Science.gov

Sample records for alternating current voltammetry

  1. Purification of water by electrocoagulation with an alternating asymmetrical current for stripping voltammetry

    SciTech Connect

    Gorodovykh, V.E.; Kaplin, A.A.; Svishchenko, N.M.; Obraztsov, S.V.

    1987-11-20

    The influence of the flow velocity and the current density on the degree of purification of water by electrocoagulation with an alternating asymmetrical current has been studied. It has been demonstrated that under optimum conditions at pH/sub c/ 11.0-11.5 the residual metal content in the purified water drops to the level n x 10/sup -4/ g/ml; this allows its use in the practice of stripping voltammetry.

  2. Bismuth electrodes, an alternative in stripping voltammetry

    NASA Astrophysics Data System (ADS)

    Barón-Jaimez, J.; Joya, M. R.; Barba-Ortega, J.

    2013-11-01

    The heavy metals are known as highly toxic contaminants, the processes carried out in industry contribute that finally they remain dispersed in effluents and sewage, doing part of the food chain. The importance of controlling the levels of these heavy metals has become an international policy, so it has generated interest in developing new analytical methodologies for its determination [1, 2, 3, 4]. The stripping voltammetry has been considered as a family of electro-sensitive analytical techniques useful for the determination of trace levels of many metals in environmental, clinical and industrial samples [3, 4]. This work presents an overview of these bismuth-based electrodes which were introduced around 2000, which have interesting characteristics for detection of heavy metals and which represent an alternative to mercury electrodes.

  3. Single Nanoparticle Voltammetry: Contact Modulation of the Mediated Current.

    PubMed

    Li, Xiuting; Batchelor-McAuley, Christopher; Whitby, Samuel A I; Tschulik, Kristina; Shao, Lidong; Compton, Richard G

    2016-03-18

    The cyclic voltammetric responses of individual palladium-coated carbon nanotubes are reported. Upon impact-from the solution phase-with the electrified interface, the nanoparticles act as individual nanoelectrodes catalyzing the hydrogen-oxidation reaction. At high overpotentials the current is shown to reach a quasi-steady-state diffusion limit, allowing determination of the tube length. The electrochemical response of the individual nanotubes also reveals the system to be modulated by the electrical contact between the electrode and carbon nanotube. This modulation presents itself as fluctuations in the recorded Faradaic current. PMID:26515036

  4. Stripping Voltammetry

    NASA Astrophysics Data System (ADS)

    Lovri?, Milivoj

    Electrochemical stripping means the oxidative or reductive removal of atoms, ions, or compounds from an electrode surface (or from the electrode body, as in the case of liquid mercury electrodes with dissolved metals) [1-5]. In general, these atoms, ions, or compounds have been preliminarily immobilized on the surface of an inert electrode (or within it) as the result of a preconcentration step, while the products of the electrochemical stripping will dissolve in the electrolytic solution. Often the product of the electrochemical stripping is identical to the analyte before the preconcentration. However, there are exemptions to these rules. Electroanalytical stripping methods comprise two steps: first, the accumulation of a dissolved analyte onto, or in, the working electrode, and, second, the subsequent stripping of the accumulated substance by a voltammetric [3, 5], potentiometric [6, 7], or coulometric [8] technique. In stripping voltammetry, the condition is that there are two independent linear relationships: the first one between the activity of accumulated substance and the concentration of analyte in the sample, and the second between the maximum stripping current and the accumulated substance activity. Hence, a cumulative linear relationship between the maximum response and the analyte concentration exists. However, the electrode capacity for the analyte accumulation is limited and the condition of linearity is satisfied only well below the electrode saturation. For this reason, stripping voltammetry is used mainly in trace analysis. The limit of detection depends on the factor of proportionality between the activity of the accumulated substance and the bulk concentration of the analyte. This factor is a constant in the case of a chemical accumulation, but for electrochemical accumulation it depends on the electrode potential. The factor of proportionality between the maximum stripping current and the analyte concentration is rarely known exactly. In fact, it is frequently ignored. For the analysis it suffices to establish the linear relationship empirically. The slope of this relationship may vary from one sample to another because of different influences of the matrix. In this case the concentration of the analyte is determined by the method of standard additions [1]. After measuring the response of the sample, the concentration of the analyte is deliberately increased by adding a certain volume of its standard solution. The response is measured again, and this procedure is repeated three or four times. The unknown concentration is determined by extrapolation of the regression line to the concentration axis [9]. However, in many analytical methods, the final measurement is performed in a standard matrix that allows the construction of a calibration plot. Still, the slope of this plot depends on the active area of the working electrode surface. Each solid electrode needs a separate calibration plot, and that plot must be checked from time to time because of possible deterioration of the electrode surface [2].

  5. Cyclic Voltammetry.

    ERIC Educational Resources Information Center

    Evans, Dennis H.; And Others

    1983-01-01

    Cyclic voltammetry is a simple experiment that has become popular in chemical research because it can provide useful information about redox reactions in a form which is easily obtained and interpreted. Discusses principles of the method and illustrates its use in the study of four electrode reactions. (Author/JN)

  6. Fault current limiter and alternating current circuit breaker

    DOEpatents

    Boenig, H.J.

    1998-03-10

    A solid-state circuit breaker and current limiter are disclosed for a load served by an alternating current source having a source impedance, the solid-state circuit breaker and current limiter comprising a thyristor bridge interposed between the alternating current source and the load, the thyristor bridge having four thyristor legs and four nodes, with a first node connected to the alternating current source, and a second node connected to the load. A coil is connected from a third node to a fourth node, the coil having an impedance of a value calculated to limit the current flowing therethrough to a predetermined value. Control means are connected to the thyristor legs for limiting the alternating current flow to the load under fault conditions to a predetermined level, and for gating the thyristor bridge under fault conditions to quickly reduce alternating current flowing therethrough to zero and thereafter to maintain the thyristor bridge in an electrically open condition preventing the alternating current from flowing therethrough for a predetermined period of time. 9 figs.

  7. Fault current limiter and alternating current circuit breaker

    DOEpatents

    Boenig, Heinrich J. (Los Alamos, NM)

    1998-01-01

    A solid-state circuit breaker and current limiter for a load served by an alternating current source having a source impedance, the solid-state circuit breaker and current limiter comprising a thyristor bridge interposed between the alternating current source and the load, the thyristor bridge having four thyristor legs and four nodes, with a first node connected to the alternating current source, and a second node connected to the load. A coil is connected from a third node to a fourth node, the coil having an impedance of a value calculated to limit the current flowing therethrough to a predetermined value. Control means are connected to the thyristor legs for limiting the alternating current flow to the load under fault conditions to a predetermined level, and for gating the thyristor bridge under fault conditions to quickly reduce alternating current flowing therethrough to zero and thereafter to maintain the thyristor bridge in an electrically open condition preventing the alternating current from flowing therethrough for a predetermined period of time.

  8. ALTERNATING CURRENT ELECTROCOAGULATION FOR SUPERFUND SITE REMEDIATION

    EPA Science Inventory

    The technical and economical feasibility of alternating current electrocoagulation (ACE) developed by Electro-Pure Systems, Inc., was evaluated for a 2-year period. CE is an electrochemical technology where highly-charged aluminum polyhydroxide species are introduced into aqueous...

  9. Determination of tellurium in gallium by alternating current stripping voltammetry with a mercury/graphite electrode

    SciTech Connect

    Berengard, I.B.; Kaplan, B. Ya.

    1986-04-01

    The analytical signal in ac stripping coltammetry (ACSV) with mercury indicator electrodes depends on the weight of the electrolytically collected analyte at the electrode surface, the depth of the collection layer being equal to the effective diffusion-layer thickness. Replacement of the static mercury drop electrode (SMDE) by the mercury/graphite electrode (MGE) is of practical interest in that the analyte detection limit can be lowered by decreasing the colume of the telluriumcontaining polarographed solution; in addition, plant laboratories find it difficult to control the SDME uniformity. The work in this article was done on a PU-1 universal polarograph in a square-wave vol tage component mode using the three-electrode cell shown. The rotating mercury/graphite electrode is found by the authors to be superior to the static mercury drop electrode in that it can lower the detection limit for tellurium in gallium to 5.10 /SUP -7percent/ , due to the smaller volume of the polarographed solution.

  10. Josephson junctions with alternating critical current density

    SciTech Connect

    Mints, R.G.; Kogan, V.G.

    1997-04-01

    The magnetic-field dependence of the critical current I{sub c}(H) is considered for a short Josephson junction with the critical current density j{sub c} alternating along the tunnel contact. Two model cases, periodic and randomly alternating j{sub c}, are treated in detail. Recent experimental data on I{sub c}(H) for grain-boundary Josephson junctions in YBa{sub 2}Cu{sub 3}O{sub x} are discussed. {copyright} {ital 1997} {ital The American Physical Society}

  11. Alternating current long range alpha particle detector

    DOEpatents

    MacArthur, Duncan W. (Los Alamos, NM); McAtee, James L. (Los Alamos, NM)

    1993-01-01

    An alpha particle detector, utilizing alternating currents, whcih is capable of detecting alpha particles from distinct sources. The use of alternating currents allows use of simpler ac circuits which, in turn, are not susceptible to dc error components. It also allows the benefit of gas gain, if desired. In the invention, a voltage source creates an electric field between two conductive grids, and between the grids and a conductive enclosure. Air containing air ions created by collision with alpha particles is drawn into the enclosure and detected. In some embodiments, the air flow into the enclosure is interrupted, creating an alternating flow of ions. In another embodiment, a modulated voltage is applied to the grid, also modulating the detection of ions.

  12. Alternating current long range alpha particle detector

    DOEpatents

    MacArthur, D.W.; McAtee, J.L.

    1993-02-16

    An alpha particle detector, utilizing alternating currents, which is capable of detecting alpha particles from distinct sources. The use of alternating currents allows use of simpler ac circuits which, in turn, are not susceptible to dc error components. It also allows the benefit of gas gain, if desired. In the invention, a voltage source creates an electric field between two conductive grids, and between the grids and a conductive enclosure. Air containing air ions created by collision with alpha particles is drawn into the enclosure and detected. In some embodiments, the air flow into the enclosure is interrupted, creating an alternating flow of ions. In another embodiment, a modulated voltage is applied to the grid, also modulating the detection of ions.

  13. Solar cell system having alternating current output

    NASA Technical Reports Server (NTRS)

    Evans, J. C., Jr. (inventor)

    1980-01-01

    A monolithic multijunction solar cell was modified by fabricating an integrated circuit inverter on the back of the cell to produce a device capable of generating an alternating current output. In another embodiment, integrated curcuit power conditioning electronics was incorporated in a module containing a solar cell power supply.

  14. Pulse Voltammetry

    NASA Astrophysics Data System (ADS)

    Stojek, Zbigniew

    The idea of imposing potential pulses and measuring the currents at the end of each pulse was proposed by Barker in a little-known journal as early as in 1958 [1]. However, the first reliable trouble-free and affordable polarographs offering voltammetric pulse techniques appeared on the market only in the 1970s. This delay was due to some limitations on the electronic side. In the 1990s, again substantial progress in electrochemical pulse instrumentation took place. This was related to the introduction of microprocessors, computers, and advanced software.

  15. Ultrafast micropumping by biased alternating current electrokinetics

    NASA Astrophysics Data System (ADS)

    Lian, Meng; Wu, Jie

    2009-02-01

    This paper reports dramatic improvements in flow rate over conventional alternating current (ac) electrokinetic micropumps by exploiting asymmetry in electric potentials over the electrodes. A micropump consisting of a planar asymmetric electrode array was tested using ac signals with and without a direct current (dc) bias. All experiments were done at 100 kHz Vac. The pumping velocity is much faster with a dc voltage, in some cases by an order of magnitude, reaching a linear velocity of up to 2.5 mm/s with only 5.4 Vrms. The discovery presents an exciting opportunity for microfluidics. Future improvement can be anticipated with additional optimization.

  16. Direct Current Contamination of Kilohertz Frequency Alternating Current Waveforms

    PubMed Central

    Franke, Manfred; Bhadra, Niloy; Bhadra, Narendra; Kilgore, Kevin

    2014-01-01

    Kilohertz Frequency Alternating Current (KHFAC) waveforms are being evaluated in a variety of physiological settings because of their potential to modulate neural activity uniquely when compared to frequencies in the sub-kilohertz range. However, the use of waveforms in this frequency range presents some unique challenges regarding the generator output. In this study we explored the possibility of undesirable contamination of the KHFAC waveforms by direct current (DC). We evaluated current- and voltage-controlled KHFAC waveform generators in configurations that included a capacitive coupling between generator and electrode, a resistive coupling and combinations of capacitive with inductive coupling. Our results demonstrate that both voltage- and current-controlled signal generators can unintentionally add DC-contamination to a KHFAC signal, and that capacitive coupling is not always sufficient to eliminate this contamination. We furthermore demonstrated that high value inductors, placed in parallel with the electrode, can be effective in eliminating DC-contamination irrespective of the type of stimulator, reducing the DC contamination to less than 1 ?A. This study highlights the importance of carefully designing the electronic setup used in KHFAC studies and suggests specific testing that should be performed and reported in all studies that assess the neural response to KHFAC waveforms. PMID:24820914

  17. Affordable Cyclic Voltammetry

    ERIC Educational Resources Information Center

    Stewart, Greg; Kuntzleman, Thomas S.; Amend, John R.; Collins, Michael J.

    2009-01-01

    Cyclic voltammetry is an important component of the undergraduate chemical curriculum. Unfortunately, undergraduate students rarely have the opportunity to conduct experiments in cyclic voltammetry owing to the high cost of potentiostats, which are required to control these experiments. By using MicroLab data acquisition interfaces in conjunction

  18. The Teaching of Three-Phase Alternating Current

    ERIC Educational Resources Information Center

    Bunker, C. A.

    1976-01-01

    Describes a series of experiments which use a modified automobile alternator as a portable source of three-phase alternating current. The low frequency capabilities of this source allow the phase relationships to be demonstrated using an ordinary galvanometer. (GS)

  19. Recent Advances in Voltammetry

    PubMed Central

    Batchelor-McAuley, Christopher; Kätelhön, Enno; Barnes, Edward O; Compton, Richard G; Laborda, Eduardo; Molina, Angela

    2015-01-01

    Recent progress in the theory and practice of voltammetry is surveyed and evaluated. The transformation over the last decade of the level of modelling and simulation of experiments has realised major advances such that electrochemical techniques can be fully developed and applied to real chemical problems of distinct complexity. This review focuses on the topic areas of: multistep electrochemical processes, voltammetry in ionic liquids, the development and interpretation of theories of electron transfer (Butler–Volmer and Marcus–Hush), advances in voltammetric pulse techniques, stochastic random walk models of diffusion, the influence of migration under conditions of low support, voltammetry at rough and porous electrodes, and nanoparticle electrochemistry. The review of the latter field encompasses both the study of nanoparticle-modified electrodes, including stripping voltammetry and the new technique of ‘nano-impacts’. PMID:26246984

  20. Recent Advances in Voltammetry.

    PubMed

    Batchelor-McAuley, Christopher; Ktelhn, Enno; Barnes, Edward O; Compton, Richard G; Laborda, Eduardo; Molina, Angela

    2015-06-01

    Recent progress in the theory and practice of voltammetry is surveyed and evaluated. The transformation over the last decade of the level of modelling and simulation of experiments has realised major advances such that electrochemical techniques can be fully developed and applied to real chemical problems of distinct complexity. This review focuses on the topic areas of: multistep electrochemical processes, voltammetry in ionic liquids, the development and interpretation of theories of electron transfer (Butler-Volmer and Marcus-Hush), advances in voltammetric pulse techniques, stochastic random walk models of diffusion, the influence of migration under conditions of low support, voltammetry at rough and porous electrodes, and nanoparticle electrochemistry. The review of the latter field encompasses both the study of nanoparticle-modified electrodes, including stripping voltammetry and the new technique of 'nano-impacts'. PMID:26246984

  1. Alternating current electromagnetic servo induction meter

    NASA Technical Reports Server (NTRS)

    Bogue, R. K.

    1968-01-01

    Electromagnetic device accurately indicates the responses of various sensors in high performance flight research aircraft to conditions encountered in flight. The device responds to sensor inputs to move a slideable armature along an indicator scale by the force of currents induced in the armature winding.

  2. Cyclic Voltammetry Experiment.

    ERIC Educational Resources Information Center

    Van Benschoten, James J.; And Others

    1983-01-01

    Describes a three-part experiment designed to introduce cyclic voltammetry to graduate/undergraduate students. Part 1 demonstrates formal reduction potential, redox electron transfer, diffusion coefficient, and electrochemical reversibility. Part 2 investigates electrochemical behavior of acetaminophen. Part 3 examines such experimental variables…

  3. Cyclic Voltammetry Experiment.

    ERIC Educational Resources Information Center

    Van Benschoten, James J.; And Others

    1983-01-01

    Describes a three-part experiment designed to introduce cyclic voltammetry to graduate/undergraduate students. Part 1 demonstrates formal reduction potential, redox electron transfer, diffusion coefficient, and electrochemical reversibility. Part 2 investigates electrochemical behavior of acetaminophen. Part 3 examines such experimental variables

  4. 27. LEUPOLD AND STEVENS MIDGET CURRENT METER (WITH ALTERNATE IMPELLER) ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    27. LEUPOLD AND STEVENS MIDGET CURRENT METER (WITH ALTERNATE IMPELLER) AND FOLDING SCALE (MEASURED IN INCHES). - Waterways Experiment Station, Hydraulics Laboratory, Halls Ferry Road, 2 miles south of I-20, Vicksburg, Warren County, MS

  5. Square-Wave Voltammetry

    NASA Astrophysics Data System (ADS)

    Lovri?, Milivoj

    Square-wave voltammetry (SWV) is one of the four major voltammetric techniques provided by modern computer-controlled electroanalytical instruments, such as Autolab and ?Autolab (both EcoChemie, Utrecht), BAS 100 A (Bioanalytical Systems), and PAR Model 384 B (Princeton Applied Research) [1]. The other three important techniques are single scan and cyclic staircase, pulse, and differential pulse voltammetry (see Chap. II.2). All four are either directly applied or after a preconcentration to record the stripping process. The application of SWV boomed in the last decade, first because of the widespread use of the instruments mentioned above, second because of a well-developed theory, and finally, and most importantly, because of its high sensitivity to surface-confined electrode reactions. Adsorptive stripping SWV is the best electroanalytical method for the determination of electroactive organic molecules that are adsorbed on the electrode surface [2].

  6. Method for sputtering with low frequency alternating current

    DOEpatents

    Timberlake, John R.

    1996-01-01

    Low frequency alternating current sputtering is provided by connecting a low frequency alternating current source to a high voltage transformer having outer taps and a center tap for stepping up the voltage of the alternating current. The center tap of the transformer is connected to a vacuum vessel containing argon or helium gas. Target electrodes, in close proximity to each other, and containing material with which the substrates will be coated, are connected to the outer taps of the transformer. With an applied potential, the gas will ionize and sputtering from the target electrodes onto the substrate will then result. The target electrodes can be copper or boron, and the substrate can be stainless steel, aluminum, or titanium. Copper coatings produced are used in place of nickel and/or copper striking.

  7. Method for sputtering with low frequency alternating current

    DOEpatents

    Timberlake, J.R.

    1996-04-30

    Low frequency alternating current sputtering is provided by connecting a low frequency alternating current source to a high voltage transformer having outer taps and a center tap for stepping up the voltage of the alternating current. The center tap of the transformer is connected to a vacuum vessel containing argon or helium gas. Target electrodes, in close proximity to each other, and containing material with which the substrates will be coated, are connected to the outer taps of the transformer. With an applied potential, the gas will ionize and sputtering from the target electrodes onto the substrate will then result. The target electrodes can be copper or boron, and the substrate can be stainless steel, aluminum, or titanium. Copper coatings produced are used in place of nickel and/or copper striking. 6 figs.

  8. A method for sputtering with low frequency alternating current

    SciTech Connect

    Timberlake, J.R.

    1993-12-31

    Low frequency alternating current sputtering is provided by connecting a low frequency alternating current to a high voltage transformer having outer taps and a center tap for stepping up the voltage of the alternating currentThe center tap of the tmsformer is connected to a vacuum vessel containing argon or helium gas. Target electrodes, in close proximity to each other, and containing material with which the substrates will be coated, are connected to the outer taps of the ftwsformer. With an applied potential, the gas will ionize and sputtering from the target electrodes onto the substrate will then result. The target electrodes can be copper or boron, and the substrate can be stainless steel, aluminum, or titanium. Copper coatings produced are used in place of nickel and/or copper striking.

  9. 59. View of high voltage (4160 volts alternating current) electric ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    59. View of high voltage (4160 volts alternating current) electric load center and motor control center at mezzanine level in transmitter building no. 102. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  10. Nonlinear response of superconductors to alternating fields and currents

    SciTech Connect

    McDonald, J.

    1997-10-08

    This report discusses the following topics on superconductivity: nonlinearities in hard superconductors such as surface impedance of a type II superconductimg half space and harmonic generation and intermodulation due to alternating transport currents; and nonlinearities in superconducting weak links such as harmonic generation by a long Josephson Junction in a superconducting slab.

  11. Describing current and potential markets for alternative-fuel vehicles

    SciTech Connect

    1996-03-26

    Motor vehicles are a major source of greenhouse gases, and the rising numbers of motor vehicles and miles driven could lead to more harmful emissions that may ultimately affect the world`s climate. One approach to curtailing such emissions is to use, instead of gasoline, alternative fuels: LPG, compressed natural gas, or alcohol fuels. In addition to the greenhouse gases, pollutants can be harmful to human health: ozone, CO. The Clean Air Act Amendments of 1990 authorized EPA to set National Ambient Air Quality Standards to control this. The Energy Policy Act of 1992 (EPACT) was the first new law to emphasize strengthened energy security and decreased reliance on foreign oil since the oil shortages of the 1970`s. EPACT emphasized increasing the number of alternative-fuel vehicles (AFV`s) by mandating their incremental increase of use by Federal, state, and alternative fuel provider fleets over the new few years. Its goals are far from being met; alternative fuels` share remains trivial, about 0.3%, despite gains. This report describes current and potential markets for AFV`s; it begins by assessing the total vehicle stock, and then it focuses on current use of AFV`s in alternative fuel provider fleets and the potential for use of AFV`s in US households.

  12. Cyclic voltammetry and anodic stripping voltammetry with mercury ultramicroelectrodes

    SciTech Connect

    Wehmeyer, K.R.; Wightman, R.M.

    1985-08-01

    A method for the preparation of mercury microvoltammetric electrodes of hemispherical geometry with radii of 2.3-7.3 ..mu..m has been developed. Mercury is electrodeposited from solutions of Hg(I) onto a microvoltammetric platinum disk electrode at a constant potential sufficient to ensure diffusion limited conditions. The radius of the deposited mercury electrode is a function of the square root of the deposition time and was experimentally evaluated by applying the equation for steady-state limiting current at a hemispherical electrode to the reduction of Ru(NH/sub 3/)/sub 6//sup 3 +/ at the mercury electrode. The mercury microvoltammetric electrode has been employed in several unique applications. Anodic stripping voltammetry with these electrodes can be performed with a quiescent solution during deposition due to the enhanced mass transfer resulting from nonlinear diffusion. The stripping peaks are as narrow as those expected for thin films, and the peak current for the stripping of lead was found to be linear over the concentration range of 7 x 10/sup -10/ M to 1 x 10/sup -7/ M (5-min preconcentration interval) and to have higher precision than conventional stripping techniques. Mercury microvoltammetric electrodes also are demonstrated to be of value in fast scan cyclic voltammetry in aqueous solution. A well-defined wave can be obtained for the oxidized form of ascorbic acid at pH 7.0 at a scan rate greater than 1 kV s/sup -1/. 26 references, 3 figures, 2 tables.

  13. Experimental Study on Current Decay Characteristics of Persistent Current HTS Magnet by Alternating Magnetic Field

    NASA Astrophysics Data System (ADS)

    Park, Young Gun; Lee, Chang Young; Hwang, Young Jin; Lee, Woo Seung; Lee, Jiho; Jo, Hyun Chul; Chung, Yoon Do; Ko, Tae Kuk

    This paper deals with a current decay characteristics of a high temperature superconducting (HTS) magnet operated in persistent current mode (PCM). In superconducting synchronous machine applications such as linear synchronous motor (LSM), the superconducting coil is designed to operate in the PCM to obtain steady magnetic field with DC transport current. This superconducting magnet operates on a direct current, but it can be exposed to alternating magnetic field due to the armature winding. When the magnet is subjected to an external time-varying magnetic field, it is possible to result in a decay of the current in PCM system due to AC loss. In this research, a PCM system with armature coil which generates time-varying magnetic field was fabricated to verify current decay characteristics by external alternating magnetic field. The current decay rate was measured by using a hall sensor as functions of amplitude and frequency of armature coil.

  14. Synthesis of Pt nanoparticles on electrochemically reduced graphene oxide by potentiostatic and alternate current methods

    SciTech Connect

    Molina, J.; Fernández, J.; Río, A.I. del; Bonastre, J.; Cases, F.

    2014-03-01

    Reduced graphene oxide (RGO) has been synthesized on Pt wires by means of a potentiodynamic method between + 0.6 V and − 1.4 V for 20 scans. Cyclic voltammetry characterization of the coatings showed the typical capacitative behavior of graphene. Pt nanoparticles were synthesized on Pt–RGO electrodes by means of potentiostatic methods and a comparison between different synthesis potentials (− 0.16, 0, + 0.2 and + 0.4 V) for the same synthesis charge (mC·cm{sup −2}) was established. The electrodes obtained were characterized in 0.5 M H{sub 2}SO{sub 4} solution to observe the characteristic oxidation and reduction processes of the Pt surface. A 0.5 M H{sub 2}SO{sub 4}/0.5 M CH{sub 3}OH solution was used to measure the catalytic properties of the deposits against methanol oxidation. The most appropriate potential to perform the synthesis was 0 V followed by − 0.16 V and + 0.2 V. The morphology of the coatings varied depending on the potential applied as observed by scanning electron microscopy. Alternate current methods were also used to synthesize Pt nanoparticles and compare the results with the traditional potentiostatic method. Different frequencies were used: 0.1, 1, 10, 100, 1000 and 10 000 Hz. Alternate current synthesis is more efficient than traditional potentiostatic methods, obtaining more electroactive coatings with less effective synthesis time. - Highlights: • Reduced graphene oxide has been obtained by electrochemical reduction on Pt wires. • Pt nanoparticles have been obtained potentiostatically at different potentials. • Pt nanoparticles have been obtained by ac methods with different frequencies. • ac synthesis is a better synthesis method than potentiostatic synthesis.

  15. A Treatise on the Theory of Alternating Currents

    NASA Astrophysics Data System (ADS)

    Russell, Alexander

    2014-05-01

    1. Introduction. Electrostatics. Magnetism. Electrodynamics; 2. Alternating current in an inductive circuit. Self inductance formulae. Rectangle concentric main. Cylindrical wires; 3. The inductance of circular and helical currents. Rayleigh's formula. Maximum inductance. Mutual inductance of coaxial coils. Lorenz's formula. Mathematical tables; 4. Effective values. Choking coil and condenser currents. Effects of wave shape. Resonance; 5. Electrostatic capacity. Maxwell's equations. Capacity formulae for parallel cylinders. The capacities of three core cables in terms of Maxwell's coefficients; 6. Capacity formulae for cables. The capacity coefficients of overhead wires; 7. High frequency currents. Complete solution for a concentric main. Parallel conductors. Mathematical tables; 8. Problems in connection with spherical electrodes. The capacity coefficients. The attractions and repulsion. The maximum value of the electric stress; 9. Current oscillations. Inductively coupled electric circuits. Forced oscillations; 10. The theory of the power factor. Phase difference; 11. The method of the complex variable. Graphical solution; 12. Vectors in space. Failure of graphical methods; 13. The measurement of power. Watt-hour meters; 14. The air core transformer. Circle diagrams; 15. The theory of three phase currents. Power measurement; 16. The theory of two phase currents. Power measurement; 17. The conversion of polyphase systems. Phase indicators; 18. Rotating magnetic fields. Guiding magnetic fields; 19. The magnetic field bound single and polyphase cables. Losses in single, two and three phase cables. Dielectric losses; 20. Eddy current losses. Metal plates. Metal cylinders; 21. The method of duality. Reciprocal theorems; Index; Symbols; Index.

  16. Training Course for Power Operating Personnel. Lesson No. 6: Alternating-Current Generator Excitation.

    ERIC Educational Resources Information Center

    Department of the Interior, Denver, CO. Engineering and Research Center.

    Subjects covered in this text are controlling the hydroelectric generator, generator excitation, basic principles of direct current generation, direction of current flow, basic alternating current generator, alternating and direct current voltage outputs, converting alternating current to direct current, review of the basic generator and…

  17. Renal perfusion evaluation by alternating current biosusceptometry of magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Quini, Caio C.; Matos, Juliana F.; Prspero, Andr G.; Calabresi, Marcos Felipe F.; Zufelato, Nicholas; Bakuzis, Andris F.; Baffa, Oswaldo; Miranda, Jos Ricardo A.

    2015-04-01

    Alternating current susceptometry, a simple and affordable technique, was employed to study the sensitivity of this approach to assess rat kidney perfusion by the injection of 200 ?L of magnetic nanoparticles with a concentration of 23 mg/mL in the femoral vein and the measurement of the signal above the kidney. The instrument was able to detect the signal and the transit time of the first and second pass were measured in five animals with average values of 13.64.3 s and 20.67.1 s.

  18. Alternating current electrospinning for preparation of fibrous drug delivery systems.

    PubMed

    Balogh, Attila; Cselkó, Richárd; Démuth, Balázs; Verreck, Geert; Mensch, Jürgen; Marosi, György; Nagy, Zsombor Kristóf

    2015-11-10

    Alternating current electrospinning (ACES) was compared to direct current electrospinning (DCES) for the preparation of drug-loaded nanofibrous mats. It is generally considered that DCES is the solely technique to produce nanofibers using the electrostatic force from polymer solutions, however, less studied and also capable ACES provides further advantages such as increased specific productivities. A poorly water-soluble drug (carvedilol) was incorporated into the fibers based on three different polymeric matrices (an acid-soluble terpolymer (Eudragit(®) E), a base-soluble copolymer (Eudragit(®) L 100-55) and a nonionic homopolymer (polyvinylpyrrolidone K90)) to improve the dissolution of the weak base drug under different pH conditions. Morphology and fiber diameter evaluation showed similar electrospun fibers regardless the type of the high voltage and the major differences in feeding rates. The amorphous ACES and DCES fibers provided fast and total drug dissolutions in all cases. The presented results show that ACES can be a more feasible novel alternative to formulate fibers for drug delivery purposes. PMID:26320549

  19. Transcranial alternating current stimulation attenuates visual motion adaptation.

    PubMed

    Kar, Kohitij; Krekelberg, Bart

    2014-05-21

    Transcranial alternating current stimulation (tACS) is used in clinical applications and basic neuroscience research. Although its behavioral effects are evident from prior reports, current understanding of the mechanisms that underlie these effects is limited. We used motion perception, a percept with relatively well known properties and underlying neural mechanisms to investigate tACS mechanisms. Healthy human volunteers showed a surprising improvement in motion sensitivity when visual stimuli were paired with 10 Hz tACS. In addition, tACS reduced the motion-after effect, and this reduction was correlated with the improvement in motion sensitivity. Electrical stimulation had no consistent effect when applied before presenting a visual stimulus or during recovery from motion adaptation. Together, these findings suggest that perceptual effects of tACS result from an attenuation of adaptation. Important consequences for the practical use of tACS follow from our work. First, because this mechanism interferes only with adaptation, this suggests that tACS can be targeted at subsets of neurons (by adapting them), even when the applied currents spread widely throughout the brain. Second, by interfering with adaptation, this mechanism provides a means by which electrical stimulation can generate behavioral effects that outlast the stimulation. PMID:24849365

  20. Reversible Nerve Conduction Block Using Kilohertz Frequency Alternating Current

    PubMed Central

    Kilgore, Kevin L.; Bhadra, Niloy

    2013-01-01

    Objectives The features and clinical applications of balanced-charge kilohertz frequency alternating currents (KHFAC) are reviewed. Preclinical studies of KHFAC block have demonstrated that it can produce an extremely rapid and reversible block of nerve conduction. Recent systematic analysis and experimentation utilizing KHFAC block has resulted in a significant increase in interest in KHFAC block, both scientifically and clinically. Materials and Methods We review the history and characteristics of KHFAC block, the methods used to investigate this type of block, the experimental evaluation of block, and the electrical parameters and electrode designs needed to achieve successful block. We then analyze the existing clinical applications of high frequency currents, comparing the early results with the known features of KHFAC block. Results Although many features of KHFAC block have been characterized, there is still much that is unknown regarding the response of neural structures to rapidly fluctuating electrical fields. The clinical reports to date do not provide sufficient information to properly evaluate the mechanisms that result in successful or unsuccessful treatment. Conclusions KHFAC nerve block has significant potential as a means of controlling nerve activity for the purpose of treating disease. However, early clinical studies in the use of high frequency currents for the treatment of pain have not been designed to elucidate mechanisms or allow direct comparisons to preclinical data. We strongly encourage the careful reporting of the parameters utilized in these clinical studies, as well as the development of outcome measures that could illuminate the mechanisms of this modality. PMID:23924075

  1. Alternatives to animal testing: current status and future perspectives.

    PubMed

    Liebsch, Manfred; Grune, Barbara; Seiler, Andrea; Butzke, Daniel; Oelgeschlger, Michael; Pirow, Ralph; Adler, Sarah; Riebeling, Christian; Luch, Andreas

    2011-08-01

    On the occasion of the 20th anniversary of the Center for Alternative Methods to Animal Experiments (ZEBET), an international symposium was held at the German Federal Institute for Risk Assessment (BfR) in Berlin. At the same time, this symposium was meant to celebrate the 50th anniversary of the publication of the book "The Principles of Humane Experimental Technique" by Russell and Burch in 1959 in which the 3Rs principle (that is, Replacement, Reduction, and Refinement) has been coined and introduced to foster the development of alternative methods to animal testing. Another topic addressed by the symposium was the new vision on "Toxicology in the twenty-first Century", as proposed by the US-National Research Council, which aims at using human cells and tissues for toxicity testing in vitro rather than live animals. An overview of the achievements and current tasks, as well as a vision of the future to be addressed by ZEBET@BfR in the years to come is outlined in the present paper. PMID:21607681

  2. Use of cyclic current reversal polarization voltammetry for investigating the relationship between corrosion resistance and heat-treatment induced variations in microstructures of 400 C martensitic stainless steels

    NASA Technical Reports Server (NTRS)

    Ambrose, John R.

    1992-01-01

    Software for running a cyclic current reversal polarization voltammagram has been developed for use with a EG&G Princeton Applied Research Model 273 potentiostat/galvanostat system. The program, which controls the magnitude, direction and duration of an impressed galvanostatic current, will produce data in ASCII spreadsheets (Lotus, Quattro) for graphical representation of CCRPV voltammograms. The program was used to determine differences in corrosion resistance of 440 C martenstic stainless steel produced as a result of changes in microstructure effected by tempering. It was determined that tempering at all temperatures above 400 F resulted in increased polarizability of the material, with the increased likelihood that pitting would be initiated upon exposure to marine environments. These results will be used in development of remedial procedures for lowering the susceptibility of these alloys toward the stress corrosion cracking experienced in bearings used in high pressure oxygen turbopumps used in the main engines of space shuttle orbiters.

  3. The development of monolithic alternating current light-emitting diode

    NASA Astrophysics Data System (ADS)

    Yeh, Wen-Yung; Yen, Hsi-Hsuan; Chan, Yi-Jen

    2011-02-01

    The monolithic alternating current light emitting diode (ACLED) has been revealed for several years and was regarded as a potential device for solid state lighting. In this study, we will discuss the characteristics, development status, future challenges, and ITRI's development strategy about ACLED, especially focusing on the development progress of the monolithic GaN-based Schottky barrier diodes integrated ACLED (SBD-ACLED). The SBD-ACLED design can not only improve the chip area utilization ratio but also provide much higher reverse breakdown voltage by integrating four SBDs with the micro-LEDs array in a single chip, which was regarded as a good on-chip ACLED design. According to the experimental results, higher chip efficiency can be reached through SBD-ACLED design since the chip area utilization ratio was increased. Since the principle and the operation condition of ACLED is quite different from those of the typical DCLED, critical issues for ACLED like the current droops, the flicker phenomenon, the safety regulations, the measurement standards and the power fluctuation have been studied for getting a practical and reliable ACLED design. Besides, the "AC LED application and research alliance" (AARA) lead by ITRI in Taiwan for the commercialization works of ACLED has also been introduced.

  4. Precision electronic speed controller for an alternating-current

    DOEpatents

    Bolie, Victor W.

    1988-01-01

    A high precision controller for an alternating-current multi-phase electrical motor that is subject to a large inertial load. The controller was developed for and is particularly suitable for controlling, in a neutron chopper system, a heavy spinning rotor that must be rotated in phase-locked synchronism with a reference pulse train that is representative of an ac power supply signal having a meandering line frequency. The controller includes a shaft revolution sensor which provides a feedback pulse train representative of the actual speed of the motor. An internal digital timing signal generator provides a reference signal which is compared with the feedback signal in a computing unit to provide a motor control signal. In the preferred embodiment, the motor control signal is a weighted linear sum of a speed error voltage, a phase error voltage, and a drift error voltage, each of which is computed anew with each revolution of the motor shaft. The stator windings of the motor are driven by two amplifiers which are provided with input signals having the proper quadrature relationship by an exciter unit consisting of a voltage controlled oscillator, a binary counter, a pair of readonly memories, and a pair of digital-to-analog converters.

  5. 46 CFR 111.30-25 - Alternating-current ship's service switchboards.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Switchboards § 111.30-25 Alternating-current ship's service switchboards. (a) Except as allowed in paragraph (g) of this section, each alternating-current ship's service... 46 Shipping 4 2011-10-01 2011-10-01 false Alternating-current ship's service switchboards....

  6. 46 CFR 111.30-25 - Alternating-current ship's service switchboards.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Switchboards § 111.30-25 Alternating-current ship's service switchboards. (a) Except as allowed in paragraph (g) of this section, each alternating-current ship's service... 46 Shipping 4 2014-10-01 2014-10-01 false Alternating-current ship's service switchboards....

  7. 46 CFR 111.30-25 - Alternating-current ship's service switchboards.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Switchboards § 111.30-25 Alternating-current ship's service switchboards. (a) Except as allowed in paragraph (g) of this section, each alternating-current ship's service... 46 Shipping 4 2013-10-01 2013-10-01 false Alternating-current ship's service switchboards....

  8. 46 CFR 111.30-25 - Alternating-current ship's service switchboards.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Switchboards § 111.30-25 Alternating-current ship's service switchboards. (a) Except as allowed in paragraph (g) of this section, each alternating-current ship's service... 46 Shipping 4 2010-10-01 2010-10-01 false Alternating-current ship's service switchboards....

  9. 46 CFR 111.30-25 - Alternating-current ship's service switchboards.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Switchboards § 111.30-25 Alternating-current ship's service switchboards. (a) Except as allowed in paragraph (g) of this section, each alternating-current ship's service... 46 Shipping 4 2012-10-01 2012-10-01 false Alternating-current ship's service switchboards....

  10. Precision electronic speed controller for an alternating-current motor

    DOEpatents

    Bolie, V.W.

    A high precision controller for an alternating-current multi-phase electrical motor that is subject to a large inertial load. The controller was developed for controlling, in a neutron chopper system, a heavy spinning rotor that must be rotated in phase-locked synchronism with a reference pulse train that is representative of an ac power supply signal having a meandering line frequency. The controller includes a shaft revolution sensor which provides a feedback pulse train representative of the actual speed of the motor. An internal digital timing signal generator provides a reference signal which is compared with the feedback signal in a computing unit to provide a motor control signal. The motor control signal is a weighted linear sum of a speed error voltage, a phase error voltage, and a drift error voltage, each of which is computed anew with each revolution of the motor shaft. The speed error signal is generated by a novel vernier-logic circuit which is drift-free and highly sensitive to small speed changes. The phase error is also computed by digital logic, with adjustable sensitivity around a 0 mid-scale value. The drift error signal, generated by long-term counting of the phase error, is used to compensate for any slow changes in the average friction drag on the motor. An auxillary drift-byte status sensor prevents any disruptive overflow or underflow of the drift-error counter. An adjustable clocked-delay unit is inserted between the controller and the source of the reference pulse train to permit phase alignment of the rotor to any desired offset angle. The stator windings of the motor are driven by two amplifiers which are provided with input signals having the proper quadrature relationship by an exciter unit consisting of a voltage controlled oscillator, a binary counter, a pair of read-only memories, and a pair of digital-to-analog converters.

  11. Current Status of Helium-3 Alternative Technologies for Nuclear Safeguards

    SciTech Connect

    Henzlova, Daniela; Kouzes, R.; McElroy, R.; Peerani, P.; Aspinall, M.; Baird, K.; Bakel, A.; Borella, M.; Bourne, M.; Bourva, L.; Cave, F.; Chandra, R.; Chernikova, D.; Croft, S.; Dermody, G.; Dougan, A.; Ely, J.; Fanchini, E.; Finocchiaro, P.; Gavron, Victor; Kureta, M.; Ianakiev, Kiril Dimitrov; Ishiyama, K.; Lee, T.; Martin, Ch.; McKinny, K.; Menlove, Howard Olsen; Orton, Ch.; Pappalardo, A.; Pedersen, B.; Peranteau, D.; Plenteda, R.; Pozzi, S.; Schear, M.; Seya, M.; Siciliano, E.; Stave, S.; Sun, L.; Swinhoe, Martyn Thomas; Tagziria, H.; Vaccaro, S.; Takamine, J.; Weber, A. -L.; Yamaguchi, T.; Zhu, H.

    2015-12-01

    International safeguards inspectorates (e.g., International Atomic Energy Agency {IAEA}, or Euratom) rely heavily on neutron assay techniques, and in particular, on coincidence counters for the verification of declared nuclear materials under safeguards and for monitoring purposes. While 3He was readily available, the reliability, safety, ease of use, gamma-ray insensitivity, and high intrinsic thermal neutron detection efficiency of 3He-based detectors obviated the need for alternative detector technologies. However, the recent decline of the 3He gas supply has triggered international efforts to develop and field neutron detectors that make use of alternative materials. In response to this global effort, the U.S. Department of Energy’s (DOE) National Nuclear Security Administration (NNSA) and Euratom launched a joint effort aimed at bringing together international experts, technology users and developers in the field of nuclear safeguards to discuss and evaluate the proposed 3He alternative materials and technologies. The effort involved a series of two workshops focused on detailed overviews and viability assessments of various 3He alternative technologies for use in nuclear safeguards applications. The key objective was to provide a platform for collaborative discussions and technical presentations organized in a compact, workshop-like format to stimulate interactions among the participants. The meetings culminated in a benchmark exercise providing a unique opportunity for the first inter-comparison of several available alternative technologies. This report provides an overview of the alternative technology efforts presented during the two workshops along with a summary of the benchmarking activities and results. The workshop recommendations and key consensus observations are discussed in the report, and used to outline a proposed path forward and future needs foreseeable in the area of 3He-alternative technologies.

  12. Dual-Frequency Alternating Current Designer Waveform for Reliable Voltammetric Determination of Electrode Kinetics Approaching the Reversible Limit.

    PubMed

    Li, Jiezhen; Bentley, Cameron L; Bond, Alan M; Zhang, Jie

    2016-02-16

    Alternating current (ac) voltammetry provides access to faster electrode kinetics than direct current (dc) methods. However, difficulties in ac and other methods arise when the heterogeneous electron-transfer rate constant (k(0)) approaches the reversible limit, because the voltammetric characteristics become insensitive to electrode kinetics. Thus, in this near-reversible regime, even small uncertainties associated with bulk concentration (C), diffusion coefficient (D), electrode area (A), and uncompensated resistance (Ru) can lead to significant systematic error in the determination of k(0). In this study, we have introduced a kinetically sensitive dual-frequency designer waveform into the Fourier-transformed large-amplitude alternating current (FTAC) voltammetric method that is made up of two sine waves having the same amplitude but with different frequencies (e.g., 37 and 615 Hz) superimposed onto a dc ramp to quantify the close-to-reversible Fc(0/+) process (Fc = ferrocene) in two nonhaloaluminate ionic liquids. The concept is that from a single experiment the lower-frequency data set, collected on a time scale where the target process is reversible, can be used as an internal reference to calibrate A, D, C, and Ru. These calibrated values are then used to calculate k(0) from analysis of the harmonics of the higher-frequency data set, where the target process is quasi-reversible. With this approach, k(0) values of 0.28 and 0.11 cm·s(-1) have been obtained at a 50 μm diameter platinum microdisk electrode for the close-to-diffusion-controlled Fc(0/+) process in two ionic liquids, 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide and 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide, respectively. PMID:26771276

  13. A Comparison of Alternating Current and Direct Current Electrospray Ionization for Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Sarver, Scott A.; Chetwani, Nishant; Dovichi, Norman J.; Go, David B.; Gartner, Carlos A.

    2014-04-01

    A series of studies comparing the performance of alternating current electrospray ionization (AC ESI) mass spectrometry (MS) and direct current electrospray ionization (DC ESI) MS have been conducted, exploring the absolute signal intensity and signal-to-background ratios produced by both methods using caffeine and a model peptide as targets. Because the high-voltage AC signal was more susceptible to generating gas discharges, the operating voltage range of AC ESI was significantly smaller than that for DC ESI, such that the absolute signal intensities produced by DC ESI at peak voltages were one to two orders of magnitude greater than those for AC ESI. Using an electronegative nebulizing gas, sulfur hexafluoride (SF6), instead of nitrogen (N2) increased the operating range of AC ESI by ~50 %, but did not appreciably improve signal intensities. While DC ESI generated far greater signal intensities, both ionization methods produced comparable signal-to-background noise, with AC ESI spectra appearing qualitatively cleaner. A quantitative calibration analysis was performed for two analytes, caffeine and the peptide MRFA. AC ESI utilizing SF6 outperforms all other techniques for the detection of MRFA, producing chromatographic limits of detection nearly one order of magnitude lower than that of DC ESI utilizing N2, and one-half that of DC ESI utilizing SF6. However, DC ESI outperforms AC ESI for the analysis of caffeine, indicating that improvements in spectral quality may benefit certain compounds or classes of compounds, on an individual basis.

  14. Alternating current Josephson effect in superconductor-graphene-superconductor junctions

    NASA Astrophysics Data System (ADS)

    Xu, G. J.; Wu, B. H.; Cao, J. C.

    2011-04-01

    We investigate the ac Josephson effect in superconductor-graphene-superconductor (SGS) junctions by using the Floquet-Green's function formalism to solve the Dirac-Bogoliubov-de Gennes equation. The numerical results show rich subharmonic gap structures such as the negative differential conductance (NDC) in the dc current. The tunability of the current magnitude can be controlled by the gate voltage, which determines the carriers' densities in graphene. With increasing bias, the ac components decay in an oscillatory manner as in superconductor-normal-superconductor junctions. It is found that the higher-order components have an explicit contribution to the total current under a low bias, which leads to the deviation from a simple sine-like dependence on time for the total current. The NDC characteristics and the tunable current magnitude are excellent hints for the potential application of SGS junctions.

  15. Rectification in mesoscopic alternating current-gated semiconductor devices

    NASA Astrophysics Data System (ADS)

    Giblin, S. P.; Kataoka, M.; Fletcher, J. D.; See, P.; Janssen, T. J. B. M.; Griffiths, J. P.; Jones, G. A. C.; Farrer, I.; Ritchie, D. A.

    2013-10-01

    We analyse the rectified dc currents resulting when a three-terminal semiconductor device with gate-dependent conductance is driven with an ac gate voltage. The rectified currents exhibit surprisingly complex behaviour as the dc source-drain bias voltage, the dc gate voltage, and the amplitude of the ac gate voltage are varied. We obtain good agreement between our data and a model based on simple assumptions about the stray impedances on the sample chip, over a wide frequency range. Secondly, we evaluate the small rectified currents flowing in tunable-barrier electron pumps operated in the pinched-off regime. These currents are at most 10-12 of the pumped current for a pump current of 100 pA. This result is encouraging for the development of tunable-barrier pumps as metrological current standards. Our method is applicable to many types of experiment which involve ac gating of a non-linear device, and where an undesirable rectified contribution to the measured signal is present.

  16. An Alternative Introduction to Maxwell's Displacement Current

    ERIC Educational Resources Information Center

    Reich, Gary

    2013-01-01

    In introductory texts Ampere's law is generally introduced in the steady-current form ?B dl = [subscript 0]I, and it is later extended to a more general form involving the so-called displacement current I[subscript d], ?B dl = [subscript 0](I + I[subscript d]) (1). Here the line integral is to be taken along a closed

  17. Current alternative energy research and development in Illinois

    SciTech Connect

    Not Available

    1983-12-01

    Research, development and demonstration projects of nonfossil, nonnuclear energy sources are inventoried. Projects discussed in the directory were either in process in November 1983 or had been completed after May 1983. Entries are arranged by broad subject categories in the order listed in the Table of Contents. Within each category, entries are alphabetical by the performing organization and alphabetical by title where there is more than one entry for an organization. Entries are indexed by title, contributor, research organization and project site. Reports on 101 alternative energy projects are included and fall into nine major categories. Nearly half of the projects involve bioenergy and a third are solar related.

  18. Current Practices in Almond Pasteurization and Alternative Approaches

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Almonds are among the important export products of the United States and Turkey. As of September 1, 2007, the mandatory law for 4-log pasteurization of raw almonds became effective in the United States. Currently, in general, raw almonds are pasteurized by using propylene oxide, where 4-log pasteu...

  19. Alternating-Current Motor Drive for Electric Vehicles

    NASA Technical Reports Server (NTRS)

    Krauthamer, S.; Rippel, W. E.

    1982-01-01

    New electric drive controls speed of a polyphase as motor by varying frequency of inverter output. Closed-loop current-sensing circuit automatically adjusts frequency of voltage-controlled oscillator that controls inverter frequency, to limit starting and accelerating surges. Efficient inverter and ac motor would give electric vehicles extra miles per battery charge.

  20. 46 CFR 111.05-27 - Grounded neutral alternating current systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Grounded neutral alternating current systems. 111.05-27... ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Equipment Ground, Ground Detection, and Grounded Systems § 111.05-27 Grounded neutral alternating current systems. Grounded neutral and high-impedance grounded...

  1. 46 CFR 111.05-27 - Grounded neutral alternating current systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Grounded neutral alternating current systems. 111.05-27... ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Equipment Ground, Ground Detection, and Grounded Systems § 111.05-27 Grounded neutral alternating current systems. Grounded neutral and high-impedance grounded...

  2. 46 CFR 111.05-27 - Grounded neutral alternating current systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Grounded neutral alternating current systems. 111.05-27... ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Equipment Ground, Ground Detection, and Grounded Systems § 111.05-27 Grounded neutral alternating current systems. Grounded neutral and high-impedance grounded...

  3. 46 CFR 111.05-27 - Grounded neutral alternating current systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Grounded neutral alternating current systems. 111.05-27... ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Equipment Ground, Ground Detection, and Grounded Systems § 111.05-27 Grounded neutral alternating current systems. Grounded neutral and high-impedance grounded...

  4. 46 CFR 111.05-27 - Grounded neutral alternating current systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Grounded neutral alternating current systems. 111.05-27... ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Equipment Ground, Ground Detection, and Grounded Systems § 111.05-27 Grounded neutral alternating current systems. Grounded neutral and high-impedance grounded...

  5. Expectation of ozone generation in alternating current corona discharges

    NASA Astrophysics Data System (ADS)

    Yehia, Ashraf; Mizuno, Akira

    2012-03-01

    An analytical study was made in this paper to calculate the ozone generation inside an ac corona discharge reactor. The corona discharges were formed in a coaxial wire-cylinder reactor. The reactor was fed by dry air flowing with constant rates at atmospheric pressure and room temperature and stressed by an ac voltage. Concentration of the ozone generated inside the reactor was measured as a function of the ac corona current under different discharge conditions. An empirical equation was derived from the experimental results for calculating the ozone concentration generated inside the reactor. The results, that have been calculated by using the derived equation, have agreed with the experimental results over the whole range of the investigated parameters. Therefore, the derived equation represents a suitable criterion for expecting the ozone concentration that will generate by ac coronas in dry air fed coaxial wire-cylinder reactors under any discharge conditions in range of the investigated parameters.

  6. Stripping voltammetry of Pb and Cu using a microcantilever electrode

    NASA Astrophysics Data System (ADS)

    Bange, A. F.; Brown, G. M.; Senesac, L. R.; Thundat, T.

    2009-11-01

    Microfabricated silicon microcantilevers coated with gold on one side have been used as working electrode in a three-electrode electrochemical arrangement. In addition to electrochemical current, cantilever bending has been used as a signal for monitoring electrode reactions on the cantilever surface. The microcantilever bending was measured by an optical beam deflection method as the surface potential was scanned and electrochemical reactions occurred on the surface. The microcantilever bending due to differential surface stress was used to sense Pb and Cu using cyclic voltammetry (CV) and linear sweep stripping voltammetry (LSSV).

  7. Stripping Voltammetry of Pb and Cu using a Microcantilever Electrode

    SciTech Connect

    Bange, Adam; Brown, Gilbert M; Senesac, Larry R; Thundat, Thomas George

    2009-01-01

    Microfabricated silicon microcantilevers coated with gold on one side have been used as working electrode in a three-electrode electrochemical arrangement. In addition to electrochemical current, cantilever bending has been used as a signal for monitoring electrode reactions on the cantilever surface. The microcantilever bending was measured by an optical beam deflection method as the surface potential was scanned and electrochemical reactions occurred on the surface. The microcantilever bending due to differential surface stress was used to sense Pb and Cu using cyclic voltammetry (CV) and linear sweep stripping voltammetry (LSSV).

  8. Square wave voltammetry at the dropping mercury electrode: Theory

    USGS Publications Warehouse

    Christie, J.H.; Turner, J.A.; Osteryoung, R.A.

    1977-01-01

    The theoretical aspects of square wave voltammetry at the dropping mercury electrode are presented. The technique involves scanning the entire potential range of interest on a single drop of a DME. Asymmetries in the waveform as well as variations in current measurement parameters are discussed. Indications are that previous uses of the waveform may not have utilized all its capabilities.

  9. Current Faculty Development Practices for Alternative Delivery Systems in Christian Higher Education Institutions: A Qualitative Study

    ERIC Educational Resources Information Center

    Yates, Steven Lowell

    2009-01-01

    This research study was an investigation of current faculty development practices for alternative delivery systems. Attention was given to faculty development in general as well as specific facets of faculty development for alternative delivery systems. Future or intended faculty development practices were pursued, along with factors that

  10. PEAK RESOLUTION BY SEMIDERIVATIVE VOLTAMMETRY

    SciTech Connect

    Toman, J. J.; Brown, S. D.

    1980-10-01

    One of the limitations of dynamic electrochemistry, when used as a quantitative analytical technique, is the resolution of overlapping waves, Approaches used in the past have been either time intensive methods using many blanks, or have relied on many empirical peak parameters, Using an approach based on semidifferential voltammetry, two new techniques have been developed for rapid peak deconvolution. The first. NIFITl, is an iterative stripping routine, while the second, BIMFIT, is based on sequential simplex optimization. Both approaches were characterized by deconvolution of synthetic fused peak systems. subsequently, both WE!re applied to semidifferentited linear scan voltammograms of Cd{sup 2+} , Pb{sup 2+} and In{sup 3+} and to semidifferentiated linear scan anodic stripping voltammograms of Cd{sup 2+} , ln{sup 3+} and Tl{sup +}. Deconvolutions were directly characterized by peak height, peak potential and peak halfwidth, as well as by the total squared deviation of the fit peaks from the real fused peaks. Studies of individual peaks as well as of standard additions to fused peaks showed both methods worked well, with excellent deconvolution efficiencies. Synthetic data were totally deconvoluted with peak separation as small as 25 mv, while real systems were deconvoluted with separations below 40 mv. Peak parameters obtained from these deconvolutions allow observations of electrode processes, even in systems containing overlapping peaks.

  11. Alternating spin-polarized current induces parametric resonance in spin valves

    NASA Astrophysics Data System (ADS)

    Clerc, Marcel G.; Coulibaly, Saliya; Laroze, David; Len, Alejandro O.; Nez, lvaro S.

    2015-06-01

    Ferromagnetic systems under the influence of spin-polarized currents exhibit rich spatiotemporal dynamics at nanoscales. We study spin-transfer nano-oscillators driven by the combination of alternating and direct spin-polarized electric currents. We show here that the alternating current induces parametric instabilities on spin valves, that is, the magnetization responses at half the forcing frequency. A spatial self-organization emerges as a result of the oscillatory current, which includes dissipative solitons and Faraday-type waves. The parametric regime is described analytically by means of the Landau-Lifshitz-Gilbert-Slonczewski equation, in good agreement with micromagnetic simulations including the full dipolar field.

  12. Direct current and alternating current electrical transport properties of regioregular poly[3-(4-alkoxyphenyl)-thiophenes

    NASA Astrophysics Data System (ADS)

    Barra, M.; Biasiucci, M.; Cassinese, A.; D'Angelo, P.; Barone, A. C.; Carella, A.; Roviello, A.

    2007-11-01

    In this paper, the direct current and alternating current (ac) electrical transport properties of doped and undoped regioregular poly[3-(4-alkoxyphenyl)-thiophenes], where the alkoxy groups are O-(CH2)n-1CH3 with n =1,4,6, and 8, have been investigated. The films have been synthesized by an experimental procedure based on the oxidation of 3-(4-alkoxylphenyl)-thiophenes with molecular oxygen in presence of VO(acac)2, as the catalyst. Unlike other examples reported in the literature, this approach allows obtaining well structured spin-coated films without the necessity of further processes, such as annealing or exposition to solvent vapors. Direct current-voltage measurements, performed in planar and transverse configuration on 1 ?m thick films, show both ohmic and space charge limited current behavior, at low and high applied fields, respectively. Due to the film ordered structure, a significant electrical anisotropy was found. In order to deeply investigate the basic conduction mechanisms, ac measurements have been also carried out in the frequency range between 100 Hz and 100 kHz. Finally, direct current and alternating current conductivity temperature dependence is discussed in the framework of thermally activated hopping and tunneling models.

  13. 30 CFR 75.701-1 - Approved methods of grounding of equipment receiving power from ungrounded alternating current...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... receiving power from ungrounded alternating current power systems. 75.701-1 Section 75.701-1 Mineral... receiving power from ungrounded alternating current power systems. For purposes of grounding metallic frames, casings and other enclosures of equipment receiving power from ungrounded alternating current...

  14. 30 CFR 77.701-1 - Approved methods of grounding of equipment receiving power from ungrounded alternating current...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... receiving power from ungrounded alternating current power systems. 77.701-1 Section 77.701-1 Mineral...-1 Approved methods of grounding of equipment receiving power from ungrounded alternating current... receiving power from ungrounded alternating current power systems, the following methods of grounding...

  15. 30 CFR 77.701-1 - Approved methods of grounding of equipment receiving power from ungrounded alternating current...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... receiving power from ungrounded alternating current power systems. 77.701-1 Section 77.701-1 Mineral...-1 Approved methods of grounding of equipment receiving power from ungrounded alternating current... receiving power from ungrounded alternating current power systems, the following methods of grounding...

  16. 30 CFR 77.701-1 - Approved methods of grounding of equipment receiving power from ungrounded alternating current...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... receiving power from ungrounded alternating current power systems. 77.701-1 Section 77.701-1 Mineral...-1 Approved methods of grounding of equipment receiving power from ungrounded alternating current... receiving power from ungrounded alternating current power systems, the following methods of grounding...

  17. 30 CFR 77.701-1 - Approved methods of grounding of equipment receiving power from ungrounded alternating current...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... receiving power from ungrounded alternating current power systems. 77.701-1 Section 77.701-1 Mineral...-1 Approved methods of grounding of equipment receiving power from ungrounded alternating current... receiving power from ungrounded alternating current power systems, the following methods of grounding...

  18. 30 CFR 77.701-1 - Approved methods of grounding of equipment receiving power from ungrounded alternating current...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... receiving power from ungrounded alternating current power systems. 77.701-1 Section 77.701-1 Mineral...-1 Approved methods of grounding of equipment receiving power from ungrounded alternating current... receiving power from ungrounded alternating current power systems, the following methods of grounding...

  19. 30 CFR 77.900 - Low- and medium-voltage circuits serving portable or mobile three-phase alternating current...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... portable or mobile three-phase alternating current equipment; circuit breakers. 77.900 Section 77.900... mobile three-phase alternating current equipment; circuit breakers. Low- and medium-voltage circuits supplying power to portable or mobile three-phase alternating current equipment shall be protected...

  20. 30 CFR 77.900 - Low- and medium-voltage circuits serving portable or mobile three-phase alternating current...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... portable or mobile three-phase alternating current equipment; circuit breakers. 77.900 Section 77.900... mobile three-phase alternating current equipment; circuit breakers. Low- and medium-voltage circuits supplying power to portable or mobile three-phase alternating current equipment shall be protected...

  1. 30 CFR 77.900 - Low- and medium-voltage circuits serving portable or mobile three-phase alternating current...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... portable or mobile three-phase alternating current equipment; circuit breakers. 77.900 Section 77.900... mobile three-phase alternating current equipment; circuit breakers. Low- and medium-voltage circuits supplying power to portable or mobile three-phase alternating current equipment shall be protected...

  2. 30 CFR 75.900 - Low- and medium-voltage circuits serving three-phase alternating current equipment; circuit...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Low- and medium-voltage circuits serving three-phase alternating current equipment; circuit breakers. Low- and medium-voltage power circuits serving three-phase alternating current equipment shall be...-phase alternating current equipment; circuit breakers. 75.900 Section 75.900 Mineral Resources...

  3. 30 CFR 75.900 - Low- and medium-voltage circuits serving three-phase alternating current equipment; circuit...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Low- and medium-voltage circuits serving three-phase alternating current equipment; circuit breakers. Low- and medium-voltage power circuits serving three-phase alternating current equipment shall be...-phase alternating current equipment; circuit breakers. 75.900 Section 75.900 Mineral Resources...

  4. Method and apparatus for reducing the harmonic currents in alternating-current distribution networks

    DOEpatents

    Beverly, L.H.; Hance, R.D.; Kristalinski, A.L.; Visser, A.T.

    1996-11-19

    An improved apparatus and method reduce the harmonic content of AC line and neutral line currents in polyphase AC source distribution networks. The apparatus and method employ a polyphase Zig-Zag transformer connected between the AC source distribution network and a load. The apparatus and method also employs a mechanism for increasing the source neutral impedance of the AC source distribution network. This mechanism can consist of a choke installed in the neutral line between the AC source and the Zig-Zag transformer. 23 figs.

  5. Direct-current-like phase space manipulation using chirped alternating current fields

    SciTech Connect

    Schmit, P. F.; Fisch, N. J.

    2010-01-15

    Waves in plasmas can accelerate particles that are resonant with the wave. A dc electric field also accelerates particles, but without a resonance discrimination, which makes the acceleration mechanism profoundly different. Whereas wave-particle acceleration mechanisms have been widely discussed in the literature, this work discusses the direct analogy between wave acceleration and dc field acceleration in a particular parameter regime explored in previous works. Apart from the academic interest of this correspondence, there may be practical advantages in using waves to mimic dc electric fields, for example, in driving plasma current with high efficiency.

  6. Direct-current-like Phase Space Manipulation Using Chirped Alternating Current Fields

    SciTech Connect

    P.F. Schmit and N.J. Fisch

    2010-02-01

    Waves in plasmas can accelerate particles that are resonant with the wave. A dc electric field also accelerates particles, but without a resonance discrimination, which makes the acceleration mechanism profoundly different. Whereas wave-particle acceleration mechanisms have been widely discussed in the literature, this work discusses the direct analogy between wave acceleration and dc field acceleration in a particular parameter regime explored in previous works. Apart from the academic interest of this correspondence, there may be practical advantages in using waves to mimic dc electric fields, for example, in driving plasma current with high efficiency.

  7. Method and apparatus for reducing the harmonic currents in alternating-current distribution networks

    DOEpatents

    Beverly, Leon H.; Hance, Richard D.; Kristalinski, Alexandr L.; Visser, Age T.

    1996-01-01

    An improved apparatus and method reduce the harmonic content of AC line and neutral line currents in polyphase AC source distribution networks. The apparatus and method employ a polyphase Zig-Zag transformer connected between the AC source distribution network and a load. The apparatus and method also employs a mechanism for increasing the source neutral impedance of the AC source distribution network. This mechanism can consist of a choke installed in the neutral line between the AC source and the Zig-Zag transformer.

  8. Cyclic voltammetry of fast conducting electrocatalytic films.

    PubMed

    Costentin, Cyrille; Savéant, Jean-Michel

    2015-07-15

    In the framework of contemporary energy challenges, cyclic voltammetry is a particularly useful tool for deciphering the kinetics of catalytic films. The case of fast conducting films is analyzed, whether conduction is of the ohmic type or proceeds through rapid electron hopping. The rate-limiting factors are then the diffusion of the substrate in solution and through the film as well as the catalytic reaction itself. The dimensionless combination of the characteristics of these factors allows reducing the number of actual parameters to a maximum of two. The kinetics of the system may then be fully analyzed with the help of a kinetic zone diagram. Observing the variations of the current-potential responses with operational parameters such as film thickness, the potential scan rate and substrate concentration allows a precise assessment of the interplay between these factors and of the values of the rate controlling factors. A series of thought experiments is described in order to render the kinetic analysis more palpable. PMID:26140372

  9. Frequency-dependent failure mechanisms of nanocrystalline gold interconnect lines under general alternating current

    NASA Astrophysics Data System (ADS)

    Luo, X. M.; Zhang, B.; Zhang, G. P.

    2014-09-01

    Thermal fatigue failure of metallization interconnect lines subjected to alternating currents (AC) is becoming a severe threat to the long-term reliability of micro/nanodevices with increasing electrical current density/power. Here, thermal fatigue failure behaviors and damage mechanisms of nanocrystalline Au interconnect lines on the silicon glass substrate have been investigated by applying general alternating currents (the pure alternating current coupled with a direct current (DC) component) with different frequencies ranging from 0.05 Hz to 5 kHz. We observed both thermal fatigue damages caused by Joule heating-induced cyclic strain/stress and electromigration (EM) damages caused by the DC component. Besides, the damage formation showed a strong electrically-thermally-mechanically coupled effect and frequency dependence. At lower frequencies, thermal fatigue damages were dominant and the main damage forms were grain coarsening with grain boundary (GB) cracking/voiding and grain thinning. At higher frequencies, EM damages took over and the main damage forms were GB cracking/voiding of smaller grains and hillocks. Furthermore, the healing effect of the reversing current was considered to elucidate damage mechanisms of the nanocrystalline Au lines generated by the general AC. Lastly, a modified model was proposed to predict the lifetime of the nanocrystalline metal interconnect lines, i.e., that was a competing drift velocity-based approach based on the threshold time required for reverse diffusion/healing to occur.

  10. Alternatives to Tenure. AAHE-ERIC/Higher Education Research Currents. March 1979.

    ERIC Educational Resources Information Center

    Linney, Thomas J.

    An overview of current literature about alternatives and variations to existing concepts of tenure of faculty is presented. Tenure continues the appointment of faculty until retirement unless there is dismissal for adequate cause or unavoidable termination because of financial exigency or change of institutional program. Academic freedom is…

  11. Anodic stripping voltammetry - ASV for determination of heavy metals

    NASA Astrophysics Data System (ADS)

    Barn-Jaimez, J.; Joya, M. R.; Barba-Ortega, J.

    2013-11-01

    Although voltammetric methods presented a number of difficulties in its early stages, nowadays "ASV" anodic stripping voltammetry is considered one of the most sensitive electro-analytical and suitable for trace-level determination of many metals and compounds in environmental samples, clinical and industrial [1, 2, 3]. Its sensitivity is attributed to the combination of a step of pre-concentration effective together with an electrochemical advanced measurement of accumulated analyte [4]. This paper presents an overview of the voltammetry, which includes a group of electro-analytical methods, in them the information about analyte is obtained from measurements of the current flowing in an electrochemical cell when applied a potential difference to an suitable electrode system.

  12. Assessment of flow and cure monitoring using direct current and alternating current sensing in vacuum-assisted resin transfer molding

    NASA Astrophysics Data System (ADS)

    Vaidya, Uday K.; Jadhav, Nitesh C.; Hosur, Mahesh V.; Gillespie, John W., Jr.; Fink, Bruce K.

    2000-12-01

    Vacuum-assisted resin transfer molding (VARTM) is an emerging manufacturing technique that holds promise as an affordable alternative to traditional autoclave molding and automated fiber placement for producing large-scale structural parts. In VARTM, the fibrous preform is laid on a single-sided tool, which is then bagged along with the infusion and vacuum lines. The resin is then infused through the preform, which causes simultaneous wetting in its in-plane and transverse directions. An effective sensing technique is essential so that comprehensive information pertaining to the wetting of the preform, arrival of resin at various locations, cure gradients associated with thickness and presence of dry spots may be monitored. In the current work, direct current (dc) and alternating current sensing/monitoring techniques were adopted for developing a systematic understanding of the resin position and cure on plain weave S2-glass preforms with Dow Derakane vinyl ester VE 411-350, Shell EPON RSL 2704/2705 and Si-AN epoxy as the matrix systems. A SMARTweave dc sensing system was utilized to conduct parametric studies: (a) to compare the flow and cure of resin through the stitched and non-stitched preforms; (b) to investigate the influence of sensor positioning, i.e. top, middle and bottom layers; and (c) to investigate the influence of positioning of the process accessories, i.e. resin infusion point and vacuum point on the composite panel. The SMARTweave system was found to be sensitive to all the parametric variations introduced in the study. Furthermore, the results obtained from the SMARTweave system were compared to the cure monitoring studies conducted by using embedded interdigitated (IDEX) dielectric sensors. The results indicate that SMARTweave sensing was a viable alternative to obtaining resin position and cure, and was more superior in terms of obtaining global information, in contrast to the localized dielectric sensing approach.

  13. Direct-current arc and alternating-current spark emission spectrographic field methods for the semiquantitative analysis of geologic materials

    USGS Publications Warehouse

    Grimes, D.J.; Marranzino, A.P.

    1968-01-01

    Two spectrographic methods are used in mobile field laboratories of the U. S. Geological Survey. In the direct-current arc method, the ground sample is mixed with graphite powder, packed into an electrode crater, and burned to completion. Thirty elements are determined. In the spark method, the sample, ground to pass a 150-mesh screen, is digested in hydrofluoric acid followed by evaporation to dryness and dissolution in aqua regia. The solution is fed into the spark gap by means of a rotating-disk electrode arrangement and is excited with an alternating-current spark discharge. Fourteen elements are determined. In both techniques, light is recorded on Spectrum Analysis No. 1, 35-millimeter film, and the spectra are compared visually with those of standard films.

  14. Use of Biosensors as Alternatives to Current Regulatory Methods for Marine Biotoxins

    PubMed Central

    Vilariño, Natalia; Fonfría, Eva S.; Louzao, M. Carmen; Botana, Luis M.

    2009-01-01

    Marine toxins are currently monitored by means of a bioassay that requires the use of many mice, which poses a technical and ethical problem in many countries. With the exception of domoic acid, there is a legal requirement for the presence of other toxins (yessotoxin, saxitoxin and analogs, okadaic acid and analogs, pectenotoxins and azaspiracids) in seafood to be controlled by bioassay, but other toxins, such as palytoxin, cyclic imines, ciguatera and tetrodotoxin are potentially present in European food and there are no legal requirements or technical approaches available to identify their presence. The need for alternative methods to the bioassay is clearly important, and biosensors have become in recent years a feasible alternative to animal sacrifice. This review will discuss the advantages and disadvantages of using biosensors as alternatives to animal assays for marine toxins, with particular focus on surface plasmon resonance (SPR) technology. PMID:22291571

  15. Electrically Elicited Muscle Torque: Comparison Between 2500-Hz Burst-Modulated Alternating Current and Monophasic Pulsed Current.

    PubMed

    Scott, Wayne; Adams, Cheryl; Cyr, Shantelle; Hanscom, Brianna; Hill, Kevin; Lawson, Jeffrey; Ziegenbein, Colin

    2015-12-01

    Study Design Single-blind, block-randomization crossover design. Objective To compare the knee extensor muscle torque production elicited with 2500-Hz burst-modulated alternating current (BMAC) and with a monophasic pulsed current (MPC) at the maximum tolerated stimulation intensity. Background Neuromuscular electrical stimulation (NMES) is often used for strengthening the quadriceps following knee surgery. Strength gains are dependent on muscle torque production, which is primarily limited by discomfort. Burst-modulated alternating current stimulation is a clinically popular waveform for NMES. Prior research has established that MPC with a relatively long pulse duration is effective for high muscle torque production. Methods Participants in this study were 20 adults with no history of knee injury. A crossover design was used to randomize the order in which each participant's dominant or nondominant lower extremity received NMES and the waveform (MPC or BMAC) this limb received. Stimulation intensity was incrementally increased until participants reached their maximum tolerance. The torque produced was converted to a percentage of each participant's maximum volitional isometric contraction of the respective limb. Results A general linear model for a 2-treatment, 2-period crossover design was utilized to analyze the results. The mean SD electrically induced percent maximum volitional isometric contraction at maximal participant tolerance was 49.5% 19.6% for MPC and 29.8% 12.4% for BMAC. This difference was statistically significant (P = .002) after ccounting for treatment order and limb, which had no effect on torque production. Conclusion Neuromuscular stimulation using MPC may be more efficacious than using BMAC to achieve a high torque output in patients with quadriceps weakness. J Orthop Sports Phys Ther 2015;45(12):1035-1041. Epub 10 Nov 2015. doi:10.2519/jospt.2015.5861. PMID:26556393

  16. Effect of an alternating current electric field on Co(OH)2 periodic precipitation

    NASA Astrophysics Data System (ADS)

    Karam, Tony; Sultan, Rabih

    2013-02-01

    The present paper studies the effect of an alternating current (AC) electric field on Co(OH)2 Liesegang patterns. In the presence of an AC electric field, the band spacing increases with spacing number, but reaches a plateau at large spacing (or band) numbers. The band spacing increases with applied AC voltage, but to a much lesser extent than the effect of a DC electric field under the same applied voltage [see R. Sultan, R. Halabieh, Chem. Phys. Lett. 332 (2000) 331][1]. At low enough applied voltage, the band spacing increases with frequency. At higher voltages, the band spacing becomes independent of the field frequency. The effect of concentration of the inner electrolyte (Co2+), exactly opposes that observed under DC electric field; i.e., the band spacing decreases with increasing concentration. The dynamics were shown to be governed by a competitive scenario between the diffusion gradient and the alternating current electric field factor.

  17. Effects of alternating current stimulation on the healthy and diseased brain.

    PubMed

    Abd Hamid, Aini Ismafairus; Gall, Carolin; Speck, Oliver; Antal, Andrea; Sabel, Bernhard A

    2015-01-01

    Cognitive and neurological dysfunctions can severely impact a patient's daily activities. In addition to medical treatment, non-invasive transcranial alternating current stimulation (tACS) has been proposed as a therapeutic technique to improve the functional state of the brain. Although during the last years tACS was applied in numerous studies to improve motor, somatosensory, visual and higher order cognitive functions, our knowledge is still limited regarding the mechanisms as to which type of ACS can affect cortical functions and altered neuronal oscillations seem to be the key mechanism. Because alternating current send pulses to the brain at predetermined frequencies, the online- and after-effects of ACS strongly depend on the stimulation parameters so that "optimal" ACS paradigms could be achieved. This is of interest not only for neuroscience research but also for clinical practice. In this study, we summarize recent findings on ACS-effects under both normal conditions and in brain diseases. PMID:26578858

  18. Effects of alternating current stimulation on the healthy and diseased brain

    PubMed Central

    Abd Hamid, Aini Ismafairus; Gall, Carolin; Speck, Oliver; Antal, Andrea; Sabel, Bernhard A.

    2015-01-01

    Cognitive and neurological dysfunctions can severely impact a patient's daily activities. In addition to medical treatment, non-invasive transcranial alternating current stimulation (tACS) has been proposed as a therapeutic technique to improve the functional state of the brain. Although during the last years tACS was applied in numerous studies to improve motor, somatosensory, visual and higher order cognitive functions, our knowledge is still limited regarding the mechanisms as to which type of ACS can affect cortical functions and altered neuronal oscillations seem to be the key mechanism. Because alternating current send pulses to the brain at predetermined frequencies, the online- and after-effects of ACS strongly depend on the stimulation parameters so that “optimal” ACS paradigms could be achieved. This is of interest not only for neuroscience research but also for clinical practice. In this study, we summarize recent findings on ACS-effects under both normal conditions and in brain diseases. PMID:26578858

  19. SENSING DNA WITH ALTERNATING CURRENTS USING A NANOGAP SENSOR EMBEDDED IN A NANOCHANNEL DEVICE

    PubMed Central

    DAVIS, BRET H.; PAN, JUNHAN; TUNG, CHIH-KUAN; AUSTIN, ROBERT H.; RIEHN, ROBERT

    2013-01-01

    We report an integrated nanochannel/nanoelectrode sensor for the detection of DNA using alternating currents. We find that DNA can be detected using platinum as the metal for the detecting electrodes, with a signal to noise ratio exceeding 10. We argue that the signal is at least in part electrochemical in nature, thus holds the promise to yield a sequence-dependent signal. However, we also find that for large voltages, DNA attaches irreversibly to the driving electrodes. PMID:24294307

  20. Alternating-Current Equipment for the Measurement of Fluctuations of Air Speed in Turbulent Flow

    NASA Technical Reports Server (NTRS)

    Mock, W C , Jr

    1937-01-01

    Recent electrical and mechanical improvements have been made in the equipment developed at the National Bureau of Standards for measurement of fluctuations of air speed in turbulent flow. Data useful in the design of similar equipment are presented. The design of rectified alternating-current power supplies for such apparatus is treated briefly, and the effect of the power supplies on the performance of the equipment is discussed.

  1. Inappropriate Implantable Cardioverter-Defibrillator Shocks Attributed to Alternating-Current Leak in a Swimming Pool

    PubMed Central

    Makaryus, John N.; Angert-Gilman, Julia; Yacoub, Mena; Patel, Apoor

    2014-01-01

    Implantable cardioverter-defibrillators (ICDs) are the standard of care for preventing sudden cardiac death in patients who are predisposed to malignant ventricular arrhythmias. Causes of inappropriate ICD shock include equipment malfunction, improper arrhythmia evaluation, misinterpretation of myopotentials, and electromagnetic interference. As the number of implanted ICDs has increased, other contributors to inappropriate therapy have become known, such as minimal electrical current leaks that mimic ventricular fibrillation. We present the case of a 63-year-old man with a biventricular ICD who received 2 inappropriate shocks, probably attributable to alternating-current leaks in a swimming pool. In addition, we discuss ICD sensitivity and offer recommendations to avoid similar occurrences. PMID:24512403

  2. Anodic Stripping Voltammetry: An Instrumental Analysis Experiment.

    ERIC Educational Resources Information Center

    Wang, Joseph

    1983-01-01

    Describes an experiment designed to acquaint students with the theory and applications of anodic stripping voltammetry (ASV) as well as such ASV problems as contamination associated with trace analysis. The experimental procedure, instrumentation, and materials discussed are designed to minimize cost and keep procedures as simple as possible. (JM)

  3. Methods, systems and apparatus for controlling operation of two alternating current (AC) machines

    DOEpatents

    Gallegos-Lopez, Gabriel (Torrance, CA); Nagashima, James M. (Cerritos, CA); Perisic, Milun (Torrance, CA); Hiti, Silva (Redondo Beach, CA)

    2012-06-05

    A system is provided for controlling two alternating current (AC) machines via a five-phase PWM inverter module. The system comprises a first control loop, a second control loop, and a current command adjustment module. The current command adjustment module operates in conjunction with the first control loop and the second control loop to continuously adjust current command signals that control the first AC machine and the second AC machine such that they share the input voltage available to them without compromising the target mechanical output power of either machine. This way, even when the phase voltage available to either one of the machines decreases, that machine outputs its target mechanical output power.

  4. Thermal analysis of high power LED packages under the alternating current operation

    NASA Astrophysics Data System (ADS)

    Shin, Moo Whan; Jang, Sun Ho

    2012-02-01

    In this paper we describe a novel thermal characterization method of GaN-based Light Emitting Diode (LED) package driven under the Alternating Current (AC) mode. The result was compared with the results from the thermal analysis for LED package operated under the Direct Current (DC) condition. Different from the DC condition, the junction temperature rise with the operation time of LED package was exhibited in a band formation. Finite Volume Method (FVM) was utilized to calculate the thermal performance of LED package under the AC condition using the input power extracted from the output current and voltage from the AC power supply. The experimental result was in a good agreement with the simulation data.

  5. Sustained diffusive alternating current gliding arc discharge in atmospheric pressure air

    NASA Astrophysics Data System (ADS)

    Zhu, Jiajian; Gao, Jinlong; Li, Zhongshan; Ehn, Andreas; Aldn, Marcus; Larsson, Anders; Kusano, Yukihiro

    2014-12-01

    Rapid transition from glow discharge to thermal arc has been a common problem in generating stable high-power non-thermal plasmas especially at ambient conditions. A sustained diffusive gliding arc discharge was generated in a large volume in atmospheric pressure air, driven by an alternating current (AC) power source. The plasma column extended beyond the water-cooled stainless steel electrodes and was stabilized by matching the flow speed of the turbulent air jet with the rated output power. Comprehensive investigations were performed using high-speed movies measured over the plasma column, synchronized with simultaneously recorded current and voltage waveforms. Dynamic details of the novel non-equilibrium discharge are revealed, which is characterized by a sinusoidal current waveform with amplitude stabilized at around 200 mA intermediate between thermal arc and glow discharge, shedding light to the governing mechanism of the sustained spark-suppressed AC gliding arc discharge.

  6. 30 CFR 75.900 - Low- and medium-voltage circuits serving three-phase alternating current equipment; circuit...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Low- and medium-voltage circuits serving three... STANDARDS-UNDERGROUND COAL MINES Underground Low- and Medium-Voltage Alternating Current Circuits § 75.900 Low- and medium-voltage circuits serving three-phase alternating current equipment; circuit...

  7. 30 CFR 77.900 - Low- and medium-voltage circuits serving portable or mobile three-phase alternating current...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Low- and medium-voltage circuits serving... Medium-Voltage Alternating Current Circuits § 77.900 Low- and medium-voltage circuits serving portable or mobile three-phase alternating current equipment; circuit breakers. Low- and medium-voltage...

  8. 30 CFR 77.900 - Low- and medium-voltage circuits serving portable or mobile three-phase alternating current...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Low- and medium-voltage circuits serving... Medium-Voltage Alternating Current Circuits 77.900 Low- and medium-voltage circuits serving portable or mobile three-phase alternating current equipment; circuit breakers. Low- and medium-voltage...

  9. 30 CFR 75.900 - Low- and medium-voltage circuits serving three-phase alternating current equipment; circuit...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Low- and medium-voltage circuits serving three... STANDARDS-UNDERGROUND COAL MINES Underground Low- and Medium-Voltage Alternating Current Circuits 75.900 Low- and medium-voltage circuits serving three-phase alternating current equipment; circuit...

  10. 30 CFR 75.900 - Low- and medium-voltage circuits serving three-phase alternating current equipment; circuit...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Low- and medium-voltage circuits serving three... STANDARDS-UNDERGROUND COAL MINES Underground Low- and Medium-Voltage Alternating Current Circuits 75.900 Low- and medium-voltage circuits serving three-phase alternating current equipment; circuit...

  11. Investigation of alternative residual current compensation for improving series compensated line distance protection

    SciTech Connect

    Ghassemi, F.; Johns, A.T. )

    1990-04-01

    In this paper the results of investigations into methods of improving the measuring accuracy of distance protection applied to series compensated lines is given. It is shown that in order to compensate the error in impedance measurement under earth-fault conditions, an alternative to conventional residual current compensation must be used. The effect of load and source impedances on the measurands, when the conventional and alternative compensation factors are used, is given. Series capacitors have become an important component in economical long distance power transmission. The economical location for any capacitor bank is generally in the vicinity of the line end and hence it may represent a part of the terminal substation. This paper concentrates on a transmission system with compensation at each end.

  12. On the possible role of stimulation duration for after-effects of transcranial alternating current stimulation

    PubMed Central

    Strber, Daniel; Rach, Stefan; Neuling, Toralf; Herrmann, Christoph S.

    2015-01-01

    Transcranial alternating current stimulation is a novel method that allows application of sinusoidal currents to modulate brain oscillations and cognitive processes. Studies in humans have demonstrated transcranial alternating current stimulation (tACS) after-effects following stimulation durations in the range of minutes. However, such after-effects are absent in animal studies using much shorter stimulation protocols in the range of seconds. Thus, stimulation duration might be a critical parameter for after-effects to occur. To test this hypothesis, we repeated a recent human tACS experiment with a short duration. We applied alpha tACS intermittently for 1 s duration while keeping other parameters identical. The results demonstrate that this very short intermittent protocol did not produce after-effects on amplitude or phase of the electroencephalogram. Since synaptic plasticity has been suggested as a possible mechanism for after-effects, our results indicate that a stimulation duration of 1 s is too short to induce synaptic plasticity. Future studies in animals are required that use extended stimulation durations to reveal the neuronal underpinnings. A better understanding of the mechanisms of tACS after-effects is crucial for potential clinical applications. PMID:26321912

  13. [Transcranial alternating current stimulation : Entrainment and function control of neuronal networks].

    PubMed

    Vosskuhl, J; Strber, D; Herrmann, C S

    2015-12-01

    Transcranial alternating current stimulation (tACS) is a new technique for the modulation of oscillatory brain activity as measured in the electroencephalogram (EEG). In contrast to well-established stimulation techniques, such as transcranial direct current stimulation and transcranial magnetic stimulation, tACS applies a sinusoidal alternating current at a specific frequency. This enables the modulation of the amplitude and frequency of endogenous brain oscillations as well as related cognitive processes. Therefore, the use of tACS has the possibility to evaluate well-known correlations between brain oscillations and cognitive processes in terms of causality. Such causal relationships have been documented in numerous neurocognitive studies on sensory, motor and perceptual processes; however, the clinical application of tACS is still in its infancy. In principle, any pathology that can reliably be connected with brain oscillations of a defined frequency is treatable. A current main focus of clinical research is on symptoms of Parkinson's disease and to a lesser degree, tinnitus. For an effective application of tACS it is important to choose the electrode positions as well as the frequency, intensity and duration of the stimulation in a theory-based and symptom-related manner. A successful therapeutic intervention requires the persistence of the tACS effect after stimulation has ceased. A mechanism that offers not only an explanation to the origin of persistent tACS effects but is also of high therapeutic benefit is neural plasticity. Therefore, one current focus of research aims at a better understanding of tACS after effects. PMID:26440521

  14. Enhancement of crystal homogeneity of protein crystals under application of an external alternating current electric field

    SciTech Connect

    Koizumi, H.; Uda, S.; Fujiwara, K.; Nozawa, J.; Tachibana, M.; Kojima, K.

    2014-10-06

    X-ray diffraction rocking-curve measurements were performed on tetragonal hen egg white (HEW) lysozyme crystals grown with and without the application of an external alternating current (AC) electric field. The crystal quality was assessed by the full width at half maximum (FWHM) value for each rocking curve. For two-dimensional maps of the FWHMs measured on the 440 and the 12 12 0 reflection, the crystal homogeneity was improved under application of an external electric field at 1 MHz, compared with that without. In particular, the significant improvement of the crystal homogeneity was observed for the 12 12 0 reflection.

  15. Enhancement of crystal homogeneity of protein crystals under application of an external alternating current electric field

    NASA Astrophysics Data System (ADS)

    Koizumi, H.; Uda, S.; Fujiwara, K.; Tachibana, M.; Kojima, K.; Nozawa, J.

    2014-10-01

    X-ray diffraction rocking-curve measurements were performed on tetragonal hen egg white (HEW) lysozyme crystals grown with and without the application of an external alternating current (AC) electric field. The crystal quality was assessed by the full width at half maximum (FWHM) value for each rocking curve. For two-dimensional maps of the FWHMs measured on the 440 and the 12 12 0 reflection, the crystal homogeneity was improved under application of an external electric field at 1 MHz, compared with that without. In particular, the significant improvement of the crystal homogeneity was observed for the 12 12 0 reflection.

  16. Biodegradability of new engineered fuels compared to conventional petroleum fuels and alternative fuels in current use.

    PubMed

    Speidel, H K; Lightner, R L; Ahmed, I

    2000-01-01

    Concern with environmental issues such as global climate change has stimulated research into the development of more environmentally friendly technologies and energy sources. One critical area of our economy is liquid transportation fuels. This article presents the results of the biodegradability potential of newly developed engineered fuels and compares the results to the biodegradability of conventional fuels and alternative fuels in current use. Biodegradability potential was determined under both aerobic and anaerobic conditions. Fuels that have a high degree of components derived from renewable sources proved to have a higher degradability potential than those composed of petroleum components. PMID:10849844

  17. Alternating Current Cloud Point Extraction on a Microfluidic Chip: the Use of Ferrocenyl Surfactants.

    PubMed

    Usui, Yuya; Sasaki, Naoki

    2016-01-01

    Alternating current cloud point extraction (ACPE) is a preconcentration technique that can be employed in the analysis of membrane proteins on a microfluidic chip. However, the selectivity of ACPE relies on the hydrophobicity of the analytes. In this study, 11-ferrocenyltrimethylundecylammonium bromide (FTMA) was utilized to introduce electrostatic interaction as part of the ACPE technique. The use of ACPE with oxidized FTMA resulted in efficient concentration of fluorescently labeled anionic membrane proteins. We expect the approach outlined in this report to be useful in the preconcentration technique of microchip electrophoresis. PMID:26753715

  18. Voltammetry at the Thin-Film Mercury Electrode (TFME).

    ERIC Educational Resources Information Center

    Pomeroy, R. S.; And Others

    1989-01-01

    Reviewed is the use of the Thin-Film Mercury Electrode for anodic stripping voltammetry, simple voltammetry of solution cations and cathodic stripping voltammetry for the determination of an environmentally important molecule, thiourea. The construction of a simple potentiostat and applications for student laboratory courses are included. (CW)

  19. Regional Economic Effects of Current and Proposed Management Alternatives for Arrowwood National Wildlife Refuge

    USGS Publications Warehouse

    Koontz, Lynne; Lambert, Heather

    2005-01-01

    Introduction The National Wildlife Refuge System Improvement Act of 1997 requires all units of the National Wildlife Refuge System to be managed under a Comprehensive Conservation Plan (CCP). The CCP must describe the desired future conditions of a Refuge and provide long range guidance and management direction to achieve Refuge purposes. Arrowwood National Wildlife Refuge (NWR), located along the James River in east central North Dakota, is in the process of developing a range of management goals, objectives, and strategies for the CCP. The CCP for Arrowwood NWR must contain an analysis of expected effects associated with current and proposed Refuge management strategies. Special interest groups and local residents often criticize a change in Refuge management, especially if there is a perceived negative impact to the local economy. Having objective data on income and employment impacts may show that these economic fears are overstated. Quite often, residents do not realize the extent of economic benefits a Refuge provides to a local community, yet at the same time overestimate the impact of negative changes. Spending associated with Refuge recreational activities such as wildlife viewing and hunting can generate considerable tourism activity for the regional economy. Additionally, Refuge personnel typically spend considerable amounts of money purchasing supplies in the local lumber and hardware stores, repairing equipment and purchasing fuel at the local service stations, as well as reside and spend their salaries in the local community. The purpose of this study was to provide the economic analysis needed for the Arrowwood NWR CCP by evaluating the regional economic impacts associated with the Arrowwood NWR Draft CCP management strategies. For Refuge CCP planning, an economic impact analysis describes how current (No Action Alternative) and proposed management activities (alternatives) affect the local economy. This type of analysis provides two critical pieces of information: 1) it illustrates a refuge's contribution to the local community; and 2) it can help in determining whether local economic effects are or are not a real concern in choosing among management alternatives. Refuge personnel provided the information needed to analyze the economic impacts of the three alternatives evaluated in the draft CCP. This report first provides a description of the local community and economy near the Refuge. An analysis of current and proposed management strategies that could affect the local economy is then presented. The Refuge management activities of economic concern in this analysis are Refuge personnel staffing and Refuge spending within the local community, and spending in the local community by Refuge visitors.

  20. Current Perspectives on the Use of Alternative Species in Human Health and Ecological Hazard Assessments

    PubMed Central

    Ankley, Gerald T.; Crofton, Kevin M.; Garcia-Reyero, Natàlia; LaLone, Carlie A.; Johnson, Mark S.; Tietge, Joseph E.; Villeneuve, Daniel L.

    2013-01-01

    Background: Traditional animal toxicity tests can be time and resource intensive, thereby limiting the number of chemicals that can be comprehensively tested for potential hazards to humans and/or to the environment. Objective: We compared several types of data to demonstrate how alternative models can be used to inform both human and ecological risk assessment. Methods: We reviewed and compared data derived from high throughput in vitro assays to fish reproductive tests for seven chemicals. We investigated whether human-focused assays can be predictive of chemical hazards in the environment. We examined how conserved pathways enable the use of nonmammalian models, such as fathead minnow, zebrafish, and Xenopus laevis, to understand modes of action and to screen for chemical risks to humans. Results: We examined how dose-dependent responses of zebrafish embryos exposed to flusilazole can be extrapolated, using pathway point of departure data and reverse toxicokinetics, to obtain human oral dose hazard values that are similar to published mammalian chronic toxicity values for the chemical. We also examined how development/safety data for human health can be used to help assess potential risks of pharmaceuticals to nontarget species in the environment. Discussion: Using several examples, we demonstrate that pathway-based analysis of chemical effects provides new opportunities to use alternative models (nonmammalian species, in vitro tests) to support decision making while reducing animal use and associated costs. Conclusions: These analyses and examples demonstrate how alternative models can be used to reduce cost and animal use while being protective of both human and ecological health. Citation: Perkins EJ, Ankley GT, Crofton KM, Garcia-Reyero N, LaLone CA, Johnson MS, Tietge JE, Villeneuve DL. 2013. Current perspectives on the use of alternative species in human health and ecological hazard assessments. Environ Health Perspect 121:1002–1010; http://dx.doi.org/10.1289/ehp.1306638 PMID:23771518

  1. Preparation of scanning tunneling microscopy tips using pulsed alternating current etching

    SciTech Connect

    Valencia, Victor A.; Thaker, Avesh A.; Derouin, Jonathan; Valencia, Damian N.; Farber, Rachael G.; Gebel, Dana A.; Killelea, Daniel R.

    2015-03-15

    An electrochemical method using pulsed alternating current etching (PACE) to produce atomically sharp scanning tunneling microscopy (STM) tips is presented. An Arduino Uno microcontroller was used to control the number and duration of the alternating current (AC) pulses, allowing for ready optimization of the procedures for both Pt:Ir and W tips using a single apparatus. W tips prepared using constant and pulsed AC power were compared. Tips fashioned using PACE were sharper than those etched with continuous AC power alone. Pt:Ir tips were prepared with an initial coarse etching stage using continuous AC power followed by fine etching using PACE. The number and potential of the finishing AC pulses was varied and scanning electron microscope imaging was used to compare the results. Finally, tip quality using the optimized procedures was verified by UHV-STM imaging. With PACE, at least 70% of the W tips and 80% of the Pt:Ir tips were of sufficiently high quality to obtain atomically resolved images of HOPG or Ni(111)

  2. Regional economic impacts of current and proposed management alternatives for Don Edwards National Wildlife Refuge

    USGS Publications Warehouse

    Richardson, Leslie; Huber, Chris; Koontz, Lynne

    2012-01-01

    The National Wildlife Refuge System Improvement Act of 1997 requires all units of the National Wildlife Refuge System to be managed under a Comprehensive Conservation Plan. The Comprehensive Conservation Plan must describe the desired future conditions of a Refuge and provide long-range guidance and management direction to achieve refuge purposes. The Don Edwards San Francisco Bay National Wildlife Refuge, located at the south end of California's San Francisco Bay and one of seven refuges in the San Francisco Bay National Wildlife Refuge Complex, is in the process of developing a range of management goals, objectives, and strategies for the Comprehensive Conservation Plan. The Comprehensive Conservation Plan must contain an analysis of expected effects associated with current and proposed Refuge management strategies. For Refuge Comprehensive Conservation Plan planning, a regional economic analysis provides a means of estimating how current management (No Action Alternative) and proposed management activities (alternatives) affect the local economy. This type of analysis provides two critical pieces of information: (1) it illustrates the Don Edwards San Francisco Bay National Wildlife Refuge's contribution to the local community, and (2) it can help in determining whether economic effects are or are not a real concern in choosing among management alternatives. This report first presents a description of the local community and economy near the Don Edwards San Francisco Bay National Wildlife Refuge. Next, the methods used to conduct a regional economic impact analysis are described. An analysis of the final Comprehensive Conservation Plan management strategies that could affect stakeholders, residents, and the local economy is then presented. The management activities of economic concern in this analysis are: * Spending in the local community by Refuge visitors; * Refuge personnel salary spending; and * Refuge purchases of goods and services within the local community.

  3. Efficacy of lidocaine lontophoresis using either alternating or direct current in hairless rats.

    PubMed

    Nakajima, Atsushi; Wakita, Ryo; Haida, Haruka; Fukayama, Haruhisa

    2013-01-01

    The aim of this study was to determine transport of lidocaine ions through a hairless rat skin in vivo and to compare the efficacy of alternating current (AC) with that of direct current (DC) iontophoresis (IOP). We measured the concentration of lidocaine transported through a cellophane membrane or a hairless rat dorsal skin applying either AC-IOP or DC-IOP. The results revealed that lidocaine concentration increased in a time-dependent manner in vitro in both DC-IOP and AC-IOP. However, the in vivo study showed different tendencies in lidocaine concentration. In the DCIOP group, lidocaine concentration reached its maximum 20 min after current application and then decreased rapidly; the AC-IOP group showed an increase in lidocaine concentration in a time-dependent manner. There were no side effects such as electrical burns in the rats. In conclusion, AC can be applied for long periods and DC for short periods, or their application time can be appropriately scheduled. Our study also suggests the mechanism by which voltage waveforms affect the skin when applied by IOP. In the future, these findings will be a solid foundation for developing various kinds of medical equipment such as scheduled drug delivery system that can easily deliver various types of drug. PMID:24146168

  4. A uniform laminar air plasma plume with large volume excited by an alternating current voltage

    NASA Astrophysics Data System (ADS)

    Li, Xuechen; Bao, Wenting; Chu, Jingdi; Zhang, Panpan; Jia, Pengying

    2015-12-01

    Using a plasma jet composed of two needle electrodes, a laminar plasma plume with large volume is generated in air through an alternating current voltage excitation. Based on high-speed photography, a train of filaments is observed to propagate periodically away from their birth place along the gas flow. The laminar plume is in fact a temporal superposition of the arched filament train. The filament consists of a negative glow near the real time cathode, a positive column near the real time anode, and a Faraday dark space between them. It has been found that the propagation velocity of the filament increases with increasing the gas flow rate. Furthermore, the filament lifetime tends to follow a normal distribution (Gaussian distribution). The most probable lifetime decreases with increasing the gas flow rate or decreasing the averaged peak voltage. Results also indicate that the real time peak current decreases and the real time peak voltage increases with the propagation of the filament along the gas flow. The voltage-current curve indicates that, in every discharge cycle, the filament evolves from a Townsend discharge to a glow one and then the discharge quenches. Characteristic regions including a negative glow, a Faraday dark space, and a positive column can be discerned from the discharge filament. Furthermore, the plasma parameters such as the electron density, the vibrational temperature and the gas temperature are investigated based on the optical spectrum emitted from the laminar plume.

  5. Alternative (non-animal) methods for cosmetics testing: current status and future prospects-2010.

    PubMed

    Adler, Sarah; Basketter, David; Creton, Stuart; Pelkonen, Olavi; van Benthem, Jan; Zuang, Valrie; Andersen, Klaus Ejner; Angers-Loustau, Alexandre; Aptula, Aynur; Bal-Price, Anna; Benfenati, Emilio; Bernauer, Ulrike; Bessems, Jos; Bois, Frederic Y; Boobis, Alan; Brandon, Esther; Bremer, Susanne; Broschard, Thomas; Casati, Silvia; Coecke, Sandra; Corvi, Raffaella; Cronin, Mark; Daston, George; Dekant, Wolfgang; Felter, Susan; Grignard, Elise; Gundert-Remy, Ursula; Heinonen, Tuula; Kimber, Ian; Kleinjans, Jos; Komulainen, Hannu; Kreiling, Reinhard; Kreysa, Joachim; Leite, Sofia Batista; Loizou, George; Maxwell, Gavin; Mazzatorta, Paolo; Munn, Sharon; Pfuhler, Stefan; Phrakonkham, Pascal; Piersma, Aldert; Poth, Albrecht; Prieto, Pilar; Repetto, Guillermo; Rogiers, Vera; Schoeters, Greet; Schwarz, Michael; Serafimova, Rositsa; Thti, Hanna; Testai, Emanuela; van Delft, Joost; van Loveren, Henk; Vinken, Mathieu; Worth, Andrew; Zaldivar, Jos-Manuel

    2011-05-01

    The 7th amendment to the EU Cosmetics Directive prohibits to put animal-tested cosmetics on the market in Europe after 2013. In that context, the European Commission invited stakeholder bodies (industry, non-governmental organisations, EU Member States, and the Commission's Scientific Committee on Consumer Safety) to identify scientific experts in five toxicological areas, i.e. toxicokinetics, repeated dose toxicity, carcinogenicity, skin sensitisation, and reproductive toxicity for which the Directive foresees that the 2013 deadline could be further extended in case alternative and validated methods would not be available in time. The selected experts were asked to analyse the status and prospects of alternative methods and to provide a scientifically sound estimate of the time necessary to achieve full replacement of animal testing. In summary, the experts confirmed that it will take at least another 7-9years for the replacement of the current in vivo animal tests used for the safety assessment of cosmetic ingredients for skin sensitisation. However, the experts were also of the opinion that alternative methods may be able to give hazard information, i.e. to differentiate between sensitisers and non-sensitisers, ahead of 2017. This would, however, not provide the complete picture of what is a safe exposure because the relative potency of a sensitiser would not be known. For toxicokinetics, the timeframe was 5-7years to develop the models still lacking to predict lung absorption and renal/biliary excretion, and even longer to integrate the methods to fully replace the animal toxicokinetic models. For the systemic toxicological endpoints of repeated dose toxicity, carcinogenicity and reproductive toxicity, the time horizon for full replacement could not be estimated. PMID:21533817

  6. Water management in the Basin of Mexico: current state and alternative scenarios

    NASA Astrophysics Data System (ADS)

    Carrera-Hernndez, Jaime J.; Gaskin, S. J.

    2009-09-01

    Water management policies in the Basin of Mexico, where Mexico City and its nearly 20 million inhabitants live, are analyzed. After a brief description of how water has been managed, possible water management plans that would change water management practices in the Basin are discussed and a call is made for a change in the defensive attitude towards water taken to date. As the aquifers replacement cost is considered to be the proxy for the implementation of water tariffs, this is determined, based on the cost of future water sources, and found to be 0.65-0.72 USD/m3. This is twice the amount currently charged in the Federal District (0.34 USD/m3), where 45% of the City's domestic water users are found. As another alternative, the development of an artificial recharge program is also analyzed and found to be a plausible way to increase water supply at a unitary cost of 0.605 USD/m3. Despite the presence of these alternatives, it is suggested that water management in the Basin needs to change from a water supply approach to a water demand approach.

  7. Alternating current line-filter based on electrochemical capacitor utilizing template-patterned graphene

    NASA Astrophysics Data System (ADS)

    Wu, Zhenkun; Li, Liyi; Lin, Ziyin; Song, Bo; Li, Zhuo; Moon, Kyoung-Sik; Wong, Ching-Ping; Bai, Shu-Lin

    2015-06-01

    Aluminum electrolytic capacitors (AECs) are widely used for alternating current (ac) line-filtering. However, their bulky size is becoming more and more incompatible with the rapid development of portable electronics. Here we report a scalable process to fabricate miniaturized graphene-based ac line-filters on flexible substrates at room temperature. In this work, graphene oxide (GO) is reduced by patterned metal interdigits at room temperature and used directly as the electrode material. The as-fabricated device shows a phase angle of -75.4 at 120?Hz with a specific capacitance of 316?F/cm2 and a RC time constant of 0.35?ms. In addition, it retains 97.2% of the initial capacitance after 10000 charge/discharge cycles. These outstanding performance characteristics of our device demonstrate its promising to replace the conventional AECs for ac line filtering.

  8. Alternating Current Driven Organic Light Emitting Diodes Using Lithium Fluoride Insulating Layers

    NASA Astrophysics Data System (ADS)

    Liu, Shang-Yi; Chang, Jung-Hung; -Wen Wu, I.; Wu, Chih-I.

    2014-12-01

    We demonstrate an alternating current (AC)-driven organic light emitting diodes (OLED) with lithium fluoride (LiF) insulating layers fabricated using simple thermal evaporation. Thermal evaporated LiF provides high stability and excellent capacitance for insulating layers in AC devices. The device requires a relatively low turn-on voltage of 7.1 V with maximum luminance of 87 cd/m2 obtained at 10 kHz and 15 Vrms. Ultraviolet photoemission spectroscopy and inverse photoemission spectroscopy are employed simultaneously to examine the electronic band structure of the materials in AC-driven OLED and to elucidate the operating mechanism, optical properties and electrical characteristics. The time-resolved luminance is also used to verify the device performance when driven by AC voltage.

  9. Alternating Current Dielectrophoresis Optimization of Pt-Decorated Graphene Oxide Nanostructures for Proficient Hydrogen Gas Sensor.

    PubMed

    Wang, Jianwei; Rathi, Servin; Singh, Budhi; Lee, Inyeal; Joh, Han-Ik; Kim, Gil-Ho

    2015-07-01

    Alternating current dielectrophoresis (DEP) is an excellent technique to assemble nanoscale materials. For efficient DEP, the optimization of the key parameters like peak-to-peak voltage, applied frequency, and processing time is required for good device. In this work, we have assembled graphene oxide (GO) nanostructures mixed with platinum (Pt) nanoparticles between the micro gap electrodes for a proficient hydrogen gas sensors. The Pt-decorated GO nanostructures were well located between a pair of prepatterned Ti/Au electrodes by controlling the DEP technique with the optimized parameters and subsequently thermally reduced before sensing. The device fabricated using the DEP technique with the optimized parameters showed relatively high sensitivity (?10%) to 200 ppm hydrogen gas at room temperature. The results indicates that the device could be used in several industry applications, such as gas storage and leak detection. PMID:26042360

  10. Alternating Current Driven Organic Light Emitting Diodes Using Lithium Fluoride Insulating Layers

    PubMed Central

    Liu, Shang-Yi; Chang, Jung-Hung; -Wen Wu, I.; Wu, Chih-I

    2014-01-01

    We demonstrate an alternating current (AC)-driven organic light emitting diodes (OLED) with lithium fluoride (LiF) insulating layers fabricated using simple thermal evaporation. Thermal evaporated LiF provides high stability and excellent capacitance for insulating layers in AC devices. The device requires a relatively low turn-on voltage of 7.1?V with maximum luminance of 87?cd/m2 obtained at 10?kHz and 15?Vrms. Ultraviolet photoemission spectroscopy and inverse photoemission spectroscopy are employed simultaneously to examine the electronic band structure of the materials in AC-driven OLED and to elucidate the operating mechanism, optical properties and electrical characteristics. The time-resolved luminance is also used to verify the device performance when driven by AC voltage. PMID:25523436

  11. Emission characteristics in solution-processed asymmetric white alternating current field-induced polymer electroluminescent devices

    NASA Astrophysics Data System (ADS)

    Chen, Yonghua; Xia, Yingdong; Smith, Gregory M.; Gu, Yu; Yang, Chuluo; Carroll, David L.

    2013-01-01

    In this work, the emission characteristics of a blue fluorophor poly(9, 9-dioctylfluorene) (PFO) combined with a red emitting dye: Bis(2-methyl-dibenzo[f,h]quinoxaline)(acetylacetonate)iridium (III) [Ir(MDQ)2(acac)], are examined in two different asymmetric white alternating current field-induced polymer electroluminescent (FIPEL) device structures. The first is a top-contact device in which the triplet transfer is observed resulting in the concentration-dependence of the emission similar to the standard organic light-emitting diode (OLED) structure. The second is a bottom-contact device which, however, exhibits concentration-independence of emission. Specifically, both dye emission and polymer emission are found for the concentrations as high as 10% by weight of the dye in the emitter. We attribute this to the significant different carrier injection characteristics of the two FIPEL devices. Our results suggest a simple and easy way to realize high-quality white emission.

  12. Targeting the neurophysiology of cognitive systems with transcranial alternating current stimulation (tACS)

    PubMed Central

    Fröhlich, Flavio; Sellers, Kristin K.; Cordle, Asa L.

    2015-01-01

    Cognitive impairment represents one of the most debilitating and most difficult symptom to treat of many psychiatric illnesses. Human neurophysiology studies have suggested specific pathologies of cortical network activity correlate with cognitive impairment. However, we lack (1) demonstration of causal relationships between specific network activity patterns and cognitive capabilities and (2) treatment modalities that directly target impaired network dynamics of cognition. Transcranial alternating current stimulation (tACS), a novel non-invasive brain stimulation approach, may provide a crucial tool to tackle these challenges. We here propose that tACS can be used to elucidate the causal role of cortical synchronization in cognition and, eventually, to enhance pathologically weakened synchrony that may underlie cognitive deficits. To accelerate such development of tACS as a treatment for cognitive deficits, we discuss studies on tACS and cognition (all performed in healthy participants) according to the Research Domain Criteria (RDoC) of the National Institute of Mental Health. PMID:25547149

  13. Alternating current line-filter based on electrochemical capacitor utilizing template-patterned graphene

    PubMed Central

    Wu, Zhenkun; Li, Liyi; Lin, Ziyin; Song, Bo; Li, Zhuo; Moon, Kyoung-Sik; Wong, Ching-Ping; Bai, Shu-Lin

    2015-01-01

    Aluminum electrolytic capacitors (AECs) are widely used for alternating current (ac) line-filtering. However, their bulky size is becoming more and more incompatible with the rapid development of portable electronics. Here we report a scalable process to fabricate miniaturized graphene-based ac line-filters on flexible substrates at room temperature. In this work, graphene oxide (GO) is reduced by patterned metal interdigits at room temperature and used directly as the electrode material. The as-fabricated device shows a phase angle of ?75.4 at 120?Hz with a specific capacitance of 316?F/cm2 and a RC time constant of 0.35?ms. In addition, it retains 97.2% of the initial capacitance after 10000 charge/discharge cycles. These outstanding performance characteristics of our device demonstrate its promising to replace the conventional AECs for ac line filtering. PMID:26084051

  14. Magnetic phase characterization of nanocrystalline La2NiMnO6 using alternating current conductance

    NASA Astrophysics Data System (ADS)

    Chakraborty, D.; Nandi, U. N.; Jana, D.; Masud, Md G.; Giri, S.

    2015-07-01

    The signature of various disordered phases is inferred from the measurement of the real part of alternating current conductance Σ(T, f) of a nanocrystalline double perovskite La2NiMnO6. The system exhibits a paramagnetic insulating (PMI) phase at high temperatures, a ferromagnetic insulating (FMI) phase at low temperatures, and a Griffiths-like phase in the intermediate temperature range. In these three phases, Σ(T, f) shows qualitatively similar variation with frequency f. At a fixed temperature T, Σ(T, f) remains constant to its Ohmic value Σ0 up to a certain frequency, known as the onset frequency fc and increases with increasing f beyond fc. Scaled appropriately, Σ(T, f) versus f data corresponding to these three regimes fall on the same master curve indicating the universal nature of the scaling behaviour of alternating current conductance. This onset frequency fc scales with Σ0 as f c ˜ Σ0 x f with xf as the nonlinearity exponent. This exponent xf shows a gradual crossover from 1.025 ± 0.006 in FMI phase to 0.518 ± 0.07 in PMI phase in an intermediate temperature range signifying the presence of Griffiths-like phase. A simple phenomenological R-RC model consistent with the microstructural conduction mechanisms in PMI and FMI phases is developed to generate the qualitative non-Ohmic character of ac conductance, the onset frequency fc, and the nonlinearity exponent xf. Existing scaling theories with reliable models are used to analyze and compare the results of ac conductance in similar systems.

  15. Regional economic effects of current and proposed management alternatives for Sand Lake National Wildlife Refuge

    USGS Publications Warehouse

    Koontz, Lynne; Lambert, Heather

    2005-01-01

    The National Wildlife Refuge System Improvement Act of 1997 requires all units of the National Wildlife Refuge System to be managed under a Comprehensive Conservation Plan (CCP). The CCP must describe the desired future conditions of a Refuge and provide long range guidance and management direction to achieve Refuge purposes. Sand Lake National Wildlife Refuge (NWR), located 27 miles northeast of Aberdeen, South Dakota, is in the process of developing a range of management goals, objectives, and strategies for the CCP. The CCP for Sand Lake NWR must contain an analysis of expected effects associated with current and proposed Refuge management strategies. Special interest groups and local residents often criticize a change in Refuge management, especially if there is a perceived negative impact to the local economy. Having objective data on income and employment impacts may show that these economic fears are drastically overstated. Quite often, residents do not realize the extent of economic benefits a Refuge provides to a local community; yet at the same time overestimate the impact of negative changes. Spending associated with Refuge recreational activities such as wildlife viewing and hunting can generate considerable tourism activity for the regional economy. Refuge personnel typically spend considerable amounts of money purchasing supplies in the local lumber and hardware stores, repairing equipment and purchasing fuel at the local service stations, as well as reside and spend their salaries in the community. The purpose of this study was to provide the economic analysis needed for the Sand Lake NWR CCP by evaluating the regional economic impacts associated with the Sank Lake NWR Draft CCP management strategies. For Refuge CCP planning, an economic impact analysis described how current (No Action Alternative) and proposed management activities (alternatives) affect the local economy. This type of analysis provided two critical pieces of information: (1) it illustrates a refugea??s contribution to the local community; and (2) it can help in determining whether local economic effects are or are not a real concern in choosing among management alternativesa?|

  16. The effects of alternating electric fields in glioblastoma: current evidence on therapeutic mechanisms and clinical outcomes.

    PubMed

    Rehman, Azeem A; Elmore, Kevin B; Mattei, Tobias A

    2015-03-01

    Glioblastoma is both the most common and most lethal primary CNS malignancy in adults, accounting for 45.6% of all malignant CNS tumors, with a 5-year survival rate of only 5.0%, despite the utilization of multimodal therapy including resection, chemotherapy, and radiation. Currently available treatment options for glioblastoma often remain limited, offering brief periods of improved survival, but with substantial side effects. As such, improvements in current treatment strategies or, more likely, the implementation of novel strategies altogether are warranted. In this topic review, the authors provide a comprehensive review on the potential of alternating electric fields (AEFs) in the treatment of glioblastoma. Alternating electric fields-also known as tumor-treating fields (TTFs)-represent an entirely original therapeutic modality with preliminary studies suggesting comparable, and at times improved, efficacy to standard chemotherapeutic agents in the treatment of recurrent glioblastoma. A recent multicenter, Phase III, randomized clinical trial comparing NovoTTF-100A monotherapy to physician's best choice chemotherapy in patients with recurrent glioblastoma revealed that AEFs have similar efficacy to standard chemotherapeutic agents with a more favorable side-effects profile and improved quality of life. In particular, AEFs were shown to have limited systemic adverse effects, with the most common side effect being contact dermatitis on the scalp at the sites of transducer placement. This study prompted FDA approval of the NovoTTF-100A system in April 2011 as a standalone therapy for treatment of recurrent glioblastoma refractory to surgical and radiation treatment. In addition to discussing the available clinical evidence regarding the utilization of AEFs in glioblastoma, this article provides essential information regarding the supposed therapeutic mechanism as well as modes of potential tumor resistance to such novel therapy, delineating future perspectives regarding basic science research on the issue. PMID:25727223

  17. Montage Matters: The Influence of Transcranial Alternating Current Stimulation on Human Physiological Tremor

    PubMed Central

    Mehta, Arpan R.; Pogosyan, Alek; Brown, Peter; Brittain, John-Stuart

    2015-01-01

    Background Classically, studies adopting non-invasive transcranial electrical stimulation have placed greater importance on the position of the primary “stimulating” electrode than the secondary “reference” electrode. However, recent current density modeling suggests that ascribing a neutral role to the reference electrode may prove an inappropriate oversimplification. Hypothesis We set out to test the hypothesis that the behavioral effects of transcranial electrical stimulation are critically dependent on the position of the return (“reference”) electrode. Methods We examined the effect of transcranial alternating current stimulation (sinusoidal waveform with no direct current offset at a peak-to-peak amplitude of 2000 μA and a frequency matched to each participant's peak tremor frequency) on physiological tremor in a group of healthy volunteers (N = 12). We implemented a sham-controlled experimental protocol where the position of the stimulating electrode remained fixed, overlying primary motor cortex, whilst the position of the return electrode varied between two cephalic (fronto-orbital and contralateral primary motor cortex) and two extracephalic (ipsilateral and contralateral shoulder) locations. We additionally controlled for the role of phosphenes in influencing motor output by assessing the response of tremor to photic stimulation, through self-reported phosphene ratings. Results Altering only the position of the return electrode had a profound behavioral effect: only the montage with extracephalic return contralateral to the primary stimulating electrode significantly entrained physiological tremor (15.9% ± 6.1% increase in phase stability, 1 S.E.M.). Photic stimulation also entrained tremor (11.7% ± 5.1% increase in phase stability). Furthermore, the effects of electrical stimulation are distinct from those produced from direct phosphene induction, in that the latter were only seen with the fronto-orbital montage that did not affect the tremor. Conclusion The behavioral effects of transcranial alternating current stimulation appear to be critically dependent on the position of the reference electrode, highlighting the importance of electrode montage when designing experimental and therapeutic protocols. PMID:25499037

  18. Arsenic speciation in natural waters by cathodic stripping voltammetry.

    PubMed

    Gibbon-Walsh, Kristoff; Salan, Pascal; van den Berg, Constant M G

    2010-03-01

    Contamination of groundwater with arsenic (As) is a major health risk through contamination of drinking and irrigation water supplies. In geochemically reducing conditions As is mostly present as As(III), its most toxic species. Various methods exist to determine As in water but these are not suitable for monitoring arsenic speciation at its original pH and without preparation. We present a method that uses cathodic stripping voltammetry (CSV) to determine reactive As(III) at a vibrating, gold, microwire electrode. The As(III) is detected after adsorptive deposition of As(OH)(3)(0), followed by a potential scan to measure the reduction current from As(III) to As(0). The method is suitable for waters of pH 7-12, has an analytical range of 1 nM to 100 microM As (0.07-7500 ppb) and a limit of detection of 0.5 nM with a 60 s deposition time. The As speciation protocol involves measuring reactive As(III) by CSV at the original pH and acidification to pH 1 to determine inorganic As(III)+As(V) by anodic stripping voltammetry (ASV) using the same electrode. Total dissolved As is determined by ASV after UV-digestion at pH 1. The method was successfully tested on various raw groundwater samples from boreholes in the UK and West Bengal. PMID:20152258

  19. Plasma electrochemistry: voltammetry in a flame plasma electrolyte.

    PubMed

    Elahi, Atif; Caruana, Daren J

    2013-01-28

    In this paper we present detailed dynamic electrochemical measurements in a flame plasma electrolyte in the presence of tungsten oxide salts. Defined reproducible redox processes are measured using conventional cyclic voltammetry in an operational potential window between 1 and -9 V. This wide potential window is possible due to the absence of solvent and its associated limits due to solvent electrolysis at high over potentials. The measurements were enabled through the development of a new reference electrode, composed of yttria stabilised zirconia (YSZ) which maintains a stable potential at 1100 K. In this paper we focus on developing a phenomenological understanding of electron transfer at the solid-gas interface, using cyclic voltammetry. The effect of working electrode surface area and material, as well as potential scan rate on the voltammetric redox features is presented. We discuss the physical origin of the observed Faradaic current peaks measured in a flame plasma electrolyte, and propose a simple model to describe the redox processes occurring. We conclude that redox processes at the solid-gas interface are actually similar to the analogous processes at the solid-liquid interface described by conventional electrochemical theory; the departures are mainly due to the mass transport processes that dominate in the gas phase. We associate migration effects with the total absence of any oxidation processes. PMID:23223382

  20. Regional economic analysis of current and proposed management alternatives for Rappahannock River Valley National Wildlife Refuge

    USGS Publications Warehouse

    Koontz, Lynne; Sexton, Natalie; Donovan, Ryan

    2009-01-01

    The National Wildlife Refuge System Improvement Act of 1997 requires all units of the National Wildlife Refuge System to be managed under a Comprehensive Conservation Plan. The Comprehensive Conservation Plan must describe the desired future conditions of a refuge and provide long-range guidance and management direction to achieve refuge purposes. The Rappahannock River Valley National Wildlife Refuge (refuge) is in the process of developing a range of management goals, objectives, and strategies for the Comprehensive Conservation Plan. The Comprehensive Conservation Plan for the refuge must contain an analysis of expected effects associated with current and proposed refuge management strategies. The purpose of this study was to assess the regional economic implications associated with draft Comprehensive Conservation Plan management strategies. Special interest groups and local residents often criticize a change in refuge management, especially if there is a perceived negative impact to the local economy. Having objective data on economic impacts may show that these fears are overstated. Quite often, the extent of economic benefits a refuge provides to a local community is not fully recognized, yet at the same time the effects of negative changes is overstated. Spending associated with refuge recreational activities, such as wildlife viewing and hunting, can generate considerable tourist activity for surrounding communities. Additionally, refuge personnel typically spend considerable amounts of money purchasing supplies in local stores, repairing equipment and purchasing fuel at the local service stations, and reside and spend their salaries in the local community. For refuge Comprehensive Conservation Plan planning, a regional economic assessment provides a means of estimating how current management (no action alternative) and proposed management activities (alternatives) could affect the local economy. This type of analysis provides two critical pieces of information: (1) it illustrates a refuge's contribution to the local community; and (2) it can help in determining whether local economic effects are or are not a real concern in choosing among management alternatives. It is important to note that the economic value of a refuge encompasses more than just the impacts of the regional economy. Refuges also provide substantial nonmarket values (values for items not exchanged in established markets), such as maintaining endangered species, preserving wetlands, educating future generations, and adding stability to the ecosystem. However, quantifying these types of nonmarket values was beyond the scope of this study because of time and budget constraints.

  1. An Analysis of Alternatives to New York City's Current Marijuana Arrest and Detention Policy

    PubMed Central

    Johnson, Bruce D.; Golub, Andrew; Dunlap, Eloise; Sifaneck, Stephen J.

    2008-01-01

    During the 1990s, the New York Police Department (NYPD) instituted a policy of arresting and detaining people for minor offenses that occur in public as part of their quality-of-life (hereafter QOL) policing initiative. The number of NYPD arrests for smoking marijuana in public view (MPV) increased from 3,000 in 1994 to over 50,000 in 2000, and have been about 30,000 in the mid 2000s. Most of these arrestees (84%) have been minority; blacks have been 2.7 more likely and Hispanics 1.8 times more likely to be detained than whites for an MPV arrest. Minorities have been most likely to receive more severe dispositions, even controlling for demographics and prior arrest histories. This paper examines the pros and cons of the current policy; this is compared with possible alternatives including the following: arrest and issue a desk appearance ticket (DAT); issue a non-criminal citation (violation); street warnings; and tolerate public marijuana smoking. The authors recommend that the NYPD change to issuing DATs on a routine basis. Drug policy reformers might wish to further pursue changing statutes regarding smoking marijuana in public view into a violation (noncriminal) or encourage the wider use of street warnings. Any of these policy changes would help reduce the disproportionate burden on minorities associated with the current arrest and detention policy. These policies could help maintain civic norms against smoking marijuana in public. PMID:18726007

  2. Boron doped diamond sensor for sensitive determination of metronidazole: Mechanistic and analytical study by cyclic voltammetry and square wave voltammetry.

    PubMed

    Ammar, Hafedh Belhadj; Brahim, Mabrouk Ben; Abdelhdi, Ridha; Samet, Youssef

    2016-02-01

    The performance of boron-doped diamond (BDD) electrode for the detection of metronidazole (MTZ) as the most important drug of the group of 5-nitroimidazole was proven using cyclic voltammetry (CV) and square wave voltammetry (SWV) techniques. A comparison study between BDD, glassy carbon and silver electrodes on the electrochemical response was carried out. The process is pH-dependent. In neutral and alkaline media, one irreversible reduction peak related to the hydroxylamine derivative formation was registered, involving a total of four electrons. In acidic medium, a prepeak appears probably related to the adsorption affinity of hydroxylamine at the electrode surface. The BDD electrode showed higher sensitivity and reproducibility analytical response, compared with the other electrodes. The higher reduction peak current was registered at pH11. Under optimal conditions, a linear analytical curve was obtained for the MTZ concentration in the range of 0.2-4.2?molL(-1), with a detection limit of 0.065?molL(-1). PMID:26652413

  3. Transcranial alternating current stimulation affects the BOLD signal in a frequency and task-dependent manner.

    PubMed

    Cabral-Calderin, Yuranny; Anne Weinrich, Christiane; Schmidt-Samoa, Carsten; Poland, Eva; Dechent, Peter; Bhr, Mathias; Wilke, Melanie

    2016-01-01

    Transcranial alternating current stimulation (tACS) has emerged as a promising tool for manipulating ongoing brain oscillations. While previous studies demonstrated frequency-specific effects of tACS on diverse cognitive functions, its effect on neural activity remains poorly understood. Here we asked how tACS modulates regional fMRI blood oxygenation level dependent (BOLD) signal as a function of frequency, current strength, and task condition. TACS was applied over the posterior cortex of healthy human subjects while the BOLD signal was measured during rest or task conditions (visual perception, passive video viewing and motor task). TACS was applied in a blockwise manner at different frequencies (10, 16, 60 and 80 Hz). The strongest tACS effects on BOLD activity were observed with stimulation at alpha (10 Hz) and beta (16 Hz) frequency bands, while effects of tACS at the gamma range were rather modest. Specifically, we found that tACS at 16 Hz induced BOLD activity increase in fronto-parietal areas. Overall, tACS effects varied as a function of frequency and task, and were predominantly seen in regions that were not activated by the task. Also, the modulated regions were poorly predicted by current density modeling studies. Taken together, our results suggest that tACS does not necessarily exert its strongest effects in regions below the electrodes and that region specificity might be achieved with tACS due to varying susceptibility of brain regions to entrain to a given frequency. Hum Brain Mapp 37:94-121, 2016. 2015 The Authors. Human Brain Mapping Published by Wiley Periodicals, Inc. PMID:26503692

  4. Resistivity measured by direct and alternating current: why are they different?

    NASA Astrophysics Data System (ADS)

    Zadorozhnaya, V. Y.

    2008-11-01

    Mathematical modeling of a little known model of IP referred to as "induced polarization caused by constrictivity of pores" was developed. Polarization occurs in all types of rocks if surface areas and transfer numbers are different for connected pores. The duration of the polarization process depends on two parameters: pore radii of connected capillaries and transfer numbers. During the polarization process all contacts between pores of different transfer numbers will be blocked and the electrical current will flow through the remaining canals. Two phenomena control the amplitude of potential difference at time-on: 1. Successive blockage of pores increases the resistivity of sediments and results in increased measured potential difference. 2. Excess concentration of electrolyte at the boundaries between pores with different radii provides an additional potential. The amplitude of the potential difference (voltage) of such rocks not only depends on solutions filling pore spaces, porosity and tourtuosity of pores channels, but also on ion mobility, diffusion coefficient, and difference of transfer numbers. During time-on a voltage is occurred due to flowing current Ucurr (t) and excess concentration Uexcess (t) at the contacts. However during the time-off only the excess of concentration Uexcess (t) is involved in the diffusion process which tends to level the ion concentration along the pores. It was found that the measured chargeability is proportional to the porosity. Blockage of pores and excess/loss ions at the contacted pores control this physical parameter. However the relationship between resistivity and porosity is very complicated. Mathematical modeling and laboratory measurements both confirmed the membrane IP effect diminishing with increasing salinity of fluid filled pores of rocks. Membrane polarization does not exist on high frequency of electrical current. As a result the resistivity measured by direct and alternating current is different. The new algorithm was tested on laboratory measurements data showing its good agreement with theory. The calculation of pore size distribution using IP laboratory data has been presented. The definition of the membrane IP effect is: "Membrane IP is the successive blockage of inter-pore connections due to the excess distribution of ions during current flow".

  5. Differential thermal voltammetry for tracking of degradation in lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Wu, Billy; Yufit, Vladimir; Merla, Yu; Martinez-Botas, Ricardo F.; Brandon, Nigel P.; Offer, Gregory J.

    2015-01-01

    Monitoring of lithium-ion batteries is of critical importance in electric vehicle applications in order to manage the operational condition of the cells. Measurements on a vehicle often involve current, voltage and temperature which enable in-situ diagnostic techniques. This paper presents a novel diagnostic technique, termed differential thermal voltammetry, which is capable of monitoring the state of the battery using voltage and temperature measurements in galvanostatic operating modes. This tracks battery degradation through phase transitions, and the resulting entropic heat, occurring in the electrodes. Experiments to monitor battery degradation using the new technique are compared with a pseudo-2D cell model. Results show that the differential thermal voltammetry technique provides information comparable to that of slow rate cyclic voltammetry at shorter timescale and with load conditions easier to replicate in a vehicle.

  6. The Rise of Voltammetry: From Polarography to the Scanning Electrochemical Microscope

    ERIC Educational Resources Information Center

    Bard, Allen J.

    2007-01-01

    The drooping mercury electrode (DME) was previously used to carry out electrochemical experiments but invention of polarography technique changed this. Voltammetry with DME was given the term polarography and are used in measurement of current as a function of potential at small electrodes.

  7. Development and Use of a Cyclic Voltammetry Simulator to Introduce Undergraduate Students to Electrochemical Simulations

    ERIC Educational Resources Information Center

    Brown, Jay H.

    2015-01-01

    Cyclic voltammetry (CV) is a popular technique for the study of electrochemical mechanisms because the method can provide useful information on the redox couple. The technique involves the application of a potential ramp on an unstirred solution while the current is monitored, and then the ramp is reversed for a return sweep. CV is sometimes

  8. Development and Use of a Cyclic Voltammetry Simulator to Introduce Undergraduate Students to Electrochemical Simulations

    ERIC Educational Resources Information Center

    Brown, Jay H.

    2015-01-01

    Cyclic voltammetry (CV) is a popular technique for the study of electrochemical mechanisms because the method can provide useful information on the redox couple. The technique involves the application of a potential ramp on an unstirred solution while the current is monitored, and then the ramp is reversed for a return sweep. CV is sometimes…

  9. Reduction in fatigue failures through crack detection by alternating current field measurement

    SciTech Connect

    Gaynor, T.M.; Roberts, D.L.; Homan, E.; Dover, W.

    1997-03-01

    Once a crack is initiated by cyclic stress in a drillstring component, it will grow under further service loading and will fail when insufficient uncracked material remains to carry the applied load. Because the levels of cyclic and subsequent stress in drilling may be unknown (or unknowable), the drilling equipment supplier`s main defense against component fatigue failure (after design) is detection of the initial crack, conventionally by magnetic-particle or dye-penetrant inspection (respectively, MPI or DPI). A clean bill of health from MPI or DPI means only that no crack indications were found. The likely locations of cracks (e.g., thread roots in box connections) are often difficult to examine. Detection and interpretation are subjective and depend on the skill of the inspector. A crack and a surface defect may be indistinguishable from one another. No reviewable evidence of component inspection is left to allow an audit of inspection previously performed. Alternating current field measurement (ACFM) induces a current in the surface of a component. If ACFM detects a perturbation in the magnetic field created in the free space above the surface, a surface defect is present. ACFM is able to determine the length and depth of a defect. It does not require a clear line of sight between operator and crack location. All data are recorded electronically and the evidence for the existence or nonexistence of a crack can be revisited. the paper describes the theory of the technique, the equipment used, and practical results from the first application of ACFM to downhole motor components.

  10. Alternating current electrohydrodynamics in microsystems: Pushing biomolecules and cells around on surfaces.

    PubMed

    Vaidyanathan, Ramanathan; Dey, Shuvashis; Carrascosa, Laura G; Shiddiky, Muhammad J A; Trau, Matt

    2015-11-01

    Electrohydrodynamics (EHD) deals with the fluid motion induced by an electric field. This phenomenon originally developed in physical science, and engineering is currently experiencing a renaissance in microfluidics. Investigations by Taylor on Gilbert's theory proposed in 1600 have evolved to include multiple contributions including the promising effects arising from electric field interactions with cells and particles to influence their behaviour on electrode surfaces. Theoretical modelling of electric fields in microsystems and the ability to determine shear forces have certainly reached an advanced state. The ability to deftly manipulate microscopic fluid flow in bulk fluid and at solid/liquid interfaces has enabled the controlled assembly, coagulation, or removal of microstructures, nanostructures, cells, and molecules on surfaces. Furthermore, the ability of electrohydrodynamics to generate fluid flow using surface shear forces generated within nanometers from the surface and their application in bioassays has led to recent advancements in biomolecule, vesicle and cellular detection across different length scales. With the integration of Alternating Current Electrohydrodynamics (AC-EHD) in cellular and molecular assays proving to be highly fruitful, challenges still remain with respect to understanding the discrepancies between each of the associated ac-induced fluid flow phenomena, extending their utility towards clinical diagnostic development, and utilising them in tandem as a standard tool for disease monitoring. In this regard, this article will review the history of electrohydrodynamics, followed by some of the recent developments in the field including a new dimension of electrohydrodynamics that deals with the utilization of surface shear forces for the manipulation of biological cells or molecules on electrode surfaces. Recent advances and challenges in the use of electrohydrodynamic forces such as dielectrophoresis and ac electrosmosis for the detection of biological analytes are also reviewed. Additionally, the fundamental mechanisms of fluid flow using electrohydrodynamics forces, which are still evolving, are reviewed. Challenges and future directions are discussed from the perspective of both fundamental understanding and potential applications of these nanoscaled shear forces in diagnostics. PMID:26674299

  11. Alternating current electrophoretic deposition of antibacterial bioactive glass-chitosan composite coatings.

    PubMed

    Seuss, Sigrid; Lehmann, Maja; Boccaccini, Aldo R

    2014-01-01

    Alternating current (AC) electrophoretic deposition (EPD) was used to produce multifunctional composite coatings combining bioactive glass (BG) particles and chitosan. BG particles of two different sizes were used, i.e., 2 μm and 20-80 nm in average diameter. The parameter optimization and characterization of the coatings was conducted by visual inspection and by adhesion strength tests. The optimized coatings were investigated in terms of their hydroxyapatite (HA) forming ability in simulated body fluid (SBF) for up to 21 days. Fourier transform infrared (FTIR) spectroscopy results showed the successful HA formation on the coatings after 21 days. The first investigations were conducted on planar stainless steel sheets. In addition, scaffolds made from a TiAl4V6 alloy were considered to show the feasibility of coating of three dimensional structures by EPD. Because both BG and chitosan are antibacterial materials, the antibacterial properties of the as-produced coatings were investigated using E. coli bacteria cells. It was shown that the BG particle size has a strong influence on the antibacterial properties of the coatings. PMID:25007822

  12. Friends, not foes: Magnetoencephalography as a tool to uncover brain dynamics during transcranial alternating current stimulation.

    PubMed

    Neuling, Toralf; Ruhnau, Philipp; Fusc, Marco; Demarchi, Gianpaolo; Herrmann, Christoph S; Weisz, Nathan

    2015-09-01

    Brain oscillations are supposedly crucial for normal cognitive functioning and alterations are associated with cognitive dysfunctions. To demonstrate their causal role on behavior, entrainment approaches in particular aim at driving endogenous oscillations via rhythmic stimulation. Within this context, transcranial electrical stimulation, especially transcranial alternating current stimulation (tACS), has received renewed attention. This is likely due to the possibility of defining oscillatory stimulation properties precisely. Also, measurements comparing pre-tACS with post-tACS electroencephalography (EEG) have shown impressive modulations. However, the period during tACS has remained a blackbox until now, due to the enormous stimulation artifact. By means of application of beamforming to magnetoencephalography (MEG) data, we successfully recovered modulations of the amplitude of brain oscillations during weak and strong tACS. Additionally, we demonstrate that also evoked responses to visual and auditory stimuli can be recovered during tACS. The main contribution of the present study is to provide critical evidence that during ongoing tACS, subtle modulations of oscillatory brain activity can be reconstructed even at the stimulation frequency. Future tACS experiments will be able to deliver direct physiological insights in order to further the understanding of the contribution of brain oscillations to cognition and behavior. PMID:26080310

  13. Application of broadband alternating current magnetic susceptibility to the characterization of magnetic nanoparticles in natural materials

    NASA Astrophysics Data System (ADS)

    Kodama, Kazuto

    2013-01-01

    A new method is proposed for characterizing magnetic particles by measuring low-field alternating current magnetic susceptibility at a number of frequency steps spanning four orders of magnitude, from 125 Hz to 512 kHz. This method was tested using natural samples with various grain size distributions, including basalt (Kilauea, Hawaii), loess and paleosol (Luochuan, China), tuff (Yucca Mountain, Nevada), granite (Minnesota Valley, Minnesota), and andesite (Sakurajima, Japan). The resulting frequency spectrum of magnetic susceptibility (FSMS) of the basalt, loess/paleosol, and tuff decreases with increasing frequency, but at different rates of decrease. The FSMS of the basalt is characterized by a monotonic decrease with increasing frequency over the entire range. The FSMS of the loess/paleosol and the tuff decreases more markedly than that of the basalt, which agrees with previous results showing that superparamagnetic particles are dominant in such material. Quantitative estimates using FSMSs allow reconstruction of characteristic grain size distributions and clearly identify differences in the distribution of superparamagnetic particles. The multidomain granite sample has no distinct frequency dependence, which is probably due to the smooth displacement of domain walls in the presence of the external field. In contrast, the FSMSs of the andesite samples exhibit maxima over a limited frequency range, between 16 and 128 kHz. This behavior, together with low-temperature measurements, can be accounted for by magnetic resonance of domain walls in the multidomain phenocrysts.

  14. From amusic to musical?--Improving pitch memory in congenital amusia with transcranial alternating current stimulation.

    PubMed

    Schaal, Nora K; Pfeifer, Jasmin; Krause, Vanessa; Pollok, Bettina

    2015-11-01

    Brain imaging studies highlighted structural differences in congenital amusia, a life-long perceptual disorder that is associated with pitch perception and pitch memory deficits. A functional anomaly characterized by decreased low gamma oscillations (30-40 Hz range) in the right dorsolateral prefrontal cortex (DLPFC) during pitch memory has been revealed recently. Thus, the present study investigates whether applying transcranial alternating current stimulation (tACS) at 35 Hz to the right DLPFC would improve pitch memory. Nine amusics took part in two tACS sessions (either 35 Hz or 90 Hz) and completed a pitch and visual memory task before and during stimulation. 35 Hz stimulation facilitated pitch memory significantly. No modulation effects were found with 90 Hz stimulation or on the visual task. While amusics showed a selective impairment of pitch memory before stimulation, the performance during 35 Hz stimulation was not significantly different to healthy controls anymore. Taken together, the study shows that modulating the right DLPFC with 35 Hz tACS in congenital amusia selectively improves pitch memory performance supporting the hypothesis that decreased gamma oscillations within the DLPFC are causally involved in disturbed pitch memory and highlight the potential use of tACS to interact with cognitive processes. PMID:26254878

  15. Alternating Current Electrophoretic Deposition of Antibacterial Bioactive Glass-Chitosan Composite Coatings

    PubMed Central

    Seuss, Sigrid; Lehmann, Maja; Boccaccini, Aldo R.

    2014-01-01

    Alternating current (AC) electrophoretic deposition (EPD) was used to produce multifunctional composite coatings combining bioactive glass (BG) particles and chitosan. BG particles of two different sizes were used, i.e., 2 ?m and 2080 nm in average diameter. The parameter optimization and characterization of the coatings was conducted by visual inspection and by adhesion strength tests. The optimized coatings were investigated in terms of their hydroxyapatite (HA) forming ability in simulated body fluid (SBF) for up to 21 days. Fourier transform infrared (FTIR) spectroscopy results showed the successful HA formation on the coatings after 21 days. The first investigations were conducted on planar stainless steel sheets. In addition, scaffolds made from a TiAl4V6 alloy were considered to show the feasibility of coating of three dimensional structures by EPD. Because both BG and chitosan are antibacterial materials, the antibacterial properties of the as-produced coatings were investigated using E. coli bacteria cells. It was shown that the BG particle size has a strong influence on the antibacterial properties of the coatings. PMID:25007822

  16. Atmospheric pressure chemical ionization of explosives using alternating current corona discharge ion source.

    PubMed

    Usmanov, D T; Chen, L C; Yu, Z; Yamabe, S; Sakaki, S; Hiraoka, K

    2015-04-01

    The high-sensitive detection of explosives is of great importance for social security and safety. In this work, the ion source for atmospheric pressure chemical ionization/mass spectrometry using alternating current corona discharge was newly designed for the analysis of explosives. An electromolded fine capillary with 115?m inner diameter and 12?mm long was used for the inlet of the mass spectrometer. The flow rate of air through this capillary was 41?ml/min. Stable corona discharge could be maintained with the position of the discharge needle tip as close as 1?mm to the inlet capillary without causing the arc discharge. Explosives dissolved in 0.5?l methanol were injected to the ion source. The limits of detection for five explosives with 50?pg or lower were achieved. In the ion/molecule reactions of trinitrotoluene (TNT), the discharge products of NOx (-) (x?=?2,3), O3 and HNO3 originating from plasma-excited air were suggested to contribute to the formation of [TNT?-?H](-) (m/z 226), [TNT?-?NO](-) (m/z 197) and [TNT?-?NO?+?HNO3 ](-) (m/z 260), respectively. Formation processes of these ions were traced by density functional theory calculations. Copyright 2015 John Wiley & Sons, Ltd. PMID:26149109

  17. Characterization of a vertically aligned silica nanospring-based sensor by alternating current impedance spectroscopy

    NASA Astrophysics Data System (ADS)

    Timalsina, Yukta P.; Oriero, Dennis; Cantrell, Timothy; Prakash, Tej; Branen, Joshua; Aston, D. Eric; Noren, Kenneth; Nagler, James J.; Rastogi, Shiva; McIlroy, David N.; Corti, Giancarlo

    2010-09-01

    In this study, the initial phase of development of a vertically aligned (silica) nanospring (VANS)-based sensor utilizing alternating current impedance spectroscopy is presented. The sensor is a capacitor consisting of two glass substrates coated with indium tin oxide, where the VANS are grown on one substrate, following a top-down approach, serving as the dielectric spacer layer. The sensitivity of the VANS sensors was evaluated using deionized water (of an effective ~= 10-3 mM monovalent ion concentration) and saline-phosphate (SP) solutions of pH 7.3 with concentrations 0.1, 1, 10 and 100 mM. Similar tests were performed with sensors without VANS or blank sensors. The modeling of the VANS impedance spectra required an equivalent circuit consisting of eight elements compared to four elements for the blank sensor. VANS sensors exhibited greater sensitivity to changes in the SP concentration relative to the blank sensors. The enhanced sensitivity is attributed to the addition of an ionic diffusion barrier at the VANS-solution interface and to ionic diffusion within the VANS.

  18. Alternating current potential drop for measuring the case depth of hardened steel

    NASA Astrophysics Data System (ADS)

    Quddes, Mohammad R.; Ji, Yuan; Bowler, John R.

    2015-03-01

    Multi-frequency alternate current potential drop measurements have been made to estimate the case depth of case hardened steels using four point probes. The probes have four parallel sprung loaded pins in a line with a 1.5 mm separation between the contact points. A printed circuit board has been used to ensure the electrical connections to the pins are close to the surface of the material. This has the effect of reducing the mutual induction between driver and pick-up pins. The case depth is estimated from measurements at frequencies typically from 10 Hz to 10 kHz. The real part of the voltage phasor representing the AC potential drop is used to evaluate the case depth. The imaginary part includes the contribution due to mutual induction. To estimate the case depth of the hardened samples, the measured potential drop has been fitted to theoretical predictions. The substrate material properties of the hardened samples are extracted from multi-frequency potential drop measurements on non-harden samples. The estimated case hardened depths, deduced from potential drop measurements, are similar to those found from destructive measurements.

  19. 40Hz-Transcranial alternating current stimulation (tACS) selectively modulates speech perception.

    PubMed

    Rufener, Katharina S; Zaehle, Tino; Oechslin, Mathias S; Meyer, Martin

    2016-03-01

    The present study investigated the functional relevance of gamma oscillations for the processing of rapidly changing acoustic features in speech signals. For this purpose we analyzed repetition-induced perceptual learning effects in 18 healthy adult participants. The participants received either 6Hz or 40Hz tACS over the bilateral auditory cortex, while repeatedly performing a phoneme categorization task. In result, we found that 40Hz tACS led to a specific alteration in repetition-induced perceptual learning. While participants in the non-stimulated control group as well as those in the experimental group receiving 6Hz tACS considerably improved their perceptual performance, the application of 40Hz tACS selectively attenuated the repetition-induced improvement in phoneme categorization abilities. Our data provide causal evidence for a functional relevance of gamma oscillations during the perceptual learning of acoustic speech features. Moreover, we demonstrate that even less than twenty minutes of alternating current stimulation below the individual perceptual threshold is sufficient to affect speech perception. This finding is relevant in that this novel approach might have implications with respect to impaired speech processing in dyslexics and older adults. PMID:26779822

  20. Alternative solutions to the current situation of oocyte donation in Singapore.

    PubMed

    Heng, Boon Chin

    2006-03-01

    The rising incidence of age-related female infertility in Singapore, coupled with the prohibition on commercialized oocyte donation and egg sharing, has resulted in a severe shortage of donor oocytes. Infertile women are routinely encouraged by fertility doctors here to seek their close relatives and friends as prospective oocyte donors, which does not alleviate the shortage. A number of alternative solutions are discussed. The use of substantial financial remuneration to encourage oocyte donation is rejected as being legally, ethically and morally incompatible with present day Singaporean society. Egg sharing in return for subsidized fertility may have a strong case for ethical justification, but implementation would need amendment of the current legislation in Singapore. Cross- and mirror-exchange oocyte donations face less of a legal challenge in Singapore and also have a strong case for ethical justification. However, special consideration must be given to the unique socio-cultural values of Singaporean society, i.e. traditional Chinese culture. Finally, if no changes are made to restrictive regulations governing oocyte donation in Singapore, and shortage of donor oocytes still persists, then reproductive tourism abroad may be the solution for some patients; referrals by local fertility doctors are unlikely to be allowed in Singapore. PMID:16569312

  1. Spatially variant red blood cell crenation in alternating current non-uniform fieldsa

    PubMed Central

    An, Ran; Wipf, David O.; Minerick, Adrienne R.

    2014-01-01

    Alternating-current (AC) electrokinetics involve the movement and behaviors of particles or cells. Many applications, including dielectrophoretic manipulations, are dependent upon charge interactions between the cell or particle and the surrounding medium. Medium concentrations are traditionally treated as spatially uniform in both theoretical models and experiments. Human red blood cells (RBCs) are observed to crenate, or shrink due to changing osmotic pressure, over 10?min experiments in non-uniform AC electric fields. Cell crenation magnitude is examined as functions of frequency from 250 kHz to 1 MHz and potential from 10 Vpp to 17.5 Vpp over a 100??m perpendicular electrode gap. Experimental results show higher peak to peak potential and lower frequency lead to greater cell volume crenation up to a maximum volume loss of 20%. A series of experiments are conducted to elucidate the physical mechanisms behind the red blood cell crenation. Non-uniform and uniform electrode systems as well as high and low ion concentration experiments are compared and illustrate that AC electroporation, system temperature, rapid temperature changes, medium pH, electrode reactions, and convection do not account for the crenation behaviors observed. AC electroosmotic was found to be negligible at these conditions and AC electrothermal fluid flows were found to reduce RBC crenation behaviors. These cell deformations were attributed to medium hypertonicity induced by ion concentration gradients in the spatially nonuniform AC electric fields. PMID:24753734

  2. Bi-frontal transcranial alternating current stimulation in the ripple range reduced overnight forgetting

    PubMed Central

    Ambrus, Géza Gergely; Pisoni, Alberto; Primaßin, Annika; Turi, Zsolt; Paulus, Walter; Antal, Andrea

    2015-01-01

    High frequency oscillations in the hippocampal structures recorded during sleep have been proved to be essential for long-term episodic memory consolidation in both animals and in humans. The aim of this study was to test if transcranial Alternating Current Stimulation (tACS) of the dorsolateral prefrontal cortex (DLPFC) in the hippocampal ripple range, applied bi-frontally during encoding, could modulate declarative memory performance, measured immediately after encoding, and after a night's sleep. An associative word-pair learning test was used. During an evening encoding phase, participants received 1 mA 140 Hz tACS or sham stimulation over both DLPFCs for 10 min while being presented twice with a list of word-pairs. Cued recall performance was investigated 10 min after training and the morning following the training session. Forgetting from evening to morning was observed in the sham condition, but not in the 140 Hz stimulation condition. 140 Hz tACS during encoding may have an effect on the consolidation of declarative material. PMID:26441544

  3. Friends, not foes: Magnetoencephalography as a tool to uncover brain dynamics during transcranial alternating current stimulation

    PubMed Central

    Neuling, Toralf; Ruhnau, Philipp; Fuscà, Marco; Demarchi, Gianpaolo; Herrmann, Christoph S.; Weisz, Nathan

    2015-01-01

    Brain oscillations are supposedly crucial for normal cognitive functioning and alterations are associated with cognitive dysfunctions. To demonstrate their causal role on behavior, entrainment approaches in particular aim at driving endogenous oscillations via rhythmic stimulation. Within this context, transcranial electrical stimulation, especially transcranial alternating current stimulation (tACS), has received renewed attention. This is likely due to the possibility of defining oscillatory stimulation properties precisely. Also, measurements comparing pre-tACS with post-tACS electroencephalography (EEG) have shown impressive modulations. However, the period during tACS has remained a blackbox until now, due to the enormous stimulation artifact. By means of application of beamforming to magnetoencephalography (MEG) data, we successfully recovered modulations of the amplitude of brain oscillations during weak and strong tACS. Additionally, we demonstrate that also evoked responses to visual and auditory stimuli can be recovered during tACS. The main contribution of the present study is to provide critical evidence that during ongoing tACS, subtle modulations of oscillatory brain activity can be reconstructed even at the stimulation frequency. Future tACS experiments will be able to deliver direct physiological insights in order to further the understanding of the contribution of brain oscillations to cognition and behavior. PMID:26080310

  4. Alternating-current thin-film electroluminescent device fabrication and characterization

    NASA Astrophysics Data System (ADS)

    Baukol, Beau Alexander

    The goals of this thesis are to provide an improved understanding of luminescent materials, and to exploit their properties to achieve bright, efficient, and manufacturable red, green, and blue (RGB) phosphors for use in full-color flat-panel displays. A high-luminance, high-efficiency, full-color alternating-current thin-film electroluminescent (ACTFEL) phosphor system, capable of being processed at temperatures below the glass substrate melting temperature, has been developed through the use of source layer diffusion doping (SLDD) of atomic layer epitaxy (ALE) deposited SrS thin-films. The development of ACTFEL phosphors has also been advanced through the exploration of alternate phosphor materials, such as SrxCa 1-xS:Eu,Cu and (Ba.Zn)S:Mn. This thesis offers new insight into the nature of ACTFEL device operation, especially SrS:Cu ACTFEL devices. A comparison of "EL" thermal quenching trends for evaporated ZnS:Mn, ALE ZnS:Mn, ALE SrS:Ce, sputtered SrS:Cu,Ag, and sputtered multi-layer SrS:Cu,Ag/SrS:Ce ACTFEL devices is presented. ZnS:Mn ACTFEL devices exhibit the least amount of EL thermal quenching, which is attributed to non-radiative recombination. SrS:Cu and SrS:Cu,Ag ACTFEL devices possess the greatest amount of thermal quenching, which is primarily EL thermal quenching. The extent of EL thermal quenching is significantly reduced in a multi-layer SrS:Cu,Ag/SrS:Ce ACTFEL device, compared to that of a single-layer SrS:Cu or SrS:Cu,Ag ACTFEL device. The operation of SrS:Cu is examined as a function of temperature; the space charge density is found to increase with temperature up to ˜250 K with an activation energy of 0.02 eV. The space charge density in SrS:Cu ACTFEL devices is estimated as ˜1.8 x 1016, which yields estimates of the cathode phosphor field and the interfacial trap depth of ˜1.3 MV/cm and ˜0.73 eV, respectively.

  5. Fish Alternatives in Environmental Risk Assessment: Overview of the Current Landscape

    EPA Science Inventory

    The need for alternative testing strategies has recently expanded into the realm of environmental risk assessment leading to the development of new alternatives to standard aquatic vertebrate testing such as the OECD 203 acute fish toxicity test. The fish embryo test (FET) is one...

  6. Improvement of immunoassay detection system by using alternating current magnetic susceptibility

    NASA Astrophysics Data System (ADS)

    Kawabata, R.; Mizoguchi, T.; Kandori, A.

    2016-03-01

    A major goal with this research was to develop a low-cost and highly sensitive immunoassay detection system by using alternating current (AC) magnetic susceptibility. We fabricated an improved prototype of our previously developed immunoassay detection system and evaluated its performance. The prototype continuously moved sample containers by using a magnetically shielded brushless motor, which passes between two anisotropic magneto resistance (AMR) sensors. These sensors detected the magnetic signal in the direction where each sample container passed them. We used the differential signal obtained from each AMR sensor's output to improve the signal-to-noise ratio (SNR) of the magnetic signal measurement. Biotin-conjugated polymer beads with avidin-coated magnetic particles were prepared to examine the calibration curve, which represents the relation between AC magnetic susceptibility change and polymer-bead concentration. For the calibration curve measurement, we, respectively, measured the magnetic signal caused by the magnetic particles by using each AMR sensor installed near the upper or lower part in the lateral position of the passing sample containers. As a result, the SNR of the prototype was 4.5 times better than that of our previous system. Moreover, the data obtained from each AMR sensor installed near the upper part in the lateral position of the passing sample containers exhibited an accurate calibration curve that represented good correlation between AC magnetic susceptibility change and polymer-bead concentration. The conclusion drawn from these findings is that our improved immunoassay detection system will enable a low-cost and highly sensitive immunoassay.

  7. Monitoring the Escape of DNA from a Nanopore Using an Alternating Current Signal

    PubMed Central

    Lathrop, Daniel K.; Ervin, Eric N.; Barrall, Geoffrey A.; Keehan, Michael G.; Kawano, Ryuji; Krupka, Michael A.; White, Henry S.; Hibbs, Andrew H.

    2010-01-01

    We present the use of an alternating current (AC) signal as a means to monitor the conductance of an α-hemolysin (αHL) pore as a DNA hairpin with a polydeoxyadenosine tail is driven into and released from the pore. Specifically, a 12 base pair DNA hairpin attached to a 50-nucleotide poly-A tail (HP-A50) is threaded into an αHL channel using a DC driving voltage. Once the HP-A50 molecule is trapped within the αHL channel, the DC driving voltage is turned off and the conductance of the channel is monitored using an AC voltage. The escape time, defined as the time it takes the HP-A50 molecule to transport out of the αHL channel, is then measured. This escape time has been monitored as a function of AC amplitude (20 to 250 mVac), AC frequency (60–200 kHz), DC drive voltage (0 to 100 mVdc), and temperature (−10 to 20 °C), in order to determine their effect on the predominantly diffusive motion of the DNA through the nanopore. The applied AC voltage used to monitor the conductance of the nanopore has been found to play a significant role in the DNA/nanopore interaction. The experimental results are described by a one-dimensional asymmetric periodic potential model that includes the influence of the AC voltage. An activation enthalpy barrier of 1.74 × 10−19 J and a periodic potential asymmetry parameter of 0.575 are obtained for the diffusion at zero electrical bias of a single nucleotide through αHL. PMID:20099878

  8. Combined transcranial alternating current stimulation and continuous theta burst stimulation: a novel approach for neuroplasticity induction.

    PubMed

    Goldsworthy, Mitchell R; Vallence, Ann-Maree; Yang, Ruiting; Pitcher, Julia B; Ridding, Michael C

    2016-02-01

    Non-invasive brain stimulation can induce functionally relevant plasticity in the human cortex, making it potentially useful as a therapeutic tool. However, the induced changes are highly variable between individuals, potentially limiting research and clinical utility. One factor that might contribute to this variability is the level of cortical inhibition at the time of stimulation. The alpha rhythm (~8-13Hz) recorded with electroencephalography (EEG) is thought to reflect pulsatile cortical inhibition; therefore, targeting non-invasive brain stimulation to particular phases of the alpha rhythm may provide an approach to enhance plasticity induction. Transcranial alternating current stimulation (tACS) has been shown to entrain cortical oscillations in a frequency-specific manner. We investigated whether the neuroplastic response to continuous theta burst stimulation (cTBS) was enhanced by timing bursts of stimuli to the peak or the trough of a tACS-imposed alpha rhythm. While motor evoked potentials (MEPs) were unaffected when cTBS was applied in-phase with the peak of the tACS-imposed oscillation, MEP depression was enhanced when cTBS was applied in-phase with the trough. This enhanced MEP depression was dependent on the individual peak frequency of the endogenous alpha rhythm recorded with EEG prior to stimulation, and was strongest in those participants classified as non-responders to standard cTBS. These findings suggest that tACS may be used in combination with cTBS to enhance the plasticity response. Furthermore, the peak frequency of endogenous alpha, as measured with EEG, may be used as a simple marker to pre-select those individuals likely to benefit from this approach. PMID:26663460

  9. Concurrent Electroencephalography Recording During Transcranial Alternating Current Stimulation (tACS).

    PubMed

    Fehr, Kristoffer D; Morishima, Yosuke

    2016-01-01

    Oscillatory brain activities are considered to reflect the basis of rhythmic changes in transmission efficacy across brain networks and are assumed to integrate cognitive neural processes. Transcranial alternating current stimulation (tACS) holds the promise to elucidate the causal link between specific frequencies of oscillatory brain activity and cognitive processes. Simultaneous electroencephalography (EEG) recording during tACS would offer an opportunity to directly explore immediate neurophysiological effects of tACS. However, it is not trivial to measure EEG signals during tACS, as tACS creates a huge artifact in EEG data. Here we explain how to set up concurrent tACS-EEG experiments. Two necessary considerations for successful EEG recording while applying tACS are highlighted. First, bridging of the tACS and EEG electrodes via leaking EEG gel immediately saturates the EEG amplifier. To avoid bridging via gel, the viscosity of the EEG gel is the most important parameter. The EEG gel must be viscous to avoid bridging, but at the same time sufficiently fluid to create contact between the tACS electrode and the scalp. Second, due to the large amplitude of the tACS artifact, it is important to consider using an EEG system with a high resolution analog-to-digital (A/D) converter. In particular, the magnitude of the tACS artifact can exceed 100 mV at the vicinity of a stimulation electrode when 1 mA tACS is applied. The resolution of the A/D converter is of importance to measure good quality EEG data from the vicinity of the stimulation site. By following these guidelines for the procedures and technical considerations, successful concurrent EEG recording during tACS will be realized. PMID:26862814

  10. Evaluation of vascular wall elasticity of human digital arteries using alternating current-signal photoplethysmography

    PubMed Central

    Uangpairoj, Pichitra; Shibata, Masahiro

    2013-01-01

    Purpose A simple method of estimating arterial elasticity in the human finger using a volume-oscillometric technique with photoplethysmography was principally studied under the various effects of age, sex, and cold-stress stimulation for testing the capability of using this technique in arterial elasticity analysis. Methods Amplitude variations in the alternating current signal of the photoplethysmograph during a continuous change in transmural pressure were analyzed to obtain the blood pressure and the transmural pressurerelative volume difference relationship of the arteries. We first tested the effect of the occluding cuff size on the arterial elasticity analysis in eight subjects (ages 2045 years) to obtain a suitable cuff size, resulting in the selection of a middle cuff with a 22 mm diameter. Blood pressure and arterial elasticity were measured in six groups of subjects separated into three age-groups of women and men (ages 2025, 3245, and over 50 years) for testing the effect of age and sex. Twelve subjects (ages 2025 years) also had their blood pressure and arterial elasticity measured in three conditions under the influence of the cold-stress stimulation. Results Age, sex, and cold-stress stimulation had an impact on mean blood pressure (P < 0.0005, 0.025), whereas pulse pressure and heart rate were statistically unchanged by those factors. Furthermore, an advanced age (over 50 years) was found to induce an increase in relative volume difference values (P < 0.025) and upward shifting of the transmural pressurerelative volume difference relationships, whereas sex, level of mean blood pressure, and cold-stress stimulation had no influence on these forms of the index. Conclusion This study showed the usefulness of the relative volume difference as being a mean blood pressure-independent indicator for changes in arterial elasticity. PMID:23766653

  11. Gas-solid carbonation as a current alternative origin for carbonates in Martian regolith

    NASA Astrophysics Data System (ADS)

    Garenne, A.; Montes-Hernandez, G.; Beck, P.; Schmitt, B.; Brissaud, O.

    2011-12-01

    Carbonates are abundant sedimentary minerals at the surface and sub-surface of Earth and they have been proposed as tracers of liquid water in extraterrestrial environments (e.g. at Mars surface). Its formation mechanism is since generally associated with aqueous alteration processes. Recently, carbonates minerals have been discovered on Mars surface by different orbital or rovers missions. In particular, the phoenix mission has measured from 1 to 5% of calcium carbonate (calcite type). These occurrences have been reported in area were the relative humidity is significantly high (Boynton et al., 2009). The small concentration of carbonates suggests an alternative process than carbonation in aqueous conditions. Such an observation might rather point toward a possible formation mechanism by dust-gas reaction under current Martian conditions. For this reason, in the present study, we designed an experimental setup consisting of an infrared microscope coupled to a cryogenic reaction cell (IR-CryoCell setup) in order to investigate the gas-solid carbonation of three different mineral precursors for carbonates (Ca and Mg hydroxides, and a hydrated Ca silicate formed from Ca2SiO4) at low temperature (from -10 to 25C) and at reduced CO2 pressure (from 100 to 1000 mbar). These mineral materials are crucial precursors to form respective Ca and Mg carbonates in humid environments (0 < relative humidity < 100%) at dust-CO2 or dust-water ice-CO2 interfaces. The results have revealed a significant and fast carbonation process for Ca hydroxide and hydrated Ca silicate. Conversely, slight carbonation process was observed for Mg hydroxide. These results suggest that gas-solid carbonation process or carbonate formation at the dust-water ice-CO2 interfaces could be a currently active Mars surface process. We note that the carbonation process at low temperature (<0C) described in the present study could also have important implications on the dust-water ice-CO2 interactions in cold terrestrial environments (e.g. Antarctic).

  12. Measuring bioavailable copper using anodic stripping voltammetry

    SciTech Connect

    Deaver, E.; Rodgers, J.H. Jr.

    1996-11-01

    Since speciation can affect bioavailability and toxicity of copper in aquatic systems, accurate predictions of effects of bioavailable forms require detection and/or measurement of these forms. To develop an approach for measurement of bioavailable copper, a copper sulfate solution was used in 10-d aqueous and sediment toxicity tests with Hyalella azteca Saussure. These tests encompassed ranges of pH, alkalinity, hardness, and conductivity. Changes in copper speciation were measured using atomic absorption spectroscopy (AA) for dissolved copper and differential pulse anodic stripping voltammetry (DPASV) for labile copper, and concentrations were evaluated relative to amphipod survival. Ten-day LC50s based on AA-measured aqueous copper concentrations ranged from 42 to 142 {micro}g Cu/L, and LC50s based on DPASV-measured copper concentrations ranged from 17.4 to 24.8 {micro}g Cu/L. In 10-d tests using copper-amended sediments with diverse characteristics and AA-measured copper concentrations spanning an order of magnitude, total copper concentrations were not predictive of sediment toxicity, but H. azteca survival was explained by DPASV measurements that varied by {le}4%. In order to make defensible estimates of the potential risk of metals in sediments or water, it is essential to identify the fraction of total metal that is bioavailable. In these experiments, DPASV was useful for measuring bioavailable copper in aqueous and sediment tests with H. azteca.

  13. Alternating current impedance spectroscopic analysis of biofunctionalized vertically-aligned silica nanospring surface for biosensor applications

    NASA Astrophysics Data System (ADS)

    Timalsina, Yukta P.

    In this dissertation, a process of vertically-aligned (silica) nanosprings (VANS) based biosensor development is presented. Alternating current (AC) impedance spectroscopy has been used to analyze sensor response as a function of saline phosphate (SP) buffer and biological solutions. The sensor is a parallel plate capacitor consisting of two glass substrates coated with indium tin oxide (ITO), where the VANS [or randomly-aligned nanosprings (RANS)] grown on one substrate serve as the dielectric spacer layer. The response of a VANS device as a function of ionic concentration in SP buffer was examined and an equivalent circuit model was developed. The results demonstrated that VANS sensors exhibited greater sensitivity to the changes in SP concentration relative to the ITO sensors, which serve as controls. The biofunctionalized VANS surface via physisorption and the cross-linker method demonstrates the repeatability, specificity, and selectivity of the binding. The physisorption of biotinylated immunoglobulin G (B-IgG) onto the VANS surface simplifies the whole sensing procedure for the detection of glucose oxidase, since the avidin-conjugated glucose oxidase (Av-GOx) can directly be immobilized on the B-IgG. The cross linker method involves the covalent attachment of antibodies onto the functionalized VANS surface via imine bond. The experiments revealed that the VANS sensor response is solely the result of the interaction of target molecule i.e. mouse IgG with the probe layer, i.e. goat antimouse IgG (GalphaM IgG). It was determined that VANS-based sensors exhibit a greater magnitude of change between successive bio-layers relative to the controls above 100 Hz, which indicates that the addition of biomolecules inhibits the diffusion of ions and changes the effective dielectric response of the VANS via biomolecular polarization. The study of ionic transport in nanosprings suggested that conductance follows a scaling law. It was demonstrated that a VANS-based device exhibits a greater magnitude of change relative to the RANS device below 10 kHz, which has equivalent property of the ITO controls. This dissertation demonstrates the potential for VANS as a novel nanomaterial platform for the development of highly sensitive, selective, low cost, and label free biosensors.

  14. A Novel Approach to Achieve Thick Single Phase Fe2B Coating by Alternating Current Field Enhanced Pack Boriding

    NASA Astrophysics Data System (ADS)

    Xie, Fei; Sun, Li

    Thick single phase Fe2B coatings were prepared on plain carbon steels by a novel alternating current field enhanced pack boriding (ACFEPB). Samples were set between a pair of parallel electrodes on which a 50 Hz alternating current field (ACF) with a current of 4A was applied during a 4 h pack boriding. The coating's structure, phases, thickness, and hardness distribution were characterized. The results showed that the ACF could greatly promote pack boriding and lead to the formation of a single phase Fe2B coating with a thickness of more than 100 μm by 4 h pack boriding at 800°C. It was proposed that the ACF had an effect on promoting diffusion of boron and iron in the treated samples by producing more vacancies in samples' subsurface. The ACF should also have effects on enhancing diffusion and chemical reactions in the boriding media.

  15. Adsorptive stripping voltammetry of antibiotics rifamycin SV and rifampicin at renewable pencil electrodes.

    PubMed

    Kawde, Abdel-Nasser; Temerk, Yassein; Farhan, Nasser

    2014-01-01

    Adsorptive stripping voltammetry of antibiotics of rifamycin SV (RSV) and rifampicin (RIF) was investigated by cyclic voltammetry and differential pulse voltammetry using a renewable pencil graphite electrode (PGE). The nature of the oxidation process of RSV and RIF taking place at the PGE was characterized. The results show that the determination of highly sensitive oxidation peak current is the basis of a simple, accurate and rapid method for quantification of RSV and RIF in bulk forms, pharmaceutical formulations and biological fluids by differential pulse adsorptive stripping voltammetry (DPASV). Factors influencing the trace measurement of RSV and RIF at PGE are assessed. The limits of detection for the determination of RSV and RIF in bulk forms are 6.0 10(-8) mol/L and 1.3 10(-8) mol/L, respectively. Moreover, the proposed procedure was successfully applied to assay both RSV and RIF in pharmaceutical formulations and in biological fluids. The capability of the proposed procedure for simultaneous assay of antibiotics RSV-isoniazid and RIF-isoniazid was achieved. The statistical analysis and calibration curve data for trace determination of RSV and RIF are reported. PMID:25125124

  16. Complementary and Alternative Medicine in Rural Communities: Current Research and Future Directions

    ERIC Educational Resources Information Center

    Wardle, Jon; Lui, Chi-Wai; Adams, Jon

    2012-01-01

    Contexts: The consumption of complementary and alternative medicine (CAM) in rural areas is a significant contemporary health care issue. An understanding of CAM use in rural health can provide a new perspective on health beliefs and practice as well as on some of the core service delivery issues facing rural health care generally. Purpose: This

  17. EVALUATION OF CURRENTLY AVAILABLE ALTERNATIVES TO METHYL BROMIDE FOR ORNAMENTAL CROP PRODUCTION IN FLORIDA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Studies were designed to test the efficacy of the chemical alternatives, Midas (iodomethane:chloropicrin (pic) 50:50 [MI 50:50] and 98:2 [MI 98:2], Arysta LifeScience Corp., Cary, NC) and dimethyl disulfide:pic (Paladin 79:21 [DMDS], United Phosphorous, Inc., King of Prussia, PA) compared with met...

  18. Complementary and Alternative Medicine in Rural Communities: Current Research and Future Directions

    ERIC Educational Resources Information Center

    Wardle, Jon; Lui, Chi-Wai; Adams, Jon

    2012-01-01

    Contexts: The consumption of complementary and alternative medicine (CAM) in rural areas is a significant contemporary health care issue. An understanding of CAM use in rural health can provide a new perspective on health beliefs and practice as well as on some of the core service delivery issues facing rural health care generally. Purpose: This…

  19. Benchmarking--Current Availability, Possible New National Alternatives, and Making a Contribution to the Discussion

    ERIC Educational Resources Information Center

    Atchison, Eric S.; Hosch, Braden J.

    2015-01-01

    This chapter synthesizes the national discussion on other solutions to the Integrated Postsecondary Education Data System (IPEDS), such as a national student record system, and complications. The authors will briefly examine the pros and cons of IPEDS while primarily focusing on national alternatives, as well providing specific examples for…

  20. Stoichiometry and Formation Constant Determination by Linear Sweep Voltammetry.

    ERIC Educational Resources Information Center

    Schultz, Franklin A.

    1979-01-01

    In this paper an experiment is described in which the equilibrium constants necessary for determining the composition and distribution of lead (II)-oxalate species may be measured by linear sweep voltammetry. (Author/BB)

  1. Fabrication and characterization of alternating-current-driven ZnO-based ultraviolet light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Wang, Haoning; Long, Hao; Chen, Zhao; Mo, Xiaoming; Li, Songzhan; Zhong, Zhiyou; Fang, Guojia

    2015-07-01

    Alternating-current-driven ZnO-based light-emitting diodes (LEDs) with an Au/ZnMgO/ZnO/ZnMgO/GaN/In structure have been fabricated. Both polarity-controlled electroluminescence (EL) and ultraviolet emission were achieved when driven by an alternating current (AC) under a much lower root-mean-square voltage than that of conventional inorganic AC thin-film electroluminescent devices. This ZnO-based LED can be regarded as a series incorporating a metal-insulator-semiconductor diode and a p- i- n diode. The EL mechanisms were discussed in terms of the band diagrams and carrier transport behavior with reference to the semiconductor heterojunction theory. [Figure not available: see fulltext.

  2. Frequency-dependent, alternating current-driven, field-induced polymer electroluminescent devices with high power efficiency.

    PubMed

    Chen, Yonghua; Xia, Yingdong; Smith, Gregory M; Carroll, David L

    2014-12-23

    A significant enhancement in power efficiency for alternating current-driven field-induced polymer electroluminescent devices is demonstrated by employing a high-k ferroelectric polymer dielectric through impedance matching of the device with the driving source. A peak power efficiency of 34.1 lm W(-1) at a frequency of 65 kHz is achieved, which is 2 to 12 times higher than the previous highest reports. PMID:25219753

  3. Practical aspects of the use of three-phase alternating current electric machines in electricity storage system

    NASA Astrophysics Data System (ADS)

    Ciucur, Violeta

    2015-02-01

    Of three-phase alternating current electric machines, it brings into question which of them is more advantageous to be used in electrical energy storage system by pumping water. The two major categories among which are given dispute are synchronous and the asynchronous machine. To consider the synchronous machine with permanent magnet configuration because it brings advantages compared with conventional synchronous machine, first by removing the necessary additional excitation winding. From the point of view of loss of the two types of machines, the optimal adjustment of the magnetic flux density is obtained to minimize the copper loss by hysteresis and eddy currents.

  4. Disposable Copper-Based Electrochemical Sensor for Anodic Stripping Voltammetry

    PubMed Central

    2015-01-01

    In this work, we report the first copper-based point-of-care sensor for electrochemical measurements demonstrated by zinc determination in blood serum. Heavy metals require careful monitoring, yet current methods are too complex for a point-of-care system. Electrochemistry offers a simple approach to metal detection on the microscale, but traditional carbon, gold (Au), or platinum (Pt) electrodes are difficult or expensive to microfabricate, preventing widespread use. Our sensor features a new low-cost electrode material, copper, which offers simple fabrication and compatibility with microfabrication and PCB processing, while maintaining competitive performance in electrochemical detection. Anodic stripping voltammetry of zinc using our new copper-based sensors exhibited a 140 nM (9.0 ppb) limit of detection (calculated) and sensitivity greater than 1 ?A/?M in the acetate buffer. The sensor was also able to determine zinc in a bovine serum extract, and the results were verified with independent sensor measurements. These results demonstrate the advantageous qualities of this lab-on-a-chip electrochemical sensor for clinical applications, which include a small sample volume (?L scale), reduced cost, short response time, and high accuracy at low concentrations of analyte. PMID:24773513

  5. Direct determination of uranium in water by cathodic stripping voltammetry

    SciTech Connect

    van den Berg, C.M.G.; Nimmo, M.

    1987-03-15

    Uranium was determined in fresh water and seawater by using 8-hydroxyquinoline(oxine) as the chelating agent in cathodic stripping voltammetry procedure. The peak height-uranium concentration relationship was linear up to about 30 nM U (at a peak current of 80 nA) when the scans were preceded by 1 min of stirred adsorption. The linear range is extended to higher uranium levels by reducing the sensitivity by adsorbing less complex ions on the electrode, i.e., by using a shorter adsorption time, or by adsorbing without stirring. The sensitivity for uranium in a synthetic electrolyte solution was about 10% greater than in seawater, presumably due to the absence of carbonate ions which compete with the oxine for uranyl ions and the major cations which partially saturate oxine in seawater. This similar sensitivity in fresh and seawater is in contrast to the poor sensitivity that was obtained by SCS when using catechol as the chelating compound in fresh water conditions, as its sensitivity was 10-20% of that in seawater.

  6. Development of alternating current transmitter of detection system for magnetic material in soil subsurface

    NASA Astrophysics Data System (ADS)

    Indrasari, Widyaningrum; Djamal, Mitra; Srigutomo, Wahyu; Ramli

    2016-03-01

    Generally, detection system for magnetic material in soil subsurface using electromagnetic induction method consists of two parts, they are transmitter and receiver unit. A transmitter must be able to produce a continuous and stable AC current at a certain frequency, meanwhile receiver should be able to catch the secondary magnetic field of magnetic material in soil subsurface. The aim of this study was to develop a new AC current transmitter of detection system for the magnetic material in soil subsurface. This paper will describe the results of the development of AC current transmitter systems, distance characterization of the sensor detection toward horizontal solenoid positions, and characterization of magnetic material in the soil subsurface. It has successfully made the AC current transmitter system, composed of a sinusoidal signal generator, power amplifier, and a source of AC magnetic field. The output of the generator has a frequency varies: 1 kHz, 2 kHz, 5 kHz, and 10 kHz. We found that the AC current transmitter that has been developed able to work properly up to a frequency of 10 kHz.

  7. Assessing the Liquidity of Firms: Robust Neural Network Regression as an Alternative to the Current Ratio

    NASA Astrophysics Data System (ADS)

    de Andrs, Javier; Landajo, Manuel; Lorca, Pedro; Labra, Jose; Ordez, Patricia

    Artificial neural networks have proven to be useful tools for solving financial analysis problems such as financial distress prediction and audit risk assessment. In this paper we focus on the performance of robust (least absolute deviation-based) neural networks on measuring liquidity of firms. The problem of learning the bivariate relationship between the components (namely, current liabilities and current assets) of the so-called current ratio is analyzed, and the predictive performance of several modelling paradigms (namely, linear and log-linear regressions, classical ratios and neural networks) is compared. An empirical analysis is conducted on a representative data base from the Spanish economy. Results indicate that classical ratio models are largely inadequate as a realistic description of the studied relationship, especially when used for predictive purposes. In a number of cases, especially when the analyzed firms are microenterprises, the linear specification is improved by considering the flexible non-linear structures provided by neural networks.

  8. A survey of current worldwide research on the thermophysical properties of alternative refrigerants

    NASA Astrophysics Data System (ADS)

    McLinden, M. O.; Haynes, W. M.; Watson, J. T. R.; Watanabe, K.

    1991-06-01

    The survey represents an exhaustive compilation of the research activities throughout the world concerned with either measurements or correlations of the thermophysical properties of alternative refrigerants. The properties covered include thermodynamic, transport, phase equilibria, and other properties such as dielectric constant and refractive index. The survey included a wide range of fluids (including R23, R32, R125, R143a, R22, R134a, R152a, R134, R124, R142b, R123, R123a, R141b) along with mixtures containing at least one of these fluids. Summary information is presented in tabular form about each research activity; the survey does not present raw data or correlating equations.

  9. A Current Update on the Rule of Alternative and Complementary Medicine in the Treatment of Liver Diseases

    PubMed Central

    Guan, Yong-Song; He, Qing

    2013-01-01

    There is a vast body of knowledge which is ever-increasing about the treatment of liver disease with alternative and complementary medicine for which hundreds of thousands of literatures have been documented. Liver disease is a general term. This term covers all the potential problems that cause the liver to fail to perform its specified operations. Liver disease has a variety of presentations and causes a great public health problem worldwide which threatens the wellness of billions of people. Incidences of many types of liver disease are currently rising. Although there is still a debate about the entity of alternative and complementary medicine, it is now widely used and it is improving. And it covers the shortages and compensates for the weaknesses of conventional methods in the treatment of liver diseases. Alternative and complementary medicine for liver diseases provides benefits by regulating immunity, controlling disease progression, improving quality of life, and prolonging survival. This paper reviews the increasing interest and growing research into alternative and complementary medicine for liver diseases, with a look at the rough classification, principle of management, evidence-based applications, and issues for prescription and perspectives. PMID:24109491

  10. Variable Uses of Alternative Conceptions: A Case Study in Current Electricity.

    ERIC Educational Resources Information Center

    Heller, Patricia; Finley, Fred

    In order to investigate the nature of students' prior knowledge of current electricity and how they applied their knowledge to different problems, 5 middle school science teachers and 11 elementary school teachers were given a written test that required them to: (1) predict what happens to the brightness of a bulb if a change is made to the

  11. Cell-specific alternative splicing increases calcium channel current density in the pain pathway.

    PubMed

    Bell, Thomas J; Thaler, Christopher; Castiglioni, Andrew J; Helton, Thomas D; Lipscombe, Diane

    2004-01-01

    N-type calcium channels are critical for pain transduction. Inhibitors of these channels are powerful analgesics, but clinical use of current N-type blockers remains limited by undesirable actions in other regions of the nervous system. We now demonstrate that a unique splice isoform of the N-type channel is restricted exclusively to dorsal root ganglia. By a combination of functional and molecular analyses at the single-cell level, we show that the DRG-specific exon, e37a, is preferentially present in Ca(V)2.2 mRNAs expressed in neurons that contain nociceptive markers, VR1 and Na(V)1.8. Cell-specific inclusion of exon 37a correlates closely with significantly larger N-type currents in nociceptive neurons. This unique splice isoform of the N-type channel could represent a novel target for pain management. PMID:14715140

  12. Determination of heavy metals by thin-layer chromatography-square-wave anodic stripping voltammetry

    SciTech Connect

    Aldstadt, J.H.; Dewald, H.D. )

    1992-12-15

    A square-wave anodic stripping voltammetric method is described for low parts per million determination of heavy metals separated by thin-layer chromatography (TLC). Heavy metal samples are separated on carboxymethyl cellulose TLC plates and detected by anodic stripping voltammetry (ASV) using a cellulose dialysis membrane-covered mercury film electrode (CM-MFE) placed directly on the TLC plate surface in a thin film of supporting electrolyte solution. The fast scan rates possible in square-wave voltammetry during the stripping step eliminate the need to deoxygenate the sample. Results are presented for a mixture of Pb(II), Cd(II), Cu(II), and Zn(II). Calibration curves for Pb(II) were linear over the range 10-500 ng, with a relative standard deviation of the peak current over a set of eight separate 100-ng Pb(II) samples of 16%. 25 refs., 7 figs.

  13. Linear-sweep voltammetry of a soluble redox couple in a cylindrical electrode

    NASA Technical Reports Server (NTRS)

    Weidner, John W.

    1991-01-01

    An approach is described for using the linear sweep voltammetry (LSV) technique to study the kinetics of flooded porous electrodes by assuming a porous electrode as a collection of identical noninterconnected cylindrical pores that are filled with electrolyte. This assumption makes possible to study the behavior of this ideal electrode as that of a single pore. Alternatively, for an electrode of a given pore-size distribution, it is possible to predict the performance of different pore sizes and then combine the performance values.

  14. Alternating current magnetic properties of cores made from pressed acicular steel particles

    NASA Astrophysics Data System (ADS)

    Krause, R. F.; Bularzik, J. H.; Kokal, H. R.

    1998-06-01

    This article describes results of magnetic testing of cores made from a composite material that yields powder metallurgically pressed compacts of high density suitable for a variety of ac magnetic applications. Small acicular steel particles are annealed, individually insulated, and uniaxially pressed using standard powder metallurgical techniques. The ac losses and permeability of the pressed compacts are strongly dependent upon particle geometry. The variations of the core loss among the different particle geometries was found to be a function of the cross sectional area of the acicular particles as well as the strain imparted to the particles during the pressing operation. The core loss, when measured at 60 Hz, exhibits a minimum at a certain cross sectional area. The shape of the curve is attributed to a decrease in eddy current loss with decreasing particle cross sectional area, while the hysteresis loss increases with decreasing particle cross sectional area. At a test frequency of 400 Hz, the eddy current component of core loss predominates, and the core loss decreases steadily with decreasing particle cross sectional area. Permeability was also found to depend upon particle geometry. The smaller the demagnetizing factor of the individual particles, the higher the permeability, while the increased strain in the smaller particles overwhelms the smaller demagnetizing factor resulting in a decrease in permeability. The net result is a maximum in permeability for the mid-sized particles.

  15. Alternating-current impedance of magnesium/manganese dioxide dry cells in absence of anode-film breakdown

    NASA Astrophysics Data System (ADS)

    Narayanan, S. R.; Sathyanarayana, S.

    1988-08-01

    Alternating current impedance of magnesium/manganese dioxide dry cells has been measured under conditions that do not harm the protective passive film on the magnesium electrode. Several electrical equivalent-circuits for the cell have been theoretically analyzed, and a comparison of theoretically derived criteria with experimental results has led to the choice of the most suitable model. In principle, the methodology of measurement and analysis can be applied to other battery systems that involve reactive metals covered by protective films, in order to obtain information on the electro-chemical properties of the film-covered metal/solution interface under nondestructive conditions.

  16. Study of corrosion of super martensitic stainless steel under alternating current in artificial seawater with electrochemical impedance spectroscopy

    SciTech Connect

    Reyes, T.; Bhola, S.; Olson, D. L.; Mishra, B.

    2011-06-23

    The assessment of corrosion requires the use of tools able to quantify the corrosion but often times also qualify it. Electrochemical Impedance Spectroscopy (EIS) is a laboratory tool that can provide both qualification and quantification of corrosion. EIS was successfully used to compare the thickness of the corrosion products formed during the application of different alternating current (AC) densities as well as to characterize pitting. When EIS is applied at the open circuit potential, the technique is nondestructive and predicts the corrosion behavior of the electrode. It can also be used at cathodic potentials while still being nondestructive, providing information about the electrode reaction kinetics, diffusion and electrical double layer.

  17. Mixing enhancement by biologically inspired convection in a micro-chamber using alternating current galvanotactic control of the Tetrahymena pyriformis

    NASA Astrophysics Data System (ADS)

    Kim, Jihoon; Jang, Yonghee; Byun, Doyoung; Hyung Kim, Dal; Jun Kim, Min

    2013-09-01

    Recently, there has been increasing interest in the swimming behavior of microorganisms and biologically inspired micro-robots. In this study, we investigated biologically induced convection flow with living microorganism using galvanotaxis. We fabricated and evaluated our micro-mixer with motile cells. For the cell based active micro-mixers, two miscible fluids were used to measure the mixing index. Under alternating current (AC) electric fields with varying frequency, a group of motile Tetrahymena pyriformis cells generated reciprocal motion with circulating flows around their pathline, enhancing the mixing ratio.

  18. Determination of sulfide by cathodic stripping voltammetry of silver sulfide films at a rotating silver disk electrode

    SciTech Connect

    Shimizu, K.; Osteryoung, R.A.

    1981-04-01

    The deposition and stripping behavior of silver sulfide films at the silver rotating disk electrode were investigated. The effect of various factors - rotation rate, scan rate, deposition potential and time, and concentn of sulfide ion - on the stripping peak current and potential were studied. The electrode has been found to be excellent for cathodic stripping voltammetry for the determination of submicro amounts of sulfide ion. Furthermore, differential voltammetry significantly enhanced the signal/noise ratio, and a linear response was obtained over the concentration range 10/sup -8/ to 10/sup -5/ mol dm/sup -3/ of sulfide ion in 0.2 mol dm/sup -3/ NaOH.

  19. Including Alternative Resources in State Renewable Portfolio Standards: Current Design and Implementation Experience

    SciTech Connect

    Heeter, J.; Bird, L.

    2012-11-01

    Currently, 29 states, the District of Columbia, and Puerto Rico have instituted a renewable portfolio standard (RPS). An RPS sets a minimum threshold for how much renewable energy must be generated in a given year. Each state policy is unique, varying in percentage targets, timetables, and eligible resources. This paper examines state experience with implementing renewable portfolio standards that include energy efficiency, thermal resources, and non-renewable energy and explores compliance experience, costs, and how states evaluate, measure, and verify energy efficiency and convert thermal energy. It aims to gain insights from the experience of states for possible federal clean energy policy as well as to share experience and lessons for state RPS implementation.

  20. Analysis of operations and cyber security policies for a system of cooperating Flexible Alternating Current Transmission System (FACTS) devices.

    SciTech Connect

    Phillips, Laurence R.; Tejani, Bankim; Margulies, Jonathan; Hills, Jason L.; Richardson, Bryan T.; Baca, Micheal J.; Weiland, Laura

    2005-12-01

    Flexible Alternating Current Transmission Systems (FACTS) devices are installed on electric power transmission lines to stabilize and regulate power flow. Power lines protected by FACTS devices can increase power flow and better respond to contingencies. The University of Missouri Rolla (UMR) is currently working on a multi-year project to examine the potential use of multiple FACTS devices distributed over a large power system region in a cooperative arrangement in which the FACTS devices work together to optimize and stabilize the regional power system. The report describes operational and security challenges that need to be addressed to employ FACTS devices in this way and recommends references, processes, technologies, and policies to address these challenges.

  1. Novel Method for Sizing Metallic Bottom Crack Depth Using Multi-frequency Alternating Current Potential Drop Technique

    NASA Astrophysics Data System (ADS)

    Li, Yuting; Gan, Fangji; Wan, Zhengjun; Liao, Junbi; Li, Wenqiang

    2015-10-01

    Potential drop techniques are of two types: the direct current potential drop (DCPD) technique and alternating current potential drop (ACPD) technique, and both of them are used in nondestructive testing. ACPD, as a kind of valid method in sizing metal cracks, has been applied to evaluate metal structures. However, our review of most available approaches revealed that some improvements can be done in measuring depth of metal bottom crack by means of ACPD, such as accuracy and sensitivity of shallow crack. This paper studied a novel method which utilized the slope of voltage ratio-frequency curve to solve bottom crack depth by using a simple mathematic equation based on finite element analysis. It is found that voltage ratio varies linearly with frequency in the range of 5-15 Hz; this range is slightly higher than the equivalent frequency and lower than semi-permeable frequency. Simulation and experiment show that the novel method can measure the bottom crack depth accurately.

  2. Square wave voltammetry at the dropping mercury electrode: Experimental

    USGS Publications Warehouse

    Turner, J.A.; Christie, J.H.; Vukovic, M.; Osteryoung, R.A.

    1977-01-01

    Experimental verification of earlier theoretical work for square wave voltammetry at the dropping mercury electrode is given. Experiments using ferric oxalate and cadmium(II) in HCl confirm excellent agreement with theory. Experimental peak heights and peak widths are found to be within 2% of calculated results. An example of trace analysis using square wave voltammetry at the DME is presented. The technique is shown to have the same order of sensitivity as differential pulse polarography but is much faster to perform. A detection limit for cadmium in 0.1 M HCl for the system used here was 7 ?? 10-8 M.

  3. Alternating current-driven microwave loss modulation in a fluxonic metamaterial

    NASA Astrophysics Data System (ADS)

    Dobrovolskiy, Oleksandr V.; Huth, Michael; Shklovskij, Valerij A.

    2015-10-01

    We introduce a fluxonic metamaterial on the basis of nanopatterned superconducting Nb microstrips and employ it for modulation and synthesis of quantized loss levels in the lower GHz range by a sine-wave quasistatic ac drive. The nanopatterns are uniaxial nanogrooves with identical and different slope steepness, which induce a pinning potential of the washboard type for Abrikosov vortices. For the fundamental matching field, when the location of vortex rows geometrically matches the nanogrooves, the following effects are observed: The forward transmission coefficient S21(f) of the microstrips can be controllably modulated within a range of about 3 dB by the ac. For the sample with symmetric grooves, depending on the choice of the operation point in the current-voltage curve, the shape and the duty cycle of the output signal can be tuned. For the sample with asymmetric grooves, depending on the ac amplitude, a sine-to-triangular or a sine-to-rectangular pulse shape conversion is observed. The possibility of synthesizing quantized loss levels by a serial connection of the two samples with different nanopatterns is exemplified and can be used for the development of multilevel excess-loss-based fluxonic devices.

  4. Electroporation and alternating current cause membrane permeation of photodynamic cytotoxins yielding necrosis and apoptosis of cancer cells.

    PubMed

    Traitcheva, Nelly; Berg, Hermann

    2010-10-01

    In order to increase the permeability of cell membranes for low doses of cytostatic drugs, two bioelectrochemical methods have been compared: (a) electric pore formation in the plasma membranes by single electric impulses (electroporation), and (b) reordering of membrane structure by alternating currents (capacitively coupled). These treatments were applied to human leukemic K-562 cells and human lymphoma U-937 cells, yielding apoptotic and necrotic effects, determined by flow cytometry. Additional cell death occurs after exposure to light irradiation at wavelengths lambda > 600 nm, of cells which were electroporated and had incorporated actinomycin-C or daunomycin (daunorubicin). It is observed that drug uptake after an exponentially decaying electroporation pulse of the initial field strength Eo=1.4 kV/cm and pulse time constants in the time range 0.5-3 ms is faster than during PEMF-treatment, i.e., application of an alternating current of 16 kHz, voltage U<100 V, I=55 mA, and exposure time 20 min. However, at the low a.c. voltage of this treatment, more apoptotic and necrotic cells are produced as compared to the electroporation treatment with one exponentially decaying voltage pulse. Thus, additional photodynamic action appears to be more effective than solely drugs and electroporation as applied in clinical electrochemotherapy, and more effective than the noninvasive pulsed electromagnetic fields (PEMFs), for cancer cells in general and animals bearing tumors in particular. PMID:20494629

  5. An alternative to current psychiatric classifications: a psychological landscape hypothesis based on an integrative, dynamical and multidimensional approach

    PubMed Central

    2014-01-01

    Background Mental disorders as defined by current classifications are not fully supported by scientific evidence. It is unclear whether main disorders should be broken down into separate categories or disposed along a continuous spectrum. In the near future, new classes of mental disorders could be defined through associations of so-called abnormalities observed at the genetic, molecular and neuronal circuitry levels. Methods We propose an alternative hypothesis to these classifications based on an integrative, dynamical and multidimensional approach. Results We suggest that observed data collected in the general population can be used to build a psychological landscape. Innovative techniques issued from information processing and system dynamics can prove helpful in this task. Information preserving techniques can reduce the high dimensional data collected and provide an intrinsic map for psychological characteristics or behaviors. Dynamical patterns called attractors, which are linked to each other through continuous pathways, can be identified. Specific attractors can define mental disorders. Their causal structure can be investigated with causal networks. Conclusions Powerful and reliable tools are available so that an alternative to current psychiatric classifications can be built based on a genuine biopsychosocial model. The proposed model is ready to be tested on real data. PMID:25033795

  6. Copper-Based Electrochemical Sensor with Palladium Electrode for Cathodic Stripping Voltammetry of Manganese

    PubMed Central

    2015-01-01

    In this work, we report on the development of a palladium-based, microfabricated point-of-care electrochemical sensor for the determination of manganese using square wave cathodic stripping voltammetry. Heavy metals require careful monitoring, yet current methods are too complex for a point-of-care system. Voltammetry offers an attractive approach to metal detection on the microscale, but traditional carbon, gold, or platinum electrodes are difficult or expensive to microfabricate, preventing widespread use. Our sensor uses palladium working and auxiliary electrodes and integrates them with a copper-based reference electrode for simple fabrication and compatibility with microfabrication and printed circuit board processing, while maintaining competitive performance in electrochemical detection. Copper electrodes were prepared on glass substrate using a combination of microfabrication procedures followed by electrodeposition of palladium. The disposable sensor system was formed by bonding a poly(dimethylsiloxane) (PDMS) well to the glass substrate. Cathodic stripping voltammetry of manganese using our new disposable palladium-based sensors exhibited 334 nM (18.3 ppb) limit of detection in borate buffer. The sensor was used to demonstrate manganese determination in natural water samples from a pond in Burnet Woods, located in Cincinnati, OH, and the Ohio River. PMID:25476591

  7. Copper-based electrochemical sensor with palladium electrode for cathodic stripping voltammetry of manganese.

    PubMed

    Kang, Wenjing; Pei, Xing; Bange, Adam; Haynes, Erin N; Heineman, William R; Papautsky, Ian

    2014-12-16

    In this work, we report on the development of a palladium-based, microfabricated point-of-care electrochemical sensor for the determination of manganese using square wave cathodic stripping voltammetry. Heavy metals require careful monitoring, yet current methods are too complex for a point-of-care system. Voltammetry offers an attractive approach to metal detection on the microscale, but traditional carbon, gold, or platinum electrodes are difficult or expensive to microfabricate, preventing widespread use. Our sensor uses palladium working and auxiliary electrodes and integrates them with a copper-based reference electrode for simple fabrication and compatibility with microfabrication and printed circuit board processing, while maintaining competitive performance in electrochemical detection. Copper electrodes were prepared on glass substrate using a combination of microfabrication procedures followed by electrodeposition of palladium. The disposable sensor system was formed by bonding a poly(dimethylsiloxane) (PDMS) well to the glass substrate. Cathodic stripping voltammetry of manganese using our new disposable palladium-based sensors exhibited 334 nM (18.3 ppb) limit of detection in borate buffer. The sensor was used to demonstrate manganese determination in natural water samples from a pond in Burnet Woods, located in Cincinnati, OH, and the Ohio River. PMID:25476591

  8. An Assessment of Current Concepts for Hydrogeological Site Characterization, and Alternatives

    NASA Astrophysics Data System (ADS)

    Rubin, Y.; Barros, F.

    2007-05-01

    Characterization of the geological and hydrogeological conditions of contaminated sites is a critical element of risk management. Characterization includes data acquisition and interpretation that intends to provide the analytical tools needed for decision making related to transport of contaminants and for remediation. Despite many years of experience, site characterization is still not as well understood and regulated as it should be. The chasm between some of the newer concepts developed by researchers on the one hand, and the technology used in the field by service providers on the other, has never been wider than it is today. Consequently, questions that should be addressed using well-documented rational tools may continue to be addressed based on intuition and experience. Instead of coming up with defensible action plans and implementing them rapidly, such action plans are often a source of contention and end up in the courts. This paper evaluates concepts often used in the practice of hydrogeological site characterization, and tries to distinguish between myth and reality. It explores concepts such as: 1. Accurate descriptions of geological and hydrogeological conditions are attainable; 2. Sound planning and action plans in response to accidents require a large amount of data; 3. Investing in site characterization is a sound investment; 4. Experience gained in decontamination and decommissioning in the field is a sound basis for planning future efforts; 5. If you do not find the contaminants, they do not exist; 6. Numerical models for flow and transport processes in the subsurface are beneficial; 7. Current regulations in the area of hydrogeology are helpful. These concepts, while often invoked in applications, are often wrong and misleading or applied incorrectly, and reflect the many ambiguities prevailing in this area. This paper explores the issues raised above in detail. It also presents the elements of a consistent approach for site characterization, and demonstrates it through a case study that involves uncertainty in the hydrogeology as well as in human physiology.

  9. Electro-optically responsive composites of gold nanospheres in 5CB liquid crystal under direct current and alternating current joint action

    SciTech Connect

    Hadjichristov, Georgi B.; Marinov, Yordan G.; Petrov, Alexander G.; Bruno, Emanuela; Marino, Lucia; Scaramuzza, Nicola

    2014-02-28

    Direct current (DC) electro-optical (EO) control of transmitted laser beam intensity based on EO controlled coherent light scattering and diffraction by stationary longitudinal texture pattern (LTP) is achieved in planar-oriented cells with a composite mixture of polymer-coated gold spherical nanoparticles (Au-NPs) with a mean diameter of about 12?nm and the room-temperature nematic pentylcyanobiphenyl (5CB). At relatively low DC voltage of about 5 V, the effective scattering/diffraction by Au-NPs/5CB composites leads to a spatial spreading of transmitted coherent light from a low-power continuous wave laser beam, resulting in a drastic reduction of its local intensity. The effect is polarization dependent and is strongest when the polarization of the input laser beam is along the LTP. The EO response of Au-NPs/5CB mixtures is studied under DC and alternating current (AC) joint action with the aim of the potential use of these composite materials as EO controlled diffusers. The specific V-shaped sharp dip in the DC voltage-dependent coherent light transmittance of Au-NPs/5CB planar films, as well as the possibility for erasing the scattering/diffractive LTP in the films by joint low AC voltage, can be useful for EO applications in the field of process control and for detection of weak dynamic electric fields.

  10. A Cyclic Voltammetry Experiment for the Instrumental Analysis Laboratory.

    ERIC Educational Resources Information Center

    Baldwin, Richard P.; And Others

    1984-01-01

    Background information and procedures are provided for experiments that illustrate the nature of cyclic voltammetry and its application in the characterization of organic electrode processes. The experiments also demonstrate the concepts of electrochemical reversibility and diffusion-controlled mass transfer. (JN)

  11. Anodic stripping voltammetry of gold nanoparticles at boron-doped diamond electrodes and its application in immunochromatographic strip tests.

    PubMed

    Ivandini, Tribidasari A; Wicaksono, Wiyogo P; Saepudin, Endang; Rismetov, Bakhadir; Einaga, Yasuaki

    2015-03-01

    Anodic stripping voltammetry (ASV) of colloidal gold-nanoparticles (AuNPs) was investigated at boron-doped diamond (BDD) electrodes in 50 mM HClO4. A deposition time of 300 s at-0.2 V (vs. Ag/AgCl) was fixed as the condition for the ASV. The voltammograms showed oxidation peaks that could be attributed to the oxidation of gold. These oxidation peaks were then investigated for potential application in immunochromatographic strip tests for the selective and quantitative detection of melamine, in which AuNPs were used as the label for the antibody of melamine. Linear regression of the oxidation peak currents appeared in the concentration range from 0.05-0.6 ?g/mL melamine standard, with an estimated LOD of 0.069 ?g/mL and an average relative standard deviation of 8.0%. This indicated that the method could be considered as an alternative method for selective and quantitative immunochromatographic applications. The validity was examined by the measurements of melamine injected into milk samples, which showed good recovery percentages during the measurements. PMID:25618650

  12. Alternating-Current InGaN/GaN Tunnel Junction Nanowire White-Light Emitting Diodes.

    PubMed

    Sadaf, S M; Ra, Y-H; Nguyen, H P T; Djavid, M; Mi, Z

    2015-10-14

    The current LED lighting technology relies on the use of a driver to convert alternating current (AC) to low-voltage direct current (DC) power, a resistive p-GaN contact layer to inject positive charge carriers (holes) for blue light emission, and rare-earth doped phosphors to down-convert blue photons into green/red light, which have been identified as some of the major factors limiting the device efficiency, light quality, and cost. Here, we show that multiple-active region phosphor-free InGaN nanowire white LEDs connected through a polarization engineered tunnel junction can fundamentally address the afore-described challenges. Such a p-GaN contact-free LED offers the benefit of carrier regeneration, leading to enhanced light intensity and reduced efficiency droop. Moreover, through the monolithic integration of p-GaN up and p-GaN down nanowire LED structures on the same substrate, we have demonstrated, for the first time, AC operated LEDs on a Si platform, which can operate efficiently in both polarities (positive and negative) of applied voltage. PMID:26384135

  13. Signature of cluster disruption within magnetic fluid samples: The key information provided by low frequency alternating current susceptibility measurements

    NASA Astrophysics Data System (ADS)

    Du, Zhongzhou; Liu, Wenzhong; Zhong, Jing; Zhou, Ming; Zhang, Pu; Cesar Morais, Paulo

    2014-05-01

    This paper is focused on the signature of thermal-assisted cluster disruption while analyzing the inverse alternating current (AC) susceptibility (1/?) versus temperature (T) curves recorded at lower AC frequencies (f), below 300 Hz. A commercial oil-based magnetic fluid (MF) sample was used in the experiments to investigate the critical temperature (T*) that characterizes the thermal disruption of aggregates suspended within the MF sample. T* was found to reduce as f increased within the frequency range of our investigation (63-263 Hz). Furthermore, T* was found to scale with the square of the applied AC frequency. Both theoretical and experimental evidences support that the excitation field frequency (f) dependence of the critical temperature (T*) is well described by T*(f)=T*(0)-Af/21+Bf2. The model is based on energy absorption of magnetic nanoparticles in an AC magnetic field.

  14. Concentric rings of polystyrene and titanium dioxide nanoparticles patterned by alternating current signal guided coffee ring effect

    NASA Astrophysics Data System (ADS)

    Mu, Jinhua; Lin, Peng; Xia, Qiangfei

    2014-06-01

    The authors studied the surface deposition of nanoparticles by introducing an alternating current (AC) signal into the millimeter-sized nanoparticle droplet. For both polystyrene (PS) in deionized (DI) water and titanium dioxide (TiO2) in toluene, the nanoparticles self-assembled into regular concentric rings over a larger area on the substrate during the droplet drying process. The patterned area decreased, and the inter-ring spacing increased with higher AC frequencies for the TiO2/toluene system, while those for the PS/DI water system only changed slightly. The frequency dependent pattern formation was interpreted by the interaction between different factors such as capillary flow and the AC signal introduced dielectrophoresis force.

  15. Individually addressable multi-chamber electroporation platform with dielectrophoresis and alternating-current-electro-osmosis assisted cell positioning

    PubMed Central

    Park, Sinwook; Bassat, Dana Ben; Yossifon, Gilad

    2014-01-01

    A multi-functional microfluidic platform was fabricated to demonstrate the feasibility of on-chip electroporation integrated with dielectrophoresis (DEP) and alternating-current-electro-osmosis (ACEO) assisted cell/particle manipulation. A spatial gradient of electroporation parameters was generated within a microchamber array and validated using normal human dermal fibroblast (NHDF) cells and red fluorescent protein-expressing human umbilical vein endothelial cells (RFP-HUVECs) with various fluorescent indicators. The edge of the bottom electrode, coinciding with the microchamber entrance, may act as an on-demand gate, functioning under either positive or negative DEP. In addition, at sufficiently low activation frequencies, ACEO vortices can complement the DEP to contribute to a rapid trapping/alignment of particles. As such, results clearly indicate that the microfluidic platform has the potential to achieve high-throughput screening for electroporation with spatial control and uniformity, assisted by DEP and ACEO manipulation/trapping of particles/cells into individual microchambers. PMID:24803966

  16. Effect of alternating current on corrosion of Zn-22Al alloy and galvanized steel wires in synthetic sea water

    SciTech Connect

    Grovas, T.J.; Perez, T.; Genesca, J.

    1996-10-01

    Submarine AC cables generally, have a metallic armor, constituted by one or two layers of wires or strips wound with long lay on the outside of the cable. The armor is required in order to sustain part of the mechanical stresses during the laying and recovery of the cable, since the conductor alone as a rule is not sufficient for this purpose. The armor also plays an important role in the conduction of the return current. Moreover, due to the large distance between the cables in usual submarine laying practice, the return current can be very large, approaching the central conductor current value, The armor as a rule is not insulated but is in electric contact with the sea along all the cable length. This is not due to electric reasons, since the e.m.f. between armor and sea is negligible, but to practical ones. In fact it is quite difficult to assure a complete protection along all the armor length, without impairing it during the laying operations, and a single break in the insulation, would be a very strong corrosion point. The contact between the metal which constitutes the armor, galvanized steel in the case of Mexico, and the sea, in presence also of AC electric fields, requires a thorough study, of the corrosion problems which might arise. Such a study is given in this communication. It includes an experimental investigation on the behavior of Zn-22 Al and galvanized steel wires in sea water under AC. In particular, it is demonstrated that Zn-22 Al has an optimum corrosion rate of 15.86 mm/year versus 29.98 mm/year for Galvanized steel at a fixed alternating current density. A mechanism is proposed to explain this behavior, mainly, based in the presence of Al as alloy, element in Zn-22 Al and the formation of a film, Al{sub 2}O{sub 3}{center_dot}xH{sub 2}O.

  17. Offering assisted peritoneal dialysis is a cost-effective alternative to the current care pathway in frail elderly Dutch patients

    PubMed Central

    Laplante, Suzanne; Krepel, Harmen; Simons, Bregje; Nijhoff, Aafke; van Liere, Rens; Simons, Michel

    2013-01-01

    Background With the Dutch population aging, the number of individuals 75 years old or more needing dialysis is growing. This analysis assessed the cost-effectiveness of adding nurse-assisted peritoneal dialysis (aPD) to the usual care pathway in frail Dutch end-stage renal disease (ESRD) patients. Methods The current Dutch treatment pathway (conservative management, CM: 40% and PD in nursing home, nhPD: 60%) was compared in a decision-tree model with a new approach where the proportion of patients on dialysis would increase to 80% (i.e. CM: 20%; nhPD: 20%; and aPD: 60%). In-center hemodialysis was added in a secondary analysis. Inputs included survival (from literature), utility (from literature), and costs (2009 official tariffs). A healthcare payer's perspective was used with a 5-year horizon. Results The new approach was almost cost neutral in the primary analysis (despite more patients on dialysis) and dominant (more effective and less expensive) in the secondary analysis. The incremental cost-effectiveness ratio was only €52/QALY. In the sensitivity analyses (primary and secondary analyses), the new approach was either dominant or cost-effective in approximately 75% of the simulations. Conclusions Despite the investment required, offering aPD to frail elderly ESRD patients is a cost-effective alternative to the current pathway for Dutch healthcare payers. PMID:24791197

  18. Alternating current-driven non-thermal arc plasma torch working with air medium at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Ni, Guohua; Lin, Qifu; Li, Lei; Cheng, Cheng; Chen, Longwei; Shen, Jie; Lan, Yan; Meng, Yuedong

    2013-11-01

    This work is devoted to the investigation of the discharge characteristics of high-frequency alternating current (ac) plasma torch working with air medium using electrical and spectroscopic techniques. A simple structure and compact ac plasma torch associated with a resonance power supply allows the generation of low power discharges (lower than 1 kW) with high voltage and low current. The discharge shows a negative resistance characteristic, and its curve shifts up with gas flow increased. The effects of power on the emission intensity of NO (A 2?+ ? X 2?), OH (A 2? ? X 2?, 0-0), N2(C 3?u ? B 3?g), H? and O (3p^{5}P \\to 3S^{5}S_{2}^{0}) and their spatial distributions in plasma jet axial direction were investigated. It has been found that the emission intensities of NO, OH, N2, H? and O rise with an increase in power dissipation. With increasing axial distances of plasma jet from nozzle exit, the emission intensity of OH increases and then decreases, while the emission intensities of other species decrease sharply. The vibrational temperature is much higher than the gas temperature, which demonstrates the ac-driven arc discharge deviation from thermal equilibrium plasma.

  19. An alternative analysis of low- and high-altitude observations of ring current ions during a storm recovery phase

    NASA Technical Reports Server (NTRS)

    Lyons, L. R.

    1977-01-01

    Explorer 45 equatorial observations of ring current ions during a storm recovery phase have shown pitch angle distributions and decay rates inconsistent with proton charge exchange with neutral hydrogen. This inconsistency has led to the suggestion that recovery phase ring current ions at L less than or equal to 4 and energies not greater than 50 keV are dominated by He(+) rather than protons. The absence of He(+) on flux tubes from which H(+) and O(+) were precipitating in ion mass spectrometer measurements made during the same period by the low-altitude polar-orbiting satellite 1971-089A led Sharp et al. to suggest a source of H(+) and O(+) to L = 3 during this period. An alternative explanation, in which the magnetic field lines labeled L = 3 at the earth's surface near local midnight were mapped to about 3.7 earth radii in the equatorial plane during the storm recovery phase and during the period of enhanced activity, is proposed. If the proposed explanation is correct, the observations of Sharp et al. are not incompatible with the conclusion that the recovery phase ions at less than 50 keV were dominated by He(+) for L not greater than 3.7.

  20. Aneurysm Sac Pressure Measurement with Minimally Invasive Implantable Pressure Sensors: An Alternative to Current Surveillance Regimes after EVAR?

    SciTech Connect

    Springer, Fabian Guenther, Rolf W.; Schmitz-Rode, Thomas

    2008-05-15

    Current protocols for surveillance after endovascular repair (EVAR) of abdominal aortic aneurysms are mostly based on costly and time-consuming imaging procedures and aim to detect adverse events such as graft migration, endoleaks or aneurysm sac enlargement. These imaging procedures are either associated with radiation exposure to the patients or may be harmful to the patient due to the use of iodine- or gadolinium-containing contrast agents. Furthermore the advantages of EVAR in the short term might be negated by the necessity for endograft surveillance over years. Thus, alternative modalities for follow-up are being investigated. One of these technologies provides pressure information directly from the aneurysm sac. This noninvasive, telemetric pressure sensing was tested in vitro as well as in first clinical trials and was able to identify successful aneurysm exclusion after EVAR. The telemetric pressure sensors showed a promising efficacy and accuracy in detecting type I and type III endoleaks and will help to clarify the clinical relevance of type II endoleaks. This article provides an overview of the in vitro sensors investigated as well as the first clinical trials and the sensors' potential to change the current endograft surveillance regimes.

  1. Low frequency alternating current conduction and dielectric relaxation in polypyrrole, poly(N-methyl pyrrole), and their copolymers

    NASA Astrophysics Data System (ADS)

    Singh, Ramadhar; Narula, Amarjeet K.; Tandon, R. P.; Mansingh, A.; Chandra, Subhas

    1996-07-01

    The alternating current (ac) conductivity [σm(ω)], dielectric constant (ɛ') and loss (ɛ″) of polypyrrole (PPY), poly(N-methyl pyrrole) [P(NMPY)] and their copolymers; poly(N-methyl pyrrole-pyrrole [P(NMPY-PY)] have been measured in the frequency range 102-106 Hz and in the temperature range 77-350 K. At 77 K, the ac conductivity can be expressed by the relation; σac=Aωs where the slope s lies in the range 0.72-0.81 for these three polymers and decreases with increase in temperature. The well-defined loss peaks, whose magnitude decreases with the increase in frequency, have been observed in the temperature region where the measured ac conductivity approaches the direct current (dc) conductivity. These loss peaks have been associated with the movement of charge carriers in these polymeric films. The dc conductivity has also been measured in the temperature range 77-350 K and an attempt has been made to correlate it with dielectric data.

  2. Rapid immunocytochemistry based on alternating current electric field using squash smear preparation of central nervous system tumors.

    PubMed

    Moriya, Jun; Tanino, Mishie Ann; Takenami, Tomoko; Endoh, Tomoko; Urushido, Masana; Kato, Yasutaka; Wang, Lei; Kimura, Taichi; Tsuda, Masumi; Nishihara, Hiroshi; Tanaka, Shinya

    2016-01-01

    The role of intraoperative pathological diagnosis for central nervous system (CNS) tumors is crucial for neurosurgery when determining the surgical procedure. Especially, treatment of carmustine (BCNU) wafers requires a conclusive diagnosis of high-grade glioma proven by intraoperative diagnosis. Recently, we demonstrated the usefulness of rapid immunohistochemistry (R-IHC) that facilitates antigen-antibody reaction under alternative current (AC) electric field in the intraoperative diagnosis of CNS tumors; however, a higher proportion of water and lipid in the brain parenchyma sometimes leads to freezing artifacts, resulting in poor quality of frozen sections. On the other hand, squash smear preparation of CNS tumors for cytology does not affect the frozen artifacts, and the importance of smear preparation is now being re-recognized as being better than that of the tissue sections. In this study, we established the rapid immunocytochemistry (R-ICC) protocol for squash smears of CNS tumors using AC electric field that takes only 22min, and demonstrated its usefulness for semi-quantitative Ki-67/MIB-1 labeling index and CD 20 by R-ICC for intraoperative diagnosis. R-ICC by AC electric field may become a substantial tool for compensating R-IHC and will be applied for broad antibodies in the future. PMID:26546480

  3. Evaluation of calcium alginate gel as electrode material for alternating current iontophoresis of lidocaine using excised rat skin.

    PubMed

    Ebisawa, Tomoko; Nakajima, Atsushi; Haida, Haruka; Wakita, Ryo; Ando, Shizuka; Yoshioka, Tomohiko; Ikoma, Toshiyuki; Tanaka, Junzo; Fukayama, Haruhisa

    2014-01-01

    Iontophoresis (IOP) is a noninvasive method of delivering medication transcutaneously through the skin. The electrodes used in this method should tightly fit to rough and irregular surfaces and be biologically safe, easy to handle and prepare, and cost-effective. To satisfy these requirements, calcium alginate gel can be a candidate electrode for IOP. Using calcium alginate gel electrodes, we examined whether lidocaine can be effectively transported across an excised rat skin by squarewave alternating current (AC) application. A squarewave AC with either a 70% or 80% duty cycle was continuously applied to 0.5% calcium alginate gel electrodes containing 10% lidocaine at 10 V and 1 kHz for 60 min. Lidocaine concentration was measured using a spectrophotometer and the temperature of the gel was determined. The lidocaine concentrations for AC-IOP at the 70% and 80% duty cycles were significantly higher than that without AC-IOP. Furthermore, the group with the 80% duty cycle showed higher lidocaine concentrations than the group with the 70% duty cycle. The temperatures of all the groups were lower than 28 °C throughout the procedure. In conclusion, the calcium alginate gel can be used as a possible matrix for IOP electrodes. PMID:25952356

  4. The influence of theta transcranial alternating current stimulation (tACS) on working memory storage and processing functions.

    PubMed

    Jaušovec, Norbert; Jaušovec, Ksenija; Pahor, Anja

    2014-02-01

    The study aimed to explore the role of the fronto-parietal brain network in working memory function--in temporary storage and manipulation of information. In a single blind sham controlled experiment 36 respondents solved different working memory tasks after theta transcranial alternating current stimulation (tACS) was applied to left frontal, left parietal and right parietal areas. Both verum tACS protocols stimulating parietal brain areas (target electrodes positioned at location P3, or P4) had a positive effect on WM storage capacity as compared with sham tACS, whereas no such influence was observed for the stimulation of the left frontal area (target electrode positioned at location F3). A second finding was that left parietal theta tACS had a more pronounced influence on backward recall than on forward recall, which was not related to task content (spatial or verbal). The influence of theta tACS on WM executive processes was most pronounced for right parietal stimulation. The results are discussed in the broad theoretical framework of the multicomponent model of working memory. PMID:24361739

  5. Comparison of atmospheric air plasmas excited by high-voltage nanosecond pulsed discharge and sinusoidal alternating current discharge

    NASA Astrophysics Data System (ADS)

    Zhang, Shuai; Wang, Wen-chun; Jiang, Peng-chao; Yang, De-zheng; Jia, Li; Wang, Sen

    2013-10-01

    In this paper, atmospheric pressure air discharge plasma in quartz tube is excited by 15 ns high-voltage nanosecond pulsed discharge (HVNPD) and sinusoidal alternating current discharge (SACD), respectively, and a comparison study of these two kinds of discharges is made through visual imaging, electrical characterization, optical detection of active species, and plasma gas temperature. The peak voltage of the power supplies is kept at 16 kV while the pulse repetition rate of nanosecond pulse power supply is 100 Hz, and the frequency of sinusoidal power supply is 10 kHz. Results show that the HVNPD is uniform while the SACD presents filamentary mode. For exciting the same cycles of discharge, the average energy consumption in HVNPD is about 1/13 of the SACD. However, the chemical active species generated by the HVNPD is about 2-9 times than that excited by the SACD. Meanwhile, the rotational and vibrational temperatures have been obtained via fitting the simulated spectrum of N2 (C3Πu → B3Πg, 0-2) with the measured one, and the results show that the plasma gas temperature in the HVNPD remains close to room temperature whereas the plasma gas temperature in the SACD is about 200 K higher than that in HVNPD in the initial phase and continually increases as discharge exposure time goes on.

  6. The use of the alternating current field measurement (ACFM) technique for mechanized and semi-automated inspection

    SciTech Connect

    Raine, A.

    1996-12-31

    The Alternating Current Field Measurement (ACFM) technique was originally developed to be deployed by diving inspectors for the inspection off subsea offshore structures. The main application was the detection and sizing of surface breaking fatigue cracks. A portable unit was produced for manual use and has successfully been used in the inspection of petrochemical, process, pressurized systems and power generation plant. ACFM inspection technology has been developed from a manual deployed system which was used to detect and size surface breaking cracks through coatings in carbon steel to a technology that can be applied in a mechanized fashion to detect not only cracks but corrosion pits. The technique has been applied to a wide range of materials including carbon steels, austenitic stainless, duplex, super duplex and titanium. The application of arrays means that areas can be electronically scanned and defects in any orientation can be detected by the application of multi directional induced fields. The paper describes the versatility of not only ACFM but the application of array technology in new areas of technology.

  7. Synthetic tactile perception induced by transcranial alternating-current stimulation can substitute for natural sensory stimulus in behaving rabbits.

    PubMed

    Mrquez-Ruiz, Javier; Ammann, Claudia; Leal-Campanario, Roco; Ruffini, Giulio; Gruart, Agns; Delgado-Garca, Jos M

    2016-01-01

    The use of brain-derived signals for controlling external devices has long attracted the attention from neuroscientists and engineers during last decades. Although much effort has been dedicated to establishing effective brain-to-computer communication, computer-to-brain communication feedback for "closing the loop" is now becoming a major research theme. While intracortical microstimulation of the sensory cortex has already been successfully used for this purpose, its future application in humans partly relies on the use of non-invasive brain stimulation technologies. In the present study, we explore the potential use of transcranial alternating-current stimulation (tACS) for synthetic tactile perception in alert behaving animals. More specifically, we determined the effects of tACS on sensory local field potentials (LFPs) and motor output and tested its capability for inducing tactile perception using classical eyeblink conditioning in the behaving animal. We demonstrated that tACS of the primary somatosensory cortex vibrissa area could indeed substitute natural stimuli during training in the associative learning paradigm. PMID:26790614

  8. Optimizing the internal electric field distribution of alternating current driven organic light-emitting devices for a reduced operating voltage

    NASA Astrophysics Data System (ADS)

    Frbel, Markus; Hofmann, Simone; Leo, Karl; Gather, Malte C.

    2014-02-01

    The influence of the thickness of the insulating layer and the intrinsic organic layer on the driving voltage of p-i-n based alternating current driven organic light-emitting devices (AC-OLEDs) is investigated. A three-capacitor model is employed to predict the basic behavior of the devices, and good agreement with the experimental values is found. The proposed charge regeneration mechanism based on Zener tunneling is studied in terms of field strength across the intrinsic organic layers. A remarkable consistency between the measured field strength at the onset point of light emission (3-3.1 MV/cm) and the theoretically predicted breakdown field strength of around 3 MV/cm is obtained. The latter value represents the field required for Zener tunneling in wide band gap organic materials according to Fowler-Nordheim theory. AC-OLEDs with optimized thickness of the insulating and intrinsic layers show a reduction in the driving voltage required to reach a luminance of 1000 cd/m2 of up to 23% (8.9 V) and a corresponding 20% increase in luminous efficacy.

  9. Pore formation in lipid bilayer membranes made of phosphatidylinositol and oxidized cholesterol followed by means of alternating current.

    PubMed Central

    Gallucci, E; Micelli, S; Monticelli, G

    1996-01-01

    The kinetics of porin incorporation into black lipid membranes (BLM) made of phosphatidylinositol (PI) or oxidized cholesterol (Ox Ch) were studied by means of alternating current; the set-up was able to acquire resistance and capacitance simultaneously by means of a mixed double-frequency approach at 1 Hz and 1 KHz, respectively. Conductance was dependent on the interaction between protein-forming pores and lipids. For PI membranes below a porin concentration of 12.54 ng/ml, there was no membrane conductivity, whereas at 200 ng/ml a steady-state value was reached. Different behavior was displayed by Ox Ch membranes, in which a concentration of 12.54 ng/ml was sufficient to reach a steady state. The incorporation kinetics when porin was added after membrane formation were sigmoidal. When porin was present in the medium before membrane formation, the kinetics were sigmoidal for PI membranes but became exponential for Ox Ch membranes. Furthermore, for BLM made of PI, the conductance-versus-porin concentration relationship is sigmoidal, with a Hill coefficient of 5.6 +/- 0.07, which is functional evidence corroborating the six-channel repeating units seen previously. For BLM made of Ox Ch, this relationship followed a binding isotherm curve with a Hill coefficient of 0.934 +/- 0.129. PMID:8842220

  10. Synthetic tactile perception induced by transcranial alternating-current stimulation can substitute for natural sensory stimulus in behaving rabbits

    PubMed Central

    Márquez-Ruiz, Javier; Ammann, Claudia; Leal-Campanario, Rocío; Ruffini, Giulio; Gruart, Agnès; Delgado-García, José M.

    2016-01-01

    The use of brain-derived signals for controlling external devices has long attracted the attention from neuroscientists and engineers during last decades. Although much effort has been dedicated to establishing effective brain-to-computer communication, computer-to-brain communication feedback for “closing the loop” is now becoming a major research theme. While intracortical microstimulation of the sensory cortex has already been successfully used for this purpose, its future application in humans partly relies on the use of non-invasive brain stimulation technologies. In the present study, we explore the potential use of transcranial alternating-current stimulation (tACS) for synthetic tactile perception in alert behaving animals. More specifically, we determined the effects of tACS on sensory local field potentials (LFPs) and motor output and tested its capability for inducing tactile perception using classical eyeblink conditioning in the behaving animal. We demonstrated that tACS of the primary somatosensory cortex vibrissa area could indeed substitute natural stimuli during training in the associative learning paradigm. PMID:26790614

  11. Quantitative Electrochemical Detection of Cathepsin B Activity in Complex Tissue Lysates Using Enhanced AC Voltammetry at Carbon Nanofiber Nanoelectrode Arrays

    PubMed Central

    Swisher, Luxi Z.; Prior, Allan M.; Shishido, Stephanie; Nguyen, Thu A.; Hua, Duy H.; Li, Jun

    2014-01-01

    The proteolytic activity of a cancer-related enzyme cathepsin B is measured with alternating current voltammetry (ACV) using ferrocene (Fc) labeled tetrapeptides attached to nanoelectrode arrays (NEAs) fabricated with vertically aligned carbon nanofibers (VACNFs). This combination enables the use of high AC frequencies (~1 kHz) with enhanced electrochemical signals. The specific proteolysis of the Fc-peptide by cathepsin B produces decay in the ACV peak current versus the reaction time. The exponential component of the raw data can be extracted and defined as the “extracted proteolytic signal” which allows consistent quantitative analyses using a heterogeneous Michaelis-Menten model. A “specificity constant” kcat/KM = (3.68 ± 0.50) × 104 M−1s−1 for purified cathepsin B was obtained. The detections of cathepsin B activity in different concentrations of whole lysate of human breast tissue, tissue lysate spiked with varied concentrations of cathepsin B, and the tissue lysate after immunoprecipitation showed that there are ~13.4 nM higher cathepsin B concentration in 29.1 μg·mL−1 of whole tissue lysate than the immunoprecipitated sample. The well-defined regular VACNF NEAs by e-beam lithography show a much faster kinetics for cathepsin B proteolysis with kcat/KM = 9.2 × 104 M−1s−1. These results illustrate the potential of this technique as a portable multiplex electronic system for cancer diagnosis by rapid protease profiling of serum or blood samples. PMID:24480132

  12. Increase in short-term memory capacity induced by down-regulating individual theta frequency via transcranial alternating current stimulation

    PubMed Central

    Vosskuhl, Johannes; Huster, Ren J.; Herrmann, Christoph S.

    2015-01-01

    Working memory (WM) and short-term memory (STM) supposedly rely on the phase-amplitude coupling (PAC) of neural oscillations in the theta and gamma frequency ranges. The ratio between the individually dominant gamma and theta frequencies is believed to determine an individuals memory capacity. The aim of this study was to establish a causal relationship between the gamma/theta ratio and WM/STM capacity by means of transcranial alternating current stimulation (tACS). To achieve this, tACS was delivered at a frequency below the individual theta frequency. Thereby the individual ratio of gamma to theta frequencies was changed, resulting in an increase of STM capacity. Healthy human participants (N = 33) were allocated to two groups, one receiving verum tACS, the other underwent a sham control protocol. The electroencephalogram (EEG) was measured before stimulation and analyzed with regard to the properties of PAC between theta and gamma frequencies to determine individual stimulation frequencies. After stimulation, EEG was recorded again in order to find after-effects of tACS in the oscillatory features of the EEG. Measures of STM and WM were obtained before, during and after stimulation. Frequency spectra and behavioral data were compared between groups and different measurement phases. The tACS- but not the sham stimulated group showed an increase in STM capacity during stimulation. WM was not affected in either groups. An increase in task-related theta amplitude after stimulation was observed only for the tACS group. These augmented theta amplitudes indicated that the manipulation of individual theta frequencies was successful and caused the increase in STM capacity. PMID:26005411

  13. Alpha Power Increase After Transcranial Alternating Current Stimulation at Alpha Frequency (?-tACS) Reflects Plastic Changes Rather Than Entrainment

    PubMed Central

    Vossen, Alexandra; Gross, Joachim; Thut, Gregor

    2015-01-01

    Background Periodic stimulation of occipital areas using transcranial alternating current stimulation (tACS) at alpha (?) frequency (812Hz) enhances electroencephalographic (EEG) ?-oscillation long after tACS-offset. Two mechanisms have been suggested to underlie these changes in oscillatory EEG activity: tACS-induced entrainment of brain oscillations and/or tACS-induced changes in oscillatory circuits by spike-timing dependent plasticity. Objective We tested to what extent plasticity can account for tACS-aftereffects when controlling for entrainment echoes. To this end, we used a novel, intermittent tACS protocol and investigated the strength of the aftereffect as a function of phase continuity between successive tACS episodes, as well as the match between stimulation frequency and endogenous ?-frequency. Methods 12 healthy participants were stimulated at around individual ?-frequency for 1115min in four sessions using intermittent tACS or sham. Successive tACS events were either phase-continuous or phase-discontinuous, and either 3 or 8s long. EEG ?-phase and power changes were compared after and between episodes of ?-tACS across conditions and against sham. Results ?-aftereffects were successfully replicated after intermittent stimulation using 8-s but not 3-s trains. These aftereffects did not reveal any of the characteristics of entrainment echoes in that they were independent of tACS phase-continuity and showed neither prolonged phase alignment nor frequency synchronization to the exact stimulation frequency. Conclusion Our results indicate that plasticity mechanisms are sufficient to explain ?-aftereffects in response to ?-tACS, and inform models of tACS-induced plasticity in oscillatory circuits. Modifying brain oscillations with tACS holds promise for clinical applications in disorders involving abnormal neural synchrony. PMID:25648377

  14. Enhancing Protein Capture Using a Combination of Nanoyeast Single-Chain Fragment Affinity Reagents and Alternating Current Electrohydrodynamic Forces.

    PubMed

    Vaidyanathan, Ramanathan; Rauf, Sakandar; Grewal, Yadveer S; Spadafora, Lauren J; Shiddiky, Muhammad J A; Cangelosi, Gerard A; Trau, Matt

    2015-12-01

    New high-performance detection technologies and more robust protein capture agents can be combined to both rapidly and specifically capture and detect protein biomarkers associated with disease in complex biological samples. Here we demonstrate the use of recently developed recombinant affinity reagents, namely nanoyeast-scFv, in combination with alternating current electrohydrodynamic (ac-EHD)-induced shear forces, to enhance capture performance during protein biomarker analysis. The use of ac-EHD significantly improves fluid transport across the capture domain, resulting in enhanced sensor-target interaction and simultaneous displacement of nonspecific molecules from the electrode surface. We demonstrate this simple proof-of-concept approach for the capture and detection of Entamoeba histolytica antigens from disinfected stool, within a span of 5 min using an ac-EHD microfluidic device. Under an ac-EHD field, antigens were captured on a nanoyeast-scFv immobilized device and subsequently detected using a quantum dot conjugated antibody. This immunosensor specifically detected antigen in disinfected stool with low background noise at concentrations down to 58.8 fM with an interassay reproducibility (%RSD of n = 3) < 17.2%, and in buffer down to 5.88 fM with an interassay reproducibility (% RSD, n = 3) of 8.4%. Furthermore, antigen detection using this immunosensor was 10 times more sensitive than previously obtained with the same nanoyeast-scFv reagents in a microfluidic device employing surface-enhanced Raman scattering (SERS) detection in buffer and at least 200 times more sensitive than methods using screen printed gold electrodes in disinfected stool. We predict this rapid and sensitive approach using these stable affinity reagents may offer a new methodology to detect protein disease biomarkers from biological matrices. PMID:26551436

  15. Cyclic voltammetry of aquocobalamin on clay-modified electrodes

    SciTech Connect

    Borek, V.; Morra, M.J.

    1998-07-15

    Halogenated synthetic compounds are widespread contaminants of the environment. Although corrinoids reductively dehalogenate synthetic contaminants in solution, the redox behavior of sorbed tetrapyrroles has received limited attention. Colloidal clay suspensions were prepared as Ca{sup 2+} forms of hectorite (SHCa-1), montmorillonite (SWy-1, Syn-1, and SAz-1), and vermiculite (VTx-1) and spin coated on platinum electrodes. Cyclic voltammetry was performed with the clay-modified electrodes immersed in buffered solutions containing 1.0 mM aquocobalamin. Aquocobalamin in the presence of vermiculite-coated electrodes displayed the same cathodic and anodic peak potentials as unmodified electrodes immersed in aquocobalamin solutions. All other clay-modified electrodes shifted cathodic peaks to more negative values, while anodic peak shifts varied with the clay. Hectorite caused the largest shift in formal redox potential as compared to aquocobalamin in solution. The redox behavior of aquocobalamin as modified by sorption to clay minerals potentially affects dehalogenation rates of synthetic organic compounds in the environment. Clays lowering the formal redox potential of the tetrapyrrole create a potentially more efficient catalyst for pollutant degradation. However, thermodynamic data as obtained using cyclic voltammetry cannot be used to make definitive predictions about the kinetics of contaminant dehalogenation. Reductive dehalogenation will be a function of altered electrochemical properties of the tetrapyrrole as well as rates of contaminant diffusion to the site of tetrapyrrole sorption.

  16. Voltage Biasing, Cyclic Voltammetry, & Electrical Impedance Spectroscopy for Neural Interfaces

    PubMed Central

    Wilks, Seth J.; Richner, Tom J.; Brodnick, Sarah K.; Kipke, Daryl R.; Williams, Justin C.; Otto, Kevin J.

    2012-01-01

    Electrical impedance spectroscopy (EIS) and cyclic voltammetry (CV) measure properties of the electrode-tissue interface without additional invasive procedures, and can be used to monitor electrode performance over the long term. EIS measures electrical impedance at multiple frequencies, and increases in impedance indicate increased glial scar formation around the device, while cyclic voltammetry measures the charge carrying capacity of the electrode, and indicates how charge is transferred at different voltage levels. As implanted electrodes age, EIS and CV data change, and electrode sites that previously recorded spiking neurons often exhibit significantly lower efficacy for neural recording. The application of a brief voltage pulse to implanted electrode arrays, known as rejuvenation, can bring back spiking activity on otherwise silent electrode sites for a period of time. Rejuvenation alters EIS and CV, and can be monitored by these complementary methods. Typically, EIS is measured daily as an indication of the tissue response at the electrode site. If spikes are absent in a channel that previously had spikes, then CV is used to determine the charge carrying capacity of the electrode site, and rejuvenation can be applied to improve the interface efficacy. CV and EIS are then repeated to check the changes at the electrode-tissue interface, and neural recordings are collected. The overall goal of rejuvenation is to extend the functional lifetime of implanted arrays. PMID:22395095

  17. Solid state voltammetry and sensors in solids and gases

    SciTech Connect

    Murray, R.W.

    1992-04-01

    This project explores the electrochemical reactivity of electron transfer donor/acceptors dissolved in and diffusing through solid and semi-solid, ionically conductive media. The emphasis is on developing voltammetric experiments that are quantitatively interpretable in terms of the mass transport and electron transfer rates and thermodynamic equilibria of the redox solutes, and to exploit such experiments to probe their chemical and electrochemical behavior in the solid media. Techniques for quantitative voltammetry in solids were essentially unknown prior to initiation of this DOE project. We mainly employ poly(ethers)s containing dissolved metal salts electrolytes ( polymer electrolytes''), as prototype solid and semi-solid solvents. During this award year we have (a) concluded a study of plasticization chemistry in poly (ether) polymer electrolytes, (b) made progress in devising techniques for measuring the rates of electron transfer reactions in solid and semi-solid poly (ether)s, (c) continued efforts to design and understand the behavior of microband electrodes of various widths (0.1 to 10 {mu}m) in voltammetry of redox solutes, and (d) initiated synthetic efforts to attach ethylene oxide chains of various lengths to redox solutes.

  18. Vocational-Technical Physics Project. The Alternator: I. Current Electricity, II. Magnets from Electricity, III. Electricity from Magnets, IV. Energy Conversion. Field Test Edition.

    ERIC Educational Resources Information Center

    Forsyth Technical Inst., Winston-Salem, NC.

    This vocational physics individualized instructional student module on the alternator consists of the four units: Current electricity, magnets from electricity, electricity from magnets, and energy conversion. Designed with a laboratory orientation, the units present explanations of the concepts and experiments. Laboratory data sheets,

  19. Wireless fast-scan cyclic voltammetry to monitor adenosine in patients with essential tremor during deep brain stimulation.

    PubMed

    Chang, Su-Youne; Kim, Inyong; Marsh, Michael P; Jang, Dong Pyo; Hwang, Sun-Chul; Van Gompel, Jamie J; Goerss, Stephan J; Kimble, Christopher J; Bennet, Kevin E; Garris, Paul A; Blaha, Charles D; Lee, Kendall H

    2012-08-01

    Essential tremor is often markedly reduced during deep brain stimulation simply by implanting the stimulating electrode before activating neurostimulation. Referred to as the microthalamotomy effect, the mechanisms of this unexpected consequence are thought to be related to microlesioning targeted brain tissue, that is, a microscopic version of tissue ablation in thalamotomy. An alternate possibility is that implanting the electrode induces immediate neurochemical release. Herein, we report the experiment performing with real-time fast-scan cyclic voltammetry to quantify neurotransmitter concentrations in human subjects with essential tremor during deep brain stimulation. The results show that the microthalamotomy effect is accompanied by local neurochemical changes, including adenosine release. PMID:22809886

  20. Nanoalloy electrocatalysis: Simulating cyclic voltammetry from configurational thermodynamics with adsorbates

    SciTech Connect

    Wang, Lin -Lin; Tan, Teck L.; Johnson, Duane D.

    2015-02-27

    We simulate the adsorption isotherms for alloyed nanoparticles (nanoalloys) with adsorbates to determine cyclic voltammetry (CV) during electrocatalysis. The effect of alloying on nanoparticle adsorption isotherms is provided by a hybrid-ensemble Monte Carlo simulation that uses the cluster expansion method extended to non-exchangeable coupled lattices for nanoalloys with adsorbates. Exemplified here for the hydrogen evolution reaction, a 2-dimensional CV is mapped for Pd–Pt nanoalloys as a function of both electrochemical potential and the global Pt composition, and shows a highly non-linear alloying effect on CV. Detailed features in CV arise from the interplay among the H-adsorption in multiple sites that is closely correlated with alloy configurations, which are in turn affected by the H-coverage. The origins of specific features in CV curves are assigned. As a result, the method provides a more complete means to design nanoalloys for electrocatalysis.

  1. Nanoalloy electrocatalysis: Simulating cyclic voltammetry from configurational thermodynamics with adsorbates

    SciTech Connect

    Wang, Lin -Lin; Tan, Teck L.; Johnson, Duane D.

    2015-02-27

    We simulate the adsorption isotherms for alloyed nanoparticles (nanoalloys) with adsorbates to determine cyclic voltammetry (CV) during electrocatalysis. The effect of alloying on nanoparticle adsorption isotherms is provided by a hybrid-ensemble Monte Carlo simulation that uses the cluster expansion method extended to non-exchangeable coupled lattices for nanoalloys with adsorbates. Exemplified here for the hydrogen evolution reaction, a 2-dimensional CV is mapped for PdPt nanoalloys as a function of both electrochemical potential and the global Pt composition, and shows a highly non-linear alloying effect on CV. Detailed features in CV arise from the interplay among the H-adsorption in multiple sites that is closely correlated with alloy configurations, which are in turn affected by the H-coverage. The origins of specific features in CV curves are assigned. As a result, the method provides a more complete means to design nanoalloys for electrocatalysis.

  2. Electrochemical characterization of bronze historical objects using voltammetry of microparticles

    NASA Astrophysics Data System (ADS)

    Elia, Alice; Dowsett, Mark; Adriaens, Annemie

    2015-02-01

    This work presents the application of voltammetry of microparticles (VMP) to the characterization of metallic artefacts. The paper illustrates the principle of the technique and the methods for the identification of metals and copper minerals. VMP can be considered a non-invasive technique as it requires a minimum amount of material for performing the analyses. To emphasize the efficacy of this technique regarding characterization of cultural heritage materials, two bronze artefacts of different historical periods were investigated. By using a paraffin-impregnated graphite electrode, the composition of the alloy and the copper minerals present in their patinas were analysed and identified. The results obtained from the electrochemical characterization were confirmed by complementary analysis carried out with X-ray fluorescence and X-ray diffraction.

  3. Nanoalloy electrocatalysis: Simulating cyclic voltammetry from configurational thermodynamics with adsorbates

    DOE PAGESBeta

    Wang, Lin -Lin; Tan, Teck L.; Johnson, Duane D.

    2015-02-27

    We simulate the adsorption isotherms for alloyed nanoparticles (nanoalloys) with adsorbates to determine cyclic voltammetry (CV) during electrocatalysis. The effect of alloying on nanoparticle adsorption isotherms is provided by a hybrid-ensemble Monte Carlo simulation that uses the cluster expansion method extended to non-exchangeable coupled lattices for nanoalloys with adsorbates. Exemplified here for the hydrogen evolution reaction, a 2-dimensional CV is mapped for Pd–Pt nanoalloys as a function of both electrochemical potential and the global Pt composition, and shows a highly non-linear alloying effect on CV. Detailed features in CV arise from the interplay among the H-adsorption in multiple sites thatmore » is closely correlated with alloy configurations, which are in turn affected by the H-coverage. The origins of specific features in CV curves are assigned. As a result, the method provides a more complete means to design nanoalloys for electrocatalysis.« less

  4. Nanoalloy electrocatalysis: simulating cyclic voltammetry from configurational thermodynamics with adsorbates.

    PubMed

    Wang, Lin-Lin; Tan, Teck L; Johnson, Duane D

    2015-11-14

    We simulate the adsorption isotherms for alloyed nanoparticles (nanoalloys) with adsorbates to determine cyclic voltammetry (CV) during electrocatalysis. The effect of alloying on nanoparticle adsorption isotherms is provided by a hybrid-ensemble Monte Carlo simulation that uses the cluster expansion method extended to non-exchangeable coupled lattices for nanoalloys with adsorbates. Exemplified here for the hydrogen evolution reaction, a 2-dimensional CV is mapped for Pd-Pt nanoalloys as a function of both electrochemical potential and the global Pt composition, and shows a highly non-linear alloying effect on CV. Detailed features in CV arise from the interplay among the H-adsorption in multiple sites that is closely correlated with alloy configurations, which are in turn affected by the H-coverage. The origins of specific features in CV curves are assigned. The method provides a more complete means to design nanoalloys for electrocatalysis. PMID:25766277

  5. Multielement determination in biological materials by differential pulse voltammetry

    SciTech Connect

    Adeloju, S.B.; Bond, A.M.; Briggs, M.H.

    1985-06-01

    A simple and reliable multielement approach for the determination of up to eight elements in a single biological sample digest at major, minor, trace, and/or ultratrace levels has been developed. The method employs a wide range of voltammetric techniques such as polarography, cathodic stripping, anodic stripping, and adsorption voltammetry in their differential pulse mode together with some chemical manipulations for sequential simultaneous determination of selenium, cadmium, lead, copper, zinc, nickel, and cobalt in the same solution. Arsenic can also be determined under favorable conditions. The determination of the eight elements in the digested samples takes about 3 h or approximately 25 min for each element per sample. The precision and accuracy, as demonstrated by the use of standard reference materials, are excellent. 14 references, 4 figures, 2 tables.

  6. Cloud Point Extraction for Electroanalysis: Anodic Stripping Voltammetry of Cadmium.

    PubMed

    Rusinek, Cory A; Bange, Adam; Papautsky, Ian; Heineman, William R

    2015-06-16

    Cloud point extraction (CPE) is a well-established technique for the preconcentration of hydrophobic species from water without the use of organic solvents. Subsequent analysis is then typically performed via atomic absorption spectroscopy (AAS), UV-vis spectroscopy, or high performance liquid chromatography (HPLC). However, the suitability of CPE for electroanalytical methods such as stripping voltammetry has not been reported. We demonstrate the use of CPE for electroanalysis using the determination of cadmium (Cd(2+)) by anodic stripping voltammetry (ASV). Rather than using the chelating agents which are commonly used in CPE to form a hydrophobic, extractable metal complex, we used iodide and sulfuric acid to neutralize the charge on Cd(2+) to form an extractable ion pair. This offers good selectivity for Cd(2+) as no interferences were observed from other heavy metal ions. Triton X-114 was chosen as the surfactant for the extraction because its cloud point temperature is near room temperature (22-25 °C). Bare glassy carbon (GC), bismuth-coated glassy carbon (Bi-GC), and mercury-coated glassy carbon (Hg-GC) electrodes were compared for the CPE-ASV. A detection limit for Cd(2+) of 1.7 nM (0.2 ppb) was obtained with the Hg-GC electrode. ASV with CPE gave a 20x decrease (4.0 ppb) in the detection limit compared to ASV without CPE. The suitability of this procedure for the analysis of tap and river water samples was demonstrated. This simple, versatile, environmentally friendly, and cost-effective extraction method is potentially applicable to a wide variety of transition metals and organic compounds that are amenable to detection by electroanalytical methods. PMID:25996561

  7. Lead-Testing Service to Elementary and Secondary Schools Using Anodic Stripping Voltammetry

    NASA Astrophysics Data System (ADS)

    Goebel, Amanda; Vos, Tracy; Louwagie, Anne; Lundbohm, Laura; Brown, Jay H.

    2004-02-01

    This article outlines a successful community service project that involved members of our undergraduate chemistry club and area elementary schools. Elementary school students from various science classes throughout the region collected drinking water samples and mailed them to the university for analysis. Chemistry club members analyzed the water samples for possible lead contamination using anodic stripping voltammetry. The results and experimental data were returned to the science teachers for use in a variety of class projects. Chemistry club members presented their work during our annual Environmental Chemistry Conference. All participating science classes were invited to the conference. Over the years, participation in this project has steadily increased to its current enrollment of 28 science classes throughout the region.

  8. Application of N- and B-doped CVD diamond layers for cyclic voltammetry measurements

    NASA Astrophysics Data System (ADS)

    Torz-Piotrowska, R.; Wrzyszczy?ski, A.; Paprocki, K.; Staryga, E.

    2009-10-01

    Conductive polycrystalline diamond layers prepared by the CVD process have received attention from electrochemists owing to such superior electrochemical properties as the wide potential window, the very low background current, the stability of chemical and physical properties. In this paper, the cyclic voltammetry application using N- and B-doped diamond electrodes was studied. Diamond layers, doped with boron and nitrogen, were synthesized on a silicon substrate in a hot-filament CVD reactor. The obtained diamond layers were characterized using Raman spectroscopy and scanning electron microscopy (SEM). The electrochemical properties of diamond layers were measured in KCl and NaCl basic solutions to gain knowledge about their potential application as an electrode material. It was found that boron doped diamond electrodes showed potential windows up to about 7 V which were almost twice wider than those observed for conventional Pt electrodes.

  9. Leak in evaporated milk by anodic stripping voltammetry and atomic absorption spectrophotometry: cooperative interlaboratory study.

    PubMed

    Sulek, A M; Elkins, E R; Zink, E W

    1978-07-01

    The results of a cooperative study on the determination of lead in evaporated milk, using a double blind referee technique, are reported. This study was designed to determine the normal variability of methods currently used for lead analysis by canned food industry laboratories. Twenty-three laboratories participated in this study. Each laboratory was instructed to use atomic absorption spectrophotometry (AOAC 25.065), anodic stripping voltammetry, or carbon rod atomic absorption spectrophotometry. Overall, the results appear to be in close agreement with the spiking levels. The coefficient of variation for all laboratories was 36.0% at the 0.15 ppm lead level and 16.8% at the 0.40 ppm lead level. PMID:681266

  10. Detection of Hypochlorous Acid Using Reduction Wave During Anodic Cyclic Voltammetry

    NASA Astrophysics Data System (ADS)

    Kodera, Fumihiro; Umeda, Minoru; Yamada, Akifumi

    2005-05-01

    A novel analysis method for detecting low free-chlorine concentrations using a reduction wave based on anodic cyclic voltammetry has been developed. The reduction wave has been observed at approximately 600 mV vs Ag/AgCl, which is dependent on the free-chlorine concentration and switching potential. The wave peak showed a maximum value for the switching potential at approximately 1350 mV vs Ag/AgCl, and a good linear relationship between the peak current and the concentrations in the range of 0.2-6.0 mg dm-3. The relative standard deviation (RSD) at each concentration was less than 2%. This method seems to be useful for the analysis of low free-chlorine concentrations.

  11. Study of Copper and Purine-Copper Complexes on Modified Carbon Electrodes by Cyclic and Elimination Voltammetry

    PubMed Central

    Trnkova, Libuse; Zerzankova, Lenka; Dycka, Filip; Mikelova, Radka; Jelen, Frantisek

    2008-01-01

    Using a paraffin impregnated graphite electrode (PIGE) and mercury-modified pyrolytic graphite electrode with basal orientation (Hg-PGEb) copper(II) and Cu(II)-DNA purine base solutions have been studied by cyclic (CV) and linear sweep voltammetry (LSV) in connection with elimination voltammetry with linear scan (EVLS). In chloride and bromide solutions (pH 6), the redox process of Cu(II) proceeded on PIGE with two cathodic and two anodic potentially separated signals. According to the elimination function E4, the first cathodic peak corresponds to the reduction Cu(II) + e- → Cu(I) with the possibility of fast disproportionation 2Cu(I) → Cu(II)+ Cu(0). The E4 of the second cathodic peak signalized an electrode process controlled by a surface reaction. The electrode system of Cu(II) on Hg-PGEb in borate buffer (pH 9.2) was characterized by one cathodic and one anodic peak. Anodic stripping voltammetry (ASV) on PIGE and cathodic stripping voltammetry (CSV) on Hg-PGEb were carried out at potentials where the reduction of copper ions took place and Cu(I)-purine complexes were formed. By using ASV and CSV in combination with EVLS, the sensitivity of Cu(I)-purine complex detection was enhanced relative to either ASV or CSV alone, resulting in higher peak currents of more than one order of magnitude. The statistical treatment of CE data was used to determine the reproducibility of measurements. Our results show that EVLS in connection with the stripping procedure is useful for both qualitative and quantitative microanalysis of purine derivatives and can also reveal details of studied electrode processes.

  12. Numerical and theoretical evaluations of AC losses for single and infinite numbers of superconductor strips with direct and alternating transport currents in external AC magnetic field

    NASA Astrophysics Data System (ADS)

    Kajikawa, K.; Funaki, K.; Shikimachi, K.; Hirano, N.; Nagaya, S.

    2010-11-01

    AC losses in a superconductor strip are numerically evaluated by means of a finite element method formulated with a current vector potential. The expressions of AC losses in an infinite slab that corresponds to a simple model of infinitely stacked strips are also derived theoretically. It is assumed that the voltage-current characteristics of the superconductors are represented by Beans critical state model. The typical operation pattern of a Superconducting Magnetic Energy Storage (SMES) coil with direct and alternating transport currents in an external AC magnetic field is taken into account as the electromagnetic environment for both the single strip and the infinite slab. By using the obtained results of AC losses, the influences of the transport currents on the total losses are discussed quantitatively.

  13. De novo reconstruction of the Toxoplasma gondii transcriptome improves on the current genome annotation and reveals alternatively spliced transcripts and putative long non-coding RNAs

    PubMed Central

    2012-01-01

    Background Accurate gene model predictions and annotation of alternative splicing events are imperative for genomic studies in organisms that contain genes with multiple exons. Currently most gene models for the intracellular parasite, Toxoplasma gondii, are based on computer model predictions without cDNA sequence verification. Additionally, the nature and extent of alternative splicing in Toxoplasma gondii is unknown. In this study, we used de novo transcript assembly and the published type II (ME49) genomic sequence to quantify the extent of alternative splicing in Toxoplasma and to improve the current Toxoplasma gene annotations. Results We used high-throughput RNA-sequencing data to assemble full-length transcripts, independently of a reference genome, followed by gene annotation based on the ME49 genome. We assembled 13,533 transcripts overlapping with known ME49 genes in ToxoDB and then used this set to; a) improve the annotation in the untranslated regions of ToxoDB genes, b) identify novel exons within protein-coding ToxoDB genes, and c) report on 50 previously unidentified alternatively spliced transcripts. Additionally, we assembled a set of 2,930 transcripts not overlapping with any known ME49 genes in ToxoDB. From this set, we have identified 118 new ME49 genes, 18 novel Toxoplasma genes, and putative non-coding RNAs. Conclusion RNA-seq data and de novo transcript assembly provide a robust way to update incompletely annotated genomes, like the Toxoplasma genome. We have used RNA-seq to improve the annotation of several Toxoplasma genes, identify alternatively spliced genes, novel genes, novel exons, and putative non-coding RNAs. PMID:23231500

  14. Why Current Doppler Ultrasound Methodology Is Inaccurate in Assessing Cerebral Venous Return: The Alternative of the Ultrasonic Jugular Venous Pulse

    PubMed Central

    2016-01-01

    Assessment of cerebral venous return is growing interest for potential application in clinical practice. Doppler ultrasound (DUS) was used as a screening tool. However, three meta-analyses of qualitative DUS protocol demonstrate a big heterogeneity among studies. In an attempt to improve accuracy, several authors alternatively measured the flow rate, based on the product of the time average velocity with the cross-sectional area (CSA). However, also the quantification protocols lacked of the necessary accuracy. The reasons are as follows: (a) automatic measurement of the CSA assimilates the jugular to a circle, while it is elliptical; (b) the use of just a single CSA value in a pulsatile vessel is inaccurate; (c) time average velocity assessment can be applied only in laminar flow. Finally, the tutorial describes alternative ultrasound calculation of flow based on the Womersley method, which takes into account the variation of the jugular CSA overtime. In the near future, it will be possible to synchronize the electrocardiogram with the brain inflow (carotid distension wave) and with the outflow (jugular venous pulse) in order to nicely have a noninvasive ultrasound picture of the brain-heart axis. US jugular venous pulse may have potential use in neurovascular, neurocognitive, neurosensorial, and neurodegenerative disorders. PMID:27006525

  15. Cyclic voltammetry and RBS study of paint components

    NASA Astrophysics Data System (ADS)

    Bowman, Lynn; Spencer, Dirk; Muntele, Claudiu; Muntele, Iulia; Ila, D.

    2007-08-01

    Heavy metals and metalloid ions are found in environmental matrices. The most toxic are lead, cadmium and mercury. These three heavy metals have no biological function and are toxic at all concentrations. Lead is one of the most insidious heavy metals and is introduced into the environment by many different means. It persists in both urban and rural settings, being found in paint chips, pottery, crystal and pharmaceutical and nutritional products. The analysis of heavy elements such as lead in soil is of particular importance [W.T. Sturges, R.M. Harrison, Sci. Total Environ. 44 (3) (1985) 225; M.L. Lepow, L. Bruckman, M. Gillette, S. Markowitz, R. Robino, J. Kapish, Environ. Res. 10 (3) (1975) 415; A.E. Daniels, J.R. Kominsky, P.J. Clark, J. Hazard. Mater. B 87 (2001) 117; G. Hutter, D. Moshman, J. Hazard. Mater. 40 (1995) 1]. In preparing the methods for lead detection in paint, we have used Rutherford backscattering spectrometry (RBS) in order to study the type and amount of heavy metal content in paint samples collected at various sites in the historic campus at A&M University (AAMU). We will show the results of our study with emphasis on comparison of what we learned about presence of lead in paints using our ion beam methods compared with the analysis of lead in paints using cyclic voltammetry.

  16. Electrospun carbon nanofiber modified electrodes for stripping voltammetry.

    PubMed

    Zhao, Daoli; Wang, Tingting; Han, Daewoo; Rusinek, Cory; Steckl, Andrew J; Heineman, William R

    2015-09-15

    Electrospun polyacrylonitrile (PAN) based carbon nanofibers (CNFs) have attracted intense attention due to their easy processing, high carbon yield, and robust mechanical properties. In this work, a CNF modified glassy carbon (GC) electrode that was coated with Nafion polymer was evaluated as a new electrode material for the simultaneous determination of trace levels of heavy metal ions by anodic stripping voltammetry (ASV). Pb(2+) and Cd(2+) were used as a representative system for this initial study. Well-defined stripping voltammograms were obtained when Pb(2+) and Cd(2+) were determined individually and then simultaneously in a mixture. Compared to a bare GC electrode, the CNF/Nafion modified GC (CNF/Nafion/GC) electrode improved the sensitivity for lead detection by 8-fold. The interface properties of the CNF/Nafion/GC were characterized by electrochemical impedance spectroscopy (EIS), which showed the importance of the ratio of CNF/Nafion on electrode performance. Under optimized conditions, the detection limits are 0.9 and 1.5 nM for Pb(2+) and Cd(2+), respectively. PMID:26255824

  17. Fully printed flexible and disposable wireless cyclic voltammetry tag

    NASA Astrophysics Data System (ADS)

    Jung, Younsu; Park, Hyejin; Park, Jin-Ah; Noh, Jinsoo; Choi, Yunchang; Jung, Minhoon; Jung, Kyunghwan; Pyo, Myungho; Chen, Kevin; Javey, Ali; Cho, Gyoujin

    2015-01-01

    A disposable cyclic voltammetry (CV) tag is printed on a plastic film by integrating wireless power transmitter, polarized triangle wave generator, electrochemical cell and signage through a scalable gravure printing method. By proximity of 13.56 MHz RF reader, the printed CV tag generates 320 mHz of triangular sweep wave from +500 mV to -500 mV which enable to scan a printed electrochemical cell in the CV tag. By simply dropping any specimen solution on the electrochemical cell in the CV tag, the presence of solutes in the solution can be detected and shown on the signage of the CV tag in five sec. 10 mM of N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD) was used as a standard solute to prove the working concept of fully printed disposable wireless CV tag. Within five seconds, we can wirelessly diagnose the presence of TMPD in the solution using the CV tag in the proximity of the 13.56 MHz RF reader. This fully printed and wirelessly operated flexible CV tag is the first of its kind and marks the path for the utilization of inexpensive and disposable wireless electrochemical sensor systems for initial diagnose hazardous chemicals and biological molecules to improve public hygiene and health.

  18. Electrooxidation of flavonoids at platinum electrode studied by cyclic voltammetry.

    PubMed

    Masek, Anna; Zaborski, Marian; Chrzescijanska, Ewa

    2011-07-15

    Flavonoids are natural vegetable dyes synthesized from phenylalanine. They are responsible for colour of blooming plant portions. Moreover, they are very important for human health due to their activity as free radical acceptors. Cyclic and differential pulse voltammetry was used in the determination of kinetic parameters of flavonoids electrooxidation. Electrochemical measurements of the oxidation of organic compounds can be helpful in understanding how these compounds are metabolised by living organisms. Flavonoids electrochemical oxidation is an irreversible reaction at a platinum electrode. In the case of morin hydrate, rutin, dihydroxyflavone, trihydroxyflavone, hesperidin, quercetin, the first step of the electrooxidation includes an exchange of two electrons during the oxidation of hydroxyl groups in the ring B. Hydroxyl groups in the rings A and C are probably oxidised in subsequent steps. The heterogeneous rate constants (k(bh)) determined for the flavonoids electrooxidation are as follows: morin - 3.5910(-4), rutin - 4.4210(-4), dihydroxyflavone - 4.5410(-4), trihydroxyflavone - 4.1910(-4), hesperidin - 4.5010(-4) and quercetin - 4.6310(-4)cms(-1). Their anodic transition coefficient ranged from 0.63 to 0.48 (n=2). Xanthone and flavone were oxidised easiest and quickest among other substrates at the platinum electrode with the heterogeneous rate constants (k(bh)) of 7.0810(-4) and 6.4610(-4)cms(-1), respectively. PMID:23140722

  19. Fully printed flexible and disposable wireless cyclic voltammetry tag

    PubMed Central

    Jung, Younsu; Park, Hyejin; Park, Jin-Ah; Noh, Jinsoo; Choi, Yunchang; Jung, Minhoon; Jung, Kyunghwan; Pyo, Myungho; Chen, Kevin; Javey, Ali; Cho, Gyoujin

    2015-01-01

    A disposable cyclic voltammetry (CV) tag is printed on a plastic film by integrating wireless power transmitter, polarized triangle wave generator, electrochemical cell and signage through a scalable gravure printing method. By proximity of 13.56 MHz RF reader, the printed CV tag generates 320 mHz of triangular sweep wave from +500 mV to −500 mV which enable to scan a printed electrochemical cell in the CV tag. By simply dropping any specimen solution on the electrochemical cell in the CV tag, the presence of solutes in the solution can be detected and shown on the signage of the CV tag in five sec. 10 mM of N,N,N′,N′-tetramethyl-p-phenylenediamine (TMPD) was used as a standard solute to prove the working concept of fully printed disposable wireless CV tag. Within five seconds, we can wirelessly diagnose the presence of TMPD in the solution using the CV tag in the proximity of the 13.56 MHz RF reader. This fully printed and wirelessly operated flexible CV tag is the first of its kind and marks the path for the utilization of inexpensive and disposable wireless electrochemical sensor systems for initial diagnose hazardous chemicals and biological molecules to improve public hygiene and health. PMID:25630250

  20. Direct current voltage sweep and alternating current impedance analysis of SrZrO3 memory device in ON and OFF states

    NASA Astrophysics Data System (ADS)

    Lai, Chun-Hung; Liu, Chih-Yi

    2013-12-01

    The resistive switching (RS) effect of sputtered SrZrO3 memory cell is investigated by current-voltage (I-V) and impedance spectroscopy (IS) measurements for ON and OFF states. While the ON-state conduction in I-V exhibits ohmic relation of slightly temperature dependence, the OFF-state transport follows Frenkel-Poole mechanism and Arrhenius plot detects a single trap at 0.37 eV. An equivalent circuit model derived from the combined impedance-modulus spectra is proposed to characterize the real IS response. The extracted film capacitance and contact resistance keep constant at 25-100 C and, by contrast, the film resistance reveals activation energy of 0.08 eV. Both I-V and IS analyses indicate the domination of the OFF-state film conduction on the observed RS behavior and thermal effect. For doped perovskites, the OFF-state electrical property is associated with the presence of film-interior oxygen vacancies.

  1. A Study of Second-Year Engineering Students' Alternative Conceptions about Electric Potential, Current Intensity and Ohm's Law

    ERIC Educational Resources Information Center

    Periago, M. Cristina; Bohigas, Xavier

    2005-01-01

    The aim of this research was to evaluate and analyse second-year industrial engineering and chemical engineering students prior knowledge of conceptual aspects of "circuit theory". Specifically, we focused on the basic concepts of electric potential and current intensity and on the fundamental relationship between them as expressed by Ohm's law.

  2. A Study of Second-Year Engineering Students' Alternative Conceptions about Electric Potential, Current Intensity and Ohm's Law

    ERIC Educational Resources Information Center

    Periago, M. Cristina; Bohigas, Xavier

    2005-01-01

    The aim of this research was to evaluate and analyse second-year industrial engineering and chemical engineering students prior knowledge of conceptual aspects of "circuit theory". Specifically, we focused on the basic concepts of electric potential and current intensity and on the fundamental relationship between them as expressed by Ohm's law.…

  3. Elimination Voltammetry with Linear Scan as a New Detection Method for DNA Sensors

    PubMed Central

    Trnkova, Libuse; Jelen, Frantisek; Petrlova, Jitka; Adam, Vojtech; Potesil, David; Kizek, Rene

    2005-01-01

    The paper describes successful coupling of adsorptive transfer stripping (AdTS) and elimination voltammetry with linear scan (EVLS) for the resolution of reduction signals of cytosine (C) and adenine (A) residues in hetero-oligodeoxynucleotides (ODNs). Short ODNs (9-mers and 20-mers) were adsorbed from a small volume on a hanging mercury drop electrode (HMDE). After washing of the ODN-modified electrode by water and its transferring to an electrochemical cell, voltammetric curves were measured. The AdTS EVLS was able to determine of C/A ratio of ODNs through the elimination function conserving the diffusion current component and eliminating kinetic and charging current components. This function, which provides the elimination signal in a peak-counterpeak form, increased the current sensitivity for A and C resolution, and for the recognition of bases sequences in ODN chains. Optimal conditions of elimination experiments such as pH, time of adsorption, and scan rate were found. The combination of EVLS with AdTS procedure can be considered as a new detection method in a DNA sensor.

  4. Inflight Microbial Monitoring - An Alternative Method to Culture Based Detection Currently Used on the International Space Station

    NASA Technical Reports Server (NTRS)

    Khodadad, Christina L.; Birmele, Michele N.; Hummerick, Mary E.; Roman, Monsi; Smith, David J.

    2015-01-01

    Microorganisms including potential human pathogens have been detected on the International Space Station (ISS). The potential to introduce new microorganisms occurs with every exchange of crew or addition of equipment or supplies. Current microbial monitoring methods require enrichment of microorganisms and a 48-hour incubation time resulting in an increase in microbial load, detecting a limited number of unidentified microorganisms. An expedient, low-cost, in-flight method of microbial detection, identification, and enumeration is warranted.

  5. Evaluation of "labile" metal in sediments by anodic stripping voltammetry.

    PubMed

    Waller, P A; Pickering, W F

    1990-10-01

    A procedure for determining the "labile" metal content of contaminated sediments (in different chemical environments) has been critically examined. The sediments were extracted overnight with different chemical solutions and the suspensions were analysed by differential pulse anodic stripping voltammetry. The extractants used have been recommended for soil/sediment speciation schemes, and by examination of the suspensions directly in the ASV cell, errors due to re-adsorption of released metal ion were minimized. The existence of different chemical forms of metal was signified by changes in peak shape and position or by the appearance of additional peaks. With complexing agents present the peak size was pH-dependent. The limitations of the ASV/suspension analysis technique have been carefully evaluated by using ten different extractants and seventeen sediments. The "lability" results obtained have been compared with the values obtained from a cation-exchanger transfer procedure. For characterizing the lability behaviour of the metal contents of sediments, preliminary extraction into a minimum of four base solutions is advisable, e.g., 0.02M nitric acid (low-pH labile); hydroxylamine in acetic acid (reducing conditions); acetic acid/acetate buffer (weakly sorbed and carbonate-bound) and 0.05M calcium chloride (exchangeable fraction at natural system pH), where the terms in parentheses describe the character of the fraction. The results are critically compared with those obtained by atomic-absorption analysis of the extracts and with those obtained by an earlier ion-exchange fractionation scheme. The advantages and limitations of the ASY systems are discussed. PMID:18965053

  6. ALTERNATING CURRENT LOSSES IN AG-SHEATHED BSCCO (2212 AND 2223) TAPES AND WIRES AND YBCO (123) COATED CONDUCTORS

    SciTech Connect

    Dr. John S. Hurley

    2000-01-01

    In this study, we focus on the examination of ac losses in conductors utilizing Bi{sub 2}Sr{sub 2}Ca{sub 2}Cu{sub 3}O [BSCCO (2223)] high TC superconductors (HTS). In addition, we seek to assist other facilities such as the University of Wisconsin-Madison Applied Superconductivity Center (UW-ASC), Brookhaven National Laboratory, and other DoE facilities investigating the use of HTS in electric power applications (e.g., generators, motors, and transformers). To accomplish this we will develop an ac losses capability at Clark Atlanta University to complement the established ac losses efforts at Brookhaven National Laboratory (BSCCO) on BSCCO/Ag and various material characterization efforts taking place at the UW-ASC. Our goal is through this effort to gain a greater understanding of the effects on ac losses due to parameters such as ac/dc current, J{sub c}, tape geometry, voltage tap placement, field orientation, material anisotropy, surface irregularities, percolations and filament coupling effects. As a result, we expect to better understand how to minimize ac losses in applications requiring real or practical conductors. HTS conductors based on BSCCO-2223 are now being routinely produced in industrial lengths of high quality. Vendors such as Southwire and ASC are producing multi-filamentary tapes in lengths of 6 km or more carrying critical current densities of up to 3 kA/cm**2 at 77 K. While this is approaching the level of performance where some large-scale applications are considered to be economically viable, a number of problems remain to be solved. The remaining issues include: rapid reduction in JC in magnetic fields; and power dissipation due to varying magnetic fields or currents (ac losses).

  7. High-Resolution Hepatitis C Virus Subtyping Using NS5B Deep Sequencing and Phylogeny, an Alternative to Current Methods

    PubMed Central

    Gregori, Josep; Rodrguez-Frias, Francisco; Buti, Maria; Madejon, Antonio; Perez-del-Pulgar, Sofia; Garcia-Cehic, Damir; Casillas, Rosario; Blasi, Maria; Homs, Maria; Tabernero, David; Alvarez-Tejado, Miguel; Muoz, Jose Manuel; Cubero, Maria; Caballero, Andrea; delCampo, Jose Antonio; Domingo, Esteban; Belmonte, Irene; Nieto, Leonardo; Lens, Sabela; Muoz-de-Rueda, Paloma; Sanz-Cameno, Paloma; Sauleda, Silvia; Bes, Marta; Gomez, Jordi; Briones, Carlos; Perales, Celia; Sheldon, Julie; Castells, Lluis; Viladomiu, Lluis; Salmeron, Javier; Ruiz-Extremera, Angela; Quiles-Prez, Rosa; Moreno-Otero, Ricardo; Lpez-Rodrguez, Rosario; Allende, Helena; Romero-Gmez, Manuel; Guardia, Jaume; Esteban, Rafael; Garcia-Samaniego, Javier; Forns, Xavier

    2014-01-01

    Hepatitis C virus (HCV) is classified into seven major genotypes and 67 subtypes. Recent studies have shown that in HCV genotype 1-infected patients, response rates to regimens containing direct-acting antivirals (DAAs) are subtype dependent. Currently available genotyping methods have limited subtyping accuracy. We have evaluated the performance of a deep-sequencing-based HCV subtyping assay, developed for the 454/GS-Junior platform, in comparison with those of two commercial assays (Versant HCV genotype 2.0 and Abbott Real-time HCV Genotype II) and using direct NS5B sequencing as a gold standard (direct sequencing), in 114 clinical specimens previously tested by first-generation hybridization assay (82 genotype 1 and 32 with uninterpretable results). Phylogenetic analysis of deep-sequencing reads matched subtype 1 calling by population Sanger sequencing (69% 1b, 31% 1a) in 81 specimens and identified a mixed-subtype infection (1b/3a/1a) in one sample. Similarly, among the 32 previously indeterminate specimens, identical genotype and subtype results were obtained by direct and deep sequencing in all but four samples with dual infection. In contrast, both Versant HCV Genotype 2.0 and Abbott Real-time HCV Genotype II failed subtype 1 calling in 13 (16%) samples each and were unable to identify the HCV genotype and/or subtype in more than half of the non-genotype 1 samples. We concluded that deep sequencing is more efficient for HCV subtyping than currently available methods and allows qualitative identification of mixed infections and may be more helpful with respect to informing treatment strategies with new DAA-containing regimens across all HCV subtypes. PMID:25378574

  8. Nitrite detection in meat products samples by square-wave voltammetry at a new single walled carbon naonotubes--myoglobin modified electrode.

    PubMed

    Turdean, Graziella L; Szabo, Gabriella

    2015-07-15

    A new modified electrode was realized in a simple way, consisting by the immobilization of a myoglobin (My) - single walled carbon nanotubes (SWCNT) mixture on the surface of a graphite electrode with a Nafion film. The cyclic voltammetry investigations realized with the obtained electrode (G/My-SWCNT/Nafion) showed a voltammetric signal due to a one-step redox reaction of the surface-confined myoglobin, in a deaerated 0.1 M phosphate buffer, pH 7. Also, the G/My-SWCNT/Nafion modified electrode demonstrated a great potential for the analytical determination of nitrite ions by square-wave voltammetry and an alternative for the already existing methods. The use of the sensor for the detection of nitrite ions in samples of meat products leads to comparable results with those obtained with the standard Griess spectrophotometric assay (ISO 2918/1975), proving the suitability of using immobilized myoglobin as electrocatalyst in the nitrite reduction process. PMID:25722172

  9. Ultra-sensitive quantification of copper in food and water samples by electrochemical adsorptive stripping voltammetry.

    PubMed

    Goudarziafshar, Hamid; Nikoorazm, Mohsen; Mortazavi, Sayede Shima; Abbasi, Shahryar; Farmany, Abbas

    2013-11-01

    A new electrochemical adsorptive stripping voltammetry method was developed for the determination of trace amounts of copper in food and water samples. The study of electrochemical behavior of Cu ion indicated that Cu(II) and Schiff base formed a complex in H?BO?-NaOH buffer solution (pH = 7.25). An accumulation potential of -100 mV (vs Ag/AgCl) was applied while the solution was stirred for 60 s. The response curve was recorded by scanning the potential, and the peak current of -0.31 V (vs Ag/AgCl) was recorded. The peak current and concentration of copper accorded with linear relationship in the range of 0.04-120 ng mL(-1). The relative standard deviation (for 12 ng mL(-1) of copper) was 1.73%, and the detection limit was 0.007 ng mL(-1). The possible interference of some common ions was studied. The proposed method was applied to the determination of copper in water, rice, wheat, tea, milk, and tomato with satisfactory results. PMID:23625354

  10. Solid electrolyte gas sensors based on cyclic voltammetry with one active electrode

    NASA Astrophysics Data System (ADS)

    Jasinski, G.; Jasinski, P.

    2011-10-01

    Solid state gas sensors are cost effective, small, rugged and reliable. Typically electrochemical solid state sensors operate in either potentiometric or amperometric mode. However, a lack of selectivity is sometimes a shortcoming of such sensors. It seems that improvements of selectivity can be obtained in case of the electrocatalytic sensors, which operate in cyclic voltammetry mode. Their working principle is based on acquisition of an electric current, while voltage ramp is applied to the sensor. The current-voltage response depends in a unique way on the type and concentration of ambient gas. Most electrocatalytic sensors have symmetrical structure. They are in a form of pellets with two electrodes placed on their opposite sides. Electrochemical reactions occur simultaneously on both electrodes. In this paper results for sensors with only one active electrode exposed to ambient gas are presented. The other electrode was isolated from ambient gas with dielectric sealing. This sensor construction allows application of advanced measuring procedures, which permit sensor regeneration acceleration. Experiments were conducted on Nasicon sensors. Properties of two sensors, one with one active electrode and second with symmetrical structure, used for the detection of mixtures of NO2 and synthetic air are compared.

  11. Increase of electroluminescent intensity in planar light-emitting diode structures based on PFO polymer - ZnO nanoparticles composite films operated by alternating-current voltages

    NASA Astrophysics Data System (ADS)

    Aleshin, Andrey N.; Shcherbakov, Igor P.; Petrov, Vasily N.

    2015-04-01

    We report on the considerable increase of electroluminescent (EL) intensity in planar organic light-emitting diode structures based on semiconducting polymer PFO and ZnO nanoparticles composite films operated by alternating-current (AC) voltages with respect to that operated by direct current. It was established that an increase of frequency from 0 to 30 kHz results in increase of EL intensity of such structures by a factor of ~30. The EL emission takes place at positive AC bias and the EL spectral range is the same as that for the photoluminescent emission spectrum for the same sample. It was shown that applying AC voltage is effective tool in producing strong EL emission in planar composite light-emitting structures.

  12. Designing and Diagnosing Novel Electrode Materials for Na-ion Batteries: Potential Alternatives to Current Li-ion Batteries

    NASA Astrophysics Data System (ADS)

    Xu, Jing

    Owing to outstanding energy density, Li-ion batteries have dominated the portable electronic industry for the past 20 years and they are now moving forward powering electric vehicles. In light of concerns over limited lithium reserve and rising lithium costs in the future, Na-ion batteries have re-emerged as potential alternatives for large scale energy storage. On the other hand, though both sodium and lithium are alkali metals sharing many chemical similarities, research on Na-ion batteries is still facing many challenges due to the larger size and unique bonding characteristics of Na ions. In this thesis, a series of sodium transition metal oxides are investigated as cathode materials for Na-ion batteries. P2 - Na2/3[Ni1/3 Mn2/3]O2 is firstly studied with a combination of first principles calculation and experiment, and battery performance is improved by excluding the phase transformation region. Li substituted compound, P2-Na0.8[Li0.12Ni0.22Mn0.66]O 2, is then explored. Its crystal / electronic structure evolution upon cycling is tracked by combing in situ synchrotron X-ray diffraction, ex situ X-ray absorption spectroscopy and solid state NMR. It is revealed that the presence of Li-ions in the transition metal layer allows increased amount of Na-ions to maintain the P2 structure during cycling. The design principles for the P2 type Na cathodes are devised based on this in-depth understanding and an optimized composition is proposed. The idea of Li substitution is then transferred to O3 type cathode. The new material, O3 - Na0.78 Li0.18Ni0.25Mn0.583O2, shows discharge capacity of 240 mAh/g, which is the highest capacity and highest energy density so far among cathode materials in Na-ion batteries. With significant progress on cathode materials, a comprehensive understanding of Na2Ti3O7 as anode for Na-ion batteries is discussed. The electrochemical performance is enhanced, due to increased electronic conductivity and reduced SEI formation with carbon coating. Na full cell with high operating voltage is demonstrated by taking advantage of the ultra-low voltage of Na2Ti3O7 anode. The self-relaxation for fully intercalated phase, Na4Ti3O 7, is shown for the first time, which results from structural instability as suggested by first principles calculation. Ti4+ / Ti 3+ is the active redox couple upon cycling based on XANES characterization. These findings unravel the underlying relation between unique properties and battery performance of Na2Ti3O7 anode, which should ultimately shed light on possible strategies for future improvement.

  13. Evaluation of Current Pharmacological Treatment Options in the Management of Rett Syndrome: From the Present to Future Therapeutic Alternatives

    PubMed Central

    Chapleau, Christopher A.; Lane, Jane; Pozzo-Miller, Lucas; Percy, Alan K.

    2012-01-01

    Neurodevelopmental disorders are a large family of conditions of genetic or environmental origin that are characterized by deficiencies in cognitive and behavioral functions. The therapeutic management of individuals with these disorders is typically complex and is limited to the treatment of specific symptoms that characterize each disorder. The neurodevelopmental disorder Rett syndrome (RTT) is the leading cause of severe intellectual disability in females. Mutations in the gene encoding the transcriptional regulator methyl-CpG-binding protein 2 (MECP2), located on the X chromosome, have been confirmed in more than 95% of individuals meeting diagnostic criteria for classical RTT. RTT is characterized by an uneventful early infancy followed by stagnation and regression of growth, motor, language, and social skills later in development. This review will discuss the genetics, pathology, and symptoms that distinguish RTT from other neurodevelopmental disorders associated with intellectual disability. Because great progress has been made in the basic and clinical science of RTT, the goal of this review is to provide a thorough assessment of current pharmacotherapeutic options to treat the symptoms associated with this disorder. Furthermore, we will highlight recent discoveries made with novel pharmacological interventions in experimental preclinical phases, and which have reversed pathological phenotypes in mouse and cell culture models of RTT and may result in clinical trials. PMID:24050745

  14. Inflight Microbial Monitoring- An Alternative Method to Culture Based Detection Currently Used on the International Space Station

    NASA Technical Reports Server (NTRS)

    Khodadad, Christina L.; Birmele, Michele N.; Roman, Monsi; Hummerick, Mary E.; Smith, David J.; Wheeler, Raymond M.

    2015-01-01

    Previous research has shown that potentially destructive microorganisms and human pathogens have been detected on the International Space Station (ISS). The likelihood of introducing new microorganisms occurs with every exchange of crew or addition of equipment or supplies. Microorganisms introduced to the ISS are readily transferred between crew and subsystems (i.e. ECLSS, environmental control and life support systems). Current microbial characterization methods require enrichment of microorganisms and at least a 48-hour incubation time. This increases the microbial load while detecting only a limited number of the total microorganisms. The culture based method detects approximately 1-10% of the total organisms present and provides no identification. To identify and enumerate ISS microbes requires that samples be returned to Earth for complete analysis. Therefore, a more expedient, low-cost, in-flight method of microbial detection, identification, and enumeration is warranted. The RAZOR EX, a ruggedized, commercial off the shelf, real-time PCR field instrument was tested for its ability to detect microorganisms at low concentrations within one hour. Escherichia coli, Salmonella enterica Typhimurium, and Pseudomonas aeruginosa were detected at low levels using real-time DNA amplification. Total heterotrophic counts could also be detected using a 16S gene marker that can identify up to 98% of all bacteria. To reflect viable cells found in the samples, RNA was also detectable using a modified, single-step reverse transcription reaction.

  15. Inflight Microbial Monitoring-An Alternative Method to Culture Based Detection Currently Used on International Space Station

    NASA Technical Reports Server (NTRS)

    Khodadad, Christina L.; Birmele, Michele N.; Roman, Monsi; Hummerick, Mary E.; Smith, David J.; Wheeler, Raymond M.

    2015-01-01

    Previous research has shown that microorganisms and potential human pathogens have been detected on the International Space Station (ISS). The potential to introduce new microorganisms occurs with every exchange of crew or addition of equipment or supplies. Previous research has shown that microorganisms introduced to the ISS are readily transferred between crew and subsystems and back (i.e. ECLSS, environmental control and life support systems). Current microbial characterization methods require enrichment of microorganisms and a 48-hour incubation time. This increases the microbial load while detecting a limited number of microorganisms. The culture based method detects approximately 1-10% of the total organisms present and provides no identification, To identify and enumerate ISS samples requires that samples to be returned to Earth for complete analysis. Therefore, a more expedient, low-cost, in-flight method of microbial detection, identification, and enumeration is warranted. The RAZOR EX, a ruggedized, commercial off the shelf, real-time PCR field instrument was tested for its ability to detect microorganism at low concentrations within one hour. Escherichia coli, Salmonella enterica Typhimurium, and Pseudomonas aeruginosa were detected at low levels using real-time DNA amplification. Total heterotrophic counts could also be detected using a 16S gene marker that can identify up to 98% of all bacteria. To reflect viable cells found in the samples, RNA was also detectable using a modified, single-step reverse transcription reaction.

  16. Transcorneal alternating current stimulation induces EEG "aftereffects" only in rats with an intact visual system but not after severe optic nerve damage.

    PubMed

    Sergeeva, Elena G; Fedorov, Anton B; Henrich-Noack, Petra; Sabel, Bernhard A

    2012-11-01

    Noninvasive alternating current stimulation can induce vision restoration in patients with chronic optic nerve damage and results in electroencephalogram (EEG) aftereffects. To better understand the mechanisms of action, we studied such EEG "aftereffects" of transcorneal alternating current stimulation (tACS) at the chronic posttraumatic state in rats. EEG baseline was recorded from visual cortex under ketamine/xylazine narcosis of healthy rats and rats with chronic severe optic nerve crush. One week later, both groups were again anesthetized and stimulated transcorneally twice for 12 min each time. tACS-induced changes were compared with baseline EEG. Over the course of 65 min narcosis baseline EEG revealed a shift from a dominant delta power to theta. This shift was significantly delayed in lesioned animals compared with healthy controls. tACS applied during the late narcosis stage in normal rats led to significantly increased theta power with a parallel shift of the dominating peak to higher frequency which outlasted the stimulation period by 15 min (aftereffects). EEG in lesioned rats was not significantly changed. In rodents, tACS can induce neuroplasticity as shown by EEG aftereffects that outlast the stimulation period. But this requires a minimal level of brain activation because aftereffects are not seen when tACS is applied during deep anesthesia and not when applied to animals after severe optic nerve damage. We conclude that tACS is only effective to induce cortical plasticity when the the retina can be excited. PMID:22875900

  17. Current status of neonatal care and alternate strategies for reduction of neonatal mortality in the decade of nineties.

    PubMed

    Bhargava, S K; Ramji, S; Sachdev, H P

    1991-12-01

    Improvement in neonatal care in India is needed in order to fulfill the National Health Policy to reduce infant and perinatal mortality and low birth weight babies. 50-60% of perinatal and infant mortality is due to neonatal mortality, specifically low birth weight. There have been no declines in any of the states even though there are literacy, fertility, poverty and health personnel differences between states. The health delivery system is described. Basic facilities are lacking in subcenters and primary health centers: weighing scales, blood pressure recorder, urine analysis, and blood transfusion capability; pregnancy registration is 40%. 40% of women believe that the female multipurpose worker (ANM) is a maternal and child health worker; Dais made postnatal visits to 25% of the women and infants, while physicians and ANM's visited 10%. The most frequent method of delivery is home delivery with a Dai or relative in attendance. Information on temperature control at birth, hand washing, feeding, and identification of high risk infants by health personnel is inadequate. There are no neonatal units in the entire country even though there are 8 million low birth weight babies/year and 1 million neonatal deaths/year. Neonatal causes are primarily birth injuries, aspiration syndrome, and neonatal infections (tetanus, pneumonia, and diarrhea). Studies have identified health service improvements to reduce neonatal mortality. In India, the priority should be to 1) establish delivery of neonatal and perinatal care at all 3 levels of care, 2) train and educate all health personnel in perinatal and neonatal care, and 3) improve community participation by involving the community in decision making on kind of care, perinatal care, and health education and by monitoring such services. Infant care must extend from prenatal through postnatal care, which is currently fragmented, through a 3-tiered system. 80-85% of all infants need care at Level I; 15-20% require Level II care; and 1-5% need Level III care. Health services and supplies may need to be provided at the village rather than the subcenter level and in postpartum services. Other possibilities are to include neonatal care within the Integrated Child Development Program or the Universal Immunization Program. Community leaders could monitor neonatal services. Regional institutes could provide training for all health personnel. PMID:1819563

  18. Voltammetry of a flavocytochrome c(3): the lowest potential heme modulates fumarate reduction rates.

    PubMed

    Butt, J N; Thornton, J; Richardson, D J; Dobbin, P S

    2000-02-01

    Iron-induced flavocytochrome c(3), Ifc(3), from Shewanella frigidimarina NCIMB400, derivatized with a 2-pyridyl disulfide label, self-assembles on gold electrodes as a functional array whose fumarate reductase activity as viewed by direct electrochemistry is indistinguishable from that of Ifc(3) adsorbed on gold or graphite electrodes. The enhanced stability of the labeled protein's array permits analysis at a rotating electrode and limiting catalytic currents fit well to a Michaelis-Menten description of enzyme kinetics with K(M) = 56 +/- 20 microM, pH 7.5, comparable to that obtained in solution assays. At fumarate concentrations above 145 microM cyclic voltammetry shows the catalytic response to contain two features. The position and width of the lower potential component centered on -290 mV and corresponding to a one-electron wave implicates the oxidation state of the lowest potential heme of Ifc(3) as a defining feature in the mechanism of fumarate reduction at high turnover rates. We propose the operation of dual pathways for electron transfer to the active site of Ifc(3) with the lowest potential heme acting as an electron relay on one of these pathways. PMID:10653813

  19. Investigations of drug-DNA interactions using molecular docking, cyclic voltammetry and UV-Vis spectroscopy

    NASA Astrophysics Data System (ADS)

    Perveen, Fouzia; Qureshi, Rumana; Ansari, Farzana Latif; Kalsoom, Saima; Ahmed, Safeer

    2011-10-01

    Molecular docking and QSAR studies were carried out for the investigation of interactions between 11 antitumor drugs and double stranded DNA. Quantitative structure activity relationship was established using MOE software package showing good correlation of binding strength with various physicochemical parameters e.g., hydrophobic surface area ( Vsurf), EHOMO, EHUMO, partition coefficient (log P) and molar refractivity ( M R) of the drugs . The most important parameter obtained from the docking studies was the formation constant ( K f) which is an indicative of the binding strength of the drug with DNA. This parameter was also calculated using the experimental techniques namely cyclic voltammetry (CV) and UV-Vis spectrophotometry. Variation in electrochemical characteristics (shift in peak potential and peak current decrease) and spectral profile of these drugs on the addition of DNA were used to determine the values of formation constant. The docking studies were used to predict the mode of interaction of the drug with DNA. It was observed that as far as binding strength was concerned the computational results complemented the experimental results. The order of magnitude of experimental and theoretical K f was same. The high value of K f implied that the respective drugs bind to DNA most efficiently.

  20. Diamond microelectrodes and CMOS microelectronics for wireless transmission of fast-scan cyclic voltammetry.

    PubMed

    Roham, Masoud; Halpern, Jeffrey M; Martin, Heidi B; Chiel, Hillel J; Mohseni, Pedram

    2007-01-01

    This paper reports on technology development at the sensor and circuit levels for wireless transmission of fast-scan cyclic voltammetry (FSCV) in neurochemical detection. Heavily conductive, boron-doped diamond is selectively deposited onto the polished tip of a tungsten microelectrode to fabricate versatile, implantable, micro-needle microprobes capable of neurochemical sensing in the brain. In addition, an integrated circuit is fabricated in a 0.5-microm CMOS technology for processing and wireless transmission of the electrochemical signals corresponding to extracellular concentration changes of various neurotransmitters. The chip consists of a current-based, second-order, front-end SigmaDelta ADC and an on-chip, RF-FSK transmitter at the back-end. The ADC core and the transmitter consume 22microA and 400microA, respectively, from a 2.6-V power supply. Major electroactive neurotransmitters such as serotonin and dopamine in micromolar concentration have been wirelessly recorded at 433MHz using 300-V/s FSCV in flow injection analysis experiments. PMID:18003392

  1. Differential pulse stripping voltammetry for the determination of nickel and cobalt in simulated PWR coolant.

    PubMed

    Torrance, K; Gatford, C

    1985-04-01

    The determination of ionic nickel and cobalt in simulated PWR coolant at concentrations below 1 microg/l. by differential pulse stripping voltammetry at a hanging mercury-drop electrode has been investigated. The high sensitivity for these ions results from the adsorptive accumulation of their dimethylglyoximate complexes on the mercury drop. Boric acid does not interfere and if the samples are adjusted to pH 9 with an ammonia-ammonium chloride buffer, both nickel and cobalt can be determined in the same run. The relative standard deviations at concentrations below 2 microg/l. are of the order of 5-7% and the limits of detection for nickel and cobalt are about 8 and 2 ng/l. respectively. These performance statistics show that this method is the most sensitive method currently available for determination of soluble nickel and cobalt in PWR coolant and it should prove to be most valuable in any corrosion studies of the materials of construction of the primary circuit of a PWR. PMID:18963842

  2. Dehydroindigo: a new piece into the Maya Blue puzzle from the voltammetry of microparticles approach.

    PubMed

    Doménech, Antonio; Doménech-Carbó, María Teresa; Vazquez de Agredos Pascual, María Luisa

    2006-03-30

    Combining a novel technique, the voltammetry of microparticles, with spectrometric, nuclear magnetic resonance, electron microscopy, and atomic force microscopy data, Maya Blue is detected in wall paintings of the Substructures A-3, A-5, and A-6, dated in the Early Classical period (440-450 a.c.), and the Substructure II-C, dated in the Late Preclassical period (150 b.C.), in the archaeological site of Calakmul (Campeche, Mexico), thus providing evidence on the use of the pigment 750 years prior to the date currently accepted. Electrochemical measurements, supported by spectrometric data, indicate that the presence of palygorskite-attached dehydroindigo, the oxidized form of indigo, contributes to the greenish color of Maya Blue. Enthalpy and entropy of attachment of such compounds to palygorskite are calculated from the temperature dependence of electrochemical data. Both attachment processes are endothermic, becoming thermodynamically spontaneous at moderate temperatures. Accordingly, ancient Mayas may modulate the hue of Maya Blue from turquoise to greenish blue by controlling the temperature during the crushing process. PMID:16553413

  3. Simultaneous measurement and quantitation of 4-hydroxyphenylacetic acid and dopamine with fast-scan cyclic voltammetry.

    PubMed

    Shin, Mimi; Kaplan, Sam V; Raider, Kayla D; Johnson, Michael A

    2015-05-01

    Caged compounds have been used extensively to investigate neuronal function in a variety of preparations, including cell culture, ex vivo tissue samples, and in vivo. As a first step toward electrochemically measuring the extent of caged compound photoactivation while also measuring the release of the catecholamine neurotransmitter, dopamine, fast-scan cyclic voltammetry at carbon-fiber microelectrodes (FSCV) was used to electrochemically characterize 4-hydroxyphenylacetic acid (4HPAA) in the absence and presence of dopamine. 4HPAA is a by-product formed during the process of photoactivation of p-hydroxyphenacyl-based caged compounds, such as p-hydroxyphenylglutamate (pHP-Glu). Our data suggest that the oxidation of 4HPAA occurs through the formation of a conjugated species. Moreover, we found that a triangular waveform of -0.4 V to +1.3 V to -0.4 V at 600 V s(-1), repeated every 100 ms, provided an oxidation current of 4HPAA that was enhanced with a limit of detection of 100 nM, while also allowing the detection and quantitation of dopamine within the same scan. Along with quantifying 4HPAA in biological preparations, the results from this work will allow the electrochemical measurement of photoactivation reactions that generate 4HPAA as a by-product as well as provide a framework for measuring the photorelease of electroactive by-products from caged compounds that incorporate other chromophores. PMID:25785694

  4. Protonation and inhibition of Nitrosomonas europaea cytochrome c peroxidase observed with protein film voltammetry.

    PubMed

    Elliott, Sean J; Bradley, Amy L; Arciero, David M; Hooper, Alan B

    2007-01-01

    The impact of protonation and inhibitor binding of the diheme cytochrome c peroxidase (CCP) from Nitrosomonas europaea has been examined by the technique of catalytic protein film voltammetry (PFV). Previous efforts have shown that the low-potential heme active site (L) binds substrate and yields electrocatalysis at an pyrolytic graphite edge electrode, with properties evocative of a high-potential intermediate, with E(m)>540mV (vs. normal hydrogen electrode) [A.L. Bradley, S.E. Chobot, D.M. Arciero, A.B. Hooper, S. J. Elliott, J. Biol. Chem. 279 (2004) 13297-13300]. Here we demonstrate through similar experiments that catalytic PFV generates limiting currents which allow for electrochemically-detected enzymology of the Ne CCP: such as the demonstration that pH-dependent Michaelis-Menten constants (K(m) values) reveal a pK(a) value of 6.5 associated with the "ES" complex. Further, the direct electrocatalysis is shown in the presence of known inhibitors (cyanide and azide), indicating that inhibitor binding occurs at L, and shifts the resulting catalytic midpoint potential in a negative direction. Michaelis-Menten treatment of the limiting currents generated in the presence of variable concentrations of inhibitors showed that cyanide behaved as a competitive inhibitor with a K(i) value of 0.15muM; azide revealed a mixed-mode of inhibition. The observed data were found to support a previous model of electrocatalysis, and the role of proton transfer chemistry in the active site is discussed in terms of a structural model. PMID:17064778

  5. Neurobiological model of stimulated dopamine neurotransmission to interpret fast-scan cyclic voltammetry data.

    PubMed

    Harun, Rashed; Grassi, Christine M; Munoz, Miranda J; Torres, Gonzalo E; Wagner, Amy K

    2015-03-01

    Fast-scan cyclic voltammetry (FSCV) is an electrochemical method that can assess real-time in vivo dopamine (DA) concentration changes to study the kinetics of DA neurotransmission. Electrical stimulation of dopaminergic (DAergic) pathways can elicit FSCV DA responses that largely reflect a balance of DA release and reuptake. Interpretation of these evoked DA responses requires a framework to discern the contribution of DA release and reuptake. The current, widely implemented interpretive framework for doing so is the Michaelis-Menten (M-M) model, which is grounded on two assumptions- (1) DA release rate is constant during stimulation, and (2) DA reuptake occurs through dopamine transporters (DAT) in a manner consistent with M-M enzyme kinetics. Though the M-M model can simulate evoked DA responses that rise convexly, response types that predominate in the ventral striatum, the M-M model cannot simulate dorsal striatal responses that rise concavely. Based on current neurotransmission principles and experimental FSCV data, we developed a novel, quantitative, neurobiological framework to interpret DA responses that assumes DA release decreases exponentially during stimulation and continues post-stimulation at a diminishing rate. Our model also incorporates dynamic M-M kinetics to describe DA reuptake as a process of decreasing reuptake efficiency. We demonstrate that this quantitative, neurobiological model is an extension of the traditional M-M model that can simulate heterogeneous regional DA responses following manipulation of stimulation duration, frequency, and DA pharmacology. The proposed model can advance our interpretive framework for future in vivo FSCV studies examining regional DA kinetics and their alteration by disease and DA pharmacology. PMID:25527399

  6. Cyclic voltammetry on sputter-deposited films of electrochromic Ni oxide: Power-law decay of the charge density exchange

    NASA Astrophysics Data System (ADS)

    Wen, Rui-Tao; Granqvist, Claes G.; Niklasson, Gunnar A.

    2014-10-01

    Ni-oxide-based thin films were produced by reactive direct-current magnetron sputtering and were characterized by X-ray diffraction and Rutherford backscattering spectroscopy. Intercalation of Li+ ions was accomplished by cyclic voltammetry (CV) in an electrolyte of LiClO4 in propylene carbonate, and electrochromism was documented by spectrophotometry. The charge density exchange, and hence the optical modulation span, decayed gradually upon repeated cycling. This phenomenon was accurately described by an empirical power law, which was valid for at least 104 cycles when the applied voltage was limited to 4.1 V vs Li/Li+. Our results allow lifetime assessments for one of the essential components in an electrochromic device such as a "smart window" for energy-efficient buildings.

  7. Quantitative Analysis of Trace Chromium in Blood Samples. Combination of the Advanced Oxidation Process with Catalytic Adsorptive Stripping Voltammetry

    PubMed Central

    Yong, Li; Armstrong, Kristie C.; Dansby-Sparks, Royce N.; Carrington, Nathan A.; Chambers, James Q.; Xue*, Zi-Ling

    2007-01-01

    A new method for pretreating blood samples for trace Cr analysis is described. The Advanced Oxidation Process (AOP with H2O2 and 5.5-W irradiation for 60 min) is used to remove biological/organic species for subsequent analysis. Prior to the AOP pretreatment, acid (HNO3) is used at pH 3.0 to inhibit the enzyme catalase in the blood samples. Catalytic Adsorptive Stripping Voltammetry (CAdSV) at a bismuth film electrode (BiFE) gives Cr concentration of 6.0 0.3 ppb in the blood samples. This concentration was confirmed by dry-ashing the blood samples and subsequent analysis by atomic absorption spectroscopy (AAS). This current method may be used to monitor chromium, a trace metal in humans, and the efficacy and safety of chromium supplements as adjuvant therapy for diabetes. PMID:17073430

  8. Trace iron determination in aminoisophthalic acid using differential-pulse cathodic stripping voltammetry at carbon paste electrodes.

    PubMed

    Komersov, A; Bartos, M; Kalcher, K; Vytras, K

    1998-04-01

    Application of differential-pulse cathodic stripping voltammetry using a carbon paste electrode (consisting of carbon powder and liquid paraffin) have been investigated for trace determination of iron in 5-aminoisophthalic acid (AIPA). Samples were dissolved in 1 M HC1, pH was adjusted to 4-5 after addition of EDTA. Voltammetric measurements were performed after filtration. No sample decomposition (mineralization) was necessary. The method showed a good linearity between current and concentration from 3 x 10(-7) to 5 x 10(-5) mol dm-3 of iron, with a detection limit of 3 x 10(-7) mol dm-3 (resp. 1 ppm in solid AIPA). The results agreed well to those obtained by atomic absorption spectrometry (AAS) using electrothermic atomisation. For AAS measurement, however, microwave digestion of samples was necessary. PMID:9777611

  9. Direct electrochemical determination of dissolved vanadium in seawater by cathodic stripping voltammetry with the hanging mercury drop electrode

    SciTech Connect

    van den Berg, C.M.G.; Huang, Z.Q.

    1984-11-01

    Polarographic measurements showed that catechol complexes of vanadium(V) adsorb onto the hanging mercury drop electrode. This property forms the basis of a sensitive electrochemical technique by which dissolved vanadium in seawater can be determined directly. The reduction current of adsorbed complex ions of vanadium is measured by differential pulse cathodic stripping voltammetry, preceded by a period of collection of a few minutes. The peak potential is at approx.-0.7 V. Optimal experimental parameters were found to be a catechol concentration of 2 X 10/sup -4/ M, a collection potential of -0.1 V, and a solution pH of 6.9. The limit of detection is 0.3 nM vanadium after a 2-min collection with a stirred solution, which is described further to 0.1 nM after a 15-min collection.

  10. Analyses of metals for porphyrins by electrospray mass spectrometry, inductively coupled plasma-mass spectrometry and stripping voltammetry

    SciTech Connect

    Zhou, F.; Van Berkel, G.J.

    1996-12-31

    In this presentation, we shall describe the utilization of several techniques viz. electrospray mass spectrometry (ES-MS), inductively coupled plasma-mass spectrometry (ICP-MS) and stripping voltammetry (SV) for trace analyses of heavy metals and porphyrins. In the ES-MS work, we take advantage of the controlled-current electrolytic process inherent to the electrospray to generate monocations and dications of some neutral porphyrins. Experimental parameters that affect the electrochemical generation and mass spectrometric detection of these ions will be discussed. To achieve better selectivity and sensitivity, we have combined electrochemistry on-line with ES-MS to these ionize neutral porphyrins. Finally we will also describe our work on the use of ICP-MS combined with SV, as well as the use of SV at ultramicroelectrodes for trace analysis and speciation of heavy metals. Such methodologies can probably be extended to the determination of various types of compounds that contain metals.

  11. Determination of gaseous hydrogen sulfide by cathodic stripping voltammetry after preconcentration on a silver metalized porous membrane electrode

    SciTech Connect

    Opekar, F.; Bruckenstein, S.

    1984-01-01

    Gaseous H/sub 2/S is accumulated on the surface of a porous silver membrane electrode at constant potential and directly determined by cathodic stripping voltammetry. The sensitivity of the method, expressed by the slope of the regression line for the dependence of the stipping peak current on the amount of H/sub 2/S in the gas sample, is 357 ..mu..g of H/sub 2/S/..mu..A. The reproducibility of the determination expressed in terms of the relative standard deviation is 3.2%. Phenomena observed during cathodic polarization of the silver porous membrane electrode, either clean or covered with deposited Ag/sub 2/S are briefly discussed and the resultant conditions for optimal analysis are given. 15 references, 4 figures.

  12. Cyclic voltammetry on sputter-deposited films of electrochromic Ni oxide: Power-law decay of the charge density exchange

    SciTech Connect

    Wen, Rui-Tao Granqvist, Claes G.; Niklasson, Gunnar A.

    2014-10-20

    Ni-oxide-based thin films were produced by reactive direct-current magnetron sputtering and were characterized by X-ray diffraction and Rutherford backscattering spectroscopy. Intercalation of Li{sup +} ions was accomplished by cyclic voltammetry (CV) in an electrolyte of LiClO{sub 4} in propylene carbonate, and electrochromism was documented by spectrophotometry. The charge density exchange, and hence the optical modulation span, decayed gradually upon repeated cycling. This phenomenon was accurately described by an empirical power law, which was valid for at least 10{sup 4} cycles when the applied voltage was limited to 4.1 V vs Li/Li{sup +}. Our results allow lifetime assessments for one of the essential components in an electrochromic device such as a “smart window” for energy-efficient buildings.

  13. Alloy corrosion studied by a combination of stripping voltammetry and the rotating ring-disk electrode. Lead-cadmium alloy

    SciTech Connect

    Zhdanov, V.V.; Filanovskii, B.K.

    1984-08-01

    The authors have used the rotating ring-disk electrode (RRDE) in combination with stripping voltammetry (SVA) at solid electrodes in order to determine partial dissolution rates of alloy components in the vicinity of the steady potential and also under cathodic and anodic polarization. The method of SVA is used in the analytical determination of trace amounts of heavy metals dissolved in electrolytes. The method was used to investigate the electrolytic dissolution of lead-cadmium alloy in the vicinity of the steady potential and under cathodic polarization. Results obtained when studying the corrosion behavior of the lead-cadmium alloy are given. The results indicate that selective cadmium dissolution occurs initially, but then this is replaced by uniform alloy dissolution. The data shows that the partial currents of alloy component dissolution can be determined by a combination of SVA and RRDE.

  14. Model predictions of copper speciation in coastal water compared to measurements by analytical voltammetry.

    PubMed

    Ndungu, Kuria

    2012-07-17

    Trace metal toxicity to aquatic biota is highly dependent on the meta?s chemical speciation. Accordingly, metal speciation is being incorporated in to water quality criteria and toxicity regulations using the Biotic Ligand Model (BLM) but there are currently no BLM for biota in marine and estuarine waters. In this study, I compare copper speciation measurements in a typical coastal water made using Competitive ligand exchange-adsorptive cathodic stripping voltammetry (CLE-ACSV) to model calculations using Visual MINTEQ. Both Visual MINTEQ and BLM use similar programs to model copper interactions with dissolved organic matter-DOM (i.e., the Stockholm Humic Model and WHAM-Windermere Humic Aqueous Model, respectively). The total dissolved (<0.4 ?m filter) copper concentration, [CuT] in the study sites ranged from <10 nM close to the open Baltic Sea to ca. 50 nM in the vicinity of a marina in the Stockholm Archipelago. The corresponding free copper concentration [Cu2+], measured by CLE-ACSV ranged from 1013.2 M to 1012.0 M for the reference and marina sites, respectively, whereas the corresponding [Cu2+] modeled calculations ranged from 1012.5 M to 1011.6 M. The low copper to DOM ratios (similar to 0.0004 mg Cu per mg DOC) in these coastal waters ensured that ambient dissolved copper was overwhelmingly chelated to strong Cubinding ligands (12 < log KCuL1,Cu2+Cond >14). The modeled [Cu2+] could be fitted to the experimental values better after the conditional stability constant for copper binding to fulvic acid (FA) complexes in DOM in the SHM was adjusted to account for higher concentration of strong Cu-binding sites in FA. PMID:22724636

  15. Head space voltammetry: a novel voltammetric method for volatile organics and a case study for phenol.

    PubMed

    Volkan zdokur, K; Pelit, Levent; Erta?, Hasan; Timur, Suna; Erta?, F Nil

    2012-08-30

    Present paper describes the results of a novel method which combines the Head space (HS) preconcentration of the analyte on the electrode prior to the voltammetric analysis. Thereafter, the method was called HS-Voltammetry. The performance of the method was tested upon using an electroactive and volatile molecule, phenol molecule, which gives an oxidation peak at conventional electrodes. In this study, a glassy carbon electrode was modified with polypyrrole by electropolymerization and then, the electrode was placed over the solution in a sealed vial heated gently on a hotplate with a stirrer for phenol determination. By controlling the thickness of the polymeric coating and optimizing preconcentration parameters such as vial pH and temperature, stirring rate and exposure time, a very consistent (5.2% at 5.010(-7) M) fraction of the analyte can be extracted during a predetermined time. The oxidation peak current at 0.8 V depended linearly on the phenol concentration over a wide range (3 orders of magnitude). The detection limit was estimated as 7.010(-8) M at 60 C (S/N=3) which is well below the limit set by the European Community for phenols in wastewaters (ca. 510(-6) M). The effect of other phenolic compounds was also examined and it was shown that head space preconcentration eliminated the interference of non-volatile phenolic acids studied. For volatile phenolic compounds, the selectivity can be maintained in cases when isolated peaks are obtained for each component. The proposed method has been applied successfully for the determination of phenol in artificial wastewater and recovery percentage was calculated as 93%. PMID:22939125

  16. VOLTINT: A Matlab -based program for semi-automated processing of geochemical data acquired by voltammetry

    NASA Astrophysics Data System (ADS)

    Bristow, Gwendolyn; Taillefert, Martial

    2008-02-01

    Recent progress has resulted in the development of advanced techniques to acquire geochemical information in situ in aquatic systems. Among these techniques, voltammetry has generated significant interest for its ability to detect several important redox-sensitive chemical species in a fast, reliable, and automated manner. Many research groups worldwide have now adopted these techniques for geochemical measurements in various marine and freshwater systems, including water column, sediment, microbial mat, and groundwater, with a high spatial and temporal resolution. Unfortunately, the ability to conduct multiple measurements with great spatial and temporal resolutions generates large data sets that are difficult to integrate manually. We report a new computer program, voltammetric integration software (VOLTINT), that can integrate large voltammetric data sets semi-automatically. This program implemented in Matlab is based on a graphical user interface to visualize and identify voltammetric signals. The program differentiates between voltammetric techniques and derives or integrates voltammetric signals to produce output data files containing the redox potentials, current intensities, and, when appropriate, peak surface areas of each electrochemical species that can be detected. VOLTINT was developed with the intention of integrating voltammetric data obtained with potentiostats from a specific company Analytical Instrument Systems, Inc. (AIS). However, the scripts can be easily altered to process any ASCII file containing voltammetric data. The details of the program are presented, and examples provided along with recommendations regarding the analysis of voltammetric data in the context of this program. VOLTINT is available free of charge to anyone who is interested in integrating multiple voltammetric data files in a fast and reliable manner.

  17. Electrochemical behavior of quinapril and its determination in pharmaceutical formulations by square-wave voltammetry at a mercury electrode.

    PubMed

    Süslü, I; Altinöz, S

    2008-06-01

    The electrochemical behavior of the antihypertensive drug quinapril was investigated at a hanging mercury drop electrode using different voltammetric techniques such as cyclic voltammetry, square-wave voltammetry and chronoamperometry. A simple and sensitive square-wave voltammetric method for the electrochemical analysis of quinapril in its pharmaceutical formulations was developed and validated. The experimental and instrumental parameters affecting the peak current of quinapril were investigated. Various buffers such as Britton Robinson, borate and phosphate buffers at different pH values (3.0-11.0) were examined as supporting electrolyte. The optimum conditions were obtained using Britton Robinson buffer at pH 10.0 and frequency: 50 Hz, scan increment: 4 mV and pulse amplitude: 25 mV. A well-defined peak current was observed at the hanging mercury drop electrode at -1100 mV vs. Ag/AgCl reference electrode. This proposed method was validated by evaluating linearity, sensitivity, repeatability, accuracy, precision, selectivity, recovery, robustness and ruggedness. The linear calibration range was 0.50-8.68 microg mL-' (r = 0.9992). The detection and quantification limits of this method were 0.22 and 0.50 Ctg mL(-1) and intra-day and inter-day precision were between 0.81-4.32% (n = 7), respectively. The developed method was applied successfully for the determination of quinapril in its tablet dosage forms. The average amount of quinapril in tablets was found as 20.26 +/- 0.12 with RSD of 1.60% for 20 mg tabletsand 40.55 +/- 0.23 with RSD of 1.52% for 40 mg tablets. PMID:18604985

  18. Alternative current conduction mechanisms of organic-inorganic compound [N(CH{sub 3}){sub 3}H]{sub 2}CuCl{sub 4}

    SciTech Connect

    Ben Bechir, M. Karoui, K.; Guidara, K.; Ben Rhaiem, A.; Tabellout, M.

    2014-05-28

    The [N(CH{sub 3}){sub 3}H]{sub 2}CuCl{sub 4} single crystal has been analyzed by X-ray powder diffraction patterns, differential scanning calorimetry (DSC), and electrical impedance spectroscopy. [N(CH{sub 3}){sub 3}H]{sub 2}CuCl{sub 4} crystallizes at room temperature in the monoclinic system with P2{sub 1}/{sub C} space group. Three phase transitions at T{sub 1} = 226 K, T{sub 2} = 264 K, and T{sub 3} = 297 K have been evidenced by DSC measurements. The electrical technique was measured in the 10{sup −1}–10{sup 7} Hz frequency range and 203–313 K temperature intervals. The frequency dependence of alternative current (AC) conductivity is interpreted in terms of Jonscher's law (developed). The AC electrical conduction in [N(CH{sub 3}){sub 3}H]{sub 2}CuCl{sub 4} compound is studied by two processes which can be attributed to a hopping transport mechanism: the correlated barrier hopping model in phases I, II, and III, the non-overlapping small polaron tunneling model in phase IV. The conduction mechanism is interpreted with the help of Elliot's theory, and the Elliot's parameters are found.

  19. Enhancing the versatility of alternate current biosusceptometry (ACB) through the synthesis of a dextrose-modified tracer and a magnetic muco-adhesive cellulose gel.

    PubMed

    Martins, Murillo L; Calabresi, Marcos F; Quini, Caio; Matos, Juliana F; Miranda, Jos R A; Saeki, Margarida J; Bordallo, Heloisa N

    2015-03-01

    Alternate Current Biosusceptometry (ACB) is a promising bio-magnetic method, radiation free and easily performed used for gastric emptying exams. Due to development on its sensitivity level, interesting nature, noninvasiveness and low cost it has attracted a lot of attention. In this work, magnetic nanoparticles of Mn-Zn ferrite as well as dextrose-modified nanoparticles were synthesized to be used as possible tracers in ACB gastric emptying exams. In addition, a magnetic muco-adhesive gel was obtained by modifying the ferrite nanoparticles with cellulose. Based on in-vivo tests in rats, we show that the pure ferrite nanoparticles, whose isoelectric point was found to be at pH=3.2, present a great sensitivity to pH variations along the gastrointestinal tract, while the reduction of the isoelectric point by the dextrose modification leads to suitable nanoparticles for rapid gastric emptying examinations. On the other hand, the in-vivo tests show that the muco-adhesive cellulose gel presents substantial stomach adhesion and is a potential drug delivery system easily traceable by the ACB system. PMID:25579899

  20. Time-dependent phase lag of biofunctionalized magnetic nanoparticles conjugated with biotargets studied with alternating current magnetic susceptometor for liquid phase immunoassays

    NASA Astrophysics Data System (ADS)

    Liao, S. H.; Yang, H. C.; Horng, H. E.; Chieh, J. J.; Chen, K. L.; Chen, H. H.; Chen, J. Y.; Liu, C. I.; Liu, C. W.; Wang, L. M.

    2013-12-01

    In this work, the time-dependent phase lag ? of biofunctionalized magnetic nanoparticles (BMNs) conjugated with biotargets is studied with a home-made alternating current (ac) susceptometor for liquid phase immunoassays. The sensing unit of the ac susceptometor composed of excitation, pick-up, and compensation coils are balanced to 0.03 ppm. The BMNs are anti-goat C-reactive protein coated onto dextran-coated magnetic nanoparticles composed of Fe3O4, labeled as Fe3O4-antiCRP. The bio-targets are human CRP. As the human CRP is conjugated with reagents Fe3O4-antiCRP, the magnetic clusters of Fe3O4-antiCRP-CRP are formulated. Due to the clustering effect, the Brownian relaxation of BMNs will be depressed, which in turn enhances the effective relaxation time. By monitoring the dynamic phase lag, we demonstrate a sensitive platform of assaying human CRP. The detection platform is robust, easy to use and can be applied for assaying a wide variety of biotargets including viruses, proteins, tumor markers, chemicals, etc.

  1. Research on the electrical characteristics of an organic thin-film field-effect transistor based on alternating-current resistance

    NASA Astrophysics Data System (ADS)

    Chen, Yue-Ning; Xu, Zheng; Zhao, Su-Ling; Yin, Fei-Fei; Zhang, Cheng-Wen; Jiao, Bi-Yuan; Dong, Yu-Hang

    2011-12-01

    In this article, an organic thin-film field-effect transistor (OTFFET) with top-gate and bottom-contact geometry based on pentacene as the active layer is fabricated. The experimental data of the IV are obtained from the OTFFET device. The alternating-current (AC) resistance value of the OTFFET device is calculated using the derivation method from the experimental data, and the AC resistance trend curves of the OTFFET device are obtained with the region fitting method. We analyse the characteristics of the OTFFET device with an AC resistance trend curve. To discover whether it has a high resistance, it is proposed to judge the region of the source/drain voltage (VDS) less than the transition voltage, thereby determining whether the contact between the metal electrode and the organic semiconductor layer of the OTFFET device is Ohmic or non-Ohmic. The theoretical analysis shows that the field-effect mobility and the AC resistance are in reverse proportion. Therefore, we point out that reducing AC resistance is necessary if field-effect mobility is to be improved.

  2. Novel method for immunofluorescence staining of mammalian eggs using non-contact alternating-current electric-field mixing of microdroplets

    PubMed Central

    Hiromitsu, Shirasawa; Jin, Kumagai; Emiko, Sato; Katsuya, Kabashima; Yukiyo, Kumazawa; Wataru, Sato; Hiroshi, Miura; Ryuta, Nakamura; Hiroshi, Nanjo; Yoshihiro, Minamiya; Yoichi, Akagami; Yukihiro, Terada

    2015-01-01

    Recently, a new technique was developed for non-catalytically mixing microdroplets. In this method, an alternating-current (AC) electric field is used to promote the antigen–antibody reaction within the microdroplet. Previously, this technique has only been applied to histological examinations of flat structures, such as surgical specimens. In this study, we applied this technique for the first time to immunofluorescence staining of three-dimensional structures, specifically, mammalian eggs. We diluted an antibody against microtubules from 1:1,000 to 1:16,000, and compared the chromatic degree and extent of fading across dilutions. In addition, we varied the frequency of AC electric-field mixing from 5 Hz to 46 Hz and evaluated the effect on microtubule staining. Microtubules were more strongly stained after AC electric-field mixing for only 5 minutes, even when the concentration of primary antibody was 10 times lower than in conventional methods. AC electric-field mixing also alleviated microtubule fading. At all frequencies tested, AC electric-field mixing resulted in stronger microtubule staining than in controls. There was no clear difference in a microtubule staining between frequencies. These results suggest that the novel method could reduce antibody consumption and shorten immunofluorescence staining time. PMID:26477850

  3. A network thermodynamic two-port element to represent the coupled flow of salt and current. Improved alternative for the equivalent circuit.

    PubMed Central

    Mikulecky, D C

    1979-01-01

    A two-port for coupled salt and current flow is created by using the network thermodynamic approach in the same manner as that for coupled solute and volume flow (Mikulecky et al., 1977b; Mikulecky, 1977). This electrochemical two-port has distinct advantages over the equivalent circuit representation and overcomes difficulties pointed out by Finkelstein and Mauro (1963). The electrochemical two-port is used to produce a schematic diagram of the coupled flows through a tissue. The network is superimposable on the tissue morphology and preserves the physical qualities of the flows and forces in each part of an organized structure (e.g., an epithelium). The topological properties are manipulated independently from the constitutive (flow-force) relations. The constitutive relations are chosen from a number of alternatives depending on the detail and rigor desired. With the topology and constitutive parameters specified, the steady-state behavior is simulated with a network simulation program. By using capacitance to represent the filling and depletion of compartments, as well as the traditional electrical capacitances, time-dependent behavior is also simulated. Nonlinear effects arising from the integration of equations describing local behavior (e.g., the Nernst-Planck equations) are dealt with explicitly. The network thermodynamic approach provides a simple, straightforward method for representing a system diagrammatically and then simulating the system's behavior from the diagram with a minimum of mathematical manipulation. PMID:262391

  4. Determination of ascorbic acid content of some fruit juices and wine by voltammetry performed at pt and carbon paste electrodes.

    PubMed

    Pisoschi, Aurelia Magdalena; Pop, Aneta; Negulescu, Gheorghe Petre; Pisoschi, Aurel

    2011-01-01

    A method was developed for assessing ascorbic acid concentration in fruit juices and wine by differential pulse voltammetry. The oxidation peak for ascorbic acid occurs at about 530 mV (versus SCE) on a Pt strip working electrode and at about 470 mV on a carbon paste working electrode. The influence of the operational parameters like the pulse amplitude and the pulse period on the analytical signal was investigated. The obtained calibration graph shows a linear dependence between the peak height and ascorbic acid concentration within the range 0.31-20 mM with a Pt working electrode, and within the range 0.07-20 mM with a carbon paste working electrode. The equation of the calibration graph was y = 21.839x + 35.726, r = 0.9940, when a Pt strip electrode was used (where y represents the value of the current intensity measured for the peak height, expressed as A and x the analyte concentration, as mM). R.S.D. = 2.09%, n = 10, C(ascorbic acid) = 2.5 mM. The equation of the calibration graph was y = 3.4429x + 5.7334, r = 0.9971, when a carbon paste electrode was used (where y represents the value of intensity measured for the peak height, expressed as A and x the analyte concentration, as mM). R.S.D. = 2.35%, n = 10, C(ascorbic acid) = 2.5 mM. The developed method was applied to ascorbic acid assessment in fruit juices and wine. The ascorbic acid content determined ranged between 6.83 mg/100 mL juice for soft drinks (Fanta Madness) and 54.74 mg/100 mL for citrus (lemon) juices obtained by squeezing fruit. Different ascorbic acid concentrations (from standard solutions) were added to the analysed samples, the degree of recovery being comprised between 94.74 and 104.97%. The results of ascorbic acid assessment by differential pulse voltammetry were compared with those obtained by cyclic voltammetry. The results obtained by the two methods were in good agreement. PMID:21285920

  5. Adsorptive Stripping Voltammetry of Environmental Indicators: Determination of Zinc in Algae

    ERIC Educational Resources Information Center

    Collado-Sanchez, C.; Hernandez-Brito, J. J.; Perez-Pena, J.; Torres-Padron, M. E.; Gelado-Caballero, M. D.

    2005-01-01

    A method for sample preparation and for the determination of average zinc content in algae using adsorptive stripping voltammetry are described. The students gain important didactic advantages through metal determination in environmental matrices, which include carrying out clean protocols for sampling and handling, and digesting samples using

  6. Adsorptive Stripping Voltammetry of Environmental Indicators: Determination of Zinc in Algae

    ERIC Educational Resources Information Center

    Collado-Sanchez, C.; Hernandez-Brito, J. J.; Perez-Pena, J.; Torres-Padron, M. E.; Gelado-Caballero, M. D.

    2005-01-01

    A method for sample preparation and for the determination of average zinc content in algae using adsorptive stripping voltammetry are described. The students gain important didactic advantages through metal determination in environmental matrices, which include carrying out clean protocols for sampling and handling, and digesting samples using…

  7. Cyclic Voltammetry Simulations with DigiSim Software: An Upper-Level Undergraduate Experiment

    ERIC Educational Resources Information Center

    Messersmith, Stephania J.

    2014-01-01

    An upper-division undergraduate chemistry experiment is described which utilizes DigiSim software to simulate cyclic voltammetry (CV). Four mechanisms were studied: a reversible electron transfer with no subsequent or proceeding chemical reactions, a reversible electron transfer followed by a reversible chemical reaction, a reversible chemical…

  8. DETERMINATION OF ZINC, CADMIUM, LEAD, AND COPPER IN WATER BY ANODIC STRIPPING VOLTAMMETRY

    EPA Science Inventory

    The Tennessee Valley Authority developed a method of differential pulse anodic stripping voltammetry for determining total concentrations of cadmium and lead in water samples from ash ponds at steam-electric generating plants. After digestion of the sample and addition of reagent...

  9. Determination of Bosentan in Pharmaceutical Preparations by Linear Sweep, Square Wave and Differential Pulse Voltammetry Methods

    PubMed Central

    Atila, Alptug; Yilmaz, Bilal

    2015-01-01

    In this study, simple, fast and reliable cyclic voltammetry (CV), linear sweep voltammetry (LSV), square wave voltammetry (SWV) and differential pulse voltammetry (DPV) methods were developed and validated for determination of bosentan in pharmaceutical preparations. The proposed methods were based on electrochemical oxidation of bosentan at platinum electrode in acetonitrile solution containing 0.1 M TBACIO4. The well-defined oxidation peak was observed at 1.21 V. The calibration curves were linear for bosentan at the concentration range of 5-40g/mL for LSV and 5-35g/mL for SWV and DPV methods, respectively. Intra- and inter-day precision values for bosentan were less than 4.92, and accuracy (relative error) was better than 6.29%. The mean recovery of bosentan was 100.7% for pharmaceutical preparations. No interference was found from two tablet excipients at the selected assay conditions. Developed methods in this study are accurate, precise and can be easily applied to Tracleer and Diamond tablets as pharmaceutical preparation. PMID:25901151

  10. Lead-Testing Service to Elementary and Secondary Schools Using Anodic Stripping Voltammetry

    ERIC Educational Resources Information Center

    Goebel, Amanda; Vos, Tracy; Louwagie, Anne; Lundbohm, Laura; Brown, Jay H.

    2004-01-01

    The undergraduate chemistry club of the Southwest Minnesota State University offers assistance in lead-testing through the anodic stripping voltammetry (ASV) technique to elementary and secondary schools. Emphasis is given to this community service activity, which has increased club membership, and promoted discussion of water quality problems in

  11. Cyclic Voltammetry Simulations with DigiSim Software: An Upper-Level Undergraduate Experiment

    ERIC Educational Resources Information Center

    Messersmith, Stephania J.

    2014-01-01

    An upper-division undergraduate chemistry experiment is described which utilizes DigiSim software to simulate cyclic voltammetry (CV). Four mechanisms were studied: a reversible electron transfer with no subsequent or proceeding chemical reactions, a reversible electron transfer followed by a reversible chemical reaction, a reversible chemical

  12. CYCLIC VOLTAMMETRY OF ORGANIC AND INORGANIC N-CHLORAMINES IN AQUEOUS SOLUTION

    EPA Science Inventory

    Aqueous solutions or organic and inorganic N-chloramines as well as hypochlorite were examined by cyclic voltammetry at DH 8 and in strong acid (pH<2) with platinum and glassy carbon electrodes. The inorganic N-chloramines were characterized in 1 M HC104. NHC12 is reduced at abou...

  13. Lead-Testing Service to Elementary and Secondary Schools Using Anodic Stripping Voltammetry

    ERIC Educational Resources Information Center

    Goebel, Amanda; Vos, Tracy; Louwagie, Anne; Lundbohm, Laura; Brown, Jay H.

    2004-01-01

    The undergraduate chemistry club of the Southwest Minnesota State University offers assistance in lead-testing through the anodic stripping voltammetry (ASV) technique to elementary and secondary schools. Emphasis is given to this community service activity, which has increased club membership, and promoted discussion of water quality problems in…

  14. Square-wave voltammetry assays for glycoproteins on nanoporous gold

    PubMed Central

    Pandey, Binod; Bhattarai, Jay K.; Pornsuriyasak, Papapida; Fujikawa, Kohki; Catania, Rosa; Demchenko, Alexei V.; Stine, Keith J.

    2014-01-01

    Electrochemical enzyme-linked lectinsorbent assays (ELLA) were developed using nanoporous gold (NPG) as a solid support for protein immobilization and as an electrode for the electrochemical determination of the product of the reaction between alkaline phosphatase (ALP) and p-aminophenyl phosphate (p-APP), which is p-aminophenol (p-AP). Glycoproteins or concanavalin A (Con A) and ALP conjugates were covalently immobilized onto lipoic acid self-assembled monolayers on NPG. The binding of Con A ALP (or soybean agglutinin ALP) conjugate to glycoproteins covalently immobilized on NPG and subsequent incubation with p-APP substrate was found to result in square-wave voltammograms whose peak difference current varied with the identity of the glycoprotein. NPG presenting covalently bound glycoproteins was used as the basis for a competitive electrochemical assay for glycoproteins in solution (transferrin and IgG). A kinetic ELLA based on steric hindrance of the enzyme-substrate reaction and hence reduced enzymatic reaction rate after glycoprotein binding is demonstrated using immobilized Con AALP conjugates. Using the immobilized Con A-ALP conjugate, the binding affinity of immunoglobulin G (IgG) was found to be 105 nM, and that for transferrin was found to be 650 nM. Minimal interference was observed in the presence of 5 mg mL?1 BSA as a model serum protein in both the kinetic and competitive ELLA. Inhibition studies were performed with methyl D-mannoside for the binding of TSF and IgG to Con A-ALP; IC50 values were found to be 90 ?M and 286 ?M, respectively. Surface coverages of proteins were estimated using solution depletion and the BCA protein concentration assay. PMID:24611035

  15. The Interagency Coordinating Committee on the Validation of Alternative Methods (ICCVAM): a review of the ICCVAM test method evaluation process and current international collaborations with the European Centre for the Validation of Alternative Methods (ECVAM).

    PubMed

    Stokes, William S; Schechtman, Leonard M; Hill, Richard N

    2002-12-01

    Over the last decade, national authorities in the USA and Europe have launched initiatives to validate new and improved toxicological test methods. In the USA, the Interagency Coordinating Committee on the Validation of Alternative Methods (ICCVAM) and its supporting National Toxicology Program Interagency Center for the Evaluation of Alternative Toxicological Methods (NICEATM) were established by the Federal Government to work with test developers and Federal agencies to facilitate the validation, review, and adoption of new scientifically sound test methods, including alternatives that can refine, reduce, and replace animal use. In Europe, the European Centre for the Validation of Alternative Methods (ECVAM) was established to conduct validation studies on alternative test methods. Despite differences in organisational structure and processes, both organisations seek to achieve the adoption and use of alternative test methods. Accordingly, both have adopted similar validation and regulatory acceptance criteria. Collaborations and processes have also evolved to facilitate the international adoption of new test methods recommended by ECVAM and ICCVAM. These collaborations involve the sharing of expertise and data for test-method workshops and independent scientific peer reviews, and the adoption of processes to expedite the consideration of test methods already reviewed by the other organisation. More recently, NICEATM and ECVAM initiated a joint international validation study on in vitro methods for assessing acute systemic toxicity. These collaborations are expected to contribute to accelerated international adoption of harmonised new test methods that will support improved public health and provide for reduced and more-humane use of laboratory animals. PMID:12513648

  16. Simultaneous determination of Pt and Rh by catalytic adsorptive stripping voltammetry, using hexamethylene tetramine (HMTA) as complexing agent.

    PubMed

    Dalvi, Aditi A; Satpati, A K; Palrecha, M M

    2008-06-15

    Characteristics of the adsorption/electro-reduction of Pt/Rh hexamethylene tetramine (HMTA) complex on static mercury drop electrode surface were studied. Cyclic voltammetry was carried out to get the insight about the mechanistic behaviour of the catalytic current obtained in the voltammetric scan of Pt/Rh HMTA complex in acidic solution. Adsorptive stripping voltammetry using HMTA as the complexing agent was found to be highly sensitive method for the determination of Pt/Rh. Voltammetric measurements were carried out using hanging mercury drop electrode (HMDE) as the working electrode, a glassy carbon rod as the counter and an Ag/AgCl/KCl(saturated) as the reference electrode. Various electrochemical parameters like deposition potential, deposition time, concentration of the ligand, supporting electrolyte etc. were optimized. The detection limit of Pt and Rh was found to be 4.38 pM L(-1) and 2.80 pM L(-1), respectively for the deposition time of 30 s. Simultaneous determination of Pt(II) and Rh(III) in water samples was possible. The method was found to be free from the commonly occurring interfering ions such as Cu(II), Cd(II), Zn(II), Pb(II), Cr(III), Cr(VI), Fe(III), Fe(II), Ni(II) and Co(II). Spike recovery tests for both Pt and Rh in tap water and sea water samples were also carried out. The method has been verified by analyzing certified reference material (WMG-1). PMID:18585228

  17. Alternative current conduction mechanisms of organic-inorganic compound [N(CH{sub 3}){sub 3}H]{sub 2}ZnCl{sub 4}

    SciTech Connect

    Ben Bechir, M. Karoui, K.; Guidara, K.; Ben Rhaiem, A.; Tabellout, M.

    2014-04-21

    [N(CH{sub 3}){sub 3}H]{sub 2}ZnCl{sub 4} has been studied by X-ray powder diffraction patterns, differential scanning calorimetry (DSC), and impedance spectroscopy. The [N(CH{sub 3}){sub 3}H]{sub 2}ZnCl{sub 4} hybrid compound is crystallized at room temperature (T ≈ 300 K) in the orthorhombic system with Pnma space group. Five phase transitions (T{sub 1} = 255 K, T{sub 2} = 282 K, T{sub 3} = 302 K, T{sub 4} = 320 K, and T{sub 5} = 346 K) have been proved by DSC measurements. The electrical technique was measured in the 10{sup −1}-10{sup 7} Hz frequency range and 233–363 K temperature interval. The frequency dependence of alternative current (AC) conductivity is interpreted in terms of Jonscher's law. The AC electrical conduction in [N(CH{sub 3}){sub 3}H]{sub 2}ZnCl{sub 4} is analyzed by different processes, which can be attributed to several models: the correlated barrier hopping model in phase I, the overlapping large polaron tunneling model in phase II, the quantum mechanical tunneling model in phase IV, and the non-overlapping small polaron tunneling model in phases III, V, and VI. The conduction mechanism is studied with the help of Elliot's theory, and the Elliot's parameters are determined.

  18. Beta Band Transcranial Alternating (tACS) and Direct Current Stimulation (tDCS) Applied After Initial Learning Facilitate Retrieval of a Motor Sequence

    PubMed Central

    Krause, Vanessa; Meier, Anna; Dinkelbach, Lars; Pollok, Bettina

    2016-01-01

    The primary motor cortex (M1) contributes to the acquisition and early consolidation of a motor sequence. Although the relevance of M1 excitability for motor learning has been supported, the significance of M1 oscillations remains an open issue. This study aims at investigating to what extent retrieval of a newly learned motor sequence can be differentially affected by motor-cortical transcranial alternating (tACS) and direct current stimulation (tDCS). Alpha (10 Hz), beta (20 Hz) or sham tACS was applied in 36 right-handers. Anodal or cathodal tDCS was applied in 30 right-handers. Participants learned an eight-digit serial reaction time task (SRTT; sequential vs. random) with the right hand. Stimulation was applied to the left M1 after SRTT acquisition at rest for 10 min. Reaction times were analyzed at baseline, end of acquisition, retrieval immediately after stimulation and reacquisition after eight further sequence repetitions. Reaction times during retrieval were significantly faster following 20 Hz tACS as compared to 10 Hz and sham tACS indicating a facilitation of early consolidation. tDCS yielded faster reaction times, too, independent of polarity. No significant differences between 20 Hz tACS and tDCS effects on retrieval were found suggesting that 20 Hz effects might be associated with altered motor-cortical excitability. Based on the behavioral modulation yielded by tACS and tDCS one might speculate that altered motor-cortical beta oscillations support early motor consolidation possibly associated with neuroplastic reorganization. PMID:26834593

  19. Hair growth-promotion effects of different alternating current parameter settings are mediated by the activation of Wnt/?-catenin and MAPK pathway.

    PubMed

    Sohn, Ki Min; Jeong, Kwan Ho; Kim, Jung Eun; Park, Young Min; Kang, Hoon

    2015-12-01

    Electrical stimulation is being used in variable skin therapeutic conditions. There have been clinical studies demonstrating the positive effect of electrical stimuli on hair regrowth. However, the underlying exact mechanism and optimal parameter settings are not clarified yet. To investigate the effects of different parameter settings of electrical stimuli on hair growth by examining changes in human dermal papilla cells (hDPCs) in vitro and by observing molecular changes in animal tissue. In vitro, cultured hDPCs were electrically stimulated with different parameter settings at alternating current (AC). Cell proliferation was measured by MTT assay. The Ki67 expression was measured by immunofluorescence. Hair growth-related gene expressions were measured by RT-PCR. In animal model, different parameter settings of AC were applied to the shaved dorsal skin of rabbit for 8 weeks. Expression of hair-related genes in the skin of rabbit was examined by RT-PCR. At low voltage power (3.5 V) and low frequency (1 or 2 MHz) with AC, in vitro proliferation of hDPCs was successfully induced. A significant increase in Wnt/?-catenin, Ki67, p-ERK and p-AKT expressions was observed under the aforementioned settings. In animal model, hair regrowth was observed in the entire stimulated areas under individual conditions. Expression of hair-related genes in the skin significantly increased on the 6th week of treatment. There are optimal conditions for electrical stimulated hair growth, and they might be different in the cells, animals and human tissues. Electrical stimuli induce mechanisms such as the activation of Wnt/?-catenin and MAPK pathway in hair follicles. PMID:26268840

  20. Visualization of local electrochemical activity and local nickel ion release on laser-welded NiTi/steel joints using combined alternating current mode and stripping mode SECM.

    PubMed

    Ruhlig, D; Gugel, H; Schulte, A; Theisen, W; Schuhmann, W

    2008-12-01

    Smoothly polished cross-sections of laser-fabricated welds between NiTi shape memory alloy and stainless steel (SS) microwires of approximately the same diameter and, for comparison, between identical stainless steel or NiTi wires have been subjected to local chemical activity and nickel release measurements using scanning electrochemical microscopy (SECM). In the alternating current mode (AC-SECM), the measurements detected clear differences in the local interfacial chemical activity of the passivated weld and the base metals only for the heterogeneous joints of the type NiTi-SS. In this case the local electrochemical acvtivity was lower above the weld material. Subjecting cross-sections of NiTi-SS to stripping mode SECM (SM-SECM), higher Ni(2+) concentrations were measured above the regions of the parental NiTi wire, which correlates well with the results from AC-SECM imaging which showed this region as being less passivated. An energy-dispersive elemental analysis of the specimen in a scanning electron microscope revealed the coexistence of Ti and Cr in the weld mass. Possibly, a joint action of these two metals in terms of protective oxide formation is better for passivation of the weld region than the individual action of one or the other element for passivating the original wires. Better passivation of course led to decreased electrochemical activity of the weld surface. Apparently, AC- and SM-mode SECM imaging were sufficiently sensitive to detect and visualize the impact of the changed surface passivation upon laser welding. PMID:19082072

  1. The Green Phosphor SrAl2O4:Eu2+, R3+ (R=Y, Dy) and its Application in Alternating Current Light-Emitting Diodes

    NASA Astrophysics Data System (ADS)

    Chen, Lei; Zhang, Yao; Xue, Shaochan; Deng, Xiaorong; Anqi; Luo; Liu, Fayong; Jiang, Yang; Chen, Shifu; Bahader, Ali

    2013-08-01

    The aim of the present investigation was to develop a phosphor to solve the flickering luminescence of alternating current (AC) light-emitting diodes (LED) by compensating the dark duration with appropriately persistent luminescence. The phosphor SrAl2O4:Eu2+ co-doped with Y3+ or Dy3+ was synthesized via solid-state reaction with H3BO3 as flux. The crystal structure and morphology were characterized by using X-ray diffraction (XRD) and Scanning Electron Microscope (SEM), respectively. The photoluminescence spectra were collected with a fluorescence spectrometer. The results demonstrated that appropriate amount of Y3+ or DY3+ doped was beneficial to suppress the by-product of Sr4Al14O25 which easily co-existed with the SrAl2O4 phase brought by the flux of H3BO3. However, too much Y3+ or DY3+ doped resulted in the formation of another impurity phase, i.e., the yttrium aluminum garnet of Y3Al5O12 and Dy3Al5O12. Comparatively, the doped DY3+ was more helpful in prolonging the persistent luminescence, while Y3+ was more efficient in enhancing luminescence intensity. To demonstrate the feasibility of the phosphor applied in AC LEDs, a nearly white AC LED was fabricated by coating the phosphor on a blue AC LED chip. The persistent luminescence was radiated from the AC LED device after turning power off. Moreover, the effect of the phosphor on compensating the AC LED dark duration through persistent luminescence was revealed by using the Keyence VW-9000 High-speed Microscope for the first time.

  2. Development and Characterization of Carbon-Fiber Microbiosensors for Fast-Scan Cyclic Voltammetry

    NASA Astrophysics Data System (ADS)

    Lugo-Morales, Leyda Zoraida

    Electrochemistry has been shown to be a robust tool in neuroscience. The use of carbon-fiber microelectrodes coupled with background-subtracted fast-scan cyclic voltammetry (FSCV) offers high sensitivity, selectivity, as well as the spatial and temporal resolution necessary for monitoring rapid fluctuations of electroactive molecules in live brain tissue. Dopamine (DA) is a neurotransmitter playing a key role in the regulation of reward and motivated behavior. FSCV has been used to understand DA dynamics and how these underlie discrete aspects of brain function. The methodological aspects of real-time DA detection at carbon-fiber microelectrodes using FSCV in anesthetized and awake animals are presented. Furthermore, the combination of FSCV with other neuroanalytical techniques is also explained. The advantages of FSCV and carbon-fiber microelectrodes can be expanded to the detection of non-electroactive analytes. This broadens the scope of FSCV such that it can be used to investigate how changes in non-electroactive chemicals underlie disease, cognition, and behavior. Carbon-fiber microelectrodes can be modified with an enzyme to monitor non-electroactive molecules, generating an electroactive product (usually hydrogen peroxide, H2O2). The first voltammetric detection of H2O 2 at bare carbon-fiber microelectrodes using FSCV has recently been reported. Thus, an avenue exists to utilize FSCV at enzyme-modified microelectrodes to voltammetrically identify and quantify non-electroactive analytes in real-time. Such an approach will overcome many limitations associated with the traditional amperometric detection scheme, which lacks electrochemical selectivity. Electrodeposition of the biopolymer chitosan with glucose oxidase (GOx) at the carbon surface yields a stable, sensitive, and selective glucose microbiosensor that has been utilized to detect glucose fluctuations in vivo with unprecedented speed. This new method has revealed the first rapid glucose fluctuations in live brain tissue. It will allow countless investigations that require the real-time detection of glucose fluctuations, and will fulfill a critical need in neuroscience because it should be broadly applicable to H2O2-generating oxidase enzymes in general. Indeed, this technology has been adapted to the detection of choline fluctuations by encapsulation of choline oxidase (ChOx). Alternate methods of enzyme immobilization are also feasible. Enzymes can be entrapped in a matrix of electrospun nanofibers on the carbon electrode surface. Prototype devices using GOx immobilized within poly(vinyl alcohol) nanofibers are sensitive and respond rapidly (second timescale) to physiological glucose concentrations. This immobilization strategy offers an alternative way to make microbiosensors for FSCV measurements. Quality early science education is essential to develop an informed public that is interested in, and able to advance, an economy that is highly dependent on technology. An additional topic presented herein is the development of an outreach program to promote generalized interest in chemistry among public school educators. A chemistry workshop was developed and conducted for local public teachers. Participants learned how to use dynamic and low-cost activities and demonstrations to creatively introduce science concepts and generate interactive engagement in their classrooms. Expansions of these efforts will help to expand the mission of generating interest in the chemistry field with long-term benefits to the US economy. In summary, the work presented herein describes innovative technology that will allow for new and exciting studies on non-electroactive molecule dynamics in vivo. These fundamental studies will ultimately lead to broadly applicable technologies for rapid molecular monitoring of unprecedented quality. They will allow future studies to assess how fluctuations of electroactive and non-electroactive molecules are integrated into a more coherent picture of brain function (or dysfunction), providing new insights into the fundamental way in which information is transmitted between neurons, mechanisms of modulation, and functional implications.

  3. Magnetostrictive Alternator

    NASA Technical Reports Server (NTRS)

    Dyson, Rodger; Bruder, Geoffrey

    2013-01-01

    This innovation replaces the linear alternator presently used in Stirling engines with a continuous-gradient, impedance-matched, oscillating magnetostrictive transducer that eliminates all moving parts via compression, maintains high efficiency, costs less to manufacture, reduces mass, and eliminates the need for a bearing system. The key components of this new technology are the use of stacked magnetostrictive materials, such as Terfenol-D, under a biased magnetic and stress-induced compression, continuous-gradient impedance-matching material, coils, force-focusing metallic structure, and supports. The acoustic energy from the engine travels through an impedancematching layer that is physically connected to the magnetostrictive mass. Compression bolts keep the structure under compressive strain, allowing for the micron-scale compression of the magnetostrictive material and eliminating the need for bearings. The relatively large millimeter displacement of the pressure side of the impedance-matching material is reduced to micron motion, and undergoes stress amplification at the magnetostrictive interface. The alternating compression and expansion of the magnetostrictive material creates an alternating magnetic field that then induces an electric current in a coil that is wound around the stack. This produces electrical power from the acoustic pressure wave and, if the resonant frequency is tuned to match the engine, can replace the linear alternator that is commonly used.

  4. Detection and classification of gaseous sulfur compounds by solid electrolyte cyclic voltammetry of cermet sensor array.

    PubMed

    Kramer, Kirsten E; Rose-Pehrsson, Susan L; Hammond, Mark H; Tillett, Duane; Streckert, Holger H

    2007-02-12

    Electrochemical sensors composed of a ceramic-metallic (cermet) solid electrolyte are used for the detection of gaseous sulfur compounds SO(2), H(2)S, and CS(2) in a study involving 11 toxic industrial chemical (TIC) compounds. The study examines a sensor array containing four cermet sensors varying in electrode-electrolyte composition, designed to offer selectivity for multiple compounds. The sensors are driven by cyclic voltammetry to produce a current-voltage profile for each analyte. Raw voltammograms are processed by background subtraction of clean air, and the four sensor signals are concatenated to form one vector of points. The high-resolution signal is compressed by wavelet transformation and a probabilistic neural network is used for classification. In this study, training data from one sensor array was used to formulate models which were validated with data from a second sensor array. Of the 11 gases studied, 3 that contained sulfur produced the strongest responses and were successfully analyzed when the remaining compounds were treated as interferents. Analytes were measured from 10 to 200% of their threshold-limited value (TLV) according to the 8-h time weighted average (TWA) exposure limits defined by the National Institute of Occupational Safety and Health (NIOSH). True positive classification rates of 93.3, 96.7, and 76.7% for SO(2), H(2)S, and CS(2), respectively, were achieved for prediction of one sensor unit when a second sensor was used for modeling. True positive rates of 83.3, 90.0, and 90.0% for SO(2), H(2)S, and CS(2), respectively, were achieved for the second sensor unit when the first sensor unit was used for modeling. Most of the misclassifications were for low concentration levels (such 10-25% TLV) in which case the compound was classified as clean air. Between the two sensors, the false positive rates were 2.2% or lower for the three sulfur compounds, 0.9% or lower for the interferents (eight remaining analytes), and 5.8% or lower for clean air. The cermet sensor arrays used in this analysis are rugged, low cost, reusable, and show promise for multiple compound detection at parts-per-million (ppm) levels. PMID:17386588

  5. Electrochemical Genotoxicity Assay Based on a SOS/umu Test Using Hydrodynamic Voltammetry in a Droplet

    PubMed Central

    Kuramitz, Hideki; Sazawa, Kazuto; Nanayama, Yasuaki; Hata, Noriko; Taguchi, Shigeru; Sugawara, Kazuharu; Fukushima, Masami

    2012-01-01

    The SOS/umu genotoxicity assay evaluates the primary DNA damage caused by chemicals from the β-galactosidase activity of S. typhimurium. One of the weaknesses of the common umu test system based on spectrophotometric detection is that it is unable to measure samples containing a high concentration of colored dissolved organic matters, sediment, and suspended solids. However, umu tests with electrochemical detection techniques prove to be a better strategy because it causes less interference, enables the analysis of turbid samples and allows detection even in small volumes without loss of sensitivity. Based on this understanding, we aim to develop a new umu test system with hydrodynamic chronoamperometry using a rotating disk electrode (RDE) in a microliter droplet. PAPG when used as a substrate is not electroactive at the potential at which PAP is oxidized to p-quinone imine (PQI), so the current response of chronoamperometry resulting from the oxidation of PAP to PQI is directly proportional to the enzymatic activity of S. typhimurium. This was achieved by performing genotoxicity tests for 2-(2-furyl)-3-(5-nitro-2-furyl)-acrylamide (AF-2) and 2-aminoanthracene (2-AA) as model genotoxic compounds. The results obtained in this study indicated that the signal detection in the genotoxicity assay based on hydrodynamic voltammetry was less influenced by the presence of colored components and sediment particles in the samples when compared to the usual colorimetric signal detection. The influence caused by the presence of humic acids (HAs) and artificial sediment on the genotoxic property of selected model compounds such as 4-nitroquinoline-N-oxide (4-NQO), 3-chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone (MX), 1,8-dinitropyrene (1,8-DNP) and 1-nitropyrene (1-NP) were also investigated. The results showed that the genotoxicity of 1-NP and MX changed in the presence of 10 mg·L−1 HAs. The genotoxicity of tested chemicals with a high hydrophobicity such as 1,8-DNP and 1-NP were decreased substantially with the presence of 1 g·L−1 sediment. This was not observed in the case of genotoxins with a low log Kow value. PMID:23242275

  6. Chromium determination in osteoblast-like cell culture medium by catalytic cathodic stripping voltammetry with a mercury microelectrode.

    PubMed

    Morais, S; de Carvalho, G S; Sousa, J P

    1998-07-01

    A catalytic cathodic stripping voltammetric procedure for the determination of total chromium in osteoblast-like cell culture medium using a mercury film microelectrode (MFM) was optimised. The method is based on the pre-concentration of the Cr(III)-diethylenetriaminepentaacetic acid (DTPA) complex by adsorption at the potential of-1.00 V (vs. Ag/AgC1) in the presence of 10 x 10(-3) mol/L DTPA, 0.70 mol/L sodium nitrate, 0.04 mol/L sodium acetate and 1.0 x 10(-3) mol/L potassium permanganate at pH 5.9-6.0. The limit of detection obtained for a 40 s collection time was 2.80 x 10(-10) mol/L of chromium. The results achieved by stripping voltammetry using the MFM were compared to those obtained by atomic absorption spectrometry (AAS) to ensure the reliability of the electrochemical method. This procedure proved to be an alternative to AAS and valuable in biocompatibility studies performed in vitro using osteoblast-like cells. PMID:9760419

  7. Direct determination of cadmium and lead in pharmaceutical ingredients using anodic stripping voltammetry in aqueous and DMSO/water solutions.

    PubMed

    Rosolina, Samuel M; Chambers, James Q; Lee, Carlos W; Xue, Zi-Ling

    2015-09-17

    A new electrochemical method has been developed to detect and quantify the elemental impurities, cadmium(II) (Cd(2+)) and lead(II) (Pb(2+)), either simultaneously or individually in pharmaceutical matrices. The electro-analytical approach, involving the use of anodic stripping voltammetry (ASV) on an unmodified glassy carbon electrode, was performed in both aqueous and in a 95/5 dimethyl sulfoxide (DMSO)/water solutions, without acid digestion or dry ashing to remove organic matrices. Limits of detection (LODs) in the μg L(-1) [or parts per billion (ppb), mass/volume] range were obtained for both heavy metals - in the presence and absence of representative pharmaceutical components. To the best of our knowledge, the work demonstrates the first analysis of heavy metals in DMSO/water solutions through ASV. The strong reproducibility and stability of the sensing platform, as well as obviation of sample pretreatment show the promise of utilizing ASV as a sensitive, robust, and inexpensive alternative to inductively-coupled-plasma (ICP)-based approaches for the analysis of elemental impurities in, e.g., pharmaceutical-related matrices. PMID:26398419

  8. Determination of the wine preservative sulphur dioxide with cyclic voltammetry using inkjet printed electrodes.

    PubMed

    Schneider, Marion; Trke, Alexander; Fischer, Wolf-Joachim; Kilmartin, Paul A

    2014-09-15

    During winemaking sulphur dioxide is added to prevent undesirable reactions. However, concerns over the harmful effects of sulphites have led to legal limits being placed upon such additives. There is thus a need for simple and selective determinations of sulphur dioxide in wine, especially during winemaking. The simultaneous detection of polyphenols and sulphur dioxide, using cyclic voltammetry at inert electrodes is challenging due to close oxidation potentials. In the present study, inkjet printed electrodes were developed with a suitable voltammetric signal on which the polyphenol oxidation is suppressed and the oxidation peak height for sulphur dioxide corresponds linearly to the concentration. Different types of working electrodes were printed. Electrodes consisting of gold nanoparticles mixed with silver showed the highest sensitivity towards sulphur dioxide. Low cost production of the sensor elements and ultra fast determination of sulphur dioxide by cyclic voltammetry makes this technique very promising for the wine industry. PMID:24767077

  9. Anodic Stripping Voltammetry of Silver Nanoparticles: Aggregation Leads to Incomplete Stripping

    PubMed Central

    Cloake, Samantha J; Toh, Her Shuang; Lee, Patricia T; Salter, Chris; Johnston, Colin; Compton, Richard G

    2015-01-01

    The influence of nanoparticle aggregation on anodic stripping voltammetry is reported. Dopamine-capped silver nanoparticles were chosen as a model system, and melamine was used to induce aggregation in the nanoparticles. Through the anodic stripping of the silver nanoparticles that were aggregated to different extents, it was found that the peak area of the oxidative signal corresponding to the stripping of silver to silver(I) ions decreases with increasing aggregation. Aggregation causes incomplete stripping of the silver nanoparticles. Two possible mechanisms of partial oxidation and inactivation of the nanoparticles are proposed to account for this finding. Aggregation effects must be considered when anodic stripping voltammetry is used for nanoparticle detection and quantification. Hence, drop casting, which is known to lead to aggregation, is not encouraged for preparing electrodes for analytical purposes. PMID:25861566

  10. Electrochemistry in Media of Exceptionally Low Polarity: Voltammetry with a Fluorous Solvent

    PubMed Central

    Olson, Eric J.; Boswell, Paul G.; Givot, Bradley L.; Yao, Letitia J.; Bhlmann, Philippe

    2009-01-01

    This work demonstrates the first cyclic voltammetry in a perfluorocarbon solvent without use of a cosolvent. The novel electrolyte tetrabutylammonium tetrakis[3,5-bis(perfluorohexyl)phenyl]borate (NBu4BArF104; 80 mM) allows for voltammetry of ferrocene in perfluoro(methylcyclohexane) by lowering the specific resistance to ?268 k cm at 20.8 C. Despite significant solution resistance, the resulting voltammograms can be fitted quantitatively without difficulty. The thus determined standard electron transfer rate constant, k, for the oxidation of ferrocene in perfluoro(methylcyclohexane) is somewhat smaller than for many solvents commonly used in electrochemistry, but can be explained readily as the result of the viscosity and size of the solvent using Marcus theory. Dielectric dispersion spectroscopy verifies that addition of NBu4BArF104 does not significantly raise the overall polarity of the solution over that of neat perfluoro(methylcyclohexane). PMID:20212920

  11. Voltammetric Electronic Tongue for Different Varieties of Rice Classification Based on Square Wave Voltammetry

    NASA Astrophysics Data System (ADS)

    Hu, Hongsheng; Niu, Qunfeng; Pan, Yinqing; Wang, Li

    A classification method of discriminate rice from different varieties with voltammetric electronic tongue based on square wave voltammetry is investigated. The rice samples are crushed and mixed with distilled water to get the rice solution, and the solution should be stirred and filtered before the experiment. In order to obtain the electrochemical response signals of the rice samples and extract the characteristic value of the singles, the electronic tongue which works respectively with titanium (Ti) electrode and tungsten electrode (W) to test the sample solution under square wave voltammetry. The Principal Component Analysis (PCA) and Clustering Analysis (CA) are adopted to classify and recognize the rice samples. Experimental results show that good classification and recognition results are got in this paper when using Principal Component Analysis and Cluster Analysis to analyze the response signals which are obtained by voltammetric electronic tongue worked with Ti electrode and W electrode under square wave potential.

  12. Analysis of passive films on stainless steel by cyclic voltammetry and Auger spectroscopy

    SciTech Connect

    Ramasubramanian, N.; Preocanin, N.; Davidson, R.D.

    1985-04-01

    Anodic passivation of Type 316L stainless steel in a borate-boric acid buffer solution was studied using cyclic voltammetry and Auger spectroscopy. Based on a comparison with the results obtained on the metals (iron, chromium, and nickel), the reduction peaks appearing in the voltammograms for the steel were attributed to the reductive dissolution of a ferric oxide and to valence transitions associated with chromium and nickel in the oxide. It is shown that cyclic voltammetry in the buffer solution provides a qualitative and semiquantitative analysis of the passive film growth. Okamoto's model of formation of two types of films, determined by the anodization potential, is found to be applicable; the mechanism of oxide growth is related to selective enrichment of iron or chromium, which is based on solubility relationships predicted by thermodynamic considerations. 12 references, 8 figures.

  13. Determination of sulfide in natural waters: increased detectability using differential-pulse cathodic-stripping voltammetry

    SciTech Connect

    Gurtisen, J.M.; Garland, T.R.; Crecelius, E.A.

    1982-03-01

    Determinations of sulfide levels were made for estuarine and freshwaters. Comparison of results were made using three different analytical techniques. Differential pulse cathodic stripping voltammetry (DPCSV), the silver/sulfide electrode, and a spectrophotomeric method using Lauth's violet dye. The detection limit of the DPCSV technique is 17.1 nM S/sup =/ at 3 sigma or one order of magnitude more sensitive than other accepted techniques. Sampling procedures, sulfide stabilization, and storage are discussed. 10 references, 2 tables.

  14. Hairy carbon electrodes studied by cyclic voltammetry and battery discharge testing

    NASA Technical Reports Server (NTRS)

    Chung, Deborah D. L.; Shui, Xiaoping; Frysz, Christine A.

    1993-01-01

    Hairy carbon is a new material developed by growing submicron carbon filaments on conventional carbon substrates. Typical substrate materials include carbon black, graphite powder, carbon fibers, and glassy carbon. A catalyst is used to initiate hair growth with carbonaceous gases serving as the carbon source. To study the electrochemical behavior of hairy carbons, cyclic voltammetry (CV) and discharge testing were conducted. In both cases, hairy carbon results surpassed those of the substrate material alone.

  15. Cyclic voltammetry of quinolinium salts and related compounds: correlation with structure and anticancer activity.

    PubMed

    Crawford, P W; Foye, W O; Ryan, M D; Kovacic, P

    1987-06-01

    Cyclic voltammetry data were obtained for 12 salts of quinolines, one pyridine, and one open-chain imine which possess varying degrees of anticancer activity. The structural features include sidechain bis(2-methylthio)vinyl, 2-methylthio-2-aminovinyl, dithioacetic acid, 2-quinolylvinyl, 2-styrylvinyl, and guanidine sulfide functionalities. Reduction potentials ranged from -0.43 to -1.08 V. The electrochemical results are correlated with structure. A possible mechanism of anticancer action is addressed. PMID:3625495

  16. Microbial Biofilm Voltammetry: Direct Electrochemical Characterization of Catalytic Electrode-Attached Biofilms?

    PubMed Central

    Marsili, Enrico; Rollefson, Janet B.; Baron, Daniel B.; Hozalski, Raymond M.; Bond, Daniel R.

    2008-01-01

    While electrochemical characterization of enzymes immobilized on electrodes has become common, there is still a need for reliable quantitative methods for study of electron transfer between living cells and conductive surfaces. This work describes growth of thin (<20 ?m) Geobacter sulfurreducens biofilms on polished glassy carbon electrodes, using stirred three-electrode anaerobic bioreactors controlled by potentiostats and nondestructive voltammetry techniques for characterization of viable biofilms. Routine in vivo analysis of electron transfer between bacterial cells and electrodes was performed, providing insight into the main redox-active species participating in electron transfer to electrodes. At low scan rates, cyclic voltammetry revealed catalytic electron transfer between cells and the electrode, similar to what has been observed for pure enzymes attached to electrodes under continuous turnover conditions. Differential pulse voltammetry and electrochemical impedance spectroscopy also revealed features that were consistent with electron transfer being mediated by an adsorbed catalyst. Multiple redox-active species were detected, revealing complexity at the outer surfaces of this bacterium. These techniques provide the basis for cataloging quantifiable, defined electron transfer phenotypes as a function of potential, electrode material, growth phase, and culture conditions and provide a framework for comparisons with other species or communities. PMID:18849456

  17. Characterization of Local pH Changes in Brain Using Fast-Scan Cyclic Voltammetry with Carbon Microelectrodes

    PubMed Central

    Takmakov, Pavel; Zachek, Matthew K.; Keithley, Richard B.; Bucher, Elizabeth; McCarty, Gregory S.; Wightman, R. Mark

    2010-01-01

    Transient local pH changes in the brain are important markers of neural activity that can be used to follow metabolic processes that underlie the biological basis of behavior, learning and memory. There are few methods that can measure pH fluctuations with sufficient time resolution in freely moving animals. Previously, fast-scan cyclic voltammetry at carbon-fiber microelectrodes was used for the measurement of such pH transients. However, the origin of the potential dependent current in the cyclic voltammograms for pH changes recorded in vivo was unclear. The current work explored the nature of these peaks and established the origin for some of them. A peak relating to the capacitive nature of the pH CV was identified. Adsorption of electrochemically inert species, such as aromatic amines and calcium could suppress this peak, and is the origin for inconsistencies regarding in vivo and in vitro data. Also, we identified an extra peak in the in vivo pH CV relating to the presence of 3,4-dihydroxyacetic acid (DOPAC) in the brain extracellular fluid. To evaluate the in vivo performance of the carbon-fiber sensor, carbon dioxide inhalation by an anesthetized rat was used to induce brain acidosis induced by hypercapnia. Hypercapnia is demonstrated to be a useful tool to induce robust in vivo pH changes, allowing confirmation of the pH signal observed with FSCV. PMID:21047096

  18. UPDATE/ADDITIONS TO CURRENT OUST PUBLICATION: "HOW TO EVALUATE ALTERNATIVE CLEANUP TECHNOLOGIES FOR UNDERGROUND STORAGE TANK SITES: A GUIDE FOR CORRECTIVE ACTION PLAN REVIEWERS"

    EPA Science Inventory

    This guidance manual is comprised of several chapters, each of which describes in detail alternative cleanup technologies for underground storage tank sites. Each chapter provides diagrams and tables to aide in determining whether a particular technology may be applicable for cl...

  19. beta-Sonogel-carbon electrodes: a new alternative for the electrochemical determination of catecholamines.

    PubMed

    Izaoumen, Nissrin; Cubillana-Aguilera, Laura M; Naranjo-Rodrguez, Ignacio; de Cisneros, Jos L Hidalgo-Hidalgo; Bouchta, Dounia; Temsamani, Khalid R; Palacios-Santander, Jos M

    2009-04-30

    In this work, a new alternative for the electrochemical determination of catecholamines based on beta-cyclodextrin-Sonogel-Carbon electrodes is reported. The incorporation of beta-CD and graphite in the preparation of the Sonogel-Carbon material leads to a modification of the electrode surface properties which causes a significant increase in the oxidation peak current of biomolecules such as dopamine, L-epinephrine, D,L-norepinephrine and catechol. This phenomenon might be attributed to the formation of an inclusion complex between beta-CD and the catecholamines. The amount of beta-CD necessary to form the Sonogel electrode was studied and optimization of electrochemical parameters, perm selectivity and mechanical stability of the sensor are discussed. Scanning electron microscopy and electrochemical impedance spectroscopy measurements were employed to characterize the electrical parameters and the structural properties of the new electrode surface, respectively. Cyclic voltammetry (CV) and Adsorptive differential pulse voltammetry (AdDPV) measurements were also used to explore the electrochemical behaviour of the electrode versus the quoted catecholamines. The beta-CD-Sonogel-Carbon electrode offers fast and linear responses towards dopamine, norepinephrine, epinephrine and catechol, with good and low detection limits: 0.164, 0.294, 0.699 and 0.059 micromol L(-1), respectively. PMID:19203597

  20. Wireless fast-scan cyclic voltammetry measurement of histamine using WINCS -- a proof-of-principle study

    PubMed Central

    Chang, Su-Youne; Jay, Taylor; Muoz, Joel; Kim, Inyong; Lee, Kendall H.

    2012-01-01

    Histamine is among the most poorly understood biogenic amines, yet the histaminergic system spreads throughout the brain and has been implicated in functions as diverse as homeostasis and synaptic plasticity. Not surprisingly then, it has been linked to a number of conditions including minimally conscious state, persistent vegetative state, epilepsy, addiction, cluster headache, essential tremor, and Parkinsons disease. We have previously reported that the Wireless Instantaneous Neurotransmitter Concentration Sensing (WINCS) system can monitor dopamine, serotonin, and adenosine using fast-scan cyclic voltammetry (FSCV). Here, we demonstrate the expanded capability of the WINCS system to measure histamine. The optimal FSCV waveform was determined to be a triangle wave scanned between ?0.4 and +1.4 V at a rate of 400 V/s applied at 10 Hz. Using this optimized FSCV parameter, we found histamine release was induced by high frequency electrical stimulation at the tuberomammillary nucleus in rat brain slices. Our results suggest that the WINCS system can provide reliable, high fidelity measurements of histamine, consistently showing oxidative currents at +1.3 V, a finding that may have important clinical implications. PMID:22416270

  1. Interactions of the baicalin and baicalein with bilayer lipid membranes investigated by cyclic voltammetry and UV-Vis spectroscopy.

    PubMed

    Zhang, Ying; Wang, Xuejing; Wang, Lei; Yu, Miao; Han, Xiaojun

    2014-02-01

    The baicalin and baicalein are the major flavonoids found in Radix Scutellariae, an essential herb in traditional Chinese medicine for thousands of years. The interactions of the baicalin and baicalein with lipid bilayer membranes were studied using cyclic voltammetry and UV-Vis spectroscopy. The thickness d of supported bilayer lipid membranes was calculated as d=4.59(±0.36) nm using AC impedance spectroscopy. The baicalein interacted with egg PC bilayer membranes in a dose-dependent manner. The responses of K3Fe(CN)6 on lipid bilayer membrane modified Pt electrode linearly increased in a concentration range of baicalein from 6.25μM to 25μM with a detection limit of 0.1μM and current-concentration sensitivity of 0.11(±0.01) μA/μM, and then reached a plateau from 25μM to 50μM. However the baicalin showed much weaker interactions with egg PC bilayer membranes. UV-Vis spectroscopy also confirmed that the baicalein could interact with egg PC membranes noticeably, but the interaction of baicalin with membranes was hard to be detected. The results provide useful information on understanding the mechanism of action of Radix Scutellariae in vivo. PMID:24239871

  2. Effect of ohmic, mass-transfer, and kinetic resistances on linear-sweep voltammetry in a cylindrical-pore electrode

    NASA Technical Reports Server (NTRS)

    Weidner, John W.; Fedkiw, Peter S.

    1991-01-01

    A means is presented to account for the effect of ohmic, mass-transfer, and kinetic resistances on linear-sweep voltammograms by modeling a pore in a porous matrix as a cylindrical-pore electrode, and solving the mass and charge conservation equations in the context of this geometry for the simply redox reaction O + ne(-) yield R where both O and R are soluble species. Both analytical and numerical techniques are used to solve the governing equations. The calculated peak currents and potentials are correlated by empirical formulas to the measurable parameters: sweep rate, concentration of the redox species, diffusion coefficient, conductivity of the electrolyte, and pore dimensions. Using the correlations, a methodology is established for determining if the redox reaction kinetics are irreversible or reversible (Nernstian). If the reaction is irreversible, it is shown how the standard rate constant and the transfer coefficient may be extracted from linear-sweep voltammetry data, or, if the reaction is reversible, how the number of electrons transferred may be deduced.

  3. Application of bismuth bulk annular band electrode for determination of ultratrace concentrations of thallium(I) using stripping voltammetry.

    PubMed

    Węgiel, Krystian; Jedlińska, Katarzyna; Baś, Bogusław

    2016-06-01

    A study of a new type of mercury-free working electrode - the bismuth bulk annular band working electrode (BiABE) - applied for thallium(I) detection via differential pulse anodic stripping voltammetry (DP ASV), preceded by the complexation of interfering ions (Cd(2+), Pb(2+)) with EDTA in an acetate buffer (pH 4.5), is reported. The optimisation of experimental conditions included selection of the appropriate supporting electrolyte solution, potential and time of preconcentration, and DP mode parameters. The peak current was proportional to the concentration of Tl(I) in the range from 0.5 to 49nmolL(-1) (R=0.9992) and from 0.05 to 1.4nmolL(-1) (R=0.9987) for accumulation times of 60s and 300s, respectively. For 60s of accumulation time, the LOD was 0.005nmolL(-1) (1ngL(-1)) (at S/N=3), and the sensitivity of 18.5nA/nM was achieved. The relative standard deviation for 4.9nmolL(-1) of Tl(I) was 4.3% (n=5). Finally, the proposed method was successfully applied to determine Tl(I) in the certified reference materials-waters (SPS-SW1 and SPS-SW2) as well as the spiked tap and river water samples. PMID:26921513

  4. Abrasive stripping square-wave voltammetry of blackberry, raspberry, strawberry, pomegranate, and sweet and blue potatoes.

    PubMed

    Komorsky-Lovrić, Šebojka; Novak, Ivana

    2011-08-01

    Electro-oxidation potentials of 7 fruits and vegetables were determined by abrasive stripping voltammetry. The responses were characterized by 2 peaks with maxima at 0.45 and 0.55 V compared with Ag/AgCl, respectively. Both electrode reactions appear reversible at a frequency of 8 Hz. They can be ascribed to anthocyanidins and ellagic acid as electroactive compounds. By this method, an antioxidative capacity of a certain plant can be quickly estimated without extraction of active components. PMID:22417490

  5. SPR imaging combined with cyclic voltammetry for the detection of neural activity

    NASA Astrophysics Data System (ADS)

    Li, Hui; Zhang, Lulu; Chen, Xing; Sun, Jianhai; Cui, Dafu

    2014-03-01

    Surface plasmon resonance (SPR) detects changes in refractive index at a metal-dielectric interface. In this study, SPR imaging (SPRi) combined with cyclic voltammetry (CV) was applied to detect neural activity in isolated bullfrog sciatic nerves. The neural activities induced by chemical and electrical stimulation led to an SPR response, and the activities were recorded in real time. The activities of different parts of the sciatic nerve were recorded and compared. The results demonstrated that SPR imaging combined with CV is a powerful tool for the investigation of neural activity.

  6. Electrochemistry and analytical determination of lysergic acid diethylamide (LSD) via adsorptive stripping voltammetry.

    PubMed

    Merli, Daniele; Zamboni, Daniele; Protti, Stefano; Pesavento, Maria; Profumo, Antonella

    2014-12-01

    Lysergic acid diethylamide (LSD) is hardly detectable and quantifiable in biological samples because of its low active dose. Although several analytical tests are available, routine analysis of this drug is rarely performed. In this article, we report a simple and accurate method for the determination of LSD, based on adsorptive stripping voltammetry in DMF/tetrabutylammonium perchlorate, with a linear range of 1-90 ng L(-1) for deposition times of 50s. LOD of 1.4 ng L(-1) and LOQ of 4.3 ng L(-1) were found. The method can be also applied to biological samples after a simple extraction with 1-chlorobutane. PMID:25159435

  7. Identification of 5-aminosalicylic acid, ciprofloxacin and azithromycin by abrasive stripping voltammetry.

    PubMed

    Komorsky-Lovri?, Sebojka; Nigovi?, Biljana

    2004-09-21

    Solid microparticles of 5-aminosalicylic acid, ciprofloxacin, and azithromycin were mechanically immobilized on the surface of the paraffin impregnated graphite electrode and investigated by square-wave and cyclic voltammetry in order to develop a method for their qualitative determination. 5-Aminosalicylic acid is oxidized at 0.540 V in the quasireversible electrode reaction, which is followed by the chemical transformation of the product, while ciprofloxacin and azithromycin are oxidized at 1.2 V and 0.94 V, respectively, in totally irreversible electrode reactions. The detection of these drugs in commercial dosage formulations is reported. PMID:15351051

  8. Dependence of adenine isolation efficiency on the chain length evidenced using paramagnetic particles and voltammetry measurements

    NASA Astrophysics Data System (ADS)

    Huska, Dalibor; Adam, Vojtech; Trnkova, Libuse; Kizek, Rene

    2009-05-01

    The main aim of this work was to study the dependence of oligoadenine isolation efficiency on the chain length by using paramagnetic particles covered by homo-deoxythymidines ((dT)25) with subsequent detection by adsorptive transfer technique coupled with square wave voltammetry. For this purpose, the oligonucleotides of the length A5, A10, A15, A20, A25, A30, A35, A40 and poly(A) in various concentrations were chosen. We determined that the isolation efficiency defined as "isolated oligonucleotide concentration"/"given oligonucleotide concentration" was about 55% on average. Sequence A25 demonstrated the best binding onto microparticles surface.

  9. Sampling phasic dopamine signaling with fast-scan cyclic voltammetry in awake behaving rats

    PubMed Central

    Fortin, SM; Cone, JJ; Ng-Evans, S; McCutcheon, JE; Roitman, MF

    2015-01-01

    Fast-scan cyclic voltammetry (FSCV) is an electrochemical technique which permits the in vivo measurement of extracellular fluctuations in multiple chemical species. The technique is frequently utilized to sample sub-second (phasic) concentration changes of the neurotransmitter dopamine in awake and behaving rats. Phasic dopamine signaling is implicated in reinforcement, goal-directed behavior, and locomotion and FSCV has been used to investigate how rapid changes in striatal dopamine concentration contribute to these and other behaviors. This unit describes the instrumentation and construction, implantation, and use of necessary components required to sample and analyze dopamine concentration changes in awake rats with FSCV. PMID:25559005

  10. Enhanced electroreduction of oxygen and stripping voltammetry on PdPt nanoparticles

    NASA Astrophysics Data System (ADS)

    Loganathan, Moorthi; Kakade, Bhalchandra; Swami, Anita; Tamaki, Takanori; Yamaguchi, Takeo

    2015-06-01

    Enhanced oxygen reduction reaction (ORR) on PdPt nanopartiles has been demonstrated after their synthesis using a simple co-precipitation method in presence of reducing agent like N-methylpyrrolidone. Enhancement in the ORR activity of PdPt over commercial Pt catalyst has been discussed based on formation of extent of deleterious oxygenated species on catalytic active sites and the same has been studied quantitatively using stripping voltammetry. An improved specific activity (Is) of 500 A/cm2.Pt for PdPt has been observed versus 200 A/cm2.Pt for Pt catalyst at 0.9 V.

  11. Direct determination of iodide in sea water by cathodic stripping square wave voltammetry

    SciTech Connect

    Luther, G.W. III; Swartz, C.B.; Ullman, W.J.

    1988-09-01

    A procedure for the direct determination of iodide in sea water is described. By use of cathodic stripping square wave voltammetry, it is possible to determine low and subnanomolar levels of iodide in sea water, freshwater, and brackish water. Precision is typically +/-5% (1sigma). The minimum detection limit is 0.1-0.2 nM (12 parts per trillion) at a 180-s deposition time. Data obtained on Atlantic Ocean samples show similar trends to previously reported iodine speciation data. This method is more sensitive than previous methods by 1-2 orders of magnitude. Triton X-100 added to the sample enhances the mercury electrode's sensitivity to iodide.

  12. CdTe nanocrystal-based electrochemical biosensor for the recognition of neutravidin by anodic stripping voltammetry at electrodeposited bismuth film.

    PubMed

    Du, Dan; Ding, Jiawang; Tao, Yuan; Li, Haibing; Chen, Xi

    2008-12-01

    CdTe quantum dots (QDs)-based electrochemical sensor for recognition of neutravidin, as a model protein, using anodic stripping voltammetry at electrodeposited bismuth film is presented. This biosensor involves the immobilization of the captured QDs conjugates which was dissolved with 1M HCl solution to release cadmium ions and metal components were quantified by anodic stripping voltammetry after a 3-min accumulation at -1.2V on bismuth-film electrode (BiFE) of the biotin, served as recognition element, onto the gold surface in connection with a cysteamine self-assembled monolayer. The modification procedure was characterized by electrochemical impedance spectroscopy and atomic force microscopy. We exploit QDs as labels for amplifying signal output and monitoring the extent of competition process between CdTe-labeled neutravidin and the target neutravidin for the limited binding sites on biotin. As expected for the competitive mechanism, the recognition event thus yields distinct cadmium stripping voltammetric current peak, whose response decreases upon increasing the level of target neutravidin concentrations. Under optimal conditions, the voltammetric response is highly linear over the range of 0.5-100 ngL(-1) neutravidin and the limit of detection is estimated to be 0.3 ngL(-1) (5 nM). Unlike earlier two-step sandwich bioassays, the present protocol relies on a one-step competitive assay, which is more accurate and sensitive, showing great promise for rapid, simple and cost-effective analysis of protein. PMID:18722762

  13. Pseudo-stir bar hollow fiber solid/liquid phase microextraction combined with anodic stripping voltammetry for determination of lead and cadmium in water samples

    PubMed Central

    Eshaghi, Zarrin; Hoseini, Hasan Ali; Mohammadi-Nokhandani, Saeed; Ebrahimi, Javad

    2013-01-01

    A new procedure is presented for the determination of low concentrations of lead and cadmium in water samples. Ligand assisted pseudo-stir bar hollow fiber solid/liquid phase microextraction using solgel sorbent reinforced with carbon nanotubes was combined with differential pulse anodic stripping voltammetry for simultaneous determination of cadmium and lead in tap water, and Darongar river water samples. In the present work, differential pulse anodic stripping voltammetry (DPASV) using a hanging mercury drop electrode (HMDE) was used in order to determine the ultra trace level of lead and cadmium ions in real samples. This method is based on accumulation of lead and cadmium ions on the electrode using different ligands; Quinolin-8-ol, 5,7-diiodo quinoline-8-ol, 4,5-diphenyl-1H-imidazole-2(3H)-one and 2-{[2-(2-Hydroxy-ethylamino)-ethylamino]-methyl}-phenol as the complexing agent. The optimized conditions were obtained. The relationship between the peak current versus concentration was linear over the range of 0.05500ngmL?1 for Cd (II) and Pb (II). The limits of detection for lead and cadmium were 0.015ngmL?1 and 0.012ngmL?1, respectively. Under the optimized conditions, the pre-concentration factors are 2440 and 3710 for Cd (II) and Pb (II) in 5mL of water sample, respectively. PMID:25685537

  14. Electrochemical identification of corrosion products on historical and archaeological bronzes using the voltammetry of micro-particles attached to a carbon paste electrode.

    PubMed

    Satovi?, D; Martinez, S; Bobrowski, A

    2010-06-15

    An overview of the electrochemical method for the identification of microsampled corrosion products from historical and archaeological bronzes is reported. Two characteristic examples of long-term air and subterranean formed patinas and two artificial patinas formed on Cu-6%Sn bronze in sulphate and chloride solutions, were investigated in 0.1M HCl(aq) by means of the cyclic voltammetry of micro-particles attached to a carbon paste electrode. Patina constituent phases were identified by comparing the electrochemical parameters of the patina samples to those of reference compounds: CuO, Cu(2)O, SnO, SnO(2), CuCl, CuCl(2) x 2H(2)O and CuSO(4) x 5H(2)O. An identification scheme was suggested which may be applied to discern the various corrosion products of bronze based on electrochemical data (voltammetric peak potentials). The presence of two prevalent phases of sulphate and chloride patinas, CuSO(4) and CuCl, as well as the presence of Sn compounds was clearly indicated by the cyclic voltammetry of microparticles, in both, naturally and artificially formed samples. A comparison to the ATR-FTIR results revealed that the methods are complementary and that their simultaneous application could prove particularly valuable in drawing conclusions about the current shape and prospects of the conservation and restoration of bronze artefacts. PMID:20441970

  15. Aternating current photovoltaic building block

    DOEpatents

    Bower, Ward Issac; Thomas, Michael G.; Ruby, Douglas S.

    2004-06-15

    A modular apparatus for and method of alternating current photovoltaic power generation comprising via a photovoltaic module, generating power in the form of direct current; and converting direct current to alternating current and exporting power via one or more power conversion and transfer units attached to the module, each unit comprising a unitary housing extending a length or width of the module, which housing comprises: contact means for receiving direct current from the module; one or more direct current-to-alternating current inverters; an alternating current bus; and contact means for receiving alternating current from the one or more inverters.

  16. Voltammetry and In Situ Scanning Tunneling Microscopy of Cytochrome c Nitrite Reductase on Au(111) Electrodes

    PubMed Central

    Gwyer, James D.; Zhang, Jingdong; Butt, Julea N.; Ulstrup, Jens

    2006-01-01

    Escherichia coli cytochrome c nitrite reductase (NrfA) catalyzes the six-electron reduction of nitrite to perform an important role in the biogeochemical cycling of nitrogen. Here we describe NrfA adsorption on single-crystal Au(111) electrodes as an electrocatalytically active film in which the enzyme undergoes direct electron exchange with the electrode. The adsorbed NrfA has been imaged to molecular resolution by in situ scanning tunneling microscopy (in situ STM) under full electrochemical potential control and under conditions where the enzyme is electrocatalytically active. Details of the density and orientational distribution of NrfA molecules are disclosed. The submonolayer coverage resolved by in situ STM is readily reconciled with the failure to detect nonturnover signals in cyclic voltammetry of the NrfA films. The molecular structures show a range of lateral dimensions. These are suggestive of a distribution of orientations that could account for the otherwise anomalously low turnover number calculated for the total population of adsorbed NrfA molecules when compared with that determined for solutions of NrfA. Thus, comparison of the voltammetric signals and in situ STM images offers a direct approach to correlate electrocatalytic and molecular properties of the protein layer, a long-standing issue in protein film voltammetry. PMID:16935959

  17. Voltammetry of basal plane platinum electrodes in acetonitrile electrolytes: effect of the presence of water.

    PubMed

    Surez-Herrera, Marco F; Costa-Figueiredo, Marta; Feliu, Juan M

    2012-03-20

    The first part of this report studies the electrochemical properties of single-crystal platinum electrodes in acetonitrile electrolytes by means of cyclic voltammetry. Potential difference infrared spectroscopy in conjunction with linear voltammetry was used to obtain a molecular-level picture of this interface. The second part of this report studies the hydrogen evolution and the hydrogen oxidation reactions on the three low-index faces of Pt electrodes in acetonitrile electrolytes. The data (CVs and IR spectra) strongly suggest that acetonitrile and CN(-) molecules are adsorbed on single-crystal platinum electrodes in the range of -1.5 to 0.3 V versus Ag/AgCl. Those species block part of the adsorption sites for hydrogen adatoms, and they decompose on the surface in the presence of water. The nature of the cation and the presence of water strongly affect the onset of acetonitrile electrolysis and the kinetics and stability of the adsorbed species on the electrode. Finally, the hydrogen evolution and the hydrogen oxidation reactions on platinum single-crystal surfaces in acetonitrile electrolytes are strongly affected by the surface-energy state of Pt electrodes. PMID:22369635

  18. Investigation of antioxidant capacity of the extracts of bilberry (VACCINUM MYRTILLIS L.) by voltammetry

    NASA Astrophysics Data System (ADS)

    Vtorushina, A. N.; Nikonova, E. D.

    2016-02-01

    This paper deals with the urgent issue of the search of new drugs based on plant raw materials that have an influence on various stages of oxidation processes occurring in the human body. The aim of this paper is to determine the antioxidant activity of the bilberry extracts that are used in the medicine practice by a cathodic voltammetry method. We consider the influence of water and alcohol bilberry extracts on the process of oxygen electroreduction. From these extracts the most activity relation to the process of cathodic oxygen reduction showed alcohol (40%) bilberry extract. It was also stated that the alcohol extract of bilberry has a greater antioxidant activity than other known antioxidants such as ascorbic acid, glucose, dihydroquercetin. Thus, after consideration of a number of plant objects, we showed the possibility of applying the method of cathodic voltammetry for the determination of total antioxidant activity of plant material and identifying and highlighting the most perspective sources of biologically active substances (BAS), as well as the ability of identifying extractants that fully extract BAS from plant raw materials. The activity data of extracts of plant raw materials gives an opportunity of establishing an effective yield phytopreparation based on bilberry that has an antioxidant effect.

  19. Comparison of the brain penetration injury associated with microdialysis and voltammetry

    PubMed Central

    Jaquins-Gerstl, Andrea; Michael, Adrian C.

    2009-01-01

    Emerging evidence suggests that differences between microdialysis- and voltammetry-based estimates of extracellular dopamine in the brain might originate in the different penetration injury associated with each technique. To address this issue in a direct fashion, microdialysis probes and voltammetric microelectrodes were implanted in the rat striatum for 1, 4, or 24 hrs. Tissues were perfused with a suspension of fluorescently labeled nanobeads to assess blood vessels near the implant. Tissue sections (30 ?m) were labeled with antibodies for PECAM, an endothelial cell marker, or GFAP, a glial marker. In non-implanted control tissue, blood vessels were reliably double-labeled with nanobeads and antiPECAM. Tissue near microdialysis probe tracks exhibited ischemia in the form of PECAM immunoreactive blood vessels devoid of nanobeads. Ischemia was most apparent after the 4-hr implants. Probe tracks were surrounded by endothelial cell debris, which appeared as a diffuse halo of PECAM immunoreactivity. The halo intensity decreased with implant duration, indicative of an active wound-healing process. Consistent with this, after 24-hr implants, the probe tracks were surrounded by hyperplasic and hypertrophic glia and glial processes were extending towards, and engulfing, the track. Carbon fiber microelectrodes produced a diffuse disruption of nanobead labeling but no focal disruption of blood vessels, no PECAM immunoreactive halo, and no glial activation. These findings illuminate the differences between the extent and nature of the penetration injuries associated with microdialysis and voltammetry. PMID:19559724

  20. Hydrodynamic Voltammetry as a Rapid and Simple Method for Evaluating Soil Enzyme Activities

    PubMed Central

    Sazawa, Kazuto; Kuramitz, Hideki

    2015-01-01

    Soil enzymes play essential roles in catalyzing reactions necessary for nutrient cycling in the biosphere. They are also sensitive indicators of ecosystem stress, therefore their evaluation is very important in assessing soil health and quality. The standard soil enzyme assay method based on spectroscopic detection is a complicated operation that requires the removal of soil particles. The purpose of this study was to develop a new soil enzyme assay based on hydrodynamic electrochemical detection using a rotating disk electrode in a microliter droplet. The activities of enzymes were determined by measuring the electrochemical oxidation of p-aminophenol (PAP), following the enzymatic conversion of substrate-conjugated PAP. The calibration curves of β-galactosidase (β-gal), β-glucosidase (β-glu) and acid phosphatase (AcP) showed good linear correlation after being spiked in soils using chronoamperometry. We also performed electrochemical detection using real soils. Hydrodynamic chronoamperometry can be used to assess the AcP in soils, with a detection time of only 90 s. Linear sweep voltammetry was used to measure the amount of PAP released from β-gal and β-glu by enzymatic reaction after 60 min. For the assessment of soil enzymes, the results of hydrodynamic voltammetry assay compared favorably to those using a standard assay procedure, but this new procedure is more user-friendly, rapid and simple. PMID:25746097

  1. Glyphosate detection with ammonium nitrate and humic acids as potential interfering substances by pulsed voltammetry technique.

    PubMed

    Martínez Gil, Pablo; Laguarda-Miro, Nicolas; Camino, Juan Soto; Peris, Rafael Masot

    2013-10-15

    Pulsed voltammetry has been used to detect and quantify glyphosate on buffered water in presence of ammonium nitrate and humic substances. Glyphosate is the most widely used herbicide active ingredient in the world. It is a non-selective broad spectrum herbicide but some of its health and environmental effects are still being discussed. Nowadays, glyphosate pollution in water is being monitored but quantification techniques are slow and expensive. Glyphosate wastes are often detected in countryside water bodies where organic substances and fertilizers (commonly based on ammonium nitrate) may also be present. Glyphosate also forms complexes with humic acids so these compounds have also been taken into consideration. The objective of this research is to study the interference of these common pollutants in glyphosate measurements by pulsed voltammetry. The statistical treatment of the voltammetric data obtained lets us discriminate glyphosate from the other studied compounds and a mathematical model has been built to quantify glyphosate concentrations in a buffer despite the presence of humic substances and ammonium nitrate. In this model, the coefficient of determination (R(2)) is 0.977 and the RMSEP value is 2.96 × 10(-5) so the model is considered statistically valid. PMID:24054650

  2. Hydrodynamic voltammetry as a rapid and simple method for evaluating soil enzyme activities.

    PubMed

    Sazawa, Kazuto; Kuramitz, Hideki

    2015-01-01

    Soil enzymes play essential roles in catalyzing reactions necessary for nutrient cycling in the biosphere. They are also sensitive indicators of ecosystem stress, therefore their evaluation is very important in assessing soil health and quality. The standard soil enzyme assay method based on spectroscopic detection is a complicated operation that requires the removal of soil particles. The purpose of this study was to develop a new soil enzyme assay based on hydrodynamic electrochemical detection using a rotating disk electrode in a microliter droplet. The activities of enzymes were determined by measuring the electrochemical oxidation of p-aminophenol (PAP), following the enzymatic conversion of substrate-conjugated PAP. The calibration curves of ?-galactosidase (?-gal), ?-glucosidase (?-glu) and acid phosphatase (AcP) showed good linear correlation after being spiked in soils using chronoamperometry. We also performed electrochemical detection using real soils. Hydrodynamic chronoamperometry can be used to assess the AcP in soils, with a detection time of only 90 s. Linear sweep voltammetry was used to measure the amount of PAP released from ?-gal and ?-glu by enzymatic reaction after 60 min. For the assessment of soil enzymes, the results of hydrodynamic voltammetry assay compared favorably to those using a standard assay procedure, but this new procedure is more user-friendly, rapid and simple. PMID:25746097

  3. Solid state voltammetry and sensors in solids and gases. Performance report, April 1991--March 1992

    SciTech Connect

    Murray, R.W.

    1992-04-01

    This project explores the electrochemical reactivity of electron transfer donor/acceptors dissolved in and diffusing through solid and semi-solid, ionically conductive media. The emphasis is on developing voltammetric experiments that are quantitatively interpretable in terms of the mass transport and electron transfer rates and thermodynamic equilibria of the redox solutes, and to exploit such experiments to probe their chemical and electrochemical behavior in the solid media. Techniques for quantitative voltammetry in solids were essentially unknown prior to initiation of this DOE project. We mainly employ poly(ethers)s containing dissolved metal salts electrolytes (``polymer electrolytes``), as prototype solid and semi-solid solvents. During this award year we have (a) concluded a study of plasticization chemistry in poly (ether) polymer electrolytes, (b) made progress in devising techniques for measuring the rates of electron transfer reactions in solid and semi-solid poly (ether)s, (c) continued efforts to design and understand the behavior of microband electrodes of various widths (0.1 to 10 {mu}m) in voltammetry of redox solutes, and (d) initiated synthetic efforts to attach ethylene oxide chains of various lengths to redox solutes.

  4. A Flexible Software Platform for Fast-Scan Cyclic Voltammetry Data Acquisition and Analysis

    PubMed Central

    Bucher, Elizabeth S.; Brooks, Kenneth; Verber, Matthew D.; Keithley, Richard B.; Owesson-White, Catarina; Carroll, Susan; Takmakov, Pavel; McKinney, Collin J.; Wightman, R. Mark

    2013-01-01

    Over the last several decades, fast-scan cyclic voltammetry (FSCV) has proved to be a valuable analytical tool for the real-time measurement of neurotransmitter dynamics in vitro and in vivo. Indeed, FSCV has found application in a wide variety of disciplines including electrochemistry, neurobiology and behavioral psychology. The maturation of FSCV as an in vivo technique led users to pose increasingly complex questions that require a more sophisticated experimental design. To accommodate recent and future advances in FSCV application, our lab has developed High Definition Cyclic Voltammetry (HDCV). HDCV is an electrochemical software suite, and includes data acquisition and analysis programs. The data collection program delivers greater experimental flexibility and better user feedback through live displays. It supports experiments involving multiple electrodes with customized waveforms. It is compatible with TTL-based systems that are used for monitoring animal behavior and it enables simultaneous recording of electrochemical and electrophysiological data. HDCV analysis streamlines data processing with superior filtering options, seamlessly manages behavioral events, and integrates chemometric processing. Furthermore, analysis is capable of handling single files collected over extended periods of time, allowing the user to consider biological events on both sub-second and multi-minute time scales. Here we describe and demonstrate the utility of HDCV for in vivo experiments. PMID:24083898

  5. Alternate drop pulse polarography

    USGS Publications Warehouse

    Christie, J.H.; Jackson, L.L.; Osteryoung, R.A.

    1976-01-01

    The new technique of alternate drop pulse polarography is presented. An experimental evaluation of alternate drop pulse polarography shows complete compensation of the capacitative background due to drop expansion. The capillary response phenomenon was studied in the absence of faradaic reaction and the capillary response current was found to depend on the pulse width to the -0.72 power. Increased signal-to-noise ratios were obtained using alternate drop pulse polarography at shorter drop times.

  6. The influence of electrostimulation with the use of direct and alternating current on the corrosion of Cr-Ni-Mo steel implants.

    PubMed

    Szewczenko, J; Marciniak, J

    2000-09-30

    This paper presents results of researches of influence of different methods of electrostimulation of a bone union on the corrosion of implants made of AISI 316 L steel with the passive and passive-carbon layer deposited on their surface. The electrostimulation was carrying out for 28 days in Tyrode's physiological solution of temperature 36,6 +/- 10C. The pH was varying in the 7,6 - 8,6. A direct, pulsating and sinusoidal current was used for the electrostimulation. Mass decrements and corrosion damages of implants were estimated for individual methods of electrostimulation. Furthermore the paper presents results of infiltration of corrosion products. The corrosion products come into being as the result of stimulation of union bone with the use direct current and invasive methods. A ratio of the corrosion product infiltration was estimated with use of X-ray microanalysis. PMID:18034143

  7. Alternate Alternates: A Medley of Alternate Assessments.

    ERIC Educational Resources Information Center

    Burdette, Paula J.; Olsen, Ken

    This paper highlights eight states that have implemented alternate assessments for children with disabilities who cannot participate in their state and district-wide assessment programs. The alternate assessment systems in Delaware, Florida, Georgia, Indiana, Minnesota, North Dakota, Utah, and West Virginia are briefly described, along with their

  8. Anodic Voltammetry of Thioacetamide and its Amperometric Determination in Aqueous Media

    PubMed Central

    Cinghi??, Dan; Radovan, Ciprian; Dasc?lu, Daniela

    2008-01-01

    TAA is a harmful, presumptive pollutant in tap waters and waste waters. Several alternatives have been tested as new possibilities for the anodic determination of TAA in aqueous solutions, simulated waste waters and tap water. The electrochemical behaviour of thioacetamide (TAA) was investigated at a boron-doped diamond (BDD) electrode both in unbuffered 0.1 M Na2SO4 and buffered solutions as supporting electrolytes. The anodic oxidation of TAA showed well-defined limiting currents or current peaks and a good linearity of the amperometric signal vs. concentration plots. The analytical parameters of sensitivity, RSD and LOD, obtained under various experimental conditions, suggest the suitability of the BDD electrode for electroanalytical purposes. Low fouling effects, good reproducibility and stability, as well as the sharpness of the amperometric signals in both unbuffered/ buffered acidic or neutral media, highly superior to those obtained using a glassy carbon (GC) electrode, recommend the unmodified BDD electrode as a promising potential amperometric sensor for environmental applications, regarding the direct anodic determination of TAA in aqueous media.

  9. Use of LC-MS-MS as an alternative to currently available immunoassay methods to quantitate corticosterone in egg yolk and albumen.

    PubMed

    De Baere, Siegrid; Rosendahl Larsen, Tom; Devreese, Mathias; De Backer, Patrick; De Neve, Liesbeth; Fairhurst, Graham; Lens, Luc; Croubels, Siska

    2015-06-01

    Corticosterone (CORT) is the dominant plasma glucocorticoid in birds. There has been increasing interest in the function of CORT in avian egg yolk and in the potential to use CORT concentrations in eggs to quantify stress and to assess the effect of maternal stress on offspring. The concentration of CORT in egg yolk is most frequently assessed using enzyme or radioimmunoassays, alone or in combination with high-performance liquid chromatography. However, the quantification of CORT is frequently hampered by the presence of high concentrations of other steroid hormones which cross-react with the CORT antibody. As an alternative, we developed a sensitive and specific LC-MS-MS method. The sample-preparation procedure consisted of a protein-lipid precipitation step, followed by defatting and clean-up using a C18 SPE column. Chromatography was performed on an Acquity C18 BEH column (50 mm??2.1 mm i.d., dp: 1.7 ?m, run-time: 6 min), using 0.1% formic acid in both water (A) and acetonitrile (B) as mobile phases. The MS-MS instrument was operated in the positive-electrospray-ionization mode. The method was validated in-house according to European Guidelines (linearity, accuracy and precision, limits of quantification and detection, specificity, stability) and the results fell within the accepted ranges. The method was successfully used for the analysis of CORT in yolk and albumen of eggs collected from eight breeding lesser black-backed gulls at a Flemish coastal colony. CORT concentrations were in the range 42.4-166.3 pg g(-1) in albumen and?

  10. The influence of the capping agent on the oxidation of silver nanoparticles: nano-impacts versus stripping voltammetry.

    PubMed

    Toh, Her Shuang; Jurkschat, Kerstin; Compton, Richard G

    2015-02-01

    The influence of capping agents on the oxidation of silver nanoparticles was studied by using the electrochemical techniques of anodic stripping voltammetry and anodic particle coulometry ("nano-impacts"). Five spherical silver nanoparticles each with a different capping agent (branched polyethylenimine (BPEI), citrate, lipoic acid, polyethylene glycol (PEG) and polyvinylpyrrolidone (PVP)) were used to perform comparative experiments. In all cases, regardless of the capping agent, complete oxidation of the single nanoparticles was seen in anodic particle coulometry. The successful quantitative detection of the silver nanoparticle size displays the potential application of anodic particle coulometry for nanoparticle characterisation. In contrast, for anodic stripping voltammetry using nanoparticles drop casting, it was observed that the capping agent has a very significant effect on the extent of silver oxidation. All five samples gave a low oxidative charge corresponding to partial oxidation. It is concluded that the use of anodic stripping voltammetry to quantify nanoparticles is unreliable, and this is attributed to nanoparticle aggregation. PMID:25581121

  11. [Dosage of cadmium and lead in human blood by anodic stripping voltammetry].

    PubMed

    Attar, Tarik; Harek, Yahia; Dennouni-Medjati, Nouria; Lahcen, Larabi

    2012-10-01

    The objective is the determination of the conditions operating optimal to determine the concentration of the cadmium and the lead dissolved in the human blood. An electroanalytical method has been developed for the determination of lead and cadmium in whole blood by differential pulse anodic stripping voltammetry (DPASV) on a hanging mercury drop electrode (HMDE). The best conditions were found to be electrolyte support perchloric acid 0.02M, the accumulation potential is -900mV, and the accumulation time is 320s. The obtained limits of detection are equal to 0.46 and 0.08ng/mL respectively for the lead and the cadmium. The developed method was validated by the analysis of reference materials certified by total blood. PMID:23047906

  12. Electrochemical characterization of gelatinized starch dispersions: voltammetry and electrochemical impedance spectroscopy on platinum surface.

    PubMed

    Hernandez-Jaimes, C; Lobato-Calleros, C; Sosa, E; Bello-Prez, L A; Vernon-Carter, E J; Alvarez-Ramirez, J

    2015-06-25

    The electrochemical properties of gelatinized starch dispersions (GSD; 5% w/w) from different botanical sources were studied using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) tests over a platinum surface. The phenomenological modelling of EIS data using equivalent circuits indicated that after gelatinization the electrical resistance was determined mainly by the resistance of insoluble material (i.e., ghosts). Sonication of the GSD disrupted the ghost microstructure, and produced an increase in electrical conductivity by reducing the resistance of the insoluble material. The CV data showed three oxidation peaks at potentials where glucose solutions displayed oxidation waves. It is postulated that hydrolysis at the bulk and electrocatalyzed oxidation on the Pt-surface are reactions involved in the starch transformation. Starches peak intensity increased with the amylose content, suggesting that the amylose-rich matrix played an important role in the charge transfer in the electrolytic system. PMID:25839788

  13. Simultaneous determination of three herbicides by differential pulse voltammetry and chemometrics.

    PubMed

    Ni, Yongnian; Wang, Lin; Kokot, Serge

    2011-01-01

    A novel differential pulse voltammetry method (DPV) was researched and developed for the simultaneous determination of Pendimethalin, Dinoseb and sodium 5-nitroguaiacolate (5NG) with the aid of chemometrics. The voltammograms of these three compounds overlapped significantly, and to facilitate the simultaneous determination of the three analytes, chemometrics methods were applied. These included classical least squares (CLS), principal component regression (PCR), partial least squares (PLS) and radial basis function-artificial neural networks (RBF-ANN). A separately prepared verification data set was used to confirm the calibrations, which were built from the original and first derivative data matrices of the voltammograms. On the basis relative prediction errors and recoveries of the analytes, the RBF-ANN and the DPLS (D - first derivative spectra) models performed best and are particularly recommended for application. The DPLS calibration model was applied satisfactorily for the prediction of the three analytes from market vegetables and lake water samples. PMID:21512931

  14. Lab-on-a-chip sensor for measuring Zn by stripping voltammetry

    NASA Astrophysics Data System (ADS)

    Pei, Xing; Kang, Wenjing; Yue, Wei; Bange, Adam; Wong, Hector R.; Heineman, William R.; Papautsky, Ian

    2012-03-01

    This work reports on continuing development of a lab-on-a-chip sensor for electrochemical detection of heavy metal zinc in blood serum. The sensor consists of a three electrode system, including an environmentally-friendly bismuth working electrode, a Ag/AgCl reference electrode, and a gold auxiliary electrode. By optimizing the electrodeposition of bismuth film, better control of fabrication steps and improving interface between the sensor and potentiostat, repeatability and sensitivity of the lab-on-a-chip sensor has been improved. Through optimization of electrolyte and stripping voltammetry parameters, limits of detection were greatly improved. The optimized sensor was able to measure zinc in in the physiological range of 65-95 ?g/dL. Ultimately, with further development and integrated sample preparation sensor system will permit rapid (min) measurements of zinc from a sub-mL sample (a few drops of blood) for bedside monitoring.

  15. Investigation of nonequilibrium orthovanadates of alkaline-earth elements by stripping voltammetry

    SciTech Connect

    Belysheva, G.M.; Brainina, K.Z.; Khodos, M.Y.

    1986-07-01

    This paper studies the influence of the annealing temperature on the deviations from the stoichiometry with respect to oxygen in the orthovanadates of magnesium, strontium, and barium by stripping voltammetry and x-ray diffraction analysis. The experimental results can be interpreted with consideration of the changes in the deviations from the stoichioimetry with respect to oxygen in the vanadates investigated. At temperatures not less than 1170 K the concentration of the oxygen vacancies increases with inceasing annealing temperatures. A change in the spectrum of chemisorbed oxygen was detected at higher temperatures and may be attributed to the formation of extensive defects due to an increase in the deviation from the stoichiometry with respect to oxygen.

  16. Toward single-enzyme molecule electrochemistry: [NiFe]-hydrogenase protein film voltammetry at nanoelectrodes.

    PubMed

    Hoeben, Freek J M; Meijer, F Stefan; Dekker, Cees; Albracht, Simon P J; Heering, Hendrik A; Lemay, Serge G

    2008-12-23

    We have scaled down electrochemical assays of redox-active enzymes enabling us to study small numbers of molecules. Our approach is based on lithographically fabricated Au nanoelectrodes with dimensions down to ca. 70 x 70 nm(2). We first present a detailed characterization of the electrodes using a combination of scanning electron microscopy, cyclic voltammetry, and finite-element modeling. We then demonstrate the viability of the approach by focusing on the highly active [NiFe]-hydrogenase from Allochromatium vinosum immobilized on polymyxin-pretreated Au. Using this system, we successfully demonstrate a distinct catalytic response from less than 50 enzyme molecules. These results strongly suggest the feasibility of using bioelectrochemistry as a new tool for studying redox enzymes at the single-molecule level. PMID:19206284

  17. Analysis of nitroguanidine in aqueous solutions by HPLC (high performance liquid chromatography) with electrochemical detection and voltammetry: Final report

    SciTech Connect

    Manning, D.L.; Maskarinec, M.P.

    1987-04-01

    This study was directed towards the analysis of nitroguanidine in aqueous solutions. Nitroguanidine, which is the strongest organic base known, is used in the manufacture of some explosives. A method based on reverse phase HPLC with reductive electrochemical detection was developed for the determination of low levels of nitroguanidine. The nitroguanidine can be concentrated in the aqueous solutions by rotary evaporation at 50/sup 0/C. If the samples are not too complex, the nitroguanidine can be measured directly by voltammetry. From voltammetry, it was established that nitroguanidine is reduced via an irreversible diffusion controlled four electron process. 15 refs., 2 figs., 3 tabs.

  18. On-line coupling of sequential injection lab-on-valve to differential pulse anodic stripping voltammetry for determination of Pb in water samples.

    PubMed

    Wang, Yang; Liu, Zaiqing; Hu, Xiaoya; Cao, Jinglian; Wang, Fei; Xu, Qin; Yang, Chun

    2009-01-15

    Sequential injection lab-on-valve (LOV) was first proposed for analyzing ultra-trace amounts of Pb using differential pulse anodic stripping voltammetry (DPASV) with a miniaturized electrochemical flow cell fabricated in the LOV unit. Deposition and stripping processes took place between the renewable mercury film carbon paste electrode and sample solution, the peak current was employed as the basis of quantification. The mercury film displayed a long-term stability and reproducibility for at least 50 cycles before next renewal, the properties of integrated miniature LOV unit not only enhanced the automation of the analysis procedure but also declined sample/reagent consumption. Potential factors that affect the present procedure were investigated in detail, i.e., deposition potential, deposition time, electrode renewable procedure and the volume of sample solution. The practical applicability of the present procedure was demonstrated by determination of Pb in environmental water samples. PMID:19064113

  19. Catalytic adsorptive stripping voltammetry versus electrothermal atomic absorption spectrometry in the determination of trace cobalt and chromium in human urine.

    PubMed

    Huskov, L; Bobrowski, A; Srmkov, J; Krlicka, A; Vytras, K

    2005-05-15

    Two methods of the determination of cobalt and chromium in human urine of non-occupationally exposed populations-highly sensitive catalytic adsorptive stripping voltammetry (CAdSV) and electrothermal atomic absorption spectrometry (ET-AAS)-are evaluated and compared. The CAdSV methods are based on adsorptive accumulation of a cobalt-nioxime (1,2-cyclohexanedione dioxime) or a chromium-DTPA (diethylenetriammine-N,N,N',N'',N''-pentaacetic acid) complexes on a hanging mercury drop electrode, followed by a stripping voltammetric measurement of the catalytic reduction current of the adsorbed complex in the presence of sodium nitrite in case of cobalt or in the presence of sodium nitrate in case of chromium determination. In the CAdSV procedure UV-photolysis was used for the sample pre-treatment; the ET-AAS determination did not require any separate preliminary decomposition of the analyte urine samples. The accuracy of the procedures was checked by the analysis of commercially available quality control urine samples. The detection limits (3sigma) were 0.13mugl(-1) for Co and 0.18mugl(-1) for Cr in ET-AAS determination and 0.007mugl(-1) for Co and 0.002mugl(-1) for Cr in CAdSV measurements. Precision (R.S.D.) was less than 5% for both methods. The study has shown that the CAdSV is a more reliable and sensitive technique for the determination of very low cobalt and chromium contents in urine, the detection of which is not possible when using the AAS technique. PMID:18970083

  20. Direct in situ measurement of dissolved zinc in the presence of zinc oxide nanoparticles using anodic stripping voltammetry.

    PubMed

    Jiang, Chuanjia; Hsu-Kim, Heileen

    2014-11-01

    The wide use of metal-based nanomaterials such as zinc oxide (ZnO) nanoparticles (NPs) has generated concerns regarding their environmental and health risks. For ZnO NPs, their toxicity in aquatic systems often depends on the release of dissolved zinc species, and the rate of dissolution is influenced by water chemistry, including the presence of zinc-chelating ligands. A challenge, however, remains in quantifying the dissolution of ZnO NPs, particularly for time scales that are short enough to determine rates. This paper reports the application of anodic stripping voltammetry (ASV) with a hanging mercury drop electrode to directly measure the concentration of dissolved zinc in ZnO NP suspensions, without separation of the ZnO NPs from the aqueous phase. The effects of the deposition time and the electrochemical potential scan rate on the ASV measurement were consistent with expectations for dissolved phase measurements. The dissolved zinc concentration measured by ASV ([Zn]ASV) was compared with that measured by inductively coupled plasma mass spectrometry (ICP-MS) after ultracentrifugation ([Zn]ICP-MS), for four types of ZnO NPs with different coatings and primary particle diameters. For small ZnO NPs (4-5 nm), [Zn]ASV was 20% higher than [Zn]ICP-MS, suggesting that these small NPs contributed to the voltammetric measurement. For larger ZnO NPs (approximately 20 nm), [Zn]ASV was (79 19)% of [Zn]ICP-MS, despite the high concentrations of ZnO NPs in suspension. Using ASV, the dissolution of ZnO NPs was studied, with or without Suwannee River Fulvic Acid (SRFA). Although SRFA diminished the ASV stripping current, dissolution of 20 nm ZnO NPs was significantly promoted at high fulvic acid to ZnO NP ratios. The ASV method described in this paper provides a useful tool for studying the dissolution kinetics of ZnO NPs in complex environmental matrices. PMID:25220562

  1. Ratiometric biosensor array for multiplexed detection of microRNAs based on electrochemiluminescence coupled with cyclic voltammetry.

    PubMed

    Feng, Xiaobin; Gan, Ning; Zhang, Huairong; Li, Tianhua; Cao, Yuting; Hu, Futao; Jiang, Qianli

    2016-01-15

    A novel multiplexed ratiometric biosensor array was fabricated on a homemade screen-printed carbon electrode (SPCE) for near-simultaneous detection of microRNA (miRNA)-21 and miRNA-141 based on electrochemiluminescence (ECL) coupled with cyclic voltammetry (CV) method. In the detection system, the ECL signal tags (Ru-SiO2@PLL-Au) were fabricated using poly-l-lysine (PLL) as bridging agent and co-reactant to connect Ru-SiO2 (Ru(bpy)3(2+)-doped silica) and gold nanoparticles (Au NPs), which were respectively modified on two spatial resolved working electrodes (WE1 and WE2) of SPCE. Then the ferrocene (Fc)-labeled hairpin DNA (Fc-HDNA1 and Fc-HDNA2) as CV signal tags and ECL quenching material were immobilized on Ru-SiO2@PLL-Au. Upon miRNA-21 and miRNA-141 adding, the target miRNAs could hybridize with corresponding Fc-HDNA, which could lead to Fc away from Ru-SiO2@PLL-Au. Such conformational changes could recover the ECL of Ru-SiO2@PLL-Au and decreased the CV current of Fc, respectively. This "signal-on" of ECL and "signal-off" of CV were employed for dual-signal ratiometric readout. With the help of a multiplexed switch, two dual-signals from WE1 and WE2 were used for multiplexed detection of miRNA-21 and miRNA-141 down to 6.3 and 8.6fM, respectively. This approach was used in real sample analysis and has significant potential for miRNA biomarkers detection in a clinical laboratory setting. PMID:26332383

  2. Effects of skin blood flow and temperature on skin--electrode impedance and offset potential: measurements at low alternating current density.

    PubMed

    Smith, D C

    1992-01-01

    Skin--electrode impedance was determined at 100 Hz and 1 kHz between two disposable electrodes, 5 cm apart, at current densities < 65 microA.cm-2. Measurements were made on the volar skin of the forearm during cooling on cardiopulmonary bypass, and on the dorsum of the foot in the absence of skin blood flow during aortic aneurysm repair. Both the resistive and reactive components of the skin-electrode impedence showed an inverse linear relationship to temperature between 26 and 36 degrees C. The magnitude of the impedance change was different for each patient studied; resistance changes ranged from 0.03 to 23.2 k omega. Degrees C-1 at 100 Hz and from 0.03 to 2.7 k omega. Degrees C-1 at 1 kHz, while reactance changes ranged from 0.4 to 2.1 k omega. Degrees C-1 at 100 Hz and from 0.04 to 0.18 k omega. Degrees C-1 at 1 kHz. Changes in skin-electrode impedance were not due to changes in skin blood flow. There was no consistent change in offset potential with temperature. Although the skin-electrode impedance increases as temperature falls, it is concluded that temperature effects at the skin-electrode interface are not responsible for the observed failure of evoked electromyography during clinical monitoring of neuromuscular function. PMID:1404312

  3. A Medicare current beneficiary survey-based investigation of alternative primary care models in nursing homes: functional ability and health status outcomes.

    PubMed

    Abdallah, Lisa M; Van Etten, Deborah; Lee, A James; Melillo, Karen Devereaux; Remington, Ruth; Gautam, Ramraj; Gore, Rebecca J

    2015-01-01

    This study assessed how the health status and functioning of Medicare beneficiaries residing in nursing homes varies systematically with nurse practitioners (NPs) and physician assistants (PAs) providing primary care services. A secondary analysis was conducted using data from the 2006, 2007, and 2008 Medicare Current Beneficiary Surveys. The study sample included 433 participant-year observations within one of three cohorts: (a) medical doctor (MD)-only, those who received primary care services exclusively from a physician; (b) MD-dominant, those who received some primary care services from an NP or PA, but those visits accounted for less than one half of total primary care visits; and (c) NP/PA-dominant, those who received more than one half of their primary care visits from an NP or PA. Participants in the MD-only cohort had significantly less orientation and independence in activities of daily living compared to participants in the NP/PA-dominant cohort. Other study variables did not vary significantly by practice model. Although the study provides some evidence that NP/PA involvement is associated with improved functioning, it is premature to draw strong inferences. PMID:25643375

  4. An expert consortium review of the EC-commissioned report "alternative (Non-Animal) methods for cosmetics testing: current status and future prospects - 2010".

    PubMed

    Hartung, Thomas; Blaauboer, Bas J; Bosgra, Sieto; Carney, Edward; Coenen, Joachim; Conolly, Rory B; Corsini, Emanuela; Green, Sidney; Faustman, Elaine M; Gaspari, Anthony; Hayashi, Makoto; Wallace Hayes, A; Hengstler, Jan G; Knudsen, Lisbeth E; Knudsen, Thomas B; McKim, James M; Pfaller, Walter; Roggen, Erwin L

    2011-01-01

    The European cosmetics legislation foresees a review in 2011 and possible postponement of the 2013 marketing ban to enforce the testing ban for systemic and repeated-dose animal tests. For this purpose, a 119-page report commissioned by the European Commission was published recently. Here, a group of 17 independent experts from the US, Europe, and Japan was brought together to evaluate the report. The expert panel strongly endorsed the report and its conclusions. A number of important options not considered were identified; these do not, however, affect the overall conclusions regarding the current lack of availability of a full replacement, especially for the areas of repeated dose toxicity, carcinogenicity testing, and reproductive toxicity, though a roadmap for change is emerging. However, some of these options may provide adequate data for replacement of some animal studies in the near future pending validation. Various recommendations expand the original report. The reviewers agree with the report that there is greater promise in the short term for the areas of sensitization and toxicokinetics. Additional opportunities lie in more global collaborations and the inclusion of other industry sectors. PMID:21993956

  5. Lowering of the firing voltage and reducing of the discharge delay time in alternating current plasma display panels by a discontinuous spin-coated LaB{sub 6} film on the MgO protective layer

    SciTech Connect

    Deng, Jiang; Zeng, Baoqing; Zhongshan Institute, University of Electronic Science and Technology of China, 528402 zhongshan ; Wang, Xiaoju; Lin, Zulun; Qi, Kangcheng; Cao, Guichuan

    2014-03-15

    A spin coated LaB{sub 6} discontinuous film is covered on MgO protective layer to improve the discharge performance of alternating current plasma display panels. Under the premise of high transmittance of more than 90%, a very small amount of polycrystal LaB{sub 6} powders added in an organic solvent are chosen as the coating solution. The discharge characteristics results show that with 250 torr 5% Xe-Ne pressure, the firing voltage and discharge delay time of the test panel with LaB{sub 6}/MgO double protective layer are decreased by 13.4% and 36.5%, respectively, compared with that of conventional MgO protective layer, likely owing to the low work function of LaB{sub 6.} Furthermore, the aging time of the proposed structure is comparable to that of pure MgO protective layer. Therefore, it will not increase the production costs and is highly suitable to be applied for alternating current plasma display panels with low electrical power consumption.

  6. Cyclic voltammetry: a tool to quantify 2,4,6-trichloroanisole in aqueous samples from cork planks boiling industrial process.

    PubMed

    Peres, Antnio M; Freitas, Patrcia; Dias, Lus G; Sousa, Mara E B C; Castro, Lus M; Veloso, Ana C A

    2013-12-15

    Chloroanisoles, namely 2,4,6-trichloroanisole, are pointed out as the primary responsible of the development of musty off-flavours in bottled wine, due to their migration from cork stoppers, which results in huge economical losses for wine industry. A prevention step is the detection of these compounds in cork planks before stoppers are produced. Mass spectrometry gas chromatography is the reference method used although it is far beyond economical possibilities of the majority of cork stoppers producers. In this work, a portable cyclic voltammetry approach was used to detect 2,4,6-trichloroanisole extracted from natural cork planks to the aqueous phase during the cork boiling industrial treatment process. Analyses were carried out under ambient conditions, in less than 15 min with a low use of solvent and without any sample pre-treatment. The proposed technique had detection (0.310.01 ng/L) and quantification (0.950.05 ng/L) limits lower than the human threshold detection level. For blank solutions, without 2,4,6-trichloroanisole addition, a concentration in the order of the quantification limit was estimated (1.00.2 ng/L), which confirms the satisfactory performance of the proposed methodology. For aqueous samples from the industrial cork planks boiling procedure, intra-day repeatabilities were lower than 3%, respectively. Also, 2,4,6-trichloroanisole contents in the aqueous samples determined by this novel approach were in good agreement with those obtained by GC-MS (correlation coefficient equal to 0.98), confirming the satisfactory accuracy of the proposed methodology. So, since this novel approach is a fast, low-cost, portable and user-friendly method, it can be an alternative and helpful tool for in-situ industrial applications, allowing accurate detection of releasable 2,4,6-trichloroanisole in an earlier phase of cork stoppers production, which may allow implementing more effective cork treatments to reduce or avoid future 2,4,6-trichloroanisole contaminations of wine. PMID:24209365

  7. Mapping Activity Variations for Ru2O3 in Lunar Volcanic Green Glass Analogs Using Differential Pulse Voltammetry

    NASA Technical Reports Server (NTRS)

    Malum, K. M.; Colson, R. O.; Sawarynski, M.

    2001-01-01

    Using differential pulse voltammetry, we are mapping variations in activities for NiO and Ru2O3 as a function of compositional variation for compositions centered around an Apollo 15 green glass analog. Additional information is contained in the original extended abstract.

  8. Investigation of an alternating current plasma as an element selective atomic emission detector for high-resolution capillary gas chromatography and as a source for atomic absorption and atomic emission spectrometry

    SciTech Connect

    Ombaba, J.M.

    1992-01-01

    This thesis deals with the construction and evaluation of an alternating current plasma (ACP) as an element-selective detector for high resolution capillary gas chromatography (GC) and as an excitation source for atomic absorption spectrometry (AAS) and atomic emission spectrometry (AES). The plasma, constrained in a quartz discharge tube at atmospheric pressure, is generated between two copper electrodes and utilizes helium as the plasma supporting gas. The alternating current plasma power source consists of a step-up transformer with a secondary output voltage of 14,000 V at a current of 23 mA. The chromatographic applications studied included the following: (1) the separation and selective detection of the organotin species, tributyltin chloride (TBT) and tetrabutyltin (TEBT), in environmental matrices including mussels (mytilus edullus) and sediment from Boston Harbor, industrial waste water and industrial sludge, and (2) the detection of methylcyclopentadienylmanganesetricarbonyl (MMT) and similar compounds used as gasoline additives. An ultrasonic nebulizer was utilized as a sample introduction device for aqueous solutions when the ACP was employed as an atomization source for atomic absorption spectrometry and as an excitation source for atomic emission spectrometry. Plasma diagnostic parameters studied include spatial electron number density across the discharge tube, electronic, excitation and ionization temperatures. Interference studies both in absorption and emission modes were considered. The evaluation of a computer-aided optimization program, Drylab GC, using spearmint oil and Environmental Protection Agency (EPA) standard mixture as probes is discussed. The program is used for separation optimization and prediction of gas chromatographic parameters. The program produces a relative resolution map (RRM) which guides the analyst in selecting the most favorable temperature programming rate for the separation.

  9. Integrated wireless fast-scan cyclic voltammetry recording and electrical stimulation for reward-predictive learning in awake, freely moving rats

    NASA Astrophysics Data System (ADS)

    Li, Yu-Ting; Wickens, Jeffery R.; Huang, Yi-Ling; Pan, Wynn H. T.; Chen, Fu-Yu Beverly; Chen, Jia-Jin Jason

    2013-08-01

    Objective. Fast-scan cyclic voltammetry (FSCV) is commonly used to monitor phasic dopamine release, which is usually performed using tethered recording and for limited types of animal behavior. It is necessary to design a wireless dopamine sensing system for animal behavior experiments. Approach. This study integrates a wireless FSCV system for monitoring the dopamine signal in the ventral striatum with an electrical stimulator that induces biphasic current to excite dopaminergic neurons in awake freely moving rats. The measured dopamine signals are unidirectionally transmitted from the wireless FSCV module to the host unit. To reduce electrical artifacts, an optocoupler and a separate power are applied to isolate the FSCV system and electrical stimulator, which can be activated by an infrared controller. Main results. In the validation test, the wireless backpack system has similar performance in comparison with a conventional wired system and it does not significantly affect the locomotor activity of the rat. In the cocaine administration test, the maximum electrically elicited dopamine signals increased to around 230% of the initial value 20 min after the injection of 10 mg kg-1 cocaine. In a classical conditioning test, the dopamine signal in response to a cue increased to around 60 nM over 50 successive trials while the electrically evoked dopamine concentration decreased from about 90 to 50 nM in the maintenance phase. In contrast, the cue-evoked dopamine concentration progressively decreased and the electrically evoked dopamine was eliminated during the extinction phase. In the histological evaluation, there was little damage to brain tissue after five months chronic implantation of the stimulating electrode. Significance. We have developed an integrated wireless voltammetry system for measuring dopamine concentration and providing electrical stimulation. The developed wireless FSCV system is proven to be a useful experimental tool for the continuous monitoring of dopamine levels during animal learning behavior studies of freely moving rats.

  10. A potentiostat featuring an integrator transimpedance amplifier for the measurement of very low currents—Proof-of-principle application in microfluidic separations and voltammetry

    NASA Astrophysics Data System (ADS)

    Koutilellis, G. D.; Economou, A.; Efstathiou, C. E.

    2016-03-01

    This work reports the design and construction of a novel potentiostat which features an integrator transimpedance amplifier as a current-monitoring unit. The integration approach addresses the limitations of the feedback resistor approach used for current monitoring in conventional potentiostat designs. In the present design, measurement of the current is performed by a precision switched integrator transimpedance amplifier operated in the dual sampling mode which enables sub-pA resolution. The potentiostat is suitable for measuring very low currents (typical dynamic range: 5 pA-4.7 μA) with a 16 bit resolution, and it can support 2-, 3- and 4-electrode cell configurations. Its operation was assessed by using it as a detection module in a home-made capillary electrophoresis system for the separation and amperometric detection of paracetamol and p-aminophenol at a 3-electrode microfluidic chip. The potential and limitations of the proposed potentiostat to implement fast potential-scan voltammetric techniques were demonstrated for the case of cyclic voltammetry.

  11. Alternative Schools.

    ERIC Educational Resources Information Center

    Annett, Larry D.

    A model is presented for the categorizing of alternative schools, then the nature of the free school, which represents the essence of the alternative school movement, is examined. Strengths and weaknesses of court, legislative, and administrative approaches to resolve governance issues are set forth. This is followed by an analysis of three

  12. Coulometric differential FFT admittance voltammetry determination of Amlodipine in pharmaceutical formulation by nano-composite electrode.

    PubMed

    Norouzi, Parviz; Gupta, Vinod Kumar; Larijani, Bagher; Rasoolipour, Solmaz; Faridbod, Farnoush; Ganjali, Mohammad R

    2015-01-01

    An electrochemical detection technique based on combination of was coulometric differential fast Fourier transformation admittance voltammetry (CDFFTAV) and nano-composite film modified glassy carbon electrode was successfully applied for sensitive determination of Amlodipine. The nano-composite film was made by a mixture of ionic liquid, 1-ethyl-3-methylimidazolium tetrafluoroborate (EMIMBF4), multiwall carbon nanotube and Au nanoparticles as electrochemical mediators. Studies reveal that the irreversible oxidation of Amlodipine was highly facile on the electrode surface. The electrochemical response was established on calculation of the charge under the admittance peak, which was obtained by discrete integration of the admittance response in a selected potential range, obtained in a flow injection analysis. Once established the best operative optimum conditions, the resulting nano-composite film electrode showed a catalytic effect on the oxidation of the analyte. The response is linear in the Amlodipine concentration range of 1.0 × 10(-9) to 2.0 × 10(-7)M with a detection limit of 1.25 × 10(-10)M. Moreover, the proposed technique exhibited high sensitivity, fast response time (less than 6s) and long-term stability and reproducibility around 96%, and it was successfully used to the determination of Amlodipine content in the pharmaceutical formulation. PMID:25281143

  13. Electrochemical Protease Biosensor Based on Enhanced AC Voltammetry Using Carbon Nanofiber Nanoelectrode Arrays

    PubMed Central

    Swisher, Luxi Z.; Syed, Lateef U.; Prior, Allan M.; Madiyar, Foram R.; Carlson, Kyle R.; Nguyen, Thu A.; Hua, Duy H.; Li, Jun

    2013-01-01

    We report an electrochemical method for measuring the activity of proteases using nanoelectrode arrays (NEAs) fabricated with vertically aligned carbon nanofibers (VACNFs). The VACNFs of ~150 nm in diameter and 3 to 5 ?m in length were grown on conductive substrates and encapsulated in SiO2 matrix. After polishing and plasma etching, controlled VACNF tips are exposed to form an embedded VACNF NEA. Two types of tetrapeptides specific to cancer-mediated proteases legumain and cathepsin B are covalently attached to the exposed VACNF tip, with a ferrocene (Fc) moiety linked at the distal end. The redox signal of Fc can be measured with AC voltammetry (ACV) at ~1 kHz frequency on VACNF NEAs, showing distinct properties from macroscopic glassy carbon electrodes due to VACNFs unique interior structure. The enhanced ACV properties enable the kinetic measurements of proteolytic cleavage of the surface-attached tetrapeptides by proteases, further validated with a fluorescence assay. The data can be analyzed with a heterogeneous Michaelis-Menten model, giving specificity constant kcat/Km as (4.3 0.8) 104 M?1s?1 for cathepsin B and (1.13 0.38) 104 M?1s?1 for legumain. This method could be developed as portable multiplex electronic techniques for rapid cancer diagnosis and treatment monitoring. PMID:23814632

  14. Determination of nanogram quantities of osmium-labeled nucleic acids by stripping (inverse) voltammetry.

    PubMed

    Palecek, E; Hung, M A

    1983-07-15

    Modification of nucleic acids with OSO4 in the presence of pyridine results in a formation of a covalently bound electroactive center in a polynucleotide chain detectable by polarographic (voltammetric) methods. It has been shown that DNA modified with osmium (DNA-Os) accumulates at the hanging mercury-drop electrode during a waiting time in a wide range of potentials between 0 and -1.0 V (against the saturated calomel electrode) and produce at neutral pH a well-developed reduction peak at about -1.2 V due to scanning in the cathodic direction. Using the differential-pulse stripping (inverse) voltammetry, nanogram quantities of single-stranded DNA-Os can be determined at relatively short waiting times (1-3 min). Double-stranded DNA is modified with osmium to a much lesser extent as compared to single-stranded polynucleotides. The degree of modification of double-helical DNA is influenced by the presence of single-stranded and distorted double-stranded regions in the DNA molecules and by the environmental conditions which influence the DNA conformation. Osmium can thus be used as a probe of the DNA structure, and a few micrograms of double-helical DNA sample suffice for the voltammetric analysis. PMID:6353997

  15. Impact of Adsorption on Scanning Electrochemical Microscopy Voltammetry and Implications for Nanogap Measurements.

    PubMed

    Tan, Sze-Yin; Zhang, Jie; Bond, Alan M; Macpherson, Julie V; Unwin, Patrick R

    2016-03-15

    Scanning electrochemical microscopy (SECM) is a powerful tool that enables quantitative measurements of fast electron transfer (ET) kinetics when coupled with modeling predictions from finite-element simulations. However, the advent of nanoscale and nanogap electrode geometries that have an intrinsically high surface area-to-solution volume ratio realizes the need for more rigorous data analysis procedures, as surface effects such as adsorption may play an important role. The oxidation of ferrocenylmethyl trimethylammonium (FcTMA(+)) at highly oriented pyrolytic graphite (HOPG) is used as a model system to demonstrate the effects of reversible reactant adsorption on the SECM response. Furthermore, the adsorption of FcTMA(2+) species onto glass, which is often used to encapsulate ultramicroelectrodes employed in SECM, is also found to be important and affects the voltammetric tip response in a nanogap geometry. If a researcher is unaware of such effects (which may not be readily apparent in slow to moderate scan voltammetry) and analyzes SECM data assuming simple ET kinetics at the substrate and an inert insulator support around the tip, the result is the incorrect assignment of tip-substrate heights, kinetics, and thermodynamic parameters. Thus, SECM kinetic measurements, particularly in a nanogap configuration where the ET kinetics are often very fast (only just distinguishable from reversible), require that such effects are fully characterized. This is possible by expanding the number of experimental variables, including the voltammetric scan rate and concentration of redox species, among others. PMID:26877069

  16. Direct analysis of palladium in active pharmaceutical ingredients by anodic stripping voltammetry.

    PubMed

    Rosolina, Samuel M; Chambers, James Q; Xue, Zi-Ling

    2016-03-31

    Anodic stripping voltammetry, a classical electroanalytical method has been optimized to analyze trace Pd(II) in active pharmaceutical ingredient matrices. The electroanalytical approach with an unmodified glassy carbon electrode was performed in both aqueous and 95% DMSO/5% water (95/5 DMSO/H2O) solutions, without pretreatment such as acid digestion or dry ashing to remove the organics. Limits of detection (LODs) in the presence of caffeine and ketoprofen were determined to be 11 and 9.6 μg g(-1), with a relative standard deviation (RSD) of 5.7% and 2.3%, respectively. This method is simple, highly reproducible, sensitive, and robust. The instrumentation has the potential to be portable and the obviation of sample pretreatment makes it an ideal approach for determining lost catalytic metals in pharmaceutical-related industries. Furthermore, the simultaneous detection of Pd(II) with Cd(II) and Pb(II) in the low μg L(-1) range indicates that this system is capable of simultaneous multi-analyte analysis in a variety of matrices. PMID:26965326

  17. Presynaptic dopamine dynamics in striatal brain slices with fast-scan cyclic voltammetry.

    PubMed

    Maina, Francis K; Khalid, Madiha; Apawu, Aaron K; Mathews, Tiffany A

    2012-01-01

    Extensive research has focused on the neurotransmitter dopamine because of its importance in the mechanism of action of drugs of abuse (e.g. cocaine and amphetamine), the role it plays in psychiatric illnesses (e.g. schizophrenia and Attention Deficit Hyperactivity Disorder), and its involvement in degenerative disorders like Parkinson's and Huntington's disease. Under normal physiological conditions, dopamine is known to regulate locomotor activity, cognition, learning, emotional affect, and neuroendocrine hormone secretion. One of the largest densities of dopamine neurons is within the striatum, which can be divided in two distinct neuroanatomical regions known as the nucleus accumbens and the caudate-putamen. The objective is to illustrate a general protocol for slice fast-scan cyclic voltammetry (FSCV) within the mouse striatum. FSCV is a well-defined electrochemical technique providing the opportunity to measure dopamine release and uptake in real time in discrete brain regions. Carbon fiber microelectrodes (diameter of ~ 7 m) are used in FSCV to detect dopamine oxidation. The analytical advantage of using FSCV to detect dopamine is its enhanced temporal resolution of 100 milliseconds and spatial resolution of less than ten microns, providing complementary information to in vivo microdialysis. PMID:22270035

  18. Sensitive quantitation of Ochratoxin A in cocoa beans using differential pulse voltammetry based aptasensor.

    PubMed

    Mishra, Rupesh K; Hayat, Akhtar; Catanante, Galle; Istamboulie, Georges; Marty, Jean-Louis

    2016-02-01

    In this work, we propose for the first time a sensitive Ochratoxin A (OTA) detection in cocoa beans using competitive aptasensor by differential pulse voltammetry (DPV). In the proposed method, biotin labeled and free OTA competed to bind with immobilized aptamer onto the surface of a screen printed carbon electrode (SPCE), and percentage binding was calculated. The detection was performed after adding avidin-ALP to perform avidin-biotin reaction; the signal was generated through a suitable substrate 1-naphthyl phosphate (1-NP), for alkaline phosphatase (ALP). The cocoa samples were extracted and purified using molecular imprinted polymer (MIP) columns specifically designed for OTA. The developed aptasensor showed a good linearity in the range 0.15-5 ng/mL with the limit of detection (LOD) 0.07 ng/mL and 3.7% relative standard deviation (RSD). The aptasensor displayed good recovery values in the range 82.1-85% with 3.87% RSD, thus, demonstrated the efficiency of proposed aptasensor for such matrices. PMID:26304413

  19. Inorganic arsenic speciation in water and seawater by anodic stripping voltammetry with a gold microelectrode.

    PubMed

    Salan, Pascal; Planer-Friedrich, Britta; van den Berg, Constant M G

    2007-03-01

    The determination of arsenic in sea and freshwater by anodic stripping voltammetry (ASV) was revisited because of problems related to unstable peaks and inconveniently strong acidic conditions used by existing methods. Contrary to previous work it was found, that As(III) can be determined by ASV using a gold microwire electrode at any pH including the neutral pH typical for natural waters. As(V) on the other hand, requires acidification to pH 1, but this is still a much milder condition than used previously. This is the basis of a new method for the chemical speciation of arsenic in natural waters. The limits of detection are 0.2 nM As(III) at pH 8 and 0.3 nM combined arsenic (III+V) at pH 1 with a 30 s deposition time. These limits are lowered by extending the deposition time. The detection step at pH 8 was stripping chronopotentiometry (SC) as this was found to give a lower detection limit than ASV. Copper is co-determined simultaneously with arsenic. The method was applied successfully to the determination of arsenic as well as copper in samples from the Irish Sea, mineral water and tap water. PMID:17386680

  20. Evaluation of PEMFC System Contaminants on the Performance of Pt Catalyst via Cyclic Voltammetry: Preprint

    SciTech Connect

    Wang, H.; Macomber, C.; Dinh, H. N.

    2012-07-01

    Using electrochemical cyclic voltammetry as a quick ex-situ screening tool, the impact of the extracted solution and the individual leachable constituents from prospective BOP component materials on the performance and recoverability of the platinum catalyst were evaluated. Taking an extract from Zytel{trademark} HTN51G35HSLR (PPA) as an example, the major leachable organic components are caprolactam and 1,6 hexanediol. While these organic compounds by themselves do poison the Pt catalyst to some extent, such influence is mostly recoverable by means of potential holding and potential cycling. The extracted solution, however, shows a more drastic poisoning effect and it was not recoverable. Therefore the non-recoverable poisoning effect observed for the extracted solution is not from the two organic species studied. This demonstrates the complexity of such a contaminant study. Inorganic compounds that are known poisons like sulfur even in very low concentrations, may have a more dominant effect on the Pt catalyst and the recoverability.

  1. Detecting Naturally-Produced Sulfide Nanoparticles by Adsorptive, Cathodic Stripping Voltammetry.

    NASA Astrophysics Data System (ADS)

    Helz, G. R.; Krznaric, D.; Bura-Nakic, E.; Ciglenecki, I.

    2007-12-01

    Growing evidence implies that metal sulfide nanoparticles of natural origin exist in some aquatic environments. These nanoparticles could play important roles as mediators of trace metal nutrition and toxicity. Thermodynamics suggests that in sulfidic environments (total transition metaltotal sulfide) the most insoluble metal sulfide (usually Hg or Cu) will form the predominant sulfide nanoparticle. New experimental methods for detecting and distinguishing between such nanoparticles are needed. We report that mercury electrodes effectively preconcentrate a number of different metal sulfide nanoparticles, enabling their detection by adsorptive cathodic stripping voltammetry. Voltammetrically, nanoparticulate analytes differ fundamentally from dissolved analytes; e.g. analyte accumulation is very sensitive to electrolyte composition and concentration in accord with the Schulze-Hardy Rule. EDTA or acid treatment of samples is useful for distinguishing highly insoluble nanoparticles (HgS, CuS) from FeS. Nanoparticulate sulfur potentially interferes. Supersaturated solutions can generate artifactual analyte on Hg electrode surfaces. Despite such potential pitfalls, progress is encouraging. Preliminary, qualitative results from natural waters will be reported.

  2. The anodic stripping voltammetry of nanoparticles: electrochemical evidence for the surface agglomeration of silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Toh, Her Shuang; Batchelor-McAuley, Christopher; Tschulik, Kristina; Uhlemann, Margitta; Crossley, Alison; Compton, Richard G.

    2013-05-01

    Analytical expressions for the anodic stripping voltammetry of metallic nanoparticles from an electrode are provided. First, for reversible electron transfer, two limits are studied: that of diffusionally independent nanoparticles and the regime where the diffusion layers originating from each particle overlap strongly. Second, an analytical expression for the voltammetric response under conditions of irreversible electron transfer kinetics is also derived. These equations demonstrate how the peak potential for the stripping process is expected to occur at values negative of the formal potential for the redox process in which the surface immobilised nanoparticles are oxidised to the corresponding metal cation in the solution phase. This work is further developed by considering the surface energies of the nanoparticles and its effect on the formal potential for the oxidation. The change in the formal potential is modelled in accordance with the equations provided by Plieth [J. Phys. Chem., 1982, 86, 3166-3170]. The new analytical expressions are used to investigate the stripping of silver nanoparticles from a glassy carbon electrode. The relative invariance of the stripping peak potential at low surface coverages of silver is shown to be directly related to the surface agglomeration of the nanoparticles.

  3. Determination of Anionic Surfactants Using Atomic Absorption Spectrometry and Anodic Stripping Voltammetry

    NASA Astrophysics Data System (ADS)

    John, Richard; Lord, Daniel

    1999-09-01

    An experiment has been developed for our undergraduate analytical chemistry course that demonstrates the indirect analysis of anionic surfactants by techniques normally associated with metal ion determination; that is, atomic absorption spectroscopy (AAS) and anodic stripping voltammetry (ASV). The method involves the formation of an extractable complex between the synthetic surfactant anion and the bis(ethylenediamine)diaqua copper(II) cation. This complex is extracted into chloroform and then back-extracted into dilute acid. The resulting Cu(II) ions are determined by AAS and ASV. Students are required to determine the concentration of a pre-prepared "unknown" anionic surfactant solution and to collect and analyze a real sample of their choice. After the two extraction processes, students typically obtain close to 100% analytical recovery. Correlation between student AAS and ASV results is very good, indicating that any errors that occur probably result from their technique (dilutions, extractions, preparation of standards, etc.) rather than from the end analyses. The experiment is a valuable demonstration of the following analytical principles: indirect analysis; compleximetric analysis; liquid-liquid (solvent) extraction; back-extraction (into dilute acid); analytical recovery; and metal ion analysis using flame-AAS and ASV.

  4. Miniaturization in voltammetry: ultratrace element analysis and speciation with twenty-fold sample size reduction.

    PubMed

    Monticelli, D; Laglera, L M; Caprara, S

    2014-10-01

    Voltammetric techniques have emerged as powerful methods for the determination and speciation of trace and ultratrace elements without any preconcentration in several research fields. Nevertheless, large sample volumes are typically required (10 mL), which strongly limits their application and/or the precision of the results. In this work, we report a 20-fold reduction in sample size for trace and ultratrace elemental determination and speciation by conventional voltammetric instrumentation, introducing the lowest amount of sample (0.5 mL) in which ultratrace detection has been performed up to now. This goal was achieved by a careful design of a new sample holder. Reliable, validated results were obtained for the determination of trace/ultratrace elements in rainwater (Cd, Co, Cu, Ni, Pb) and seawater (Cu). Moreover, copper speciation in seawater samples was consistently determined by competitive ligand equilibration-cathodic stripping voltammetry (CLE-CSV). The proposed apparatus showed several advantages: (1) 20-fold reduction in sample volume (the sample size is lowered from 120 to 6 mL for the CLE-CSV procedure); (2) decrease in analysis time due to the reduction in purging time up to 2.5 fold; (3) 20-fold drop in reagent consumption. Moreover, the analytical performances were not affected: similar detection capabilities, precision and accuracy were obtained. Application to sample of limited availability (e.g. porewaters, snow, rainwater, open ocean water, biological samples) and to the description of high resolution temporal trends may be easily foreseen. PMID:25059160

  5. Using In Vivo Voltammetry to Demonstrate Drug Action: A Student Laboratory Experience in Neurochemistry

    PubMed Central

    Bergstrom, Brian P.

    2012-01-01

    Providing undergraduate neuroscience students an appropriate laboratory experience that demonstrates principles of neurotransmission and drug action is a difficult task. In the following activity, fast-scan cyclic voltammetry was utilized to measure dopamine levels using carbon-fiber microelectrodes in rats in vivo. Recordings were made before and after administration of several drugs to assess their ability to alter extracellular dopamine. The following drugs were chosen due to their well established actions: haloperidol, methylphenidate, and alpha-methyl-para-tyrosine. Each demonstrated markedly altered extracellular dopamine dynamics and some basic kinetic analysis enabled students to attribute the alterations to differing modes of action. Dopamine tissue content was also assessed to compare the differences between acute drug action and overall neurotransmitter content. Any neuroscience laboratory course that desired to demonstrate principles involved in neurotransmission would be well served by the activities involved. This laboratory experience provided: 1) basic principles in experimental design, 2) small animal surgical experiences, 3) exposure to common instrumentation used in collecting neurochemical data, 4) data analysis procedures, and 5) experience in presenting their findings. PMID:23504500

  6. Anodic stripping voltammetry coupled on-line with ICP-MS

    SciTech Connect

    Van Berkel, G.J.; Zhou, F.; Duckworth, D.C.; Morton, S.J.

    1995-12-31

    Inductively coupled plasma-mass spectrometry (ICP-MS) is a sensitive technique for elemental analysis which provides submicrogram-per-liter (sub-ppb) detection limits (DLs) for most elements. The drive towards lower DLs in response to regulatory mandates and the need to eliminate problems imposed in quantitative analyses by sample matrices are research areas of active pursuit in ICP-MS. A generic means to effectively lower concentration detection limits and eliminate matrix effects is an on-line preconcentration/matrix elimination device. Anodic stripping voltammetry (ASV) coupled on-line with ICP-MS has proven to be an effective and relatively simple method for on-line preconcentration and matrix elimination ASV utilizes an electrochemical deposition step to preconcentrate metal species from solution into the small volume of a mercury electrode. After deposition, the metal is electrochemically oxidized, thereby stripping it from the electrode back into solution. In previous work, the authors have shown that concentration detection limits for a VG Plasma Quad, equipped with a conventional nebulizer and spray chamber, could be lowered by at least an order-of-magnitude for some elements (e.g., Tl) with on-line ASV-ICP-MS using a thin-layer, low-dead volume (i.e., 1.0 {mu}L) flow-by electrochemical cell.

  7. Incorporating future change into current conservation planning: Evaluating tidal saline wetland migration along the U.S. Gulf of Mexico coast under alternative sea-level rise and urbanization scenarios

    USGS Publications Warehouse

    Enwright, Nicholas M.; Griffith, Kereen T.; Osland, Michael J.

    2015-01-01

    In this study, the U.S. Geological Survey, in cooperation with the U.S. Fish and Wildlife Service, quantified the potential for landward migration of tidal saline wetlands along the U.S. Gulf of Mexico coast under alternative future sea-level rise and urbanization scenarios. Our analyses focused exclusively on tidal saline wetlands (that is, mangrove forests, salt marshes, and salt flats), and we combined these diverse tidal saline wetland ecosystems into a single grouping, “tidal saline wetland.” Collectively, our approach and findings can provide useful information for scientists and environmental planners working to develop future-focused adaptation strategies for conserving coastal landscapes and the ecosystem goods and services provided by tidal saline wetlands. The primary product of this work is a public dataset that identifies locations where landward migration of tidal saline wetlands is expected to occur under alternative future sea-level rise and urbanization scenarios. In addition to identifying areas where landward migration of tidal saline wetlands is possible because of the absence of barriers, these data also identify locations where landward migration of these wetlands could be prevented by barriers associated with current urbanization, future urbanization, and levees.

  8. Alternating and direct current field effects on the structure-property relationships in Na{sub 0.5}Bi{sub 0.5}TiO{sub 3}-x%BaTiO{sub 3} textured ceramics

    SciTech Connect

    Ge, Wenwei; Li, Jiefang; Viehland, D.; Maurya, Deepam; Priya, Shashank

    2013-06-03

    The influence of alternating (ac) and direct current (dc) fields on the structural and dielectric properties of [001]{sub PC} textured Na{sub 0.5}Bi{sub 0.5}TiO{sub 3}-7%BaTiO{sub 3} (NBT-7%BT) ceramics has been investigated. X-ray diffraction measurements revealed that the depolarization at temperature T{sub d} in poled samples resulted from a tetragonal {yields} pseudo-cubic transition on heating. Moderate ac drive and dc bias had opposite influences on T{sub d}: ac drive decreased the T{sub d}, whereas dc bias increased it. These investigations suggested an effective method to expand the working temperature range of NBT-x%BT textured ceramics to a high temperature.

  9. Alternating and direct current field effects on the structure-property relationships in Na0.5Bi0.5TiO3-x%BaTiO3 textured ceramics

    NASA Astrophysics Data System (ADS)

    Ge, Wenwei; Maurya, Deepam; Li, Jiefang; Priya, Shashank; Viehland, D.

    2013-06-01

    The influence of alternating (ac) and direct current (dc) fields on the structural and dielectric properties of [001]PC textured Na0.5Bi0.5TiO3-7%BaTiO3 (NBT-7%BT) ceramics has been investigated. X-ray diffraction measurements revealed that the depolarization at temperature Td in poled samples resulted from a tetragonal ? pseudo-cubic transition on heating. Moderate ac drive and dc bias had opposite influences on Td: ac drive decreased the Td, whereas dc bias increased it. These investigations suggested an effective method to expand the working temperature range of NBT-x%BT textured ceramics to a high temperature.

  10. Nonlinear alternating current conduction in polycrystalline manganites

    SciTech Connect

    Ghosh, T. N.; Nandi, U. N.; Jana, D.; Dey, K.; Giri, S.

    2014-06-28

    The real part of ac conductance ?(T, f) of yttrium-doped mixed-valent polycrystalline manganite systems La{sub 1?x?y}Y{sub y}Ca{sub x}MnO{sub 3} with x?=?0.33 and 0.05 and y?=?0.07 and iron doped LaMn{sub 1?x}Fe{sub x}O{sub 3} with x?=?0.15 is measured as a function of frequency f by varying zero-frequency Ohmic conductance ?{sub 0} by T. The former shows a metal-insulator transition, whereas the latter exhibits insulating character throughout the measured temperature range. At a fixed temperature T, ?(T, f) remains almost constant to the value ?{sub 0} up to a certain frequency, known as the onset frequency f{sub c} and increases from ?{sub 0} as frequency is increased from f{sub c}. Scaled appropriately, the data for ?(T, f) at different T fall on the same universal curve, indicating the existence of a general scaling formalism for the ac conductance. f{sub c} scales with ?{sub 0} as f{sub c}??{sub 0}{sup x{sub f}}, where x{sub f} is the nonlinearity exponent characterising the onset. With the help of data for ac conduction, it is shown that x{sub f} is very much phase sensitive and can be used to characterize the different phases in a manganite system originated due to change in temperature or disorder. Scaling theories and existing theoretical models are used to analyze the results of ac conduction and the nonlinearity exponent x{sub f}.

  11. Alternative agriculture

    SciTech Connect

    Hileman, B. )

    1990-03-01

    This paper discusses alternative agriculture which has suddenly become topical. Farmers practicing alternative agriculture are still a small minority in the overall farm community. But their farming methods, which among other things are aimed at improving profits, limiting dependence on agricultural chemicals, and increasing use of environmentally friendly procedures, are attracting more attention and a growing number of adherents. Hard data on the productivity of alternative farming compared with conventional techniques are still sketchy at best, although many practitioners seem to be operating quite successfully. And in their success lies the potential for significant impact on markets for fertilizers and pesticides.

  12. Note: High resolution alternating current/direct current Harman technique.

    PubMed

    Chavez, R; Becker, A; Bartel, M; Kessler, V; Schierning, G; Schmechel, R

    2013-10-01

    This note describes the construction and engineering of a high precision Harman set-up for metrology of the thermoelectric figure of merit (ZT) of modules and materials based on steady state AC and DC measurements. The Harman technique presented in this article has a resolution of milli-ZT and it does not employ lock-in amplifiers or AC bridges; rather, the technique is developed to avoid typical complications experienced in AC Harman systems. By one-time reference measurements the best operation point for the system is chosen, minimizing the effects of capacitive loads due to AC signals. PMID:24182179

  13. Alternative Schools.

    ERIC Educational Resources Information Center

    Pritchett, Stanley; Kimsey, Steve

    2002-01-01

    Describes the design of the DeKalb Alternative School in Atlanta, Georgia, located in a renovated shopping center. Purchasing commercial land and renovating the existing building saved the school system time and money. (EV)

  14. Alternative metrics

    NASA Astrophysics Data System (ADS)

    2012-11-01

    As the old 'publish or perish' adage is brought into question, additional research-impact indices, known as altmetrics, are offering new evaluation alternatives. But such metrics may need to adjust to the evolution of science publishing.

  15. Study of the Hg2+ binding with chelation therapy agents by differential pulse voltammetry on rotating Au-disk electrode and electrospray ionization mass-spectrometry.

    PubMed

    Chekmeneva, Elena; Daz-Cruz, Jos Manuel; Ario, Cristina; Esteban, Miquel

    2009-10-19

    A recently proposed electroanalytical method, using differential pulse voltammetry (DPV) on the rotating Au-disk electrode, and electrospray ionization mass-spectrometry (ESI-MS) has been applied to study the binding of the pharmaceutical chelating agents meso-2,3-dimercaptosuccinic acid (DMSA), sodium 2,3-dimercaptopropanesulfate (DMPS) and D-penicillamine (D-Pen) with Hg(2+). From the use of voltammetric titrations it was possible to obtain a detailed picture of the complexation processes at concentrations much lower than in previous studies. Predominant species were Hg(Pen)(2), Hg(2)(DMSA)(2) and Hg(DMPS)(2). For Pen, Hg(Pen) was also deduced from DPV data, while Hg(2)(Pen)(4) from ESI-MS. For DMSA and DMPS, Hg(2)L species were detected by DPV, and Hg(2)L(3), Hg(3)L(3) as well as Hg(2)(DMPS)(2) and Hg(DMSA)(2) by ESI-MS. When possible, DPV data were analyzed by multivariate curve resolution with alternating least squares (MCR-ALS). PMID:19800477

  16. Trace vanadium analysis by catalytic adsorptive stripping voltammetry using mercury-coated micro-wire and polystyrene-coated bismuth film electrodes

    PubMed Central

    Dansby-Sparks, Royce; Chambers, James Q.; Xue, Zi-Ling

    2009-01-01

    An electrochemical technique has been developed for ultra trace (ngL?1) vanadium (V) measurement. Catalytic adsorptive stripping voltammetry for V analysis was developed at mercury-coated gold micro-wire (MWE, 100 ?m) electrodes in the presence of gallic acid (GA) and bromate ion. A potential of ?0.275 V (vs Ag/AgCl) was used to accumulate the complex in acetate buffer (pH 5.0) at the electrode surface followed by a differential pulse voltammetric scan. Parameters affecting the electrochemical response, including pH, concentration of GA and bromate, deposition potential and time have been optimized. Linear response was obtained in the 01000 ngL?1 range (2 min deposition), with a detection limit of 0.88 ngL?1. The method was validated by comparison of results for an unknown solution of V by atomic absorption measurement. The protocol was evaluated in a real sample by measuring the amount of V in river water samples. Thick bismuth film electrodes with protective polystyrene films have also been made and evaluated as a mercury free alternative. However, ngL?1 level detection was only attainable with extended (10 min) deposition times. The proposed use of MWEs for the detection of V is sensitive enough for future use to test V concentration in biological fluids treated by the advanced oxidation process (AOP). PMID:19446059

  17. Determination of mercury by differential-pulse anodic-stripping voltammetry with various working electrodes Application to the analysis of natural water sediments.

    PubMed

    Htle, M

    1987-12-01

    Four types of working electrode (glassy-carbon and gold rotating-disk electrodes and two types of gold-film electrode) have been used in determination of traces of mercury by differential-pulse anodic-stripping voltammetry, and the analytical parameters of the procedures compared. The technique has been applied to the analysis of river sediments. The lowest limit of detection (0.02 mug/l.) was obtained with the gold rotating-disk electrode. Two procedures have been found optimal for analyses of sediment samples; determination with the gold rotating-disk electrode and solution-exchange after the preelectrolysis, and determination with the gold-film electrode prepared in situ in the sample extract. The sample pretreatment involved a separation of the 0.45-63 mum fraction, mineralization with a mixture of hydrochloric and nitric acids (3:1 or 1:3) under atmospheric pressure in a fused silica vessel, followed by irradiation with ultraviolet light, after addition of hydrogen peroxide (to destroy organic matter). The most serious interference is from iron; this can be prevented by adding fluoride or pyrophosphate. The procedure is an alternative to the AAS determination of the total mercury content in sediments, especially with heavily polluted samples (mercury concentrations up to 0.01%). PMID:18964448

  18. Spin scattering asymmetric coefficients and enhanced specific interfacial resistance of fully epitaxial current-perpendicular-to-plane giant magnetoresistance spin valves using alternate monatomic layered [Fe/Co]n and a Ag spacer layer

    NASA Astrophysics Data System (ADS)

    Jung, J. W.; Shiozaki, R.; Doi, M.; Sahashi, M.

    2011-04-01

    Using current-perpendicular-to-plane (CPP) giant magnetoresistance (GMR) measurement, we have evaluated the bulk and interface spin scattering asymmetric coefficients, ?F and ?F/N and the specific interfacial resistance, AR*F/N, for exchange-biased spin-valves consisting of artificially ordered B2 structure Fe50Co50 and Ag spacer layer. Artificially epitaxial ordered Fe50Co50 superlattices have been successfully fabricated on MgO (001) substrate by alternate monatomic layer (AML) deposition at a substrate temperature of 75 C. The structural properties of the full epitaxial trilayer, AML[Fe/Co]n/Ag/AML[Fe/Co]n, on the Ag electrode have been confirmed by in situ reflection high-energy electron diffraction and transmission electron diffraction microscopy. A considerably large resistance-area product change and MR ratio (?RA > 3 m??m2 and MR ratio 5%) were confirmed even at thin AML[Fe/Co]n layer at room temperature (RT) in our spin-valve elements. The estimated values of ?F and ?F/N were 0.80 and 0.84 0.02, respectively, from the Valet-Fert theory analysis of ?RA as a function of thickness of the ferromagnetic layer (3, 4, and 5 nm) on the basis of the two-current model.

  19. Voltammetry of 6,6'-dithiodinicotinic acid on a self-assembled phospholipid monolayer prive

    NASA Astrophysics Data System (ADS)

    Herrero, R.; Vilario, T.; Barriada, J. L.; Sastre de Vicente, M. E.; Lpez-Fonseca, J. M.; Moncelli, M. R.

    1999-04-01

    This paper reports a voltammetric study of 6,6'-dithiodinicotinic acid (CPDS) across a biomimetic membrane system consisting of a monolayer of dioleoylphosphatidylcholine, deposited on mercury. Because of the low solubility of this compound and its potential decomposition in alkaline media, estimation of pK values for the carboxyl and amino groups of the pyridine ring of the CPDS entailed using the Hammett equation. UV spectra seem to confirm the presence of the dianionic form of CPDS above pH=3-4. Differential capacity and cyclic voltammetry measurements were made in order to characterize the voltammetric behavior directly on mercury and through a monolayer of dioleoylphosphatidylcholine. Estimation of the CPDS hydrophobicity degree from the partition coefficient in octanol/ water suggests no penetration of the dianion into the monolayer and supports the fact that the named dianion undergoes protonation at the phospholipid/solution interface to give a neutral specie which penetration into the phospholipid region, favored by its higher hydrophobicity, is followed by electrochemical reduction at the mercury surface. Nous avons tudi par voltampromtrie le comportement de l'acide 6,6'-dithiodinicotinique (CPDS) sur l'lectrode de mercure couverte par une monocouche de dioleoyl-phosphatidylcholine. La caractrisation lectrochimique a t effectue par des mesures de la capacit diffrentielle et par voltamtrie cyclique au dessus d'un pH 3-4. Le spectre UV parat confirmer la prsence de la forme dianionique du CPDS. Cependant les donnes exprimentales associes une estimation de l'hydrophobicit de la forme dianionique suggrent que seule la forme neutre du CPDS peut tre rduite sur la surface de l'lectrode.

  20. Voltammetry of L-cysteine and 2-mercaptopyridine on a self-assembled phospholipid monolayer

    NASA Astrophysics Data System (ADS)

    Herrero, R.; Barriada, J. L.; Moncelli, M. R.; Lpez-Fonseca, J. M.; Sastre de Vicente, M. E.

    1999-09-01

    The redox behaviour of 2-mercaptopyridine and the aminoacid L-cysteine was studied through a self-assembled monolayer of dioleoylphosphatidylcholine adsorbed on mercury by using cyclic voltammetry. 2-Mercaptopyridine penetrates into monolayer in the zone of stability of the phospholipid layer and shows an quasi-reversible behaviour while reversibility is observed in the absence of a monolayer. This fact is reflected in the occurrence of voltammetric peaks in the above mentioned region of potentials. Conversely, cysteine was found not to penetrate in the lipid layer as long as the latter behaves like a half-membrane. Voltammetric signal of cysteine was only obtained when the potential was scanned to values positive to -0.2 V. Beyond this potential the cyclic voltammograms show a series of anodic peaks, due to a rearrangement of the lipid film and to the formation of Hg(RS)2, followed by three cathodic peaks when the scan is reversal. The behaviour of these peaks was analized. Le comportement voltamprometrique de la 2-mercaptopyridine et de l'aminoacid L-cysteine a et etudi sur l'lectrode de mercure couverte par une monocouche de dioleoylphosphatidylcholine. Pour la 2-mercaptopyridine on peut constater la pntration de ce compos dans la zone de stabilit de la monocouche. La constante de vitesse a et calcule seulement pour des basses concentrations. Lorsque la concentration augmente le comportement devient trs compliqu. Par contre, pour la cysteine on observe seulement un signal de courant pour des potentiels superieurs -0.2V o la monocouche de phospholipide ne peut pas tre considere trs stable. La differente structure chimique des deux substances permet de rendre compte du different comportement voltammetrique observ.

  1. Ion-transfer voltammetry of perfluoroalkanesulfonates and perfluoroalkanecarboxylates: picomolar detection limit and high lipophilicity.

    PubMed

    Garada, Mohammed B; Kabagambe, Benjamin; Kim, Yushin; Amemiya, Shigeru

    2014-11-18

    Here we report on ion-transfer voltammetry of perfluoroalkanesulfonates and perfluoroalkanecarboxylates at the interface between a plasticized polymer membrane and water to enable the ultrasensitive detection of these persistent environmental contaminants with adverse health effects. The ion-transfer cyclic voltammograms of the perfluoroalkyl oxoanions are obtained by using a ∼1 μm thick poly(vinyl chloride) membrane plasticized with 2-nitrophenyl octyl ether. The cyclic voltammograms are numerically analyzed to determine formal ion-transfer potentials as a measure of ion lipophilicity. The fragmental analysis of the formal potentials reveals that the 10(4) times higher lipophilicity of a perfluoroalkanesulfonate in comparison to the alkanesulfonate with the same chain length is due to the inductive effect of perfluorination on lowering the electron density of the adjacent sulfonate group, thereby weakening its hydration. The fragmental analysis also demonstrates that the lipophilicities of perfluoroalkyl and alkyl groups with the same length are nearly identical and vary with the length. Advantageously, the high lipophilicity of perfluorooctanesulfonate allows for its stripping voltammetric detection at 50 pM in the presence of 1 mM aqueous supporting electrolytes, a ∼10(7) times higher concentration. Significantly, this detection limit for perfluorooctanesulfonate is unprecedentedly low for electrochemical sensors and is lower than its minimum reporting level in drinking water set by the U.S. Environmental Protection Agency. In comparison, the voltammetric detection of perfluoroalkanecarboxylates is compromised not only by the lower lipophilicity of the carboxylate group but also by its oxidative decarboxylation at the underlying poly(3-octylthiophene)-modified gold electrode during voltammetric ion-to-electron transduction. PMID:25313994

  2. Detection of dopamine overflow and diffusion with voltammetry in slices of rat brain.

    PubMed

    Kelly, R S; Wightman, R M

    1987-10-13

    Voltammetric electrodes have been used to monitor extracellular dopamine in rat brain slices. The electrode tips are small enough to be immersed inside the slice. Specificity for dopamine is increased through the use of voltammetry and a cation exchange membrane at the electrode tip. Dopamine overflow is observed in the caudate nucleus following electrical stimulation (60 Hz, 1 s, 3 V) with an adjacent bipolar electrode. The amount of overflow observed is increased when the tissue is perfused with 10 microM cocaine or nomifensine, both recognized inhibitors of dopamine uptake. The ability of dopamine in the perfusion buffer to permeate the slice was monitored with two voltammetric electrodes, one in the cerebral cortex and the other in the caudate nucleus. At a high concentration (100 microM), dopamine rapidly appeared (2.7 +/- 0.4 min) in the interior of the cortex, but dopamine was not observed in the caudate until a significantly later time (8.9 +/- 1.0 min). To examine whether this difference is a reflection of the presence of different uptake systems in the two regions, pressure ejection was employed. In this experiment a double-barrelled pipette was used to eject dopamine or DOPAC at a fixed distance (approximately 70 micron) from the voltammetric electrode. Ejection of small amounts of both substances could be detected in the cortex. When the ejector-detector assembly was moved to the caudate, dopamine could only be observed following pressure ejection after perfusion of the slice with 10 microM nomifensine. Detection of DOPAC was unaffected. All of these experiments indicate that uptake systems in the caudate keep dopamine concentrations very low in the extracellular fluid of the slice. PMID:3676822

  3. Determination of bismuth and copper using adsorptive stripping voltammetry couple with continuous wavelet transform.

    PubMed

    Khaloo, Shokooh S; Ensafi, Ali A; Khayamian, T

    2007-01-15

    A new method is proposed for the determination of bismuth and copper in the presence of each other based on adsorptive stripping voltammetry of complexes of Bi(III)-chromazorul-S and Cu(II)-chromazorul-S at a hanging mercury drop electrode (HMDE). Copper is an interfering element for the determination of Bi(III) because, the voltammograms of Bi(III) and Cu(II) overlapped with each other. Continuous wavelet transform (CWT) was applied to separate the voltammograms. In this regards, wavelet filter, resolution of the peaks and the fitness were optimized to obtain minimum detection limit for the elements. Through continuous wavelet transform Symlet4 (Sym4) wavelet filter at dilation 6, quantitative and qualitative analysis the mixture solutions of bismuth and copper was performed. It was also realized that copper imposes a matrix effect on the determination of Bi(III) and the standard addition method was able to cope with this effect. Bismuth does not have matrix effect on copper determination, therefore, the calibration curve using wavelet coefficients of CWT was used for determination of Cu(II) in the presence of Bi(III). The detection limits were 0.10 and 0.05ngml(-1) for bismuth and copper, respectively. The linear dynamic range of 0.1-30.0 and 0.1-32.0ngml(-1) were obtained for determination of bismuth in the presence of 24.0ngml(-1) of copper and copper in the presence of 24.0ngml(-1) of bismuth, respectively. The method was used for determination of these two cations in water and human hair samples. The results indicate the ability of method for the determination of these two elements in real samples. PMID:19071307

  4. Investigation of an alternating current plasma as an element selective atomic emission detector for high-resolution capillary gas chromatography and as a source for atomic absorption and atomic emission spectrometry

    NASA Astrophysics Data System (ADS)

    Ombaba, Jackson M.

    This thesis deals with the construction and evaluation of an alternating current plasma (ACP) as an element-selective detector for high resolution capillary gas chromatography (GC) and as an excitation source for atomic absorption spectrometry (AAS) and atomic emission spectrometry (AES). The plasma, constrained in a quartz discharge tube at atmospheric pressure, is generated between two copper electrodes and utilizes helium as the plasma supporting gas. The alternating current plasma power source consists of a step-up transformer with a secondary output voltage of 14,000 V at a current of 23 mA. The device exhibits a stable signal because the plasma is self-seeding and reignites itself every half cycle. A tesla coil is not required to commence generation of the plasma if the ac voltage applied is greater than the breakdown voltage of the plasma-supporting gas. The chromatographic applications studied included the following: (1) the separation and selective detection of the organotin species, tributyltin chloride (TBT) and tetrabutyltin (TEBT), in environmental matrices including mussels (Mvutilus edullus) and sediment from Boston Harbor, industrial waste water and industrial sludge, and (2) the detection of methylcyclopentadienyl manganesetricarbonyl (MMT) and similar compounds used as gasoline additives. An ultrasonic nebulizer (common room humidifier) was utilized as a sample introduction device for aqueous solutions when the ACP was employed as an atomization source for atomic absorption spectrometry and as an excitation source for atomic emission spectrometry. Plasma diagnostic parameters studied include spatial electron number density across the discharge tube, electronic, excitation and ionization temperatures. Interference studies both in absorption and emission modes were also considered. Figures of merits of selected elements both in absorption and emission modes are reported. The evaluation of a computer-aided optimization program, Drylab GC, using spearmint oil and Environmental Protection Agency (EPA) standard mixture as probes is also discussed. The program supplied by LC Resources (Lafayette, CA) is used for separation optimization and prediction of gas chromatographic parameters. Column dead-time and average plate number were used as input data in conjunction with the retention times and peak areas of solutes at two different temperature programming rates. Once input data are entered into an IBM or IBM compatible personal computer, the program produces a 'relative resolution map' (RRM) which guides the analyst in selecting the most favorable temperature programming rate for the separation.

  5. Instrumentation for fast-scan cyclic voltammetry combined with electrophysiology for behavioral experiments in freely moving animals.

    PubMed

    Takmakov, Pavel; McKinney, Collin J; Carelli, Regina M; Wightman, R Mark

    2011-07-01

    Fast-scan cyclic voltammetry is a unique technique for sampling dopamine concentration in the brain of rodents in vivo in real time. The combination of in vivo voltammetry with single-unit electrophysiological recording from the same microelectrode has proved to be useful in studying the relationship between animal behavior, dopamine release and unit activity. The instrumentation for these experiments described here has two unique features. First, a 2-electrode arrangement implemented for voltammetric measurements with the grounded reference electrode allows compatibility with electrophysiological measurements, iontophoresis, and multielectrode measurements. Second, we use miniaturized electronic components in the design of a small headstage that can be fixed on the rat's head and used in freely moving animals. PMID:21806203

  6. Instrumentation for fast-scan cyclic voltammetry combined with electrophysiology for behavioral experiments in freely moving animals

    PubMed Central

    Takmakov, Pavel; McKinney, Collin J.; Carelli, Regina M.; Wightman, R. Mark

    2011-01-01

    Fast-scan cyclic voltammetry is a unique technique for sampling dopamine concentration in the brain of rodents in vivo in real time. The combination of in vivo voltammetry with single-unit electrophysiological recording from the same microelectrode has proved to be useful in studying the relationship between animal behavior, dopamine release and unit activity. The instrumentation for these experiments described here has two unique features. First, a 2-electrode arrangement implemented for voltammetric measurements with the grounded reference electrode allows compatibility with electrophysiological measurements, iontophoresis, and multielectrode measurements. Second, we use miniaturized electronic components in the design of a small headstage that can be fixed on the rat's head and used in freely moving animals. PMID:21806203

  7. Instrumentation for fast-scan cyclic voltammetry combined with electrophysiology for behavioral experiments in freely moving animals

    NASA Astrophysics Data System (ADS)

    Takmakov, Pavel; McKinney, Collin J.; Carelli, Regina M.; Wightman, R. Mark

    2011-07-01

    Fast-scan cyclic voltammetry is a unique technique for sampling dopamine concentration in the brain of rodents in vivo in real time. The combination of in vivo voltammetry with single-unit electrophysiological recording from the same microelectrode has proved to be useful in studying the relationship between animal behavior, dopamine release and unit activity. The instrumentation for these experiments described here has two unique features. First, a 2-electrode arrangement implemented for voltammetric measurements with the grounded reference electrode allows compatibility with electrophysiological measurements, iontophoresis, and multielectrode measurements. Second, we use miniaturized electronic components in the design of a small headstage that can be fixed on the rat's head and used in freely moving animals.

  8. Use of anodic stripping voltammetry to determine zinc(II), lead(II), and copper(II) in foods

    SciTech Connect

    Maksimkina, L.M.; Gus'kova, V.P.

    1988-01-20

    The existing standard procedure for the polarographic determination of Zn, Pb, and Cu, based on the cathodic polarization of a dropping mercury electrode, is laborious and time-consuming and allows one to determine the above-mentioned trace elements only when they are separated beforehand. We consider the possibility of using anodic stripping voltammetry with a mercury film electrode for the simultaneous determination of Zn(II), Pb(II), and Cu(II) in foods.

  9. Alternatives in Teacher Education.

    ERIC Educational Resources Information Center

    Clements, Millard

    This paper on alternatives in teacher education begins by analyzing the current emphasis on the scientific approach in education. The author finds the promise of the scientific approach to be illusory. He defines it as education that promotes behavior change in some desirable direction. However, this definition, which the author finds equally…

  10. Alternative Programming for Adults.

    ERIC Educational Resources Information Center

    Flint, Thomas A.; Frey, Ruth

    2003-01-01

    The Council for Adult and Experiential Learning is currently cataloguing alternative programming features that are most effective with adult students in a best practices inventory organized around a framework of high-level descriptive principles of effectiveness. This chapter identifies a few interesting features from a quick survey of this

  11. Chromium speciation study in polluted waters using catalytic adsorptive stripping voltammetry and tangential flow filtration.

    PubMed

    Bobrowski, Andrzej; Ba?, Bogus?aw; Dominik, Janusz; Niewiara, Ewa; Szali?ska, Ewa; Vignati, Davide; Zare Bski, Jerzy

    2004-07-01

    The catalytic adsorptive stripping voltammetry (CAdSV) has been applied to physico-chemical chromium speciation study in the upper Dunajec catchment, severely polluted by the tannery wastewater. The method is based on the adsorptive preconcentration of the Cr(III)-diethylenetriammine-N,N,N',N'',N''-pentaacetic acid (DTPA) complex and the utilization of the catalytic reaction in the presence of nitrate. Under optimized conditions the CAdSV enables the oxidation state speciation study of Cr content by direct determination of Cr(VI) in the presence of the predominant Cr(III) concentration with the detection limit for chromium(VI) of 0.08nM and the linearity range from 0.1 to 80nM obtained for 20s of accumulation, as well as the determination of total Cr after UV oxidation of Cr(III) to Cr(VI). Due to the difference in the chemical properties of different chromium species the CAdSV method makes possible a speciation study of Cr(III) and Cr(VI) oxidation state. The RSD of the determination of Cr(VI) and Cr(III) varies from 0.5 to 5%. It has been proved that in natural water in which strong complexants of Cr(III) such a humid acids are presented, Cr(VI) can be determined accurately in the presence of high excess of Cr(III). Fractionation of selected water samples with tangential flow filtration (TFF, cut-off 10 and/or 1kDa) provides insight into physical Cr speciation, i.e. partitioning of the Cr(VI) and Cr(III) between the colloidal and the dissolved fractions. It has been shown that the content of the Cr species in the Dunajec river depends on the season, and is significantly higher in autumn and winter during the most intensive tanneries production processes. The concentration of total Cr exceeds occasionally the legally admissible level. A large fraction of total Cr(III) concentration is associated with the colloidal material, while Cr(VI) occurs solely in the truly dissolved form. PMID:18969527

  12. Alternative Conceptualizations.

    ERIC Educational Resources Information Center

    Borman, Kathryn M., Ed.; O'Reilly, Patricia, Ed.

    1992-01-01

    This theme issue of the serial "Educational Foundations" contains five articles devoted to the topic of "Alternative Conceptualizations" of the foundations of education. In "The Concept of Place in the New Sociology of Education," Paul Theobald examines the notion of place in educational theory and practice. Janice Jipson and Nicholas Paley, in…

  13. Alternative Thinking.

    ERIC Educational Resources Information Center

    Herman, Dan

    1999-01-01

    Explains how advances in diesel and alternative fuels has caused schools to reconsider their use for their bus fleets. Reductions in air pollution emissions, cost-savings developments, and the economies experienced from less downtime and maintenance requirements are explored. (GR)

  14. ALTERNATIVE OXIDANTS

    EPA Science Inventory

    This chapter reports on the efforts of the USEPA to study chloramines, chlorine dioxide and ozone as alternative oxidants/disinfectants to chlorine for the control of disinfection by-rpdocuts (DBPs) in drinking water. It examines the control of DBPs like trihalomethanes and haloa...

  15. Development of the Wireless Instantaneous Neurotransmitter Concentration System for intraoperative neurochemical monitoring using fast-scan cyclic voltammetry

    PubMed Central

    Bledsoe, Jonathan M.; Kimble, Christopher J.; Covey, Daniel P.; Blaha, Charles D.; Agnesi, Filippo; Mohseni, Pedram; Whitlock, Sidney; Johnson, David M.; Horne, April; Bennet, Kevin E.; Lee, Kendall H.; Garris, Paul A.

    2009-01-01

    Object Emerging evidence supports the hypothesis that modulation of specific central neuronal systems contributes to the clinical efficacy of deep brain stimulation (DBS) and motor cortex stimulation (MCS). Real-time monitoring of the neurochemical output of targeted regions may therefore advance functional neurosurgery by, among other goals, providing a strategy for investigation of mechanisms, identification of new candidate neurotransmitters, and chemically guided placement of the stimulating electrode. The authors report the development of a device called the Wireless Instantaneous Neurotransmitter Concentration System (WINCS) for intraoperative neurochemical monitoring during functional neurosurgery. This device supports fast-scan cyclic voltammetry (FSCV) at a carbon-fiber microelectrode (CFM) for real-time, spatially and chemically resolved neurotransmitter measurements in the brain. Methods The FSCV study consisted of a triangle wave scanned between −0.4 and 1 V at a rate of 300 V/second and applied at 10 Hz. All voltages were compared with an Ag/AgCl reference electrode. The CFM was constructed by aspirating a single carbon fiber (r = 2.5 μm) into a glass capillary and pulling the capillary to a microscopic tip by using a pipette puller. The exposed carbon fiber (that is, the sensing region) extended beyond the glass insulation by ~ 100 μm. The neurotransmitter dopamine was selected as the analyte for most trials. Proof-of-principle tests included in vitro flow injection and noise analysis, and in vivo measurements in urethane-anesthetized rats by monitoring dopamine release in the striatum following high-frequency electrical stimulation of the medial forebrain bundle. Direct comparisons were made to a conventional hardwired system. Results The WINCS, designed in compliance with FDA-recognized consensus standards for medical electrical device safety, consisted of 4 modules: 1) front-end analog circuit for FSCV (that is, current-to-voltage transducer); 2) Bluetooth transceiver; 3) microprocessor; and 4) direct-current battery. A Windows-XP laptop computer running custom software and equipped with a Universal Serial Bus–connected Bluetooth transceiver served as the base station. Computer software directed wireless data acquisition at 100 kilosamples/second and remote control of FSCV operation and adjustable waveform parameters. The WINCS provided reliable, high-fidelity measurements of dopamine and other neurochemicals such as serotonin, norepinephrine, and ascorbic acid by using FSCV at CFM and by flow injection analysis. In rats, the WINCS detected subsecond striatal dopamine release at the implanted sensor during high-frequency stimulation of ascending dopaminergic fibers. Overall, in vitro and in vivo testing demonstrated comparable signals to a conventional hardwired electrochemical system for FSCV. Importantly, the WINCS reduced susceptibility to electromagnetic noise typically found in an operating room setting. Conclusions Taken together, these results demonstrate that the WINCS is well suited for intraoperative neurochemical monitoring. It is anticipated that neurotransmitter measurements at an implanted chemical sensor will prove useful for advancing functional neurosurgery. PMID:19425890

  16. Alternative drugs of abuse.

    PubMed

    Sutter, M E; Chenoweth, J; Albertson, T E

    2014-02-01

    The incidence of drug abuse with alternative agents is increasing. The term "alternative drugs of abuse" is a catch-all term for abused chemicals that do not fit into one of the classic categories of drugs of abuse. The most common age group abusing these agents range from 17 to 25 years old and are often associated with group settings. Due to their diverse pharmacological nature, legislative efforts to classify these chemicals as a schedule I drug have lagged behind the development of new alternative agents. The potential reason for abuse of these agents is their hallucinogenic, dissociative, stimulant, anti-muscarinic, or sedative properties. Some of these drugs are easily obtainable such as Datura stramonium (Jimson Weed) or Lophophora williamsii (Peyote) because they are natural plants indigenous to certain regions. The diverse pharmacology and clinical effects of these agents are so broad that they do not produce a universal constellation of signs and symptoms. Detailed physical exams are essential for identifying clues leading one to suspect an alternative drug of abuse. Testing for the presence of these agents is often limited, and even when available, the results do not return in a timely fashion. Intoxications from these agents pose unique challenges for health care providers. Physician knowledge of the physiological effects of these alternative agents and the local patterns of drug of abuse are important for the accurate diagnosis and optimal care of poisoned patients. This review summarizes the current knowledge of alternative drugs of abuse and highlights their clinical presentations. PMID:23636733

  17. Bouncing alternatives to inflation

    NASA Astrophysics Data System (ADS)

    Lilley, Marc; Peter, Patrick

    2015-12-01

    Although the inflationary paradigm is the most widely accepted explanation for the current cosmological observations, it does not necessarily correspond to what actually happened in the early stages of our Universe. To decide on this issue, two paths can be followed: first, all the possible predictions it makes must be derived thoroughly and compared with available data, and second, all the imaginable alternatives must be ruled out. Leaving the first task to all other contributors of this volume, we concentrate here on the second option, focusing on the bouncing alternatives and their consequences. xml:lang="fr"

  18. Development of square wave voltammetry method for the assessment of organophosphorus compound impact on the cholinesterase of Pheretima with 2,6-dichloroindophenol as a redox indicator.

    PubMed

    Qiu, Jingxia; Chen, Jin; Ma, Qianqian; Miao, Yuqing

    2009-09-01

    A square wave voltammetry method was developed for the assessment of organophosphorus (OPs) compound impact on the cholinesterase of Pheretima with 2,6-dichloroindophenol (2,6-DCIP) as a redox indicator. The substrate of acetylthiocholine is hydrolysed by the cholinesterase (ChE) from soil animal pheretima, and the produced thiocholine reacts with the 2,6-DCIP to give obvious shift of electrochemical signal. The inhibition of ChE was assessed by measuring the enzyme activity before and after incubating with parathion-methyl. The reduction peak current of 2,6-DCIP decreases with the time of enzymatical reaction. The ChE loses almost 32.74% activity after 10 min incubation with 1ng mL(-1) paraoxon and 54.62% with 10 microg mL(-1) paraoxon, while the activity that corresponds to 100 microg mL(-1) paraoxon was nearly completely inhibited. This method can be employed to assess the inhibition of ChE and investigate OPs impact on environmental animals. PMID:19487014

  19. Gold-deferrioxamine nanometric interface for selective recognition of Fe(III) using square wave voltammetry and electrochemical impedance spectroscopy methods.

    PubMed

    Shervedani, Reza Karimi; Akrami, Zakyeh

    2013-01-15

    Deferrioxamine, a bacterial hydroxamic siderophore having high binding affinity for Fe(III), is used in its immobilized form, as self-assembled monolayer on Au, for accumulation and recognition of Fe(III) from the solution phase. The accumulated Fe(III) is detected via both active mode based on faradaic reduction current of Fe(III), and inactive mode based on impedimetric effect of accumulated Fe(III) against redox reaction of a suitable probe. Appropriate electrochemical techniques, square wave voltammetry and electrochemical impedance spectroscopy, are used for the transduction of analytical signals obtained by this sensor. Then, the parameters influencing the sensor response are optimized. In the best conditions, a linear response, from 1.010(-10) to 1.010(-7)M Fe(III) in logarithmic scale with a detection limit of 2.010(-11)M, and mean relative standard deviation of 1.7% for n=4 is observed. The results show that the sensor can be used for determination of Fe(III) in the presence of various inorganic ions and biological species. Validity of the method and applicability of the sensor are successfully tested by determination of Fe(III) in various real samples including plant tissue (corn leaves), industrial alloy (Ferrotitanium), and pharmaceutical samples (Venofer() ampoule, Ironorm() capsule, and V.M. Protein() powder). PMID:22796024

  20. Computational Aided-Molecular Imprinted Polymer Design for Solid Phase Extraction of Metaproterenol from Plasma and Determination by Voltammetry Using Modified Carbon Nanotube Electrode

    PubMed Central

    Ahmadi, Farhad; Karamian, Ehsan

    2014-01-01

    A molecular imprinted polymer (MIP) was computationally designed and synthesized for the selective extraction of metaproterenol (MTP), from human plasma. In this regards semi empirical MP3 and mechanical quantum (DFT) calculations were used to find a suitable functional monomers. On the basis of computational and experimental results, acrylic acid (AA) and DMSO:MeOH (90:10 %V/V) were found to be the best choices of functional monomer and polymerization solvents, respectively. This polymer was then used as a selective sorbent to develop a molecularly imprinted solid-phase extraction (MISPE) procedure followed by differential pulse voltammetry by using modified carbon nanotube electrode. The analysis was performed in phosphate buffer, pH 7.0. Peak currents were measured at +0.67 V versus Ag/AgCl. The linear calibration range was 0.026–8.0 μg mL-1 with a limit of detection 0.01 μg mL-1. The relative standard deviation at 0.5 μg mL-1 was 4.76% (n=5). The mean recoveries of 5 μg mL-1 MTP from plasma was 92.2% (n=5). The data of MISPE-DPV were compared with the MISPE-HPLC-UV. Although, the MISPE-DPV was more sensitive but both techniques have similar accuracy and precision. PMID:25237337

  1. Trace analysis of Ponceau 4R in soft drinks using differential pulse stripping voltammetry at SWCNTs composite electrodes based on PEDOT:PSS derivatives.

    PubMed

    Wang, Zifei; Zhang, Hui; Wang, Zhipeng; Zhang, Jie; Duan, Xuemin; Xu, Jingkun; Wen, Yangping

    2015-08-01

    Ponceau 4R, an edible synthetic colorant used in drinks, syrups, and sweets, has been successfully detected using differential pulse voltammetry at a single-walled carbon nanotubes-modified composite electrode based on poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) and two derivatives thereof. The electrochemical parameters of three Ponceau 4R sensors, such as pH value, pre-concentration time, and scan rate, have been optimized, and their electrochemical performances have been compared. A poly(acrylate-modified 3,4-ethylenedioxythiophene-co-3,4-ethylenedioxythiophene):poly(styrene sulfonate)-single-walled carbon nanotubes-poly(vinyl alcohol)-modified electrode showed the best electrocatalytic activity, with the highest response current, lowest detection limit (1.8 nm), widest linear range (0.0055-110.6 ?m), and best sensing stability. Additionally, the modified electrode has also been successfully employed for real sample analysis with soft drinks. Satisfactory results were obtained, demonstrating this to be an easy and effective approach for trace analysis of Ponceau 4R in food samples. PMID:25766817

  2. Effect of zinc and iron ions on the electrochemistry of nickel oxide electrode: Slow cyclic voltammetry. Technical report

    SciTech Connect

    Krejci, I.; Vanysek, P.

    1993-04-07

    Porous sintered nickel oxide electrodes were prepared by cathodic electroprecipitation from metal nitrate solutions and characterized by slow (0.1 mV/s) voltammetry in 6 mol/l KOH. Presence of iron or zinc ions resulted in decrease of electrode charging ability and similar changes in voltammograms were observed for both ions. Removal of iron or zinc ions and introduction of lithium ions partially restored the electrode and corresponding voltammogram to original conditions. Presence of cobalt in the electrode material diminished substantially the influence of zinc ions on the electrode properties.... Storage batteries, Power sources, Membrane transport, Ion transport, Nafion.

  3. Resolution of quaternary mixtures of cadaverine, histamine, putrescine and tyramine by the square wave voltammetry and partial least squares method.

    PubMed

    Henao-Escobar, W; Domnguez-Renedo, O; Alonso-Lomillo, M A; Arcos-Martnez, M J

    2015-10-01

    This work presents the simultaneous determination of cadaverine, histamine, putrescine and tyramine by square wave voltammetry using a boron-doped diamond electrode. A multivariate calibration method based on partial least square regressions has allowed the resolution of the very high overlapped voltammetric signals obtained for the analyzed biogenic amines. Prediction errors lower than 9% have been obtained when concentration of quaternary mixtures were calculated. The developed procedure has been applied in the analysis of ham samples, which results are in good agreement with those obtained using the standard HPLC method. PMID:26078134

  4. Electrochemical identification of anthraquinone-based dyes in solid microsamples by square wave voltammetry using graphite/polyester composite electrodes.

    PubMed

    Domnech-Carb, A; Domnech-Carb, M T; Saur-Peris, M C; Gimeno-Adelantado, J V; Bosch-Reig, F

    2003-04-01

    An electrochemical method for identifying anthraquinone-type dyes in microsamples from works of art, based in the voltammetry of microparticles approach, is reported. Upon attachment onto graphite/polyester composite electrodes, natural pigments aloe, henna, cochineal red, madder lake, kermes, shellac, and alizarin and purpurin taken as reference materials can be identified from their square wave voltammetric profiles in MeCN (0.10 mol L(-1) Bu(4)NPF(6)) and aqueous (0.25 mol L(-1) acetic acid+0.25 mol L(-1) sodium acetate) electrolytes. PMID:12733034

  5. Conditions and chemometrics for the determination of heavy metals in natural and waste waters by stripping voltammetry with UV irradiation

    SciTech Connect

    Volkova, V.N.; Zakharova, E.A.; Khustenko, L.A.

    1987-07-20

    The number of supporting electrolytes for stripping voltammetry with photochemical oxygen deactivation was broadened. The following agents are recommended: formic, lactic, tartaric, citric, and malonic acids at pH 2-4; salts of lactic, tartaric, and citric acids at pH 6-7; and salts of lactic, tartaric, citric, and glutaric acids at pH 12-14. A rapid method was developed for simultaneously determining Zn, Cd, Pb, and Cu in a 0.5 M formic acid supporting electrolyte. The method is chemometrically sound and cost-effective.

  6. Alternate materials for alternate fuels

    SciTech Connect

    Not Available

    1992-04-01

    This paper reports on an extensive investigation of five different crystalline engineering thermoplastics and their reactions to various alternate fuels. The investigation covered acetal copolymer, nylon 6/6, polyphenylene sulfide, PBT polyester, and liquid crystal polymer. These five base resins were used in unfilled, glass fiber reinforced, impact modified, glass/mineral reinforced, and long-glass fiber reinforced grades. All of the materials were tested in ASTM reference Fuel C (50% toluene, 50% iso-octane), Auto-oxidized (sour gas), and Aggressive fuel with M25, M50, and M85 at 60{degrees} and 121{degrees} C. This study was undertaken due to the automotive industry's shift towards alternate fuels and higher operating temperatures.

  7. Alternative fuels

    NASA Technical Reports Server (NTRS)

    Grobman, J. S.; Butze, H. F.; Friedman, R.; Antoine, A. C.; Reynolds, T. W.

    1977-01-01

    Potential problems related to the use of alternative aviation turbine fuels are discussed and both ongoing and required research into these fuels is described. This discussion is limited to aviation turbine fuels composed of liquid hydrocarbons. The advantages and disadvantages of the various solutions to the problems are summarized. The first solution is to continue to develop the necessary technology at the refinery to produce specification jet fuels regardless of the crude source. The second solution is to minimize energy consumption at the refinery and keep fuel costs down by relaxing specifications.

  8. Compensated pulsed alternator

    DOEpatents

    Weldon, William F. (Austin, TX); Driga, Mircea D. (Austin, TX); Woodson, Herbert H. (Austin, TX)

    1980-01-01

    This invention relates to an electromechanical energy converter with inertial energy storage. The device, a single phase, two or multi-pole alternator with stationary field coils, and a rotating armature is provided. The rotor itself may be of laminated steel for slower pulses or for faster pulses should be nonmagnetic and electrically nonconductive in order to allow rapid penetration of the field as the armature coil rotates. The armature coil comprises a plurality of power generating conductors mounted on the rotor. The alternator may also include a stationary or counterrotating compensating coil to increase the output voltage thereof and to reduce the internal impedance of the alternator at the moment of peak outout. As the machine voltage rises sinusoidally, an external trigger switch is adapted to be closed at the appropriate time to create the desired output current from said alternator to an external load circuit, and as the output current passes through zero a self-commutating effect is provided to allow the switch to disconnect the generator from the external circuit.

  9. Alternative RNA splicing and cancer

    PubMed Central

    Liu, Sali; Cheng, Chonghui

    2015-01-01

    Alternative splicing of pre-messenger RNA (mRNA) is a fundamental mechanism by which a gene can give rise to multiple distinct mRNA transcripts, yielding protein isoforms with different, even opposing, functions. With the recognition that alternative splicing occurs in nearly all human genes, its relationship with cancer-associated pathways has emerged as a rapidly growing field. In this review, we summarize recent findings that have implicated the critical role of alternative splicing in cancer and discuss current understandings of the mechanisms underlying dysregulated alternative splicing in cancer cells. PMID:23765697

  10. Method development for the determination of arsenic by sequential injection/anodic stripping voltammetry using long-lasting gold-modified screen-printed carbon electrode.

    PubMed

    Punrat, Eakkasit; Chuanuwatanakul, Suchada; Kaneta, Takashi; Motomizu, Shoji; Chailapakul, Orawon

    2013-11-15

    An automated method has been developed for determining the concentration of inorganic arsenic. The technique uses sequential injection/anodic stripping voltammetry with a long-lasting gold-modified screen-printed carbon electrode. The long-lasting gold electrode was electrochemically deposited onto a screen-printed carbon electrode at a potential of -0.5 V vs. Ag/AgCl in a supporting electrolyte solution of 1M hydrochloric acid. Under optimal conditions and the applied potentials, the electrode demonstrated that it can be used for a long time without a renewal process. The linear range for the determination of arsenic(III) was 1-100 μg L(-1), and the limit of detection (LOD) in standard solutions was as low as 0.03 μg L(-1) for a deposition time of 120 s and sample volume of 1 mL. This method was used to determine the concentration of arsenic(III) in water samples with satisfactory results. The LOD in real samples was found to be 0.5 μg L(-1). In addition, speciation between arsenic(III) and arsenic(V) has been achieved with the proposed method using deposition potentials of -0.5 V and -1.5 V for the determination of the arsenic(III) concentration and the total arsenic concentration, respectively; the results were acceptable. The proposed method is an automated system that offers a less expensive alternative for determining trace amounts of inorganic arsenic. PMID:24148510

  11. Direct determination of tellurium and its redox speciation at the low nanogram level in natural waters by catalytic cathodic stripping voltammetry.

    PubMed

    Biver, Marc; Quentel, Franois; Filella, Montserrat

    2015-11-01

    Tellurium is one of the elements recently identified as technologically critical and is becoming a new emergent contaminant. No reliable method exists for its determination in environmental samples such as natural waters. This gap is filled by the method described here; it allows the rapid detection of trace concentrations of Te(IV) and Te(VI) in surface waters by differential pulse cathodic stripping voltammetry. It is based on the proton reduction catalysed by the absorption of Te(IV) on the mercury electrode. Under our conditions (0.1 mol L(-1) HCl) a detection limit of about 5 ng L(-1) for a deposition time of 300 s is achieved. Organic matter does not represent a problem at low concentrations; higher concentrations are eliminated by adsorptive purification. Tellurium occurs primarily as Te(IV) and Te(VI) in natural waters. Thus, determining total Te requires the reduction of Te(VI) that it is not electroactive. A number of reduction procedures have been carefully evaluated and a method based on the addition of TiCl3 to the acidified samples has been proven to reduce Te(VI) at the trace level to Te(IV) reliably and quantitatively. Therefore, the procedure described allows the direct determination of total Te and its redox speciation. It is flexible, reliable and cost effective compared to any possible alternative method based on the common preconcentration-ICPMS approach. It is readily implementable as a routine method and can be deployed in the field with relative ease. PMID:26452920

  12. LabVIEW-based sequential-injection analysis system for the determination of trace metals by square-wave anodic and adsorptive stripping voltammetry on mercury-film electrodes

    PubMed Central

    Economou, Anastasios; Voulgaropoulos, Anastasios

    2003-01-01

    The development of a dedicated automated sequential-injection analysis apparatus for anodic stripping voltammetry (ASV) and adsorptive stripping voltammetry (AdSV) is reported. The instrument comprised a peristaltic pump, a multiposition selector valve and a home-made potentiostat and used a mercury-film electrode as the working electrodes in a thin-layer electrochemical detector. Programming of the experimental sequence was performed in LabVIEW 5.1. The sequence of operations included formation of the mercury film, electrolytic or adsorptive accumulation of the analyte on the electrode surface, recording of the voltammetric current-potential response, and cleaning of the electrode. The stripping step was carried out by applying a square-wave (SW) potential-time excitation signal to the working electrode. The instrument allowed unattended operation since multiple-step sequences could be readily implemented through the purpose-built software. The utility of the analyser was tested for the determination of copper(II), cadmium(II), lead(II) and zinc(II) by SWASV and of nickel(II), cobalt(II) and uranium(VI) by SWAdSV. PMID:18924623

  13. Alternative fuel information: Alternative fuel vehicle outlook

    SciTech Connect

    Not Available

    1994-06-01

    Major automobile manufacturers continue to examine a variety of alternative fuel vehicle (AFV) options in an effort to provide vehicles that meet the fleet requirements of the Clean Air Act Amendments of 1990 (CAAA) and the Energy Policy Act of 1992 (EPACT). The current generation of AFVs available to consumers is somewhat limited as the auto industry attempts to respond to the presently uncertain market. At the same time, however, the automobile industry must anticipate future demand and is therefore engaged in research, development, and production programs on a wide range of alternative fuels. The ultimate composition of the AFV fleet may be determined by state and local regulations which will have the effect of determining demand. Many state and regional groups may require vehicles to meet emission standards more stringent than those required by the federal government. Therefore, a significant impact on the market could occur if emission classifications begin serving as the benchmark for vehicles, rather than simply certifying a vehicle as capable of operating on an ``alternative`` to gasoline. Vehicles classified as Zero-Emissions, or even Inherently Low-Emissions, could most likely be met only by electricity or natural gas, thereby dictating that multi-fuel vehicles would be unable to participate in some clean air markets. In the near-term, the Clinton Administration desires to accelerate the use of alternative fuels as evidenced by an executive order directing the federal government to increase the rate of conversion of the federal fleet beyond that called for in EPACT. The Administration has expressed particular interest in using more compressed natural gas (CNG) as a motor fuel, which has resulted in the auto industry`s strong response of concentrating short-term efforts on CNG vehicles. For the 1994 model year, a number of CNG cars and trucks will be available from major automobile manufacturers.

  14. Combining voltammetry and ion chromatography: application to the selective reduction of nitrate on Pt and PtSn electrodes.

    PubMed

    Yang, Jian; Kwon, Youngkook; Duca, Matteo; Koper, Marc T M

    2013-08-20

    To overcome the shortcomings of electroanalytical methods in analyzing the ionic reaction products that are either electrochemically inert or lack distinct electrochemical/spectroscopic fingerprints, we suggest combining voltammetry with ion chromatography by applying online sample collection to the electrochemical cell and offline ion chromatographic analysis. This combination allows a quantitative analysis including the potential dependence of the product distribution in a straightforward way. As a proof-of-concept example, we discuss the formation of ionic reaction products from nitrate reduction on Pt and Sn-modified Pt electrode in acid. On the Pt electrode, ammonia was the only identifiable product. After Sn modification of the Pt electrode, a change in selectivity was observed to hydroxylamine as the dominant product. Moreover, the rate determining step of nitrate reduction (reduction to nitrite) was enhanced by Sn modification of the Pt electrode, and a significant concentration of nitrite was evidenced on a Pt electrode with a high coverage of Sn species. The suggested combination of voltammetry and online ion chromatography hence proves very useful in the quantitative elucidation of electrocatalytic reactions with different ionic products. PMID:23899010

  15. Robotic voltammetry with carbon nanotube-based sensors: a superb blend for convenient high-quality antimicrobial trace analysis

    PubMed Central

    Theanponkrang, Somjai; Suginta, Wipa; Weingart, Helge; Winterhalter, Mathias; Schulte, Albert

    2015-01-01

    A new automated pharmacoanalytical technique for convenient quantification of redox-active antibiotics has been established by combining the benefits of a carbon nanotube (CNT) sensor modification with electrocatalytic activity for analyte detection with the merits of a robotic electrochemical device that is capable of sequential nonmanual sample measurements in 24-well microtiter plates. Norfloxacin (NFX) and ciprofloxacin (CFX), two standard fluoroquinolone antibiotics, were used in automated calibration measurements by differential pulse voltammetry (DPV) and accomplished were linear ranges of 110 ?M and 2100 ?M for NFX and CFX, respectively. The lowest detectable levels were estimated to be 0.30.1 ?M (n=7) for NFX and 1.60.1 ?M (n=7) for CFX. In standard solutions or tablet samples of known content, both analytes could be quantified with the robotic DPV microtiter plate assay, with recoveries within 4% of 100%. And recoveries were as good when NFX was evaluated in human serum samples with added NFX. The use of simple instrumentation, convenience in execution, and high effectiveness in analyte quantitation suggest the merger between automated microtiter plate voltammetry and CNT-supported electrochemical drug detection as a novel methodology for antibiotic testing in pharmaceutical and clinical research and quality control laboratories. PMID:25670899

  16. Differential pulse anodic stripping voltammetry of cadmium(II) with a rotating membrane-covered mercury film electrode

    SciTech Connect

    Stewart, E.E.; Smart, R.B.

    1984-06-01

    A rotating membrane-covered mercury film electrode (MCMFE) was constructed by placing a dialysis membrane over a glassy carbon rotating disk electrode and plating a thin mercury film onto the electrode surface through the membrane. Differential pulse anodic stripping voltammetry of cadmium was used to evaluate the effects of pH, rotation rate, deposition time, and concentration on the MCMFE. The response was linear from 4.0 X 10/sup -9/ MCd/sup 2 +/ to 1.07 X 10/sup -5/ M Cd/sup 2 +/ with a standard deviation of +/- 9.30 X 10/sup -10/ M Cd/sup 2 +/ for a 1.78 X 10/sup -8/ M Cd/sup 2 +/ solution (RSD +/- 11.1%) and a standard deviation of +/- 6.44 X 10/sup -9/ M Cd/sup 2 +/ for a 1.78 X 10/sup -/' M Cd/sup 2 +/ solution (RSD +/- 3.64%). The limit of detection was estimated to be 8.6 X 10/sup -10/ M. These results compared favorably to the bare mercury film electrode (MFE) for linear scan anodic stripping voltammetry. 29 references, 5 figures.

  17. Determination of trace mercury in water based on N-octylpyridinium ionic liquids preconcentration and stripping voltammetry.

    PubMed

    Li, Zhenhan; Xia, Shanhong; Wang, Jinfen; Bian, Chao; Tong, Jianhua

    2016-01-15

    A novel method for determination of trace mercury in water is developed. The method is performed by extracting mercury firstly with ionic liquids (ILs) and then detecting the concentration of mercury in organic media with anodic stripping voltammetry. Liquid-liquid extraction of mercury(II) ions by four ionic liquids with N-octylpyridinium cations ([OPy](+)) was studied. N-octylpyridinium tetrafluoroborate and N-octylpyridinium trifluoromethylsulfonate were found to be efficient and selective extractant for mercury. Temperature controlled dispersive liquid phase microextraction (TC-DLPME) technique was utilized to improve the performance of preconcentration. After extraction, precipitated IL was diluted by acetonitrile buffer and mercury was detected by differential pulse stripping voltammetry (DPSV) with gold disc electrode. Mercury was enriched by 17 times while interfering ions were reduced by two orders of magnitude in the organic media under optimum condition. Sensitivity and selectivity for electrochemical determination of mercury were improved by using the proposed method. Tap, pond and waste water samples were analyzed with recoveries ranging from 81% to 107% and detection limit of 0.05 ?g/L. PMID:26364269

  18. A Simple and Inexpensive Function Generator and a Four-Electrode Cell for Cyclic Voltammetry.

    ERIC Educational Resources Information Center

    Albahadily, F. N.; Mottola, Horacio A.

    1986-01-01

    Describes construction and operation of an inexpensive signal generator and a four-electrode electrochemical cell for use in voltammetric experiments. Also describes construction and operation of a four-electrode electrochemical cell used to illustrate elimination (or minimization) of background currents due to electrochemical reactions by species…

  19. A Simple and Inexpensive Function Generator and a Four-Electrode Cell for Cyclic Voltammetry.

    ERIC Educational Resources Information Center

    Albahadily, F. N.; Mottola, Horacio A.

    1986-01-01

    Describes construction and operation of an inexpensive signal generator and a four-electrode electrochemical cell for use in voltammetric experiments. Also describes construction and operation of a four-electrode electrochemical cell used to illustrate elimination (or minimization) of background currents due to electrochemical reactions by species

  20. Solvent alternatives

    SciTech Connect

    Hairston, D.W.

    1997-02-01

    Hardly a day goes by when there is not an announcement of a product developed to replace substances that deplete the ozone or create smog. In real time, the solvents market is being transformed. What was once a commodities business, dominated by a handful of chlorinated and hydrocarbon compounds, is an uncharted niche for hundreds of specialized products. Though the alternatives are diverse--from alcohols to solvent emulsions, making inroads with customers is an uphill battle. Few products match the all-around performance and price of their predecessors, such as 1,1,1-trichloroethane, one of the most versatile and widely used solvents. For aqueous systems especially, the competition is fierce, and could intensify should some old foes make a comeback in solvents. Industry observers point to the US Environmental Protection Agency`s decision to exempt acetone from regulation as a volatile organic compound (VOC). To date, oxygenated solvents, such as alcohols, alcohol esters and alcohol ethers are the biggest beneficiaries of the move away from hazardous solvents, say market analysts at The Freedonia Group, Inc. (Cleveland, Ohio). The oxygenates, which are nonchlorinated and contain low levels of VOCs, work well in water-based coatings.

  1. Enhancing selectivity in stripping voltammetry by different adsorption behaviors: the use of nanostructured Mg-Al-layered double hydroxides to detect Cd(II).

    PubMed

    Xu, Ren-Xia; Yu, Xin-Yao; Gao, Chao; Liu, Jin-Huai; Compton, Richard G; Huang, Xing-Jiu

    2013-03-21

    We report the use of nanostructured layered double hydroxides (LDHs) for the highly selective and sensitive detection of Cd(2+) using anodic stripping voltammetry (ASV). In particular, the modification of a glassy carbon electrode promotes the sensitivity and selectivity towards Cd(2+) in the presence of Pb(2+), Hg(2+), Cu(2+) and Zn(2+). The electrochemical characterization and anodic stripping voltammetric performance of Cd(2+) were evaluated using cyclic voltammetry (CV) and square wave anodic stripping voltammetry (SWASV) analysis. Operational parameters, including supporting electrolytes, pH value, deposition potential and deposition time were optimized. In addition, the selectivity, interference and stability were also investigated under the optimized conditions. The results showed that the fabricated electrode possessed good selectivity, stability and reproducibility. The proposed electrochemical sensing strategy is thus expected to open new opportunities to broaden the use of ASV in analysis for detecting heavy metal ions in the environment. PMID:23370265

  2. Implementation of a statistically supported heuristic approach to alternating current voltammetric harmonic component analysis: re-evaluation of the macrodisk glassy carbon electrode kinetics for oxidation of ferrocene in acetonitrile.

    PubMed

    Mashkina, Elena; Bond, Alan M

    2011-03-01

    Sinusoidal large amplitude ac voltammetric techniques gene-rate very large data sets. When analyzed in the frequency domain, using a Fourier transform (FT)-band filtering- inverse FT sequence, the data may be resolved into the aperiodic dc, fundamental, second, and higher order ac harmonics. Each of these components exhibit a different level of sensitivity to electrode kinetics, uncompensated resistance and capacitance. Detailed simulations illustrate how the heuristic approach for evaluation of each data subset may be implemented and exploited in the assessment of the electrode kinetics for the fast Fc [symbol:see text] Fc(+) + e (Fc = ferrocene) oxidation process at a glassy carbon macrodisk electrode. The simulations presented in this study are based on the Butler-Volmer model and incorporate consideration of the uncompensated resistance (R(u)), double-layer capacitance (C(dl)), rate constant (k(0)), and charge transfer coefficient (?). Error analysis of the heuristically evaluated simulation-experiment comparison is used to assist in establishing the best fit of data for each harmonic. The result of the heuristic pattern recognition type approach for analysis of the oxidation of ferrocene (0.499, 0.999, and 5.00 mM) at a glassy carbon macrodisk electrode in acetonitrile (0.1 M Bu(4)NPF(6)) implies that k(0) ? 0.25 cm s(-1) on the basis of analysis of the first 4 harmonics and plausibly lies in the range of 0.25-0.5 cm s(-1) with ? = 0.25-0.75 when analysis of the next four harmonics is undertaken. The k(0) value is significantly faster then indicated in most literature reports based on use of dc cyclic voltammetry under transient conditions at glassy carbon macrodisk electrode. The data analysis with a sinusoidal amplitude of 80 mV is conducted at very low frequency experiments of 9 Hz to minimize contribution from electrode heterogeneity, frequency dispersion, and adsorption, all of which can complicate the response for the oxidation of Fc in acetonitrile at a glassy carbon electrode. PMID:21302902

  3. Real-time processing of fast-scan cyclic voltammetry (FSCV) data using a field-programmable gate array (FPGA).

    PubMed

    Bozorgzadeh, Bardia; Covey, Daniel P; Heidenreich, Byron A; Garris, Paul A; Mohseni, Pedram

    2014-01-01

    This paper reports the hardware implementation of a digital signal processing (DSP) unit for real-time processing of data obtained by fast-scan cyclic voltammetry (FSCV) at a carbon-fiber microelectrode (CFM), an electrochemical transduction technique for high-resolution monitoring of brain neurochemistry. Implemented on a field-programmable gate array (FPGA), the DSP unit comprises a decimation filter and an embedded processor to process the oversampled FSCV data and obtain in real time a temporal profile of concentration variation along with a chemical signature to identify the target neurotransmitter. Interfaced with an integrated, FSCV-sensing front-end, the DSP unit can successfully process FSCV data obtained by bolus injection of dopamine in a flow cell as well as electrically evoked, transient dopamine release in the dorsal striatum of an anesthetized rat. PMID:25570384

  4. Lab-on-a-Chip Sensor with Evaporated Bismuth Film Electrode for Anodic Stripping Voltammetry of Zinc

    PubMed Central

    Kang, Wenjing; Pei, Xing; Yue, Wei; Bange, Adam; Heineman, William R.; Papautsky, Ian

    2013-01-01

    In this work, we report on the development of a lab-on-a-chip electrochemical sensor that uses an evaporated bismuth electrode to detect zinc using square wave anodic stripping voltammetry. The microscale electrochemical cell consists of a bismuth working electrode, an integrated silver/silver chloride reference electrode, and a gold auxiliary electrode. The sensor demonstrated linear response in 0.1 M acetate buffer at pH 6 with zinc concentrations ranging from 1 ?M to 30 ?M and a calculated detection limit of 60 nM. The sensor was also able to successfully detect zinc in a bovine serum extract and the results were verified with independent AAS measurements. These results demonstrate the advantageous qualities of this lab-on-a-chip electrochemical sensor for clinical applications, which include a small sample volume (?L scale), reduced cost, short response time and high accuracy at low concentrations of analyte. PMID:24436575

  5. Mono-Mercury Doping of Au25 and the HOMO/LUMO Energies Evaluation Employing Differential Pulse Voltammetry.

    PubMed

    Liao, Lingwen; Zhou, Shiming; Dai, Yafei; Liu, Liren; Yao, Chuanhao; Fu, Cenfeng; Yang, Jinlong; Wu, Zhikun

    2015-08-01

    Controlling the bimetal nanoparticle with atomic monodispersity is still challenging. Herein, a monodisperse bimetal nanoparticle is synthesized in 25% yield (on gold atom basis) by an unusual replacement method. The formula of the nanoparticle is determined to be Au24Hg1(PET)18 (PET: phenylethanethiolate) by high-resolution ESI-MS spectrometry in conjunction with multiple analyses including X-ray photoelectron spectroscopy (XPS) and thermogravimetric analysis (TGA). X-ray single-crystal diffraction reveals that the structure of Au24Hg1(PET)18 remains the structural framework of Au25(PET)18 with one of the outer-shell gold atoms replaced by one Hg atom, which is further supported by theoretical calculations and experimental results as well. Importantly, differential pulse voltammetry (DPV) is first employed to estimate the highest occupied molecular orbit (HOMO) and the lowest unoccupied molecular orbit (LUMO) energies of Au24Hg1(PET)18 based on previous calculations. PMID:26196263

  6. Novel application of square-wave adsorptive-stripping voltammetry for the determination of xanthohumol in spent hops.

    PubMed

    Moreira, Manuela M; Carvalho, Ana M; Valente, Ines M; Goncalves, Luis M; Rodrigues, Jose A; Barros, Aquiles A; Guido, Luis F

    2011-07-27

    This paper reports the development of a novel electrochemical assay for xanthohumol (XN) by square-wave adsorptive-stripping voltammetry (SWAdSV) with a hanging mercury drop electrode. The method showed good repeatability (CV < 2%) and linearity (between 10 and 250 ?g L(-1)), as well as suitable limits of detection (2.6 ?g L(-1)) and quantification (8.8 ?g L(-1)). The method was applied for the quantification of this compound in spent hops, and the results obtained were compared with the HPLC-UV method. XN contents determined by the SWAdSV method were 16 1 and 100 4 ?g L(-1) for aqueous and methanolic extracts, respectively. The developed new methodology considerably reduces the analysis time, approximately from 25 min (HPLC-UV method) to 7 min, enabling a high sample throughput. In addition, the detection and quantification limits were approximately 5-fold lower than those obtained with the chromatographic method. PMID:21671607

  7. Determination of trace amounts of Ga(III) by adsorptive stripping voltammetry with in situ plated bismuth film electrode.

    PubMed

    Grabarczyk, Malgorzata; Wasąg, Joanna

    2015-11-01

    The determination of trace gallium using adsorptive stripping voltammetry at an in situ plated bismuth film electrode was described. The method was based on simultaneous film formation and the Ga(III)-cupferron complex preconcentration at -0.65 V and its cathodic stripping during the potential scan. The effect of Bi(III) and cupferron concentration, the influence of deposition potential and time, and the scan rate on the determination of Ga(III) were studied. A linear response in the concentration range of 3×10(-10) to 3×10(-7) mol L(-1) (r=0.998) was obtained with detection limit of 1.05×10(-10) mol L(-1) using accumulation time of 180 s. Finally, the bismuth film electrode was successfully applied for the determination of Ga(III) in certified reference material seawater NASS-5 with satisfactory results. PMID:26452932

  8. Determination of antimony in impure zinc sulphate solution by coprecipitation followed by differential pulse anodic stripping voltammetry.

    PubMed

    Dhana Sekharan, R; Raghavan, R; Agarwal, L K

    1996-07-01

    A simple coprecipitation technique for the quantitative separation of the antimony present in impure zinc sulphate electrolyte followed by its voltammetric determination is described. Antimony in microgram levels is separated from the matrix zinc sulphate solution, which contains higher levels of copper, lead and cadmium, and is subsequently determined by differential pulse anodic stripping voltammetry (DPASV) in 3 M hydrochloric acid. Hydrous manganese dioxide is employed as the collector. This procedure, which effects considerable saving in time, is of comparable accuracy to the conventional spectrophotometric method using the antimony-rhodamine B complex. A series of synthetic zinc sulphate solutions spiked with known amounts of antimony as well as plant solutions gave near theoretical values. PMID:18966582

  9. Determination of As(III) by anodic stripping voltammetry following double deposition and stripping steps at two gold working electrodes.

    PubMed

    Korolczuk, Mieczyslaw; Ochab, Mateusz; Rutyna, Iwona

    2015-11-01

    The double deposition and stripping steps were proposed to minimize interference and increase the sensitivity in anodic stripping voltammetry of As(III). Two working electrodes of drastically different surface areas were used for the measurements. Arsenic was first deposited at the gold film electrode of a large surface area. When the deposition step at this electrode finished, the electrode was moved at a short distance to the second electrode consisting of four gold microelectrodes. The arsenic stripped from the first electrode was partially deposited at the microelectrodes and the analytical signal was obtained by its oxidation. Due to double deposition of arsenic the interference of Cu(II) was minimized and the detection limit of As(III) was lowered by one order of magnitude. The calibration graph was linear from 510(-10) to 110(-8) mol L(-1) following deposition time of 300 s at the first and the second electrode. PMID:26452856

  10. Alternative Splice in Alternative Lice

    PubMed Central

    Tovar-Corona, Jaime M.; Castillo-Morales, Atahualpa; Chen, Lu; Olds, Brett P.; Clark, John M.; Reynolds, Stuart E.; Pittendrigh, Barry R.; Feil, Edward J.; Urrutia, Araxi O.

    2015-01-01

    Genomic and transcriptomics analyses have revealed human head and body lice to be almost genetically identical; although con-specific, they nevertheless occupy distinct ecological niches and have differing feeding patterns. Most importantly, while head lice are not known to be vector competent, body lice can transmit three serious bacterial diseases; epidemictyphus, trench fever, and relapsing fever. In order to gain insights into the molecular bases for these differences, we analyzed alternative splicing (AS) using next-generation sequencing data for one strain of head lice and one strain of body lice. We identified a total of 3,598 AS events which were head or body lice specific. Exon skipping AS events were overrepresented among both head and body lice, whereas intron retention events were underrepresented in both. However, both the enrichment of exon skipping and the underrepresentation of intron retention are significantly stronger in body lice compared with head lice. Genes containing body louse-specific AS events were found to be significantly enriched for functions associated with development of the nervous system, salivary gland, trachea, and ovarian follicle cells, as well as regulation of transcription. In contrast, no functional categories were overrepresented among genes with head louse-specific AS events. Together, our results constitute the first evidence for transcript pool differences in head and body lice, providing insights into molecular adaptations that enabled human lice to adapt to clothing, and representing a powerful illustration of the pivotal role AS can play in functional adaptation. PMID:26169943

  11. Alternative Splice in Alternative Lice.

    PubMed

    Tovar-Corona, Jaime M; Castillo-Morales, Atahualpa; Chen, Lu; Olds, Brett P; Clark, John M; Reynolds, Stuart E; Pittendrigh, Barry R; Feil, Edward J; Urrutia, Araxi O

    2015-10-01

    Genomic and transcriptomics analyses have revealed human head and body lice to be almost genetically identical; although con-specific, they nevertheless occupy distinct ecological niches and have differing feeding patterns. Most importantly, while head lice are not known to be vector competent, body lice can transmit three serious bacterial diseases; epidemictyphus, trench fever, and relapsing fever. In order to gain insights into the molecular bases for these differences, we analyzed alternative splicing (AS) using next-generation sequencing data for one strain of head lice and one strain of body lice. We identified a total of 3,598 AS events which were head or body lice specific. Exon skipping AS events were overrepresented among both head and body lice, whereas intron retention events were underrepresented in both. However, both the enrichment of exon skipping and the underrepresentation of intron retention are significantly stronger in body lice compared with head lice. Genes containing body louse-specific AS events were found to be significantly enriched for functions associated with development of the nervous system, salivary gland, trachea, and ovarian follicle cells, as well as regulation of transcription. In contrast, no functional categories were overrepresented among genes with head louse-specific AS events. Together, our results constitute the first evidence for transcript pool differences in head and body lice, providing insights into molecular adaptations that enabled human lice to adapt to clothing, and representing a powerful illustration of the pivotal role AS can play in functional adaptation. PMID:26169943

  12. Determination of nitroaromatic and nitramine type energetic materials in synthetic and real mixtures by cyclic voltammetry.

    PubMed

    Üzer, Ayşem; Sağlam, Sener; Tekdemir, Yasemin; Ustamehmetoğlu, Belkıs; Sezer, Esma; Erçağ, Erol; Apak, Reşat

    2013-10-15

    Nitro-explosives contain reducible aromatic -NO2 groups or cyclic >N-NO2 bonds that may undergo reductive cleavage. This work reports the development of a cyclic voltammetric (CV) assay for nitro-aromatics (trinitrotoluene (TNT), dinitrotoluene (DNT)) and nitramines (1,3,5-trinitro-1,3,5-triazacyclohexane (RDX) and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX)) using a glassy carbon electrode. This determination was first used for these energetic materials by resolving current responses of reduction potentials primarily due to one constituent but partly contributed by other constituents. Calibration curves of current intensity versus concentration were linear in the range of 30-120 mg L(-1) for RDX with a limit of detection (LOD) of 10.2 mg L(-1), 40-120 mg L(-1) for HMX (LOD=11.7 mg L(-1)), 40-120 mg L(-1) for TNT (LOD=11.2 mg L(-1)), and 40-140 mg L(-1) for DNT (LOD=10.8 mg L(-1)). Results showed that the CV method could provide a sensitive approach for the simultaneous determination of RDX and TNT in synthetic and real mixtures. Deconvolution of current contributions of mixtures at peak potentials of constituents was performed by multiple linear regression. The proposed method was successfully applied to the analysis of military explosives comp A5 and octol, and method validation was performed both against HPLC on a comp B (TNT+RDX) sample and against GC-MS on real post-blast residual samples containing both explosives. PMID:24054661

  13. Amperometric and fast scan-rate cyclic voltammetry detection at a microelectrode for gel permeation high-performance liquid chromatography of fullerenes

    SciTech Connect

    Soucaze-Guillous, B.; Kutner, W.; Kadish, K.M. )

    1993-03-15

    Amperometry and fast scan-rate cyclic voltammetry (CV) at a 10-[mu]m-diameter platinum microelectrode were utilized for detection and in situ identification of fullerenes which were separated by gel permeation high-performance liquid chromatography. The microelectrode and inlet capillary nozzle were arranged perpendicularly. The limiting currents were virtually independent of the mobile phase flow rate in the range 0.1--2.0 mL min[sup [minus]1] for a distance between the microelectrode and inlet capillary nozzle [le] 0.10 mm. A toluene extract of the laser-vaporized soot containing low molecular mass fullerenes was resolved on two gel permeation columns which were connected in series. The mobile phase was dichloromethane/cyclohexane, 90/10 (v/v), 0.01 M tetra-n-butylammonium perchlorate. C[sub 60] and C[sub 70] were the major components of the extract and were present in a 3:1 mass ratio. Other higher fullerenes were also present in a 3:1 major concentration. The number and shapes of the peaks in chromatograms obtained with amperometric detection at [minus]1.3 V vs SCE were the same as those obtained with UV-visible spectroscopic detection at 366 nm, thus indicating that all of the detected compounds both absorb UV-visible light and are electrochemically active. Extracolumn peak broadenings due to detection and detectability (83.8 ng for C[sub 60]) were also the same in both detection techniques. In situ fast scan-rate voltammograms of C[sub 60] and C[sub 70] were obtained during elution, and the reversible E[sub 1/2] values of the third and fourth electroreductions could be used for their identification. 40 refs., 4 figs., 1 tab.

  14. Development of a sequential injection-square wave voltammetry method for determination of paraquat in water samples employing the hanging mercury drop electrode.

    PubMed

    dos Santos, Luciana B O; Infante, Carlos M C; Masini, Jorge C

    2010-03-01

    This work describes the development and optimization of a sequential injection method to automate the determination of paraquat by square-wave voltammetry employing a hanging mercury drop electrode. Automation by sequential injection enhanced the sampling throughput, improving the sensitivity and precision of the measurements as a consequence of the highly reproducible and efficient conditions of mass transport of the analyte toward the electrode surface. For instance, 212 analyses can be made per hour if the sample/standard solution is prepared off-line and the sequential injection system is used just to inject the solution towards the flow cell. In-line sample conditioning reduces the sampling frequency to 44 h(-1). Experiments were performed in 0.10 M NaCl, which was the carrier solution, using a frequency of 200 Hz, a pulse height of 25 mV, a potential step of 2 mV, and a flow rate of 100?L s(-1). For a concentration range between 0.010 and 0.25 mg L(-1), the current (i(p), A) read at the potential corresponding to the peak maximum fitted the following linear equation with the paraquat concentration (mg L(-1)): i(p) = (-20.5??0.3)C (paraquat) - (0.02??0.03). The limits of detection and quantification were 2.0 and 7.0?g L(-1), respectively. The accuracy of the method was evaluated by recovery studies using spiked water samples that were also analyzed by molecular absorption spectrophotometry after reduction of paraquat with sodium dithionite in an alkaline medium. No evidence of statistically significant differences between the two methods was observed at the 95% confidence level. PMID:20084371

  15. Sulfuric acid-methanol electrolytes as an alternative to sulfuric-hydrofluoric acid mixtures for electropolishing of niobium

    SciTech Connect

    Zhao, Xin; Corcoran, Sean G.; Kelley, Michael J.

    2011-06-01

    Attainment of the greatest possible interior surface smoothness is critical to meeting the performance demands placed upon niobium superconducting radiofrequency (SRF) accelerator cavities by next generation projects. Electropolishing with HF-H{sub 2}SO{sub 4} electrolytes yields cavities that meet SRF performance goals, but a less-hazardous, more environmentally-friendly process is desirable. Reported studies of EP on chemically-similar tantalum describe the use of sulfuric acid-methanol electrolytes as an HF-free alternative. Reported here are the results of experiments on niobium samples with this electrolyte. Voltammetry experiments indicate a current plateau whose voltage range expands with increasing acid concentration and decreasing temperature. Impedance spectroscopy indicates that a compact salt film is responsible for the current plateau. Equivalent findings in electropolishing chemically-similar tantalum with this electrolyte were interpreted due to as mass transfer limitation by diffusion of Ta ions away from the anode surface. We infer that a similar mechanism is at work here. Conditions were found that yield leveling and brightening comparable to that obtained with HF-H{sub 2}SO{sub 4} mixtures.

  16. Pemphigus: current therapy.

    PubMed

    Rosenkrantz, Wayne S

    2004-04-01

    Pemphigus is an autoimmune skin disease that can present in a variety of forms and can be a challenging disease to manage and treat. An overview of the different forms of pemphigus and diagnostics are discussed including pemphigus foliaceus (PF), pemphigus erythematosus (PE), panepidermal pustular pemphigus (PPP), pemphigus vulgaris (PV) and paraneoplastic pemphigus (PNP). Emphasis on therapy is presented. Included are the most current commonly used therapeutics (glucocorticoids, azathioprine, chlorambucil and tetracycline and niacinamide); current alternative therapeutics (cyclosporin and tacrolimus and mycophenolate mofetil) and additional alternative therapeutics (cyclophosphamide, chrysotherapy, dapsone, sulfasalazine and intravenous immunoglobulin (IVIG) therapy). PMID:15030557

  17. Simple and rapid determination of trace iodide by cathodic stripping voltammetry.

    PubMed

    Yang, Lingxi; Zou, Lina; Li, Gaiping; Ye, Baoxian

    2016-01-15

    This work establishes a highly sensitive and simple stripping voltammetric method for the direct determination of trace iodide. In the presence of abounding bromide and appropriate amount of cetylpyridine bromide (CPB), the iodine was accumulated on the glassy carbon electrode surface as ion association complex (CPBI2Br). After accumulation for a period of time, a linear sweep potential with negative scanning was applied and the I2 in CPBI2Br was reduced again into the solution. Under the optimization conditions, the stripping signals (peak current) were linear relationship with iodide concentration in range of 3.8110(-3)g/mL to 0.114 ?g/mL and 0.127?g/mL to 2.54?g/mL, with a detection limit of 1.02ng/mL (S/N=3) for a accumulation time of 180s. Determination of trace iodine in pharmaceutical sample, kelp and table salt were performed with high accuracy and satisfactory recovery results. PMID:26592656

  18. Direct electrodeposition of gold nanotube arrays of rough and porous wall by cyclic voltammetry and its applications of simultaneous determination of ascorbic acid and uric acid.

    PubMed

    Yang, Guangming; Li, Ling; Jiang, Jinhe; Yang, Yunhui

    2012-08-01

    Gold nanotube arrays of rough and porous wall has been synthesized by direct electrodeposition with cyclic voltammetry utilizing anodic aluminum oxide template (AAO) and polycarbonate membrane (PC) during short time (only 3 min and 2 min, respectively). The mechanism of the direct electrodeposition of gold nanotube arrays by cyclic voltammetry (CV) has been discussed. The morphological characterizations of the gold nanotube arrays have been investigated by scanning electron microscopy (SEM). A simultaneous determination of ascorbic acid (AA) and uric acid (UA) by differential pulse voltammetry (DPV) was constructed by attaching gold nanotube arrays (using AAO) onto the surface of a glassy carbon electrode (GCE). The electrochemical behavior of AA and UA at this modified electrode has been studied by CV and differential pulse voltammetry (DPV). The sensor offers an excellent response for AA and UA and the linear response range for AA and UA were 1.0210(-7)-5.2310(-4) mol L(-1) and 1.4310(-7)-4.6410(-4) mol L(-1), the detection limits were 1.1210(-8) mol L(-1) and 2.2410(-8) mol L(-1), respectively. This sensor shows good regeneration, stability and selectivity and has been used for the determination of AA and UA in real human urine and serum samples with satisfied results. PMID:24364929

  19. APPLICATION OF AVIDIN-BIOTIN TECHNOLOGY AND ADSORPTIVE TRANSFER STRIPPING SQUARE-WAVE VOLTAMMETRY FOR DETECTION OF DNA HYBRIDIZATION AND AVIDIN IN TRANSGENIC AVIDIN MAIZE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The proteins streptavidin and avidin were electrochemically detected in solution by adsorptive transfer stripping square wave voltammetry (AdTS SWV) at a carbon paste electrode (CPE). AdTS SWV was used to quantify biotinylated oligonucleotides, DNA hybridizations, and avidin in extracts of transgeni...

  20. Low-frequency alternative-current magnetic susceptibility, photoelectric properties, and adhesive properties of Ni80Fe20 (XÅ)/ZnO(500Å) and ZnO(500Å)/Ni80Fe20(YÅ) on glass substrate

    NASA Astrophysics Data System (ADS)

    Chen, Yuan-Tsung

    2015-08-01

    The following conditions are deposited: (a) glass/Ni80Fe20(XÅ)/ZnO(500Å) and (b) glass/ZnO(500Å)/Ni80Fe20(YÅ), where each of X and Y is 1000Å, 1500Å, 2000Å or 2500Å. The substrate temperature was maintained at room temperature (RT), and post-annealing was performed with heating at (TA) = 150 °C for 1 h or (TA) = 250 °C for 1 h. The sputtering sequence and the thickness of the NiFe film were varied to study the effects of these factors on the low-frequency alternative-current magnetic susceptibility (χac), maximum χac with corresponding optimal resonance frequency (fres), transmission, electrical resistivity (ρ), and surface energy of the multilayered glass/Ni80Fe20(XÅ)/ZnO(500Å) and glass/ZnO(500Å)/Ni80Fe20(YÅ). Experimental results demonstrate that ZnO(500Å)/Ni80Fe20(YÅ) is superior to Ni80Fe20/ZnO(500Å) because diffraction from the ZnO (0 0 2) crystals at the bottom of ZnO(500Å)/Ni80Fe20(YÅ) improves the magneto crystalline anisotropy of Ni80Fe20, improving its magnetic and photoelectrical properties. X-ray diffraction patterns (XRD) reveal that the ZnO (0 0 2), ZnO (2 2 0), and NiFe (1 1 1) peaks of ZnO(500Å)/Ni80Fe20(YÅ) are more intense than those of Ni80Fe20/ZnO(500Å) under three substrate conditions, indicating the ZnO (0 0 2) peak reflects magneto crystalline anisotropy in the crystalline NiFe layer of ZnO(500Å)/Ni80Fe20(YÅ), yielding the highest χac of approximately 3.16 with an fres of 250 Hz upon post-annealing TA = 250 °C for 1 h. The (1 1 1) diffracted intensity and grain size of the thicker and post-annealed Ni80Fe20 thin films exceeded those of the thinner and as-deposited Ni80Fe20 thin films. A spectral analyzer was used to measure transmittance through NiFe of various thicknesses. The transmittance declined slightly as the thickness and grain size increased, because increasing thickness reduced penetration. Post-annealing promoted grain growth, increased the average size of the grains and reduced transmittance. Both as-deposited glass/Ni80Fe20(XÅ)/ZnO(500Å) and as-deposited glass/ZnO(500Å)/Ni80Fe20(YÅ) had the highest penetration, when X, Y = 1000Å, and the highest transmittances of 87% and 93%, respectively. The highest transmittance of glass/ZnO(500Å)/Ni80Fe20(YÅ) exceeded that of glass/Ni80Fe20(XÅ)/ZnO(500Å) owing to ZnO (0 0 2) crystallization. Furthermore, ρ decreased as the Ni80Fe20 thickness increased, because grain boundaries and the surface of thin films scattered the electrons, so thinner films had greater resistance. Electrical measurements revealed that the maximum resistivities of glass/Ni80Fe20(1000Å)/ZnO(500Å) and glass/ZnO(500Å)/Ni80Fe20(1000Å) were 292 μΩ cm and 288 μΩ cm, and the resistivity declined as the thickness of the film increased. The surface energy of the as-deposited and thinner NiFe layers exceeded that of post-annealed and thicker NiFe layers, revealing that the adhesion of the as-deposited and thinner NiFe films was stronger than that of the post-annealed and thicker films, on account of the degrees of crystallinity. Glass/Ni80Fe20(1000Å)/ZnO(500Å) and glass/ZnO(500Å)/Ni80Fe20(1000Å) had the highest surface energies of 64 mJ/mm2 and 59 mJ/mm2; the surface energy worsened as the temperature increased, suggesting that the adhesion of the as-deposited and thinner NiFe films in glass/Ni80Fe20(XÅ)/ZnO(500Å) was stronger than in glass/ZnO(500Å)/Ni80Fe20(YÅ). The results indicate that the magnetic and photoelectric properties of glass/ZnO(500Å)/Ni80Fe20(YÅ) were better than those of glass/Ni80Fe20(XÅ)/ZnO(500Å) because the strong ZnO (0 0 2) crystallization in ZnO(500Å)/Ni80Fe20(YÅ) increased the magneto crystalline anisotropy NiFe (1 1 1) and importantly affected the magnetic and photoelectrical properties.

  1. Real-time monitoring of electrically evoked catecholamine signals in the songbird striatum using in vivo fast-scan cyclic voltammetry.

    PubMed

    Smith, Amanda R; Garris, Paul A; Casto, Joseph M

    2015-01-01

    Fast-scan cyclic voltammetry is a powerful technique for monitoring rapid changes in extracellular neurotransmitter levels in the brain. In vivo fast-scan cyclic voltammetry has been used extensively in mammalian models to characterize dopamine signals in both anesthetized and awake preparations, but has yet to be applied to a non-mammalian vertebrate. The goal of this study was to establish in vivo fast-scan cyclic voltammetry in a songbird, the European starling, to facilitate real-time measurements of extracellular catecholamine levels in the avian striatum. In urethane-anesthetized starlings, changes in catecholamine levels were evoked by electrical stimulation of the ventral tegmental area and measured at carbon-fiber microelectrodes positioned in the medial and lateral striata. Catecholamines were elicited by different stimulations, including trains related to phasic dopamine signaling in the rat, and were analyzed to quantify presynaptic mechanisms governing exocytotic release and neuronal uptake. Evoked extracellular catecholamine dynamics, maximal amplitude of the evoked catecholamine signal, and parameters for catecholamine release and uptake did not differ between striatal regions and were similar to those determined for dopamine in the rat dorsomedial striatum under similar conditions. Chemical identification of measured catecholamine by its voltammogram was consistent with the presence of both dopamine and norepinephrine in striatal tissue content. However, the high ratio of dopamine to norepinephrine in tissue content and the greater sensitivity of the carbon-fiber microelectrode to dopamine compared to norepinephrine favored the measurement of dopamine. Thus, converging evidence suggests that dopamine was the predominate analyte of the electrically evoked catecholamine signal measured in the striatum by fast-scan cyclic voltammetry. Overall, comparisons between the characteristics of these evoked signals suggested a similar presynaptic regulation of dopamine in the starling and rat striatum. Fast-scan cyclic voltammetry thus has the potential to be an invaluable tool for investigating the neural underpinnings of behavior in birds. PMID:25900708

  2. Peat as an energy alternative

    SciTech Connect

    Punwani, D.V.

    1980-07-01

    The importance of developing alternative energy sources to augment supplies of fossil fuels is growing all over the world. Coal, oil shale, tar sands, biomass, solar, geothermal, nuclear, and hydroelectric power have received considerable attention as alternative energy sources. One large energy resource, however, has received little attention until recently. That resource is peat. Although peat is used as an energy source in some countries such as Russia, Ireland, and Finland, it is virtually unexploited in many countries including the United States. This paper provides an understanding of peat: its varieties, abundance, and distribution; its value as an energy alternative; its current and future role as an energy alternative; and the environmental and socioeconomic impacts of large-scale peat utilization.

  3. Electrochemically assisted fabrication of size-exclusion films of organically modified silica and application to the voltammetry of phospholipids

    PubMed Central

    Mehdi, B. Layla; Rutkowska, Iwona A.; Kulesza, Pawel J.

    2013-01-01

    Modification of electrodes with nm-scale organically modified silica films with pores diameters controlled at 10- and 50-nm is described. An oxidation catalyst, mixed-valence ruthenium oxide with cyano crosslinks or gold nanoparticles protected by dirhodium-substituted phosophomolybdate (AuNP-Rh2PMo11), was immobilized in the pores. These systems comprise size-exclusion films at which the biological compounds, phosphatidylcholine and cardiolipin, were electrocatalytically oxidized without interference from surface-active concomitants such as bovine serum albumin. 10-nm pores were obtained by adding generation-4 poly(amidoamine) dendrimer, G4-PAMAM, to a (CH3)3SiOCH3 sol. 50-nm pores were obtained by modifying a glassy carbon electrode (GC) with a sub-monolayer film of aminopropyltriethoxylsilane, attaching 50-nm diameter poly(styrene sulfonate), PSS, spheres to the protonated amine, transferring this electrode to a (CH3)3SiOCH3 sol, and electrochemically generating hydronium at uncoated GC sites, which catalyzed ormosil growth around the PSS. Voltammetry of Fe(CN)63− and Ru(NH3)63+ demonstrated the absence of residual charge after removal of the templating agents. With the 50-nm system, the pore structure was sufficiently defined to use layer-by-layer electrostatic assembly of AuNP-Rh2PMo11 therein. Flow injection amperometry of phosphatidylcholine and cardiolipin demonstrated analytical utility of these electrodes. PMID:23935394

  4. Electrochemically assisted fabrication of size-exclusion films of organically modified silica and application to the voltammetry of phospholipids.

    PubMed

    Mehdi, B Layla; Rutkowska, Iwona A; Kulesza, Pawel J; Cox, James A

    2013-06-01

    Modification of electrodes with nm-scale organically modified silica films with pores diameters controlled at 10- and 50-nm is described. An oxidation catalyst, mixed-valence ruthenium oxide with cyano crosslinks or gold nanoparticles protected by dirhodium-substituted phosophomolybdate (AuNP-Rh2PMo11), was immobilized in the pores. These systems comprise size-exclusion films at which the biological compounds, phosphatidylcholine and cardiolipin, were electrocatalytically oxidized without interference from surface-active concomitants such as bovine serum albumin. 10-nm pores were obtained by adding generation-4 poly(amidoamine) dendrimer, G4-PAMAM, to a (CH3)3SiOCH3 sol. 50-nm pores were obtained by modifying a glassy carbon electrode (GC) with a sub-monolayer film of aminopropyltriethoxylsilane, attaching 50-nm diameter poly(styrene sulfonate), PSS, spheres to the protonated amine, transferring this electrode to a (CH3)3SiOCH3 sol, and electrochemically generating hydronium at uncoated GC sites, which catalyzed ormosil growth around the PSS. Voltammetry of Fe(CN)6 (3-) and Ru(NH3)6 (3+) demonstrated the absence of residual charge after removal of the templating agents. With the 50-nm system, the pore structure was sufficiently defined to use layer-by-layer electrostatic assembly of AuNP-Rh2PMo11 therein. Flow injection amperometry of phosphatidylcholine and cardiolipin demonstrated analytical utility of these electrodes. PMID:23935394

  5. Investigation of reactant transport within a polymer electrolyte fuel cell using localised CO stripping voltammetry and adsorption transients

    NASA Astrophysics Data System (ADS)

    Brett, D. J. L.; Atkins, S.; Brandon, N. P.; Vesovic, V.; Vasileiadis, N.; Kucernak, A. R.

    The distribution of carbon monoxide (CO) within a simple one dimensional polymer electrolyte fuel cell (PEFC) is studied experimentally using localised stripping voltammetry and adsorption transients. The effect of varying the carrier gas flow rate and CO dosage is investigated. It is found that residence time within the fuel cell is the key factor in determining the extent of poisoning or CO adsorption. Low flow rates are seen to result in a more anisotropic distribution of CO with greater amounts found away from the channel. High flow rates lead to a much more uniform profile. Diffusion of reactant into the gas distribution layer (GDL) and adsorption onto the catalyst retards the flow of reactant down the channel which broadens the peak width of the bulk adsorption transient. With knowledge of the catalyst roughness factor, pseudo 2-D reactant distribution profiles can be derived. These diagrams provide the equivalent of 'snap-shots' of the flow of reactants through the simple one dimensional fuel cell. This technique has applications in optimising the lateral distribution of catalyst and MEA properties such as GDL porosity.

  6. Wireless transmission of fast-scan cyclic voltammetry at a carbon-fiber microelectrode: proof of principle.

    PubMed

    Garris, Paul A; Ensman, Robert; Poehlman, John; Alexander, Andy; Langley, Paul E; Sandberg, Stefan G; Greco, Phillip G; Wightman, R Mark; Rebec, George V

    2004-12-30

    Fast-scan cyclic voltammetry (FSCV) at a carbon-fiber microelectrode (CFM) provides exquisite temporal and spatial resolution for monitoring brain chemistry. The utility of this approach has recently been demonstrated by measuring sub-second dopamine changes associated with behavior. However, one drawback is the cable link between animal and recording equipment that restricts behavior and precludes monitoring in complex environments. As a first step towards developing new instrumentation to overcome this technical limitation, the goal of the present study was to establish proof of principle for the wireless transmission of FSCV at a CFM. Proof of principle was evaluated in terms of measurement stability, fidelity, and susceptibility to ambient electrical noise. Bluetooth digital telemetry provided bi-directional communication between remote and home-base units and stable, high-fidelity data transfer comparable to conventional, wired systems when tested using a dummy cell (i.e., a resistor and capacitor in series simulating electrical properties of a CFM), and dopamine measurements with flow injection analysis and in the anesthetized rat with electrical stimulation. The wireless system was also less susceptible to interference from ambient electrical noise. Taken together, the present findings establish proof of principle for the wireless transmission of FSCV at a CFM. PMID:15589340

  7. Square Wave Voltammetry of TNT at Gold Electrodes Modified with Self-Assembled Monolayers Containing Aromatic Structures

    PubMed Central

    Trammell, Scott A.; Zabetakis, Dan; Moore, Martin; Verbarg, Jasenka; Stenger, David A.

    2014-01-01

    Square wave voltammetry for the reduction of 2,4,6-trinitrotoluene (TNT) was measured in 100 mM potassium phosphate buffer (pH 8) at gold electrodes modified with self-assembled monolayers (SAMs) containing either an alkane thiol or aromatic ring thiol structures. At 15 Hz, the electrochemical sensitivity (A/ppm) was similar for all SAMs tested. However, at 60 Hz, the SAMs containing aromatic structures had a greater sensitivity than the alkane thiol SAM. In fact, the alkane thiol SAM had a decrease in sensitivity at the higher frequency. When comparing the electrochemical response between simulations and experimental data, a general trend was observed in which most of the SAMs had similar heterogeneous rate constants within experimental error for the reduction of TNT. This most likely describes a rate limiting step for the reduction of TNT. However, in the case of the alkane SAM at higher frequency, the decrease in sensitivity suggests that the rate limiting step in this case may be electron tunneling through the SAM. Our results show that SAMs containing aromatic rings increased the sensitivity for the reduction of TNT when higher frequencies were employed and at the same time suppressed the electrochemical reduction of dissolved oxygen. PMID:25549081

  8. Solid-state voltammetry-based electrochemical immunosensor for Escherichia coli using graphene oxide-Ag nanoparticle composites as labels.

    PubMed

    Jiang, Xiaochun; Chen, Kun; Wang, Jing; Shao, Kang; Fu, Tao; Shao, Feng; Lu, Donglian; Liang, Jiangong; Foda, M Frahat; Han, Heyou

    2013-06-21

    A new electrochemical immunosensor based on solid-state voltammetry was fabricated for the detection of Escherichia coli (E. coli) by using graphene oxide-Ag nanoparticle composites (P-GO-Ag) as labels. To construct the platform, Au nanoparticles (AuNPs) were first self-assembled on an Au electrode surface through cysteamine and served as an effective matrix for antibody (Ab) attachment. Under a sandwich-type immunoassay format, the analyte and the probe (P-GO-Ag-Ab) were successively captured onto the immunosensor. Finally, the bonded AgNPs were detected through a solid-state redox process in 0.2 M of KCl solution. Combining the advantages of the high-loading capability of graphene oxide with promoted electron-transfer rate of AuNPs, this immunosensor produced a 26.92-fold signal enhancement compared with the unamplified protocol. Under the optimal conditions, the immunosensor exhibited a wide linear dependence on the logarithm of the concentration of E. coli ranging from 50 to 1.0 × 10(6) cfu mL(-1) with a detection limit of 10 cfu mL(-1). Moreover, as a practical application, the proposed immunosensor was used to monitor E. coli in lake water with satisfactory results. PMID:23662298

  9. Determination of mercury in ambient water samples by anodic stripping voltammetry on screen-printed gold electrodes.

    PubMed

    Bernalte, E; Marn Snchez, C; Pinilla Gil, E

    2011-03-01

    The applicability of commercial screen-printed gold electrodes (SPGEs) for the determination of Hg(II) in ambient water samples by square wave anodic stripping voltammetry has been demonstrated. Electrode conditioning procedures, chemical and instrumental variables have been optimized to develop a reliable method capable of measuring dissolved mercury in the low ng mL(-1) range (detection limit 1.1 ng mL(-1)), useful for pollution monitoring or screening purposes. The proposed method was tested with the NIST 1641d Mercury in Water Standard Reference Material (recoveries 90.0-110%) and the NCS ZC 76303 Mercury in Water Certified Reference Material (recoveries 82.5-90.6%). Waste water samples from industrial origin and fortified rain water samples were assayed for mercury by the proposed method and by a reference ICP-MS method, with good agreement. Screen printing technology thus opens a useful way for the construction of reliable electrochemical sensors for decentralized or even field Hg(II) testing. PMID:21338757

  10. Disposable electrochemical flow cells for catalytic adsorptive stripping voltammetry (CAdSV) at a bismuth film electrode (BiFE)

    PubMed Central

    Gharib Naseri, Nahid; Economou, Anastasios; Goddard, Nicholas J.; Fielden, Peter R.

    2008-01-01

    Catalytic adsorptive stripping voltammetry (CAdSV) has been demonstrated at a bismuth film electrode (BiFE) in an injection-moulded electrochemical micro-flow cell. The polystyrene three-electrode flow cell was fabricated with electrodes moulded from a conducting grade of polystyrene containing 40% carbon fibre, one of which was precoated with Ag to enable its use as an on-chip Ag/AgCl reference electrode. CAdSV of Co(II) and Ni(II) in the presence of dimethylglyoxime (DMG) with nitrite employed as the catalyst was performed in order to assess the performance of the flow cell with an in-line plated BiFE. The injection-moulded electrodes were found to be suitable substrates for the formation of BiFEs. Key parameters such as the plating solution matrix, plating flow rate, analysis flow rate, solution composition and square-wave parameters have been characterised and optimal conditions selected for successful and rapid analysis of Co(II) and Ni(II) at the ppb level. The analytical response was linear over the range 1 to 20ppb and deoxygenation of the sample solution was not required. The successful coupling of a microfluidic flow cell with a BiFE, thereby forming a mercury-free AdSV flow analysis sensor, shows promise for industrial and in-the-field applications where inexpensive, compact, and robust instrumentation capable of low-volume analysis is required. PMID:18351328

  11. Impulse radio ultra wideband wireless transmission of dopamine concentration levels recorded by fast-scan cyclic voltammetry.

    PubMed

    Ebrazeh, Ali; Bozorgzadeh, Bardia; Mohseni, Pedram

    2015-08-01

    This paper demonstrates the feasibility of utilizing impulse radio ultra wideband (IR-UWB) signaling technique for reliable, wireless transmission of dopamine concentration levels recorded by fast-scan cyclic voltammetry (FSCV) at a carbon-fiber microelectrode (CFM) to address the problem of elevated data rates in high-channel-count neurochemical monitoring. Utilizing an FSCV-sensing chip fabricated in AMS 0.35?m 2P/4M CMOS, a 3-5-GHz, IR-UWB transceiver (TRX) chip fabricated in TSMC 90nm 1P/9M RF CMOS, and two off-chip, miniature, UWB antennae, wireless transfer of pseudo-random binary sequence (PRBS) data at 50Mbps over a distance of <;1m is first shown with bit-error rates (BER) <; 10(-3). Further, IR-UWB wireless transmission of dopamine concentration levels prerecorded with FSCV at a CFM during flow injection analysis (FIA) is also demonstrated with transmitter (TX) power dissipation of only ~4.4?W from 1.2V, representing two orders of magnitude reduction in TX power consumption compared to that of a conventional frequency-shift-keyed (FSK) link operating at ~433MHz. PMID:26737929

  12. Low-level determination of silicon in steels by anodic stripping voltammetry on a hanging mercury drop electrode.

    PubMed

    Rahier, A H; Lunardi, S; Nicolle, F; George, S M

    2010-10-15

    The sensitive differential pulse anodic stripping voltammetry (DPASV) proposed originally by Ishiyama et al. (2001) has been revised and improved to allow the accurate measurement of silicon on a hanging mercury drop electrode (HMDE) instead of a glassy carbon electrode. We assessed the rate of formation of the partially reduced ?-silicododecamolybdate and found that metallic mercury promotes the reaction in the presence of a large concentration of Fe(3+). The scope of the method has been broadened by carrying out the measurements in the presence of a constant amount of Fe(3+). The limit of detection (LOD) of the method described in the present paper is 100 ?g Sig(-1) of steel, with a relative precision ranging from 5% to 12%. It can be further enhanced to 700 ng Sig(-1) of steel provided the weight of the sample, the dilution factors, the duration of the electrolysis and the ballast of iron are adequately revised. The tolerance to several interfering species has been examined, especially regarding Al(3+), Cr(3+) and Cr VI species. The method was validated using four low-alloy ferritic steels certified by the National Institute of Standards and Technology (NIST). Its application to nickel base alloys as well as to less complicated matrixes is straightforward. It has also been successfully applied to the determination of free silicon into silicon carbide nano-powder. PMID:20875585

  13. Head-to-Head Comparisons of Carbon Fiber Microelectrode Coatings for Sensitive and Selective Neurotransmitter Detection by Voltammetry

    PubMed Central

    Singh, Yogesh S.; Sawarynski, Lauren E.; Dabiri, Pasha D.; Choi, Wonwoo R.; Andrews, Anne M.

    2011-01-01

    Voltammetry is widely used to investigate neurotransmission and other biological processes but is limited by poor chemical selectivity and fouling of commonly used carbon fiber microelectrodes (CFMs). We performed direct comparisons of three key coating materials purported to impart selectivity and fouling resistance to electrodes: Nafion, base-hydrolyzed cellulose acetate (BCA), and fibronectin. We systematically evaluated the impact on a range of electrode parameters. Fouling due to exposure to brain tissue was investigated using an approach that minimizes the use of animals while enabling evaluation of statistically significant populations of electrodes. We find that BCA is relatively fouling resistant. Moreover, detection at BCA-coated CFMs can be tuned by altering hydrolysis times to minimize the impact on sensitivity losses while maintaining fouling resistance. Fibronectin coating is associated with moderate losses in sensitivity after coating and fouling. Nafion imparts increased sensitivity for dopamine and norepinephrine but not serotonin, as well as the anticipated selectivity for cationic neurotransmitters over anionic metabolites. However, while Nafion has been suggested to resist fouling, both dip-coating and electro-deposition of Nafion are associated with substantial fouling, similar to levels observed at bare electrodes after exposure to brain tissue. Direct comparisons of these coatings identified unique electroanalytical properties of each that can be used to guide selection tailored to the goals and environment of specific studies. PMID:21770471

  14. A cation trap for anodic stripping voltammetry: NH3-plasma treated carbon nanotubes for adsorption and detection of metal ions.

    PubMed

    Wei, Yan; Yang, Ran; Chen, Xing; Wang, Lun; Liu, Jin-Huai; Huang, Xing-Jiu

    2012-11-28

    NH(3)-plasma treated multi-walled carbon nanotubes (pn-MWCNTs) with cation traps for the detection of ultratrace quantities of Zn(II), Cd(II), Cu(II), and Hg(II) using square wave anodic stripping voltammetry (SWASV) is described. The pn-MWCNTs use their adsorption performance to enhance the sensitivity. It is found that under optimized conditions Zn(II), Cd(II), Cu(II) and Hg(II) were individually detected at potentials of -1.16, -0.78, -0.268 and 0.108 V, respectively. The detection limit (3σ method) of 0.314, 0.0272, 0.2263, and 0.1439 nM toward Zn(II), Cd(II), Cu(II), and Hg(II) is achievable, respectively. No interference could be seen during the simultaneous detection of Zn(II), Cd(II), Cu(II), and Hg(II). The pn-MWCNTs exhibit excellent selectivity owing to the different ability of adsorption. A study of the ability of pn-MWCNTs in practical application is carried out using a sample of water collected from Dongpu Reservoir in Hefei City, Anhui, China. It is found that the results were favorable when compared against inductively coupled plasma atomic emission spectrometry (ICP-AES) analysis. PMID:23146394

  15. Current sensor

    DOEpatents

    Yakymyshyn, Christopher Paul; Brubaker, Michael Allen; Yakymyshyn, Pamela Jane

    2007-01-16

    A current sensor is described that uses a plurality of magnetic field sensors positioned around a current carrying conductor. The sensor can be hinged to allow clamping to a conductor. The current sensor provides high measurement accuracy for both DC and AC currents, and is substantially immune to the effects of temperature, conductor position, nearby current carrying conductors and aging.

  16. Alternatives to Afrocentrism. Second Edition.

    ERIC Educational Resources Information Center

    Miller, John J., Ed.

    The essays in this collection place the current Afrocentric movement in its historical context and offer alternative suggestions about how to teach African American students about their history. The first section deals with the roots of Afrocentrism, analyzes the content of Afrocentric books and curricula, and discusses the impact of Afrocentrism

  17. Biotherapeutics as alternatives to antibiotics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Increasing pressure to limit antibiotic use in agriculture is heightening the need for alternative methods to reduce the adverse effects of clinical and subclinical disease on livestock performance that are currently managed by in-feed antibiotic usage. Immunomodulators have long been sought as such...

  18. Tools for Alternative Assessment.

    ERIC Educational Resources Information Center

    Brewer, Mark

    1996-01-01

    Presents alternative assessment tools, including concept maps, initial and summary assessments, Vee diagrams, and three types of alternative learning activities that assess different levels of understanding. (MKR)

  19. Current responsive devices for synchronous generators

    DOEpatents

    Karlicek, R.F.

    1983-09-27

    A device for detecting current imbalance between phases of a polyphase alternating current generator. A detector responds to the maximum peak current in the generator, and detecting means generates an output for each phase proportional to the peak current of each phase. Comparing means generates an output when the maximum peak current exceeds the phase peak current. 11 figs.

  20. Current responsive devices for synchronous generators

    DOEpatents

    Karlicek, Robert F. (Fullerton, CA)

    1983-01-01

    A device for detecting current imbalance between phases of a polyphase alternating current generator. A detector responds to the maximum peak current in the generator, and detecting means generates an output for each phase proportional to the peak current of each phase. Comparing means generates an output when the maximum peak current exceeds the phase peak current.