Science.gov

Sample records for alternating current voltammetry

  1. Purification of water by electrocoagulation with an alternating asymmetrical current for stripping voltammetry

    SciTech Connect

    Gorodovykh, V.E.; Kaplin, A.A.; Svishchenko, N.M.; Obraztsov, S.V.

    1987-11-20

    The influence of the flow velocity and the current density on the degree of purification of water by electrocoagulation with an alternating asymmetrical current has been studied. It has been demonstrated that under optimum conditions at pH/sub c/ 11.0-11.5 the residual metal content in the purified water drops to the level n x 10/sup -4/ g/ml; this allows its use in the practice of stripping voltammetry.

  2. Bismuth electrodes, an alternative in stripping voltammetry

    NASA Astrophysics Data System (ADS)

    Barón-Jaimez, J.; Joya, M. R.; Barba-Ortega, J.

    2013-11-01

    The heavy metals are known as highly toxic contaminants, the processes carried out in industry contribute that finally they remain dispersed in effluents and sewage, doing part of the food chain. The importance of controlling the levels of these heavy metals has become an international policy, so it has generated interest in developing new analytical methodologies for its determination [1, 2, 3, 4]. The stripping voltammetry has been considered as a family of electro-sensitive analytical techniques useful for the determination of trace levels of many metals in environmental, clinical and industrial samples [3, 4]. This work presents an overview of these bismuth-based electrodes which were introduced around 2000, which have interesting characteristics for detection of heavy metals and which represent an alternative to mercury electrodes.

  3. Single Nanoparticle Voltammetry: Contact Modulation of the Mediated Current.

    PubMed

    Li, Xiuting; Batchelor-McAuley, Christopher; Whitby, Samuel A I; Tschulik, Kristina; Shao, Lidong; Compton, Richard G

    2016-03-18

    The cyclic voltammetric responses of individual palladium-coated carbon nanotubes are reported. Upon impact-from the solution phase-with the electrified interface, the nanoparticles act as individual nanoelectrodes catalyzing the hydrogen-oxidation reaction. At high overpotentials the current is shown to reach a quasi-steady-state diffusion limit, allowing determination of the tube length. The electrochemical response of the individual nanotubes also reveals the system to be modulated by the electrical contact between the electrode and carbon nanotube. This modulation presents itself as fluctuations in the recorded Faradaic current. PMID:26515036

  4. Square Wave Voltammetry: An Alternative Technique to Determinate Piroxicam Release Profiles from Nanostructured Lipid Carriers.

    PubMed

    Otarola, Jessica; Garrido, Mariano; Correa, N Mariano; Molina, Patricia G

    2016-08-01

    A new, simple, and fast electrochemical (EC) method has been developed to determine the release profile of piroxicam, a nonsteroidal anti-inflammatory drug, loaded in a drug delivery system based on nanostructured lipid carriers (NLCs). For the first time, the samples were analyzed by using square wave voltammetry, a sensitive EC technique. The piroxicam EC responses allow us to propose a model that explains the experimental results and to subsequently determine the amount of drug loaded into the NLCs formulation as a function of time. In vitro drug release studies showed prolonged drug release (up to 5 days), releasing 60 % of the incorporated drug. The proposed method is a promising and stable alternative for the study of different drug delivery systems. PMID:27128856

  5. Pulse Voltammetry.

    ERIC Educational Resources Information Center

    Osteryoung, Janet

    1983-01-01

    Discusses the nature of pulse voltammetry, indicating that its widespread use arises from good sensitivity and detection limits and from ease of application and low cost. Provides analytical and mechanistic applications of the procedure. (JN)

  6. Thermoelectric converters for alternating current standards

    NASA Astrophysics Data System (ADS)

    Anatychuk, L. I.; Taschuk, D. D.

    2012-06-01

    Thermoelectric converters of alternating current remain priority instruments when creating standard equipment. This work presents the results of design and manufacture of alternating current converter for a military standard of alternating current in Ukraine. Results of simulation of temperature distribution in converter elements, ways of optimization to improve the accuracy of alternating current signal reproduction are presented. Results of metrological trials are given. The quality of thermoelectric material specially created for alternating current metrology is verified. The converter was used in alternating current standard for the frequency range from 10 Hz to 30 MHz. The efficiency of using thermoelectric signal converters in measuring instruments is confirmed.

  7. Stripping Voltammetry

    NASA Astrophysics Data System (ADS)

    Lovrić, Milivoj

    Electrochemical stripping means the oxidative or reductive removal of atoms, ions, or compounds from an electrode surface (or from the electrode body, as in the case of liquid mercury electrodes with dissolved metals) [1-5]. In general, these atoms, ions, or compounds have been preliminarily immobilized on the surface of an inert electrode (or within it) as the result of a preconcentration step, while the products of the electrochemical stripping will dissolve in the electrolytic solution. Often the product of the electrochemical stripping is identical to the analyte before the preconcentration. However, there are exemptions to these rules. Electroanalytical stripping methods comprise two steps: first, the accumulation of a dissolved analyte onto, or in, the working electrode, and, second, the subsequent stripping of the accumulated substance by a voltammetric [3, 5], potentiometric [6, 7], or coulometric [8] technique. In stripping voltammetry, the condition is that there are two independent linear relationships: the first one between the activity of accumulated substance and the concentration of analyte in the sample, and the second between the maximum stripping current and the accumulated substance activity. Hence, a cumulative linear relationship between the maximum response and the analyte concentration exists. However, the electrode capacity for the analyte accumulation is limited and the condition of linearity is satisfied only well below the electrode saturation. For this reason, stripping voltammetry is used mainly in trace analysis. The limit of detection depends on the factor of proportionality between the activity of the accumulated substance and the bulk concentration of the analyte. This factor is a constant in the case of a chemical accumulation, but for electrochemical accumulation it depends on the electrode potential. The factor of proportionality between the maximum stripping current and the analyte concentration is rarely known exactly. In fact

  8. Cyclic Voltammetry.

    ERIC Educational Resources Information Center

    Evans, Dennis H.; And Others

    1983-01-01

    Cyclic voltammetry is a simple experiment that has become popular in chemical research because it can provide useful information about redox reactions in a form which is easily obtained and interpreted. Discusses principles of the method and illustrates its use in the study of four electrode reactions. (Author/JN)

  9. Single Nanotube Voltammetry: Current Fluctuations Are Due to Physical Motion of the Nanotube

    PubMed Central

    2016-01-01

    Nanoimpacts of single palladium-coated carbon nanotubes on a gold substrate are studied to elucidate the origins of the fluctuation in the current–time response of the hydrogen oxidation reaction mediated at its surface. The chronoamperometric and cyclic voltammetric responses from a single nanotube immobilized on the gold surface were compared to analogous data on a carbon substrate to determine the possible influence of substrate material on the nanotube–electrode electrical contact. No significant distinction between the gold and carbon was found, indicating in light of the considerable differences in the substrate materials’ intrinsic electronic structures that it is the nanomotion of a nanotube at the electrode surface which is likely responsible for the observed current modulation. This nanomotion creates a varying contact resistance, to which the noise in the current–time signal of the mediated reaction is attributed. In addition, stochastic ex-situ adsorption of single nanotubes onto the gold electrode followed by careful drying of the electrode surface was found to drastically reduce the current fluctuation, again implying that a contact resistance arising from physical motion of the nanotube at the electrode is responsible for the modulation of current. PMID:27066159

  10. Fault current limiter and alternating current circuit breaker

    DOEpatents

    Boenig, H.J.

    1998-03-10

    A solid-state circuit breaker and current limiter are disclosed for a load served by an alternating current source having a source impedance, the solid-state circuit breaker and current limiter comprising a thyristor bridge interposed between the alternating current source and the load, the thyristor bridge having four thyristor legs and four nodes, with a first node connected to the alternating current source, and a second node connected to the load. A coil is connected from a third node to a fourth node, the coil having an impedance of a value calculated to limit the current flowing therethrough to a predetermined value. Control means are connected to the thyristor legs for limiting the alternating current flow to the load under fault conditions to a predetermined level, and for gating the thyristor bridge under fault conditions to quickly reduce alternating current flowing therethrough to zero and thereafter to maintain the thyristor bridge in an electrically open condition preventing the alternating current from flowing therethrough for a predetermined period of time. 9 figs.

  11. Fault current limiter and alternating current circuit breaker

    DOEpatents

    Boenig, Heinrich J.

    1998-01-01

    A solid-state circuit breaker and current limiter for a load served by an alternating current source having a source impedance, the solid-state circuit breaker and current limiter comprising a thyristor bridge interposed between the alternating current source and the load, the thyristor bridge having four thyristor legs and four nodes, with a first node connected to the alternating current source, and a second node connected to the load. A coil is connected from a third node to a fourth node, the coil having an impedance of a value calculated to limit the current flowing therethrough to a predetermined value. Control means are connected to the thyristor legs for limiting the alternating current flow to the load under fault conditions to a predetermined level, and for gating the thyristor bridge under fault conditions to quickly reduce alternating current flowing therethrough to zero and thereafter to maintain the thyristor bridge in an electrically open condition preventing the alternating current from flowing therethrough for a predetermined period of time.

  12. ALTERNATING CURRENT ELECTROCOAGULATION FOR SUPERFUND SITE REMEDIATION

    EPA Science Inventory

    The technical and economical feasibility of alternating current electrocoagulation (ACE) developed by Electro-Pure Systems, Inc., was evaluated for a 2-year period. CE is an electrochemical technology where highly-charged aluminum polyhydroxide species are introduced into aqueous...

  13. Redox magnetohydrodynamics enhancement of stripping voltammetry of lead(II), cadmium(II) and zinc(II) ions using 1,4-benzoquinone as an alternative pumping species.

    PubMed

    Ensafi, Ali A; Nazari, Z; Fritsch, I

    2012-01-21

    Differential pulse anodic stripping voltammetry (DPASV) coupled with redox-magnetohydrodynamics (MHD) is used to enhance the anodic stripping voltammetry (ASV) response using a mercury thin film-glassy carbon electrode. The sensitivity increased to at least a factor of two (at 1.2 T) and is facilitated by using 20.0 mmol L(-1) 1,4-benzoquinone as an alternative pumping species to enhance ASV by redox-MHD. The MHD force formed by the cross-product of ion flux with magnetic field induces solution convection during the deposition step, enhancing mass transport of the analytes to the electrode surface and increasing their preconcentrated quantity in the mercury thin film. Therefore, larger ASV peaks and improved sensitivities are obtained, compared with analyses performed without a magnet. The influence of pH, 1,4-benzoquinone concentration, accumulation potential, and time are also investigated. Detection limits of 0.05, 0.09 and 2.2 ng mL(-1) Cd(II), Pb(II) and Zn(II) were established with an accumulation time of 65 s. The method is used for the analysis of Cd(II), Pb(II) and Zn(II) in different water samples, certified reference materials, and saliva samples with satisfactory results. PMID:22116833

  14. Josephson junctions with alternating critical current density

    SciTech Connect

    Mints, R.G.; Kogan, V.G.

    1997-04-01

    The magnetic-field dependence of the critical current I{sub c}(H) is considered for a short Josephson junction with the critical current density j{sub c} alternating along the tunnel contact. Two model cases, periodic and randomly alternating j{sub c}, are treated in detail. Recent experimental data on I{sub c}(H) for grain-boundary Josephson junctions in YBa{sub 2}Cu{sub 3}O{sub x} are discussed. {copyright} {ital 1997} {ital The American Physical Society}

  15. Alternating current driven instability in magnetic junctions.

    PubMed

    Epshtein, E M; Zilberman, P E

    2009-04-01

    An effect is considered of alternating (high-frequency) current on the spin-valve-type magnetic junction configuration. The stability with respect to small fluctuations is investigated in the macrospin approximation. When the current frequency is close to the eigenfrequency (precession frequency) of the free layer, parametric resonance occurs. Both collinear configurations, antiparallel and parallel, can become unstable under resonance conditions. The antiparallel configuration can also become unstable under non-resonant conditions. The threshold current density amplitude is of the order of the dc current density for switching of the magnetic junction. PMID:21825350

  16. Alternating current long range alpha particle detector

    DOEpatents

    MacArthur, D.W.; McAtee, J.L.

    1993-02-16

    An alpha particle detector, utilizing alternating currents, which is capable of detecting alpha particles from distinct sources. The use of alternating currents allows use of simpler ac circuits which, in turn, are not susceptible to dc error components. It also allows the benefit of gas gain, if desired. In the invention, a voltage source creates an electric field between two conductive grids, and between the grids and a conductive enclosure. Air containing air ions created by collision with alpha particles is drawn into the enclosure and detected. In some embodiments, the air flow into the enclosure is interrupted, creating an alternating flow of ions. In another embodiment, a modulated voltage is applied to the grid, also modulating the detection of ions.

  17. Alternating current long range alpha particle detector

    DOEpatents

    MacArthur, Duncan W.; McAtee, James L.

    1993-01-01

    An alpha particle detector, utilizing alternating currents, whcih is capable of detecting alpha particles from distinct sources. The use of alternating currents allows use of simpler ac circuits which, in turn, are not susceptible to dc error components. It also allows the benefit of gas gain, if desired. In the invention, a voltage source creates an electric field between two conductive grids, and between the grids and a conductive enclosure. Air containing air ions created by collision with alpha particles is drawn into the enclosure and detected. In some embodiments, the air flow into the enclosure is interrupted, creating an alternating flow of ions. In another embodiment, a modulated voltage is applied to the grid, also modulating the detection of ions.

  18. Solar cell system having alternating current output

    NASA Technical Reports Server (NTRS)

    Evans, J. C., Jr. (Inventor)

    1980-01-01

    A monolithic multijunction solar cell was modified by fabricating an integrated circuit inverter on the back of the cell to produce a device capable of generating an alternating current output. In another embodiment, integrated curcuit power conditioning electronics was incorporated in a module containing a solar cell power supply.

  19. Alternative generation of spin current in graphene

    NASA Astrophysics Data System (ADS)

    Yoo, Jung-Woo; Jin, Mi-Jin; Park, Jungmin; Modepalli, Vijayakumar; Jo, Jun-Hyeon

    2014-03-01

    The manipulation of spin current which can be achieved in various device configurations has been under intense research in recent years. The spin current is typically obtained by injecting electrons from the ferromagnetic electrodes. In this study, we employed alternative methods for the generation of spin current in graphene. The first method we studied is using spin Hall effect. In the spin Hall effect, the charge current generates spin current due to a relativistic spin-orbit coupling. Generally the spin-orbit coupling in graphene is extremely weak to produce substantial spin current. We employed physical doping of heavy atoms on top of the graphene layer for the spin Hall induced spin current in graphene. The second alternative method we investigated is seebeck spin tunneling. The ferromagnetic electrode together with thin tunnel barrier (1-3nm of Al2O3 layer) was employed to introduce thermally induced spin imbalance in graphene. The gate dependence of generated spin current reflects unique electronic structure of graphene. This work was supported in part by future challenge project of UNIST and Basic Science Research Program of NRF Korea.

  20. Pulse Voltammetry

    NASA Astrophysics Data System (ADS)

    Stojek, Zbigniew

    The idea of imposing potential pulses and measuring the currents at the end of each pulse was proposed by Barker in a little-known journal as early as in 1958 [1]. However, the first reliable trouble-free and affordable polarographs offering voltammetric pulse techniques appeared on the market only in the 1970s. This delay was due to some limitations on the electronic side. In the 1990s, again substantial progress in electrochemical pulse instrumentation took place. This was related to the introduction of microprocessors, computers, and advanced software.

  1. Nonlinear alternating current responses of dipolar fluids

    NASA Astrophysics Data System (ADS)

    Huang, J. P.; Yu, K. W.; Karttunen, Mikko

    2004-07-01

    The frequency-dependent nonlinear dielectric increment of dipolar fluids in nonpolar fluids is often measured by using a stationary relaxation method in which two electric fields are used: The static direct current (dc) field of high strength causing the dielectric nonlinearity, and the probing alternating current (ac) field of low strength and high frequency. When a nonlinear composite is subjected to a sinusoidal electric field, the electric response in the composite will, in general, consist of ac fields at frequencies of higher-order harmonics. Based on the Fröhlich model, we present a theory to investigate the nonlinear ac responses of dipolar fluids containing both polarizable monomers and dimers. In the case of monomers only, our theory reproduces the known results. We obtain the fundamental, second-, and third-order harmonics of the Fröhlich field by performing a perturbation expansion. The even-order harmonics are induced by the coupling between the ac and dc fields, although the system under consideration has a cubic nonlinearity only. The harmonics of the Fröhlich field can be affected by the field frequency, temperature, dispersion strength, and the characteristic frequency of the dipolar fluid, as well as the dielectric constant of the nonpolar fluid. The results are found to be in agreement with recent experimental observations.

  2. Alternating Current Influences Anaerobic Electroactive Biofilm Activity.

    PubMed

    Wang, Xin; Zhou, Lean; Lu, Lu; Lobo, Fernanda Leite; Li, Nan; Wang, Heming; Park, Jaedo; Ren, Zhiyong Jason

    2016-09-01

    Alternating current (AC) is known to inactivate microbial growth in suspension, but how AC influences anaerobic biofilm activities has not been systematically investigated. Using a Geobacter dominated anaerobic biofilm growing on the electrodes of microbial electrochemical reactors, we found that high frequency AC ranging from 1 MHz to 1 kHz (amplitude of 5 V, 30 min) showed only temporary inhibition to the biofilm activity. However, lower frequency (100 Hz, 1.2 or 5 V) treatment led to 47 ± 19% permanent decrease in limiting current on the same biofilm, which is attributed to the action of electrohydrodynamic force that caused biofilm damage and loss of intercellular electron transfer network. Confocal microscopy images show such inactivation mainly occurred at the interface between the biofilm and the electrode. Reducing the frequency further to 1 Hz led to water electrolysis, which generated gas bubbles that flushed all attached cells out of the electrode. These findings provide new references on understanding and regulating biofilm growth, which has broader implications in biofouling control, anaerobic waste treatment, energy and product recovery, and general understanding of microbial ecology and physiology. PMID:27485403

  3. Alternating current electrocoagulation for superfund site remediation

    SciTech Connect

    Barkley, N.P.; Farrell, C.W.; Gardner-Clayson, T.W.

    1993-01-01

    The technical and economical feasibility of alternating current electrocoagulation (ACE) was evaluated for a 2-year period. ACE is an electrochemical technology where highly-charged aluminum polyhydroxide species are introduced into aqueous media for the removal of suspended solids, oil droplets, and soluble ionic pollutants. ACE can break stable aqueous colloidal suspensions of up to 10% total solids and stable emulsions containing up to 5% oil. Major operating parameters have been defined for different classes of effluents based on experimental results using complex synthetic soil slurries and metals. Test results indicate that ACE produces aqueous and solid separations comparable to those produced by chemical flocculent additions, but with reduced filtration times and sludge volumes. The technology has application where removal of soluble and suspended pollutants from effluents is required, and in the recovery of fine-grained products from process streams. The technology however, has not yet been demonstrated at full-scale for Superfund site remediation. Summarized are the principal results of the SITE research program and results of ACE treatment on some different classes of industrial effluents, not part of the SITE Program.

  4. Affordable Cyclic Voltammetry

    ERIC Educational Resources Information Center

    Stewart, Greg; Kuntzleman, Thomas S.; Amend, John R.; Collins, Michael J.

    2009-01-01

    Cyclic voltammetry is an important component of the undergraduate chemical curriculum. Unfortunately, undergraduate students rarely have the opportunity to conduct experiments in cyclic voltammetry owing to the high cost of potentiostats, which are required to control these experiments. By using MicroLab data acquisition interfaces in conjunction…

  5. The Teaching of Three-Phase Alternating Current

    ERIC Educational Resources Information Center

    Bunker, C. A.

    1976-01-01

    Describes a series of experiments which use a modified automobile alternator as a portable source of three-phase alternating current. The low frequency capabilities of this source allow the phase relationships to be demonstrated using an ordinary galvanometer. (GS)

  6. Recent Advances in Voltammetry.

    PubMed

    Batchelor-McAuley, Christopher; Kätelhön, Enno; Barnes, Edward O; Compton, Richard G; Laborda, Eduardo; Molina, Angela

    2015-06-01

    Recent progress in the theory and practice of voltammetry is surveyed and evaluated. The transformation over the last decade of the level of modelling and simulation of experiments has realised major advances such that electrochemical techniques can be fully developed and applied to real chemical problems of distinct complexity. This review focuses on the topic areas of: multistep electrochemical processes, voltammetry in ionic liquids, the development and interpretation of theories of electron transfer (Butler-Volmer and Marcus-Hush), advances in voltammetric pulse techniques, stochastic random walk models of diffusion, the influence of migration under conditions of low support, voltammetry at rough and porous electrodes, and nanoparticle electrochemistry. The review of the latter field encompasses both the study of nanoparticle-modified electrodes, including stripping voltammetry and the new technique of 'nano-impacts'. PMID:26246984

  7. Recent Advances in Voltammetry

    PubMed Central

    Batchelor-McAuley, Christopher; Kätelhön, Enno; Barnes, Edward O; Compton, Richard G; Laborda, Eduardo; Molina, Angela

    2015-01-01

    Recent progress in the theory and practice of voltammetry is surveyed and evaluated. The transformation over the last decade of the level of modelling and simulation of experiments has realised major advances such that electrochemical techniques can be fully developed and applied to real chemical problems of distinct complexity. This review focuses on the topic areas of: multistep electrochemical processes, voltammetry in ionic liquids, the development and interpretation of theories of electron transfer (Butler–Volmer and Marcus–Hush), advances in voltammetric pulse techniques, stochastic random walk models of diffusion, the influence of migration under conditions of low support, voltammetry at rough and porous electrodes, and nanoparticle electrochemistry. The review of the latter field encompasses both the study of nanoparticle-modified electrodes, including stripping voltammetry and the new technique of ‘nano-impacts’. PMID:26246984

  8. Alternating current electromagnetic servo induction meter

    NASA Technical Reports Server (NTRS)

    Bogue, R. K.

    1968-01-01

    Electromagnetic device accurately indicates the responses of various sensors in high performance flight research aircraft to conditions encountered in flight. The device responds to sensor inputs to move a slideable armature along an indicator scale by the force of currents induced in the armature winding.

  9. Dynamics of laser-guided alternating current high voltage discharges

    NASA Astrophysics Data System (ADS)

    Daigle, J.-F.; Théberge, F.; Lassonde, P.; Kieffer, J.-C.; Fujii, T.; Fortin, J.; Châteauneuf, M.; Dubois, J.

    2013-10-01

    The dynamics of laser-guided alternating current high voltage discharges are characterized using a streak camera. Laser filaments were used to trigger and guide the discharges produced by a commercial Tesla coil. The streaking images revealed that the dynamics of the guided alternating current high voltage corona are different from that of a direct current source. The measured effective corona velocity and the absence of leader streamers confirmed that it evolves in a pure leader regime.

  10. Cyclic Voltammetry Experiment.

    ERIC Educational Resources Information Center

    Van Benschoten, James J.; And Others

    1983-01-01

    Describes a three-part experiment designed to introduce cyclic voltammetry to graduate/undergraduate students. Part 1 demonstrates formal reduction potential, redox electron transfer, diffusion coefficient, and electrochemical reversibility. Part 2 investigates electrochemical behavior of acetaminophen. Part 3 examines such experimental variables…

  11. 27. LEUPOLD AND STEVENS MIDGET CURRENT METER (WITH ALTERNATE IMPELLER) ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    27. LEUPOLD AND STEVENS MIDGET CURRENT METER (WITH ALTERNATE IMPELLER) AND FOLDING SCALE (MEASURED IN INCHES). - Waterways Experiment Station, Hydraulics Laboratory, Halls Ferry Road, 2 miles south of I-20, Vicksburg, Warren County, MS

  12. Method for sputtering with low frequency alternating current

    DOEpatents

    Timberlake, John R.

    1996-01-01

    Low frequency alternating current sputtering is provided by connecting a low frequency alternating current source to a high voltage transformer having outer taps and a center tap for stepping up the voltage of the alternating current. The center tap of the transformer is connected to a vacuum vessel containing argon or helium gas. Target electrodes, in close proximity to each other, and containing material with which the substrates will be coated, are connected to the outer taps of the transformer. With an applied potential, the gas will ionize and sputtering from the target electrodes onto the substrate will then result. The target electrodes can be copper or boron, and the substrate can be stainless steel, aluminum, or titanium. Copper coatings produced are used in place of nickel and/or copper striking.

  13. Method for sputtering with low frequency alternating current

    DOEpatents

    Timberlake, J.R.

    1996-04-30

    Low frequency alternating current sputtering is provided by connecting a low frequency alternating current source to a high voltage transformer having outer taps and a center tap for stepping up the voltage of the alternating current. The center tap of the transformer is connected to a vacuum vessel containing argon or helium gas. Target electrodes, in close proximity to each other, and containing material with which the substrates will be coated, are connected to the outer taps of the transformer. With an applied potential, the gas will ionize and sputtering from the target electrodes onto the substrate will then result. The target electrodes can be copper or boron, and the substrate can be stainless steel, aluminum, or titanium. Copper coatings produced are used in place of nickel and/or copper striking. 6 figs.

  14. 59. View of high voltage (4160 volts alternating current) electric ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    59. View of high voltage (4160 volts alternating current) electric load center and motor control center at mezzanine level in transmitter building no. 102. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  15. Nonlinear response of superconductors to alternating fields and currents

    SciTech Connect

    McDonald, J.

    1997-10-08

    This report discusses the following topics on superconductivity: nonlinearities in hard superconductors such as surface impedance of a type II superconductimg half space and harmonic generation and intermodulation due to alternating transport currents; and nonlinearities in superconducting weak links such as harmonic generation by a long Josephson Junction in a superconducting slab.

  16. Describing current and potential markets for alternative-fuel vehicles

    SciTech Connect

    1996-03-26

    Motor vehicles are a major source of greenhouse gases, and the rising numbers of motor vehicles and miles driven could lead to more harmful emissions that may ultimately affect the world`s climate. One approach to curtailing such emissions is to use, instead of gasoline, alternative fuels: LPG, compressed natural gas, or alcohol fuels. In addition to the greenhouse gases, pollutants can be harmful to human health: ozone, CO. The Clean Air Act Amendments of 1990 authorized EPA to set National Ambient Air Quality Standards to control this. The Energy Policy Act of 1992 (EPACT) was the first new law to emphasize strengthened energy security and decreased reliance on foreign oil since the oil shortages of the 1970`s. EPACT emphasized increasing the number of alternative-fuel vehicles (AFV`s) by mandating their incremental increase of use by Federal, state, and alternative fuel provider fleets over the new few years. Its goals are far from being met; alternative fuels` share remains trivial, about 0.3%, despite gains. This report describes current and potential markets for AFV`s; it begins by assessing the total vehicle stock, and then it focuses on current use of AFV`s in alternative fuel provider fleets and the potential for use of AFV`s in US households.

  17. Experimental Study on Current Decay Characteristics of Persistent Current HTS Magnet by Alternating Magnetic Field

    NASA Astrophysics Data System (ADS)

    Park, Young Gun; Lee, Chang Young; Hwang, Young Jin; Lee, Woo Seung; Lee, Jiho; Jo, Hyun Chul; Chung, Yoon Do; Ko, Tae Kuk

    This paper deals with a current decay characteristics of a high temperature superconducting (HTS) magnet operated in persistent current mode (PCM). In superconducting synchronous machine applications such as linear synchronous motor (LSM), the superconducting coil is designed to operate in the PCM to obtain steady magnetic field with DC transport current. This superconducting magnet operates on a direct current, but it can be exposed to alternating magnetic field due to the armature winding. When the magnet is subjected to an external time-varying magnetic field, it is possible to result in a decay of the current in PCM system due to AC loss. In this research, a PCM system with armature coil which generates time-varying magnetic field was fabricated to verify current decay characteristics by external alternating magnetic field. The current decay rate was measured by using a hall sensor as functions of amplitude and frequency of armature coil.

  18. Electrical Characteristics of an Alternating Current Plasma Igniter in Airflow

    NASA Astrophysics Data System (ADS)

    Zhao, Bingbing; He, Liming; Du, Hongliang; Zhang, Hualei

    2014-04-01

    The electrical characteristics of an alternating current (AC) plasma igniter were investigated for a working gas of air at atmospheric pressure. The discharge voltage and current were measured in air in both breakdown and stable combustion processes, respectively, and the current-zero phenomena, voltage-current (V-I) characteristics were studied for different working gas flow rates. The results indicated that the working gas between anode and cathode could be ionized to generate gas discharge when the voltage reached 8 kV, and the maximum current was 33.36 A. When the current came to zero, current-zero phenomena appeared with duration of 2 μs. At the current-zero moment, dynamic resistance between electrodes became extremely high, and the maximum value could reach 445 kΩ, which was the main factor to restrain the current. With increasing working gas flow rates, the gradient of V-I characteristic curves was increased, as was the dynamic resistance. At a constant driven power, the discharge voltage increased.

  19. A Treatise on the Theory of Alternating Currents

    NASA Astrophysics Data System (ADS)

    Russell, Alexander

    2014-05-01

    1. Introduction. Electrostatics. Magnetism. Electrodynamics; 2. Alternating current in an inductive circuit. Self inductance formulae. Rectangle concentric main. Cylindrical wires; 3. The inductance of circular and helical currents. Rayleigh's formula. Maximum inductance. Mutual inductance of coaxial coils. Lorenz's formula. Mathematical tables; 4. Effective values. Choking coil and condenser currents. Effects of wave shape. Resonance; 5. Electrostatic capacity. Maxwell's equations. Capacity formulae for parallel cylinders. The capacities of three core cables in terms of Maxwell's coefficients; 6. Capacity formulae for cables. The capacity coefficients of overhead wires; 7. High frequency currents. Complete solution for a concentric main. Parallel conductors. Mathematical tables; 8. Problems in connection with spherical electrodes. The capacity coefficients. The attractions and repulsion. The maximum value of the electric stress; 9. Current oscillations. Inductively coupled electric circuits. Forced oscillations; 10. The theory of the power factor. Phase difference; 11. The method of the complex variable. Graphical solution; 12. Vectors in space. Failure of graphical methods; 13. The measurement of power. Watt-hour meters; 14. The air core transformer. Circle diagrams; 15. The theory of three phase currents. Power measurement; 16. The theory of two phase currents. Power measurement; 17. The conversion of polyphase systems. Phase indicators; 18. Rotating magnetic fields. Guiding magnetic fields; 19. The magnetic field bound single and polyphase cables. Losses in single, two and three phase cables. Dielectric losses; 20. Eddy current losses. Metal plates. Metal cylinders; 21. The method of duality. Reciprocal theorems; Index; Symbols; Index.

  20. Transcranial Alternating Current and Random Noise Stimulation: Possible Mechanisms

    PubMed Central

    Antal, Andrea; Herrmann, Christoph S.

    2016-01-01

    Background. Transcranial alternating current stimulation (tACS) is a relatively recent method suited to noninvasively modulate brain oscillations. Technically the method is similar but not identical to transcranial direct current stimulation (tDCS). While decades of research in animals and humans has revealed the main physiological mechanisms of tDCS, less is known about the physiological mechanisms of tACS. Method. Here, we review recent interdisciplinary research that has furthered our understanding of how tACS affects brain oscillations and by what means transcranial random noise stimulation (tRNS) that is a special form of tACS can modulate cortical functions. Results. Animal experiments have demonstrated in what way neurons react to invasively and transcranially applied alternating currents. Such findings are further supported by neural network simulations and knowledge from physics on entraining physical oscillators in the human brain. As a result, fine-grained models of the human skull and brain allow the prediction of the exact pattern of current flow during tDCS and tACS. Finally, recent studies on human physiology and behavior complete the picture of noninvasive modulation of brain oscillations. Conclusion. In future, the methods may be applicable in therapy of neurological and psychiatric disorders that are due to malfunctioning brain oscillations. PMID:27242932

  1. Training Course for Power Operating Personnel. Lesson No. 6: Alternating-Current Generator Excitation.

    ERIC Educational Resources Information Center

    Department of the Interior, Denver, CO. Engineering and Research Center.

    Subjects covered in this text are controlling the hydroelectric generator, generator excitation, basic principles of direct current generation, direction of current flow, basic alternating current generator, alternating and direct current voltage outputs, converting alternating current to direct current, review of the basic generator and…

  2. Renal perfusion evaluation by alternating current biosusceptometry of magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Quini, Caio C.; Matos, Juliana F.; Próspero, André G.; Calabresi, Marcos Felipe F.; Zufelato, Nicholas; Bakuzis, Andris F.; Baffa, Oswaldo; Miranda, José Ricardo A.

    2015-04-01

    Alternating current susceptometry, a simple and affordable technique, was employed to study the sensitivity of this approach to assess rat kidney perfusion by the injection of 200 μL of magnetic nanoparticles with a concentration of 23 mg/mL in the femoral vein and the measurement of the signal above the kidney. The instrument was able to detect the signal and the transit time of the first and second pass were measured in five animals with average values of 13.6±4.3 s and 20.6±7.1 s.

  3. Thin-film Josephson junctions with alternating critical current density

    NASA Astrophysics Data System (ADS)

    Moshe, Maayan; Kogan, V. G.; Mints, R. G.

    2009-01-01

    We study the field dependence of the maximum current Im(H) in narrow edge-type thin-film Josephson junctions with alternating critical current density. Im(H) is evaluated within nonlocal Josephson electrodynamics taking into account the stray fields that affect the difference of the order-parameter phases across the junction and therefore the tunneling currents. We find that the phase difference along the junction is proportional to the applied field, depends on the junction geometry, but is independent of the Josephson critical current density gc , i.e., it is universal. An explicit form for this universal function is derived for small currents through junctions of the width W≪Λ , the Pearl length. The result is used to calculate Im(H) . It is shown that the maxima of Im(H)∝1/H and the zeros of Im(H) are equidistant but only in high fields. We find that the spacing between zeros is proportional to 1/W2 . The general approach is applied to calculate Im(H) for a superconducting quantum interference device with two narrow edge-type junctions. If gc changes sign periodically or randomly, as it does in grain boundaries of high- Tc materials and superconductor-ferromagnet-superconductor heterostructures, Im(H) not only acquires the major side peaks, but due to nonlocality the following peaks decay much slower than in bulk junctions.

  4. An Alternating Current Electroosmotic Pump Based on Conical Nanopore Membranes.

    PubMed

    Wu, Xiaojian; Ramiah Rajasekaran, Pradeep; Martin, Charles R

    2016-04-26

    Electroosmotic flow (EOF) is used to pump solutions through microfluidic devices and capillary electrophoresis columns. We describe here an EOF pump based on membrane EOF rectification, an electrokinetic phenomenon we recently described. EOF rectification requires membranes with asymmetrically shaped pores, and conical pores in a polymeric membrane were used here. We show here that solution flow through the membrane can be achieved by applying a symmetrical sinusoidal voltage waveform across the membrane. This is possible because the alternating current (AC) carried by ions through the pore is rectified, and we previously showed that rectified currents yield EOF rectification. We have investigated the effect of both the magnitude and frequency of the voltage waveform on flow rate through the membrane, and we have measured the maximum operating pressure. Finally, we show that operating in AC mode offers potential advantages relative to conventional DC-mode EOF pumps. PMID:27046145

  5. Alternating current electrospinning for preparation of fibrous drug delivery systems.

    PubMed

    Balogh, Attila; Cselkó, Richárd; Démuth, Balázs; Verreck, Geert; Mensch, Jürgen; Marosi, György; Nagy, Zsombor Kristóf

    2015-11-10

    Alternating current electrospinning (ACES) was compared to direct current electrospinning (DCES) for the preparation of drug-loaded nanofibrous mats. It is generally considered that DCES is the solely technique to produce nanofibers using the electrostatic force from polymer solutions, however, less studied and also capable ACES provides further advantages such as increased specific productivities. A poorly water-soluble drug (carvedilol) was incorporated into the fibers based on three different polymeric matrices (an acid-soluble terpolymer (Eudragit(®) E), a base-soluble copolymer (Eudragit(®) L 100-55) and a nonionic homopolymer (polyvinylpyrrolidone K90)) to improve the dissolution of the weak base drug under different pH conditions. Morphology and fiber diameter evaluation showed similar electrospun fibers regardless the type of the high voltage and the major differences in feeding rates. The amorphous ACES and DCES fibers provided fast and total drug dissolutions in all cases. The presented results show that ACES can be a more feasible novel alternative to formulate fibers for drug delivery purposes. PMID:26320549

  6. Reversible Nerve Conduction Block Using Kilohertz Frequency Alternating Current

    PubMed Central

    Kilgore, Kevin L.; Bhadra, Niloy

    2013-01-01

    Objectives The features and clinical applications of balanced-charge kilohertz frequency alternating currents (KHFAC) are reviewed. Preclinical studies of KHFAC block have demonstrated that it can produce an extremely rapid and reversible block of nerve conduction. Recent systematic analysis and experimentation utilizing KHFAC block has resulted in a significant increase in interest in KHFAC block, both scientifically and clinically. Materials and Methods We review the history and characteristics of KHFAC block, the methods used to investigate this type of block, the experimental evaluation of block, and the electrical parameters and electrode designs needed to achieve successful block. We then analyze the existing clinical applications of high frequency currents, comparing the early results with the known features of KHFAC block. Results Although many features of KHFAC block have been characterized, there is still much that is unknown regarding the response of neural structures to rapidly fluctuating electrical fields. The clinical reports to date do not provide sufficient information to properly evaluate the mechanisms that result in successful or unsuccessful treatment. Conclusions KHFAC nerve block has significant potential as a means of controlling nerve activity for the purpose of treating disease. However, early clinical studies in the use of high frequency currents for the treatment of pain have not been designed to elucidate mechanisms or allow direct comparisons to preclinical data. We strongly encourage the careful reporting of the parameters utilized in these clinical studies, as well as the development of outcome measures that could illuminate the mechanisms of this modality. PMID:23924075

  7. Electromagnetic stirring with alternating current during electroslag remelting

    NASA Astrophysics Data System (ADS)

    Mitchell, Alec; Hernandez-Morales, Bernardo

    1990-08-01

    An alternating current (AC)-operated electromagnetic stirring (EMS) device, using line frequency, was designed and built to operate on a laboratory electroslag remelting (ESR) furnace for 150-mm-diameter ingots. Laboratory-scale experiments were conducted employing both 4340 alloy steel and INCONEL 718 alloy as electrode material. The initiation of stirring is accompanied by a thin strip of segregated material and favors the formation of spot segregation. Changes produced in the fluid flow conditions in the liquid pool ahead of the solidification front result in a transition from a highly directional columnar to an unoriented, branched structure. Except for small pockets of segregated liquid, the flow of molten metal does not penetrate into the mushy zone. Both electrode material and molten metal pool shape play an important role on the extent of promoting an equiaxed structure.

  8. Alternating-current relaxation of a rotating metallic particle

    NASA Astrophysics Data System (ADS)

    Guo-Xi, Nie; Wen-Jia, Tian; Ji-Ping, Huang; Guo-Qing, Gu

    2016-06-01

    Based on a first-principles approach, we establish an alternating-current (AC) relaxation theory for a rotating metallic particle with complex dielectric constant . Here is the real part, the conductivity, ω 0 the angular frequency of an AC electric field, and . Our theory yields an accurate interparticle force, which is in good agreement with the existing experiment. The agreement helps to show that the relaxations of two kinds of charges, namely, surface polarized charges (described by ) and free charges (corresponding to ), contribute to the unusually large reduction in the attracting interparticle force. This theory can be adopted to determine the relaxation time of dynamic particles in various fields. Project supported by the National Natural Science Foundation of China (Grant No. 11222544), the Fok Ying Tung Education Foundation (Grant No. 131008), the Program for New Century Excellent Talents in University, China (Grant No. NCET-12-0121), and the National Key Basic Research Program of China (Grant No. 2011CB922004).

  9. Use of cyclic current reversal polarization voltammetry for investigating the relationship between corrosion resistance and heat-treatment induced variations in microstructures of 400 C martensitic stainless steels

    NASA Technical Reports Server (NTRS)

    Ambrose, John R.

    1992-01-01

    Software for running a cyclic current reversal polarization voltammagram has been developed for use with a EG&G Princeton Applied Research Model 273 potentiostat/galvanostat system. The program, which controls the magnitude, direction and duration of an impressed galvanostatic current, will produce data in ASCII spreadsheets (Lotus, Quattro) for graphical representation of CCRPV voltammograms. The program was used to determine differences in corrosion resistance of 440 C martenstic stainless steel produced as a result of changes in microstructure effected by tempering. It was determined that tempering at all temperatures above 400 F resulted in increased polarizability of the material, with the increased likelihood that pitting would be initiated upon exposure to marine environments. These results will be used in development of remedial procedures for lowering the susceptibility of these alloys toward the stress corrosion cracking experienced in bearings used in high pressure oxygen turbopumps used in the main engines of space shuttle orbiters.

  10. 46 CFR 111.05-27 - Grounded neutral alternating current systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Grounded neutral alternating current systems. 111.05-27... Grounded neutral alternating current systems. Grounded neutral and high-impedance grounded neutral alternating current systems must have a suitably sensitive ground detection system which indicates current...

  11. 46 CFR 111.05-27 - Grounded neutral alternating current systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Grounded neutral alternating current systems. 111.05-27... Grounded neutral alternating current systems. Grounded neutral and high-impedance grounded neutral alternating current systems must have a suitably sensitive ground detection system which indicates current...

  12. 46 CFR 111.05-27 - Grounded neutral alternating current systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Grounded neutral alternating current systems. 111.05-27... Grounded neutral alternating current systems. Grounded neutral and high-impedance grounded neutral alternating current systems must have a suitably sensitive ground detection system which indicates current...

  13. 46 CFR 111.05-27 - Grounded neutral alternating current systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Grounded neutral alternating current systems. 111.05-27... Grounded neutral alternating current systems. Grounded neutral and high-impedance grounded neutral alternating current systems must have a suitably sensitive ground detection system which indicates current...

  14. 46 CFR 111.05-27 - Grounded neutral alternating current systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Grounded neutral alternating current systems. 111.05-27... Grounded neutral alternating current systems. Grounded neutral and high-impedance grounded neutral alternating current systems must have a suitably sensitive ground detection system which indicates current...

  15. Nonlinear alternating current susceptibilities of rotating microparticles in electrorheological fluids

    NASA Astrophysics Data System (ADS)

    Yu, Kin Wah; Huang, J. P.; Tian, W. J.

    2006-03-01

    A perturbation approach [1] has been employed to investigate the nonlinear alternating current (AC) responses of the rotating microparticles in electrorheological (ER) fluids under AC or direct current electric fields. The shear flow of ER fluids exerts a torque on the particles and leads to the rotational motion of the particles about their centers [2]. We show that the dynamic effects can play a significant role in the AC responses. Our results can be conveniently interpreted in the dielectric dispersion spectral representation [3], thus offering a convenient method to determine the relaxation time and the rotation velocity of the ER particles by measuring the nonlinear AC responses. [1] G. Q. Gu and K. W. Yu, Phys. Rev. B 46, 4502 (1992); K. W. Yu, P. M. Hui, and D. Stroud, Phys. Rev. B 47, 14150 (1993). [2] Jones T. K. Wan, K. W. Yu, and G. Q. Gu, Phys. Rev. E 62, 6846 (2000). [3] Jun Lei, Jones T. K. Wan, K. W. Yu, and Hong Sun, Phys. Rev. E 64, 012903 (2001).

  16. Current Pharmaceutical Treatments and Alternative Therapies of Parkinson's Disease.

    PubMed

    Dong, Jie; Cui, Yanhua; Li, Song; Le, Weidong

    2016-01-01

    Over the decades, pharmaceutical treatments, particularly dopaminergic (DAergic) drugs have been considered as the main therapy against motor symptoms of Parkinson's disease (PD). It is proposed that DAergic drugs in combination with other medications, such as monoamine oxidase type B inhibitors, catechol-O-methyl transferase inhibitors, anticholinergics and other newly developed non-DAergic drugs can make a better control of motor symptoms or alleviate levodopa-induced motor complications. Moreover, non-motor symptoms of PD, such as cognitive, neuropsychiatric, sleep, autonomic and sensory disturbances caused by intrinsic PD pathology or drug-induced side effects, are gaining increasing attention and urgently need to be taken care of due to their impact on quality of life. Currently, neuroprotective therapies have been investigated extensively in pre-clinical studies, and some of them have been subjected to clinical trials. Furthermore, non-pharmaceutical treatments, including deep brain stimulation (DBS), gene therapy, cell replacement therapy and some complementary managements, such as Tai chi, Yoga, traditional herbs and molecular targeted therapies have also been considered as effective alternative therapies to classical pharmaceutics. This review will provide us updated information regarding the current drugs and non-drugs therapies for PD. PMID:26585523

  17. The development of monolithic alternating current light-emitting diode

    NASA Astrophysics Data System (ADS)

    Yeh, Wen-Yung; Yen, Hsi-Hsuan; Chan, Yi-Jen

    2011-02-01

    The monolithic alternating current light emitting diode (ACLED) has been revealed for several years and was regarded as a potential device for solid state lighting. In this study, we will discuss the characteristics, development status, future challenges, and ITRI's development strategy about ACLED, especially focusing on the development progress of the monolithic GaN-based Schottky barrier diodes integrated ACLED (SBD-ACLED). The SBD-ACLED design can not only improve the chip area utilization ratio but also provide much higher reverse breakdown voltage by integrating four SBDs with the micro-LEDs array in a single chip, which was regarded as a good on-chip ACLED design. According to the experimental results, higher chip efficiency can be reached through SBD-ACLED design since the chip area utilization ratio was increased. Since the principle and the operation condition of ACLED is quite different from those of the typical DCLED, critical issues for ACLED like the current droops, the flicker phenomenon, the safety regulations, the measurement standards and the power fluctuation have been studied for getting a practical and reliable ACLED design. Besides, the "AC LED application and research alliance" (AARA) lead by ITRI in Taiwan for the commercialization works of ACLED has also been introduced.

  18. Alternating-current conductivity and dielectric relaxation of bulk iodoargentate

    SciTech Connect

    Duan, Hai-Bao Yu, Shan-Shan; Zhou, Hong

    2015-05-15

    Graphical abstract: The electric modulus shows single dielectric relaxation process in the measured frequency range. - Highlights: • The conduction mechanism is described by quantum mechanical tunneling model. • The applications of dielectric modulus give a simple method for evaluating the activation energy of the dielectric relaxation. • The [Ag{sub 2}I{sub 4}]{sup 2−}1-D chain and [Cu(en){sub 2}]{sup 2+} cation column form the layered stacks by hydrogen bond interactions. - Abstract: An inorganic-organic hybrid compound Cu(en){sub 2}Ag{sub 2}I{sub 4} (en = ethylenediamine) (1) was synthesized and single crystal structurally characterized. Along the [001] direction, the inorganic parts form an infinite 1-D chain and [Cu(en){sub 2}]{sup 2+} cations are separated by inorganic chain. The electrical conductivity and dielectric properties of 1 have been investigated over wide ranges of frequency. The alternating-current conductivities have been fitted to the Almond–West type power law expression with use of a single value of S. It is found that S values for 1 are nearly temperature-independent, which indicates that the conduction mechanism could be quantum mechanical tunneling (QMT) model. The dielectric loss and electric modulus show single dielectric relaxation process. The activation energy obtained from temperature-dependent electric modulus compare with the calculated from the dc conductivity plots.

  19. Precision electronic speed controller for an alternating-current

    DOEpatents

    Bolie, Victor W.

    1988-01-01

    A high precision controller for an alternating-current multi-phase electrical motor that is subject to a large inertial load. The controller was developed for and is particularly suitable for controlling, in a neutron chopper system, a heavy spinning rotor that must be rotated in phase-locked synchronism with a reference pulse train that is representative of an ac power supply signal having a meandering line frequency. The controller includes a shaft revolution sensor which provides a feedback pulse train representative of the actual speed of the motor. An internal digital timing signal generator provides a reference signal which is compared with the feedback signal in a computing unit to provide a motor control signal. In the preferred embodiment, the motor control signal is a weighted linear sum of a speed error voltage, a phase error voltage, and a drift error voltage, each of which is computed anew with each revolution of the motor shaft. The stator windings of the motor are driven by two amplifiers which are provided with input signals having the proper quadrature relationship by an exciter unit consisting of a voltage controlled oscillator, a binary counter, a pair of readonly memories, and a pair of digital-to-analog converters.

  20. 46 CFR 111.30-25 - Alternating-current ship's service switchboards.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Alternating-current ship's service switchboards. 111.30... ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Switchboards § 111.30-25 Alternating-current ship's service switchboards. (a) Except as allowed in paragraph (g) of this section, each alternating-current ship's...

  1. 46 CFR 111.30-25 - Alternating-current ship's service switchboards.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Alternating-current ship's service switchboards. 111.30... ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Switchboards § 111.30-25 Alternating-current ship's service switchboards. (a) Except as allowed in paragraph (g) of this section, each alternating-current ship's...

  2. 46 CFR 111.30-25 - Alternating-current ship's service switchboards.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Alternating-current ship's service switchboards. 111.30... ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Switchboards § 111.30-25 Alternating-current ship's service switchboards. (a) Except as allowed in paragraph (g) of this section, each alternating-current ship's...

  3. 46 CFR 111.30-25 - Alternating-current ship's service switchboards.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Alternating-current ship's service switchboards. 111.30... ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Switchboards § 111.30-25 Alternating-current ship's service switchboards. (a) Except as allowed in paragraph (g) of this section, each alternating-current ship's...

  4. Current and Needed Research on Alternative Certification Programs

    ERIC Educational Resources Information Center

    Ham, Edward

    2010-01-01

    With alternative certification programs gaining popularity in teacher education, the need to evaluate these programs has become much more necessary. Without strict guidelines to classify alternative certification programs, it is difficult to make generalizations about these programs because of different requirements for completion and…

  5. Precision electronic speed controller for an alternating-current motor

    DOEpatents

    Bolie, V.W.

    A high precision controller for an alternating-current multi-phase electrical motor that is subject to a large inertial load. The controller was developed for controlling, in a neutron chopper system, a heavy spinning rotor that must be rotated in phase-locked synchronism with a reference pulse train that is representative of an ac power supply signal having a meandering line frequency. The controller includes a shaft revolution sensor which provides a feedback pulse train representative of the actual speed of the motor. An internal digital timing signal generator provides a reference signal which is compared with the feedback signal in a computing unit to provide a motor control signal. The motor control signal is a weighted linear sum of a speed error voltage, a phase error voltage, and a drift error voltage, each of which is computed anew with each revolution of the motor shaft. The speed error signal is generated by a novel vernier-logic circuit which is drift-free and highly sensitive to small speed changes. The phase error is also computed by digital logic, with adjustable sensitivity around a 0 mid-scale value. The drift error signal, generated by long-term counting of the phase error, is used to compensate for any slow changes in the average friction drag on the motor. An auxillary drift-byte status sensor prevents any disruptive overflow or underflow of the drift-error counter. An adjustable clocked-delay unit is inserted between the controller and the source of the reference pulse train to permit phase alignment of the rotor to any desired offset angle. The stator windings of the motor are driven by two amplifiers which are provided with input signals having the proper quadrature relationship by an exciter unit consisting of a voltage controlled oscillator, a binary counter, a pair of read-only memories, and a pair of digital-to-analog converters.

  6. Current Status of Helium-3 Alternative Technologies for Nuclear Safeguards

    SciTech Connect

    Henzlova, Daniela; Kouzes, R.; McElroy, R.; Peerani, P.; Aspinall, M.; Baird, K.; Bakel, A.; Borella, M.; Bourne, M.; Bourva, L.; Cave, F.; Chandra, R.; Chernikova, D.; Croft, S.; Dermody, G.; Dougan, A.; Ely, J.; Fanchini, E.; Finocchiaro, P.; Gavron, Victor; Kureta, M.; Ianakiev, Kiril Dimitrov; Ishiyama, K.; Lee, T.; Martin, Ch.; McKinny, K.; Menlove, Howard Olsen; Orton, Ch.; Pappalardo, A.; Pedersen, B.; Peranteau, D.; Plenteda, R.; Pozzi, S.; Schear, M.; Seya, M.; Siciliano, E.; Stave, S.; Sun, L.; Swinhoe, Martyn Thomas; Tagziria, H.; Vaccaro, S.; Takamine, J.; Weber, A. -L.; Yamaguchi, T.; Zhu, H.

    2015-12-01

    International safeguards inspectorates (e.g., International Atomic Energy Agency {IAEA}, or Euratom) rely heavily on neutron assay techniques, and in particular, on coincidence counters for the verification of declared nuclear materials under safeguards and for monitoring purposes. While 3He was readily available, the reliability, safety, ease of use, gamma-ray insensitivity, and high intrinsic thermal neutron detection efficiency of 3He-based detectors obviated the need for alternative detector technologies. However, the recent decline of the 3He gas supply has triggered international efforts to develop and field neutron detectors that make use of alternative materials. In response to this global effort, the U.S. Department of Energy’s (DOE) National Nuclear Security Administration (NNSA) and Euratom launched a joint effort aimed at bringing together international experts, technology users and developers in the field of nuclear safeguards to discuss and evaluate the proposed 3He alternative materials and technologies. The effort involved a series of two workshops focused on detailed overviews and viability assessments of various 3He alternative technologies for use in nuclear safeguards applications. The key objective was to provide a platform for collaborative discussions and technical presentations organized in a compact, workshop-like format to stimulate interactions among the participants. The meetings culminated in a benchmark exercise providing a unique opportunity for the first inter-comparison of several available alternative technologies. This report provides an overview of the alternative technology efforts presented during the two workshops along with a summary of the benchmarking activities and results. The workshop recommendations and key consensus observations are discussed in the report, and used to outline a proposed path forward and future needs foreseeable in the area of 3He-alternative

  7. Dual-Frequency Alternating Current Designer Waveform for Reliable Voltammetric Determination of Electrode Kinetics Approaching the Reversible Limit.

    PubMed

    Li, Jiezhen; Bentley, Cameron L; Bond, Alan M; Zhang, Jie

    2016-02-16

    Alternating current (ac) voltammetry provides access to faster electrode kinetics than direct current (dc) methods. However, difficulties in ac and other methods arise when the heterogeneous electron-transfer rate constant (k(0)) approaches the reversible limit, because the voltammetric characteristics become insensitive to electrode kinetics. Thus, in this near-reversible regime, even small uncertainties associated with bulk concentration (C), diffusion coefficient (D), electrode area (A), and uncompensated resistance (Ru) can lead to significant systematic error in the determination of k(0). In this study, we have introduced a kinetically sensitive dual-frequency designer waveform into the Fourier-transformed large-amplitude alternating current (FTAC) voltammetric method that is made up of two sine waves having the same amplitude but with different frequencies (e.g., 37 and 615 Hz) superimposed onto a dc ramp to quantify the close-to-reversible Fc(0/+) process (Fc = ferrocene) in two nonhaloaluminate ionic liquids. The concept is that from a single experiment the lower-frequency data set, collected on a time scale where the target process is reversible, can be used as an internal reference to calibrate A, D, C, and Ru. These calibrated values are then used to calculate k(0) from analysis of the harmonics of the higher-frequency data set, where the target process is quasi-reversible. With this approach, k(0) values of 0.28 and 0.11 cm·s(-1) have been obtained at a 50 μm diameter platinum microdisk electrode for the close-to-diffusion-controlled Fc(0/+) process in two ionic liquids, 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide and 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide, respectively. PMID:26771276

  8. Science Teachers' Alternate Conceptions about Direct-Currents.

    ERIC Educational Resources Information Center

    Pardhan, Harcharan; Bano, Yasmeen

    2001-01-01

    Reports on a qualitative research study on electricity carried out in 1998 on alternative conceptions (ACs) held by a select group of middle school teachers. The study was designed to identify the nature and origin of the ACs of these teachers and relate them to other similar studies carried out by other researchers. (Contains 27 references.)…

  9. A comparison of alternating current and direct current electrospray ionization for mass spectrometry.

    PubMed

    Sarver, Scott A; Chetwani, Nishant; Dovichi, Norman J; Go, David B; Gartner, Carlos A

    2014-04-01

    A series of studies comparing the performance of alternating current electrospray ionization (AC ESI) mass spectrometry (MS) and direct current electrospray ionization (DC ESI) MS have been conducted, exploring the absolute signal intensity and signal-to-background ratios produced by both methods using caffeine and a model peptide as targets. Because the high-voltage AC signal was more susceptible to generating gas discharges, the operating voltage range of AC ESI was significantly smaller than that for DC ESI, such that the absolute signal intensities produced by DC ESI at peak voltages were one to two orders of magnitude greater than those for AC ESI. Using an electronegative nebulizing gas, sulfur hexafluoride (SF6), instead of nitrogen (N2) increased the operating range of AC ESI by ~50%, but did not appreciably improve signal intensities. While DC ESI generated far greater signal intensities, both ionization methods produced comparable signal-to-background noise, with AC ESI spectra appearing qualitatively cleaner. A quantitative calibration analysis was performed for two analytes, caffeine and the peptide MRFA. AC ESI utilizing SF6 outperforms all other techniques for the detection of MRFA, producing chromatographic limits of detection nearly one order of magnitude lower than that of DC ESI utilizing N2, and one-half that of DC ESI utilizing SF6. However, DC ESI outperforms AC ESI for the analysis of caffeine, indicating that improvements in spectral quality may benefit certain compounds or classes of compounds, on an individual basis. PMID:24464359

  10. A Comparison of Alternating Current and Direct Current Electrospray Ionization for Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Sarver, Scott A.; Chetwani, Nishant; Dovichi, Norman J.; Go, David B.; Gartner, Carlos A.

    2014-04-01

    A series of studies comparing the performance of alternating current electrospray ionization (AC ESI) mass spectrometry (MS) and direct current electrospray ionization (DC ESI) MS have been conducted, exploring the absolute signal intensity and signal-to-background ratios produced by both methods using caffeine and a model peptide as targets. Because the high-voltage AC signal was more susceptible to generating gas discharges, the operating voltage range of AC ESI was significantly smaller than that for DC ESI, such that the absolute signal intensities produced by DC ESI at peak voltages were one to two orders of magnitude greater than those for AC ESI. Using an electronegative nebulizing gas, sulfur hexafluoride (SF6), instead of nitrogen (N2) increased the operating range of AC ESI by ~50 %, but did not appreciably improve signal intensities. While DC ESI generated far greater signal intensities, both ionization methods produced comparable signal-to-background noise, with AC ESI spectra appearing qualitatively cleaner. A quantitative calibration analysis was performed for two analytes, caffeine and the peptide MRFA. AC ESI utilizing SF6 outperforms all other techniques for the detection of MRFA, producing chromatographic limits of detection nearly one order of magnitude lower than that of DC ESI utilizing N2, and one-half that of DC ESI utilizing SF6. However, DC ESI outperforms AC ESI for the analysis of caffeine, indicating that improvements in spectral quality may benefit certain compounds or classes of compounds, on an individual basis.

  11. An Alternative Introduction to Maxwell's Displacement Current

    ERIC Educational Resources Information Center

    Reich, Gary

    2013-01-01

    In introductory texts Ampere's law is generally introduced in the steady-current form ?B · dl = µ[subscript 0]I, and it is later extended to a more general form involving the so-called displacement current I[subscript d], ?B · dl = µ[subscript 0](I + I[subscript d]) · (1). Here the line integral is to be taken along a closed…

  12. Current Practices in Almond Pasteurization and Alternative Approaches

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Almonds are among the important export products of the United States and Turkey. As of September 1, 2007, the mandatory law for 4-log pasteurization of raw almonds became effective in the United States. Currently, in general, raw almonds are pasteurized by using propylene oxide, where 4-log pasteu...

  13. Teaching Electrical Energy, Voltage and Current: An Alternative Approach.

    ERIC Educational Resources Information Center

    Licht, Pieter

    1991-01-01

    A program for teaching the concepts of electric energy, voltage, and current is proposed. The ideas and concepts are introduced in a sequence that places more emphasis on some aspects that are normally treated very briefly. A phenomenological orientation, qualitative and quantitative micro- and macroscopic treatments, and the inclusion of the…

  14. Taxation of Fringe Benefits: Alternative Approaches to Current Problems.

    ERIC Educational Resources Information Center

    Cohen, Anita E.

    1979-01-01

    The current IRS tax treatment of fringe benefits is seen as inadequate, and the judicial precept confusing, because groups of employee benefits are inappropriately excluded from taxation as perquisites. A tax equalization approach is proposed. Available from Suffolk University Law Review Office, 41 Temple St., Boston, MA 02114. (MSE)

  15. Alternating-Current Motor Drive for Electric Vehicles

    NASA Technical Reports Server (NTRS)

    Krauthamer, S.; Rippel, W. E.

    1982-01-01

    New electric drive controls speed of a polyphase as motor by varying frequency of inverter output. Closed-loop current-sensing circuit automatically adjusts frequency of voltage-controlled oscillator that controls inverter frequency, to limit starting and accelerating surges. Efficient inverter and ac motor would give electric vehicles extra miles per battery charge.

  16. An Alternative to the Current Research Model of Literature.

    ERIC Educational Resources Information Center

    Craige, Betty Jean

    1984-01-01

    Criticizes current practices of seeking and preserving knowledge which neither contribute to nor support the fields of "humanistic" interest. By confining specialized research to the scientists, it is suggested that a more generalized approach be taken towards literary studies, as a means of broadening and interrelating all the issues that affect…

  17. Inactivation of Vibrio parahaemolyticus in Effluent Seawater by Alternating-Current Treatment

    PubMed Central

    Park, Jong-Chul; Lee, Min Sub; Han, Dong-Wook; Lee, Dong Hee; Park, Bong Joo; Lee, In-Seop; Uzawa, Masakazu; Aihara, Maki; Takatori, Kosuke

    2004-01-01

    Vibrio parahaemolyticus, the cause of gastroenteritis in humans, was inactivated by alternating low-amperage electricity. In this study, the application of alternating low-amperage electric treatment to effluent seawater was investigated for the large-scale disinfection of seawater. This method was able to overcome the problem of chlorine generation that results from treatment with continuous direct current. In conclusion, our results showed that alternating-current treatment inactivates V. parahaemolyticus in effluent seawater while minimizing the generation of chlorine and that this alternating-current treatment is therefore suitable for practical industrial applications. PMID:15006812

  18. 10 CFR 50.63 - Loss of all alternating current power.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ..., each light-water-cooled nuclear power plant licensed under subpart C of 10 CFR part 52 after the... 10 Energy 1 2012-01-01 2012-01-01 false Loss of all alternating current power. 50.63 Section 50.63..., Limitations, and Conditions of Licenses and Construction Permits § 50.63 Loss of all alternating current...

  19. 10 CFR 50.63 - Loss of all alternating current power.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ..., each light-water-cooled nuclear power plant licensed under subpart C of 10 CFR part 52 after the... 10 Energy 1 2011-01-01 2011-01-01 false Loss of all alternating current power. 50.63 Section 50.63..., Limitations, and Conditions of Licenses and Construction Permits § 50.63 Loss of all alternating current...

  20. 10 CFR 50.63 - Loss of all alternating current power.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ..., each light-water-cooled nuclear power plant licensed under subpart C of 10 CFR part 52 after the... 10 Energy 1 2013-01-01 2013-01-01 false Loss of all alternating current power. 50.63 Section 50.63..., Limitations, and Conditions of Licenses and Construction Permits § 50.63 Loss of all alternating current...

  1. 10 CFR 50.63 - Loss of all alternating current power.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ..., each light-water-cooled nuclear power plant licensed under subpart C of 10 CFR part 52 after the... 10 Energy 1 2014-01-01 2014-01-01 false Loss of all alternating current power. 50.63 Section 50.63..., Limitations, and Conditions of Licenses and Construction Permits § 50.63 Loss of all alternating current...

  2. 10 CFR 50.63 - Loss of all alternating current power.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ..., each light-water-cooled nuclear power plant licensed under subpart C of 10 CFR part 52 after the... 10 Energy 1 2010-01-01 2010-01-01 false Loss of all alternating current power. 50.63 Section 50.63..., Limitations, and Conditions of Licenses and Construction Permits § 50.63 Loss of all alternating current...

  3. Stripping Voltammetry of Pb and Cu using a Microcantilever Electrode

    SciTech Connect

    Bange, Adam; Brown, Gilbert M; Senesac, Larry R; Thundat, Thomas George

    2009-01-01

    Microfabricated silicon microcantilevers coated with gold on one side have been used as working electrode in a three-electrode electrochemical arrangement. In addition to electrochemical current, cantilever bending has been used as a signal for monitoring electrode reactions on the cantilever surface. The microcantilever bending was measured by an optical beam deflection method as the surface potential was scanned and electrochemical reactions occurred on the surface. The microcantilever bending due to differential surface stress was used to sense Pb and Cu using cyclic voltammetry (CV) and linear sweep stripping voltammetry (LSSV).

  4. Square wave voltammetry at the dropping mercury electrode: Theory

    USGS Publications Warehouse

    Christie, J.H.; Turner, J.A.; Osteryoung, R.A.

    1977-01-01

    The theoretical aspects of square wave voltammetry at the dropping mercury electrode are presented. The technique involves scanning the entire potential range of interest on a single drop of a DME. Asymmetries in the waveform as well as variations in current measurement parameters are discussed. Indications are that previous uses of the waveform may not have utilized all its capabilities.

  5. Current and future alternative therapies for beta-thalassemia major.

    PubMed

    de Dreuzy, Edouard; Bhukhai, Kanit; Leboulch, Philippe; Payen, Emmanuel

    2016-02-01

    Beta-thalassemia is a group of frequent genetic disorders resulting in the synthesis of little or no β-globin chains. Novel approaches are being developed to correct the resulting α/β-globin chain imbalance, in an effort to move beyond the palliative management of this disease and the complications of its treatment (e.g. life-long red blood cell transfusion, iron chelation, splenectomy), which impose high costs on healthcare systems. Three approaches are envisaged: fetal globin gene reactivation by pharmacological compounds injected into patients throughout their lives, allogeneic hematopoietic stem cell transplantation (HSCT), and gene therapy. HSCT is currently the only treatment shown to provide an effective, definitive cure for β-thalassemia. However, this procedure remains risky and histocompatible donors are identified for only a small fraction of patients. New pharmacological compounds are being tested, but none has yet made it into common clinical practice for the treatment of beta-thalassemia major. Gene therapy is in the experimental phase. It is emerging as a powerful approach without the immunological complications of HSCT, but with other possible drawbacks. Rapid progress is being made in this field, and long-term efficacy and safety studies are underway. PMID:27105596

  6. Alternate current characteristics of SiC powders

    NASA Astrophysics Data System (ADS)

    Mârtensson, E.; Gäfvert, U.; Önneby, C.

    2001-09-01

    Silicon carbide (SiC) powder is used in nonlinear field grading materials. The composite material, consisting of an insulating polymer matrix filled with the SiC grains, is usually a percolated system with established conducting paths. In order to explain the properties, the electrical characteristic of the SiC powder itself is of interest. The ac characteristics of SiC powders have been studied by dielectric response, capacitance-voltage, and ac-pulse measurements. The frequency, electric field, and pressure dependencies have been analyzed for green and black SiC, which have different doping. The ac characteristics of green and black SiC powders are governed by both the barrier regions at the SiC-grain contacts and the surrounding matrix. The nonlinear loss is determined by the conduction current at the contacts. Depending on the doping level of the SiC grains, the capacitance may be controlled by either the nonlinear capacitance of the barrier region or the linear capacitance of the surrounding matrix. Each contact zone may be modeled by a nonlinear resistance in parallel with both a nonlinear and a linear capacitance. The components are considered to be frequency independent. However, in order to explain the macroscopic frequency and field dependencies of the SiC powders, the use of a network of unique contact zones with dissimilar properties is suggested.

  7. Current Faculty Development Practices for Alternative Delivery Systems in Christian Higher Education Institutions: A Qualitative Study

    ERIC Educational Resources Information Center

    Yates, Steven Lowell

    2009-01-01

    This research study was an investigation of current faculty development practices for alternative delivery systems. Attention was given to faculty development in general as well as specific facets of faculty development for alternative delivery systems. Future or intended faculty development practices were pursued, along with factors that…

  8. 30 CFR 77.900 - Low- and medium-voltage circuits serving portable or mobile three-phase alternating current...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... portable or mobile three-phase alternating current equipment; circuit breakers. 77.900 Section 77.900... mobile three-phase alternating current equipment; circuit breakers. Low- and medium-voltage circuits supplying power to portable or mobile three-phase alternating current equipment shall be protected...

  9. 30 CFR 75.701-1 - Approved methods of grounding of equipment receiving power from ungrounded alternating current...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... receiving power from ungrounded alternating current power systems. 75.701-1 Section 75.701-1 Mineral... receiving power from ungrounded alternating current power systems. For purposes of grounding metallic frames, casings and other enclosures of equipment receiving power from ungrounded alternating current...

  10. 30 CFR 75.701-1 - Approved methods of grounding of equipment receiving power from ungrounded alternating current...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... receiving power from ungrounded alternating current power systems. 75.701-1 Section 75.701-1 Mineral... receiving power from ungrounded alternating current power systems. For purposes of grounding metallic frames, casings and other enclosures of equipment receiving power from ungrounded alternating current...

  11. 30 CFR 77.701-1 - Approved methods of grounding of equipment receiving power from ungrounded alternating current...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... receiving power from ungrounded alternating current power systems. 77.701-1 Section 77.701-1 Mineral...-1 Approved methods of grounding of equipment receiving power from ungrounded alternating current... receiving power from ungrounded alternating current power systems, the following methods of grounding...

  12. 30 CFR 75.701-1 - Approved methods of grounding of equipment receiving power from ungrounded alternating current...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... receiving power from ungrounded alternating current power systems. 75.701-1 Section 75.701-1 Mineral... receiving power from ungrounded alternating current power systems. For purposes of grounding metallic frames, casings and other enclosures of equipment receiving power from ungrounded alternating current...

  13. 30 CFR 75.701-1 - Approved methods of grounding of equipment receiving power from ungrounded alternating current...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... receiving power from ungrounded alternating current power systems. 75.701-1 Section 75.701-1 Mineral... receiving power from ungrounded alternating current power systems. For purposes of grounding metallic frames, casings and other enclosures of equipment receiving power from ungrounded alternating current...

  14. 30 CFR 77.701-1 - Approved methods of grounding of equipment receiving power from ungrounded alternating current...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... receiving power from ungrounded alternating current power systems. 77.701-1 Section 77.701-1 Mineral...-1 Approved methods of grounding of equipment receiving power from ungrounded alternating current... receiving power from ungrounded alternating current power systems, the following methods of grounding...

  15. 30 CFR 77.701-1 - Approved methods of grounding of equipment receiving power from ungrounded alternating current...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... receiving power from ungrounded alternating current power systems. 77.701-1 Section 77.701-1 Mineral...-1 Approved methods of grounding of equipment receiving power from ungrounded alternating current... receiving power from ungrounded alternating current power systems, the following methods of grounding...

  16. 30 CFR 77.701-1 - Approved methods of grounding of equipment receiving power from ungrounded alternating current...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... receiving power from ungrounded alternating current power systems. 77.701-1 Section 77.701-1 Mineral...-1 Approved methods of grounding of equipment receiving power from ungrounded alternating current... receiving power from ungrounded alternating current power systems, the following methods of grounding...

  17. 30 CFR 77.701-1 - Approved methods of grounding of equipment receiving power from ungrounded alternating current...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... receiving power from ungrounded alternating current power systems. 77.701-1 Section 77.701-1 Mineral...-1 Approved methods of grounding of equipment receiving power from ungrounded alternating current... receiving power from ungrounded alternating current power systems, the following methods of grounding...

  18. 30 CFR 75.701-1 - Approved methods of grounding of equipment receiving power from ungrounded alternating current...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... receiving power from ungrounded alternating current power systems. 75.701-1 Section 75.701-1 Mineral... receiving power from ungrounded alternating current power systems. For purposes of grounding metallic frames, casings and other enclosures of equipment receiving power from ungrounded alternating current...

  19. Direct-current-like Phase Space Manipulation Using Chirped Alternating Current Fields

    SciTech Connect

    P.F. Schmit and N.J. Fisch

    2010-02-01

    Waves in plasmas can accelerate particles that are resonant with the wave. A dc electric field also accelerates particles, but without a resonance discrimination, which makes the acceleration mechanism profoundly different. Whereas wave-particle acceleration mechanisms have been widely discussed in the literature, this work discusses the direct analogy between wave acceleration and dc field acceleration in a particular parameter regime explored in previous works. Apart from the academic interest of this correspondence, there may be practical advantages in using waves to mimic dc electric fields, for example, in driving plasma current with high efficiency.

  20. Method and apparatus for reducing the harmonic currents in alternating-current distribution networks

    DOEpatents

    Beverly, L.H.; Hance, R.D.; Kristalinski, A.L.; Visser, A.T.

    1996-11-19

    An improved apparatus and method reduce the harmonic content of AC line and neutral line currents in polyphase AC source distribution networks. The apparatus and method employ a polyphase Zig-Zag transformer connected between the AC source distribution network and a load. The apparatus and method also employs a mechanism for increasing the source neutral impedance of the AC source distribution network. This mechanism can consist of a choke installed in the neutral line between the AC source and the Zig-Zag transformer. 23 figs.

  1. Method and apparatus for reducing the harmonic currents in alternating-current distribution networks

    DOEpatents

    Beverly, Leon H.; Hance, Richard D.; Kristalinski, Alexandr L.; Visser, Age T.

    1996-01-01

    An improved apparatus and method reduce the harmonic content of AC line and neutral line currents in polyphase AC source distribution networks. The apparatus and method employ a polyphase Zig-Zag transformer connected between the AC source distribution network and a load. The apparatus and method also employs a mechanism for increasing the source neutral impedance of the AC source distribution network. This mechanism can consist of a choke installed in the neutral line between the AC source and the Zig-Zag transformer.

  2. Alternatives to Tenure. AAHE-ERIC/Higher Education Research Currents. March 1979.

    ERIC Educational Resources Information Center

    Linney, Thomas J.

    An overview of current literature about alternatives and variations to existing concepts of tenure of faculty is presented. Tenure continues the appointment of faculty until retirement unless there is dismissal for adequate cause or unavoidable termination because of financial exigency or change of institutional program. Academic freedom is…

  3. 46 CFR 111.30-25 - Alternating-current ship's service switchboards.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Switchboards § 111.30-25 Alternating-current ship's service... regulator unit acting on the exciter field, each switchboard must have: (1) A generator field rheostat; (2) A double-pole field switch; (3) Discharge clips; and (4) A discharge resistor. (d) If generators...

  4. An investigation of the dynamic behaviors of an MRE isolator subjected to constant and alternating currents

    NASA Astrophysics Data System (ADS)

    Shi, H. F.; Yu, M.; Zhu, M.; Fu, J.; Choi, S. B.; Xing, Z. W.

    2016-07-01

    This paper presents the dynamic behaviors of a magneto-rheological elastomer (MRE) isolator by applying constant and time-varying exciting currents. As the first step, a shear type of the MRE isolator is devised with a simplified design. Then, the distributions of the magnetic field in the MRE isolator under both constant and alternating exciting currents are analyzed by commercial software (ANSYS). Subsequently, the dynamic performances of the isolator are experimentally evaluated by applying three different inputs: constant, square and sinusoidal exciting current. It has been identified from the experimental results that the constant exciting current can provide optimal performances in static control, while the MRE isolator presents more advantages in dynamic control with the sine wave current excitation. This means that an attenuation coefficient of alternating current should be considered to achieve a better dynamic control effect. On the other hand, it has also been demonstrated that alternating the magnetic field can provide a broader variable range of the viscous damping coefficient than that under constant magnetic field.

  5. Assessment of flow and cure monitoring using direct current and alternating current sensing in vacuum-assisted resin transfer molding

    NASA Astrophysics Data System (ADS)

    Vaidya, Uday K.; Jadhav, Nitesh C.; Hosur, Mahesh V.; Gillespie, John W., Jr.; Fink, Bruce K.

    2000-12-01

    Vacuum-assisted resin transfer molding (VARTM) is an emerging manufacturing technique that holds promise as an affordable alternative to traditional autoclave molding and automated fiber placement for producing large-scale structural parts. In VARTM, the fibrous preform is laid on a single-sided tool, which is then bagged along with the infusion and vacuum lines. The resin is then infused through the preform, which causes simultaneous wetting in its in-plane and transverse directions. An effective sensing technique is essential so that comprehensive information pertaining to the wetting of the preform, arrival of resin at various locations, cure gradients associated with thickness and presence of dry spots may be monitored. In the current work, direct current (dc) and alternating current sensing/monitoring techniques were adopted for developing a systematic understanding of the resin position and cure on plain weave S2-glass preforms with Dow Derakane vinyl ester VE 411-350, Shell EPON RSL 2704/2705 and Si-AN epoxy as the matrix systems. A SMARTweave dc sensing system was utilized to conduct parametric studies: (a) to compare the flow and cure of resin through the stitched and non-stitched preforms; (b) to investigate the influence of sensor positioning, i.e. top, middle and bottom layers; and (c) to investigate the influence of positioning of the process accessories, i.e. resin infusion point and vacuum point on the composite panel. The SMARTweave system was found to be sensitive to all the parametric variations introduced in the study. Furthermore, the results obtained from the SMARTweave system were compared to the cure monitoring studies conducted by using embedded interdigitated (IDEX) dielectric sensors. The results indicate that SMARTweave sensing was a viable alternative to obtaining resin position and cure, and was more superior in terms of obtaining global information, in contrast to the localized dielectric sensing approach.

  6. On a charge conserving alternative to Maxwell’s displacement current

    NASA Astrophysics Data System (ADS)

    Wolsky, Alan M.

    2015-05-01

    Though sufficient for local conservation of charge, we show that Maxwell’s displacement current is not necessary. An alternative to the Ampere-Maxwell equation is exhibited and the alternative’s electric and magnetic fields and scalar and vector potentials are expressed in terms of the charge and current densities. The alternative describes a theory in which action is instantaneous and so may provide a good approximation to Maxwell’s equations where and when the finite speed of light can be neglected. The result is reminiscent of the Darwin approximation which arose from the study classical charged point particles to order (v/c)2 in the Lagrangian. Unlike Darwin’s, this approach does not depend on the constitution of the electric current. Instead, this approach grows from a straightforward revision of the Ampere equation that enforces the local conservation of charge.

  7. Gas microsensors using cyclic voltammetry with a cermet electrochemical cell.

    SciTech Connect

    Shoemaker, E. L.; Vogt, M. C.; Dudek, F. J.; Turner, T.; Energy Systems

    1997-07-15

    The sensing characteristics of a cermet electrochemical cell, expressed as NiO|Pt|solid electrolyte|Pt were investigated by applying cyclic voltammetry to the Pt electrodes and measuring changes in ionic current through the solid electrolyte. Features of the current-voltage response (voltammograms) appear to depend uniquely on the type of gas exposed to the cell surface and the solid electrolyte material used. The novel sensors can selectively detect O{sub 2}, CO{sub 2}, and a variety of hydrocarbons. Performance characteristics such as selectivity, sensitivity, speed of response, and temperature dependence were also reported.

  8. Direct-current arc and alternating-current spark emission spectrographic field methods for the semiquantitative analysis of geologic materials

    USGS Publications Warehouse

    Grimes, D.J.; Marranzino, A.P.

    1968-01-01

    Two spectrographic methods are used in mobile field laboratories of the U. S. Geological Survey. In the direct-current arc method, the ground sample is mixed with graphite powder, packed into an electrode crater, and burned to completion. Thirty elements are determined. In the spark method, the sample, ground to pass a 150-mesh screen, is digested in hydrofluoric acid followed by evaporation to dryness and dissolution in aqua regia. The solution is fed into the spark gap by means of a rotating-disk electrode arrangement and is excited with an alternating-current spark discharge. Fourteen elements are determined. In both techniques, light is recorded on Spectrum Analysis No. 1, 35-millimeter film, and the spectra are compared visually with those of standard films.

  9. Use of Biosensors as Alternatives to Current Regulatory Methods for Marine Biotoxins

    PubMed Central

    Vilariño, Natalia; Fonfría, Eva S.; Louzao, M. Carmen; Botana, Luis M.

    2009-01-01

    Marine toxins are currently monitored by means of a bioassay that requires the use of many mice, which poses a technical and ethical problem in many countries. With the exception of domoic acid, there is a legal requirement for the presence of other toxins (yessotoxin, saxitoxin and analogs, okadaic acid and analogs, pectenotoxins and azaspiracids) in seafood to be controlled by bioassay, but other toxins, such as palytoxin, cyclic imines, ciguatera and tetrodotoxin are potentially present in European food and there are no legal requirements or technical approaches available to identify their presence. The need for alternative methods to the bioassay is clearly important, and biosensors have become in recent years a feasible alternative to animal sacrifice. This review will discuss the advantages and disadvantages of using biosensors as alternatives to animal assays for marine toxins, with particular focus on surface plasmon resonance (SPR) technology. PMID:22291571

  10. Anodic Stripping Voltammetry: An Instrumental Analysis Experiment.

    ERIC Educational Resources Information Center

    Wang, Joseph

    1983-01-01

    Describes an experiment designed to acquaint students with the theory and applications of anodic stripping voltammetry (ASV) as well as such ASV problems as contamination associated with trace analysis. The experimental procedure, instrumentation, and materials discussed are designed to minimize cost and keep procedures as simple as possible. (JM)

  11. High Efficiency Alternating Current Driven Organic Light Emitting Devices Employing Active Semiconducting Gate Layers

    NASA Astrophysics Data System (ADS)

    Smith, Gregory; Xu, Junwei; Carroll, David

    2015-03-01

    In this work, we describe the role of semiconductor-polymer interfaces in alternating current (AC) driven organic electroluminescent (EL) devices. We implement inorganic semiconducting materials between the external contact and the active layers in organic light EL devices. Precise control of capacitance and charge injection is required to realize bright and efficient large area AC driven devices. We show how this architecture results in active gating to the polymer layers, resulting in the novel ability to control the capacitance and charge injection characteristics. We propose a model based on band bending at the semiconductor-polymer interface. Furthermore, we elucidate the influence of the semiconductor-polymer interface on the internally coupled magnetic field generated in an alternating current driven organic light emitting device configuration. Magnetic fields can alter the ratios of singlet and triplet populations, and we show that internal generation of a magnetic field can dramatically alter the efficiency of light emission in organic EL devices.

  12. Alternating current and infrared produce an onset-free reversible nerve block

    PubMed Central

    Lothet, Emilie H.; Kilgore, Kevin L.; Bhadra, Niloy; Bhadra, Narendra; Vrabec, Tina; Wang, Yves T.; Jansen, E. Duco; Jenkins, Michael W.; Chiel, Hillel J.

    2014-01-01

    Abstract. Nerve block can eliminate spasms and chronic pain. Kilohertz frequency alternating current (KHFAC) produces a safe and reversible nerve block. However, KHFAC-induced nerve block is associated with an undesirable onset response. Optical inhibition using infrared (IR) laser light can produce nerve block without an onset response, but heats nerves. Combining KHFAC with IR inhibition [alternating current and infrared (ACIR)] produces a rapidly reversible nerve block without an onset response. ACIR can be used to rapidly and reversibly provide onset-free nerve block in the unmyelinated nerves of the marine mollusk Aplysia californica and may have significant advantages over either modality alone. ACIR may be of great clinical utility in the future. PMID:26157966

  13. Effect of an alternating current electric field on Co(OH)2 periodic precipitation

    NASA Astrophysics Data System (ADS)

    Karam, Tony; Sultan, Rabih

    2013-02-01

    The present paper studies the effect of an alternating current (AC) electric field on Co(OH)2 Liesegang patterns. In the presence of an AC electric field, the band spacing increases with spacing number, but reaches a plateau at large spacing (or band) numbers. The band spacing increases with applied AC voltage, but to a much lesser extent than the effect of a DC electric field under the same applied voltage [see R. Sultan, R. Halabieh, Chem. Phys. Lett. 332 (2000) 331][1]. At low enough applied voltage, the band spacing increases with frequency. At higher voltages, the band spacing becomes independent of the field frequency. The effect of concentration of the inner electrolyte (Co2+), exactly opposes that observed under DC electric field; i.e., the band spacing decreases with increasing concentration. The dynamics were shown to be governed by a competitive scenario between the diffusion gradient and the alternating current electric field factor.

  14. Effects of alternating current stimulation on the healthy and diseased brain

    PubMed Central

    Abd Hamid, Aini Ismafairus; Gall, Carolin; Speck, Oliver; Antal, Andrea; Sabel, Bernhard A.

    2015-01-01

    Cognitive and neurological dysfunctions can severely impact a patient's daily activities. In addition to medical treatment, non-invasive transcranial alternating current stimulation (tACS) has been proposed as a therapeutic technique to improve the functional state of the brain. Although during the last years tACS was applied in numerous studies to improve motor, somatosensory, visual and higher order cognitive functions, our knowledge is still limited regarding the mechanisms as to which type of ACS can affect cortical functions and altered neuronal oscillations seem to be the key mechanism. Because alternating current send pulses to the brain at predetermined frequencies, the online- and after-effects of ACS strongly depend on the stimulation parameters so that “optimal” ACS paradigms could be achieved. This is of interest not only for neuroscience research but also for clinical practice. In this study, we summarize recent findings on ACS-effects under both normal conditions and in brain diseases. PMID:26578858

  15. Alternating-Current Equipment for the Measurement of Fluctuations of Air Speed in Turbulent Flow

    NASA Technical Reports Server (NTRS)

    Mock, W C , Jr

    1937-01-01

    Recent electrical and mechanical improvements have been made in the equipment developed at the National Bureau of Standards for measurement of fluctuations of air speed in turbulent flow. Data useful in the design of similar equipment are presented. The design of rectified alternating-current power supplies for such apparatus is treated briefly, and the effect of the power supplies on the performance of the equipment is discussed.

  16. Methods, systems and apparatus for controlling operation of two alternating current (AC) machines

    DOEpatents

    Gallegos-Lopez, Gabriel; Nagashima, James M.; Perisic, Milun; Hiti, Silva

    2012-06-05

    A system is provided for controlling two alternating current (AC) machines via a five-phase PWM inverter module. The system comprises a first control loop, a second control loop, and a current command adjustment module. The current command adjustment module operates in conjunction with the first control loop and the second control loop to continuously adjust current command signals that control the first AC machine and the second AC machine such that they share the input voltage available to them without compromising the target mechanical output power of either machine. This way, even when the phase voltage available to either one of the machines decreases, that machine outputs its target mechanical output power.

  17. Plasmonic-based Imaging of Local Square Wave Voltammetry

    PubMed Central

    Shan, Xiaonan; Wang, Shaopeng; Wang, Wei; Tao, Nongjian

    2012-01-01

    Square wave voltammetry (SWV) is widely used in electrochemical analysis and sensors because of its high sensitivity and efficient rejection of background current, but SWV by conventional electrochemical detection method does not provide spatial resolution. We report here a plasmonic method to image local SWV, which opens the door for analyzing heterogeneous electrochemical reactions and for high throughput detections of microarrays. We describe the basic principle, validate the principle by comparing the plasmonic-based SWV with those obtained with the conventional method, and demonstrate imaging capability for local electrochemical analysis. PMID:21793508

  18. Transcranial Alternating Current Stimulation with Sawtooth Waves: Simultaneous Stimulation and EEG Recording

    PubMed Central

    Dowsett, James; Herrmann, Christoph S.

    2016-01-01

    Transcranial alternating current stimulation (tACS) has until now mostly been administered as an alternating sinusoidal wave. Despite modern tACS stimulators being able to deliver alternating current with any arbitrary shape there has been no systematic exploration into the relative benefits of different waveforms. As tACS is a relatively new technique there is a huge parameter space of unexplored possibilities which may prove superior or complimentary to the traditional sinusoidal waveform. Here, we begin to address this with an investigation into the effects of sawtooth wave tACS on individual alpha power. Evidence from animal models suggests that the gradient and direction of an electric current should be important factors for the subsequent neural firing rate; we compared positive and negative ramp sawtooth waves to test this. An additional advantage of sawtooth waves is that the resulting artifact in the electroencephalogram (EEG) recording is significantly simpler to remove than a sine wave; accordingly we were able to observe alpha oscillations both during and after stimulation. We found that positive ramp sawtooth, but not negative ramp sawtooth, significantly enhanced alpha power during stimulation relative to sham (p < 0.01). In addition we tested for an after-effect of both sawtooth and sinusoidal stimulation on alpha power but in this case did not find any significant effect. This preliminary study paves the way for further investigations into the effect of the gradient and direction of the current in tACS which could significantly improve the usefulness of this technique. PMID:27065835

  19. Transcranial Alternating Current Stimulation with Sawtooth Waves: Simultaneous Stimulation and EEG Recording.

    PubMed

    Dowsett, James; Herrmann, Christoph S

    2016-01-01

    Transcranial alternating current stimulation (tACS) has until now mostly been administered as an alternating sinusoidal wave. Despite modern tACS stimulators being able to deliver alternating current with any arbitrary shape there has been no systematic exploration into the relative benefits of different waveforms. As tACS is a relatively new technique there is a huge parameter space of unexplored possibilities which may prove superior or complimentary to the traditional sinusoidal waveform. Here, we begin to address this with an investigation into the effects of sawtooth wave tACS on individual alpha power. Evidence from animal models suggests that the gradient and direction of an electric current should be important factors for the subsequent neural firing rate; we compared positive and negative ramp sawtooth waves to test this. An additional advantage of sawtooth waves is that the resulting artifact in the electroencephalogram (EEG) recording is significantly simpler to remove than a sine wave; accordingly we were able to observe alpha oscillations both during and after stimulation. We found that positive ramp sawtooth, but not negative ramp sawtooth, significantly enhanced alpha power during stimulation relative to sham (p < 0.01). In addition we tested for an after-effect of both sawtooth and sinusoidal stimulation on alpha power but in this case did not find any significant effect. This preliminary study paves the way for further investigations into the effect of the gradient and direction of the current in tACS which could significantly improve the usefulness of this technique. PMID:27065835

  20. Experimental aspects of solid-state voltammetry

    SciTech Connect

    Wooster, T.T.; Longmire, M.L.; Zhang, H.

    1992-05-15

    This paper describes the properties of poly(ether) polymer electrolytes as solvent media for solid-state voltammetry. Experimental requirements for microelectrode voltammetry and results for the dependency of diffusive transport of electroactive solutes on polymer solvent molecular weight, structure, and temperature (and related phase state) are described for eight poly(ether)s: linear poly(ethylene oxides) MW = 400, 1000, 2000, and 600 000 (Me{sub 2}PEG-400, Me{sub 2}PEG-1000, Me{sub 2}PEG-2000, PEO-600 000), linear poly(propylene oxide) MW = 4000 (PPO-4000), the comb polymer poly(bis[(methoxyethoxy)ethoxy]phosphazine) (MEEP), the block copolymer poly(ether)-poly(urethane urea)(PEUU), and the cross-linked poly(ether) network PEO. 28 refs., 10 figs., 1 tab.

  1. 30 CFR 75.900 - Low- and medium-voltage circuits serving three-phase alternating current equipment; circuit...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Low- and medium-voltage circuits serving three... Low- and medium-voltage circuits serving three-phase alternating current equipment; circuit breakers. Low- and medium-voltage power circuits serving three-phase alternating current equipment shall...

  2. 30 CFR 75.900 - Low- and medium-voltage circuits serving three-phase alternating current equipment; circuit...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Low- and medium-voltage circuits serving three... STANDARDS-UNDERGROUND COAL MINES Underground Low- and Medium-Voltage Alternating Current Circuits § 75.900 Low- and medium-voltage circuits serving three-phase alternating current equipment; circuit...

  3. 30 CFR 77.900 - Low- and medium-voltage circuits serving portable or mobile three-phase alternating current...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Low- and medium-voltage circuits serving... Medium-Voltage Alternating Current Circuits § 77.900 Low- and medium-voltage circuits serving portable or mobile three-phase alternating current equipment; circuit breakers. Low- and medium-voltage...

  4. Voltammetry as a Model for Teaching Chemical Instrumentation.

    ERIC Educational Resources Information Center

    Gunasingham, H.; Ang, K. P.

    1985-01-01

    Voltammetry is used as a model for teaching chemical instrumentation to chemistry undergraduates at the National University of Singapore. Lists six criteria used to select a successful teaching model and shows how voltammetry satisfies each criterion. (JN)

  5. Voltammetry at the Thin-Film Mercury Electrode (TFME).

    ERIC Educational Resources Information Center

    Pomeroy, R. S.; And Others

    1989-01-01

    Reviewed is the use of the Thin-Film Mercury Electrode for anodic stripping voltammetry, simple voltammetry of solution cations and cathodic stripping voltammetry for the determination of an environmentally important molecule, thiourea. The construction of a simple potentiostat and applications for student laboratory courses are included. (CW)

  6. [Transcranial alternating current stimulation. Entrainment and function control of neuronal networks].

    PubMed

    Vosskuhl, J; Strüber, D; Herrmann, C S

    2015-12-01

    Transcranial alternating current stimulation (tACS) is a new technique for the modulation of oscillatory brain activity as measured in the electroencephalogram (EEG). In contrast to well-established stimulation techniques, such as transcranial direct current stimulation and transcranial magnetic stimulation, tACS applies a sinusoidal alternating current at a specific frequency. This enables the modulation of the amplitude and frequency of endogenous brain oscillations as well as related cognitive processes. Therefore, the use of tACS has the possibility to evaluate well-known correlations between brain oscillations and cognitive processes in terms of causality. Such causal relationships have been documented in numerous neurocognitive studies on sensory, motor and perceptual processes; however, the clinical application of tACS is still in its infancy. In principle, any pathology that can reliably be connected with brain oscillations of a defined frequency is treatable. A current main focus of clinical research is on symptoms of Parkinson's disease and to a lesser degree, tinnitus. For an effective application of tACS it is important to choose the electrode positions as well as the frequency, intensity and duration of the stimulation in a theory-based and symptom-related manner. A successful therapeutic intervention requires the persistence of the tACS effect after stimulation has ceased. A mechanism that offers not only an explanation to the origin of persistent tACS effects but is also of high therapeutic benefit is neural plasticity. Therefore, one current focus of research aims at a better understanding of tACS after effects. PMID:26440521

  7. Electrochemical oxidation of the carbide wastes of hard alloys using alternating current

    NASA Astrophysics Data System (ADS)

    Bryukvin, V. A.; Palant, A. A.; Levchuk, O. M.; Tsybin, O. I.

    2012-03-01

    The electrochemical oxidation of the carbide wastes of a W-Co alloy has been studied by gas, electron-probe microanalysis, and X-ray diffraction analyses. The experiments are carried out using halfwave sinusoidal alternating current. It is established that a CO2 + CO mixture forms under such conditions in a gaseous phase in volumetric ratio of 2: 1 and that a tungsten deposit forms in an anode sludge mainly in the form of hydrated tungsten oxide WO2(OH)2. Marketable products are obtained in the form of pure CO3O4 and WO3.

  8. Enhancement of crystal homogeneity of protein crystals under application of an external alternating current electric field

    SciTech Connect

    Koizumi, H.; Uda, S.; Fujiwara, K.; Nozawa, J.; Tachibana, M.; Kojima, K.

    2014-10-06

    X-ray diffraction rocking-curve measurements were performed on tetragonal hen egg white (HEW) lysozyme crystals grown with and without the application of an external alternating current (AC) electric field. The crystal quality was assessed by the full width at half maximum (FWHM) value for each rocking curve. For two-dimensional maps of the FWHMs measured on the 440 and the 12 12 0 reflection, the crystal homogeneity was improved under application of an external electric field at 1 MHz, compared with that without. In particular, the significant improvement of the crystal homogeneity was observed for the 12 12 0 reflection.

  9. Computational analysis shows why transcranial alternating current stimulation induces retinal phosphenes

    NASA Astrophysics Data System (ADS)

    Laakso, Ilkka; Hirata, Akimasa

    2013-08-01

    Objective. Transcranial alternating current stimulation (tACS), which is a novel technique for the manipulation of cortical oscillations, can generate subjective visual sensations (phosphenes). In this work, we computationally investigate the current that reaches the eyes from tACS electrodes in order to show that phosphenes induced by tACS are retinal in origin. Approach. The finite-element method is used for modelling the path of the current in an anatomically realistic model of the head for various electrode montages. The computational results are used for analysing previous experimental data to investigate the sensitivity of the eye to electrical stimulation. Main results. Depending on the locations of both the stimulating and reference electrodes, a small portion of the stimulation current chooses a path that goes through the eyes. Due to the sensitivity of the retina to electrical stimulation, even distant electrodes can produce a sufficiently strong current at the eyes for inducing retinal phosphenes. Significance. The interference from retinal phosphenes needs to be considered in the design of tACS experiments. The occurrence of phosphenes can be reduced by optimizing the locations of the electrodes, or potentially increasing the number of reference electrodes to two or more. Computational modelling is an effective tool for guiding the electrode positioning.

  10. Air pollution control residues from waste incineration: Current UK situation and assessment of alternative technologies

    SciTech Connect

    Amutha Rani, D.; Boccaccini, A.R.; Deegan, D.; Cheeseman, C.R.

    2008-11-15

    Current disposal options for APC residues in the UK and alternative treatment technologies developed world-wide have been reviewed. APC residues are currently landfilled in the UK where they undergo in situ solidification, although the future acceptability of this option is uncertain because the EU waste acceptance criteria (WAC) introduce strict limits on leaching that are difficult to achieve. Other APC residue treatment processes have been developed which are reported to reduce leaching to below relevant regulatory limits. The Ferrox process, the VKI process, the WES-PHix process, stabilisation/solidification using cementitious binders and a range of thermal treatment processes are reviewed. Thermal treatment technologies convert APC residues combined with other wastes into inert glass or glass-ceramics that encapsulate heavy metals. The waste management industry will inevitably use the cheapest available option for treating APC residues and strict interpretation and enforcement of waste legislation is required if new, potentially more sustainable technologies are to become commercially viable.

  11. Current Perspectives on the Use of Alternative Species in Human Health and Ecological Hazard Assessments

    PubMed Central

    Ankley, Gerald T.; Crofton, Kevin M.; Garcia-Reyero, Natàlia; LaLone, Carlie A.; Johnson, Mark S.; Tietge, Joseph E.; Villeneuve, Daniel L.

    2013-01-01

    Background: Traditional animal toxicity tests can be time and resource intensive, thereby limiting the number of chemicals that can be comprehensively tested for potential hazards to humans and/or to the environment. Objective: We compared several types of data to demonstrate how alternative models can be used to inform both human and ecological risk assessment. Methods: We reviewed and compared data derived from high throughput in vitro assays to fish reproductive tests for seven chemicals. We investigated whether human-focused assays can be predictive of chemical hazards in the environment. We examined how conserved pathways enable the use of nonmammalian models, such as fathead minnow, zebrafish, and Xenopus laevis, to understand modes of action and to screen for chemical risks to humans. Results: We examined how dose-dependent responses of zebrafish embryos exposed to flusilazole can be extrapolated, using pathway point of departure data and reverse toxicokinetics, to obtain human oral dose hazard values that are similar to published mammalian chronic toxicity values for the chemical. We also examined how development/safety data for human health can be used to help assess potential risks of pharmaceuticals to nontarget species in the environment. Discussion: Using several examples, we demonstrate that pathway-based analysis of chemical effects provides new opportunities to use alternative models (nonmammalian species, in vitro tests) to support decision making while reducing animal use and associated costs. Conclusions: These analyses and examples demonstrate how alternative models can be used to reduce cost and animal use while being protective of both human and ecological health. Citation: Perkins EJ, Ankley GT, Crofton KM, Garcia-Reyero N, LaLone CA, Johnson MS, Tietge JE, Villeneuve DL. 2013. Current perspectives on the use of alternative species in human health and ecological hazard assessments. Environ Health Perspect 121:1002–1010;

  12. Current progress on truffle submerged fermentation: a promising alternative to its fruiting bodies.

    PubMed

    Tang, Ya-Jie; Liu, Rui-Sang; Li, Hong-Mei

    2015-03-01

    Truffle (Tuber spp.), also known as "underground gold," is popular in various cuisines because of its unique and characteristic aroma. Currently, truffle fruiting bodies are mostly obtained from nature and semi-artificial cultivation. However, the former source is scarce, and the latter is time-consuming, usually taking 4 to 12 years before harvest of the fruiting body. The truffle submerged fermentation process was first developed in Tang's lab as an alternative to its fruiting bodies. To the best of our knowledge, most reports of truffle submerged fermentation come from Tang's group. This review examines the current state of the truffle submerged fermentation process. First, the strategy to optimize the truffle submerged fermentation process is summarized; the final conditions yielded not only the highest reported truffle biomass but also the highest production of extracellular and intracellular polysaccharides. Second, the comparison of metabolites produced by truffle fermentation and fruiting bodies is presented, and the former were superior to the latter. Third, metabolites (i.e., volatile organic compounds, equivalent umami concentration, and sterol) derived from truffle fermentation could be regulated by fermentation process optimization. These findings indicated that submerged fermentation of truffles can be used for commercial production of biomass and metabolites as a promising alternative to generating its fruiting bodies in bioreactor. PMID:25616528

  13. Preparation of scanning tunneling microscopy tips using pulsed alternating current etching

    SciTech Connect

    Valencia, Victor A.; Thaker, Avesh A.; Derouin, Jonathan; Valencia, Damian N.; Farber, Rachael G.; Gebel, Dana A.; Killelea, Daniel R.

    2015-03-15

    An electrochemical method using pulsed alternating current etching (PACE) to produce atomically sharp scanning tunneling microscopy (STM) tips is presented. An Arduino Uno microcontroller was used to control the number and duration of the alternating current (AC) pulses, allowing for ready optimization of the procedures for both Pt:Ir and W tips using a single apparatus. W tips prepared using constant and pulsed AC power were compared. Tips fashioned using PACE were sharper than those etched with continuous AC power alone. Pt:Ir tips were prepared with an initial coarse etching stage using continuous AC power followed by fine etching using PACE. The number and potential of the finishing AC pulses was varied and scanning electron microscope imaging was used to compare the results. Finally, tip quality using the optimized procedures was verified by UHV-STM imaging. With PACE, at least 70% of the W tips and 80% of the Pt:Ir tips were of sufficiently high quality to obtain atomically resolved images of HOPG or Ni(111)

  14. Studying Effects of Transcranial Alternating Current Stimulation on Hearing and Auditory Scene Analysis.

    PubMed

    Riecke, Lars

    2016-01-01

    Recent studies have shown that perceptual detection of near-threshold auditory events may depend on the relative timing of the event and ongoing brain oscillations. Furthermore, transcranial alternating current stimulation (tACS), a non-invasive and silent brain stimulation technique, can entrain cortical alpha oscillations and thereby provide some experimental control over their timing. The present research investigates the potential of delta/theta-tACS to modulate hearing and auditory scene analysis. Detection of near-threshold auditory stimuli, which are modulated at 4 Hz and presented at various moments (phase lags) during ongoing tACS (two synchronous 4-Hz alternating currents applied transcranially to the two cerebral hemispheres), is measured in silence or in a masker. Results indicate that performance fluctuates as a function of phase lag and these fluctuations can be explained best by a sinusoid at the tACS frequency. This suggests that tACS may amplify/attenuate sounds that are temporally coherent/anticoherent with tACS-entrained cortical oscillations. PMID:27080678

  15. Regional economic impacts of current and proposed management alternatives for Don Edwards National Wildlife Refuge

    USGS Publications Warehouse

    Richardson, Leslie; Huber, Chris; Koontz, Lynne

    2012-01-01

    The National Wildlife Refuge System Improvement Act of 1997 requires all units of the National Wildlife Refuge System to be managed under a Comprehensive Conservation Plan. The Comprehensive Conservation Plan must describe the desired future conditions of a Refuge and provide long-range guidance and management direction to achieve refuge purposes. The Don Edwards San Francisco Bay National Wildlife Refuge, located at the south end of California's San Francisco Bay and one of seven refuges in the San Francisco Bay National Wildlife Refuge Complex, is in the process of developing a range of management goals, objectives, and strategies for the Comprehensive Conservation Plan. The Comprehensive Conservation Plan must contain an analysis of expected effects associated with current and proposed Refuge management strategies. For Refuge Comprehensive Conservation Plan planning, a regional economic analysis provides a means of estimating how current management (No Action Alternative) and proposed management activities (alternatives) affect the local economy. This type of analysis provides two critical pieces of information: (1) it illustrates the Don Edwards San Francisco Bay National Wildlife Refuge's contribution to the local community, and (2) it can help in determining whether economic effects are or are not a real concern in choosing among management alternatives. This report first presents a description of the local community and economy near the Don Edwards San Francisco Bay National Wildlife Refuge. Next, the methods used to conduct a regional economic impact analysis are described. An analysis of the final Comprehensive Conservation Plan management strategies that could affect stakeholders, residents, and the local economy is then presented. The management activities of economic concern in this analysis are: * Spending in the local community by Refuge visitors; * Refuge personnel salary spending; and * Refuge purchases of goods and services within the local

  16. Analysis for discharge-radiation dynamics in alternating current plasma display panels

    NASA Astrophysics Data System (ADS)

    Suzuki, Keizo; Yamamoto, Kenichi; Kajiyama, Hiroshi; Ho, Shirun; Uemura, Norihiro; Muraoka, Katsunori

    2004-12-01

    An analytical method to study the discharge-radiation dynamics (DRD) in alternating current plasma display panels was developed. The input parameters for this DRD analysis were experimentally determined panel voltage and current wave forms. Discharge voltage, current, and power wave forms in the discharge volume of a cell were first obtained from the measured panel voltage and current wave forms using known geometrical configurations and electric circuit calculations. Intrinsic discharge parameters, such as electron temperature and density, were then determined to satisfy these discharge wave forms under the assumption of a hydrodynamic approach. A one-dimensional discharge structure with two regions (cathode fall and positive column) and several other assumptions which are plausible from the discharge physics point of view were also adopted. These assumptions took account of known cross sections and energies of electron-impact excitation and ionization of discharge gas atoms, and a secondary electron emission coefficient of the dielectric surface at the cathode side induced by ion bombardment. Radiation intensities from the discharge were calculated using the determined intrinsic discharge parameters, and the results were compared with those measured for the respective panel conditions used in the calculations, yielding a fair agreement. The luminous efficiency, defined as the radiation intensity divided by the discharge power, was also determined using the intrinsic discharge parameters. Discussion on the luminous efficiency change for different panel operating conditions revealed that the efficiency improvement at a lower voltage was attributable to a lower electron temperature for this condition.

  17. A uniform laminar air plasma plume with large volume excited by an alternating current voltage

    NASA Astrophysics Data System (ADS)

    Li, Xuechen; Bao, Wenting; Chu, Jingdi; Zhang, Panpan; Jia, Pengying

    2015-12-01

    Using a plasma jet composed of two needle electrodes, a laminar plasma plume with large volume is generated in air through an alternating current voltage excitation. Based on high-speed photography, a train of filaments is observed to propagate periodically away from their birth place along the gas flow. The laminar plume is in fact a temporal superposition of the arched filament train. The filament consists of a negative glow near the real time cathode, a positive column near the real time anode, and a Faraday dark space between them. It has been found that the propagation velocity of the filament increases with increasing the gas flow rate. Furthermore, the filament lifetime tends to follow a normal distribution (Gaussian distribution). The most probable lifetime decreases with increasing the gas flow rate or decreasing the averaged peak voltage. Results also indicate that the real time peak current decreases and the real time peak voltage increases with the propagation of the filament along the gas flow. The voltage-current curve indicates that, in every discharge cycle, the filament evolves from a Townsend discharge to a glow one and then the discharge quenches. Characteristic regions including a negative glow, a Faraday dark space, and a positive column can be discerned from the discharge filament. Furthermore, the plasma parameters such as the electron density, the vibrational temperature and the gas temperature are investigated based on the optical spectrum emitted from the laminar plume.

  18. Efficacy of lidocaine lontophoresis using either alternating or direct current in hairless rats.

    PubMed

    Nakajima, Atsushi; Wakita, Ryo; Haida, Haruka; Fukayama, Haruhisa

    2013-01-01

    The aim of this study was to determine transport of lidocaine ions through a hairless rat skin in vivo and to compare the efficacy of alternating current (AC) with that of direct current (DC) iontophoresis (IOP). We measured the concentration of lidocaine transported through a cellophane membrane or a hairless rat dorsal skin applying either AC-IOP or DC-IOP. The results revealed that lidocaine concentration increased in a time-dependent manner in vitro in both DC-IOP and AC-IOP. However, the in vivo study showed different tendencies in lidocaine concentration. In the DCIOP group, lidocaine concentration reached its maximum 20 min after current application and then decreased rapidly; the AC-IOP group showed an increase in lidocaine concentration in a time-dependent manner. There were no side effects such as electrical burns in the rats. In conclusion, AC can be applied for long periods and DC for short periods, or their application time can be appropriately scheduled. Our study also suggests the mechanism by which voltage waveforms affect the skin when applied by IOP. In the future, these findings will be a solid foundation for developing various kinds of medical equipment such as scheduled drug delivery system that can easily deliver various types of drug. PMID:24146168

  19. Water management in the Basin of Mexico: current state and alternative scenarios

    NASA Astrophysics Data System (ADS)

    Carrera-Hernández, Jaime J.; Gaskin, S. J.

    2009-09-01

    Water management policies in the Basin of Mexico, where Mexico City and its nearly 20 million inhabitants live, are analyzed. After a brief description of how water has been managed, possible water management plans that would change water management practices in the Basin are discussed and a call is made for a change in the defensive attitude towards water taken to date. As the aquifer’s replacement cost is considered to be the proxy for the implementation of water tariffs, this is determined, based on the cost of future water sources, and found to be 0.65-0.72 USD/m3. This is twice the amount currently charged in the Federal District (0.34 USD/m3), where 45% of the City's domestic water users are found. As another alternative, the development of an artificial recharge program is also analyzed and found to be a plausible way to increase water supply at a unitary cost of 0.605 USD/m3. Despite the presence of these alternatives, it is suggested that water management in the Basin needs to change from a water supply approach to a water demand approach.

  20. Alternating current impedance and Raman spectroscopic study on electrochromic a-WO{sub 3} films

    SciTech Connect

    Lee, Se-Hee; Cheong, Hyeonsik M.; Tracy, C. Edwin; Mascarenhas, Angelo; Pitts, J. Roland; Jorgensen, Gary; Deb, Satyen K.

    2000-06-26

    The chemical diffusion of lithium ions in a-Li{sub x}WO{sub 3} films is investigated using alternating current impedance spectroscopy and Raman scattering measurements. The diffusion coefficients increase with increasing x in a-Li{sub x}WO{sub 3} up to x=0.072 and then decrease. Raman measurements show that the W{sup 6+}=O/O-W{sup 6+}-O ratio also increases at the early stage of lithium insertion and then decreases with further lithium insertion. We conclude that the diffusion kinetics of lithium ions in a-Li{sub x}WO{sub 3} films is very closely related to the W{sup 6+}=O/O-W{sup 6+}-O ratio. (c) 2000 American Institute of Physics.

  1. Targeting the neurophysiology of cognitive systems with transcranial alternating current stimulation (tACS)

    PubMed Central

    Fröhlich, Flavio; Sellers, Kristin K.; Cordle, Asa L.

    2015-01-01

    Cognitive impairment represents one of the most debilitating and most difficult symptom to treat of many psychiatric illnesses. Human neurophysiology studies have suggested specific pathologies of cortical network activity correlate with cognitive impairment. However, we lack (1) demonstration of causal relationships between specific network activity patterns and cognitive capabilities and (2) treatment modalities that directly target impaired network dynamics of cognition. Transcranial alternating current stimulation (tACS), a novel non-invasive brain stimulation approach, may provide a crucial tool to tackle these challenges. We here propose that tACS can be used to elucidate the causal role of cortical synchronization in cognition and, eventually, to enhance pathologically weakened synchrony that may underlie cognitive deficits. To accelerate such development of tACS as a treatment for cognitive deficits, we discuss studies on tACS and cognition (all performed in healthy participants) according to the Research Domain Criteria (RDoC) of the National Institute of Mental Health. PMID:25547149

  2. Alternating Current Driven Organic Light Emitting Diodes Using Lithium Fluoride Insulating Layers

    PubMed Central

    Liu, Shang-Yi; Chang, Jung-Hung; -Wen Wu, I.; Wu, Chih-I

    2014-01-01

    We demonstrate an alternating current (AC)-driven organic light emitting diodes (OLED) with lithium fluoride (LiF) insulating layers fabricated using simple thermal evaporation. Thermal evaporated LiF provides high stability and excellent capacitance for insulating layers in AC devices. The device requires a relatively low turn-on voltage of 7.1 V with maximum luminance of 87 cd/m2 obtained at 10 kHz and 15 Vrms. Ultraviolet photoemission spectroscopy and inverse photoemission spectroscopy are employed simultaneously to examine the electronic band structure of the materials in AC-driven OLED and to elucidate the operating mechanism, optical properties and electrical characteristics. The time-resolved luminance is also used to verify the device performance when driven by AC voltage. PMID:25523436

  3. Alternating current line-filter based on electrochemical capacitor utilizing template-patterned graphene.

    PubMed

    Wu, Zhenkun; Li, Liyi; Lin, Ziyin; Song, Bo; Li, Zhuo; Moon, Kyoung-Sik; Wong, Ching-Ping; Bai, Shu-Lin

    2015-01-01

    Aluminum electrolytic capacitors (AECs) are widely used for alternating current (ac) line-filtering. However, their bulky size is becoming more and more incompatible with the rapid development of portable electronics. Here we report a scalable process to fabricate miniaturized graphene-based ac line-filters on flexible substrates at room temperature. In this work, graphene oxide (GO) is reduced by patterned metal interdigits at room temperature and used directly as the electrode material. The as-fabricated device shows a phase angle of -75.4° at 120 Hz with a specific capacitance of 316 µF/cm(2) and a RC time constant of 0.35 ms. In addition, it retains 97.2% of the initial capacitance after 10000 charge/discharge cycles. These outstanding performance characteristics of our device demonstrate its promising to replace the conventional AECs for ac line filtering. PMID:26084051

  4. Microalgae harvesting and cell disruption: a preliminary evaluation of the technology electroflotation by alternating current.

    PubMed

    de Carvalho Neto, Riamburgo Gomes; do Nascimento, José Gilmar da Silva; Costa, Mayara Carantino; Lopes, Alexandre Colzi; Abdala Neto, Eliezer Fares; Filho, César Rossas Mota; Dos Santos, André Bezerra

    2014-01-01

    Some species of microalgae have high productivity and lipid content, which makes them good candidates for biodiesel production. Biomass separation and cell disruption are important steps in biodiesel production from microalgae. In this work, we explored the fundamentals of electroflotation by alternating current (EFAC) with non-consumable electrodes to simultaneously harvest microalgae and disrupt cells from mixed microalgae obtained from waste stabilization ponds. The harvesting efficiency was evaluated using chlorophyll-a and turbidity, which reached removals of 99% and 95%, respectively, during a batch time of 140 min. Cell disruption was evaluated using lipid extraction, and the best results were achieved with a batch time of 140 min, which resulted in a 14% yield. Therefore, EFAC was shown to be an attractive potential technology for simultaneous microalgal harvesting and cell disruption. PMID:25051479

  5. Alternating current line-filter based on electrochemical capacitor utilizing template-patterned graphene

    PubMed Central

    Wu, Zhenkun; Li, Liyi; Lin, Ziyin; Song, Bo; Li, Zhuo; Moon, Kyoung-Sik; Wong, Ching-Ping; Bai, Shu-Lin

    2015-01-01

    Aluminum electrolytic capacitors (AECs) are widely used for alternating current (ac) line-filtering. However, their bulky size is becoming more and more incompatible with the rapid development of portable electronics. Here we report a scalable process to fabricate miniaturized graphene-based ac line-filters on flexible substrates at room temperature. In this work, graphene oxide (GO) is reduced by patterned metal interdigits at room temperature and used directly as the electrode material. The as-fabricated device shows a phase angle of −75.4° at 120 Hz with a specific capacitance of 316 µF/cm2 and a RC time constant of 0.35 ms. In addition, it retains 97.2% of the initial capacitance after 10000 charge/discharge cycles. These outstanding performance characteristics of our device demonstrate its promising to replace the conventional AECs for ac line filtering. PMID:26084051

  6. Alternating Current Dielectrophoresis Optimization of Pt-Decorated Graphene Oxide Nanostructures for Proficient Hydrogen Gas Sensor.

    PubMed

    Wang, Jianwei; Rathi, Servin; Singh, Budhi; Lee, Inyeal; Joh, Han-Ik; Kim, Gil-Ho

    2015-07-01

    Alternating current dielectrophoresis (DEP) is an excellent technique to assemble nanoscale materials. For efficient DEP, the optimization of the key parameters like peak-to-peak voltage, applied frequency, and processing time is required for good device. In this work, we have assembled graphene oxide (GO) nanostructures mixed with platinum (Pt) nanoparticles between the micro gap electrodes for a proficient hydrogen gas sensors. The Pt-decorated GO nanostructures were well located between a pair of prepatterned Ti/Au electrodes by controlling the DEP technique with the optimized parameters and subsequently thermally reduced before sensing. The device fabricated using the DEP technique with the optimized parameters showed relatively high sensitivity (∼10%) to 200 ppm hydrogen gas at room temperature. The results indicates that the device could be used in several industry applications, such as gas storage and leak detection. PMID:26042360

  7. Magnetic phase characterization of nanocrystalline La2NiMnO6 using alternating current conductance

    NASA Astrophysics Data System (ADS)

    Chakraborty, D.; Nandi, U. N.; Jana, D.; Masud, Md G.; Giri, S.

    2015-07-01

    The signature of various disordered phases is inferred from the measurement of the real part of alternating current conductance Σ(T, f) of a nanocrystalline double perovskite La2NiMnO6. The system exhibits a paramagnetic insulating (PMI) phase at high temperatures, a ferromagnetic insulating (FMI) phase at low temperatures, and a Griffiths-like phase in the intermediate temperature range. In these three phases, Σ(T, f) shows qualitatively similar variation with frequency f. At a fixed temperature T, Σ(T, f) remains constant to its Ohmic value Σ0 up to a certain frequency, known as the onset frequency fc and increases with increasing f beyond fc. Scaled appropriately, Σ(T, f) versus f data corresponding to these three regimes fall on the same master curve indicating the universal nature of the scaling behaviour of alternating current conductance. This onset frequency fc scales with Σ0 as f c ˜ Σ0 x f with xf as the nonlinearity exponent. This exponent xf shows a gradual crossover from 1.025 ± 0.006 in FMI phase to 0.518 ± 0.07 in PMI phase in an intermediate temperature range signifying the presence of Griffiths-like phase. A simple phenomenological R-RC model consistent with the microstructural conduction mechanisms in PMI and FMI phases is developed to generate the qualitative non-Ohmic character of ac conductance, the onset frequency fc, and the nonlinearity exponent xf. Existing scaling theories with reliable models are used to analyze and compare the results of ac conductance in similar systems.

  8. Regional economic analysis of current and proposed management alternatives for Rappahannock River Valley National Wildlife Refuge

    USGS Publications Warehouse

    Koontz, Lynne; Sexton, Natalie; Donovan, Ryan

    2009-01-01

    The National Wildlife Refuge System Improvement Act of 1997 requires all units of the National Wildlife Refuge System to be managed under a Comprehensive Conservation Plan. The Comprehensive Conservation Plan must describe the desired future conditions of a refuge and provide long-range guidance and management direction to achieve refuge purposes. The Rappahannock River Valley National Wildlife Refuge (refuge) is in the process of developing a range of management goals, objectives, and strategies for the Comprehensive Conservation Plan. The Comprehensive Conservation Plan for the refuge must contain an analysis of expected effects associated with current and proposed refuge management strategies. The purpose of this study was to assess the regional economic implications associated with draft Comprehensive Conservation Plan management strategies. Special interest groups and local residents often criticize a change in refuge management, especially if there is a perceived negative impact to the local economy. Having objective data on economic impacts may show that these fears are overstated. Quite often, the extent of economic benefits a refuge provides to a local community is not fully recognized, yet at the same time the effects of negative changes is overstated. Spending associated with refuge recreational activities, such as wildlife viewing and hunting, can generate considerable tourist activity for surrounding communities. Additionally, refuge personnel typically spend considerable amounts of money purchasing supplies in local stores, repairing equipment and purchasing fuel at the local service stations, and reside and spend their salaries in the local community. For refuge Comprehensive Conservation Plan planning, a regional economic assessment provides a means of estimating how current management (no action alternative) and proposed management activities (alternatives) could affect the local economy. This type of analysis provides two critical pieces of

  9. An Analysis of Alternatives to New York City's Current Marijuana Arrest and Detention Policy.

    PubMed

    Johnson, Bruce D; Golub, Andrew; Dunlap, Eloise; Sifaneck, Stephen J

    2008-01-01

    During the 1990s, the New York Police Department (NYPD) instituted a policy of arresting and detaining people for minor offenses that occur in public as part of their quality-of-life (hereafter QOL) policing initiative. The number of NYPD arrests for smoking marijuana in public view (MPV) increased from 3,000 in 1994 to over 50,000 in 2000, and have been about 30,000 in the mid 2000s. Most of these arrestees (84%) have been minority; blacks have been 2.7 more likely and Hispanics 1.8 times more likely to be detained than whites for an MPV arrest. Minorities have been most likely to receive more severe dispositions, even controlling for demographics and prior arrest histories.This paper examines the pros and cons of the current policy; this is compared with possible alternatives including the following: arrest and issue a desk appearance ticket (DAT); issue a non-criminal citation (violation); street warnings; and tolerate public marijuana smoking. The authors recommend that the NYPD change to issuing DATs on a routine basis. Drug policy reformers might wish to further pursue changing statutes regarding smoking marijuana in public view into a violation (noncriminal) or encourage the wider use of street warnings. Any of these policy changes would help reduce the disproportionate burden on minorities associated with the current arrest and detention policy. These policies could help maintain civic norms against smoking marijuana in public. PMID:18726007

  10. An Analysis of Alternatives to New York City's Current Marijuana Arrest and Detention Policy

    PubMed Central

    Johnson, Bruce D.; Golub, Andrew; Dunlap, Eloise; Sifaneck, Stephen J.

    2008-01-01

    During the 1990s, the New York Police Department (NYPD) instituted a policy of arresting and detaining people for minor offenses that occur in public as part of their quality-of-life (hereafter QOL) policing initiative. The number of NYPD arrests for smoking marijuana in public view (MPV) increased from 3,000 in 1994 to over 50,000 in 2000, and have been about 30,000 in the mid 2000s. Most of these arrestees (84%) have been minority; blacks have been 2.7 more likely and Hispanics 1.8 times more likely to be detained than whites for an MPV arrest. Minorities have been most likely to receive more severe dispositions, even controlling for demographics and prior arrest histories. This paper examines the pros and cons of the current policy; this is compared with possible alternatives including the following: arrest and issue a desk appearance ticket (DAT); issue a non-criminal citation (violation); street warnings; and tolerate public marijuana smoking. The authors recommend that the NYPD change to issuing DATs on a routine basis. Drug policy reformers might wish to further pursue changing statutes regarding smoking marijuana in public view into a violation (noncriminal) or encourage the wider use of street warnings. Any of these policy changes would help reduce the disproportionate burden on minorities associated with the current arrest and detention policy. These policies could help maintain civic norms against smoking marijuana in public. PMID:18726007

  11. Effects of high-frequency alternating current on axonal conduction through the vagus nerve

    NASA Astrophysics Data System (ADS)

    Waataja, Jonathan J.; Tweden, Katherine S.; Honda, Christopher N.

    2011-10-01

    High-frequency alternating current (HFAC) is known to disrupt axonal conduction in peripheral nerves, and HFAC has much potential as a therapeutic approach for a number of pathological conditions. Many previous studies have utilized motor output as a bioassay of effects of HFAC on conduction through medium- to large-diameter motor axons. However, little is known about the effectiveness of HFAC on smaller, more slowly conducting nerve fibres. The present study tested whether HFAC influences axonal conduction through sub-diaphragmatic levels of the rat vagus nerve, which consists almost entirely of small calibre axons. Using an isolated nerve preparation, we tested the effects of HFAC on electrically evoked compound action potentials (CAPs). We found that delivery of charge-balanced HFAC at 5000 Hz for 1 min was effective in producing reversible blockade of axonal conduction. Both Aδ and C components of the vagus CAP were attenuated, and the degree of blockade as well as time to recovery was proportional to the amount of HFAC current delivered. The Aδ waves were more sensitive than C waves to HFAC blockade, but they required more time to recover.

  12. Effects of high-frequency alternating current on axonal conduction through the vagus nerve.

    PubMed

    Waataja, Jonathan J; Tweden, Katherine S; Honda, Christopher N

    2011-10-01

    High-frequency alternating current (HFAC) is known to disrupt axonal conduction in peripheral nerves, and HFAC has much potential as a therapeutic approach for a number of pathological conditions. Many previous studies have utilized motor output as a bioassay of effects of HFAC on conduction through medium- to large-diameter motor axons. However, little is known about the effectiveness of HFAC on smaller, more slowly conducting nerve fibres. The present study tested whether HFAC influences axonal conduction through sub-diaphragmatic levels of the rat vagus nerve, which consists almost entirely of small calibre axons. Using an isolated nerve preparation, we tested the effects of HFAC on electrically evoked compound action potentials (CAPs). We found that delivery of charge-balanced HFAC at 5000 Hz for 1 min was effective in producing reversible blockade of axonal conduction. Both Aδ and C components of the vagus CAP were attenuated, and the degree of blockade as well as time to recovery was proportional to the amount of HFAC current delivered. The Aδ waves were more sensitive than C waves to HFAC blockade, but they required more time to recover. PMID:21918293

  13. Differential thermal voltammetry for tracking of degradation in lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Wu, Billy; Yufit, Vladimir; Merla, Yu; Martinez-Botas, Ricardo F.; Brandon, Nigel P.; Offer, Gregory J.

    2015-01-01

    Monitoring of lithium-ion batteries is of critical importance in electric vehicle applications in order to manage the operational condition of the cells. Measurements on a vehicle often involve current, voltage and temperature which enable in-situ diagnostic techniques. This paper presents a novel diagnostic technique, termed differential thermal voltammetry, which is capable of monitoring the state of the battery using voltage and temperature measurements in galvanostatic operating modes. This tracks battery degradation through phase transitions, and the resulting entropic heat, occurring in the electrodes. Experiments to monitor battery degradation using the new technique are compared with a pseudo-2D cell model. Results show that the differential thermal voltammetry technique provides information comparable to that of slow rate cyclic voltammetry at shorter timescale and with load conditions easier to replicate in a vehicle.

  14. Alternating Current Stimulation for Vision Restoration after Optic Nerve Damage: A Randomized Clinical Trial

    PubMed Central

    Schittkowski, Michael P.; Antal, Andrea; Ambrus, Géza Gergely; Paulus, Walter; Dannhauer, Moritz; Michalik, Romualda; Mante, Alf; Bola, Michal; Lux, Anke; Kropf, Siegfried; Brandt, Stephan A.; Sabel, Bernhard A.

    2016-01-01

    Background Vision loss after optic neuropathy is considered irreversible. Here, repetitive transorbital alternating current stimulation (rtACS) was applied in partially blind patients with the goal of activating their residual vision. Methods We conducted a multicenter, prospective, randomized, double-blind, sham-controlled trial in an ambulatory setting with daily application of rtACS (n = 45) or sham-stimulation (n = 37) for 50 min for a duration of 10 week days. A volunteer sample of patients with optic nerve damage (mean age 59.1 yrs) was recruited. The primary outcome measure for efficacy was super-threshold visual fields with 48 hrs after the last treatment day and at 2-months follow-up. Secondary outcome measures were near-threshold visual fields, reaction time, visual acuity, and resting-state EEGs to assess changes in brain physiology. Results The rtACS-treated group had a mean improvement in visual field of 24.0% which was significantly greater than after sham-stimulation (2.5%). This improvement persisted for at least 2 months in terms of both within- and between-group comparisons. Secondary analyses revealed improvements of near-threshold visual fields in the central 5° and increased thresholds in static perimetry after rtACS and improved reaction times, but visual acuity did not change compared to shams. Visual field improvement induced by rtACS was associated with EEG power-spectra and coherence alterations in visual cortical networks which are interpreted as signs of neuromodulation. Current flow simulation indicates current in the frontal cortex, eye, and optic nerve and in the subcortical but not in the cortical regions. Conclusion rtACS treatment is a safe and effective means to partially restore vision after optic nerve damage probably by modulating brain plasticity. This class 1 evidence suggests that visual fields can be improved in a clinically meaningful way. Trial Registration ClinicalTrials.gov NCT01280877 PMID:27355577

  15. Development and Use of a Cyclic Voltammetry Simulator to Introduce Undergraduate Students to Electrochemical Simulations

    ERIC Educational Resources Information Center

    Brown, Jay H.

    2015-01-01

    Cyclic voltammetry (CV) is a popular technique for the study of electrochemical mechanisms because the method can provide useful information on the redox couple. The technique involves the application of a potential ramp on an unstirred solution while the current is monitored, and then the ramp is reversed for a return sweep. CV is sometimes…

  16. The Rise of Voltammetry: From Polarography to the Scanning Electrochemical Microscope

    ERIC Educational Resources Information Center

    Bard, Allen J.

    2007-01-01

    The drooping mercury electrode (DME) was previously used to carry out electrochemical experiments but invention of polarography technique changed this. Voltammetry with DME was given the term polarography and are used in measurement of current as a function of potential at small electrodes.

  17. Study of quinones reactions with wine nucleophiles by cyclic voltammetry.

    PubMed

    Oliveira, Carla M; Barros, António S; Ferreira, António C S; Silva, Artur M S

    2016-11-15

    Quinones are electrophilic species which can react with various nucleophiles, like wine antioxidants, such as sulfur dioxide or ascorbic acid, thiols, amino acids, and numerous polyphenols. These reactions are very important in wine aging because they mediate oxygen reactions during both production and bottle aging phases. In this work, the major challenge was to determine the interaction between ortho-quinones and wine nucleophiles (amino acids, thiols, and the antioxidants SO2 and ascorbic acid), by cyclic voltammetry. Wine-model solutions with gallic acid, caffeic acid, or (+)-catechin and nucleophilic compounds were used. To understand the effect of nucleophilic addition in wine, a white wine with the same added nucleophiles was also analysed. Cyclic voltammograms were taken with glassy carbon electrode or screen-printed carbon electrodes, respectively, for wine-model and white wines solutions, in the absence and in the presence of nucleophiles. A nucleophilic order profile related to the cathodic current intensity decrease was observed. PMID:27283600

  18. DC bias effect on alternating current electrical conductivity of poly(ethylene terephthalate)/alumina nanocomposites

    NASA Astrophysics Data System (ADS)

    Nikam, Pravin N.; Deshpande, Vineeta D.

    2016-05-01

    Polymer nanocomposites based on metal oxide (ceramic) nanoparticles are a new class of materials with unique properties and designed for various applications such as electronic device packaging, insulation, fabrication and automotive industries. Poly(ethylene terephthalate) (PET)/alumina (Al2O3) nanocomposites with filler content between 1 wt% and 5 wt% were prepared by melt compounding method using co-rotating twin screw extruder and characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and precision LCR meter techniques. The results revealed that proper uniform dispersion at lower content up to 2 wt% of nano-alumina observed by using TEM. Aggregation of nanoparticles was observed at higher content of alumina examined by using SEM and TEM. The frequency dependences of the alternating current (AC) conductivity (σAC) of PET/alumina nanocomposites on the filler content and DC bias were investigated in the frequency range of 20Hz - 1MHz. The results showed that the AC and direct current (DC) conductivity increases with increasing DC bias and nano-alumina content upto 3 wt%. It follows the Jonscher's universal power law of solids. It revealed that σAC of PET/alumina nanocomposites can be well characterized by the DC conductivity (σDC), critical frequency (ωc), critical exponent of the power law (s). Roll of DC bias potential led to an increase of DC conductivity (σDC) due to the creation of additional conducting paths with the polymer nanocomposites and percolation behavior achieved through co-continuous morphology.

  19. Transcranial alternating current stimulation increases risk-taking behavior in the balloon analog risk task.

    PubMed

    Sela, Tal; Kilim, Adi; Lavidor, Michal

    2012-01-01

    The process of evaluating risks and benefits involves a complex neural network that includes the dorsolateral prefrontal cortex (DLPFC). It has been proposed that in conflict and reward situations, theta-band (4-8 Hz) oscillatory activity in the frontal cortex may reflect an electrophysiological mechanism for coordinating neural networks monitoring behavior, as well as facilitating task-specific adaptive changes. The goal of the present study was to investigate the hypothesis that theta-band oscillatory balance between right and left frontal and prefrontal regions, with a predominance role to the right hemisphere (RH), is crucial for regulatory control during decision-making under risk. In order to explore this hypothesis, we used transcranial alternating current stimulation, a novel technique that provides the opportunity to explore the functional role of neuronal oscillatory activities and to establish a causal link between specific oscillations and functional lateralization in risky decision-making situations. For this aim, healthy participants were randomly allocated to one of three stimulation groups (LH stimulation/RH stimulation/Sham stimulation), with active AC stimulation delivered in a frequency-dependent manner (at 6.5 Hz; 1 mA peak-to-peak). During the AC stimulation, participants performed the Balloon Analog Risk Task. This experiment revealed that participants receiving LH stimulation displayed riskier decision-making style compared to sham and RH stimulation groups. However, there was no difference in decision-making behaviors between sham and RH stimulation groups. The current study extends the notion that DLPFC activity is critical for adaptive decision-making in the context of risk-taking and emphasis the role of theta-band oscillatory activity during risky decision-making situations. PMID:22347844

  20. Phase and Frequency-Dependent Effects of Transcranial Alternating Current Stimulation on Motor Cortical Excitability.

    PubMed

    Nakazono, Hisato; Ogata, Katsuya; Kuroda, Tsuyoshi; Tobimatsu, Shozo

    2016-01-01

    Transcranial alternating current stimulation (tACS) can entrain ongoing brain oscillations and modulate the motor system in a frequency-dependent manner. Recent animal studies have demonstrated that the phase of a sinusoidal current also has an important role in modulation of neuronal activity. However, the phase effects of tACS on the human motor system are largely unknown. Here, we systematically investigated the effects of tACS phase and frequency on the primary motor cortex (M1) by using motor evoked potentials (MEPs) with transcranial magnetic stimulation (TMS). First, we compared the phase effects (90°, 180°, 270° or 360°) of 10 and 20 Hz tACS on MEPs. The 20 Hz tACS significantly increased M1 excitability compared with the 10 Hz tACS at 90° phase only. Second, we studied the 90° phase effect on MEPs at different tACS frequencies (5, 10, 20 or 40 Hz). The 20 vs. 10 Hz difference was again observed, but the 90° phase in 5 and 40 Hz tACS did not influence M1 excitability. Third, the 90° phase effects of 10 and 20 Hz tACS were compared with sham stimulation. The 90° phase of 20 Hz tACS enhanced MEP amplitudes compared with sham stimulation, but there was no significant effect of 10 Hz tACS. Taken together, we assume that the differential 90° phase effects on 20 Hz and 10 Hz tACS can be attributed to the neural synchronization modulated by tACS. Our results further underline that phase and frequency are the important factors in the effects of tACS on M1 excitability. PMID:27607431

  1. Alternating current electrohydrodynamics in microsystems: Pushing biomolecules and cells around on surfaces.

    PubMed

    Vaidyanathan, Ramanathan; Dey, Shuvashis; Carrascosa, Laura G; Shiddiky, Muhammad J A; Trau, Matt

    2015-11-01

    Electrohydrodynamics (EHD) deals with the fluid motion induced by an electric field. This phenomenon originally developed in physical science, and engineering is currently experiencing a renaissance in microfluidics. Investigations by Taylor on Gilbert's theory proposed in 1600 have evolved to include multiple contributions including the promising effects arising from electric field interactions with cells and particles to influence their behaviour on electrode surfaces. Theoretical modelling of electric fields in microsystems and the ability to determine shear forces have certainly reached an advanced state. The ability to deftly manipulate microscopic fluid flow in bulk fluid and at solid/liquid interfaces has enabled the controlled assembly, coagulation, or removal of microstructures, nanostructures, cells, and molecules on surfaces. Furthermore, the ability of electrohydrodynamics to generate fluid flow using surface shear forces generated within nanometers from the surface and their application in bioassays has led to recent advancements in biomolecule, vesicle and cellular detection across different length scales. With the integration of Alternating Current Electrohydrodynamics (AC-EHD) in cellular and molecular assays proving to be highly fruitful, challenges still remain with respect to understanding the discrepancies between each of the associated ac-induced fluid flow phenomena, extending their utility towards clinical diagnostic development, and utilising them in tandem as a standard tool for disease monitoring. In this regard, this article will review the history of electrohydrodynamics, followed by some of the recent developments in the field including a new dimension of electrohydrodynamics that deals with the utilization of surface shear forces for the manipulation of biological cells or molecules on electrode surfaces. Recent advances and challenges in the use of electrohydrodynamic forces such as dielectrophoresis and ac electrosmosis for the

  2. Comparison of direct and alternating current vacuum ultraviolet lamps in atmospheric pressure photoionization.

    PubMed

    Vaikkinen, Anu; Haapala, Markus; Kersten, Hendrik; Benter, Thorsten; Kostiainen, Risto; Kauppila, Tiina J

    2012-02-01

    A direct current induced vacuum ultraviolet (dc-VUV) krypton discharge lamp and an alternating current, radio frequency (rf) induced VUV lamp that are essentially similar to lamps in commercial atmospheric pressure photoionization (APPI) ion sources were compared. The emission distributions along the diameter of the lamp exit window were measured, and they showed that the beam of the rf lamp is much wider than that of the dc lamp. Thus, the rf lamp has larger efficient ionization area, and it also emits more photons than the dc lamp. The ionization efficiencies of the lamps were compared using identical spray geometries with both lamps in microchip APPI mass spectrometry (μAPPI-MS) and desorption atmospheric pressure photoionization-mass spectrometry (DAPPI-MS). A comprehensive view on the ionization was gained by studying six different μAPPI solvent compositions, five DAPPI spray solvents, and completely solvent-free DAPPI. The observed reactant ions for each solvent composition were very similar with both lamps except for toluene, which showed a higher amount of solvent originating oxidation products with the rf lamp than with the dc lamp in μAPPI. Moreover, the same analyte ions were detected with both lamps, and thus, the ionization mechanisms with both lamps are similar. The rf lamp showed a higher ionization efficiency than the dc lamp in all experiments. The difference between the lamp ionization efficiencies was greatest when high ionization energy (IE) solvent compositions (IEs above 10 eV), i.e., hexane, methanol, and methanol/water, (1:1 v:v) were used. The higher ionization efficiency of the rf lamp is likely due to the larger area of high intensity light emission, and the resulting larger efficient ionization area and higher amount of photons emitted. These result in higher solvent reactant ion production, which in turn enables more efficient analyte ion production. PMID:22229729

  3. Atmospheric pressure chemical ionization of explosives using alternating current corona discharge ion source.

    PubMed

    Usmanov, D T; Chen, L C; Yu, Z; Yamabe, S; Sakaki, S; Hiraoka, K

    2015-04-01

    The high-sensitive detection of explosives is of great importance for social security and safety. In this work, the ion source for atmospheric pressure chemical ionization/mass spectrometry using alternating current corona discharge was newly designed for the analysis of explosives. An electromolded fine capillary with 115 µm inner diameter and 12 mm long was used for the inlet of the mass spectrometer. The flow rate of air through this capillary was 41 ml/min. Stable corona discharge could be maintained with the position of the discharge needle tip as close as 1 mm to the inlet capillary without causing the arc discharge. Explosives dissolved in 0.5 µl methanol were injected to the ion source. The limits of detection for five explosives with 50 pg or lower were achieved. In the ion/molecule reactions of trinitrotoluene (TNT), the discharge products of NOx (-) (x = 2,3), O3 and HNO3 originating from plasma-excited air were suggested to contribute to the formation of [TNT - H](-) (m/z 226), [TNT - NO](-) (m/z 197) and [TNT - NO + HNO3 ](-) (m/z 260), respectively. Formation processes of these ions were traced by density functional theory calculations. Copyright © 2015 John Wiley & Sons, Ltd. PMID:26149109

  4. Alternating current conductivity and dielectric relaxation of PANI:PVDF composites

    NASA Astrophysics Data System (ADS)

    Saïdi, Sami; Mannaî, Aymen; Bouzitoun, Mouna; Belhadj Mohamed, Abdellatif

    2014-04-01

    In this work, PANI:PVDF composites films were prepared with different PANI contents (p = 1, 2, 3, 4 and 5%). The resulting films were dried at various temperatures such as 30, 90 and 120 °C. The alternating current mechanisms and dielectric relaxation and of PANI:PVDF films were studied using complex impedance spectroscopy over a wide range of temperature (303-453 K) and a frequency range (1 kHz to 1 MHz). We found that the ac conductivity in PANI:PVDF composite is governed by correlated barrier hopping (CBH) model. In dielectric loss modulus study, two relaxation processes were identified. The first peak was associated to Maxwell Wagner-Sillas (MWS) relaxation whereas the second one which obtained at higher frequency was attributed to the αc relaxation. For PANI:PVDF film which dried at 30 °C, the MWS relaxation appears only at higher temperature. The temperature dependence of αc relaxation was suitably fitted according to Vogel Flucher Temman model whereas MWS relaxation follows Arrhenius type behavior. The effect of drying temperature on microstructure and phase crystallization of PVDF in the composites was carried out using atomic force microscopy (AFM) and Fourier transform infrared (FTIR) spectroscopy. These results were used to find a reasonable correlation between microstructure and electrical properties.

  5. Manipulating single annealed polyelectrolyte under alternating current electric fields: Collapse versus accumulation

    PubMed Central

    Wang, Shengqin; Zhu, Yingxi

    2012-01-01

    Effective manipulation and understanding of the structural and dynamic behaviors of a single polyelectrolyte (PE) under alternating current (AC) electric fields are of great scientific and technological importance because of its intimate relevance to emerging bionanotechnology. In this work, we employ fluorescence correlation spectroscopy (FCS) to study the conformational and AC-electrokinetic behaviors of a model annealed PE, poly(2-vinyl pyridine) (P2VP) under both spatially uniform and non-uniform AC fields at a single molecule level. Under spatially uniform AC-fields, we observe a gradual and continuous coil-to-globule conformational transition (CGT) of single P2VP at varied AC-frequency when a critical AC-field strength is exceeded, in contrast to the pH-induced abrupt CGT in the absence of AC-fields. On the contrary, under spatially non-uniform AC-fields, we observe field-driven net flow and accumulation of P2VP near high AC-field regions due to combined AC electro-osmosis and dielectrophoresis but surprisingly no conformational change. Thus, distinct AC-electric polarization effect on single annealed PE subject to AC-field homogeneity is suggested. PMID:22655024

  6. Eyes wide shut: Transcranial alternating current stimulation drives alpha rhythm in a state dependent manner.

    PubMed

    Ruhnau, Philipp; Neuling, Toralf; Fuscá, Marco; Herrmann, Christoph S; Demarchi, Gianpaolo; Weisz, Nathan

    2016-01-01

    Transcranial alternating current stimulation (tACS) is used to modulate brain oscillations to measure changes in cognitive function. It is only since recently that brain activity in human subjects during tACS can be investigated. The present study aims to investigate the phase relationship between the external tACS signal and concurrent brain activity. Subjects were stimulated with tACS at individual alpha frequency during eyes open and eyes closed resting states. Electrodes were placed at Cz and Oz, which should affect parieto-occipital areas most strongly. Source space magnetoencephalography (MEG) data were used to estimate phase coherence between tACS and brain activity. Phase coherence was significantly increased in areas in the occipital pole in eyes open resting state only. The lag between tACS and brain responses showed considerable inter-individual variability. In conclusion, tACS at individual alpha frequency entrains brain activity in visual cortices. Interestingly, this effect is state dependent and is clearly observed with eyes open but only to a lesser extent with eyes closed. PMID:27252047

  7. Molecular stretching of long DNA in agarose gel using alternating current electric fields.

    PubMed Central

    Kaji, Noritada; Ueda, Masanori; Baba, Yoshinobu

    2002-01-01

    We demonstrate a novel method for stretching a long DNA molecule in agarose gel with alternating current (AC) electric fields. The molecular motion of a long DNA (T4 DNA; 165.6 kb) in agarose gel was studied using fluorescence microscopy. The effects of a wide range of field frequencies, field strengths, and gel concentrations were investigated. Stretching was only observed in the AC field when a frequency of approximately 10 Hz was used. The maximal length of the stretched DNA had the longest value when a field strength of 200 to 400 V/cm was used. Stretching was not sensitive to a range of agarose gel concentrations from 0.5 to 3%. Together, these experiments indicate that the optimal conditions for stretching long DNA in an AC electric field are a frequency of 10 Hz with a field strength of 200 V/cm and a gel concentration of 1% agarose. Using these conditions, we were able to successfully stretch Saccharomyces cerevisiae chromosomal DNA molecules (225-2,200 kb). These results may aid in the development of a novel method to stretch much longer DNA, such as human chromosomal DNA, and may contribute to the analysis of a single chromosomal DNA from a single cell. PMID:11751320

  8. Alternating Current Electrophoretic Deposition of Antibacterial Bioactive Glass-Chitosan Composite Coatings

    PubMed Central

    Seuss, Sigrid; Lehmann, Maja; Boccaccini, Aldo R.

    2014-01-01

    Alternating current (AC) electrophoretic deposition (EPD) was used to produce multifunctional composite coatings combining bioactive glass (BG) particles and chitosan. BG particles of two different sizes were used, i.e., 2 μm and 20–80 nm in average diameter. The parameter optimization and characterization of the coatings was conducted by visual inspection and by adhesion strength tests. The optimized coatings were investigated in terms of their hydroxyapatite (HA) forming ability in simulated body fluid (SBF) for up to 21 days. Fourier transform infrared (FTIR) spectroscopy results showed the successful HA formation on the coatings after 21 days. The first investigations were conducted on planar stainless steel sheets. In addition, scaffolds made from a TiAl4V6 alloy were considered to show the feasibility of coating of three dimensional structures by EPD. Because both BG and chitosan are antibacterial materials, the antibacterial properties of the as-produced coatings were investigated using E. coli bacteria cells. It was shown that the BG particle size has a strong influence on the antibacterial properties of the coatings. PMID:25007822

  9. Eyes wide shut: Transcranial alternating current stimulation drives alpha rhythm in a state dependent manner

    PubMed Central

    Ruhnau, Philipp; Neuling, Toralf; Fuscá, Marco; Herrmann, Christoph S.; Demarchi, Gianpaolo; Weisz, Nathan

    2016-01-01

    Transcranial alternating current stimulation (tACS) is used to modulate brain oscillations to measure changes in cognitive function. It is only since recently that brain activity in human subjects during tACS can be investigated. The present study aims to investigate the phase relationship between the external tACS signal and concurrent brain activity. Subjects were stimulated with tACS at individual alpha frequency during eyes open and eyes closed resting states. Electrodes were placed at Cz and Oz, which should affect parieto-occipital areas most strongly. Source space magnetoencephalography (MEG) data were used to estimate phase coherence between tACS and brain activity. Phase coherence was significantly increased in areas in the occipital pole in eyes open resting state only. The lag between tACS and brain responses showed considerable inter-individual variability. In conclusion, tACS at individual alpha frequency entrains brain activity in visual cortices. Interestingly, this effect is state dependent and is clearly observed with eyes open but only to a lesser extent with eyes closed. PMID:27252047

  10. The effect of 10 Hz transcranial alternating current stimulation (tACS) on corticomuscular coherence

    PubMed Central

    Wach, Claudia; Krause, Vanessa; Moliadze, Vera; Paulus, Walter; Schnitzler, Alfons; Pollok, Bettina

    2013-01-01

    Synchronous oscillatory activity at alpha (8–12 Hz), beta (13–30 Hz), and gamma (30–90 Hz) frequencies is assumed to play a key role for motor control. Corticomuscular coherence (CMC) represents an established measure of the pyramidal system's integrity. Transcranial alternating current stimulation (tACS) offers the possibility to modulate ongoing oscillatory activity. Behaviorally, 20 Hz tACS in healthy subjects has been shown to result in movement slowing. However, the neurophysiological changes underlying these effects are not entirely understood yet. The present study aimed at ascertaining the effects of tACS at 10 and 20 Hz in healthy subjects on CMC and local power of the primary sensorimotor cortex. Neuromagnetic activity was recorded during isometric contraction before and at two time points (2–10 min and 30–38 min) after tACS of the left primary motor cortex (M1), using a 306 channel whole head magnetoencephalography (MEG) system. Additionally, electromyography (EMG) of the right extensor digitorum communis (EDC) muscle was measured. TACS was applied at 10 and 20 Hz, respectively, for 10 min at 1 mA. Sham stimulation served as control condition. The data suggest that 10 Hz tACS significantly reduced low gamma band CMC during isometric contraction. This implies that tACS does not necessarily cause effects at stimulation frequency. Rather, the findings suggest cross-frequency interplay between alpha and low gamma band activity modulating functional interaction between motor cortex and muscle. PMID:24009573

  11. Luminescence evolution from alumina ceramic surface before flashover under direct and alternating current voltage in vacuum

    NASA Astrophysics Data System (ADS)

    Su, Guo-Qiang; Wang, Yi-Bo; Song, Bai-Peng; Mu, Hai-Bao; Zhang, Guan-Jun; Li, Feng; Wang, Meng

    2016-06-01

    The luminescence evolution phenomena from alumina ceramic surface in vacuum under high voltage of direct and alternating current are reported, with the voltage covering a large range from far below to close to the flashover voltage. Its time resolved and spatial distributed behaviors are examined by a photon counting system and an electron-multiplying charge-coupled device (EMCCD) together with a digital camera, respectively. The luminescence before flashover exhibits two stages as voltage increasing, i.e., under a relative low voltage (Stage A), the luminescence is ascribed to radiative recombination of hetero-charges injected into the sample surface layer by Schottky effect; under a higher voltage (Stage B), a stable secondary electron emission process, resulting from the Fowler-Nordheim emission at the cathode triple junction (CTJ), is responsible for the luminescence. Spectrum analysis implies that inner secondary electrons within the surface layer of alumina generated during the SSEE process also participate in the luminescence of Stage B. A comprehensive interpretation of the flashover process is formulated, which might promote a better understanding of flashover issue in vacuum.

  12. 40Hz-Transcranial alternating current stimulation (tACS) selectively modulates speech perception.

    PubMed

    Rufener, Katharina S; Zaehle, Tino; Oechslin, Mathias S; Meyer, Martin

    2016-03-01

    The present study investigated the functional relevance of gamma oscillations for the processing of rapidly changing acoustic features in speech signals. For this purpose we analyzed repetition-induced perceptual learning effects in 18 healthy adult participants. The participants received either 6Hz or 40Hz tACS over the bilateral auditory cortex, while repeatedly performing a phoneme categorization task. In result, we found that 40Hz tACS led to a specific alteration in repetition-induced perceptual learning. While participants in the non-stimulated control group as well as those in the experimental group receiving 6Hz tACS considerably improved their perceptual performance, the application of 40Hz tACS selectively attenuated the repetition-induced improvement in phoneme categorization abilities. Our data provide causal evidence for a functional relevance of gamma oscillations during the perceptual learning of acoustic speech features. Moreover, we demonstrate that even less than twenty minutes of alternating current stimulation below the individual perceptual threshold is sufficient to affect speech perception. This finding is relevant in that this novel approach might have implications with respect to impaired speech processing in dyslexics and older adults. PMID:26779822

  13. Application of broadband alternating current magnetic susceptibility to the characterization of magnetic nanoparticles in natural materials

    NASA Astrophysics Data System (ADS)

    Kodama, Kazuto

    2013-01-01

    A new method is proposed for characterizing magnetic particles by measuring low-field alternating current magnetic susceptibility at a number of frequency steps spanning four orders of magnitude, from 125 Hz to 512 kHz. This method was tested using natural samples with various grain size distributions, including basalt (Kilauea, Hawaii), loess and paleosol (Luochuan, China), tuff (Yucca Mountain, Nevada), granite (Minnesota Valley, Minnesota), and andesite (Sakurajima, Japan). The resulting frequency spectrum of magnetic susceptibility (FSMS) of the basalt, loess/paleosol, and tuff decreases with increasing frequency, but at different rates of decrease. The FSMS of the basalt is characterized by a monotonic decrease with increasing frequency over the entire range. The FSMS of the loess/paleosol and the tuff decreases more markedly than that of the basalt, which agrees with previous results showing that superparamagnetic particles are dominant in such material. Quantitative estimates using FSMSs allow reconstruction of characteristic grain size distributions and clearly identify differences in the distribution of superparamagnetic particles. The multidomain granite sample has no distinct frequency dependence, which is probably due to the smooth displacement of domain walls in the presence of the external field. In contrast, the FSMSs of the andesite samples exhibit maxima over a limited frequency range, between 16 and 128 kHz. This behavior, together with low-temperature measurements, can be accounted for by magnetic resonance of domain walls in the multidomain phenocrysts.

  14. Demagnetization treatment of remanent composite microspheres studied by alternating current susceptibility measurements.

    PubMed

    van Berkum, Susanne; Erné, Ben H

    2013-01-01

    The magnetic remanence of silica microspheres with a low concentration of embedded cobalt ferrite nanoparticles is studied after demagnetization and remagnetization treatments. When the microspheres are dispersed in a liquid, alternating current (AC) magnetic susceptibility spectra reveal a constant characteristic frequency, corresponding to the rotational diffusion of the microparticles; this depends only on particle size and liquid viscosity, making the particles suitable as a rheological probe and indicating that interactions between the microspheres are weak. On the macroscopic scale, a sample with the dry microparticles is magnetically remanent after treatment in a saturating field, and after a demagnetization treatment, the remanence goes down to zero. The AC susceptibility of a liquid dispersion, however, characterizes the remanence on the scale of the individual microparticles, which does not become zero after demagnetization. The reason is that an individual microparticle contains only a relatively small number of magnetic units, so that even if they can be reoriented magnetically at random, the average vector sum of the nanoparticle dipoles is not negligible on the scale of the microparticle. In contrast, on the macroscopic scale, the demagnetization procedure randomizes the orientations of a macroscopic number of magnetic units, resulting in a remanent magnetization that is negligible compared to the saturation magnetization of the entire sample. PMID:24009021

  15. Spatially variant red blood cell crenation in alternating current non-uniform fieldsa

    PubMed Central

    An, Ran; Wipf, David O.; Minerick, Adrienne R.

    2014-01-01

    Alternating-current (AC) electrokinetics involve the movement and behaviors of particles or cells. Many applications, including dielectrophoretic manipulations, are dependent upon charge interactions between the cell or particle and the surrounding medium. Medium concentrations are traditionally treated as spatially uniform in both theoretical models and experiments. Human red blood cells (RBCs) are observed to crenate, or shrink due to changing osmotic pressure, over 10 min experiments in non-uniform AC electric fields. Cell crenation magnitude is examined as functions of frequency from 250 kHz to 1 MHz and potential from 10 Vpp to 17.5 Vpp over a 100 μm perpendicular electrode gap. Experimental results show higher peak to peak potential and lower frequency lead to greater cell volume crenation up to a maximum volume loss of 20%. A series of experiments are conducted to elucidate the physical mechanisms behind the red blood cell crenation. Non-uniform and uniform electrode systems as well as high and low ion concentration experiments are compared and illustrate that AC electroporation, system temperature, rapid temperature changes, medium pH, electrode reactions, and convection do not account for the crenation behaviors observed. AC electroosmotic was found to be negligible at these conditions and AC electrothermal fluid flows were found to reduce RBC crenation behaviors. These cell deformations were attributed to medium hypertonicity induced by ion concentration gradients in the spatially nonuniform AC electric fields. PMID:24753734

  16. Alternating current electrohydrodynamics induced nanoshearing and fluid micromixing for specific capture of cancer cells.

    PubMed

    Vaidyanathan, Ramanathan; Rauf, Sakandar; Dray, Eloïse; Shiddiky, Muhammad J A; Trau, Matt

    2014-03-24

    We report a new tuneable alternating current (ac) electrohydrodynamics (ac-EHD) force referred to as “nanoshearing” which involves fluid flow generated within a few nanometers of an electrode surface. This force can be externally tuned via manipulating the applied ac-EHD field strength. The ability to manipulate ac-EHD induced forces and concomitant fluid micromixing can enhance fluid transport within the capture domain of the channel (e.g., transport of analytes and hence increase target–sensor interactions). This also provides a new capability to preferentially select strongly bound analytes over nonspecifically bound cells and molecules. To demonstrate the utility and versatility of nanoshearing phenomenon to specifically capture cancer cells, we present proof-of-concept data in lysed blood using two microfluidic devices containing a long array of asymmetric planar electrode pairs. Under the optimal experimental conditions, we achieved high capture efficiency (e.g., approximately 90%; %RSD=2, n=3) with a 10-fold reduction in nonspecific adsorption of non-target cells for the detection of whole cells expressing Human Epidermal Growth Factor Receptor 2 (HER2). We believe that our ac-EHD devices and the use of tuneable nanoshearing phenomenon may find relevance in a wide variety of biological and medical applications. PMID:24677444

  17. Rapid immunohistochemistry based on alternating current electric field for intraoperative diagnosis of brain tumors.

    PubMed

    Tanino, Mishie; Sasajima, Toshio; Nanjo, Hiroshi; Akesaka, Shiori; Kagaya, Masami; Kimura, Taichi; Ishida, Yusuke; Oda, Masaya; Takahashi, Masataka; Sugawara, Taku; Yoshioka, Toshiaki; Nishihara, Hiroshi; Akagami, Yoichi; Goto, Akiteru; Minamiya, Yoshihiro; Tanaka, Shinya

    2015-01-01

    Rapid immunohistochemistry (R-IHC) can contribute to the intraoperative diagnosis of central nervous system (CNS) tumors. We have recently developed a new IHC method based on an alternating current electric field to facilitate the antigen-antibody reaction. To ensure the requirement of R-IHC for intraoperative diagnosis, 183 cases of CNS tumors were reviewed regarding the accuracy rate of diagnosis without R-IHC. The diagnostic accuracy was 90.7 % (166/183 cases) [corrected] in which definitive diagnoses were not provided in 17 cases because of the failure of glioma grading and differential diagnosis of lymphoma and glioma. To establish the clinicopathological application, R-IHC for frozen specimens was compared with standard IHC for permanent specimens. 33 gliomas were analyzed, and the Ki-67/MIB-1 indices of frozen specimens by R-IHC were consistent with the grade and statistically correlated with those of permanent specimens. Thus, R-IHC provided supportive information to determine the grade of glioma. For discrimination between glioma and lymphoma, R-IHC was able to provide clear results of CD20 and Ki-67/MIB-1 in four frozen specimens of CNS lymphoma as well as standard IHC. We conclude that the R-IHC for frozen specimens can provide important information for intraoperative diagnosis of CNS tumors. PMID:24807101

  18. Detecting exosomes specifically: a multiplexed device based on alternating current electrohydrodynamic induced nanoshearing.

    PubMed

    Vaidyanathan, Ramanathan; Naghibosadat, Maedeh; Rauf, Sakandar; Korbie, Darren; Carrascosa, Laura G; Shiddiky, Muhammad J A; Trau, Matt

    2014-11-18

    Exosomes show promise as noninvasive biomarkers for cancer, but their effective capture and specific detection is a significant challenge. Herein, we report a multiplexed microfluidic device for highly specific capture and detection of multiple exosome targets using a tunable alternating current electrohydrodynamic (ac-EHD) methodology, referred to as nanoshearing. In our system, electrical body forces generated by ac-EHD act within nanometers of an electrode surface (i.e., within the electrical layer) to generate nanoscaled fluid flow that enhances the specificity of capture and also reduce nonspecific adsorption of weakly bound molecules from the electrode surface. This approach demonstrates the analysis of exosomes derived from cells expressing human epidermal growth factor receptor 2 (HER2) and prostate specific antigen (PSA), and is also capable of specifically isolating exosomes from breast cancer patient samples. The device also exhibited a 3-fold enhancement in detection sensitivity in comparison to hydrodynamic flow based assays (LOD 2760 exosomes/μL for ac-EHD vs LOD 8300 exosomes/μL for hydrodynamic flow; (n = 3)). We propose this approach can potentially have relevance as a simple and rapid quantification tool to analyze exosome targets in biological applications. PMID:25324037

  19. Bi-frontal transcranial alternating current stimulation in the ripple range reduced overnight forgetting

    PubMed Central

    Ambrus, Géza Gergely; Pisoni, Alberto; Primaßin, Annika; Turi, Zsolt; Paulus, Walter; Antal, Andrea

    2015-01-01

    High frequency oscillations in the hippocampal structures recorded during sleep have been proved to be essential for long-term episodic memory consolidation in both animals and in humans. The aim of this study was to test if transcranial Alternating Current Stimulation (tACS) of the dorsolateral prefrontal cortex (DLPFC) in the hippocampal ripple range, applied bi-frontally during encoding, could modulate declarative memory performance, measured immediately after encoding, and after a night's sleep. An associative word-pair learning test was used. During an evening encoding phase, participants received 1 mA 140 Hz tACS or sham stimulation over both DLPFCs for 10 min while being presented twice with a list of word-pairs. Cued recall performance was investigated 10 min after training and the morning following the training session. Forgetting from evening to morning was observed in the sham condition, but not in the 140 Hz stimulation condition. 140 Hz tACS during encoding may have an effect on the consolidation of declarative material. PMID:26441544

  20. Effects of Transcranial Alternating Current Stimulation on Cognitive Functions in Healthy Young and Older Adults.

    PubMed

    Antonenko, Daria; Faxel, Miriam; Grittner, Ulrike; Lavidor, Michal; Flöel, Agnes

    2016-01-01

    Recently, transcranial alternating current stimulation (tACS) has emerged as a tool to enhance human cognitive processes. Here, we provide a brief summary of the rationale behind tACS-induced effects on task-relevant brain oscillations and associated cognitive functions and review previous studies in young subjects that have applied tACS in cognitive paradigms. Additionally, we present pilot data where we administered theta-tACS (6 Hz) over the temporoparietal cortex and a supraorbital reference for 20 min during implicit language learning in healthy young (mean/SD age: 22/2) and older (mean/SD age: 66/4) adults, in a sham-controlled crossover design. Linear mixed models revealed significantly increased retrieval accuracy following tACS-accompanied associative learning, after controlling for session order and learning success. These data provide the first implementation of tACS during cognitive performance in older adults and support recent studies suggesting that tACS in the theta frequency range may serve as a tool to enhance cognition, possibly through direct modulation of task-relevant brain oscillations. So far, studies have been heterogeneous in their designs, leaving a number of issues to be addressed in future research, including the setup of electrodes and optimal stimulation frequencies to be employed, as well as the interaction with age and underlying brain pathologies in specific patient populations. PMID:27298740

  1. Effects of Transcranial Alternating Current Stimulation on Cognitive Functions in Healthy Young and Older Adults

    PubMed Central

    Antonenko, Daria; Faxel, Miriam; Grittner, Ulrike; Lavidor, Michal; Flöel, Agnes

    2016-01-01

    Recently, transcranial alternating current stimulation (tACS) has emerged as a tool to enhance human cognitive processes. Here, we provide a brief summary of the rationale behind tACS-induced effects on task-relevant brain oscillations and associated cognitive functions and review previous studies in young subjects that have applied tACS in cognitive paradigms. Additionally, we present pilot data where we administered theta-tACS (6 Hz) over the temporoparietal cortex and a supraorbital reference for 20 min during implicit language learning in healthy young (mean/SD age: 22/2) and older (mean/SD age: 66/4) adults, in a sham-controlled crossover design. Linear mixed models revealed significantly increased retrieval accuracy following tACS-accompanied associative learning, after controlling for session order and learning success. These data provide the first implementation of tACS during cognitive performance in older adults and support recent studies suggesting that tACS in the theta frequency range may serve as a tool to enhance cognition, possibly through direct modulation of task-relevant brain oscillations. So far, studies have been heterogeneous in their designs, leaving a number of issues to be addressed in future research, including the setup of electrodes and optimal stimulation frequencies to be employed, as well as the interaction with age and underlying brain pathologies in specific patient populations. PMID:27298740

  2. Friends, not foes: Magnetoencephalography as a tool to uncover brain dynamics during transcranial alternating current stimulation

    PubMed Central

    Neuling, Toralf; Ruhnau, Philipp; Fuscà, Marco; Demarchi, Gianpaolo; Herrmann, Christoph S.; Weisz, Nathan

    2015-01-01

    Brain oscillations are supposedly crucial for normal cognitive functioning and alterations are associated with cognitive dysfunctions. To demonstrate their causal role on behavior, entrainment approaches in particular aim at driving endogenous oscillations via rhythmic stimulation. Within this context, transcranial electrical stimulation, especially transcranial alternating current stimulation (tACS), has received renewed attention. This is likely due to the possibility of defining oscillatory stimulation properties precisely. Also, measurements comparing pre-tACS with post-tACS electroencephalography (EEG) have shown impressive modulations. However, the period during tACS has remained a blackbox until now, due to the enormous stimulation artifact. By means of application of beamforming to magnetoencephalography (MEG) data, we successfully recovered modulations of the amplitude of brain oscillations during weak and strong tACS. Additionally, we demonstrate that also evoked responses to visual and auditory stimuli can be recovered during tACS. The main contribution of the present study is to provide critical evidence that during ongoing tACS, subtle modulations of oscillatory brain activity can be reconstructed even at the stimulation frequency. Future tACS experiments will be able to deliver direct physiological insights in order to further the understanding of the contribution of brain oscillations to cognition and behavior. PMID:26080310

  3. Phosphor-free, white-light LED under alternating-current operation.

    PubMed

    Yao, Yu-Feng; Chen, Hao-Tsung; Su, Chia-Ying; Hsieh, Chieh; Lin, Chun-Han; Kiang, Yean-Woei; Yang, C C

    2014-11-15

    A light-emitting diode structure, consisting of a p-GaN layer, a CdZnO/ZnO quantum-well (QW) structure, a high-temperature-grown ZnO layer, and a GaZnO layer, is fabricated. Under forward bias, the device effectively emits green-yellow light, from the QW structure, at the rim of device mesa. Under reverse bias, electrons in the valence band of the p-GaN layer move into the conduction band of the GaZnO layer, through a QW-state-assisted tunneling process, to recombine with the injected holes in the GaZnO layer, for emitting yellow-red and shallow ultraviolet light over the entire mesa area. Also, carrier recombination in the p-GaN layer produces blue light. By properly designing the thickness of the high-temperature grown ZnO layer, the emission intensity under forward bias can be controlled such that, under alternating-current operation at 60 Hz, the spatial and spectral mixtures of the emitted lights of complementary colors, under forward and reverse biases, result in white light generation based on persistence of vision. PMID:25490471

  4. Demagnetization Treatment of Remanent Composite Microspheres Studied by Alternating Current Susceptibility Measurements

    PubMed Central

    van Berkum, Susanne; Erné, Ben H.

    2013-01-01

    The magnetic remanence of silica microspheres with a low concentration of embedded cobalt ferrite nanoparticles is studied after demagnetization and remagnetization treatments. When the microspheres are dispersed in a liquid, alternating current (AC) magnetic susceptibility spectra reveal a constant characteristic frequency, corresponding to the rotational diffusion of the microparticles; this depends only on particle size and liquid viscosity, making the particles suitable as a rheological probe and indicating that interactions between the microspheres are weak. On the macroscopic scale, a sample with the dry microparticles is magnetically remanent after treatment in a saturating field, and after a demagnetization treatment, the remanence goes down to zero. The AC susceptibility of a liquid dispersion, however, characterizes the remanence on the scale of the individual microparticles, which does not become zero after demagnetization. The reason is that an individual microparticle contains only a relatively small number of magnetic units, so that even if they can be reoriented magnetically at random, the average vector sum of the nanoparticle dipoles is not negligible on the scale of the microparticle. In contrast, on the macroscopic scale, the demagnetization procedure randomizes the orientations of a macroscopic number of magnetic units, resulting in a remanent magnetization that is negligible compared to the saturation magnetization of the entire sample. PMID:24009021

  5. Alternating current surface photovoltage in thermally oxidized chromium-contaminated n-type silicon wafers

    NASA Astrophysics Data System (ADS)

    Shimizu, Hirofumi; Nagase, Shintarou; Ikeda, Masanori

    2011-09-01

    We investigated a variation of frequency-dependent alternating current (AC) surface photovoltages (SPVs) in thermally oxidized, chromium-contaminated, n-type silicon (Si) wafers. As previously reported, immediately after rinsing in Cr-contaminated solution, a Cr(OH)3-Si contact causes a Schottky-barrier-type AC SPV on n-type Si. Upon oxidation at 373 K for 10 min, the Schottky barrier collapses and, with further oxidation, a metal-induced negative oxide charge, due to atomic bridging of (CrOSi)- and/or CrO2- networks, definitely grows over time in SiO2. For samples oxidized at temperatures between 823 and 1023 K for 30 min, the observed AC SPV gives evidence that the metal-induced negative oxide charge causes a strongly inverted state of the Si surface. At oxidation temperatures higher than 1023 K and /or for an oxidation time longer than 60 min, the level height of the AC SPV is reduced, implying that the strongly inverted state changes into a less depleted state, whilst, finally, the AC SPV disappears. In this case, the collapse of the (CrOSi)- and/or CrO2- networks is anticipated, with a possible change into Cr2O3. The existence of the (CrOSi)- and/or CrO2- networks has also been confirmed in p-type Si wafers.

  6. A simple separation method with a microfluidic channel based on alternating current potential modulation.

    PubMed

    Noh, Hui-Bog; Chandra, Pranjal; Kim, You-Jeong; Shim, Yoon-Bo

    2012-11-20

    A simple separation and detection system based on an electrochemical potential modulated microchannel (EPMM) device was developed for the first time. The application of alternating current (AC) potential to the microfluidic separation channel walls, which were composed of screen printed carbon electrodes, resulted in the oscillation and fluctuation of analytes and in the formation of a perfect flat flow front. These events resulted in an increase in the effective concentration and in the fine separation of samples. The performance of the EPMM device was examined through the analysis of endocrine disruptors (EDs) and heavy metal ions (HMIs) as model compounds. The analytical parameters that affected the separation and detection of EDs and HMIs were studied in terms of AC amplitude, AC frequency, flow rate, buffer concentration, pH, detection potential, and temperature. The separation efficiency was evaluated through measurements of the theoretical plate number (N), the retention time, and the half-peak width. Linear calibration plots for the detection of EDs and HMIs were obtained between 0.15 and 250.0 nM (detection limit 86.4 ± 2.9 pM) and between 0.01 and 10.0 nM (detection limit 9.5 ± 0.3 pM), respectively. The new device was successfully demonstrated with authentic and real samples. PMID:23075295

  7. Flicker-Driven Responses in Visual Cortex Change during Matched-Frequency Transcranial Alternating Current Stimulation.

    PubMed

    Ruhnau, Philipp; Keitel, Christian; Lithari, Chrysa; Weisz, Nathan; Neuling, Toralf

    2016-01-01

    We tested a novel combination of two neuro-stimulation techniques, transcranial alternating current stimulation (tACS) and frequency tagging, that promises powerful paradigms to study the causal role of rhythmic brain activity in perception and cognition. Participants viewed a stimulus flickering at 7 or 11 Hz that elicited periodic brain activity, termed steady-state responses (SSRs), at the same temporal frequency and its higher order harmonics. Further, they received simultaneous tACS at 7 or 11 Hz that either matched or differed from the flicker frequency. Sham tACS served as a control condition. Recent advances in reconstructing cortical sources of oscillatory activity allowed us to measure SSRs during concurrent tACS, which is known to impose strong artifacts in magnetoencephalographic (MEG) recordings. For the first time, we were thus able to demonstrate immediate effects of tACS on SSR-indexed early visual processing. Our data suggest that tACS effects are largely frequency-specific and reveal a characteristic pattern of differential influences on the harmonic constituents of SSRs. PMID:27199707

  8. Flicker-Driven Responses in Visual Cortex Change during Matched-Frequency Transcranial Alternating Current Stimulation

    PubMed Central

    Ruhnau, Philipp; Keitel, Christian; Lithari, Chrysa; Weisz, Nathan; Neuling, Toralf

    2016-01-01

    We tested a novel combination of two neuro-stimulation techniques, transcranial alternating current stimulation (tACS) and frequency tagging, that promises powerful paradigms to study the causal role of rhythmic brain activity in perception and cognition. Participants viewed a stimulus flickering at 7 or 11 Hz that elicited periodic brain activity, termed steady-state responses (SSRs), at the same temporal frequency and its higher order harmonics. Further, they received simultaneous tACS at 7 or 11 Hz that either matched or differed from the flicker frequency. Sham tACS served as a control condition. Recent advances in reconstructing cortical sources of oscillatory activity allowed us to measure SSRs during concurrent tACS, which is known to impose strong artifacts in magnetoencephalographic (MEG) recordings. For the first time, we were thus able to demonstrate immediate effects of tACS on SSR-indexed early visual processing. Our data suggest that tACS effects are largely frequency-specific and reveal a characteristic pattern of differential influences on the harmonic constituents of SSRs. PMID:27199707

  9. The effects of theta transcranial alternating current stimulation (tACS) on fluid intelligence.

    PubMed

    Pahor, Anja; Jaušovec, Norbert

    2014-09-01

    The objective of the study was to explore the influence of transcranial alternating current stimulation (tACS) on resting brain activity and on measures of fluid intelligence. Theta tACS was applied to the left parietal and left frontal brain areas of healthy participants after which resting electroencephalogram (EEG) data was recorded. Following sham/active stimulation, the participants solved two tests of fluid intelligence while their EEG was recorded. The results showed that active theta tACS affected spectral power in theta and alpha frequency bands. In addition, active theta tACS improved performance on tests of fluid intelligence. This influence was more pronounced in the group of participants that received stimulation to the left parietal area than in the group of participants that received stimulation to the left frontal area. Left parietal tACS increased performance on the difficult test items of both tests (RAPM and PF&C) whereas left frontal tACS increased performance only on the easy test items of one test (RAPM). The observed behavioral tACS influences were also accompanied by changes in neuroelectric activity. The behavioral and neuroelectric data tentatively support the P-FIT neurobiological model of intelligence. PMID:24998643

  10. From amusic to musical?--Improving pitch memory in congenital amusia with transcranial alternating current stimulation.

    PubMed

    Schaal, Nora K; Pfeifer, Jasmin; Krause, Vanessa; Pollok, Bettina

    2015-11-01

    Brain imaging studies highlighted structural differences in congenital amusia, a life-long perceptual disorder that is associated with pitch perception and pitch memory deficits. A functional anomaly characterized by decreased low gamma oscillations (30-40 Hz range) in the right dorsolateral prefrontal cortex (DLPFC) during pitch memory has been revealed recently. Thus, the present study investigates whether applying transcranial alternating current stimulation (tACS) at 35 Hz to the right DLPFC would improve pitch memory. Nine amusics took part in two tACS sessions (either 35 Hz or 90 Hz) and completed a pitch and visual memory task before and during stimulation. 35 Hz stimulation facilitated pitch memory significantly. No modulation effects were found with 90 Hz stimulation or on the visual task. While amusics showed a selective impairment of pitch memory before stimulation, the performance during 35 Hz stimulation was not significantly different to healthy controls anymore. Taken together, the study shows that modulating the right DLPFC with 35 Hz tACS in congenital amusia selectively improves pitch memory performance supporting the hypothesis that decreased gamma oscillations within the DLPFC are causally involved in disturbed pitch memory and highlight the potential use of tACS to interact with cognitive processes. PMID:26254878

  11. Alternating-current thin-film electroluminescent device fabrication and characterization

    NASA Astrophysics Data System (ADS)

    Baukol, Beau Alexander

    The goals of this thesis are to provide an improved understanding of luminescent materials, and to exploit their properties to achieve bright, efficient, and manufacturable red, green, and blue (RGB) phosphors for use in full-color flat-panel displays. A high-luminance, high-efficiency, full-color alternating-current thin-film electroluminescent (ACTFEL) phosphor system, capable of being processed at temperatures below the glass substrate melting temperature, has been developed through the use of source layer diffusion doping (SLDD) of atomic layer epitaxy (ALE) deposited SrS thin-films. The development of ACTFEL phosphors has also been advanced through the exploration of alternate phosphor materials, such as SrxCa 1-xS:Eu,Cu and (Ba.Zn)S:Mn. This thesis offers new insight into the nature of ACTFEL device operation, especially SrS:Cu ACTFEL devices. A comparison of "EL" thermal quenching trends for evaporated ZnS:Mn, ALE ZnS:Mn, ALE SrS:Ce, sputtered SrS:Cu,Ag, and sputtered multi-layer SrS:Cu,Ag/SrS:Ce ACTFEL devices is presented. ZnS:Mn ACTFEL devices exhibit the least amount of EL thermal quenching, which is attributed to non-radiative recombination. SrS:Cu and SrS:Cu,Ag ACTFEL devices possess the greatest amount of thermal quenching, which is primarily EL thermal quenching. The extent of EL thermal quenching is significantly reduced in a multi-layer SrS:Cu,Ag/SrS:Ce ACTFEL device, compared to that of a single-layer SrS:Cu or SrS:Cu,Ag ACTFEL device. The operation of SrS:Cu is examined as a function of temperature; the space charge density is found to increase with temperature up to ˜250 K with an activation energy of 0.02 eV. The space charge density in SrS:Cu ACTFEL devices is estimated as ˜1.8 x 1016, which yields estimates of the cathode phosphor field and the interfacial trap depth of ˜1.3 MV/cm and ˜0.73 eV, respectively.

  12. Fish Alternatives in Environmental Risk Assessment: Overview of the Current Landscape

    EPA Science Inventory

    The need for alternative testing strategies has recently expanded into the realm of environmental risk assessment leading to the development of new alternatives to standard aquatic vertebrate testing such as the OECD 203 acute fish toxicity test. The fish embryo test (FET) is one...

  13. Monitoring the Escape of DNA from a Nanopore Using an Alternating Current Signal

    PubMed Central

    Lathrop, Daniel K.; Ervin, Eric N.; Barrall, Geoffrey A.; Keehan, Michael G.; Kawano, Ryuji; Krupka, Michael A.; White, Henry S.; Hibbs, Andrew H.

    2010-01-01

    We present the use of an alternating current (AC) signal as a means to monitor the conductance of an α-hemolysin (αHL) pore as a DNA hairpin with a polydeoxyadenosine tail is driven into and released from the pore. Specifically, a 12 base pair DNA hairpin attached to a 50-nucleotide poly-A tail (HP-A50) is threaded into an αHL channel using a DC driving voltage. Once the HP-A50 molecule is trapped within the αHL channel, the DC driving voltage is turned off and the conductance of the channel is monitored using an AC voltage. The escape time, defined as the time it takes the HP-A50 molecule to transport out of the αHL channel, is then measured. This escape time has been monitored as a function of AC amplitude (20 to 250 mVac), AC frequency (60–200 kHz), DC drive voltage (0 to 100 mVdc), and temperature (−10 to 20 °C), in order to determine their effect on the predominantly diffusive motion of the DNA through the nanopore. The applied AC voltage used to monitor the conductance of the nanopore has been found to play a significant role in the DNA/nanopore interaction. The experimental results are described by a one-dimensional asymmetric periodic potential model that includes the influence of the AC voltage. An activation enthalpy barrier of 1.74 × 10−19 J and a periodic potential asymmetry parameter of 0.575 are obtained for the diffusion at zero electrical bias of a single nucleotide through αHL. PMID:20099878

  14. Improvement of immunoassay detection system by using alternating current magnetic susceptibility.

    PubMed

    Kawabata, R; Mizoguchi, T; Kandori, A

    2016-03-01

    A major goal with this research was to develop a low-cost and highly sensitive immunoassay detection system by using alternating current (AC) magnetic susceptibility. We fabricated an improved prototype of our previously developed immunoassay detection system and evaluated its performance. The prototype continuously moved sample containers by using a magnetically shielded brushless motor, which passes between two anisotropic magneto resistance (AMR) sensors. These sensors detected the magnetic signal in the direction where each sample container passed them. We used the differential signal obtained from each AMR sensor's output to improve the signal-to-noise ratio (SNR) of the magnetic signal measurement. Biotin-conjugated polymer beads with avidin-coated magnetic particles were prepared to examine the calibration curve, which represents the relation between AC magnetic susceptibility change and polymer-bead concentration. For the calibration curve measurement, we, respectively, measured the magnetic signal caused by the magnetic particles by using each AMR sensor installed near the upper or lower part in the lateral position of the passing sample containers. As a result, the SNR of the prototype was 4.5 times better than that of our previous system. Moreover, the data obtained from each AMR sensor installed near the upper part in the lateral position of the passing sample containers exhibited an accurate calibration curve that represented good correlation between AC magnetic susceptibility change and polymer-bead concentration. The conclusion drawn from these findings is that our improved immunoassay detection system will enable a low-cost and highly sensitive immunoassay. PMID:27036824

  15. Improvement of immunoassay detection system by using alternating current magnetic susceptibility

    NASA Astrophysics Data System (ADS)

    Kawabata, R.; Mizoguchi, T.; Kandori, A.

    2016-03-01

    A major goal with this research was to develop a low-cost and highly sensitive immunoassay detection system by using alternating current (AC) magnetic susceptibility. We fabricated an improved prototype of our previously developed immunoassay detection system and evaluated its performance. The prototype continuously moved sample containers by using a magnetically shielded brushless motor, which passes between two anisotropic magneto resistance (AMR) sensors. These sensors detected the magnetic signal in the direction where each sample container passed them. We used the differential signal obtained from each AMR sensor's output to improve the signal-to-noise ratio (SNR) of the magnetic signal measurement. Biotin-conjugated polymer beads with avidin-coated magnetic particles were prepared to examine the calibration curve, which represents the relation between AC magnetic susceptibility change and polymer-bead concentration. For the calibration curve measurement, we, respectively, measured the magnetic signal caused by the magnetic particles by using each AMR sensor installed near the upper or lower part in the lateral position of the passing sample containers. As a result, the SNR of the prototype was 4.5 times better than that of our previous system. Moreover, the data obtained from each AMR sensor installed near the upper part in the lateral position of the passing sample containers exhibited an accurate calibration curve that represented good correlation between AC magnetic susceptibility change and polymer-bead concentration. The conclusion drawn from these findings is that our improved immunoassay detection system will enable a low-cost and highly sensitive immunoassay.

  16. Combined transcranial alternating current stimulation and continuous theta burst stimulation: a novel approach for neuroplasticity induction.

    PubMed

    Goldsworthy, Mitchell R; Vallence, Ann-Maree; Yang, Ruiting; Pitcher, Julia B; Ridding, Michael C

    2016-02-01

    Non-invasive brain stimulation can induce functionally relevant plasticity in the human cortex, making it potentially useful as a therapeutic tool. However, the induced changes are highly variable between individuals, potentially limiting research and clinical utility. One factor that might contribute to this variability is the level of cortical inhibition at the time of stimulation. The alpha rhythm (~ 8-13 Hz) recorded with electroencephalography (EEG) is thought to reflect pulsatile cortical inhibition; therefore, targeting non-invasive brain stimulation to particular phases of the alpha rhythm may provide an approach to enhance plasticity induction. Transcranial alternating current stimulation (tACS) has been shown to entrain cortical oscillations in a frequency-specific manner. We investigated whether the neuroplastic response to continuous theta burst stimulation (cTBS) was enhanced by timing bursts of stimuli to the peak or the trough of a tACS-imposed alpha rhythm. While motor evoked potentials (MEPs) were unaffected when cTBS was applied in-phase with the peak of the tACS-imposed oscillation, MEP depression was enhanced when cTBS was applied in-phase with the trough. This enhanced MEP depression was dependent on the individual peak frequency of the endogenous alpha rhythm recorded with EEG prior to stimulation, and was strongest in those participants classified as non-responders to standard cTBS. These findings suggest that tACS may be used in combination with cTBS to enhance the plasticity response. Furthermore, the peak frequency of endogenous alpha, as measured with EEG, may be used as a simple marker to pre-select those individuals likely to benefit from this approach. PMID:26663460

  17. Concurrent Electroencephalography Recording During Transcranial Alternating Current Stimulation (tACS)

    PubMed Central

    Fehér, Kristoffer D.; Morishima, Yosuke

    2016-01-01

    Oscillatory brain activities are considered to reflect the basis of rhythmic changes in transmission efficacy across brain networks and are assumed to integrate cognitive neural processes. Transcranial alternating current stimulation (tACS) holds the promise to elucidate the causal link between specific frequencies of oscillatory brain activity and cognitive processes. Simultaneous electroencephalography (EEG) recording during tACS would offer an opportunity to directly explore immediate neurophysiological effects of tACS. However, it is not trivial to measure EEG signals during tACS, as tACS creates a huge artifact in EEG data. Here we explain how to set up concurrent tACS-EEG experiments. Two necessary considerations for successful EEG recording while applying tACS are highlighted. First, bridging of the tACS and EEG electrodes via leaking EEG gel immediately saturates the EEG amplifier. To avoid bridging via gel, the viscosity of the EEG gel is the most important parameter. The EEG gel must be viscous to avoid bridging, but at the same time sufficiently fluid to create contact between the tACS electrode and the scalp. Second, due to the large amplitude of the tACS artifact, it is important to consider using an EEG system with a high resolution analog-to-digital (A/D) converter. In particular, the magnitude of the tACS artifact can exceed 100 mV at the vicinity of a stimulation electrode when 1 mA tACS is applied. The resolution of the A/D converter is of importance to measure good quality EEG data from the vicinity of the stimulation site. By following these guidelines for the procedures and technical considerations, successful concurrent EEG recording during tACS will be realized. PMID:26862814

  18. Concurrent Electroencephalography Recording During Transcranial Alternating Current Stimulation (tACS).

    PubMed

    Fehér, Kristoffer D; Morishima, Yosuke

    2016-01-01

    Oscillatory brain activities are considered to reflect the basis of rhythmic changes in transmission efficacy across brain networks and are assumed to integrate cognitive neural processes. Transcranial alternating current stimulation (tACS) holds the promise to elucidate the causal link between specific frequencies of oscillatory brain activity and cognitive processes. Simultaneous electroencephalography (EEG) recording during tACS would offer an opportunity to directly explore immediate neurophysiological effects of tACS. However, it is not trivial to measure EEG signals during tACS, as tACS creates a huge artifact in EEG data. Here we explain how to set up concurrent tACS-EEG experiments. Two necessary considerations for successful EEG recording while applying tACS are highlighted. First, bridging of the tACS and EEG electrodes via leaking EEG gel immediately saturates the EEG amplifier. To avoid bridging via gel, the viscosity of the EEG gel is the most important parameter. The EEG gel must be viscous to avoid bridging, but at the same time sufficiently fluid to create contact between the tACS electrode and the scalp. Second, due to the large amplitude of the tACS artifact, it is important to consider using an EEG system with a high resolution analog-to-digital (A/D) converter. In particular, the magnitude of the tACS artifact can exceed 100 mV at the vicinity of a stimulation electrode when 1 mA tACS is applied. The resolution of the A/D converter is of importance to measure good quality EEG data from the vicinity of the stimulation site. By following these guidelines for the procedures and technical considerations, successful concurrent EEG recording during tACS will be realized. PMID:26862814

  19. Alternating current impedance spectroscopic analysis of biofunctionalized vertically-aligned silica nanospring surface for biosensor applications

    NASA Astrophysics Data System (ADS)

    Timalsina, Yukta P.

    In this dissertation, a process of vertically-aligned (silica) nanosprings (VANS) based biosensor development is presented. Alternating current (AC) impedance spectroscopy has been used to analyze sensor response as a function of saline phosphate (SP) buffer and biological solutions. The sensor is a parallel plate capacitor consisting of two glass substrates coated with indium tin oxide (ITO), where the VANS [or randomly-aligned nanosprings (RANS)] grown on one substrate serve as the dielectric spacer layer. The response of a VANS device as a function of ionic concentration in SP buffer was examined and an equivalent circuit model was developed. The results demonstrated that VANS sensors exhibited greater sensitivity to the changes in SP concentration relative to the ITO sensors, which serve as controls. The biofunctionalized VANS surface via physisorption and the cross-linker method demonstrates the repeatability, specificity, and selectivity of the binding. The physisorption of biotinylated immunoglobulin G (B-IgG) onto the VANS surface simplifies the whole sensing procedure for the detection of glucose oxidase, since the avidin-conjugated glucose oxidase (Av-GOx) can directly be immobilized on the B-IgG. The cross linker method involves the covalent attachment of antibodies onto the functionalized VANS surface via imine bond. The experiments revealed that the VANS sensor response is solely the result of the interaction of target molecule i.e. mouse IgG with the probe layer, i.e. goat antimouse IgG (GalphaM IgG). It was determined that VANS-based sensors exhibit a greater magnitude of change between successive bio-layers relative to the controls above 100 Hz, which indicates that the addition of biomolecules inhibits the diffusion of ions and changes the effective dielectric response of the VANS via biomolecular polarization. The study of ionic transport in nanosprings suggested that conductance follows a scaling law. It was demonstrated that a VANS-based device

  20. Alternating current thin film electroluminescence in the near infrared from zinc sulfide doped with rare earths

    NASA Astrophysics Data System (ADS)

    Kale, Ajay

    Near infrared emission (0.7--1.5 mum) of zinc sulfide (ZnS) doped with erbium (Er) or neodymium (Nd) has been studied in alternating current thin film electroluminescent devices (ACTFELDs). The electroluminescent (EL) thin film phosphors were radio frequency planar magnetron sputter deposited by co-sputtering an undoped ZnS target together with a ZnS: 1.5 mole% ErF 3 or ZnS: 1.5 mole% NdF3 target. The ZnS:ErF3 and ZnS:NdF3 thin film phosphors were annealed for one hour in ultra high purity N2 at temperatures ranging from 350--475°C. Annealing at 425°C for 1 hour in nitrogen was the optimal post-deposition treatment for both the ZnS:ErF3, and ZnS:NdF3 thin film phosphors, resulting in EL power densities of 7.5 and 28 muW/cm2 for the 990nm and the 1550nm emission of ZnS:ErF3, respectively. The power densities were 7.5 (750%) and 28 (2800%) times larger than those from the as-deposited films, which exhibited a power density ˜1muW/cm 2 at both wavelengths. In the case of ZnS:NdF3, 26 and 15 muW/cm2 deposited samples. Post-deposition annealing resulted in a 8 and 1.5 times increase in total device efficiency to 0.42 W/W and 0.7 W/W) for ZnS:ErF3 and ZnS:NdF3, respectively. This was attributed to a reduction in the concentration of shallow defects, which leads to a larger effective phosphor field and band bending, an increase in the conduction charge, and a reduction of inelastic scattering of ballistic electrons. While the peak emission wavelengths from Er were independent of annealing temperature, peak shifts were observed for Nd due to hybridization of the 5d-4f orbitals. At annealing temperatures <425°C, the density of shallow traps is high, and electrons from higher energy excited states of the luminescent ions to shallow, non-radiative defect levels pump the lower energy IR states. For annealing temperatures >425°C, the shallow defect states are annealed out, leading to more efficient direct radiative relaxation from the higher lying excited states, and more

  1. Determination of complex formation constants by phase sensitive alternating current polarography: Cadmium-polymethacrylic acid and cadmium-polygalacturonic acid.

    PubMed

    Garrigosa, Anna Maria; Gusmão, Rui; Ariño, Cristina; Díaz-Cruz, José Manuel; Esteban, Miquel

    2007-10-15

    The use of phase sensitive alternating current polarography (ACP) for the evaluation of complex formation constants of systems where electrodic adsorption is present has been proposed. The applicability of the technique implies the previous selection of the phase angle where contribution of capacitive current is minimized. This is made using Multivariate Curve Resolution by Alternating Least Squares (MCR-ALS) in the analysis of ACP measurements at different phase angles. The method is checked by the study of the complexation of Cd by polymethacrylic (PMA) and polygalacturonic (PGA) acids, and the optimal phase angles have been ca. -10 degrees for Cd-PMA and ca. -15 degrees for Cd-PGA systems. The goodness of phase sensitive ACP has been demonstrated comparing the determined complex formation constants with those obtained by reverse pulse polarography, a technique that minimizes the electrode adsorption effects on the measured currents. PMID:19073101

  2. Benchmarking--Current Availability, Possible New National Alternatives, and Making a Contribution to the Discussion

    ERIC Educational Resources Information Center

    Atchison, Eric S.; Hosch, Braden J.

    2015-01-01

    This chapter synthesizes the national discussion on other solutions to the Integrated Postsecondary Education Data System (IPEDS), such as a national student record system, and complications. The authors will briefly examine the pros and cons of IPEDS while primarily focusing on national alternatives, as well providing specific examples for…

  3. Complementary and Alternative Medicine in Rural Communities: Current Research and Future Directions

    ERIC Educational Resources Information Center

    Wardle, Jon; Lui, Chi-Wai; Adams, Jon

    2012-01-01

    Contexts: The consumption of complementary and alternative medicine (CAM) in rural areas is a significant contemporary health care issue. An understanding of CAM use in rural health can provide a new perspective on health beliefs and practice as well as on some of the core service delivery issues facing rural health care generally. Purpose: This…

  4. EVALUATION OF CURRENTLY AVAILABLE ALTERNATIVES TO METHYL BROMIDE FOR ORNAMENTAL CROP PRODUCTION IN FLORIDA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Studies were designed to test the efficacy of the chemical alternatives, Midas™ (iodomethane:chloropicrin (pic) 50:50 [MI 50:50] and 98:2 [MI 98:2], Arysta LifeScience Corp., Cary, NC) and dimethyl disulfide:pic (Paladin™ 79:21 [DMDS], United Phosphorous, Inc., King of Prussia, PA) compared with met...

  5. Stoichiometry and Formation Constant Determination by Linear Sweep Voltammetry.

    ERIC Educational Resources Information Center

    Schultz, Franklin A.

    1979-01-01

    In this paper an experiment is described in which the equilibrium constants necessary for determining the composition and distribution of lead (II)-oxalate species may be measured by linear sweep voltammetry. (Author/BB)

  6. Hydrodynamic voltammetry at tubular electrodes-III Determination of traces of bismuth by differential-pulse anodic-stripping voltammetry at a glassy-carbon tubular electrode with in situ mercury plating.

    PubMed

    Zhen, W; Qiang, C

    1987-07-01

    An equation for the current in differential-pulse anodic-stripping voltammetry at tubular electrodes is derived. Application of a glassy-carbon tubular electrode to determination of traces of bismuth in environmental water samples by differential-pulse anodic-stripping voltammetry is described. In hydrochloric acid medium, the stripping peak current is proportional to the concentration of bismuth in the range 2-100 ng/ml, with a deposition time of 3-10 min. The detection limit is 0.5 ng/ml. PMID:18964381

  7. Ultrafast Electron Diffractive Voltammetry:. General Formalism and Applications

    NASA Astrophysics Data System (ADS)

    Chang, Kiseok; Murdick, Ryan A.; Tao, Zhen-Sheng; Han, Tzong-Ru T.; Ruan, Chong-Yu

    We present a general formalism of ultrafast diffractive voltammetry approach as a contact-free tool to investigate the ultrafast surface charge dynamics in nanostructured interfaces. As case studies, the photoinduced surface charging processes in oxidized silicon surface and the hot electron dynamics in nanoparticle-decorated interface are examined based on the diffractive voltammetry framework. We identify that the charge redistribution processes appear on the surface, sub-surface, and vacuum levels when driven by intense femtosecond laser pulses. To elucidate the voltammetry contribution from different sources, we perform controlled experiments using shadow imaging techniques and N-particle simulations to aid the investigation of the photovoltage dynamics in the presence of photoemission. We show that voltammetry contribution associated with photoemission has a long decay tail and plays a more significant role in the nanosecond timescale, whereas the ultrafast voltammetry are dominated by local charge transfer, such as surface charging and molecular charge transport at nanostructured interfaces. We also discuss the general applicability of the diffractive voltammetry as an integral part of quantitative ultrafast electron diffraction methodology in researching different types of interfaces having distinctive surface diffraction and boundary conditions.

  8. Voltammetry of redox analytes at trace concentrations with nanoelectrode ensembles.

    PubMed

    Moretto, Ligia Maria; Pepe, Niki; Ugo, Paolo

    2004-04-19

    Gold nanoelectrodes ensembles (NEEs) have been prepared by electroless plating of Au nanoelectrode elements within the pores of a microporous polycarbonate template membrane. Cyclic voltammograms recorded in (ferrocenylmethyl) trimethylammonium hexafluorophosphate (FA(+) PF(6)(-)) solutions showed that these NEEs operate in the "total-overlap" response regime, giving well resolved peak shaped voltammograms. Experimental results show that the faradaic/background currents ratios at the NEE are independent on the total geometric area of the ensemble, so that NEE can be enlarged or miniaturized at pleasure without influencing the very favorable signal/noise ratio. Differential pulse voltammetry (DPV) at the NEE is optimized for direct determinations at trace levels. DPV at NEE allowed the determination (with no preconcentration) of trace amounts of FA(+), with a detection limit of 0.02muM. The use of NEE and DPV in cytochrome c (cyt c) solutions showed the possibility to observe the direct electrochemistry of submicromolar concentration of the protein, even without the need of adding any promoter or mediator. PMID:18969398

  9. Disposable Copper-Based Electrochemical Sensor for Anodic Stripping Voltammetry

    PubMed Central

    2015-01-01

    In this work, we report the first copper-based point-of-care sensor for electrochemical measurements demonstrated by zinc determination in blood serum. Heavy metals require careful monitoring, yet current methods are too complex for a point-of-care system. Electrochemistry offers a simple approach to metal detection on the microscale, but traditional carbon, gold (Au), or platinum (Pt) electrodes are difficult or expensive to microfabricate, preventing widespread use. Our sensor features a new low-cost electrode material, copper, which offers simple fabrication and compatibility with microfabrication and PCB processing, while maintaining competitive performance in electrochemical detection. Anodic stripping voltammetry of zinc using our new copper-based sensors exhibited a 140 nM (9.0 ppb) limit of detection (calculated) and sensitivity greater than 1 μA/μM in the acetate buffer. The sensor was also able to determine zinc in a bovine serum extract, and the results were verified with independent sensor measurements. These results demonstrate the advantageous qualities of this lab-on-a-chip electrochemical sensor for clinical applications, which include a small sample volume (μL scale), reduced cost, short response time, and high accuracy at low concentrations of analyte. PMID:24773513

  10. Cyclic voltammetry of apple fruits: Memristors in vivo.

    PubMed

    Volkov, Alexander G; Nyasani, Eunice K; Tuckett, Clayton; Blockmon, Avery L; Reedus, Jada; Volkova, Maya I

    2016-12-01

    A memristor is a resistor with memory that exhibits a pinched hysteretic relationship in cyclic voltammetry. Recently, we have found memristors in the electrical circuitry of plants and seeds. There are no publications in literature about the possible existence of memristors and electrical differentiators in fruits. Here we found that the electrostimulation of Golden Delicious or Arkansas Black apple fruits by bipolar periodic waves induces hysteresis loops with pinched points in cyclic voltammograms at low frequencies between 0.1MHz and 1MHz. At high frequencies of 1kHz, the pinched hysteresis loop transforms to a non-pinched hysteresis loop instead of a single line I=V/R for ideal memristors because the amplitude of electrical current depends on capacitance of a fruit's tissue and electrodes, frequency and direction of scanning. Electrostimulation of electrical circuits in apple fruits by periodic voltage waves also induces electrotonic potential propagation due to cell-to-cell electrical coupling with electrical differentiators. A differentiator is an electrical circuit in which the output of the circuit is approximately directly proportional to the rate of change of the input. The information gained from electrostimulation can be used to elucidate and to observe electrochemical and electrophysiological properties of electrical circuits in fruits. PMID:27398978

  11. Alternating current loss reduction for rectangular busbars by covering their edges with low permeable magnetic caps

    NASA Astrophysics Data System (ADS)

    Sasada, Ichiro

    2014-05-01

    A method to reduce ac conductive losses in a thin rectangular busbar made of copper is presented. The method is based on a technique, which makes the distribution of the ac current in the cross section of a busbar flatter. Edges of a thin busbar are covered with low permeability magnetic thin layers as caps. The magnetic cap makes the impedance experienced by the current flowing near the edge comparatively larger so that currents cannot get crowded near the edges of a busbar. This method is numerically verified.

  12. Alternating current loss reduction for rectangular busbars by covering their edges with low permeable magnetic caps

    SciTech Connect

    Sasada, Ichiro

    2014-05-07

    A method to reduce ac conductive losses in a thin rectangular busbar made of copper is presented. The method is based on a technique, which makes the distribution of the ac current in the cross section of a busbar flatter. Edges of a thin busbar are covered with low permeability magnetic thin layers as caps. The magnetic cap makes the impedance experienced by the current flowing near the edge comparatively larger so that currents cannot get crowded near the edges of a busbar. This method is numerically verified.

  13. Electrical induction of ventricular fibrillation in the human heart. A study of excitability levels with alternating current of different frequencies.

    PubMed

    Kugelberg, J

    1976-01-01

    An experimental study was made on induction thresholds for ventricular fibrillation with alternating currents at frequencies ranging between 6 and 1 600 c/s. The tests were performed on experimental dogs and on patients in association with open-heart surgery. The most vulnerable range was found to be between 12 and 60 c/s. A close similarity was demonstrated between canine and human hearts. The induction of ventricular fibrillation during open-heart surgery is discussed. Ventricular fibrillation, caused by electricity, is either accidental or deliberately induced for medical purposes. The myocardial threshold of excitability towards alternating currents is dependent on two parameters, current and frequency. The vulnerability of the heart towards current has been thoroughly investigated by several authors (Walter, 1969; Dalziel & Lee, 1969; Nickel & Spang, 1965; Kugelberg, 1975). A frequency of 50-60 c/s was utilized in all these determinations, as this is the one of choice in networks for distribution of electric power all over the world. Thus, accidental ventricular fibrillation is most likely to occur with currents of this frequency, and inductions for medical purposes, i.e. during open-heart operations, are achieved in the easiest way with simple transformers delivering the same frequency. PMID:1006224

  14. Overview of Alternative Bunching and Current-shaping Techniques for Low-Energy Electron Beams

    SciTech Connect

    Piot, Philippe

    2015-12-01

    Techniques to bunch or shape an electron beam at low energies (E <15 MeV) have important implications toward the realization of table-top radiation sources [1] or to the design of compact multi-user free-electron lasers[2]. This paper provides an overview of alternative methods recently developed including techniques such as wakefield-based bunching, space-charge-driven microbunching via wave-breaking [3], ab-initio shaping of the electron-emission process [4], and phase space exchangers. Practical applications of some of these methods to foreseen free-electron-laser configurations are also briefly discussed [5].

  15. Development of alternating current transmitter of detection system for magnetic material in soil subsurface

    NASA Astrophysics Data System (ADS)

    Indrasari, Widyaningrum; Djamal, Mitra; Srigutomo, Wahyu; Ramli

    2016-03-01

    Generally, detection system for magnetic material in soil subsurface using electromagnetic induction method consists of two parts, they are transmitter and receiver unit. A transmitter must be able to produce a continuous and stable AC current at a certain frequency, meanwhile receiver should be able to catch the secondary magnetic field of magnetic material in soil subsurface. The aim of this study was to develop a new AC current transmitter of detection system for the magnetic material in soil subsurface. This paper will describe the results of the development of AC current transmitter systems, distance characterization of the sensor detection toward horizontal solenoid positions, and characterization of magnetic material in the soil subsurface. It has successfully made the AC current transmitter system, composed of a sinusoidal signal generator, power amplifier, and a source of AC magnetic field. The output of the generator has a frequency varies: 1 kHz, 2 kHz, 5 kHz, and 10 kHz. We found that the AC current transmitter that has been developed able to work properly up to a frequency of 10 kHz.

  16. Assessing the Liquidity of Firms: Robust Neural Network Regression as an Alternative to the Current Ratio

    NASA Astrophysics Data System (ADS)

    de Andrés, Javier; Landajo, Manuel; Lorca, Pedro; Labra, Jose; Ordóñez, Patricia

    Artificial neural networks have proven to be useful tools for solving financial analysis problems such as financial distress prediction and audit risk assessment. In this paper we focus on the performance of robust (least absolute deviation-based) neural networks on measuring liquidity of firms. The problem of learning the bivariate relationship between the components (namely, current liabilities and current assets) of the so-called current ratio is analyzed, and the predictive performance of several modelling paradigms (namely, linear and log-linear regressions, classical ratios and neural networks) is compared. An empirical analysis is conducted on a representative data base from the Spanish economy. Results indicate that classical ratio models are largely inadequate as a realistic description of the studied relationship, especially when used for predictive purposes. In a number of cases, especially when the analyzed firms are microenterprises, the linear specification is improved by considering the flexible non-linear structures provided by neural networks.

  17. Variable Uses of Alternative Conceptions: A Case Study in Current Electricity.

    ERIC Educational Resources Information Center

    Heller, Patricia M.; Finley, Fred N.

    1992-01-01

    Fourteen elementary and middle school teachers from an inservice physics course were found to share a common core of strongly held propositions that formed a coherent, but incorrect and contradictory, model of the sequential flow of electrical current. Theoretical and practical implications of these teachers' beliefs with respect to both…

  18. Assessment of Alternative Student Aid Delivery Systems: Preliminary Specification of the Current System with Program Antecedents.

    ERIC Educational Resources Information Center

    Advanced Technology, Inc., Reston, VA.

    Specifications of the current delivery systems of the Pell Grant program, the Guaranteed Student Loan (GSL) program, and campus-based aid programs are provided. The relationship between features of the programs and delivery systems is also examined. The campus-based programs include the Supplemental Educational Opportunity Grant (SEOG) Program,…

  19. Regional economic effects of current and proposed management alternatives for Sand Lake National Wildlife Refuge

    USGS Publications Warehouse

    Koontz, Lynne; Lambert, Heather

    2005-01-01

    This report first provides a description of the local community and economy near the Refuge. An analysis of current and proposed management strategies that could affect the local economy is then presented. The Refuge management activities of economic concern in this analysis are Refuge personnel staffing and Refuge spending within the local community, and spending in the local community by Refuge visitors.

  20. Regional economic effects of current and proposed management alternatives for Arrowwood National Wildlife Refuge

    USGS Publications Warehouse

    Koontz, Lynne; Lambert, Heather

    2005-01-01

    This report first provides a description of the local community and economy near the Refuge. An analysis of current and proposed management strategies that could affect the local economy is then presented. The Refuge management activities of economic concern in this analysis are Refuge personnel staffing and Refuge spending within the local community, and spending in the local community by Refuge visitors.

  1. Variable Uses of Alternative Conceptions: A Case Study in Current Electricity.

    ERIC Educational Resources Information Center

    Heller, Patricia; Finley, Fred

    In order to investigate the nature of students' prior knowledge of current electricity and how they applied their knowledge to different problems, 5 middle school science teachers and 11 elementary school teachers were given a written test that required them to: (1) predict what happens to the brightness of a bulb if a change is made to the…

  2. Linear-sweep voltammetry of a soluble redox couple in a cylindrical electrode

    NASA Technical Reports Server (NTRS)

    Weidner, John W.

    1991-01-01

    An approach is described for using the linear sweep voltammetry (LSV) technique to study the kinetics of flooded porous electrodes by assuming a porous electrode as a collection of identical noninterconnected cylindrical pores that are filled with electrolyte. This assumption makes possible to study the behavior of this ideal electrode as that of a single pore. Alternatively, for an electrode of a given pore-size distribution, it is possible to predict the performance of different pore sizes and then combine the performance values.

  3. Determination of secnidazole in urine by adsorptive stripping voltammetry.

    PubMed

    Radi, A E; Hassanein, A

    2000-05-01

    Cyclic voltammetry was used to explore the adsorption behavior of secnidazole on a hanging mercury drop electrode (HMDE). The effects of various operational parameters on the accumulation behavior of the adsorbed species were tested. Thus, a sensitive stripping voltammetry procedure for the determination of secnidazole with an adsorptive accumulation on the surface of HMDE has been developed. Measurements were taken by differential-pulse voltammetry after determination of the optimum conditions. The linear concentration range was 1 x 10(-8)-1 x 10(-7) s when using a 120 s preconcentration at -0.1 V vs. Ag/AgCl in acetate buffer of pH 4.0. The detection limit of secnidazole was 5 x 10(-9) M. The precision, expressed by the coefficient of variation, was 2.5% (n = 10) at a concentration of 1 x 10(-7) m. The method was successfully applied to the analysis of secnidazole in urine. PMID:10823692

  4. Internal heating of lithium-ion batteries using alternating current based on the heat generation model in frequency domain

    NASA Astrophysics Data System (ADS)

    Zhang, Jianbo; Ge, Hao; Li, Zhe; Ding, Zhanming

    2015-01-01

    This study develops a method to internally preheat lithium-ion batteries at low temperatures with sinusoidal alternating current (AC). A heat generation rate model in frequency domain is developed based on the equivalent electrical circuit. Using this model as the source term, a lumped energy conservation model is adopted to predict the temperature rise. These models are validated against the experimental results of preheating an 18650 cell at different thermal insulation conditions. The effects of current amplitude and frequency on the heating rate are illustrated with a series of simulated contours of heating time. These contours indicate that the heating rate increases with higher amplitude, lower frequency and better thermal insulation. The cell subjected to an alternating current with an amplitude of 7 A (2.25 C) and a frequency of 1 Hz, under a calibrated heat transfer coefficient of 15.9 W m-2 K-1, can be heated from -20 °C to 5 °C within 15 min and the temperature distribution remains essentially uniform. No capacity loss is found after repeated AC preheating tests, indicating this method incurs little damage to the battery health. These models are computationally-efficient and can be used in real time to control the preheating devices in electric vehicles.

  5. Square wave voltammetry at the dropping mercury electrode: Experimental

    USGS Publications Warehouse

    Turner, J.A.; Christie, J.H.; Vukovic, M.; Osteryoung, R.A.

    1977-01-01

    Experimental verification of earlier theoretical work for square wave voltammetry at the dropping mercury electrode is given. Experiments using ferric oxalate and cadmium(II) in HCl confirm excellent agreement with theory. Experimental peak heights and peak widths are found to be within 2% of calculated results. An example of trace analysis using square wave voltammetry at the DME is presented. The technique is shown to have the same order of sensitivity as differential pulse polarography but is much faster to perform. A detection limit for cadmium in 0.1 M HCl for the system used here was 7 ?? 10-8 M.

  6. Study of corrosion of super martensitic stainless steel under alternating current in artificial seawater with electrochemical impedance spectroscopy

    SciTech Connect

    Reyes, T.; Bhola, S.; Olson, D. L.; Mishra, B.

    2011-06-23

    The assessment of corrosion requires the use of tools able to quantify the corrosion but often times also qualify it. Electrochemical Impedance Spectroscopy (EIS) is a laboratory tool that can provide both qualification and quantification of corrosion. EIS was successfully used to compare the thickness of the corrosion products formed during the application of different alternating current (AC) densities as well as to characterize pitting. When EIS is applied at the open circuit potential, the technique is nondestructive and predicts the corrosion behavior of the electrode. It can also be used at cathodic potentials while still being nondestructive, providing information about the electrode reaction kinetics, diffusion and electrical double layer.

  7. A review of current methods for assessing hemostasis in vivo and introduction to a potential alternative approach.

    PubMed

    Scola, Mallory R; Baggesen, Leslie M; Nichols, Tim C; Key, Nigel S; Gallippi, Caterina M

    2012-05-01

    A validated method for assessing hemostasis in vivo is critical for testing the hemostatic efficacy of therapeutic agents in preclinical animal models and in patients with inherited bleeding disorders, such as von Willebrand disease (VWD) and hemophilia A, or with acquired bleeding disorders such as those resulting from medications or disease processes. In this review, we discuss current methods for assessing hemostasis in vivo and the associated challenges. We also present ARFI-Monitored Hemostatic Challenge; a new, potentially alternate method for in vivo hemostasis monitoring that is in development by our group. PMID:22405050

  8. Including Alternative Resources in State Renewable Portfolio Standards: Current Design and Implementation Experience

    SciTech Connect

    Heeter, J.; Bird, L.

    2012-11-01

    Currently, 29 states, the District of Columbia, and Puerto Rico have instituted a renewable portfolio standard (RPS). An RPS sets a minimum threshold for how much renewable energy must be generated in a given year. Each state policy is unique, varying in percentage targets, timetables, and eligible resources. This paper examines state experience with implementing renewable portfolio standards that include energy efficiency, thermal resources, and non-renewable energy and explores compliance experience, costs, and how states evaluate, measure, and verify energy efficiency and convert thermal energy. It aims to gain insights from the experience of states for possible federal clean energy policy as well as to share experience and lessons for state RPS implementation.

  9. Copper-Based Electrochemical Sensor with Palladium Electrode for Cathodic Stripping Voltammetry of Manganese

    PubMed Central

    2015-01-01

    In this work, we report on the development of a palladium-based, microfabricated point-of-care electrochemical sensor for the determination of manganese using square wave cathodic stripping voltammetry. Heavy metals require careful monitoring, yet current methods are too complex for a point-of-care system. Voltammetry offers an attractive approach to metal detection on the microscale, but traditional carbon, gold, or platinum electrodes are difficult or expensive to microfabricate, preventing widespread use. Our sensor uses palladium working and auxiliary electrodes and integrates them with a copper-based reference electrode for simple fabrication and compatibility with microfabrication and printed circuit board processing, while maintaining competitive performance in electrochemical detection. Copper electrodes were prepared on glass substrate using a combination of microfabrication procedures followed by electrodeposition of palladium. The disposable sensor system was formed by bonding a poly(dimethylsiloxane) (PDMS) well to the glass substrate. Cathodic stripping voltammetry of manganese using our new disposable palladium-based sensors exhibited 334 nM (18.3 ppb) limit of detection in borate buffer. The sensor was used to demonstrate manganese determination in natural water samples from a pond in Burnet Woods, located in Cincinnati, OH, and the Ohio River. PMID:25476591

  10. Copper-based electrochemical sensor with palladium electrode for cathodic stripping voltammetry of manganese.

    PubMed

    Kang, Wenjing; Pei, Xing; Bange, Adam; Haynes, Erin N; Heineman, William R; Papautsky, Ian

    2014-12-16

    In this work, we report on the development of a palladium-based, microfabricated point-of-care electrochemical sensor for the determination of manganese using square wave cathodic stripping voltammetry. Heavy metals require careful monitoring, yet current methods are too complex for a point-of-care system. Voltammetry offers an attractive approach to metal detection on the microscale, but traditional carbon, gold, or platinum electrodes are difficult or expensive to microfabricate, preventing widespread use. Our sensor uses palladium working and auxiliary electrodes and integrates them with a copper-based reference electrode for simple fabrication and compatibility with microfabrication and printed circuit board processing, while maintaining competitive performance in electrochemical detection. Copper electrodes were prepared on glass substrate using a combination of microfabrication procedures followed by electrodeposition of palladium. The disposable sensor system was formed by bonding a poly(dimethylsiloxane) (PDMS) well to the glass substrate. Cathodic stripping voltammetry of manganese using our new disposable palladium-based sensors exhibited 334 nM (18.3 ppb) limit of detection in borate buffer. The sensor was used to demonstrate manganese determination in natural water samples from a pond in Burnet Woods, located in Cincinnati, OH, and the Ohio River. PMID:25476591

  11. Analysis of operations and cyber security policies for a system of cooperating Flexible Alternating Current Transmission System (FACTS) devices.

    SciTech Connect

    Phillips, Laurence R.; Tejani, Bankim; Margulies, Jonathan; Hills, Jason L.; Richardson, Bryan T.; Baca, Micheal J.; Weiland, Laura

    2005-12-01

    Flexible Alternating Current Transmission Systems (FACTS) devices are installed on electric power transmission lines to stabilize and regulate power flow. Power lines protected by FACTS devices can increase power flow and better respond to contingencies. The University of Missouri Rolla (UMR) is currently working on a multi-year project to examine the potential use of multiple FACTS devices distributed over a large power system region in a cooperative arrangement in which the FACTS devices work together to optimize and stabilize the regional power system. The report describes operational and security challenges that need to be addressed to employ FACTS devices in this way and recommends references, processes, technologies, and policies to address these challenges.

  12. The effects of ultrasound and alternating current on the laser penetration in the tissue.

    PubMed

    Dawood, Munqith Saleem

    2016-07-01

    The visible (VIS) and near-infrared (NIR) lasers are now widely used in therapeutic and other medical applications. Some of these applications require to deliver the laser energy deep toward the desired tissue target or organ. The aim of this in vitro study is to investigate practically whether the modulation of laser energy by employing the therapeutic ultrasound or electrical energies can increase the penetration depth of the laser light inside the tissue. Such modulation was implemented in this study by coupling the (c.w.) diode and Nd:YAG laser energies with the ultrasound or AC current simultaneously as they pass through preprepared ex vivo bovine muscular tissue strips. Two wavelengths of diode lasers were used, 637 and 808 nm beside the 1064-nm Nd:YAG laser. The results showed a noticeable decrease of these laser attenuation factors as they pass through the tissue strips in the presence of the ultrasound or AC energies. By using this coupling modulation, the capability of increasing the laser penetration depths inside the tissue was confirmed without having to increase their applied power. PMID:27098338

  13. An alternative to current psychiatric classifications: a psychological landscape hypothesis based on an integrative, dynamical and multidimensional approach

    PubMed Central

    2014-01-01

    Background Mental disorders as defined by current classifications are not fully supported by scientific evidence. It is unclear whether main disorders should be broken down into separate categories or disposed along a continuous spectrum. In the near future, new classes of mental disorders could be defined through associations of so-called abnormalities observed at the genetic, molecular and neuronal circuitry levels. Methods We propose an alternative hypothesis to these classifications based on an integrative, dynamical and multidimensional approach. Results We suggest that observed data collected in the general population can be used to build a psychological landscape. Innovative techniques issued from information processing and system dynamics can prove helpful in this task. Information preserving techniques can reduce the high dimensional data collected and provide an intrinsic map for psychological characteristics or behaviors. Dynamical patterns called attractors, which are linked to each other through continuous pathways, can be identified. Specific attractors can define mental disorders. Their causal structure can be investigated with causal networks. Conclusions Powerful and reliable tools are available so that an alternative to current psychiatric classifications can be built based on a genuine biopsychosocial model. The proposed model is ready to be tested on real data. PMID:25033795

  14. Effect of dual gate control on the alternating current performance of graphene radio frequency device

    NASA Astrophysics Data System (ADS)

    Zhu, Wenjuan; Low, Tony; Farmer, Damon B.; Jenkins, Keith; Ek, Bruce; Avouris, Phaedon

    2013-07-01

    The excellent electrical properties of graphene, such as its high carrier mobility, gate tunability, and mechanical flexibility makes it a very promising material for radio frequency (RF) electronics. Here we study the impact of top and bottom gate control on the essential performance metrics of graphene RF transistors. We find that the maximum cut-off frequency improves as the bottom gate voltage is tuned towards the same polarity as the top gate bias voltage. These results can be explained by the bottom-gate tunable doping of the graphene underneath the metal contacts and in the under-lap region. These effects become more dramatic with device down-scaling. We also find that the minimum output conductance occurs, when the drain voltage roughly equals an effective gate voltage (Veff≈VTG+VBGṡCBG/CTG, where VTG and VBG are top and bottom gate voltage, CTG and CBG are the respective gate capacitance). The minimum output conductance is reduced as the bottom gate bias increases, due to the stronger control of the channel from the bottom gate, lessening the influence of the drain voltage on the drain current. As a result of these two influences, when the bottom gate voltage is tuned towards the same polarity as the top gate voltage, both the maximum oscillation frequency (fmax) and the intrinsic gain significantly improve. The intrinsic gain can increase as high as 3-4 times as the gain without the bottom gate bias. Tuning the bottom gate to enhance fmax and gain will be very important elements in the effort to enable graphene RF devices for practical use.

  15. A Cyclic Voltammetry Experiment for the Instrumental Analysis Laboratory.

    ERIC Educational Resources Information Center

    Baldwin, Richard P.; And Others

    1984-01-01

    Background information and procedures are provided for experiments that illustrate the nature of cyclic voltammetry and its application in the characterization of organic electrode processes. The experiments also demonstrate the concepts of electrochemical reversibility and diffusion-controlled mass transfer. (JN)

  16. Comparison of voltammetry and inductively coupled plasma-mass spectrometry for the determination of heavy metals in PM 10 airborne particulate matter

    NASA Astrophysics Data System (ADS)

    Buzica, Daniela; Gerboles, Michel; Borowiak, Annette; Trincherini, Pier; Passarella, Rosanna; Pedroni, Valerio

    The potential of the voltammetry method was examined for the determination of heavy metals in ambient air particulate matter (PM 10) on quartz filter. Cd, Pb, Cu, Zn, As were determined by anodic stripping voltammetry while adsorptive stripping voltammetry was used for the analysis of Ni. The method detection limit of these metals were 9.3, 0.1, 0.8, 0.3, 0.4, 0.1 ng m -3 for Zn, Cd, Pb, Cu, Ni and As, respectively. In addition, the analysis of a Certified Reference Material NIST 1648, yielded recoveries between 92% and 103%. Consequently, both the detection limit and recovery of the voltammetric method satisfy the requirements of the European Standard for the analyses of heavy metals in PM 10 (EN 14902). A comparison of the inductively coupled plasma-mass spectrometry (ICP-MS) and voltammetry method on the NIST 1648 and PM 10 filters showed the differences between them remained well within the level of uncertainty on the NIST 1648 requested by European Directives for heavy metals (25% for Pb and 40% for As, Cd and Ni, respectively). In addition to its compliance with legislations, the voltammetry method benefits from low investment cost and the potential of complete automation. As such, one may expect voltammetry to provide a reliable alternative to the European laboratories in charge of ambient air monitoring at the time when the European Directives require to measure heavy metals in PM 10 on a regularly basis.

  17. Effects of weak transcranial alternating current stimulation on brain activity-a review of known mechanisms from animal studies.

    PubMed

    Reato, Davide; Rahman, Asif; Bikson, Marom; Parra, Lucas C

    2013-01-01

    Rhythmic neuronal activity is ubiquitous in the human brain. These rhythms originate from a variety of different network mechanisms, which give rise to a wide-ranging spectrum of oscillation frequencies. In the last few years an increasing number of clinical research studies have explored transcranial alternating current stimulation (tACS) with weak current as a tool for affecting brain function. The premise of these interventions is that tACS will interact with ongoing brain oscillations. However, the exact mechanisms by which weak currents could affect neuronal oscillations at different frequency bands are not well known and this, in turn, limits the rational optimization of human experiments. Here we review the available in vitro and in vivo animal studies that attempt to provide mechanistic explanations. The findings can be summarized into a few generic principles, such as periodic modulation of excitability, shifts in spike timing, modulation of firing rate, and shifts in the balance of excitation and inhibition. These effects result from weak but simultaneous polarization of a large number of neurons. Whether this can lead to an entrainment or a modulation of brain oscillations, or whether AC currents have no effect at all, depends entirely on the specific dynamic that gives rise to the different brain rhythms, as discussed here for slow wave oscillations (∼1 Hz) and gamma oscillations (∼30 Hz). We conclude with suggestions for further experiments to investigate the role of AC stimulation for other physiologically relevant brain rhythms. PMID:24167483

  18. Electro-optically responsive composites of gold nanospheres in 5CB liquid crystal under direct current and alternating current joint action

    SciTech Connect

    Hadjichristov, Georgi B.; Marinov, Yordan G.; Petrov, Alexander G.; Bruno, Emanuela; Marino, Lucia; Scaramuzza, Nicola

    2014-02-28

    Direct current (DC) electro-optical (EO) control of transmitted laser beam intensity based on EO controlled coherent light scattering and diffraction by stationary longitudinal texture pattern (LTP) is achieved in planar-oriented cells with a composite mixture of polymer-coated gold spherical nanoparticles (Au-NPs) with a mean diameter of about 12 nm and the room-temperature nematic pentylcyanobiphenyl (5CB). At relatively low DC voltage of about 5 V, the effective scattering/diffraction by Au-NPs/5CB composites leads to a spatial spreading of transmitted coherent light from a low-power continuous wave laser beam, resulting in a drastic reduction of its local intensity. The effect is polarization dependent and is strongest when the polarization of the input laser beam is along the LTP. The EO response of Au-NPs/5CB mixtures is studied under DC and alternating current (AC) joint action with the aim of the potential use of these composite materials as EO controlled diffusers. The specific V-shaped sharp dip in the DC voltage-dependent coherent light transmittance of Au-NPs/5CB planar films, as well as the possibility for erasing the scattering/diffractive LTP in the films by joint low AC voltage, can be useful for EO applications in the field of process control and for detection of weak dynamic electric fields.

  19. Electro-optically responsive composites of gold nanospheres in 5CB liquid crystal under direct current and alternating current joint action

    NASA Astrophysics Data System (ADS)

    Hadjichristov, Georgi B.; Marinov, Yordan G.; Petrov, Alexander G.; Bruno, Emanuela; Marino, Lucia; Scaramuzza, Nicola

    2014-02-01

    Direct current (DC) electro-optical (EO) control of transmitted laser beam intensity based on EO controlled coherent light scattering and diffraction by stationary longitudinal texture pattern (LTP) is achieved in planar-oriented cells with a composite mixture of polymer-coated gold spherical nanoparticles (Au-NPs) with a mean diameter of about 12 nm and the room-temperature nematic pentylcyanobiphenyl (5CB). At relatively low DC voltage of about 5 V, the effective scattering/diffraction by Au-NPs/5CB composites leads to a spatial spreading of transmitted coherent light from a low-power continuous wave laser beam, resulting in a drastic reduction of its local intensity. The effect is polarization dependent and is strongest when the polarization of the input laser beam is along the LTP. The EO response of Au-NPs/5CB mixtures is studied under DC and alternating current (AC) joint action with the aim of the potential use of these composite materials as EO controlled diffusers. The specific V-shaped sharp dip in the DC voltage-dependent coherent light transmittance of Au-NPs/5CB planar films, as well as the possibility for erasing the scattering/diffractive LTP in the films by joint low AC voltage, can be useful for EO applications in the field of process control and for detection of weak dynamic electric fields.

  20. Determination of molybdenum in steel by adsorptive stripping voltammetry in a homogeneous ternary solvent system.

    PubMed

    de Andrade, J C; de Almeida, A M; Coscione, A R; Aleixo, L M

    2001-06-01

    A new alternative approach for the determination of molybdenum in steel is proposed, using adsorptive stripping voltammetry (AdSV). The determinations are performed in a homogeneous ternary solvent system (HTSS) composed of N,N-dimethylformamide, ethanol and water, with alpha-benzoinoxime (alpha BO) as the complexing agent and a sodium acetate-acetic acid buffer as the support electrolyte. The HTSS composition was optimized by mixture design modelling. The AdSV measurements were performed in the differential pulse mode using an accumulation potential of -1050 mV. Under these optimized experimental conditions, the Mo(VI)-alpha BO reduction current peak potential is observed at potentials near -1250 mV, much lower than those usually reported, and the calibration plot follows the polynomial equation I = 0.359 + 0.265 [CMo(VI)] - 0.015 [CMo(IV)]2 (r2 = 0.997), for Mo concentrations up to 10.0 micrograms L-1. There is a linear range in this calibration plot for Mo(VI) concentrations up to 0.20 microgram L-1, defined by the equation I = 0.353 + 0.385 [CMo(VI)] (r2 = 0.980). In both cases, I is the absolute value for the current in microA and CMo(VI) is the concentration of Mo in microgram L-1. The detection limit for this linear concentration range was estimated as 20 pg L-1. A RSD of 0.43% is associated with the signals at a Mo(VI) level of 0.72 microgram L-1. From the common method-interfering species tested, only iron at Fe/Mo(VI) ratios above 500 and vanadium and tungsten at M/Mo(VI) ratios above 100 appear to affect the analytical response significantly. Phosphorous may also reduce the analytical signal at P/Mo(VI) ratios above 100, due to the formation of the competitive P-Mo complex. The suggested routine procedure was tested by analyzing four stainless steel samples and the results compared well with the ICP-AES measurements. The higher sensitivity of this method permits direct determination of Mo(VI) in steels, eliminating the need of analyte concentration or

  1. Alternating-Current InGaN/GaN Tunnel Junction Nanowire White-Light Emitting Diodes.

    PubMed

    Sadaf, S M; Ra, Y-H; Nguyen, H P T; Djavid, M; Mi, Z

    2015-10-14

    The current LED lighting technology relies on the use of a driver to convert alternating current (AC) to low-voltage direct current (DC) power, a resistive p-GaN contact layer to inject positive charge carriers (holes) for blue light emission, and rare-earth doped phosphors to down-convert blue photons into green/red light, which have been identified as some of the major factors limiting the device efficiency, light quality, and cost. Here, we show that multiple-active region phosphor-free InGaN nanowire white LEDs connected through a polarization engineered tunnel junction can fundamentally address the afore-described challenges. Such a p-GaN contact-free LED offers the benefit of carrier regeneration, leading to enhanced light intensity and reduced efficiency droop. Moreover, through the monolithic integration of p-GaN up and p-GaN down nanowire LED structures on the same substrate, we have demonstrated, for the first time, AC operated LEDs on a Si platform, which can operate efficiently in both polarities (positive and negative) of applied voltage. PMID:26384135

  2. Calorimetric AC loss measurement of MgB2 superconducting tape in an alternating transport current and direct magnetic field

    NASA Astrophysics Data System (ADS)

    See, K. W.; Xu, X.; Horvat, J.; Cook, C. D.; Dou, S. X.

    2012-11-01

    Applications of MgB2 superconductors in electrical engineering have been widely reported, and various studies have been made to define their alternating current (AC) losses. However, studies on the transport losses with an applied transverse DC magnetic field have not been conducted, even though this is one of the favored conditions in applications of practical MgB2 tapes. Methods and techniques used to characterize and measure these losses have so far been grouped into ‘electrical’ and ‘calorimetric’ approaches with external conditions set to resemble the application conditions. In this paper, we present a new approach to mounting the sample and employ the calorimetric method to accurately determine the losses in the concurrent application of AC transport current and DC magnetic fields that are likely to be experienced in practical devices such as generators and motors. This technique provides great simplification compared to the pickup coil and lock-in amplifier methods and is applied to a long length (˜10 cm) superconducting tape. The AC loss data at 20 and 30 K will be presented in an applied transport current of 50 Hz under external DC magnetic fields. The results are found to be higher than the theoretical predictions because of the metallic fraction of the tape that contributes quite significantly to the total losses. The data, however, will allow minimization of losses in practical MgB2 coils and will be used in the verification of numerical coil models.

  3. Frequency-dependent alternating-current scanning electrochemical microscopy (4D AC-SECM) for local visualisation of corrosion sites.

    PubMed

    Eckhard, Kathrin; Erichsen, Thomas; Stratmann, Martin; Schuhmann, Wolfgang

    2008-01-01

    For a better understanding of the initiation of localised corrosion, there is a need for analytical tools that are capable of imaging corrosion pits and precursor sites with high spatial resolution and sensitivity. The lateral electrochemical contrast in alternating-current scanning electrochemical microscopy (AC-SECM) has been found to be highly dependent on the frequency of the applied alternating voltage. In order to be able to obtain data with optimum contrast and high resolution, the AC frequency is swept in a full spectrum at each point in space instead of performing spatially resolved measurements at one fixed perturbation frequency. In doing so, four-dimensional data sets are acquired (4D AC-SECM). Here, we describe the instrument set-up and modus operandi, along with the first results from the imaging of corroding surfaces. Corrosion precursor sites and local defects in protective organic coatings, as well as an actively corroding pit on 304 stainless steel, have been successfully visualised. Since the lateral electrochemical contrast in these images varies with the perturbation frequency, the proposed approach constitutes an indispensable tool for obtaining optimum electrochemical contrast. PMID:18351698

  4. Signature of cluster disruption within magnetic fluid samples: The key information provided by low frequency alternating current susceptibility measurements

    NASA Astrophysics Data System (ADS)

    Du, Zhongzhou; Liu, Wenzhong; Zhong, Jing; Zhou, Ming; Zhang, Pu; Cesar Morais, Paulo

    2014-05-01

    This paper is focused on the signature of thermal-assisted cluster disruption while analyzing the inverse alternating current (AC) susceptibility (1/χ) versus temperature (T) curves recorded at lower AC frequencies (f), below 300 Hz. A commercial oil-based magnetic fluid (MF) sample was used in the experiments to investigate the critical temperature (T*) that characterizes the thermal disruption of aggregates suspended within the MF sample. T* was found to reduce as f increased within the frequency range of our investigation (63-263 Hz). Furthermore, T* was found to scale with the square of the applied AC frequency. Both theoretical and experimental evidences support that the excitation field frequency (f) dependence of the critical temperature (T*) is well described by T*(f)=T*(0)-Af/21+Bf2. The model is based on energy absorption of magnetic nanoparticles in an AC magnetic field.

  5. Inducing self-rotation of cells with natural and artificial melanin in a linearly polarized alternating current electric field

    PubMed Central

    Ouyang, Mengxing; Ki Cheung, Wing; Liang, Wenfeng; Mai, John D.; Keung Liu, Wing; Jung Li, Wen

    2013-01-01

    The phenomenon of self-rotation observed in naturally and artificially pigmented cells under an applied linearly polarized alternating current (non-rotating) electrical field has been investigated. The repeatable and controllable rotation speeds of the cells were quantified and their dependence on dielectrophoretic parameters such as frequency, voltage, and waveform was studied. Moreover, the rotation behavior of the pigmented cells with different melanin content was compared to quantify the correlation between self-rotation and the presence of melanin. Most importantly, macrophages, which did not originally rotate in the applied non-rotating electric field, began to exhibit self-rotation that was very similar to that of the pigmented cells, after ingesting foreign particles (e.g., synthetic melanin or latex beads). We envision the discovery presented in this paper will enable the development of a rapid, non-intrusive, and automated process to obtain the electrical conductivities and permittivities of cellular membrane and cytoplasm in the near future. PMID:24404075

  6. Elicitors as alternative strategy to pesticides in grapevine? Current knowledge on their mode of action from controlled conditions to vineyard.

    PubMed

    Delaunois, Bertrand; Farace, Giovanni; Jeandet, Philippe; Clément, Christophe; Baillieul, Fabienne; Dorey, Stéphan; Cordelier, Sylvain

    2014-04-01

    Development and optimisation of alternative strategies to reduce the use of classic chemical inputs for protection against diseases in vineyard is becoming a necessity. Among these strategies, one of the most promising consists in the stimulation and/or potentiation of the grapevine defence responses by the means of elicitors. Elicitors are highly diverse molecules both in nature and origins. This review aims at providing an overview of the current knowledge on these molecules and will highlight their potential efficacy from the laboratory in controlled conditions to vineyards. Recent findings and concepts (especially on plant innate immunity) and the new terminology (microbe-associated molecular patterns, effectors, etc.) are also discussed in this context. Other objectives of this review are to highlight the difficulty of transferring elicitors use and results from the controlled conditions to the vineyard, to determine their practical and effective use in viticulture and to propose ideas for improving their efficacy in non-controlled conditions. PMID:23719689

  7. Concentric rings of polystyrene and titanium dioxide nanoparticles patterned by alternating current signal guided coffee ring effect

    NASA Astrophysics Data System (ADS)

    Mu, Jinhua; Lin, Peng; Xia, Qiangfei

    2014-06-01

    The authors studied the surface deposition of nanoparticles by introducing an alternating current (AC) signal into the millimeter-sized nanoparticle droplet. For both polystyrene (PS) in deionized (DI) water and titanium dioxide (TiO2) in toluene, the nanoparticles self-assembled into regular concentric rings over a larger area on the substrate during the droplet drying process. The patterned area decreased, and the inter-ring spacing increased with higher AC frequencies for the TiO2/toluene system, while those for the PS/DI water system only changed slightly. The frequency dependent pattern formation was interpreted by the interaction between different factors such as capillary flow and the AC signal introduced dielectrophoresis force.

  8. An alternative analysis of low- and high-altitude observations of ring current ions during a storm recovery phase

    NASA Technical Reports Server (NTRS)

    Lyons, L. R.

    1977-01-01

    Explorer 45 equatorial observations of ring current ions during a storm recovery phase have shown pitch angle distributions and decay rates inconsistent with proton charge exchange with neutral hydrogen. This inconsistency has led to the suggestion that recovery phase ring current ions at L less than or equal to 4 and energies not greater than 50 keV are dominated by He(+) rather than protons. The absence of He(+) on flux tubes from which H(+) and O(+) were precipitating in ion mass spectrometer measurements made during the same period by the low-altitude polar-orbiting satellite 1971-089A led Sharp et al. to suggest a source of H(+) and O(+) to L = 3 during this period. An alternative explanation, in which the magnetic field lines labeled L = 3 at the earth's surface near local midnight were mapped to about 3.7 earth radii in the equatorial plane during the storm recovery phase and during the period of enhanced activity, is proposed. If the proposed explanation is correct, the observations of Sharp et al. are not incompatible with the conclusion that the recovery phase ions at less than 50 keV were dominated by He(+) for L not greater than 3.7.

  9. Alternating and direct current electrochemical studies of a wool wax-based corrosion preventive coating on aluminum alloy 2024

    SciTech Connect

    Su, P.C.; Devereux, O.F.

    1998-06-01

    The corrosion behavior of Al 2024-T3 treated with a wool wax (lanolin)-based corrosion preventive coating in aqueous 0.5 M sodium chloride was studied using electrochemical impedance spectroscopy (EIS) and direct current electrode polarization. DC measurements were modeled by three reactions: oxidation of aluminum, reduction of oxygen, and reduction of hydrogen. Alternating current behavior of untreated specimens was modeled using the Randles circuit, and that of inhibited specimens was modeled using parallel resistance-capacitance circuits representing the coating and the charge-transfer process. AC and DC estimates of the polarization resistance of coated specimens were 50 M{Omega}-cm{sup 2} and 32 M{Omega}-cm{sup 2}, respectively. AC and DC values for bare control specimens were of the order of 3 k{Omega}-cm{sup 2} and 15 k{Omega}-cm{sup 2}, respectively. The wool wax coating was found to be a very effective corrosion preventative for this alloy in the aqueous saline environment whether applied to freshly prepared surfaces or to corroded specimens removed from simulated service.

  10. Aneurysm Sac Pressure Measurement with Minimally Invasive Implantable Pressure Sensors: An Alternative to Current Surveillance Regimes after EVAR?

    SciTech Connect

    Springer, Fabian Guenther, Rolf W.; Schmitz-Rode, Thomas

    2008-05-15

    Current protocols for surveillance after endovascular repair (EVAR) of abdominal aortic aneurysms are mostly based on costly and time-consuming imaging procedures and aim to detect adverse events such as graft migration, endoleaks or aneurysm sac enlargement. These imaging procedures are either associated with radiation exposure to the patients or may be harmful to the patient due to the use of iodine- or gadolinium-containing contrast agents. Furthermore the advantages of EVAR in the short term might be negated by the necessity for endograft surveillance over years. Thus, alternative modalities for follow-up are being investigated. One of these technologies provides pressure information directly from the aneurysm sac. This noninvasive, telemetric pressure sensing was tested in vitro as well as in first clinical trials and was able to identify successful aneurysm exclusion after EVAR. The telemetric pressure sensors showed a promising efficacy and accuracy in detecting type I and type III endoleaks and will help to clarify the clinical relevance of type II endoleaks. This article provides an overview of the in vitro sensors investigated as well as the first clinical trials and the sensors' potential to change the current endograft surveillance regimes.

  11. Alternating current-driven non-thermal arc plasma torch working with air medium at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Ni, Guohua; Lin, Qifu; Li, Lei; Cheng, Cheng; Chen, Longwei; Shen, Jie; Lan, Yan; Meng, Yuedong

    2013-11-01

    This work is devoted to the investigation of the discharge characteristics of high-frequency alternating current (ac) plasma torch working with air medium using electrical and spectroscopic techniques. A simple structure and compact ac plasma torch associated with a resonance power supply allows the generation of low power discharges (lower than 1 kW) with high voltage and low current. The discharge shows a negative resistance characteristic, and its curve shifts up with gas flow increased. The effects of power on the emission intensity of NO (A 2Σ+ → X 2Π), OH (A 2Σ → X 2Π, 0-0), N2(C 3Πu → B 3Πg), Hα and O (3p^{5}P \\to 3S^{5}S_{2}^{0}) and their spatial distributions in plasma jet axial direction were investigated. It has been found that the emission intensities of NO, OH, N2, Hα and O rise with an increase in power dissipation. With increasing axial distances of plasma jet from nozzle exit, the emission intensity of OH increases and then decreases, while the emission intensities of other species decrease sharply. The vibrational temperature is much higher than the gas temperature, which demonstrates the ac-driven arc discharge deviation from thermal equilibrium plasma.

  12. Pore formation in lipid bilayer membranes made of phosphatidylinositol and oxidized cholesterol followed by means of alternating current.

    PubMed Central

    Gallucci, E; Micelli, S; Monticelli, G

    1996-01-01

    The kinetics of porin incorporation into black lipid membranes (BLM) made of phosphatidylinositol (PI) or oxidized cholesterol (Ox Ch) were studied by means of alternating current; the set-up was able to acquire resistance and capacitance simultaneously by means of a mixed double-frequency approach at 1 Hz and 1 KHz, respectively. Conductance was dependent on the interaction between protein-forming pores and lipids. For PI membranes below a porin concentration of 12.54 ng/ml, there was no membrane conductivity, whereas at 200 ng/ml a steady-state value was reached. Different behavior was displayed by Ox Ch membranes, in which a concentration of 12.54 ng/ml was sufficient to reach a steady state. The incorporation kinetics when porin was added after membrane formation were sigmoidal. When porin was present in the medium before membrane formation, the kinetics were sigmoidal for PI membranes but became exponential for Ox Ch membranes. Furthermore, for BLM made of PI, the conductance-versus-porin concentration relationship is sigmoidal, with a Hill coefficient of 5.6 +/- 0.07, which is functional evidence corroborating the six-channel repeating units seen previously. For BLM made of Ox Ch, this relationship followed a binding isotherm curve with a Hill coefficient of 0.934 +/- 0.129. PMID:8842220

  13. In situ measurement of alternating current magnetic susceptibility of Pd-hydrogen system for determination of hydrogen concentration in bulk

    NASA Astrophysics Data System (ADS)

    Akamaru, Satoshi; Hara, Masanori; Matsuyama, Masao

    2012-07-01

    An alternating current magnetic susceptometer for use as a hydrogen gauge for hydrogen-storage materials was designed and developed. The experimental system can simultaneously measure the hydrogen equilibrium pressure and the magnetic susceptibility of metal hydrides. The background voltage of the susceptometer was stabilized for a long period of time, without any adjustments, by attaching an efficient compensation circuit. The performance of the susceptometer at a static hydrogen concentration was demonstrated by measuring the magnetic susceptibility of a Pd-hydrogen system under equilibrium conditions. The in situ measurement of the magnetic susceptibility of Pd during hydrogen absorption was carried out using the susceptometer. Since the in situ magnetic susceptibility obtained at a lower initial hydrogen pressure agreed with the magnetic susceptibility measured at a static hydrogen concentration, the susceptometer could be used to determine the hydrogen concentration in Pd in situ. At a higher initial hydrogen pressure, enhancement of the magnetic susceptibility was observed at the beginning of hydrogen absorption because the magnetic moments induced by the large temporary strain generated in the Pd affected the magnetic susceptibility.

  14. In situ measurement of alternating current magnetic susceptibility of Pd-hydrogen system for determination of hydrogen concentration in bulk.

    PubMed

    Akamaru, Satoshi; Hara, Masanori; Matsuyama, Masao

    2012-07-01

    An alternating current magnetic susceptometer for use as a hydrogen gauge for hydrogen-storage materials was designed and developed. The experimental system can simultaneously measure the hydrogen equilibrium pressure and the magnetic susceptibility of metal hydrides. The background voltage of the susceptometer was stabilized for a long period of time, without any adjustments, by attaching an efficient compensation circuit. The performance of the susceptometer at a static hydrogen concentration was demonstrated by measuring the magnetic susceptibility of a Pd-hydrogen system under equilibrium conditions. The in situ measurement of the magnetic susceptibility of Pd during hydrogen absorption was carried out using the susceptometer. Since the in situ magnetic susceptibility obtained at a lower initial hydrogen pressure agreed with the magnetic susceptibility measured at a static hydrogen concentration, the susceptometer could be used to determine the hydrogen concentration in Pd in situ. At a higher initial hydrogen pressure, enhancement of the magnetic susceptibility was observed at the beginning of hydrogen absorption because the magnetic moments induced by the large temporary strain generated in the Pd affected the magnetic susceptibility. PMID:22852719

  15. Feedback-Controlled Transcranial Alternating Current Stimulation Reveals a Functional Role of Sleep Spindles in Motor Memory Consolidation.

    PubMed

    Lustenberger, Caroline; Boyle, Michael R; Alagapan, Sankaraleengam; Mellin, Juliann M; Vaughn, Bradley V; Fröhlich, Flavio

    2016-08-22

    Transient episodes of brain oscillations are a common feature of both the waking and the sleeping brain. Sleep spindles represent a prominent example of a poorly understood transient brain oscillation that is impaired in disorders such as Alzheimer's disease and schizophrenia. However, the causal role of these bouts of thalamo-cortical oscillations remains unknown. Demonstrating a functional role of sleep spindles in cognitive processes has, so far, been hindered by the lack of a tool to target transient brain oscillations in real time. Here, we show, for the first time, selective enhancement of sleep spindles with non-invasive brain stimulation in humans. We developed a system that detects sleep spindles in real time and applies oscillatory stimulation. Our stimulation selectively enhanced spindle activity as determined by increased sigma activity after transcranial alternating current stimulation (tACS) application. This targeted modulation caused significant enhancement of motor memory consolidation that correlated with the stimulation-induced change in fast spindle activity. Strikingly, we found a similar correlation between motor memory and spindle characteristics during the sham night for the same spindle frequencies and electrode locations. Therefore, our results directly demonstrate a functional relationship between oscillatory spindle activity and cognition. PMID:27476602

  16. Rapid immunocytochemistry based on alternating current electric field using squash smear preparation of central nervous system tumors.

    PubMed

    Moriya, Jun; Tanino, Mishie Ann; Takenami, Tomoko; Endoh, Tomoko; Urushido, Masana; Kato, Yasutaka; Wang, Lei; Kimura, Taichi; Tsuda, Masumi; Nishihara, Hiroshi; Tanaka, Shinya

    2016-01-01

    The role of intraoperative pathological diagnosis for central nervous system (CNS) tumors is crucial for neurosurgery when determining the surgical procedure. Especially, treatment of carmustine (BCNU) wafers requires a conclusive diagnosis of high-grade glioma proven by intraoperative diagnosis. Recently, we demonstrated the usefulness of rapid immunohistochemistry (R-IHC) that facilitates antigen-antibody reaction under alternative current (AC) electric field in the intraoperative diagnosis of CNS tumors; however, a higher proportion of water and lipid in the brain parenchyma sometimes leads to freezing artifacts, resulting in poor quality of frozen sections. On the other hand, squash smear preparation of CNS tumors for cytology does not affect the frozen artifacts, and the importance of smear preparation is now being re-recognized as being better than that of the tissue sections. In this study, we established the rapid immunocytochemistry (R-ICC) protocol for squash smears of CNS tumors using AC electric field that takes only 22 min, and demonstrated its usefulness for semi-quantitative Ki-67/MIB-1 labeling index and CD 20 by R-ICC for intraoperative diagnosis. R-ICC by AC electric field may become a substantial tool for compensating R-IHC and will be applied for broad antibodies in the future. PMID:26546480

  17. Synthetic tactile perception induced by transcranial alternating-current stimulation can substitute for natural sensory stimulus in behaving rabbits.

    PubMed

    Márquez-Ruiz, Javier; Ammann, Claudia; Leal-Campanario, Rocío; Ruffini, Giulio; Gruart, Agnès; Delgado-García, José M

    2016-01-01

    The use of brain-derived signals for controlling external devices has long attracted the attention from neuroscientists and engineers during last decades. Although much effort has been dedicated to establishing effective brain-to-computer communication, computer-to-brain communication feedback for "closing the loop" is now becoming a major research theme. While intracortical microstimulation of the sensory cortex has already been successfully used for this purpose, its future application in humans partly relies on the use of non-invasive brain stimulation technologies. In the present study, we explore the potential use of transcranial alternating-current stimulation (tACS) for synthetic tactile perception in alert behaving animals. More specifically, we determined the effects of tACS on sensory local field potentials (LFPs) and motor output and tested its capability for inducing tactile perception using classical eyeblink conditioning in the behaving animal. We demonstrated that tACS of the primary somatosensory cortex vibrissa area could indeed substitute natural stimuli during training in the associative learning paradigm. PMID:26790614

  18. Comparative Study on Magnetic Properties and Microstructure of As-prepared and Alternating Current Joule Annealed Wires

    NASA Astrophysics Data System (ADS)

    Liu, J. S.; Wang, X. D.; Chen, D. M.; Qin, F. X.; Wang, H.; Xing, D. W.; Xue, X.; Sun, J. F.

    X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), magnetic measurement including impedance measurement were used for investigating the microstructure and magnetic properties of as-prepared and alternating current Joule annealed (ACJA) Co-rich amorphous microwires for potential sensor applications. Experimental results indicated that as-cast and ACJA wires both were amorphous characteristic, while ACJA wire has an enhanced local ordering degree of atom arrangement. There was a transform of magnetic properties after ACJA treatment, namely increasing coercivity, maximum magnetic permeability and saturation magnetization, resulting from the coactions of magnetic anisotropy and magnetic moment exchange coupling. Moreover, ACJA treatment can drastically improve the GMI property of melt-extracted wires. At 5 MHz, the maximum GMI ratio [ΔZ/Z0]max of ACJA wire increases to 205.93%, which is nearly 4.1 times of 50.62% for as-cast wire, and the field response sensitivity ξmax of ACJA wire increases to 463.70%/Oe by more than 2 times of 212.15%/Oe for as-cast wire. From sensor application perspective, the sensor applied frequency range (SAFR) of ACJA wire is 3MHz-7 MHz (the better working frequency is at 5 MHz). It can therefore be concluded that the ACJA wire (60 mA, 480s, 50 Hz) has better GMI and magnetic properties, is more suitable for potential magnetic sensor applications working at low-frequency and relatively high-working-magnetic field.

  19. Alternating current characterization of nano-Pt(II) octaethylporphyrin (PtOEP) thin film as a new organic semiconductor

    NASA Astrophysics Data System (ADS)

    M, Dongol; M, M. El-Nahass; A, El-Denglawey; A, A. Abuelwafa; T, Soga

    2016-06-01

    Alternating current (AC) conductivity and dielectric properties of thermally evaporated Au/PtOEP/Au thin films are investigated each as a function of temperature (303 K–473 K) and frequency (50 Hz–5 MHz). The frequency dependence of AC conductivity follows the Jonscher universal dynamic law. The AC-activation energies are determined at different frequencies. It is found that the correlated barrier hopping (CBH) model is the dominant conduction mechanism. The variation of the frequency exponent s with temperature is analyzed in terms of the CBH model. Coulombic barrier height W m , hopping distance R ω , and the density of localized states N(E F) are valued at different frequencies. Dielectric constant ε 1(ω,T) and dielectric loss ε 2(ω,T) are discussed in terms of the dielectric polarization process. The dielectric modulus shows the non-Debye relaxation in the material. The extracted relaxation time by using the imaginary part of modulus (M″) is found to follow the Arrhenius law.

  20. Alternating current calorimeter for specific heat capacity measurements at temperatures below 10 K and pressures up to 10 GPa

    NASA Astrophysics Data System (ADS)

    Umeo, Kazunori

    2016-06-01

    A developed alternating current calorimeter for measuring the absolute value of specific heat C of a very small sample under a pressure up to 10 GPa and low temperature below 10 K is described. A Bridgman anvil cell made of tungsten carbide with a top diameter of 3 mm is used. A hollow at the top prevents expansion of the sample space over the anvil top. Two chip resistors, which act as a thermometer and a heater, are mounted on the outer part of a copper-beryllium gasket with a frying pan-like shape. Thus, the thermometer is not pressurized. In order to isolate the gasket from the anvil thermally, diamond powder with a grain size of 0.25 μm is placed on the anvil top. Two jumps of C at the superconducting transitions of Pb (3.3 mg) and In (5.0 mg) are observed under various pressures up to 9 GPa, as clearly as those at the ambient pressure.

  1. Alternating current calorimeter for specific heat capacity measurements at temperatures below 10 K and pressures up to 10 GPa.

    PubMed

    Umeo, Kazunori

    2016-06-01

    A developed alternating current calorimeter for measuring the absolute value of specific heat C of a very small sample under a pressure up to 10 GPa and low temperature below 10 K is described. A Bridgman anvil cell made of tungsten carbide with a top diameter of 3 mm is used. A hollow at the top prevents expansion of the sample space over the anvil top. Two chip resistors, which act as a thermometer and a heater, are mounted on the outer part of a copper-beryllium gasket with a frying pan-like shape. Thus, the thermometer is not pressurized. In order to isolate the gasket from the anvil thermally, diamond powder with a grain size of 0.25 μm is placed on the anvil top. Two jumps of C at the superconducting transitions of Pb (3.3 mg) and In (5.0 mg) are observed under various pressures up to 9 GPa, as clearly as those at the ambient pressure. PMID:27370464

  2. Alternating Current Electric Fields of Varying Frequencies: Effects on Proliferation and Differentiation of Porcine Neural Progenitor Cells

    PubMed Central

    Lim, Ji-Hey; McCullen, Seth D.; Piedrahita, Jorge A.

    2013-01-01

    Abstract Application of sinusoidal electric fields (EFs) has been observed to affect cellular processes, including alignment, proliferation, and differentiation. In the present study, we applied low-frequency alternating current (AC) EFs to porcine neural progenitor cells (pNPCs) and investigated the effects on cell patterning, proliferation, and differentiation. pNPCs were grown directly on interdigitated electrodes (IDEs) localizing the EFs to a region accessible visually for fluorescence-based assays. Cultures of pNPCs were exposed to EFs (1 V/cm) of 1 Hz, 10 Hz, and 50 Hz for 3, 7, and 14 days and compared to control cultures. Immunocytochemistry was performed to evaluate the expression of neural markers. pNPCs grew uniformly with no evidence of alignment to the EFs and no change in cell numbers when compared with controls. Nestin expression was shown in all groups at 3 and 7 days, but not at 14 days. NG2 expression was low in all groups. Co-expression of glial fibrillary acidic protein (GFAP) and TUJ1 was significantly higher in the cultures exposed to 10- and 50-Hz EFs than the controls. In summary, sinusoidal AC EFs via IDEs did not alter the alignment and proliferation of pNPCs, but higher frequency stimulation appeared to delay differentiation into mature astrocytes. PMID:23961767

  3. Current Efforts to Develop Alternate "TB 700-2" Test Protocols for the Hazard Classification of Large Rocket Motors

    NASA Astrophysics Data System (ADS)

    Schwartz, Daniel F.; Bennett, Robert R.; Graham, Kenneth J.; Boggs, Thomas L.; Atwood, Alice I.; Butcher, A. Garn

    2002-04-01

    When the Department of Defense (DoD) revised Technical Bulletin (TB) 700-2, NAVSEAINST 8020.8B, TO 11A-1-47, DLAR 8220.12 hazard classification guidelines in January 1998, it significantly changed the procedures used to determine the explosive classification of rocket motors, to be shipped or placed in DoD storage facilities. The revised test protocols outlined in this document, (hereafter referred to as TB 700-2) are far more conservative and costly to implement than the previous ones. These changes could have a profound impact on the solid rocket community and in particular those involved with the research and development and manufacture of large (less than or = 304.8-millimeter (less than or = 12-inch)) diameter solid rocket motors (SRMs). The ramifications may include higher development costs and limitations on performance improvements. This paper outlines current efforts of the solid rocket community to develop acceptable alternate test protocols for large rocket motors that could fulfill the intent of TB 700-2 and be considered by the Department of Defense Explosive Safety Board (DDESB) for incorporation into a future revision to TB 700-2.

  4. Current Efforts to Develop Alternate "TB 700-2" Test Protocols for the Hazard Classification of Large Rocket Motors

    NASA Astrophysics Data System (ADS)

    Schwartz, Daniel F.; Bennett, Robert R.; Graham, Kenneth J.; Boggs, Thomas L.; Atwood, Alice I.

    1998-01-01

    When the Department of Defense (DoD) revised Technical Bulletin (TB) 700-2, NAVSEAINST 8020.8B, TO 11A-1-47, DLAR 8220.12 hazard classification guidelines in January 1998 1, it significantly changed the procedures used to determine the explosive classification of rocket motors, to be shipped or placed in DoD storage facilities. The revised test protocols outlined in this document, (hereafter referred to as TB 700-2) are far more conservative and costly to implement than the previous ones. These changes could have a profound impact on the solid rocket community and in particular those involved with the research and development and manufacture of large (greater than or equal 304.8-millimeter (greater than or equal l2-inch)) diameter solid rocket motors (SRMs). The ramifications may include higher development costs and limitations on performance improvements. This paper outlines current efforts of the solid rocket community to develop acceptable alternate test protocols for large rocket motors that could fulfill the intent of TB 700-2 and be considered by the Department of Defense Explosive Safety Board (DDESB) for incorporation into a future revision to TB 700-2.

  5. Current Efforts to Develop Alternate "TB700-2" Test Protocols for the Hazard Classification of Large Rocket Motors

    NASA Astrophysics Data System (ADS)

    Schwartz, Daniel F.; Bennett, Robert R.; Graham, Kenneth J.; Boggs, Thomas L.; Atwood, Alice I.

    2001-09-01

    When the Department of Defense (DoD) revised Technical Bulletin (TB) 700-2, NAVSEAINST 8020.8B, TO 11A-1-47, DLAR 8220.12 hazard classification guidelines in January 1998 1, it significantly changed the procedures used to determine the explosive classification of rocket motors, to be shipped or placed in DoD storage facilities. The revised test protocols outlined in this document, (hereafter referred to as TB 700-2) are far more conservative and costly to implement than the previous ones. These changes could have a profound impact on the solid rocket community and in particular those involved with the research and development and manufacture of large (equal to or greater than) 304.8-millimeter (equal to or greater than 12-inch diameter solid rocket motors (SRMs). The ramifications may include higher development costs and limitations on performance improvements. This paper outlines current efforts of the solid rocket community to develop acceptable alternate test protocols for large rocket motors that could fulfill the intent of TB 700-2 and be considered by the Department of Defense Explosive Safety Board (DDESB) for incorporation into a future revision to TB 700-2.

  6. Synthetic tactile perception induced by transcranial alternating-current stimulation can substitute for natural sensory stimulus in behaving rabbits

    PubMed Central

    Márquez-Ruiz, Javier; Ammann, Claudia; Leal-Campanario, Rocío; Ruffini, Giulio; Gruart, Agnès; Delgado-García, José M.

    2016-01-01

    The use of brain-derived signals for controlling external devices has long attracted the attention from neuroscientists and engineers during last decades. Although much effort has been dedicated to establishing effective brain-to-computer communication, computer-to-brain communication feedback for “closing the loop” is now becoming a major research theme. While intracortical microstimulation of the sensory cortex has already been successfully used for this purpose, its future application in humans partly relies on the use of non-invasive brain stimulation technologies. In the present study, we explore the potential use of transcranial alternating-current stimulation (tACS) for synthetic tactile perception in alert behaving animals. More specifically, we determined the effects of tACS on sensory local field potentials (LFPs) and motor output and tested its capability for inducing tactile perception using classical eyeblink conditioning in the behaving animal. We demonstrated that tACS of the primary somatosensory cortex vibrissa area could indeed substitute natural stimuli during training in the associative learning paradigm. PMID:26790614

  7. Transcranial Alternating Current Stimulation in Patients with Chronic Disorder of Consciousness: A Possible Way to Cut the Diagnostic Gordian Knot?

    PubMed

    Naro, Antonino; Bramanti, Placido; Leo, Antonino; Russo, Margherita; Calabrò, Rocco Salvatore

    2016-07-01

    Unresponsive wakefulness syndrome (UWS) is a chronic disorder of consciousness (DOC) characterized by a lack of awareness and purposeful motor behaviors, owing to an extensive brain connectivity impairment. Nevertheless, some UWS patients may retain residual brain connectivity patterns, which may sustain a covert awareness, namely functional locked-in syndrome (fLIS). We evaluated the possibility of bringing to light such residual neural networks using a non-invasive neurostimulation protocol. To this end, we enrolled 15 healthy individuals and 26 DOC patients (minimally conscious state-MCS- and UWS), who underwent a γ-band transcranial alternating current stimulation (tACS) over the right dorsolateral prefrontal cortex. We measured the effects of tACS on power and partial-directed coherence within local and long-range cortical networks, before and after the protocol application. tACS was able to specifically modulate large-scale cortical effective connectivity and excitability in all the MCS participants and some UWS patients, who could be, therefore, considered as suffering from fLIS. Hence, tACS could be a useful approach in supporting a DOC differential diagnosis, depending on the level of preservation of the cortical large-scale effective connectivity. PMID:27062669

  8. A simplified method for selecting a carbon-fiber electrode in pulse voltammetry.

    PubMed

    Liao, B Y; Lio, H P; Wang, C Y; Young, M S; Ho, M T; Lin, M T

    1993-12-01

    A method for selecting a usable carbon-fiber electrode using the equivalent resistance and capacitance is presented. This method uses an instrument with a PC-based look-up table for measuring the electrical characteristics of a carbon-fiber electrode in pulse voltammetry. Using this instrument, the equivalent resistance and capacitance of the carbon-fiber electrode in saturated sodium chloride solution can be obtained. This instrument includes a decade resistance box, a peak current detection and hold circuit, a half peak comparator and a decay duration counter. A look-up table is established by using RC circuits to emulate the electrochemical reaction of the carbon-fiber electrode in pulse voltammetry. The equivalent resistance is obtained from the decade resistance box according to Kirchhoff's law. Then the equivalent capacitance is determined from the decay duration counter reading and equivalent resistance with the look-up table via a PC interpolation program. After obtaining the equivalent resistance and capacitance of an electrode, the values are compared with the usable thresholds. This method provides an effective quality evaluation index of carbon-fiber electrode for the user in order to reduce electrode-induced experimental failure. The method is also available for other kinds of carbon-fiber electrodes as long as their look-up table and desired thresholds are established. PMID:8152240

  9. Increase in short-term memory capacity induced by down-regulating individual theta frequency via transcranial alternating current stimulation.

    PubMed

    Vosskuhl, Johannes; Huster, René J; Herrmann, Christoph S

    2015-01-01

    Working memory (WM) and short-term memory (STM) supposedly rely on the phase-amplitude coupling (PAC) of neural oscillations in the theta and gamma frequency ranges. The ratio between the individually dominant gamma and theta frequencies is believed to determine an individual's memory capacity. The aim of this study was to establish a causal relationship between the gamma/theta ratio and WM/STM capacity by means of transcranial alternating current stimulation (tACS). To achieve this, tACS was delivered at a frequency below the individual theta frequency. Thereby the individual ratio of gamma to theta frequencies was changed, resulting in an increase of STM capacity. Healthy human participants (N = 33) were allocated to two groups, one receiving verum tACS, the other underwent a sham control protocol. The electroencephalogram (EEG) was measured before stimulation and analyzed with regard to the properties of PAC between theta and gamma frequencies to determine individual stimulation frequencies. After stimulation, EEG was recorded again in order to find after-effects of tACS in the oscillatory features of the EEG. Measures of STM and WM were obtained before, during and after stimulation. Frequency spectra and behavioral data were compared between groups and different measurement phases. The tACS- but not the sham stimulated group showed an increase in STM capacity during stimulation. WM was not affected in either groups. An increase in task-related theta amplitude after stimulation was observed only for the tACS group. These augmented theta amplitudes indicated that the manipulation of individual theta frequencies was successful and caused the increase in STM capacity. PMID:26005411

  10. Enhancing Protein Capture Using a Combination of Nanoyeast Single-Chain Fragment Affinity Reagents and Alternating Current Electrohydrodynamic Forces.

    PubMed

    Vaidyanathan, Ramanathan; Rauf, Sakandar; Grewal, Yadveer S; Spadafora, Lauren J; Shiddiky, Muhammad J A; Cangelosi, Gerard A; Trau, Matt

    2015-12-01

    New high-performance detection technologies and more robust protein capture agents can be combined to both rapidly and specifically capture and detect protein biomarkers associated with disease in complex biological samples. Here we demonstrate the use of recently developed recombinant affinity reagents, namely nanoyeast-scFv, in combination with alternating current electrohydrodynamic (ac-EHD)-induced shear forces, to enhance capture performance during protein biomarker analysis. The use of ac-EHD significantly improves fluid transport across the capture domain, resulting in enhanced sensor-target interaction and simultaneous displacement of nonspecific molecules from the electrode surface. We demonstrate this simple proof-of-concept approach for the capture and detection of Entamoeba histolytica antigens from disinfected stool, within a span of 5 min using an ac-EHD microfluidic device. Under an ac-EHD field, antigens were captured on a nanoyeast-scFv immobilized device and subsequently detected using a quantum dot conjugated antibody. This immunosensor specifically detected antigen in disinfected stool with low background noise at concentrations down to 58.8 fM with an interassay reproducibility (%RSD of n = 3) < 17.2%, and in buffer down to 5.88 fM with an interassay reproducibility (% RSD, n = 3) of 8.4%. Furthermore, antigen detection using this immunosensor was 10 times more sensitive than previously obtained with the same nanoyeast-scFv reagents in a microfluidic device employing surface-enhanced Raman scattering (SERS) detection in buffer and at least 200 times more sensitive than methods using screen printed gold electrodes in disinfected stool. We predict this rapid and sensitive approach using these stable affinity reagents may offer a new methodology to detect protein disease biomarkers from biological matrices. PMID:26551436

  11. Broadband alternating current magnetic susceptibility: Method and application to the characterization of magnetic particles in igneous rocks

    NASA Astrophysics Data System (ADS)

    Kodama, K.

    2012-12-01

    Low-field alternating current magnetic susceptibility (MS) is among the most commonly used magnetic property, not only in rock and mineral magnetism but also in environmental magnetism studies. This study proposes a new rock magnetic method, Frequency Spectrum of MS (FSM), based on the measurement of the real component of MS over a wide range of frequency (100 Hz to 500 kHz) and the measurement of the imaginary component at high frequencies in the order of 10-102 kHz. This study presents the FSM results at room and low temperatures obtained from a variety of igneous rocks with SP to SD grain sizes, including acidic to basic volcanic rocks in Japan and a basalt in Hawaii. The FSMs from the andesite samples at room temperature unexceptionally show small but anomalous increase, as much as 5%, over a specific frequency interval between 10 kHz and 120 kHz. In contrast, FSMs of basalts from Oshima and Hawaii show no such peak, a typical pattern indicating the presence of SP grain ensembles. The anomalous FSM from the andesites suggests a new rock and mineral magnetic behavior indicating either magnetic resonance or magnetic relaxation. Considering the anomalous FSM patterns and their variations at low temperatures, it is suggested that the hypothetical resonance could be relevant to some magnetoelastic phenomenon, in which magnetic energy could be dissipated through a long-range, magnetostructural coupling, most likely, magnetostriction. The fact that the annealed andesite samples showed less developed FSM anomaly strongly supports this hypothesis, because annealing generally lowers the internal stress leading to the reduction of resistance in a forced oscillation system. Analyses of the low temperature results confirm magnetic relaxation phenomena taking place at low temperatures, and consequently support the above interpretation.

  12. Increase in short-term memory capacity induced by down-regulating individual theta frequency via transcranial alternating current stimulation

    PubMed Central

    Vosskuhl, Johannes; Huster, René J.; Herrmann, Christoph S.

    2015-01-01

    Working memory (WM) and short-term memory (STM) supposedly rely on the phase-amplitude coupling (PAC) of neural oscillations in the theta and gamma frequency ranges. The ratio between the individually dominant gamma and theta frequencies is believed to determine an individual’s memory capacity. The aim of this study was to establish a causal relationship between the gamma/theta ratio and WM/STM capacity by means of transcranial alternating current stimulation (tACS). To achieve this, tACS was delivered at a frequency below the individual theta frequency. Thereby the individual ratio of gamma to theta frequencies was changed, resulting in an increase of STM capacity. Healthy human participants (N = 33) were allocated to two groups, one receiving verum tACS, the other underwent a sham control protocol. The electroencephalogram (EEG) was measured before stimulation and analyzed with regard to the properties of PAC between theta and gamma frequencies to determine individual stimulation frequencies. After stimulation, EEG was recorded again in order to find after-effects of tACS in the oscillatory features of the EEG. Measures of STM and WM were obtained before, during and after stimulation. Frequency spectra and behavioral data were compared between groups and different measurement phases. The tACS- but not the sham stimulated group showed an increase in STM capacity during stimulation. WM was not affected in either groups. An increase in task-related theta amplitude after stimulation was observed only for the tACS group. These augmented theta amplitudes indicated that the manipulation of individual theta frequencies was successful and caused the increase in STM capacity. PMID:26005411

  13. Cyclic voltammetry of aquocobalamin on clay-modified electrodes

    SciTech Connect

    Borek, V.; Morra, M.J.

    1998-07-15

    Halogenated synthetic compounds are widespread contaminants of the environment. Although corrinoids reductively dehalogenate synthetic contaminants in solution, the redox behavior of sorbed tetrapyrroles has received limited attention. Colloidal clay suspensions were prepared as Ca{sup 2+} forms of hectorite (SHCa-1), montmorillonite (SWy-1, Syn-1, and SAz-1), and vermiculite (VTx-1) and spin coated on platinum electrodes. Cyclic voltammetry was performed with the clay-modified electrodes immersed in buffered solutions containing 1.0 mM aquocobalamin. Aquocobalamin in the presence of vermiculite-coated electrodes displayed the same cathodic and anodic peak potentials as unmodified electrodes immersed in aquocobalamin solutions. All other clay-modified electrodes shifted cathodic peaks to more negative values, while anodic peak shifts varied with the clay. Hectorite caused the largest shift in formal redox potential as compared to aquocobalamin in solution. The redox behavior of aquocobalamin as modified by sorption to clay minerals potentially affects dehalogenation rates of synthetic organic compounds in the environment. Clays lowering the formal redox potential of the tetrapyrrole create a potentially more efficient catalyst for pollutant degradation. However, thermodynamic data as obtained using cyclic voltammetry cannot be used to make definitive predictions about the kinetics of contaminant dehalogenation. Reductive dehalogenation will be a function of altered electrochemical properties of the tetrapyrrole as well as rates of contaminant diffusion to the site of tetrapyrrole sorption.

  14. Solid state voltammetry and sensors in solids and gases

    SciTech Connect

    Murray, R.W.

    1992-04-01

    This project explores the electrochemical reactivity of electron transfer donor/acceptors dissolved in and diffusing through solid and semi-solid, ionically conductive media. The emphasis is on developing voltammetric experiments that are quantitatively interpretable in terms of the mass transport and electron transfer rates and thermodynamic equilibria of the redox solutes, and to exploit such experiments to probe their chemical and electrochemical behavior in the solid media. Techniques for quantitative voltammetry in solids were essentially unknown prior to initiation of this DOE project. We mainly employ poly(ethers)s containing dissolved metal salts electrolytes ( polymer electrolytes''), as prototype solid and semi-solid solvents. During this award year we have (a) concluded a study of plasticization chemistry in poly (ether) polymer electrolytes, (b) made progress in devising techniques for measuring the rates of electron transfer reactions in solid and semi-solid poly (ether)s, (c) continued efforts to design and understand the behavior of microband electrodes of various widths (0.1 to 10 {mu}m) in voltammetry of redox solutes, and (d) initiated synthetic efforts to attach ethylene oxide chains of various lengths to redox solutes.

  15. Cyclic voltammetry deposition of copper nanostructure on MWCNTs modified pencil graphite electrode: An ultra-sensitive hydrazine sensor.

    PubMed

    Heydari, Hamid; Gholivand, Mohammad B; Abdolmaleki, Abbas

    2016-09-01

    In this study, Copper (Cu) nanostructures (CuNS) were electrochemically deposited on a film of multiwall carbon nanotubes (MWCNTs) modified pencil graphite electrode (MWCNTs/PGE) by cyclic voltammetry method to fabricate a CuNS-MWCNTs composite sensor (CuNS-MWCNT/PGE) for hydrazine detection. Scanning electron microscopy (SEM) and Energy-dispersive X-ray spectroscopy (EDX) were used for the characterization of CuNS on the MWCNTs matrix. The composite of CuNS-MWCNTs was characterized with cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The preliminary studies showed that the proposed sensor have a synergistic electrocatalytic activity for the oxidation of hydrazine in phosphate buffer. The catalytic currents of square wave voltammetry had a linear correlation with the hydrazine concentration in the range of 0.1 to 800μM with a low detection limit of 70nM. Moreover, the amperometric oxidation current exhibited a linear correlation with hydrazine concentration in the concentration range of 50-800μM with the detection limit of 4.3μM. The proposed electrode was used for the determination of hydrazine in real samples and the results were promising. Empirical results also indicated that the sensor had good reproducibility, long-term stability, and the response of the sensor to hydrazine was free from interferences. Moreover, the proposed sensor benefits from simple preparation, low cost, outstanding sensitivity, selectivity, and reproducibility for hydrazine determination. PMID:27207034

  16. Bare and Polymer-Coated Indium Tin Oxide as Working Electrodes for Manganese Cathodic Stripping Voltammetry.

    PubMed

    Rusinek, Cory A; Bange, Adam; Warren, Mercedes; Kang, Wenjing; Nahan, Keaton; Papautsky, Ian; Heineman, William R

    2016-04-19

    Though an essential metal in the body, manganese (Mn) has a number of health implications when found in excess that are magnified by chronic exposure. These health complications include neurotoxicity, memory loss, infertility in males, and development of a neurologic psychiatric disorder, manganism. Thus, trace detection in environmental samples is increasingly important. Few electrode materials are able to reach the negative reductive potential of Mn required for anodic stripping voltammetry (ASV), so cathodic stripping voltammetry (CSV) has been shown to be a viable alternative. We demonstrate Mn CSV using an indium tin oxide (ITO) working electrode both bare and coated with a sulfonated charge selective polymer film, polystyrene-block-poly(ethylene-ran-butylene)-block-polystyrene-sulfonate (SSEBS). ITO itself proved to be an excellent electrode material for Mn CSV, achieving a calculated detection limit of 5 nM (0.3 ppb) with a deposition time of 3 min. Coating the ITO with the SSEBS polymer was found to increase the sensitivity and lower the detection limit to 1 nM (0.06 ppb). This polymer modified electrode offers excellent selectivity for Mn as no interferences were observed from other metal ions tested (Zn(2+), Cd(2+), Pb(2+), In(3+), Sb(3+), Al(3+), Ba(2+), Co(2+), Cu(2+), Ni(3+), Bi(3+), and Sn(2+)) except Fe(2+), which was found to interfere with the analytical signal for Mn(2+) at a ratio 20:1 (Fe(2+)/Mn(2+)). The applicability of this procedure to the analysis of tap, river, and pond water samples was demonstrated. This simple, sensitive analytical method using ITO and SSEBS-ITO could be applied to a number of electroactive transition metals detectable by CSV. PMID:26980322

  17. Nanoalloy electrocatalysis: Simulating cyclic voltammetry from configurational thermodynamics with adsorbates

    SciTech Connect

    Wang, Lin -Lin; Tan, Teck L.; Johnson, Duane D.

    2015-02-27

    We simulate the adsorption isotherms for alloyed nanoparticles (nanoalloys) with adsorbates to determine cyclic voltammetry (CV) during electrocatalysis. The effect of alloying on nanoparticle adsorption isotherms is provided by a hybrid-ensemble Monte Carlo simulation that uses the cluster expansion method extended to non-exchangeable coupled lattices for nanoalloys with adsorbates. Exemplified here for the hydrogen evolution reaction, a 2-dimensional CV is mapped for Pd–Pt nanoalloys as a function of both electrochemical potential and the global Pt composition, and shows a highly non-linear alloying effect on CV. Detailed features in CV arise from the interplay among the H-adsorption in multiple sites that is closely correlated with alloy configurations, which are in turn affected by the H-coverage. The origins of specific features in CV curves are assigned. As a result, the method provides a more complete means to design nanoalloys for electrocatalysis.

  18. Nanoalloy electrocatalysis: Simulating cyclic voltammetry from configurational thermodynamics with adsorbates

    DOE PAGESBeta

    Wang, Lin -Lin; Tan, Teck L.; Johnson, Duane D.

    2015-02-27

    We simulate the adsorption isotherms for alloyed nanoparticles (nanoalloys) with adsorbates to determine cyclic voltammetry (CV) during electrocatalysis. The effect of alloying on nanoparticle adsorption isotherms is provided by a hybrid-ensemble Monte Carlo simulation that uses the cluster expansion method extended to non-exchangeable coupled lattices for nanoalloys with adsorbates. Exemplified here for the hydrogen evolution reaction, a 2-dimensional CV is mapped for Pd–Pt nanoalloys as a function of both electrochemical potential and the global Pt composition, and shows a highly non-linear alloying effect on CV. Detailed features in CV arise from the interplay among the H-adsorption in multiple sites thatmore » is closely correlated with alloy configurations, which are in turn affected by the H-coverage. The origins of specific features in CV curves are assigned. As a result, the method provides a more complete means to design nanoalloys for electrocatalysis.« less

  19. Cloud Point Extraction for Electroanalysis: Anodic Stripping Voltammetry of Cadmium

    PubMed Central

    Rusinek, Cory A.; Bange, Adam; Papautsky, Ian; Heineman, William R.

    2016-01-01

    Cloud point extraction (CPE) is a well-established technique for the pre-concentration of hydrophobic species from water without the use of organic solvents. Subsequent analysis is then typically performed via atomic absorption spectroscopy (AAS), UV-Vis spectroscopy, or high performance liquid chromatography (HPLC). However, the suitability of CPE for electroanalytical methods such as stripping voltammetry has not been reported. We demonstrate the use of CPE for electroanalysis using the determination of cadmium (Cd2+) by anodic stripping voltammetry (ASV) as a representative example. Rather than using the chelating agents which are commonly used in CPE to form a hydrophobic, extractable metal complex, we used iodide and sulfuric acid to neutralize the charge on Cd2+ to form an extractable ion pair. Triton X-114 was chosen as the surfactant for the extraction because its cloud point temperature is near room temperature (22–25° C). Bare glassy carbon (GC), bismuth-coated glassy carbon (Bi-GC), and mercury-coated glassy carbon (Hg-GC) electrodes were compared for the CPE-ASV. A detection limit for Cd2+ of 1.7 nM (0.2 ppb) was obtained with the Hg-GC electrode. Comparison of ASV analysis without CPE was also investigated and a 20x decrease (4.0 ppb) in the detection limit was observed. The suitability of this procedure for the analysis of tap and river water samples was also demonstrated. This simple, versatile, environmentally friendly and cost-effective extraction method is potentially applicable to a wide variety of transition metals and organic compounds that are amenable to detection by electroanalytical methods. PMID:25996561

  20. Cloud Point Extraction for Electroanalysis: Anodic Stripping Voltammetry of Cadmium.

    PubMed

    Rusinek, Cory A; Bange, Adam; Papautsky, Ian; Heineman, William R

    2015-06-16

    Cloud point extraction (CPE) is a well-established technique for the preconcentration of hydrophobic species from water without the use of organic solvents. Subsequent analysis is then typically performed via atomic absorption spectroscopy (AAS), UV-vis spectroscopy, or high performance liquid chromatography (HPLC). However, the suitability of CPE for electroanalytical methods such as stripping voltammetry has not been reported. We demonstrate the use of CPE for electroanalysis using the determination of cadmium (Cd(2+)) by anodic stripping voltammetry (ASV). Rather than using the chelating agents which are commonly used in CPE to form a hydrophobic, extractable metal complex, we used iodide and sulfuric acid to neutralize the charge on Cd(2+) to form an extractable ion pair. This offers good selectivity for Cd(2+) as no interferences were observed from other heavy metal ions. Triton X-114 was chosen as the surfactant for the extraction because its cloud point temperature is near room temperature (22-25 °C). Bare glassy carbon (GC), bismuth-coated glassy carbon (Bi-GC), and mercury-coated glassy carbon (Hg-GC) electrodes were compared for the CPE-ASV. A detection limit for Cd(2+) of 1.7 nM (0.2 ppb) was obtained with the Hg-GC electrode. ASV with CPE gave a 20x decrease (4.0 ppb) in the detection limit compared to ASV without CPE. The suitability of this procedure for the analysis of tap and river water samples was demonstrated. This simple, versatile, environmentally friendly, and cost-effective extraction method is potentially applicable to a wide variety of transition metals and organic compounds that are amenable to detection by electroanalytical methods. PMID:25996561

  1. Detection of Hypochlorous Acid Using Reduction Wave During Anodic Cyclic Voltammetry

    NASA Astrophysics Data System (ADS)

    Kodera, Fumihiro; Umeda, Minoru; Yamada, Akifumi

    2005-05-01

    A novel analysis method for detecting low free-chlorine concentrations using a reduction wave based on anodic cyclic voltammetry has been developed. The reduction wave has been observed at approximately 600 mV vs Ag/AgCl, which is dependent on the free-chlorine concentration and switching potential. The wave peak showed a maximum value for the switching potential at approximately 1350 mV vs Ag/AgCl, and a good linear relationship between the peak current and the concentrations in the range of 0.2-6.0 mg dm-3. The relative standard deviation (RSD) at each concentration was less than 2%. This method seems to be useful for the analysis of low free-chlorine concentrations.

  2. Application of N- and B-doped CVD diamond layers for cyclic voltammetry measurements

    NASA Astrophysics Data System (ADS)

    Torz-Piotrowska, R.; Wrzyszczyński, A.; Paprocki, K.; Staryga, E.

    2009-10-01

    Conductive polycrystalline diamond layers prepared by the CVD process have received attention from electrochemists owing to such superior electrochemical properties as the wide potential window, the very low background current, the stability of chemical and physical properties. In this paper, the cyclic voltammetry application using N- and B-doped diamond electrodes was studied. Diamond layers, doped with boron and nitrogen, were synthesized on a silicon substrate in a hot-filament CVD reactor. The obtained diamond layers were characterized using Raman spectroscopy and scanning electron microscopy (SEM). The electrochemical properties of diamond layers were measured in KCl and NaCl basic solutions to gain knowledge about their potential application as an electrode material. It was found that boron doped diamond electrodes showed potential windows up to about 7 V which were almost twice wider than those observed for conventional Pt electrodes.

  3. Investigation of parameters of the three phase high-voltage alternating current plasma generator with power up to 100 kW working on steam

    NASA Astrophysics Data System (ADS)

    Rutberg, Ph G.; Lukyanov, S. A.; Kiselev, A. A.; Kuschev, S. A.; Nakonechny, Gh V.; Nikonov, A. V.; Popov, S. D.; Serba, E. O.; Spodobin, V. A.; Surov, A. V.

    2011-01-01

    The paper presents the results of experimental investigation of parameters of the three-phase high voltage alternating current plasma generator with power up to 100 kW operating on steam with gas protection of the electrodes. Researches were carried out over a range of arc current from 25 to 50 A and range of steam consumption of 3-5 g/s. Current-voltage and volt consumable characteristics, operation oscillograms and dependence of power versus the flow rate of steam and protective gas are presented.

  4. Alternative splicing at C terminus of Ca(V)1.4 calcium channel modulates calcium-dependent inactivation, activation potential, and current density.

    PubMed

    Tan, Gregory Ming Yeong; Yu, Dejie; Wang, Juejin; Soong, Tuck Wah

    2012-01-01

    The Ca(V)1.4 voltage-gated calcium channel is predominantly expressed in the retina, and mutations to this channel have been associated with human congenital stationary night blindness type-2. The L-type Ca(V)1.4 channel displays distinct properties such as absence of calcium-dependent inactivation (CDI) and slow voltage-dependent inactivation (VDI) due to the presence of an autoinhibitory domain (inhibitor of CDI) in the distal C terminus. We hypothesized that native Ca(V)1.4 is subjected to extensive alternative splicing, much like the other voltage-gated calcium channels, and employed the transcript scanning method to identify alternatively spliced exons within the Ca(V)1.4 transcripts isolated from the human retina. In total, we identified 19 alternative splice variations, of which 16 variations have not been previously reported. Characterization of the C terminus alternatively spliced exons using whole-cell patch clamp electrophysiology revealed a splice variant that exhibits robust CDI. This splice variant arose from the splicing of a novel alternate exon (43*) that can be found in 13.6% of the full-length transcripts screened. Inclusion of exon 43* inserts a stop codon that truncates half the C terminus. The Ca(V)1.4 43* channel exhibited robust CDI, a larger current density, a hyperpolarized shift in activation potential by ∼10 mV, and a slower VDI. Through deletional experiments, we showed that the inhibitor of CDI was responsible for modulating channel activation and VDI, in addition to CDI. Calcium currents in the photoreceptors were observed to exhibit CDI and are more negatively activated as compared with currents elicited from heterologously expressed full-length Ca(V)1.4. Naturally occurring alternative splice variants may in part contribute to the properties of the native Ca(V)1.4 channels. PMID:22069316

  5. Quasi-steady-state voltammetry of rapid electron transfer reactions at the macroscopic substrate of the scanning electrochemical microscope.

    PubMed

    Nioradze, Nikoloz; Kim, Jiyeon; Amemiya, Shigeru

    2011-02-01

    We report on a novel theory and experiment for scanning electrochemical microscopy (SECM) to enable quasi-steady-state voltammetry of rapid electron transfer (ET) reactions at macroscopic substrates. With this powerful approach, the substrate potential is cycled widely across the formal potential of a redox couple while the reactant or product of a substrate reaction is amperometrically detected at the tip in the feedback or substrate generation/tip collection mode, respectively. The plot of tip current versus substrate potential features the retraceable sigmoidal shape of a quasi-steady-state voltammogram although a transient voltammogram is obtained at the macroscopic substrate. Finite element simulations reveal that a short tip-substrate distance and a reversible substrate reaction (except under the tip) are required for quasi-steady-state voltammetry. Advantageously, a pair of quasi-steady-state voltammograms is obtained by employing both operation modes to reliably determine all transport, thermodynamic, and kinetic parameters as confirmed experimentally for rapid ET reactions of ferrocenemethanol and 7,7,8,8-tetracyanoquinodimethane at a Pt substrate with ∼0.5 μm-radius Pt tips positioned at 90 nm-1 μm distances. Standard ET rate constants of ∼7 cm/s were obtained for the latter mediator as the largest determined for a substrate reaction by SECM. Various potential applications of quasi-steady-state voltammetry are also proposed. PMID:21175129

  6. Quasi-Steady-State Voltammetry of Rapid Electron Transfer Reactions at the Macroscopic Substrate of the Scanning Electrochemical Microscope

    PubMed Central

    Nioradze, Nikoloz; Kim, Jiyeon; Amemiya, Shigeru

    2011-01-01

    We report on novel theory and experiment for scanning electrochemical microscopy (SECM) to enable quasi-steady-state voltammetry of rapid electron transfer (ET) reactions at macroscopic substrates. With this powerful approach, substrate potential is cycled widely across the formal potential of a redox couple while the reactant or product of a substrate reaction is amperometrically detected at the tip in the feedback or substrate generation/tip collection mode, respectively. The plot of tip current versus substrate potential features the retraceable sigmoidal shape of a quasi-steady-state voltammogram although a transient voltammogram is obtained at the macroscopic substrate. Finite element simulations reveal that a short tip–substrate distance and a reversible substrate reaction (except under the tip) are required for quasi-steady-state voltammetry. Advantageously, a pair of quasi-steady-state voltammograms is obtained by employing both operation modes to reliably determine all transport, thermodynamic, and kinetic parameters as confirmed experimentally for rapid ET reactions of ferrocenemethanol and 7,7,8,8-tetracyanoquinodimethane at a Pt substrate with ∼0.5-μm-radius Pt tips positioned at 90 nm–1 μm distances. Standard ET rate constants of ∼7 cm/s were obtained for the latter mediator as the largest determined for a substrate reaction by SECM. The various potential applications of quasi-steady-state voltammetry are also proposed. PMID:21175129

  7. Assessment of Alternative Student and Delivery Systems: Assessment of the Current Delivery System. Supplement I to the Final Report.

    ERIC Educational Resources Information Center

    Advanced Technology, Inc., Reston, VA.

    The effects of the current student financial aid delivery system on five major participant groups are examined: federal government, states/guarantee agencies, postsecondary institutions, lenders and secondary markets, and applicants and families. Attention is directed to effects of the current system, including: administrative costs, fund…

  8. Electrochemical sensor with substitutional stripping voltammetry for highly sensitive endotoxin assay.

    PubMed

    Takano, Shinichiro; Inoue, Kumi Y; Takahashi, Satoko; Ino, Kosuke; Shiku, Hitoshi; Matsue, Tomokazu

    2014-10-01

    We have developed a novel method for detection of endotoxin with extra-high sensitivity by using substitutional stripping voltammetry (SSV). In this method, a p-aminophenol (pAP) conjugated peptide (Boc-Leu-Gly-Arg-pAP; LGR-pAP) was used as a substrate for a protease, which is activated at the last step of the endotoxin-induced Limulus amebocyte lysate (LAL) cascade reaction. Extra-highly sensitive detection of pAP liberated by the endotoxin-induced LAL reaction was successfully realized with SSV, based on the accumulation of an amperometric signal owing to exchange of the oxidation current of pAP generated at an electrode in a reaction cell with silver deposition on another electrode in a deposition cell. This reaction is driven by the difference in the redox potential between pAP/quinoneimine and silver/silver ion. The amount of the deposited silver is quantified by anodic stripping voltammetry (ASV). This SSV-based endotoxin assay was performed with a chip device comprising two cells, each of which was connected via a liquid junction made of Vycor® glass. The reaction cell and the deposition cell contained a standard endotoxin sample with LAL regents containing LGR-pAP and AgNO3 solution, respectively. After the cells were electrically connected for 60 min, ASV was conducted in the deposition cell to quantify the total electrical charge derived by the oxidation of free pAP in the reaction cell. The ASV signal increased with the increase of the endotoxin concentration in the sample solution in the range of 0.5-1000 EU L(-1). PMID:25096015

  9. Application of thin-shielded mercury microelectrodes in anodic stripping voltammetry.

    PubMed

    Daniele, Salvatore; Bragato, Carlo; Baldo, M Antonietta; Ciani, Ilenia

    2008-10-19

    The performance in anodic stripping voltammetry (ASV) of hemispherical mercury microelectrodes, fabricated by electrodeposition of liquid mercury on the surface of Pt microdisks which were surrounded by a rather thick or thin insulating shield, was compared. The Pt microdisks were produced by sealing a wire of 25 microm diameter into a glass capillary, and by coating the cylindrical length of the Pt wire with a cathodic electrophoretic paint. The ratio of the overall tip radius b, to the basal radius of the electrode a, so-called RG=b/a, was equal to 110+/-10 and 1.52+/-0.01 for the thick- and thin-shielded microdisk, respectively. The mercury microelectrodes were characterized by cyclic voltammetry at 1 mVs(-1), in 1mM Ru(NH(3))(6)(3+) aqueous solution. The steady-state voltammogram recorded with the thin-shielded mercury microelectrode displayed less hysteresis, while the steady-state current was about 30% higher than that of the thicker one. This was a consequence of the additional flux due to diffusion from behind the plane of the electrode. The flux enhancement, which was operative at the thin-shielded mercury microelectrode during the deposition step in the ASV experiments, allowed recording stripping peaks for Cd and Pb, which resulted about 32% larger than those recorded at the thicker shielded mercury microelectrode, under same experimental conditions. The usefulness of the thin-shielded mercury microelectrode for ASV measurements in real samples was verified by determining the content of heavy metal ions released in the pore water (pH 4.5) of a soil slurry. PMID:18804626

  10. Electrode Calibration with a Microfluidic Flow Cell for Fast-scan Cyclic Voltammetry

    PubMed Central

    Sinkala, Elly; McCutcheon, James E.; Schuck, Matt; Schmidt, Eric; Roitman, Mitchell F.; Eddington, David T.

    2012-01-01

    Fast-scan cyclic voltammetry (FSCV) is a common analytical electrochemistry tool used to measure chemical species. It has recently been adapted for measurement of neurotransmitters such as dopamine in awake and behaving animals (in vivo). Electrode calibration is an essential step in FSCV to relate observed current to concentration of a chemical species. However, existing methods require multiple components, which reduce the ease of calibrations. To this end, a microfluidic flow cell (µFC) was developed as a simple device to switch between buffer and buffer with a known concentration of the analyte of interest – in this case dopamine - in a microfluidic Y-channel. The ability to quickly switch solutions yielded electrode calibrations with faster rise times and that were more stable at peak current values. The µFC reduced the number of external electrical components and produced linear calibrations over a range of concentrations. To demonstrate this, an electrode calibrated with the µFC was used in FSCV recordings from a rat during the delivery of food reward – a stimulus that reliably evokes a brief increase in current due to the oxidation of dopamine. Using the linear calibration, dopamine concentrations were determined from the current responses evoked during the behavioral task. The µFC is able to easily and quickly calibrate FSCV electrode responses to chemical species for both in vitro and in vivo experiments. PMID:22522908

  11. Stripping voltammetry at micro-interface arrays: a review.

    PubMed

    Herzog, Grégoire; Beni, Valerio

    2013-03-26

    In this article, a comprehensive overview of the most recent developments in the field of stripping voltammetry at regular micro-interfaces (both solid-liquid and liquid-liquid interfaces) is presented. This review will report on the most conventional arrays of metallic micro-electrodes but also on the rapidly growing field of electrochemistry at arrays of micro-interfaces between two immiscible electrolyte solutions (μITIES). The main fabrication methods, together with some design considerations and diffusion phenomena at such interfaces are discussed. Main applications of micro-interface arrays are presented including heavy metals detection at micro-electrode arrays and detection of organic molecules (amino acids, vitamins, peptides and drugs) at the μITIES. Stripping analysis at micro-interface arrays is suitable for the detection of analytes in several real media including water, soil extracts and biological fluids (blood and saliva) with high specificity, sensitivity (detection limits of nM, ppb level) and reliability. Stripping analysis at μITIES and micro-electrode arrays are two complementary approaches that have the advantages of being cost effective, simple to use and easily adaptable to field measurement. PMID:23498116

  12. Fast Selective Detection of Pyocyanin Using Cyclic Voltammetry

    PubMed Central

    Alatraktchi, Fatima AlZahra’a; Breum Andersen, Sandra; Krogh Johansen, Helle; Molin, Søren; Svendsen, Winnie E.

    2016-01-01

    Pyocyanin is a virulence factor uniquely produced by the pathogen Pseudomonas aeruginosa. The fast and selective detection of pyocyanin in clinical samples can reveal important information about the presence of this microorganism in patients. Electrochemical sensing of the redox-active pyocyanin is a route to directly quantify pyocyanin in real time and in situ in hospitals and clinics. The selective quantification of pyocyanin is, however, limited by other redox-active compounds existing in human fluids and by other metabolites produced by pathogenic bacteria. Here we present a direct selective method to detect pyocyanin in a complex electroactive environment using commercially available electrodes. It is shown that cyclic voltammetry measurements between −1.0 V to 1.0 V reveal a potential detection window of pyocyanin of 0.58–0.82 V that is unaffected by other redox-active interferents. The linear quantification of pyocyanin has an R2 value of 0.991 across the clinically relevant concentration range of 2–100 µM. The proposed method was tested on human saliva showing a standard deviation of 2.5% ± 1% (n = 5) from the known added pyocyanin concentration to the samples. This inexpensive procedure is suggested for clinical use in monitoring the presence and state of P. aeruginosa infection in patients. PMID:27007376

  13. Fully printed flexible and disposable wireless cyclic voltammetry tag

    NASA Astrophysics Data System (ADS)

    Jung, Younsu; Park, Hyejin; Park, Jin-Ah; Noh, Jinsoo; Choi, Yunchang; Jung, Minhoon; Jung, Kyunghwan; Pyo, Myungho; Chen, Kevin; Javey, Ali; Cho, Gyoujin

    2015-01-01

    A disposable cyclic voltammetry (CV) tag is printed on a plastic film by integrating wireless power transmitter, polarized triangle wave generator, electrochemical cell and signage through a scalable gravure printing method. By proximity of 13.56 MHz RF reader, the printed CV tag generates 320 mHz of triangular sweep wave from +500 mV to -500 mV which enable to scan a printed electrochemical cell in the CV tag. By simply dropping any specimen solution on the electrochemical cell in the CV tag, the presence of solutes in the solution can be detected and shown on the signage of the CV tag in five sec. 10 mM of N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD) was used as a standard solute to prove the working concept of fully printed disposable wireless CV tag. Within five seconds, we can wirelessly diagnose the presence of TMPD in the solution using the CV tag in the proximity of the 13.56 MHz RF reader. This fully printed and wirelessly operated flexible CV tag is the first of its kind and marks the path for the utilization of inexpensive and disposable wireless electrochemical sensor systems for initial diagnose hazardous chemicals and biological molecules to improve public hygiene and health.

  14. Voltammetric detection of glutathione: an adsorptive stripping voltammetry approach.

    PubMed

    Areias, Madalena C C; Shimizu, Kenichi; Compton, Richard G

    2016-05-10

    A simple, sensitive, and rapid detection of glutathione by cyclic voltammetry using a bare glassy carbon electrode is reported in which glutathione forms a 1 : 1 complex compound with copper(ii) ions. This complex compound is adsorbed onto the electrode surface and undergoes electrochemical oxidation at a characteristic oxidation potential of ca. -0.20 V vs. the standard mercury/mercurous sulphate reference electrode, which is used to detect the glutathione concentration. The linear dynamic range is obtained for a glutathione concentration from 1 μM to 12.5 μM, and the sensitivity is found to be 0.1 ± 0.002 μA μM(-1). A low limit of detection (n = 3) of 0.14 μM and a precision of 1.8% are achieved using a simple, unmodified electrode. The robustness of the present methodology is demonstrated by the successful quantitative analysis of glutathione in the presence of cysteine. PMID:27074944

  15. Fully printed flexible and disposable wireless cyclic voltammetry tag

    PubMed Central

    Jung, Younsu; Park, Hyejin; Park, Jin-Ah; Noh, Jinsoo; Choi, Yunchang; Jung, Minhoon; Jung, Kyunghwan; Pyo, Myungho; Chen, Kevin; Javey, Ali; Cho, Gyoujin

    2015-01-01

    A disposable cyclic voltammetry (CV) tag is printed on a plastic film by integrating wireless power transmitter, polarized triangle wave generator, electrochemical cell and signage through a scalable gravure printing method. By proximity of 13.56 MHz RF reader, the printed CV tag generates 320 mHz of triangular sweep wave from +500 mV to −500 mV which enable to scan a printed electrochemical cell in the CV tag. By simply dropping any specimen solution on the electrochemical cell in the CV tag, the presence of solutes in the solution can be detected and shown on the signage of the CV tag in five sec. 10 mM of N,N,N′,N′-tetramethyl-p-phenylenediamine (TMPD) was used as a standard solute to prove the working concept of fully printed disposable wireless CV tag. Within five seconds, we can wirelessly diagnose the presence of TMPD in the solution using the CV tag in the proximity of the 13.56 MHz RF reader. This fully printed and wirelessly operated flexible CV tag is the first of its kind and marks the path for the utilization of inexpensive and disposable wireless electrochemical sensor systems for initial diagnose hazardous chemicals and biological molecules to improve public hygiene and health. PMID:25630250

  16. Cyclic voltammetry and RBS study of paint components

    NASA Astrophysics Data System (ADS)

    Bowman, Lynn; Spencer, Dirk; Muntele, Claudiu; Muntele, Iulia; Ila, D.

    2007-08-01

    Heavy metals and metalloid ions are found in environmental matrices. The most toxic are lead, cadmium and mercury. These three heavy metals have no biological function and are toxic at all concentrations. Lead is one of the most insidious heavy metals and is introduced into the environment by many different means. It persists in both urban and rural settings, being found in paint chips, pottery, crystal and pharmaceutical and nutritional products. The analysis of heavy elements such as lead in soil is of particular importance [W.T. Sturges, R.M. Harrison, Sci. Total Environ. 44 (3) (1985) 225; M.L. Lepow, L. Bruckman, M. Gillette, S. Markowitz, R. Robino, J. Kapish, Environ. Res. 10 (3) (1975) 415; A.E. Daniels, J.R. Kominsky, P.J. Clark, J. Hazard. Mater. B 87 (2001) 117; G. Hutter, D. Moshman, J. Hazard. Mater. 40 (1995) 1]. In preparing the methods for lead detection in paint, we have used Rutherford backscattering spectrometry (RBS) in order to study the type and amount of heavy metal content in paint samples collected at various sites in the historic campus at A&M University (AAMU). We will show the results of our study with emphasis on comparison of what we learned about presence of lead in paints using our ion beam methods compared with the analysis of lead in paints using cyclic voltammetry.

  17. Numerical and theoretical evaluations of AC losses for single and infinite numbers of superconductor strips with direct and alternating transport currents in external AC magnetic field

    NASA Astrophysics Data System (ADS)

    Kajikawa, K.; Funaki, K.; Shikimachi, K.; Hirano, N.; Nagaya, S.

    2010-11-01

    AC losses in a superconductor strip are numerically evaluated by means of a finite element method formulated with a current vector potential. The expressions of AC losses in an infinite slab that corresponds to a simple model of infinitely stacked strips are also derived theoretically. It is assumed that the voltage-current characteristics of the superconductors are represented by Bean’s critical state model. The typical operation pattern of a Superconducting Magnetic Energy Storage (SMES) coil with direct and alternating transport currents in an external AC magnetic field is taken into account as the electromagnetic environment for both the single strip and the infinite slab. By using the obtained results of AC losses, the influences of the transport currents on the total losses are discussed quantitatively.

  18. Why Current Doppler Ultrasound Methodology Is Inaccurate in Assessing Cerebral Venous Return: The Alternative of the Ultrasonic Jugular Venous Pulse

    PubMed Central

    2016-01-01

    Assessment of cerebral venous return is growing interest for potential application in clinical practice. Doppler ultrasound (DUS) was used as a screening tool. However, three meta-analyses of qualitative DUS protocol demonstrate a big heterogeneity among studies. In an attempt to improve accuracy, several authors alternatively measured the flow rate, based on the product of the time average velocity with the cross-sectional area (CSA). However, also the quantification protocols lacked of the necessary accuracy. The reasons are as follows: (a) automatic measurement of the CSA assimilates the jugular to a circle, while it is elliptical; (b) the use of just a single CSA value in a pulsatile vessel is inaccurate; (c) time average velocity assessment can be applied only in laminar flow. Finally, the tutorial describes alternative ultrasound calculation of flow based on the Womersley method, which takes into account the variation of the jugular CSA overtime. In the near future, it will be possible to synchronize the electrocardiogram with the brain inflow (carotid distension wave) and with the outflow (jugular venous pulse) in order to nicely have a noninvasive ultrasound picture of the brain-heart axis. US jugular venous pulse may have potential use in neurovascular, neurocognitive, neurosensorial, and neurodegenerative disorders. PMID:27006525

  19. Assessment of Alternative Student Aid Delivery Systems: Specification of the Current System. Supplement II to the Final Report.

    ERIC Educational Resources Information Center

    Advanced Technology, Inc., Reston, VA.

    Specifications of the current student financial aid system, with attention to the Pell Grant, Guaranteed Student Loan (GSL), and campus-based programs, are provided. The methodology used to develop the specifications is also described. The campus-based programs include the Supplemental Educational Opportunity Grant Program, the College Work Study…

  20. A Study of Second-Year Engineering Students' Alternative Conceptions about Electric Potential, Current Intensity and Ohm's Law

    ERIC Educational Resources Information Center

    Periago, M. Cristina; Bohigas, Xavier

    2005-01-01

    The aim of this research was to evaluate and analyse second-year industrial engineering and chemical engineering students prior knowledge of conceptual aspects of "circuit theory". Specifically, we focused on the basic concepts of electric potential and current intensity and on the fundamental relationship between them as expressed by Ohm's law.…

  1. Alternating current loss of second-generation high-temperature superconducting coils with magnetic and non-magnetic substrate

    NASA Astrophysics Data System (ADS)

    Zhang, Min; Kvitkovic, J.; Kim, Jae-Ho.; Kim, C. H.; Pamidi, S. V.; Coombs, T. A.

    2012-09-01

    It is widely believed that the second-generation high-temperature superconducting (2G HTS) tapes with magnetic substrates suffer higher transport loss compared to those with non-magnetic substrates. To test this, we prepared two identical coils with magnetic and non-magnetic substrates, respectively. The experimental result was rather surprising that they generated roughly the same amount of transport loss. We used finite element method to understand this result. It is found that, unlike in the single tape where the magnetic field-dependent critical current characteristic can be neglected and the effect of magnetic substrate dominates, the magnetic field-dependent critical current characteristic of 2G tape plays as an equally important role as magnetic substrate in terms of HTS coils.

  2. A Medicare Current Beneficiary Survey-Based Investigation of Alternative Primary Care Models in Nursing Homes: Cost and Utilization Differences.

    PubMed

    Lee, A James; Gautam, Ramraj; Melillo, Karen Devereaux; Abdallah, Lisa M; Remington, Ruth; Van Etten, Deborah; Gore, Rebecca

    2016-05-01

    The current study used the Medicare Current Beneficiary Survey-Based (MCBS) Cost and Use files for 2006-2008 to investigate whether health care costs and service utilization of nursing home residents varied with nurse practitioner (NP) and physician assistant (PA) involvement, compared to the use of medical doctors (MDs) only. The sample included Medicare beneficiaries 65 and older residing in a nursing home for the entire study year (433 annual observations). A generalized estimating equations procedure was used to assess whether health care cost and utilization measures varied by cohort. Point estimates indicated that the annual per-person cost of non-institutional services (total medical cost less the cost of the nursing home itself) was $3,847 and $3,170 more for individuals in the MD-only and MD-dominant cohorts, respectively, compared to those in the NP/PA-dominant cohort. [Res Gerontol Nurs. 2016; 9(3):115-122.]. PMID:27054369

  3. Inflight Microbial Monitoring - An Alternative Method to Culture Based Detection Currently Used on the International Space Station

    NASA Technical Reports Server (NTRS)

    Khodadad, Christina L.; Birmele, Michele N.; Hummerick, Mary E.; Roman, Monsi; Smith, David J.

    2015-01-01

    Microorganisms including potential human pathogens have been detected on the International Space Station (ISS). The potential to introduce new microorganisms occurs with every exchange of crew or addition of equipment or supplies. Current microbial monitoring methods require enrichment of microorganisms and a 48-hour incubation time resulting in an increase in microbial load, detecting a limited number of unidentified microorganisms. An expedient, low-cost, in-flight method of microbial detection, identification, and enumeration is warranted.

  4. ALTERNATING CURRENT LOSSES IN AG-SHEATHED BSCCO (2212 AND 2223) TAPES AND WIRES AND YBCO (123) COATED CONDUCTORS

    SciTech Connect

    Dr. John S. Hurley

    2000-01-01

    In this study, we focus on the examination of ac losses in conductors utilizing Bi{sub 2}Sr{sub 2}Ca{sub 2}Cu{sub 3}O [BSCCO (2223)] high TC superconductors (HTS). In addition, we seek to assist other facilities such as the University of Wisconsin-Madison Applied Superconductivity Center (UW-ASC), Brookhaven National Laboratory, and other DoE facilities investigating the use of HTS in electric power applications (e.g., generators, motors, and transformers). To accomplish this we will develop an ac losses capability at Clark Atlanta University to complement the established ac losses efforts at Brookhaven National Laboratory (BSCCO) on BSCCO/Ag and various material characterization efforts taking place at the UW-ASC. Our goal is through this effort to gain a greater understanding of the effects on ac losses due to parameters such as ac/dc current, J{sub c}, tape geometry, voltage tap placement, field orientation, material anisotropy, surface irregularities, percolations and filament coupling effects. As a result, we expect to better understand how to minimize ac losses in applications requiring real or practical conductors. HTS conductors based on BSCCO-2223 are now being routinely produced in industrial lengths of high quality. Vendors such as Southwire and ASC are producing multi-filamentary tapes in lengths of 6 km or more carrying critical current densities of up to 3 kA/cm**2 at 77 K. While this is approaching the level of performance where some large-scale applications are considered to be economically viable, a number of problems remain to be solved. The remaining issues include: rapid reduction in JC in magnetic fields; and power dissipation due to varying magnetic fields or currents (ac losses).

  5. Failure of Standard Training Sets in the Analysis of Fast-Scan Cyclic Voltammetry Data.

    PubMed

    Johnson, Justin A; Rodeberg, Nathan T; Wightman, R Mark

    2016-03-16

    The use of principal component regression, a multivariate calibration method, in the analysis of in vivo fast-scan cyclic voltammetry data allows for separation of overlapping signal contributions, permitting evaluation of the temporal dynamics of multiple neurotransmitters simultaneously. To accomplish this, the technique relies on information about current-concentration relationships across the scan-potential window gained from analysis of training sets. The ability of the constructed models to resolve analytes depends critically on the quality of these data. Recently, the use of standard training sets obtained under conditions other than those of the experimental data collection (e.g., with different electrodes, animals, or equipment) has been reported. This study evaluates the analyte resolution capabilities of models constructed using this approach from both a theoretical and experimental viewpoint. A detailed discussion of the theory of principal component regression is provided to inform this discussion. The findings demonstrate that the use of standard training sets leads to misassignment of the current-concentration relationships across the scan-potential window. This directly results in poor analyte resolution and, consequently, inaccurate quantitation, which may lead to erroneous conclusions being drawn from experimental data. Thus, it is strongly advocated that training sets be obtained under the experimental conditions to allow for accurate data analysis. PMID:26758246

  6. High-Resolution Hepatitis C Virus Subtyping Using NS5B Deep Sequencing and Phylogeny, an Alternative to Current Methods

    PubMed Central

    Gregori, Josep; Rodríguez-Frias, Francisco; Buti, Maria; Madejon, Antonio; Perez-del-Pulgar, Sofia; Garcia-Cehic, Damir; Casillas, Rosario; Blasi, Maria; Homs, Maria; Tabernero, David; Alvarez-Tejado, Miguel; Muñoz, Jose Manuel; Cubero, Maria; Caballero, Andrea; delCampo, Jose Antonio; Domingo, Esteban; Belmonte, Irene; Nieto, Leonardo; Lens, Sabela; Muñoz-de-Rueda, Paloma; Sanz-Cameno, Paloma; Sauleda, Silvia; Bes, Marta; Gomez, Jordi; Briones, Carlos; Perales, Celia; Sheldon, Julie; Castells, Lluis; Viladomiu, Lluis; Salmeron, Javier; Ruiz-Extremera, Angela; Quiles-Pérez, Rosa; Moreno-Otero, Ricardo; López-Rodríguez, Rosario; Allende, Helena; Romero-Gómez, Manuel; Guardia, Jaume; Esteban, Rafael; Garcia-Samaniego, Javier; Forns, Xavier

    2014-01-01

    Hepatitis C virus (HCV) is classified into seven major genotypes and 67 subtypes. Recent studies have shown that in HCV genotype 1-infected patients, response rates to regimens containing direct-acting antivirals (DAAs) are subtype dependent. Currently available genotyping methods have limited subtyping accuracy. We have evaluated the performance of a deep-sequencing-based HCV subtyping assay, developed for the 454/GS-Junior platform, in comparison with those of two commercial assays (Versant HCV genotype 2.0 and Abbott Real-time HCV Genotype II) and using direct NS5B sequencing as a gold standard (direct sequencing), in 114 clinical specimens previously tested by first-generation hybridization assay (82 genotype 1 and 32 with uninterpretable results). Phylogenetic analysis of deep-sequencing reads matched subtype 1 calling by population Sanger sequencing (69% 1b, 31% 1a) in 81 specimens and identified a mixed-subtype infection (1b/3a/1a) in one sample. Similarly, among the 32 previously indeterminate specimens, identical genotype and subtype results were obtained by direct and deep sequencing in all but four samples with dual infection. In contrast, both Versant HCV Genotype 2.0 and Abbott Real-time HCV Genotype II failed subtype 1 calling in 13 (16%) samples each and were unable to identify the HCV genotype and/or subtype in more than half of the non-genotype 1 samples. We concluded that deep sequencing is more efficient for HCV subtyping than currently available methods and allows qualitative identification of mixed infections and may be more helpful with respect to informing treatment strategies with new DAA-containing regimens across all HCV subtypes. PMID:25378574

  7. Determination of oleuropein using multiwalled carbon nanotube modified glassy carbon electrode by adsorptive stripping square wave voltammetry.

    PubMed

    Cittan, Mustafa; Koçak, Süleyman; Çelik, Ali; Dost, Kenan

    2016-10-01

    A multi-walled carbon nanotube modified glassy carbon electrode was used to prepare an electrochemical sensing platform for the determination of oleuropein. Results showed that, the accumulation of oleuropein on the prepared electrode takes place with the adsorption process. Electrochemical behavior of oleuropein was studied by using cyclic voltammetry. Compared to the bare GCE, the oxidation peak current of oleuropein increased about 340 times at MWCNT/GCE. Voltammetric determination of oleuropein on the surface of prepared electrode was studied using square wave voltammetry where the oxidation peak current of oleuropein was measured as an analytical signal. A calibration curve of oleuropein was performed between 0.01 and 0.70µM and a good linearity was obtained with a correlation coefficient of 0.9984. Detection and quantification limits of the method were obtained as 2.73 and 9.09nM, respectively. In addition, intra-day and inter-day precision studies indicated that the voltammetric method was sufficiently repeatable. Finally, the proposed electrochemical sensor was successfully applied to the determination of oleuropein in an olive leaf extract. Microwave-assisted extraction of oleuropein had good recovery values between 92% and 98%. The results obtained with the proposed electrochemical sensor were compared with liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. PMID:27474292

  8. Designing and Diagnosing Novel Electrode Materials for Na-ion Batteries: Potential Alternatives to Current Li-ion Batteries

    NASA Astrophysics Data System (ADS)

    Xu, Jing

    Owing to outstanding energy density, Li-ion batteries have dominated the portable electronic industry for the past 20 years and they are now moving forward powering electric vehicles. In light of concerns over limited lithium reserve and rising lithium costs in the future, Na-ion batteries have re-emerged as potential alternatives for large scale energy storage. On the other hand, though both sodium and lithium are alkali metals sharing many chemical similarities, research on Na-ion batteries is still facing many challenges due to the larger size and unique bonding characteristics of Na ions. In this thesis, a series of sodium transition metal oxides are investigated as cathode materials for Na-ion batteries. P2 - Na2/3[Ni1/3 Mn2/3]O2 is firstly studied with a combination of first principles calculation and experiment, and battery performance is improved by excluding the phase transformation region. Li substituted compound, P2-Na0.8[Li0.12Ni0.22Mn0.66]O 2, is then explored. Its crystal / electronic structure evolution upon cycling is tracked by combing in situ synchrotron X-ray diffraction, ex situ X-ray absorption spectroscopy and solid state NMR. It is revealed that the presence of Li-ions in the transition metal layer allows increased amount of Na-ions to maintain the P2 structure during cycling. The design principles for the P2 type Na cathodes are devised based on this in-depth understanding and an optimized composition is proposed. The idea of Li substitution is then transferred to O3 type cathode. The new material, O3 - Na0.78 Li0.18Ni0.25Mn0.583O2, shows discharge capacity of 240 mAh/g, which is the highest capacity and highest energy density so far among cathode materials in Na-ion batteries. With significant progress on cathode materials, a comprehensive understanding of Na2Ti3O7 as anode for Na-ion batteries is discussed. The electrochemical performance is enhanced, due to increased electronic conductivity and reduced SEI formation with carbon coating

  9. Inflight Microbial Monitoring-An Alternative Method to Culture Based Detection Currently Used on International Space Station

    NASA Technical Reports Server (NTRS)

    Khodadad, Christina L.; Birmele, Michele N.; Roman, Monsi; Hummerick, Mary E.; Smith, David J.; Wheeler, Raymond M.

    2015-01-01

    Previous research has shown that microorganisms and potential human pathogens have been detected on the International Space Station (ISS). The potential to introduce new microorganisms occurs with every exchange of crew or addition of equipment or supplies. Previous research has shown that microorganisms introduced to the ISS are readily transferred between crew and subsystems and back (i.e. ECLSS, environmental control and life support systems). Current microbial characterization methods require enrichment of microorganisms and a 48-hour incubation time. This increases the microbial load while detecting a limited number of microorganisms. The culture based method detects approximately 1-10% of the total organisms present and provides no identification, To identify and enumerate ISS samples requires that samples to be returned to Earth for complete analysis. Therefore, a more expedient, low-cost, in-flight method of microbial detection, identification, and enumeration is warranted. The RAZOR EX, a ruggedized, commercial off the shelf, real-time PCR field instrument was tested for its ability to detect microorganism at low concentrations within one hour. Escherichia coli, Salmonella enterica Typhimurium, and Pseudomonas aeruginosa were detected at low levels using real-time DNA amplification. Total heterotrophic counts could also be detected using a 16S gene marker that can identify up to 98% of all bacteria. To reflect viable cells found in the samples, RNA was also detectable using a modified, single-step reverse transcription reaction.

  10. Inflight Microbial Monitoring- An Alternative Method to Culture Based Detection Currently Used on the International Space Station

    NASA Technical Reports Server (NTRS)

    Khodadad, Christina L.; Birmele, Michele N.; Roman, Monsi; Hummerick, Mary E.; Smith, David J.; Wheeler, Raymond M.

    2015-01-01

    Previous research has shown that potentially destructive microorganisms and human pathogens have been detected on the International Space Station (ISS). The likelihood of introducing new microorganisms occurs with every exchange of crew or addition of equipment or supplies. Microorganisms introduced to the ISS are readily transferred between crew and subsystems (i.e. ECLSS, environmental control and life support systems). Current microbial characterization methods require enrichment of microorganisms and at least a 48-hour incubation time. This increases the microbial load while detecting only a limited number of the total microorganisms. The culture based method detects approximately 1-10% of the total organisms present and provides no identification. To identify and enumerate ISS microbes requires that samples be returned to Earth for complete analysis. Therefore, a more expedient, low-cost, in-flight method of microbial detection, identification, and enumeration is warranted. The RAZOR EX, a ruggedized, commercial off the shelf, real-time PCR field instrument was tested for its ability to detect microorganisms at low concentrations within one hour. Escherichia coli, Salmonella enterica Typhimurium, and Pseudomonas aeruginosa were detected at low levels using real-time DNA amplification. Total heterotrophic counts could also be detected using a 16S gene marker that can identify up to 98% of all bacteria. To reflect viable cells found in the samples, RNA was also detectable using a modified, single-step reverse transcription reaction.

  11. Current and future prospects of integrating traditional and alternative medicine in the management of diseases in Tanzania.

    PubMed

    Moshi, M J

    2005-09-01

    Traditional medicine and medicinal plants, in general, continue to be a powerful source of new drugs, now contributing about 90% of the newly discovered pharmaceuticals. Traditional medicine continues to provide health coverage for over 80% of the world population, especially in the developing world. The past and the present are all full of living examples of discoveries of drugs, ranging from anticancer, antiasthma, antidiabetic, antihypertensives and many others which owe their origin to traditional medicine. The current era of HIV/AIDS is not short of contributions from traditional medicine. The recent discovery of the non-nucleoside reverse transcriptase inhibitor (NNRTI), calanolide A, is a new addition from traditional medicine. Many more such discoveries are yet to come. While this potential is much acknowledged, little has been done in African countries, to utilize the plants that are already known and proven to be safe for use by patients. A number of plants could be widely cultivated for local industrial production of medicines and herbal nutritional supplements. There is need to ensure that what is known is made use of, for financial gain, and for improvement of the health of our people. We need to establish the necessary expertise for development of traditional medicines and deliberate efforts should be made to encourage local industrial production of traditional/herbal medicines so that cultivation may become possible and hence contribute to poverty reduction. PMID:16941942

  12. Current status of neonatal care and alternate strategies for reduction of neonatal mortality in the decade of nineties.

    PubMed

    Bhargava, S K; Ramji, S; Sachdev, H P

    1991-12-01

    Improvement in neonatal care in India is needed in order to fulfill the National Health Policy to reduce infant and perinatal mortality and low birth weight babies. 50-60% of perinatal and infant mortality is due to neonatal mortality, specifically low birth weight. There have been no declines in any of the states even though there are literacy, fertility, poverty and health personnel differences between states. The health delivery system is described. Basic facilities are lacking in subcenters and primary health centers: weighing scales, blood pressure recorder, urine analysis, and blood transfusion capability; pregnancy registration is 40%. 40% of women believe that the female multipurpose worker (ANM) is a maternal and child health worker; Dais made postnatal visits to 25% of the women and infants, while physicians and ANM's visited 10%. The most frequent method of delivery is home delivery with a Dai or relative in attendance. Information on temperature control at birth, hand washing, feeding, and identification of high risk infants by health personnel is inadequate. There are no neonatal units in the entire country even though there are 8 million low birth weight babies/year and 1 million neonatal deaths/year. Neonatal causes are primarily birth injuries, aspiration syndrome, and neonatal infections (tetanus, pneumonia, and diarrhea). Studies have identified health service improvements to reduce neonatal mortality. In India, the priority should be to 1) establish delivery of neonatal and perinatal care at all 3 levels of care, 2) train and educate all health personnel in perinatal and neonatal care, and 3) improve community participation by involving the community in decision making on kind of care, perinatal care, and health education and by monitoring such services. Infant care must extend from prenatal through postnatal care, which is currently fragmented, through a 3-tiered system. 80-85% of all infants need care at Level I; 15-20% require Level II care

  13. Induced- and alternating-current electro-osmotic control of the diffusion layer growth in a microchannel-membrane interface device

    NASA Astrophysics Data System (ADS)

    Park, Sinwook; Yossifon, Gilad

    2014-11-01

    The passage of an electric current through an ionic permselective medium under an applied electric field is characterized by the formation of ionic concentration gradients, which result in regions of depleted and enriched ionic concentration at opposite ends of the medium. Induced-current electro-osmosis (ICEO) and alternating-current-electro-osmosis (ACEO) are shown to control the growth of the diffusion layer (DL) which, in turn, controls the diffusion limited ion transport through the microchannel-membrane system. We fabricated and tested devices made of a Nafion membrane connecting two opposite PDMS microchannels. An interdigitated electrode array was embedded within the microchannel with various distances from the microchannel-membrane interface. The induced ICEO (floating electrodes) / ACEO (active electrodes) vortices formed at the electrode array stir the fluid and thereby suppress the growth of the DL. The intensity of the ACEO vortices is controlled by either varying the voltage amplitude or the frequency, each having its own unique effect. Enhancement of the limiting current by on-demand control of the diffusion length is of importance in on-chip electro-dialysis, desalination and preconcentration of analytes.

  14. Determination of water in room temperature ionic liquids by cathodic stripping voltammetry at a gold electrode.

    PubMed

    Zhao, Chuan; Bond, Alan M; Lu, Xunyu

    2012-03-20

    An electrochemical method based on cathodic stripping voltammetry at a gold electrode has been developed for the determination of water in ionic liquids. The technique has been applied to two aprotic ionic liquids, (1-butyl-3-ethylimidazolium tetrafluoroborate and 1-butyl-3-methylimidazolium hexafluorophosphate), and two protic ionic liquids, (bis(2-hydroxyethyl)ammonium acetate and triethylammonium acetate). When water is present in an ionic liquid, electrooxidation of a gold electrode forms gold oxides. Thus, application of an anodic potential scan or holding the potential of the electrode at a very positive value leads to accumulation of an oxide film. On applying a cathodic potential scan, a sensitive stripping peak is produced as a result of the reduction of gold oxide back to gold. The magnitude of the peak current generated from the stripping process is a function of the water concentration in an ionic liquid. The method requires no addition of reagents and can be used for the sensitive and in situ determination of water present in small volumes of ionic liquids. Importantly, the method allows the determination of water in the carboxylic acid-based ionic liquids, such as acetate-based protic ionic liquids, where the widely used Karl Fischer titration method suffering from an esterification side reaction which generates water as a side product. PMID:22372467

  15. Simultaneous Measurement and Quantitation of 4-Hydroxyphenylacetic acid and Dopamine with Fast-Scan Cyclic Voltammetry

    PubMed Central

    Shin, Mimi; Kaplan, Sam V.; Raider, Kayla D.; Johnson, Michael A.

    2015-01-01

    Caged compounds have been used extensively to investigate neuronal function in a variety of preparations, including cell culture, ex vivo tissue samples, and in vivo. As a first step toward electrochemically measuring the extent of caged compound photoactivation while also measuring the release of the catecholamine neurotransmitter, dopamine, fast-scan cyclic voltammetry at carbon-fiber microelectrodes (FSCV) was used to electrochemically characterize 4-hydroxyphenylacetic acid (4HPAA) in the absence and presence of dopamine. 4HPAA is a by-product formed during the process of photoactivation of p-hydroxyphenylacyl-based caged compounds, such as p-hydroxyphenylglutamate (pHP-Glu). Our data suggest that the oxidation of 4HPAA occurs through the formation of a conjugated species. Moreover, we found that a triangular waveform of −0.4 V to +1.3 V to −0.4 V at 600 V/s, repeated every 100 ms, provided an oxidation current of 4HPAA that was enhanced with a limit of detection of 100 nM, while also allowing the detection and quantitation of dopamine within the same scan. Along with quantifying 4HPAA in biological preparations, the results from this work will allow the electrochemical measurement of photoactivation reactions that generate 4HPAA as a by-product as well as provide a framework for measuring the photorelease of electroactive by-products from caged compounds that incorporate other chromophores. PMID:25785694

  16. Diamond microelectrodes and CMOS microelectronics for wireless transmission of fast-scan cyclic voltammetry.

    PubMed

    Roham, Masoud; Halpern, Jeffrey M; Martin, Heidi B; Chiel, Hillel J; Mohseni, Pedram

    2007-01-01

    This paper reports on technology development at the sensor and circuit levels for wireless transmission of fast-scan cyclic voltammetry (FSCV) in neurochemical detection. Heavily conductive, boron-doped diamond is selectively deposited onto the polished tip of a tungsten microelectrode to fabricate versatile, implantable, micro-needle microprobes capable of neurochemical sensing in the brain. In addition, an integrated circuit is fabricated in a 0.5-microm CMOS technology for processing and wireless transmission of the electrochemical signals corresponding to extracellular concentration changes of various neurotransmitters. The chip consists of a current-based, second-order, front-end SigmaDelta ADC and an on-chip, RF-FSK transmitter at the back-end. The ADC core and the transmitter consume 22microA and 400microA, respectively, from a 2.6-V power supply. Major electroactive neurotransmitters such as serotonin and dopamine in micromolar concentration have been wirelessly recorded at 433MHz using 300-V/s FSCV in flow injection analysis experiments. PMID:18003392

  17. Accumulation and Decay Characteristics of Exoelectron Sources at MgO Protective Layer Surface in Alternating-Current Plasma Display Panels

    NASA Astrophysics Data System (ADS)

    Yoshino, Kyohei; Nagatomi, Takaharu; Morita, Yukihiro; Oue, Toshiyasu; Kosugi, Naoki; Nishitani, Mikihiko; Kitagawa, Masatoshi; Takai, Yoshizo

    2010-08-01

    The accumulation and decay characteristics of exoelectron sources at a MgO protective layer surface in alternating-current plasma display panels (AC-PDPs) were investigated. The positively charged MgO surface provides a larger number of exoelectrons than the negatively charged surface, indicating that electrons trapped in shallow carrier traps coexist with trapped holes, and exoelectrons are emitted through Auger and/or photoionization processes after their recombination. The exoelectron sources are accumulated by sustain discharges and always decay. The half-life of the decay of the exoelectron sources is relatively long, of the order of a few tens of ms, confirming that the exoelectron emission property at the address discharge in a certain television (TV) field is strongly affected by sustain firings in the previous two TV fields or more. The effects of such a long-term decay of the exoelectron sources should be taken into consideration when designing the driving waveforms of AC-PDPs.

  18. Neurobiological model of stimulated dopamine neurotransmission to interpret fast-scan cyclic voltammetry data.

    PubMed

    Harun, Rashed; Grassi, Christine M; Munoz, Miranda J; Torres, Gonzalo E; Wagner, Amy K

    2015-03-01

    Fast-scan cyclic voltammetry (FSCV) is an electrochemical method that can assess real-time in vivo dopamine (DA) concentration changes to study the kinetics of DA neurotransmission. Electrical stimulation of dopaminergic (DAergic) pathways can elicit FSCV DA responses that largely reflect a balance of DA release and reuptake. Interpretation of these evoked DA responses requires a framework to discern the contribution of DA release and reuptake. The current, widely implemented interpretive framework for doing so is the Michaelis-Menten (M-M) model, which is grounded on two assumptions- (1) DA release rate is constant during stimulation, and (2) DA reuptake occurs through dopamine transporters (DAT) in a manner consistent with M-M enzyme kinetics. Though the M-M model can simulate evoked DA responses that rise convexly, response types that predominate in the ventral striatum, the M-M model cannot simulate dorsal striatal responses that rise concavely. Based on current neurotransmission principles and experimental FSCV data, we developed a novel, quantitative, neurobiological framework to interpret DA responses that assumes DA release decreases exponentially during stimulation and continues post-stimulation at a diminishing rate. Our model also incorporates dynamic M-M kinetics to describe DA reuptake as a process of decreasing reuptake efficiency. We demonstrate that this quantitative, neurobiological model is an extension of the traditional M-M model that can simulate heterogeneous regional DA responses following manipulation of stimulation duration, frequency, and DA pharmacology. The proposed model can advance our interpretive framework for future in vivo FSCV studies examining regional DA kinetics and their alteration by disease and DA pharmacology. PMID:25527399

  19. Reinterpretation of reduction potential measurements done by linear sweep voltammetry in silicate melts

    NASA Technical Reports Server (NTRS)

    Colson, R. O.; Haskin, L. A.; Keedy, C. R.

    1991-01-01

    The equilibrium concentrations of Ni between silicate melt and Pt were determined experimentally as a function of oxygen fugacity. The results demonstrate that metallic species derived in linear sweep voltammetry experiments in silicate melts are diffusing into Pt electrodes and not into the melt, as was concluded by previoius studies. This requires reinterpretation of previous linear sweep voltammetry results and recalculation and correction of reported reduction potentials. This paper reports these corrected reduction potentials. Also reported are the activity coefficients for Ni in synthetic basalt and diopsidic melts and for Co in diopsidic melt.

  20. Cyclic voltammetry on sputter-deposited films of electrochromic Ni oxide: Power-law decay of the charge density exchange

    SciTech Connect

    Wen, Rui-Tao Granqvist, Claes G.; Niklasson, Gunnar A.

    2014-10-20

    Ni-oxide-based thin films were produced by reactive direct-current magnetron sputtering and were characterized by X-ray diffraction and Rutherford backscattering spectroscopy. Intercalation of Li{sup +} ions was accomplished by cyclic voltammetry (CV) in an electrolyte of LiClO{sub 4} in propylene carbonate, and electrochromism was documented by spectrophotometry. The charge density exchange, and hence the optical modulation span, decayed gradually upon repeated cycling. This phenomenon was accurately described by an empirical power law, which was valid for at least 10{sup 4} cycles when the applied voltage was limited to 4.1 V vs Li/Li{sup +}. Our results allow lifetime assessments for one of the essential components in an electrochromic device such as a “smart window” for energy-efficient buildings.

  1. Cyclic voltammetry on sputter-deposited films of electrochromic Ni oxide: Power-law decay of the charge density exchange

    NASA Astrophysics Data System (ADS)

    Wen, Rui-Tao; Granqvist, Claes G.; Niklasson, Gunnar A.

    2014-10-01

    Ni-oxide-based thin films were produced by reactive direct-current magnetron sputtering and were characterized by X-ray diffraction and Rutherford backscattering spectroscopy. Intercalation of Li+ ions was accomplished by cyclic voltammetry (CV) in an electrolyte of LiClO4 in propylene carbonate, and electrochromism was documented by spectrophotometry. The charge density exchange, and hence the optical modulation span, decayed gradually upon repeated cycling. This phenomenon was accurately described by an empirical power law, which was valid for at least 104 cycles when the applied voltage was limited to 4.1 V vs Li/Li+. Our results allow lifetime assessments for one of the essential components in an electrochromic device such as a "smart window" for energy-efficient buildings.

  2. Investigation of the reduction process of dopamine using paired pulse voltammetry

    PubMed Central

    Kim, Do Hyoung; Oh, Yoonbae; Shin, Hojin; Blaha, Charles D.; Bennet, Kevin E.; Lee, Kendall H.; Kim, In Young; Jang, Dong Pyo

    2014-01-01

    The oxidation of dopamine (DA) around +0.6V potential in anodic sweep and its reduction around −0.1V in cathodic sweep at a relatively fast scanning rate (300 V/s or greater) have been used for identification of DA oxidation in fast-scan cyclic voltammetry (FSCV). However, compared to the oxidation peak of DA, the reduction peak has not been fully examined in analytical studies, although it has been used as one of the representative features to identify DA. In this study, the reduction process of DA was investigated using paired pulse voltammetry (PPV), which consists of two identical triangle-shaped waveforms, separated by a short interval at the holding potential. Especially, the discrepancies between the magnitude of the oxidation and reduction peaks of DA were investigated based on three factors: (1) the instant desorption of the DA oxidation product (dopamine-o-quinone: DOQ) after production, (2) the effect of the holding potential on the reduction process, and (3) the rate-limited reduction process of DA. For the first test, the triangle waveform FSCV experiment was performed on DA with various scanrates (from 400 to 1000 V/s) and durations of switching potentials of the triangle waveform (from 0.0 to 6.0 ms) in order to vary the duration between the applied oxidation potential at +0.6V and the reduction potential at −0.2V. As a result, the ratio of reduction over oxidation peak current response decreased as the duration became longer. To evaluate the effect of holding potentials during the reduction process, FSCV experiments were conducted with holding potential from 0.0V to −0.8V. We found that more negative holding potentials lead to larger amount of reduction process. For evaluation of the rate-limited reduction process of DA, PPV with a 1Hz repetition rate and various delays (2, 8, 20, 40 and 80ms) between the paired scans were utilized to determine how much reduction process occurred during the holding potential (−0.4V). These tests showed that

  3. Novel method for rapid in-situ hybridization of HER2 using non-contact alternating-current electric-field mixing

    PubMed Central

    Saito, Yoshitaro; Imai, Kazuhiro; Nakamura, Ryuta; Nanjo, Hiroshi; Terata, Kaori; Konno, Hayato; Akagami, Yoichi; Minamiya, Yoshihiro

    2016-01-01

    Human epidermal growth factor receptor 2 (HER2)-targeted agents are an effective approach to treating HER2-positive breast cancer patients. However, the lack of survival benefit in HER2-negative patients as well as the toxic effects and high cost of the drugs highlight the need for accurate and prompt assessment of HER2 status. Our aim was to evaluate the clinical utility of a novel rapid dual in-situ hybridization (RISH) method developed to facilitate hybridization. The method takes advantage of the non-contact mixing effect of an alternating current (AC) electric field. One hundred sixty-three specimens were used from patients diagnosed with primary breast cancers identified immunohistochemically as HER2 0/1(+), (2+) or (3+). The specimens were all tested using conventional dual in-situ hybridization (DISH), DISH with an automated slide stainer, and RISH. With RISH the HER2 test was completed within 6 h, as compared to 20–22 h needed for the standard protocol. Although RISH produced results more promptly using smaller amounts of labeled antibody, the staining and accuracy of HER2 status evaluation with RISH was equal to or greater than with DISH. These results suggest RISH could be used as a clinical tool to promptly determine HER2 status. PMID:27443187

  4. Alternative current conduction mechanisms of organic-inorganic compound [N(CH{sub 3}){sub 3}H]{sub 2}CuCl{sub 4}

    SciTech Connect

    Ben Bechir, M. Karoui, K.; Guidara, K.; Ben Rhaiem, A.; Tabellout, M.

    2014-05-28

    The [N(CH{sub 3}){sub 3}H]{sub 2}CuCl{sub 4} single crystal has been analyzed by X-ray powder diffraction patterns, differential scanning calorimetry (DSC), and electrical impedance spectroscopy. [N(CH{sub 3}){sub 3}H]{sub 2}CuCl{sub 4} crystallizes at room temperature in the monoclinic system with P2{sub 1}/{sub C} space group. Three phase transitions at T{sub 1} = 226 K, T{sub 2} = 264 K, and T{sub 3} = 297 K have been evidenced by DSC measurements. The electrical technique was measured in the 10{sup −1}–10{sup 7} Hz frequency range and 203–313 K temperature intervals. The frequency dependence of alternative current (AC) conductivity is interpreted in terms of Jonscher's law (developed). The AC electrical conduction in [N(CH{sub 3}){sub 3}H]{sub 2}CuCl{sub 4} compound is studied by two processes which can be attributed to a hopping transport mechanism: the correlated barrier hopping model in phases I, II, and III, the non-overlapping small polaron tunneling model in phase IV. The conduction mechanism is interpreted with the help of Elliot's theory, and the Elliot's parameters are found.

  5. Cortico-muscular coupling and motor performance are modulated by 20 Hz transcranial alternating current stimulation (tACS) in Parkinson’s disease

    PubMed Central

    Krause, Vanessa; Wach, Claudia; Südmeyer, Martin; Ferrea, Stefano; Schnitzler, Alfons; Pollok, Bettina

    2014-01-01

    Parkinson’s disease (PD) is associated with pathologically altered oscillatory activity. While synchronized oscillations between 13 and 30 Hz are increased within a cortico-subcortical network, cortico-muscular coupling (CMC) is decreased. The present study aims at investigating the effect of non-invasive transcranial alternating current stimulation (tACS) of the primary motor cortex (M1) on motor symptoms and motor-cortical oscillations in PD. In 10 PD patients and 10 healthy control subjects, static isometric contraction, dynamic fast finger tapping, and diadochokinesia of the more severely affected hand were investigated prior to and shortly after tACS of the contralateral M1 at 10 Hz vs. 20 Hz vs. sham. During isometric contraction, neuromagnetic activity was recorded using magnetoencephalography. 20 Hz tACS attenuated beta band CMC during isometric contraction and amplitude variability during finger tapping in PD patients but not in healthy control subjects. 10 Hz tACS yielded no significant after-effects. The present data suggest that PD is associated with pathophysiological alterations which abet a higher responsiveness toward frequency-specific tACS – possibly due to pathologically altered motor-cortical oscillatory synchronization at frequencies between 13 and 30 Hz. PMID:24474912

  6. Novel method for rapid in-situ hybridization of HER2 using non-contact alternating-current electric-field mixing.

    PubMed

    Saito, Yoshitaro; Imai, Kazuhiro; Nakamura, Ryuta; Nanjo, Hiroshi; Terata, Kaori; Konno, Hayato; Akagami, Yoichi; Minamiya, Yoshihiro

    2016-01-01

    Human epidermal growth factor receptor 2 (HER2)-targeted agents are an effective approach to treating HER2-positive breast cancer patients. However, the lack of survival benefit in HER2-negative patients as well as the toxic effects and high cost of the drugs highlight the need for accurate and prompt assessment of HER2 status. Our aim was to evaluate the clinical utility of a novel rapid dual in-situ hybridization (RISH) method developed to facilitate hybridization. The method takes advantage of the non-contact mixing effect of an alternating current (AC) electric field. One hundred sixty-three specimens were used from patients diagnosed with primary breast cancers identified immunohistochemically as HER2 0/1(+), (2+) or (3+). The specimens were all tested using conventional dual in-situ hybridization (DISH), DISH with an automated slide stainer, and RISH. With RISH the HER2 test was completed within 6 h, as compared to 20-22 h needed for the standard protocol. Although RISH produced results more promptly using smaller amounts of labeled antibody, the staining and accuracy of HER2 status evaluation with RISH was equal to or greater than with DISH. These results suggest RISH could be used as a clinical tool to promptly determine HER2 status. PMID:27443187

  7. Anomalous Oxide Charge Variation Identified by Alternating Current Surface Photovoltage Method in Cr-Aqueous-Solution-Rinsed p-Type Si(001) Wafers Exposed to Air

    NASA Astrophysics Data System (ADS)

    Shimizu, Hirofumi; Sanada, Yuji

    2011-11-01

    Chromium (Cr)-aqueous-solution-rinsed and/or hydrofluoric acid (HF)-solution-dipped p-type silicon (Si) (001) wafer surfaces are investigated by the frequency-dependent alternating current (AC) surface photovoltage (SPV) method. At the Cr(OH)3/p-type Si interface, in principle, a Schottky barrier could not possibly be generated. The Cr ion (Cr3+) is considered to forcibly deprive a p-type Si substrate of electrons during metallization (Cr3++3e-→Cr). Thus, at an early stage of air exposure, a positive fixed oxide charge may be compensated for by electrons, indicating the disappearance of AC SPV. With air exposure time, AC SPV emerges again and increases gradually in a Cr-deposited p-type Si(001) surface. This is because the native oxide between the Cr atom layer and the p-type Si substrate grows with time. As a result, a positive fixed oxide charge exceeds the overall charge state of the Cr-deposited p-type Si surface. Thus, AC SPV appears again and gradually increases with the fixed oxide charge in p-type Si. The saturated value is in a good agreement with that of the HF aqueous-solution-dipped p-type Si surface.

  8. Time-dependent phase lag of biofunctionalized magnetic nanoparticles conjugated with biotargets studied with alternating current magnetic susceptometor for liquid phase immunoassays

    NASA Astrophysics Data System (ADS)

    Liao, S. H.; Yang, H. C.; Horng, H. E.; Chieh, J. J.; Chen, K. L.; Chen, H. H.; Chen, J. Y.; Liu, C. I.; Liu, C. W.; Wang, L. M.

    2013-12-01

    In this work, the time-dependent phase lag θ of biofunctionalized magnetic nanoparticles (BMNs) conjugated with biotargets is studied with a home-made alternating current (ac) susceptometor for liquid phase immunoassays. The sensing unit of the ac susceptometor composed of excitation, pick-up, and compensation coils are balanced to 0.03 ppm. The BMNs are anti-goat C-reactive protein coated onto dextran-coated magnetic nanoparticles composed of Fe3O4, labeled as Fe3O4-antiCRP. The bio-targets are human CRP. As the human CRP is conjugated with reagents Fe3O4-antiCRP, the magnetic clusters of Fe3O4-antiCRP-CRP are formulated. Due to the clustering effect, the Brownian relaxation of BMNs will be depressed, which in turn enhances the effective relaxation time. By monitoring the dynamic phase lag, we demonstrate a sensitive platform of assaying human CRP. The detection platform is robust, easy to use and can be applied for assaying a wide variety of biotargets including viruses, proteins, tumor markers, chemicals, etc.

  9. Adsorptive Stripping Voltammetry of Environmental Indicators: Determination of Zinc in Algae

    ERIC Educational Resources Information Center

    Collado-Sanchez, C.; Hernandez-Brito, J. J.; Perez-Pena, J.; Torres-Padron, M. E.; Gelado-Caballero, M. D.

    2005-01-01

    A method for sample preparation and for the determination of average zinc content in algae using adsorptive stripping voltammetry are described. The students gain important didactic advantages through metal determination in environmental matrices, which include carrying out clean protocols for sampling and handling, and digesting samples using…

  10. DETERMINATION OF ZINC, CADMIUM, LEAD, AND COPPER IN WATER BY ANODIC STRIPPING VOLTAMMETRY

    EPA Science Inventory

    The Tennessee Valley Authority developed a method of differential pulse anodic stripping voltammetry for determining total concentrations of cadmium and lead in water samples from ash ponds at steam-electric generating plants. After digestion of the sample and addition of reagent...

  11. CYCLIC VOLTAMMETRY OF ORGANIC AND INORGANIC N-CHLORAMINES IN AQUEOUS SOLUTION

    EPA Science Inventory

    Aqueous solutions or organic and inorganic N-chloramines as well as hypochlorite were examined by cyclic voltammetry at DH 8 and in strong acid (pH<2) with platinum and glassy carbon electrodes. The inorganic N-chloramines were characterized in 1 M HC104. NHC12 is reduced at abou...

  12. Determination of Bosentan in Pharmaceutical Preparations by Linear Sweep, Square Wave and Differential Pulse Voltammetry Methods

    PubMed Central

    Atila, Alptug; Yilmaz, Bilal

    2015-01-01

    In this study, simple, fast and reliable cyclic voltammetry (CV), linear sweep voltammetry (LSV), square wave voltammetry (SWV) and differential pulse voltammetry (DPV) methods were developed and validated for determination of bosentan in pharmaceutical preparations. The proposed methods were based on electrochemical oxidation of bosentan at platinum electrode in acetonitrile solution containing 0.1 M TBACIO4. The well-defined oxidation peak was observed at 1.21 V. The calibration curves were linear for bosentan at the concentration range of 5-40 µg/mL for LSV and 5-35 µg/mL for SWV and DPV methods, respectively. Intra- and inter-day precision values for bosentan were less than 4.92, and accuracy (relative error) was better than 6.29%. The mean recovery of bosentan was 100.7% for pharmaceutical preparations. No interference was found from two tablet excipients at the selected assay conditions. Developed methods in this study are accurate, precise and can be easily applied to Tracleer and Diamond tablets as pharmaceutical preparation. PMID:25901151

  13. Lead-Testing Service to Elementary and Secondary Schools Using Anodic Stripping Voltammetry

    ERIC Educational Resources Information Center

    Goebel, Amanda; Vos, Tracy; Louwagie, Anne; Lundbohm, Laura; Brown, Jay H.

    2004-01-01

    The undergraduate chemistry club of the Southwest Minnesota State University offers assistance in lead-testing through the anodic stripping voltammetry (ASV) technique to elementary and secondary schools. Emphasis is given to this community service activity, which has increased club membership, and promoted discussion of water quality problems in…

  14. Cyclic Voltammetry Simulations with DigiSim Software: An Upper-Level Undergraduate Experiment

    ERIC Educational Resources Information Center

    Messersmith, Stephania J.

    2014-01-01

    An upper-division undergraduate chemistry experiment is described which utilizes DigiSim software to simulate cyclic voltammetry (CV). Four mechanisms were studied: a reversible electron transfer with no subsequent or proceeding chemical reactions, a reversible electron transfer followed by a reversible chemical reaction, a reversible chemical…

  15. Square-wave voltammetry assays for glycoproteins on nanoporous gold.

    PubMed

    Pandey, Binod; Bhattarai, Jay K; Pornsuriyasak, Papapida; Fujikawa, Kohki; Catania, Rosa; Demchenko, Alexei V; Stine, Keith J

    2014-03-15

    Electrochemical enzyme-linked lectinsorbent assays (ELLA) were developed using nanoporous gold (NPG) as a solid support for protein immobilization and as an electrode for the electrochemical determination of the product of the reaction between alkaline phosphatase (ALP) and p-aminophenyl phosphate (p-APP), which is p-aminophenol (p-AP). Glycoproteins or concanavalin A (Con A) and ALP conjugates were covalently immobilized onto lipoic acid self-assembled monolayers on NPG. The binding of Con A - ALP (or soybean agglutinin - ALP) conjugate to glycoproteins covalently immobilized on NPG and subsequent incubation with p-APP substrate was found to result in square-wave voltammograms whose peak difference current varied with the identity of the glycoprotein. NPG presenting covalently bound glycoproteins was used as the basis for a competitive electrochemical assay for glycoproteins in solution (transferrin and IgG). A kinetic ELLA based on steric hindrance of the enzyme-substrate reaction and hence reduced enzymatic reaction rate after glycoprotein binding is demonstrated using immobilized Con A-ALP conjugates. Using the immobilized Con A-ALP conjugate, the binding affinity of immunoglobulin G (IgG) was found to be 105 nM, and that for transferrin was found to be 650 nM. Minimal interference was observed in the presence of 5 mg mL(-1) BSA as a model serum protein in both the kinetic and competitive ELLA. Inhibition studies were performed with methyl D-mannoside for the binding of TSF and IgG to Con A-ALP; IC50 values were found to be 90 μM and 286 μM, respectively. Surface coverages of proteins were estimated using solution depletion and the BCA protein concentration assay. PMID:24611035

  16. Square-wave voltammetry assays for glycoproteins on nanoporous gold

    PubMed Central

    Pandey, Binod; Bhattarai, Jay K.; Pornsuriyasak, Papapida; Fujikawa, Kohki; Catania, Rosa; Demchenko, Alexei V.; Stine, Keith J.

    2014-01-01

    Electrochemical enzyme-linked lectinsorbent assays (ELLA) were developed using nanoporous gold (NPG) as a solid support for protein immobilization and as an electrode for the electrochemical determination of the product of the reaction between alkaline phosphatase (ALP) and p-aminophenyl phosphate (p-APP), which is p-aminophenol (p-AP). Glycoproteins or concanavalin A (Con A) and ALP conjugates were covalently immobilized onto lipoic acid self-assembled monolayers on NPG. The binding of Con A – ALP (or soybean agglutinin – ALP) conjugate to glycoproteins covalently immobilized on NPG and subsequent incubation with p-APP substrate was found to result in square-wave voltammograms whose peak difference current varied with the identity of the glycoprotein. NPG presenting covalently bound glycoproteins was used as the basis for a competitive electrochemical assay for glycoproteins in solution (transferrin and IgG). A kinetic ELLA based on steric hindrance of the enzyme-substrate reaction and hence reduced enzymatic reaction rate after glycoprotein binding is demonstrated using immobilized Con A–ALP conjugates. Using the immobilized Con A-ALP conjugate, the binding affinity of immunoglobulin G (IgG) was found to be 105 nM, and that for transferrin was found to be 650 nM. Minimal interference was observed in the presence of 5 mg mL−1 BSA as a model serum protein in both the kinetic and competitive ELLA. Inhibition studies were performed with methyl D-mannoside for the binding of TSF and IgG to Con A-ALP; IC50 values were found to be 90 μM and 286 μM, respectively. Surface coverages of proteins were estimated using solution depletion and the BCA protein concentration assay. PMID:24611035

  17. Visualization of local electrochemical activity and local nickel ion release on laser-welded NiTi/steel joints using combined alternating current mode and stripping mode SECM.

    PubMed

    Ruhlig, D; Gugel, H; Schulte, A; Theisen, W; Schuhmann, W

    2008-12-01

    Smoothly polished cross-sections of laser-fabricated welds between NiTi shape memory alloy and stainless steel (SS) microwires of approximately the same diameter and, for comparison, between identical stainless steel or NiTi wires have been subjected to local chemical activity and nickel release measurements using scanning electrochemical microscopy (SECM). In the alternating current mode (AC-SECM), the measurements detected clear differences in the local interfacial chemical activity of the passivated weld and the base metals only for the heterogeneous joints of the type NiTi-SS. In this case the local electrochemical acvtivity was lower above the weld material. Subjecting cross-sections of NiTi-SS to stripping mode SECM (SM-SECM), higher Ni(2+) concentrations were measured above the regions of the parental NiTi wire, which correlates well with the results from AC-SECM imaging which showed this region as being less passivated. An energy-dispersive elemental analysis of the specimen in a scanning electron microscope revealed the coexistence of Ti and Cr in the weld mass. Possibly, a joint action of these two metals in terms of protective oxide formation is better for passivation of the weld region than the individual action of one or the other element for passivating the original wires. Better passivation of course led to decreased electrochemical activity of the weld surface. Apparently, AC- and SM-mode SECM imaging were sufficiently sensitive to detect and visualize the impact of the changed surface passivation upon laser welding. PMID:19082072

  18. Why were alternating-current-driven electrochemiluminescence properties from Ru(bpy)3(2+) dramatically improved by the addition of titanium dioxide nanoparticles?

    PubMed

    Tsuneyasu, Shota; Ichihara, Kazuki; Nakamura, Kazuki; Kobayashi, Norihisa

    2016-06-28

    Electrochemiluminescence (ECL) is a phenomenon in which light is emitted from the excited state of a redox-active material generated by electrochemical reactions. Among light-emitting devices, ECL devices have various advantages in terms of structure and ease of fabrication, and therefore, they are expected to be next-generation emitting devices. In this study, we introduced rutile-type titanium dioxide nanoparticles (TiO2 NPs) in a Ru(ii)-complex-based electrolyte to improve the emission properties of an alternating current (AC)-driven ECL device. The properties of the ECL device with TiO2 NPs were greatly improved (emission luminescence, 165 cd m(-2); half-life time, 1000 s) compared to a previously reported AC-driven ECL device without nanoparticles. To determine how TiO2 NPs helped in achieving high emission luminescence and long-term stability, we measured the optical and electrochemical properties of the Ru(bpy)3(2+)-based ECL solution in detail. The PL intensity of Ru(bpy)3(2+) was increased by adding TiO2 NPs, which indicated that the suppression of non-radiative quenching of the complex's excited states could improve the ECL intensity. With respect to the enhanced stability, electron transfers between Ru(bpy)3(2+) and TiO2 were suggested by detailed electrochemical measurements. These electron transfers occurred from the reduced Ru(bpy)3(2+) species to the TiO2, and subsequently, from the TiO2 to the oxidized Ru(bpy)3(2+) species. Such electron transfers are thought to improve the balance of the redox reactions in the ECL device, leading to long-term stability. PMID:27253475

  19. A randomized, double-blind, sham-controlled study of static electric field therapy by high voltage alternating current for active rheumatoid arthritis.

    PubMed

    Naito, Yuji; Yamaguchi, Shinnichi; Mori, Yasuhiro; Nakajima, Kouji; Hashimoto, Sanshiro; Tomaru, Masakazu; Satoh, Yoshihiko; Hitomi, Yuji; Karita, Masakazu; Hiwatashi, Tomoaki; Kawahito, Yutaka; Yoshikawa, Toshikazu

    2013-07-01

    Static electric field therapy by high voltage alternating current (EF-HVAC) is a traditional complementary Japanese medicine used for headache, shoulder stiffness, chronic constipation and insomnia. Open-label studies and clinical experience in Japan have suggested that this electric field therapy is safe and effective in treating chronic arthritis. We evaluated the efficacy of EF-HVAC therapy in a randomized, double-blinded, sham-controlled trial in patients with active rheumatoid arthritis (RA) in community-based general physician centers. Thirty patients fulfilling American College of Rheumatology (ACR) criteria for RA were treated with EF-HVAC therapy with the LEGACIS PLUS System (COCOROCA Corp., Tokyo, Japan) or sham therapy for 12 weeks and followed for 4 weeks without treatment. The disease activity score 28 (DAS28-CRP), visual analogue scale for pain (VAS), modified health assessment questionnaire (MHAQ), and inflammatory parameters were used as the outcome variable. Twenty four patients (n = 12 in each group) were analyzed by a per protocol analysis. Although a significant reduction in DAS28-CRP was observed in EF-HVAC group at 8 and 12 weeks compared to before treatment, there were no significant differences in DAS28-CRP scores during treatment between two groups. The scale of VAS was also significantly decreased by the treatment with EF-HVAC compared to before treatment, in addition, the scale of VAS in EF-HVAC group was significantly lower than sham group at 8 and 12 weeks. Changes in another parameters including MHAQ were not significant between before and after treatment, or by all comparative study between two groups. There were no adverse events related the treatment. In conclusion, the EF-HVAC therapy has a beneficial effect on the improvement to subjective pain of RA. PMID:23874073

  20. Alpha Power Increase After Transcranial Alternating Current Stimulation at Alpha Frequency (α-tACS) Reflects Plastic Changes Rather Than Entrainment

    PubMed Central

    Vossen, Alexandra; Gross, Joachim; Thut, Gregor

    2015-01-01

    Background Periodic stimulation of occipital areas using transcranial alternating current stimulation (tACS) at alpha (α) frequency (8–12 Hz) enhances electroencephalographic (EEG) α-oscillation long after tACS-offset. Two mechanisms have been suggested to underlie these changes in oscillatory EEG activity: tACS-induced entrainment of brain oscillations and/or tACS-induced changes in oscillatory circuits by spike-timing dependent plasticity. Objective We tested to what extent plasticity can account for tACS-aftereffects when controlling for entrainment “echoes.” To this end, we used a novel, intermittent tACS protocol and investigated the strength of the aftereffect as a function of phase continuity between successive tACS episodes, as well as the match between stimulation frequency and endogenous α-frequency. Methods 12 healthy participants were stimulated at around individual α-frequency for 11–15 min in four sessions using intermittent tACS or sham. Successive tACS events were either phase-continuous or phase-discontinuous, and either 3 or 8 s long. EEG α-phase and power changes were compared after and between episodes of α-tACS across conditions and against sham. Results α-aftereffects were successfully replicated after intermittent stimulation using 8-s but not 3-s trains. These aftereffects did not reveal any of the characteristics of entrainment echoes in that they were independent of tACS phase-continuity and showed neither prolonged phase alignment nor frequency synchronization to the exact stimulation frequency. Conclusion Our results indicate that plasticity mechanisms are sufficient to explain α-aftereffects in response to α-tACS, and inform models of tACS-induced plasticity in oscillatory circuits. Modifying brain oscillations with tACS holds promise for clinical applications in disorders involving abnormal neural synchrony. PMID:25648377

  1. Beta Band Transcranial Alternating (tACS) and Direct Current Stimulation (tDCS) Applied After Initial Learning Facilitate Retrieval of a Motor Sequence

    PubMed Central

    Krause, Vanessa; Meier, Anna; Dinkelbach, Lars; Pollok, Bettina

    2016-01-01

    The primary motor cortex (M1) contributes to the acquisition and early consolidation of a motor sequence. Although the relevance of M1 excitability for motor learning has been supported, the significance of M1 oscillations remains an open issue. This study aims at investigating to what extent retrieval of a newly learned motor sequence can be differentially affected by motor-cortical transcranial alternating (tACS) and direct current stimulation (tDCS). Alpha (10 Hz), beta (20 Hz) or sham tACS was applied in 36 right-handers. Anodal or cathodal tDCS was applied in 30 right-handers. Participants learned an eight-digit serial reaction time task (SRTT; sequential vs. random) with the right hand. Stimulation was applied to the left M1 after SRTT acquisition at rest for 10 min. Reaction times were analyzed at baseline, end of acquisition, retrieval immediately after stimulation and reacquisition after eight further sequence repetitions. Reaction times during retrieval were significantly faster following 20 Hz tACS as compared to 10 Hz and sham tACS indicating a facilitation of early consolidation. tDCS yielded faster reaction times, too, independent of polarity. No significant differences between 20 Hz tACS and tDCS effects on retrieval were found suggesting that 20 Hz effects might be associated with altered motor-cortical excitability. Based on the behavioral modulation yielded by tACS and tDCS one might speculate that altered motor-cortical beta oscillations support early motor consolidation possibly associated with neuroplastic reorganization. PMID:26834593

  2. Hair growth-promotion effects of different alternating current parameter settings are mediated by the activation of Wnt/β-catenin and MAPK pathway.

    PubMed

    Sohn, Ki Min; Jeong, Kwan Ho; Kim, Jung Eun; Park, Young Min; Kang, Hoon

    2015-12-01

    Electrical stimulation is being used in variable skin therapeutic conditions. There have been clinical studies demonstrating the positive effect of electrical stimuli on hair regrowth. However, the underlying exact mechanism and optimal parameter settings are not clarified yet. To investigate the effects of different parameter settings of electrical stimuli on hair growth by examining changes in human dermal papilla cells (hDPCs) in vitro and by observing molecular changes in animal tissue. In vitro, cultured hDPCs were electrically stimulated with different parameter settings at alternating current (AC). Cell proliferation was measured by MTT assay. The Ki67 expression was measured by immunofluorescence. Hair growth-related gene expressions were measured by RT-PCR. In animal model, different parameter settings of AC were applied to the shaved dorsal skin of rabbit for 8 weeks. Expression of hair-related genes in the skin of rabbit was examined by RT-PCR. At low voltage power (3.5 V) and low frequency (1 or 2 MHz) with AC, in vitro proliferation of hDPCs was successfully induced. A significant increase in Wnt/β-catenin, Ki67, p-ERK and p-AKT expressions was observed under the aforementioned settings. In animal model, hair regrowth was observed in the entire stimulated areas under individual conditions. Expression of hair-related genes in the skin significantly increased on the 6th week of treatment. There are optimal conditions for electrical stimulated hair growth, and they might be different in the cells, animals and human tissues. Electrical stimuli induce mechanisms such as the activation of Wnt/β-catenin and MAPK pathway in hair follicles. PMID:26268840

  3. Alternative current conduction mechanisms of organic-inorganic compound [N(CH{sub 3}){sub 3}H]{sub 2}ZnCl{sub 4}

    SciTech Connect

    Ben Bechir, M. Karoui, K.; Guidara, K.; Ben Rhaiem, A.; Tabellout, M.

    2014-04-21

    [N(CH{sub 3}){sub 3}H]{sub 2}ZnCl{sub 4} has been studied by X-ray powder diffraction patterns, differential scanning calorimetry (DSC), and impedance spectroscopy. The [N(CH{sub 3}){sub 3}H]{sub 2}ZnCl{sub 4} hybrid compound is crystallized at room temperature (T ≈ 300 K) in the orthorhombic system with Pnma space group. Five phase transitions (T{sub 1} = 255 K, T{sub 2} = 282 K, T{sub 3} = 302 K, T{sub 4} = 320 K, and T{sub 5} = 346 K) have been proved by DSC measurements. The electrical technique was measured in the 10{sup −1}-10{sup 7} Hz frequency range and 233–363 K temperature interval. The frequency dependence of alternative current (AC) conductivity is interpreted in terms of Jonscher's law. The AC electrical conduction in [N(CH{sub 3}){sub 3}H]{sub 2}ZnCl{sub 4} is analyzed by different processes, which can be attributed to several models: the correlated barrier hopping model in phase I, the overlapping large polaron tunneling model in phase II, the quantum mechanical tunneling model in phase IV, and the non-overlapping small polaron tunneling model in phases III, V, and VI. The conduction mechanism is studied with the help of Elliot's theory, and the Elliot's parameters are determined.

  4. Development and Characterization of Carbon-Fiber Microbiosensors for Fast-Scan Cyclic Voltammetry

    NASA Astrophysics Data System (ADS)

    Lugo-Morales, Leyda Zoraida

    Electrochemistry has been shown to be a robust tool in neuroscience. The use of carbon-fiber microelectrodes coupled with background-subtracted fast-scan cyclic voltammetry (FSCV) offers high sensitivity, selectivity, as well as the spatial and temporal resolution necessary for monitoring rapid fluctuations of electroactive molecules in live brain tissue. Dopamine (DA) is a neurotransmitter playing a key role in the regulation of reward and motivated behavior. FSCV has been used to understand DA dynamics and how these underlie discrete aspects of brain function. The methodological aspects of real-time DA detection at carbon-fiber microelectrodes using FSCV in anesthetized and awake animals are presented. Furthermore, the combination of FSCV with other neuroanalytical techniques is also explained. The advantages of FSCV and carbon-fiber microelectrodes can be expanded to the detection of non-electroactive analytes. This broadens the scope of FSCV such that it can be used to investigate how changes in non-electroactive chemicals underlie disease, cognition, and behavior. Carbon-fiber microelectrodes can be modified with an enzyme to monitor non-electroactive molecules, generating an electroactive product (usually hydrogen peroxide, H2O2). The first voltammetric detection of H2O 2 at bare carbon-fiber microelectrodes using FSCV has recently been reported. Thus, an avenue exists to utilize FSCV at enzyme-modified microelectrodes to voltammetrically identify and quantify non-electroactive analytes in real-time. Such an approach will overcome many limitations associated with the traditional amperometric detection scheme, which lacks electrochemical selectivity. Electrodeposition of the biopolymer chitosan with glucose oxidase (GOx) at the carbon surface yields a stable, sensitive, and selective glucose microbiosensor that has been utilized to detect glucose fluctuations in vivo with unprecedented speed. This new method has revealed the first rapid glucose fluctuations in

  5. Development and Characterization of Carbon-Fiber Microbiosensors for Fast-Scan Cyclic Voltammetry

    NASA Astrophysics Data System (ADS)

    Lugo-Morales, Leyda Zoraida

    Electrochemistry has been shown to be a robust tool in neuroscience. The use of carbon-fiber microelectrodes coupled with background-subtracted fast-scan cyclic voltammetry (FSCV) offers high sensitivity, selectivity, as well as the spatial and temporal resolution necessary for monitoring rapid fluctuations of electroactive molecules in live brain tissue. Dopamine (DA) is a neurotransmitter playing a key role in the regulation of reward and motivated behavior. FSCV has been used to understand DA dynamics and how these underlie discrete aspects of brain function. The methodological aspects of real-time DA detection at carbon-fiber microelectrodes using FSCV in anesthetized and awake animals are presented. Furthermore, the combination of FSCV with other neuroanalytical techniques is also explained. The advantages of FSCV and carbon-fiber microelectrodes can be expanded to the detection of non-electroactive analytes. This broadens the scope of FSCV such that it can be used to investigate how changes in non-electroactive chemicals underlie disease, cognition, and behavior. Carbon-fiber microelectrodes can be modified with an enzyme to monitor non-electroactive molecules, generating an electroactive product (usually hydrogen peroxide, H2O2). The first voltammetric detection of H2O 2 at bare carbon-fiber microelectrodes using FSCV has recently been reported. Thus, an avenue exists to utilize FSCV at enzyme-modified microelectrodes to voltammetrically identify and quantify non-electroactive analytes in real-time. Such an approach will overcome many limitations associated with the traditional amperometric detection scheme, which lacks electrochemical selectivity. Electrodeposition of the biopolymer chitosan with glucose oxidase (GOx) at the carbon surface yields a stable, sensitive, and selective glucose microbiosensor that has been utilized to detect glucose fluctuations in vivo with unprecedented speed. This new method has revealed the first rapid glucose fluctuations in

  6. Electrochemical Genotoxicity Assay Based on a SOS/umu Test Using Hydrodynamic Voltammetry in a Droplet

    PubMed Central

    Kuramitz, Hideki; Sazawa, Kazuto; Nanayama, Yasuaki; Hata, Noriko; Taguchi, Shigeru; Sugawara, Kazuharu; Fukushima, Masami

    2012-01-01

    The SOS/umu genotoxicity assay evaluates the primary DNA damage caused by chemicals from the β-galactosidase activity of S. typhimurium. One of the weaknesses of the common umu test system based on spectrophotometric detection is that it is unable to measure samples containing a high concentration of colored dissolved organic matters, sediment, and suspended solids. However, umu tests with electrochemical detection techniques prove to be a better strategy because it causes less interference, enables the analysis of turbid samples and allows detection even in small volumes without loss of sensitivity. Based on this understanding, we aim to develop a new umu test system with hydrodynamic chronoamperometry using a rotating disk electrode (RDE) in a microliter droplet. PAPG when used as a substrate is not electroactive at the potential at which PAP is oxidized to p-quinone imine (PQI), so the current response of chronoamperometry resulting from the oxidation of PAP to PQI is directly proportional to the enzymatic activity of S. typhimurium. This was achieved by performing genotoxicity tests for 2-(2-furyl)-3-(5-nitro-2-furyl)-acrylamide (AF-2) and 2-aminoanthracene (2-AA) as model genotoxic compounds. The results obtained in this study indicated that the signal detection in the genotoxicity assay based on hydrodynamic voltammetry was less influenced by the presence of colored components and sediment particles in the samples when compared to the usual colorimetric signal detection. The influence caused by the presence of humic acids (HAs) and artificial sediment on the genotoxic property of selected model compounds such as 4-nitroquinoline-N-oxide (4-NQO), 3-chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone (MX), 1,8-dinitropyrene (1,8-DNP) and 1-nitropyrene (1-NP) were also investigated. The results showed that the genotoxicity of 1-NP and MX changed in the presence of 10 mg·L−1 HAs. The genotoxicity of tested chemicals with a high hydrophobicity such as 1,8-DNP

  7. Detection and classification of gaseous sulfur compounds by solid electrolyte cyclic voltammetry of cermet sensor array.

    PubMed

    Kramer, Kirsten E; Rose-Pehrsson, Susan L; Hammond, Mark H; Tillett, Duane; Streckert, Holger H

    2007-02-12

    Electrochemical sensors composed of a ceramic-metallic (cermet) solid electrolyte are used for the detection of gaseous sulfur compounds SO(2), H(2)S, and CS(2) in a study involving 11 toxic industrial chemical (TIC) compounds. The study examines a sensor array containing four cermet sensors varying in electrode-electrolyte composition, designed to offer selectivity for multiple compounds. The sensors are driven by cyclic voltammetry to produce a current-voltage profile for each analyte. Raw voltammograms are processed by background subtraction of clean air, and the four sensor signals are concatenated to form one vector of points. The high-resolution signal is compressed by wavelet transformation and a probabilistic neural network is used for classification. In this study, training data from one sensor array was used to formulate models which were validated with data from a second sensor array. Of the 11 gases studied, 3 that contained sulfur produced the strongest responses and were successfully analyzed when the remaining compounds were treated as interferents. Analytes were measured from 10 to 200% of their threshold-limited value (TLV) according to the 8-h time weighted average (TWA) exposure limits defined by the National Institute of Occupational Safety and Health (NIOSH). True positive classification rates of 93.3, 96.7, and 76.7% for SO(2), H(2)S, and CS(2), respectively, were achieved for prediction of one sensor unit when a second sensor was used for modeling. True positive rates of 83.3, 90.0, and 90.0% for SO(2), H(2)S, and CS(2), respectively, were achieved for the second sensor unit when the first sensor unit was used for modeling. Most of the misclassifications were for low concentration levels (such 10-25% TLV) in which case the compound was classified as clean air. Between the two sensors, the false positive rates were 2.2% or lower for the three sulfur compounds, 0.9% or lower for the interferents (eight remaining analytes), and 5.8% or lower for

  8. Simultaneous determination of hydroquinone, catechol and resorcinol by voltammetry using graphene screen-printed electrodes and partial least squares calibration.

    PubMed

    Aragó, Miriam; Ariño, Cristina; Dago, Àngela; Díaz-Cruz, José Manuel; Esteban, Miquel

    2016-11-01

    Catechol (CC), resorcinol (RC) and hydroquinone (HQ) are dihydroxybenzene isomers that usually coexist in different samples and can be determined using voltammetric techniques taking profit of their fast response, high sensitivity and selectivity, cheap instrumentation, simple and timesaving operation modes. However, a strong overlapping of CC and HQ signals is observed hindering their accurate analysis. In the present work, the combination of differential pulse voltammetry with graphene screen-printed electrodes (allowing detection limits of 2.7, 1.7 and 2.4µmolL(-1) for HQ, CC and RC respectively) and the data analysis by partial least squares calibration (giving root mean square errors of prediction, RMSEP values, of 2.6, 4.1 and 2.3 for HQ, CC and RC respectively) has been proposed as a powerful tool for the quantification of mixtures of these dihydroxybenzene isomers. The commercial availability of the screen-printed devices and the low cost and simplicity of the analysis suggest that the proposed method can be a valuable alternative to chromatographic and electrophoretic methods for the considered species. The method has been applied to the analysis of these isomers in spiked tap water. PMID:27591597

  9. Electrochemistry in Media of Exceptionally Low Polarity: Voltammetry with a Fluorous Solvent.

    PubMed

    Olson, Eric J; Boswell, Paul G; Givot, Bradley L; Yao, Letitia J; Bühlmann, Philippe

    2010-02-15

    This work demonstrates the first cyclic voltammetry in a perfluorocarbon solvent without use of a cosolvent. The novel electrolyte tetrabutylammonium tetrakis[3,5-bis(perfluorohexyl)phenyl]borate (NBu(4)BArF(104); 80 mM) allows for voltammetry of ferrocene in perfluoro(methylcyclohexane) by lowering the specific resistance to Ω268 k cm at 20.8 °C. Despite significant solution resistance, the resulting voltammograms can be fitted quantitatively without difficulty. The thus determined standard electron transfer rate constant, k°, for the oxidation of ferrocene in perfluoro(methylcyclohexane) is somewhat smaller than for many solvents commonly used in electrochemistry, but can be explained readily as the result of the viscosity and size of the solvent using Marcus theory. Dielectric dispersion spectroscopy verifies that addition of NBu(4)BArF(104) does not significantly raise the overall polarity of the solution over that of neat perfluoro(methylcyclohexane). PMID:20212920

  10. Anodic Stripping Voltammetry of Silver Nanoparticles: Aggregation Leads to Incomplete Stripping

    PubMed Central

    Cloake, Samantha J; Toh, Her Shuang; Lee, Patricia T; Salter, Chris; Johnston, Colin; Compton, Richard G

    2015-01-01

    The influence of nanoparticle aggregation on anodic stripping voltammetry is reported. Dopamine-capped silver nanoparticles were chosen as a model system, and melamine was used to induce aggregation in the nanoparticles. Through the anodic stripping of the silver nanoparticles that were aggregated to different extents, it was found that the peak area of the oxidative signal corresponding to the stripping of silver to silver(I) ions decreases with increasing aggregation. Aggregation causes incomplete stripping of the silver nanoparticles. Two possible mechanisms of ‘partial oxidation’ and ‘inactivation’ of the nanoparticles are proposed to account for this finding. Aggregation effects must be considered when anodic stripping voltammetry is used for nanoparticle detection and quantification. Hence, drop casting, which is known to lead to aggregation, is not encouraged for preparing electrodes for analytical purposes. PMID:25861566

  11. Detection of food additives by voltammetry at the liquid-liquid interface.

    PubMed

    Herzog, Grégoire; Kam, Victor; Berduque, Alfonso; Arrigan, Damien W M

    2008-06-25

    Electrochemistry at the liquid-liquid interface enables the detection of nonredoxactive species with electroanalytical techniques. In this work, the electrochemical behavior of two food additives, aspartame and acesulfame K, was investigated. Both ions were found to undergo ion-transfer voltammetry at the liquid-liquid interface. Differential pulse voltammetry was used for the preparation of calibration curves over the concentration range of 30-350 microM with a detection limit of 30 microM. The standard addition method was applied to the determination of their concentrations in food and beverage samples such as sweeteners and sugar-free beverages. Selective electrochemically modulated liquid-liquid extraction of these species in both laboratory solutions and in beverage samples was also demonstrated. These results indicate the suitability of liquid-liquid electrochemistry as an analytical approach in food analysis. PMID:18512937

  12. Voltammetric Electronic Tongue for Different Varieties of Rice Classification Based on Square Wave Voltammetry

    NASA Astrophysics Data System (ADS)

    Hu, Hongsheng; Niu, Qunfeng; Pan, Yinqing; Wang, Li

    A classification method of discriminate rice from different varieties with voltammetric electronic tongue based on square wave voltammetry is investigated. The rice samples are crushed and mixed with distilled water to get the rice solution, and the solution should be stirred and filtered before the experiment. In order to obtain the electrochemical response signals of the rice samples and extract the characteristic value of the singles, the electronic tongue which works respectively with titanium (Ti) electrode and tungsten electrode (W) to test the sample solution under square wave voltammetry. The Principal Component Analysis (PCA) and Clustering Analysis (CA) are adopted to classify and recognize the rice samples. Experimental results show that good classification and recognition results are got in this paper when using Principal Component Analysis and Cluster Analysis to analyze the response signals which are obtained by voltammetric electronic tongue worked with Ti electrode and W electrode under square wave potential.

  13. Hairy carbon electrodes studied by cyclic voltammetry and battery discharge testing

    NASA Technical Reports Server (NTRS)

    Chung, Deborah D. L.; Shui, Xiaoping; Frysz, Christine A.

    1993-01-01

    Hairy carbon is a new material developed by growing submicron carbon filaments on conventional carbon substrates. Typical substrate materials include carbon black, graphite powder, carbon fibers, and glassy carbon. A catalyst is used to initiate hair growth with carbonaceous gases serving as the carbon source. To study the electrochemical behavior of hairy carbons, cyclic voltammetry (CV) and discharge testing were conducted. In both cases, hairy carbon results surpassed those of the substrate material alone.

  14. Voltammetry of naltrexone in commercial formulation and human body fluids: Quantification and pharmacokinetic studies.

    PubMed

    Ghoneim, Mohamed M; El-Desoky, Hanaa S; Abdel-Galeil, Mohamed M

    2011-06-01

    Naltrexone HCl (NAL.HCl) has been reduced at the mercury electrode in Britton-Robinson universal buffer of pH values 2-11 with a mechanism involving the quasi-reversible uptake of the first transferring electron followed by a rate-determining protonation step of its C=O double bond at position C-6. Simple, sensitive, selective and reliable linear-sweep and square-wave adsorptive cathodic stripping voltammetry methods have been described for trace quantitation of NAL.HCl in bulk form, commercial formulation and human body fluids without the necessity for sample pretreatment and/or time-consuming extraction steps prior to the analysis. Limits of quantitation of 6.0×10(-9)M and 8.0×10(-10)M NAL.HCl in bulk form or commercial formulation and of 9.0×10(-9) and 1.0×10(-9)M NAL.HCl in spiked human serum samples were achieved by the described linear and square-wave stripping voltammetry methods, respectively. Furthermore, pharmacokinetic parameters of the drug in human plasma samples of healthy volunteers following the administration of an oral single dose of 50mg NAL.HCl (one Revia(®) tablet) were estimated by means of the described square-wave stripping voltammetry method without interferences from the drug's metabolites and/or endogenous human plasma constituents. The estimated pharmacokinetic parameters were favorably compared with those reported in literature. PMID:21371948

  15. Toward an in situ phosphate sensor in seawater using Square Wave Voltammetry.

    PubMed

    Barus, C; Romanytsia, I; Striebig, N; Garçon, V

    2016-11-01

    A Square Wave Voltammetry electrochemical method is proposed to measure phosphate in seawater as pulse techniques offer a higher sensitivity as compared to classical cyclic voltammetry. Chronoamperometry cannot be either adapted for an in situ sensor since this method requires to have controlled convection which will be impossible in a miniaturised sensor. Tests and validation of Square Wave Voltammetry parameters have been performed using an open cell and for the first time with a small volume (<400µL) laboratory prototypes. Two designs of prototypes have been compared. Using high frequency (f=250Hz) allows to obtain a linear behaviour between 0.1 and 1µmolL(-1) with a very low limit of detection of 0.05 µmolL(-1) after 60min of complexation waiting time. In order to obtain a linear regression for a larger concentration range i.e. 0.25-4µmolL(-1), a lower frequency of 2.5Hz is needed. A limit of detection of 0.1µmolL(-1) is obtained in this case after 30min of complexation waiting time for the peak measured at E=0.12V. Changing the position of the molybdenum electrode for the complexation step and moving the detection into another electrochemical cell allow to decrease the reaction time down to 5min. PMID:27591632

  16. Microbial Biofilm Voltammetry: Direct Electrochemical Characterization of Catalytic Electrode-Attached Biofilms▿ †

    PubMed Central

    Marsili, Enrico; Rollefson, Janet B.; Baron, Daniel B.; Hozalski, Raymond M.; Bond, Daniel R.

    2008-01-01

    While electrochemical characterization of enzymes immobilized on electrodes has become common, there is still a need for reliable quantitative methods for study of electron transfer between living cells and conductive surfaces. This work describes growth of thin (<20 μm) Geobacter sulfurreducens biofilms on polished glassy carbon electrodes, using stirred three-electrode anaerobic bioreactors controlled by potentiostats and nondestructive voltammetry techniques for characterization of viable biofilms. Routine in vivo analysis of electron transfer between bacterial cells and electrodes was performed, providing insight into the main redox-active species participating in electron transfer to electrodes. At low scan rates, cyclic voltammetry revealed catalytic electron transfer between cells and the electrode, similar to what has been observed for pure enzymes attached to electrodes under continuous turnover conditions. Differential pulse voltammetry and electrochemical impedance spectroscopy also revealed features that were consistent with electron transfer being mediated by an adsorbed catalyst. Multiple redox-active species were detected, revealing complexity at the outer surfaces of this bacterium. These techniques provide the basis for cataloging quantifiable, defined electron transfer phenotypes as a function of potential, electrode material, growth phase, and culture conditions and provide a framework for comparisons with other species or communities. PMID:18849456

  17. Alternative security

    SciTech Connect

    Weston, B.H. )

    1990-01-01

    This book contains the following chapters: The Military and Alternative Security: New Missions for Stable Conventional Security; Technology and Alternative Security: A Cherished Myth Expires; Law and Alternative Security: Toward a Just World Peace; Politics and Alternative Security: Toward a More Democratic, Therefore More Peaceful, World; Economics and Alternative Security: Toward a Peacekeeping International Economy; Psychology and Alternative Security: Needs, Perceptions, and Misperceptions; Religion and Alternative Security: A Prophetic Vision; and Toward Post-Nuclear Global Security: An Overview.

  18. Ferrocene‐Boronic Acid–Fructose Binding Based on Dual‐Plate Generator–Collector Voltammetry and Square‐Wave Voltammetry

    PubMed Central

    Li, Meng; Xu, Su‐Ying; Gross, Andrew J.; Hammond, Jules L.; Estrela, Pedro; Weber, James; Lacina, Karel; James, Tony D.

    2015-01-01

    Abstract The interaction of ferrocene‐boronic acid with fructose is investigated in aqueous 0.1 m phosphate buffer at pH 7, 8 and 9. Two voltammetric methods, based on 1) a dual‐plate generator–collector micro‐trench electrode (steady state) and 2) a square‐wave voltammetry (transient) method, are applied and compared in terms of mechanistic resolution. A combination of experimental data is employed to obtain new insights into the binding rates and the cumulative binding constants for both the reduced ferrocene‐boronic acid (pH dependent and weakly binding) and for the oxidised ferrocene‐boronic acid (pH independent and strongly binding). PMID:27525210

  19. Enhanced Dopamine Release by Dopamine Transport Inhibitors Described by a Restricted Diffusion Model and Fast-Scan Cyclic Voltammetry.

    PubMed

    Hoffman, Alexander F; Spivak, Charles E; Lupica, Carl R

    2016-06-15

    Fast-scan cyclic voltammetry (FSCV) using carbon fiber electrodes is widely used to rapidly monitor changes in dopamine (DA) levels in vitro and in vivo. Current analytical approaches utilize parameters such as peak oxidation current amplitude and decay times to estimate release and uptake processes, respectively. However, peak amplitude changes are often observed with uptake inhibitors, thereby confounding the interpretation of these parameters. To overcome this limitation, we demonstrate that a simple five-parameter, two-compartment model mathematically describes DA signals as a balance of release (r/ke) and uptake (ku), summed with adsorption (kads and kdes) of DA to the carbon electrode surface. Using nonlinear regression, we demonstrate that our model precisely describes measured DA signals obtained in brain slice recordings. The parameters extracted from these curves were then validated using pharmacological manipulations that selectively alter vesicular release or DA transporter (DAT)-mediated uptake. Manipulation of DA release through altering the Ca(2+)/Mg(2+) ratio or adding tetrodotoxin reduced the release parameter with no effect on the uptake parameter. DAT inhibitors methylenedioxypyrovalerone, cocaine, and nomifensine significantly reduced uptake and increased vesicular DA release. In contrast, a low concentration of amphetamine reduced uptake but had no effect on DA release. Finally, the kappa opioid receptor agonist U50,488 significantly reduced vesicular DA release but had no effect on uptake. Together, these data demonstrate a novel analytical approach to distinguish the effects of manipulations on DA release or uptake that can be used to interpret FSCV data. PMID:27018734

  20. UPDATE/ADDITIONS TO CURRENT OUST PUBLICATION: "HOW TO EVALUATE ALTERNATIVE CLEANUP TECHNOLOGIES FOR UNDERGROUND STORAGE TANK SITES: A GUIDE FOR CORRECTIVE ACTION PLAN REVIEWERS"

    EPA Science Inventory

    This guidance manual is comprised of several chapters, each of which describes in detail alternative cleanup technologies for underground storage tank sites. Each chapter provides diagrams and tables to aide in determining whether a particular technology may be applicable for cl...

  1. Oxidation management of white wines using cyclic voltammetry and multivariate process monitoring.

    PubMed

    Martins, Rui C; Oliveira, Raquel; Bento, Fatima; Geraldo, Dulce; Lopes, Vitor V; Guedes de Pinho, Paula; Oliveira, Carla M; Silva Ferreira, Antonio C

    2008-12-24

    The development of a fingerprinting strategy capable to evaluate the "oxidation status" of white wines based on cyclic voltammetry is proposed here. It is known that the levels of specific antioxidants and redox mechanisms may be evaluated by cyclic voltammetry. This electrochemical technique was applied on two sets of samples. One group was composed of normal aged white wines and a second group obtained from a white wine forced aging protocol with different oxygen, SO(2), pH, and temperature regimens. A study of antioxidant additions, namely ascorbic acid, was also made in order to establish a statistical link between voltammogram fingerprints and chemical antioxidant substances. It was observed that the oxidation curve presented typical features, which enables sample discrimination according to age, oxygen consumption, and antioxidant additions. In fact, it was possible to place the results into four significant orthogonal directions, compressing 99.8% of nonrandom features. Attempts were made to make voltammogram fingerprinting a tool for monitoring oxidation management. For this purpose, a supervised multivariate control chart was developed using a control sample as reference. When white wines are plotted onto the chart, it is possible to monitor the oxidation status and to diagnose the effects of oxygen regimes and antioxidant activity. Finally, quantification of substances implicated in the oxidation process as reagents (antioxidants) and products (off-flavors) was tried using a supervised algorithmic the partial least square regression analysis. Good correlations (r > 0.93) were observed for ascorbic acid, Folin-Ciocalteu index, total SO(2), methional, and phenylacetaldehyde. These results show that cyclic voltammetry fingerprinting can be used to monitor and diagnose the effects of wine oxidation. PMID:19053361

  2. Estimation of the composition of intermetallic compounds in LiCl-KCl molten salt by cyclic voltammetry.

    PubMed

    Liu, Ya L; Liu, Kui; Yuan, Li Y; Chai, Zhi F; Shi, Wei Q

    2016-08-15

    In this work, the compositions of Ce-Al, Er-Al and La-Bi intermetallic compounds were estimated by the cyclic voltammetry (CV) technique. At first, CV measurements were carried out at different reverse potentials to study the co-reduction processes of Ce-Al, Er-Al and La-Bi systems. The CV curves obtained were then re-plotted with the current as a function of time, and the coulomb number of each peak was calculated. By comparing the coulomb number of the related peaks, the compositions of the Ce-Al, Er-Al and La-Bi intermetallic compounds formed in the co-reduction process could be estimated. The results showed that Al11Ce3, Al3Ce, Al2Ce and AlCe could be formed by the co-reduction of Ce(iii) and Al(iii). For the co-reduction of Er(iii) and Al(iii), Al3Er2, Al2Er and AlEr were formed. In a La(iii) and Bi(iii) co-existing system in LiCl-KCl melts, LaBi2, LaBi and Li3Bi were the major products as a result of co-reduction. PMID:27203295

  3. Solid-state linear sweep voltammetry. A probe of diffusion in thin films of polymer ion conductors on microdisk electrodes

    SciTech Connect

    Geng, L.; Reed, R.A.; Longmire, M.; Murray, R.W.

    1987-05-21

    Pt microdisk electrodes of diameter 10-70 ..mu..m sealed in glass, lying in the same plane with Ag pseudoreference and Pt auxiliary disk electrodes, and coated with a few micrometers of ionically conducting polymer film containing electroactive solutes provide a convenient experimental microcell format for solid-state linear sweep and cyclic voltammetry of the electroactive solutes. Transport rates of the solutes in the polymer depend on composition of the bathing (plasticizing) gas around the microcell, the temperature (polymer fluidity), and solute charge, size, and physical diffusion vs. electron self-exchange rates. Investigation of such transport phenomena requires theoretical analysis of the transport geometry of the microcell, which is the main subject of this paper. The preferred situations for measurements of transport rate are (i) polymer films thick in comparison to electrode diameter and transport rate, so that semi-infinite transport applies, and (ii) films thin in the same respects, so that currents are a summation of thin layer cell and microcylindrical geometries. Measured diffusion constants are confirmed with data from a four-electrode interdigitated array electrode experiment.

  4. Effect of ohmic, mass-transfer, and kinetic resistances on linear-sweep voltammetry in a cylindrical-pore electrode

    NASA Technical Reports Server (NTRS)

    Weidner, John W.; Fedkiw, Peter S.

    1991-01-01

    A means is presented to account for the effect of ohmic, mass-transfer, and kinetic resistances on linear-sweep voltammograms by modeling a pore in a porous matrix as a cylindrical-pore electrode, and solving the mass and charge conservation equations in the context of this geometry for the simply redox reaction O + ne(-) yield R where both O and R are soluble species. Both analytical and numerical techniques are used to solve the governing equations. The calculated peak currents and potentials are correlated by empirical formulas to the measurable parameters: sweep rate, concentration of the redox species, diffusion coefficient, conductivity of the electrolyte, and pore dimensions. Using the correlations, a methodology is established for determining if the redox reaction kinetics are irreversible or reversible (Nernstian). If the reaction is irreversible, it is shown how the standard rate constant and the transfer coefficient may be extracted from linear-sweep voltammetry data, or, if the reaction is reversible, how the number of electrons transferred may be deduced.

  5. Wireless fast-scan cyclic voltammetry measurement of histamine using WINCS -- a proof-of-principle study

    PubMed Central

    Chang, Su-Youne; Jay, Taylor; Muñoz, Joel; Kim, Inyong; Lee, Kendall H.

    2012-01-01

    Histamine is among the most poorly understood biogenic amines, yet the histaminergic system spreads throughout the brain and has been implicated in functions as diverse as homeostasis and synaptic plasticity. Not surprisingly then, it has been linked to a number of conditions including minimally conscious state, persistent vegetative state, epilepsy, addiction, cluster headache, essential tremor, and Parkinson’s disease. We have previously reported that the Wireless Instantaneous Neurotransmitter Concentration Sensing (WINCS) system can monitor dopamine, serotonin, and adenosine using fast-scan cyclic voltammetry (FSCV). Here, we demonstrate the expanded capability of the WINCS system to measure histamine. The optimal FSCV waveform was determined to be a triangle wave scanned between −0.4 and +1.4 V at a rate of 400 V/s applied at 10 Hz. Using this optimized FSCV parameter, we found histamine release was induced by high frequency electrical stimulation at the tuberomammillary nucleus in rat brain slices. Our results suggest that the WINCS system can provide reliable, high fidelity measurements of histamine, consistently showing oxidative currents at +1.3 V, a finding that may have important clinical implications. PMID:22416270

  6. Application of bismuth bulk annular band electrode for determination of ultratrace concentrations of thallium(I) using stripping voltammetry.

    PubMed

    Węgiel, Krystian; Jedlińska, Katarzyna; Baś, Bogusław

    2016-06-01

    A study of a new type of mercury-free working electrode - the bismuth bulk annular band working electrode (BiABE) - applied for thallium(I) detection via differential pulse anodic stripping voltammetry (DP ASV), preceded by the complexation of interfering ions (Cd(2+), Pb(2+)) with EDTA in an acetate buffer (pH 4.5), is reported. The optimisation of experimental conditions included selection of the appropriate supporting electrolyte solution, potential and time of preconcentration, and DP mode parameters. The peak current was proportional to the concentration of Tl(I) in the range from 0.5 to 49nmolL(-1) (R=0.9992) and from 0.05 to 1.4nmolL(-1) (R=0.9987) for accumulation times of 60s and 300s, respectively. For 60s of accumulation time, the LOD was 0.005nmolL(-1) (1ngL(-1)) (at S/N=3), and the sensitivity of 18.5nA/nM was achieved. The relative standard deviation for 4.9nmolL(-1) of Tl(I) was 4.3% (n=5). Finally, the proposed method was successfully applied to determine Tl(I) in the certified reference materials-waters (SPS-SW1 and SPS-SW2) as well as the spiked tap and river water samples. PMID:26921513

  7. Sampling phasic dopamine signaling with fast-scan cyclic voltammetry in awake behaving rats

    PubMed Central

    Fortin, SM; Cone, JJ; Ng-Evans, S; McCutcheon, JE; Roitman, MF

    2015-01-01

    Fast-scan cyclic voltammetry (FSCV) is an electrochemical technique which permits the in vivo measurement of extracellular fluctuations in multiple chemical species. The technique is frequently utilized to sample sub-second (phasic) concentration changes of the neurotransmitter dopamine in awake and behaving rats. Phasic dopamine signaling is implicated in reinforcement, goal-directed behavior, and locomotion and FSCV has been used to investigate how rapid changes in striatal dopamine concentration contribute to these and other behaviors. This unit describes the instrumentation and construction, implantation, and use of necessary components required to sample and analyze dopamine concentration changes in awake rats with FSCV. PMID:25559005

  8. Abrasive stripping square-wave voltammetry of blackberry, raspberry, strawberry, pomegranate, and sweet and blue potatoes.

    PubMed

    Komorsky-Lovrić, Šebojka; Novak, Ivana

    2011-08-01

    Electro-oxidation potentials of 7 fruits and vegetables were determined by abrasive stripping voltammetry. The responses were characterized by 2 peaks with maxima at 0.45 and 0.55 V compared with Ag/AgCl, respectively. Both electrode reactions appear reversible at a frequency of 8 Hz. They can be ascribed to anthocyanidins and ellagic acid as electroactive compounds. By this method, an antioxidative capacity of a certain plant can be quickly estimated without extraction of active components. PMID:22417490

  9. A one-dimensional stochastic approach to the study of cyclic voltammetry with adsorption effects

    NASA Astrophysics Data System (ADS)

    Samin, Adib J.

    2016-05-01

    In this study, a one-dimensional stochastic model based on the random walk approach is used to simulate cyclic voltammetry. The model takes into account mass transport, kinetics of the redox reactions, adsorption effects and changes in the morphology of the electrode. The model is shown to display the expected behavior. Furthermore, the model shows consistent qualitative agreement with a finite difference solution. This approach allows for an understanding of phenomena on a microscopic level and may be useful for analyzing qualitative features observed in experimentally recorded signals.

  10. Electrochemistry and analytical determination of lysergic acid diethylamide (LSD) via adsorptive stripping voltammetry.

    PubMed

    Merli, Daniele; Zamboni, Daniele; Protti, Stefano; Pesavento, Maria; Profumo, Antonella

    2014-12-01

    Lysergic acid diethylamide (LSD) is hardly detectable and quantifiable in biological samples because of its low active dose. Although several analytical tests are available, routine analysis of this drug is rarely performed. In this article, we report a simple and accurate method for the determination of LSD, based on adsorptive stripping voltammetry in DMF/tetrabutylammonium perchlorate, with a linear range of 1-90 ng L(-1) for deposition times of 50s. LOD of 1.4 ng L(-1) and LOQ of 4.3 ng L(-1) were found. The method can be also applied to biological samples after a simple extraction with 1-chlorobutane. PMID:25159435

  11. Microfluidic platform for neurotransmitter sensing based on cyclic voltammetry and dielectrophoresis for in vitro experiments.

    PubMed

    Mathault, Jessy; Zamprogno, Pauline; Greener, Jesse; Miled, Amine

    2015-08-01

    This paper presents a new microfluidic platform that can simultaneously measure and locally modulate neurotransmitter concentration in a neuron network. This work focuses on the development of a first prototype including a potentiostat and electrode functionalization to detect several neurotransmitter's simultaneously. We tested dopamine as proof of concept to validate functionality. The system is based on 320 bidirectional electrode array for dielectrophoretic manipulation and cyclic voltammetry. Each electrode is connected to a mechanical multiplexer in order to reduce noise interference and fully isolate the electrode. The multiplexing rate is 476 kHz and each electrode can drive a signal with an amplitude of 60 V pp for dielectrophoretic manipulation. PMID:26736720

  12. Pseudo-stir bar hollow fiber solid/liquid phase microextraction combined with anodic stripping voltammetry for determination of lead and cadmium in water samples.

    PubMed

    Es'haghi, Zarrin; Hoseini, Hasan Ali; Mohammadi-Nokhandani, Saeed; Ebrahimi, Javad

    2014-11-01

    A new procedure is presented for the determination of low concentrations of lead and cadmium in water samples. Ligand assisted pseudo-stir bar hollow fiber solid/liquid phase microextraction using sol-gel sorbent reinforced with carbon nanotubes was combined with differential pulse anodic stripping voltammetry for simultaneous determination of cadmium and lead in tap water, and Darongar river water samples. In the present work, differential pulse anodic stripping voltammetry (DPASV) using a hanging mercury drop electrode (HMDE) was used in order to determine the ultra trace level of lead and cadmium ions in real samples. This method is based on accumulation of lead and cadmium ions on the electrode using different ligands; Quinolin-8-ol, 5,7-diiodo quinoline-8-ol, 4,5-diphenyl-1H-imidazole-2(3H)-one and 2-{[2-(2-Hydroxy-ethylamino)-ethylamino]-methyl}-phenol as the complexing agent. The optimized conditions were obtained. The relationship between the peak current versus concentration was linear over the range of 0.05-500 ng mL(-1) for Cd (II) and Pb (II). The limits of detection for lead and cadmium were 0.015 ng mL(-1) and 0.012 ng mL(-1), respectively. Under the optimized conditions, the pre-concentration factors are 2440 and 3710 for Cd (II) and Pb (II) in 5 mL of water sample, respectively. PMID:25685537

  13. Pseudo-stir bar hollow fiber solid/liquid phase microextraction combined with anodic stripping voltammetry for determination of lead and cadmium in water samples

    PubMed Central

    Es’haghi, Zarrin; Hoseini, Hasan Ali; Mohammadi-Nokhandani, Saeed; Ebrahimi, Javad

    2013-01-01

    A new procedure is presented for the determination of low concentrations of lead and cadmium in water samples. Ligand assisted pseudo-stir bar hollow fiber solid/liquid phase microextraction using sol–gel sorbent reinforced with carbon nanotubes was combined with differential pulse anodic stripping voltammetry for simultaneous determination of cadmium and lead in tap water, and Darongar river water samples. In the present work, differential pulse anodic stripping voltammetry (DPASV) using a hanging mercury drop electrode (HMDE) was used in order to determine the ultra trace level of lead and cadmium ions in real samples. This method is based on accumulation of lead and cadmium ions on the electrode using different ligands; Quinolin-8-ol, 5,7-diiodo quinoline-8-ol, 4,5-diphenyl-1H-imidazole-2(3H)-one and 2-{[2-(2-Hydroxy-ethylamino)-ethylamino]-methyl}-phenol as the complexing agent. The optimized conditions were obtained. The relationship between the peak current versus concentration was linear over the range of 0.05–500 ng mL−1 for Cd (II) and Pb (II). The limits of detection for lead and cadmium were 0.015 ng mL−1 and 0.012 ng mL−1, respectively. Under the optimized conditions, the pre-concentration factors are 2440 and 3710 for Cd (II) and Pb (II) in 5 mL of water sample, respectively. PMID:25685537

  14. Alternate drop pulse polarography

    USGS Publications Warehouse

    Christie, J.H.; Jackson, L.L.; Osteryoung, R.A.

    1976-01-01

    The new technique of alternate drop pulse polarography is presented. An experimental evaluation of alternate drop pulse polarography shows complete compensation of the capacitative background due to drop expansion. The capillary response phenomenon was studied in the absence of faradaic reaction and the capillary response current was found to depend on the pulse width to the -0.72 power. Increased signal-to-noise ratios were obtained using alternate drop pulse polarography at shorter drop times.

  15. Solid state voltammetry and sensors in solids and gases. Performance report, April 1991--March 1992

    SciTech Connect

    Murray, R.W.

    1992-04-01

    This project explores the electrochemical reactivity of electron transfer donor/acceptors dissolved in and diffusing through solid and semi-solid, ionically conductive media. The emphasis is on developing voltammetric experiments that are quantitatively interpretable in terms of the mass transport and electron transfer rates and thermodynamic equilibria of the redox solutes, and to exploit such experiments to probe their chemical and electrochemical behavior in the solid media. Techniques for quantitative voltammetry in solids were essentially unknown prior to initiation of this DOE project. We mainly employ poly(ethers)s containing dissolved metal salts electrolytes (``polymer electrolytes``), as prototype solid and semi-solid solvents. During this award year we have (a) concluded a study of plasticization chemistry in poly (ether) polymer electrolytes, (b) made progress in devising techniques for measuring the rates of electron transfer reactions in solid and semi-solid poly (ether)s, (c) continued efforts to design and understand the behavior of microband electrodes of various widths (0.1 to 10 {mu}m) in voltammetry of redox solutes, and (d) initiated synthetic efforts to attach ethylene oxide chains of various lengths to redox solutes.

  16. Hydrodynamic Voltammetry as a Rapid and Simple Method for Evaluating Soil Enzyme Activities

    PubMed Central

    Sazawa, Kazuto; Kuramitz, Hideki

    2015-01-01

    Soil enzymes play essential roles in catalyzing reactions necessary for nutrient cycling in the biosphere. They are also sensitive indicators of ecosystem stress, therefore their evaluation is very important in assessing soil health and quality. The standard soil enzyme assay method based on spectroscopic detection is a complicated operation that requires the removal of soil particles. The purpose of this study was to develop a new soil enzyme assay based on hydrodynamic electrochemical detection using a rotating disk electrode in a microliter droplet. The activities of enzymes were determined by measuring the electrochemical oxidation of p-aminophenol (PAP), following the enzymatic conversion of substrate-conjugated PAP. The calibration curves of β-galactosidase (β-gal), β-glucosidase (β-glu) and acid phosphatase (AcP) showed good linear correlation after being spiked in soils using chronoamperometry. We also performed electrochemical detection using real soils. Hydrodynamic chronoamperometry can be used to assess the AcP in soils, with a detection time of only 90 s. Linear sweep voltammetry was used to measure the amount of PAP released from β-gal and β-glu by enzymatic reaction after 60 min. For the assessment of soil enzymes, the results of hydrodynamic voltammetry assay compared favorably to those using a standard assay procedure, but this new procedure is more user-friendly, rapid and simple. PMID:25746097

  17. Assessing principal component regression prediction of neurochemicals detected with fast-scan cyclic voltammetry.

    PubMed

    Keithley, Richard B; Wightman, R Mark

    2011-06-01

    Principal component regression is a multivariate data analysis approach routinely used to predict neurochemical concentrations from in vivo fast-scan cyclic voltammetry measurements. This mathematical procedure can rapidly be employed with present day computer programming languages. Here, we evaluate several methods that can be used to evaluate and improve multivariate concentration determination. The cyclic voltammetric representation of the calculated regression vector is shown to be a valuable tool in determining whether the calculated multivariate model is chemically appropriate. The use of Cook's distance successfully identified outliers contained within in vivo fast-scan cyclic voltammetry training sets. This work also presents the first direct interpretation of a residual color plot and demonstrated the effect of peak shifts on predicted dopamine concentrations. Finally, separate analyses of smaller increments of a single continuous measurement could not be concatenated without substantial error in the predicted neurochemical concentrations due to electrode drift. Taken together, these tools allow for the construction of more robust multivariate calibration models and provide the first approach to assess the predictive ability of a procedure that is inherently impossible to validate because of the lack of in vivo standards. PMID:21966586

  18. Investigation of antioxidant capacity of the extracts of bilberry (VACCINUM MYRTILLIS L.) by voltammetry

    NASA Astrophysics Data System (ADS)

    Vtorushina, A. N.; Nikonova, E. D.

    2016-02-01

    This paper deals with the urgent issue of the search of new drugs based on plant raw materials that have an influence on various stages of oxidation processes occurring in the human body. The aim of this paper is to determine the antioxidant activity of the bilberry extracts that are used in the medicine practice by a cathodic voltammetry method. We consider the influence of water and alcohol bilberry extracts on the process of oxygen electroreduction. From these extracts the most activity relation to the process of cathodic oxygen reduction showed alcohol (40%) bilberry extract. It was also stated that the alcohol extract of bilberry has a greater antioxidant activity than other known antioxidants such as ascorbic acid, glucose, dihydroquercetin. Thus, after consideration of a number of plant objects, we showed the possibility of applying the method of cathodic voltammetry for the determination of total antioxidant activity of plant material and identifying and highlighting the most perspective sources of biologically active substances (BAS), as well as the ability of identifying extractants that fully extract BAS from plant raw materials. The activity data of extracts of plant raw materials gives an opportunity of establishing an effective yield phytopreparation based on bilberry that has an antioxidant effect.

  19. Square wave voltammetry with multivariate calibration tools for determination of eugenol, carvacrol and thymol in honey.

    PubMed

    Tonello, Natalia; Moressi, Marcela Beatriz; Robledo, Sebastián Noel; D'Eramo, Fabiana; Marioli, Juan Miguel

    2016-09-01

    The simultaneous determination of eugenol (EU), thymol (Ty) and carvacrol (CA) in honey samples, employing square wave voltammetry (SWV) and chemometrics tools, is informed for the first time. For this purpose, a glassy carbon electrode (GCE) was used as working electrode. The operating conditions and influencing parameters (involving several chemical and instrumental parameters) were first optimized by cyclic voltammetry (CV). Thus, the effects of the scan rate, pH and analyte concentration on the electrochemical response of the above mentioned molecules were studied. The results show that the electrochemical responses of the three compounds are very similar and that the voltammetric traces present a high degree of overlap under all the experimental conditions used in this study. Therefore, two chemometric tools were tested to obtain the multivariate calibration model. One method was the partial least squares regression (PLS-1), which assumes a linear behaviour. The other nonlinear method was an artificial neural network (ANN). In this last case we used a supervised, feed-forward network with Levenberg-Marquardt back propagation training. From the accuracies and precisions analysis between nominal and estimated concentrations calculated by using both methods, it was inferred that the ANN method was a good model to quantify EU, Ty and CA in honey samples. Recovery percentages were between 87% and 104%, except for two samples whose values were 136% and 72%. The analytical methodology was simple, fast and accurate. PMID:27343610

  20. Alternate Alternates: A Medley of Alternate Assessments.

    ERIC Educational Resources Information Center

    Burdette, Paula J.; Olsen, Ken

    This paper highlights eight states that have implemented alternate assessments for children with disabilities who cannot participate in their state and district-wide assessment programs. The alternate assessment systems in Delaware, Florida, Georgia, Indiana, Minnesota, North Dakota, Utah, and West Virginia are briefly described, along with their…

  1. Expanding neurochemical investigations with multi-modal recording: simultaneous fast-scan cyclic voltammetry, iontophoresis, and patch clamp measurements.

    PubMed

    Kirkpatrick, D C; McKinney, C J; Manis, P B; Wightman, R M

    2016-08-01

    Multi-modal recording describes the simultaneous collection of information across distinct domains. Compared to isolated measurements, such studies can more easily determine relationships between varieties of phenomena. This is useful for neurochemical investigations which examine cellular activity in response to changes in the local chemical environment. In this study, we demonstrate a method to perform simultaneous patch clamp measurements with fast-scan cyclic voltammetry (FSCV) using optically isolated instrumentation. A model circuit simulating concurrent measurements was used to predict the electrical interference between instruments. No significant impact was anticipated between methods, and predictions were largely confirmed experimentally. One exception was due to capacitive coupling of the FSCV potential waveform into the patch clamp amplifier. However, capacitive transients measured in whole-cell current clamp recordings were well below the level of biological signals, which allowed the activity of cells to be easily determined. Next, the activity of medium spiny neurons (MSNs) was examined in the presence of an FSCV electrode to determine how the exogenous potential impacted nearby cells. The activities of both resting and active MSNs were unaffected by the FSCV waveform. Additionally, application of an iontophoretic current, used to locally deliver drugs and other neurochemicals, did not affect neighboring cells. Finally, MSN activity was monitored during iontophoretic delivery of glutamate, an excitatory neurotransmitter. Membrane depolarization and cell firing were observed concurrently with chemical changes around the cell resulting from delivery. In all, we show how combined electrophysiological and electrochemical measurements can relate information between domains and increase the power of neurochemical investigations. PMID:27314130

  2. Alternatives for Jet Engine Control

    NASA Technical Reports Server (NTRS)

    Leake, R. J.; Sain, M. K.

    1976-01-01

    Approaches are developed as alternatives to current design methods which rely heavily on linear quadratic and Riccati equation methods. The main alternatives are discussed in two broad categories, local multivariable frequency domain methods and global nonlinear optimal methods.

  3. Alternative Therapies

    MedlinePlus

    ... Late Effects of Poliomyelitis for Physicians and Survivors © Alternative Therapies Alternative therapies, also called complementary, can support ... of motion, pain, and fatigue are often reported. Energy work includes acupuncture and acupressure, traditional Chinese medicine ...

  4. Three-dimensional voltammetry: a chemometrical analysis of electrochemical data for determination of dopamine in the presence of unexpected interference by a biosensor based on gold nanoparticles.

    PubMed

    Khoobi, Asma; Ghoreishi, Sayed Mehdi; Behpour, Mohsen; Masoum, Saeed

    2014-09-16

    Multivariate curve resolution by alternating least-squares (MCR-ALS) was used for voltammetric determination of dopamine (DA) in the presence of epinephrine (EP) at a gold nanoparticles chemically modified carbon paste electrode (AuNPs/CPE). Scanning electron microscopy (SEM), electrochemical impedance spectroscopy (EIS), and cyclic voltammetry (CV) techniques were applied for characterization of the nanostructure modified electrode. Central composite rotatable design (CCRD) was employed to generate an experimental program to offer data to model the effects of different parameters on voltammetric responses. Response surface methodology (RSM) was applied to show the individual and interactive effects of chemical and instrumental variables at five levels, combined according to CCRD. For determination of DA in the presence of unexpected interference, three-way data were achieved from various pulse heights in differential pulse voltammetry (DPV) technique. This type of data construction, analyzed by MCR-ALS, makes it possible to exploit the so-called "second-order advantage". The second-order advantage provided unbiased results even in the presence of electroactive interferences with highly overlapped peaks. Also, an algorithm was applied to correct the detected potential shift in the voltammetric data. The voltammograms of the samples were then deposited in an augmented data matrix (column-wise) and subsequently analyzed by MCR-ALS. The effect of rotational ambiguity associated with a particular MCR-ALS solution under a set of constraints was also studied. The proposed method could be applied for the determination of DA and EP in the presence of each other in a wide concentration range of 0.1-205.0 μM, and the detection limit of DA has been found to be 35.5 nM. Finally, the technique has been used for the reliable analysis of DA in real samples. PMID:25191974

  5. Ion-induced secondary electron emission behavior of sol-gel-derived MgO thin films used for protective layers in alternating current plasma display panels

    NASA Astrophysics Data System (ADS)

    Jung, Hyun Suk; Lee, Jung-Kun; Hong, Kug Sun; Youn, Hyuk-Joon

    2002-09-01

    MgO thin films were prepared using two sols (hydrolyzed sol and stabilized sol) and the ion-induced secondary electron emission behavior of the resultant thin films was investigated. A severe fluctuation in the secondary electron emission current was found in MgO films from hydrolyzed sol. The instability of the ion-induced current was due to the nanosized pores, which were formed during the topotactic reaction of Mg(OH)2 to MgO. Nonhydrolyzed MgO films, however, showed a stable ion-induced current. The ion-induced secondary electron emission coefficients (gammai) of the MgO films had a maximum of 0.95plus-or-minus0.02 when the films were heat treated at 550 degC in O2. The change in gammai of nonhydrolyzed films was discussed from the viewpoint of crystallinity, residual organics, and surface roughness. The high gammai and low processing temperature of nonhydrolyzed MgO films revealed that the sol-gel process is suitable to prepare MgO films for use as a protective layer in ac plasma display panel cells.

  6. Aternating current photovoltaic building block

    DOEpatents

    Bower, Ward Issac; Thomas, Michael G.; Ruby, Douglas S.

    2004-06-15

    A modular apparatus for and method of alternating current photovoltaic power generation comprising via a photovoltaic module, generating power in the form of direct current; and converting direct current to alternating current and exporting power via one or more power conversion and transfer units attached to the module, each unit comprising a unitary housing extending a length or width of the module, which housing comprises: contact means for receiving direct current from the module; one or more direct current-to-alternating current inverters; an alternating current bus; and contact means for receiving alternating current from the one or more inverters.

  7. Complementary/Alternative therapies for the treatment of breast cancer. A systematic review of randomized clinical trials and a critique of current terminology.

    PubMed

    Ernst, Edzard; Schmidt, Katja; Baum, Michael

    2006-01-01

    The objectives of this study was to evaluate and critically analyze all randomized clinical trials (RCTs) of ''alternative cancer cures'' (ACCs) for breast cancer. The electronic databases Cochrane Central Register of Controlled Trials, MEDLINE, EMBASE, Allied and Complementary Medicine, Scirus, BIOSIS, CancerLit and CINAHL and for ongoing trials the MetaRegister at http://www.controlled-trials.com/ and the National Research Register at http://www.update-software.com/national/ were searched from their inception. Bibliographies of located studies were scanned. Unpublished or ongoing trials were identified through correspondence with experts in the field. Our own files were hand searched for further RCTs. Review methods included a systematic review of RCTs involving breast cancer patients treated with ACCs, survival, parameters indicative of tumor burden, disease progression, cancer recurrence, and cancer cure. Results were tabulated and summarized. Thirteen RCTs met the inclusion criteria. In most cases their methodological quality is low, with only two RCTs scoring ''4'' and four RCTs scoring ''3'' out of 5 possible points for methodological quality. The treatments tested included various methods of psychosocial support such as group support therapy, cognitive behavioral therapy cognitive existential group therapy, a combination of muscle relaxation training and guided imagery, the Chinese herbal remedy Shi Quan Da Bu Tang, thymus extract, transfer factor, melatonin, and factor AF2. Encouraging but not fully convincing results emerged for melatonin. PMID:17238981

  8. Anodic stripping voltammetry with graphite felt electrodes for the trace analysis of silver.

    PubMed

    Davies, Trevor J

    2016-08-01

    Graphite felt (GF) is a mass produced porous carbon electrode material commonly used in redox flow batteries. Previous studies have suggested GF may have valuable applications in electroanalysis as a low cost disposable carbon electrode material, although most GF sensors have used flow cell arrangements. In this work, an elegant wetting technique is employed that allows GF electrodes to be used in quiescent solution to detect trace levels of silver in water via anodic stripping voltammetry. GF electrodes display good repeatability and a limit of detection of 25 nM of Ag(+) in 0.1 M HNO3, with a linear range spanning two orders of magnitude. This compares to a value of around 140 nM when using conventional carbon electrodes. Combined with their low cost and disposable nature, the results suggest GF electrodes can make a valuable contribution to electroanalysis. PMID:27276994

  9. Determination of antioxidant activity of spices and their active principles by differential pulse voltammetry.

    PubMed

    Palma, Alberto; Ruiz Montoya, Mercedes; Arteaga, Jesús F; Rodríguez Mellado, Jose M

    2014-01-22

    The anodic oxidation of mercury in the presence of hydrogen peroxide in differential pulse voltammetry (DPV) was used to determine the antioxidant (AO) character of radical scavengers. Hydroperoxide radical is formed at the potentials of the oxidation peak on mercury electrodes, such radical reacting with the antioxidants in different extension. The parameter C10 (antioxidant concentration at which the peak area decreases by 10%) is used to measure the scavenging activity of the individual antioxidants. To establish the scavenging activity of antioxidant mixtures as a whole, the parameter, μ10 as the reverse of V10, V10 being the volume necessary to decrease the peak area in DPV by 10%, was selected. Higher μ10 values correspond to higher scavenging activity. The studies have been extended to aqueous extracts of some species. The results may be useful in explaining the effect of spices in vitro and in vivo studies. PMID:25264569

  10. A Cyclic Voltammetry Experiment Illustrating Redox Potentials, Equilibrium Constants, and Substitution Reactions in Coordination Chemistry

    NASA Astrophysics Data System (ADS)

    Toma, Henrique E.; Araki, Koiti; Dovidauskas, Sergio

    2000-10-01

    We report a cyclic voltammetry experiment focusing on the [RuIII(EDTA)(H2O)]- complex and its equilibrium reaction with dimethyl sulfoxide (DMSO) in aqueous solution, yielding the [RuIII(EDTA)(kS-DMSO)]- complex. From the electrochemistry data, the formation constants for the [RuIII(EDTA)(kS-DMSO)]- and [RuII(EDTA)(kS-DMSO)]2- complexes were calculated as 2.0 mol-1 dm3 and 2.7 x 109 mol-1 dm3, respectively. The results illustrate the kinetic lability of the ruthenium(III)-EDTA complexes and the role of backbonding stabilization in ruthenium(II)-DMSO complexes. The experiment has been successfully performed in a Coordination Chemistry course, exploiting fundamental aspects of metal complexes and the applications of that important electrochemical technique.

  11. Signal stability of Nafion-coated thin mercury film electrodes for stripping voltammetry.

    PubMed

    Hoyer, B; Jensen, N

    1994-03-01

    The signal stability of the Nafion-coated thin mercury film electrode (NCTMFE) was studied by using cadmium and lead as test analytes and differential pulse anodic stripping voltammetry as detection method. In particular, the effect of the casting solvent and the curing procedure employed in the preparation of the polymer film was examined. Best results were obtained with N,N-dimethylacetamide as casting solvent and a two-step curing procedure in which the polymer was evaporated to dryness at 55 degrees and cured at 105 degrees with a hot-air gun. Mercury plating was performed ex situ. An NCTMFE prepared in this manner has a better signal stability than ex situ-plated as well as in situ-plated conventional mercury film electrodes. PMID:18965949

  12. Characterization of small noble metal electrodes by voltammetry and energy dispersive x ray analysis

    NASA Astrophysics Data System (ADS)

    Strein, Timothy G.; Ewing, Andrew G.

    1993-01-01

    Construction and characterization of platinum and gold electrodes with total structural diameters of 1-2 micrometers is described. These small voltammetric probes have been constructed by direct electroreduction of noble metals onto the tips of etched carbon fiber microdisk electrodes. Voltammetry, electron microscopy, energy-dispersive x-ray analysis, and pulsed amperometric detection have been used to characterize these electrodes. Dopamine concentrations have been determined over a range of 10(exp -4) to 10(exp -3) M in the biological buffer system which contains 25 mM glucose, a compound known to adsorb strongly to electrodes. Amperometric monitoring at a constant potential with these small results in signal decay of 20% to 40% in a ten minute experiment. Pulsed amperometric detection minimizes electrode fouling, resulting in 5% or less signal decay over the same ten minute period.

  13. Cyclic voltammetry as a sensitive method for in situ probing of chemical transformations in quantum dots.

    PubMed

    Osipovich, Nikolai P; Poznyak, Sergei K; Lesnyak, Vladimir; Gaponik, Nikolai

    2016-04-21

    The application of electrochemical methods for the characterization of colloidal quantum dots (QDs) attracts considerable attention as these methods may allow for monitoring of some crucial parameters, such as energetic levels of conduction and valence bands as well as surface traps and ligands under real conditions of colloidal solution. In the present work we extend the applications of cyclic voltammetry (CV) to in situ monitoring of degradation processes of water-soluble CdTe QDs. This degradation occurs under lowering of pH to the values around 5, i.e. under conditions relevant to bioimaging applications of these QDs, and is accompanied by pronounced changes of their photoluminescence. Observed correlations between characteristic features of CV diagrams and the fluorescence spectra allowed us to propose mechanisms responsible for evolution of the photoluminescence properties as well as degradation pathway of CdTe QDs at low pH. PMID:27025663

  14. Electrochemical characterization of gelatinized starch dispersions: voltammetry and electrochemical impedance spectroscopy on platinum surface.

    PubMed

    Hernandez-Jaimes, C; Lobato-Calleros, C; Sosa, E; Bello-Pérez, L A; Vernon-Carter, E J; Alvarez-Ramirez, J

    2015-06-25

    The electrochemical properties of gelatinized starch dispersions (GSD; 5% w/w) from different botanical sources were studied using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) tests over a platinum surface. The phenomenological modelling of EIS data using equivalent circuits indicated that after gelatinization the electrical resistance was determined mainly by the resistance of insoluble material (i.e., ghosts). Sonication of the GSD disrupted the ghost microstructure, and produced an increase in electrical conductivity by reducing the resistance of the insoluble material. The CV data showed three oxidation peaks at potentials where glucose solutions displayed oxidation waves. It is postulated that hydrolysis at the bulk and electrocatalyzed oxidation on the Pt-surface are reactions involved in the starch transformation. Starches peak intensity increased with the amylose content, suggesting that the amylose-rich matrix played an important role in the charge transfer in the electrolytic system. PMID:25839788

  15. Chemical imaging with combined fast-scan cyclic voltammetry-scanning electrochemical microscopy.

    PubMed

    Schrock, Daniel S; Baur, John E

    2007-09-15

    Fast-scan cyclic voltammetry (FSCV) is applied to the tip of a scanning electrochemical microscope (SECM) for imaging the distribution of chemical species near a substrate. This approach was used to image the diffusion layer of both a large substrate electrode (3-mm-diameter glassy carbon) and a microelectrode substrate (10-microm-diameter Pt). Additionally, oxygen depletion near living cells was measured and correlated to respiratory activity. Finally, oxygen and hydrogen peroxide were simultaneously detected during the oxidative burst of a zymosan-stimulated macrophage cell. These results demonstrate the utility of FSCV-SECM for chemical imaging when conditions are chosen such that feedback interactions with the substrate are minimal. PMID:17705555

  16. Direct methods for the determination of lead in whole blood by anodic stripping voltammetry.

    PubMed

    Lee, S W; Méranger, J C

    1980-12-01

    Two methods for the direct determination of lead in whole blood by anodic stripping voltammetry (ASV) are described. The procedure in both methods involved the mixing of micro blood samples with a metal releasing reagent, Metexchange, and electrochemical analysis using carbon electrodes. A multiple Anodic Stripping Analyzer equipped with composite graphite mercury electrodes and a Charge Transfer Analyzer equipped with a mercury film electrode were employed. The standard addition method was used to minimize the matrix effects of whole blood. The ASV results correlated well with those obtained by flameless atomic absorption analysis. The methods are simple, reliable, and suitable for applications in the clinical field. The procedure using the Charge Transfer Analyzer is recommended because of its sensitivity and rapidity. PMID:7211939

  17. Ascorbic Acid Determination in Commercial Fruit Juice Samples by Cyclic Voltammetry

    PubMed Central

    Pisoschi, Aurelia Magdalena; Danet, Andrei Florin; Kalinowski, Slawomir

    2008-01-01

    A method was developed for assessing ascorbic acid concentration in commercial fruit juice by cyclic voltammetry. The anodic oxidation peak for ascorbic acid occurs at about 490 mV on a Pt disc working electrode (versus SCE). The influence of the potential sweep speed on the peak height was studied. The obtained calibration graph shows a linear dependence between peak height and ascorbic acid concentration in the domain (0.1–10 mmol·L−1). The equation of the calibration graph was y = 6.391x + 0.1903 (where y represents the value of intensity measured for the anodic peak height, expressed as μA and x the analyte concentration, as mmol·L−1, r2 = 0.9995, r.s.d. = 1.14%, n = 10, Cascorbic acid = 2 mmol·L−1). The developed method was applied to ascorbic acid assessment in fruit juice. The ascorbic acid content determined ranged from 0.83 to 1.67 mmol·L−1 for orange juice, from 0.58 to 1.93 mmol·L−1 for lemon juice, and from 0.46 to 1.84 mmol·L−1 for grapefruit juice. Different ascorbic acid concentrations (from standard solutions) were added to the analysed samples, the degree of recovery being comprised between 94.35% and 104%. Ascorbic acid determination results obtained by cyclic voltammetry were compared with those obtained by the volumetric method with dichlorophenol indophenol. The results obtained by the two methods were in good agreement. PMID:19343183

  18. Dealloying NiCo and NiCoCu Alloy Thin Films Using Linear Sweep Voltammetry

    NASA Astrophysics Data System (ADS)

    Peecher, Benjamin; Hampton, Jennifer

    When electrodeposited into thin films, metals have well-known electrochemical potentials at which they will be removed from the film. These potential differences can be utilized to re-oxidize only certain metals in an alloy, altering the film's structure and composition. Here we discuss NiCo and NiCoCu thin films' response to linear sweep voltammetry (LSV) as a means of electrochemical dealloying. For each of four different metal ratios, films were dealloyed to various potentials in order to gain insight into the evolution of the film over the course of the LSV. Capacitance, topography, and composition were examined for each sample before and after linear sweep voltammetry was performed. For NiCo films with high percentages of Ni, dealloying resulted in almost no change in composition, but did result in an increased capacitance, with greater increases occurring at higher LSV potentials. Dealloying also resulted in the appearance of large (100-1000 nm) pores on the surface of the film. For NiCoCu films with high percentages of Ni, Cu was almost completely removed from the film at LSV potentials greater than 500 mV. The LSV first removed larger copper-rich dendrites from the film's surface before creating numerous nano-pores, resulting in a net increase in area. This work is supported by an Award to Hope College from the HHMI Undergraduate Science Education Program, the Hope College Department of Physics Frissel Research Fund, and the National Science Foundation under Grants RUI-DMR-1104725 and MRI-CHE-0959282.

  19. Direct recognition and quantification by voltammetry of thiol/thioamide mixes in seawater.

    PubMed

    Laglera, Luis M; Tovar-Sánchez, Antonio

    2012-01-30

    Thiols and thioamides form part of the pool of reduced sulfur substances (RSS) that modify the health of aquatic ecosystems acting as radical scavengers and heavy metal ligands. Their concentrations could be easily determined in seawater by cathodic stripping voltammetry (CSV) were it not be for the coalescence of their responses in a single peak. Here, we modified the traditional CSV method of RSS analysis to allow individual recognition and quantification in thiol/thioamide mixes. Glutathione, cysteine, thiourea and thioacetamide in UV digested seawater were repeatedly analyzed shifting the deposition potential (E(dep)) in the range +0.07 to -0.4V at high resolution. The representation of peak height (i(p)) and peak potential (E(p)) vs E(dep) resulted in different and distinctive profiles for each substance that allowed the selection of adequate E(dep) ranges for their separate quantification. Copper saturation modified thiol profiles and cancelled the response of thioamides. The vs E(dep) profiles explained the nature of the different thiols and thioamides present in the sample and permitted their individual quantification with excellent accuracy. The utility of the method was put to test with seawater modified with natural unknown RSS from pore waters and Posidonia oceanica exudates. Although both samples gave similar CSV signals, the vs E(dep) profiles unveiled completely different electrochemical behaviors incompatible with a similar nature. Based on those profiles we hypothesized that pore waters released a glutathione/thiourea mix and that one or several unidentified RSS formed part of P. oceanica exudates. The analytical scheme proposed here opens a new door to the use of direct voltammetry in the qualitative and quantitative determination of RSS in natural waters. PMID:22284523

  20. Note: Measuring breakdown characteristics during the hot re-ignition of high intensity discharge lamps using high frequency alternating current voltage.

    PubMed

    van den Bos, R A J M; Sobota, A; Manders, F; Kroesen, G M W

    2013-04-01

    To investigate the cold and hot re-ignition properties of High Intensity Discharge (HID) lamps in more detail an automated setup was designed in such a way that HID lamps of various sizes and under different background pressures can be tested. The HID lamps are ignited with a ramped sinusoidal voltage signal with frequencies between 60 and 220 kHz and with amplitude up to 7.5 kV. Some initial results of voltage and current measurements on a commercially available HID lamp during hot and cold re-ignition are presented. PMID:23635237

  1. Simulations of Cyclic Voltammetry for Electric Double Layers in Asymmetric Electrolytes: A Generalized Modified Poisson-Nernst-Planck Model

    SciTech Connect

    Wang, Hainan; Thiele, Alexander; Pilon, Laurent

    2013-11-15

    This paper presents a generalized modified Poisson–Nernst–Planck (MPNP) model derived from first principles based on excess chemical potential and Langmuir activity coefficient to simulate electric double-layer dynamics in asymmetric electrolytes. The model accounts simultaneously for (1) asymmetric electrolytes with (2) multiple ion species, (3) finite ion sizes, and (4) Stern and diffuse layers along with Ohmic potential drop in the electrode. It was used to simulate cyclic voltammetry (CV) measurements for binary asymmetric electrolytes. The results demonstrated that the current density increased significantly with decreasing ion diameter and/or increasing valency |zi| of either ion species. By contrast, the ion diffusion coefficients affected the CV curves and capacitance only at large scan rates. Dimensional analysis was also performed, and 11 dimensionless numbers were identified to govern the CV measurements of the electric double layer in binary asymmetric electrolytes between two identical planar electrodes of finite thickness. A self-similar behavior was identified for the electric double-layer integral capacitance estimated from CV measurement simulations. Two regimes were identified by comparing the half cycle period τCV and the “RC time scale” τRC corresponding to the characteristic time of ions’ electrodiffusion. For τRC ← τCV, quasi-equilibrium conditions prevailed and the capacitance was diffusion-independent while for τRC → τCV, the capacitance was diffusion-limited. The effect of the electrode was captured by the dimensionless electrode electrical conductivity representing the ratio of characteristic times associated with charge transport in the electrolyte and that in the electrode. The model developed here will be useful for simulating and designing various practical electrochemical, colloidal, and biological systems for a wide range of applications.

  2. Private Housing or Alternative Financing?

    ERIC Educational Resources Information Center

    Bruno, Nick

    1999-01-01

    Explores the history of privatizing university housing and some current financing options, including use of developer and private foundations. Examples of successful alternative financing methods are highlighted. (GR)

  3. Demonstration of High Current Density YBCO Coated Conductors on RE2O3-Buffered Ni Substrates with Two New Alternative Architectures

    SciTech Connect

    Beach, D.B.; Chirayil, T.G.; Christen, D.K.; Cui, X.; Feenstra, R.; Goyal, A.; Kroeger, D.M.; Lee, D.F.; Martin, P.M.; Mathis, J.E.; Morrell, J.S.; Norton, D.P.; Paranthaman, M.; Specht, E.D.; Verebelyi, D.T.

    1999-07-12

    In continuation of our effort to develop single buffer layer architectures for YBCO (YBa2Cu3O7-g) coated tape conductors, we have studied RE2O3 (RE = Y, and rare earths) as candidate materials. Three types of crystal structures including the preferred cubic phase are known for the rare earth oxides. High quality simple cubic RE2O3 buffer layers were grown epitaxiahy on {100}<001> textured Ni substrates using both reactive evaporation and sol-gel processing. Detailed X-ray studies have shown that the Y2O3, Eu2O3, Gd2O3, and Yb2O3 were grown with a single epitaxial orientation. SEM micrographs indicated that both e-beam and sol-gel grown films were dense, continuous and crack free. High Jc YBCO films were grown on RE2O3-buffered Ni substrates with sputtered cap layers. Two new alternative buffer layer architectures were developed. A high Jc of 1.8 MA/cm2 at 77 K and self-field was obtained on YBCO films with a layer sequence of YBCO (pulsed laser deposition)/Yb2O3 (sputtered)/Y2O3 (e-beam)/Ni. Also, a high Jc of over 1 MA/cm2 at 77 K and self-field was obtained on YBCO films with a layer sequence of YBCO (ex-situ BaF2 process)/CeO2 (sputtered)YSZ sputtered)/RE2O3 (sol-gel or e-beam)Ni. The performance of sol-gel grown buffers approached the quality of e-beam grown buffers.

  4. Flux-creep activation energy for a BaFe1.9Ni0.1As2 single crystal derived from alternating current susceptibility measurements

    NASA Astrophysics Data System (ADS)

    Ge, Jun-Yi; Li, Lin-Jun; Xu, Zhu-An; Moshchalkov, Victor V.

    2016-04-01

    Systematic ac susceptibility measurements have been performed to investigate the vortex dynamics in a BaFe1.9Ni0.1As2 single crystal as a function of temperature, frequency, ac field amplitude, and dc magnetic field. The complex activation energy U ( T , B , j ) is derived in the framework of thermally activated flux creep theory and can be expressed in one simple formula. A power law dependence of U ˜ B α with α = -0.46 is observed. The activation energy reaches 104 K at low fields, suggesting strong pinning in the material. The nonlinear function of the activation energy vs. the current density is determined, which has the expression of U ∝ j - 0.1 .

  5. A review of the development and use of video image analysis (VIA) for beef carcass evaluation as an alternative to the current EUROP system and other subjective systems.

    PubMed

    Craigie, C R; Navajas, E A; Purchas, R W; Maltin, C A; Bünger, L; Hoskin, S O; Ross, D W; Morris, S T; Roehe, R

    2012-12-01

    The current EUROP beef carcass classification scheme is still largely dependent on visually assessed fatness and conformation and its purpose is to provide a common basis for the description of carcasses for use in trade, price reporting and intervention. The meat industry, however, aims for accurately predicted saleable meat yield (SMY%) to which the EUROP carcass classification shows highly variable correlations due in part to the variable distribution of fat throughout the carcass as affected by breed, sex, diet, and the level of fat trimming. Video image analysis (VIA) technology is capable of improving the precision and accuracy of SMY% prediction even for specific carcass joints and simultaneously mimics the visual assessment to comply with EU regulations on carcass classification. This review summarises the development and use of VIA for evaluation of beef carcasses and discusses the advantages and shortfalls of the technology and its application. PMID:22726699

  6. Effects of skin blood flow and temperature on skin--electrode impedance and offset potential: measurements at low alternating current density.

    PubMed

    Smith, D C

    1992-01-01

    Skin--electrode impedance was determined at 100 Hz and 1 kHz between two disposable electrodes, 5 cm apart, at current densities < 65 microA.cm-2. Measurements were made on the volar skin of the forearm during cooling on cardiopulmonary bypass, and on the dorsum of the foot in the absence of skin blood flow during aortic aneurysm repair. Both the resistive and reactive components of the skin-electrode impedence showed an inverse linear relationship to temperature between 26 and 36 degrees C. The magnitude of the impedance change was different for each patient studied; resistance changes ranged from 0.03 to 23.2 k omega. Degrees C-1 at 100 Hz and from 0.03 to 2.7 k omega. Degrees C-1 at 1 kHz, while reactance changes ranged from 0.4 to 2.1 k omega. Degrees C-1 at 100 Hz and from 0.04 to 0.18 k omega. Degrees C-1 at 1 kHz. Changes in skin-electrode impedance were not due to changes in skin blood flow. There was no consistent change in offset potential with temperature. Although the skin-electrode impedance increases as temperature falls, it is concluded that temperature effects at the skin-electrode interface are not responsible for the observed failure of evoked electromyography during clinical monitoring of neuromuscular function. PMID:1404312

  7. Alternating current impedance imaging of high-resistance membrane pores using a scanning electrochemical microscope. Application of membrane electrical shunts to increase measurement sensitivity and image contrast.

    PubMed

    Ervin, Eric Nathan; White, Henry S; Baker, Lane A; Martin, Charles R

    2006-09-15

    Whether an individual pore in a porous membrane can be imaged using scanning electrochemical microscopy (SECM), operated in ac impedance mode, is determined by the magnitude of the change in the total impedance of the imaging system as the SECM tip is scanned over the pore. In instances when the SECM tip resistance is small relative to the internal pore resistance, the total impedance changes by a negligible amount, rendering the pore invisible during impedance imaging. A simple solution to this problem is to introduce a low-impedance electrical shunt (i.e., a salt bridge) across the membrane. This principle is demonstrated by imaging polycarbonate membranes (6-12-microm thickness) containing between 1 and 2000 conical-shaped pores (60-nm- and 2.5-microm-diameter openings) using an approximately 1-microm-radius Pt tip. Theory and experiments show that image contrast (the change in ac current measured as the probe is scanned over the pore) is inversely proportional to the total resistance of the membrane and can be increased by a factor of approximately 50x by introducing a low-resistance electrical shunt across the membrane. Remarkably, SECM images of membranes containing a single high-resistance (approximately 1 G Omega) pore can only be imaged by short-circuiting the membrane. Image contrast also becomes independent of membrane resistance when an electrical shunt is used, allowing for more quantitative comparisons of the features in ac impedance images of different membranes. PMID:16970331

  8. Lowering of the firing voltage and reducing of the discharge delay time in alternating current plasma display panels by a discontinuous spin-coated LaB{sub 6} film on the MgO protective layer

    SciTech Connect

    Deng, Jiang; Zeng, Baoqing; Zhongshan Institute, University of Electronic Science and Technology of China, 528402 zhongshan ; Wang, Xiaoju; Lin, Zulun; Qi, Kangcheng; Cao, Guichuan

    2014-03-15

    A spin coated LaB{sub 6} discontinuous film is covered on MgO protective layer to improve the discharge performance of alternating current plasma display panels. Under the premise of high transmittance of more than 90%, a very small amount of polycrystal LaB{sub 6} powders added in an organic solvent are chosen as the coating solution. The discharge characteristics results show that with 250 torr 5% Xe-Ne pressure, the firing voltage and discharge delay time of the test panel with LaB{sub 6}/MgO double protective layer are decreased by 13.4% and 36.5%, respectively, compared with that of conventional MgO protective layer, likely owing to the low work function of LaB{sub 6.} Furthermore, the aging time of the proposed structure is comparable to that of pure MgO protective layer. Therefore, it will not increase the production costs and is highly suitable to be applied for alternating current plasma display panels with low electrical power consumption.

  9. Mapping Activity Variations for Ru2O3 in Lunar Volcanic Green Glass Analogs Using Differential Pulse Voltammetry

    NASA Technical Reports Server (NTRS)

    Malum, K. M.; Colson, R. O.; Sawarynski, M.

    2001-01-01

    Using differential pulse voltammetry, we are mapping variations in activities for NiO and Ru2O3 as a function of compositional variation for compositions centered around an Apollo 15 green glass analog. Additional information is contained in the original extended abstract.

  10. Factors Affecting the Shape of Current-Potential Curves.

    ERIC Educational Resources Information Center

    Maloy, J. T.

    1983-01-01

    Voltammetry, the fundamental electrochemical experiment, is the measurement of the current which flows at an electrode as a function of the potential applied to the electrode. Such an experiment is discussed, focusing on factors which influence the shape of the current potential curve. (JN)

  11. Alternatives to blood transfusion.

    PubMed

    Spahn, Donat R; Goodnough, Lawrence T

    2013-05-25

    The use of alternatives to allogeneic blood continues to rest on the principles that blood transfusions have inherent risks, associated costs, and affect the blood inventory available for health-care delivery. Increasing evidence exists of a fall in the use of blood because of associated costs and adverse outcomes, and suggests that the challenge for the use of alternatives to blood components will similarly be driven by costs and patient outcomes. Additionally, the risk-benefit profiles of alternatives to blood transfusion such as autologous blood procurement, erythropoiesis-stimulating agents, and haemostatic agents are under investigation. Nevertheless, the inherent risks of blood, along with the continued rise in blood costs are likely to favour the continued development and use of alternatives to blood transfusion. We summarise the current roles of alternatives to blood in the management of medical and surgical anaemias. PMID:23706802

  12. Integrated wireless fast-scan cyclic voltammetry recording and electrical stimulation for reward-predictive learning in awake, freely moving rats

    NASA Astrophysics Data System (ADS)

    Li, Yu-Ting; Wickens, Jeffery R.; Huang, Yi-Ling; Pan, Wynn H. T.; Chen, Fu-Yu Beverly; Chen, Jia-Jin Jason

    2013-08-01

    Objective. Fast-scan cyclic voltammetry (FSCV) is commonly used to monitor phasic dopamine release, which is usually performed using tethered recording and for limited types of animal behavior. It is necessary to design a wireless dopamine sensing system for animal behavior experiments. Approach. This study integrates a wireless FSCV system for monitoring the dopamine signal in the ventral striatum with an electrical stimulator that induces biphasic current to excite dopaminergic neurons in awake freely moving rats. The measured dopamine signals are unidirectionally transmitted from the wireless FSCV module to the host unit. To reduce electrical artifacts, an optocoupler and a separate power are applied to isolate the FSCV system and electrical stimulator, which can be activated by an infrared controller. Main results. In the validation test, the wireless backpack system has similar performance in comparison with a conventional wired system and it does not significantly affect the locomotor activity of the rat. In the cocaine administration test, the maximum electrically elicited dopamine signals increased to around 230% of the initial value 20 min after the injection of 10 mg kg-1 cocaine. In a classical conditioning test, the dopamine signal in response to a cue increased to around 60 nM over 50 successive trials while the electrically evoked dopamine concentration decreased from about 90 to 50 nM in the maintenance phase. In contrast, the cue-evoked dopamine concentration progressively decreased and the electrically evoked dopamine was eliminated during the extinction phase. In the histological evaluation, there was little damage to brain tissue after five months chronic implantation of the stimulating electrode. Significance. We have developed an integrated wireless voltammetry system for measuring dopamine concentration and providing electrical stimulation. The developed wireless FSCV system is proven to be a useful experimental tool for the continuous

  13. Investigation of an alternating current plasma as an element selective atomic emission detector for high-resolution capillary gas chromatography and as a source for atomic absorption and atomic emission spectrometry

    SciTech Connect

    Ombaba, J.M.

    1992-01-01

    This thesis deals with the construction and evaluation of an alternating current plasma (ACP) as an element-selective detector for high resolution capillary gas chromatography (GC) and as an excitation source for atomic absorption spectrometry (AAS) and atomic emission spectrometry (AES). The plasma, constrained in a quartz discharge tube at atmospheric pressure, is generated between two copper electrodes and utilizes helium as the plasma supporting gas. The alternating current plasma power source consists of a step-up transformer with a secondary output voltage of 14,000 V at a current of 23 mA. The chromatographic applications studied included the following: (1) the separation and selective detection of the organotin species, tributyltin chloride (TBT) and tetrabutyltin (TEBT), in environmental matrices including mussels (mytilus edullus) and sediment from Boston Harbor, industrial waste water and industrial sludge, and (2) the detection of methylcyclopentadienylmanganesetricarbonyl (MMT) and similar compounds used as gasoline additives. An ultrasonic nebulizer was utilized as a sample introduction device for aqueous solutions when the ACP was employed as an atomization source for atomic absorption spectrometry and as an excitation source for atomic emission spectrometry. Plasma diagnostic parameters studied include spatial electron number density across the discharge tube, electronic, excitation and ionization temperatures. Interference studies both in absorption and emission modes were considered. The evaluation of a computer-aided optimization program, Drylab GC, using spearmint oil and Environmental Protection Agency (EPA) standard mixture as probes is discussed. The program is used for separation optimization and prediction of gas chromatographic parameters. The program produces a relative resolution map (RRM) which guides the analyst in selecting the most favorable temperature programming rate for the separation.

  14. A potentiostat featuring an integrator transimpedance amplifier for the measurement of very low currents—Proof-of-principle application in microfluidic separations and voltammetry

    NASA Astrophysics Data System (ADS)

    Koutilellis, G. D.; Economou, A.; Efstathiou, C. E.

    2016-03-01

    This work reports the design and construction of a novel potentiostat which features an integrator transimpedance amplifier as a current-monitoring unit. The integration approach addresses the limitations of the feedback resistor approach used for current monitoring in conventional potentiostat designs. In the present design, measurement of the current is performed by a precision switched integrator transimpedance amplifier operated in the dual sampling mode which enables sub-pA resolution. The potentiostat is suitable for measuring very low currents (typical dynamic range: 5 pA-4.7 μA) with a 16 bit resolution, and it can support 2-, 3- and 4-electrode cell configurations. Its operation was assessed by using it as a detection module in a home-made capillary electrophoresis system for the separation and amperometric detection of paracetamol and p-aminophenol at a 3-electrode microfluidic chip. The potential and limitations of the proposed potentiostat to implement fast potential-scan voltammetric techniques were demonstrated for the case of cyclic voltammetry.

  15. Impact of Adsorption on Scanning Electrochemical Microscopy Voltammetry and Implications for Nanogap Measurements.

    PubMed

    Tan, Sze-yin; Zhang, Jie; Bond, Alan M; Macpherson, Julie V; Unwin, Patrick R

    2016-03-15

    Scanning electrochemical microscopy (SECM) is a powerful tool that enables quantitative measurements of fast electron transfer (ET) kinetics when coupled with modeling predictions from finite-element simulations. However, the advent of nanoscale and nanogap electrode geometries that have an intrinsically high surface area-to-solution volume ratio realizes the need for more rigorous data analysis procedures, as surface effects such as adsorption may play an important role. The oxidation of ferrocenylmethyl trimethylammonium (FcTMA(+)) at highly oriented pyrolytic graphite (HOPG) is used as a model system to demonstrate the effects of reversible reactant adsorption on the SECM response. Furthermore, the adsorption of FcTMA(2+) species onto glass, which is often used to encapsulate ultramicroelectrodes employed in SECM, is also found to be important and affects the voltammetric tip response in a nanogap geometry. If a researcher is unaware of such effects (which may not be readily apparent in slow to moderate scan voltammetry) and analyzes SECM data assuming simple ET kinetics at the substrate and an inert insulator support around the tip, the result is the incorrect assignment of tip-substrate heights, kinetics, and thermodynamic parameters. Thus, SECM kinetic measurements, particularly in a nanogap configuration where the ET kinetics are often very fast (only just distinguishable from reversible), require that such effects are fully characterized. This is possible by expanding the number of experimental variables, including the voltammetric scan rate and concentration of redox species, among others. PMID:26877069

  16. Evaluation of PEMFC System Contaminants on the Performance of Pt Catalyst via Cyclic Voltammetry: Preprint

    SciTech Connect

    Wang, H.; Macomber, C.; Dinh, H. N.

    2012-07-01

    Using electrochemical cyclic voltammetry as a quick ex-situ screening tool, the impact of the extracted solution and the individual leachable constituents from prospective BOP component materials on the performance and recoverability of the platinum catalyst were evaluated. Taking an extract from Zytel{trademark} HTN51G35HSLR (PPA) as an example, the major leachable organic components are caprolactam and 1,6 hexanediol. While these organic compounds by themselves do poison the Pt catalyst to some extent, such influence is mostly recoverable by means of potential holding and potential cycling. The extracted solution, however, shows a more drastic poisoning effect and it was not recoverable. Therefore the non-recoverable poisoning effect observed for the extracted solution is not from the two organic species studied. This demonstrates the complexity of such a contaminant study. Inorganic compounds that are known poisons like sulfur even in very low concentrations, may have a more dominant effect on the Pt catalyst and the recoverability.

  17. Dynamic Charge Storage in Ionic Liquids-Filled Nanopores: Insight from a Computational Cyclic Voltammetry Study.

    PubMed

    He, Yadong; Huang, Jingsong; Sumpter, Bobby G; Kornyshev, Alexei A; Qiao, Rui

    2015-01-01

    Understanding the dynamic charge storage in nanoporous electrodes with room-temperature ionic liquid electrolytes is essential for optimizing them to achieve supercapacitors with high energy and power densities. Herein, we report coarse-grained molecular dynamics simulations of the cyclic voltammetry of supercapacitors featuring subnanometer pores and model ionic liquids. We show that the cyclic charging and discharging of nanopores are governed by the interplay between the external field-driven ion transport and the sloshing dynamics of ions inside of the pore. The ion occupancy along the pore length depends strongly on the scan rate and varies cyclically during charging/discharging. Unlike that at equilibrium conditions or low scan rates, charge storage at high scan rates is dominated by counterions while the contribution by co-ions is marginal or negative. These observations help explain the perm-selective charge storage observed experimentally. We clarify the mechanisms underlying these dynamic phenomena and quantify their effects on the efficiency of the dynamic charge storage in nanopores. PMID:26263086

  18. Integration of microfluidics/electrochemical system for trace metal analysis by stripping voltammetry

    NASA Astrophysics Data System (ADS)

    Lin, Yuehe; Zhao, Rui; Thrall, Karla D.; Timchalk, C. A.; Bennett, Wendy D.; Matson, Dean W.

    1999-08-01

    Microanalytical systems based on a microfluidics/electrochemical detection scheme were developed. Individual modules, such as microfabricated piezoelectrically actuated pumps and a microelectrochemical cell were integrated onto portable platforms. This allows rapid change-out and repair of individual components by incorporating `plug and play' concepts now standard in PC's. Two different integration schemes were used for construction of the microanalytical systems based on microfluidics/electrochemical detection. In first scheme, all individual modules were integrated in the surface of the standard microfluidic platform based on a plug-and-play design. Microelectrochemical flow cell which integrated three electrodes based on a wall-jet design was fabricated on polymer substrate. The microelectrochemical flow cell was then plugged directly into the microfluidic platform. Another integration scheme was based on a multilayer lamination method utilizing stacking modules with different functionality to achieve a compact microanalytical device. Application of the microanalytical system for detection of lead in river water and saliva samples using stripping voltammetry is described.

  19. Determination of humic substances in natural waters by cathodic stripping voltammetry of their complexes with iron.

    PubMed

    Laglera, Luis M; Battaglia, Gianluca; van den Berg, Constant M G

    2007-09-01

    A new voltammetric method is presented for the measurement of humic substances (HS) in natural waters. The method is based on catalytic cathodic stripping voltammetry (CSV) and makes use of adsorptive properties of iron-HS complexes on the mercury drop electrode at natural pH. A fulvic acid standard (IHSS) was used to confirm the voltammetric response (peak potential and sensitivity) for the HS for natural water samples. Optimized conditions included the linear-sweep mode, deposition at -0.1 V, pH buffered at 8 and a scan rate of 50 mV s(-1). At a deposition time of 240 s in the presence of 10 nM iron and 30 mM bromate, the detection limit was 5 microg L(-1) HS in seawater, which could be lowered further by an increase in the bromate concentration, or in the adsorption time. The method was used to determine HS in the Irish Sea which were found to occur at levels between 60 and 600 microg L(-1). The new method is sufficiently sensitive to detect the low HS content in oceanic samples and has implications to the study of iron speciation. PMID:17765064

  20. Sensitive quantitation of Ochratoxin A in cocoa beans using differential pulse voltammetry based aptasensor.

    PubMed

    Mishra, Rupesh K; Hayat, Akhtar; Catanante, Gaëlle; Istamboulie, Georges; Marty, Jean-Louis

    2016-02-01

    In this work, we propose for the first time a sensitive Ochratoxin A (OTA) detection in cocoa beans using competitive aptasensor by differential pulse voltammetry (DPV). In the proposed method, biotin labeled and free OTA competed to bind with immobilized aptamer onto the surface of a screen printed carbon electrode (SPCE), and percentage binding was calculated. The detection was performed after adding avidin-ALP to perform avidin-biotin reaction; the signal was generated through a suitable substrate 1-naphthyl phosphate (1-NP), for alkaline phosphatase (ALP). The cocoa samples were extracted and purified using molecular imprinted polymer (MIP) columns specifically designed for OTA. The developed aptasensor showed a good linearity in the range 0.15-5 ng/mL with the limit of detection (LOD) 0.07 ng/mL and 3.7% relative standard deviation (RSD). The aptasensor displayed good recovery values in the range 82.1-85% with 3.87% RSD, thus, demonstrated the efficiency of proposed aptasensor for such matrices. PMID:26304413

  1. Direct analysis of palladium in active pharmaceutical ingredients by anodic stripping voltammetry.

    PubMed

    Rosolina, Samuel M; Chambers, James Q; Xue, Zi-Ling

    2016-03-31

    Anodic stripping voltammetry, a classical electroanalytical method has been optimized to analyze trace Pd(II) in active pharmaceutical ingredient matrices. The electroanalytical approach with an unmodified glassy carbon electrode was performed in both aqueous and 95% DMSO/5% water (95/5 DMSO/H2O) solutions, without pretreatment such as acid digestion or dry ashing to remove the organics. Limits of detection (LODs) in the presence of caffeine and ketoprofen were determined to be 11 and 9.6 μg g(-1), with a relative standard deviation (RSD) of 5.7% and 2.3%, respectively. This method is simple, highly reproducible, sensitive, and robust. The instrumentation has the potential to be portable and the obviation of sample pretreatment makes it an ideal approach for determining lost catalytic metals in pharmaceutical-related industries. Furthermore, the simultaneous detection of Pd(II) with Cd(II) and Pb(II) in the low μg L(-1) range indicates that this system is capable of simultaneous multi-analyte analysis in a variety of matrices. PMID:26965326

  2. Aspartame decreases evoked extracellular dopamine levels in the rat brain: an in vivo voltammetry study.

    PubMed

    Bergstrom, Brian P; Cummings, Deirdre R; Skaggs, Tricia A

    2007-12-01

    Conflicting reports exist concerning the effect aspartame (APM, l-aspartyl-l-phenylalanine methyl ester) has upon brain biogenic amines. In the following study, in vivo voltammetry was utilized to measure evoked extracellular dopamine (DA) levels in the striatum of rats in order to assess APM's effect. Time-course experiments revealed a significant decline in evoked extracellular DA levels within 1h of a single systemic dose (500mg/kg i.p.) when compared to vehicle-injected controls. The effect was frequency dependent and showed a significant decrease utilizing high frequency stimulation parameters (50 and 60Hz). In order to further determine APM's potential to alter evoked extracellular DA levels, extended stimulation periods were employed to deplete releasable stores both before and after APM administration in intact and 6-OHDA partially lesioned animals. The extended stimulation periods were applied at 60Hz for 2,5,10 and 20s durations. APM decreased DA levels under these conditions in both intact and 6-OHDA partially lesioned animals by an average of 34% and 51%, respectively. Kinetic analysis performed on frequency series indicated that the diminished DA levels corresponded to a significant reduction in DA release. These findings suggest that APM has a relatively potent effect of decreasing evoked extracellular DA levels when administered systemically under the conditions specified. PMID:17976663

  3. Feedback Effects in Combined Fast-Scan Cyclic Voltammetry-Scanning Electrochemical Microscopy

    PubMed Central

    Schrock, Daniel S.; Wipf, David O.; Baur, John E.

    2008-01-01

    Fast-scan cyclic voltammetry at scan rates between 5 and 1000 Vs−1 was performed at the tip of a scanning electrochemical microscope immersed in a solution of redox mediator. The effect of conducting and insulating substrates on the voltammetric signal was investigated as a function of scan rate and tip-substrate distance. It was found that diffusional interactions between the tip and the substrate are greatest at lower scan rates and on the reverse sweep of the voltammogram. At the fastest scan rates used, the tip could be brought to with 1 μm of the substrate without appreciable perturbation of the voltammogram. By selecting scan rates and tip-substrate distances such that feedback effects were negligible, it was possible to image the diffusion layer of a 10 μm Pt substrate electrode. With the tip placed 1 μm above a biological cell, tip-substrate diffusional interactions were greatly diminished at a scan rate of 100 Vs−1, and absent at a scan rate of 1000 Vs−1. These results suggest conditions can be selected that allow chemical imaging of substrates without the feedback interactions typically encountered in scanning electrochemical microscopy. PMID:17550230

  4. Feedback effects in combined fast-scan cyclic voltammetry-scanning electrochemical microscopy.

    PubMed

    Schrock, Daniel S; Wipf, David O; Baur, John E

    2007-07-01

    Fast-scan cyclic voltammetry at scan rates between 5 and 1000 V s(-1) was performed at the tip of a scanning electrochemical microscope immersed in a solution of redox mediator. The effect of conducting and insulating substrates on the voltammetric signal was investigated as a function of scan rate and tip-substrate distance. It was found that diffusional interactions between the tip and the substrate are greatest at lower scan rates and on the reverse sweep of the voltammogram. At the fastest scan rates used, the tip could be brought to with 1 microm of the substrate without appreciable perturbation of the voltammogram. By selecting scan rates and tip-substrate distances such that feedback effects were negligible, it was possible to image the diffusion layer of a 10 microm Pt substrate electrode. With the tip placed 1 microm above a biological cell, tip-substrate diffusional interactions were greatly diminished at a scan rate of 100 V s(-1) and absent at a scan rate of 1000 V s(-1). These results suggest conditions can be selected that allow chemical imaging of substrates without the feedback interactions typically encountered in scanning electrochemical microscopy. PMID:17550230

  5. Coulometric differential FFT admittance voltammetry determination of Amlodipine in pharmaceutical formulation by nano-composite electrode.

    PubMed

    Norouzi, Parviz; Gupta, Vinod Kumar; Larijani, Bagher; Rasoolipour, Solmaz; Faridbod, Farnoush; Ganjali, Mohammad R

    2015-01-01

    An electrochemical detection technique based on combination of was coulometric differential fast Fourier transformation admittance voltammetry (CDFFTAV) and nano-composite film modified glassy carbon electrode was successfully applied for sensitive determination of Amlodipine. The nano-composite film was made by a mixture of ionic liquid, 1-ethyl-3-methylimidazolium tetrafluoroborate (EMIMBF4), multiwall carbon nanotube and Au nanoparticles as electrochemical mediators. Studies reveal that the irreversible oxidation of Amlodipine was highly facile on the electrode surface. The electrochemical response was established on calculation of the charge under the admittance peak, which was obtained by discrete integration of the admittance response in a selected potential range, obtained in a flow injection analysis. Once established the best operative optimum conditions, the resulting nano-composite film electrode showed a catalytic effect on the oxidation of the analyte. The response is linear in the Amlodipine concentration range of 1.0 × 10(-9) to 2.0 × 10(-7)M with a detection limit of 1.25 × 10(-10)M. Moreover, the proposed technique exhibited high sensitivity, fast response time (less than 6s) and long-term stability and reproducibility around 96%, and it was successfully used to the determination of Amlodipine content in the pharmaceutical formulation. PMID:25281143

  6. Alternative Schools.

    ERIC Educational Resources Information Center

    Pritchett, Stanley; Kimsey, Steve

    2002-01-01

    Describes the design of the DeKalb Alternative School in Atlanta, Georgia, located in a renovated shopping center. Purchasing commercial land and renovating the existing building saved the school system time and money. (EV)

  7. Incorporating future change into current conservation planning: Evaluating tidal saline wetland migration along the U.S. Gulf of Mexico coast under alternative sea-level rise and urbanization scenarios

    USGS Publications Warehouse

    Enwright, Nicholas M.; Griffith, Kereen T.; Osland, Michael J.

    2015-01-01

    In this study, the U.S. Geological Survey, in cooperation with the U.S. Fish and Wildlife Service, quantified the potential for landward migration of tidal saline wetlands along the U.S. Gulf of Mexico coast under alternative future sea-level rise and urbanization scenarios. Our analyses focused exclusively on tidal saline wetlands (that is, mangrove forests, salt marshes, and salt flats), and we combined these diverse tidal saline wetland ecosystems into a single grouping, “tidal saline wetland.” Collectively, our approach and findings can provide useful information for scientists and environmental planners working to develop future-focused adaptation strategies for conserving coastal landscapes and the ecosystem goods and services provided by tidal saline wetlands. The primary product of this work is a public dataset that identifies locations where landward migration of tidal saline wetlands is expected to occur under alternative future sea-level rise and urbanization scenarios. In addition to identifying areas where landward migration of tidal saline wetlands is possible because of the absence of barriers, these data also identify locations where landward migration of these wetlands could be prevented by barriers associated with current urbanization, future urbanization, and levees.

  8. Nonlinear alternating current conduction in polycrystalline manganites

    SciTech Connect

    Ghosh, T. N.; Nandi, U. N.; Jana, D.; Dey, K.; Giri, S.

    2014-06-28

    The real part of ac conductance Σ(T, f) of yttrium-doped mixed-valent polycrystalline manganite systems La{sub 1−x−y}Y{sub y}Ca{sub x}MnO{sub 3} with x = 0.33 and 0.05 and y = 0.07 and iron doped LaMn{sub 1−x}Fe{sub x}O{sub 3} with x = 0.15 is measured as a function of frequency f by varying zero-frequency Ohmic conductance Σ{sub 0} by T. The former shows a metal-insulator transition, whereas the latter exhibits insulating character throughout the measured temperature range. At a fixed temperature T, Σ(T, f) remains almost constant to the value Σ{sub 0} up to a certain frequency, known as the onset frequency f{sub c} and increases from Σ{sub 0} as frequency is increased from f{sub c}. Scaled appropriately, the data for Σ(T, f) at different T fall on the same universal curve, indicating the existence of a general scaling formalism for the ac conductance. f{sub c} scales with Σ{sub 0} as f{sub c}∼Σ{sub 0}{sup x{sub f}}, where x{sub f} is the nonlinearity exponent characterising the onset. With the help of data for ac conduction, it is shown that x{sub f} is very much phase sensitive and can be used to characterize the different phases in a manganite system originated due to change in temperature or disorder. Scaling theories and existing theoretical models are used to analyze the results of ac conduction and the nonlinearity exponent x{sub f}.

  9. Nonlinear alternating current conduction in polycrystalline manganites

    NASA Astrophysics Data System (ADS)

    Ghosh, T. N.; Nandi, U. N.; Jana, D.; Dey, K.; Giri, S.

    2014-06-01

    The real part of ac conductance Σ(T, f) of yttrium-doped mixed-valent polycrystalline manganite systems La1-x -yYyCaxMnO3 with x = 0.33 and 0.05 and y = 0.07 and iron doped LaMn1-xFexO3 with x = 0.15 is measured as a function of frequency f by varying zero-frequency Ohmic conductance Σ0 by T. The former shows a metal-insulator transition, whereas the latter exhibits insulating character throughout the measured temperature range. At a fixed temperature T, Σ(T, f) remains almost constant to the value Σ0 up to a certain frequency, known as the onset frequency fc and increases from Σ0 as frequency is increased from fc. Scaled appropriately, the data for Σ(T, f) at different T fall on the same universal curve, indicating the existence of a general scaling formalism for the ac conductance. fc scales with Σ0 as fc˜Σ0xf, where xf is the nonlinearity exponent characterising the onset. With the help of data for ac conduction, it is shown that xf is very much phase sensitive and can be used to characterize the different phases in a manganite system originated due to change in temperature or disorder. Scaling theories and existing theoretical models are used to analyze the results of ac conduction and the nonlinearity exponent xf.

  10. Trace vanadium analysis by catalytic adsorptive stripping voltammetry using mercury-coated micro-wire and polystyrene-coated bismuth film electrodes

    PubMed Central

    Dansby-Sparks, Royce; Chambers, James Q.; Xue, Zi-Ling

    2009-01-01

    An electrochemical technique has been developed for ultra trace (ngL−1) vanadium (V) measurement. Catalytic adsorptive stripping voltammetry for V analysis was developed at mercury-coated gold micro-wire (MWE, 100 μm) electrodes in the presence of gallic acid (GA) and bromate ion. A potential of −0.275 V (vs Ag/AgCl) was used to accumulate the complex in acetate buffer (pH 5.0) at the electrode surface followed by a differential pulse voltammetric scan. Parameters affecting the electrochemical response, including pH, concentration of GA and bromate, deposition potential and time have been optimized. Linear response was obtained in the 0–1000 ngL−1 range (2 min deposition), with a detection limit of 0.88 ngL−1. The method was validated by comparison of results for an unknown solution of V by atomic absorption measurement. The protocol was evaluated in a real sample by measuring the amount of V in river water samples. Thick bismuth film electrodes with protective polystyrene films have also been made and evaluated as a mercury free alternative. However, ngL−1 level detection was only attainable with extended (10 min) deposition times. The proposed use of MWEs for the detection of V is sensitive enough for future use to test V concentration in biological fluids treated by the advanced oxidation process (AOP). PMID:19446059

  11. Multiparameter Estimation in Voltammetry When an Electron Transfer Process Is Coupled to a Chemical Reaction.

    PubMed

    Simonov, Alexandr N; Morris, Graham P; Mashkina, Elena; Bethwaite, Blair; Gillow, Kathryn; Baker, Ruth E; Gavaghan, David J; Bond, Alan M

    2016-05-01

    Estimation of thermodynamic and kinetic parameters in electrochemical studies is usually undertaken via comparison of the experimental results with theory based on a model that mimics the experiment. The present study examines the credibility of transient d.c. and a.c. voltammetric theory-experiment comparisons for recovery of the parameters needed to model the ubiquitous mechanism when an electron transfer (E) reaction is followed by a chemical (C) step in the EC process ([Formula: see text]). The data analysis has been undertaken using optimization methods facilitated in some cases by grid computing. These techniques have been applied to the simulated (5% noise added) and experimental (reduction of trans-stilbene) voltammograms to assess the capabilities of parameter recovery of E(0) (reversible potential for the E step), k(0) (heterogeneous electron transfer rate constant at E(0)), α (charge transfer coefficient for the E step), and k(f) and k(b) (forward and backward rate constants for the C step) under different kinetic regimes. The advantages provided by the use of a.c. instead of d.c. voltammetry and data optimization methods over heuristic approaches to "experiment"-theory comparisons are discussed, as are the limitations in the efficient recovery of a unique set of parameters for the EC mechanism. In the particular experimental case examined herein, results for the protonation of the electrochemically generated stilbene dianion demonstrate that, notwithstanding significant advances in experiment and theory of voltammetric analysis, reliable recovery of the parameters for the EC mechanism with a fast chemical process remains a stiff problem. PMID:27041344

  12. Evaluation of seven cosubstrates in the quantification of horseradish peroxidase enzyme by square wave voltammetry.

    PubMed

    Kergaravat, Silvina V; Pividori, Maria Isabel; Hernandez, Silvia R

    2012-01-15

    The electrochemical detection for horseradish peroxidase-cosubstrate-H(2)O(2) systems was optimized. o-Phenilendiamine, phenol, hydroquinone, pyrocatechol, p-chlorophenol, p-aminophenol and 3,3'-5,5'-tetramethylbenzidine were evaluated as cosubstrates of horseradish peroxidase (HRP) enzyme. Therefore, the reaction time, the addition sequence of the substrates, the cosubstrate:H(2)O(2) ratio and the electrochemical techniques were elected by one-factor optimization assays while the buffer pH, the enzymatic activity and cosubstrate and H(2)O(2) concentrations for each system were selected simultaneously by response surface methodology. Then, the calibration curves for seven horseradish peroxidase-cosubstrate-H(2)O(2) systems were built and the analytic parameters were analyzed. o-Phenilendiamine was selected as the best cosubstrate for the HRP enzyme. For this system the reaction time of 60s, the phosphate buffer pH 6.0, and the concentrations of 2.5×10(-4)molL(-1) o-phenilendiamine and of 1.25×10(-4)molL(-1) H(2)O(2) were chosen as the optimal conditions. In these conditions, the calibration curve of horseradish peroxidase by square wave voltammetry showed a linearity range from 9.5×10(-11) to 1.9×10(-8)molL(-1) and the limit of detection of 3.8×10(-11)molL(-1) with RSD% of 0.03% (n=3). PMID:22265528

  13. Determination of tryptamine in foods using square wave adsorptive stripping voltammetry.

    PubMed

    Costa, Daniel J E; Martínez, Ana M; Ribeiro, Williame F; Bichinho, Kátia M; Di Nezio, María Susana; Pistonesi, Marcelo F; Araujo, Mario C U

    2016-07-01

    Tryptamine, a biogenic amine, is an indole derivative with an electrophilic substituent at the C3 position of the pyrrole ring of the indole moiety. The electrochemical oxidation of tryptamine was investigated using glassy carbon electrode (GCE), and focusing on trace level determination in food products by square wave adsorptive stripping voltammetry (SWAdSV). The electrochemical responses of tryptamine were evaluated using differing voltammetric techniques over a wide pH range, a quasi-reversible electron-transfer to redox system represented by coupled peaks P1-P3, and an irreversible reaction for peak P2 were demonstrated. The proton and electron counts associated with the oxidation reactions were estimated. The nature of the mass transfer process was predominantly diffusion-limited for the oxidation process of P1, the most selective and sensitive analytical response (acetate buffer solution pH 5.3), being used for the development of SWAdSV method, under optimum conditions. The excellent response allowed the development of an electroanalytical method with a linear response range of from 4.7-54.5)×10(-)(8)molL(-1), low detection limit (0.8×10(-)(9)molL(-)(1)), and quantification limit (2.7×10(-9)molL(-1)), and acceptable levels of repeatability (3.6%), and reproducibility (3.8%). Tryptamine content was determined in bananas, tomatoes, cheese (mozzarella and gorgonzola), and cold meats (chicken sausage and pepperoni sausage), yielding recoveries above 90%, with excellent analytical performance using simple and low cost instrumentation. PMID:27154658

  14. Fast-Scan Cyclic Voltammetry (FSCV) Detection of Endogenous Octopamine in Drosophila melanogaster Ventral Nerve Cord.

    PubMed

    Pyakurel, Poojan; Privman Champaloux, Eve; Venton, B Jill

    2016-08-17

    Octopamine is an endogenous biogenic amine neurotransmitter, neurohormone, and neuromodulator in invertebrates and has functional analogy with norepinephrine in vertebrates. Fast-scan cyclic voltammetry (FSCV) can detect rapid changes in neurotransmitters, but FSCV has not been optimized for octopamine detection in situ. The goal of this study was to characterize octopamine release in the ventral nerve cord of Drosophila larvae for the first time. A FSCV waveform was optimized so that the potential for octopamine oxidation would not be near the switching potential where interferences can occur. Endogenous octopamine release was stimulated by genetically inserting either the ATP sensitive channel, P2X2, or the red-light sensitive channelrhodopsin, CsChrimson, into cells expressing tyrosine decarboxylase (TDC), an octopamine synthesis enzyme. To ensure that release is due to octopamine and not the precursor tyramine, the octopamine synthesis inhibitor disulfiram was applied, and the signal decreased by 80%. Stimulated release was vesicular, and a 2 s continuous light stimulation of CsChrimson evoked 0.22 ± 0.03 μM of octopamine release in the larval ventral nerve cord. Repeated stimulations were stable with 2 or 5 min interstimulation times. With pulsed stimulations, the release was dependent on the frequency of applied light pulse. An octopamine transporter has not been identified, and blockers of the dopamine transporter and serotonin transporter had no significant effect on the clearance time of octopamine, suggesting that they do not take up octopamine. This study shows that octopamine can be monitored in Drosophila, facilitating future studies of how octopamine release functions in the insect brain. PMID:27326831

  15. Determination of trace cobalt concentrations in human serum by adsorptive stripping voltammetry.

    PubMed

    Kajic, Petra; Milosev, Ingrid; Pihlar, Boris; Pisot, Venceslav

    2003-01-01

    The goal of our study was to develop an accurate and reliable method for determining trace cobalt concentrations in human serum. The method was used to determine cobalt in the sera of healthy persons and patients with orthopaedic implants containing cobalt - a possible source of systemic release of cobalt into the human body. This goal is of vital interest since cobalt and its compounds are classified by IARC as potentially carcinogenic to humans. We used an electrochemical method, adsorptive stripping voltammetry (AdSV), which made possible the low detection limit and high sensitivity needed for measurements in human serum. The serum was acid digested by a combination of H2SO4, HNO3 and H2O2 in a 10 mL Kjeldhal flask. The digested sample was then dissolved in 0.1 mol/L ammonia buffer, pH 9.0 +/- 0.2. The determination is based on the adsorptive collection of the complex of cobalt (II) with dimethylglyoxime on a hanging mercury drop electrode (HMDE). The optimum values of adsorption potential and time were determined to be -0.8 V and 60 s. The optimisation of the sample digestion protocol and measurement procedures ensured the reliable assessment of low cobalt concentrations, down to 0.03 microg/L. The mean concentration of serum cobalt in four healthy persons was 0.11 +/- 0.06 microg/L, and in four patients with total hip replacements 0.34 +/- 0.07 microg/L. This method will be used routinely for measuring serum cobalt levels in patients with total hip replacements. PMID:14968926

  16. Instrumentation for fast-scan cyclic voltammetry combined with electrophysiology for behavioral experiments in freely moving animals

    NASA Astrophysics Data System (ADS)

    Takmakov, Pavel; McKinney, Collin J.; Carelli, Regina M.; Wightman, R. Mark

    2011-07-01

    Fast-scan cyclic voltammetry is a unique technique for sampling dopamine concentration in the brain of rodents in vivo in real time. The combination of in vivo voltammetry with single-unit electrophysiological recording from the same microelectrode has proved to be useful in studying the relationship between animal behavior, dopamine release and unit activity. The instrumentation for these experiments described here has two unique features. First, a 2-electrode arrangement implemented for voltammetric measurements with the grounded reference electrode allows compatibility with electrophysiological measurements, iontophoresis, and multielectrode measurements. Second, we use miniaturized electronic components in the design of a small headstage that can be fixed on the rat's head and used in freely moving animals.

  17. Use of anodic stripping voltammetry to determine zinc(II), lead(II), and copper(II) in foods

    SciTech Connect

    Maksimkina, L.M.; Gus'kova, V.P.

    1988-01-20

    The existing standard procedure for the polarographic determination of Zn, Pb, and Cu, based on the cathodic polarization of a dropping mercury electrode, is laborious and time-consuming and allows one to determine the above-mentioned trace elements only when they are separated beforehand. We consider the possibility of using anodic stripping voltammetry with a mercury film electrode for the simultaneous determination of Zn(II), Pb(II), and Cu(II) in foods.

  18. Cosmic alternatives?

    NASA Astrophysics Data System (ADS)

    Gregory, Ruth

    2009-04-01

    "Cosmologists are often in error but never in doubt." This pithy characterization by the Soviet physicist Lev Landau sums up the raison d'être of Facts and Speculations in Cosmology. Authors Jayant Narlikar and Geoffrey Burbidge are proponents of a "steady state" theory of cosmology, and they argue that the cosmological community has become fixated on a "Big Bang" dogma, suppressing alternative viewpoints. This book very much does what it says on the tin: it sets out what is known in cosmology, and puts forward the authors' point of view on an alternative to the Big Bang.

  19. Femtomolar Detection of Silver Nanoparticles by Flow-Enhanced Direct-Impact Voltammetry at a Microelectrode Array

    PubMed Central

    2016-01-01

    We report the femtomolar detection of silver (Ag) nanoparticles by direct-impact voltammetry. This is achieved through the use of a random array of microelectrodes (RAM) integrated into a purpose-built flow cell, allowing combined diffusion and convection to the electrode surface. A coupled RAM-flow cell system is implemented and is shown to give reproducible wall-jet type flow characteristics, using potassium ferrocyanide as a molecular redox species. The calibrated flow system is then used to detect and quantitatively size Ag nanoparticles at femtomolar concentrations. Under flow conditions, it is found the nanoparticle impact frequency increases linearly with the volumetric flow rate. The resulting limit of detection is more than 2 orders of magnitude smaller than the previous detection limit for direct-impact voltammetry (900 fM) [J. Ellison et al. Sens. Actuators, B2014, 200, 47], and is more than 30 times smaller than the previous detection limit for mediated-impact voltammetry (83 fM) [T. M. Alligrant et al. Langmuir2014, 30, 13462]. PMID:27494652

  20. Femtomolar Detection of Silver Nanoparticles by Flow-Enhanced Direct-Impact Voltammetry at a Microelectrode Array.

    PubMed

    Sokolov, Stanislav V; Bartlett, Thomas R; Fair, Peter; Fletcher, Stephen; Compton, Richard G

    2016-09-01

    We report the femtomolar detection of silver (Ag) nanoparticles by direct-impact voltammetry. This is achieved through the use of a random array of microelectrodes (RAM) integrated into a purpose-built flow cell, allowing combined diffusion and convection to the electrode surface. A coupled RAM-flow cell system is implemented and is shown to give reproducible wall-jet type flow characteristics, using potassium ferrocyanide as a molecular redox species. The calibrated flow system is then used to detect and quantitatively size Ag nanoparticles at femtomolar concentrations. Under flow conditions, it is found the nanoparticle impact frequency increases linearly with the volumetric flow rate. The resulting limit of detection is more than 2 orders of magnitude smaller than the previous detection limit for direct-impact voltammetry (900 fM) [J. Ellison et al. Sens. Actuators, B 2014, 200, 47], and is more than 30 times smaller than the previous detection limit for mediated-impact voltammetry (83 fM) [T. M. Alligrant et al. Langmuir 2014, 30, 13462]. PMID:27494652

  1. Alternative Programming for Adults.

    ERIC Educational Resources Information Center

    Flint, Thomas A.; Frey, Ruth

    2003-01-01

    The Council for Adult and Experiential Learning is currently cataloguing alternative programming features that are most effective with adult students in a best practices inventory organized around a framework of high-level descriptive principles of effectiveness. This chapter identifies a few interesting features from a quick survey of this…

  2. Archive Storage Media Alternatives.

    ERIC Educational Resources Information Center

    Ranade, Sanjay

    1990-01-01

    Reviews requirements for a data archive system and describes storage media alternatives that are currently available. Topics discussed include data storage; data distribution; hierarchical storage architecture, including inline storage, online storage, nearline storage, and offline storage; magnetic disks; optical disks; conventional magnetic…

  3. Alternatives to Traditional Notation.

    ERIC Educational Resources Information Center

    Gaare, Mark

    1997-01-01

    Provides a introduction and overview to alternative music notation systems. Describes guitar tablature, accordion tablature, klavarskribo (a keyboard notational system developed by Cornelius Pot, a Dutch engineer), and the digital piano roll. Briefly discusses the history of notation reform and current efforts. Includes examples from scores. (MJP)

  4. Alternative Education Options.

    ERIC Educational Resources Information Center

    Little (Arthur D.), Inc., Washington, DC.

    This guide deals with various areas of alternative education programs, including current practices and different options available to school and community personnel. Steps are outlined to assess present educational settings, design new programs, select the participants, and implement and evaluate the new program. The first appendix contains…

  5. One Institution: Six Alternatives.

    ERIC Educational Resources Information Center

    Adkins, Winthrop R.; And Others

    1971-01-01

    This expanded issue of the Research Review examines six alternatives to current patterns in the community college. In the first article, the authors offer guidelines for formulating institution-building capabilities, developing curricula, and designing a Personal Development program according to a Life Skills Education model. The second paper…

  6. Spin scattering asymmetric coefficients and enhanced specific interfacial resistance of fully epitaxial current-perpendicular-to-plane giant magnetoresistance spin valves using alternate monatomic layered [Fe/Co]n and a Ag spacer layer

    NASA Astrophysics Data System (ADS)

    Jung, J. W.; Shiozaki, R.; Doi, M.; Sahashi, M.

    2011-04-01

    Using current-perpendicular-to-plane (CPP) giant magnetoresistance (GMR) measurement, we have evaluated the bulk and interface spin scattering asymmetric coefficients, βF and γF/N and the specific interfacial resistance, AR*F/N, for exchange-biased spin-valves consisting of artificially ordered B2 structure Fe50Co50 and Ag spacer layer. Artificially epitaxial ordered Fe50Co50 superlattices have been successfully fabricated on MgO (001) substrate by alternate monatomic layer (AML) deposition at a substrate temperature of 75 °C. The structural properties of the full epitaxial trilayer, AML[Fe/Co]n/Ag/AML[Fe/Co]n, on the Ag electrode have been confirmed by in situ reflection high-energy electron diffraction and transmission electron diffraction microscopy. A considerably large resistance-area product change and MR ratio (ΔRA > 3 mΩμm2 and MR ratio ˜5%) were confirmed even at thin AML[Fe/Co]n layer at room temperature (RT) in our spin-valve elements. The estimated values of βF and γF/N were 0.80 and 0.84 ± 0.02, respectively, from the Valet-Fert theory analysis of ΔRA as a function of thickness of the ferromagnetic layer (3, 4, and 5 nm) on the basis of the two-current model.

  7. Alternative Thinking.

    ERIC Educational Resources Information Center

    Herman, Dan

    1999-01-01

    Explains how advances in diesel and alternative fuels has caused schools to reconsider their use for their bus fleets. Reductions in air pollution emissions, cost-savings developments, and the economies experienced from less downtime and maintenance requirements are explored. (GR)

  8. Alternative Conceptualizations.

    ERIC Educational Resources Information Center

    Borman, Kathryn M., Ed.; O'Reilly, Patricia, Ed.

    1992-01-01

    This theme issue of the serial "Educational Foundations" contains five articles devoted to the topic of "Alternative Conceptualizations" of the foundations of education. In "The Concept of Place in the New Sociology of Education," Paul Theobald examines the notion of place in educational theory and practice. Janice Jipson and Nicholas Paley, in…

  9. ALTERNATIVE OXIDANTS

    EPA Science Inventory

    This chapter reports on the efforts of the USEPA to study chloramines, chlorine dioxide and ozone as alternative oxidants/disinfectants to chlorine for the control of disinfection by-rpdocuts (DBPs) in drinking water. It examines the control of DBPs like trihalomethanes and haloa...

  10. Alternate fuels

    SciTech Connect

    Ryan, T.W.; Worthen, R.P.

    1981-02-01

    The escalating oil prices and shortages of petroleum based fuels for transportation have made research work on various fuel alternatives, especially for transportation engines, a priority of both the private and public sectors. This book contains 18 papers on this subject. The range of options from the development of completely non-petroleum-based fuels and engines to the use of various non-petroleum gasoline and diesel fuel extenders and improvers are discussed.

  11. Development of the Wireless Instantaneous Neurotransmitter Concentration System for intraoperative neurochemical monitoring using fast-scan cyclic voltammetry

    PubMed Central

    Bledsoe, Jonathan M.; Kimble, Christopher J.; Covey, Daniel P.; Blaha, Charles D.; Agnesi, Filippo; Mohseni, Pedram; Whitlock, Sidney; Johnson, David M.; Horne, April; Bennet, Kevin E.; Lee, Kendall H.; Garris, Paul A.

    2009-01-01

    Object Emerging evidence supports the hypothesis that modulation of specific central neuronal systems contributes to the clinical efficacy of deep brain stimulation (DBS) and motor cortex stimulation (MCS). Real-time monitoring of the neurochemical output of targeted regions may therefore advance functional neurosurgery by, among other goals, providing a strategy for investigation of mechanisms, identification of new candidate neurotransmitters, and chemically guided placement of the stimulating electrode. The authors report the development of a device called the Wireless Instantaneous Neurotransmitter Concentration System (WINCS) for intraoperative neurochemical monitoring during functional neurosurgery. This device supports fast-scan cyclic voltammetry (FSCV) at a carbon-fiber microelectrode (CFM) for real-time, spatially and chemically resolved neurotransmitter measurements in the brain. Methods The FSCV study consisted of a triangle wave scanned between −0.4 and 1 V at a rate of 300 V/second and applied at 10 Hz. All voltages were compared with an Ag/AgCl reference electrode. The CFM was constructed by aspirating a single carbon fiber (r = 2.5 μm) into a glass capillary and pulling the capillary to a microscopic tip by using a pipette puller. The exposed carbon fiber (that is, the sensing region) extended beyond the glass insulation by ~ 100 μm. The neurotransmitter dopamine was selected as the analyte for most trials. Proof-of-principle tests included in vitro flow injection and noise analysis, and in vivo measurements in urethane-anesthetized rats by monitoring dopamine release in the striatum following high-frequency electrical stimulation of the medial forebrain bundle. Direct comparisons were made to a conventional hardwired system. Results The WINCS, designed in compliance with FDA-recognized consensus standards for medical electrical device safety, consisted of 4 modules: 1) front-end analog circuit for FSCV (that is, current-to-voltage transducer

  12. Solvent alternatives guide

    SciTech Connect

    Elion, J.M.; Monroe, K.R.; Hill, E.A.

    1996-06-01

    It is no longer legal to manufacture or import chlorofluorocarbon 113 or methyl chloroform solvents, and companies that currently clean their parts with either material are now required to implement environmentally safe substitutes. To help find alternative methods, Research Triangle Institute`s Surface Cleaning Technology Program has designed a Solvent Alternatives Guide (SAGE), an online tool that enables access to practical information and recommendations for acceptable solvents. Developed in partnership with the US Environmental Protection Agency, SAGE is available free of charge on the Internet`s World Wide Web.

  13. Bouncing alternatives to inflation

    NASA Astrophysics Data System (ADS)

    Lilley, Marc; Peter, Patrick

    2015-12-01

    Although the inflationary paradigm is the most widely accepted explanation for the current cosmological observations, it does not necessarily correspond to what actually happened in the early stages of our Universe. To decide on this issue, two paths can be followed: first, all the possible predictions it makes must be derived thoroughly and compared with available data, and second, all the imaginable alternatives must be ruled out. Leaving the first task to all other contributors of this volume, we concentrate here on the second option, focusing on the bouncing alternatives and their consequences. xml:lang="fr"

  14. Diagnostic Criteria for the Characterization of Electrode Reactions with Chemically Coupled Reactions Preceding the Electron Transfer by Cyclic Square Wave Voltammetry.

    PubMed

    Helfrick, John C; Mann, Megan A; Bottomley, Lawrence A

    2016-08-18

    Theory for cyclic square wave voltammetry of electrode reactions with chemical reactions preceding the electron transfer is presented. Theoretical voltammograms were calculated following systematic variation of empirical parameters to assess their impact on the shape of the voltammogram. From the trends obtained, diagnostic criteria for this mechanism were deduced. When properly applied, these criteria will enable non-experts in voltammetry to assign the electrode reaction mechanism and accurately measure reaction kinetics. PMID:27443581

  15. Alternative fuels

    NASA Technical Reports Server (NTRS)

    Grobman, J. S.; Butze, H. F.; Friedman, R.; Antoine, A. C.; Reynolds, T. W.

    1977-01-01

    Potential problems related to the use of alternative aviation turbine fuels are discussed and both ongoing and required research into these fuels is described. This discussion is limited to aviation turbine fuels composed of liquid hydrocarbons. The advantages and disadvantages of the various solutions to the problems are summarized. The first solution is to continue to develop the necessary technology at the refinery to produce specification jet fuels regardless of the crude source. The second solution is to minimize energy consumption at the refinery and keep fuel costs down by relaxing specifications.

  16. Simultaneous determination of dopamine and its oxidized product (aminochrom), by hydrodynamic amperometry and anodic stripping voltammetry, using the metallic palladium and uranalyl hexacyanoferrate coated aluminum electrodes.

    PubMed

    Pournaghi-Azar, M H; Dastangoo, H; Fadakar bajeh baj, R

    2010-02-15

    In the present work, the development of an effective electroanalytical strategy for the simultaneous determination of dopamine (DA) and aminochrom (AC) using hydrodynamic amperometry and anodic stripping voltammetry (ASV) on the Al modified electrodes is described. For this purpose the Al electrode is plated with metallic palladium (Pd-Al) by simple dipping procedure and subsequently the uranyl hexacyanoferrate (K(2)UO(2)[Fe(CN)(6)]) is deposited electrochemically on the Pd-Al electrode from a UO(2)(2+)+Fe(CN)(6)(3-) solution. The Pd-Al electrode is used for hydrodynamic amperometric measurement of DA at constant electrode potential of 0.35 V in a stirred electrolyte solution. At fixed operational conditions, the calibration graph for amperometry was linear over the DA concentration range 1x10(-6) to 50x10(-6)M. The detection limit of DA was 4.1x10(-7) M. Whereas the decrease of the ASV current of the K(2)UO(2)[Fe(CN)(6)]/Pd-Al electrode prepared in the presence of AC was the principal of the AC determination. This decrease was proportional to the AC concentration in the solution, during K(2)UO(2)[Fe(CN)(6)]/Pd-Al electrode preparation and the calibration graph was linear over the concentration range 1x10(-6) to 35x10(-6) M of AC. The detection limit was 4.5x10(-7) M AC. PMID:19963367

  17. Supplement to the theory of normal pulse voltammetry and its application to the kinetic study of methanol oxidation on a polycrystalline platinum electrode.

    PubMed

    Xu, Weilin; Lu, Tianhong; Liu, Changpeng; Xing, Wei

    2005-04-28

    The theory of normal pulse voltammetry (NPV) for complex multistep multielectron transfer processes on a plane electrode was advanced and applied to the completely irreversible process of methanol oxidation to formic acid in the potential range from 0.3 to 0.8 V versus Ag/AgCl. The kinetic parameters for this process, such as the standard rate constant (k0) and anodic transfer coefficient (alpha) for this irreversible heterogeneous electron transfer process at the electrode/solution interface and apparent diffusion coefficient (D(app)) for the homogeneous charge transfer process within liquid film near the electrode surface, were obtained with NPV theory from analyzing the dependence of current-potential curves upon the sampling times. The results showed that this process is truly a very slow, completely irreversible kinetic process, as k0 is in the order of 10(-9) cm/s for the rate-determining step. The values of k0 and D(app) decreased with the increase of methanol concentration, while alpha was independent of the concentration of methanol and its value was 0.35 +/- 0.05. Theoretical fitting is very consistent with the experimental data. PMID:16851917

  18. Study of temperature, air dew point temperature and reactant flow effects on proton exchange membrane fuel cell performances using electrochemical spectroscopy and voltammetry techniques

    NASA Astrophysics Data System (ADS)

    Wasterlain, S.; Candusso, D.; Hissel, D.; Harel, F.; Bergman, P.; Menard, P.; Anwar, M.

    A single PEMFC has been operated by varying the assembly temperature, the air dew point temperature and the anode/cathode stoichiometry rates with the aim to identify the parameters and combinations of factors affecting the cell performance. Some of the experiments were conducted with low humidified reactants (relative humidity of 12%). The FC characterizations tests have been conducted using in situ electrochemical methods based on load current and cell voltage signal analysis, namely: polarization curves, EIS measurements, cyclic and linear sweep voltammetries (CV and LSV). The impacts of the parameters on the global FC performances were observed using the polarization curves whereas EIS, CV and LSV test results were used to discriminate the different voltage loss sources. The test results suggest that some parameter sets allow maximal output voltages but can also induce material degradation. For instance, higher FC temperature and air flow values can induce significant electrical efficiency benefits, notably by increasing the reversible potential and the reaction kinetics. However, raising the cell temperature can also gradually dry the FC and increase the risk of membrane failure. LSV has also shown that elevated FC temperature and relative humidity can also accelerate the electrolyte degradation (i.e. slightly higher fuel crossover rate) and reduce the lifetime consequently.

  19. Computational Aided-Molecular Imprinted Polymer Design for Solid Phase Extraction of Metaproterenol from Plasma and Determination by Voltammetry Using Modified Carbon Nanotube Electrode

    PubMed Central

    Ahmadi, Farhad; Karamian, Ehsan

    2014-01-01

    A molecular imprinted polymer (MIP) was computationally designed and synthesized for the selective extraction of metaproterenol (MTP), from human plasma. In this regards semi empirical MP3 and mechanical quantum (DFT) calculations were used to find a suitable functional monomers. On the basis of computational and experimental results, acrylic acid (AA) and DMSO:MeOH (90:10 %V/V) were found to be the best choices of functional monomer and polymerization solvents, respectively. This polymer was then used as a selective sorbent to develop a molecularly imprinted solid-phase extraction (MISPE) procedure followed by differential pulse voltammetry by using modified carbon nanotube electrode. The analysis was performed in phosphate buffer, pH 7.0. Peak currents were measured at +0.67 V versus Ag/AgCl. The linear calibration range was 0.026–8.0 μg mL-1 with a limit of detection 0.01 μg mL-1. The relative standard deviation at 0.5 μg mL-1 was 4.76% (n=5). The mean recoveries of 5 μg mL-1 MTP from plasma was 92.2% (n=5). The data of MISPE-DPV were compared with the MISPE-HPLC-UV. Although, the MISPE-DPV was more sensitive but both techniques have similar accuracy and precision. PMID:25237337

  20. Trace analysis of Ponceau 4R in soft drinks using differential pulse stripping voltammetry at SWCNTs composite electrodes based on PEDOT:PSS derivatives.

    PubMed

    Wang, Zifei; Zhang, Hui; Wang, Zhipeng; Zhang, Jie; Duan, Xuemin; Xu, Jingkun; Wen, Yangping

    2015-08-01

    Ponceau 4R, an edible synthetic colorant used in drinks, syrups, and sweets, has been successfully detected using differential pulse voltammetry at a single-walled carbon nanotubes-modified composite electrode based on poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) and two derivatives thereof. The electrochemical parameters of three Ponceau 4R sensors, such as pH value, pre-concentration time, and scan rate, have been optimized, and their electrochemical performances have been compared. A poly(acrylate-modified 3,4-ethylenedioxythiophene-co-3,4-ethylenedioxythiophene):poly(styrene sulfonate)-single-walled carbon nanotubes-poly(vinyl alcohol)-modified electrode showed the best electrocatalytic activity, with the highest response current, lowest detection limit (1.8 nm), widest linear range (0.0055-110.6 μm), and best sensing stability. Additionally, the modified electrode has also been successfully employed for real sample analysis with soft drinks. Satisfactory results were obtained, demonstrating this to be an easy and effective approach for trace analysis of Ponceau 4R in food samples. PMID:25766817

  1. Resolution of quaternary mixtures of cadaverine, histamine, putrescine and tyramine by the square wave voltammetry and partial least squares method.

    PubMed

    Henao-Escobar, W; Domínguez-Renedo, O; Alonso-Lomillo, M A; Arcos-Martínez, M J

    2015-10-01

    This work presents the simultaneous determination of cadaverine, histamine, putrescine and tyramine by square wave voltammetry using a boron-doped diamond electrode. A multivariate calibration method based on partial least square regressions has allowed the resolution of the very high overlapped voltammetric signals obtained for the analyzed biogenic amines. Prediction errors lower than 9% have been obtained when concentration of quaternary mixtures were calculated. The developed procedure has been applied in the analysis of ham samples, which results are in good agreement with those obtained using the standard HPLC method. PMID:26078134

  2. Compensated pulsed alternator

    DOEpatents

    Weldon, William F.; Driga, Mircea D.; Woodson, Herbert H.

    1980-01-01

    This invention relates to an electromechanical energy converter with inertial energy storage. The device, a single phase, two or multi-pole alternator with stationary field coils, and a rotating armature is provided. The rotor itself may be of laminated steel for slower pulses or for faster pulses should be nonmagnetic and electrically nonconductive in order to allow rapid penetration of the field as the armature coil rotates. The armature coil comprises a plurality of power generating conductors mounted on the rotor. The alternator may also include a stationary or counterrotating compensating coil to increase the output voltage thereof and to reduce the internal impedance of the alternator at the moment of peak outout. As the machine voltage rises sinusoidally, an external trigger switch is adapted to be closed at the appropriate time to create the desired output current from said alternator to an external load circuit, and as the output current passes through zero a self-commutating effect is provided to allow the switch to disconnect the generator from the external circuit.

  3. Alternative RNA splicing and cancer

    PubMed Central

    Liu, Sali; Cheng, Chonghui

    2015-01-01

    Alternative splicing of pre-messenger RNA (mRNA) is a fundamental mechanism by which a gene can give rise to multiple distinct mRNA transcripts, yielding protein isoforms with different, even opposing, functions. With the recognition that alternative splicing occurs in nearly all human genes, its relationship with cancer-associated pathways has emerged as a rapidly growing field. In this review, we summarize recent findings that have implicated the critical role of alternative splicing in cancer and discuss current understandings of the mechanisms underlying dysregulated alternative splicing in cancer cells. PMID:23765697

  4. Alternative fuel information: Alternative fuel vehicle outlook

    SciTech Connect

    Not Available

    1994-06-01

    Major automobile manufacturers continue to examine a variety of alternative fuel vehicle (AFV) options in an effort to provide vehicles that meet the fleet requirements of the Clean Air Act Amendments of 1990 (CAAA) and the Energy Policy Act of 1992 (EPACT). The current generation of AFVs available to consumers is somewhat limited as the auto industry attempts to respond to the presently uncertain market. At the same time, however, the automobile industry must anticipate future demand and is therefore engaged in research, development, and production programs on a wide range of alternative fuels. The ultimate composition of the AFV fleet may be determined by state and local regulations which will have the effect of determining demand. Many state and regional groups may require vehicles to meet emission standards more stringent than those required by the federal government. Therefore, a significant impact on the market could occur if emission classifications begin serving as the benchmark for vehicles, rather than simply certifying a vehicle as capable of operating on an ``alternative`` to gasoline. Vehicles classified as Zero-Emissions, or even Inherently Low-Emissions, could most likely be met only by electricity or natural gas, thereby dictating that multi-fuel vehicles would be unable to participate in some clean air markets. In the near-term, the Clinton Administration desires to accelerate the use of alternative fuels as evidenced by an executive order directing the federal government to increase the rate of conversion of the federal fleet beyond that called for in EPACT. The Administration has expressed particular interest in using more compressed natural gas (CNG) as a motor fuel, which has resulted in the auto industry`s strong response of concentrating short-term efforts on CNG vehicles. For the 1994 model year, a number of CNG cars and trucks will be available from major automobile manufacturers.

  5. Alternative technologies

    SciTech Connect

    Corum, L.

    1988-11-01

    We want to get untreated waste out of our landfills, and to do this we want to entice technologies into our state, preferably in the source reduction mode. This is a thumbnail description of the purpose of the Alternative Technologies section (ATS) of the California Department of Health Services (DHS). This paper reports on the ATS program which was initially conceived in recognition that California's relatively strict environmental regulations might be scaring off businesses possessing technologies with the potential to reduce the state's toxic wastes. There are also a lot of great inventors out there and one thing they don't know how to do is move technology into the marketplace. It was hoped that ATS would help shape technologies and move them into appropriate market niches.

  6. An experimental evaluation of cyclic voltammetry of multicharged species at macrodisk electrodes in the absence of added supporting electrolyte.

    PubMed

    Bond, A M; Coomber, D C; Feldberg, S W; Oldham, K B; Vu, T

    2001-01-15

    The reversible reduction of [S2Mo18O62]4- to [S2Mo18O62]5- and [S2Mo18O62]6- at a glassy carbon macrodisk electrode has been studied by cyclic voltammetry in acetonitrile as a function of the concentration of [(C6H13)4N]4[S2Mo18O62] in the absence and presence of [(C6H13)4N]ClO4 as the added supporting electrolyte. Consideration is given to the influence of scan rate, reference-working electrode distance, [(C6H13)4N]4[S2Mo18O62], and electrolyte concentrations. Experimental data confirm theoretical predictions that cyclic voltammetry at a macrodisk electrode is a viable technique for studies of multiply charged electroactive species without added electrolyte, provided the influence of enhanced complexities associated with effects of increased solution resistance, the mass transport contribution from migration, and convection arising from enhanced density gradients are considered. Enhanced density gradients present in the absence of added supporting electrolyte give rise to a more marked dependence of voltammograms on the angle of the electrode and hence lead to significant distortion of wave shapes at low scan rates. The summation of all these obstacles implies that quantitative evaluation of cyclic voltammograms of multiply charged species requires significantly greater care in the absence than in the presence of added supporting electrolyte. PMID:11199989

  7. Determination of trace mercury in water based on N-octylpyridinium ionic liquids preconcentration and stripping voltammetry.

    PubMed

    Li, Zhenhan; Xia, Shanhong; Wang, Jinfen; Bian, Chao; Tong, Jianhua

    2016-01-15

    A novel method for determination of trace mercury in water is developed. The method is performed by extracting mercury firstly with ionic liquids (ILs) and then detecting the concentration of mercury in organic media with anodic stripping voltammetry. Liquid-liquid extraction of mercury(II) ions by four ionic liquids with N-octylpyridinium cations ([OPy](+)) was studied. N-octylpyridinium tetrafluoroborate and N-octylpyridinium trifluoromethylsulfonate were found to be efficient and selective extractant for mercury. Temperature controlled dispersive liquid phase microextraction (TC-DLPME) technique was utilized to improve the performance of preconcentration. After extraction, precipitated IL was diluted by acetonitrile buffer and mercury was detected by differential pulse stripping voltammetry (DPSV) with gold disc electrode. Mercury was enriched by 17 times while interfering ions were reduced by two orders of magnitude in the organic media under optimum condition. Sensitivity and selectivity for electrochemical determination of mercury were improved by using the proposed method. Tap, pond and waste water samples were analyzed with recoveries ranging from 81% to 107% and detection limit of 0.05 μg/L. PMID:26364269

  8. Robotic voltammetry with carbon nanotube-based sensors: a superb blend for convenient high-quality antimicrobial trace analysis

    PubMed Central

    Theanponkrang, Somjai; Suginta, Wipa; Weingart, Helge; Winterhalter, Mathias; Schulte, Albert

    2015-01-01

    A new automated pharmacoanalytical technique for convenient quantification of redox-active antibiotics has been established by combining the benefits of a carbon nanotube (CNT) sensor modification with electrocatalytic activity for analyte detection with the merits of a robotic electrochemical device that is capable of sequential nonmanual sample measurements in 24-well microtiter plates. Norfloxacin (NFX) and ciprofloxacin (CFX), two standard fluoroquinolone antibiotics, were used in automated calibration measurements by differential pulse voltammetry (DPV) and accomplished were linear ranges of 1–10 μM and 2–100 μM for NFX and CFX, respectively. The lowest detectable levels were estimated to be 0.3±0.1 μM (n=7) for NFX and 1.6±0.1 μM (n=7) for CFX. In standard solutions or tablet samples of known content, both analytes could be quantified with the robotic DPV microtiter plate assay, with recoveries within ±4% of 100%. And recoveries were as good when NFX was evaluated in human serum samples with added NFX. The use of simple instrumentation, convenience in execution, and high effectiveness in analyte quantitation suggest the merger between automated microtiter plate voltammetry and CNT-supported electrochemical drug detection as a novel methodology for antibiotic testing in pharmaceutical and clinical research and quality control laboratories. PMID:25670899

  9. Electrodeposited ZnO thin film as an efficient alternative blocking layer for TiCl4 pre-treatment in TiO2-based dye sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Kouhestanian, E.; Mozaffari, S. A.; Ranjbar, M.; SalarAmoli, H.; Armanmehr, M. H.

    2016-08-01

    Recently, ZnO nanostructures have received considerable attention in fabrication of dye sensitized solar cell (DSSC) photoanodes due to their unique transport properties. In the present study, a chronoamperometric method was performed to fabricate the ZnO nanostructures as an appropriate alternative of TiCl4 pre-treatment to reduce the recombination reactions, while retaining the TiO2-based DSSC performance. The effect of polyvinyl alcohol (PVA) on ZnO electrodeposition to control the growth and crystallization of ZnO nanostructures was investigated. ZnO/TiO2 based-DSSCs were fabricated using N719 ruthenium dye and all photovoltaic parameters were characterized. Incident photon to current efficiency (IPCE), electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV) and VOC decay techniques were employed for studying the cell properties which is resulted in a significant enhancement in cell performance.

  10. A Simple and Inexpensive Function Generator and a Four-Electrode Cell for Cyclic Voltammetry.

    ERIC Educational Resources Information Center

    Albahadily, F. N.; Mottola, Horacio A.

    1986-01-01

    Describes construction and operation of an inexpensive signal generator and a four-electrode electrochemical cell for use in voltammetric experiments. Also describes construction and operation of a four-electrode electrochemical cell used to illustrate elimination (or minimization) of background currents due to electrochemical reactions by species…

  11. A new green phosphor of SrAl{sub 2}O{sub 4}:Eu{sup 2+},Ce{sup 3+},Li{sup +} for alternating current driven light-emitting diodes

    SciTech Connect

    Chen, Lei; Zhang, Yao; Liu, Fayong; Luo, Anqi; Chen, Zhixin; Jiang, Yang; Chen, Shifu; Liu, Ru-Shi

    2012-12-15

    Graphical abstract: Display Omitted Highlights: ► This work focuses on exploring new phosphors of SrAl{sub 2}O{sub 4}:Eu{sup 2+},Ce{sup 3+},Li{sup +} for AC LEDs. ► The work provides a new route to synthesize the pure phase of SrAl{sub 2}O{sub 4}. ► The formation of the impurity phase of Sr{sub 4}Al{sub 14}O{sub 25} was suppressed by using Ce{sup 3+}. ► Charger defects were compensated by using Li{sup +}. ► The luminescence intensity was enhanced significantly by co-doping Ce{sup 3+} and Li{sup +}. -- Abstract: New phosphors are desired to overcoming the flickering luminescence of alternating current light-emitting diodes (AC-LEDs) by compensating dark duration with appropriately persistent luminescence. Here, the phosphor of SrAl{sub 2}O{sub 4}:Eu{sup 2+},Ce{sup 3+},Li{sup +} was developed for this application. The phosphor was synthesized with solid-state reaction method by using H{sub 3}BO{sub 3} as flux. The XRD patterns show that the impurity phase of Sr{sub 4}Al{sub 14}O{sub 25} which always formed together with SrAl{sub 2}O{sub 4} during reaction was suppressed by using Ce. The charger defects caused by the non-equivalent substitution of Sr{sup 2+} with Ce{sup 3+} were compensated with Li{sup +}. Thus, the luminescence intensity of SrAl{sub 2}O{sub 4}:Eu{sup 2+} was enhanced significantly by co-doping Ce{sup 3+} and Li{sup +}. The fluorescence lifetime of the phosphor is about 36.5 ms. The energy dispersive spectra (EDS) assisted with scanning electron microscope (SEM) pictures reveal that Ce ions mainly distribute along grain boundary.

  12. Alternative Splice in Alternative Lice.

    PubMed

    Tovar-Corona, Jaime M; Castillo-Morales, Atahualpa; Chen, Lu; Olds, Brett P; Clark, John M; Reynolds, Stuart E; Pittendrigh, Barry R; Feil, Edward J; Urrutia, Araxi O

    2015-10-01

    Genomic and transcriptomics analyses have revealed human head and body lice to be almost genetically identical; although con-specific, they nevertheless occupy distinct ecological niches and have differing feeding patterns. Most importantly, while head lice are not known to be vector competent, body lice can transmit three serious bacterial diseases; epidemictyphus, trench fever, and relapsing fever. In order to gain insights into the molecular bases for these differences, we analyzed alternative splicing (AS) using next-generation sequencing data for one strain of head lice and one strain of body lice. We identified a total of 3,598 AS events which were head or body lice specific. Exon skipping AS events were overrepresented among both head and body lice, whereas intron retention events were underrepresented in both. However, both the enrichment of exon skipping and the underrepresentation of intron retention are significantly stronger in body lice compared with head lice. Genes containing body louse-specific AS events were found to be significantly enriched for functions associated with development of the nervous system, salivary gland, trachea, and ovarian follicle cells, as well as regulation of transcription. In contrast, no functional categories were overrepresented among genes with head louse-specific AS events. Together, our results constitute the first evidence for transcript pool differences in head and body lice, providing insights into molecular adaptations that enabled human lice to adapt to clothing, and representing a powerful illustration of the pivotal role AS can play in functional adaptation. PMID:26169943

  13. Alternative Splice in Alternative Lice

    PubMed Central

    Tovar-Corona, Jaime M.; Castillo-Morales, Atahualpa; Chen, Lu; Olds, Brett P.; Clark, John M.; Reynolds, Stuart E.; Pittendrigh, Barry R.; Feil, Edward J.; Urrutia, Araxi O.

    2015-01-01

    Genomic and transcriptomics analyses have revealed human head and body lice to be almost genetically identical; although con-specific, they nevertheless occupy distinct ecological niches and have differing feeding patterns. Most importantly, while head lice are not known to be vector competent, body lice can transmit three serious bacterial diseases; epidemictyphus, trench fever, and relapsing fever. In order to gain insights into the molecular bases for these differences, we analyzed alternative splicing (AS) using next-generation sequencing data for one strain of head lice and one strain of body lice. We identified a total of 3,598 AS events which were head or body lice specific. Exon skipping AS events were overrepresented among both head and body lice, whereas intron retention events were underrepresented in both. However, both the enrichment of exon skipping and the underrepresentation of intron retention are significantly stronger in body lice compared with head lice. Genes containing body louse-specific AS events were found to be significantly enriched for functions associated with development of the nervous system, salivary gland, trachea, and ovarian follicle cells, as well as regulation of transcription. In contrast, no functional categories were overrepresented among genes with head louse-specific AS events. Together, our results constitute the first evidence for transcript pool differences in head and body lice, providing insights into molecular adaptations that enabled human lice to adapt to clothing, and representing a powerful illustration of the pivotal role AS can play in functional adaptation. PMID:26169943

  14. Analytical solutions of the planar cyclic voltammetry process for two soluble species with equal diffusivities and fast electron transfer using the method of eigenfunction expansions

    NASA Astrophysics Data System (ADS)

    Samin, Adib; Lahti, Erik; Zhang, Jinsuo

    2015-08-01

    Cyclic voltammetry is a powerful tool that is used for characterizing electrochemical processes. Models of cyclic voltammetry take into account the mass transport of species and the kinetics at the electrode surface. Analytical solutions of these models are not well-known due to the complexity of the boundary conditions. In this study we present closed form analytical solutions of the planar voltammetry model for two soluble species with fast electron transfer and equal diffusivities using the eigenfunction expansion method. Our solution methodology does not incorporate Laplace transforms and yields good agreement with the numerical solution. This solution method can be extended to cases that are more general and may be useful for benchmarking purposes.

  15. Analytical solutions of the planar cyclic voltammetry process for two soluble species with equal diffusivities and fast electron transfer using the method of eigenfunction expansions

    SciTech Connect

    Samin, Adib; Lahti, Erik; Zhang, Jinsuo

    2015-08-15

    Cyclic voltammetry is a powerful tool that is used for characterizing electrochemical processes. Models of cyclic voltammetry take into account the mass transport of species and the kinetics at the electrode surface. Analytical solutions of these models are not well-known due to the complexity of the boundary conditions. In this study we present closed form analytical solutions of the planar voltammetry model for two soluble species with fast electron transfer and equal diffusivities using the eigenfunction expansion method. Our solution methodology does not incorporate Laplace transforms and yields good agreement with the numerical solution. This solution method can be extended to cases that are more general and may be useful for benchmarking purposes.

  16. Controlled release of drugs from cellulose acetate matrices produced from sugarcane bagasse: monitoring by square-wave voltammetry.

    PubMed

    Rodrigues Filho, Guimes; Almeida, Flávia; Ribeiro, Sabrina D; Tormin, Thiago F; Muñoz, Rodrigo A A; Assunção, Rosana M N; Barud, Hernane

    2016-07-01

    In this paper, cellulose triacetate (CTA) was produced from sugarcane bagasse and used as matrices for controlled release of paracetamol. Symmetric and asymmetric membranes were obtained by formulations of CTA/dichloromethane/drug and CTA/dichloromethane/water/drug, respectively, and they were characterized by scanning electron microscopy (SEM) and differential scanning calorimetry (DSC). Different morphologies of membranes were observed by SEM, and the incorporation of paracetamol was confirmed by lowering of the glass transition temperature (Tg) in the DSC curves. This indicates the existence of interactions between the matrix and the drug. The evaluation of drug release was based on the electrochemical monitoring of paracetamol through its oxidation at a glassy carbon electrode surface using square-wave voltammetry (SWV), which provides fast, precise and accurate in situ measurements. The studies showed a content release of 27% and 45% by the symmetric and asymmetric membranes, respectively, during 8 h. PMID:26596497

  17. Application of stripping voltammetry to trace lead analysis in intermediates and final products of syntheses of pharmaceuticals.

    PubMed

    Pravda, M; Vytras, K

    1996-05-01

    Applications of differential pulse anodic stripping voltammetry using a new pen-type renewed hanging mercury electrode have been investigated for trace analysis of lead in pharmaceutical substances and intermediates of their syntheses, such as procaine hydrochloride, 4-aminobenzoic acid, methyl 4-aminobenzoate, 2-(4-chlor-3-aminobenzoyl) benzoic acid, benzyl 2-naphthyl ether, 5-aminoisophthalic acid, 3-aminobenzoic acid, 5-hydroxyisophthalic acid, and N, N'-dibenzylethylenediamine diacetate. Samples were dissolved in 1 M HCI or 1 M NaOH and the electrochemical scan was carried out. No sample mineralization was necessary. The method showed a good linearity up to 50-100 ppm Pb with a detection limit less than 100 ppb. The results agreed well, but were more precise than those obtained by atomic absorption spectrometry using air/acetylene flame atomisation. PMID:8809700

  18. Electrochemical Investigation of Coenzyme Q10 on Silver Electrode in Ethanol Aqueous Solution and Its Determination Using Differential Pulse Voltammetry.

    PubMed

    Li, Dan; Deng, Wei; Xu, Hu; Sun, Yinxing; Wang, Yuhong; Chen, Shouhui; Ding, Xianting

    2016-08-01

    The electrochemistry reduction of coenzyme Q10 (CoQ10) on silver electrodes has been investigated in mixed solvent containing 95 vol. % ethanol and 5 vol. % water. A combination of cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) is employed to explore the mechanism of redox processes of CoQ10 in the presence and absence of oxygen, respectively. It has been proved that the redox reaction of CoQ10 is highly dependent on the oxygen in the solution compared with that of CoQ0, which may be attributed to the isoprenoid side chain effect of CoQ10 Moreover, the effects of experimental variables such as electrolyte component, pH, temperature, and sonication time on the amperometric and potentiometric responses of CoQ10 are presented. The differential pulse voltammetry method has been developed for the quantification of the CoQ10 in the complex samples. Under the optimum conditions, the method is linear over the concentration range of 1.00 × 10(-7) to 1.00 × 10(-3) mol/L (8.63 × 10(-2) to 8.63 × 10(2) mg/kg). The limit of detection (3σ/k) is 3.33 × 10(-8) mol/L (2.88 × 10(-2) mg/kg). The recoveries of the spiked samples are between 91% and 108%. The presented method can be applied to the analysis of CoQ10 in real samples without any pretreatment. PMID:27094091

  19. Demon voltammetry and analysis software: Analysis of cocaine-induced alterations in dopamine signaling using multiple kinetic measures

    PubMed Central

    Yorgason, Jordan T.; España, Rodrigo A.; Jones, Sara R.

    2011-01-01

    The fast sampling rates of fast scan cyclic voltammetry make it a favorable method for measuring changes in brain monoamine release and uptake kinetics in slice, anesthetized, and freely moving preparations. The most common analysis technique for evaluating changes in dopamine signaling uses well-established Michaelis-Menten kinetic methods that can accurately model dopamine release and uptake parameters across multiple experimental conditions. Nevertheless, over the years, many researchers have turned to other measures to estimate changes in dopamine release and uptake, yet to our knowledge no systematic comparison amongst these measures has been conducted. To address this lack of uniformity in kinetic analyses, we have created the Demon Voltammetry and Analysis software suite, which is freely available to academic and non-profit institutions. Here we present an explanation of the Demon Acquisition and Analysis features, and demonstrate its utility for acquiring voltammetric data under in vitro, in vivo anesthetized, and freely moving conditions. Additionally, the software was used to compare the sensitivity of multiple kinetic measures of release and uptake to cocaine-induced changes in electrically evoked dopamine efflux in nucleus accumbens core slices. Specifically, we examined and compared tau, full width at half height, half-life, T20, T80, slope, peak height, calibrated peak dopamine concentration, and area under the curve to the well-characterized Michaelis-Menten parameters, dopamine per pulse, maximal uptake rate, and apparent affinity. Based on observed results we recommend tau for measuring dopamine uptake and calibrated peak dopamine concentration for measuring dopamine release. PMID:21392532

  20. Development of a sequential injection-square wave voltammetry method for determination of paraquat in water samples employing the hanging mercury drop electrode.

    PubMed

    dos Santos, Luciana B O; Infante, Carlos M C; Masini, Jorge C

    2010-03-01

    This work describes the development and optimization of a sequential injection method to automate the determination of paraquat by square-wave voltammetry employing a hanging mercury drop electrode. Automation by sequential injection enhanced the sampling throughput, improving the sensitivity and precision of the measurements as a consequence of the highly reproducible and efficient conditions of mass transport of the analyte toward the electrode surface. For instance, 212 analyses can be made per hour if the sample/standard solution is prepared off-line and the sequential injection system is used just to inject the solution towards the flow cell. In-line sample conditioning reduces the sampling frequency to 44 h(-1). Experiments were performed in 0.10 M NaCl, which was the carrier solution, using a frequency of 200 Hz, a pulse height of 25 mV, a potential step of 2 mV, and a flow rate of 100 µL s(-1). For a concentration range between 0.010 and 0.25 mg L(-1), the current (i(p), µA) read at the potential corresponding to the peak maximum fitted the following linear equation with the paraquat concentration (mg L(-1)): i(p) = (-20.5 ± 0.3)C (paraquat) - (0.02 ± 0.03). The limits of detection and quantification were 2.0 and 7.0 µg L(-1), respectively. The accuracy of the method was evaluated by recovery studies using spiked water samples that were also analyzed by molecular absorption spectrophotometry after reduction of paraquat with sodium dithionite in an alkaline medium. No evidence of statistically significant differences between the two methods was observed at the 95% confidence level. PMID:20084371

  1. Decrease in the reactivity of locus coeruleus neurons to hypotension after an increase in their tyrosine hydroxylase content: a subregional in vivo voltammetry study in the rat.

    PubMed

    Vachette, C; Bourde, O; Gillon, J Y; Pujol, J F; Renaud, B

    1993-03-01

    The aim of the present work was to determine if noradrenergic neurons of the anterior and the posterior subregions of the locus coeruleus exhibit a difference in reactivity in response to sodium nitroprusside-induced arterial hypotension, and if the pharmacological induction of tyrosine hydroxylase by RU24722 modifies the reactivity of locus coeruleus neurons to this hypotensive stimulus. Previous findings have demonstrated that administration of RU24722 increases the concentration of tyrosine hydroxylase in the rat locus coeruleus by two different mechanisms in the anterior and in the posterior locus coeruleus subregions. The goal of the present study was to measure in vivo the changes in catecholaminergic metabolism in the locus coeruleus after treatment with RU24722 using differential normal pulse voltammetry (DNPV). In vehicle-treated rats, arterial hypotension increased catecholaminergic metabolism with the same pattern in the two locus coeruleus subregions. However, the changes in the magnitude of the catechol oxidation current throughout the recording period were significantly smaller in the posterior subregion (P < 0.001). In the RU24722-pretreated rats, there was a 39% increase in tyrosine hydroxylase and dihydroxyphenylacetic acid in the locus coeruleus. The functional reactivity to hypotension measured by DNPV was significantly decreased (P < 0.001) in both the anterior and posterior locus coeruleus subregions with RU24722 treatment. Therefore, this study suggests that the response of locus coeruleus cells to a hypotensive stimulus depends upon the intracellular tyrosine hydroxylase concentration both in the basal condition and during pharmacological induction of tyrosine hydroxylase gene expression. PMID:7903186

  2. An sp2 and sp3 hybrid nanocrystalline carbon film electrode for anodic stripping voltammetry and its application for electrochemical immunoassay.

    PubMed

    Kurita, Ryoji; Nakamoto, Kohei; Sato, Yuko; Kamata, Tomoyuki; Ueda, Akio; Kato, Dai; Hirono, Shigeru; Niwa, Osamu

    2012-01-01

    A hybridized nanocrystalline carbon film electrode consisting of sp(2) and sp(3) bonds was investigated to reveal the reduction properties of Cd(2+) and for application as a highly sensitive and reliable electrochemical immunoassay. Conductive nanocrystalline carbon film consisting of about 60% sp(2) and 40% sp(3) bonds was fabricated using electron cyclotron resonance (ECR) sputtering equipment, and then the Cd(2+) concentrations were measured with an ECR sputtered carbon (ECR nano-carbon) electrode by employing an anodic stripping voltammetry (ASV) technique. The preconcentrated Cd was analyzed with Kelvin probe force microscopy and energy dispersive X-ray spectroscopy while observing the morphology change with an atomic force microscope and a scanning electron microscope. The preconcentrated Cd on the ECR nano-carbon electrode was revealed to be a thin sheet structure, which was significantly different from the Cd on a conventional carbon material that grows with a coralloid structure. The background current during an ASV measurement maintains a low level equivalent to that found with boron-doped diamond because the surface of the ECR nano-carbon is robust and angstrom-level flat. The carbon-electrode performance for ASV was improved by controlling its structure at a nanometer scale without any metal doping or coating. Finally, the ECR nano-carbon was used for biomolecular determination by electrochemical immunoassay with a CdSe nanoparticle label. Electrochemical immunoassay results were successfully obtained with the ECR nano-carbon, and they correlated well with fluorescence results obtained for CdSe nanoparticles. PMID:22232218

  3. Determination of nitroaromatic and nitramine type energetic materials in synthetic and real mixtures by cyclic voltammetry.

    PubMed

    Üzer, Ayşem; Sağlam, Sener; Tekdemir, Yasemin; Ustamehmetoğlu, Belkıs; Sezer, Esma; Erçağ, Erol; Apak, Reşat

    2013-10-15

    Nitro-explosives contain reducible aromatic -NO2 groups or cyclic >N-NO2 bonds that may undergo reductive cleavage. This work reports the development of a cyclic voltammetric (CV) assay for nitro-aromatics (trinitrotoluene (TNT), dinitrotoluene (DNT)) and nitramines (1,3,5-trinitro-1,3,5-triazacyclohexane (RDX) and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX)) using a glassy carbon electrode. This determination was first used for these energetic materials by resolving current responses of reduction potentials primarily due to one constituent but partly contributed by other constituents. Calibration curves of current intensity versus concentration were linear in the range of 30-120 mg L(-1) for RDX with a limit of detection (LOD) of 10.2 mg L(-1), 40-120 mg L(-1) for HMX (LOD=11.7 mg L(-1)), 40-120 mg L(-1) for TNT (LOD=11.2 mg L(-1)), and 40-140 mg L(-1) for DNT (LOD=10.8 mg L(-1)). Results showed that the CV method could provide a sensitive approach for the simultaneous determination of RDX and TNT in synthetic and real mixtures. Deconvolution of current contributions of mixtures at peak potentials of constituents was performed by multiple linear regression. The proposed method was successfully applied to the analysis of military explosives comp A5 and octol, and method validation was performed both against HPLC on a comp B (TNT+RDX) sample and against GC-MS on real post-blast residual samples containing both explosives. PMID:24054661

  4. Application of multivariate curve resolution alternating least squares method for determination of caffeic acid in the presence of catechin interference.

    PubMed

    Meshki, Marzieh; Behpour, Mohsen; Masoum, Saeed

    2015-03-15

    In the current article, preparation and application of a graphene oxide nanosheets-based sensor for electrochemical determination of caffeic acid (CA) in the presence of catechin is described. This measurement was performed using the differential pulse voltammetry (DPV) technique and chemometric methods such as multivariate curve resolution-alternating least squares (MCR-ALS). The modified sensor was characterized by various techniques such as Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, ultraviolet-visible, X-ray diffraction (XRD), and scanning electron microscopy (SEM). Operating conditions and influencing variables (involving several chemical and instrumental variables) were optimized with central composite rotatable design and response surface methodology. The second-order electrochemical data were generated by changing the pulse height in DPV, and after potential shift correction MCR-ALS was applied. Under the optimized conditions, the dynamic range for CA was from 0.5 to 100.0 μM and the detection limit was found to be 1.1×10(-9) M. The results revealed that the modified electrode shows an improvement in anodic oxidation activity of CA due to a marked enhancement in the current response compared with the bare carbon paste electrode. The modified electrode demonstrated good sensitivity, selectivity, and stability. The proposed method was successfully applied in determination of caffeic acid in the presence of unexpected electroactive interferences with a very high degree of overlapping such as catechin in real samples. PMID:25432066

  5. Sulfuric acid-methanol electrolytes as an alternative to sulfuric-hydrofluoric acid mixtures for electropolishing of niobium

    SciTech Connect

    Zhao, Xin; Corcoran, Sean G.; Kelley, Michael J.

    2011-06-01

    Attainment of the greatest possible interior surface smoothness is critical to meeting the performance demands placed upon niobium superconducting radiofrequency (SRF) accelerator cavities by next generation projects. Electropolishing with HF-H{sub 2}SO{sub 4} electrolytes yields cavities that meet SRF performance goals, but a less-hazardous, more environmentally-friendly process is desirable. Reported studies of EP on chemically-similar tantalum describe the use of sulfuric acid-methanol electrolytes as an HF-free alternative. Reported here are the results of experiments on niobium samples with this electrolyte. Voltammetry experiments indicate a current plateau whose voltage range expands with increasing acid concentration and decreasing temperature. Impedance spectroscopy indicates that a compact salt film is responsible for the current plateau. Equivalent findings in electropolishing chemically-similar tantalum with this electrolyte were interpreted due to as mass transfer limitation by diffusion of Ta ions away from the anode surface. We infer that a similar mechanism is at work here. Conditions were found that yield leveling and brightening comparable to that obtained with HF-H{sub 2}SO{sub 4} mixtures.

  6. Determination of trace amounts of iron by catalytic-adsorptive stripping voltammetry.

    PubMed

    Gao, Z; Siow, K S

    1996-05-01

    A highly sensitive and selective voltammetric procedure is described for the determination of trace amounts of iron. The procedure is based on the adsorptive collection of an iron-thiocyanate-nitric oxide complex on a hanging mercury drop electrode. The adsorbed complex catalyzes the reduction of nitrite in solution, which gives a detection limit of 40 ppt iron (30 s accumulation). The stripping current increases linearly with iron concentration up to 80 ppb. The relative standard deviations are 4.2% and 1.6% at 0.5 ppb and 40 ppb respectively. Most of the common ions, except cobalt, do not interfere with the determination of iron. The procedure is applied to determine iron in biological samples, natural waters and analytical-grade chemicals. PMID:18966540

  7. Electrochemical behaviour of iron in a third-generation ionic liquid: cyclic voltammetry and micromachining investigations.

    PubMed

    Moustafa, Essam M; Mann, Olivier; Fürbeth, Wolfram; Schuster, Rolf

    2009-12-01

    The electrochemical behaviour of Fe in 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([Emim](+)Ntf2(-)) and mixtures with Cl(-) is studied with the aim of investigating the applicability of ionic liquids (IL) for the electrochemical machining of iron. Whereas in pure IL iron could not be significantly dissolved, the addition of Cl(-) enables the active dissolution with anodic current densities up to several mA cm(-2). Although several anodic peaks appear in the cyclic voltammograms (CV), the distinct assignment of those electrochemical processes remain difficult. In particular no proof for the formation of FeCl(x) (2-x) complexes during Fe dissolution are deduced from the CV, although such complexes are shown to be stable in the employed electrolyte. In addition, we present electrochemical drilling experiments with short potential pulses, which demonstrate that electrochemical machining of Fe is, in principle, possible in IL based electrolytes, even though hampered by slow machining speed. PMID:19760696

  8. Is garlic alternative medicine?

    PubMed

    Rivlin, Richard S

    2006-03-01

    Garlic has been used medicinally since antiquity. In virtually every early civilization known, such as ancient India, Egypt, Rome, China, and Japan, garlic was part of the therapeutic regimen for a variety of maladies. Therefore, the ancient medicinal tradition of garlic use would qualify it as a folk medicine or as an alternative or complementary medicine. But is garlic an alternative to established methods of disease prevention or treatment? Scientists from around the world have identified a number of bioactive substances in garlic that are water soluble (e.g., S-allyl methylcysteine), and fat soluble (e.g., diallyldisulfide). Mechanisms of action are being elucidated by modern technology. The validity of ancient medicine is now being evaluated critically in cell-free systems, animal models, and human populations. Preventive and therapeutic trials of garlic are still in early stages. There are many promising lines of research suggesting the potential effects of garlic. The current state of knowledge does not recognize garlic as a true alternative, but it will likely find a place for garlic as a complement to established methods of disease prevention and treatment. Our goal should be to examine garlic together with other agents to evaluate its possible efficacy and toxicity under conditions of actual use in humans. PMID:16484549

  9. Determination of Sudan I in drinks containing Sunset yellow by adsorptive stripping voltammetry.

    PubMed

    Gómez, Marisol; Arancibia, Verónica; Aliaga, Margarita; Núñez, Claudia; Rojas-Romo, Carlos

    2016-12-01

    An efficient, fast and sensitive method for the determination of Sudan I (SI) in drinks containing Sunset yellow (Sy) is developed and validated using an adsorptive stripping voltammetric procedure. Sy is currently added to a large number of foods; however during their synthesis SI may be produced. The determination is based on adsorption of Sy and SI onto HMDE and later reduction of the azo group at -0.71 and -0.82V, respectively. Using the best set of the experimental conditions (pH 12.3; Eads: -0.40V) for the determination of SI in Sy, a linear response for SI in the concentration range 0.5-27.2μgL(-1) was found, with a detection limit of 1.5μgL(-1) in a tads of only 30s. The method was applied to the determination of SI in commercial drinks with satisfactory results. The presence of SI was confirmed by mass spectrometry. PMID:27374598

  10. The Rise of Voltammetry: From Polarography to the Scanning Electrochemical Microscope

    NASA Astrophysics Data System (ADS)

    Bard, Allen J.

    2007-04-01

    This Waters Symposium celebrates the development of analytical instrumentation in the general area of electrochemistry and, more precisely, in the area of voltammetric instrumentation (broadly defined). In this article, I deal with the origins of the field, that is, the invention of polarography, and the development of commercial instrumentation, to about 1950. This allows a discussion of the pioneering work of Heyrovsky and the Czech school that formed the basis for all that followed. I then skip ahead to the last 15 years and talk about the scanning electrochemical microscope (SECM), which represents one of the current frontier electrochemical instruments. Since our group at Texas was a major contributor to this technique, this allows a detailed personal account of the work and ideas that led to the SECM as well as some brief comments on the future of this field. I will also attempt to show how earlier work and techniques led, in both cases, to the invention of polarography and SECM. I leave to the others in the symposium to cover the work in the years between.

  11. Real-time monitoring of electrically evoked catecholamine signals in the songbird striatum using in vivo fast-scan cyclic voltammetry

    PubMed Central

    Smith, Amanda R.; Garris, Paul A.; Casto, Joseph M.

    2015-01-01

    Fast-scan cyclic voltammetry is a powerful technique for monitoring rapid changes in extracellular neurotransmitter levels in the brain. In vivo fast-scan cyclic voltammetry has been used extensively in mammalian models to characterize dopamine signals in both anesthetized and awake preparations, but has yet to be applied to a non-mammalian vertebrate. The goal of this study was to establish in vivo fast-scan cyclic voltammetry in a songbird, the European starling, to facilitate real-time measurements of extracellular catecholamine levels in the avian striatum. In urethane-anesthetized starlings, changes in catecholamine levels were evoked by electrical stimulation of the ventral tegmental area and measured at carbon-fiber microelectrodes positioned in the medial and lateral striata. Catecholamines were elicited by different stimulations, including trains related to phasic dopamine signaling in the rat, and were analyzed to quantify presynaptic mechanisms governing exocytotic release and neuronal uptake. Evoked extracellular catecholamine dynamics, maximal amplitude of the evoked catecholamine signal, and parameters for catecholamine release and uptake did not differ between striatal regions and were similar to those determined for dopamine in the rat dorsomedial striatum under similar conditions. Chemical identification of measured catecholamine by its voltammogram was consistent with the presence of both dopamine and norepinephrine in striatal tissue content. However, the high ratio of dopamine to norepinephrine in tissue content and the greater sensitivity of the carbon-fiber microelectrode to dopamine compared to norepinephrine favored the measurement of dopamine. Thus, converging evidence suggests that dopamine was the predominate analyte of the electrically evoked catecholamine signal measured in the striatum by fast-scan cyclic voltammetry. Overall, comparisons between the characteristics of these evoked signals suggested a similar presynaptic regulation of

  12. Real-time monitoring of electrically evoked catecholamine signals in the songbird striatum using in vivo fast-scan cyclic voltammetry.

    PubMed

    Smith, Amanda R; Garris, Paul A; Casto, Joseph M

    2015-01-01

    Fast-scan cyclic voltammetry is a powerful technique for monitoring rapid changes in extracellular neurotransmitter levels in the brain. In vivo fast-scan cyclic voltammetry has been used extensively in mammalian models to characterize dopamine signals in both anesthetized and awake preparations, but has yet to be applied to a non-mammalian vertebrate. The goal of this study was to establish in vivo fast-scan cyclic voltammetry in a songbird, the European starling, to facilitate real-time measurements of extracellular catecholamine levels in the avian striatum. In urethane-anesthetized starlings, changes in catecholamine levels were evoked by electrical stimulation of the ventral tegmental area and measured at carbon-fiber microelectrodes positioned in the medial and lateral striata. Catecholamines were elicited by different stimulations, including trains related to phasic dopamine signaling in the rat, and were analyzed to quantify presynaptic mechanisms governing exocytotic release and neuronal uptake. Evoked extracellular catecholamine dynamics, maximal amplitude of the evoked catecholamine signal, and parameters for catecholamine release and uptake did not differ between striatal regions and were similar to those determined for dopamine in the rat dorsomedial striatum under similar conditions. Chemical identification of measured catecholamine by its voltammogram was consistent with the presence of both dopamine and norepinephrine in striatal tissue content. However, the high ratio of dopamine to norepinephrine in tissue content and the greater sensitivity of the carbon-fiber microelectrode to dopamine compared to norepinephrine favored the measurement of dopamine. Thus, converging evidence suggests that dopamine was the predominate analyte of the electrically evoked catecholamine signal measured in the striatum by fast-scan cyclic voltammetry. Overall, comparisons between the characteristics of these evoked signals suggested a similar presynaptic regulation of

  13. Peat as an energy alternative

    SciTech Connect

    Punwani, D.V.

    1980-07-01

    The importance of developing alternative energy sources to augment supplies of fossil fuels is growing all over the world. Coal, oil shale, tar sands, biomass, solar, geothermal, nuclear, and hydroelectric power have received considerable attention as alternative energy sources. One large energy resource, however, has received little attention until recently. That resource is peat. Although peat is used as an energy source in some countries such as Russia, Ireland, and Finland, it is virtually unexploited in many countries including the United States. This paper provides an understanding of peat: its varieties, abundance, and distribution; its value as an energy alternative; its current and future role as an energy alternative; and the environmental and socioeconomic impacts of large-scale peat utilization.

  14. Low-frequency alternative-current magnetic susceptibility, photoelectric properties, and adhesive properties of Ni80Fe20 (XÅ)/ZnO(500Å) and ZnO(500Å)/Ni80Fe20(YÅ) on glass substrate

    NASA Astrophysics Data System (ADS)

    Chen, Yuan-Tsung

    2015-08-01

    The following conditions are deposited: (a) glass/Ni80Fe20(XÅ)/ZnO(500Å) and (b) glass/ZnO(500Å)/Ni80Fe20(YÅ), where each of X and Y is 1000Å, 1500Å, 2000Å or 2500Å. The substrate temperature was maintained at room temperature (RT), and post-annealing was performed with heating at (TA) = 150 °C for 1 h or (TA) = 250 °C for 1 h. The sputtering sequence and the thickness of the NiFe film were varied to study the effects of these factors on the low-frequency alternative-current magnetic susceptibility (χac), maximum χac with corresponding optimal resonance frequency (fres), transmission, electrical resistivity (ρ), and surface energy of the multilayered glass/Ni80Fe20(XÅ)/ZnO(500Å) and glass/ZnO(500Å)/Ni80Fe20(YÅ). Experimental results demonstrate that ZnO(500Å)/Ni80Fe20(YÅ) is superior to Ni80Fe20/ZnO(500Å) because diffraction from the ZnO (0 0 2) crystals at the bottom of ZnO(500Å)/Ni80Fe20(YÅ) improves the magneto crystalline anisotropy of Ni80Fe20, improving its magnetic and photoelectrical properties. X-ray diffraction patterns (XRD) reveal that the ZnO (0 0 2), ZnO (2 2 0), and NiFe (1 1 1) peaks of ZnO(500Å)/Ni80Fe20(YÅ) are more intense than those of Ni80Fe20/ZnO(500Å) under three substrate conditions, indicating the ZnO (0 0 2) peak reflects magneto crystalline anisotropy in the crystalline NiFe layer of ZnO(500Å)/Ni80Fe20(YÅ), yielding the highest χac of approximately 3.16 with an fres of 250 Hz upon post-annealing TA = 250 °C for 1 h. The (1 1 1) diffracted intensity and grain size of the thicker and post-annealed Ni80Fe20 thin films exceeded those of the thinner and as-deposited Ni80Fe20 thin films. A spectral analyzer was used to measure transmittance through NiFe of various thicknesses. The transmittance declined slightly as the thickness and grain size increased, because increasing thickness reduced penetration. Post-annealing promoted grain growth, increased the average size of the grains and reduced transmittance. Both as

  15. Ultrasonic extraction and field-portable anodic stripping voltammetry for the determination of lead in workplace air samples.

    PubMed

    Ashley, K; Mapp, K J; Millson, M

    1998-10-01

    An on-site, field-portable analytical method for the determination of lead in workplace air samples, based on the use of ultrasonic extraction and anodic stripping voltammetry (ASV), was evaluated. Workplace air samples were obtained using a standard method involving particulate collection onto mixed cellulose ester membrane filters. Samples were collected at work sites where airborne particulates were generated from the abrasive blasting of lead-containing paint on highway bridges. Ultrasonic extraction (UE) of air filter samples in diluted nitric acid, followed by portable ASV, was used for the determination of lead. Also, performance evaluation samples consisting of reference materials of known lead concentration were subjected to the UE-ASV procedure for lead determination. Confirmatory analyses of the air filters and performance evaluation samples subjected to the UE-ASV lead measurement method were conducted by hotplate digestion in concentrated nitric acid and 30% hydrogen peroxide, followed by inductively coupled plasma-atomic emission spectrometric (ICP-AES) determination of lead. Recoveries of lead from performance evaluation materials (when using the UE-ASV method) were found to be quantitative. The performance of the UE-ASV method for lead in air filters was found to be acceptable, as evaluated by comparison with results from hotplate strong acid digestion followed by ICP-AES analysis. Based on the results of this study, the ultrasonic extraction/portable ASV procedure demonstrates potential for the on-site determination of lead in personal breathing zone and area air samples. PMID:9794065

  16. Impulse radio ultra wideband wireless transmission of dopamine concentration levels recorded by fast-scan cyclic voltammetry.

    PubMed

    Ebrazeh, Ali; Bozorgzadeh, Bardia; Mohseni, Pedram

    2015-08-01

    This paper demonstrates the feasibility of utilizing impulse radio ultra wideband (IR-UWB) signaling technique for reliable, wireless transmission of dopamine concentration levels recorded by fast-scan cyclic voltammetry (FSCV) at a carbon-fiber microelectrode (CFM) to address the problem of elevated data rates in high-channel-count neurochemical monitoring. Utilizing an FSCV-sensing chip fabricated in AMS 0.35μm 2P/4M CMOS, a 3-5-GHz, IR-UWB transceiver (TRX) chip fabricated in TSMC 90nm 1P/9M RF CMOS, and two off-chip, miniature, UWB antennae, wireless transfer of pseudo-random binary sequence (PRBS) data at 50Mbps over a distance of <;1m is first shown with bit-error rates (BER) <; 10(-3). Further, IR-UWB wireless transmission of dopamine concentration levels prerecorded with FSCV at a CFM during flow injection analysis (FIA) is also demonstrated with transmitter (TX) power dissipation of only ~4.4μW from 1.2V, representing two orders of magnitude reduction in TX power consumption compared to that of a conventional frequency-shift-keyed (FSK) link operating at ~433MHz. PMID:26737929

  17. Photoinduced electron transfer occurs between 2-aminopurine and the DNA nucleic acid monophosphates: results from cyclic voltammetry and fluorescence quenching.

    PubMed

    Narayanan, Madhavan; Kodali, Goutham; Xing, Yangjun; Stanley, Robert J

    2010-08-19

    2-Aminopurine (2AP) is a fluorescent adenine analogue that is useful in part because its substantial fluorescence quantum yield is sensitive to base stacking with native bases in ss- and ds-DNA. However, the degree of quenching is sequence dependent and the mechanism of quenching is still a matter of some debate. Here we show that the most likely quenching mechanism in aqueous solution involves photoinduced electron transfer (PET), as revealed by cyclic voltammetry (CV) performed in aprotic organic solvents. These potentials were used with spectroscopic data to obtain excited-state reduction and oxidation potentials. Stern-Volmer (S-V) experiments using the native base monophosphate nucleotides (NMPs) rGMP, rAMP, rCMP, and dTMP were performed in aqueous solution to obtain quenching rate constants kq. The results suggest that 2AP* can act as either an electron donor or an electron acceptor depending on the particular NMP but that PET proceeds for all NMPs tested. PMID:20734496

  18. On-line preconcentration and determination of lead and cadmium by sequential injection/anodic stripping voltammetry.

    PubMed

    Ninwong, Benjawan; Chuanuwatanakul, Suchada; Chailapakul, Orawon; Dungchai, Wijitar; Motomizu, Shoji

    2012-07-15

    The highly sensitive determination of lead (Pb(II)) and cadmium (Cd(II)) ions, with a limit of detection of 0.01μgL(-1) for Pb(II) and Cd(II), by on-line preconcentration and anodic stripping voltammetry (ASV) controlled by a sequential injection analysis (SIA) system is reported here. The SIA system consisted of a syringe pump, an 8-port selection valve and a 6-port switching valve and was incorporated with a bismuth coated screen-printed carbon nanotube electrode (Bi-SPCNTE). The preconcentration of metal ions was performed by solid phase extraction using an Analig TE-05 chelating resin mini-column on a switching valve. The metal ions collected were then eluted from the resin with 1M hydrochloric acid (HCl), deposited on the electrode surface at -1.3V vs. Ag/AgCl and then measured with ASV. The pH of the sample, eluent volume, flow rate, concentration of the bismuth plating solution and the square-wave voltammetric parameters were optimized. Under the optimum conditions, an enrichment factor of 11.9-fold and 6.6-fold for Pb(II) and Cd(II) ions, respectively, was attained. Detection of Pb(II) and Cd(II) had two different linear ranges (0.5-15μgL(-1) and 15-70μgL(-1)). PMID:22817931

  19. Electrochemically assisted fabrication of size-exclusion films of organically modified silica and application to the voltammetry of phospholipids

    PubMed Central

    Mehdi, B. Layla; Rutkowska, Iwona A.; Kulesza, Pawel J.

    2013-01-01

    Modification of electrodes with nm-scale organically modified silica films with pores diameters controlled at 10- and 50-nm is described. An oxidation catalyst, mixed-valence ruthenium oxide with cyano crosslinks or gold nanoparticles protected by dirhodium-substituted phosophomolybdate (AuNP-Rh2PMo11), was immobilized in the pores. These systems comprise size-exclusion films at which the biological compounds, phosphatidylcholine and cardiolipin, were electrocatalytically oxidized without interference from surface-active concomitants such as bovine serum albumin. 10-nm pores were obtained by adding generation-4 poly(amidoamine) dendrimer, G4-PAMAM, to a (CH3)3SiOCH3 sol. 50-nm pores were obtained by modifying a glassy carbon electrode (GC) with a sub-monolayer film of aminopropyltriethoxylsilane, attaching 50-nm diameter poly(styrene sulfonate), PSS, spheres to the protonated amine, transferring this electrode to a (CH3)3SiOCH3 sol, and electrochemically generating hydronium at uncoated GC sites, which catalyzed ormosil growth around the PSS. Voltammetry of Fe(CN)63− and Ru(NH3)63+ demonstrated the absence of residual charge after removal of the templating agents. With the 50-nm system, the pore structure was sufficiently defined to use layer-by-layer electrostatic assembly of AuNP-Rh2PMo11 therein. Flow injection amperometry of phosphatidylcholine and cardiolipin demonstrated analytical utility of these electrodes. PMID:23935394

  20. Square Wave Voltammetry of TNT at Gold Electrodes Modified with Self-Assembled Monolayers Containing Aromatic Structures

    PubMed Central

    Trammell, Scott A.; Zabetakis, Dan; Moore, Martin; Verbarg, Jasenka; Stenger, David A.

    2014-01-01

    Square wave voltammetry for the reduction of 2,4,6-trinitrotoluene (TNT) was measured in 100 mM potassium phosphate buffer (pH 8) at gold electrodes modified with self-assembled monolayers (SAMs) containing either an alkane thiol or aromatic ring thiol structures. At 15 Hz, the electrochemical sensitivity (µA/ppm) was similar for all SAMs tested. However, at 60 Hz, the SAMs containing aromatic structures had a greater sensitivity than the alkane thiol SAM. In fact, the alkane thiol SAM had a decrease in sensitivity at the higher frequency. When comparing the electrochemical response between simulations and experimental data, a general trend was observed in which most of the SAMs had similar heterogeneous rate constants within experimental error for the reduction of TNT. This most likely describes a rate limiting step for the reduction of TNT. However, in the case of the alkane SAM at higher frequency, the decrease in sensitivity suggests that the rate limiting step in this case may be electron tunneling through the SAM. Our results show that SAMs containing aromatic rings increased the sensitivity for the reduction of TNT when higher frequencies were employed and at the same time suppressed the electrochemical reduction of dissolved oxygen. PMID:25549081