments have demonstrated that negative halogen beams can be extracted and accelerated away from the gas plume near the source with a surviving current density close to what could be achieved with a positive ion of similar mass, and with comparable optical quality. In demonstrating the feasibility of halogen negative ions as heavy ion driver beams, ion - ion plasmas, an interesting and somewhat novel state of matter, were produced. These plasmas, produced near the extractor plane of the sources, appear, based upon many lines of experimental evidence, to consist of almost equal densities of positive and negative chlorine ions, with only a small component of free electrons. Serendipitously, the need to extract beams from this plasma for driver development provides a unique diagnostic tool to investigate the plasma, since each component - positive ions, negative ions, and electrons -- can be extracted and measured separately. We discuss the relevance of these observations to understanding negative ion beam extraction from electronegative plasmas such as halogens, or the more familiar hydrogen of magnetic fusion ion sources. We suggest a concept which might improve negative hydrogen extraction by the addition of a halogen. The possibility and challenges of producing ion-ion plasmas with thin targets of halogens or, perhaps, salt, is briefly addressed.

  3. Dust dynamics and diagnostic applications in quasi-neutral plasmas and magnetic fusion

    NASA Astrophysics Data System (ADS)

    Wang, Zhehui; Ticos, Catalin M.; Si, Jiahe; Delzanno, Gian Luca; Lapenta, Gianni; Wurden, Glen

    2007-11-01

    Little is known about dust dynamics in highly ionized quasi-neutral plasmas with ca. 1.0 e+20 per cubic meter density and ion temperature at a few eV and above, including in magnetic fusion. For example, dust motion in fusion, better known as UFO's, has been observed since 1980's but not explained. Solid understanding of dust dynamics is also important to International Thermonuclear Experimental Reactor (ITER) because of concerns about safety and dust contamination of fusion core. Compared with well studied strongly-coupled dusty plasma regime, new physics may arise in the higher density quasi-neutral plasma regime because of at least four orders of magnitude higher density and two orders of magnitude hotter ion temperature. Our recent laboratory experiments showed that plasma-flow drag force dominates over other forces in a quasi-neutral flowing plasma. In contrast, delicate balance among different forces in dusty plasma has led to many unique phenomena, in particular, the formation of dust crystal. Based on our experiments, we argue that 1) dust crystal will not form in the highly ionized plasmas with flows; 2) the UFO's are moving dust dragged by plasma flows; 3) dust can be used to measure plasma flow. Two diagnostic applications using dust for laboratory quasi-neutral plasmas and magnetic fusion will also be presented.

  4. [Magnetic resonance image fusion based on three dimensional band limited shearlet transform].

    PubMed

    Duan, Chang; Wang, Xuegang; Wang, Hong; Wang, Shuai

    2015-02-01

    More and more medical devices can capture different features of human body and form three dimensional (3D) images. In clinical applications, usually it is required to fuse multiple source images containing different and crucial information into one for the purpose of assisting medical treatment. However, traditional image fusion methods are normally designed for two dimensional (2D) images and will lead to loss of the third dimensional information if directly applied to 3D data. Therefore, a novel 3D magnetic image fusion method was proposed based on the combination of newly invented beyond wavelet transform, called 3D band limited shearlet transformand (BLST), and four groups of traditional fusion rules. The proposed method was then compared with the 2D and 3D wavelet and dual-tree complex wavelet transform fusion methods through 4 groups of human brain T2* and quantitative susceptibility mapping (QSM) images. The experiments indicated that the performance of the method based on 3D transform was generally superior to the existing methods based on 2D transform. Taking advantage of direction representation, shearlet transform could effectively improve the performance of conventional fusion method based on 3D transform. It is well concluded, therefore, that the proposed method is the best among the methods based on 2D and 3D transforms. PMID:25997289

  5. Rheological behavior and cryogenic properties of cyanate ester/epoxy insulation material for fusion superconducting magnet

    NASA Astrophysics Data System (ADS)

    Wu, Z. X.; Li, L. F.; Li, J. W.; Huang, C. J.; Tan, R.; Tu, Y. P.

    2014-01-01

    In a Tokamak fusion reactor device like ITER, insulation materials for superconducting magnets are usually fabricated by a vacuum pressure impregnation (VPI) process. Thus these insulation materials must exhibit low viscosity, long working life as well as good radiation resistance. Previous studies have indicated that cyanate ester (CE) blended with epoxy has an excellent resistance against neutron irradiation which is expected to be a candidate insulation material for a fusion magnet. In this work, the rheological behavior of a CE/epoxy (CE/EP) blend containing 40% CE was investigated with non-isothermal and isothermal viscosity experiments. Furthermore, the cryogenic mechanical and electrical properties of the composite were evaluated in terms of interlaminar shear strength and electrical breakdown strength. The results showed that CE/epoxy blend had a very low viscosity and an exceptionally long processing life of about 4 days at 60 °C.

  6. Rheological behavior and cryogenic properties of cyanate ester/epoxy insulation material for fusion superconducting magnet

    SciTech Connect

    Wu, Z. X.; Huang, C. J.; Li, L. F.; Li, J. W.; Tan, R.; Tu, Y. P.

    2014-01-27

    In a Tokamak fusion reactor device like ITER, insulation materials for superconducting magnets are usually fabricated by a vacuum pressure impregnation (VPI) process. Thus these insulation materials must exhibit low viscosity, long working life as well as good radiation resistance. Previous studies have indicated that cyanate ester (CE) blended with epoxy has an excellent resistance against neutron irradiation which is expected to be a candidate insulation material for a fusion magnet. In this work, the rheological behavior of a CE/epoxy (CE/EP) blend containing 40% CE was investigated with non-isothermal and isothermal viscosity experiments. Furthermore, the cryogenic mechanical and electrical properties of the composite were evaluated in terms of interlaminar shear strength and electrical breakdown strength. The results showed that CE/epoxy blend had a very low viscosity and an exceptionally long processing life of about 4 days at 60 °C.

  7. Application of broadband alternating current magnetic susceptibility to the characterization of magnetic nanoparticles in natural materials

    NASA Astrophysics Data System (ADS)

    Kodama, Kazuto

    2013-01-01

    A new method is proposed for characterizing magnetic particles by measuring low-field alternating current magnetic susceptibility at a number of frequency steps spanning four orders of magnitude, from 125 Hz to 512 kHz. This method was tested using natural samples with various grain size distributions, including basalt (Kilauea, Hawaii), loess and paleosol (Luochuan, China), tuff (Yucca Mountain, Nevada), granite (Minnesota Valley, Minnesota), and andesite (Sakurajima, Japan). The resulting frequency spectrum of magnetic susceptibility (FSMS) of the basalt, loess/paleosol, and tuff decreases with increasing frequency, but at different rates of decrease. The FSMS of the basalt is characterized by a monotonic decrease with increasing frequency over the entire range. The FSMS of the loess/paleosol and the tuff decreases more markedly than that of the basalt, which agrees with previous results showing that superparamagnetic particles are dominant in such material. Quantitative estimates using FSMSs allow reconstruction of characteristic grain size distributions and clearly identify differences in the distribution of superparamagnetic particles. The multidomain granite sample has no distinct frequency dependence, which is probably due to the smooth displacement of domain walls in the presence of the external field. In contrast, the FSMSs of the andesite samples exhibit maxima over a limited frequency range, between 16 and 128 kHz. This behavior, together with low-temperature measurements, can be accounted for by magnetic resonance of domain walls in the multidomain phenocrysts.

  8. Deuterium Uptake in Magnetic-Fusion Devices with Lithium-Conditioned Carbon Walls

    SciTech Connect

    Krstic, Predrag S.; Allain, J. P.; Taylor, C. N.; Dadras, J.; Morokuma, K.; Jakowski, J.; Allouche, A.; Skinner, C. H.

    2013-01-01

    Lithium wall conditioning has lowered hydrogenic recycling and dramatically improved plasma performance in many magnetic-fusion devices. In this Letter, we report quantum-classical atomistic simulations and laboratory experiments that elucidate the roles of lithium and oxygen in the uptake of hydrogen in amorphous carbon. Surprisingly, we show that lithium creates a high oxygen concentration on a carbon surface when bombarded by deuterium. Furthermore, surface oxygen, rather than lithium, plays the key role in trapping hydrogen.

  9. High field superconducting magnets (12 T and greater) for fusion applications

    SciTech Connect

    Miller, J.R.; Summers, L.T.; Kerns, J.A.

    1986-07-09

    The technology for producing high fields in large superconducting magnets has increased greatly in recent years, but must increase still more in the future. In this paper, we examine the present state of the art vis-a-vis the needs of a next-generation fusion machine and outline a program to provide for those needs. We also highlight recent developments that suggest the program goals are within reach.

  10. Improved Guided Image Fusion for Magnetic Resonance and Computed Tomography Imaging

    PubMed Central

    Jameel, Amina

    2014-01-01

    Improved guided image fusion for magnetic resonance and computed tomography imaging is proposed. Existing guided filtering scheme uses Gaussian filter and two-level weight maps due to which the scheme has limited performance for images having noise. Different modifications in filter (based on linear minimum mean square error estimator) and weight maps (with different levels) are proposed to overcome these limitations. Simulation results based on visual and quantitative analysis show the significance of proposed scheme. PMID:24695586

  11. Soldered joints—an essential component of demountable high temperature superconducting fusion magnets

    NASA Astrophysics Data System (ADS)

    Tsui, Yeekin; Surrey, Elizabeth; Hampshire, Damian

    2016-07-01

    Demountable superconducting magnet coils would offer significant benefits to commercial nuclear fusion power plants. Whether large pressed joints or large soldered joints provide the solution for demountable fusion magnets, a critical component or building block for both will be the many, smaller-scale joints that enable the supercurrent to leave the superconducting layer, cross the superconducting tape and pass into the solder that lies between the tape and the conductor that eventually provides one of the demountable surfaces. This paper considers the electrical and thermal properties of this essential component part of demountable high temperature superconducting (HTS) joints by considering the fabrication and properties of jointed HTSs consisting of a thin layer of solder (In52Sn48 or Pb38Sn62) sandwiched between two rare-earth-Ba2Cu3O7 (REBCO) second generation HTS coated conductors (CCs). The HTS joints are analysed using numerical modelling, critical current and resistivity measurements on the joints from 300 to 4.2 K in applied magnetic fields up to 12 T, as well as scanning electron microscopy studies. Our results show that the copper/silver layers significantly reduce the heating in the joints to less than a few hundred mK. When the REBCO alone is superconducting, the joint resistivity (R J) predominantly has two sources, the solder layer and an interfacial resistivity at the REBCO/silver interface (∼25 nΩ cm2) in the as-supplied CCs which together have a very weak magnetoresistance in fields up to 12 T. We achieved excellent reproducibility in the R J of the In52Sn48 soldered joints of better than 10% at temperatures below T c of the REBCO layer which can be compared to variations of more than two orders of magnitude in the literature. We also show that demountable joints in fusion energy magnets are viable and need only add a few percent to the total cryogenic cost for a fusion tokamak.

  12. Evidences for and the Models of Fast Nonlocal Transport of Heat in Magnetic Fusion Devices

    NASA Astrophysics Data System (ADS)

    Kukushkin, A. B.; Cherepanov, K. V.

    2009-07-01

    The paper gives a short survey of (i) recent evidences for fast nonlocal transport of the heat in magnetically confined plasmas (above all, the "cold/heat pulse" experiments), (ii) interpretations of such phenomena in terms of nonlocal transport formalisms, based on the dominance of long mean-free-path energy carriers, including the interpretations of "cold pulse" experiments, and gives (iii) quantitative evidence for the domination of nonlocality in the spatial profile of electron cyclotron net radiated power in fusion reactor-grade tokamak (strong toroidal magnetic field, BT>5 T, highly reflecting walls, Rwall>0.5, and hot electron plasma, >10 keV).

  13. Current-carrying element based on second-generation high-temperature superconductor for the magnet system of a fusion neutron source

    SciTech Connect

    Novikov, M. S. Ivanov, D. P. E-mail: denis.ivanov30@mail.ru; Novikov, S. I. Shuvaev, S. A. E-mail: sergey.shuvaev@phystech.edu

    2015-12-15

    Application of current-carrying elements (CCEs) made of second-generation high-temperature superconductor (2G HTS) in magnet systems of a fusion neutron source (FNS) and other fusion devices will allow their magnetic field and thermodynamic stability to be increased substantially in comparison with those of low-temperature superconductor (LTS) magnets. For a toroidal magnet of the FNS, a design of a helical (partially transposed) CCE made of 2G HTS is under development with forced-flow cooling by helium gas, a current of 20–30 kA, an operating temperature of 10–20 K, and a magnetic field on the winding of 12–15 T (prospectively ∼20 T). Short-sized samples of the helical flexible heavy-current CCE are being fabricated and investigated; a pilot-line unit for production of long-sized CCE pieces is under construction. The applied fabrication technique allows the CCE to be produced which combines a high operating current, thermal and mechanical stability, manufacturability, and low losses in the alternating modes. The possibility of fabricating the CCE with the outer dimensions and values of the operating parameter required for the FNS (and with a significant margin) using already available serial 2G HTS tapes is substantiated. The maximum field of toroidal magnets with CCEs made of 2G HTS will be limited only by mechanical properties of the magnet’s casing and structure, while the thermal stability will be approximately two orders of magnitude higher than that of toroidal magnets with LTS-based CCEs. The helical CCE made of 2G HTS is very promising for fusion and hybrid electric power plants, and its design and technologies of production, as well as the prototype coils made of it for the FNS and other tokamaks, are worth developing now.

  14. Performance test of personal RF monitor for area monitoring at magnetic confinement fusion facility.

    PubMed

    Tanaka, Masahiro; Uda, Tatsuhiko; Wang, Jianqing; Fujiwara, Osamu

    2012-02-01

    For safety management at a magnetic confinement fusion-test facility, protection from not only ionising radiation, but also non-ionising radiation such as the leakage of static magnetic and electromagnetic fields is an important issue. Accordingly, the use of a commercially available personal RF monitor for multipoint area monitoring is proposed. In this study, the performance of both fast- and slow-type personal RF monitors was investigated by using a transverse electromagnetic cell system. The range of target frequencies was between 10 and 300 MHz, corresponding to the ion cyclotron range of frequency in a fusion device. The personal RF monitor was found to have good linearity, frequency dependence and isotropic response. However, the time constant for the electric field sensor of the slow-type monitor was much longer than that for the fast-type monitor. Considering the time-varying field at the facility, it is found that the fast-type monitor is suitable for multipoint monitoring at magnetic confinement fusion test facilities. PMID:21441242

  15. Suitability of coated conductors for fusion magnets in view of their radiation response

    NASA Astrophysics Data System (ADS)

    Prokopec, R.; Fischer, D. X.; Weber, H. W.; Eisterer, M.

    2015-01-01

    HTS coated conductors could replace Nb3Sn wires in future fusion power plants, where the superconductors are exposed to neutron radiation. The maximum neutron fluence a superconductor can sustain is an important criterion for its suitability for fusion magnets. We report on the change of the superconducting properties in HTS RABiTS based coated conductors following high fluence irradiation (up to 3.3 · 1022 m-2) in a research reactor, which is significantly higher than previously reported. The transition temperature decreases as a function of fluence by up to 8 K and the critical current, Ic, heavily degrades when the magnetic field is applied parallel to the tape surface. The critical currents exhibit a maximum in their fluence dependence for the perpendicular field orientation, which shifts to lower fluences at higher temperatures. The same behavior is found for the fluence where Ic falls below that of the pristine tape. This limits the operation conditions to low temperatures under the expected lifetime fluences in future fusion magnets.

  16. Alternative material study for heat assisted magnetic recording transducer application

    SciTech Connect

    Xu, B. X. Cen, Z. H.; Hu, J. F.; Tsai, J. W. H.

    2015-05-07

    In heat assisted magnetic recording (HAMR), optical near field transducer (NFT) is a key component. Au is currently used as NFT material because of its strong surface plasmon effect. Due to the soft property of Au material, reliability of Au NFT becomes a key issue for realizing HAMR production. In this paper, the possibility of alternative materials, including transition metal nitrides (TMNs) and transparent conducting oxides (TCOs) to replace Au is studied. The results show that all of the listed TMN and TCO materials can meet the mechanical requirements at room temperature in terms of hardness and thermal expansion. An optical model, which includes optical waveguide, NFT and FePt media, is used to simulate NFT performances. The results indicate that the resonant wavelengths for NFT with TCO materials are longer than 1500 nm, which is not suitable for HAMR application. TMN materials are suitable for NFT application at wavelength band of around 800 nm. But the NFT efficiency is very low. ZrN is the best material among TMN materials and the efficiency of ZrN NFT is only 13% of the Au NFT's efficiency. Reducing refractive index (n) and increasing extinction coefficient (k) will both lead to efficiency increase. Increasing k contributes more in the efficiency increase, while reducing n has a relatively low NFT absorption. For materials with the same figure of merit, the NFT with larger k material has higher efficiency. Doping materials to increase the material conduction electron density and growing film with larger size grain may be the way to increase k and reduce n.

  17. Alternative material study for heat assisted magnetic recording transducer application

    NASA Astrophysics Data System (ADS)

    Xu, B. X.; Cen, Z. H.; Hu, J. F.; Tsai, J. W. H.

    2015-05-01

    In heat assisted magnetic recording (HAMR), optical near field transducer (NFT) is a key component. Au is currently used as NFT material because of its strong surface plasmon effect. Due to the soft property of Au material, reliability of Au NFT becomes a key issue for realizing HAMR production. In this paper, the possibility of alternative materials, including transition metal nitrides (TMNs) and transparent conducting oxides (TCOs) to replace Au is studied. The results show that all of the listed TMN and TCO materials can meet the mechanical requirements at room temperature in terms of hardness and thermal expansion. An optical model, which includes optical waveguide, NFT and FePt media, is used to simulate NFT performances. The results indicate that the resonant wavelengths for NFT with TCO materials are longer than 1500 nm, which is not suitable for HAMR application. TMN materials are suitable for NFT application at wavelength band of around 800 nm. But the NFT efficiency is very low. ZrN is the best material among TMN materials and the efficiency of ZrN NFT is only 13% of the Au NFT's efficiency. Reducing refractive index (n) and increasing extinction coefficient (k) will both lead to efficiency increase. Increasing k contributes more in the efficiency increase, while reducing n has a relatively low NFT absorption. For materials with the same figure of merit, the NFT with larger k material has higher efficiency. Doping materials to increase the material conduction electron density and growing film with larger size grain may be the way to increase k and reduce n.

  18. Semi-analytic modeling and simulation of magnetized liner inertial fusion

    NASA Astrophysics Data System (ADS)

    McBride, R. D.; Slutz, S. A.; Hansen, S. B.

    2013-10-01

    Presented is a semi-analytic model of magnetized liner inertial fusion (MagLIF). This model accounts for several key aspects of MagLIF, including: (1) pre-heat of the fuel; (2) pulsed-power-driven liner implosion; (3) liner compressibility with an analytic equation of state, artificial viscosity, and internal magnetic pressure and heating; (4) adiabatic compression and heating of the fuel; (5) radiative losses and fuel opacity; (6) magnetic flux compression with Nernst thermoelectric losses; (7) magnetized electron and ion thermal conduction losses; (8) deuterium-deuterium and deuterium-tritium primary fusion reactions; and (9) magnetized alpha-particle heating. We will first show that this simplified model, with its transparent and accessible physics, can be used to reproduce the general 1D behavior presented throughout the original MagLIF paper. We will then use this model to illustrate the MagLIF parameter space, energetics, and efficiencies, and to show the experimental challenges that we will likely be facing as we begin testing MagLIF using the infrastructure presently available at the Z facility. Finally, we will demonstrate how this scenario could likely change as various facility upgrades are made over the next three to five years and beyond. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  19. Crystal structure and magnetic properties of Cu(TIM)CuBr 4: An alternating site-alternating exchange chain system

    NASA Astrophysics Data System (ADS)

    Willett, Roger D.; Gomez-Garcia, Carlos J.

    2007-09-01

    The title compound, Cu(TIM)CuBr 4 (where TIM is a macrocycle ligand) is a member of the Cu(TIM)MX 4 family, which contains linear chain structures with ⋯Cu⋯X-M-X⋯Cu⋯X-M-⋯ linkages. This chain structure defines an alternating exchange/alternating site 1d system. For M=Cu, alternating FM/AFM chains are formed with JFM>| JAFM|. Structural and magnetic data are presented, along with an analysis of the exchange pathways.

  20. A review on nanowires as an alternative high density magnetic storage media

    NASA Astrophysics Data System (ADS)

    Irshad, M. I.; Ahmad, F.; Mohamed, N. M.

    2012-09-01

    The thirst to design high density magnetic storage media with improved efficiency has always been one of the basic challenges in computer industry. In this paper, present challenges of magnetic storage media and different parameters that can affect the properties of magnetic nanowires have been investigated in detail. The magnetic nanowires are the promising candidate for the future high density magnetic storage media. So far the grain isolation is a problem while using thin film magnetic storage media. Further, during miniaturization, superparamagnetic limit is reached due to increasing thermal effects at this scale which makes the magnetic grains of magnetic nanowires susceptible to thermal fluctuations. To overcome this problem of superparamagnetism and grain isolation, nanowires with high coercivity, remanent magnetization and thermal stability are thought to be the alternatives. Alloy and multilayered magnetic nanowires prepared by some less expensive technique with suitable magnetic and thermal properties can serve to overcome this challenge.

  1. Development of imaging bolometers for magnetic fusion reactors (invited).

    PubMed

    Peterson, Byron J; Parchamy, Homaira; Ashikawa, Naoko; Kawashima, Hisato; Konoshima, Shigeru; Kostryukov, Artem Yu; Miroshnikov, Igor V; Seo, Dongcheol; Omori, T

    2008-10-01

    Imaging bolometers utilize an infrared (IR) video camera to measure the change in temperature of a thin foil exposed to the plasma radiation, thereby avoiding the risks of conventional resistive bolometers related to electric cabling and vacuum feedthroughs in a reactor environment. A prototype of the IR imaging video bolometer (IRVB) has been installed and operated on the JT-60U tokamak demonstrating its applicability to a reactor environment and its ability to provide two-dimensional measurements of the radiation emissivity in a poloidal cross section. In this paper we review this development and present the first results of an upgraded version of this IRVB on JT-60U. This upgrade utilizes a state-of-the-art IR camera (FLIR/Indigo Phoenix-InSb) (3-5 microm, 256 x 360 pixels, 345 Hz, 11 mK) mounted in a neutron/gamma/magnetic shield behind a 3.6 m IR periscope consisting of CaF(2) optics and an aluminum mirror. The IRVB foil is 7 cm x 9 cm x 5 microm tantalum. A noise equivalent power density of 300 microW/cm(2) is achieved with 40 x 24 channels and a time response of 10 ms or 23 microW/cm(2) for 16 x 12 channels and a time response of 33 ms, which is 30 times better than the previous version of the IRVB on JT-60U. PMID:19044463

  2. Development of imaging bolometers for magnetic fusion reactors (invited)

    SciTech Connect

    Peterson, Byron J.; Parchamy, Homaira; Ashikawa, Naoko; Kawashima, Hisato; Konoshima, Shigeru; Kostryukov, Artem Yu.; Miroshnikov, Igor V.; Seo, Dongcheol; Omori, T.

    2008-10-15

    Imaging bolometers utilize an infrared (IR) video camera to measure the change in temperature of a thin foil exposed to the plasma radiation, thereby avoiding the risks of conventional resistive bolometers related to electric cabling and vacuum feedthroughs in a reactor environment. A prototype of the IR imaging video bolometer (IRVB) has been installed and operated on the JT-60U tokamak demonstrating its applicability to a reactor environment and its ability to provide two-dimensional measurements of the radiation emissivity in a poloidal cross section. In this paper we review this development and present the first results of an upgraded version of this IRVB on JT-60U. This upgrade utilizes a state-of-the-art IR camera (FLIR/Indigo Phoenix-InSb) (3-5 {mu}m, 256x360 pixels, 345 Hz, 11 mK) mounted in a neutron/gamma/magnetic shield behind a 3.6 m IR periscope consisting of CaF{sub 2} optics and an aluminum mirror. The IRVB foil is 7 cmx9 cmx5 {mu}m tantalum. A noise equivalent power density of 300 {mu}W/cm{sup 2} is achieved with 40x24 channels and a time response of 10 ms or 23 {mu}W/cm{sup 2} for 16x12 channels and a time response of 33 ms, which is 30 times better than the previous version of the IRVB on JT-60U.

  3. Summary of the report of the Senior Committee on Environmental, Safety, and Economic Aspects of Magnetic Fusion Energy

    SciTech Connect

    Holdren, J.P.; Berwald, D.H.; Budnitz, R.J.; Crocker, J.G.; Delene, J.G.; Endicott, R.D.; Kazimi, M.S.; Krakowski, R.A.; Logan, B.G.; Schultz, K.R.

    1987-09-10

    The Senior Committee on Environmental, Safety, and Economic Aspects of Magnetic Fusion Energy (ESECOM) has assessed magnetic fusion energy's prospects for providing energy with economic, environmental, and safety characteristics that would be attractive compared with other energy sources (mainly fission) available in the year 2015 and beyond. ESECOM gives particular attention to the interaction of environmental, safety, and economic characteristics of a variety of magnetic fusion reactors, and compares them with a variety of fission cases. Eight fusion cases, two fusion-fission hybrid cases, and four fission cases are examined, using consistent economic and safety models. These models permit exploration of the environmental, safety, and economic potential of fusion concepts using a wide range of possible materials choices, power densities, power conversion schemes, and fuel cycles. The ESECOM analysis indicates that magnetic fusion energy systems have the potential to achieve costs-of-electricity comparable to those of present and future fission systems, coupled with significant safety and environmental advantages. 75 refs., 2 figs., 24 tabs.

  4. The Progress of Research Project for Magnetized Target Fusion in China

    NASA Astrophysics Data System (ADS)

    Yang, Xian-Jun

    2015-11-01

    The fusion of magnetized plasma called Magnetized Target Fusion (MTF) is a hot research area recently. It may significantly reduce the cost and size. Great progress has been achieved in past decades around the world. Five years ago, China initiated the MTF project and has gotten some progress as follows: 1. Verifying the feasibility of ignition of MTF by means of first principle and MHD simulation; 2. Generating the magnetic field over 1400 Tesla, which can be suppress the heat conduction from charged particles, deposit the energy of alpha particle to promote the ignition process, and produce the stable magnetized plasma for the target of ignition; 3. The imploding facility of FP-1 can put several Mega Joule energy to the solid liner of about ten gram in the range of microsecond risen time, while the simulating tool has been developed for design and analysis of the process; 4. The target of FRC can be generated by ``YG 1 facility'' while some simulating tools have be developed. Next five years, the above theoretical work and the experiments of MTF may be integrated to step up as the National project, which may make my term play an important lead role and be supposed to achieve farther progress in China. Supported by the National Natural Science Foundation of China under Grant No 11175028.

  5. Highly radiation-resistant vacuum impregnation resin systems for fusion magnet insulation

    NASA Astrophysics Data System (ADS)

    Fabian, P. E.; Munshi, N. A.; Denis, R. J.

    2002-05-01

    Magnets built for fusion devices such as the newly proposed Fusion Ignition Research Experiment (FIRE) need to be highly reliable, especially in a high radiation environment. Insulation materials are often the weak link in the design of superconducting magnets due to their sensitivity to high radiation doses, embrittlement at cryogenic temperatures, and the limitations on their fabricability. An insulation system capable of being vacuum impregnated with desirable properties such as a long pot-life, high strength, and excellent electrical integrity and which also provides high resistance to radiation would greatly improve magnet performance and reduce the manufacturing costs. A new class of insulation materials has been developed utilizing cyanate ester chemistries combined with other known radiation-resistant resins, such as bismaleimides and polyimides. These materials have been shown to meet the demanding requirements of the next generation of devices, such as FIRE. Post-irradiation testing to levels that exceed those required for FIRE showed no degradation in mechanical properties. In addition, the cyanate ester-based systems showed excellent performance at cryogenic temperatures and possess a wide range of processing variables, which will enable cost-effective fabrication of new magnets. This paper details the processing parameters, mechanical properties at 76 K and 4 K, as well as post-irradiation testing to dose levels surpassing 108 Gy.

  6. Assessing the Performance of Sensor Fusion Methods: Application to Magnetic-Inertial-Based Human Body Tracking

    PubMed Central

    Ligorio, Gabriele; Bergamini, Elena; Pasciuto, Ilaria; Vannozzi, Giuseppe; Cappozzo, Aurelio; Sabatini, Angelo Maria

    2016-01-01

    Information from complementary and redundant sensors are often combined within sensor fusion algorithms to obtain a single accurate observation of the system at hand. However, measurements from each sensor are characterized by uncertainties. When multiple data are fused, it is often unclear how all these uncertainties interact and influence the overall performance of the sensor fusion algorithm. To address this issue, a benchmarking procedure is presented, where simulated and real data are combined in different scenarios in order to quantify how each sensor’s uncertainties influence the accuracy of the final result. The proposed procedure was applied to the estimation of the pelvis orientation using a waist-worn magnetic-inertial measurement unit. Ground-truth data were obtained from a stereophotogrammetric system and used to obtain simulated data. Two Kalman-based sensor fusion algorithms were submitted to the proposed benchmarking procedure. For the considered application, gyroscope uncertainties proved to be the main error source in orientation estimation accuracy for both tested algorithms. Moreover, although different performances were obtained using simulated data, these differences became negligible when real data were considered. The outcome of this evaluation may be useful both to improve the design of new sensor fusion methods and to drive the algorithm tuning process. PMID:26821027

  7. Magnetic Fusion Science Fellowship program: Summary of program activities for calendar year 1986

    SciTech Connect

    Not Available

    1986-01-01

    This report describes the 1985-1986 progress of the Magnetic Fusion Science Fellowship program (MFSF). The program was established in January of 1985 by the Office of Fusion Energy (OFE) of the US Department of Energy (DOE) to encourage talented undergraduate and first-year graduate students to enter qualified graduate programs in the sciences related to fusion energy development. The program currently has twelve fellows in participating programs. Six new fellows are being appointed during each of the program's next two award cycles. Appointments are for one year and are renewable for two additional years with a three year maximum. The stipend level also continues at a $1000 a month or $12,000 a year. The program pays all tuition and fee expenses for the fellows. Another important aspect of the fellowship program is the practicum. During the practicum fellows receive three month appointments to work at DOE designated fusion science research and development centers. The practicum allows the MFSF fellows to directly participate in on-going DOE research and development programs.

  8. Assessing the Performance of Sensor Fusion Methods: Application to Magnetic-Inertial-Based Human Body Tracking.

    PubMed

    Ligorio, Gabriele; Bergamini, Elena; Pasciuto, Ilaria; Vannozzi, Giuseppe; Cappozzo, Aurelio; Sabatini, Angelo Maria

    2016-01-01

    Information from complementary and redundant sensors are often combined within sensor fusion algorithms to obtain a single accurate observation of the system at hand. However, measurements from each sensor are characterized by uncertainties. When multiple data are fused, it is often unclear how all these uncertainties interact and influence the overall performance of the sensor fusion algorithm. To address this issue, a benchmarking procedure is presented, where simulated and real data are combined in different scenarios in order to quantify how each sensor's uncertainties influence the accuracy of the final result. The proposed procedure was applied to the estimation of the pelvis orientation using a waist-worn magnetic-inertial measurement unit. Ground-truth data were obtained from a stereophotogrammetric system and used to obtain simulated data. Two Kalman-based sensor fusion algorithms were submitted to the proposed benchmarking procedure. For the considered application, gyroscope uncertainties proved to be the main error source in orientation estimation accuracy for both tested algorithms. Moreover, although different performances were obtained using simulated data, these differences became negligible when real data were considered. The outcome of this evaluation may be useful both to improve the design of new sensor fusion methods and to drive the algorithm tuning process. PMID:26821027

  9. Inertial confinement fusion implosions with imposed magnetic field compression using the OMEGA Laser

    SciTech Connect

    Hohenberger, M.; Chang, P.-Y.; Fiksel, G.; Knauer, J. P.; Marshall, F. J.; Betti, R.; Meyerhofer, D. D.; and others

    2012-05-15

    Experiments applying laser-driven magnetic-flux compression to inertial confinement fusion (ICF) targets to enhance the implosion performance are described. Spherical plastic (CH) targets filled with 10 atm of deuterium gas were imploded by the OMEGA Laser, compare Phys. Plasmas 18, 056703 or Phys. Plasmas 18, 056309. Before being imploded, the targets were immersed in an 80-kG magnetic seed field. Upon laser irradiation, the high implosion velocities and ionization of the target fill trapped the magnetic field inside the capsule, and it was amplified to tens of megagauss through flux compression. At such strong magnetic fields, the hot spot inside the spherical target was strongly magnetized, reducing the heat losses through electron confinement. The experimentally observed ion temperature was enhanced by 15%, and the neutron yield was increased by 30%, compared to nonmagnetized implosions [P. Y. Chang et al., Phys. Rev. Lett. 107, 035006 (2011)]. This represents the first experimental verification of performance enhancement resulting from embedding a strong magnetic field into an ICF capsule. Experimental data for the fuel-assembly performance and magnetic field are compared to numerical results from combining the 1-D hydrodynamics code LILAC with a 2-D magnetohydrodynamics postprocessor.

  10. Mechanism for magnetic field generation and growth in Rayleigh-Taylor unstable inertial confinement fusion plasmas

    SciTech Connect

    Srinivasan, Bhuvana; Tang Xianzhu

    2012-08-15

    Rayleigh-Taylor instabilities (RTI) in inertial confinement fusion (ICF) implosions are expected to generate magnetic fields at the gas-ice interface and at the ice-ablator interface. The focus here is on the gas-ice interface where the temperature gradient is the largest. A Hall-MHD model is used to study the magnetic field generation and growth for 2-D single-mode and multimode RTI in a stratified two-fluid plasma, the two fluids being ions and electrons. Self-generated magnetic fields are observed and these fields grow as the RTI progresses via the {nabla}n{sub e} Multiplication-Sign {nabla}T{sub e} term in the generalized Ohm's law. Srinivasan et al.[Phys. Rev. Lett. 108, 165002 (2012)] present results of the magnetic field generation and growth, and some scaling studies in 2-dimensions. The results presented here study the mechanism behind the magnetic field generation and growth, which is related to fluid vorticity generation by RTI. The magnetic field wraps around the bubbles and spikes and concentrates in flux bundles at the perturbed gas-ice interface where fluid vorticity is large. Additionally, the results of Srinivasan et al.[Phys. Rev. Lett. 108, 165002 (2012)] are described in greater detail. Additional scaling studies are performed to determine the growth of the self-generated magnetic field as a function of density, acceleration, perturbation wavelength, Atwood number, and ion mass.

  11. The Science and Technology Challenges of the Plasma-Material Interface for Magnetic Fusion Energy

    NASA Astrophysics Data System (ADS)

    Whyte, Dennis

    2013-09-01

    The boundary plasma and plasma-material interactions of magnetic fusion devices are reviewed. The boundary of magnetic confinement devices, from the high-temperature, collisionless pedestal through to the surrounding surfaces and the nearby cold high-density collisional plasmas, encompasses an enormous range of plasma and material physics, and their integrated coupling. Due to fundamental limits of material response the boundary will largely define the viability of future large MFE experiments (ITER) and reactors (e.g. ARIES designs). The fusion community faces an enormous knowledge deficit in stepping from present devices, and even ITER, towards fusion devices typical of that required for efficient energy production. This deficit will be bridged by improving our fundamental science understanding of this complex interface region. The research activities and gaps are reviewed and organized to three major axes of challenges: power density, plasma duration, and material temperature. The boundary can also be considered a multi-scale system of coupled plasma and material science regulated through the non-linear interface of the sheath. Measurement, theory and modeling across these scales are reviewed, with a particular emphasis on establishing the use dimensionless parameters to understand this complex system. Proposed technology and science innovations towards solving the PMI/boundary challenges will be examined. Supported by US DOE award DE-SC00-02060 and cooperative agreement DE-FC02-99ER54512.

  12. Vector magnetic properties of Fe-based amorphous sheets under alternating flux condition

    NASA Astrophysics Data System (ADS)

    Ueno, S.; Todaka, T.; Enokizono, M.

    2012-04-01

    This paper presents measured vector magnetic properties of Fe-based amorphous sheets under alternating flux conditions in arbitrary direction. It is well known that amorphous material has usually isotropic magnetic property; however it is changeable by heat-treatment and shows complicated aspects. In this paper, the relationship between the magnetic flux density and field strength vector and iron loss under alternating flux conditions is measured by using a vector magnetic property measurement system. Moreover, the iron losses depending on the exciting frequency are discussed. The results show a weak anisotropy in plane and the frequency dependence of the iron losses shows different tendency in each direction.

  13. Production of muons for fusion catalysis in a magnetic mirror configuration

    SciTech Connect

    Moir, R.W.; Chapline, G.F. Jr.

    1986-06-25

    One possible near term application of a muon-producing magnetic-mirror scheme would be to build a high-flux neutron source for radiation damage studies. The careful arrangement of triton orbits will result in many of the ..pi../sup -/s being produced near the axis of the magnetic mirror. The pions quickly decay into muons, which are transported into a small (few-cm-diameter) reactor chamber producing approximately 1-MW/m/sup 2/ neutron flux on the chamber walls, using a laboratory accelerator and magnetic mirror. The costs of construction and operation of the triton injection accelerator probably introduces most of the uncertainty in the viability of this scheme. If a 10-..mu..A, 600 MeV neutral triton accelerator could be built for less than $100 million and operated cheaply enough, one might well bring muon-catalyzed fusion into practical use.

  14. Existing and new applications of micropellet injection (MPI) in magnetic fusion

    NASA Astrophysics Data System (ADS)

    Wang, Zhehui; Lunsford, Robert; Mansfield, Dennis K.; Nichols, Jacob H.

    2016-02-01

    > The intense heat and energetic particle fluxes expected in ITER and future magnetic fusion reactors pose prohibitive problems to the design, selection and maintenance of the first wall and divertor. Micropellet injection (MPI) technologies can offer some innovative solutions to the material and extreme heat challenges. Basic physics of micropellet motion, ablation and interactions with high-temperature plasmas and energetic particles are presented first. We then discuss MPI technology options and applications. In addition to plasma diagnostic applications, controlled injection of micropellets of different sizes, velocities and injection frequencies will offer several possibilities: (1) better assessment of the core plasma cooling due to dust produced in situ; (2) better understanding of the plasma-material interaction physics near the wall; (3) new methods for plasma fuelling and impurity control; and (4) techniques for edge cooling with minimal impact on the plasma core. Dedicated small-scale laboratory experiments will complement major fusion experiments in development and applications of MPI.

  15. Noise temperature improvement for magnetic fusion plasma millimeter wave imaging systems.

    PubMed

    Lai, J; Domier, C W; Luhmann, N C

    2014-03-01

    Significant progress has been made in the imaging and visualization of magnetohydrodynamic and microturbulence phenomena in magnetic fusion plasmas [B. Tobias et al., Plasma Fusion Res. 6, 2106042 (2011)]. Of particular importance have been microwave electron cyclotron emission imaging and microwave imaging reflectometry systems for imaging T(e) and n(e) fluctuations. These instruments have employed heterodyne receiver arrays with Schottky diode mixer elements directly connected to individual antennas. Consequently, the noise temperature has been strongly determined by the conversion loss with typical noise temperatures of ~60,000 K. However, this can be significantly improved by making use of recent advances in Monolithic Microwave Integrated Circuit chip low noise amplifiers to insert a pre-amplifier in front of the Schottky diode mixer element. In a proof-of-principle design at V-Band (50-75 GHz), significant improvement of noise temperature from the current 60,000 K to measured 4000 K has been obtained. PMID:24689579

  16. Existing and new applications of micropellet injection (MPI) in magnetic fusion

    NASA Astrophysics Data System (ADS)

    Wang, Zhehui; Lunsford, Robert; Mansfield, Dennis K.; Nichols, Jacob H.

    2016-04-01

    > The intense heat and energetic particle fluxes expected in ITER and future magnetic fusion reactors pose prohibitive problems to the design, selection and maintenance of the first wall and divertor. Micropellet injection (MPI) technologies can offer some innovative solutions to the material and extreme heat challenges. Basic physics of micropellet motion, ablation and interactions with high-temperature plasmas and energetic particles are presented first. We then discuss MPI technology options and applications. In addition to plasma diagnostic applications, controlled injection of micropellets of different sizes, velocities and injection frequencies will offer several possibilities: (1) better assessment of the core plasma cooling due to dust produced in situ; (2) better understanding of the plasma-material interaction physics near the wall; (3) new methods for plasma fuelling and impurity control; and (4) techniques for edge cooling with minimal impact on the plasma core. Dedicated small-scale laboratory experiments will complement major fusion experiments in development and applications of MPI.

  17. Comparison between initial Magnetized Liner Inertial Fusion experiments and integrated simulations

    NASA Astrophysics Data System (ADS)

    Sefkow, A. B.; Gomez, M. R.; Geissel, M.; Hahn, K. D.; Hansen, S. B.; Harding, E. C.; Peterson, K. J.; Slutz, S. A.; Koning, J. M.; Marinak, M. M.

    2014-10-01

    The Magnetized Liner Inertial Fusion (MagLIF) approach to ICF has obtained thermonuclear fusion yields using the Z facility. Integrated magnetohydrodynamic simulations provided the design for the first neutron-producing experiments using capabilities that presently exist, and the initial experiments measured stagnation radii rstag < 75 μm, temperatures around 3 keV, and isotropic neutron yields up to YnDD = 2 ×1012 from imploded liners reaching peak velocities around 70 km/s over an implosion time of about 60 ns. We present comparisons between the experimental observables and post-shot degraded integrated simulations. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the National Nuclear Security Administration under Contract DE-AC04-94AL85000.

  18. Study of Plasma Liner Driven Magnetized Target Fusion Via Advanced Simulations

    SciTech Connect

    Samulyak, Roman V.; Parks, Paul

    2013-08-31

    The feasibility of the plasma liner driven Magnetized Target Fusion (MTF) via terascale numerical simulations will be assessed. In the MTF concept, a plasma liner, formed by merging of a number (60 or more) of radial, highly supersonic plasma jets, implodes on the target in the form of two compact plasma toroids, and compresses it to conditions of the fusion ignition. By avoiding major difficulties associated with both the traditional laser driven inertial confinement fusion and solid liner driven MTF, the plasma liner driven MTF potentially provides a low-cost and fast R&D path towards the demonstration of practical fusion energy. High fidelity numerical simulations of full nonlinear models associated with the plasma liner MTF using state-of-art numerical algorithms and terascale computing are necessary in order to resolve uncertainties and provide guidance for future experiments. At Stony Brook University, we have developed unique computational capabilities that ideally suite the MTF problem. The FronTier code, developed in collaboration with BNL and LANL under DOE funding including SciDAC for the simulation of 3D multi-material hydro and MHD flows, has beenbenchmarked and used for fundamental and engineering problems in energy science applications. We have performed 3D simulations of converging supersonic plasma jets, their merger and the formation of the plasma liner, and a study of the corresponding oblique shock problem. We have studied the implosion of the plasma liner on the magnetized plasma target by resolving Rayleigh-Taylor instabilities in 2D and 3D and other relevant physics and estimate thermodynamic conditions of the target at the moment of maximum compression and the hydrodynamic efficiency of the method.

  19. Ultra-high speed permanent magnet axial gap alternator with multiple stators

    DOEpatents

    Hawsey, Robert A.; Bailey, J. Milton

    1991-01-01

    An ultra-high speed, axial gap alternator that can provide an output to a plurality of loads, the alternator providing magnetic isolation such that operating conditions in one load will not affect operating conditions of another load. This improved alternator uses a rotor member disposed between a pair of stator members, with magnets disposed in each of the rotor member surfaces facing the stator members. The magnets in one surface of the rotor member, which alternate in polarity, are isolated from the magnets in the other surface of the rotor member by a disk of magnetic material disposed between the two sets of magents. In the preferred embodiment, this disk of magnetic material is laminated between two layers of non-magnetic material that support the magnets, and the magnetic material has a peripheral rim that extends to both surfaces of the rotor member to enhance the structural integrity. The stator members are substantially conventional in construction in that equally-spaced and radially-oriented slots are provided, and winding members are laid in these slots. A unit with multiple rotor members and stator members is also described.

  20. Excitation of stable Alfven eigenmodes by application of alternating magnetic field perturbations in the Compact Helical System

    SciTech Connect

    Ito, T.; Toi, K.; Isobe, M.; Nagaoka, K.; Takeuchi, M.; Akiyama, T.; Matsuoka, K.; Minami, T.; Nishimura, S.; Okamura, S.; Shimizu, A.; Suzuki, C.; Yoshimura, Y.; Takahashi, C.; Matsunaga, G.

    2009-09-15

    Stable toroidicity-induced Alfven eigenmodes (TAEs) with low toroidal mode number (n=1 and n=2) were excited by application of alternating magnetic field perturbations generated with a set of electrodes inserted into the edge region of neutral beam injection heated plasmas on the Compact Helical System [K. Nishimura, K. Matsuoka, M. Fujiwara et al., Fusion Technol. 17, 86 (1990)]. The gap locations of TAEs excited by the electrodes are in the plasma peripheral region of {rho}>0.7 ({rho} is the normalized minor radius) where energetic ion drive is negligibly small, while some AEs are excited by energetic ions in the plasma core region of {rho}<0.4. The damping rate of these stable TAEs derived from plasma responses to applied perturbations is fairly large, that is, {approx}9% to {approx}12% of the angular eigenfrequency. This large damping rate is thought to be dominantly caused by continuum damping and radiative damping.

  1. On the efficacy of imploding plasma liners for magnetized fusion target compression

    SciTech Connect

    Parks, P. B.

    2008-06-15

    A new theoretical model is formulated to study the idea of merging a spherical array of converging plasma jets to form a 'plasma liner' that further converges to compress a magnetized plasma target to fusion conditions [Y. C. F. Thio et al., 'Magnetized target fusion in a spheroidal geometry with standoff drivers', Current Trends in International Fusion Research II, edited by E. Panarella (National Research Council Canada, Ottawa, Canada, 1999)]. For a spherically imploding plasma liner shell with high initial Mach number (M=liner speed/sound speed) the rise in liner density with decreasing radius r goes as {rho}{approx}1/r{sup 2}, for any constant adiabatic index {gamma}=d ln p/d ln {rho}. Accordingly, spherical convergence amplifies the ram pressure of the liner on target by the factor A{approx}C{sup 2}, indicating strong coupling to its radial convergence C=r{sub m}/R, where r{sub m}(R)=jet merging radius (compressed target radius), and A=compressed target pressure/initial liner ram pressure. Deuterium-tritium (DT) plasma liners with initial velocity {approx}100 km/s and {gamma}=5/3, need to be hypersonic M{approx}60 and thus cold in order to realize values of A{approx}10{sup 4} necessary for target ignition. For optically thick DT liners, T<2 eV, n>10{sup 19}-10{sup 20} cm{sup -3}, blackbody radiative cooling is appreciable and may counteract compressional heating during the later stages of the implosion. The fluid then behaves as if the adiabatic index were depressed below 5/3, which in turn means that the same amplification A=1.6x10{sup 4} can be accomplished with a reduced initial Mach number M{approx_equal}12.7({gamma}-0.3){sup 4.86}, valid in the range (10fusion {alpha}-particle heating of the collapsed liner indicates that 'spark' ignition of the DT liner fuel does not appear to be

  2. Development of Field-Reversed Configuration Plasma Gun Formation Techniques for Magnetized Target Fusion

    NASA Astrophysics Data System (ADS)

    Lynn, Alan; Gilmore, Mark; Wynkoop, Tyler; Intrator, Thomas; Weber, Thomas

    2012-10-01

    Magnetized Target Fusion (MTF) is an innovative approach for a relatively fast and cheap path to the production of fusion energy that utilizes magnetic confinement to assist in the compression of a hot plasma to thermonuclear conditions by an external driver. Los Alamos National Laboratory (LANL) is currently pursing demonstration of the MTF concept via compression of an FRC (field-reversed configuration) plasma by a metal liner z-pinch in conjunction with the Air Force Research Laboratory in Albuquerque, NM. A key physics issue for the FRC as an MTF target lies in the initial pre-ionization (PI) stage. The PI formation process determines the amount of magnetic flux that can be trapped to form the FRC. This trapped flux plays an important role in the FRC's final equilibrium, transport, and stability properties. It also provides the route to greatest potential gains in FRC lifetime, which is essential to provide enough time to translate and compress the FRC effectively. In conjunction with LANL we plan to test and characterize a new system to improve the initial PI plasma formation. This system will use an array of plasma guns to form the initial plasma. Initial characterization of the plasma gun behavior will be presented.

  3. The mitigating effect of magnetic fields on Rayleigh-Taylor unstable inertial confinement fusion plasmas

    SciTech Connect

    Srinivasan, Bhuvana; Tang, Xian-Zhu

    2013-05-15

    Rayleigh-Taylor (RT) instabilities at interfaces of disparate mass densities have long been known to generate magnetic fields during inertial confinement fusion implosions. An externally applied magnetic field can also be efficiently amplified by RT instabilities. The focus here is on magnetic field generation and amplification at the gas-ice interface which is RT unstable during the deceleration phase of the implosion. RT instabilities lead to undesirable mix of hot and cold plasmas which enhances thermal energy loss and tends to produce a more massive warm-spot instead of a hot-spot. Two mechanisms are shown here to mitigate the thermal energy loss from the hot-spot. The first mechanism is the reduction of electron thermal conductivity with interface-aligned magnetic fields. This can occur through self-generated magnetic fields via the Biermann battery effect as well as through externally applied magnetic fields that undergo an exponential growth via the stretch-and-fold magnetohydrodynamic dynamo. Self-generated magnetic fields during RT evolution can result in a factor of 2−10 decrease in the electron thermal conductivity at the gas-ice interface, while externally applied magnetic fields that are compressed to 6–1000 T at the onset of deceleration (corresponding to pre-implosion external fields of 0.06–10 T) could result in a factor of 2–500 reduction in electron thermal conductivity at the gas-ice interface. The second mechanism to mitigate thermal energy loss from the hot-spot is to decrease the interface mixing area between the hot and cold plasmas. This is achieved through large external magnetic fields of 1000 T at the onset of deceleration which damp short-wavelength RT modes and long-wavelength Kelvin-Helmholtz modes thus significantly slowing the RT growth and reducing mix.

  4. Preparation of magnetic ferrofluids in alternative carrier liquids

    NASA Technical Reports Server (NTRS)

    Rosensweig, R. E.

    1970-01-01

    Ferrofluids are made by grinding magnetic particles together with a polar surfactant and a nonpolar solvent. The surfactant is adsorbed on the particle surfaces and acts as a coupling agent between the particles and the solvent.

  5. Compatibility of alternative refrigerants with varnished magnet wire

    SciTech Connect

    Doerr, R.; Kujak, S.

    1993-10-01

    The compatibility of 24 motor materials with 11 pure refrigerators and 17 refrigerant-lubricant combinations was determined. This is summary of the effect of refrigerants on varnished magnet wire. Of the refrigerants tested, exposure to HCFC-22 produced the most deleterious effects on the magnet wire insulation and varnishes. Since many of the materials tested have excellent reliability with HCFC-22 in current applications, these materials are expected to be reliable when used with new refrigerants.

  6. Alternatives to Rare Earth Permanent Magnets for Energy Harvesting Applications

    NASA Astrophysics Data System (ADS)

    Khazdozian, Helena; Hadimani, Ravi; Jiles, David

    Direct-drive permanent magnet generators (DDPMGs) offer increased reliability and efficiency over the more commonly used geared doubly-fed induction generator, yet are only employed in less than 1 percent of utility scale wind turbines in the U.S. One major barrier to increased deployment of DDPMGs in the U.S. wind industry is NdFeB permanent magnets (PMs), which contain critical rare earth elements Nd and Dy. To allow for the use of rare earth free PMs, the magnetic loading, defined as the average magnetic flux density over the rotor surface, must be maintained. Halbach cylinders are employed in 3.5kW Halbach PMGs (HPMGs) of varying slot-to-pole ratio to concentrate the magnetic flux output by a lower energy density PM over the rotor surface. We found that for high pole and slot number, the increase in magnetic loading is sufficient to allow for the use of strontium iron oxide hard ferrite PMs and achieved rated performance. Joule losses in the stator windings were found to increase for the hard ferrite PMs due to increased inductance in the stator windings. However, for scaling of the HPMG designs to 3MW, rated performance and high efficiency were achieved, demonstrating the potential for elimination for rare earth PMs in commercial scale wind turbines. This work was supported by the National Science Foundation under Grant No. 1069283 and a Barbara and James Palmer Endowment at Iowa State University.

  7. Fast Ignition Thermonuclear Fusion: Enhancement of the Pellet Gain by the Colossal-Magnetic-Field Shells

    NASA Astrophysics Data System (ADS)

    Stefan, V. Alexander

    2013-10-01

    The fast ignition fusion pellet gain can be enhanced by a laser generated B-field shell. The B-field shell, (similar to Earth's B-field, but with the alternating B-poles), follows the pellet compression in a frozen-in B-field regime. A properly designed laser-pellet coupling can lead to the generation of a B-field shell, (up to 100 MG), which inhibits electron thermal transport and confines the alpha-particles. In principle, a pellet gain of few-100s can be achieved in this manner. Supported in part by Nikola Tesla Labs, Stefan University, 1010 Pearl, La Jolla, CA 92038-1007.

  8. Magnetic resonance imaging on disc degeneration changes after implantation of an interspinous spacer and fusion of the adjacent segment

    PubMed Central

    Liu, Xiaokang; Liu, Yingjie; Lian, Xiaofeng; Xu, Jianguang

    2015-01-01

    The aim of the study was to investigate the changes of the lumbar intervertebral disc degeneration by magnetic resonance imaging (MRI) after the implantation of interspinous device and the fusion of the adjacent segment. A total of 62 consecutive patients suffering L5/S1 lumbar disc herniation (LDH) with concomitant disc space narrowing or low-grade instability up to 5 mm translational slip in L5/S1 level were treated with lumbar interbody fusion (LIF) via posterior approach. Thirty-four of these patients (Coflex group) received an additional implantation of the interspinous spacer device (Coflex™) in the level L4/L5, while the rest of 28 patients (fusion group) underwent the fusion surgery alone. Clinical and radiographic examinations were performed at pre- and postoperative visits to compare the clinical outcomes and the changes of the L4/L5 vertebral disc degeneration on MRI in both Coflex and fusion group. Although both Coflex and fusion group showed improvements of the clinical outcomes assessed by the Oswestry Disability Index (ODI) after surgery, patients in Coflex group had more significant amelioration (P < 0.05) compared to fusion group. During follow up, the postoperative disc degeneration changes in Coflex group assessed by the relative signal intensity (RSI) differed from those in fusion group (P < 0.05). The supplemental implantation of Coflex™ after the fusion surgery could delay the disc degeneration of the adjacent segment. PMID:26131210

  9. Microwave generation for magnetic fusion energy applications. Progress report, September 15, 1991--July 15, 1992

    SciTech Connect

    Antonsen, T.M. Jr.; Destler, W.W.; Granatstein, V.L.; Levush, B.

    1992-01-01

    This progress report encompasses work on two separate projects, both related to developing sources for electron cyclotron resonance heating of magnetic fusion plasmas. The report is therefore divided into two parts as follows: Free electron laser with small period wigglers; and theory and modeling of high frequency, high power gryotron operation. Task A is experimental and eventually aims at developing continuously tunable, cw sources for ECRH with power per unit as high as 5 megawatts. Task B provides gryotron theory and modeling in support of the gryotron development programs at MIT and Varian.

  10. Transmutation analysis of realistic low-activation steels for magnetic fusion reactors and IFMIF

    SciTech Connect

    Cabellos, O; Sanz, J; Garc?a-Herranz, N; D?az, S; Reyes, S; Piedloup, S

    2005-11-22

    A comprehensive transmutation study for steels considered in the selection of structural materials for magnetic and inertial fusion reactors has been performed in the IFMIF neutron irradiation scenario, as well as in the ITER and DEMO ones for comparison purposes. An element-by-element transmutation approach is used in the study, addressing the generation of: (1) H and He and (2) solid transmutants. The IEAF-2001 activation library and the activation code ACAB were applied to the IFMIF transmutation analysis, after proving the applicability of ACAB for transmutation calculations of this kind of intermediate energy systems.

  11. Pellet acceleration study with a railgun for magnetic fusion reactor refueling

    SciTech Connect

    Honig, J.; Kim, K.

    1984-04-01

    Design, construction, and preliminary testing of a two-stage pellet injection system capable of achieving hydrogen pellet velocities of 5--10 km/s are described. The system, which is intended for the refueling of magnetic fusion devices, combines a gas gun with a small-bore, plasma-arc-driven electromagnetic railgun. The gas gun uses hydrogen gas as the propellant and injects a medium-velocity pellet into the railgun. Once inside the railgun, the propellant gas following the pellet is electrically broken down forming a plasma arc armature. The propulsive force of this plasma arc armature further accelerates the pellet to higher velocities.

  12. Application of railgun principle to high-velocity hydrogen pellet injection for magnetic fusion reactor refueling

    SciTech Connect

    Kim, K.; Honig, J.

    1984-09-01

    Design, construction, testing, and performance evaluation of a small-bore plasma-arc-driven electromagnetic railgun system are described. The railgun system, which is intended for injecting high-velocity hydrogen pellets into the magnetic fusion devices for the purpose of refueling, has two acceleration stages. One consists of a gas gun preaccelerator and the other a railgun booster accelerator. The plasma-arc armature is formed behind the pellet by electrically discharging the propellant gas following the pellet into the railgun from the gas gun.

  13. Elliptical magnetic mirror generated via resistivity gradients for fast ignition inertial confinement fusion

    NASA Astrophysics Data System (ADS)

    Robinson, A. P. L.; Schmitz, H.

    2013-06-01

    The elliptical magnetic mirror scheme for guiding fast electrons for Fast Ignition proposed by Schmitz et al. (Plasma Phys. Controlled Fusion 54, 085016 (2012)) is studied for conditions on the multi-kJ scale which are much closer to full-scale Fast Ignition. When scaled up, the elliptical mirror scheme is still highly beneficial to Fast Ignition. An increase in the coupling efficiency by a factor of 3-4 is found over a wide range of fast electron divergence half-angles.

  14. Elliptical magnetic mirror generated via resistivity gradients for fast ignition inertial confinement fusion

    SciTech Connect

    Robinson, A. P. L.; Schmitz, H.

    2013-06-15

    The elliptical magnetic mirror scheme for guiding fast electrons for Fast Ignition proposed by Schmitz et al. (Plasma Phys. Controlled Fusion 54, 085016 (2012)) is studied for conditions on the multi-kJ scale which are much closer to full-scale Fast Ignition. When scaled up, the elliptical mirror scheme is still highly beneficial to Fast Ignition. An increase in the coupling efficiency by a factor of 3–4 is found over a wide range of fast electron divergence half-angles.

  15. Proteasome Impairment Induces Recovery of Mitochondrial Membrane Potential and an Alternative Pathway of Mitochondrial Fusion

    PubMed Central

    Shirozu, Ryohei; Yashiroda, Hideki

    2015-01-01

    Mitochondria are vital and highly dynamic organelles that continuously fuse and divide to maintain mitochondrial quality. Mitochondrial dysfunction impairs cellular integrity and is known to be associated with various human diseases. However, the mechanism by which the quality of mitochondria is maintained remains largely unexplored. Here we show that impaired proteasome function recovers the growth of yeast cells lacking Fzo1, a pivotal protein for mitochondrial fusion. Decreased proteasome activity increased the mitochondrial oxidoreductase protein Mia40 and the ratio of the short isoform of mitochondrial intermembrane protein Mgm1 (s-Mgm1) to the long isoform (l-Mgm1). The increase in Mia40 restored mitochondrial membrane potential, while the increase in the s-Mgm1/l-Mgm1 ratio promoted mitochondrial fusion in an Fzo1-independent manner. Our findings demonstrate a new pathway for mitochondrial quality control that is induced by proteasome impairment. PMID:26552703

  16. An alternate method for designing dipole magnet ends

    SciTech Connect

    Pope, W.L.; Green, M.A.; Peters, C.; Caspi, S.; Taylor, C.E.

    1988-08-01

    Small bore superconducting dipole magnets, such as those for the SSC, often have problems in the ends. These problems can often be alleviated by spreading out the end windings so that the conductor sees less deformation. This paper presents a new procedure for designing dipole magnet ends which can be applied to magnets with either cylindrical or conical bulged ends to have integrated field multipoles which meet the constraints imposed by the SSC lattice. The method described here permits one to couple existing multiparameter optimization routines (i.e., MINUIT with suitable independent parameter constraints) with a computer code DIPEND, which describes the multiples, so that one can meet any reasonable objective (i.e., minimizing integrated sextupole and decapole). This paper will describe how the computer method was used to analyze the bulged conical ends for an SSC dipole. 6 refs, 6 figs, 2 tabs.

  17. Motional Stark Effect measurements of the local magnetic field in high temperature fusion plasmas

    NASA Astrophysics Data System (ADS)

    Wolf, R. C.; Bock, A.; Ford, O. P.; Reimer, R.; Burckhart, A.; Dinklage, A.; Hobirk, J.; Howard, J.; Reich, M.; Stober, J.

    2015-10-01

    The utilization of the Motional Stark Effect (MSE) experienced by the neutral hydrogen or deuterium injected into magnetically confined high temperature plasmas is a well established technique to infer the internal magnetic field distribution of fusion experiments. In their rest frame, the neutral atoms experience a Lorentz electric field, EL = v × B, which results in a characteristic line splitting and polarized line emission. The different properties of the Stark multiplet allow inferring, both the magnetic field strength and the orientation of the magnetic field vector. Besides recording the full MSE spectrum, several types of polarimeters have been developed to measure the polarization direction of the Stark line emission. To test physics models of the magnetic field distribution and dynamics, the accuracy requirements are quite demanding. In view of these requirements, the capabilities and issues of the different techniques are discussed, including the influence of the Zeeman Effect and the sensitivity to radial electric fields. A newly developed Imaging MSE system, which has been tested on the ASDEX Upgrade tokamak, is presented. The sensitivity allows to resolve sawtooth oscillations. A shorter version of this contribution is due to be published in PoS at: 1st EPS conference on Plasma Diagnostics

  18. Static deformation of a ferromagnet in alternating magnetic field

    NASA Astrophysics Data System (ADS)

    Burdin, D. A.; Chashin, D. V.; Ekonomov, N. A.; Fetisov, Y. K.

    2016-05-01

    Static deformation of a ferromagnet under an action of ac magnetic field was observed and investigated in this work. The effect is due to even and nonlinear dependence of magnetostriction on magnetic field. It is shown that the deformation is proportional to the second derivative of magnetostriction over the field at low fields and depends on the static bias field. The deformation grows nearly linearly and then saturates with increasing ac field. For the samples with very different parameters like permendur and nickel the ac field induced static strain can reach ~50% of the saturation magnetostriction.

  19. Tgermonuclear Ignition in Inertial Confinement Fusion and Comparison with Magnetic Confinement

    SciTech Connect

    Betti, R.; Chang, P.Y.; Spears, B.K.; Anderson, K.S.; Edwards, J.; Fatenejad, M.; Lindl, J.D.; McCrory, R.L.; Nora, R.; Shvarts, D.

    2010-04-23

    The physics of thermonuclear ignition in inertial confinement fusion (ICF) is presented in the familiar frame of a Lawson-type criterion. The product of the plasma pressure and confinement time Ptau for ICF is cast in terms of measurable parameters and its value is estimated for cryogenic implosions. An overall ignition parameter chi including pressure, confinement time, and temperature is derived to complement the product Ptau. A metric for performance assessment should include both chi and Ptau. The ignition parameter and the product Ptau are compared between inertial and magnetic-confinement fusion. It is found that cryogenic implosions on OMEGA [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)] have achieved Ptau ~ 1.5 atm s comparable to large tokamaks such as the Joint European Torus [P. H. Rebut and B. E. Keen, Fusion Technol. 11, 13 (1987)] where Ptau ~ 1 atm s. Since OMEGA implosions are relatively cold (T ~ 2 keV), their overall ignition parameter chi ~ 0.02–0.03 is ~5X lower than in JET (chi ~ 0.13), where the average temperature is about 10 keV.

  20. Thermonuclear ignition in inertial confinement fusion and comparison with magnetic confinement

    SciTech Connect

    Betti, R.; Chang, P. Y.; Anderson, K. S.; Nora, R.; Spears, B. K.; Edwards, J.; Lindl, J. D.; Fatenejad, M.; McCrory, R. L.; Shvarts, D.

    2010-05-15

    The physics of thermonuclear ignition in inertial confinement fusion (ICF) is presented in the familiar frame of a Lawson-type criterion. The product of the plasma pressure and confinement time Ptau for ICF is cast in terms of measurable parameters and its value is estimated for cryogenic implosions. An overall ignition parameter chi including pressure, confinement time, and temperature is derived to complement the product Ptau. A metric for performance assessment should include both chi and Ptau. The ignition parameter and the product Ptau are compared between inertial and magnetic-confinement fusion. It is found that cryogenic implosions on OMEGA[T. R. Boehly et al., Opt. Commun. 133, 495 (1997)] have achieved Ptauapprox1.5 atm s comparable to large tokamaks such as the Joint European Torus [P. H. Rebut and B. E. Keen, Fusion Technol. 11, 13 (1987)] where Ptauapprox1 atm s. Since OMEGA implosions are relatively cold (Tapprox2 keV), their overall ignition parameter chiapprox0.02-0.03 is approx5x lower than in JET (chiapprox0.13), where the average temperature is about 10 keV.

  1. Calculations of alpha particle loss for reversed magnetic shear in the Tokamak Fusion Test Reactor

    SciTech Connect

    Redi, M.H.; White, R.B.; Batha, S.H.; Levinton, F.M.; McCune, D.C.

    1997-03-01

    Hamiltonian coordinate, guiding center code calculations of the toroidal field ripple loss of alpha particles from a reversed shear plasma predict both total alpha losses and ripple diffusion losses to be greater than those from a comparable non-reversed magnetic shear plasma in the Tokamak Fusion Test Reactor (TFTR) [Fusion Technol. 21, 1324 (1992)]. High central q is found to increase alpha ripple losses as well as first orbit losses of alphas in the reversed shear simulations. A simple ripple loss model, benchmarked against the guiding center code, is found to work satisfactorily in transport analysis modelling of reversed and monotonic shear scenarios. Alpha ripple transport on TFTR affects ions within r/a=0.5, not at the plasma edge. The entire plasma is above threshold for stochastic ripple loss of alpha particles at birth energy in the reversed shear case simulated, so that all trapped 3.5 MeV alphas are lost stochastically or through prompt losses. The 40% alpha particle loss predictions for TFTR suggest that reduction of toroidal field ripple will be a critical issue in the design of a reversed shear fusion reactor.

  2. Evaluation of multiatlas label fusion for in vivo magnetic resonance imaging orbital segmentation

    PubMed Central

    Panda, Swetasudha; Asman, Andrew J.; Khare, Shweta P.; Thompson, Lindsey; Mawn, Louise A.; Smith, Seth A.; Landman, Bennett A.

    2014-01-01

    Abstract. Multiatlas methods have been successful for brain segmentation, but their application to smaller anatomies remains relatively unexplored. We evaluate seven statistical and voting-based label fusion algorithms (and six additional variants) to segment the optic nerves, eye globes, and chiasm. For nonlocal simultaneous truth and performance level estimation (STAPLE), we evaluate different intensity similarity measures (including mean square difference, locally normalized cross-correlation, and a hybrid approach). Each algorithm is evaluated in terms of the Dice overlap and symmetric surface distance metrics. Finally, we evaluate refinement of label fusion results using a learning-based correction method for consistent bias correction and Markov random field regularization. The multiatlas labeling pipelines were evaluated on a cohort of 35 subjects including both healthy controls and patients. Across all three structures, nonlocal spatial STAPLE (NLSS) with a mixed weighting type provided the most consistent results; for the optic nerve NLSS resulted in a median Dice similarity coefficient of 0.81, mean surface distance of 0.41 mm, and Hausdorff distance 2.18 mm for the optic nerves. Joint label fusion resulted in slightly superior median performance for the optic nerves (0.82, 0.39 mm, and 2.15 mm), but slightly worse on the globes. The fully automated multiatlas labeling approach provides robust segmentations of orbital structures on magnetic resonance imaging even in patients for whom significant atrophy (optic nerve head drusen) or inflammation (multiple sclerosis) is present. PMID:25558466

  3. On the use of particle-in-cell methods for the study of magnetically-confined fusion plasmas

    SciTech Connect

    Procassini, R.J. California Univ., Berkeley, CA . Electronics Research Lab.)

    1991-06-12

    The applicability of electrostatic particle-in-cell (PIC) methods for the simulation of magnetically-confined fusion plasmas is investigated. The aspects of the PIC methodology which allow one to accurately model the representative charge separations found in hot fusion plasmas with far fewer simulation particles are discussed. The number of simulation particles required to resolve the collective effects of interest (such as the ambipolar potential) above the statistical fluctuations is also analyzed. 8 refs., 1 fig.

  4. Coexistence of alternative MLL-SEPT9 fusion transcripts in an acute myeloid leukemia with t(11;17)(q23;q25).

    PubMed

    Santos, Joana; Cerveira, Nuno; Correia, Cecília; Lisboa, Susana; Pinheiro, Manuela; Torres, Lurdes; Bizarro, Susana; Vieira, Joana; Viterbo, Luisa; Mariz, José M; Teixeira, Manuel R

    2010-02-01

    We present the characterization at the RNA level of an acute myeloid leukemia with a t(11;17)(q23;q25) and a MLL rearrangement demonstrated by FISH. Molecular analysis led to the identification of two coexistent in-frame MLL-SEPT9 fusion transcripts (variants 1 and 2), presumably resulting from alternative splicing. Real-time quantitative RT-PCR analysis showed that the relative expression of the MLL-SEPT9 fusion variant 2 was 1.88 fold higher than the relative expression of MLL-SEPT9 fusion variant 1. This is the first description of a MLL-SEPT9 fusion resulting in coexistence of two alternative splicing variants, each of which previously found isolated in myeloid leukemias. PMID:20113838

  5. Exploring magnetized liner inertial fusion with a semi-analytic model

    DOE PAGESBeta

    McBride, Ryan D.; Slutz, Stephen A.; Vesey, Roger A.; Gomez, Matthew R.; Sefkow, Adam B.; Hansen, Stephanie B.; Knapp, Patrick F.; Schmit, Paul F.; Geissel, Matthias; Harvey-Thompson, Adam James; et al

    2016-01-01

    In this study, we explore magnetized liner inertial fusion (MagLIF) [S. A. Slutz et al., Phys. Plasmas 17, 056303 (2010)] using a semi-analytic model [R. D. McBride and S. A. Slutz, Phys. Plasmas 22, 052708 (2015)]. Specifically, we present simulation results from this model that: (a) illustrate the parameter space, energetics, and overall system efficiencies of MagLIF; (b) demonstrate the dependence of radiative loss rates on the radial fraction of the fuel that is preheated; (c) explore some of the recent experimental results of the MagLIF program at Sandia National Laboratories [M. R. Gomez et al., Phys. Rev. Lett. 113,more » 155003 (2014)]; (d) highlight the experimental challenges presently facing the MagLIF program; and (e) demonstrate how increases to the preheat energy, fuel density, axial magnetic field, and drive current could affect future MagLIF performance.« less

  6. Exploring magnetized liner inertial fusion with a semi-analytic model

    SciTech Connect

    McBride, Ryan D.; Slutz, Stephen A.; Vesey, Roger A.; Gomez, Matthew R.; Sefkow, Adam B.; Hansen, Stephanie B.; Knapp, Patrick F.; Schmit, Paul F.; Geissel, Matthias; Harvey-Thompson, Adam James; Jennings, Christopher Ashley; Harding, Eric C.; Awe, Thomas James; Rovang, Dean C.; Hahn, Kelly D.; Martin, Matthew R.; Cochrane, Kyle R.; Peterson, Kyle J.; Rochau, Gregory A.; Porter, John L.; Stygar, William A.; Campbell, Edward Michael; Nakhleh, Charles W.; Herrmann, Mark C.; Cuneo, Michael E.; Sinars, Daniel B.

    2016-01-01

    In this study, we explore magnetized liner inertial fusion (MagLIF) [S. A. Slutz et al., Phys. Plasmas 17, 056303 (2010)] using a semi-analytic model [R. D. McBride and S. A. Slutz, Phys. Plasmas 22, 052708 (2015)]. Specifically, we present simulation results from this model that: (a) illustrate the parameter space, energetics, and overall system efficiencies of MagLIF; (b) demonstrate the dependence of radiative loss rates on the radial fraction of the fuel that is preheated; (c) explore some of the recent experimental results of the MagLIF program at Sandia National Laboratories [M. R. Gomez et al., Phys. Rev. Lett. 113, 155003 (2014)]; (d) highlight the experimental challenges presently facing the MagLIF program; and (e) demonstrate how increases to the preheat energy, fuel density, axial magnetic field, and drive current could affect future MagLIF performance.

  7. Need for development of higher strength cryogenic structural materials for fusion magnet

    NASA Astrophysics Data System (ADS)

    Nishimura, Arata

    2014-01-01

    A prototype fusion reactor is targeted as a beyond ITER project which is so called DEMO. Several conceptual designs have been carried out. Recently, in order to recognize practical aspects on maintenance of the prototype reactor, the replacement procedure of in-vessel components was focused and "sector process" was proposed. The process is that the reactor consists of sectors and all sectors will be drowned and replaced in a short time. The slim coil which generated higher magnetic field is required to realize the sector process. From the point of coil design, the occupancy of the structural material on the cross section of the coil increases with an increase of magnetic field. To realize the slim coil, the cryogenic structural material with higher yield strength and the proper toughness is desired.

  8. Exploring magnetized liner inertial fusion with a semi-analytic model

    NASA Astrophysics Data System (ADS)

    McBride, R. D.; Slutz, S. A.; Vesey, R. A.; Gomez, M. R.; Sefkow, A. B.; Hansen, S. B.; Knapp, P. F.; Schmit, P. F.; Geissel, M.; Harvey-Thompson, A. J.; Jennings, C. A.; Harding, E. C.; Awe, T. J.; Rovang, D. C.; Hahn, K. D.; Martin, M. R.; Cochrane, K. R.; Peterson, K. J.; Rochau, G. A.; Porter, J. L.; Stygar, W. A.; Campbell, E. M.; Nakhleh, C. W.; Herrmann, M. C.; Cuneo, M. E.; Sinars, D. B.

    2016-01-01

    In this paper, we explore magnetized liner inertial fusion (MagLIF) [S. A. Slutz et al., Phys. Plasmas 17, 056303 (2010)] using a semi-analytic model [R. D. McBride and S. A. Slutz, Phys. Plasmas 22, 052708 (2015)]. Specifically, we present simulation results from this model that: (a) illustrate the parameter space, energetics, and overall system efficiencies of MagLIF; (b) demonstrate the dependence of radiative loss rates on the radial fraction of the fuel that is preheated; (c) explore some of the recent experimental results of the MagLIF program at Sandia National Laboratories [M. R. Gomez et al., Phys. Rev. Lett. 113, 155003 (2014)]; (d) highlight the experimental challenges presently facing the MagLIF program; and (e) demonstrate how increases to the preheat energy, fuel density, axial magnetic field, and drive current could affect future MagLIF performance.

  9. APPLICATIONS OF NEW TECHNOLOGY FOR PRODUCTION OF HIGH POWER MILLIMETER WAVES TO MAGNETIC FUSION RESEARCH

    SciTech Connect

    J. LOHR

    2002-08-01

    Although research on magnetically confined fusion plasmas has been carried out for a half century, for most of this time control of the temperature, density and current density profiles has been limited and transient. Now, high power long pulse gyrotron systems with excellent reliability are coming on line, which can provide non-inductively driven currents and electron heating leading to higher plasma performance and continuous operation in reactor relevant regimes. The precision of the location at which heating and current drive are applied has also made it possible to suppress certain classes of plasma instabilities. Basic physics of electron cyclotron current drive and heating are understood and these new technological capabilities are being exploited in magnetic confinement devices worldwide.

  10. Nonperturbative measurement of the local magnetic field using pulsed polarimetry for fusion reactor conditions (invited)

    SciTech Connect

    Smith, Roger J.

    2008-10-15

    A novel diagnostic technique for the remote and nonperturbative sensing of the local magnetic field in reactor relevant plasmas is presented. Pulsed polarimetry [Patent No. 12/150,169 (pending)] combines optical scattering with the Faraday effect. The polarimetric light detection and ranging (LIDAR)-like diagnostic has the potential to be a local B{sub pol} diagnostic on ITER and can achieve spatial resolutions of millimeters on high energy density (HED) plasmas using existing lasers. The pulsed polarimetry method is based on nonlocal measurements and subtle effects are introduced that are not present in either cw polarimetry or Thomson scattering LIDAR. Important features include the capability of simultaneously measuring local T{sub e}, n{sub e}, and B{sub ||} along the line of sight, a resiliency to refractive effects, a short measurement duration providing near instantaneous data in time, and location for real-time feedback and control of magnetohydrodynamic (MHD) instabilities and the realization of a widely applicable internal magnetic field diagnostic for the magnetic fusion energy program. The technique improves for higher n{sub e}B{sub ||} product and higher n{sub e} and is well suited for diagnosing the transient plasmas in the HED program. Larger devices such as ITER and DEMO are also better suited to the technique, allowing longer pulse lengths and thereby relaxing key technology constraints making pulsed polarimetry a valuable asset for next step devices. The pulsed polarimetry technique is clarified by way of illustration on the ITER tokamak and plasmas within the magnetized target fusion program within present technological means.

  11. Nonperturbative measurement of the local magnetic field using pulsed polarimetry for fusion reactor conditions (invited).

    PubMed

    Smith, Roger J

    2008-10-01

    A novel diagnostic technique for the remote and nonperturbative sensing of the local magnetic field in reactor relevant plasmas is presented. Pulsed polarimetry [Patent No. 12/150,169 (pending)] combines optical scattering with the Faraday effect. The polarimetric light detection and ranging (LIDAR)-like diagnostic has the potential to be a local B(pol) diagnostic on ITER and can achieve spatial resolutions of millimeters on high energy density (HED) plasmas using existing lasers. The pulsed polarimetry method is based on nonlocal measurements and subtle effects are introduced that are not present in either cw polarimetry or Thomson scattering LIDAR. Important features include the capability of simultaneously measuring local T(e), n(e), and B(parallel) along the line of sight, a resiliency to refractive effects, a short measurement duration providing near instantaneous data in time, and location for real-time feedback and control of magnetohydrodynamic (MHD) instabilities and the realization of a widely applicable internal magnetic field diagnostic for the magnetic fusion energy program. The technique improves for higher n(e)B(parallel) product and higher n(e) and is well suited for diagnosing the transient plasmas in the HED program. Larger devices such as ITER and DEMO are also better suited to the technique, allowing longer pulse lengths and thereby relaxing key technology constraints making pulsed polarimetry a valuable asset for next step devices. The pulsed polarimetry technique is clarified by way of illustration on the ITER tokamak and plasmas within the magnetized target fusion program within present technological means. PMID:19044521

  12. Shear Strengths of Copper/Insulation Interfaces for Fusion Magnet Applications

    NASA Astrophysics Data System (ADS)

    Hooker, M. W.; Fabian, P. E.; Grandlienard, S. D.; Codell, D. E.; Lizotte, M. J.

    2006-03-01

    Magnet insulation materials in many Next-Step Option fusion research devices will be subjected to high shear stresses at both cryogenic and elevated temperatures. The low shear strength and poor adhesion of the insulation to copper conductors can be limiting design factors in these systems. While cyanate ester resins have been shown to provide the necessary electrical and mechanical properties for fusion magnet insulation applications, the adhesion of the resin to copper at temperatures ranging from 77 to 373 K is a critical aspect of long-term operational performance. This work compares the shear strengths of copper/cyanate-ester-insulation interfaces prepared using various copper surface treatments, including grit blasting, alkaline cleaners, oxidizers, and primers. The shear strengths of the copper/cyanate-ester-insulation interface were measured using a novel specimen design in which thin copper foils were treated and embedded in laminate structures. Short-beam-shear tests were conducted at 76, 293, and 373 K to assess the performance of the various surface treatments. The results of this investigation indicate that the adhesive shear strengths of copper/cyanate-ester-insulation interfaces can be improved by as much as 50% by treating the copper surfaces prior to impregnation with the cyanate ester resin.

  13. Shear Strengths of Copper/Insulation Interfaces for Fusion Magnet Applications

    SciTech Connect

    Hooker, M. W.; Fabian, P. E.; Grandlienard, S. D.; Codell, D. E.; Lizotte, M. J.

    2006-03-31

    Magnet insulation materials in many Next-Step Option fusion research devices will be subjected to high shear stresses at both cryogenic and elevated temperatures. The low shear strength and poor adhesion of the insulation to copper conductors can be limiting design factors in these systems. While cyanate ester resins have been shown to provide the necessary electrical and mechanical properties for fusion magnet insulation applications, the adhesion of the resin to copper at temperatures ranging from 77 to 373 K is a critical aspect of long-term operational performance. This work compares the shear strengths of copper/cyanate-ester-insulation interfaces prepared using various copper surface treatments, including grit blasting, alkaline cleaners, oxidizers, and primers. The shear strengths of the copper/cyanate-ester-insulation interface were measured using a novel specimen design in which thin copper foils were treated and embedded in laminate structures. Short-beam-shear tests were conducted at 76, 293, and 373 K to assess the performance of the various surface treatments. The results of this investigation indicate that the adhesive shear strengths of copper/cyanate-ester-insulation interfaces can be improved by as much as 50% by treating the copper surfaces prior to impregnation with the cyanate ester resin.

  14. Advances in implosion physics, alternative targets design, and neutron effects on heavy ion fusion reactors

    NASA Astrophysics Data System (ADS)

    Velarde, G.; Perlado, J. M.; Alonso, E.; Alonso, M.; Domínguez, E.; Rubiano, J. G.; Gil, J. M.; Gómez del Rio, J.; Lodi, D.; Malerba, L.; Marian, J.; Martel, P.; Martínez-Val, J. M.; Mínguez, E.; Piera, M.; Ogando, F.; Reyes, S.; Salvador, M.; Sanz, J.; Sauvan, P.; Velarde, M.; Velarde, P.

    2001-05-01

    The coupling of a new radiation transport (RT) solver with an existing multimaterial fluid dynamics code (ARWEN) using Adaptive Mesh Refinement named DAFNE, has been completed. In addition, improvements were made to ARWEN in order to work properly with the RT code, and to make it user-friendlier, including new treatment of Equations of State, and graphical tools for visualization. The evaluation of the code has been performed, comparing it with other existing RT codes (including the one used in DAFNE, but in the single-grid version). These comparisons consist in problems with real input parameters (mainly opacities and geometry parameters). Important advances in Atomic Physics, Opacity calculations and NLTE atomic physics calculations, with participation in significant experiments in this area, have been obtained. Early published calculations showed that a DT x fuel with a small tritium initial content ( x<3%) could work in a catalytic regime in Inertial Fusion Targets, at very high burning temperatures (≫100 keV). Otherwise, the cross-section of DT remains much higher than that of DD and no internal breeding of tritium can take place. Improvements in the calculation model allow to properly simulate the effect of inverse Compton scattering which tends to lower Te and to enhance radiation losses, reducing the plasma temperature, Ti. The neutron activation of all natural elements in First Structural Wall (FSW) component of an Inertial Fusion Energy (IFE) reactor for waste management, and the analysis of activation of target debris in NIF-type facilities has been completed. Using an original efficient modeling for pulse activation, the FSW behavior in inertial fusion has been studied. A radiological dose library coupled to the ACAB code is being generated for assessing impact of environmental releases, and atmospheric dispersion analysis from HIF reactors indicate the uncertainty in tritium release parameters. The first recognition of recombination barriers in Si

  15. Scaling magnetized liner inertial fusion on Z and future pulsed-power accelerators

    NASA Astrophysics Data System (ADS)

    Slutz, S. A.; Stygar, W. A.; Gomez, M. R.; Peterson, K. J.; Sefkow, A. B.; Sinars, D. B.; Vesey, R. A.; Campbell, E. M.; Betti, R.

    2016-02-01

    The MagLIF (Magnetized Liner Inertial Fusion) concept [S. A. Slutz et al., Phys. Plasmas 17, 056303 (2010)] has demonstrated fusion-relevant plasma conditions [M. R. Gomez et al., Phys. Rev. Lett. 113, 155003 (2014)] on the Z accelerator with a peak drive current of about 18 MA. We present 2D numerical simulations of the scaling of MagLIF on Z as a function of drive current, preheat energy, and applied magnetic field. The results indicate that deuterium-tritium (DT) fusion yields greater than 100 kJ could be possible on Z when all of these parameters are at the optimum values: i.e., peak current = 25 MA, deposited preheat energy = 5 kJ, and Bz = 30 T. Much higher yields have been predicted [S. A. Slutz and R. A. Vesey, Phys. Rev. Lett. 108, 025003 (2012)] for MagLIF driven with larger peak currents. Two high performance pulsed-power accelerators (Z300 and Z800) based on linear-transformer-driver technology have been designed [W. A. Stygar et al., Phys. Rev. ST Accel. Beams 18, 110401 (2015)]. The Z300 design would provide 48 MA to a MagLIF load, while Z800 would provide 65 MA. Parameterized Thevenin-equivalent circuits were used to drive a series of 1D and 2D numerical MagLIF simulations with currents ranging from what Z can deliver now to what could be achieved by these conceptual future pulsed-power accelerators. 2D simulations of simple MagLIF targets containing just gaseous DT have yields of 18 MJ for Z300 and 440 MJ for Z800. The 2D simulated yield for Z800 is increased to 7 GJ by adding a layer of frozen DT ice to the inside of the liner.

  16. Magnetic mirror fusion-fission early history and applicability to other systems

    SciTech Connect

    Moir, R

    2009-08-24

    In the mid 1970s to mid 1980s the mirror program was stuck with a concept, the Standard Mirror that was Q {approx} 1 where Q=P{sub fusion}/P{sub injection}. Heroic efforts were put into hybridizing thinking added energy and fuel sales would make a commercial product. At the same time the tokamak was thought to allow ignition and ultrahigh Q values of 20 or even higher. There was an effort to use neutral beams to drive the tokamak just like the mirror machines were driven in which case the Q value plunged to a few, however this was thought to be achievable decades earlier than the high Q versions. Meanwhile current drive and other features of the tokamak have seen the projected Q values come down to the range of 10. Meanwhile the mirror program got Q enhancement into high gear and various tandem mirrors projected Q values up towards 10 and with advanced features over 10 with axi-symmetric magnets (See R. F. Post papers), however the experimental program is all but non-existent. Meanwhile, the gas dynamic trap mirror system which is present day state-of-the-art can with low risk produce Q of {approx}0.1 useful for a low risk, low cost neutron source for materials development useful for the development of materials for all fusion concepts (see Simonen white paper: 'A Physics-Based Strategy to Develop a Mirror Fusion-Fission Hybrid' and D.D. Ryutov, 'Axisymmetric MHD-stable mirror as a neutron source and a driver for a fusion-fission hybrid'). Many early hybrid designs with multi-disciplinary teams were carried out in great detail for the mirror system with its axi-symmetric blanket modules. It is recognized that most of these designs are adaptable to tokamak or inertial fusion geometry. When Q is low (1 to 2) economics gives a large economic penalty for high recirculating power. These early studies covered the three design types: Power production, fuel production and waste burning. All three had their place but power production fell away because every study showed

  17. Role of Lorentz-Stark broadening of hydrogen spectral lines in magnetized plasmas: Applications to magnetic fusion and solar physics

    NASA Astrophysics Data System (ADS)

    Oks, Eugene

    2015-05-01

    Broadening of hydrogen spectral lines in plasmas is an important diagnostic tool for many applications (here and below by "hydrogen atoms" and "hydrogen spectral lines" we mean atoms and spectral lines of hydrogen, deuterium, and tritium). In magnetized plasmas radiating hydrogen atoms moving with the velocity v across the magnetic field B experience a Lorentz electric field EL=v×B/c in addition to other electric fields. Since the velocity v has a distribution, so does the Lorentz field, thus making an additional contribution to the broadening of spectral lines. Compared to previous studies of this contribution, we cover the following new aspects. First, we consider the Lorentz-Doppler broadening of highly-excited hydrogen lines and produce new analytical results for arbitrary strength of the magnetic field B. We show for the first time that in the high-B case, the π-components of hydrogen lines are significantly suppressed compared to the σ-components. Second, we derive analytically Lorentz-broadened profiles of highly-excited hydrogen lines. We obtain expressions for the principal quantum number nmax of the last observable hydrogen line in the spectral series. These expressions differ very significantly from the corresponding Inglis-Teller result and constitute a new diagnostic method allowing to measure the product T1/2B, where T is the atomic temperature. Third, we consider magnetized plasmas containing a low-frequency electrostatic turbulence. This kind of turbulence causes anomalous transport phenomena (e.g., the anomalous resistivity) and is therefore very important to be diagnosed. We derive analytically distributions of the total electric field and the corresponding Stark profiles of hydrogen lines. We demonstrate that our findings lead to a significantly revised interpretation of the previous and future experimental data in magnetic fusion and the observational data in solar physics.

  18. Drag pressures of a set of alternating-polarity magnets over a superconductor tile

    SciTech Connect

    Komori, M.; Kitamura, T. )

    1991-08-15

    Drag pressures of a levitation mechanism are investigated. The levitation mechanism consists of a high-{ital T}{sub {ital c}} superconductor tile (type II superconductor) and a set of alternating-polarity bar magnets of the same size. Relationships of the drag pressure to the distance between the magnets and the superconductor tile and to the width of a bar magnet are investigated. The drag pressure becomes small rapidly with increasing distance. The drag pressure becomes large with the superconductor-magnets distance decreasing. If the distance is fixed there exist a width of a bar magnet providing a maximum drag pressure. The drag pressure is also measured when the superconductor is moved in the direction of the alternating polarity.

  19. High-field, high-current-density, stable superconducting magnets for fusion machines

    SciTech Connect

    Lue, J.W.; Dresner, L.; Lubell, M.S.

    1989-01-01

    Designs for large fusion machines require high-performance superconducting magnets to reduce cost or increase machine performance. By employing force-flow cooling, cable-in-conduit conductor configuration, and NbTi superconductor, it is now possible to design superconducting magnets that operate a high fields (8-12 T) with high current densities (5-15 kA/cm/sup 2/ over the winding pack) in a stable manner. High current density leads to smaller, lighter, and thus less expensive coils. The force-flow cooling provides confined helium, full conductor insulation, and a rigid winding pack for better load distribution. The cable-in-conduit conductor configuration ensures a high stability margin for the magnet. The NbTi superconductor has reached a good engineering material standard. Its strain-insensitive critical parameters are particularly suitable for complex coil windings of a stellarator machine. The optimization procedure for such a conductor design, developed over the past decade, is summarized here. If desired a magnet built on the principles outlines in this paper can be extended to a field higher than the design value without degrading its stability by simply lowering the operating temperature below 4.2 K. 11 refs., 3 figs.

  20. Dynamics of magnetic fields in high-energy-density plasmas for fusion and astrophysics

    NASA Astrophysics Data System (ADS)

    Gao, Lan; Ji, H.; Fox, W.; Hill, K.; Efthimion, P.; Nilson, P.; Igumenshchev, I.; Froula, D.; Betti, R.; Meyerhofer, D.; Fiksel, G.; Blackman, E.; Schneider, M.; Chen, H.; Smalyuk, V.; Li, H.; Casner, A.

    2015-11-01

    An overview of our recent experimental and theoretical work on the dynamics of magnetic fields in high-energy-density plasmas will be presented. This includes: (1) precision mapping of the self-generated magnetic fields in the coronal plasma and the Nernst effect on their evolution, (2) characterizing the strong magnetic field generated by a laser-driven capacitor-coil target using ultrafast proton radiography, and (3) creating MHD turbulence in Rayleigh-Taylor unstable plasmas. The experimental results are compared with resistive MHD simulations providing a stringent test for their predictions. Applications in relevance to ignition target designs in inertial confinement fusion, material strength studies in high-energy-density physics, and astrophysical systems such as plasma dynamos and magnetic reconnection will be discussed. Future experiments proposed on the National Ignition Facility will be described. This material is supported in part by the Department of Energy National Nuclear Security Administration under Award No. DE-NA0001944, and the National Laser Users Facility under Grant No. DE-NA0002205.

  1. Purification of recombinant EGFP by fusion with L2 (252-273) from ribosomal protein L2 using magnetic particles.

    PubMed

    Li, Junhua; Dong, Yiting; Zhang, Yang; Yang, Yanjun

    2013-02-15

    A basic polypeptide L2 (252-273) derived from Escherichia coli ribosomal protein L2 was used as a purification tag. In order to develop faster, less expensive methods for expression and purification of proteins, the L2 (252-273)-small ubiquitin like modifier (SUMO) fusion expression system was constructed. We comparatively analyzed the adsorption properties of the deleted protein of L2 (L2 (252-273)) on diatomite and superparamagnetic carboxymethyl chitosan nanoparticles. The time required to reach adsorption equilibrium of L2 (252-273) fusion protein on diatomite was shorter than that of L2 (252-273) fusion protein on magnetic particles. The maximum adsorption capacity of L2 (252-273) fusion protein on magnetic particles was about 5 times larger than that of L2 (252-273) fusion protein on diatomite. SUMO was introduced as a specific protease cleavage site between the target protein and the purification tags. The enhanced green fluorescent protein (EGFP) as a model protein was fused with the L2 (252-273)-SUMO fusion protein and purified by a simple method which involves the electrostatic adsorption of L2 (252-273) fusion proteins on superparamagnetic carboxymethyl chitosan nanoparticles and the L2 (252-273)-SUMO fusion partner was removed based on the robust cleavage by the poly lysine tagged SUMO protease. The high purity of tag-free EGFP (>93%) was obtained. Our results preliminary proved that the system was an effective fusion expression system for the production of recombinant proteins in E. coli. PMID:23353812

  2. Advanced fusion concepts: project summaries

    SciTech Connect

    1980-12-01

    This report contains descriptions of the activities of all the projects supported by the Advanced Fusion Concepts Branch of the Office of Fusion Energy, US Department of Energy. These descriptions are project summaries of each of the individual projects, and contain the following: title, principle investigators, funding levels, purpose, approach, progress, plans, milestones, graduate students, graduates, other professional staff, and recent publications. Information is given for each of the following programs: (1) reverse-field pinch, (2) compact toroid, (3) alternate fuel/multipoles, (4) stellarator/torsatron, (5) linear magnetic fusion, (6) liners, and (7) Tormac. (MOW)

  3. CECE alternative for upgrading/detritiation in heavy water nuclear reactors and for tritium recovery in fusion reactors

    SciTech Connect

    Spagnolo, D.A.; Miller, A.I.

    1995-10-01

    The Combined Electrolysis Catalytic Exchange (CECE) process, utilizing AECL`s wetproofed catalyst, is ideally suited for extracting tritium from water because of its high isotopic separation factor and near-ambient operating conditions. Several CECE options are compared with the more conventional DW-VPCE arrangements for heavy water upgrading and detritiation of CANDU nuclear reactors and for detritiation of fusion facilities such as ITER. For both applications, CECE offers a more economical alternative over conventional technology. Experimental data on catalyst activity and lifetime are also presented and past commercial applications of the AECL catalyst are reviewed. AECL has recently committed to assembly of a CECE upgrading/detritiation demonstration facility. 15 refs., 5 figs., 1 tab.

  4. Laser-Plasma Interaction in Presence of an Obliquely External Magnetic Field: Application to Laser Fusion without Radioactivity

    NASA Astrophysics Data System (ADS)

    Mobaraki, M.; Jafari, S.

    2016-08-01

    In this paper, the nonlinear interaction of ultra-high power laser beam with fusion plasma at relativistic regime in the presence of obliquely external magnetic Geld has been studied. Imposing an external magnetic Geld on plasma can modify the density profile of the plasma so that the thermal conductivity of electrons reduces which is considered to be the decrease of the threshold energy for ignition. To achieve the fusion of Hydrogen-Boron (HB) fuel, the block acceleration model of plasma is employed. Energy production by HB isotopes can be of interest, since its reaction does not generate radioactive tritium. By using the inhibit factor in the block model acceleration of plasma and Maxwell's as well as the momentum transfer equations, the electron density distribution and dielectric permittivity of the plasma medium are obtained. Numerical results indicate that with increasing the intensity of the external magnetic field, the oscillation of the laser magnetic field decreases, while the dielectric permittivity increases. Moreover, the amplitude of the electron density becomes highly peaked and the plasma electrons are strongly bunched with increasing the intensity of external magnetic field. Therefore, the magnetized plasma can act as a positive focusing lens to enhance the fusion process. Besides, we find that with increasing θ-angle (from oblique external magnetic field) between 0 and 90°, the dielectric permittivity increases, while for θ between 90° and 180°, the dielectric permittivity decreases with increasing θ.

  5. Advanced fission and fossil plant economics-implications for fusion

    SciTech Connect

    Delene, J.G.

    1994-09-01

    In order for fusion energy to be a viable option for electric power generation, it must either directly compete with future alternatives or serve as a reasonable backup if the alternatives become unacceptable. This paper discusses projected costs for the most likely competitors with fusion power for baseload electric capacity and what these costs imply for fusion economics. The competitors examined include advanced nuclear fission and advanced fossil-fired plants. The projected costs and their basis are discussed. The estimates for these technologies are compared with cost estimates for magnetic and inertial confinement fusion plants. The conclusion of the analysis is that fusion faces formidable economic competition. Although the cost level for fusion appears greater than that for fission or fossil, the costs are not so high as to preclude fusion`s potential competitiveness.

  6. Short-Term Aging of NeFeB Magnets for Stirling Linear Alternator Applications

    NASA Technical Reports Server (NTRS)

    Niedra, Janis M.; Schwarze, Gene E. (Technical Monitor)

    2001-01-01

    NeFeB type magnets have been proposed for use in free piston Stirling engine driven, linear alternators to generate electric power during long duration space missions. These type of materials provide the highest energy product commercial magnets, thus minimizing alternator size or mass, but do not provide the high temperature stability of magnetic properties found in the SmCo type magnets. Therefore, to apply the NeFeB type magnets at elevated temperatures to multiyear space missions, their long-term aging characteristics must be determined. This report presents 200 hr aging data for six types of NeFeB magnets selected from three manufacturers. Aging was performed under vacuum at 150 C, with a steady demagnetizing field of 5 kOe applied. From the data produced by this short-term aging run, candidate magnet types were selected for a planned 12,000 hr long-term run. Depending on the manufacturer's magnet type, remanence losses observed ranged from 0 to 7%, when measured at 120 C on an established recoil line. Also, intrinsic coercivity losses up to about 4% were observed for the M-H curve at 120 C. In some cases, these coercivity losses were not recoverable by recharge of the magnet, indicating a structural change of the material.

  7. A 3-D Magnetic Analysis of a Stirling Convertor Linear Alternator Under Load

    NASA Technical Reports Server (NTRS)

    Geng, Steven M.; Schwarze, Gene E.; Niedra, Janis M.; Regan, Timothy F.

    2001-01-01

    The NASA Glenn Research Center (GRC), the Department of Energy (DOE), and the Stirling Technology Company (STC) are developing Stirling convertors for Stirling Radioisotope Power Systems (SRPS) to provide electrical power for future NASA deep space missions. STC is developing the 55-We Technology Demonstration Convertor (TDC) under contract to DOE. Of critical importance to the successful development of the Stirling convertor for space power applications is the development of a lightweight and highly efficient linear alternator. This paper presents a 3-dimensional finite element method (FEM) approach for evaluating Stirling convertor linear alternators. The model extends a magnetostatic analysis previously reported at the 35th Intersociety Energy Conversion Engineering Conference (IECEC) to include the effects of the load current. STC's 55-We linear alternator design was selected to validate the model. Spatial plots of magnetic field strength (H) are presented in the region of the exciting permanent magnets. The margin for permanent magnet demagnetization is calculated at the expected magnet operating temperature for the near earth environment and for various average magnet temperatures. These thermal conditions were selected to represent a worst-case condition for the planned deep space missions. This paper presents plots that identify regions of high H where the potential to alter the magnetic moment of the magnets exists.

  8. Alternating Magnetic Field Forces for Satellite Formation Flying

    NASA Technical Reports Server (NTRS)

    Youngquist, Robert C.; Nurge, Mark A.; Starr, Stnaley O.

    2012-01-01

    Selected future space missions, such as large aperture telescopes and multi-component interferometers, will require the precise positioning of a number of isolated satellites, yet many of the suggested approaches for providing satellites positioning forces have serious limitations. In this paper we propose a new approach, capable of providing both position and orientation forces, that resolves or alleviates many of these problems. We show that by using alternating fields and currents that finely-controlled forces can be induced on the satellites, which can be individually selected through frequency allocation. We also show, through analysis and experiment, that near field operation is feasible and can provide sufficient force and the necessary degrees of freedom to accurately position and orient small satellites relative to one another. In particular, the case of a telescope with a large number of free mirrors is developed to provide an example of the concept. We. also discuss the far field extension of this concept.

  9. Picosecond-petawatt laser-block ignition for avalanche fusion of boron by ultrahigh acceleration and ultrahigh magnetic fields

    NASA Astrophysics Data System (ADS)

    Hora, H.; Lalousis, P.; Giuffrida, L.; Margarone, D.; Korn, G.; Eliezer, S.; Miley, G. H.; Moustaizis, S.; Mourou, G.; Barty, C. P. J.

    2016-05-01

    Fusion energy from reacting hydrogen (protons) with the boron isotope 11 (HB11) resulting in three stable helium nuclei, is without problem of nuclear radiation in contrast to DT fusion. But the HB11 reaction driven by nanosecond laser pulses with thermal compression and ignition by lasers is extremely difficult. This changed radically when irradiation with picosecond laser pulses produces a non-thermal plasma block ignition with ultrahigh acceleration. This uses the nonlinear (ponderomotive) force to surprizingly resulting in same thresholds as DT fusion even under pessimistic assumption of binary reactions. After evaluation of reactions trapped cylindrically by kilotesla magnetic fields and using the measured highly increased HB11 fusion gains for the proof of an avalanche of the three alphas in secondary reactions, possibilities for an absolutely clean energy source at comptitive costs were concluded.

  10. Materials studies for magnetic fusion energy applications at low temperatures, 7

    NASA Astrophysics Data System (ADS)

    Reed, R. P.; Simon, N. J.

    1984-05-01

    Work leading toward development of strong, tough structural alloys for use in superconducting magnets of magnetic fusion power plants is reported. Low temperature studies were conducted to assess the quantitative dependence of the yield strength, density, and elastic constants of AISI 304 stainless steels upon carbon and nitrogen concentration. Tensile property measurements of developmental austenitic steels confirmed the dependence of yield strength upon temperature. Evidence is presented to show that the flow strength and austenite stability of stainless steels are not significantly affected by 8-T fields at 4 K. Instrumentation developed for low temperature testing included a computer assisted apparatus used to measure threshold fatigue. Low temperature welding research involved an investigation of the weld reinforcement effect on the weld joint strength and measurements of the 4 K fracture toughness of magnesium-chromium steel weldments and electroodes. In the area of non-metallics, a standardized test specimen was devised to aid in screening radiation-resistant composites for magnet insulation. Mechanical properties of concrete mortar and polyurethane foam at 4 K are reported.

  11. Acceleration of solid hydrogen pellet using augmented railgun for magnetic fusion reactor refueling

    SciTech Connect

    Zhang, J.; Kim, K.; King, T.L.

    1995-01-01

    A 1.2-m long electromagnetic railgun with separate augmentation was designed, fabricated, and tested for the purpose of injecting hypervelocity hydrogen pellets into magnetic fusion devices for refueling. A compact configuration of two pairs of coaxial rails insulated by thin Kapton film was employed. Two pulse-forming networks were used to separately control the duration, amplitude, and overlap of the current pulses. Copper sulfate resistors were employed as impedance-matching resistors and bank short resistors. The magnetic field inside the gun bore was boosted by the high current on the augmentation rails, which in turn increased the J x B force without increasing the armature current, resulting in less ablation of the gun bore and pellet. Higher acceleration was achieved due to reduced inertial and viscous frag. Using a 1.2-m augmented railgun, hydrogen pellet velocities in excess of 2.5 km/s were achieved. Hydrogen pellet accelerations as high as 4.4 {times} 10{sup 6} m/s{sup 2} were achieved at a railgun current of 13.5 kA while the acceleration obtained on a conventional railgun was 2.2 {times} 10{sup 6} m/s{sup 2} at 14.1 kA. Computer simulations have been performed using the finite element code MSC/EMAS to analyze the current density, magnetic field, Lorentz force, and inductance gradient of the conventional and augmented railguns.

  12. A 3-D Magnetic Analysis of a Linear Alternator For a Stirling Power System

    NASA Technical Reports Server (NTRS)

    Geng, Steven M.; Schwarze, Gene E.; Niedra, Janis M.

    2000-01-01

    The NASA Glenn Research Center and the Department of Energy (DOE) are developing advanced radioisotope Stirling convertors, under contract with Stirling Technology Company (STC), for space applications. Of critical importance to the successful development of the Stirling convertor for space power applications is the development of a lightweight and highly efficient linear alternator. This paper presents a 3-D finite element method (FEM) approach for evaluating Stirling convertor linear alternators. Preliminary correlations with open-circuit voltage measurements provide an encouraging level of confidence in the model. Spatial plots of magnetic field strength (H) are presented in the region of the exciting permanent magnets. These plots identify regions of high H, where at elevated temperature and under electrical load, the potential to alter the magnetic moment of the magnets exists. This implies the need for further testing and analysis.

  13. CoNi Films with Perpendicular Magnetic Anisotropy Prepared by Alternate Monoatomic Layer Deposition

    NASA Astrophysics Data System (ADS)

    Fukami, Shunsuke; Sato, Hideo; Yamanouchi, Michihiko; Ikeda, Shoji; Ohno, Hideo

    2013-07-01

    We investigate the magnetic properties of CoNi and CoPt films prepared by an alternate monoatomic layer deposition and discuss the possible existence of a metastable superlattice structure. We find that, as has been reported for the CoPt and CoPd films, the CoNi film also exhibits a perpendicular magnetic anisotropy when the monoatomic Co and Ni layers are stacked alternately, suggesting the possible formation of superlattice structure. Since the CoNi film contains neither noble nor rare-earth metals, it should be an attractive material system for applications.

  14. [Study of alternating magnetic field influence on rates of rehabilitation of patients after dental implantation].

    PubMed

    Ter-Asaturov, G P; Abakarov, S I; Adzhiev, K S; Sorokin, D V; Adzhiev, E K

    2010-01-01

    New way of using alternating magnetic field is described. Basic functional description of new treatment and diagnostic offered (patents of RF No75294 and 75314), which included digital plethysmograph and regulation of angiotonic microcirculation channel device. Comparative estimation of clinical and functional indiced of regional blood flow of patients in the main group and in the control group showed a positive correlation. Expressed influence of alternating magnetic field on frequency of oscillations pulse vessels microcircution channel and acceleration of leveling disorder of blood circulation in tissue after surgical treatment was proved. PMID:21186648

  15. Rigidity evaluation of a superconducting helical coil for an LHD-type fusion magnet

    NASA Astrophysics Data System (ADS)

    Tamura, H.; Imagawa, S.; Takahata, K.; Mito, T.; Sagara, A.

    2010-06-01

    The large helical device (LHD) type fusion power reactor has many advantages in operations such as steady state and no active plasma current. The magnet system of the LHD-type fusion device consists of superconducting helical coils and superconducting poloidal coils. Since the helical coil is a complicated three-dimensional structure, designs of the coil and the supporting structure have to be performed carefully. Clarifying the mechanical behavior during coil excitation is very important for a design of the coil system. The mechanical behavior for components in the helical coil can be estimated using a simplified two dimensional axisymmetric model which has a mean radius of curvature of the actual helical coil. To evaluate the accuracy of this simplified model, stress distribution was calculated with three-dimensional finite element model and the result was compared with that of the simplified model. The stress distribution of a candidate design of LHD-type helical reactor was estimated by using the simplified model and the result showed that the stress / strain level were within the reasonable range for composed materials.

  16. Noise temperature improvement for magnetic fusion plasma millimeter wave imaging systems

    SciTech Connect

    Lai, J.; Domier, C. W.; Luhmann, N. C.

    2014-03-15

    Significant progress has been made in the imaging and visualization of magnetohydrodynamic and microturbulence phenomena in magnetic fusion plasmas [B. Tobias et al., Plasma Fusion Res. 6, 2106042 (2011)]. Of particular importance have been microwave electron cyclotron emission imaging and microwave imaging reflectometry systems for imaging T{sub e} and n{sub e} fluctuations. These instruments have employed heterodyne receiver arrays with Schottky diode mixer elements directly connected to individual antennas. Consequently, the noise temperature has been strongly determined by the conversion loss with typical noise temperatures of ∼60 000 K. However, this can be significantly improved by making use of recent advances in Monolithic Microwave Integrated Circuit chip low noise amplifiers to insert a pre-amplifier in front of the Schottky diode mixer element. In a proof-of-principle design at V-Band (50–75 GHz), significant improvement of noise temperature from the current 60 000 K to measured 4000 K has been obtained.

  17. Improved fusion performance in low-q, low triangularity plasmas with negative central magnetic shear

    SciTech Connect

    Strait, E.J.; Casper, T.N.; Chu, M.S.

    1996-07-01

    Fusion performance in DIII-D low-q single-null divertor discharges has doubled as a result of improved confinement and stability, achieved through modification of pressure and current density profiles. These discharges extend the regime of neoclassical core confinement associated with negative or weak central magnetic shear to plasmas with the low safety factor (q{sub 95}{approximately}3) and triangularity ({delta}{approximately}0.3) anticipated in future tokamaks such as ITER. Energy confinement times exceed the ITER-89P L- mode scaling law by up to a factor of 4, and are almost twice as large as in previous single-null cases with 3{le}q{sub 95}{le}4. The normalized beta [{beta}(aB/I)] reaches values as high as 4, comparable to the best previous single-null discharges. Although high triangularity allows a larger plasma current, the fusion gain in these low triangularity plasmas is similar to that of high triangularity double-null plasmas at the same plasma current. These results are encouraging for advanced performance operation in ITER and for D-T experiments in JET.

  18. Interfacial Stability of Spherically Converging Plasma Jets for Magnetized Target Fusion

    NASA Technical Reports Server (NTRS)

    Thio, Y. C. Francis; Cassibry, Jason; Wu, S. T.; Eskridge, Richard; Smith, James; Lee, Michael; Rodgers, Stephen L. (Technical Monitor)

    2000-01-01

    A fusion propulsion scheme has been proposed that makes use of the merging of a spherical distribution of plasma jets to dynamically form a gaseous liner to implode a magnetized target to produce the fusion reaction. In this paper, a study is made of the interfacial stability of the interaction of these jets. Specifically, the Orr-Sommerfeld equation is integrated to obtain the growth rate of a perturbation to the primary flow at the interface between the colliding jets. The results lead to an estimate on the tolerances on the relative flow velocities of the merging plasma jets to form a stable, imploding liner. The results show that the maximum temporal growth rate of the perturbed flow at the jet interface is very small in comparison with the time to full compression of the liner. These data suggest that, as far as the stability of the interface between the merging jets is concerned, the formation of the gaseous liner can withstand velocity variation of the order of 10% between the neighboring jets over the density and temperature ranges investigated.

  19. Proceedings of the third symposium on the physics and technology of compact toroids in the magnetic fusion energy program

    SciTech Connect

    Siemon, R.E.

    1981-03-01

    This document contains papers contributed by the participants of the Third Symposium on Physics and Technology of Compact Toroids in the Magnetic Fusion Energy Program. Subjects include reactor aspects of compact toroids, energetic particle rings, spheromak configurations (a mixture of toroidal and poloidal fields), and field-reversed configurations (FRC's that contain purely poloidal field).

  20. Assessment of ion-atom collision data for magnetic fusion plasma edge modelling

    NASA Astrophysics Data System (ADS)

    Phaneuf, R. A.

    Cross-section data for ion-atom collision processes which play important roles in the edge plasma of magnetically-confined fusion devices are surveyed and reviewed. The species considered include H, He, Li, Be, C, O, Ne, Al, Si, Ar, Ti, Cr, Fe, Ni, Cu, Mo, W and their ions. The most important ion-atom collision processes occurring in the edge plasma are charge-exchange reactions. Excitation and ionization processes are also considered. The scope is limited to atomic species and to collision velocities corresponding to plasma ion temperatures in the 2 to 200 eV range. Sources of evaluated or recommended data are presented where possible, and deficiencies in the data base are indicated.

  1. Evidence for Critical Energy for Ion Confinement in Magnetic Fusion Reactors

    NASA Astrophysics Data System (ADS)

    Maglich, Bogdan; Hester, Tim; Scott, Dan; Calsec Collaboration

    2015-03-01

    It is shown here that fusion test reactors could not ignite for half-a-century because trials were conducted at thermonuclear ion energies 10-30 KeV, an order of magnitude lower than critical energy, Ec ~ 200 KeV. At subcritical energies, plasma is destroyed by neutralization of ions via overlooked atomic (non-nuclear) charge transfer collisions with giant cross-section, 109 barns, 100 times greater than that for ionization collisions that counters neutralization. Neutral injection sets limit on ion magnetic confinement time <10-6 s vs. >1 s required for ignition. In contrast, at energies above Ec, ionization prevails; near ~ 1 MeV, stable confinement of 20 s was routinely observed with charged injection. - To render ITER viable, ion energy must be increased to >/ = 1 MeV; neutral radioactive DT fuel replaced with charged, nonradioactive deuterium, giving rise to compact aneutronicreactor with direct conversion into RF power.

  2. Moving-Surface Plasma-Facing Components for Particle Control in Steady State Magnetic Fusion Devices

    SciTech Connect

    Hirooka, Yoshi; Fukushima, Hoju; Ohno, Noriyasu; Takamura, Shuichi; Nishikawa, Masahiro

    2004-01-15

    This paper will report on the proof-of-principle (POP) experiments conducted to demonstrate reduced wall recycling, using a laboratory-scale test unit, constructed based on the concept of moving-surface plasma-facing component (MS-PFC). In this concept, the moving-surface exposed to edge plasmas in steady state magnetic fusion devices is continuously deposited ex-situ with a getter material, so that particle trapping capabilities can be regenerated prior to the subsequent exposure. In our previous paper, the construction details of the MS-PFC test unit and the first results in the case of titanium gettering was reported, but in the present paper preliminary results in the case of lithium gettering will be presented for comparison. Results indicate that the H{sub {alpha}} light intensity used as the measure of hydrogen recycling is reduced by {approx}6% due to titanium gettering and by {approx}12% due to lithium gettering, both at steady state.

  3. Reaching High-Yield Fusion with a Slow Plasma Liner Compressing a Magnetized Target

    SciTech Connect

    Ryutov, D D; Parks, P B

    2008-03-18

    Dynamics of the compression of a magnetized plasma target by a heavy liner made of partially ionized high high-Z material is discussed. A 'soft-landing' (shockless) mode of the liner deceleration is analyzed. Conclusion is drawn that such mode is possible for the liners whose thickness at the time of the first contact with the target is smaller than, roughly, 10% of the initial (un-compressed) target radius. A combination of the plasma liner with one or two glide cones allows for a direct access to the area near the center of the reactor chamber. One can then generate plasma target inside the plasma liner at the optimum time. The other advantage of the glide cones is that they can be used to deliver additional fuel to the center of the target near the point of a maximum compression and thereby increase the fusion yield.

  4. Verification of a Multiphysics Toolkit against the Magnetized Target Fusion Concept

    NASA Technical Reports Server (NTRS)

    Thomas, Scott; Perrell, Eric; Liron, Caroline; Chiroux, Robert; Cassibry, Jason; Adams, Robert B.

    2005-01-01

    In the spring of 2004 the Advanced Concepts team at MSFC embarked on an ambitious project to develop a suite of modeling routines that would interact with one another. The tools would each numerically model a portion of any advanced propulsion system. The tools were divided by physics categories, hence the name multiphysics toolset. Currently most of the anticipated modeling tools have been created and integrated. Results are given in this paper for both a quarter nozzle with chemically reacting flow and the interaction of two plasma jets representative of a Magnetized Target Fusion device. The results have not been calibrated against real data as of yet, but this paper demonstrates the current capability of the multiphysics tool and planned future enhancements

  5. Geodesic least squares regression for scaling studies in magnetic confinement fusion

    SciTech Connect

    Verdoolaege, Geert

    2015-01-13

    In regression analyses for deriving scaling laws that occur in various scientific disciplines, usually standard regression methods have been applied, of which ordinary least squares (OLS) is the most popular. However, concerns have been raised with respect to several assumptions underlying OLS in its application to scaling laws. We here discuss a new regression method that is robust in the presence of significant uncertainty on both the data and the regression model. The method, which we call geodesic least squares regression (GLS), is based on minimization of the Rao geodesic distance on a probabilistic manifold. We demonstrate the superiority of the method using synthetic data and we present an application to the scaling law for the power threshold for the transition to the high confinement regime in magnetic confinement fusion devices.

  6. Effect of an alternating nonuniform magnetic field on ferrofluid flow and heat transfer in a channel

    NASA Astrophysics Data System (ADS)

    Goharkhah, Mohammad; Ashjaee, Mehdi

    2014-08-01

    Forced convective heat transfer of water based Fe3O4 nanofluid (ferrofluid) in the presence of an alternating non-uniform magnetic field is investigated numerically. The geometry is a two-dimensional channel which is subjected to a uniform heat flux at the top and bottom surfaces. Nonuniform magnetic field produced by eight line source dipoles is imposed on several parts of the channel. Also, a rectangular wave function is applied to the dipoles in order to turn them on and off alternatingly. The effects of the alternating magnetic field strength and frequency on the convective heat transfer are investigated for four different Reynolds numbers (Re=100, 600, 1200 and 2000) in the laminar flow regime. Comparing the results with zero magnetic field case, show that the heat transfer enhancement increases with the Reynolds number and reaches a maximum of 13.9% at Re=2000 and f=20 Hz. Moreover, at a constant Reynolds number, it increases with the magnetic field intensity while an optimum value exists for the frequency. Also, the optimum frequency increases with the Reynolds number. On the other hand, the heat transfer enhancement due to the magnetic field is always accompanied by a pressure drop penalty. A maximum pressure drop increase of 6% is observed at Re=2000 and f=5 Hz which shows that the pressure drop increase is not as significant as the heat transfer enhancement.

  7. Infrared thermography based defect detection in ferromagnetic specimens using a low frequency alternating magnetic field

    NASA Astrophysics Data System (ADS)

    Lahiri, B. B.; Bagavathiappan, S.; Soumya, C.; Mahendran, V.; Pillai, V. P. M.; Philip, John; Jayakumar, T.

    2014-05-01

    A new active infrared thermography based technique is proposed for defect detection in ferromagnetic specimens using a low frequency alternating magnetic field induced heating. The test specimens (four mild steel specimens with artificial rectangular slots of 8.0, 5.0, 3.3 and 3.0 mm depths) are magnetized using a low frequency alternating magnetic field and by using an infrared camera, the surface temperature is remotely monitored in real time. An alternating magnetic field induces an eddy current in the specimen which increases the specimen temperature due to the Joule's heating. The experimental results show a thermal contrast in the defective region that decays exponentially with the defect depth. The observed thermal contrast is attributed to the reduction in induction heating due to the leakage of magnetic flux caused by magnetic permeability gradient in the defective region. The proposed technique is suitable for rapid non-contact wide area inspection of ferromagnetic materials and offers several advantages over the conventional active thermography techniques like fast direct heating, no frequency optimization, no dependence on the surface absorption coefficient and penetration depth.

  8. Hand Pose Estimation by Fusion of Inertial and Magnetic Sensing Aided by a Permanent Magnet.

    PubMed

    Kortier, Henk G; Antonsson, Jacob; Schepers, H Martin; Gustafsson, Fredrik; Veltink, Peter H

    2015-09-01

    Tracking human body motions using inertial sensors has become a well-accepted method in ambulatory applications since the subject is not confined to a lab-bounded volume. However, a major drawback is the inability to estimate relative body positions over time because inertial sensor information only allows position tracking through strapdown integration, but does not provide any information about relative positions. In addition, strapdown integration inherently results in drift of the estimated position over time. We propose a novel method in which a permanent magnet combined with 3-D magnetometers and 3-D inertial sensors are used to estimate the global trunk orientation and relative pose of the hand with respect to the trunk. An Extended Kalman Filter is presented to fuse estimates obtained from inertial sensors with magnetic updates such that the position and orientation between the human hand and trunk as well as the global trunk orientation can be estimated robustly. This has been demonstrated in multiple experiments in which various hand tasks were performed. The most complex task in which simultaneous movements of both trunk and hand were performed resulted in an average rms position difference with an optical reference system of 19.7±2.2 mm whereas the relative trunk-hand and global trunk orientation error was 2.3±0.9 and 8.6±8.7 deg respectively. PMID:25222952

  9. Oncogenic fusion protein EWS-FLI1 is a network hub that regulates alternative splicing.

    PubMed

    Selvanathan, Saravana P; Graham, Garrett T; Erkizan, Hayriye V; Dirksen, Uta; Natarajan, Thanemozhi G; Dakic, Aleksandra; Yu, Songtao; Liu, Xuefeng; Paulsen, Michelle T; Ljungman, Mats E; Wu, Cathy H; Lawlor, Elizabeth R; Üren, Aykut; Toretsky, Jeffrey A

    2015-03-17

    The synthesis and processing of mRNA, from transcription to translation initiation, often requires splicing of intragenic material. The final mRNA composition varies based on proteins that modulate splice site selection. EWS-FLI1 is an Ewing sarcoma (ES) oncoprotein with an interactome that we demonstrate to have multiple partners in spliceosomal complexes. We evaluate the effect of EWS-FLI1 on posttranscriptional gene regulation using both exon array and RNA-seq. Genes that potentially regulate oncogenesis, including CLK1, CASP3, PPFIBP1, and TERT, validate as alternatively spliced by EWS-FLI1. In a CLIP-seq experiment, we find that EWS-FLI1 RNA-binding motifs most frequently occur adjacent to intron-exon boundaries. EWS-FLI1 also alters splicing by directly binding to known splicing factors including DDX5, hnRNP K, and PRPF6. Reduction of EWS-FLI1 produces an isoform of γ-TERT that has increased telomerase activity compared with wild-type (WT) TERT. The small molecule YK-4-279 is an inhibitor of EWS-FLI1 oncogenic function that disrupts specific protein interactions, including helicases DDX5 and RNA helicase A (RHA) that alters RNA-splicing ratios. As such, YK-4-279 validates the splicing mechanism of EWS-FLI1, showing alternatively spliced gene patterns that significantly overlap with EWS-FLI1 reduction and WT human mesenchymal stem cells (hMSC). Exon array analysis of 75 ES patient samples shows similar isoform expression patterns to cell line models expressing EWS-FLI1, supporting the clinical relevance of our findings. These experiments establish systemic alternative splicing as an oncogenic process modulated by EWS-FLI1. EWS-FLI1 modulation of mRNA splicing may provide insight into the contribution of splicing toward oncogenesis, and, reciprocally, EWS-FLI1 interactions with splicing proteins may inform the splicing code. PMID:25737553

  10. Oncogenic fusion protein EWS-FLI1 is a network hub that regulates alternative splicing

    PubMed Central

    Selvanathan, Saravana P.; Erkizan, Hayriye V.; Dirksen, Uta; Natarajan, Thanemozhi G.; Dakic, Aleksandra; Yu, Songtao; Liu, Xuefeng; Paulsen, Michelle T.; Ljungman, Mats E.; Wu, Cathy H.; Lawlor, Elizabeth R.; Üren, Aykut; Toretsky, Jeffrey A.

    2015-01-01

    The synthesis and processing of mRNA, from transcription to translation initiation, often requires splicing of intragenic material. The final mRNA composition varies based on proteins that modulate splice site selection. EWS-FLI1 is an Ewing sarcoma (ES) oncoprotein with an interactome that we demonstrate to have multiple partners in spliceosomal complexes. We evaluate the effect of EWS-FLI1 on posttranscriptional gene regulation using both exon array and RNA-seq. Genes that potentially regulate oncogenesis, including CLK1, CASP3, PPFIBP1, and TERT, validate as alternatively spliced by EWS-FLI1. In a CLIP-seq experiment, we find that EWS-FLI1 RNA-binding motifs most frequently occur adjacent to intron–exon boundaries. EWS-FLI1 also alters splicing by directly binding to known splicing factors including DDX5, hnRNP K, and PRPF6. Reduction of EWS-FLI1 produces an isoform of γ-TERT that has increased telomerase activity compared with wild-type (WT) TERT. The small molecule YK-4–279 is an inhibitor of EWS-FLI1 oncogenic function that disrupts specific protein interactions, including helicases DDX5 and RNA helicase A (RHA) that alters RNA-splicing ratios. As such, YK-4–279 validates the splicing mechanism of EWS-FLI1, showing alternatively spliced gene patterns that significantly overlap with EWS-FLI1 reduction and WT human mesenchymal stem cells (hMSC). Exon array analysis of 75 ES patient samples shows similar isoform expression patterns to cell line models expressing EWS-FLI1, supporting the clinical relevance of our findings. These experiments establish systemic alternative splicing as an oncogenic process modulated by EWS-FLI1. EWS-FLI1 modulation of mRNA splicing may provide insight into the contribution of splicing toward oncogenesis, and, reciprocally, EWS-FLI1 interactions with splicing proteins may inform the splicing code. PMID:25737553

  11. The economic effect of using magnetic resonance imaging and magnetic resonance ultrasound fusion biopsy for prostate cancer diagnosis.

    PubMed

    Hutchinson, Ryan C; Costa, Daniel N; Lotan, Yair

    2016-07-01

    Prostate magnetic resonance imaging (MRI) is a maturing imaging modality that has been used to improve detection and staging of prostate cancer. The goal of this review is to evaluate the economic effect of the use of MRI and MRI fusion in the diagnosis of prostate cancer. A literature review was used to identify articles regarding efficacy and cost of MRI and MRI-guided biopsies. There are currently a limited number of studies evaluating cost of incorporating MRI into clinical practice. These studies are primarily models projecting cost estimates based on meta-analyses of the literature. There is considerable variance in the effectiveness of MRI-guided biopsies, both cognitive and fusion, based on user experience, type of MRI (3T vs. 1.5T), use of endorectal coil and type of scoring system for abnormalities such that there is still potential for improvement in accuracy. There is also variability in assumed costs of incorporating MRI into clinical practice. The addition of MRI to the diagnostic algorithm for prostate cancer has caused a shift in how we understand the disease and in what tumors are found on initial and repeat biopsies. Further risk stratification may allow more men to pursue noncurative therapy, which in and of itself is cost-effective in properly selected men. As prostate cancer care comes under increasing scrutiny on a national level, there is pressure on providers to be more accurate in their diagnoses. This in turn can lead to additional testing including Multiparametric MRI, which adds upfront cost. Whether the additional cost of prostate MRI is warranted in detection of prostate cancer is an area of intense research. PMID:26725249

  12. Continuous measurement of viscous magnetization decay: an alternative tool in magnetic granulometry of sediments and soils

    NASA Astrophysics Data System (ADS)

    Chadima, M.

    2013-12-01

    The ultra-fine magnetic grains in sediments and soils usually span across the superparamagnetic/stable single domain (SP/SSD) boundary. The SP grains carry no remanent magnetization but possess a very high magnetic susceptibility. While the SSD grains carry a very stable magnetic remanence, the magnetization of the grains just around the SP/SSD boundary is highly viscous. The presence of the SP magnetic particles has been traditionally investigated using the in-phase magnetic susceptibility measured in several operating frequencies. In addition, it has been suggested that the out-of-phase susceptibility measured on a single frequency can provide us with comparable results since there is a direct relationship between the frequency-dependent in-phase susceptibility and the out-of-phase susceptibility. Assuming a broad distribution of the ultra-fine magnetic particles spanning across the SP/SSD boundary we suggest to assess their presence using the continuous measurement of the decay of viscous magnetization. For that purpose we use a newly-developed Agico pulse magnetizer coupled with a JR6 spinner magnetometer which allows the automatic repeated measurements of magnetic remanence. Since both instruments are controlled from the same computer, the exact time of DC pulse termination is known and used as a zero time for evaluation of time-dependent viscous decay. Magnetic remanence is then measured repeatedly as a function of time for about five minutes. Exponential decay curve is fitted on the acquired data and the relative ratio of viscous and non-viscous grains is estimated. Our method is tested on the loess/paleosol samples from the European loess belt. The relative amount of the ultra-fine grains assessed by the suggested viscous decay method can be very well correlated with the results obtained from the frequency-dependent and out-of-phase susceptibility measurements.

  13. Alternating magnetic field heat behaviors of PVDF fibrous mats filled with iron oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Kim, Jinu; Choi, Jung-Su; Yang, Heejae; Ko, Frank K.; Kim, Ki Hyeon

    2016-05-01

    To study the magnetic heat behaviors, iron oxide nanoparticles (IONPs) and the polyvinylidene fluoride (PVDF) fibrous mats filled with IONPs were prepared by using coprecipitaion method and the electrospinning technique. The synthesized IONPs exhibited a magnetization of about 72 emu/g with average diameter of about 10 nm. The magnetizations of PVDF fibrous mats filled with IONPs showed 2.6 emu/g, 5.5 emu/g and 9.9 emu/g for 5 wt.%, 10 wt.% and 20 wt.% IONPs concentration, respectively. The heat of the magnetic fibrous mats were measured under various alternating magnetic fields (90, 128, and 167 Oe), frequencies (190, 250 and 355 kHz). The maximum saturated temperature showed up to 62 °C for 20 wt.% IONPs filled in PVDF fibrous mat under 167 Oe and 355 kHz.

  14. Estimating Orientation Using Magnetic and Inertial Sensors and Different Sensor Fusion Approaches: Accuracy Assessment in Manual and Locomotion Tasks

    PubMed Central

    Bergamini, Elena; Ligorio, Gabriele; Summa, Aurora; Vannozzi, Giuseppe; Cappozzo, Aurelio; Sabatini, Angelo Maria

    2014-01-01

    Magnetic and inertial measurement units are an emerging technology to obtain 3D orientation of body segments in human movement analysis. In this respect, sensor fusion is used to limit the drift errors resulting from the gyroscope data integration by exploiting accelerometer and magnetic aiding sensors. The present study aims at investigating the effectiveness of sensor fusion methods under different experimental conditions. Manual and locomotion tasks, differing in time duration, measurement volume, presence/absence of static phases, and out-of-plane movements, were performed by six subjects, and recorded by one unit located on the forearm or the lower trunk, respectively. Two sensor fusion methods, representative of the stochastic (Extended Kalman Filter) and complementary (Non-linear observer) filtering, were selected, and their accuracy was assessed in terms of attitude (pitch and roll angles) and heading (yaw angle) errors using stereophotogrammetric data as a reference. The sensor fusion approaches provided significantly more accurate results than gyroscope data integration. Accuracy improved mostly for heading and when the movement exhibited stationary phases, evenly distributed 3D rotations, it occurred in a small volume, and its duration was greater than approximately 20 s. These results were independent from the specific sensor fusion method used. Practice guidelines for improving the outcome accuracy are provided. PMID:25302810

  15. Estimating orientation using magnetic and inertial sensors and different sensor fusion approaches: accuracy assessment in manual and locomotion tasks.

    PubMed

    Bergamini, Elena; Ligorio, Gabriele; Summa, Aurora; Vannozzi, Giuseppe; Cappozzo, Aurelio; Sabatini, Angelo Maria

    2014-01-01

    Magnetic and inertial measurement units are an emerging technology to obtain 3D orientation of body segments in human movement analysis. In this respect, sensor fusion is used to limit the drift errors resulting from the gyroscope data integration by exploiting accelerometer and magnetic aiding sensors. The present study aims at investigating the effectiveness of sensor fusion methods under different experimental conditions. Manual and locomotion tasks, differing in time duration, measurement volume, presence/absence of static phases, and out-of-plane movements, were performed by six subjects, and recorded by one unit located on the forearm or the lower trunk, respectively. Two sensor fusion methods, representative of the stochastic (Extended Kalman Filter) and complementary (Non-linear observer) filtering, were selected, and their accuracy was assessed in terms of attitude (pitch and roll angles) and heading (yaw angle) errors using stereophotogrammetric data as a reference. The sensor fusion approaches provided significantly more accurate results than gyroscope data integration. Accuracy improved mostly for heading and when the movement exhibited stationary phases, evenly distributed 3D rotations, it occurred in a small volume, and its duration was greater than approximately 20 s. These results were independent from the specific sensor fusion method used. Practice guidelines for improving the outcome accuracy are provided. PMID:25302810

  16. Broadband alternating current magnetic susceptibility: Method and application to the characterization of magnetic particles in igneous rocks

    NASA Astrophysics Data System (ADS)

    Kodama, K.

    2012-12-01

    Low-field alternating current magnetic susceptibility (MS) is among the most commonly used magnetic property, not only in rock and mineral magnetism but also in environmental magnetism studies. This study proposes a new rock magnetic method, Frequency Spectrum of MS (FSM), based on the measurement of the real component of MS over a wide range of frequency (100 Hz to 500 kHz) and the measurement of the imaginary component at high frequencies in the order of 10-102 kHz. This study presents the FSM results at room and low temperatures obtained from a variety of igneous rocks with SP to SD grain sizes, including acidic to basic volcanic rocks in Japan and a basalt in Hawaii. The FSMs from the andesite samples at room temperature unexceptionally show small but anomalous increase, as much as 5%, over a specific frequency interval between 10 kHz and 120 kHz. In contrast, FSMs of basalts from Oshima and Hawaii show no such peak, a typical pattern indicating the presence of SP grain ensembles. The anomalous FSM from the andesites suggests a new rock and mineral magnetic behavior indicating either magnetic resonance or magnetic relaxation. Considering the anomalous FSM patterns and their variations at low temperatures, it is suggested that the hypothetical resonance could be relevant to some magnetoelastic phenomenon, in which magnetic energy could be dissipated through a long-range, magnetostructural coupling, most likely, magnetostriction. The fact that the annealed andesite samples showed less developed FSM anomaly strongly supports this hypothesis, because annealing generally lowers the internal stress leading to the reduction of resistance in a forced oscillation system. Analyses of the low temperature results confirm magnetic relaxation phenomena taking place at low temperatures, and consequently support the above interpretation.

  17. The Status of Research Regarding Magnetic Mirrors as a Fusion Neutron Source or Power Plant

    SciTech Connect

    Simonen, T

    2008-12-23

    experiments have confirmed the physics of effluent plasma stabilization predicted by theory. The plasma had a mean ion energy of 10 keV and a density of 5e19m-3. If successful, the axisymmetric tandem mirror extension of the GDT idea could lead to a Q {approx} 10 power plant of modest size and would yield important applications at lower Q. In addition to the GDT method, there are four other ways to augment stability that have been demonstrated; including: plasma rotation (MCX), diverter coils (Tara), pondermotive (Phaedrus & Tara), and end wall funnel shape (Nizhni Novgorod). There are also 5 stabilization techniques predicted, but not yet demonstrated: expander kinetic pressure (KSTM-Post), Pulsed ECH Dynamic Stabilization (Post), wall stabilization (Berk), non-paraxial end mirrors (Ryutov), and cusp ends (Kesner). While these options should be examined further together with conceptual engineering designs. Physics issues that need further analysis include: electron confinement, MHD and trapped particle modes, analysis of micro stability, radial transport, evaluation and optimization of Q, and the plasma density needed to bridge to the expansion-region. While promising all should be examined through increased theory effort, university-scale experiments, and through increased international collaboration with the substantial facilities in Russia and Japan The conventional wisdom of magnetic mirrors was that they would never work as a fusion concept for a number of reasons. This conventional wisdom is most probably all wrong or not applicable, especially for applications such as low Q (DT Neutron Source) aimed at materials testing or for a Q {approx} 3-5 fusion neutron source applied to destroying actinides in fission waste and breeding of fissile fuel.

  18. Alternating magnetic field energy absorption in the dispersion of iron oxide nanoparticles in a viscous medium

    NASA Astrophysics Data System (ADS)

    Smolkova, Ilona S.; Kazantseva, Natalia E.; Babayan, Vladimir; Smolka, Petr; Parmar, Harshida; Vilcakova, Jarmila; Schneeweiss, Oldrich; Pizurova, Nadezda

    2015-01-01

    Magnetic iron oxide nanoparticles were obtained by a coprecipitation method in a controlled growth process leading to the formation of uniform highly crystalline nanoparticles with average size of 13 nm, which corresponds to the superparamagnetic state. Nanoparticles obtained are a mixture of single-phase nanoparticles of magnetite and maghemite as well as nanoparticles of non-stoichiometric magnetite. The subsequent annealing of nanoparticles at 300 °C in air during 6 h leads to the full transformation to maghemite. It results in reduced value of the saturation magnetization (from 56 emu g-1 to 48 emu g-1) but does not affect the heating ability of nanoparticles. A 2-7 wt% dispersion of as-prepared and annealed nanoparticles in glycerol provides high heating rate in alternating magnetic fields allowed for application in magnetic hyperthermia; however the value of specific loss power does not exceed 30 W g-1. This feature of heat output is explained by the combined effect of magnetic interparticle interactions and the properties of the carrier medium. Nanoparticles coalesce during the synthesis and form aggregates showing ferromagnetic-like behavior with magnetization hysteresis, distinct sextets on Mössbauer spectrum, blocking temperature well about room temperature, which accounts for the higher energy barrier for magnetization reversal. At the same time, low specific heat capacity of glycerol intensifies heat transfer in the magnetic dispersion. However, high viscosity of glycerol limits the specific loss power value, since predominantly the Neel relaxation accounts for the absorption of AC magnetic field energy.

  19. Some features of bulk melt-textured high-temperature superconductors subjected to alternating magnetic fields

    NASA Astrophysics Data System (ADS)

    Vanderbemden, P.; Molenberg, I.; Simeonova, P.; Lovchinov, V.

    2014-12-01

    Monolithic, large grain, (RE)Ba2Cu3O7 high-temperature superconductors (where RE denotes a rare-earth ion) are known to be able to trap fields in excess of several teslas and represent thus an extremely promising competing technology for permanent magnet in several applications, e.g. in motors and generators. In any rotating machine, however, the superconducting permanent magnet is subjected to variable (transient, or alternating) parasitic magnetic fields. These magnetic fields interact with the superconductor, which yields a reduction of the remnant magnetization. In the present work we quantify these effects by analysing selected experimental data on bulk melt-textured superconductors subjected to AC fields. Our results indicate that the non-uniformity of superconducting properties in rather large samples might lead to unusual features and need to be taken into account to analyse the experimental data. We also investigate the evolution of the DC remnant magnetization of the bulk sample when it is subjected to a large number of AC magnetic field cycles, and investigate the experimental errors that result from a misorientation of the sample or a mispositioning of the Hall probe. The time-dependence of the remnant magnetization over 100000 cycles of the AC field is shown to display distinct regimes which all differ strongly from the usual decay due to magnetic relaxation.

  20. LDRD final report on confinement of cluster fusion plasmas with magnetic fields.

    SciTech Connect

    Argo, Jeffrey W.; Kellogg, Jeffrey W.; Headley, Daniel Ignacio; Stoltzfus, Brian Scott; Waugh, Caleb J.; Lewis, Sean M.; Porter, John Larry, Jr.; Wisher, Matthew; Struve, Kenneth William; Savage, Mark Edward; Quevedo, Hernan J.; Bengtson, Roger

    2011-11-01

    Two versions of a current driver for single-turn, single-use 1-cm diameter magnetic field coils have been built and tested at the Sandia National Laboratories for use with cluster fusion experiments at the University of Texas in Austin. These coils are used to provide axial magnetic fields to slow radial loss of electrons from laser-produced deuterium plasmas. Typical peak field strength achievable for the two-capacitor system is 50 T, and 200 T for the ten-capacitor system. Current rise time for both systems is about 1.7 {mu}s, with peak current of 500 kA and 2 MA, respectively. Because the coil must be brought to the laser, the driver needs to be portable and drive currents in vacuum. The drivers are complete but laser-plasma experiments are still in progress. Therefore, in this report, we focus on system design, initial tests, and performance characteristics of the two-capacitor and ten-capacitors systems. The questions of whether a 200 T magnetic field can retard the breakup of a cluster-fusion plasma, and whether this field can enhance neutron production have not yet been answered. However, tools have been developed that will enable producing the magnetic fields needed to answer these questions. These are a two-capacitor, 400-kA system that was delivered to the University of Texas in 2010, and a 2-MA ten-capacitor system delivered this year. The first system allowed initial testing, and the second system will be able to produce the 200 T magnetic fields needed for cluster fusion experiments with a petawatt laser. The prototype 400-kA magnetic field driver system was designed and built to test the design concept for the system, and to verify that a portable driver system could be built that delivers current to a magnetic field coil in vacuum. This system was built copying a design from a fixed-facility, high-field machine at LANL, but made to be portable and to use a Z-machine-like vacuum insulator and vacuum transmission line. This system was sent to the

  1. Economic potential of inertial fusion

    SciTech Connect

    Nuckolls, J.H.

    1984-04-01

    Beyond the achievement of scientific feasibility, the key question for fusion energy is: does it have the economic potential to be significantly cheaper than fission and coal energy. If fusion has this high economic potential then there are compelling commercial and geopolitical incentives to accelerate the pace of the fusion program in the near term, and to install a global fusion energy system in the long term. Without this high economic potential, fusion's success depends on the failure of all alternatives, and there is no real incentive to accelerate the program. If my conjectures on the economic potential of inertial fusion are approximately correct, then inertial fusion energy's ultimate costs may be only half to two-thirds those of advanced fission and coal energy systems. Relative cost escalation is not assumed and could increase this advantage. Both magnetic and inertial approaches to fusion potentially have a two-fold economic advantage which derives from two fundamental properties: negligible fuel costs and high quality energy which makes possible more efficient generation of electricity. The wining approach to fusion may excel in three areas: electrical generating efficiency, minimum material costs, and adaptability to manufacture in automated factories. The winning approach must also rate highly in environmental potential, safety, availability factor, lifetime, small 0 and M costs, and no possibility of utility-disabling accidents.

  2. Synthesis, crystal structure and magnetic properties of an alternating manganese chain

    SciTech Connect

    Ramos Silva, Manuela . E-mail: manuela@pollux.fis.uc.pt; Matos Beja, Ana; Antonio Paixao, Jose; Martin-Gil, Jesus

    2006-07-15

    A new 1D complex has been prepared and characterized. X-ray single crystal structure confirms that the Mn(II) ions assemble in alternating chains with Mn-Mn distances of 3.8432(13) and 4.4428(14) A. A 3D network of hydrogen bonds links the chains together. The temperature dependence of the magnetic susceptibility reveals that this compound undergoes a magnetic transition and exhibits an antiferromagnetic interaction in the low-temperature phase with two alternating exchange interactions of -2.32(1) and -5.55(1) cm{sup -1}. - Graphical abstract: Portion of the dimeric manganese chain showing the two alternating exchange interactions paths.

  3. SOLVING THE STAND-OFF PROBLEM FOR MAGNETIZED TARGET FUSION: PLASMA STREAMS AS DISPOSABLE ELECTRODES, PLUS A LOCAL SPHERICAL BLANKET

    SciTech Connect

    Ryutov, D D; Thio, Y F

    2006-03-21

    In a fusion reactor based on the Magnetized Target Fusion approach, the permanent power supply has to deliver currents up to a few mega-amperes to the target dropped into the reaction chamber. All the structures situated around the target will be destroyed after every pulse and have to be replaced at a frequency of 1 to 10 Hz. In this paper, an approach based on the use of spherical blanket surrounding the target, and pulsed plasma electrodes connecting the target to the power supply, is discussed. A brief physic analysis of the processes associated with creation of plasma electrodes is discussed.

  4. Extremely low frequency alternating magnetic field-triggered and MRI-traced drug delivery by optimized magnetic zeolitic imidazolate framework-90 nanoparticles.

    PubMed

    Fang, Jie; Yang, Yong; Xiao, Wen; Zheng, Bingwen; Lv, Yun-Bo; Liu, Xiao-Li; Ding, Jun

    2016-02-14

    An extremely low frequency alternating magnetic field (ELF-AMF) was demonstrated to be able to effectively trigger drug release from carefully engineered magnetic ZIF-90 nanoparticles. The embedded Fe3O4 nanoparticles or alternatively Gd2O3 nanoparticles serve as effective MRI tracers for potential visualization of drug delivery to ensure drug delivery accuracy. PMID:26809987

  5. The interaction of the near-field plasma with antennas used in magnetic fusion research

    NASA Astrophysics Data System (ADS)

    Caughman, John

    2015-09-01

    Plasma heating and current drive using antennas in the Ion Cyclotron Range of Frequencies (ICRF) are important elements for the success of magnetic fusion. The antennas must operate in a harsh environment, where local plasma densities can be >1018/m3, magnetic fields can range from 0.2-5 Tesla, and antenna operating voltages can be >40 kV. This environment creates operational issues due to the interaction of the near-field of the antenna with the local plasma. In addition to parasitic losses in this plasma region, voltage and current distributions on the antenna structure lead to the formation of high electric fields and RF plasma sheaths, which can lead to enhanced particle and energy fluxes on the antenna and on surfaces intersected by magnetic field lines connected to or passing near the antenna. These issues are being studied using a simple electrode structure and a single-strap antenna on the Prototype Materials Plasma EXperiment (Proto-MPEX) at ORNL, which is a linear plasma device that uses an electron Bernstein wave heated helicon plasma source to create a high-density plasma suitable for use in a plasma-material interaction test stand. Several diagnostics are being used to characterize the near-field interactions, including double-Langmuir probes, a retarding field energy analyzer, and optical emission spectroscopy. The RF electric field is being studied utilizing Dynamic Stark Effect spectroscopy and Doppler-Free Saturation Spectroscopy. Recent experimental results and future plans will be presented. ORNL is managed by UT-Battelle, LLC, for the U.S. DOE under Contract DE-AC-05-00OR22725.

  6. Enhancement of perpendicular magnetic anisotropy by compressive strain in alternately layered FeNi thin films.

    PubMed

    Sakamaki, M; Amemiya, K

    2014-04-23

    The effect of the lattice strain on magnetic anisotropy of alternately layered FeNi ultrathin films grown on a substrate, Cu(tCu = 0-70 ML)/Ni(48)Cu(52)(124 ML)/Cu(0 0 1) single crystal, is systematically studied by means of in situ x-ray magnetic circular dichroism (XMCD) and reflection high-energy electron diffraction (RHEED) analyses. To investigate the magnetic anisotropy of the FeNi layer itself, a non-magnetic substrate is adopted. From the RHEED analysis, the in-plane lattice constant, ain, of the substrate is found to shrink by 0.8% and 0.5% at tCu = 0 and 10 ML as compared to that of bulk Cu, respectively. Fe L-edge XMCD analysis is performed for n ML FeNi films grown on various ain, and perpendicular magnetic anisotropy (PMA) is observed at n = 3 and 5, whereas the film with n = 7 shows in-plane magnetic anisotropy. Moreover, it is found that PMA is enhanced with decreasing ain, in the case where a Cu spacer layer is inserted. We suppose that magnetic anisotropy in the FeNi films is mainly carried by Fe, and the delocalization of the in-plane orbitals near the Fermi level increases the perpendicular orbital magnetic moment, which leads to the enhancement of PMA. PMID:24695244

  7. Fully automated prostate magnetic resonance imaging and transrectal ultrasound fusion via a probabilistic registration metric

    NASA Astrophysics Data System (ADS)

    Sparks, Rachel; Bloch, B. Nicholas; Feleppa, Ernest; Barratt, Dean; Madabhushi, Anant

    2013-03-01

    In this work, we present a novel, automated, registration method to fuse magnetic resonance imaging (MRI) and transrectal ultrasound (TRUS) images of the prostate. Our methodology consists of: (1) delineating the prostate on MRI, (2) building a probabilistic model of prostate location on TRUS, and (3) aligning the MRI prostate segmentation to the TRUS probabilistic model. TRUS-guided needle biopsy is the current gold standard for prostate cancer (CaP) diagnosis. Up to 40% of CaP lesions appear isoechoic on TRUS, hence TRUS-guided biopsy cannot reliably target CaP lesions and is associated with a high false negative rate. MRI is better able to distinguish CaP from benign prostatic tissue, but requires special equipment and training. MRI-TRUS fusion, whereby MRI is acquired pre-operatively and aligned to TRUS during the biopsy procedure, allows for information from both modalities to be used to help guide the biopsy. The use of MRI and TRUS in combination to guide biopsy at least doubles the yield of positive biopsies. Previous work on MRI-TRUS fusion has involved aligning manually determined fiducials or prostate surfaces to achieve image registration. The accuracy of these methods is dependent on the reader's ability to determine fiducials or prostate surfaces with minimal error, which is a difficult and time-consuming task. Our novel, fully automated MRI-TRUS fusion method represents a significant advance over the current state-of-the-art because it does not require manual intervention after TRUS acquisition. All necessary preprocessing steps (i.e. delineation of the prostate on MRI) can be performed offline prior to the biopsy procedure. We evaluated our method on seven patient studies, with B-mode TRUS and a 1.5 T surface coil MRI. Our method has a root mean square error (RMSE) for expertly selected fiducials (consisting of the urethra, calcifications, and the centroids of CaP nodules) of 3.39 +/- 0.85 mm.

  8. Single-domain magnetic nanoparticles in an alternating magnetic field as mediators of local deformation of the surrounding macromolecules

    NASA Astrophysics Data System (ADS)

    Golovin, Yu. I.; Gribanovskii, S. L.; Golovin, D. Yu.; Klyachko, N. L.; Kabanov, A. V.

    2014-07-01

    The forces, deformations, and stresses generated in macromolecules attached to single-domain magnetic nanoparticles under the influence of a low-frequency (nonheating) magnetic field have been analyzed analytically and numerically. It has been shown that, in bioactive macromolecules, an alternating magnetic field with an induction of 0.1-1.0 T and a circular frequency of ≲104 s-1 can induce forces up to several hundred piconewtons, absolute deformations up to a few tens of nanometers, as well as compressive and shear stresses exceeding 107 Pa. These mechanical stimuli are sufficient for a significant change of interatomic distances in active centers, conformation of macromolecules, and even a breaking of some bonds, which makes it possible to develop a new technological platform for targeted delivery of drugs, remote control of their activity, and cancer-cell destruction.

  9. Reactor for boron fusion with picosecond ultrahigh power laser pulses and ultrahigh magnetic field trapping

    NASA Astrophysics Data System (ADS)

    Miley, G. H.; Hora, H.; Kirchhoff, G.

    2016-05-01

    Compared with the deuterium tritium (DT) fusion, the environmentally clean fusion of protons with 11B is extremely difficult. When instead of nanosecond laser pulses for thermal-ablating driven ignition, picosecond pulses are used, a drastic change by nonlinearity results in ultrahigh acceleration of plasma blocks. This radically changes to economic boron fusion by a measured new avalanche ignition.

  10. Towards nanomedicines of the future: Remote magneto-mechanical actuation of nanomedicines by alternating magnetic fields.

    PubMed

    Golovin, Yuri I; Gribanovsky, Sergey L; Golovin, Dmitry Y; Klyachko, Natalia L; Majouga, Alexander G; Master, Аlyssa M; Sokolsky, Marina; Kabanov, Alexander V

    2015-12-10

    The paper describes the concept of magneto-mechanical actuation of single-domain magnetic nanoparticles (MNPs) in super-low and low frequency alternating magnetic fields (AMFs) and its possible use for remote control of nanomedicines and drug delivery systems. The applications of this approach for remote actuation of drug release as well as effects on biomacromolecules, biomembranes, subcellular structures and cells are discussed in comparison to conventional strategies employing magnetic hyperthermia in a radio frequency (RF) AMF. Several quantitative models describing interaction of functionalized MNPs with single macromolecules, lipid membranes, and proteins (e.g. cell membrane receptors, ion channels) are presented. The optimal characteristics of the MNPs and an AMF for effective magneto-mechanical actuation of single molecule responses in biological and bio-inspired systems are discussed. Altogether, the described studies and phenomena offer opportunities for the development of novel therapeutics both alone and in combination with magnetic hyperthermia. PMID:26407671

  11. Effect of alternating magnetic field on the removal of metal impurities in silicon ingot by directional solidification

    NASA Astrophysics Data System (ADS)

    Li, Pengting; Ren, Shiqiang; Jiang, Dachuan; Li, Jiayan; Zhang, Lei; Tan, Yi

    2016-03-01

    Multicrystalline silicon ingots without and with alternating magnetic field during directional solidification process under industrial system were obtained from metallurgical grade silicon (MG-Si). The concentrations and normalized concentrations of metal impurities in the two silicon ingots were studied. The result shows that the concentrations and normalized concentrations in high-purity area of the silicon with alternating magnetic field are lower than those of the ingot without alternating magnetic field. The transport mechanism for metal atoms in the diffusion layer area has been changed due to the alternating magnetic field. Alternating magnetic field introduces a convection to reduce the thickness of diffusion layer in the molten silicon, which results in a decreased effective segregation coefficients. Enhancing transport driving force of metal atoms in molten silicon is the effective way to improve the removal rate of metal impurities.

  12. Spontaneously Fluctuating Motor Cortex Excitability in Alternating Hemiplegia of Childhood: A Transcranial Magnetic Stimulation Study

    PubMed Central

    Stern, William M.; Desikan, Mahalekshmi; Hoad, Damon; Jaffer, Fatima; Strigaro, Gionata; Sander, Josemir W.; Rothwell, John C.; Sisodiya, Sanjay M.

    2016-01-01

    Background Alternating hemiplegia of childhood is a very rare and serious neurodevelopmental syndrome; its genetic basis has recently been established. Its characteristic features include typically-unprovoked episodes of hemiplegia and other transient or more persistent neurological abnormalities. Methods We used transcranial magnetic stimulation to assess the effect of the condition on motor cortex neurophysiology both during and between attacks of hemiplegia. Nine people with alternating hemiplegia of childhood were recruited; eight were successfully tested using transcranial magnetic stimulation to study motor cortex excitability, using single and paired pulse paradigms. For comparison, data from ten people with epilepsy but not alternating hemiplegia, and ten healthy controls, were used. Results One person with alternating hemiplegia tested during the onset of a hemiplegic attack showed progressively diminishing motor cortex excitability until no response could be evoked; a second person tested during a prolonged bilateral hemiplegic attack showed unusually low excitability. Three people tested between attacks showed asymptomatic variation in cortical excitability, not seen in controls. Paired pulse paradigms, which probe intracortical inhibitory and excitatory circuits, gave results similar to controls. Conclusions We report symptomatic and asymptomatic fluctuations in motor cortex excitability in people with alternating hemiplegia of childhood, not seen in controls. We propose that such fluctuations underlie hemiplegic attacks, and speculate that the asymptomatic fluctuation we detected may be useful as a biomarker for disease activity. PMID:26999520

  13. Alternating-gradient canted cosine theta superconducting magnets for future compact proton gantries

    NASA Astrophysics Data System (ADS)

    Wan, Weishi; Brouwer, Lucas; Caspi, Shlomo; Prestemon, Soren; Gerbershagen, Alexander; Schippers, Jacobus Maarten; Robin, David

    2015-10-01

    We present a design of superconducting magnets, optimized for application in a gantry for proton therapy. We have introduced a new magnet design concept, called an alternating-gradient canted cosine theta (AG-CCT) concept, which is compatible with an achromatic layout. This layout allows a large momentum acceptance. The 15 cm radius of the bore aperture enables the application of pencil beam scanning in front of the SC-magnet. The optical and dynamic performance of a gantry based on these magnets has been analyzed using the fields derived (via Biot-Savart law) from the actual windings of the AG-CCT combined with the full equations of motion. The results show that with appropriate higher order correction, a large 3D volume can be rapidly scanned with little beam shape distortion. A very big advantage is that all this can be done while keeping the AG-CCT fields fixed. This reduces the need for fast field ramping of the superconducting magnets between the successive beam energies used for the scanning in depth and it is important for medical application since this reduces the technical risk (e.g., a quench) associated with fast field changes in superconducting magnets. For proton gantries the corresponding superconducting magnet system holds promise of dramatic reduction in weight. For heavier ion gantries there may furthermore be a significant reduction in size.

  14. AIR-SPAMM: alternative inversion recovery spatial modulation of magnetization for myocardial tagging

    NASA Astrophysics Data System (ADS)

    Aletras, Anthony H.; Freidlin, Raisa Z.; Navon, Gil; Arai, Andrew E.

    2004-02-01

    Alternate inversion recovery spatial modulation of magnetization (AIR-SPAMM) can be used either for doubling the number of tags for a given tagging encoding gradient strength or for improving tagging contrast ratio. AIR-SPAMM requires only a single acquisition and utilizes inversion pulses spaced throughout the gradient recalled echo (GRE) cine acquisition to "lock" the recovering magnetization at a desired level. The theory of AIR-SPAMM is presented along with simulations and results from phantoms. AIR-SPAMM can be used either for imaging systole as demonstrated by initial in vivo results or potentially for imaging the entire cardiac cycle in a slice-interleaved manner.

  15. The Effects of Weak Combined Magnetic Field on Cell Wall Regeneration and Frequency of Plant Protoplasts Fusion

    NASA Astrophysics Data System (ADS)

    Nedukha, Olena

    The major purpose of these experiments was to investigate plant protoplast fusion frequency and regeneration of a cell wall by protoplasts at weak combined magnetic field (CMF) with the frequency resonance to the cyclotron frequency of Mg2+, Ca2+ and K+ ions. The protoplasts were isolated from Nicotiana lumbaginifolia and N. silvestris leaf mesophyll and from callus tissues (Nicotiana tabacum and Glycine max). The special extra apparatus with ferromagnetic shield was used for estimate of CMF with the frequency resonance to the cyclotron frequency of Mg2+, Ca2+ and K+ ions. The fusion of protoplasts is realized by using of parent protoplasts isolated from one plant species, as well as from various plant species. Control samples were situated near the apparatus with CMF. The laser confocal microscopy was used for study of cell wall regeneration by single and fused protoplasts. The cytochemical methods with DAPI and calcofluor dye were also applied as the detectors for protoplast fusion and regeneration of cell wall. We have been established that CMF with frequency adjusted to the cyclotron frequency Mg2+ ions have shown the most positive influence on regeneration of cell wall by protoplasts. CMF adjusted to the cyclotron frequency of K+ ions very weakly affected on the frequency of protoplast fusion. Largest frequency of protoplasts fusion is noted in the CMF adjusted to the cyclotron frequency of Ca2+ in comparison with the control samples.

  16. Three-Dimensional Magnetic Analysis Technique Developed for Evaluating Stirling Convertor Linear Alternators

    NASA Technical Reports Server (NTRS)

    Geng, Steven M.

    2003-01-01

    The Department of Energy, the Stirling Technology Company (STC), and the NASA Glenn Research Center are developing Stirling convertors for Stirling radioisotope generators to provide electrical power for future NASA deep space missions. STC is developing the 55-We technology demonstration convertor (TDC) under contract to the Department of Energy. The Department of Energy recently named Lockheed Martin as the system integration contractor for the Stirling radioisotope generator development project. Lockheed Martin will develop the Stirling radioisotope generator engineering unit and has contract options to develop the qualification unit and the first flight unit. Glenn s role includes an in-house project to provide convertor, component, and materials testing and evaluation in support of the overall power system development. As a part of this work, Glenn has established an in-house Stirling research laboratory for testing, analyzing, and evaluating Stirling machines. STC has built four 55-We convertors for NASA, and these are being tested at Glenn. A cross-sectional view of the 55-We TDC is shown in the figure. Of critical importance to the successful development of the Stirling convertor for space power applications is the development of a lightweight and highly efficient linear alternator. In support, Glenn has been developing finite element analysis and finite element method tools for performing various linear alternator thermal and electromagnetic analyses and evaluating design configurations. A three-dimensional magnetostatic finite element model of STC's 55-We TDC linear alternator was developed to evaluate the demagnetization fields affecting the alternator magnets. Since the actual linear alternator hardware is symmetric to the quarter section about the axis of motion, only a quarter section of the alternator was modeled. The components modeled included the mover laminations, the neodymium-iron-boron magnets, the stator laminations, and the copper coils. The

  17. Beryllium liner implosion experiments on the Z accelerator in preparation for magnetized liner inertial fusion

    SciTech Connect

    McBride, R. D.; Martin, M. R.; Lemke, R. W.; Jennings, C. A.; Rovang, D. C.; Sinars, D. B.; Cuneo, M. E.; Herrmann, M. C.; Slutz, S. A.; Nakhleh, C. W.; Davis, J.-P.; Flicker, D. G.; Rogers, T. J.; Robertson, G. K.; Kamm, R. J.; Smith, I. C.; Savage, M.; Stygar, W. A.; Rochau, G. A.; Jones, M.; and others

    2013-05-15

    Multiple experimental campaigns have been executed to study the implosions of initially solid beryllium (Be) liners (tubes) on the Z pulsed-power accelerator. The implosions were driven by current pulses that rose from 0 to 20 MA in either 100 or 200 ns (200 ns for pulse shaping experiments). These studies were conducted in support of the recently proposed Magnetized Liner Inertial Fusion concept [Slutz et al., Phys. Plasmas 17, 056303 (2010)], as well as for exploring novel equation-of-state measurement techniques. The experiments used thick-walled liners that had an aspect ratio (initial outer radius divided by initial wall thickness) of either 3.2, 4, or 6. From these studies, we present three new primary results. First, we present radiographic images of imploding Be liners, where each liner contained a thin aluminum sleeve for enhancing the contrast and visibility of the liner's inner surface in the images. These images allow us to assess the stability of the liner's inner surface more accurately and more directly than was previously possible. Second, we present radiographic images taken early in the implosion (prior to any motion of the liner's inner surface) of a shockwave propagating radially inward through the liner wall. Radial mass density profiles from these shock compression experiments are contrasted with profiles from experiments where the Z accelerator's pulse shaping capabilities were used to achieve shockless (“quasi-isentropic”) liner compression. Third, we present “micro-B-dot ” measurements of azimuthal magnetic field penetration into the initially vacuum-filled interior of a shocked liner. Our measurements and simulations reveal that the penetration commences shortly after the shockwave breaks out from the liner's inner surface. The field then accelerates this low-density “precursor” plasma to the axis of symmetry.

  18. Spectroscopic Studies of Atomic and Molecular Processes in the Edge Region of Magnetically Confined Fusion Plasmas

    SciTech Connect

    Hey, J. D.; Brezinsek, S.; Mertens, Ph.; Unterberg, B.

    2006-12-01

    Edge plasma studies are of vital importance for understanding plasma-wall interactions in magnetically confined fusion devices. These interactions determine the transport of neutrals into the plasma, and the properties of the plasma discharge. This presentation deals with optical spectroscopic studies of the plasma boundary, and their role in elucidating the prevailing physical conditions. Recorded spectra are of four types: emission spectra of ions and atoms, produced by electron impact excitation and by charge-exchange recombination, atomic spectra arising from electron impact-induced molecular dissociation and ionisation, visible spectra of molecular hydrogen and its isotopic combinations, and laser-induced fluorescence (LIF) spectra. The atomic spectra are strongly influenced by the confining magnetic field (Zeeman and Paschen-Back effects), which produces characteristic features useful for species identification, temperature determination by Doppler broadening, and studies of chemical and physical sputtering. Detailed analysis of the Zeeman components in both optical and LIF spectra shows that atomic hydrogen is produced in various velocity classes, some related to the relevant molecular Franck-Condon energies. The latter reflect the dominant electron collision processes responsible for production of atoms from molecules. This assignment has been verified by gas-puffing experiments through special test limiters. The higher-energy flanks of hydrogen line profiles probably also show the influence of charge-exchange reactions with molecular ions accelerated in the plasma sheath ('scrape-off layer') separating limiter surfaces from the edge plasma, in analogy to acceleration in the cathode-fall region of gas discharges. While electron collisions play a vital role in generating the spectra, ion collisions with excited atomic radiators act through re-distribution of population among the atomic fine-structure sublevels, and momentum transfer to the atomic nuclei via

  19. Tritium production potential of beam research and magnetic fusion program technologies

    SciTech Connect

    Lee, J.D.

    1989-03-01

    Regular replenishment of tritium in the nuclear weapons stockpile is essential to maintain our nuclear deterrent. Nuclear reactor facilities presently used for the production of tritium are aging, and their operation is being curtailed awaiting the repairs and upgrades needed to meet modern standards of safety and environment. To provide improved capability in the future, DOE plans to construct a new production reactor. Alternatives to nuclear reactor methods for the production of tritium, mainly electrically-driven accelerator or fusion systems, have been proposed many times in the past. Given the critical national security implications of maintaining adequate tritium production facilities, it is clearly worthwhile for political decision-makers to have a clear and accurate picture of the technical options that could be made available at various points in the future. The goal of this white paper is to summarize available technical information on a set of non-nuclear-reactor options for tritium production with a minimum of advocacy for any one system of implicit assumptions about politically desirable attributes. Indeed, these various options differ considerably in aspects such as the maturity of the technology, the development cost and timescales required, and the capital and operating costs of a typical ''optimized'' facility.

  20. Application of railgun principle to high-velocity hydrogen pellet injection for magnetic fusion reactor refueling: Technical progress report

    SciTech Connect

    Kim, Kyekyoon

    1987-12-01

    This paper discusses the use of a railgun accelerator to inject hydrogen pellets into a magnetic fusion reactor for refueling purposes. Specific studies in this paper include: 1.5 mm-diameter two-stage fuseless plasma-arc-driven electromagnetic railgun, construction and testing of a 3.2 mm-diameter two-stage railgun and a theoretical analysis of the behavior of a railgun plasma-arc armature inside a railgun. (LSP)

  1. Test of 60 kA coated conductor cable prototypes for fusion magnets

    NASA Astrophysics Data System (ADS)

    Uglietti, D.; Bykovsky, N.; Sedlak, K.; Stepanov, B.; Wesche, R.; Bruzzone, P.

    2015-12-01

    Coated conductors could be promising materials for the fabrication of the large magnet systems of future fusion devices. Two prototype conductors (flat cables in steel conduits), each about 2 m long, were manufactured using coated conductor tapes (4 mm wide) from Super Power and SuperOx, with a total tape length of 1.6 km. Each flat cable is assembled from 20 strands, each strand consisting of a stack of 16 tapes surrounded by two half circular copper profiles, twisted and soldered. The tapes were measured at 12 T and 4.2 K and the results of the measurements were used for the assessment of the conductor electromagnetic properties at low temperature and high field. The two conductors were assembled together in a sample that was tested in the European Dipole (EDIPO) facility. The current sharing temperatures of the two conductors were measured at background fields from 8 T up to 12 T and for currents from 30 kA up to 70 kA: the measured values are within a few percent of the values expected from the measurements on tapes (short samples). After electromagnetic cycling, T cs at 12 T and 50 kA decreased from about 12 K to 11 K (about 10%), corresponding to less than 3% of I c.

  2. Benchmarking atomic physics models for magnetically confined fusion plasma physics experiments

    NASA Astrophysics Data System (ADS)

    May, M. J.; Finkenthal, M.; Soukhanovskii, V.; Stutman, D.; Moos, H. W.; Pacella, D.; Mazzitelli, G.; Fournier, K.; Goldstein, W.; Gregory, B.

    1999-01-01

    In present magnetically confined fusion devices, high and intermediate Z impurities are either puffed into the plasma for divertor radiative cooling experiments or are sputtered from the high Z plasma facing armor. The beneficial cooling of the edge as well as the detrimental radiative losses from the core of these impurities can be properly understood only if the atomic physics used in the modeling of the cooling curves is very accurate. To this end, a comprehensive experimental and theoretical analysis of some relevant impurities is undertaken. Gases (Ne, Ar, Kr, and Xe) are puffed and nongases are introduced through laser ablation into the FTU tokamak plasma. The charge state distributions and total density of these impurities are determined from spatial scans of several photometrically calibrated vacuum ultraviolet and x-ray spectrographs (3-1600 Å), the multiple ionization state transport code transport code (MIST) and a collisional radiative model. The radiative power losses are measured with bolometery, and the emissivity profiles were measured by a visible bremsstrahlung array. The ionization balance, excitation physics, and the radiative cooling curves are computed from the Hebrew University Lawrence Livermore atomic code (HULLAC) and are benchmarked by these experiments. (Supported by U.S. DOE Grant No. DE-FG02-86ER53214 at JHU and Contract No. W-7405-ENG-48 at LLNL.)

  3. Progress on the FRX-L FRC plasma injector at LANL for magnetized target fusion

    SciTech Connect

    Assmus, P. N.; Feinup, W. J.; Intrator, Thomas; Langner, M. C.; Maqueda, R. J.; Scott, K. J.; Siemon, R. E.; Tejero, E. M.; Taccetti, J. M.; Tuszewski, M. G.; Wang, Z.; Wurden, G. A.

    2001-01-01

    The FRX-L Field Reversed Configuration plasma is now operational at Los Alamos National Laboratory. The goal of the project is to demonstrate the production of suitable FRC target plasmas for later MTF (Magnetized Target Fusion) implosion experiments which will first be carried out at the Air Force Research Laboratory in Albuquerque, New Mexico, in a few years' time. Expected plasma parameters in the 4 cm diameter, 30 cm long FRC are ne{approx}1017 cm-3, T{approx}100-300 eV, at 4-5 Tesla fields, with a lifetime of {approx}20 microseconds. The system includes a 0.5 T bias field, 70 kV 250 kHz ringing pre-ionization, and a 1.5 MA, 200 kJ main-theta coil bank. Maxwell rail gap plasma switches are used to start the PI bank, the main theta coil bank, and to crowbar the main bank. Initial results using the first diagnostic set of excluded flux loops, B-dot probes, visible light diodes, a fiber-optically coupled gated intensified visible spectrometer, and a 3.3 micron quadrature interferometer are presented. Future diagnostics include end-on bolometry, Thomson scattering, and a multi-chord fanned HeNe side-on interferometer. Multi-turn cusp and guide coils will be added later this year, to enable translation experiments into a cylindrical metal liner.

  4. Exploring magnetized liner inertial fusion with a semi-analytic model

    NASA Astrophysics Data System (ADS)

    McBride, R. D.; Slutz, S. A.; Sinars, D. B.; Vesey, R. A.; Gomez, M. R.; Sefkow, A. B.; Hansen, S. B.; Cochrane, K. R.; Schmit, P. F.; Knapp, P. F.; Geissel, M.; Harvey-Thompson, A. J.; Jennings, C. A.; Martin, M. R.; Awe, T. J.; Rovang, D. C.; Lamppa, D. C.; Peterson, K. J.; Rochau, G. A.; Porter, J. L.; Stygar, W. A.; Cuneo, M. E.

    2015-11-01

    In this presentation, we explore magnetized liner inertial fusion (MagLIF) using a semi-analytic model. Specifically, we present simulation results from this model that: (a) illustrate the parameter space, energetics, and overall system efficiencies of MagLIF; (b) demonstrate the dependence of radiative loss rates on the radial fraction of the fuel that is preheated; (c) explore some of the recent experimental results of the MagLIF program at Sandia National Laboratories; (d) highlight the experimental challenges presently facing the MagLIF program (as MagLIF is first being tested using the infrastructure presently available at the Z pulsed-power facility); and (e) demonstrate how these challenges could change as various system upgrades are made to the Z facility over the next three to five years and beyond. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  5. Stability tests of the Westinghouse coil in the International Fusion Superconducting Magnet Test Facility

    SciTech Connect

    Dresner, L.; Fehling, D.T.; Lubell, M.S.; Lue, J.W.; Luton, J.N.; McManamy, T.J.; Shen, S.S.; Wilson, C.T.

    1987-09-01

    The Westinghouse coil is one of three forced-flow coils in the six-coil toroidal array of the International Fusion Superconducting Magnet Test Facility at Oak Ridge National Laboratory. It is wound with an 18-kA, Nb/sub 3/Sn/Cu, cable-in-conduit superconductor structurally supported by aluminum plates and cooled by 4-K, 15-atm supercritical helium. The coil is instrumented to permit measurement of helium temperature, pressure, and flow rate; structure temperature and strain; field; and normal zone voltage. A resistive heater has been installed to simulate nuclear heating, and inductive heaters have been installed to facilitate stability testing. The coil has been tested both individually and in the six-coil array. The tests covered charging to full design current and field, measuring the current-sharing threshold temperature using the resistive heaters, and measuring the stability margin using the pulsed inductive heaters. At least one section of the conductor exhibits a very broad resistive transition (resistive transition index = 4). The broad transition, though causing the appearance of voltage at relatively low temperatures, does not compromise the stability margin of the coil, which was greater than 1.1 J/cm/sup 3/ of strands. In another, nonresistive location, the stability margin was between 1.7 and 1.9 J/cm/sup 3/ of strands. The coil is completely stable in operation at 100% design current in both the single- and six-coil modes.

  6. Development of advanced compact railguns for injection of hypervelocity hydrogen pellets into magnetic fusion plasmas

    SciTech Connect

    Tompkins, M.W.; Anderson, M.A.; Kim, K.; Feng, Q.; Zhang, J.; King, T.L.

    1995-12-31

    The authors have designed, fabricated, and tested a number of compact railguns utilizing a variety of gun geometries, augmentation schemes, and state-of-the-art rail and insulator materials in order to develop an injector that can accelerate pellets of hydrogen isotopes to very high velocities ({approximately}10 km/s) continuously and at high repetition rates for refueling magnetically confined fusion plasmas. These advanced guns are designed to achieve two goals: to minimize or eliminate gunwall erosion and to produce the maximum possible pellet acceleration. These closely related goals assure long gun lifetimes. Using an advanced transaugmented compact gun with an acceleration length of only 45-cm, they have recently achieved hydrogen pellet velocities as high as 2.2 km/s with a time-averaged pellet acceleration of 4.7 {times} 10{sup 6} m/s{sup 2} at a modest rail current of 10 kA. This paper includes a brief overview of the railgun control and diagnostic systems and discusses recent results of the railgun experiments using both plexiglass and cryogenic hydrogen pellets.

  7. Investigation of a 7-pole/6-slot Halbach-magnetized permanent-magnet linear alternator used for free-piston stirling engines

    NASA Astrophysics Data System (ADS)

    Zheng, Ping; Tong, Chengde; Zhao, Jing; Yu, Bin; Li, Lin; Bai, Jingang; Zhang, Lu

    2012-04-01

    This paper investigates a 7-pole/6-slot Halbach-magnetized permanent-magnet linear alternator used for free piston Stirling engines (FPSEs). Taking the advantages of Halbach array, a 1 kW prototype alternator is designed. Considering the rms value of electromotive force (EMF) and harmonic distortion, the optimal length ratio of the axial- and radial-magnetized permanent magnets and thicknesses of the permanent magnets are optimized by 2D finite element method. The alternator detent force, which is an important factor for smooth operation of FPSEs, is studied by optimizing slot tip and end tooth. The load and thermal performances of the final design are simulated. A prototype alternator was designed, built and tested. Experimental data indicated satisfactory design.

  8. Improvement of immunoassay detection system by using alternating current magnetic susceptibility.

    PubMed

    Kawabata, R; Mizoguchi, T; Kandori, A

    2016-03-01

    A major goal with this research was to develop a low-cost and highly sensitive immunoassay detection system by using alternating current (AC) magnetic susceptibility. We fabricated an improved prototype of our previously developed immunoassay detection system and evaluated its performance. The prototype continuously moved sample containers by using a magnetically shielded brushless motor, which passes between two anisotropic magneto resistance (AMR) sensors. These sensors detected the magnetic signal in the direction where each sample container passed them. We used the differential signal obtained from each AMR sensor's output to improve the signal-to-noise ratio (SNR) of the magnetic signal measurement. Biotin-conjugated polymer beads with avidin-coated magnetic particles were prepared to examine the calibration curve, which represents the relation between AC magnetic susceptibility change and polymer-bead concentration. For the calibration curve measurement, we, respectively, measured the magnetic signal caused by the magnetic particles by using each AMR sensor installed near the upper or lower part in the lateral position of the passing sample containers. As a result, the SNR of the prototype was 4.5 times better than that of our previous system. Moreover, the data obtained from each AMR sensor installed near the upper part in the lateral position of the passing sample containers exhibited an accurate calibration curve that represented good correlation between AC magnetic susceptibility change and polymer-bead concentration. The conclusion drawn from these findings is that our improved immunoassay detection system will enable a low-cost and highly sensitive immunoassay. PMID:27036824

  9. Improvement of immunoassay detection system by using alternating current magnetic susceptibility

    NASA Astrophysics Data System (ADS)

    Kawabata, R.; Mizoguchi, T.; Kandori, A.

    2016-03-01

    A major goal with this research was to develop a low-cost and highly sensitive immunoassay detection system by using alternating current (AC) magnetic susceptibility. We fabricated an improved prototype of our previously developed immunoassay detection system and evaluated its performance. The prototype continuously moved sample containers by using a magnetically shielded brushless motor, which passes between two anisotropic magneto resistance (AMR) sensors. These sensors detected the magnetic signal in the direction where each sample container passed them. We used the differential signal obtained from each AMR sensor's output to improve the signal-to-noise ratio (SNR) of the magnetic signal measurement. Biotin-conjugated polymer beads with avidin-coated magnetic particles were prepared to examine the calibration curve, which represents the relation between AC magnetic susceptibility change and polymer-bead concentration. For the calibration curve measurement, we, respectively, measured the magnetic signal caused by the magnetic particles by using each AMR sensor installed near the upper or lower part in the lateral position of the passing sample containers. As a result, the SNR of the prototype was 4.5 times better than that of our previous system. Moreover, the data obtained from each AMR sensor installed near the upper part in the lateral position of the passing sample containers exhibited an accurate calibration curve that represented good correlation between AC magnetic susceptibility change and polymer-bead concentration. The conclusion drawn from these findings is that our improved immunoassay detection system will enable a low-cost and highly sensitive immunoassay.

  10. Intense transient magnetic-field generation by laser plasma

    SciTech Connect

    Benjamin, R.F.

    1981-08-18

    In a laser system, the return current of a laser generated plasma is conducted near a target to subject that target to the magnetic field thereof. In alternate embodiments the target may be either a small non-fusion object for testing under the magnetic field or a laser-fusion pellet. In the laser-fusion embodiment, the laser-fusion pellet is irradiated during the return current flow and the intense transient magnetic field is used to control the hot electrons thereof to hinder them from striking and heating the core of the irradiated laser-fusion pellet.

  11. Thermocouples in an alternating magnetic field (AMF) for studying magnetic nanoparticle hyperthermia

    NASA Astrophysics Data System (ADS)

    Hartzell, S.; Boekelheide, Z.

    Magnetic nanoparticle hyperthermia, a method of cancer therapy, is currently a subject of active research. A critical parameter during therapy or laboratory research is the temperature of the system (tissue or nanoparticle suspension). Thermocouples are affordable and ubiquitous temperature sensors which could be used in this capacity; however, their metallic nature results in self-heating due to eddy currents when placed in an AMF. This presentation will quantitatively discuss calculations and measurements of the self-heating of three common types of thermocouples. Type T, K, and E thermocouples of both thin (40 gauge) and thick (20 gauge) wires were tested in a range of applied magnetic field magnitudes (235 kHz, 0-0.4 T rms). Among the thermocouples, all three types demonstrated large self-heating in 20 gauge wires. For the 40 gauge wires, type K showed large self-heating, while type T showed small but significant self-heating and type E showed no significant self-heating in comparison to the background. Our results indicate that thin type E thermocouples can be accurately used as temperature sensors in an AMF environment similar to the one used here, and type T thermocouples may be appropriate under conditions with lower magnetic field strength or frequency.

  12. The heating effect of iron-cobalt magnetic nanofluids in an alternating magnetic field: application in magnetic hyperthermia treatment

    PubMed Central

    2013-01-01

    In this research, FeCo alloy magnetic nanofluids were prepared by reducing iron(III) chloride hexahydrate and cobalt(II) sulfate heptahydrate with sodium borohydride in a water/CTAB/hexanol reverse micelle system for application in magnetic hyperthermia treatment. X-ray diffraction, electron microscopy, selected area electron diffraction, and energy-dispersive analysis indicate the formation of bcc-structured iron-cobalt alloy. Magnetic property assessment of nanoparticles reveals that some samples are single-domain superparamagnetic, while others are single- or multi-domain ferromagnetic. The stability of the magnetic fluids was achieved by using a CTAB/1-butanol surfactant bilayer. Results of Gouy magnetic susceptibility balance experiments indicate good stability of FeCo nanoparticles even after dilution. The inductive properties of corresponding magnetic fluids including temperature rise and specific absorption rate were determined. Results show that with increasing of the nanoparticle size in the single-domain size regime, the generated heat increases, indicating the significant effect of the hysteresis loss. Finally, the central parameter controlling the specific absorption rate of nanoparticles was introduced, the experimental results were compared with those of the Stoner-Wohlfarth model and linear response theory, and the best sample for magnetic hyperthermia treatment was specified. PMID:24359163

  13. Static and Alternating Field Magnetic Capture and Heating of Iron Oxide Nanoparticles in Simulated Blood Vessels

    NASA Astrophysics Data System (ADS)

    Lee, Joanne Haeun; Shah, Rhythm R.; Brazel, Christopher S.

    2014-11-01

    Targeted drug delivery and localized hyperthermia are being studied as alternatives to conventional cancer treatments, which can affect the whole body and indiscriminately kill healthy cells. Magnetic nanoparticles (MNPs) have potential as drug carriers that can be captured and trigger hyperthermia at the site of the tumor by applying an external magnetic field. This study focuses on comparing the capture efficiency of the magnetic field applied by a static magnet to an alternating current coil. The effect of particle size, degree of dispersion, and the frequency of the AC field on capture and heating were studied using 3 different dispersions: 16 nm maghemite in water, 50 nm maghemite in dopamine, and 20--30 nm magnetite in dimercaptosuccinic acid. A 480G static field captured more MNPs than a similar 480G AC field at either 194 or 428 kHz; however, the AC field also allowed heating. The MNPs in water had a lower capture and heating efficiency than the larger, dopamine-coated MNPs. This finding was supported by dynamic light scattering data showing the particle size distribution and vibrating sample magnetometry data showing that the larger MNPs in the dopamine solution have a higher field of coercivity, exhibit ferrimagnetism and allow for better capture while smaller (16 nm) MNPs exhibit superparamagnetism. The dispersions that captured the best also heated the best. NSF ECE Grant #1358991 supported the first author as an REU student.

  14. Evaluating alternative exposure indices in epidemiologic studies on extremely low-frequency magnetic fields

    SciTech Connect

    Juutilainen, J.; Hatfield, T.; Laeaerae, E.

    1996-05-01

    Choosing the right exposure index for epidemiological studies on 50--60 Hz magnetic fields is difficult due to the lack of knowledge about critical exposure parameters for the biological effects of magnetic fields. This paper uses data from a previously published epidemiological investigation on early pregnancy loss (EPL) to study the methods of evaluating the exposure-response relationship of 50 Hz magnetic fields. Two approaches were used. The first approach was to apply generalized additive modeling to suggest the functional form of the relationship between EPL data with eight alternative exposure indices: the 24 h average of magnetic field strength, three indices measuring the proportion of time above specified thresholds, and four indices measuring the proportion of time within specified intensity windows. Because the original exposure data included only spot measurements, estimates for the selected exposure indices were calculated indirectly form the spot measurements using empirical nonlinear equations derived from 24 h recording in 60 residences. The results did not support intensity windows, and a threshold-type dependence on field strength appeared to be more plausible than a linear relationship. In addition, the study produced data suggesting that spot measurements may be used as surrogates for other exposure indices besides the time average field strength. No final conclusions should be drawn from this study alone, but the authors hope that this exercise stimulates evaluation of alternative exposure indices in other planned and ongoing epidemiological studies.

  15. Theoretical Study of Radiation from a Broad Range of Impurity Ions for Magnetic Fusion Diagnostics

    SciTech Connect

    Safronova, Alla

    2014-03-14

    Spectroscopy of radiation emitted by impurities plays an important role in the study of magnetically confined fusion plasmas. The measurements of these impurities are crucial for the control of the general machine conditions, for the monitoring of the impurity levels, and for the detection of various possible fault conditions. Low-Z impurities, typically present in concentrations of 1%, are lithium, beryllium, boron, carbon, and oxygen. Some of the common medium-Z impurities are metals such as iron, nickel, and copper, and high-Z impurities, such as tungsten, are present in smaller concentrations of 0.1% or less. Despite the relatively small concentration numbers, the aforementioned impurities might make a substantial contribution to radiated power, and also influence both plasma conditions and instruments. A detailed theoretical study of line radiation from impurities that covers a very broad spectral range from less than 1 Å to more than 1000 Å has been accomplished and the results were applied to the LLNL Electron Beam Ion Trap (EBIT) and the Sustained Spheromak Physics Experiment (SSPX) and to the National Spherical Torus Experiment (NSTX) at Princeton. Though low- and medium-Z impurities were also studied, the main emphasis was made on the comprehensive theoretical study of radiation from tungsten using different state-of-the-art atomic structure codes such as Relativistic Many-Body Perturbation Theory (RMBPT). The important component of this research was a comparison of the results from the RMBPT code with other codes such as the Multiconfigurational Hartree–Fock developed by Cowan (COWAN code) and the Multiconfiguration Relativistic Hebrew University Lawrence Atomic Code (HULLAC code), and estimation of accuracy of calculations. We also have studied dielectronic recombination, an important recombination process for fusion plasma, for variety of highly and low charged tungsten ions using COWAN and HULLAC codes. Accurate DR rate coefficients are needed for

  16. Multiattribute probabilistic prostate elastic registration (MAPPER): Application to fusion of ultrasound and magnetic resonance imaging

    PubMed Central

    Sparks, Rachel; Nicolas Bloch, B.; Feleppa, Ernest; Barratt, Dean; Moses, Daniel; Ponsky, Lee; Madabhushi, Anant

    2015-01-01

    Purpose: Transrectal ultrasound (TRUS)-guided needle biopsy is the current gold standard for prostate cancer diagnosis. However, up to 40% of prostate cancer lesions appears isoechoic on TRUS. Hence, TRUS-guided biopsy has a high false negative rate for prostate cancer diagnosis. Magnetic resonance imaging (MRI) is better able to distinguish prostate cancer from benign tissue. However, MRI-guided biopsy requires special equipment and training and a longer procedure time. MRI-TRUS fusion, where MRI is acquired preoperatively and then aligned to TRUS, allows for advantages of both modalities to be leveraged during biopsy. MRI-TRUS-guided biopsy increases the yield of cancer positive biopsies. In this work, the authors present multiattribute probabilistic postate elastic registration (MAPPER) to align prostate MRI and TRUS imagery. Methods: MAPPER involves (1) segmenting the prostate on MRI, (2) calculating a multiattribute probabilistic map of prostate location on TRUS, and (3) maximizing overlap between the prostate segmentation on MRI and the multiattribute probabilistic map on TRUS, thereby driving registration of MRI onto TRUS. MAPPER represents a significant advancement over the current state-of-the-art as it requires no user interaction during the biopsy procedure by leveraging texture and spatial information to determine the prostate location on TRUS. Although MAPPER requires manual interaction to segment the prostate on MRI, this step is performed prior to biopsy and will not substantially increase biopsy procedure time. Results: MAPPER was evaluated on 13 patient studies from two independent datasets—Dataset 1 has 6 studies acquired with a side-firing TRUS probe and a 1.5 T pelvic phased-array coil MRI; Dataset 2 has 7 studies acquired with a volumetric end-firing TRUS probe and a 3.0 T endorectal coil MRI. MAPPER has a root-mean-square error (RMSE) for expert selected fiducials of 3.36 ± 1.10 mm for Dataset 1 and 3.14 ± 0.75 mm for Dataset 2. State

  17. Multiattribute probabilistic prostate elastic registration (MAPPER): Application to fusion of ultrasound and magnetic resonance imaging

    SciTech Connect

    Sparks, Rachel Barratt, Dean; Nicolas Bloch, B.; Feleppa, Ernest; Moses, Daniel; Ponsky, Lee; Madabhushi, Anant

    2015-03-15

    Purpose: Transrectal ultrasound (TRUS)-guided needle biopsy is the current gold standard for prostate cancer diagnosis. However, up to 40% of prostate cancer lesions appears isoechoic on TRUS. Hence, TRUS-guided biopsy has a high false negative rate for prostate cancer diagnosis. Magnetic resonance imaging (MRI) is better able to distinguish prostate cancer from benign tissue. However, MRI-guided biopsy requires special equipment and training and a longer procedure time. MRI-TRUS fusion, where MRI is acquired preoperatively and then aligned to TRUS, allows for advantages of both modalities to be leveraged during biopsy. MRI-TRUS-guided biopsy increases the yield of cancer positive biopsies. In this work, the authors present multiattribute probabilistic postate elastic registration (MAPPER) to align prostate MRI and TRUS imagery. Methods: MAPPER involves (1) segmenting the prostate on MRI, (2) calculating a multiattribute probabilistic map of prostate location on TRUS, and (3) maximizing overlap between the prostate segmentation on MRI and the multiattribute probabilistic map on TRUS, thereby driving registration of MRI onto TRUS. MAPPER represents a significant advancement over the current state-of-the-art as it requires no user interaction during the biopsy procedure by leveraging texture and spatial information to determine the prostate location on TRUS. Although MAPPER requires manual interaction to segment the prostate on MRI, this step is performed prior to biopsy and will not substantially increase biopsy procedure time. Results: MAPPER was evaluated on 13 patient studies from two independent datasets—Dataset 1 has 6 studies acquired with a side-firing TRUS probe and a 1.5 T pelvic phased-array coil MRI; Dataset 2 has 7 studies acquired with a volumetric end-firing TRUS probe and a 3.0 T endorectal coil MRI. MAPPER has a root-mean-square error (RMSE) for expert selected fiducials of 3.36 ± 1.10 mm for Dataset 1 and 3.14 ± 0.75 mm for Dataset 2. State

  18. An in situ accelerator-based diagnostic for plasma-material interactions science on magnetic fusion devices

    SciTech Connect

    Hartwig, Zachary S.; Barnard, Harold S.; Lanza, Richard C.; Sorbom, Brandon N.; Stahle, Peter W.; Whyte, Dennis G.

    2013-12-15

    This paper presents a novel particle accelerator-based diagnostic that nondestructively measures the evolution of material surface compositions inside magnetic fusion devices. The diagnostic's purpose is to contribute to an integrated understanding of plasma-material interactions in magnetic fusion, which is severely hindered by a dearth of in situ material surface diagnosis. The diagnostic aims to remotely generate isotopic concentration maps on a plasma shot-to-shot timescale that cover a large fraction of the plasma-facing surface inside of a magnetic fusion device without the need for vacuum breaks or physical access to the material surfaces. Our instrument uses a compact (∼1 m), high-current (∼1 milliamp) radio-frequency quadrupole accelerator to inject 0.9 MeV deuterons into the Alcator C-Mod tokamak at MIT. We control the tokamak magnetic fields – in between plasma shots – to steer the deuterons to material surfaces where the deuterons cause high-Q nuclear reactions with low-Z isotopes ∼5 μm into the material. The induced neutrons and gamma rays are measured with scintillation detectors; energy spectra analysis provides quantitative reconstruction of surface compositions. An overview of the diagnostic technique, known as accelerator-based in situ materials surveillance (AIMS), and the first AIMS diagnostic on the Alcator C-Mod tokamak is given. Experimental validation is shown to demonstrate that an optimized deuteron beam is injected into the tokamak, that low-Z isotopes such as deuterium and boron can be quantified on the material surfaces, and that magnetic steering provides access to different measurement locations. The first AIMS analysis, which measures the relative change in deuterium at a single surface location at the end of the Alcator C-Mod FY2012 plasma campaign, is also presented.

  19. On the energy losses of hot worked Nd-Fe-B magnets and ferrites in a small alternating magnetic field perpendicular to a bias field

    SciTech Connect

    Staa, F. von; Hempel, K.A.; Artz, H.

    1995-11-01

    Torsion pendulum magnetometer measurements on ferrites and on neodymium-iron-boron permanent magnets are presented. The damping of the oscillation of the pendulum leads to information on the magnetic energy losses of the magnets in a small alternating magnetic field applied perpendicular to a bias field. The origin of the energy absorption is explained by the magnetization reversal of single-domain particles. It is shown experimentally that the energy absorption mechanism requires the ferromagnetic order of the sample, and that the magnetic field strength of maximal energy absorption coincides with the effective anisotropy field strength.

  20. Fusion for Space Propulsion

    NASA Technical Reports Server (NTRS)

    Thio, Y. C. Francis; Schafer, Charles (Technical Monitor)

    2001-01-01

    There is little doubt that humans will attempt to explore and develop the solar system in this century. A large amount of energy will be required for accomplishing this. The need for fusion propulsion is discussed. For a propulsion system, there are three important thermodynamical attributes: (1) The absolute amount of energy available, (2) the propellant exhaust velocity, and (3) the jet power per unit mass of the propulsion system (specific power). For human exploration and development of the solar system, propellant exhaust velocity in excess of 100 km/s and specific power in excess of 10 kW/kg are required. Chemical combustion can produce exhaust velocity up to about 5 km/s. Nuclear fission processes typically result in producing energy in the form of heat that needs to be manipulated at temperatures limited by materials to about 2,800 K. Using the energy to heat a hydrogen propellant increases the exhaust velocity by only a factor of about two. Alternatively the energy can be converted into electricity which is then used to accelerate particles to high exhaust velocity. The necessary power conversion and conditioning equipment, however, increases the mass of the propulsion system for the same jet power by more than two orders of magnitude over chemical system, thus greatly limits the thrust-to-weight ratio attainable. The principal advantage of the fission process is that its development is relatively mature and is available right now. If fusion can be developed, fusion appears to have the best of all worlds in terms of propulsion - it can provide the absolute amount, the propellant exhaust velocity, and the high specific jet power. An intermediate step towards pure fusion propulsion is a bimodal system in which a fission reactor is used to provide some of the energy to drive a fusion propulsion unit. The technical issues related to fusion for space propulsion are discussed. The technical priorities for developing and applying fusion for propulsion are

  1. Multi-model data fusion for river flow forecasting: an evaluation of six alternative methods based on two contrasting catchments

    NASA Astrophysics Data System (ADS)

    Abrahart, R. J.; See, L.

    This paper evaluates six published data fusion strategies for hydrological forecasting based on two contrasting catchments: the River Ouse and the Upper River Wye. The input level and discharge estimates for each river comprised a mixed set of single model forecasts. Data fusion was performed using: arithmetic-averaging, a probabilistic method in which the best model from the last time step is used to generate the current forecast, two different neural network operations and two different soft computing methodologies. The results from this investigation are compared and contrasted using statistical and graphical evaluation. Each location demonstrated several options and potential advantages for using data fusion tools to construct superior estimates of hydrological forecast. Fusion operations were better in overall terms in comparison to their individual modelling counterparts and two clear winners emerged. Indeed, the six different mechanisms on test revealed unequal aptitudes for fixing different categories of problematic catchment behaviour and, in such cases, the best method(s) were a good deal better than their closest rival(s). Neural network fusion of differenced data provided the best solution for a stable regime (with neural network fusion of original data being somewhat similar) — whereas a fuzzified probabilistic mechanism produced a superior output in a more volatile environment. The need for a data fusion research agenda within the hydrological sciences is discussed and some initial suggestions are presented.

  2. Alternate applications of fusion power: development of a high-temperature blanket for synthetic-fuel production

    SciTech Connect

    Howard, P.A.; Mattas, R.F.; Krajcinovic, D.; DePaz, J.; Gohar, Y.

    1981-11-01

    This study has shown that utilization of the unique features of a fusion reactor can result in a novel and potentially economical method of decomposing steam into hydrogen and oxygen. Most of the power of fusion reactors is in the form of energetic neutrons. If this power could be used to produce high temperature uncontaminated steam, a large fraction of the energy needed to decomposee the steam could be supplied as thermal energy by the fusion reaction. Proposed high temperature electrolysis processes require steam temperature in excess of 1000/sup 0/C for high efficiency. The design put forth in this study details a system that can accomplish that end.

  3. Nonperturbative measurement of the local magnetic field using pulsed polarimetry for fusion reactor conditions (invited)a)

    NASA Astrophysics Data System (ADS)

    Smith, Roger J.

    2008-10-01

    A novel diagnostic technique for the remote and nonperturbative sensing of the local magnetic field in reactor relevant plasmas is presented. Pulsed polarimetry [Patent No. 12/150,169 (pending)] combines optical scattering with the Faraday effect. The polarimetric light detection and ranging (LIDAR)-like diagnostic has the potential to be a local Bpol diagnostic on ITER and can achieve spatial resolutions of millimeters on high energy density (HED) plasmas using existing lasers. The pulsed polarimetry method is based on nonlocal measurements and subtle effects are introduced that are not present in either cw polarimetry or Thomson scattering LIDAR. Important features include the capability of simultaneously measuring local Te, ne, and B∥ along the line of sight, a resiliency to refractive effects, a short measurement duration providing near instantaneous data in time, and location for real-time feedback and control of magnetohydrodynamic (MHD) instabilities and the realization of a widely applicable internal magnetic field diagnostic for the magnetic fusion energy program. The technique improves for higher neB∥ product and higher ne and is well suited for diagnosing the transient plasmas in the HED program. Larger devices such as ITER and DEMO are also better suited to the technique, allowing longer pulse lengths and thereby relaxing key technology constraints making pulsed polarimetry a valuable asset for next step devices. The pulsed polarimetry technique is clarified by way of illustration on the ITER tokamak and plasmas within the magnetized target fusion program within present technological means.

  4. Alternating Magnetic Field Controlled, Multifunctional Nano-Reservoirs: Intracellular Uptake and Improved Biocompatibility

    NASA Astrophysics Data System (ADS)

    Ghosh, Santaneel; Ghoshmitra, Somesree; Cai, Tong; Diercks, David R.; Mills, Nathaniel C.; Hynds, Dianna L.

    2010-01-01

    Biocompatible magnetic nanoparticles hold great therapeutic potential, but conventional particles can be toxic. Here, we report the synthesis and alternating magnetic field dependent actuation of a remotely controllable, multifunctional nano-scale system and its marked biocompatibility with mammalian cells. Monodisperse, magnetic nanospheres based on thermo-sensitive polymer network poly(ethylene glycol) ethyl ether methacrylate- co-poly(ethylene glycol) methyl ether methacrylate were synthesized using free radical polymerization. Synthesized nanospheres have oscillating magnetic field induced thermo-reversible behavior; exhibiting desirable characteristics comparable to the widely used poly- N-isopropylacrylamide-based systems in shrinkage plus a broader volumetric transition range. Remote heating and model drug release were characterized for different field strengths. Nanospheres containing nanoparticles up to an iron concentration of 6 mM were readily taken up by neuron-like PC12 pheochromocytoma cells and had reduced toxicity compared to other surface modified magnetic nanocarriers. Furthermore, nanosphere exposure did not inhibit the extension of cellular processes (neurite outgrowth) even at high iron concentrations (6 mM), indicating minimal negative effects in cellular systems. Excellent intracellular uptake and enhanced biocompatibility coupled with the lack of deleterious effects on neurite outgrowth and prior Food and Drug Administration (FDA) approval of PEG-based carriers suggest increased therapeutic potential of this system for manipulating axon regeneration following nervous system injury.

  5. Imposed magnetic field and hot electron propagation in inertial fusion hohlraums

    DOE PAGESBeta

    Strozzi, David J.; Perkins, L. J.; Marinak, M. M.; Larson, D. J.; Koning, J. M.; Logan, B. G.

    2015-12-02

    The effects of an imposed, axial magnetic fieldmore » $$B_{z0}$$ on hydrodynamics and energetic electrons in inertial confinement fusion indirect-drive hohlraums are studied. We present simulations from the radiation-hydrodynamics code HYDRA of a low-adiabat ignition design for the National Ignition Facility, with and without $$B_{z0}=70~\\text{T}$$. The field’s main hydrodynamic effect is to significantly reduce electron thermal conduction perpendicular to the field. This results in hotter and less dense plasma on the equator between the capsule and hohlraum wall. The inner laser beams experience less inverse bremsstrahlung absorption before reaching the wall. The X-ray drive is thus stronger from the equator with the imposed field. We study superthermal, or ‘hot’, electron dynamics with the particle-in-cell code ZUMA, using plasma conditions from HYDRA. During the early-time laser picket, hot electrons based on two-plasmon decay in the laser entrance hole (Regan et al., Phys. Plasmas, vol. 17(2), 2010, 020703) are guided to the capsule by a 70 T field. Twelve times more energy deposits in the deuterium–tritium fuel. For plasma conditions early in peak laser power, we present mono-energetic test-case studies with ZUMA as well as sources based on inner-beam stimulated Raman scattering. Furthermore, the effect of the field on deuterium–tritium deposition depends strongly on the source location, namely whether hot electrons are generated on field lines that connect to the capsule.« less

  6. Imposed magnetic field and hot electron propagation in inertial fusion hohlraums

    SciTech Connect

    Strozzi, David J.; Perkins, L. J.; Marinak, M. M.; Larson, D. J.; Koning, J. M.; Logan, B. G.

    2015-12-02

    The effects of an imposed, axial magnetic field $B_{z0}$ on hydrodynamics and energetic electrons in inertial confinement fusion indirect-drive hohlraums are studied. We present simulations from the radiation-hydrodynamics code HYDRA of a low-adiabat ignition design for the National Ignition Facility, with and without $B_{z0}=70~\\text{T}$. The field’s main hydrodynamic effect is to significantly reduce electron thermal conduction perpendicular to the field. This results in hotter and less dense plasma on the equator between the capsule and hohlraum wall. The inner laser beams experience less inverse bremsstrahlung absorption before reaching the wall. The X-ray drive is thus stronger from the equator with the imposed field. We study superthermal, or ‘hot’, electron dynamics with the particle-in-cell code ZUMA, using plasma conditions from HYDRA. During the early-time laser picket, hot electrons based on two-plasmon decay in the laser entrance hole (Regan et al., Phys. Plasmas, vol. 17(2), 2010, 020703) are guided to the capsule by a 70 T field. Twelve times more energy deposits in the deuterium–tritium fuel. For plasma conditions early in peak laser power, we present mono-energetic test-case studies with ZUMA as well as sources based on inner-beam stimulated Raman scattering. Furthermore, the effect of the field on deuterium–tritium deposition depends strongly on the source location, namely whether hot electrons are generated on field lines that connect to the capsule.

  7. X-Ray Magnetic Resonance Fusion to Internal Markers and Utility in Congenital Heart Disease Catheterization

    PubMed Central

    Dori, Yoav; Sarmiento, Marily; Glatz, Andrew C.; Gillespie, Matthew J.; Jones, Virginia M.; Harris, Matthew A.; Whitehead, Kevin K.; Fogel, Mark A.; Rome, Jonathan J.

    2012-01-01

    Background X-ray magnetic resonance fusion (XMRF) allows for use of 3D data during cardiac catheterization. However, to date, technical requirements have limited the use of this modality in clinical practice. We report on a new internal-marker XMRF method that we have developed and describe how we used XMRF during cardiac catheterization in congenital heart disease. Methods and Results XMRF was performed in a phantom and in 23 patients presenting for cardiac catheterization who also needed cardiac MRI for clinical reasons. The registration process was performed in <5 minutes per patient, with minimal radiation (0.004 to 0.024 mSv) and without contrast. Registration error was calculated in a phantom and in 8 patients using the maximum distance between angiographic and 3D model boundaries. In the phantom, the measured error in the anteroposterior projection had a mean of 1.15 mm (standard deviation, 0.73). The measured error in patients had a median of 2.15 mm (interquartile range, 1.65 to 2.56 mm). Internal markers included bones, airway, image artifact, calcifications, and the heart and vessel borders. The MRI data were used for road mapping in 17 of 23 (74%) cases and camera angle selection in 11 of 23 (48%) cases. Conclusions Internal marker–based registration can be performed quickly, with minimal radiation, without the need for contrast, and with clinically acceptable accuracy using commercially available software. We have also demonstrated several potential uses for XMRF in routine clinical practice. This modality has the potential to reduce radiation exposure and improve catheterization outcomes. PMID:21536785

  8. Results of the international large coil task: a milestone for superconducting magnets in fusion power

    NASA Astrophysics Data System (ADS)

    Dresner, L.; Fietz, W. A.; Gauss, S.; Haubenreich, P. N.; Jakob, B.; Kato, T.; Komarek, P.; Lubell, M. S.; Lue, J. W.; Luton, J. N.; Maurer, W.; Okuno, K.; Schwenterly, S. W.; Shimamoto, S.; Takahashi, Y.; Ulbricht, A.; Vécsey, G.; Wüchner, F.; Zichy, J. A.

    The aim of the Large Coil Task (LCT) was to demonstrate the reliable operation of large superconducting toroidal field (TF) coils and to prove the design principles and fabrication techniques to be applied for the magnets in a tokamak experimental power reactor. This has been achieved by an outstanding international development effort during more than ten years of cooperation within an IEA agreement. Parties were the US DOE, EURATOM, JAERI and the Swiss government. Six different D-shaped test coils were separately designed, developed and constructed by the LCT participants, then extensively tested together in a compact toroidal array. The ORNL acted for DOE as the LCT operating agent, building and operating the required test facility. The US also provided three test coils; the other three participants one coil each. Detailed information on coil design and manufacture and all test data were shared among the LCT participants. After facility shakedown operations and preliminary coil tests, the full six-coil array tests were carried out in a continuous period from the beginning of 1986 until September 1987. Beside the originally planned tests to reach an 8 T design point performance, the tests went well beyond this goal, reaching 9 T peak field in each coil. The experiments also delineated the limits of operability and demonstrated the coil safety under abnormal conditions. For fusion application the transient a.c. field behaviour in the coils was also of great interest. Three of the coils have been tested in this respect and showed excellent performance, with loss values in agreement with the theoretical predictions. At the time of International Experimental Reactor (ITER) activities, it might be worthwhile to mention that LCT demonstrated an effective multinational collaboration in an advanced technology project, involving large scale hardware produced in several countries then assembled and operated as a tightly integrated system.

  9. Evaluation of tungsten as a plasma-facing material for steady state magnetic fusion devices

    NASA Astrophysics Data System (ADS)

    Hirooka, Y.; Bourham, M.; Brooks, J. N.; Causey, R. A.; Chevalier, G.; Conn, R. W.; Eddy, W. H.; Gilligan, J.; Khandagle, M.; Ra, Y.

    1992-12-01

    Tungsten in the form of bulk-material, and relatively thick (1 mm) chemically deposited and plasma-sprayed coatings on molybdenum, has been evaluated as a plasma-facing material for near future steady state magnetic fusion devices, focusing on issues related to the divertor plate design. These issues are: (1) thermal outgassing; (2) plasma erosion; (3) deuterium retention; (4) disruption erosion; and (5) surface modifications. Total outgassing quantities from bulk tungsten and chemically deposited coatings are substantially smaller than those from graphites. Effects of redeposition and impurities on the erosion behavior due to deuterium plasma bombardment have been analyzed. Trace amounts of oxygen-containing impurities in the plasma can reduce the threshold energy for physical sputtering, affecting the overall erosion behavior of tungsten at energies below 500 eV. However, it has been found that at electron temperatures around 5 eV or lower, fragmentation of these impurities followed by positive ionization is significantly reduced, whereby plasma erosion data basically agree with sputtering theories and ion beam data. Thermal desorption measurements after plasma bombardment have indicated that the deuterium retention quantity in tungsten materials is of the order of 10 14-15 D atoms/cm 2. At simulated disruption with an energy deposition of 6 MJ/m 2, the effective heat deposition is found to be reduced to about 1%, due to a combined effect of molten layer protection and vapor shielding. Steady state plasma bombardment removes surface impurities and smooths the surface topography along with surface erosion whereas disruption causes microscopic cracking and surface melting.

  10. CORSICA: A comprehensive simulation of toroidal magnetic-fusion devices. Final report to the LDRD Program

    SciTech Connect

    Crotinger, J.A.; LoDestro, L.; Pearlstein, L.D.; Tarditi, A.; Casper, T.A.; Hooper, E.B.

    1997-03-21

    In 1992, our group began exploring the requirements for a comprehensive simulation code for toroidal magnetic fusion experiments. There were several motivations for taking this step. First, the new machines being designed were much larger and more expensive than current experiments. Second, these new designs called for much more sophisticated control of the plasma shape and position, as well as the distributions of energy, mass, and current within the plasma. These factors alone made it clear that a comprehensive simulation capability would be an extremely valuable tool for machine design. The final motivating factor was that the national Numerical Tokamak Project (NTP) had recently received High Performance Computing and Communications (HPCC) Grand Challenge funding to model turbulent transport in tokamaks, raising the possibility that first-principles simulations of this process might be practical in the near future. We felt that the best way to capitalize on this development was to integrate the resulting turbulence simulation codes into a comprehensive simulation. Such simulations must include the effects of many microscopic length- and time-scales. In order to do a comprehensive simulation efficiently, the length- and time- scale disparities must be exploited. We proposed to do this by coupling the average or quasistatic effects from the fast time-scales to a slow-time-scale transport code for the macroscopic plasma evolution. In FY93-FY96 we received funding to investigate algorithms for computationally coupling such disparate-scale simulations and to implement these algorithms in a prototype simulation code, dubbed CORSICA. Work on algorithms and test cases proceeded in parallel, with the algorithms being incorporated into CORSICA as they became mature. In this report we discuss the methods and algorithms, the CORSICA code, its applications, and our plans for the future.

  11. Feasibility Study of Jupiter Icy Moons Orbiter Permanent Magnet Alternator Start Sequence

    NASA Technical Reports Server (NTRS)

    Kenny, Barbara H.; Tokars, Roger P.

    2006-01-01

    The Jupiter Icy Moons Orbiter (JIMO) mission was a proposed, (recently cancelled) long duration science mission to study three moons of Jupiter: Callisto, Ganymede, and Europa. One design of the JIMO spacecraft used a nuclear heat source in conjunction with a Brayton rotating machine to generate electrical power for the electric thrusters and the spacecraft bus. The basic operation of the closed cycle Brayton system was as follows. The working fluid, a heliumxenon gas mixture, first entered a compressor, then went through a recuperator and hot-side heat exchanger, then expanded across a turbine that drove an alternator, then entered the cold-side of the recuperator and heat exchanger and finally returned to the compressor. The spacecraft was to be launched with the Brayton system off-line and the nuclear reactor shut down. Once the system was started, the helium-xenon gas would be circulated into the heat exchangers as the nuclear reactors were activated. Initially, the alternator unit would operate as a motor so as to drive the turbine and compressor to get the cycle started. This report investigated the feasibility of the start up sequence of a permanent magnet (PM) machine, similar in operation to the alternator unit, without any position or speed feedback sensors ("sensorless") and with a variable load torque. It is found that the permanent magnet machine can start with sensorless control and a load torque of up to 30 percent of the rated value.

  12. A real-time algorithm for the harmonic estimation and frequency tracking of dominant components in fusion plasma magnetic diagnostics

    SciTech Connect

    Alves, D.; Coelho, R. [Associação Euratom Collaboration: JET-EFDA Contributors

    2013-08-15

    The real-time tracking of instantaneous quantities such as frequency, amplitude, and phase of components immerse in noisy signals has been a common problem in many scientific and engineering fields such as power systems and delivery, telecommunications, and acoustics for the past decades. In magnetically confined fusion research, extracting this sort of information from magnetic signals can be of valuable assistance in, for instance, feedback control of detrimental magnetohydrodynamic modes and disruption avoidance mechanisms by monitoring instability growth or anticipating mode-locking events. This work is focused on nonlinear Kalman filter based methods for tackling this problem. Similar methods have already proven their merits and have been successfully employed in this scientific domain in applications such as amplitude demodulation for the motional Stark effect diagnostic. In the course of this work, three approaches are described, compared, and discussed using magnetic signals from the Joint European Torus tokamak plasma discharges for benchmarking purposes.

  13. Nonlinear Dynamics and Complex Behaviors in Magnetized Plasmas of Fusion Interest

    SciTech Connect

    Zonca, F.; Chen, L.

    2008-10-15

    Complexity and self-organization in burning plasmas are consequence of the interaction of energetic ions with plasma instabilities and turbulence; of the strong nonlinear coupling that will take place between fusion reactivity profiles, pressure driven currents, MHD stability, transport and plasma boundary interactions, mediated by the energetic particle population; and finally of the long time scale nonlinear (complex) behaviors that may affect the overall fusion performance and eventually pose issues for the stability and control of the fusion burn. These issues are briefly discussed in this work, with a view on their potential applications to other research areas.

  14. Research Needs for Magnetic Fusion Energy Sciences. Report of the Research Needs Workshop (ReNeW) Bethesda, Maryland, June 8-12, 2009

    SciTech Connect

    2009-06-08

    Nuclear fusion - the process that powers the sun - offers an environmentally benign, intrinsically safe energy source with an abundant supply of low-cost fuel. It is the focus of an international research program, including the ITE R fusion collaboration, which involves seven parties representing half the world's population. The realization of fusion power would change the economics and ecology of energy production as profoundly as petroleum exploitation did two centuries ago. The 21st century finds fusion research in a transformed landscape. The worldwide fusion community broadly agrees that the science has advanced to the point where an aggressive action plan, aimed at the remaining barriers to practical fusion energy, is warranted. At the same time, and largely because of its scientific advance, the program faces new challenges; above all it is challenged to demonstrate the timeliness of its promised benefits. In response to this changed landscape, the Office of Fusion Energy Sciences (OFES ) in the US Department of Energy commissioned a number of community-based studies of the key scientific and technical foci of magnetic fusion research. The Research Needs Workshop (ReNeW) for Magnetic Fusion Energy Sciences is a capstone to these studies. In the context of magnetic fusion energy, ReNeW surveyed the issues identified in previous studies, and used them as a starting point to define and characterize the research activities that the advance of fusion as a practical energy source will require. Thus, ReNeW's task was to identify (1) the scientific and technological research frontiers of the fusion program, and, especially, (2) a set of activities that will most effectively advance those frontiers. (Note that ReNeW was not charged with developing a strategic plan or timeline for the implementation of fusion power.) This Report presents a portfolio of research activities for US research in magnetic fusion for the next two decades. It is intended to provide a

  15. Alternative approach to the standardization of NMR spectra. Direct measurement of nuclear magnetic shielding in molecules.

    PubMed

    Jackowski, Karol; Jaszuński, Michał; Wilczek, Marcin

    2010-02-25

    Exploring the relation between shielding constants, resonance frequencies and magnetic moments of the nuclei we demonstrate that nuclear magnetic shielding can be directly observed from NMR spectra. In this approach, the absolute shielding constants of all the nuclei can be related to a single reference scale, with atomic (3)He as the primary standard. The accuracy of the data obtained using our method is confirmed comparing the (1)H and (13)C shielding constants for a series of deuterated compounds with those determined analyzing the traditional chemical shifts. Since the use of helium-3 is not in general a practical alternative, we next transfer the reference standard to the (2)H signals of external lock solvents, in this way making the method easy and ready for application with most NMR spectrometers. Finally, we illustrate our new method with the measurements of the (2/1)H primary isotope effects in several liquid deuterated solvents. PMID:20112974

  16. Alternate carbohydrate and nontraditional inducer leads to increased productivity of a collagen binding domain fusion protein via fed-batch fermentation.

    PubMed

    Fruchtl, McKinzie; Sakon, Joshua; Beitle, Robert

    2016-05-20

    The production of collagen binding domain fusion proteins is of significant importance because of their potential as therapeutic biomaterials. It was previously reported that the expression of collagen-binding domain fusion proteins in Escherichia coli was higher when expressed using lactose as an inducer and chemically defined growth media on a shake flask scale. In an effort to further investigate factors that affect expression levels on a fed-batch scale, alternative induction techniques were tested in conjunction with fed-batch fermentation. In this paper, we discuss ten fed-batch fermentation experiments utilizing either glucose or glycerol feed and using lactose or isopropyl-β-d-thiogalactopyranoside (IPTG) as an induction source. It was found that glycerol-fed fermentations induced with lactose allowed for greater expression of target protein, though lesser cell densities were achieved. PMID:26975843

  17. Apparatus for efficient sidewall containment of molten metal with horizontal alternating magnetic fields utilizing low reluctance rims

    DOEpatents

    Praeg, Walter F.

    1999-01-01

    A method and apparatus for casting sheets of metal from molten metal. The apparatus includes a containment structure having an open side, a horizontal alternating magnetic field generating structure and rollers including low reluctance rim structures. The magnetic field and the rollers help contain the molten metal from leaking out of the containment structure.

  18. Apparatus for efficient sidewall containment of molten metal with horizontal alternating magnetic fields utilizing a ferromagnetic dam

    DOEpatents

    Praeg, Walter F.

    1997-01-01

    An apparatus for casting sheets of metal from molten metal. The apparatus includes a containment structure having an open side, a horizontal alternating magnetic field generating structure and a ferromagnetic dam. The magnetic field and the ferromagnetic dam contain the molten metal from leaking out side portions of the open side of the containment structure.

  19. Apparatus for efficient sidewall containment of molten metal with horizontal alternating magnetic fields utilizing a ferromagnetic dam

    DOEpatents

    Praeg, W.F.

    1997-02-11

    An apparatus is disclosed for casting sheets of metal from molten metal. The apparatus includes a containment structure having an open side, a horizontal alternating magnetic field generating structure and a ferromagnetic dam. The magnetic field and the ferromagnetic dam contain the molten metal from leaking out side portions of the open side of the containment structure. 25 figs.

  20. OTA Magnetic Fusion Report Starpower. Hearing before the Subcommittee on Energy Research and Development and the Subcommittee on International Scientific Cooperation of the Committee on Science, Space, and Technology, House of Representatives, One Hundredth Congress, First Session, October 28, 1987

    SciTech Connect

    Not Available

    1987-01-01

    Results of the hearings before the joint meeting of the Subcommittee on Energy Research and Development and Subcommittee on International Scientific Cooperation of the Committee on Science, Space, and Technology of the House of Representatives to hear testimony on the recently released report of the Office of Technology Assessment (OTA), Starpower, dealing with the US and international quests for fusion energy are reported. The report discusses the key elements that make for a strong domestic program as well as important aspects of international cooperation in magnetic fusion. The important place of the Compact Ignition Tokamak in the domestic fusion energy program is emphasized. The Starpower report indicates that there is no foreseeable energy crisis and, therefore, this is an excellent time to take steps to develop an alternate energy source. It is pointed out in the discussion that billions of dollars are being spent on fusion energy, but that private industry does not see any possibility of profit available for 2 or 3 decades.

  1. Summary of the US Senior Committee on Environmental, Safety, and Economic Aspects of Magnetic Fusion Energy (ESECOM)

    SciTech Connect

    Logan, B.G.; Holdren, J.P.; Berwald, D.H.; Budnitz, R.J.; Crocker, J.G.; Delene, J.G.; Endicott, R.D.; Kazimi, M.S.; Krakowski, R.A.; Schultz, K.R.

    1988-08-15

    ESECOM has completed a recent assessment of the competitive potential of magnetic fusion energy (MFE) compared to present and future fission energy sources giving particular emphasis to the interaction of environmental, safety, and economic characteristics. By consistently applying a set of economic and safety models to a set of MFE concepts using a wide range of possible material choices, power densities, power conversion methods, and fuel cycles, ESECOM finds that several different MFE concepts have the potential to achieve costs of electricity comparable to those of fission systems, coupled with significant safety and environmental advantages. 13 refs., 7 tabs.

  2. Alternating magnetic field sensor using a Fe2CoO4 ferrofluid material

    NASA Astrophysics Data System (ADS)

    Monin, Jean; Brevet-Philibert, Olivier; Cabuil, Valerie; Delaunay, Lionel

    1990-08-01

    This sensor involves the measurement of the amplitude of the Faraday rotation induced by an alternating magnetic field Hm cosQt colinear to the direction of the light beam passing through a thin cell filled with a ferrofluid material (Fe2 Co 04 in dibuthylphtalate or in carbon tetrachiorid) . The peak value of the magnetic field was varied from 0 to 300 gauss, and the frequency f from 10Hz to 40 Khz. Two light beam wavelengths have been tried (1320nm and 1520nm). In AC magnetic fields ( H(t) = Hm cos Qt ) the resultant Faraday rotation is of the form: a(t) = ai cos(Qt+i) a cos(3Qt+3) + a cos(5Qt+45) - . . .etc. We discribe a polarimetric device that gives automaticaly and precisely (0.005°) an angle A of rotation, function of ai , a , a, . . . ,i , Z3 , 'I , ... Accordingly the angle A is only a function of Nm, f, and the ferrofluid cell, then a calibration curve A = f(Hm) can be made. The sensitivity S of this sensor is very high for weak fields (Hm<200 G), obviously depending on the concentration C of the magnetic material (e.g.: C # 5%, A = 1320 nm, S # 180 min/cm.G); a precision of .02 G can be reached. This sensor implements optical polarisaton modulation, thus it is insensible to light beam variations, whether they are due to light source fluctuations, optical misalignment or transmission alteration of some optical component. Furthermore the material is a liquid one, that exhibits no residual birefringence, contrary to most of the solid materials used in usual Faraday modulators. For this reason we think the Fe2 Co 04 ferrofluid material is a good choice for building magnetic fields sensors or polarisation rotators such as those needed in high accuracy polarimetric or ellipsometric devices working on 1320 or 1520nm wavelength. Using ferrofluid materials under longitudinal alternating magnetic field seems more interesting than under the usual dc one [4].

  3. A 0.5 Tesla Transverse-Field Alternating Magnetic Field Demagnetizer

    NASA Astrophysics Data System (ADS)

    Schillinger, W. E.; Morris, E. R.; Finn, D. R.; Coe, R. S.

    2015-12-01

    We have built an alternating field demagnetizer that can routinely achieve a maximum field of 0.5 Tesla. It uses an amorphous magnetic core with an air-cooled coil. We have started with a 0.5 T design, which satisfies most of our immediate needs, but we can certainly achieve higher fields. In our design, the magnetic field is transverse to the bore and uniform to 1% over a standard (25 mm) paleomagnetic sample. It is powered by a 1 kW power amplifier and is compatible with our existing sample handler for automated demagnetization and measurement (Morris et al., 2009). It's much higher peak field has enabled us to completely demagnetize many of the samples that previously we could not with commercial equipment. This capability is especially needed for high-coercivity sedimentary and igneous rocks that contain magnetic minerals that alter during thermal demagnetization. It will also enable detailed automated demagnetization of high coercivity phases in extraterrestrial samples, such as native iron, iron-alloy and sulfide minerals that are common in lunar rocks and meteorites. Furthermore, it has opened the door for us to use the rock-magnetic technique of component analysis, using coercivity distributions derived from very detailed AF demagnetization of NRM and remanence produced in the laboratory to characterize the magnetic mineralogy of sedimentary rocks. In addition to the many benefits this instrument has brought to our own research, a much broader potential impact is to replace the transverse coils in automated AF demagnetization systems, which typically are limited to peak fields around 0.1 T.

  4. Magnetic resonance imaging - ultrasound fusion targeted biopsy outperforms standard approaches in detecting prostate cancer: A meta-analysis

    PubMed Central

    Jiang, Xuping; Zhang, Jiayi; Tang, Jingyuan; Xu, Zhen; Zhang, Wei; Zhang, Qing; Guo, Hongqian; Zhou, Weimin

    2016-01-01

    The aim of the present study was to determine whether magnetic resonance imaging - ultrasound (MRI-US) fusion prostate biopsy is superior to systematic biopsy for making a definitive diagnosis of prostate cancer. The two strategies were also compared regarding their ability to detect clinically significant and insignificant prostate cancer. A literature search was conducted through the PubMed, EMBASE and China National Knowledge Infrastructure databases using appropriate search terms. A total of 3,415 cases from 21 studies were included in the present meta-analysis. Data were expressed as relative risk (RR) and 95% confidence interval. The results revealed that MRI-US fusion biopsy achieved a higher rate of overall prostate cancer detection compared with systematic biopsy (RR=1.09; P=0.047). Moreover, MRI-US fusion biopsy detected more clinically significant cancers compared with systematic biopsy (RR=1.22; P<0.01). It is therefore recommended that multi-parametric MRI-US is performed in men suspected of having prostate cancer to optimize the detection of clinically significant disease, while reducing the burden of biopsies. PMID:27446568

  5. Contribution of a 300 kHz alternating magnetic field on magnetic hyperthermia treatment of HepG2 cells.

    PubMed

    Wang, Xiaowen; Chen, Youping; Huang, Changshuo; Wang, Xufei; Zhao, Linyun; Zhang, Xiaodong; Tang, Jintian

    2013-02-01

    We investigated the relative contributions of temperature and a 300 kHz alternating magnetic field (AMF) on magnetic hyperthermia treatment (MHT). Our system consisted of an induction coil, which generated AMF by electric current flow, and a newly developed, temperature-controlled circulating water-jacketed glass bottle placed inside the coil. The AMF generator operated at a frequency of 300 kHz with variable field strength ranging from 0 to 11 mT. Four treatment conditions were employed: (A) control (37 °C, 0 mT), (B) AMF exposure (37 °C, 11 mT), (C) hyperthermia (46 °C, 0 mT), and (D) hyperthermia plus AMF exposure (46 °C, 11 mT) for 30 min. Cell viability and apoptotic death rate were estimated. The relative contributions or interactions of hyperthermia (46 °C) and AMF (11 mT) on MHT were evaluated using 2 × 2 factorial experiment analysis. Group A was statistically different (P < 0.05) from each of the other treatments. The observed effects on both cell viability and apoptotic cell death were influenced by temperature (97.36% and 92.15%, respectively), AMF (1.78% and 4.99%, respectively), and the interactions between temperature and AMF (0.25% and 2.36%, respectively). Thus, the effect of hyperthermia was significant. Also, AMF exposure itself might play a role in MHT, although these observations were made in vitro. These findings suggest a possible presence of an AMF effect during clinical magnetic hyperthermia. PMID:23059525

  6. Development of a 0.5 T magnetic-core alternating-field demagnetizer

    NASA Astrophysics Data System (ADS)

    Schillinger, W. E.; Morris, E. R.; Coe, R. S.; Finn, D. R.

    2016-04-01

    We have constructed an alternating-field (AF) demagnetizer with a magnetic core in a passively air-cooled coil that can routinely operate at fields up to 0.5 T, almost 3 times higher than we could attain before in our commercial instrument. The field is powered by a commercial 1 kW power amplifier and is transverse to the bore, uniform to ±2% over a 25 mm paleomagnetic sample, and compatible with our existing sample handler for automated demagnetization and measurement. Even harmonics are ≤1 ppm of the fundamental and so generate negligible anhysteretic remanence. The much higher peak alternating field, 2 and 5 times that commonly available in air-core solenoidal and Helmhotz coil configurations, respectively, enables successful AF demagnetization of many samples that could not be completely demagnetized with commercially available equipment. This capability is especially useful for high-coercivity sedimentary and igneous rocks and extraterrestrial materials that contain magnetic minerals that alter during thermal demagnetization. In addition to the benefits, this instrument brings to our own research, a much broader potential impact is that it could replace the transverse coils of most automated AF demagnetization systems in use today, whether for discrete or continuous U-channel measurements, which are commonly limited to peak fields of ˜100 mT. Manual and tumbling demagnetizers would benefit as well by the ˜2 times increase in maximum field over those that can be attained by commercial solenoidal coils. Furthermore, we expect that it and similarly designed magnetic-core instruments will be capable of attaining even higher fields, of order 1 T.

  7. Alternating Magnetic Field-Responsive Hybrid Gelatin Microgels for Controlled Drug Release.

    PubMed

    Sung, Baeckkyoung; Shaffer, Steven; Sittek, Michal; Alboslemy, Talib; Kim, Chanjoong; Kim, Min-Ho

    2016-01-01

    Magnetically-responsive nano/micro-engineered biomaterials that enable a tightly controlled, on-demand drug delivery have been developed as new types of smart soft devices for biomedical applications. Although a number of magnetically-responsive drug delivery systems have demonstrated efficacies through either in vitro proof of concept studies or in vivo preclinical applications, their use in clinical settings is still limited by their insufficient biocompatibility or biodegradability. Additionally, many of the existing platforms rely on sophisticated techniques for their fabrications. We recently demonstrated the fabrication of biodegradable, gelatin-based thermo-responsive microgel by physically entrapping poly(N-isopropylacrylamide-co-acrylamide) chains as a minor component within a three-dimensional gelatin network. In this study, we present a facile method to fabricate a biodegradable drug release platform that enables a magneto-thermally triggered drug release. This was achieved by incorporating superparamagnetic iron oxide nanoparticles and thermo-responsive polymers within gelatin-based colloidal microgels, in conjunction with an alternating magnetic field application system. PMID:26966888

  8. Flywheel induction motor-generator for magnet power supply in small fusion device.

    PubMed

    Hatakeyma, S; Yoshino, F; Tsutsui, H; Tsuji-Iio, S

    2016-04-01

    A flywheel motor-generator (MG) for the toroidal field (TF) coils of a small fusion device was developed which utilizes a commercially available squirrel-cage induction motor. Advantages of the MG are comparably-long duration, quick power response, and easy implementation of power control compared with conventional capacitor-type power supply. A 55-kW MG was fabricated, and TF coils of a small fusion device were energized. The duration of the current flat-top was extended to 1 s which is much longer than those of conventional small devices (around 10-100 ms). PMID:27131676

  9. Flywheel induction motor-generator for magnet power supply in small fusion device

    NASA Astrophysics Data System (ADS)

    Hatakeyma, S.; Yoshino, F.; Tsutsui, H.; Tsuji-Iio, S.

    2016-04-01

    A flywheel motor-generator (MG) for the toroidal field (TF) coils of a small fusion device was developed which utilizes a commercially available squirrel-cage induction motor. Advantages of the MG are comparably-long duration, quick power response, and easy implementation of power control compared with conventional capacitor-type power supply. A 55-kW MG was fabricated, and TF coils of a small fusion device were energized. The duration of the current flat-top was extended to 1 s which is much longer than those of conventional small devices (around 10-100 ms).

  10. Development of tritium technology for the United States magnetic fusion energy program

    SciTech Connect

    Anderson, J.L.; Wilkes, W.R.

    1980-01-01

    Tritium technology development for the DOE fusion program is taking place principally at three laboratories, Mound Facility, Argonne National Laboratory and the Los Alamos Scientific Laboratory. This paper will review the major aspects of each of the three programs and look at aspects of the tritium technology being developed at other laboratories within the United States. Facilities and experiments to be discussed include the Tritium Effluent Control Laboratory and the Tritium Storage and Delivery System for the Tokamak Fusion Test Reactor at Mound Facility; the Lithium Processing Test Loop and the solid breeder blanket studies at Argonne; and the Tritium Systems Test Assembly at Los Alamos.

  11. Magnetic Fusion Energy Plasma Interactive and High Heat Flux Components: Volume 5, Technical assessment of critical issues in the steady state operation of fusion confinement devices

    SciTech Connect

    Not Available

    1988-01-01

    Critical issues for the steady state operation of plasma confinement devices exist in both the physics and technology fields of fusion research. Due to the wide range and number of these issues, this technical assessment has focused on the crucial issues associated with the plasma physics and the plasma interactive components. The document provides information on the problem areas that affect the design and operation of a steady state ETR or ITER type confinement device. It discusses both tokamaks and alternative concepts, and provides a survey of existing and planned confinement machines and laboratory facilities that can address the identified issues. A universal definition of steady state operation is difficult to obtain. From a physics point of view, steady state is generally achieved when the time derivatives approach zero and the operation time greatly exceeds the characteristic time constants of the device. Steady state operation for materials depends on whether thermal stress, creep, fatigue, radiation damage, or power removal are being discussed. For erosion issues, the fluence and availability of the machine for continuous operation are important, assuming that transient events such as disruptions do not limit the component lifetimes. The panel suggests, in general terms, that steady state requires plasma operation from 100 to 1000 seconds and an availability of more than a few percent, which is similar to the expectations for an ETR type device. The assessment of critical issues for steady state operation is divided into four sections: physics issues; technology issues; issues in alternative concepts; and devices and laboratory facilities that can address these problems.

  12. Summary of the International Workshop on Magnetic Fusion Energy (MFE) Roadmapping in the ITER Era; 7-10 September 2011, Princeton, NJ, USA

    NASA Astrophysics Data System (ADS)

    Neilson, G. H.; Federici, G.; Li, J.; Maisonnier, D.; Wolf, R.

    2012-04-01

    With the ITER project now well under way, the countries engaged in fusion research are planning, with renewed intensity, the research and major facilities needed to develop the science and technology for harnessing fusion energy. The Workshop on MFE Roadmapping in the ITER Era was organized to provide a timely forum for an international exchange of technical information and strategic perspectives on how best to tackle the remaining challenges leading to a magnetic fusion DEMO, a nuclear fusion device or devices with a level of physics and technology integration necessary to cover the essential elements of a commercial fusion power plant. Presentations addressed issues under four topics: (1) Perspectives on DEMO and the roadmap to DEMO; (2) Technology; (3) Physics-Technology integration and optimization; and (4) Major facilities on the path to DEMO. Participants identified a set of technical issues of high strategic importance, where the development strategy strongly influences the overall roadmap, and where there are divergent understandings in the world community, namely (1) the assumptions used in fusion design codes, (2) the strategy for fusion materials development, (3) the strategy for blanket development, (4) the strategy for plasma exhaust solution development and (5) the requirements and state of readiness for next-step facility options. It was concluded that there is a need to continue and to focus the international discussion concerning the scientific and technical issues that determine the fusion roadmap, and it was suggested that an international activity be organized under appropriate auspices to foster international cooperation on these issues.

  13. Fabrication of thin films for a small alternating gradient field magnetometer for biomedical magnetic sensing applications

    NASA Astrophysics Data System (ADS)

    Jones, N. J.; McNerny, K. L.; Sokalski, V.; Diaz-Michelena, M.; Laughlin, D. E.; McHenry, M. E.

    2011-04-01

    Thin film alternating gradient field magnetometers (AGFM) have potential for measuring magnetic moments of minerals in extraterrestrial soil samples. AGFM sensors offer increased spatial resolution required to detect magnetic nanoparticles for biosensing applications. We have fabricated a patterned thin film with the properties necessary for use in a small AGFM system. Hexagonal-close-packed CoCrPt thin films of 20 and 500 nm were sputtered (nominal composition of Co66Cr15Pt19), showing a high magnetic moment and large out-of-plane anisotropy. The films showed a Δθ50 of better than 3° for the (002) CoCrPt peak for all films, which improves with thickness. The texture is partly due to the NiW and Ru underlayers. The films showed an out-of-plane easy axis, indicating a strong uniaxial anisotropy that exceeds the shape demagnetization energy. This is due to the addition of Cr, which decreases the magnetic moment of the films; magnetoelastic coupling and film stresses may also aid in achieving a perpendicular anisotropy. The first-order uniaxial anisotropy constants were calculated as a function of temperature, ranging from 3.7 × 106 ergs/cm3 at room temperature to 6.8 × 105 ergs/cm3 at 500 °C, and the T dependence agrees with Akulov's theory for uniaxial materials. The thickest film was etched with a checkerboard pattern to decrease the demagnetization effects, which are seen more influentially in the thicker films. This opened up the hysteresis loop, and decreased the amount of field necessary to overcome the thin film geometry.

  14. A new method of geobiological sample storage by snap freezing under alternating magnetic field

    NASA Astrophysics Data System (ADS)

    Morono, Y.; Terada, T.; Yamamoto, Y.; Hirose, T.; Xiao, N.; Sugeno, M.; Ohwada, N.; Inagaki, F.

    2012-12-01

    Scientific ocean drilling provides unprecedented opportunities to study the deep subseafloor biosphere. Especially, subseafloor living life and its genomes are significant components, since the activity may play some roles in global biogeochemical cycling of carbon, nitrogen, sulfur, metals, and other elements over geologic times. Given the significance of deep biological components as well as the potential application of future analytical technologies to the core, the material (or portions thereof) should be preserved in the best appropriate manner for long-term storage. Here we report a novel technology to freeze the cored sample with the least damage on scientifically important multiple characteristics including microbial cells. In the conventional freezer, expanding volume of pore space by the formation of ice crystals may change the (micro-) structure in the core sample (e.g., cell, micro-fossils). The cell alive system (CAS) is the new super-quick freezing system that applies alternating magnetic field for vibrating water molecules in the samples: i.e., the vibration leads to the stable super-cooled condition of the liquid-phase water at around -7 to -10 degree-C, keeping the liquid at the low temperature uniformly. Following further decrease of temperature enables the snap and hence uniform freezing of the samples with minimal size of the ice crystal formation, resulting in the minimum damage on structurally fragile components such as microbial cells and its DNA. We tested the CAS freezing technique for sediment core samples obtained by the Chikyu training cruise 905 and others. The core samples from various depths were sub-sampled, and immediately frozen in the CAS system along with the standard freezing method under the temperature of -20, -80, and -196 (liquid nitrogen) degree-C. Microbial cell abundance showed that the normal freezing decreased the number of microbial cells, whereas the CAS freezing resulted in almost no loss of the cells. We also tested

  15. Beryllium liner implosion experiments on the Z accelerator in preparation for Magnetized Liner Inertial Fusion (MagLIF)*

    NASA Astrophysics Data System (ADS)

    McBride, Ryan D.

    2012-10-01

    Magnetized Liner Inertial Fusion (MagLIF) [1] is a concept that involves using a pulsed electrical current to implode an initially-solid, cylindrical metal tube (liner) filled with preheated and magnetized fusion fuel. One- and two-dimensional simulations predict that if sufficient liner integrity can be maintained throughout the implosion, then significant fusion yield (>100 kJ) is possible on the 25-MA, 100-ns Z accelerator. The greatest threat to the liner integrity is the Magneto-Rayleigh-Taylor (MRT) instability, which first develops on the outer liner surface, and then works its way inward toward the inner surface throughout the implosion. Two-dimensional simulations predict that a thick liner, with Router/δR=6, should be robust enough to keep the MRT instability from overly disrupting the fusion burn at stagnation. This talk will present the first experiments designed to study a thick, MagLIF-relevant liner implosion through to stagnation on Z [2]. The use of beryllium for the liner material enabled us to obtain penetrating monochromatic (6151±0.5 eV) radiographs that reveal information about the entire volume of the imploding liner. This talk will also discuss experiments that investigated Z's pulse-shaping capabilities to either shock- or shocklessly-compress the imploding liners [3], as well as our most recent experiments that used 2-micron-thick aluminum sleeves to provide high-contrast tracers for the positions and states of the inner surfaces of the imploding beryllium liners. The radiography data to be presented provide stringent constraints on the simulation tools used by the broader high energy density physics and inertial confinement fusion communities, where quantitative areal density measurements, particularly of convergent fusion targets, are relatively scarce. We will also present power-flow tests of the MagLIF load hardware as well as new micro-B-dot measurements of the azimuthal drive magnetic field that penetrates the initially vacuum

  16. Self-organized criticality and the dynamics of near-marginal turbulent transport in magnetically confined fusion plasmas

    NASA Astrophysics Data System (ADS)

    Sanchez, R.; Newman, D. E.

    2015-12-01

    The high plasma temperatures expected at reactor conditions in magnetic confinement fusion toroidal devices suggest that near-marginal operation could be a reality in future devices and reactors. By near-marginal it is meant that the plasma profiles might wander around the local critical thresholds for the onset of instabilities. Self-organized criticality (SOC) was suggested in the mid 1990s as a more proper paradigm to describe the dynamics of tokamak plasma transport in near-marginal conditions. It advocated that, near marginality, the evolution of mean profiles and fluctuations should be considered simultaneously, in contrast to the more common view of a large separation of scales existing between them. Otherwise, intrinsic features of near-marginal transport would be missed, that are of importance to understand the properties of energy confinement. In the intervening 20 years, the relevance of the idea of SOC for near-marginal transport in fusion plasmas has transitioned from an initial excessive hype to the much more realistic standing of today, which we will attempt to examine critically in this review paper. First, the main theoretical ideas behind SOC will be described. Secondly, how they might relate to the dynamics of near-marginal transport in real magnetically confined plasmas will be discussed. Next, we will review what has been learnt about SOC from various numerical studies and what it has meant for the way in which we do numerical simulation of fusion plasmas today. Then, we will discuss the experimental evidence available from the several experiments that have looked for SOC dynamics in fusion plasmas. Finally, we will conclude by identifying the various problems that still remain open to investigation in this area. Special attention will be given to the discussion of frequent misconceptions and ongoing controversies. The review also contains a description of ongoing efforts that seek effective transport models better suited than traditional

  17. Alternating magnetic anisotropy of Li2(Li1 -xTx )N (T =Mn ,Fe ,Co ,andNi )

    NASA Astrophysics Data System (ADS)

    Jesche, A.; Ke, L.; Jacobs, J. L.; Harmon, B.; Houk, R. S.; Canfield, P. C.

    2015-05-01

    Substantial amounts of the transition metals Mn, Fe, Co, and Ni can be substituted for Li in single crystalline Li2(Li1 -xTx)N . Isothermal and temperature-dependent magnetization measurements reveal local magnetic moments with magnitudes significantly exceeding the spin-only value. The additional contributions stem from unquenched orbital moments that lead to rare-earth-like behavior of the magnetic properties. Accordingly, extremely large magnetic anisotropies have been found. Most notably, the magnetic anisotropy alternates as easy plane→easy axis→easy plane→easy axis when progressing from T =Mn →Fe →Co →Ni . This behavior can be understood based on a perturbation approach in an analytical, single-ion model. The calculated magnetic anisotropies show surprisingly good agreement with the experiment and capture the basic features observed for the different transition metals.

  18. Alternating magnetic anisotropy of Li2(Li1–xTx)N (T = Mn, Fe, Co, and Ni)

    DOE PAGESBeta

    Jesche, A.; Ke, L.; Jacobs, J. L.; Harmon, B.; Houk, R. S.; Canfield, P. C.

    2015-05-11

    Substantial amounts of the transition metals Mn, Fe, Co, and Ni can be substituted for Li in single crystalline Li2(Li1–xTx)N. Isothermal and temperature-dependent magnetization measurements reveal local magnetic moments with magnitudes significantly exceeding the spin-only value. The additional contributions stem from unquenched orbital moments that lead to rare-earth-like behavior of the magnetic properties. Accordingly, extremely large magnetic anisotropies have been found. Most notably, the magnetic anisotropy alternates as easy plane→easy axis→easy plane→easy axis when progressing from T = Mn → Fe → Co → Ni. This behavior can be understood based on a perturbation approach in an analytical, single-ion model.more » As a result, the calculated magnetic anisotropies show surprisingly good agreement with the experiment and capture the basic features observed for the different transition metals.« less

  19. Magneto-Inertial Fusion

    DOE PAGESBeta

    Wurden, G. A.; Hsu, S. C.; Intrator, T. P.; Grabowski, T. C.; Degnan, J. H.; Domonkos, M.; Turchi, P. J.; Campbell, E. M.; Sinars, D. B.; Herrmann, M. C.; et al

    2015-11-17

    In this community white paper, we describe an approach to achieving fusion which employs a hybrid of elements from the traditional magnetic and inertial fusion concepts, called magneto-inertial fusion (MIF). The status of MIF research in North America at multiple institutions is summarized including recent progress, research opportunities, and future plans.

  20. Slow liner fusion

    SciTech Connect

    Shaffer, M.J.

    1997-08-01

    {open_quotes}Slow{close_quotes} liner fusion ({approximately}10 ms compression time) implosions are nondestructive and make repetitive ({approximately} 1 Hz) pulsed liner fusion reactors possible. This paper summarizes a General Atomics physics-based fusion reactor study that showed slow liner feasibility, even with conservative open-line axial magnetic field confinement and Bohm radial transport.

  1. The value of magnetic resonance imaging and ultrasonography (MRI/US)-fusion biopsy platforms in prostate cancer detection: a systematic review.

    PubMed

    Gayet, Maudy; van der Aa, Anouk; Beerlage, Harrie P; Schrier, Bart Ph; Mulders, Peter F A; Wijkstra, Hessel

    2016-03-01

    Despite limitations considering the presence, staging and aggressiveness of prostate cancer, ultrasonography (US)-guided systematic biopsies (SBs) are still the 'gold standard' for the diagnosis of prostate cancer. Recently, promising results have been published for targeted prostate biopsies (TBs) using magnetic resonance imaging (MRI) and ultrasonography (MRI/US)-fusion platforms. Different platforms are USA Food and Drug Administration registered and have, mostly subjective, strengths and weaknesses. To our knowledge, no systematic review exists that objectively compares prostate cancer detection rates between the different platforms available. To assess the value of the different MRI/US-fusion platforms in prostate cancer detection, we compared platform-guided TB with SB, and other ways of MRI TB (cognitive fusion or in-bore MR fusion). We performed a systematic review of well-designed prospective randomised and non-randomised trials in the English language published between 1 January 2004 and 17 February 2015, using PubMed, Embase and Cochrane Library databases. Search terms included: 'prostate cancer', 'MR/ultrasound(US) fusion' and 'targeted biopsies'. Extraction of articles was performed by two authors (M.G. and A.A.) and were evaluated by the other authors. Randomised and non-randomised prospective clinical trials comparing TB using MRI/US-fusion platforms and SB, or other ways of TB (cognitive fusion or MR in-bore fusion) were included. In all, 11 of 1865 studies met the inclusion criteria, involving seven different fusion platforms and 2626 patients: 1119 biopsy naïve, 1433 with prior negative biopsy, 50 not mentioned (either biopsy naïve or with prior negative biopsy) and 24 on active surveillance (who were disregarded). The Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) tool was used to assess the quality of included articles. No clear advantage of MRI/US fusion-guided TBs was seen for cancer detection rates (CDRs) of all prostate

  2. Design, fabrication, and testing of the magnet liner supports for the Mirror Fusion Test Facility

    SciTech Connect

    Chang, Y.

    1981-10-09

    Heat is radiated from both the vacuum vessel that houses the magnet and the heated plasma that exists at the central region of the magnets. Approximately 30 kW of heat will be transmitted to the 311 m/sup 2/ of magnet surface area from these two heat sources. We can reduce this heat load substantially by installing liquid nitrogen (LN)-filled panels around the magnets to counteract the 300/sup 0/K vessel wall temperature. When flowing the LN inside the panels, the temperature drops to 85/sup 0/K. These LN panels also serve as thermal protection for the helium pipings in the MFTF magnet system. However, near the plasma where a higher heat load is generated, we must add water panels to protect the LN panels. All the LN panels, water panels, and their manifoldings are called the magnet liners. Of the total of 344 pieces, 240 are used directly on the magnets. The support system that mounts these LN liner panels on the magnets is the topic of this paper.

  3. Comparative Study on Magnetic Properties and Microstructure of As-prepared and Alternating Current Joule Annealed Wires

    NASA Astrophysics Data System (ADS)

    Liu, J. S.; Wang, X. D.; Chen, D. M.; Qin, F. X.; Wang, H.; Xing, D. W.; Xue, X.; Sun, J. F.

    X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), magnetic measurement including impedance measurement were used for investigating the microstructure and magnetic properties of as-prepared and alternating current Joule annealed (ACJA) Co-rich amorphous microwires for potential sensor applications. Experimental results indicated that as-cast and ACJA wires both were amorphous characteristic, while ACJA wire has an enhanced local ordering degree of atom arrangement. There was a transform of magnetic properties after ACJA treatment, namely increasing coercivity, maximum magnetic permeability and saturation magnetization, resulting from the coactions of magnetic anisotropy and magnetic moment exchange coupling. Moreover, ACJA treatment can drastically improve the GMI property of melt-extracted wires. At 5 MHz, the maximum GMI ratio [ΔZ/Z0]max of ACJA wire increases to 205.93%, which is nearly 4.1 times of 50.62% for as-cast wire, and the field response sensitivity ξmax of ACJA wire increases to 463.70%/Oe by more than 2 times of 212.15%/Oe for as-cast wire. From sensor application perspective, the sensor applied frequency range (SAFR) of ACJA wire is 3MHz-7 MHz (the better working frequency is at 5 MHz). It can therefore be concluded that the ACJA wire (60 mA, 480s, 50 Hz) has better GMI and magnetic properties, is more suitable for potential magnetic sensor applications working at low-frequency and relatively high-working-magnetic field.

  4. A novel BRD4-NUT fusion in an undifferentiated sinonasal tumor highlights alternative splicing as a contributing oncogenic factor in NUT midline carcinoma.

    PubMed

    Stirnweiss, A; McCarthy, K; Oommen, J; Crook, M L; Hardy, K; Kees, U R; Wilton, S D; Anazodo, A; Beesley, A H

    2015-01-01

    NUT midline carcinoma (NMC) is a fatal cancer that arises in various tissues along the upper midline of the body. The defining molecular feature of NMC is a chromosomal translocation that joins (in the majority of cases) the nuclear testis gene NUT (NUTM1) to the bromodomain protein family member 4 (BRD4) and thereby creating a fusion oncogene that disrupts cellular differentiation and drives the disease. In this study, we report the case of an adolescent NMC patient presenting with severe facial pain, proptosis and visual impairment due to a mass arising from the ethmoid sinus that invaded the right orbit and frontal lobe. Treatment involved radical resection, including exenteration of the affected eye with the view to consolidate treatment with radiation therapy; however, the patient experienced rapid tumor progression and passed away 79 days post resection. Molecular analysis of the tumor tissue identified a novel in-frame BRD4-NUT transcript, with BRD4 exon 15 fused to the last 124 nucleotides of NUT exon 2 (BRD4-NUT ex15:ex2Δnt1-585). The partial deletion of NUT exon 2 was attributed to a mid-exonic genomic breakpoint and the subsequent activation of a cryptic splice site further downstream within the exon. Inhibition of the canonical 3' acceptor splice site of NUT intron 1 in cell lines expressing the most common NMC fusion transcripts (PER-403, BRD4-NUT ex11:ex2; PER-624, BRD4-NUT ex15:ex2) induced alternative splicing from the same cryptic splice site as identified in the patient. Detection of low levels of an in-frame BRD4-NUT ex11:ex2Δnt1-585 transcript in PER-403 confirmed endogenous splicing from this alternative exon 2 splice site. Although further studies are necessary to assess the clinical relevance of the increasing number of variant fusions described in NMC, the findings presented in this case identify alternative splicing as a mechanism that contributes to this pathogenic complexity. PMID:26551281

  5. A novel BRD4-NUT fusion in an undifferentiated sinonasal tumor highlights alternative splicing as a contributing oncogenic factor in NUT midline carcinoma

    PubMed Central

    Stirnweiss, A; McCarthy, K; Oommen, J; Crook, M L; Hardy, K; Kees, U R; Wilton, S D; Anazodo, A; Beesley, A H

    2015-01-01

    NUT midline carcinoma (NMC) is a fatal cancer that arises in various tissues along the upper midline of the body. The defining molecular feature of NMC is a chromosomal translocation that joins (in the majority of cases) the nuclear testis gene NUT (NUTM1) to the bromodomain protein family member 4 (BRD4) and thereby creating a fusion oncogene that disrupts cellular differentiation and drives the disease. In this study, we report the case of an adolescent NMC patient presenting with severe facial pain, proptosis and visual impairment due to a mass arising from the ethmoid sinus that invaded the right orbit and frontal lobe. Treatment involved radical resection, including exenteration of the affected eye with the view to consolidate treatment with radiation therapy; however, the patient experienced rapid tumor progression and passed away 79 days post resection. Molecular analysis of the tumor tissue identified a novel in-frame BRD4-NUT transcript, with BRD4 exon 15 fused to the last 124 nucleotides of NUT exon 2 (BRD4-NUT ex15:ex2Δnt1–585). The partial deletion of NUT exon 2 was attributed to a mid-exonic genomic breakpoint and the subsequent activation of a cryptic splice site further downstream within the exon. Inhibition of the canonical 3′ acceptor splice site of NUT intron 1 in cell lines expressing the most common NMC fusion transcripts (PER-403, BRD4-NUT ex11:ex2; PER-624, BRD4-NUT ex15:ex2) induced alternative splicing from the same cryptic splice site as identified in the patient. Detection of low levels of an in-frame BRD4-NUT ex11:ex2Δnt1–585 transcript in PER-403 confirmed endogenous splicing from this alternative exon 2 splice site. Although further studies are necessary to assess the clinical relevance of the increasing number of variant fusions described in NMC, the findings presented in this case identify alternative splicing as a mechanism that contributes to this pathogenic complexity. PMID:26551281

  6. Heat transfer characteristics of Fe3O4 ferrofluid flowing in a mini channel under constant and alternating magnetic fields

    NASA Astrophysics Data System (ADS)

    Ghasemian, M.; Najafian Ashrafi, Z.; Goharkhah, M.; Ashjaee, M.

    2015-05-01

    Laminar forced convection heat transfer of water based Fe3O4 ferrofluid in a mini channel in the presence of constant and alternating magnetic fields is studied numerically. The hot ferrofluid flows into the 20 mm (l)×2 mm (h) mini channel with isothermal top and bottom cold surfaces and is subjected to a transverse non-uniform magnetic field produced by current carrying wires. Two-phase mixture model is implemented and the governing equations are solved using the finite volume approach. Primarily, the effects of the constant magnetic field location and intensity on the convective heat transfer are investigated. Simulation results show that the heat transfer is enhanced due to the disruption of the thermal boundary layer. However, this effect is more pronounced when the magnetic field source is placed in the fully developed region. In the next section, an alternating magnetic field with frequencies ranging from 0 to 10 Hz is imposed to the ferrofluid at different Reynolds numbers of Re=10, 25 and 50. A 16.48% heat transfer enhancement is obtained with a constant magnetic field at Re=25 and magnetic field intensity, Mn=1.07×108. This value is increased up to 27.72% by applying an alternating magnetic field with the same intensity at f=4 Hz. Results also indicate that the heat transfer enhancement due to the magnetic field is more significant at lower Reynolds numbers. The optimum frequency for heat transfer enhancement has been obtained for all the cases which shows that it has an increasing trend with the Reynolds number.

  7. The impact of pulsed irradiation upon neutron activation calculations for inertial and magnetic fusion energy power plants

    SciTech Connect

    Latkowski, J.F.; Sanz, J.; Vujic, J.L.

    1996-06-26

    Inertial fusion energy (IFE) and magnetic fusion energy (MFE) power plants will probably operate in a pulsed mode. The two different schemes, however, will have quite different time periods. Typical repetition rates for IFE power plants will be 1-5 Hz. MFE power plants will ramp up in current for about 1 hour, shut down for several minutes, and repeat the process. Traditionally, activation calculations for IFE and MFE power plants have assumed continuous operation and used either the ``steady state`` (SS) or ``equivalent steady state`` (ESS) approximations. It has been suggested recently that the SS and ESS methods may not yield accurate results for all radionuclides of interest. The present work expands that of Sisolak, et al. by applying their formulae to conditions which might be experienced in typical IFE and MFE power plants. In addition, complicated, multi-step reaction/decay chains are analyzed using an upgraded version of the ACAB radionuclide generation/depletion code. Our results indicate that the SS method is suitable for application to MFE power plant conditions. We also find that the ESS method generates acceptable results for radionuclides with half-lives more than a factor of three greater than the time between pulses. For components that are subject to 0.05 Hz (or more frequent) irradiation (such as coolant), use of the ESS method is recommended. For components or materials that are subject to less frequent irradiation (such as high-Z target materials), pulsed irradiation calculations should be used.

  8. ORR core re-configuration measurements to increase the fast neutron flux in the Magnetic Fusion Energy (MFE) experiments

    NASA Astrophysics Data System (ADS)

    Hobbs, R. W.; Stinnett, R. M.; Sims, T. M.

    1985-06-01

    The relative increases obtainable in the fast neutron flux in the Magnetic Fusion Energy (MFE) experiment positions were studied by reconfiguring the current ORR core. The percentage increase possible in the current displacement per atom (dpa) rate was examined. The principle methods to increase the fast flux, consisted of reducing the current core size (number of fuel elements), to increase the core average power density and arrangement of the fuel elements in the reduced-size core to tilt the core power distribution towards the MFE positions were investigated. It is concluded that fast fluxes in the E-3 core position can be increased by approximately 15 to 20% over current values and in E-5 by approximately 45 to 55%.

  9. Extremely low frequency alternating magnetic field-triggered and MRI-traced drug delivery by optimized magnetic zeolitic imidazolate framework-90 nanoparticles

    NASA Astrophysics Data System (ADS)

    Fang, Jie; Yang, Yong; Xiao, Wen; Zheng, Bingwen; Lv, Yun-Bo; Liu, Xiao-Li; Ding, Jun

    2016-02-01

    An extremely low frequency alternating magnetic field (ELF-AMF) was demonstrated to be able to effectively trigger drug release from carefully engineered magnetic ZIF-90 nanoparticles. The embedded Fe3O4 nanoparticles or alternatively Gd2O3 nanoparticles serve as effective MRI tracers for potential visualization of drug delivery to ensure drug delivery accuracy.An extremely low frequency alternating magnetic field (ELF-AMF) was demonstrated to be able to effectively trigger drug release from carefully engineered magnetic ZIF-90 nanoparticles. The embedded Fe3O4 nanoparticles or alternatively Gd2O3 nanoparticles serve as effective MRI tracers for potential visualization of drug delivery to ensure drug delivery accuracy. Electronic supplementary information (ESI) available: Experimental details; TEM and SEM images of ZIF-90 synthesized at different conditions and discussion; TEM images of Fe3O4 and Gd2O3 nanoparticles; XRD pattern of Gd2O3 nanoparticles; FT-IR spectra of ZIF-90, ZIF-90-RSA and RSA; DLS of ZIF-90-RSA; UV-Vis spectra of released 5-Fu; molecular models of ZIF-90 and 5-Fu. See DOI: 10.1039/c5nr08086j

  10. Fusion for Space Propulsion

    NASA Technical Reports Server (NTRS)

    Thio, Y. C. Francis; Schafer, Charles (Technical Monitor)

    2001-01-01

    There is little doubt that humans will attempt to explore and develop the solar system in this century. A large amount of energy will be required for accomplishing this. The need for fusion propulsion is discussed. For a propulsion system, there are three important thermodynamical attributes: (1) The absolute amount of energy available, (2) the propellant exhaust velocity, and (3) the jet power per unit mass of the propulsion system (specific power). For human exploration and development of the solar system, propellant exhaust velocity in excess of 100 km/s and specific power in excess of 10 kW/kg are required. Chemical combustion can produce exhaust velocity up to about 5 km/s. Nuclear fission processes typically result in producing energy in the form of heat that needs to be manipulated at temperatures limited by materials to about 2,800 K. Using the energy to heat a hydrogen propellant increases the exhaust velocity by only a factor of about two. Alternatively the energy can be converted into electricity which is then used to accelerate particles to high exhaust velocity. The necessary power conversion and conditioning equipment, however, increases the mass of the propulsion system for the same jet power by more than two orders of magnitude over chemical system, thus greatly limits the thrust-to-weight ratio attainable. The principal advantage of the fission process is that its development is relatively mature and is available right now. If fusion can be developed, fusion appears to have the best of all worlds in terms of propulsion - it can provide the absolute amount, the propellant exhaust velocity, and the high specific jet power. An intermediate step towards pure fusion propulsion is a bimodal system in which a fission reactor is used to provide some of the energy to drive a fusion propulsion unit. The technical issues related to fusion for space propulsion are discussed. The technical priorities for developing and applying fusion for propulsion are

  11. Magnetothermoacoustics from magnetic nanoparticles by short bursting or frequency chirped alternating magnetic field: A theoretical feasibility analysis

    PubMed Central

    Piao, Daqing; Towner, Rheal A.; Smith, Nataliya; Chen, Wei R.

    2013-01-01

    Purpose: To propose an alternative method of thermoacoustic wave generation based on heating of magnetic nanoparticles (MNPs) using alternating magnetic field (AMF). Methods: The feasibility of thermoacoustic wave generation from MNPs by applying a short-burst of AMF or a frequency-modulated AMF is theoretically analyzed. As the relaxation of MNPs is strongly dependent upon the amplitude and frequency of AMF, either an amplitude modulated, fixed frequency AMF (termed time-domain AMF) or a frequency modulated, constant amplitude AMF (termed frequency-domain AMF) will result in time-varying heat dissipation from MNPs, which has the potential to generate thermoacoustic waves. Following Rosensweig's model of specific power loss of MNPs in a steady-state AMF, the time-resolved heat dissipations of MNPs of superparamagnetic size when exposed to a short bursting of AMF and/or to a linearly frequency chirped AMF are derived, and the resulted acoustic propagation is presented. Based on experimentally measured temperature-rise characteristics of a superparamagnetic iron-oxide nanoparticle (SPION) matrix in a steady-state AMF of various frequencies, the heat dissipations of the SPION under time-domain and frequency-domain AMF configurations that could have practical utility for thermoacoustic wave generation are estimated. Results: The initial rates of the temperature-rise of the SPION matrix were measured at an iron-weight concentration of 0.8 mg/ml and an AMF frequency of 88.8 kHz to 1.105 MHz. The measured initial rates of temperature-rise were modeled by Rosensweig's theory, and projected to 10 MHz AMF frequency, at which a 1 μs bursting corresponding to a 1.55 mm axial resolution of acoustic detection could contain 10 complete cycles of AMF oscillation and the power dissipation is approximately 84 times of that at 1 MHz. Exposing the SPION matrix to a 1 μs bursting of AMF at 10 MHz frequency and 100 Oe field intensity would produce a volumetric heat dissipation of 7

  12. Model of controlled drug release from functionalized magnetic nanoparticles by a nonheating alternating-current magnetic field

    NASA Astrophysics Data System (ADS)

    Golovin, Yu. I.; Klyachko, N. L.; Gribanovskii, S. L.; Golovin, D. Yu.; Majouga, A. G.

    2016-03-01

    A magnetohydrodynamic model of controlled drug macromolecule release from transport magnetic nanoparticles covered by a polymer shell under the influence of a low-frequency (<1 kHz) nonheating magnetic field is described.

  13. Alternating current loss of second-generation high-temperature superconducting coils with magnetic and non-magnetic substrate

    NASA Astrophysics Data System (ADS)

    Zhang, Min; Kvitkovic, J.; Kim, Jae-Ho.; Kim, C. H.; Pamidi, S. V.; Coombs, T. A.

    2012-09-01

    It is widely believed that the second-generation high-temperature superconducting (2G HTS) tapes with magnetic substrates suffer higher transport loss compared to those with non-magnetic substrates. To test this, we prepared two identical coils with magnetic and non-magnetic substrates, respectively. The experimental result was rather surprising that they generated roughly the same amount of transport loss. We used finite element method to understand this result. It is found that, unlike in the single tape where the magnetic field-dependent critical current characteristic can be neglected and the effect of magnetic substrate dominates, the magnetic field-dependent critical current characteristic of 2G tape plays as an equally important role as magnetic substrate in terms of HTS coils.

  14. In situ measurement of alternating current magnetic susceptibility of Pd-hydrogen system for determination of hydrogen concentration in bulk

    NASA Astrophysics Data System (ADS)

    Akamaru, Satoshi; Hara, Masanori; Matsuyama, Masao

    2012-07-01

    An alternating current magnetic susceptometer for use as a hydrogen gauge for hydrogen-storage materials was designed and developed. The experimental system can simultaneously measure the hydrogen equilibrium pressure and the magnetic susceptibility of metal hydrides. The background voltage of the susceptometer was stabilized for a long period of time, without any adjustments, by attaching an efficient compensation circuit. The performance of the susceptometer at a static hydrogen concentration was demonstrated by measuring the magnetic susceptibility of a Pd-hydrogen system under equilibrium conditions. The in situ measurement of the magnetic susceptibility of Pd during hydrogen absorption was carried out using the susceptometer. Since the in situ magnetic susceptibility obtained at a lower initial hydrogen pressure agreed with the magnetic susceptibility measured at a static hydrogen concentration, the susceptometer could be used to determine the hydrogen concentration in Pd in situ. At a higher initial hydrogen pressure, enhancement of the magnetic susceptibility was observed at the beginning of hydrogen absorption because the magnetic moments induced by the large temporary strain generated in the Pd affected the magnetic susceptibility.

  15. In situ measurement of alternating current magnetic susceptibility of Pd-hydrogen system for determination of hydrogen concentration in bulk.

    PubMed

    Akamaru, Satoshi; Hara, Masanori; Matsuyama, Masao

    2012-07-01

    An alternating current magnetic susceptometer for use as a hydrogen gauge for hydrogen-storage materials was designed and developed. The experimental system can simultaneously measure the hydrogen equilibrium pressure and the magnetic susceptibility of metal hydrides. The background voltage of the susceptometer was stabilized for a long period of time, without any adjustments, by attaching an efficient compensation circuit. The performance of the susceptometer at a static hydrogen concentration was demonstrated by measuring the magnetic susceptibility of a Pd-hydrogen system under equilibrium conditions. The in situ measurement of the magnetic susceptibility of Pd during hydrogen absorption was carried out using the susceptometer. Since the in situ magnetic susceptibility obtained at a lower initial hydrogen pressure agreed with the magnetic susceptibility measured at a static hydrogen concentration, the susceptometer could be used to determine the hydrogen concentration in Pd in situ. At a higher initial hydrogen pressure, enhancement of the magnetic susceptibility was observed at the beginning of hydrogen absorption because the magnetic moments induced by the large temporary strain generated in the Pd affected the magnetic susceptibility. PMID:22852719

  16. The Effect of Extremely Low Frequency Alternating Magnetic Field on the Behavior of Animals in the Presence of the Geomagnetic Field.

    PubMed

    Belova, Natalia A; Acosta-Avalos, Daniel

    2015-01-01

    It is known that the geomagnetic field can influence animal migration and homing. The magnetic field detection by animals is known as magnetoreception and it is possible due to two different transduction mechanisms: the first one through magnetic nanoparticles able to respond to the geomagnetic field and the second one through chemical reactions influenced by magnetic fields. Another behavior is the magnetic alignment where animals align their bodies to the geomagnetic field. It has been observed that magnetic alignment of cattle can be disrupted near electric power lines around the world. Experimentally, it is known that alternating magnetic fields can influence living beings, but the exact mechanism is unknown. The parametric resonance model proposes a mechanism to explain that effect on living beings and establishes that, in the presence of a constant magnetic field, molecules associated with biochemical reactions inside cells can absorb resonantly alternating magnetic fields with specific frequencies. In the present paper, a review is made about animal magnetoreception and the effects of alternating magnetic fields in living beings. It is suggested how alternating magnetic fields can interfere in the magnetic alignment of animals and a general conclusion is obtained: alternating magnetic field pollution can affect the magnetic sensibility of animals. PMID:26823664

  17. The Effect of Extremely Low Frequency Alternating Magnetic Field on the Behavior of Animals in the Presence of the Geomagnetic Field

    PubMed Central

    Belova, Natalia A.; Acosta-Avalos, Daniel

    2015-01-01

    It is known that the geomagnetic field can influence animal migration and homing. The magnetic field detection by animals is known as magnetoreception and it is possible due to two different transduction mechanisms: the first one through magnetic nanoparticles able to respond to the geomagnetic field and the second one through chemical reactions influenced by magnetic fields. Another behavior is the magnetic alignment where animals align their bodies to the geomagnetic field. It has been observed that magnetic alignment of cattle can be disrupted near electric power lines around the world. Experimentally, it is known that alternating magnetic fields can influence living beings, but the exact mechanism is unknown. The parametric resonance model proposes a mechanism to explain that effect on living beings and establishes that, in the presence of a constant magnetic field, molecules associated with biochemical reactions inside cells can absorb resonantly alternating magnetic fields with specific frequencies. In the present paper, a review is made about animal magnetoreception and the effects of alternating magnetic fields in living beings. It is suggested how alternating magnetic fields can interfere in the magnetic alignment of animals and a general conclusion is obtained: alternating magnetic field pollution can affect the magnetic sensibility of animals. PMID:26823664

  18. Parametric Resonances of a Conductive Pipe Driven by an Alternating Magnetic Field in the Presence of a Static Magnetic Field

    ERIC Educational Resources Information Center

    Donoso, Guillermo; Ladera, Celso L.

    2012-01-01

    The parametric oscillations of an oscillator driven electromagnetically are presented. The oscillator is a conductive pipe hung from a spring, and driven by the oscillating magnetic field of a surrounding coil in the presence of a static magnetic field. It is an interesting case of parametric oscillations since the pipe is neither a magnet nor a…

  19. Fast neutron spectrometry with organic scintillators applied to magnetic fusion experiments

    NASA Astrophysics Data System (ADS)

    Kaschuck, Yu. A.; Esposito, B.; Trykov, L. A.; Semenov, V. P.

    2002-01-01

    Neutron spectrometry with NE213 liquid scintillators is commonly used in thermonuclear fusion experiments to measure the 2.45 and 14.1 MeV neutron flux. We present the unfolded neutron spectrum, which was accumulated during several ohmic deuterium plasma discharges in the Frascati Tokamak Upgrade using a 2″×2″ NE213 scintillator. In this paper, we review the application of organic scintillator neutron spectrometers to tokamaks, focusing in particular on the comparison between NE213 and stilbene scintillators. Various aspects of the calibration technique and neutron spectra unfolding procedure are considered in the context of their application for fusion neutron spectrometry. Testing and calibration measurements have been carried out using D-D and D-T neutron generator facilities with both NE213 and stilbene scintillators. The main result from these measurements is that stilbene scintillator has better neutron energy resolution than NE213. Our stilbene detector could be used for the determination of the ion temperature ( Ti) from neutron spectrum broadening in tokamak thermonuclear plasmas with Ti=4 keV and higher.

  20. Compendium of computer codes for the researcher in magnetic fusion energy

    SciTech Connect

    Porter, G.D.

    1989-03-10

    This is a compendium of computer codes, which are available to the fusion researcher. It is intended to be a document that permits a quick evaluation of the tools available to the experimenter who wants to both analyze his data, and compare the results of his analysis with the predictions of available theories. This document will be updated frequently to maintain its usefulness. I would appreciate receiving further information about codes not included here from anyone who has used them. The information required includes a brief description of the code (including any special features), a bibliography of the documentation available for the code and/or the underlying physics, a list of people to contact for help in running the code, instructions on how to access the code, and a description of the output from the code. Wherever possible, the code contacts should include people from each of the fusion facilities so that the novice can talk to someone ''down the hall'' when he first tries to use a code. I would also appreciate any comments about possible additions and improvements in the index. I encourage any additional criticism of this document. 137 refs.

  1. Simulating the magnetized liner inertial fusion plasma confinement with smaller-scale experiments [Simulating the MagLIF plasma confinement with smaller-scale experiments

    SciTech Connect

    Ryutov, D. D.; Cuneo, M. E.; Herrmann, M. C.; Sinars, D. B.; Slutz, S. A.

    2012-06-20

    The recently proposed magnetized liner inertial fusion approach to a Z-pinch driven fusion [Slutz et al., Phys. Plasmas17, 056303 (2010)] is based on the use of an axial magnetic field to provide plasma thermal insulation from the walls of the imploding liner. The characteristic plasma transport regimes in the proposed approach cover parameter domains that have not been studied yet in either magnetic confinement or inertial confinement experiments. In this article, an analysis is presented of the scalability of the key physical processes that determine the plasma confinement. The dimensionless scaling parameters are identified and conclusion is drawn that the plasma behavior in scaled-down experiments can correctly represent the full-scale plasma, provided these parameters are approximately the same in two systems. Furthermore, this observation is important in that smaller-scale experiments typically have better diagnostic access and more experiments per year are possible.

  2. Numerical analysis of applied magnetic field dependence in Malmberg-Penning Trap for compact simulator of energy driver in heavy ion fusion

    NASA Astrophysics Data System (ADS)

    Sato, T.; Park, Y.; Soga, Y.; Takahashi, K.; Sasaki, T.; Kikuchi, T.; Harada, Nob

    2016-05-01

    To simulate a pulse compression process of space charge dominated beams in heavy ion fusion, we have demonstrated a multi-particle numerical simulation as an equivalent beam using the Malmberg-Penning trap device. The results show that both transverse and longitudinal velocities as a function of external magnetic field strength are increasing during the longitudinal compression. The influence of space-charge effect, which is related to the external magnetic field, was observed as the increase of high velocity particles at the weak external magnetic field.

  3. A model explaining synchronization of neuron bioelectric frequency under weak alternating low frequency magnetic field

    NASA Astrophysics Data System (ADS)

    del Moral, A.; Azanza, María J.

    2015-03-01

    A biomagnetic-electrical model is presented that explains rather well the experimentally observed synchronization of the bioelectric potential firing rate ("frequency"), f, of single unit neurons of Helix aspersa mollusc under the application of extremely low frequency (ELF) weak alternating (AC) magnetic fields (MF). The proposed model incorporates to our widely experimentally tested model of superdiamagnetism (SD) and Ca2+ Coulomb explosion (CE) from lipid (LP) bilayer membrane (SD-CE model), the electrical quadrupolar long range interaction between the bilayer LP membranes of synchronized neuron pairs, not considered before. The quadrupolar interaction is capable of explaining well the observed synchronization. Actual extension of our SD-CE-model shows that the neuron firing frequency field, B, dependence becomes not modified, but the bioelectric frequency is decreased and its spontaneous temperature, T, dependence is modified. A comparison of the model with synchronization experimental results of pair of neurons under weak (B0 ≅0.2-15 mT) AC-MF of frequency fM=50 Hz is reported. From the deduced size of synchronized LP clusters under B, is suggested the formation of small neuron networks via the membrane lipid correlation.

  4. Fully alternating, triaxial electric or magnetic fields offer new routes to fluid vorticity

    SciTech Connect

    Martin, James E.; Solis, Kyle J.

    2014-10-31

    Noncontact methods of generating strong fluid vorticity are important to problems involving heat and mass transfer, fluid mixing, active wetting, and droplet transport. Furthermore, because zero or even negative shear viscosities can be induced, vorticity can greatly extend the control range of the smart fluids used in magnetorheological devices. In recent work we have shown that a particular class of ac/ac/dc triaxial fields (so-called symmetry-breaking rational fields) can create strong vorticity in magnetic particle suspensions and have presented a theory of the vorticity that is based on the symmetry of the 2-d Lissajous trajectories of the field and its converse. In this paper we demonstrate that there are three countably infinite sets of fully alternating ac/ac/ac triaxial fields whose frequencies form rational triads that have the symmetry required to drive fluid vorticity. The symmetry of the 3-d Lissajous trajectories of the field and its converse can be derived and from this the direction of the vorticity axis can be predicted, as can the dependence of the sign of the vorticity on the phase relations between the three field components. Experimental results are presented that validate the symmetry theory. These discoveries significantly broaden the class of triaxial fields that can be exploited to produce strong noncontact flow.

  5. Fully alternating, triaxial electric or magnetic fields offer new routes to fluid vorticity

    DOE PAGESBeta

    Martin, James E.; Solis, Kyle J.

    2014-10-31

    Noncontact methods of generating strong fluid vorticity are important to problems involving heat and mass transfer, fluid mixing, active wetting, and droplet transport. Furthermore, because zero or even negative shear viscosities can be induced, vorticity can greatly extend the control range of the smart fluids used in magnetorheological devices. In recent work we have shown that a particular class of ac/ac/dc triaxial fields (so-called symmetry-breaking rational fields) can create strong vorticity in magnetic particle suspensions and have presented a theory of the vorticity that is based on the symmetry of the 2-d Lissajous trajectories of the field and its converse.more » In this paper we demonstrate that there are three countably infinite sets of fully alternating ac/ac/ac triaxial fields whose frequencies form rational triads that have the symmetry required to drive fluid vorticity. The symmetry of the 3-d Lissajous trajectories of the field and its converse can be derived and from this the direction of the vorticity axis can be predicted, as can the dependence of the sign of the vorticity on the phase relations between the three field components. Experimental results are presented that validate the symmetry theory. These discoveries significantly broaden the class of triaxial fields that can be exploited to produce strong noncontact flow.« less

  6. Fully alternating, triaxial electric or magnetic fields offer new routes to fluid vorticity.

    PubMed

    Martin, James E; Solis, Kyle J

    2015-01-14

    Noncontact methods of generating strong fluid vorticity are important to problems involving heat and mass transfer, fluid mixing, active wetting, and droplet transport. Furthermore, because zero or even negative shear viscosities can be induced, vorticity can greatly extend the control range of the smart fluids used in magnetorheological devices. In recent work we have shown that a particular class of ac/ac/dc triaxial fields (symmetry-breaking rational fields) can create strong vorticity in magnetic particle suspensions and have presented a theory of the vorticity that is based on the symmetry of the 2-d Lissajous trajectories of the field and its converse. In this paper we demonstrate that there are three countably infinite sets of fully alternating ac/ac/ac triaxial fields whose frequencies form rational triads that have the symmetry required to drive fluid vorticity. The symmetry of the 3-d Lissajous trajectories of the field and its converse can be derived and from this the direction of the vorticity axis can be predicted, as can the dependence of the sign of the vorticity on the phase relations between the three field components. Experimental results are presented that validate the symmetry theory. These discoveries significantly broaden the class of triaxial fields that can be exploited to produce strong noncontact flow. PMID:25358752

  7. Phase diagram and magnetization structures of spin-3/2 bond-alternating Ising chains with single-ion anisotropy

    NASA Astrophysics Data System (ADS)

    Liu, Guang-Hua; Dou, Jun-Ya; Tian, Guang-Shan

    2016-02-01

    By the infinite time-evolving block decimation (iTEBD) algorithm, the magnetization process of the spin-3/2 bond-alternating Ising chain with single-ion anisotropy (D) is investigated. Magnetization plateaus including detailed magnetization structures of three different cases are uncovered, and three rich ground-state phase diagrams are explicitly determined. Especially, for the uniform antiferromagnetic case, a phase transition line at D=J, which divides the Mz=0 (Mz =1/2) plateau into two phases, are detected by the magnetization structure and the ground-state energy, and a updated phase diagram is proposed. Such a transition line was not recognized by the average magnetization previously. A same transition line (D=J) is also detected in the phase diagram of the antiferromagnetic-ferromagnetic alternating case. Magnetization plateaus are found to be easily induced for the classical Ising systems without quantum fluctuations, and the single-ion anisotropy plays a key role in the formation of Mz = 1/2 and 1 plateaus in the present model.

  8. Instability growth for magnetized liner inertial fusion seeded by electro-thermal, electro-choric, and material strength effects

    NASA Astrophysics Data System (ADS)

    Pecover, J. D.; Chittenden, J. P.

    2015-10-01

    A critical limitation of magnetically imploded systems such as magnetized liner inertial fusion (MagLIF) [Slutz et al., Phys. Plasmas 17, 056303 (2010)] is the magneto-Rayleigh-Taylor (MRT) instability which primarily disrupts the outer surface of the liner. MagLIF-relevant experiments have showed large amplitude multi-mode MRT instability growth growing from surface roughness [McBride et al., Phys. Rev. Lett. 109, 135004 (2012)], which is only reproduced by 3D simulations using our MHD code Gorgon when an artificially azimuthally correlated initialisation is added. We have shown that the missing azimuthal correlation could be provided by a combination of the electro-thermal instability (ETI) and an "electro-choric" instability (ECI); describing, respectively, the tendency of current to correlate azimuthally early in time due to temperature dependent Ohmic heating; and an amplification of the ETI driven by density dependent resistivity around vapourisation. We developed and implemented a material strength model in Gorgon to improve simulation of the solid phase of liner implosions which, when applied to simulations exhibiting the ETI and ECI, gave a significant increase in wavelength and amplitude. Full circumference simulations of the MRT instability provided a significant improvement on previous randomly initialised results and approached agreement with experiment.

  9. Instability growth for magnetized liner inertial fusion seeded by electro-thermal, electro-choric, and material strength effects

    SciTech Connect

    Pecover, J. D.; Chittenden, J. P.

    2015-10-15

    A critical limitation of magnetically imploded systems such as magnetized liner inertial fusion (MagLIF) [Slutz et al., Phys. Plasmas 17, 056303 (2010)] is the magneto-Rayleigh-Taylor (MRT) instability which primarily disrupts the outer surface of the liner. MagLIF-relevant experiments have showed large amplitude multi-mode MRT instability growth growing from surface roughness [McBride et al., Phys. Rev. Lett. 109, 135004 (2012)], which is only reproduced by 3D simulations using our MHD code Gorgon when an artificially azimuthally correlated initialisation is added. We have shown that the missing azimuthal correlation could be provided by a combination of the electro-thermal instability (ETI) and an “electro-choric” instability (ECI); describing, respectively, the tendency of current to correlate azimuthally early in time due to temperature dependent Ohmic heating; and an amplification of the ETI driven by density dependent resistivity around vapourisation. We developed and implemented a material strength model in Gorgon to improve simulation of the solid phase of liner implosions which, when applied to simulations exhibiting the ETI and ECI, gave a significant increase in wavelength and amplitude. Full circumference simulations of the MRT instability provided a significant improvement on previous randomly initialised results and approached agreement with experiment.

  10. Design and development of high-temperature superconducting magnet system with joint-winding for the helical fusion reactor

    NASA Astrophysics Data System (ADS)

    Yanagi, N.; Ito, S.; Terazaki, Y.; Seino, Y.; Hamaguchi, S.; Tamura, H.; Miyazawa, J.; Mito, T.; Hashizume, H.; Sagara, A.

    2015-05-01

    An innovative winding method is developed by connecting high-temperature superconducting (HTS) conductors to enable efficient construction of a magnet system for the helical fusion reactor FFHR-d1. A large-current capacity HTS conductor, referred to as STARS, is being developed by the incorporation of several innovative ideas, such as the simple stacking of state-of-the-art yttrium barium copper oxide tapes embedded in a copper jacket, surrounded by electrical insulation inside a conductor, and an outer stainless-steel jacket cooled by helium gas. A prototype conductor sample was fabricated and reached a current of 100 kA at a bias magnetic field of 5.3 T with the temperature at 20 K. At 4.2 K, the maximum current reached was 120 kA, and a current of 100 kA was successfully sustained for 1 h. A low-resistance bridge-type mechanical lap joint was developed and a joint resistance of 2 nΩ was experimentally confirmed for the conductor sample.

  11. The role of the boundary plasma in defining the viability of a magnetic fusion reactor: A review

    NASA Astrophysics Data System (ADS)

    Whyte, Dennis

    2012-10-01

    The boundary of magnetic confinement devices, from the pedestal through to the surrounding surfaces, encompasses an enormous range of plasma and material physics, and their integrated coupling. It is becoming clear that due to fundamental limits of plasma stability and material response the boundary will largely define the viability of an MFE reactor. However we face an enormous knowledge deficit in stepping from present devices and ITER towards a demonstration power plant. We review the boundary and plasma-material interaction (PMI) research required to address this deficit as well as related theoretical/scaling methods for extending present results to future devices. The research activities and gaps are reviewed and organized to three major axes of challenges: power density, plasma duration, and material temperature. The boundary can also be considered a multi-scale system of coupled plasma and material science regulated through the non-linear interface of the sheath. Measurement, theory and modeling across these scales are reviewed. Dimensionless parameters, often used to organized core plasma transport on similarity arguments, can be extended to the boundary plasma, plasma-surface interactions and material response. The scaling methodology suggests intriguing ways forward to prescribe and understand the boundary issues of an eventual reactor in intermediate size devices. Finally, proposed technology and science innovations towards solving the extreme PMI/boundary challenges of magnetic fusion energy will be reviewed.

  12. Suppression of beam merging and hosing instabilities in magnetized fast ignition fusion

    NASA Astrophysics Data System (ADS)

    Taguchi, Toshihiro; Antonsen, Thomas M., Jr.; Mima, Kunioki

    2016-03-01

    The magnetized two-stream instability has been investigated in linear and nonlinear regimes. Using a linear analysis of the Vlasov equation in two dimensional wave number space, we studied the competition between modes with wave numbers parallel and transverse to the beam direction. In the analysis, it is found that a near transverse mode is still unstable even for large electron temperature. The nonlinear analysis is performed using a hybrid simulation code. When a sufficiently strong magnetic field is applied along the beam direction, the instabilities are well suppressed and the electron stream becomes laminar. When the magnetic field strength is not large enough, however, electron flow stagnates and the total number of beam electrons penetrating the plasma is largely reduced.

  13. Method and system to directly produce electrical power within the lithium blanket region of a magnetically confined, deuterium-tritium (DT) fueled, thermonuclear fusion reactor

    DOEpatents

    Woolley, Robert D.

    1999-01-01

    A method for integrating liquid metal magnetohydrodynamic power generation with fusion blanket technology to produce electrical power from a thermonuclear fusion reactor located within a confining magnetic field and within a toroidal structure. A hot liquid metal flows from a liquid metal blanket region into a pump duct of an electromagnetic pump which moves the liquid metal to a mixer where a gas of predetermined pressure is mixed with the pressurized liquid metal to form a Froth mixture. Electrical power is generated by flowing the Froth mixture between electrodes in a generator duct. When the Froth mixture exits the generator the gas is separated from the liquid metal and both are recycled.

  14. Method and System to Directly Produce Electrical Power within the Lithium Blanket Region of a Magnetically Confined, Deuterium-Tritium (DT) Fueled, Thermonuclear Fusion Reactor

    SciTech Connect

    Woolley, Robert D.

    1998-09-22

    A method for integrating liquid metal magnetohydrodynamic power generation with fusion blanket technology to produce electrical power from a thermonuclear fusion reactor located within a confining magnetic field and within a toroidal structure. A hot liquid metal flows from a liquid metal blanket region into a pump duct of an electromagnetic pump which moves the liquid metal to a mixer where a gas of predetermined pressure is mixed with the pressurized liquid metal to form a Froth mixture. Electrical power is generated by flowing the Froth mixture between electrodes in a generator duct. When the Froth mixture exits the generator the gas is separated from the liquid metal and both are recycled.

  15. Three dimensional magnetic fields in extra high speed modified Lundell alternators computed by a combined vector-scalar magnetic potential finite element method

    NASA Technical Reports Server (NTRS)

    Demerdash, N. A.; Wang, R.; Secunde, R.

    1992-01-01

    A 3D finite element (FE) approach was developed and implemented for computation of global magnetic fields in a 14.3 kVA modified Lundell alternator. The essence of the new method is the combined use of magnetic vector and scalar potential formulations in 3D FEs. This approach makes it practical, using state of the art supercomputer resources, to globally analyze magnetic fields and operating performances of rotating machines which have truly 3D magnetic flux patterns. The 3D FE-computed fields and machine inductances as well as various machine performance simulations of the 14.3 kVA machine are presented in this paper and its two companion papers.

  16. A simulation-based and analytic analysis of the off-Hugoniot response of alternative inertial confinement fusion ablator materials

    NASA Astrophysics Data System (ADS)

    Moore, Alastair S.; Prisbrey, Shon; Baker, Kevin L.; Celliers, Peter M.; Fry, Jonathan; Dittrich, Thomas R.; Wu, Kuang-Jen J.; Kervin, Margaret L.; Schoff, Michael E.; Farrell, Mike; Nikroo, Abbas; Hurricane, Omar A.

    2016-09-01

    The attainment of self-propagating fusion burn in an inertial confinement target at the National Ignition Facility will require the use of an ablator with high rocket-efficiency and ablation pressure. The ablation material used during the National Ignition Campaign (Lindl et al. 2014) [1], a glow-discharge polymer (GDP), does not couple as efficiently as simulations indicated to the multiple-shock inducing radiation drive environment created by laser power profile (Robey et al., 2012). We investigate the performance of two other ablators, boron carbide (B4C) and high-density carbon (HDC) compared to the performance of GDP under the same hohlraum conditions. Ablation performance is determined through measurement of the shock speed produced in planar samples of the ablator material subjected to the identical multiple-shock inducing radiation drive environments that are similar to a generic three-shock ignition drive. Simulations are in better agreement with the off-Hugoniot performance of B4C than either HDC or GDP, and analytic estimations of the ablation pressure indicate that while the pressure produced by B4C and GDP is similar when the ablator is allowed to release, the pressure reached by B4C seems to exceed that of HDC when backed by a Au/quartz layer.

  17. Assessment of martensitic steels as structural materials in magnetic fusion devices

    SciTech Connect

    Rawls, J.M.; Chen, W.Y.K.; Cheng, E.T.; Dalessandro, J.A.; Miller, P.H.; Rosenwasser, S.N.; Thompson, L.D.

    1980-01-01

    This manuscript documents the results of preliminary experiments and analyses to assess the feasibility of incorporating ferromagnetic martensitic steels in fusion reactor designs and to evaluate the possible advantages of this class of material with respect to first wall/blanket lifetime. The general class of alloys under consideration are ferritic steels containing from about 9 to 13 percent Cr with some small additions of various strengthening elements such as Mo. These steels are conventionally used in the normalized and tempered condition for high temperature applications and can compete favorably with austenitic alloys up to about 600/sup 0/C. Although the heat treatment can result in either a tempered martensite or bainite structure, depending on the alloy and thermal treatment parameters, this general class of materials will be referred to as martensitic stainless steels for simplicity.

  18. Application of railgun principle to high-velocity hydrogen pellet injection for magnetic fusion reactor refueling

    SciTech Connect

    Kim, K.

    1991-08-01

    This report contains three documents describing the progress made by the University of Illinois electromagnetic railgun program sponsored by the Office of Fusion Energy of the United States Department of Energy during the period from July 16, 1990 to August 16, 1991. The first document contains a brief summary of the tasks initiated, continued, or completed, the status of major tasks, and the research effort distribution, estimated and actual, during the period. The second document contains a description of the work performed on time resolved laser interferometric density measurement of the railgun plasma-arc armature. The third document is an account of research on the spectroscopic measurement of the electron density and temperature of the railgun plasma arc.

  19. High-Energy Composite Permanent Magnets: High-Energy Permanent Magnets for Hybrid Vehicles and Alternative Energy

    SciTech Connect

    2010-02-15

    Broad Funding Opportunity Announcement Project: The University of Delaware is developing permanent magnets that contain less rare earth material and produce twice the energy of the strongest rare earth magnets currently available. The University of Delaware is creating these magnets by mixing existing permanent magnet materials with those that are more abundant, like iron. Both materials are first prepared in the form of nanoparticles via techniques ranging from wet chemistry to ball milling. After that, the nanoparticles must be assembled in a 3-D array and consolidated at low temperatures to form a magnet. With small size particles and good contact between these two materials, the best qualities of each allow for the development of exceptionally strong composite magnets.

  20. Gas Evolution Measurements on Reactor Irradiated Advanced Fusion Magnet Insulation Systems

    NASA Astrophysics Data System (ADS)

    Humer, K.; Seidl, E.; Weber, H. W.; Fabian, P. E.; Feucht, S. W.; Munshi, N. A.

    2006-03-01

    Glass-fiber reinforced plastics (GFRPs) are used as insulation materials for the superconducting magnet coils of the International Thermonuclear Experimental Reactor (ITER). The radiation environment present at the magnet location will lead to gas production, swelling and weight loss of the laminate, which may result in a pressure rise combined with undefined stresses on the magnet coil casing. Consequently, these effects are important parameters for the engineering and design criteria of superconducting magnet coil structures. In this study, newly developed epoxy and cyanate-ester (CE) based S2-glass fiber reinforced insulation systems were irradiated at ambient temperature in the TRIGA-Mark II reactor (Vienna) to a fast neutron fluence of 1 and 5×1021 m-2 (E>0.1 MeV) prior to measurements of gas evolution, swelling and weight loss. The CE based laminates show increased radiation resistance, i.e. less gas evolution. The highest radiation hardness up to the highest dose was observed in a pure CE system. In addition, the effects of swelling and weight loss are either negligible or less pronounced for all systems. The results prove that the newly developed CE based composites are serious candidate insulation systems for ITER.

  1. Application of railgun principle to high-velocity hydrogen pellet injection for magnetic fusion reactor fueling

    SciTech Connect

    Kim, K.; Zhang, J.

    1992-01-01

    Three separate papers are included which report research progress during this period: (1) A new railgun configuration with perforated sidewalls, (2) development of a fuseless small-bore railgun for injection of high-speed hydrogen pellets into magnetically confined plasmas, and (3) controls and diagnostics on a fuseless railgun for solid hydrogen pellet injection.

  2. Gas Evolution Measurements on Reactor Irradiated Advanced Fusion Magnet Insulation Systems

    SciTech Connect

    Humer, K.; Seidl, E.; Weber, H. W.; Fabian, P. E.; Feucht, S. W.; Munshi, N. A.

    2006-03-31

    Glass-fiber reinforced plastics (GFRPs) are used as insulation materials for the superconducting magnet coils of the International Thermonuclear Experimental Reactor (ITER). The radiation environment present at the magnet location will lead to gas production, swelling and weight loss of the laminate, which may result in a pressure rise combined with undefined stresses on the magnet coil casing. Consequently, these effects are important parameters for the engineering and design criteria of superconducting magnet coil structures. In this study, newly developed epoxy and cyanate-ester (CE) based S2-glass fiber reinforced insulation systems were irradiated at ambient temperature in the TRIGA-Mark II reactor (Vienna) to a fast neutron fluence of 1 and 5x1021 m-2 (E>0.1 MeV) prior to measurements of gas evolution, swelling and weight loss. The CE based laminates show increased radiation resistance, i.e. less gas evolution. The highest radiation hardness up to the highest dose was observed in a pure CE system. In addition, the effects of swelling and weight loss are either negligible or less pronounced for all systems. The results prove that the newly developed CE based composites are serious candidate insulation systems for ITER.

  3. The Effect of an Alternate Start Codon on Heterologous Expression of a PhoA Fusion Protein in Mycoplasma gallisepticum.

    PubMed

    Panicker, Indu S; Browning, Glenn F; Markham, Philip F

    2015-01-01

    While the genomes of many Mycoplasma species have been sequenced, there are no collated data on translational start codon usage, and the effects of alternate start codons on gene expression have not been studied. Analysis of the annotated genomes found that ATG was the most prevalent translational start codon among Mycoplasma spp. However in Mycoplasma gallisepticum a GTG start codon is commonly used in the vlhA multigene family, which encodes a highly abundant, phase variable lipoprotein adhesin. Therefore, the effect of this alternate start codon on expression of a reporter PhoA lipoprotein was examined in M. gallisepticum. Mutation of the start codon from ATG to GTG resulted in a 2.5 fold reduction in the level of transcription of the phoA reporter, but the level of PhoA activity in the transformants containing phoA with a GTG start codon was only 63% of that of the transformants with a phoA with an ATG start codon, suggesting that GTG was a more efficient translational initiation codon. The effect of swapping the translational start codon in phoA reporter gene expression was less in M. gallisepticum than has been seen previously in Escherichia coli or Bacillus subtilis, suggesting the process of translational initiation in mycoplasmas may have some significant differences from those used in other bacteria. This is the first study of translational start codon usage in mycoplasmas and the impact of the use of an alternate start codon on expression in these bacteria. PMID:26010086

  4. The Effect of an Alternate Start Codon on Heterologous Expression of a PhoA Fusion Protein in Mycoplasma gallisepticum

    PubMed Central

    Panicker, Indu S.; Browning, Glenn F.; Markham, Philip F.

    2015-01-01

    While the genomes of many Mycoplasma species have been sequenced, there are no collated data on translational start codon usage, and the effects of alternate start codons on gene expression have not been studied. Analysis of the annotated genomes found that ATG was the most prevalent translational start codon among Mycoplasma spp. However in Mycoplasma gallisepticum a GTG start codon is commonly used in the vlhA multigene family, which encodes a highly abundant, phase variable lipoprotein adhesin. Therefore, the effect of this alternate start codon on expression of a reporter PhoA lipoprotein was examined in M. gallisepticum. Mutation of the start codon from ATG to GTG resulted in a 2.5 fold reduction in the level of transcription of the phoA reporter, but the level of PhoA activity in the transformants containing phoA with a GTG start codon was only 63% of that of the transformants with a phoA with an ATG start codon, suggesting that GTG was a more efficient translational initiation codon. The effect of swapping the translational start codon in phoA reporter gene expression was less in M. gallisepticum than has been seen previously in Escherichia coli or Bacillus subtilis, suggesting the process of translational initiation in mycoplasmas may have some significant differences from those used in other bacteria. This is the first study of translational start codon usage in mycoplasmas and the impact of the use of an alternate start codon on expression in these bacteria. PMID:26010086

  5. Concepts of magnetic filter fields in powerful negative ion sources for fusion

    NASA Astrophysics Data System (ADS)

    Kraus, W.; Fantz, U.; Heinemann, B.; Wünderlich, D.

    2016-02-01

    The performance of large negative ion sources used in neutral beam injection systems is in long pulses mainly determined by the increase of the currents of co-extracted electrons. This is in particular a problem in deuterium and limits the ion currents which are for long pulses below the requirements for the ITER source. In the source of the ELISE test facility, the magnetic field in front of the first grid, which is essential to reduce the electron current, is generated by a current of several kA flowing through the plasma facing grid. Weakening of this field by the addition of permanent magnets placed close to the lateral walls has led to a reduction of the electron current by a factor three without loss of ion current when source was operated in volume production. If this effect can be validated for the cesiated source, it would be a large step towards achieving the ITER parameter in long pulses.

  6. Concepts of magnetic filter fields in powerful negative ion sources for fusion.

    PubMed

    Kraus, W; Fantz, U; Heinemann, B; Wünderlich, D

    2016-02-01

    The performance of large negative ion sources used in neutral beam injection systems is in long pulses mainly determined by the increase of the currents of co-extracted electrons. This is in particular a problem in deuterium and limits the ion currents which are for long pulses below the requirements for the ITER source. In the source of the ELISE test facility, the magnetic field in front of the first grid, which is essential to reduce the electron current, is generated by a current of several kA flowing through the plasma facing grid. Weakening of this field by the addition of permanent magnets placed close to the lateral walls has led to a reduction of the electron current by a factor three without loss of ion current when source was operated in volume production. If this effect can be validated for the cesiated source, it would be a large step towards achieving the ITER parameter in long pulses. PMID:26932043

  7. Resonances of an Oscillating Conductive Pipe Driven by an Alternating Magnetic Field in the Presence of a Static Magnetic Field

    ERIC Educational Resources Information Center

    Ladera, Celso L.; Donoso, Guillermo

    2011-01-01

    A short conducting pipe that hangs from a weak spring is forced to oscillate by the magnetic field of a surrounding coaxial coil that has been excited by a low-frequency current source in the presence of an additional static magnetic field. Induced oscillating currents appear in the pipe. The pipe motion becomes damped by the dragging forces…

  8. The nonlinear coupling between gyroradius scale turbulence and mesoscale magnetic islands in fusion plasmas

    SciTech Connect

    Hornsby, W. A.; Peeters, A. G.; Snodin, A. P.; Casson, F. J.; Camenen, Y.; Szepesi, G.; Siccinio, M.; Poli, E.

    2010-09-15

    The interaction between small scale turbulence (of the order of the ion Larmor radius) and mesoscale magnetic islands is investigated within the gyrokinetic framework. Turbulence, driven by background temperature and density gradients, over nonlinear mode coupling, pumps energy into long wavelength modes, and can result in an electrostatic vortex mode that coincides with the magnetic island. The strength of the vortex is strongly enhanced by the modified plasma flow response connected with the change in topology, and the transport it generates can compete with the parallel motion along the perturbed magnetic field. Despite the stabilizing effect of sheared plasma flows in and around the island, the net effect of the island is a degradation of the confinement. When density and temperature gradients inside the island are below the threshold for turbulence generation, turbulent fluctuations still persist through turbulence convection and spreading. The latter mechanisms then generate a finite transport flux and, consequently, a finite pressure gradient in the island. A finite radial temperature gradient inside the island is also shown to persist due to the trapped particles, which do not move along the field around the island. In the low collisionality regime, the finite gradient in the trapped population leads to the generation of a bootstrap current, which reduces the neoclassical drive.

  9. Proximity detector circuits: an attractive alternative to tunnel diode oscillators for contactless measurements in pulsed magnetic fields

    SciTech Connect

    Altarawneh, Moaz M; Mielke, Charles H

    2009-01-01

    A new radio frequency oscillator circuit based on a proximity detector integrated circuit is described as an alternative for the traditional tunnel diode oscillator used for pulsed magnetic field measurements at low temperatures. The new circuit has been successfully applied to measure the superconducting upper critical field in Ba{sub 0.55}K{sub 0.45}Fe{sub 2}As{sub 2} single crystfl.ls up to 60 T. The new circuit design avoids many of the problems associated with tunnel diode circuits while keeping the advantages of contact less measurements in pulsed magnets.

  10. From Desktop Toy to Educational Aid: Neo Magnets as an Alternative to Ball-and-Stick Models in Representing Carbon Fullerenes

    ERIC Educational Resources Information Center

    Kao, Jacqueline Y.; Yang, Min-Han; Lee, Chi-Young

    2015-01-01

    Neo magnets are neodymium magnet beads that have been marketed as a desktop toy. We proposed using neo magnets as an alternative building block to traditional ball-and-stick models to construct carbon allotropes, such as fullerene and various nanocone structures. Due to the lack of predetermined physical connections, the versatility of carbon…

  11. Spatially resolved high resolution x-ray spectroscopy for magnetically confined fusion plasmas (invited)

    SciTech Connect

    Ince-Cushman, A.; Rice, J. E.; Reinke, M. L.; Podpaly, Y.; Marmar, E. S.; Bitter, M.; Hill, K. W.; Scott, S.; Gu, M. F.; Eikenberry, E.; Broennimann, Ch.; Lee, S. G.

    2008-10-15

    The use of high resolution x-ray crystal spectrometers to diagnose fusion plasmas has been limited by the poor spatial localization associated with chord integrated measurements. Taking advantage of a new x-ray imaging spectrometer concept [M. Bitter et al., Rev. Sci. Instrum. 75, 3660 (2004)], and improvements in x-ray detector technology [Ch. Broennimann et al., J. Synchrotron Radiat. 13, 120 (2006)], a spatially resolving high resolution x-ray spectrometer has been built and installed on the Alcator C-Mod tokamak. This instrument utilizes a spherically bent quartz crystal and a set of two dimensional x-ray detectors arranged in the Johann configuration [H. H. Johann, Z. Phys. 69, 185 (1931)] to image the entire plasma cross section with a spatial resolution of about 1 cm. The spectrometer was designed to measure line emission from H-like and He-like argon in the wavelength range 3.7 and 4.0 A with a resolving power of approximately 10 000 at frame rates up to 200 Hz. Using spectral tomographic techniques [I. Condrea, Phys. Plasmas 11, 2427 (2004)] the line integrated spectra can be inverted to infer profiles of impurity emissivity, velocity, and temperature. From these quantities it is then possible to calculate impurity density and electron temperature profiles. An overview of the instrument, analysis techniques, and example profiles are presented.

  12. Radioactivation of structural material of the superconducting magnet for a fusion reactor

    SciTech Connect

    Seki, Y.; Kawasaki, H.; Yamada, K.; Yamauchi, I.

    1983-08-01

    Radioactivation of five types of candidate steel alloys for the structural materials of superconducting toroidal field coils (TFC) of a D-T fusion reactor has been comparatively studied. As a result, the use of a high Mn steel in place of 316 SS is shown to reduce the dose rate at the He vessel of the TFC to about1/3 the value with 316 SS at 1 day after shutdown, and to about1/1000 at 10 years after shutdown. These reductions are mostly caused by the 0.28 wt% Co assumed to be included in 316 SS but none in the high Mn steel. Newly defined dose rate sensitivities of constituent elements are shown to be useful in identifying the cause of dose rate change brought on by the steel composition change. They can also be utilized in estimating the dose rate change brought on by the replacement of 316 SS with any new steel alloy with similar composition.

  13. Radioactivation of structural material of the superconducting magnet for a fusion reactor

    NASA Astrophysics Data System (ADS)

    Seki, Yasushi; Yamauchi, Isamu; Yamada, Koubun; Kawasaki, Hiromitsu

    1983-08-01

    Radioactivation of five types of candidate steel alloys for the structural materials of superconducting toroidal field coils (TFC) of a D-T fusion reactor has been comparatively studied. As a result, the use of a high Mn steel in place of 316 SS is shown to reduce the dose rate at the He vessel of the TFC to ˜ 1/3 the value with 316 SS at 1 day after shutdown, and to ˜ 1/1000 at 10 years after shutdown. These reductions are mostly caused by the 0.28 wt% Co assumed to be included in 316 SS but none in the high Mn steel. Newly defined dose rate sensitivities of constituent elements are shown to be useful in identifying the cause of dose rate change brought on by the steel composition change. They can also be utilized in estimating the dose rate change brought on by the replacement of 316 SS with any new steel alloy with similar composition.

  14. Spinal fusion

    MedlinePlus

    ... Anterior spinal fusion; Spine surgery - spinal fusion; Low back pain - fusion; Herniated disk - fusion ... If you had chronic back pain before surgery, you will likely still have some pain afterward. Spinal fusion is unlikely to take away all your pain ...

  15. Panel discussion: Progress and plans for magnetic fusion: Summary of comments on recent progress in fusion research at the Oak Ridge National Laboratory

    SciTech Connect

    Sheffield, J.

    1989-01-01

    Progress in fusion research is marked not so much by a few giant steps as by a continual number of small steps, which yield a steady advance toward the goal of producing a fusion reactor. During the past year, there have been two such steps in the Oak Ridge National Laboratory (ORNL) program: the experimental demonstration of access to the second stable region of beta in the Advanced Toroidal Facility (ATF); and the acceleration of a frozen hydrogen pellet by an intense electron beam. This paper discusses these steps.

  16. Non-Temperature Induced Effects of Magnetized Iron Oxide Nanoparticles in Alternating Magnetic Field in Cancer Cells

    PubMed Central

    Hapuarachchige, Sudath; Kato, Yoshinori; Ngen, Ethel J.; Smith, Barbara; Delannoy, Michael; Artemov, Dmitri

    2016-01-01

    This paper reports the damaging effects of magnetic iron-oxide nanoparticles (MNP) on magnetically labeled cancer cells when subjected to oscillating gradients in a strong external magnetic field. Human breast cancer MDA-MB-231 cells were labeled with MNP, placed in the high magnetic field, and subjected to oscillating gradients generated by an imaging gradient system of a 9.4T preclinical MRI system. Changes in cell morphology and a decrease in cell viability were detected in cells treated with oscillating gradients. The cytotoxicity was determined qualitatively and quantitatively by microscopic imaging and cell viability assays. An approximately 26.6% reduction in cell viability was detected in magnetically labeled cells subjected to the combined effect of a static magnetic field and oscillating gradients. No reduction in cell viability was observed in unlabeled cells subjected to gradients, or in MNP-labeled cells in the static magnetic field. As no increase in local temperature was observed, the cell damage was not a result of hyperthermia. Currently, we consider the coherent motion of internalized and aggregated nanoparticles that produce mechanical moments as a potential mechanism of cell destruction. The formation and dynamics of the intracellular aggregates of nanoparticles were visualized by optical and transmission electron microscopy (TEM). The images revealed a rapid formation of elongated MNP aggregates in the cells, which were aligned with the external magnetic field. This strategy provides a new way to eradicate a specific population of MNP-labeled cells, potentially with magnetic resonance imaging guidance using standard MRI equipment, with minimal side effects for the host. PMID:27244470

  17. A free-electron laser for cyclotron resonant heating in magnetic fusion reactors

    NASA Astrophysics Data System (ADS)

    Freund, H. P.; Read, M. E.; Jackson, R. H.; Pershing, D. E.; Taccetti, J. M.

    1995-05-01

    A G-band free-electron laser designed for plasma heating is described using a coaxial hybrid iron (CHI) wiggler formed by insertion into a solenoid of a central rod and an outer ring of alternating ferrite and nonferrite spacers positioned so that the central ferrite (nonferrite) spacers are opposite the outer nonferrite (ferrite) spacers. The CHI wiggler provides for enhanced beam focusing and the ability to handle intense beams and high-power continuous wave radiation. Simulations indicate that a power/efficiency of 3.5 MW/13% are possible using a 690 kV/40 A beam. No beam loss was found in simulation.

  18. Prospects for toroidal fusion reactors

    SciTech Connect

    Sheffield, J.; Galambos, J.D.

    1994-06-01

    Work on the International Thermonuclear Experimental Reactor (ITER) tokamak has refined understanding of the realities of a deuterium-tritium (D-T) burning magnetic fusion reactor. An ITER-like tokamak reactor using ITER costs and performance would lead to a cost of electricity (COE) of about 130 mills/kWh. Advanced tokamak physics to be tested in the Toroidal Physics Experiment (TPX), coupled with moderate components in engineering, technology, and unit costs, should lead to a COE comparable with best existing fission systems around 60 mills/kWh. However, a larger unit size, {approximately}2000 MW(e), is favored for the fusion system. Alternative toroidal configurations to the conventional tokamak, such as the stellarator, reversed-field pinch, and field-reversed configuration, offer some potential advantage, but are less well developed, and have their own challenges.

  19. [Use of alternating magnetic field with the frequency of spontaneous local vessels oscillation for rehabilitation of patients after dental implantation].

    PubMed

    Ter-Asaturov, G P; Abakarov, S I; Adzhiev, E K; Adzhiev, K S

    2010-01-01

    New software-hardware system for diagnostic and treatment (RF patents: number 75294, 2008 and number 75314, 2008) allowing to use the technique of microcirculatory bed regional pulse vessels control (RF patent number 2383369, 2008) for optimization of patients' rehabilitation process after dental implantation operation. It was shown the normalizing action of alternating magnetic field with the frequency of spontaneous local vessels oscillation by comparison of regional blood flow indices. PMID:20517254

  20. Magnetic resonance imaging artifact following anterior cervical discectomy and fusion with a trabecular metal cage.

    PubMed

    Elliott, Cameron A; Fox, Richard; Ashforth, Robert; Gourishankar, Sita; Nataraj, Andrew

    2016-03-01

    OBJECT This study was undertaken to evaluate the impact of postoperative MRI artifact on the assessment of ongoing spinal cord or nerve root compression after anterior cervical discectomy and fusion (ACDF) using a trabecular tantalum cage or bone autograft or allograft. METHODS The authors conducted a retrospective review of postoperative MRI studies of patients treated surgically for cervical disc degenerative disease or cervical instability secondary to trauma. Standard ACDF with either a trabecular tantalum cage or interbody bone graft had been performed. Postoperative MR images were shown twice in random order to each of 3 assessors (2 spine surgeons, 1 neuroradiologist) to determine whether the presence of a tantalum interbody cage and/or anterior cervical fixation plate or screws imparted MRI artifact significant enough to prevent reliable postoperative assessment of ongoing spinal cord or nerve root compression. RESULTS A total of 63 patients were identified. One group of 29 patients received a tantalum interbody cage, with 13 patients (45%) undergoing anterior plate fixation. A second group of 34 patients received bone auto- or allograft, with 23 (68%) undergoing anterior plate fixation. The paramagnetic implant construct artifact had minimal impact on visualization of postoperative surgical level spinal cord compression. In the cage group, 98% (171/174) of the cases were rated as assessable versus 99% in the bone graft group (201/204), with high intraobserver reliability. In contrast, for the assessment of ongoing surgical level nerve root compression, the presence of a tantalum cage significantly decreased visualization of nerve roots to 70% (121/174) in comparison with 85% (173/204) in the bone graft group (p < 0.001). When sequences using turbo spin echo (TSE), a T2-weighted axial sequence, were acquired, nerve roots were rated as assessable in 88% (69/78) of cases; when only axial T2-weighted sequences were available, the nerve roots were rated as

  1. Final Report on Development of Optimized Field-Reversed Configuration Plasma Formation Techniques for Magnetized Target Fusion

    SciTech Connect

    Lynn, Alan

    2013-11-01

    The University of New Mexico (UNM) proposed a collaboration with Los Alamos National Laboratory (LANL) to develop and test methods for improved formation of field-reversed configuration (FRC) plasmas relevant to magnetized target fusion (MTF) energy research. MTF is an innovative approach for a relatively fast and cheap path to the production of fusion energy that utilizes magnetic confinement to assist in the compression of a hot plasma to thermonuclear conditions by an external driver. LANL is currently pursing demonstration of the MTF concept via compression of an FRC plasma by a metal liner z-pinch in conjunction with the Air Force Research Laboratory in Albuquerque, NM. A key physics issue for the FRC's ultimate success as an MTF target lies in the initial pre-ionization (PI) stage. The PI plasma sets the initial conditions from which the FRC is created. In particular, the PI formation process determines the amount of magnetic flux that can be trapped to form the FRC. A ringing theta pinch ionization (RTPI) technique, such as currently used by the FRX-L device at LANL, has the advantages of high ionization fraction, simplicity (since no additional coils are required), and does not require internal electrodes which can introduce impurities into the plasma. However RTPI has been shown to only trap 50% of the initial bias flux at best and imposes additional engineering constraints on the capacitor banks. The amount of trapped flux plays an important role in the FRC's final equilibrium, transport, and stability properties, and provides increased ohmic heating of the FRC through induced currents as the magnetic field decays. Increasing the trapped flux also provides the route to greatest potential gains in FRC lifetime, which is essential to provide enough time to translate and compress the FRC effectively. In conjunction with LANL we initially planned to develop and test a microwave break- down system to improve the initial PI plasma formation. The UNM team would

  2. A Computational Study of a Capillary Discharge Pellet Accelerator Concept for Magnetic Fusion Fueling

    NASA Astrophysics Data System (ADS)

    Winfrey, A. Leigh; Gilligan, John G.; Bourham, Mohamed A.

    2013-04-01

    An ablation-dominated capillary discharge using low atomic number elements for plasma formation to flow into an ablation-free extension barrel is a concept that provides a high energy-density plasma flow sufficient to propel fuel pellets into the tokamak fusion plasma chamber. In this concept, the extension barrel is made from a non-ablating material by coating the interior wall of the barrel with nanocrystalline diamond to eliminate mixing the propelling plasma with any impurities evolving from the barrel ablation. The electrothermal plasma code ETFLOW models the plasma formation and flow in the capillary discharge and the flow into the extension barrel to accelerate frozen deuterium pellets. The code includes governing equations for both the capillary and the extension barrel, with the addition of the pellet's terms. It also includes ideal and non-ideal plasma conductivity models. The joule heating term in the energy conservation equation is only valid in the capillary section. The pellet momentum and kinetic energy are included in the governing equations of the barrel, with the addition of the effect of viscous drag terms. The electrothermal capillary source generates the plasma via the ablation of a sleeve inside the main capillary housing. The acceleration of the pellet starts in the extension barrel when the pressure of the plasma flow from the capillary reaches the release limit. The code results show pellet exit velocities in excess of 2 km/s for source/barrel systems with low-Z liner materials in the source for 5, 20, 45, and 80 mg pellets. The study shows that an increase in the length of both the source and the extension barrel increases the pellet exit velocity with the limitation of slowdown effects for plasma expansion and cooling off inside the barrel.

  3. Three-dimensional linear peeling-ballooning theory in magnetic fusion devices

    SciTech Connect

    Weyens, T. Sánchez, R.; García, L.; Loarte, A.; Huijsmans, G.

    2014-04-15

    Ideal magnetohydrodynamics theory is extended to fully 3D magnetic configurations to investigate the linear stability of intermediate to high n peeling-ballooning modes, with n the toroidal mode number. These are thought to be important for the behavior of edge localized modes and for the limit of the size of the pedestal that governs the high confinement H-mode. The end point of the derivation is a set of coupled second order ordinary differential equations with appropriate boundary conditions that minimize the perturbed energy and that can be solved to find the growth rate of the perturbations. This theory allows of the evaluation of 3D effects on edge plasma stability in tokamaks such as those associated with the toroidal ripple due to the finite number of toroidal field coils, the application of external 3D fields for elm control, local modification of the magnetic field in the vicinity of ferromagnetic components such as the test blanket modules in ITER, etc.

  4. A laser driven fusion plasma for space propulsion

    SciTech Connect

    Kammash, T.; Galbraith, D.L. )

    1992-07-01

    The present inertial-confinement fusion concept employs a magnetized target pellet that is driven by a laser beam in conjunction with a tungsten shell whose inner surface is coated with a deuterium-tritium fusion fuel mixture. A laser beam that enters the pellet through a hole simultaneously creates a fusion-grade plasma and gives rise to a powerful, instantaneous magnetic field which thermally insulates the plasma from the material wall. The plasma lifetime of this self-generated magnetic field scheme is dictated by the shock speed in the tungsten shell rather than by the speed of sound in the plasma: it consequently burns much longer and efficiently than plausible alternatives. A manned mission could by these means be completed in a few months rather than a few years, in virtue of the great specific impulse achieved. 8 refs.

  5. Guide to making time-lapse graphics using the facilities of the National Magnetic Fusion Energy Computing Center

    SciTech Connect

    Munro, J.K. Jr.

    1980-05-01

    The advent of large, fast computers has opened the way to modeling more complex physical processes and to handling very large quantities of experimental data. The amount of information that can be processed in a short period of time is so great that use of graphical displays assumes greater importance as a means of displaying this information. Information from dynamical processes can be displayed conveniently by use of animated graphics. This guide presents the basic techniques for generating black and white animated graphics, with consideration of aesthetic, mechanical, and computational problems. The guide is intended for use by someone who wants to make movies on the National Magnetic Fusion Energy Computing Center (NMFECC) CDC-7600. Problems encountered by a geographically remote user are given particular attention. Detailed information is given that will allow a remote user to do some file checking and diagnosis before giving graphics files to the system for processing into film in order to spot problems without having to wait for film to be delivered. Source listings of some useful software are given in appendices along with descriptions of how to use it. 3 figures, 5 tables.

  6. Experimental results of a sheet-beam, high power, FEL amplifier with application to magnetic fusion research

    SciTech Connect

    Cheng, S.; Destler, W.W.; Granatstein, V.L.

    1995-12-31

    The experimental study of sheet-beam FELs as candidate millimeter-wave sources for heating magnetic fusion plasmas has achieved a major milestone. In a proof-of-principle, pulsed experiment, saturated FEL amplifier operation was achieved with 250 kW of output power at 86 GHz. Input microwave power was 1 kW, beam voltage was 450 kV and beam current was 17 A. The planar wiggler had a peak value of 3.8 kG, a period of 0.96 cm and was 71 cm long. The linear gain of 30 dB, saturated gain of 24 dB and saturated efficiency of 3% all are in good agreement with theoretical prediction. Follow-on work would include development of a thermionic sheet-beam electron-gun compatible with CW FEL operation, adding a section of tapered wiggler to increase the output power to levels in excess of 1 megawatt, and increasing the FEL frequency.

  7. Experimental Characterization of Thermo-electric Driven Liquid Lithium Flow in Narrow Trenches for Magnetic Confinement Fusion

    NASA Astrophysics Data System (ADS)

    Xu, Wenyu; Christenson, Michael; Fiflis, Peter; Curreli, Davide; Andruczyk, Daniel; Ruzic, David

    2013-10-01

    The application of liquid metal, especially liquid lithium has become an important topic for plasma facing component (PFC) design. A liquid PFC can effectively eliminate the erosion and thermal stress problems compared to the solid PFC while transferring heat and prolong the lifetime limit of the PFCs. A liquid lithium surface can also suppress the hydrogen isotopes recycling and getter the impurities in fusion reactors. The Lithium/metal infused trench (LiMIT) concept successfully proved that the thermoelectric effect can be utilized to drive liquid lithium flow within horizontally placed metallic open trenches in transverse magnetic field. A limiter based on this concept was tested in HT-7 and gave out positive results. However a broader application of this concept may require the trench be tilted or even placed vertically, for which strong capillary force caused by narrow trenches may be the solution. A new LiMIT design with very narrow trenches have been manufactured and tested in University of Illinois and related results will be presented. Based on this idea new limiters are designed for EAST and LTX and scheduled experiments on both devices will be discussed. This project is supported by DOE/ALPS contract: DEFG02- 99ER54515.

  8. Low-energy Excitations in the Magnetized State of the Bond-alternating Quantum S=1 Chain System NTENP

    SciTech Connect

    Regnault, L.-P.; Zheludev, Andrey I; Hagiwara, M.; Stunault, A.

    2006-01-01

    High-intensity inelastic neutron scattering experiments on the S=1 quasi-one-dimensional bond-alternating antiferromagnet Ni(C{sub 9}D{sub 24}N{sub 4})(NO{sub 2})ClO{sub 4} (NTENP) are performed in magnetic fields of up to 14.8 T. Excitation in the high field magnetized quantum spin solid (ordered) phase are investigated. In addition to the previously observed coherent long-lived gap excitation [M. Hagiwara et al., Phys. Rev. Lett 94, 177202 (2005)], a broad continuum is detected at lower energies. This observation is consistent with recent numerical studies, and helps explain the suppression of the lowest-energy gap mode in the magnetized state of NTENP. Yet another feature of the excitation spectrum is found at slightly higher energies, and appears to be some kind of multimagnon state.

  9. Signature of cluster disruption within magnetic fluid samples: The key information provided by low frequency alternating current susceptibility measurements

    NASA Astrophysics Data System (ADS)

    Du, Zhongzhou; Liu, Wenzhong; Zhong, Jing; Zhou, Ming; Zhang, Pu; Cesar Morais, Paulo

    2014-05-01

    This paper is focused on the signature of thermal-assisted cluster disruption while analyzing the inverse alternating current (AC) susceptibility (1/χ) versus temperature (T) curves recorded at lower AC frequencies (f), below 300 Hz. A commercial oil-based magnetic fluid (MF) sample was used in the experiments to investigate the critical temperature (T*) that characterizes the thermal disruption of aggregates suspended within the MF sample. T* was found to reduce as f increased within the frequency range of our investigation (63-263 Hz). Furthermore, T* was found to scale with the square of the applied AC frequency. Both theoretical and experimental evidences support that the excitation field frequency (f) dependence of the critical temperature (T*) is well described by T*(f)=T*(0)-Af/21+Bf2. The model is based on energy absorption of magnetic nanoparticles in an AC magnetic field.

  10. Magnetic quadrupoles lens for hot spot proton imaging in inertial confinement fusion

    NASA Astrophysics Data System (ADS)

    Teng, J.; Gu, Y. Q.; Chen, J.; Zhu, B.; Zhang, B.; Zhang, T. K.; Tan, F.; Hong, W.; Zhang, B. H.; Wang, X. Q.

    2016-08-01

    Imaging of DD-produced protons from an implosion hot spot region by miniature permanent magnetic quadrupole (PMQ) lens is proposed. Corresponding object-image relation is deduced and an adjust method for this imaging system is discussed. Ideal point-to-point imaging demands a monoenergetic proton source; nevertheless, we proved that the blur of image induced by proton energy spread is a second order effect therefore controllable. A proton imaging system based on miniature PMQ lens is designed for 2.8 MeV DD-protons and the adjust method in case of proton energy shift is proposed. The spatial resolution of this system is better than 10 μm when proton yield is above 109 and the spectra width is within 10%.

  11. Handling and archiving of magnetic fusion data at DIII-D

    SciTech Connect

    VanderLaan, J.F.; Miller, S.; McHarg, B.B. Jr.; Henline, P.A.

    1995-10-01

    Recent modifications to the computer network at DIII-D enhance the collection and distribution of newly acquired and archived experimental data. Linked clients and servers route new data from diagnostic computers to centralized mass storage and distribute data on demand to local and remote workstations and computers. Capacity for data handling exceeds the upper limit of DIII-D Tokamak data production of about 4 GBytes per day. Network users have fast access to new data stored on line. An interactive program handles requests for restoration of data archived off line. Disk management procedures retain selected data on line in preference to other data. Redundancy of all components on the archiving path from the network to magnetic media has prevented loss of data. Older data are rearchived as dictated by limited media life.

  12. Use of a twisted 3D Cauchy condition surface to reconstruct the last closed magnetic surface in a non-axisymmetric fusion plasma

    NASA Astrophysics Data System (ADS)

    Itagaki, Masafumi; Okubo, Gaku; Akazawa, Masayuki; Matsumoto, Yutaka; Watanabe, Kiyomasa; Seki, Ryosuke; Suzuki, Yasuhiro

    2012-12-01

    The three-dimensional (3D) Cauchy condition surface (CCS) method code, ‘CCS3D’, is now under development to reconstruct the 3D magnetic field profile outside a non-axisymmetric fusion plasma using only magnetic sensor signals. A new ‘twisted CCS’ is introduced, whose elliptic cross-section rotates with the variation in plasma geometry in the toroidal direction of a helical-type device. Independent of the toroidal angle, this CCS can be placed at a certain distance from the last closed magnetic surface (LCMS). With this new CCS, it is found through test calculations for the Large Helical Device that the numerical accuracy in the reconstructed field is improved. Furthermore, the magnetic field line tracing indicates the LCMS more precisely than with the use of the axisymmetric CCS. A new idea to determine the LCMS numerically is also proposed.

  13. INTRODUCTION: Status report on fusion research

    NASA Astrophysics Data System (ADS)

    Burkart, Werner

    2005-10-01

    members' personal views on the latest achievements in fusion research, including magnetic and inertial confinement scenarios. The report describes fusion fundamentals and progress in fusion science and technology, with ITER as a possible partner in the realization of self-sustainable burning plasma. The importance of the socio-economic aspects of energy production using fusion power plants is also covered. Noting that applications of plasma science are of broad interest to the Member States, the report addresses the topic of plasma physics to assist in understanding the achievements of better coatings, cheaper light sources, improved heat-resistant materials and other high-technology materials. Nuclear fusion energy production is intrinsically safe, but for ITER the full range of hazards will need to be addressed, including minimising radiation exposure, to accomplish the goal of a sustainable and environmentally acceptable production of energy. We anticipate that the role of the Agency will in future evolve from supporting scientific projects and fostering information exchange to the preparation of safety principles and guidelines for the operation of burning fusion plasmas with a Q > 1. Technical progress in inertial and magnetic confinement, as well as in alternative concepts, will lead to a further increase in international cooperation. New means of communication will be needed, utilizing the best resources of modern information technology to advance interest in fusion. However, today the basis of scientific progress is still through journal publications and, with this in mind, we trust that this report will find an interested readership. We acknowledge with thanks the support of the members of the IFRC as an advisory body to the Agency. Seven chairmen have presided over the IFRC since its first meeting in 1971 in Madison, USA, ensuring that the IAEA fusion efforts were based on the best professional advice possible, and that information on fusion developments has

  14. Genes Encoding Cher-TPR Fusion Proteins Are Predominantly Found in Gene Clusters Encoding Chemosensory Pathways with Alternative Cellular Functions

    PubMed Central

    Rico-Jiménez, Miriam; Alfonso, Carlos; Krell, Tino

    2012-01-01

    Chemosensory pathways correspond to major signal transduction mechanisms and can be classified into the functional families flagellum-mediated taxis, type four pili-mediated taxis or pathways with alternative cellular functions (ACF). CheR methyltransferases are core enzymes in all of these families. CheR proteins fused to tetratricopeptide repeat (TPR) domains have been reported and we present an analysis of this uncharacterized family. We show that CheR-TPRs are widely distributed in GRAM-negative but almost absent from GRAM-positive bacteria. Most strains contain a single CheR-TPR and its abundance does not correlate with the number of chemoreceptors. The TPR domain fused to CheR is comparatively short and frequently composed of 2 repeats. The majority of CheR-TPR genes were found in gene clusters that harbor multidomain response regulators in which the REC domain is fused to different output domains like HK, GGDEF, EAL, HPT, AAA, PAS, GAF, additional REC, HTH, phosphatase or combinations thereof. The response regulator architectures coincide with those reported for the ACF family of pathways. Since the presence of multidomain response regulators is a distinctive feature of this pathway family, we conclude that CheR-TPR proteins form part of ACF type pathways. The diversity of response regulator output domains suggests that the ACF pathways form a superfamily which regroups many different regulatory mechanisms, in which all CheR-TPR proteins appear to participate. In the second part we characterize WspC of Pseudomonas putida, a representative example of CheR-TPR. The affinities of WspC-Pp for S-adenosylmethionine and S-adenosylhomocysteine were comparable to those of prototypal CheR, indicating that WspC-Pp activity is in analogy to prototypal CheRs controlled by product feed-back inhibition. The removal of the TPR domain did not impact significantly on the binding constants and consequently not on the product feed-back inhibition. WspC-Pp was found to be

  15. Genetically engineered fusion of MAP-1 and factor H domains 1-5 generates a potent dual upstream inhibitor of both the lectin and alternative complement pathways.

    PubMed

    Nordmaj, Mie Anemone; Munthe-Fog, Lea; Hein, Estrid; Skjoedt, Mikkel-Ole; Garred, Peter

    2015-12-01

    Inhibition of the complement cascade has emerged as an option for treatment of a range of diseases. Mannose-binding lectin/ficolin/collectin-associated protein (MAP-1) is a pattern recognition molecule (PRM)-associated inhibitor of the lectin pathway. The central regulator of the alternative pathway (AP) is complement factor H (FH). Our aim was to design a dual upstream inhibitor of both human lectin and APs by fusing MAP-1 with a part of FH. There were 2 different recombinant chimeric proteins comprising full-length human MAP-1 and the first 5 N-terminal domains of human FH designed. The FH domains were orientated either in the N- or C-terminal part of MAP-1. The complement inhibition potential in human serum was assessed. Both chimeric constructs displayed the characteristics of the native molecules and bound to the PRMs with an EC50 of ∼ 2 nM. However, when added to serum diluted 1:4 in a solid-phase functional assay, only the first 5 N-terminal domains of complement FH fused to the C-terminal part of full-length MAP-1 chimeric construct were able to combine inhibition of lectin and AP activation with an half maximal inhibitory concentration of ∼ 100 and 20 nM, respectively. No effect was seen on the classical pathway. Fusion of MAP-1 with FH domains represents a novel therapeutic approach for selective targeting upstream and central complement activation at sites of inflammation. PMID:26260032

  16. Colliding Beam Fusion Reactor Space Propulsion System

    NASA Astrophysics Data System (ADS)

    Cheung, A.; Binderbauer, M.; Liu, F.; Qerushi, A.; Rostoker, N.; Wessel, F. J.

    2004-02-01

    The Colliding Beam Fusion Reactor Space Propulsion System, CBFR-SPS, is an aneutronic, magnetic-field-reversed configuration, fueled by an energetic-ion mixture of hydrogen and boron11 (H-B11). Particle confinement and transport in the CBFR-SPS are classical, hence the system is scaleable. Fusion products are helium ions, α-particles, expelled axially out of the system. α-particles flowing in one direction are decelerated and their energy recovered to ``power'' the system; particles expelled in the opposite direction provide thrust. Since the fusion products are charged particles, the system does not require the use of a massive-radiation shield. This paper describes a 100 MW CBFR-SPS design, including estimates for the propulsion-system parameters and masses. Specific emphasis is placed on the design of a closed-cycle, Brayton-heat engine, consisting of heat-exchangers, turbo-alternator, compressor, and finned radiators.

  17. Categorization of Alternative Conceptions in Electricity and Magnetism: The Case of Ethiopian Undergraduate Students

    ERIC Educational Resources Information Center

    Dega, Bekele Gashe; Kriek, Jeanne; Mogese, Temesgen Fereja

    2013-01-01

    The purpose of this study was to categorize 35 Ethiopian undergraduate physics students' alternative conceptions in the concepts of electric potential and energy. A descriptive qualitative research design was used to categorize the students' alternative conceptions. Four independently homogeneous ability focus groups were formed to…

  18. Adiabatic Quasi-Spherical Compressions Driven by Magnetic Pressure for Inertial Confinement Fusion

    SciTech Connect

    NASH,THOMAS J.

    2000-11-01

    The magnetic implosion of a high-Z quasi-spherical shell filled with DT fuel by the 20-MA Z accelerator can heat the fuel to near-ignition temperature. The attainable implosion velocity on Z, 13-cm/{micro}s, is fast enough that thermal losses from the fuel to the shell are small. The high-Z shell traps radiation losses from the fuel, and the fuel reaches a high enough density to reabsorb the trapped radiation. The implosion is then nearly adiabatic. In this case the temperature of the fuel increases as the square of the convergence. The initial temperature of the fuel is set by the heating of an ion acoustic wave to be about 200-eV after a convergence of 4. To reach the ignition temperature of 5-keV an additional convergence of 5 is required. The implosion dynamics of the quasi-spherical implosion is modeled with the 2-D radiation hydrodynamic code LASNEX. LASNEX shows an 8-mm diameter quasi-spherical tungsten shell on Z driving 6-atmospheres of DT fuel nearly to ignition at 3.5-keV with a convergence of 20. The convergence is limited by mass flow along the surface of the quasi-spherical shell. With a convergence of 20 the final spot size is 400-{micro}m in diameter.

  19. Note: Spectrometer with multichannel photon-counting detector for beam emission spectroscopy in magnetic fusion devices

    NASA Astrophysics Data System (ADS)

    Lizunov, A.; Khilchenko, A.; Khilchenko, V.; Kvashnin, A.; Zubarev, P.

    2015-12-01

    A spectrometer based on a linear array photomultiplier tube (PMT) has been developed and calibrated. A 0.635 m focal length Czerny-Turner monochromator combined with a coupling optics provides an image of a narrow 0.5 nm spectral range with a resolution of 0.015 nm/channel on a 32-anode PMT. The system aims at spectroscopy of Dα or Hα lines emitted by a diagnostic atomic beam in a plasma (primarily a motional Stark effect diagnostics). To record a low photon flux of ˜106 s-1 per channel with the time resolution of 100 μs, a pulse counting approach has been used. Wideband amplifiers scale single-electron pulses and transmit them to a digital data processing core hardwired in a programmable logic matrix. Calibrations have shown that the aberration-limited instrument function fits to a single detector channel of 1 mm width. Pilot results of passive measurements of Dα light emission from the plasma confined in a magnetic trap are presented.

  20. Modeling Nuclear Fusion in High Energy Density Plasmas Using a Strongly Magnetized Non-neutral Plasma

    NASA Astrophysics Data System (ADS)

    Dubin, D. H. E.

    2005-10-01

    In the hot dense interiors of stars and giant planets, nuclear reactions are predicted to occur at rates that are greatly enhanced compared to those at low densities. The enhancement is caused by plasma screening of the reacting pairs, increasing the probability of close collisions. However, strongly enhanced nuclear reaction rates have never been observed in the laboratory. This poster discusses a method for observing the enhancement using an analogy between nuclear energy and cyclotron energy in a non-neutral plasma in a strong magnetic field. In such a plasma, cyclotron energy is an adiabatic invariant, and is released only through close collisions that break this invariant. It is shown that the rate of release of cyclotron energy is enhanced by precisely the same factor as that for the release of nuclear energy, because both processes rely on close collisions that are enhanced by plasma screening.ootnotetextD. Dubin, Phys. Rev. Lett. 94, 025002 (2005). Simulations measuring the screening enhancement will be presented, and the possibility of exciting and studying burn fronts will be discussed.ootnotetextSee also adjacent poster by J. Bollinger.