Science.gov

Sample records for alternative electric energy

  1. Teaching Electrical Energy, Voltage and Current: An Alternative Approach.

    ERIC Educational Resources Information Center

    Licht, Pieter

    1991-01-01

    A program for teaching the concepts of electric energy, voltage, and current is proposed. The ideas and concepts are introduced in a sequence that places more emphasis on some aspects that are normally treated very briefly. A phenomenological orientation, qualitative and quantitative micro- and macroscopic treatments, and the inclusion of the…

  2. Can China use alternative energies instead of coal to provide more electricity by 2030?

    NASA Astrophysics Data System (ADS)

    Wu, Yan

    Following the rapid growth of China's economy, energy consumption, especially electricity consumption of China, has made a huge increase in the past 30 years. Since China has been using coal as the major energy source to produce electricity during these years, environmental problems have become more and more serious. The research question for this paper is: "Can China use alternative energies instead of coal to produce more electricity in 2030?" Hydro power, nuclear power, natural gas, wind power and solar power are considered as the possible and most popular alternative energies for the current situation of China. To answer the research question above, there are two things to know: How much is the total electricity consumption in China by 2030? And how much electricity can the alternative energies provide in China by 2030? For a more reliable forecast, an econometric model using the Ordinary Least Squares Method is established on this paper to predict the total electricity consumption by 2030. The predicted electricity coming from alternative energy sources by 2030 in China can be calculated from the existing literature. The research results of this paper are analyzed under a reference scenario and a max tech scenario. In the reference scenario, the combination of the alternative energies can provide 47.71% of the total electricity consumption by 2030. In the max tech scenario, it provides 57.96% of the total electricity consumption by 2030. These results are important not only because they indicate the government's long term goal is reachable, but also implies that the natural environment of China could have an inspiring future.

  3. Choosing an electrical energy future for the Pacific Northwest: an Alternative Scenario

    SciTech Connect

    Cavanagh, R.C.; Mott, L.; Beers, J.R.; Lash, T.L.

    1980-08-01

    An Alternative Scenario for the electric energy future of the Pacific Northwest is presented. The Scenario includes an analysis of each major end use of electricity in the residential, commercial, manufacturing, and agricultural sectors. This approach affords the most direct means of projecting the likely long-term growth in consumption and the opportunities for increasing the efficiency with which electricity is used in each instance. The total demand for electricity by these end uses then provides a basis for determining whether additional central station generation is required to 1995. A projection of total demand for electricity depends on the combination of many independent variables and assumptions. Thus, the approach is a resilient one; no single assumption or set of linked assumptions dominates the analysis. End-use analysis allows policymakers to visualize the benefits of alternative programs, and to make comparison with the findings of other studies. It differs from the traditional load forecasts for the Pacific Northwest, which until recently were based largely on straightforward extrapolations of historical trends in the growth of electrical demand. The Scenario addresses the supply potential of alternative energy sources. Data are compiled for 1975, 1985, and 1995 in each end-use sector.

  4. Choosing an electrical energy future for the Pacific Northwest: an alternative scenario

    SciTech Connect

    Beers, J.R.; Cavanagh, R.C.; Lash, T.R.; Mott, L.

    1980-05-19

    A strategy is presented for averting the short-term energy supply uncertainties that undermine prospects for stable economic development in the Pacific Northwest. This strategy is based on: an analysis of the present electric power consumption by various end-use sectors; comparison of incentives to promote energy conservation and lower demand growth; analysis of alternatives to current dependency on hydro power; and a study of the cost of planning and implementing future power supply programs. (LCL)

  5. Energy conversion alternatives study

    NASA Technical Reports Server (NTRS)

    Shure, L. T.

    1979-01-01

    Comparison of coal based energy systems is given. Study identifies and compares various advanced energy conversion systems using coal or coal derived fuels for baselaoad electric power generation. Energy Conversion Alternatives Study (ECAS) reports provede government, industry, and general public with technically consistent basis for comparison of system's options of interest for fossilfired electric-utility application.

  6. Distributed Energy Alternative to Electrical Distribution Grid Expansion in Consolidated Edison Service Territory

    SciTech Connect

    Kingston, Tim; Kelly, John

    2008-08-01

    The nation's power grid, specifically the New York region, faces burgeoning energy demand and suffers from congested corridors and aging equipment that cost New York consumers millions of dollars. Compounding the problem is high-density buildup in urban areas that limits available space to expand grid capacity. Coincidently, these urban areas are precisely where additional power is required. DER in this study refers to combined heat and power (CHP) technology, which simultaneously generates heat and electricity at or near the point where the energy will be consumed. There are multiple CHP options available that, combined with a portfolio of other building energy efficiency (EE) strategies, can help achieve a more efficient supply-demand balance than what the grid can currently provide. As an alternative to expanding grid capacity, CHP and EE strategies can be deployed in a flexible manner at virtually any point on the grid to relieve load. What's more, utilities and customers can install them in a variety of potentially profitable applications that are more environmentally friendly. Under the auspices of the New York State Energy Research and Development Authority (NYSERDA) and the Oak Ridge National Laboratory representing the Office of Electricity of the U.S. Department of Energy, Gas Technology Institute (GTI) conducted this study in cooperation with Consolidated Edison to help broaden the market penetration of EE and DER. This study provides realistic load models and identifies the impacts that EE and DER can have on the electrical distribution grid; specifically within the current economic and regulatory environment of a high load growth area of New York City called Hudson Yards in Midtown Manhattan. These models can be used to guide new policies that improve market penetration of appropriate CHP and EE technologies in new buildings. The following load modeling scenarios were investigated: (1) Baseline: All buildings are built per the Energy Conservation

  7. Electrically conductive alternating copolymers

    DOEpatents

    Aldissi, M.; Jorgensen, B.S.

    1987-08-31

    Polymers which are soluble in common organic solvents and are electrically conductive, but which also may be synthesized in such a manner that they become nonconductive. Negative ions from the electrolyte used in the electrochemical synthesis of a polymer are incorporated into the polymer during the synthesis and serve as a dopant. A further electrochemical step may be utilized to cause the polymer to be conductive. The monomer repeat unit is comprised of two rings, a pyrrole molecule joined to a thienyl group, or a furyl group, or a phenyl group. The individual groups of the polymers are arranged in an alternating manner. For example, the backbone arrangement of poly(furylpyrrole) is -furan-pyrrole-furan-pyrrole- furan-pyrrole. An alkyl group or phenyl group may be substituted for either or both of the hydrogen atoms of the pyrrole ring.

  8. Exploring Distributed Energy Alternatives to Electrical Distribution Grid Expansion in Souhern California Edison Service Territory

    SciTech Connect

    Stovall, Therese K; Kingston, Tim

    2005-12-01

    Distributed energy (DE) technologies have received much attention for the energy savings and electric power reliability assurances that may be achieved by their widespread adoption. Fueling the attention have been the desires to globally reduce greenhouse gas emissions and concern about easing power transmission and distribution system capacity limitations and congestion. However, these benefits may come at a cost to the electric utility companies in terms of lost revenue and concerns with interconnection on the distribution system. This study assesses the costs and benefits of DE to both consumers and distribution utilities and expands upon a precursory study done with Detroit Edison (DTE)1, by evaluating the combined impact of DE, energy-efficiency, photovoltaics (a use of solar energy), and demand response that will shape the grid of the future. This study was funded by the U.S. Department of Energy (DOE), Gas Research Institute (GRI), American Electric Power (AEP), and Gas Technology Institute's (GTI) Distributed Energy Collaborative Program (DECP). It focuses on two real Southern California Edison (SCE) circuits, a 13 MW suburban circuit fictitiously named Justice on the Lincoln substation, and an 8 MW rural circuit fictitiously named Prosper on the Washington Substation. The primary objectives of the study were threefold: (1) Evaluate the potential for using advanced energy technologies, including DE, energy-efficiency (EE), demand response, electricity storage, and photovoltaics (PV), to reshape electric load curves by reducing peak demand, for real circuits. (2) Investigate the potential impact on guiding technology deployment and managing operation in a way that benefits both utilities and their customers by: (a) Improving grid load factor for utilities; (b) Reducing energy costs for customers; and (c) Optimizing electric demand growth. (3) Demonstrate benefits by reporting on a recently installed advanced energy system at a utility customer site. This

  9. Preliminary comparative assessment of land use for the Satellite Power System (SPS) and alternative electric energy technologies

    NASA Astrophysics Data System (ADS)

    Newsom, D. E.; Wolsko, T.

    1980-04-01

    A preliminary comparative assessment of land use for the satellite power system (SPS), other solar technologies, and alternative electric energy technologies was conducted. The alternative technologies are coal gasification/combined-cycle, coal fluidized-bed combustion (FBC), light water reactor (LWR), liquid metal fast breeder reactor (LMFBR), terrestrial photovoltaics (TPV), solar thermal electric (STE), and ocean thermal energy conversion (OTEC). The major issues of a land use assessment are the quantity, purpose, duration, location, and costs of the required land use. The phased methodology described treats the first four issues, but not the costs. Several past efforts are comparative or single technology assessment are reviewed briefly. The current state of knowledge about land use is described for each technology. Conclusions are drawn regarding deficiencies in the data on comparative land use and needs for further research.

  10. Preliminary comparative assessment of land use for the Satellite Power System (SPS) and alternative electric energy technologies

    NASA Technical Reports Server (NTRS)

    Newsom, D. E.; Wolsko, T.

    1980-01-01

    A preliminary comparative assessment of land use for the satellite power system (SPS), other solar technologies, and alternative electric energy technologies was conducted. The alternative technologies are coal gasification/combined-cycle, coal fluidized-bed combustion (FBC), light water reactor (LWR), liquid metal fast breeder reactor (LMFBR), terrestrial photovoltaics (TPV), solar thermal electric (STE), and ocean thermal energy conversion (OTEC). The major issues of a land use assessment are the quantity, purpose, duration, location, and costs of the required land use. The phased methodology described treats the first four issues, but not the costs. Several past efforts are comparative or single technology assessment are reviewed briefly. The current state of knowledge about land use is described for each technology. Conclusions are drawn regarding deficiencies in the data on comparative land use and needs for further research.

  11. A water system model for exploring electric energy alternatives in southeastern US basins

    NASA Astrophysics Data System (ADS)

    Flores-López, F.; Yates, D.

    2013-09-01

    Electric power generation often involves the use of water for power plant cooling and steam generation, which typically involves the release of cooling water to nearby rivers and lakes. The resulting thermal pollution may negatively impact the ecosystems of these water bodies. Water resource systems models enable the examination of the implications of alternative electric generation on regional water resources. This letter documents the development, calibration, and validation of a climate-driven water resource systems model of the Apalachicola-Chattahoochee-Flint, the Alabama-Coosa-Tallapoosa, and the Tombigbee River basins in the states of Georgia, Alabama, and Florida, in the southeastern US. The model represents different water users, including power plants, agricultural water users, and municipal users. The model takes into account local population, per-capita use estimates, and changes in population growth. The water resources planning model was calibrated and validated against the observed, managed flows through the river systems of the three basins. Flow calibration was performed on land cover, water capacity, and hydraulic conductivity of soil horizons; river water temperature calibration was performed on channel width and slope properties. Goodness-of-fit statistics indicate that under 1980-2010 levels of water use, the model robustly represents major features of monthly average streamflow and water temperatures. The application of this integrated electricity generation-water resources planning model can be used to explore alternative electric generation and water implications. The implementation of this model is explored in the companion paper of this focus issue (Yates et al 2013 Environ. Res. Lett. 8 035042).

  12. Electric vehicle propulsion alternatives

    NASA Technical Reports Server (NTRS)

    Secunde, R. R.; Schuh, R. M.; Beach, R. F.

    1983-01-01

    Propulsion technology development for electric vehicles is summarized. Analytical studies, technology evaluation, and the development of technology for motors, controllers, transmissions, and complete propulsion systems are included.

  13. Mixed metal oxides as alternate cathodes for high energy density electric propulsion

    SciTech Connect

    Papp, J.E.

    1995-12-31

    Silver (II) oxide is currently the Navy`s cathode of choice in high energy density, high rate batteries for torpedo and mobile target applications, for medium rate applications such as Seal Delivery Vehicles, and may be useful for low rate, long endurance UUV missions. While it is certainly a versatile material, silver (II) oxide is expensive to produce and has a lower faradaic (storage) capacity than desired. New research being conducted at the NUWC electric propulsion laboratory is focused toward developing new, lower cost cathode materials with energy densities at least comparable to silver (II) oxide. Mixed metal oxides, with silver (II) oxide as one component, are under investigation. Other materials, without a silver component, are also being considered. This poster will illustrate recent developments in the modification of the silver (II) oxide cathode for Navy applications.

  14. ELECTRIC VEHICLE CONVERSIONS USING ALTERNATIVE ENERGY TO DRIVE ALASKAN RURAL COMMUNITIES

    EPA Science Inventory

    This proposal concerns sustainable transportation in rural Alaskan communities which are not part of a road or electrical network (off grid). In most off-grid communities, the road networks generally are less than 50 square miles, so transportation needs are limited. This limi...

  15. Alternate policies for alternate energy sources

    SciTech Connect

    Hall, F.F.

    1985-09-01

    Some ''alternates within alternates'' are studied and possible improvement of our energy policies are explored. The viability of a hydrogen fuel economy is reviewed. Methanol, ethanol or ammonia versus hydrogen is one area of interest. Others include liquid hydrogen versus jet fuels, the use of geothermal, solar, wind or water energy for production of hydrogen gas versus development of deep earth supplies of natural gas is another. Energy enhancement as opposed to energy conservation is investigated with regard to polar climate and what might be done to improve natural energy balances, particularly in the northern hemisphere. Pumping Arctic Ocean water out into the Pacific Ocean via the Bering Strait would be an energy debit as opposed to energy gains such as biomass conversion of future plant growth throughout the Siberian and Canadian tundra regions and presently very arid desert regions, improved access to northern region fuel, metal ore and mineral resources, year-round shipping and fishing fleet operations in the Arctic Ocean and development of the tremendous Greenland hydro-electric power potential.

  16. LIFE CYCLE ASSESSMENT OF ELECTRICITY GENERATION ALTERNATIVES

    EPA Science Inventory

    This presentation summarizes various electricity and electricity/steam cogeneration alternatives. Among these alternatives, are fossil fuel and biomass power generation plants. These plants have different designs due to the need in fossil fuel (coal) plants to include process u...

  17. Alternatives in solar energy

    NASA Technical Reports Server (NTRS)

    Schueler, D. G.

    1978-01-01

    Although solar energy has the potential of providing a significant source of clean and renewable energy for a variety of applications, it is expected to penetrate the nation's energy economy very slowly. The alternative solar energy technologies which employ direct collection and conversion of solar radiation as briefly described.

  18. Alternative Energy Development and China's Energy Future

    SciTech Connect

    Zheng, Nina; Fridley, David

    2011-06-15

    In addition to promoting energy efficiency, China has actively pursued alternative energy development as a strategy to reduce its energy demand and carbon emissions. One area of particular focus has been to raise the share of alternative energy in China’s rapidly growing electricity generation with a 2020 target of 15% share of total primary energy. Over the last ten years, China has established several major renewable energy regulations along with programs and subsidies to encourage the growth of non-fossil alternative energy including solar, wind, nuclear, hydro, geothermal and biomass power as well as biofuels and coal alternatives. This study thus seeks to examine China’s alternative energy in terms of what has and will continue to drive alternative energy development in China as well as analyze in depth the growth potential and challenges facing each specific technology. This study found that despite recent policies enabling extraordinary capacity and investment growth, alternative energy technologies face constraints and barriers to growth. For relatively new technologies that have not achieved commercialization such as concentrated solar thermal, geothermal and biomass power, China faces technological limitations to expanding the scale of installed capacity. While some alternative technologies such as hydropower and coal alternatives have been slowed by uneven and often changing market and policy support, others such as wind and solar PV have encountered physical and institutional barriers to grid integration. Lastly, all alternative energy technologies face constraints in human resources and raw material resources including land and water, with some facing supply limitations in critical elements such as uranium for nuclear, neodymium for wind and rare earth metals for advanced solar PV. In light of China’s potential for and barriers to growth, the resource and energy requirement for alternative energy technologies were modeled and scenario analysis

  19. Efficient alternatives for electric drives

    SciTech Connect

    Comnes, G.A.; Barnes, R.W.

    1987-11-01

    This analysis of industrial electric motors describes the current motor stock, its energy use and operating characteristics, and innovations that could change current use patterns. It provides calculations characterizing the economic attractiveness of several existing and potential options. One attractive option given particular attention is the adjustable-speed drive which can replace throttles or valves for many pumping operations. A major conclusion is that, throughout industry, options that are both energy-saving and economically attractive appear to penetrate markets more slowly than would be socially optimal. The final section examines characteristics of industry that may contribute to slow market penetration. 29 refs., 14 figs., 14 tabs.

  20. The energy cane alternative

    SciTech Connect

    Alexander, A.G.

    1985-01-01

    This book reviews the conceptual and theoretical background of Saccharum botany, which underlies the growing of cane as a total growth commodity. Management details are provided for energy cane planting, cultivation, harvest, and postharvest operations. Chapters on energy cane utilization stress new developments in lignocellulose conversion plus alternative options for fermentable solids usage. Chapters are also included for the management of alternative grasses to supplement energy cane, and the breeding of new hybrid canes with high biomass attributes at the intergeneric and interspecific levels.

  1. Energy Conversion Alternatives Study (ECAS), General Electric Phase 1. Volume 1: Executive summary. [using coal or coal derived fuels

    NASA Technical Reports Server (NTRS)

    Corman, J. C.

    1976-01-01

    A data base for the comparison of advanced energy conversion systems for utility applications using coal or coal-derived fuels was developed. Estimates of power plant performance (efficiency), capital cost, cost of electricity, natural resource requirements, and environmental intrusion characteristics were made for ten advanced conversion systems. Emphasis was on the energy conversion system in the context of a base loaded utility power plant. All power plant concepts were premised on meeting emission standard requirements. A steam power plant (3500 psig, 1000 F) with a conventional coal-burning furnace-boiler was analyzed as a basis for comparison. Combined cycle gas/steam turbine system results indicated competitive efficiency and a lower cost of electricity compared to the reference steam plant. The Open-Cycle MHD system results indicated the potential for significantly higher efficiency than the reference steam plant but with a higher cost of electricity.

  2. State Energy Alternatives: Alternative Energy Resources by State

    DOE Data Explorer

    This U.S. map provides state by state information on incentives and laws related to alternative fuels and advanced vehicles. Discover what's available in each state for innovation grants, infrastructure grants, and production grants and who to contact. Find out how many alternative refueling stations are available in each state and where they are. Tennessee, for example, in 2009, has 114 alternative refueling stations: 36 biodiesel, 1 electrical, 29 ethanol, 4 natural gas, and 44 propane. There are also 5 Truck Stop Electrification (TSE) sites in Tennessee. Users can also find out from this map interface the contacts for Clean Cities in a state, information about renewable energy projects and activities in each state, fuel prices across a state, and biomass potential resources and current production in each state.

  3. PEAT: an energy alternative

    SciTech Connect

    Schora, F.C.; Punwani, D.V.

    1980-01-01

    Even though peat is a low-heating value and low-bulk density fossil fuel which in its natural state contains over 80 percent moisture, it can be an economical alternative to coal, and fuel oil, as is the case in Iceland and Finland for direct combustion applications. This is because of the relative ease with which peat can be harvested, and the generally low sulfur and ash content of peat. Recent studies show that peat also has very favorable characteristics for conversion to synthetic fuels. Tests show that on the basis of chemistry and kinetics, peat is a better raw material than coal for production of synthetic fuels. Recent estimates also show that conversion of peat to high-Btu gas (>950 Btu/scf) is competitive with other alternatives of synthetic high-Btu gas. Therefore, peat can be an economical energy alternative depending upon location of peat deposits, region of energy need, scale of operation and cost of other energy alternatives.

  4. COMPLEAT (Community-Oriented Model for Planning Least-Cost Energy Alternatives and Technologies): A planning tool for publicly owned electric utilities. [Community-Oriented Model for Planning Least-Cost Energy Alternatives and Technologies (Compleat)

    SciTech Connect

    Not Available

    1990-09-01

    COMPLEAT takes its name, as an acronym, from Community-Oriented Model for Planning Least-Cost Energy Alternatives and Technologies. It is an electric utility planning model designed for use principally by publicly owned electric utilities and agencies serving such utilities. As a model, COMPLEAT is significantly more full-featured and complex than called out in APPA's original plan and proposal to DOE. The additional complexity grew out of a series of discussions early in the development schedule, in which it became clear to APPA staff and advisors that the simplicity characterizing the original plan, while highly desirable in terms of utility applications, was not achievable if practical utility problems were to be addressed. The project teams settled on Energy 20/20, an existing model developed by Dr. George Backus of Policy Assessment Associates, as the best candidate for the kinds of modifications and extensions that would be required. The remainder of the project effort was devoted to designing specific input data files, output files, and user screens and to writing and testing the compute programs that would properly implement the desired features around Energy 20/20 as a core program. This report presents in outline form, the features and user interface of COMPLEAT.

  5. Potential of renewable and alternative energy sources

    NASA Astrophysics Data System (ADS)

    Konovalov, V.; Pogharnitskaya, O.; Rostovshchikova, A.; Matveenko, I.

    2015-11-01

    The article deals with application potential of clean alternative renewable energy sources. By means of system analysis the forecast for consumption of electrical energy in Tomsk Oblast as well as main energy sources of existing energy system have been studied up to 2018. Engineering potential of renewable and alternative energy sources is evaluated. Besides, ranking in the order of their efficiency descending is performed. It is concluded that Tomsk Oblast has high potential of alternative and renewable energy sources, among which the most promising development perspective is implementation of gasification stations to save fuel consumed by diesel power stations as well as building wind-power plants.

  6. Electricity: Today's Technologies, Tomorrow's Alternatives. Teacher's Guide.

    ERIC Educational Resources Information Center

    Electric Power Research Inst., Palo Alto, CA.

    This teaching guide is designed to help teachers develop lesson plans around nine chapters provided in the student textbook. Chapters focus on energy use, energy demand, energy supply, principles of electric power generation, today's generating options, future generating options, electricity storage and delivery, environmental concerns, and making…

  7. Energy Efficiency and Electric Utilities

    SciTech Connect

    2007-11-15

    The report is an overview of electric energy efficiency programs. It takes a concise look at what states are doing to encourage energy efficiency and how it impacts electric utilities. Energy efficiency programs began to be offered by utilities as a response to the energy crises of the 1970s. These regulatory-driven programs peaked in the early-1990s and then tapered off as deregulation took hold. Today, rising electricity prices, environmental concerns, and national security issues have renewed interest in increasing energy efficiency as an alternative to additional supply. In response, new methods for administering, managing, and delivering energy efficiency programs are being implemented. Topics covered in the report include: Analysis of the benefits of energy efficiency and key methods for achieving energy efficiency; evaluation of the business drivers spurring increased energy efficiency; Discussion of the major barriers to expanding energy efficiency programs; evaluation of the economic impacts of energy efficiency; discussion of the history of electric utility energy efficiency efforts; analysis of the impact of energy efficiency on utility profits and methods for protecting profitability; Discussion of non-utility management of energy efficiency programs; evaluation of major methods to spur energy efficiency - systems benefit charges, resource planning, and resource standards; and, analysis of the alternatives for encouraging customer participation in energy efficiency programs.

  8. Photovoltaics: alternative energy opportunities in Egypt

    SciTech Connect

    Gadomski, C.R.

    1987-10-01

    Government subsidies for electricity have discouraged the growth of an alternative energy market, but economic problems and high utility bills are changing the market as the demand for electricity expands. Although the past five-year plan only called for five percent of Egypt's energy to come from renewable sources, the development of solar power plants, wind power, and resource recovery could raise that to seven percent. Planners are looking to joint ventures and technology transfers to get the stagnant alternative energy industry moving. 2 figures.

  9. Electricity: Today's Technologies, Tomorrow's Alternatives. Revised Edition.

    ERIC Educational Resources Information Center

    Electric Power Research Inst., Palo Alto, CA.

    This book traces the relatively new role of electricity in our energy history, discusses old and new ways of producing it (and related environmental issues), and closes with an agenda of technology-related issues that await decisions. Topics are presented in nine chapters. Chapters focus on (1) energy use; (2) energy demand; (3) energy supply; (4)…

  10. Impact of alternative energy forms on public utilities

    NASA Technical Reports Server (NTRS)

    Keith, F. W., Jr.

    1977-01-01

    The investigation of alternative energy sources by the electric utility industry is discussed. Research projects are reviewed in each of the following areas; solar energy, wind energy conversion, photosynthesis of biomass, ocean thermal energy conversion, geothermal energy, fusion, and the environmental impact of alternative energy sources.

  11. Energy 101: Electric Vehicles

    SciTech Connect

    2012-01-01

    This edition of Energy 101 highlights the benefits of electric vehicles, including improved fuel efficiency, reduced emissions, and lower maintenance costs. For more information on electric vehicles from the Office of Energy Efficiency and Renewable Energy, visit the Vehicle Technologies Program website: http://www1.eere.energy.gov/vehiclesandfuels/

  12. Energy 101: Electric Vehicles

    ScienceCinema

    None

    2013-05-29

    This edition of Energy 101 highlights the benefits of electric vehicles, including improved fuel efficiency, reduced emissions, and lower maintenance costs. For more information on electric vehicles from the Office of Energy Efficiency and Renewable Energy, visit the Vehicle Technologies Program website: http://www1.eere.energy.gov/vehiclesandfuels/

  13. Alternative Energy Lessons in Scotland

    NASA Astrophysics Data System (ADS)

    Boyle, Julie

    2010-05-01

    In Scotland the new science curriculum for pupils aged 12 to 15 shall include the following outcomes: "Using my knowledge and understanding, I can express an informed view on a national or global environmental issue;" "I have participated in constructing a model to harness a renewable source of energy and can investigate how to optimise the output;" and "I can discuss why it is important to me and to the future of the world that alternatives to fossil fuels are developed." There will be an emphasis on creating lessons that will nurture responsible citizens, improve pupil engagement and allow students to develop their team working skills. To help teachers plan lessons to address this, the Scottish Schools Equipment Research Centre and Edinburgh University made teaching materials on four renewable energy resources. This poster describes how their suggested activities on solar cells, wind turbines, hydroelectric power stations and wave power were used in science lessons with twelve year old students. After an initial class discussion based on issues related to climate change and diminishing fossil fuel supplies, a workshop activity was carried out in three stages. The students were issued with a fact sheet about one of four imaginary islands (Skisdale, Cloudy Island, Surfsville and Sun City) and they were asked to work in teams to choose the most suitable method of generating electricity for their island. Issues such as costs, where it will be sited and environmental implications were considered. They were then asked to conduct practical activities by constructing and testing models for these forms of renewable energy. To conclude, they presented their proposal to the rest of the class with reasoned explanations. The kits used in the lessons can be purchased from Anderson Scientific (sales@andersonscientific.co.uk). The solar cells were simply connected to a voltmeter. The wind and hydroelectric groups used the same basic equipment. This was made using a small water

  14. Alternative Energy Busing

    ERIC Educational Resources Information Center

    LaFee, Scott

    2012-01-01

    In recent years, school districts have converted portions of their bus fleets to cleaner-burning, sometimes cheaper, alternative fossil fuels, such as compressed natural gas or propane. Others have adopted biodiesel, which combines regular diesel with fuel derived from organic sources, usually vegetable oils or animal fats. The number of biodiesel…

  15. Peat as an energy alternative

    SciTech Connect

    Punwani, D.V.

    1980-07-01

    The importance of developing alternative energy sources to augment supplies of fossil fuels is growing all over the world. Coal, oil shale, tar sands, biomass, solar, geothermal, nuclear, and hydroelectric power have received considerable attention as alternative energy sources. One large energy resource, however, has received little attention until recently. That resource is peat. Although peat is used as an energy source in some countries such as Russia, Ireland, and Finland, it is virtually unexploited in many countries including the United States. This paper provides an understanding of peat: its varieties, abundance, and distribution; its value as an energy alternative; its current and future role as an energy alternative; and the environmental and socioeconomic impacts of large-scale peat utilization.

  16. Energy Conversion Alternatives Study (ECAS), Westinghouse phase 1. Volume 11: Advanced steam systems. [energy conversion efficiency for electric power plants using steam

    NASA Technical Reports Server (NTRS)

    Wolfe, R. W.

    1976-01-01

    A parametric analysis was made of three types of advanced steam power plants that use coal in order to have a comparison of the cost of electricity produced by them a wide range of primary performance variables. Increasing the temperature and pressure of the steam above current industry levels resulted in increased energy costs because the cost of capital increased more than the fuel cost decreased. While the three plant types produced comparable energy cost levels, the pressurized fluidized bed boiler plant produced the lowest energy cost by the small margin of 0.69 mills/MJ (2.5 mills/kWh). It is recommended that this plant be designed in greater detail to determine its cost and performance more accurately than was possible in a broad parametric study and to ascertain problem areas which will require development effort. Also considered are pollution control measures such as scrubbers and separates for particulate emissions from stack gases.

  17. Experiences in mainstreaming alternative energy

    SciTech Connect

    Cabraal, A.

    1997-12-01

    The author discusses efforts by the Asia Alternative Energy Unit (ASTAE) of the World Bank in supporting alternative energy source projects in Asia. Energy growth rates have been as high as 18% per year, with power capacity doubling each decade in the 1960`s, 70`s and 80`s. Much of this has come from fossil fuel projects coupled with major hydroelectric projects. One consequence is developing air pollution loads originating in Asia. ASTAE has been supporting pilot programs in applying alternative energy sources. The goal has been to mainstream renewable energy sources in World Bank operations, by working with managers from different countries to: include renewable energy in country assistance strategies and sectorial development plans; provide assistance to renewable energy initiatives; expand initiatives to new countries, sectors and technologies.

  18. Alternative Energy Solutions

    SciTech Connect

    Cowley, David E.; Berman, Marc J.; Breinlinger, Helmut; Gilly, Ladina; Graves, Sam; Kovatch, Patricia; Kulesza, Pete; Martinez, Dave; Minyard, Tommy; Prucnal, Dave; Seager, Mark; Vadgama, Ash

    2011-03-19

    How can HPC centers reduce cost and environmental impact by making creative use of local natural resources? Energy efficiency inside the data center is only part of the story. In keeping with the principle of reduce, reuse, recycle, we should be able to take advantage of local resources to increase efficiency either at new or existing locations. Are there creative ways to reduce PUE below 1? Is a more meaningful way needed to express and measure the environmental effects of operating HPC centers? We will explore approaches such as sustainable energy sources, use of ambient external air or water temperatures, and reuse of "waste" heat.

  19. Energy Conversion Alternatives Study (ECAS), Westinghouse phase 1. Volume 12: Fuel cells. [energy conversion efficiency of, for use in electric power plants

    NASA Technical Reports Server (NTRS)

    Warde, C. J.; Ruka, R. J.; Isenberg, A. O.

    1976-01-01

    A parametric assessment of four fuel cell power systems -- based on phosphoric acid, potassium hydroxide, molten carbonate, and stabilized zirconia -- has shown that the most important parameters for electricity-cost reduction and/or efficiency improvement standpoints are fuel cell useful life and power density, use of a waste-heat recovery system, and fuel type. Typical capital costs, overall energy efficiencies (based on the heating value of the coal used to produce the power plant fuel), and electricity costs are: phosphoric acid $350-450/kWe, 24-29%, and 11.7 to 13.9 mills/MJ (42 to 50 mills/kWh); alkaline $450-700/kWe, 26-31%, and 12.8 to 16.9 mills/MJ (46 to 61 mills/kWh); molten carbonate $480-650/kWe, 32-46%, and 10.6 to 19.4 mills/MJ (38 to 70 mills/kWh), stabilized zirconia $420-950/kWe, 26-53%, and 9.7 to 16.9 mills/MJ (35 to 61 mills/kWh). Three types of fuel cell power plants -- solid electrolytic with steam bottoming, molten carbonate with steam bottoming, and solid electrolyte with an integrated coal gasifier -- are recommended for further study.

  20. Alternative energy sources for agriculture

    SciTech Connect

    Baird, D.

    1981-05-01

    The following energy systems are discussed as alternative sources of energy for agriculture and potential demonstration projects in vocational agriculture programs: solar water heating, solar greenhouse heating, solar crop drying, gasification of wood or crop residues, and methane generation from livestock wastes. 13 references.

  1. Renewable Energy Alternatives in Maryland.

    ERIC Educational Resources Information Center

    Welsh, Greg E.; McClellan, Deborah A. S.

    This handbook discusses the renewable energy resources suitable for use in Maryland. It follows a question and answer format with sections about the following alternative renewable energy sources; solar, wind, wood, water, bio-gas/methane, and geothermal. Each section includes a list of recommended readings, appropriate agencies or organizations,…

  2. Modular Energy Storage System for Alternative Energy Vehicles

    SciTech Connect

    Thomas, Janice; Ervin, Frank

    2012-05-15

    An electrical vehicle environment was established to promote research and technology development in the area of high power energy management. The project incorporates a topology that permits parallel development of an alternative energy delivery system and an energy storage system. The objective of the project is to develop technologies, specifically power electronics, energy storage electronics and controls that provide efficient and effective energy management between electrically powered devices in alternative energy vehicles plugin electric vehicles, hybrid vehicles, range extended vehicles, and hydrogen-based fuel cell vehicles. In order to meet the project objectives, the Vehicle Energy Management System (VEMS) was defined and subsystem requirements were obtained. Afterwards, power electronics, energy storage electronics and controls were designed. Finally, these subsystems were built, tested individually, and integrated into an electric vehicle system to evaluate and optimize the subsystems performance. Phase 1 of the program established the fundamental test bed to support development of an electrical environment ideal for fuel cell application and the mitigation of many shortcomings of current fuel cell technology. Phase 2, continued development from Phase 1, focusing on implementing subsystem requirements, design and construction of the energy management subsystem, and the integration of this subsystem into the surrogate electric vehicle. Phase 2 also required the development of an Alternative Energy System (AES) capable of emulating electrical characteristics of fuel cells, battery, gen set, etc. Under the scope of the project, a boost converter that couples the alternate energy delivery system to the energy storage system was developed, constructed and tested. Modeling tools were utilized during the design process to optimize both component and system design. This model driven design process enabled an iterative process to track and evaluate the impact

  3. Energy Conversion Alternatives Study (ECAS), Westinghouse phase 1. Volume 5: Combined gas-steam turbine cycles. [energy conversion efficiency in electric power plants

    NASA Technical Reports Server (NTRS)

    Amos, D. J.; Foster-Pegg, R. W.; Lee, R. M.

    1976-01-01

    The energy conversion efficiency of gas-steam turbine cycles was investigated for selected combined cycle power plants. Results indicate that it is possible for combined cycle gas-steam turbine power plants to have efficiencies several point higher than conventional steam plants. Induction of low pressure steam into the steam turbine is shown to improve the plant efficiency. Post firing of the boiler of a high temperature combined cycle plant is found to increase net power but to worsen efficiency. A gas turbine pressure ratio of 12 to 1 was found to be close to optimum at all gas turbine inlet temperatures that were studied. The coal using combined cycle plant with an integrated low-Btu gasifier was calculated to have a plant efficiency of 43.6%, a capitalization of $497/kW, and a cost of electricity of 6.75 mills/MJ (24.3 mills/kwh). This combined cycle plant should be considered for base load power generation.

  4. Brownian dipole rotator in alternating electric field.

    PubMed

    Rozenbaum, V M; Vovchenko, O Ye; Korochkova, T Ye

    2008-06-01

    The study addresses the azimuthal jumping motion of an adsorbed polar molecule in a periodic n -well potential under the action of an external alternating electric field. Starting from the perturbation theory of the Pauli equation with respect to the weak field intensity, explicit analytical expressions have been derived for the time dependence of the average dipole moment as well as the frequency dependences of polarizability and the average angular velocity, the three quantities exhibiting conspicuous stochastic resonance. As shown, unidirectional rotation can arise only provided simultaneous modulation of the minima and maxima of the potential by an external alternating field. For a symmetric potential of hindered rotation, the average angular velocity, if calculated by the second-order perturbation theory with respect to the field intensity, has a nonzero value only at n=2 , i.e., when two azimuthal wells specify a selected axis in the system. Particular consideration is given to the effect caused by the asymmetry of the two-well potential on the dielectric loss spectrum and other Brownian motion parameters. When the asymmetric potential in a system of dipole rotators arises from the average local fields induced by an orientational phase transition, the characteristics concerned show certain peculiarities which enable detection of the phase transition and determination of its parameters. PMID:18643221

  5. Brownian dipole rotator in alternating electric field

    NASA Astrophysics Data System (ADS)

    Rozenbaum, V. M.; Vovchenko, O. Ye.; Korochkova, T. Ye.

    2008-06-01

    The study addresses the azimuthal jumping motion of an adsorbed polar molecule in a periodic n -well potential under the action of an external alternating electric field. Starting from the perturbation theory of the Pauli equation with respect to the weak field intensity, explicit analytical expressions have been derived for the time dependence of the average dipole moment as well as the frequency dependences of polarizability and the average angular velocity, the three quantities exhibiting conspicuous stochastic resonance. As shown, unidirectional rotation can arise only provided simultaneous modulation of the minima and maxima of the potential by an external alternating field. For a symmetric potential of hindered rotation, the average angular velocity, if calculated by the second-order perturbation theory with respect to the field intensity, has a nonzero value only at n=2 , i.e., when two azimuthal wells specify a selected axis in the system. Particular consideration is given to the effect caused by the asymmetry of the two-well potential on the dielectric loss spectrum and other Brownian motion parameters. When the asymmetric potential in a system of dipole rotators arises from the average local fields induced by an orientational phase transition, the characteristics concerned show certain peculiarities which enable detection of the phase transition and determination of its parameters.

  6. Energy Conversion Alternatives Study (ECAS), General Electric Phase 1. Volume 3: Energy conversion subsystems and components. Part 1: Bottoming cycles and materials of construction

    NASA Technical Reports Server (NTRS)

    Shah, R. P.; Solomon, H. D.

    1976-01-01

    Energy conversion subsystems and components were evaluated in terms of advanced energy conversion systems. Results of the bottoming cycles and materials of construction studies are presented and discussed.

  7. [Pollution and alternative energy sources].

    PubMed

    Melino, C

    1989-01-01

    In order to reach higher standards of living, man has always been interested in searching new energy sources. Natural energy from sun, wind and water has been overcame by more sophisticated resources such as coal, vapour, hydroelectricity, natural gas, petroleum, and, at least, nuclear energy. However all these resources present unwanted effects, namely various hazards to man and environment. On this matter society is quering the risk-benefit balance of some energy choices and optimum performance with new safety means to limit dangerousness are being pursued and developed. It is necessary to evaluate carefully every aspect of safety without under-estimating or over-evaluating problems. For each energy source a "real price" has to be paired, even more in the future, since more energy will be required to guarantee the necessary technological progress linked to a better quality of life. In the present review all risks related to different energy sources are described and discussed aiming at defining: 1) specific risks for different sources 2) benefit from their utilization 3) means of defence guaranteeing security for man and environment. Italy is strictly dependent for energy production, which comes for 80% from abroad. An appropriate balance is required considering economical and social factors and real availability of energy. This balance needs therefore to be clearly evaluated hoping in a better future for an alternative energy, less dangerous and more clear, such as that from nuclear fusion. PMID:2483087

  8. Energy Conversion Alternatives Study (ECAS), Westinghouse phase 1. Volume 6: Closed-cycle gas turbine systems. [energy conversion efficiency in electric power plants

    NASA Technical Reports Server (NTRS)

    Amos, D. J.; Fentress, W. K.; Stahl, W. F.

    1976-01-01

    Both recuperated and bottomed closed cycle gas turbine systems in electric power plants were studied. All systems used a pressurizing gas turbine coupled with a pressurized furnace to heat the helium for the closed cycle gas turbine. Steam and organic vapors are used as Rankine bottoming fluids. Although plant efficiencies of over 40% are calculated for some plants, the resultant cost of electricity was found to be 8.75 mills/MJ (31.5 mills/kWh). These plants do not appear practical for coal or oil fired plants.

  9. Ambitious Philippine alternative energy plans

    SciTech Connect

    Not Available

    1981-09-07

    The Philippines is to spend $5.4 billion over the next ten years for the development of alternative sources of energy. These would include the development of fuel woods and other biomass, and the commercialization of a coconut/diesel-oil fuel. It is hoped that the Philippines' dependence on imported oil will be reduced from about 80% today to around 50% by the end of the decade.

  10. Alternate Energy for National Security.

    NASA Astrophysics Data System (ADS)

    Rath, Bhakta

    2010-02-01

    Recent price fluctuations at the gas pump have brought our attention to the phenomenal increase of global energy consumption in recent years. It is now evident that we have almost reached a peak in global oil production. Several projections indicate that total world consumption of oil will rise by nearly 60 per cent between 1999 and 2020. In 1999 consumption was equivalent to 86 million barrels of oil per day, which has reached a peak of production extracted from most known oil reserves. These projections, if accurate, will present an unprecedented crisis to the global economy and industry. As an example, in the US, nearly 40 per cent of energy usage is provided by petroleum, of which nearly a third is used in transportation. The US Department of Defense (DOD) is the single largest buyer of fuel, amounting to, on the average, 13 million gallons per day. Additionally, these fuels have to meet different requirements that prevent use of ethanol additives and biodiesel. An aggressive search for alternate energy sources, both renewable and nonrenewable, is vital. The presentation will review national and DOD perspectives on the exploration of alternate energy with a focus on energy derivable from the ocean. )

  11. Energy Conversion Alternatives Study (ECAS), Westinghouse phase 1. Volume 7: Metal vapor Rankine topping-steam bottoming cycles. [energy conversion efficiency in electric power plants

    NASA Technical Reports Server (NTRS)

    Deegan, P. B.

    1976-01-01

    Adding a metal vapor Rankine topper to a steam cycle was studied as a way to increase the mean temperature at which heat is added to the cycle to raise the efficiency of an electric power plant. Potassium and cesium topping fluids were considered. Pressurized fluidized bed or pressurized (with an integrated low-Btu gasifier) boilers were assumed. Included in the cycles was a pressurizing gas turbine with its associated recuperator, and a gas economizer and feedwater heater. One of the ternary systems studied shows plant efficiency of 42.3% with a plant capitalization of $66.7/kW and a cost of electricity of 8.19 mills/MJ (29.5 mills/kWh).

  12. Energy Conversion Alternatives Study (ECAS), Westinghouse phase 1. Volume 10: Liquid-metal MHD systems. [energy conversion efficiency of electric power plants using liquid metal magnetohydrodynamics

    NASA Technical Reports Server (NTRS)

    Holman, R. R.; Lippert, T. E.

    1976-01-01

    Electric Power Plant costs and efficiencies are presented for two basic liquid-metal cycles corresponding to 922 and 1089 K (1200 and 1500 F) for a commercial applications using direct coal firing. Sixteen plant designs are considered for which major component equipment were sized and costed. The design basis for each major component is discussed. Also described is the overall systems computer model that was developed to analyze the thermodynamics of the various cycle configurations that were considered.

  13. Energy Conversion Alternatives Study (ECAS), Westinghouse phase 1. Volume 8: Open-cycle MHD. [energy conversion efficiency and design analysis of electric power plants employing magnetohydrodynamics

    NASA Technical Reports Server (NTRS)

    Hoover, D. Q.

    1976-01-01

    Electric power plant costs and efficiencies are presented for three basic open-cycle MHD systems: (1) direct coal fired system, (2) a system with a separately fired air heater, and (3) a system burning low-Btu gas from an integrated gasifier. Power plant designs were developed corresponding to the basic cases with variation of major parameters for which major system components were sized and costed. Flow diagrams describing each design are presented. A discussion of the limitations of each design is made within the framework of the assumptions made.

  14. Energy Conversion Alternatives Study (ECAS), Westinghouse phase 1. Volume 9: Closed-cycle MHD. [energy conversion efficiency of electric power plants using magnetohydrodynamics

    NASA Technical Reports Server (NTRS)

    Tsu, T. C.

    1976-01-01

    A closed-cycle MHD system for an electric power plant was studied. It consists of 3 interlocking loops, an external heating loop, a closed-cycle cesium seeded argon nonequilibrium ionization MHD loop, and a steam bottomer. A MHD duct maximum temperature of 2366 K (3800 F), a pressure of 0.939 MPa (9.27 atm) and a Mach number of 0.9 are found to give a topping cycle efficiency of 59.3%; however when combined with an integrated gasifier and optimistic steam bottomer the coal to bus bar efficiency drops to 45.5%. A 1978 K (3100 F) cycle has an efficiency of 55.1% and a power plant efficiency of 42.2%. The high cost of the external heating loop components results in a cost of electricity of 21.41 mills/MJ (77.07 mills/kWh) for the high temperature system and 19.0 mills/MJ (68.5 mills/kWh) for the lower temperature system. It is, therefore, thought that this cycle may be more applicable to internally heated systems such as some futuristic high temperature gas cooled reactor.

  15. Energy efficiency indicators for high electric-load buildings

    SciTech Connect

    Aebischer, Bernard; Balmer, Markus A.; Kinney, Satkartar; Le Strat, Pascale; Shibata, Yoshiaki; Varone, Frederic

    2003-06-01

    Energy per unit of floor area is not an adequate indicator for energy efficiency in high electric-load buildings. For two activities, restaurants and computer centres, alternative indicators for energy efficiency are discussed.

  16. Energy Conversion Alternatives Study (ECAS), General Electric Phase 1. Volume 2: Advanced energy conversion systems. Part 1: Open-cycle gas turbines

    NASA Technical Reports Server (NTRS)

    Brown, D. H.; Corman, J. C.

    1976-01-01

    Ten energy conversion systems are defined and analyzed in terms of efficiency. These include: open-cycle gas turbine recuperative; open-cycle gas turbine; closed-cycle gas turbine; supercritical CO2 cycle; advanced steam cycle; liquid metal topping cycle; open-cycle MHD; closed-cycle inert gas MHD; closed-cycle liquid metal MHD; and fuel cells. Results are presented.

  17. Alternative energy technologies for the Caribbean islands

    SciTech Connect

    Pytlinski, J.T. )

    1992-01-01

    All islands in the Caribbean except Puerto Rico can be classified as developing islands. Of these islands, all except Trinidad and Tobago are oil importers. Uncertainties concerning uninterrupted oil supply and increasing oil prices causes economic, social and political instability and jeopardizes further development of these islands. The paper discusses the energy situation of the Caribbean islands and presents alternative energy options. Several alternative energy projects financed by local, federal and international organizations are presented. Present and future uses of alternative energy technologies are described in different islands. Barrier which handicap developing and implementing alternative energy sources in the Caribbean are discussed. The potential and possible applications of alternative energy technologies such as: solar-thermal energy, photovoltaics, wind energy, ocean thermal energy conversion (OTEC), ocean currents and tides energy, biomass, peat energy, municipal solid wastes, bioconversion, hydropower, geothermal energy, nuclear energy and energy conservation are discussed in detail as means to alleviate the energy situation in the Caribbean islands.

  18. Energy Conversion Alternatives Study (ECAS), Westinghouse phase 1. Volume 1: Introduction and summary and general assumptions. [energy conversion systems for electric power plants using coal - feasibility

    NASA Technical Reports Server (NTRS)

    Beecher, D. T.

    1976-01-01

    Nine advanced energy conversion concepts using coal or coal-derived fuels are summarized. They are; (1) open-cycle gas turbines, (2) combined gas-steam turbine cycles, (3) closed-cycle gas turbines, (4) metal vapor Rankine topping, (5) open-cycle MHD; (6) closed-cycle MHD; (7) liquid-metal MHD; (8) advanced steam; and (9) fuel cell systems. The economics, natural resource requirements, and performance criteria for the nine concepts are discussed.

  19. Energy Conversion Alternatives Study (ECAS), General Electric Phase 1. Volume 3: Energy conversion subsystems and components. Part 3: Gasification, process fuels, and balance of plant

    NASA Technical Reports Server (NTRS)

    Boothe, W. A.; Corman, J. C.; Johnson, G. G.; Cassel, T. A. V.

    1976-01-01

    Results are presented of an investigation of gasification and clean fuels from coal. Factors discussed include: coal and coal transportation costs; clean liquid and gas fuel process efficiencies and costs; and cost, performance, and environmental intrusion elements of the integrated low-Btu coal gasification system. Cost estimates for the balance-of-plant requirements associated with advanced energy conversion systems utilizing coal or coal-derived fuels are included.

  20. Collapse of DNA under Alternating Electric Fields

    PubMed Central

    Zhou, Chunda; Riehn, Robert

    2016-01-01

    Recent studies have shown that double-stranded DNA can collapse in presence of a strong electric field. Here we provide an in-depth study of the collapse of DNA under weak confinement in microchannels as a function of buffer strength, driving frequency, applied electric field strength, and molecule size. We find that the critical electric field at which DNA molecules collapse (10s of kV/cm) is strongly dependent on driving frequency dependent (100 … 800 Hz) and molecular size (20 … 160 kbp), and weakly dependent on the ionic strength (8 … 60 mM). We argue that an apparent stretching at very high electric fields is an artifact of the finite frame time of video microscopy. PACS numbers: 87.14.gk, 36.20.Ey, 82.35.Lr, 82.35.Rs PMID:26274209

  1. Subtle alternating electrocardiographic morphology as an indicator of decreased cardiac electrical stability

    NASA Technical Reports Server (NTRS)

    Smith, J. M.; Blue, B.; Clancy, E.; Valeri, C. R.; Cohen, R. J.

    1985-01-01

    Observations from finite-element computer models, together with analytic developments based on percolation theory have suggested that subtle fluctuations of ECG morphology might serve as an indicator diminished cardiac electrical stability. With fixed-rate atrial pacing in canines, we have previously observed a pattern of alternation in T wave energy which correlated with cardiac electrical stability. We report here on a series of 20 canine experiments in which cardiac electrical stability (measured via Ventricular Fibrillation Threshold determination) was compared to a non-degenerate, multidimensional measurement of the degree of alternating activity present in the ECG complex morphology. The decrease in cardiac electrical stability brought on by both coronary artery occlusion and systemic hypothermia was consistently accompanied by subtle alternation in ECG morphology, with the absolute degree of alternating activity being significantly (negatively) correlated with cardiac electrical stability.

  2. Categorization of Alternative Conceptions in Electricity and Magnetism: The Case of Ethiopian Undergraduate Students

    ERIC Educational Resources Information Center

    Dega, Bekele Gashe; Kriek, Jeanne; Mogese, Temesgen Fereja

    2013-01-01

    The purpose of this study was to categorize 35 Ethiopian undergraduate physics students' alternative conceptions in the concepts of electric potential and energy. A descriptive qualitative research design was used to categorize the students' alternative conceptions. Four independently homogeneous ability focus groups were formed to…

  3. Electrohydrodynamic Model of Vesicle Deformation in Alternating Electric Fields

    PubMed Central

    Vlahovska, Petia M.; Gracià, Rubèn Serral; Aranda-Espinoza, Said; Dimova, Rumiana

    2009-01-01

    Abstract We develop an analytical theory to explain the experimentally observed morphological transitions of quasispherical giant vesicles induced by alternating electric fields. The model treats the inner and suspending media as lossy dielectrics, and the membrane as an impermeable flexible incompressible–fluid sheet. The vesicle shape is obtained by balancing electric, hydrodynamic, bending, and tension stresses exerted on the membrane. Our approach, which is based on force balance, also allows us to describe the time evolution of the vesicle deformation, in contrast to earlier works based on energy minimization, which are able to predict only stationary shapes. Our theoretical predictions for vesicle deformation are consistent with experiment. If the inner fluid is more conducting than the suspending medium, the vesicle always adopts a prolate shape. In the opposite case, the vesicle undergoes a transition from a prolate to oblate ellipsoid at a critical frequency, which the theory identifies with the inverse membrane charging time. At frequencies higher than the inverse Maxwell-Wagner polarization time, the electrohydrodynamic stresses become too small to alter the vesicle's quasispherical rest shape. The model can be used to rationalize the transient and steady deformation of biological cells in electric fields. PMID:19527639

  4. Crack instability of ferroelectric solids under alternative electric loading

    NASA Astrophysics Data System (ADS)

    Chen, Hao-Sen; Wang, He-Ling; Pei, Yong-Mao; Wei, Yu-Jie; Liu, Bin; Fang, Dai-Ning

    2015-08-01

    The low fracture toughness of the widely used piezoelectric and ferroelectric materials in technological applications raises a big concern about their durability and safety. Up to now, the mechanisms of electric-field induced fatigue crack growth in those materials are not fully understood. Here we report experimental observations that alternative electric loading at high frequency or large amplitude gives rise to dramatic temperature rise at the crack tip of a ferroelectric solid. The temperature rise subsequently lowers the energy barrier of materials for domain switch in the vicinity of the crack tip, increases the stress intensity factor and leads to unstable crack propagation finally. In contrast, at low frequency or small amplitude, crack tip temperature increases mildly and saturates quickly, no crack growth is observed. Together with our theoretical analysis on the non-linear heat transfer at the crack tip, we constructed a safe operating area curve with respect to the frequency and amplitude of the electric field, and validated the safety map by experiments. The revealed mechanisms about how electro-thermal-mechanical coupling influences fracture can be directly used to guide the design and safety assessment of piezoelectric and ferroelectric devices.

  5. Inhibition of brain tumor cell proliferation by alternating electric fields

    SciTech Connect

    Jeong, Hyesun; Oh, Seung-ick; Hong, Sunghoi E-mail: radioyoon@korea.ac.kr; Sung, Jiwon; Jeong, Seonghoon; Yoon, Myonggeun E-mail: radioyoon@korea.ac.kr; Koh, Eui Kwan

    2014-11-17

    This study was designed to investigate the mechanism by which electric fields affect cell function, and to determine the optimal conditions for electric field inhibition of cancer cell proliferation. Low-intensity (<2 V/cm) and intermediate-frequency (100–300 kHz) alternating electric fields were applied to glioblastoma cell lines. These electric fields inhibited cell proliferation by inducing cell cycle arrest and abnormal mitosis due to the malformation of microtubules. These effects were significantly dependent on the intensity and frequency of applied electric fields.

  6. Comparative Evaluation of Phase 1 Results from the Energy Conversion Alternatives Study (ECAS). [coal utilization for electric power plants feasibility analysis

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Ten advanced energy conversion systems for central-station, based-load electric power generation using coal and coal-derived fuels which were studied by NASA are presented. Various contractors were selected by competitive bidding to study these systems. A comparative evaluation is provided of the contractor results on both a system-by-system and an overall basis. Ground rules specified by NASA, such as coal specifications, fuel costs, labor costs, method of cost comparison, escalation and interest during construction, fixed charges, emission standards, and environmental conditions, are presented. Each system discussion includes the potential advantages of the system, the scope of each contractor's analysis, typical schematics of systems, comparison of cost of electricity and efficiency for each contractor, identification and reconciliation of differences, identification of future improvements, and discussion of outside comments. Considerations common to all systems, such as materials and furnaces, are also discussed. Results of selected in-house analyses are presented, in addition to contractor data. The results for all systems are then compared.

  7. Electric car batteries: Avoiding the environmental drawbacks via alternative technologies

    NASA Astrophysics Data System (ADS)

    Warlimont, Hans; Olper, Marco

    1996-07-01

    In this article, we address the question of whether air pollution resulting from the pyrometallurgical winning, recycling, and casting of lead for car batteries is a serious threat to the environmental acceptability of introducing electric cars. Specifically, we describe an alternative to pyrometallurgical processes—an electrochemical process called CX-EWS that can be used for the winning and recycling of lead. Also presented is a new manufacturing route for battery grids; it employs a combination of electroforming, the codeposition of dispersoids, and the electrowinning of spent batteries. The technology cannot only eliminate the casting of conventional or expanded metal grids but can also serve to reduce battery weight and, thus, increase energy density.

  8. Alternative Energy for Higher Education

    SciTech Connect

    Michael Cherney, PhD

    2012-02-22

    This project provides educational opportunities creating both a teaching facility and center for public outreach. The facility is the largest solar array in Nebraska. It was designed to allow students to experience a variety of technologies and provide the public with opportunities for exposure to the implementation of an alternative energy installation designed for an urban setting. The project integrates products from 5 panel manufacturers (including monocrystalline, polycrystalline and thin film technologies) mounted on both fixed and tracking structures. The facility uses both micro and high power inverters. The majority of the system was constructed to serve as an outdoor classroom where panels can be monitored, tested, removed and replaced by students. As an educational facility it primarily serves students in the Creighton University and Metropolitan Community College, but it also provides broader educational opportunities. The project includes a real-time dashboard and a historical database of the output of individual inverters and the corresponding meteorological data for researcher and student use. This allows the evaluation of both panel types and the feasibility of installation types in a region of the country subject to significant temperature, wind and precipitation variation.

  9. Alternative Natural Energy Sources in Building Design.

    ERIC Educational Resources Information Center

    Davis, Albert J.; Schubert, Robert P.

    This publication provides a discussion of various energy conserving building systems and design alternatives. The information presented here covers alternative space and water heating systems, and energy conserving building designs incorporating these systems and other energy conserving techniques. Besides water, wind, solar, and bio conversion…

  10. Energy Conversion Alternatives Study (ECAS)

    NASA Technical Reports Server (NTRS)

    1977-01-01

    ECAS compared various advanced energy conversion systems that can use coal or coal-derived fuels for baseload electric power generation. It was conducted in two phases. Phase 1 consisted of parametric studies. From these results, 11 concepts were selected for further study in Phase 2. For each of the Phase 2 systems and a common set of ground rules, performance, cost, environmental intrusion, and natural resource requirements were estimated. In addition, the contractors defined the state of the associated technology, identified the advances required, prepared preliminary research and development plans, and assessed other factors that would affect the implementation of each type of powerplant. The systems studied in Phase 2 include steam systems with atmospheric- and pressurized-fluidized-bed boilers; combined cycle gas turbine/steam systems with integrated gasifiers or fired by a semiclean, coal derived fuel; a potassium/steam system with a pressurized-fluidized-bed boiler; a closed-cycle gas turbine/organic system with a high-temperature, atmospheric-fluidized-bed furnace; a direct-coal-fired, open- cycle magnetohydrodynamic/steam system; and a molten-carbonate fuel cell/steam system with an integrated gasifier. The sensitivity of the results to changes in the ground rules and the impact of uncertainties in capital cost estimates were also examined.

  11. Emerging Energy Alternatives for the Southeastern States

    NASA Technical Reports Server (NTRS)

    Stefanakos, E. K. (Editor)

    1978-01-01

    The proceedings of the first symposium on emerging energy alternatives for the Southeastern States are presented. Some topics discussed are: (1) solar energy, (2) wood energy, (3) novel energy sources, (4) agricultural and industrial process heat, (5) waste utilization, (6) energy conservation and (7) ocean thermal energy conversion.

  12. Supplementing Conservation Practices with Alternative Energy Sources.

    ERIC Educational Resources Information Center

    Kraetsch, Gayla A.

    1981-01-01

    Universities and colleges have two major roles: to reduce their own energy consumption and costs, and to develop and test new energy options. Alternative energy sources considered include solar energy, wind power, biomass, hydropower, ocean energy, geothermal heat, coal, and nuclear energy. (MLW)

  13. Electricity production using solar energy

    SciTech Connect

    Demirbas, M.F.

    2007-07-01

    In this study, a solar-powered development project is used to identify whether it is possible to utilize solar technologies in the electricity production sector. Electricity production from solar energy has been found to be a promising method in the future. Concentrated solar energy can be converted to chemical energy via high-temperature endothermic reactions. Coal and biomass can be pyrolyzed or gasified by using concentrated solar radiation for generating power. Conventional energy will not be enough to meet the continuously increasing need for energy in the future. In this case, renewable energy sources will become important. Solar energy is an increasing need for energy in the future. Solar energy is a very important energy source because of its advantages. Instead of a compressor system, which uses electricity, an absorption cooling system, using renewable energy and kinds of waste heat energy, may be used for cooling.

  14. Alternative Energy Sources in Seismic Methods

    NASA Astrophysics Data System (ADS)

    Tün, Muammer; Pekkan, Emrah; Mutlu, Sunay; Ecevitoğlu, Berkan

    2015-04-01

    When the suitability of a settlement area is investigated, soil-amplification, liquefaction and fault-related hazards should be defined, and the associated risks should be clarified. For this reason, soil engineering parameters and subsurface geological structure of a new settlement area should be investigated. Especially, faults covered with quaternary alluvium; thicknesses, shear-wave velocities and geometry of subsurface sediments could lead to a soil amplification during an earthquake. Likewise, changes in shear-wave velocities along the basin are also very important. Geophysical methods can be used to determine the local soil properties. In this study, use of alternative seismic energy sources when implementing seismic reflection, seismic refraction and MASW methods in the residential areas of Eskisehir/Turkey, were discussed. Our home developed seismic energy source, EAPSG (Electrically-Fired-PS-Gun), capable to shoot 2x24 magnum shotgun cartridges at once to generate P and S waves; and our home developed WD-500 (500 kg Weight Drop) seismic energy source, mounted on a truck, were developed under a scientific research project of Anadolu University. We were able to reach up to penetration depths of 1200 m for EAPSG, and 800 m for WD-500 in our seismic reflection surveys. WD-500 seismic energy source was also used to perform MASW surveys, using 24-channel, 10 m apart, 4.5 Hz vertical geophone configuration. We were able to reach 100 m of penetration depth in MASW surveys.

  15. Energy Efficiency for Electrical Technology.

    ERIC Educational Resources Information Center

    Scharmann, Larry, Ed.

    Intended primarily but not solely for use at the postsecondary level, this curriculum guide contains five units on energy efficiency that were designed to be incorporated into an existing program in electrical technology. The following topics are examined: where to look for energy waste; conservation methods for electrical consumers, for…

  16. Conservation as an alternative energy source

    NASA Technical Reports Server (NTRS)

    Allen, D. E.

    1978-01-01

    A speech is given outlining the energy situation in the United States. It is warned that the existing energy situation cannot prevail and the time is fast running out for continued growth or even maintenance of present levels. Energy conservation measures are given as an aid to decrease U.S. energy consumption, which would allow more time to develop alternative sources of energy.

  17. Industrial Arts Curriculum Guide for Alternative Energy.

    ERIC Educational Resources Information Center

    Connecticut State Dept. of Education, Hartford. Div. of Vocational and Adult Education.

    This curriculum guide for alternative energy courses is part of a series of curriculum guides for use in the industrial arts curriculum in Connecticut. The guide contains two parts. Part 1 provides the following overview: (1) objectives of alternative energy education, including suggestions for course levels, class sizes, teaching methods, and…

  18. Global Energy Issues and Alternate Fueling

    NASA Technical Reports Server (NTRS)

    Hendricks, Robert C.

    2007-01-01

    This viewgraph presentation describes world energy issues and alternate fueling effects on aircraft design. The contents include: 1) US Uses about 100 Quad/year (1 Q = 10(exp 15) Btu) World Energy Use: about 433 Q/yr; 2) US Renewable Energy about 6%; 3) Nuclear Could Grow: Has Legacy Problems; 4) Energy Sources Primarily NonRenewable Hydrocarbon; 5) Notes; 6) Alternate Fuels Effect Aircraft Design; 7) Conventional-Biomass Issue - Food or Fuel; 8) Alternate fuels must be environmentally benign; 9) World Carbon (CO2) Emissions Problem; 10) Jim Hansen s Global Warming Warnings; 11) Gas Hydrates (Clathrates), Solar & Biomass Locations; 12) Global Energy Sector Response; 13) Alternative Renewables; 14) Stratospheric Sulfur Injection Global Cooling Switch; 15) Potential Global Energy Sector Response; and 16) New Sealing and Fluid Flow Challenges.

  19. Energy for Survival: The Alternative to Extinction.

    ERIC Educational Resources Information Center

    Clark, Wilson

    The author initially describes the basic physical principles associated with energy and the rise of energy usage in the United States. Also discussed are the ways energy limits growth and its use in various sectors of society. It is suggested that the decentralization of America's electrical system will save a great deal of energy. A variety of…

  20. 59. View of high voltage (4160 volts alternating current) electric ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    59. View of high voltage (4160 volts alternating current) electric load center and motor control center at mezzanine level in transmitter building no. 102. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  1. Electric Power From Ambient Energy Sources

    SciTech Connect

    DeSteese, John G.; Hammerstrom, Donald J.; Schienbein, Lawrence A.

    2000-10-03

    This report summarizes research on opportunities to produce electric power from ambient sources as an alternative to using portable battery packs or hydrocarbon-fueled systems in remote areas. The work was an activity in the Advanced Concepts Project conducted by Pacific Northwest National Laboratory (PNNL) for the Office of Research and Development in the U.S. Department of Energy Office of Nonproliferation and National Security.

  2. Magma energy: a feasible alternative

    SciTech Connect

    Colp, J.L.

    1980-03-01

    A short review of the work performed by Sandia Laboratories in connection with its Magma Energy Research Project is provided. Results to date suggest that boreholes will remain stable down to magma depths and engineering materials can survive the downhole environments. Energy extraction rates are encouraging. Geophysical sensing systems and interpretation methods require improvement, however, to clearly define a buried magma source.

  3. Drop oscillation and mass transfer in alternating electric fields

    SciTech Connect

    Carleson, T.E.

    1992-06-24

    In certain cases droplet direct contact heat transfer rates can be significantly enhanced by the application of an alternating electric field. This field can produce shape oscillations in a droplet which will enhance mixing. The theoretical evaluation of the effect of the interaction of the field with drop charge on the hydrodynamics has been completed for small amplitude oscillations. Previous work with a zero order perturbation method was followed up with a first order perturbation method to evaluate the effect of drop distortion on drop charge and field distribution. The first order perturbation results show secondary drop oscillations of four modes and two frequencies in each mode. The most significant secondary oscillation has the same mode and frequency as the second mode oscillation predicted from the first order perturbation work. The resonant frequency of all oscillations decrease with increasing electric field strength and drop charge. Work is currently underway to evaluate the heat transfer enhancement from an applied alternating electric field.

  4. Center for Renewable Energy and Alternative Transportation Technologies (CREATT)

    SciTech Connect

    Mackin, Thomas

    2012-06-30

    The Center for Renewable Energy and Alternative Transportation Technologies (CREATT) was established to advance the state of the art in knowledge and education on critical technologies that support a renewable energy future. Our research and education efforts have focused on alternative energy systems, energy storage systems, and research on battery and hybrid energy storage systems.This report details the Center's progress in the following specific areas: Development of a battery laboratory; Development of a demonstration system for compressed air energy storage; Development of electric propulsion test systems; Battery storage systems; Thermal management of battery packs; and Construction of a micro-grid to support real-world performance monitoring of a renewable energy system.

  5. Science Activities in Energy: Electrical Energy.

    ERIC Educational Resources Information Center

    Oak Ridge Associated Universities, TN.

    Presented is a science activities in energy package which includes 16 activities relating to electrical energy. Activities are simple, concrete experiments for fourth, fifth and sixth grades which illustrate principles and problems relating to energy. Each activity is outlined in a single card which is introduced by a question. A teacher's…

  6. ALTERNATIVE ENERGY SOURCES FOR WASTEWATER TREATMENT PLANTS

    EPA Science Inventory

    The technology assessment provides an introduction to the use of several alternative energy sources at wastewater treatment plants. The report contains fact sheets (technical descriptions) and data sheets (cost and design information) for the technologies. Cost figures and schema...

  7. Elk Valley Rancheria Energy Efficiency and Alternatives Analysis

    SciTech Connect

    Ed Wait, Elk Valley Rancheria; Frank Ziano & Associates, Inc.

    2011-11-30

    Elk Valley Rancheria; Tribe; renewable energy; energy options analysis. The Elk Valley Rancheria, California ('Tribe') is a federally recognized Indian tribe located in Del Norte County, California, in the northwestern corner of California. The Tribe, its members and Tribal enterprises are challenged by increasing energy costs and undeveloped local energy resources. The Tribe currently lacks an energy program. The Tribal government lacked sufficient information to make informed decisions about potential renewable energy resources, energy alternatives and other energy management issues. To meet this challenge efficiently, the Tribe contracted with Frank Zaino and Associates, Inc. to help become more energy self-sufficient, by reducing their energy costs and promoting energy alternatives that stimulate economic development. Frank Zaino & Associates, Inc. provided a high level economic screening analysis based on anticipated electric and natural gas rates. This was in an effort to determine which alternative energy system will performed at a higher level so the Tribe could reduce their energy model by 30% from alternative fuel sources. The feasibility study will identify suitable energy alternatives and conservation methods that will benefit the Tribe and tribal community through important reductions in cost. The lessons learned from these conservation efforts will yield knowledge that will serve a wider goal of executing energy efficiency measures and practices in Tribal residences and business facilities. Pacific Power is the provider of electrical power to the four properties under review at $ 0.08 per Kilowatt-hour (KWH). This is a very low energy cost compared to alternative energy sources. The Tribe used baseline audits to assess current and historic energy usage at four Rancheria owned facilities. Past electric and gas billing statements were retained for review for the four buildings that will be audited. A comparative assessment of the various energy usages

  8. Electricity energy outlook in Malaysia

    NASA Astrophysics Data System (ADS)

    Tan, C. S.; Maragatham, K.; Leong, Y. P.

    2013-06-01

    Population and income growth are the key drivers behind the growing demand for energy. Demand for electricity in Malaysia is always growing in tandem with its Gross Domestic Product (GDP) growth. The growth for electricity in Malaysia forecasted by Economic Planning Unit (EPU) has shown an increase of 3.52% in 2012 compared to 3.48% in 2011. This growth has been driven by strong demand growth from commercial and domestic sectors. The share of electricity consumption to total energy consumption has increased from 17.4% in 2007 to 21.7% in 2012. The total electricity production was reported at 122.12TWh in 2012, where gas is still the major fuel source contributing to 52.7% of the total generation fuel mix of electricity followed by Coal, 38.9%, hydro, 7.3%, oil, 1% and others, 0.2%. This paper aims to discuss the energy outlook particularly the electricity production and ways toward greener environment in electricity production in Malaysia

  9. Environmentally conscious alternative energy production

    SciTech Connect

    Kutz, M.

    2007-09-15

    This fourth volume of the series describes and compares the environmental and economic impacts of renewable and conventional power generation technologies. Chapter heading are: Economic comparisons of power generation technologies (Todd Nemec); Solar energy applications (Jan F. Kreider); Fuel cells (Matthew W. Mench); Geothermal resources and technology: an introduction (Peter D. Blair); Wind power generation (Todd Nemec); Cogeneration (Jerald Caton); Hydrogen energy (Elias K. Stefanakos, Yogi Goswami, S.S. Srinivasan, and J.T. Wolan); Clean power generation from coal (Prabir Basu and James Butler); and Using waste heat from power plants (Herbert A. Ingley). The chapter on clean coal power generation from coal has been abstracted separately on the Coal Abstracts database. 2 apps.

  10. Linear oscillations of a drop in uniform alternating electric fields

    SciTech Connect

    Yang, Wenrui; Carleson, T.E.

    1990-10-01

    Oscillations of a conducting drop immersed in a dielectric fluid in an alternating electric field has been modelled in order to understand the enhancement of the transport processes by the electric field. Numerical solutions for oscillation amplitude, velocity distribution, resonant frequency and streamlines were obtained. The effects of viscosity and density on the resonant frequency and the velocity distribution were investigated. It was found that the resonant frequency of viscous fluids was always smaller than the free oscillation frequency of the same droplet. The predicted scanning frequency response curve and the streamlines agree well with the experimental observations.

  11. Membrane tubulation from giant lipid vesicles in alternating electric fields.

    PubMed

    Antonova, K; Vitkova, V; Meyer, C

    2016-01-01

    We report on the formation of tubular membrane protrusions from giant unilamellar vesicles in alternating electric fields. The construction of the experimental chamber permitted the application of external AC fields with strength of dozens of V/mm and kHz frequency during relatively long time periods (several minutes). Besides the vesicle electrodeformation from quasispherical to prolate ellipsoidal shape, the formation of long tubular membrane protrusions with length of up to several vesicle diameters, arising from the vesicular surface in the field direction, was registered and analyzed. The threshold electric field at which the electro-induced protrusions appeared was lower than the field strengths inducing membrane electroporation. PMID:26871107

  12. Space solar power - An energy alternative

    NASA Technical Reports Server (NTRS)

    Johnson, R. W.

    1978-01-01

    The space solar power concept is concerned with the use of a Space Power Satellite (SPS) which orbits the earth at geostationary altitude. Two large symmetrical solar collectors convert solar energy directly to electricity using photovoltaic cells woven into blankets. The dc electricity is directed to microwave generators incorporated in a transmitting antenna located between the solar collectors. The antenna directs the microwave beam to a receiving antenna on earth where the microwave energy is efficiently converted back to dc electricity. The SPS design promises 30-year and beyond lifetimes. The SPS is relatively pollution free as it promises earth-equivalence of 80-85% efficient ground-based thermal power plant.

  13. Research for electric energy systems

    NASA Astrophysics Data System (ADS)

    Anderson, W. E.

    1991-06-01

    The technical progress in four investigations which make up the project 'Support of Research Projects for Electrical Energy Systems,' funded by the U.S. Department of Energy and performed by the Electricity Division of the National Institute of Standards and Technology (NIST) is discussed. These investigations include measurements of magnetic fields in support of epidemiological and in vitro studies of biological field effects; development of a technique to measure trace amounts of S2F10 in the presence of SF6 and the development of an improved stochastic analyzer for pulsating phenomena; optical and electrical measurements of negative streamers preceding electric breakdown in liquid dielectrics; and the development of a reference resistive divider for high voltage impulse measurements.

  14. Locational electricity capacity markets: Alternatives to restore the missing signals

    SciTech Connect

    Nieto, Amparo D.; Fraser, Hamish

    2007-03-15

    In the absence of a properly functioning electricity demand side, well-designed capacity payment mechanisms hold more promise for signaling the value of capacity than non-CPM alternatives. Locational CPMs that rely on market-based principles, such as forward capacity auctions, are superior to cost-based payments directed to specific must-run generators, as CPMs at least provide a meaningful price signal about the economic value of resources to potential investors. (author)

  15. Air transportation energy efficiency - Alternatives and implications

    NASA Technical Reports Server (NTRS)

    Williams, L. J.

    1976-01-01

    Results from recent studies of air transportation energy efficiency alternatives are discussed, along with some of the implications of these alternatives. The fuel-saving alternatives considered include aircraft operation, aircraft modification, derivative aircraft, and new aircraft. In the near-term, energy efficiency improvements should be possible through small improvements in fuel-saving flight procedures, higher density seating, and higher load factors. Additional small near-term improvements could be obtained through aircraft modifications, such as the relatively inexpensive drag reduction modifications. Derivatives of existing aircraft could meet the requirements for new aircraft and provide energy improvements until advanced technology is available to justify the cost of a completely new design. In order to obtain significant improvements in energy efficiency, new aircraft must truly exploit advanced technology in such areas as aerodynamics, composite structures, active controls, and advanced propulsion.

  16. Alternative energy balances for Bulgaria to mitigate climate change

    NASA Astrophysics Data System (ADS)

    Christov, Christo

    1996-01-01

    Alternative energy balances aimed to mitigate greenhouse gas (GHG) emissions are developed as alternatives to the baseline energy balance. The section of mitigation options is based on the results of the GHG emission inventory for the 1987 1992 period. The energy sector is the main contributor to the total CO2 emissions of Bulgaria. Stationary combustion for heat and electricity production as well as direct end-use combustion amounts to 80% of the total emissions. The parts of the energy network that could have the biggest influence on GHG emission reduction are identified. The potential effects of the following mitigation measures are discussed: rehabilitation of the combustion facilities currently in operation; repowering to natural gas; reduction of losses in thermal and electrical transmission and distribution networks; penetration of new combustion technologies; tariff structure improvement; renewable sources for electricity and heat production; wasteheat utilization; and supply of households with natural gas to substitute for electricity in space heating and cooking. The total available and the achievable potentials are estimated and the implementation barriers are discussed.

  17. A search for space energy alternatives

    NASA Technical Reports Server (NTRS)

    Gilbreath, W. P.; Billman, K. W.

    1978-01-01

    This paper takes a look at a number of schemes for converting radiant energy in space to useful energy for man. These schemes are possible alternatives to the currently most studied solar power satellite concept. Possible primary collection and conversion devices discussed include the space particle flux devices, solar windmills, photovoltaic devices, photochemical cells, photoemissive converters, heat engines, dielectric energy conversion, electrostatic generators, plasma solar collectors, and thermionic schemes. Transmission devices reviewed include lasers and masers.

  18. Mechanical vibration to electrical energy converter

    DOEpatents

    Kellogg, Rick Allen; Brotz, Jay Kristoffer

    2009-03-03

    Electromechanical devices that generate an electrical signal in response to an external source of mechanical vibrations can operate as a sensor of vibrations and as an energy harvester for converting mechanical vibration to electrical energy. The devices incorporate a magnet that is movable through a gap in a ferromagnetic circuit, wherein a coil is wound around a portion of the ferromagnetic circuit. A flexible coupling is used to attach the magnet to a frame for providing alignment of the magnet as it moves or oscillates through the gap in the ferromagnetic circuit. The motion of the magnet can be constrained to occur within a substantially linear range of magnetostatic force that develops due to the motion of the magnet. The devices can have ferromagnetic circuits with multiple arms, an array of magnets having alternating polarity and, encompass micro-electromechanical (MEM) devices.

  19. Energy conservation in electric distribution

    SciTech Connect

    Lee, Chong-Jin

    1994-12-31

    This paper discusses the potential for energy and power savings that exist in electric power delivery systems. These savings translate into significant financial and environmental benefits for electricity producers and consumers as well as for society in general. AlliedSignal`s knowledge and perspectives on this topic are the result of discussions with hundreds of utility executives, government officials and other industry experts over the past decade in conjunction with marketing our Amorphous Metal technology for electric distribution transformers. Amorphous metal is a technology developed by AlliedSignal that significantly reduces the energy lost in electric distribution transformers at an incremental cost of just a few cents per kilo-Watt-hour. The purpose of this paper is to discuss: Amorphous Metal Alloy Technology; Energy Savings Opportunity; The Industrial Barriers and Remedies; Worldwide Demand; and A Low Risk Strategy. I wish this presentation will help KEPCO achieve their stated aims of ensuring sound development of the national economy and enhancement of public life through the economic and stable supply of electric power. AlliedSignal Korea Ltd. in conjunction with AlliedSignal Amorphous Metals in the U.S. are here to work with KEPCO, transformer manufacturers, industry, and government agencies to achieve greater efficiency in power distribution.

  20. Harvesting alternate energies from our planet

    NASA Astrophysics Data System (ADS)

    Rath, Bhakta B.

    2009-04-01

    Recent price fluctuations have focused attention on the phenomenal increase of global energy consumption in recent years. We have almost reached a peak in global oil production. Total world consumption of oil will rise by nearly 60% between 1999 and 2020. In 1999 consumption was 86 million barrels of oil per day, which has reached a peak of production extracted from most known oil reserves. These projections, if accurate, will present an unprecedented crisis to the global economy and industry. As an example, in the United States, nearly 40% of energy usage is provided by petroleum, of which nearly a third is used in transportation. An aggressive search for alternate energy sources, both renewable and nonrenewable, is vital. This article will review national and international perspectives on the exploration of alternate energies with a focus on energy derivable from the ocean.

  1. Training courses on ''alternative energy technologies'' for middle level workers

    SciTech Connect

    Jagadeesh, A.

    1983-12-01

    The Government of India has given priority to energy in the Sixth Plan. The Department of Non-Conventional Sources of Energy under Government of India and State Units connected with Alternative Energy Sources are taking all possible steps to promote the cause and use of Alternative Energy Sources like Solar, Wind, Biogas etc.. Besides several private Engineering concerns like Central Electronics Ltd., Shahibabad; Solaren Technologz Pvt. Ltd., Bombay; Avanti Fastners Ltd., New Delhi; Jyoti Ltd., Baroda; Voltas Ltd., Bombay; Institute of Engineering and Rural Technology, Allahabad; ORP Ltd., Gazipur etc. are either manufacturing or marketing alternative energy sources products like Solar Cookers, Solar heating systems, Windmills, Windturbines etc.. Kahdi and Village Industries Commission is already involved in a big way in installing Biogas Plants throughout the Country. As the use of Alternative Energy Sources is on the increase, the needfor qualified technical personnel to undertake maintenance and repairs is necessary. There are hundreds of Polytechnic offering Diploma Courses in traditional disciplines like Electrical, Mechanical, Civil etc.. Also Industrial Training Institutes (ITIs) offer Certificate Courses in branches like Fitter, Welder, Draftsman etc..

  2. The risk-adjusted cost evaluation of electric resource alternatives

    SciTech Connect

    Duane, T.P.

    1989-01-01

    Partial deregulation of the electric utility industry has occurred under the Public Utilities Regulatory Policies Act of 1978 (PURPA), which shifts the balance of both costs and risks between rate payers and electric utilities. Cost comparisons of potential electric resource Alternatives currently rely on techniques which do not explicitly incorporate risk consideration. This reflects the traditional role of regulation for rate stabilization. Risk-averse residential rate payers with low demand elasticities may highly value price risk reduction, but risk is not explicitly considered by present planning systems. There is a need to quantify the value of such price risk reduction. This research attempts to develop a Risk-Adjusted Cost Evaluation (RACE) methodology for direct comparisons of competing alternatives by a single risk-adjusted cost criterion. Methodologies have previously been developed for risk pricing in financial and commodities markets, and those techniques are evaluated for extension to the electricity market problem. Each has important deficiencies in the institutional context of electricity markets under PURPA; each also offers important insights for development of a simplified RACE methodology synthesizing those models. The methodology is applied to a large California utility, and major implementation problems are identified. The approach requires strict limiting conditions, and price risk reduction does not have a significant value to residential customers of PG and E. This may be less true for less well-diversified utilities, and several conditions are identified where more detailed assessment of risk implications is warranted. Future risk analyses research should instead focus on large, asymmetric risks. Suggestions are made for assessment of such risks through an insurance market metaphor and decision analysis methods.

  3. An electric generator using living Torpedo electric organs controlled by fluid pressure-based alternative nervous systems

    PubMed Central

    Tanaka, Yo; Funano, Shun-ichi; Nishizawa, Yohei; Kamamichi, Norihiro; Nishinaka, Masahiro; Kitamori, Takehiko

    2016-01-01

    Direct electric power generation using biological functions have become a research focus due to their low cost and cleanliness. Unlike major approaches using glucose fuels or microbial fuel cells (MFCs), we present a generation method with intrinsically high energy conversion efficiency and generation with arbitrary timing using living electric organs of Torpedo (electric rays) which are serially integrated electrocytes converting ATP into electric energy. We developed alternative nervous systems using fluid pressure to stimulate electrocytes by a neurotransmitter, acetylcholine (Ach), and demonstrated electric generation. Maximum voltage and current were 1.5 V and 0.64 mA, respectively, with a duration time of a few seconds. We also demonstrated energy accumulation in a capacitor. The current was far larger than that using general cells other than electrocytes (~pA level). The generation ability was confirmed against repetitive cycles and also after preservation for 1 day. This is the first step toward ATP-based energy harvesting devices. PMID:27241817

  4. An electric generator using living Torpedo electric organs controlled by fluid pressure-based alternative nervous systems

    NASA Astrophysics Data System (ADS)

    Tanaka, Yo; Funano, Shun-Ichi; Nishizawa, Yohei; Kamamichi, Norihiro; Nishinaka, Masahiro; Kitamori, Takehiko

    2016-05-01

    Direct electric power generation using biological functions have become a research focus due to their low cost and cleanliness. Unlike major approaches using glucose fuels or microbial fuel cells (MFCs), we present a generation method with intrinsically high energy conversion efficiency and generation with arbitrary timing using living electric organs of Torpedo (electric rays) which are serially integrated electrocytes converting ATP into electric energy. We developed alternative nervous systems using fluid pressure to stimulate electrocytes by a neurotransmitter, acetylcholine (Ach), and demonstrated electric generation. Maximum voltage and current were 1.5 V and 0.64 mA, respectively, with a duration time of a few seconds. We also demonstrated energy accumulation in a capacitor. The current was far larger than that using general cells other than electrocytes (~pA level). The generation ability was confirmed against repetitive cycles and also after preservation for 1 day. This is the first step toward ATP-based energy harvesting devices.

  5. An electric generator using living Torpedo electric organs controlled by fluid pressure-based alternative nervous systems.

    PubMed

    Tanaka, Yo; Funano, Shun-Ichi; Nishizawa, Yohei; Kamamichi, Norihiro; Nishinaka, Masahiro; Kitamori, Takehiko

    2016-01-01

    Direct electric power generation using biological functions have become a research focus due to their low cost and cleanliness. Unlike major approaches using glucose fuels or microbial fuel cells (MFCs), we present a generation method with intrinsically high energy conversion efficiency and generation with arbitrary timing using living electric organs of Torpedo (electric rays) which are serially integrated electrocytes converting ATP into electric energy. We developed alternative nervous systems using fluid pressure to stimulate electrocytes by a neurotransmitter, acetylcholine (Ach), and demonstrated electric generation. Maximum voltage and current were 1.5 V and 0.64 mA, respectively, with a duration time of a few seconds. We also demonstrated energy accumulation in a capacitor. The current was far larger than that using general cells other than electrocytes (~pA level). The generation ability was confirmed against repetitive cycles and also after preservation for 1 day. This is the first step toward ATP-based energy harvesting devices. PMID:27241817

  6. Community Energy: A Social Architecture for an Alternative Energy Future

    ERIC Educational Resources Information Center

    Hoffman, Steven M.; High-Pippert, Angela

    2005-01-01

    Community energy based on a mix of distributed technologies offers a serious alternative to the current energy system. The nature of community energy and the role that such initiatives might play in the general fabric of civic life is not, however, well understood. Community energy initiatives might involve only those citizens who prefer to be…

  7. Proceedings of the Alternate Energy Systems Seminar

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The Alternative Energy Systems Seminar was held on March 30, 1978, and was sponsored jointly be the Southwest District Office of the U.S. Department of Energy and JPL. The seminar was an experiment in information exchange with the aim of presenting, in a single day, status and prospects for a number of advanced energy systems to a diverse, largely nontechnical audience, and to solicit post-seminar responses from that audience as to the seminar's usefulness. The major systems presented are: (1) Solar Photovoltaic; (2) Geothermal; (3) Cogeneration Power; (4) Solar Thermal; (5) Solar Heating and Cooling; (6) Wind Energy; and (7) Systems Considerations.

  8. Research for electric energy systems

    NASA Astrophysics Data System (ADS)

    Anderson, W. E.

    1993-10-01

    This report documents the technical progress in the two investigations which make up the project 'Support of Research Projects for Electrical Energy Systems,' Department of Energy Task Order Number 137, funded by the US Department of Energy and performed by the Electricity Division of the National Institute of Standards and Technology (NIST). The first investigation is concerned with the measurement of magnetic fields in support of epidemiogical and in vitro studies of biological field effects. During 1992, the derivation of equations which predict differences between the average magnetic flux density using circular coil probes and the flux density at the center of the probe, assuming a dipole magnetic field, were completed. The information gained using these equations allows the determination of measurement uncertainty due to probe size when magnetic fields from many electrical appliances are characterized. Consultations with various state and federal organizations and the development of standards related to electric and magnetic field measurements continued. The second investigation is concerned with two different activities related to compressed-gas insulated high voltage systems: the measurement of dissociative electron attachment cross sections and negative ion production in S2F10, S2OF10, and S2O2F10, and Monte-Carlo simulations of ac-generated partial-discharge pulses that can occur in SF6-insulated power systems and can be sources of gas decomposition.

  9. Research for electric energy systems

    NASA Astrophysics Data System (ADS)

    Anderson, W. E.

    1992-06-01

    This report documents the technical progress in the four investigations which make up the project 'Support of Research Projects for Electrical Energy Systems', Department of Energy Task Order Number 137, funded by the US Department of Energy and performed by the Electricity Division of the National Institute of Standards and Technology (NIST). The first investigation is concerned with the measurement of magnetic fields in support of epidemiogical and in vitro studies of biological field effects. The second investigation is concerned with two different activities: the production of S2F10 in negative corona in SF6 and the measurement of electron scattering and dissociative electron attachment cross sections for SF6 and its electrical by-products. The third investigation is also concerned with tvo different activities: several liquids that are currently used or have potential for use as high voltage dielectrics are studied using conventional impulse breakdown measurement techniques and high-speed photography and advances in partial discharge measurement techniques are presented. The last investigation is concerned with the evaluation and improvement of methods for measuring fast transients in electrical power systems such as might be associated with an electromagnetic impulse.

  10. Thermal to Electric Energy Conversion

    NASA Astrophysics Data System (ADS)

    Hagelstein, Peter L.

    2005-12-01

    As research in the area of excess power production moves forward, issues associated with thermal to electric conversion become increasingly important. This paper provides a brief tutorial on basic issues, including the Carnot limit, entropy, and thermoelectric conversion. Practical thermal to electric conversion is possible well below the Carnot limit, and this leads to a high threshold for self-sustaining operation in Pons-Fleischmann type experiments. Excess power production at elevated temperatures will become increasingly important as we move toward self-sustaining devices and energy production for applications. Excess power production in heat-producing systems that do not require electrical input have an enormous advantage over electrochemical systems. Such systems should be considered seriously within our community in the coming years.

  11. 77 FR 31756 - Energy Conservation Program: Alternative Efficiency Determination Methods and Alternative Rating...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-30

    ... Methods and Alternative Rating Methods: Public Meeting AGENCY: Office of Energy Efficiency and Renewable... proposed modifications to the regulations authorizing the use of alternative methods of determining energy... alternative methods of determining energy efficiency or energy consumption of various consumer products...

  12. Radiant energy to electric energy converter

    NASA Technical Reports Server (NTRS)

    Sher, Arden (Inventor)

    1980-01-01

    Radiant energy is converted into electric energy by irradiating a capacitor including an ionic dielectric. The dielectric is a sintered crystal superionic conductor, e.g., lanthanum trifluoride, lanthanum trichloride, or silver bromide, so that a multiplicity of crystallites exist between electrodes of the capacitor. The radiant energy cyclically irradiates the dielectric so that the dielectric exhibits a cyclic photocapacitive like effect. Adjacent crystallites have abutting surfaces that enable the crystallites to effectively form a multiplicity of series capacitor elements between the electrodes. Each of the capacitor elements has a dipole layer only on or near its surface. The capacitor is initially charged to a voltage just below the dielectric breakdown voltage by connecting it across a DC source causing a current to flow through a charging resistor to the dielectric. The device can be utilized as a radiant energy detector or as a solar energy cell.

  13. Outlook for alternative energy sources. [aviation fuels

    NASA Technical Reports Server (NTRS)

    Card, M. E.

    1980-01-01

    Predictions are made concerning the development of alternative energy sources in the light of the present national energy situation. Particular emphasis is given to the impact of alternative fuels development on aviation fuels. The future outlook for aircraft fuels is that for the near term, there possibly will be no major fuel changes, but minor specification changes may be possible if supplies decrease. In the midterm, a broad cut fuel may be used if current development efforts are successful. As synfuel production levels increase beyond the 1990's there may be some mixtures of petroleum-based and synfuel products with the possibility of some shale distillate and indirect coal liquefaction products near the year 2000.

  14. Electrical appliance energy consumption control methods and electrical energy consumption systems

    DOEpatents

    Donnelly, Matthew K.; Chassin, David P.; Dagle, Jeffery E.; Kintner-Meyer, Michael; Winiarski, David W.; Pratt, Robert G.; Boberly-Bartis, Anne Marie

    2008-09-02

    Electrical appliance energy consumption control methods and electrical energy consumption systems are described. In one aspect, an electrical appliance energy consumption control method includes providing an electrical appliance coupled with a power distribution system, receiving electrical energy within the appliance from the power distribution system, consuming the received electrical energy using a plurality of loads of the appliance, monitoring electrical energy of the power distribution system, and adjusting an amount of consumption of the received electrical energy via one of the loads of the appliance from an initial level of consumption to an other level of consumption different than the initial level of consumption responsive to the monitoring.

  15. Electrical appliance energy consumption control methods and electrical energy consumption systems

    DOEpatents

    Donnelly, Matthew K.; Chassin, David P.; Dagle, Jeffery E.; Kintner-Meyer, Michael; Winiarski, David W.; Pratt, Robert G.; Boberly-Bartis, Anne Marie

    2006-03-07

    Electrical appliance energy consumption control methods and electrical energy consumption systems are described. In one aspect, an electrical appliance energy consumption control method includes providing an electrical appliance coupled with a power distribution system, receiving electrical energy within the appliance from the power distribution system, consuming the received electrical energy using a plurality of loads of the appliance, monitoring electrical energy of the power distribution system, and adjusting an amount of consumption of the received electrical energy via one of the loads of the appliance from an initial level of consumption to an other level of consumption different than the initial level of consumption responsive to the monitoring.

  16. Electric vehicles - an alternative fuels vehicle, emissions, and refueling infrastructure technology assessment

    SciTech Connect

    McCoy, G.A.; Lyons, J.K.

    1993-06-01

    Interest in alternative motor vehicle fuels has grown tremendously over the last few years. The 1990 Clean Air Act Amendments, the National Energy Policy Act of 1992 and the California Clean Air Act are primarily responsible for this resurgence and have spurred both the motor fuels and vehicle manufacturing industries into action. For the first time, all three U.S. auto manufacturers are offering alternative fuel vehicles to the motoring public. At the same time, a small but growing alternative fuels refueling infrastructure is beginning to develop across the country. Although the recent growth in alternative motor fuels use is impressive, their market niche is still being defined. Environmental regulations, a key driver behind alternative fuel use, is forcing both car makers and the petroleum industry to clean up their products. As a result, alternative fuels no longer have a lock on the clean air market and will have to compete with conventionally fuelled vehicles in meeting stringent future vehicle emission standards. The development of cleaner burning gasoline powered vehicles has signaled a shift in the marketing of alternative fuels. While they will continue to play a major part in the clean vehicle market, alternative fuels are increasingly recognized as a means to reduce oil imports. This new role is clearly defined in the National Energy Policy Act of 1992. The Act identifies alternative fuels as a key strategy for reducing imports of foreign oil and mandates their use for federal and state fleets, while reserving the right to require private and municipal fleet use as well. This report discusses electric powered vehicles as an alternative fuels vehicle.

  17. Quantitative Financial Analysis of Alternative Energy Efficiency Shareholder Incentive Mechanisms

    SciTech Connect

    Cappers, Peter; Goldman, Charles; Chait, Michele; Edgar, George; Schlegel, Jeff; Shirley, Wayne

    2008-08-03

    Rising energy prices and climate change are central issues in the debate about our nation's energy policy. Many are demanding increased energy efficiency as a way to help reduce greenhouse gas emissions and lower the total cost of electricity and energy services for consumers and businesses. Yet, as the National Action Plan on Energy Efficiency (NAPEE) pointed out, many utilities continue to shy away from seriously expanding their energy efficiency program offerings because they claim there is insufficient profit-motivation, or even a financial disincentive, when compared to supply-side investments. With the recent introduction of Duke Energy's Save-a-Watt incentive mechanism and ongoing discussions about decoupling, regulators and policymakers are now faced with an expanded and diverse landscape of financial incentive mechanisms, Determining the 'right' way forward to promote deep and sustainable demand side resource programs is challenging. Due to the renaissance that energy efficiency is currently experiencing, many want to better understand the tradeoffs in stakeholder benefits between these alternative incentive structures before aggressively embarking on a path for which course corrections can be time-consuming and costly. Using a prototypical Southwest utility and a publicly available financial model, we show how various stakeholders (e.g. shareholders, ratepayers, etc.) are affected by these different types of shareholder incentive mechanisms under varying assumptions about program portfolios. This quantitative analysis compares the financial consequences associated with a wide range of alternative incentive structures. The results will help regulators and policymakers better understand the financial implications of DSR program incentive regulation.

  18. Solar energy thermally powered electrical generating system

    NASA Technical Reports Server (NTRS)

    Owens, William R. (Inventor)

    1989-01-01

    A thermally powered electrical generating system for use in a space vehicle is disclosed. The rate of storage in a thermal energy storage medium is controlled by varying the rate of generation and dissipation of electrical energy in a thermally powered electrical generating system which is powered from heat stored in the thermal energy storage medium without exceeding a maximum quantity of heat. A control system (10) varies the rate at which electrical energy is generated by the electrical generating system and the rate at which electrical energy is consumed by a variable parasitic electrical load to cause storage of an amount of thermal energy in the thermal energy storage system at the end of a period of insolation which is sufficient to satisfy the scheduled demand for electrical power to be generated during the next period of eclipse. The control system is based upon Kalman filter theory.

  19. Electric energy savings from new technologies

    SciTech Connect

    Moe, R.J.; Harrer, B.J.; Kellogg, M.A.; Lyke, A.J.; Imhoff, K.L.; Fisher, Z.J.

    1986-01-01

    Purpose of the report is to provide information about the electricity-saving potential of new technologies to OCEP that it can use in developing alternative long-term projections of US electricity consumption. Low-, base-, and high-case scenarios of the electricity savings for ten technologies were prepared. The total projected annual savings for the year 2000 for all ten technologies were 137 billion kilowatt hours (BkWh), 279 BkWh, and 470 BkWh, respectively, for the three cases. The magnitude of these savings projections can be gauged by comparing them to the Department's reference case projection for the 1985 National Energy Policy Plan. In the Department's reference case, total consumption in 2000 is projected to be 3319 BkWh. Thus, the savings projected here represent between 4% and 14% of total consumption projected for 2000. Because approximately 75% of the base-case estimate of savings are already incorporated into the reference forecast, reducing projected electricity consumption from what it otherwise would have been, the savings estimated here should not be directly subtracted from the reference forecast.

  20. Hydro and geothermal electricity as an alternative for industrial petroleum consumption in Costa Rica

    SciTech Connect

    Mendis, M.; Park, W.; Sabadell, A.; Talib, A.

    1982-04-01

    This report assesses the potential for substitution of electricity for petroleum in the industrial/agro-industrial sector of Costa Rica. The study includes a preliminary estimate of the process energy needs in this sector, a survey of the principal petroleum consuming industries in Costa Rica, an assessment of the electrical technologies appropriate for substitution, and an analysis of the cost trade offs of alternative fuels and technologies. The report summarizes the total substitution potential both by technical feasibility and by cost effectiveness under varying fuel price scenarios and identifies major institutional constraints to the introduction of electric based technologies. Recommendations to the Government of Costa Rica are presented. The key to the success of a Costa Rican program for substitution of electricity for petroleum in industry rests in energy pricing policy. The report shows that if Costa Rica Bunker C prices are increased to compare equitably with Caribbean Bunker C prices, and increase at 3 percent per annum relative to a special industrial electricity rate structure, the entire substitution program, including both industrial and national electric investment, would be cost effective. The definition of these pricing structures and their potential impacts need to be assessed in depth.

  1. Central airport energy systems using alternate energy sources

    SciTech Connect

    Not Available

    1982-07-01

    The purpose of this project was to develop the concept of a central airport energy system designed to supply energy for aircraft ground support and terminal complex utility systems using municipal waste as a fuel. The major task was to estimate the potential for reducing aircraft and terminal fuel consumption by the use of alternate renewable energy sources. Additional efforts included an assessment of indirect benefits of reducing airport atmospheric and noise pollution.

  2. Electric vehicle energy management system

    NASA Astrophysics Data System (ADS)

    Alaoui, Chakib

    This thesis investigates and analyzes novel strategies for the optimum energy management of electric vehicles (EVs). These are aimed to maximize the useful life of the EV batteries and make the EV more practical in order to increase its acceptability to market. The first strategy concerns the right choice of the batteries for the EV according to the user's driving habits, which may vary. Tests conducted at the University of Massachusetts Lowell battery lab show that the batteries perform differently from one manufacturer to the other. The second strategy was to investigate the fast chargeability of different batteries, which leads to reduce the time needed to recharge the EV battery pack. Tests were conducted again to prove that only few battery types could be fast charged. Test data were used to design a fast battery charger that could be installed in an EV charging station. The third strategy was the design, fabrication and application of an Electric Vehicle Diagnostic and Rejuvenation System (EVDRS). This system is based on Mosfet Controlled Thyristors (MCTs). It is capable of quickly identifying any failing battery(s) within the EV pack and rejuvenating the whole battery pack without dismantling them and unloading them. A novel algorithm to rejuvenate Electric Vehicle Sealed Lead Acid Batteries is described. This rejuvenation extends the useful life of the batteries and makes the EV more competitive. The fourth strategy was to design a thermal management system for EV, which is crucial to the safe operation, and the achievement of normal/optimal performance of, electric vehicle (EV) batteries. A novel approach for EV thermal management, based on Pettier-Effect heat pumps, was designed, fabricated and tested in EV. It shows the application of this type of technology for thermal management of EVs.

  3. Alternatives to dark matter and dark energy

    NASA Astrophysics Data System (ADS)

    Mannheim, Philip D.

    2006-04-01

    We review the underpinnings of the standard Newton Einstein theory of gravity, and identify where it could possibly go wrong. In particular, we discuss the logical independence from each other of the general covariance principle, the equivalence principle and the Einstein equations, and discuss how to constrain the matter energy momentum tensor which serves as the source of gravity. We identify the a priori assumption of the validity of standard gravity on all distance scales as the root cause of the dark matter and dark energy problems, and discuss how the freedom currently present in gravitational theory can enable us to construct candidate alternatives to the standard theory in which the dark matter and dark energy problems could then be resolved. We identify three generic aspects of these alternate approaches: that it is a universal acceleration scale which determines when a luminous Newtonian expectation is to fail to fit data, that there is a global cosmological effect on local galactic motions which can replace galactic dark matter, and that to solve the cosmological constant problem it is not necessary to quench the cosmological constant itself, but only the amount by which it gravitates.

  4. Geothermal alternate energy: Expanding the options

    SciTech Connect

    Pettitt, R.A.; White, A.A.L.

    1984-06-01

    Immense amounts of energy can be obtained from the hot dry rock (HDR) of the earth, as an extension/expansion of the hydrothermal resources. The extraction of usable energy from a HDR reservoir made by hydraulically fracturing the hot, but essentially dry rock between two deep drill holes has been successfully demonstrated at Fenton Hill, New Mexico by the Los Alamos National Laboratory. Depending on the location and depth of future HDR reservoirs, the extracted heat may be either high grade (for generation of electricity), or low grade (for direct-use space heating, food processing, etc.). The circulating hot water can also be used to augment energy production from other energy systems such as boiler feedwater preheat, process heat for synfuel production, or stimulating bacteria growth in cold climates (for instance, more rapid digestion in sewage treatment plants or landfill dumps). When the HDR technology of drilling and fracturing in crystalline rock is coupled with solar energy production, excess summertime heat from solar collection facilities can be transferred and stored in manmade underground reservoirs for wintertime withdrawal and utilization. The same technology can provide huge, but easily accessible, heat sinks for reject industrial heat, creating many options for industry, municipalities, and district heating organizations to integrate energy demands with heat disposal requirements.

  5. Potential alternative energy technologies on the Outer Continental Shelf.

    SciTech Connect

    Elcock, D.; Environmental Assessment

    2007-04-20

    This technical memorandum (TM) describes the technology requirements for three alternative energy technologies for which pilot and/or commercial projects on the U.S. Outer Continental Shelf (OCS) are likely to be proposed within the next five to seven years. For each of the alternative technologies--wind, wave, and ocean current--the TM first presents an overview. After each technology-specific overview, it describes the technology requirements for four development phases: site monitoring and testing, construction, operation, and decommissioning. For each phase, the report covers the following topics (where data are available): facility description, electricity generated, ocean area (surface and bottom) occupied, resource requirements, emissions and noise sources, hazardous materials stored or used, transportation requirements, and accident potential. Where appropriate, the TM distinguishes between pilot-scale (or demonstration-scale) facilities and commercial-scale facilities.

  6. State and Alternative Fuel Provider Fleets Alternative Compliance; U.S. Department of Energy (DOE), Energy Efficiency & Renewable Energy (EERE)

    SciTech Connect

    2015-08-01

    The final rule of the Energy Policy Act of 2005 and its associated regulations enable covered state and alternative fuel provider fleets to obtain waivers from the alternative fuel vehicle (AFV)-acquisition requirements of Standard Compliance. Under Alternative Compliance, covered fleets instead meet a petroleum-use reduction requirement. This guidance document is designed to help fleets better understand the Alternative Compliance option and successfully complete the waiver application process.

  7. The Nuclear Alternative: Energy Production within Ulaanbaatar, Mongolia

    NASA Astrophysics Data System (ADS)

    Liodakis, Emmanouel Georgiou

    2011-06-01

    Over ninety percent of Mongolia's energy load is run through the Central Energy System. This primary grid provides Mongolia's capital, Ulaanbaatar, with the power it uses to function. In the first half of 2010 the Central Energy System managed 1739.45 million kWhs, a 4.6 percent increase from 2009. If this growth rate continues, by 2015 Ulaanbaatar's three power plants will be unable to generate enough heat and electricity to meet the city's needs. Currently, plans have been proposed to rehabilitate the aging coal power plants. However, rising maintenance costs and growing emission levels make the long-term sustainability of this solution uncertain. The following paper analyzes the capital, maintenance, and decommissioning costs associated with the current rehabilitation plans and compares them with a nuclear alternative.

  8. The Nuclear Alternative: Energy Production within Ulaanbaatar, Mongolia

    SciTech Connect

    Liodakis, Emmanouel Georgiou

    2011-06-28

    Over ninety percent of Mongolia's energy load is run through the Central Energy System. This primary grid provides Mongolia's capital, Ulaanbaatar, with the power it uses to function. In the first half of 2010 the Central Energy System managed 1739.45 million kWhs, a 4.6 percent increase from 2009. If this growth rate continues, by 2015 Ulaanbaatar's three power plants will be unable to generate enough heat and electricity to meet the city's needs. Currently, plans have been proposed to rehabilitate the aging coal power plants. However, rising maintenance costs and growing emission levels make the long-term sustainability of this solution uncertain. The following paper analyzes the capital, maintenance, and decommissioning costs associated with the current rehabilitation plans and compares them with a nuclear alternative.

  9. Middle atmosphere electrical energy coupling

    NASA Technical Reports Server (NTRS)

    Hale, L. C.

    1989-01-01

    The middle atmosphere (MA) has long been known as an absorber of radio waves, and as a region of nonlinear interactions among waves. The region of highest transverse conductivity near the top of the MA provides a common return for global thunderstorm, auroral Birkeland, and ionospheric dynamo currents, with possibilities for coupling among them. Their associated fields and other transverse fields map to lower altitudes depending on scale size. Evidence now exists for motion-driven aerosol generators, and for charge trapped at the base of magnetic field lines, both capable of producing large MA electric fields. Ionospheric Maxwell currents (curl H) parallel to the magnetic field appear to map to lower altitudes, with rapidly time-varying components appearing as displacement currents in the stratosphere. Lightning couples a (primarily ELF and ULF) current transient to the ionosphere and magnetosphere whose wave shape is largely dependent on the MA conductivity profile. Electrical energy is of direct significance mainly in the upper MA, but electrodynamic transport of minor constituents such as smoke particles or CN may be important at other altitudes.

  10. Electrical Characteristics of an Alternating Current Plasma Igniter in Airflow

    NASA Astrophysics Data System (ADS)

    Zhao, Bingbing; He, Liming; Du, Hongliang; Zhang, Hualei

    2014-04-01

    The electrical characteristics of an alternating current (AC) plasma igniter were investigated for a working gas of air at atmospheric pressure. The discharge voltage and current were measured in air in both breakdown and stable combustion processes, respectively, and the current-zero phenomena, voltage-current (V-I) characteristics were studied for different working gas flow rates. The results indicated that the working gas between anode and cathode could be ionized to generate gas discharge when the voltage reached 8 kV, and the maximum current was 33.36 A. When the current came to zero, current-zero phenomena appeared with duration of 2 μs. At the current-zero moment, dynamic resistance between electrodes became extremely high, and the maximum value could reach 445 kΩ, which was the main factor to restrain the current. With increasing working gas flow rates, the gradient of V-I characteristic curves was increased, as was the dynamic resistance. At a constant driven power, the discharge voltage increased.

  11. Electrical stimulation for difficult wounds: only an alternative procedure?

    PubMed

    Fraccalvieri, Marco; Salomone, Marco; Zingarelli, Enrico M; Rivarossa, Filippo; Bruschi, Stefano

    2015-12-01

    In the wound healing research, the exact mechanism of action of different modalities of electrical stimulation (ES) remains controversial and unresolved. In this study we discuss a particular ES, with a different type of waveform, corresponding to the principle of stochastic resonance. Between July 2008 and May 2010, 32 patients were enrolled and ES was applied to wounds using the bioelectrical signal therapy (BST) device (LifeWave, Petach Tiqwa, Israel). The outcome evaluated in group 1 (n = 21) was wound healing, while group 2 (n = 11) was evaluated for wound-related pain [Visual Number Scale (VNS) pain scale] during treatment. In group 1, 87% of the wounds closed in an average time of 97 days (range 10-150 days); three patients were lost to follow-up. In group 2, 45% of the patients experienced a complete pain disappearance after 7 days of treatment; 36% reported a reduction in VNS from 9·3 to 3·2 in 7 days; 19% stopped morphine-like painkillers after 2 weeks. The clinical application of the stochastic resonance enables the usage of easy-to-use, non-invasive, painless and pain-relief treatment. Our experience with ES has demonstrated the BST device to be a very good alternative in cases of small size defects, compared with other therapies such as surgery, dressing and negative pressure devices. PMID:24443795

  12. Understanding and accepting fusion as an alternative energy source

    SciTech Connect

    Goerz, D.A.

    1987-12-10

    Fusion, the process that powers our sun, has long promised to be a virtually inexhaustible source of energy for mankind. No other alternative energy source holds such bright promise, and none has ever presentd such formidable scientific and engineering challenges. Serious research efforts have continued for over 30 years in an attempt to harness and control fusion here on earth. Scientists have made considerable progress in the last decade toward achieving the conditions required for fusion power, and recent experimental results and technological progress have made the scientific feasibility of fusion a virtual certainty. With this knowledge and confidence, the emphasis can now shift toward developing power plants that are practical and economical. Although the necessary technology is not in hand today, the extension to an energy producing system in 20 years is just as attainable as was putting a man on the moon. In the next few decades, the world's population will likely double while the demand for energy will nearly quadruple. Realistic projections show that within the next generation a significant fraction of our electric power must come from alternative energy sources. Increasing environmental concerns may further accelerate this timetable in which new energy sources must be introduced. The continued development of fusion systems to help meet the energy needs of the future will require greater public understanding and support of this technology. The fusion community must do more to make the public aware of the fact that energy is a critical international issue and that fusion is a viable and necessary energy technology that will be safe and economical. 12 refs., 8 figs.

  13. Southern California Edison bets on energy alternatives

    NASA Astrophysics Data System (ADS)

    Riley, W. B.

    1981-08-01

    A 10-MW solar-thermal generating plant and a 100-MW integrated coal-gasification combined cycle (IGCC) power facility are being built to develop a wide range of renewable, alternative power sources by 1990. The solar-thermal generating plant will use steam at 500 C and 100 kg/sq cm to produce 10 MW of electricity. It consists of a 1818 heliostat array, each weighing 1155 kg and having 12 mirrors which are rotated at either 0.25 deg/min (for sun following) or 22.5 deg/min (for major focusing and defocusing). A master control system allows both fully automatic and manual operation, and a beam-characterization system permits the operator to check the alignment of each heliostat individually. A central receiver, consisting of 24 panels of tubing, produces steam at 500 C and 100 kg/sq cm. The thermal storage unit uses crushed granite to absorb 50 kWht/cu m, allowing the plant to operate after sundown. The IGCC plant integrates the coal-gasification plant and the combined-cycle unit, demonstrating operational flexibility and reliability, load-following capability, and compliance with environmental regulations. The gasifier produces 79,300 cu m/h of a mixture of 51% CO and 36% H at 1370 C,and the gas turbine regenerates 65 MW through its own generator.

  14. NV Energy Electricity Storage Valuation

    SciTech Connect

    Ellison, James F.; Bhatnagar, Dhruv; Samaan, Nader A.; Jin, Chunlian

    2013-06-30

    This study examines how grid-level electricity storage may benet the operations of NV Energy in 2020, and assesses whether those benets justify the cost of the storage system. In order to determine how grid-level storage might impact NV Energy, an hourly production cost model of the Nevada Balancing Authority (\\BA") as projected for 2020 was built and used for the study. Storage facilities were found to add value primarily by providing reserve. Value provided by the provision of time-of-day shifting was found to be limited. If regulating reserve from storage is valued the same as that from slower ramp rate resources, then it appears that a reciprocating engine generator could provide additional capacity at a lower cost than a pumped storage hydro plant or large storage capacity battery system. In addition, a 25-MW battery storage facility would need to cost $650/kW or less in order to produce a positive Net Present Value (NPV). However, if regulating reserve provided by storage is considered to be more useful to the grid than that from slower ramp rate resources, then a grid-level storage facility may have a positive NPV even at today's storage system capital costs. The value of having storage provide services beyond reserve and time-of-day shifting was not assessed in this study, and was therefore not included in storage cost-benefit calculations.

  15. Integrated alternative energy systems for use in small communities

    NASA Astrophysics Data System (ADS)

    Thornton, J.

    1982-01-01

    This paper summarizes the principles and conceptual design of an integrated alternative energy system for use in typical farming communities in developing countries. A system is described that, utilizing the Sun and methane produced from crop waste, would supply sufficient electric and thermal energy to meet the basic needs of villagers for water pumping, lighting, and cooking. The system is sized to supply enough pumping capacity to irrigate 101 ha (249 acres) sufficiently to optimize annual crop yields for the community. Three economic scenarios were developed, showing net benefits to the community of $3,578 to $15,547 anually, payback periods of 9.5 to 20 years, and benefit-to-cost ratios of 1.1 to 1.9.

  16. The Final Report: 1975 Energy Resource Alternatives Competition.

    ERIC Educational Resources Information Center

    Radtke, Mark L.; And Others

    This publication describes the projects entered in the Energy Resource Alternatives competition in 1975. Teams of engineering students were given a year to develop non-conventional or alternative energy systems that produced useful energy outputs. Besides an overview of energy sources and uses and discussions of the competitions development, the…

  17. Electrical Energy Storage for Renewable Energy Systems

    SciTech Connect

    Helms, C. R.; Cho, K. J.; Ferraris, John; Balkus, Ken; Chabal, Yves; Gnade, Bruce; Rotea, Mario; Vasselli, John

    2012-08-31

    This program focused on development of the fundamental understanding necessary to significantly improve advanced battery and ultra-capacitor materials and systems to achieve significantly higher power and energy density on the one hand, and significantly lower cost on the other. This program spanned all the way from atomic-level theory, to new nanomaterials syntheses and characterization, to system modeling and bench-scale technology demonstration. Significant accomplishments are detailed in each section. Those particularly noteworthy include: • Transition metal silicate cathodes with 2x higher storage capacity than commercial cobalt oxide cathodes were demonstrated. • MnO₂ nanowires, which are a promising replacement for RuO₂, were synthesized • PAN-based carbon nanofibers were prepared and characterized with an energy density 30-times higher than current ultracapacitors on the market and comparable to lead-acid batteries • An optimization-based control strategy for real-time power management of battery storage in wind farms was developed and demonstrated. • PVDF films were developed with breakdown strengths of > 600MVm⁻¹, a maximum energy density of approximately 15 Jcm⁻³, and an average dielectric constant of 9.8 (±1.2). Capacitors made from these films can support a 10-year lifetime operating at an electric field of 200 MV m⁻¹. This program not only delivered significant advancements in fundamental understanding and new materials and technology, it also showcased the power of the cross-functional, multi-disciplinary teams at UT Dallas and UT Tyler for such work. These teams are continuing this work with other sources of funding from both industry and government.

  18. Noise around electrical energy substations

    NASA Astrophysics Data System (ADS)

    Diniz, Fabiano B.; Zannin, Paulo H.

    2005-09-01

    This survey is intended to characterize the noise impact due to electrical energy substations in the city of Curitiba over the population living in their vicinity. This impact has been studied with the aid of a computational tool capable of mapping the acoustical field of substations and their vicinity. Several factors have been considered in this survey: sound power of the transformers; vehicle flow on the surrounding roads; positioning of the firewalls, of the buildings and of the walls; terrain topography. Seven substations have been analyzed, and acoustical maps have been traced for each of them for the day and night periods. With these maps it was possible to visualize what was the incident noise levels on the building facades. The predicted noise levels have been compared to the environmental legislation of the noise emissions in effect in the city. Finally the construction of noise barrier walls surrounding the transformers has been simulated, via the software, for some cases, in order to evaluate the reduction on the acoustical discomfort caused by the transformers over the neighborhood population.

  19. Energy Teaching Centers--One Good Way to Explore Alternatives

    ERIC Educational Resources Information Center

    Kenick, Lois E.

    1976-01-01

    Proposes the development of community centers in which school children, parents, and homeowners can be educated in areas of energy conservation and alternative fuel sources. Provides brief passages on some of the most promising alternative fuels. (CP)

  20. Electrical energy consumption control apparatuses and electrical energy consumption control methods

    DOEpatents

    Hammerstrom, Donald J.

    2012-09-04

    Electrical energy consumption control apparatuses and electrical energy consumption control methods are described. According to one aspect, an electrical energy consumption control apparatus includes processing circuitry configured to receive a signal which is indicative of current of electrical energy which is consumed by a plurality of loads at a site, to compare the signal which is indicative of current of electrical energy which is consumed by the plurality of loads at the site with a desired substantially sinusoidal waveform of current of electrical energy which is received at the site from an electrical power system, and to use the comparison to control an amount of the electrical energy which is consumed by at least one of the loads of the site.

  1. Electric Vehicles Mileage Extender Kinetic Energy Storage

    NASA Astrophysics Data System (ADS)

    Jivkov, Venelin; Draganov, Vutko; Stoyanova, Yana

    2015-03-01

    The proposed paper considers small urban vehicles with electric hybrid propulsion systems. Energy demands are examined on the basis of European drive cycle (NEUDC) and on an energy recuperation coefficient and are formulated for description of cycle energy transfers. Numerical simulation results show real possibilities for increasing in achievable vehicle mileage at the same energy levels of a main energy source - the electric battery. Kinetic energy storage (KES), as proposed to be used as an energy buffer and different structural schemes of the hybrid propulsion system are commented. Minimum energy levels for primary (the electric battery) and secondary (KES) sources are evaluated. A strategy for reduced power flows control is examined, and its impact on achievable vehicle mileage is investigated. Results show an additional increase in simulated mileage at the same initial energy levels.

  2. Electrical power distribution control methods, electrical energy demand monitoring methods, and power management devices

    DOEpatents

    Chassin, David P.; Donnelly, Matthew K.; Dagle, Jeffery E.

    2006-12-12

    Electrical power distribution control methods, electrical energy demand monitoring methods, and power management devices are described. In one aspect, an electrical power distribution control method includes providing electrical energy from an electrical power distribution system, applying the electrical energy to a load, providing a plurality of different values for a threshold at a plurality of moments in time and corresponding to an electrical characteristic of the electrical energy, and adjusting an amount of the electrical energy applied to the load responsive to an electrical characteristic of the electrical energy triggering one of the values of the threshold at the respective moment in time.

  3. Electrical power distribution control methods, electrical energy demand monitoring methods, and power management devices

    DOEpatents

    Chassin, David P.; Donnelly, Matthew K.; Dagle, Jeffery E.

    2011-12-06

    Electrical power distribution control methods, electrical energy demand monitoring methods, and power management devices are described. In one aspect, an electrical power distribution control method includes providing electrical energy from an electrical power distribution system, applying the electrical energy to a load, providing a plurality of different values for a threshold at a plurality of moments in time and corresponding to an electrical characteristic of the electrical energy, and adjusting an amount of the electrical energy applied to the load responsive to an electrical characteristic of the electrical energy triggering one of the values of the threshold at the respective moment in time.

  4. Energy Conversion Alternatives Study (ECAS), Westinghouse phase 1. Volume 4: Open recuperated and bottomed gas turbine cycles. [performance prediction and energy conversion efficiency of gas turbines in electric power plants (thermodynamic cycles)

    NASA Technical Reports Server (NTRS)

    Amos, D. J.; Grube, J. E.

    1976-01-01

    Open-cycle recuperated gas turbine plant with inlet temperatures of 1255 to 1644 K (1800 to 2500 F) and recuperators with effectiveness values of 0, 70, 80 and 90% are considered. A 1644 K (2500 F) gas turbine would have a 33.5% plant efficiency in a simple cycle, 37.6% in a recuperated cycle and 47.6% when combined with a sulfur dioxide bottomer. The distillate burning recuperated plant was calculated to produce electricity at a cost of 8.19 mills/MJ (29.5 mills/kWh). Due to their low capital cost $170 to 200 $/kW, the open cycle gas turbine plant should see duty for peaking and intermediate load duty.

  5. Alternating-Current Motor Drive for Electric Vehicles

    NASA Technical Reports Server (NTRS)

    Krauthamer, S.; Rippel, W. E.

    1982-01-01

    New electric drive controls speed of a polyphase as motor by varying frequency of inverter output. Closed-loop current-sensing circuit automatically adjusts frequency of voltage-controlled oscillator that controls inverter frequency, to limit starting and accelerating surges. Efficient inverter and ac motor would give electric vehicles extra miles per battery charge.

  6. Metal oxide electrocatalysts for alternative energy technologies

    NASA Astrophysics Data System (ADS)

    Pacquette, Adele Lawren

    This dissertation focuses on the development of metal oxide electrocatalysts with varying applications for alternative energy technologies. Interest in utilizing clean, renewable and sustainable sources of energy for powering the planet in the future has received much attention. This will address the growing concern of the need to reduce our dependence on fossil fuels. The facile synthesis of metal oxides from earth abundant metals was explored in this work. The electrocatalysts can be incorporated into photoelectrochemical devices, fuel cells, and other energy storage devices. The first section addresses the utilization of semiconductors that can harness solar energy for water splitting to generate hydrogen. An oxysulfide was studied in order to combine the advantageous properties of the stability of metal oxides and the visible light absorbance of metal chalcogenides. Bi 2O2S was synthesized under facile hydrothermal conditions. The band gap of Bi2O2S was smaller than that of its oxide counterpart, Bi2O3. Light absorption by Bi 2O2S was extended to the visible region (>600 nm) in comparison to Bi2O3. The formation of a composite with In 2O3 was formed in order to create a UV irradiation protective coating of the Bi2O2S. The Bi2O2S/In 2O3 composite coupled with a dye CrTPP(Cl) and cocatalysts Pt and Co3O4 was utilized for water splitting under light irradiation to generate hydrogen and oxygen. The second section focuses on improving the stability and light absorption of semiconductors by changing the shapes and morphologies. One of the limitations of semiconductor materials is that recombination of electron-hole pairs occur within the bulk of the materials instead of migration to the surface. Three-dimensional shapes, such as nanorods, can prevent this recombination in comparison to spherical particles. Hierarchical structures, such as dendrites, cubes, and multipods, were synthesized under hydrothermal conditions, in order to reduce recombination and improve

  7. MERCURY USAGE AND ALTERNATIVES IN THE ELECTRICAL AND ELECTRONICS INDUSTRIES

    EPA Science Inventory

    Many industries have already found alternatives for mercury or have greatly decreased mercury use. However, the unique electromechanical and photoelectric properties of mercury and mercury compounds have made replacement of mercury difficult in some applications. This study was i...

  8. MERCURY USAGE AND ALTERNATING IN THE ELECTRICAL AND ELECTRONICS INDUSTRIES

    EPA Science Inventory

    Many industries have already found alternatives for mercury or have greatly decreased mercury use. owever, the unique electromechanical and photoelectric properties of mercury and mercury compounds have made replacement of mercury difficult in some applications. his study was ini...

  9. Electric load management and energy conservation

    NASA Technical Reports Server (NTRS)

    Kheir, N. A.

    1976-01-01

    Electric load management and energy conservation relate heavily to the major problems facing power industry at present. The three basic modes of energy conservation are identified as demand reduction, increased efficiency and substitution for scarce fuels. Direct and indirect load management objectives are to reduce peak loads and have future growth in electricity requirements in such a manner to cause more of it to fall off the system's peak. In this paper, an overview of proposed and implemented load management options is presented. Research opportunities exist for the evaluation of socio-economic impacts of energy conservation and load management schemes specially on the electric power industry itself.

  10. Washoe Tribe Alternative Energy Feasibility Study Final Report

    SciTech Connect

    Johnson, Jennifer

    2014-10-01

    The Washoe Tribe of Nevada and California was awarded funding to complete the Washoe Tribe Alternative Energy Feasibility Study project. The main goal of the project was to complete an alternative energy feasibility study. This study was completed to evaluate “the potential for development of a variety of renewable energy projects and to conduct an alternative energy feasibility study that determines which alternative energy resources have the greatest economic opportunity for the Tribe, while respecting cultural and environmental values” (Baker-Tilly, 2014). The study concluded that distributed generation solar projects are the best option for renewable energy development and asset ownership for the Washoe Tribe. Concentrating solar projects, utility scale wind projects, geothermal, and biomass resource projects were also evaluated during the study and it was determined that these alternatives would not be feasible at this time.

  11. Revitalize Electrical Program with Renewable Energy Focus

    ERIC Educational Resources Information Center

    Karns, Robert J.

    2012-01-01

    Starting a renewable energy technology (RET) program can be as simple as shifting the teaching and learning focus of a traditional electricity program toward energy production and energy control systems. Redirecting curriculum content and delivery to address photovoltaic solar (PV solar) technology and small wind generation systems is a natural…

  12. Use of Geothermal Energy for Electric Power Generation

    SciTech Connect

    Mashaw, John M.; Prichett, III, Wilson

    1980-10-23

    The National Rural Electric Cooperative Association and its 1,000 member systems are involved in the research, development and utilization of many different types of supplemental and alternative energy resources. We share a strong commitment to the wise and efficient use of this country's energy resources as the ultimate answer to our national prosperity and economic growth. WRECA is indebted to the United States Department of Energy for funding the NRECA/DOE Geothermal Workshop which was held in San Diego, California in October, 1980. We would also like to express our gratitude to each of the workshop speakers who gave of their time, talent and experience so that rural electric systems in the Western U. S. might gain a clearer understanding of the geothermal potential in their individual service areas. The participants were also presented with practical, expert opinion regarding the financial and technical considerations of using geothermal energy for electric power production. The organizers of this conference and all of those involved in planning this forum are hopeful that it will serve as an impetus toward the full utilization of geothermal energy as an important ingredient in a more energy self-sufficient nation. The ultimate consumer of the rural electric system, the member-owner, expects the kind of leadership that solves the energy problems of tomorrow by fully utilizing the resources at our disposal today.

  13. Electric utility applications of hydrogen energy storage systems

    SciTech Connect

    Swaminathan, S.; Sen, R.K.

    1997-10-15

    This report examines the capital cost associated with various energy storage systems that have been installed for electric utility application. The storage systems considered in this study are Battery Energy Storage (BES), Superconducting Magnetic Energy Storage (SMES) and Flywheel Energy Storage (FES). The report also projects the cost reductions that may be anticipated as these technologies come down the learning curve. This data will serve as a base-line for comparing the cost-effectiveness of hydrogen energy storage (HES) systems in the electric utility sector. Since pumped hydro or compressed air energy storage (CAES) is not particularly suitable for distributed storage, they are not considered in this report. There are no comparable HES systems in existence in the electric utility sector. However, there are numerous studies that have assessed the current and projected cost of hydrogen energy storage system. This report uses such data to compare the cost of HES systems with that of other storage systems in order to draw some conclusions as to the applications and the cost-effectiveness of hydrogen as a electricity storage alternative.

  14. Alternative Energy Curriculum for Trade and Industry Exploratory. Final Report.

    ERIC Educational Resources Information Center

    University of Central Arkansas, Conway.

    This study was a descriptive curriculum research project covering the development of learning packets on alternative energy. The purpose of the project was to improve instruction in trades and industry exploratory programs by providing alternative energy materials. It was anticipated that the use of a prepared learning package would facilitate the…

  15. Alternative Energy: A Bay Area Reference Center Workshop. Proceedings.

    ERIC Educational Resources Information Center

    Roberts, Kay, Ed.; And Others

    Presented are proceedings and related documents of a workshop on alternative energy resources which was held in April, 1980. This information is intended to bring reference librarians up to date on alternative energy technologies and available reference materials to which library patrons may be directed. Among the speeches included are those…

  16. Phase 1 STTR flywheel motor/alternator for hybrid electric vehicles. CRADA final report

    SciTech Connect

    McKeever, J.W.; Scudiere, M.B.; Ott, G.W. Jr.; White, C.P.; Kessinger, R.L. Jr.; Robinson, S.T.; Seymour, K.P.; Dockstadter, K.D.

    1997-12-31

    Visual Computing Systems (VCS) and the Oak Ridge National Laboratory (ORNL) have teamed, through a Phase 1 Small Business Technology Transfer (STTR) grant from the US Department of Energy (DOE), to develop an advanced, low-cost motor/alternator drive system suitable for Flywheel Energy Storage (FES) applications. During Phase 1, system performance and design requirements were established, design concepts were generated, and preliminary motor/alternator designs were developed and analyzed. ORNL provided mechanical design and finite element collaboration and Lynx Motion Technology, a spin-off from VCS to commercialize their technology, constructed a proof-of-concept axial-gap permanent magnet motor/alternator that employed their Segmented Electromagnetic Array (SEMA) with a survivable design speed potential of 10,000 rpm. The VCS motor/alternator was successfully tested in ORNL`s Motor Test Tank using an ORNL inverter and ORNL control electronics. It was first operated as an unloaded motor to 6,000 rpm and driven as an unloaded generator to 6,000 rpm. Output from the generator was then connected to a resistance bank, which caused the loaded generator to decelerate to 3,860 rpm where data was collected. After about 4-1/2 minutes, the test was terminated because of an impact noise. Subsequent inspection and operation at low speeds did not reveal the source of the noise. Electrical performance of the motor was excellent, encouraging continued development of this technology. Phase 2 efforts will focus on further design development and optimization, manufacturing development and prototype construction, testing, and evaluation.

  17. Energy Conversion Alternatives Study (ECAS), Westinghouse phase 1. Volume 2: Materials considerations. [materials used in boilers and heat exchangers of energy conversion systems for electric power plants using coal

    NASA Technical Reports Server (NTRS)

    Thomas, D. E.

    1976-01-01

    Extensive studies are presented which were carried out on materials behavior in nine advanced energy conversion systems employing coal and coal-derived fuels. The areas of materials behavior receiving particular attention in this regard are: (1) fireside corrosion and erosion in boiler and heat exchanger materials, (2) oxidation and hot corrosion of gas turbine materials, (3) liquid metal corrosion and mass transport, (4) high temperature steam corrosion, (5) compatability of materials with coal slag and MHD seed, (6) reaction of materials with impure helium, (7) allowable stresses for boiler and heat exchanger materials, (8) environmental effects on mechanical properties, and (9) liquid metal purity control and instrumentation. Such information was then utilized in recommending materials for use in the critical components of the power systems, and at the same time to identify materials problem areas and to evaluate qualitatively the difficulty of solving those problems. Specific materials recommendations for critical components of the nine advanced systems under study are contained in summary tables.

  18. ECAS Phase I fuel cell results. [Energy Conservation Alternatives Study

    NASA Technical Reports Server (NTRS)

    Warshay, M.

    1978-01-01

    This paper summarizes and discusses the fuel cell system results of Phase I of the Energy Conversion Alternatives Study (ECAS). Ten advanced electric powerplant systems for central-station baseload generation using coal were studied by NASA in ECAS. Three types of low-temperature fuel cells (solid polymer electrolyte, SPE, aqueous alkaline, and phosphoric acid) and two types of high-temperature fuel cells (molten carbonate, MC, and zirconia solid electrolyte, SE) were studied. The results indicate that (1) overall efficiency increases with fuel cell temperature, and (2) scale-up in powerplant size can produce a significant reduction in cost of electricity (COE) only when it is accompanied by utilization of waste fuel cell heat through a steam bottoming cycle and/or integration with a gasifier. For low-temperature fuel cell systems, the use of hydrogen results in the highest efficiency and lowest COE. In spite of higher efficiencies, because of higher fuel cell replacement costs integrated SE systems have higher projected COEs than do integrated MC systems. Present data indicate that life can be projected to over 30,000 hr for MC fuel cells, but data are not yet sufficient for similarly projecting SE fuel cell life expectancy.

  19. Bioethics Symposium: Electric, Gas, or Religious Slaughter Alternatives

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The question that I was asked to address was: Is electrical stunning ethical? A stunning method would be considered ethical if the following criteria were attained. 1) Stunning results in a rapid onset of unconsciousness within a minimal time and with a minimal perception of pain. 2) The durat...

  20. Mesoporous Carbon-based Materials for Alternative Energy Applications

    NASA Astrophysics Data System (ADS)

    Cross, Kimberly Michelle

    Increasing concerns for the escalating issues activated by the effect of carbon dioxide emissions on the global climate from extensive use of fossil fuels and the limited amount of fossil resources has led to an in-depth search for alternative energy systems, primarily based on nuclear or renewable energy sources. Recent innovations in the production of more efficient devices for energy harvesting, storage, and conversion are based on the incorporation of nanostructured materials into electrochemical systems. The aforementioned nano-electrochemical energy systems hold particular promise for alternative energy transportation related technologies including fuel cells, hydrogen storage, and electrochemical supercapacitors. In each of these devices, nanostructured materials can be used to increase the surface area where the critical chemical reactions occur within the same volume and mass, thereby increasing the energy density, power density, electrical efficiency, and physical robustness of the system. Durable corrosion resistant carbon support materials for fuel cells have been designed by adding conductive low cost carbon materials with chemically robust ceramic materials. Since a strict control of the pore size is mandatory to optimize properties for improved performance, chemical activation agents have been utilized as porogens to tune surface areas, pore size distributions, and composition of carbon-based mesoporous materials. Through the use of evaporative self-assembly methods, both randomly disordered and surfactant-templated, ordered carbon-silica nanocomposites have been synthesized with controlled surface area, pore volume, and pore size ranging from 50-800 m2/g, 0.025-0.75 cm3/g, and 2-10 nm, respectively. Multi-walled carbon nanotubes (MWNTs) ranging from 0.05-1.0 wt. % were added to the aforementioned carbon-silica nanocomposites, which provided an additional increase in surface area and improved conductivity. Initially, a conductivity value of 0.0667 S

  1. Decentralized energy systems for clean electricity access

    NASA Astrophysics Data System (ADS)

    Alstone, Peter; Gershenson, Dimitry; Kammen, Daniel M.

    2015-04-01

    Innovative approaches are needed to address the needs of the 1.3 billion people lacking electricity, while simultaneously transitioning to a decarbonized energy system. With particular focus on the energy needs of the underserved, we present an analytic and conceptual framework that clarifies the heterogeneous continuum of centralized on-grid electricity, autonomous mini- or community grids, and distributed, individual energy services. A historical analysis shows that the present day is a unique moment in the history of electrification where decentralized energy networks are rapidly spreading, based on super-efficient end-use appliances and low-cost photovoltaics. We document how this evolution is supported by critical and widely available information technologies, particularly mobile phones and virtual financial services. These disruptive technology systems can rapidly increase access to basic electricity services and directly inform the emerging Sustainable Development Goals for quality of life, while simultaneously driving action towards low-carbon, Earth-sustaining, inclusive energy systems.

  2. An alternative isolated wind electric pumping system using induction machines

    SciTech Connect

    Miranda, M.S.; Lyra, R.O.C.; Silva, S.R.

    1999-12-01

    An isolated variable speed variable frequency wind electric pumping system is proposed. Induction machines are used both in the generation unit as well as in the pumping unit and a static VAR compensator is used for providing the magnetizing currents of both machines. An indirect induction generator stator flux control strategy is adopted. System steady state and dynamic operation is studied basing on simulation and experimental results.

  3. Effect of gel structure of matrix orientation in pulsed alternating electric fields

    SciTech Connect

    Stellwagen, N.C.; Stellwagen, J.

    1993-12-31

    Four polymeric gels with different structures, LE agarose, HEEO agarose, beta-carrageenan, and polyacrylamide, were studied by transient electric birefringence to determine the importance of various structural features on the orientation of the gels in pulsed alternating electric fields. The birefrigence relaxation times observed for agarose gels in low voltage electric fields suggest that long fibers and/or domains, ranging up to tens of microns in size, are oriented by the electric field. The sign of the birefringence reverses when the direction of the electric field is reversed, suggesting that the oriented domains change their direction of orientation from parallel to perpendicular (or vice versa) when the polarity of the electric field is reversed. These anamalous orientation effects are observed with both types of agarose gels, but not with beta-carrageenan or polyacrylamide gels, suggesting that the alternating D,L galactose residues in the agarose backbone are responsible for the anomalies.

  4. Comparative health and safety assessment of the SPS and alternative electrical generation systems

    NASA Technical Reports Server (NTRS)

    Habegger, L. J.; Gasper, J. R.; Brown, C. D.

    1980-01-01

    A comparative analysis of health and safety risks is presented for the Satellite Power System and five alternative baseload electrical generation systems: a low-Btu coal gasification system with an open-cycle gas turbine combined with a steam topping cycle; a light water fission reactor system without fuel reprocessing; a liquid metal fast breeder fission reactor system; a central station terrestrial photovoltaic system; and a first generation fusion system with magnetic confinement. For comparison, risk from a decentralized roof-top photovoltaic system with battery storage is also evaluated. Quantified estimates of public and occupational risks within ranges of uncertainty were developed for each phase of the energy system. The potential significance of related major health and safety issues that remain unquantitied are also discussed.

  5. Research for Electric Energy Systems

    SciTech Connect

    Anderson, W.E.

    1991-06-01

    This report documents the technical progress in investigations. The first investigation is concerned with the measurement of magnetic fields in support of epidemiogical and in vitro studies of biological field effects. NIST cohosted a workshop on exposure and biological parameters that should be considered during the vitro studies with extremely low frequency (ELF) magnetic and electric fields. Also, equations were developed to predict the magnetic field in a parallel plate magnetic field exposure system. The second investigation is concerned with two different activities: the detection of trace levels of S{sub 2}F{sub 10} in SF{sub 6} and the development of an improved stochastic analyzer for pulsating phenomena (SAPP). The detection of S{sub 2}F{sub 10} in the presence of SF{sub 6} using mass-spectrometric detection coupled to a gas chromatograph is difficult because of the similar mass spectra. A technique is described that enables the detection of S{sub 2}F{sub 10} in gaseous SF{sub 6} down to the ppb level using a modified gas chromatograph-mass spectrometer. The new system was applied to an investigation of the stochastic behavior of negative corona (Trichel pulses) and the effect of a dielectric barrier on these discharges. The third investigation is concerned with breakdown and prebreakdown phenomena in liquid dielectrics. The activity reported here was a study of negative steamers preceding electric breakdown in hexanes. Using the image preserving optical delay, the growth of the streamers associated with partial discharges at a point cathode are photographed at high magnification. The last investigation is concerned with the evaluation and improvement of methods for measuring fast transients in electrical power systems such as might be associated with an electromagnetic impulse. A compact resistive divider, NIST4, was designed. It is anticipated that this divider together with some Kerr electro-optical devices will be used as the reference system at NIST.

  6. The Harnessed Atom: Nuclear Energy & Electricity.

    ERIC Educational Resources Information Center

    Department of Energy, Washington, DC. Nuclear Energy Office.

    This document is part of a nuclear energy curriculum designed for grades six through eight. The complete kit includes a written text, review exercises, activities for the students, and a teachers guide. The 19 lessons in the curriculum are divided into four units including: (1) "Energy and Electricity"; (2) "Understanding Atoms and Radiation"; (3)…

  7. High Power Alternator Test Unit (ATU) Electrical System Test

    NASA Technical Reports Server (NTRS)

    Birchenough, Arthur; Hervol, David

    2007-01-01

    The Alternator Test Unit (ATU) in the Lunar Power System Facility (LPSF) located at the NASA Glenn Research Center (GRC) in Cleveland, OH was used to simulate the operating conditions and evaluate the performance of the ATU and it s interaction with various LPSF components in accordance with the JIMO AC Power System Requirements. The testing was carried out at the breadboard development level. Results of these tests will be used for the development and validation of analytical models for performance and lifetime prediction.

  8. Energy Efficient Alternatives to Chlorofluorocarbons (CFCs)

    SciTech Connect

    1993-06-01

    An assessment of the state of the art in refrigeration and insulation technologies is carried out to evaluate the potential for efficient substitutes for CFCs and HCFCs to facilitate the transition to a CFC-free environment. Opportunities for improved efficiency in domestic refrigeration, building chillers, commercial refrigeration and industrial refrigeration are evaluated. Needs for alternate refrigerants, improved components, and/or alternate cycles are identified. A summary of on-going research is presented in each area, and the potential roles of industry and government are considered. The most promising approaches for refrigeration technology fall into these categories: (1) improved vapor compressor cycles with alternate fluids, (2) Stirling cycle development and (3) advances in absorption technology. A summary of on-going research into advanced insulation, focused on vacuum-based insulation technology refrigeration is developed. Insulation applications considered include appliances, transport refrigeration, and buildings. Specific recommendations for a long-term R&D agenda are presented. The potential benefits, research, general approach, and probability of success are addressed.

  9. Low-energy control of electrical turbulence in the heart

    NASA Astrophysics Data System (ADS)

    Luther, Stefan; Fenton, Flavio H.; Kornreich, Bruce G.; Squires, Amgad; Bittihn, Philip; Hornung, Daniel; Zabel, Markus; Flanders, James; Gladuli, Andrea; Campoy, Luis; Cherry, Elizabeth M.; Luther, Gisa; Hasenfuss, Gerd; Krinsky, Valentin I.; Pumir, Alain; Gilmour, Robert F.; Bodenschatz, Eberhard

    2011-07-01

    Controlling the complex spatio-temporal dynamics underlying life-threatening cardiac arrhythmias such as fibrillation is extremely difficult, because of the nonlinear interaction of excitation waves in a heterogeneous anatomical substrate. In the absence of a better strategy, strong, globally resetting electrical shocks remain the only reliable treatment for cardiac fibrillation. Here we establish the relationship between the response of the tissue to an electric field and the spatial distribution of heterogeneities in the scale-free coronary vascular structure. We show that in response to a pulsed electric field, E, these heterogeneities serve as nucleation sites for the generation of intramural electrical waves with a source density ρ(E) and a characteristic time, τ, for tissue depolarization that obeys the power law τ~Eα. These intramural wave sources permit targeting of electrical turbulence near the cores of the vortices of electrical activity that drive complex fibrillatory dynamics. We show in vitro that simultaneous and direct access to multiple vortex cores results in rapid synchronization of cardiac tissue and therefore, efficient termination of fibrillation. Using this control strategy, we demonstrate low-energy termination of fibrillation in vivo. Our results give new insights into the mechanisms and dynamics underlying the control of spatio-temporal chaos in heterogeneous excitable media and provide new research perspectives towards alternative, life-saving low-energy defibrillation techniques.

  10. Alternative Approaches to High Energy Density Fusion

    NASA Astrophysics Data System (ADS)

    Hammer, J.

    2016-03-01

    This paper explores selected approaches to High Energy Density (HED) fusion, beginning with discussion of ignition requirements at the National Ignition Facility (NIF). The needed improvements to achieve ignition are closely tied to the ability to concentrate energy in the implosion, manifested in the stagnation pressure, Pstag . The energy that must be assembled in the imploded state to ignite varies roughly as Pstag -2, so among other requirements, there is a premium on reaching higher Pstag to achieve ignition with the available laser energy. The U.S. inertial confinement fusion program (ICF) is pursuing higher Pstag on NIF through improvements to capsule stability and symmetry. One can argue that recent experiments place an approximate upper bound on the ultimate ignition energy requirement. Scaling the implosions consistently in spatial, temporal and energy scales shows that implosions of the demonstrated quality ignite robustly at 9-15 times the current energy of NIF. While lasers are unlikely to reach that bounding energy, it appears that pulsed-power sources could plausibly do so, giving a range of paths forward for ICF depending on success in improving energy concentration. In this paper, I show the scaling arguments then discuss topics from my own involvement in HED fusion. The recent Viewfactor experiments at NIF have shed light on both the observed capsule drive deficit and errors in the detailed modelling of hohlraums. The latter could be important factors in the inability to achieve the needed symmetry and energy concentration. The paper then recounts earlier work in Fast Ignition and the uses of pulsed- power for HED and fusion applications. It concludes with a description of a method for improving pulsed-power driven hohlraums that could potentially provide a factor of 10 in energy at NIF-like drive conditions and reach the energy bound for indirect drive ICF.

  11. Global Renewable Energy-Based Electricity Generation and Smart Grid System for Energy Security

    PubMed Central

    Islam, M. A.; Hasanuzzaman, M.; Rahim, N. A.; Nahar, A.; Hosenuzzaman, M.

    2014-01-01

    Energy is an indispensable factor for the economic growth and development of a country. Energy consumption is rapidly increasing worldwide. To fulfill this energy demand, alternative energy sources and efficient utilization are being explored. Various sources of renewable energy and their efficient utilization are comprehensively reviewed and presented in this paper. Also the trend in research and development for the technological advancement of energy utilization and smart grid system for future energy security is presented. Results show that renewable energy resources are becoming more prevalent as more electricity generation becomes necessary and could provide half of the total energy demands by 2050. To satisfy the future energy demand, the smart grid system can be used as an efficient system for energy security. The smart grid also delivers significant environmental benefits by conservation and renewable generation integration. PMID:25243201

  12. Global renewable energy-based electricity generation and smart grid system for energy security.

    PubMed

    Islam, M A; Hasanuzzaman, M; Rahim, N A; Nahar, A; Hosenuzzaman, M

    2014-01-01

    Energy is an indispensable factor for the economic growth and development of a country. Energy consumption is rapidly increasing worldwide. To fulfill this energy demand, alternative energy sources and efficient utilization are being explored. Various sources of renewable energy and their efficient utilization are comprehensively reviewed and presented in this paper. Also the trend in research and development for the technological advancement of energy utilization and smart grid system for future energy security is presented. Results show that renewable energy resources are becoming more prevalent as more electricity generation becomes necessary and could provide half of the total energy demands by 2050. To satisfy the future energy demand, the smart grid system can be used as an efficient system for energy security. The smart grid also delivers significant environmental benefits by conservation and renewable generation integration. PMID:25243201

  13. Safety's impact on an alternative energy source

    SciTech Connect

    Denton, D.K.

    1983-01-01

    Our ability to make underground mines a safe place to work will be a major concern to those seeking to use coal as an energy source. Increased production will stimulate a heightened concern for making mining a more effective energy resource. This effectiveness means that unless safe performance is achieved, the cost of poor safety, such as loss of lives and costly delays due to breakdowns and other failures, will greatly reduce productivity of underground mining operations. As such, coal companies and miners must be prepared to safely manage their operation before underground mining makes a significant effect on energy independence.

  14. Energy, vulnerability, and war: alternatives for America

    SciTech Connect

    Clark, W.; Page, J.

    1981-01-01

    With an analysis of energy problems in relation to defense-related problems, this book presents a blueprint for an orderly restructuring of energy and resource programs needed to make the nation safe in an increasingly perilous era. Based on a report commissioned by the Defense Department, it explains how moving to a decentralized energy base will lessen our inflationary and dangerous dependence on unreliable countries, but will also provide a new approach to civil defense. The technology already exists, and the economic incentives beckon. This book evaluates and details the national and local policies required to put them to work. 120 references, 19 figures.

  15. Effect of an alternating current electric field on Co(OH)2 periodic precipitation

    NASA Astrophysics Data System (ADS)

    Karam, Tony; Sultan, Rabih

    2013-02-01

    The present paper studies the effect of an alternating current (AC) electric field on Co(OH)2 Liesegang patterns. In the presence of an AC electric field, the band spacing increases with spacing number, but reaches a plateau at large spacing (or band) numbers. The band spacing increases with applied AC voltage, but to a much lesser extent than the effect of a DC electric field under the same applied voltage [see R. Sultan, R. Halabieh, Chem. Phys. Lett. 332 (2000) 331][1]. At low enough applied voltage, the band spacing increases with frequency. At higher voltages, the band spacing becomes independent of the field frequency. The effect of concentration of the inner electrolyte (Co2+), exactly opposes that observed under DC electric field; i.e., the band spacing decreases with increasing concentration. The dynamics were shown to be governed by a competitive scenario between the diffusion gradient and the alternating current electric field factor.

  16. Food, Energy, and The Environment: Alternatives for Creating New Lifestyles.

    ERIC Educational Resources Information Center

    Sorrells, Nancy R.; Pimentel, David

    1981-01-01

    Provides background information on the interdependency of agriculture and ecological and social systems. Discusses in detail: (1) fossil energy and food production; (2) energy-intensive agriculture and environmental pollution; and (3) methods for developing alternatives. Includes recommendations to conserve fossil energy used in current food…

  17. 75 FR 54116 - Application To Export Electric Energy; Powerex Corp

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-03

    ... Application To Export Electric Energy; Powerex Corp AGENCY: Office of Electricity Delivery and Energy... authority to transmit electric energy from the United States to Canada pursuant to section 202(e) of the... authorized Powerex to transmit electric energy from the United States to Canada for a two-year term as...

  18. 78 FR 65978 - Application To Export Electric Energy; Powerex Corp.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-04

    ... Application To Export Electric Energy; Powerex Corp. AGENCY: Office of Electricity Delivery and Energy... authority to transmit electric energy from the United States to Mexico pursuant to section 202(e) of the... Powerex to transmit electric energy from the United States to Mexico as a power marketer for a...

  19. 75 FR 45607 - Application To Export Electric Energy; Manitoba Hydro

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-03

    ... Application To Export Electric Energy; Manitoba Hydro AGENCY: Office of Electricity Delivery and Energy... authority to transmit electric energy from the United States to Canada pursuant to section 202(e) of the... Order No. EA-281, which authorized Manitoba to transmit electric energy from the United States to...

  20. 77 FR 20374 - Application To Export Electric Energy; WSPP Inc.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-04

    ... Application To Export Electric Energy; WSPP Inc. AGENCY: Office of Electricity Delivery and Energy Reliability... members, to renew the authority of those members to transmit electric energy from the United States to... new export authority for two other members to transmit electric energy from the United States...

  1. Electric energy savings from new technologies. Revision 1

    SciTech Connect

    Harrer, B.J.; Kellogg, M.A.; Lyke, A.J.; Imhoff, K.L.; Fisher, Z.J.

    1986-09-01

    Purpose of the report is to provide information about the electricity-saving potential of new technologies to OCEP that it can use in developing alternative long-term projections of US electricity consumption. Low-, base-, and high-case scenarios of the electricity savings for 10 technologies were prepared. The total projected annual savings for the year 2000 for all 10 technologies were 137 billion kilowatt hours (BkWh), 279 BkWh, and 470 BkWh, respectively, for the three cases. The magnitude of these savings projections can be gauged by comparing them to the Department's reference case projection for the 1985 National Energy Policy Plan. In the Department's reference case, total consumption in 2000 is projected to be 3319 BkWh. Because approximately 75% of the base-case estimate of savings are already incorporated into the reference projection, only 25% of the savings estimated here should be subtracted from the reference projection for analysis purposes.

  2. Energy Market Impacts of Alternative Greenhouse Gas Intensity Reduction Goals

    EIA Publications

    2006-01-01

    This report responds to a request from Senator Ken Salazar that the Energy Information Administration (EIA) analyze the impacts of implementing alternative variants of an emissions cap-and-trade program for greenhouse gases (GHGs).

  3. 10 CFR 429.70 - Alternative methods for determining energy efficiency or energy use.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Alternative methods for determining energy efficiency or....70 Alternative methods for determining energy efficiency or energy use. (a) General. A manufacturer... determined the energy efficiency of the basic model, either from testing the basic model or from applying...

  4. 10 CFR 429.70 - Alternative methods for determining energy efficiency or energy use.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Alternative methods for determining energy efficiency or....70 Alternative methods for determining energy efficiency or energy use. Link to an amendment... such equipment in commerce unless the manufacturer has determined the energy efficiency of the...

  5. 10 CFR 429.70 - Alternative methods for determining energy efficiency or energy use.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Alternative methods for determining energy efficiency or....70 Alternative methods for determining energy efficiency or energy use. (a) General. A manufacturer... determined the energy efficiency of the basic model, either from testing the basic model or from applying...

  6. Alternatives for Financing School Energy Savings Programs.

    ERIC Educational Resources Information Center

    Esteves, Rich

    1983-01-01

    This report compares shared-savings programs with financing through the use of internal funds, loans, leases, and lease purchase plans for financing energy conservation in nonprofit buildings. The shared savings option was found to offer the greatest benefits to the customer. (MLF)

  7. Discussion paper on energy grant alternatives

    SciTech Connect

    Humphrey, B.; Clifford, D.; Gunnison, F.; Tatar, J.

    1981-07-01

    The federal grant-in-aid system now consists of three general types of grants: categorical grants; block grants; and general revenue sharing. These are discussed and compared. The types of complications that may arise from implementation of these grants proposals are discussed. Some proposals for the possible consolidation of programs that the Department of Energy offices now administer are summarized. (MCW)

  8. Highly Efficient Contactless Electrical Energy Transmission System

    NASA Astrophysics Data System (ADS)

    Ayano, Hideki; Nagase, Hiroshi; Inaba, Hiromi

    This paper proposes a new concept for a contactless electrical energy transmission system for an elevator and an automated guided vehicle. The system has rechargeable batteries on the car and electrical energy is supplied at a specific place. When electric power is supplied to the car, it runs automatically and approaches the battery charger. Therefore, a comparatively large gap is needed between the primary transformer at the battery charger and the secondary transformer on the car in order to prevent damage which would be caused by a collision. In this case, a drop of the transformer coupling rate due to the large gap must be prevented. In conventional contactless electrical energy transmission technology, since electric power is received by a pick-up coil from a power line, a large-sized transformer is required. And when the distance over which the car runs is long, the copper loss of the line also increases. The developed system adopts a high frequency inverter using a soft switching method to miniaturize the transformer. The system has a coupling rate of 0.88 for a transformer gap length of 10mm and can operate at 91% efficiency.

  9. Solar energy for electricity and fuels.

    PubMed

    Inganäs, Olle; Sundström, Villy

    2016-01-01

    Solar energy conversion into electricity by photovoltaic modules is now a mature technology. We discuss the need for materials and device developments using conventional silicon and other materials, pointing to the need to use scalable materials and to reduce the energy payback time. Storage of solar energy can be achieved using the energy of light to produce a fuel. We discuss how this can be achieved in a direct process mimicking the photosynthetic processes, using synthetic organic, inorganic, or hybrid materials for light collection and catalysis. We also briefly discuss challenges and needs for large-scale implementation of direct solar fuel technologies. PMID:26667056

  10. Alternative Energy Center, Final Scientific/Technical Report

    SciTech Connect

    Dillman, Howard D.; Marshall, JaNice C.

    2007-09-07

    The Lansing Community College Alternative Energy Center was created with several purposes in mind. The first purpose was the development of educational curricula designed to meet the growing needs of advanced energy companies that would allow students to articulate to other educational institutions or enter this growing workforce. A second purpose was the professional development of faculty and teachers to prepare them to train tomorrow's workforce and scholars. Still another purpose was to design, construct, and equip an alternative energy laboratory that could be used for education, demonstration, and public outreach. Last, the Center was to engage in community outreach and education to enhance industry partnerships, inform decision makers, and increase awareness and general knowledge of hydrogen and other alternative energy technologies and their beneficial impacts on society. This project has enabled us to accomplish all of our goals, including greater faculty understanding of advanced energy concepts, who are now able to convey this knowledge to students through a comprehensive alternative energy curriculum, in a facility well-equipped with advanced technologies, which is also being used to better educate the public on the advantages to society of exploring alternative energy technologies.

  11. USD Catalysis Group for Alternative Energy

    SciTech Connect

    Hoefelmeyer, James D.; Koodali, Ranjit; Sereda, Grigoriy; Engebretson, Dan; Fong, Hao; Puszynski, Jan; Shende, Rajesh; Ahrenkiel, Phil

    2012-03-13

    The South Dakota Catalysis Group (SDCG) is a collaborative project with mission to develop advanced catalysts for energy conversion with two primary goals: (1) develop photocatalytic systems in which polyfunctionalized TiO2 are the basis for hydrogen/oxygen synthesis from water and sunlight (solar fuels group), (2) develop new materials for hydrogen utilization in fuel cells (fuel cell group). In tandem, these technologies complete a closed chemical cycle with zero emissions.

  12. Electric energy supply systems: description of available technologies

    SciTech Connect

    Eisenhauer, J.L.; Rogers, E.A.; King, J.C.; Stegen, G.E.; Dowis, W.J.

    1985-02-01

    When comparing coal transportation with electric transmission as a means of delivering electric power, it is desirable to compare entire energy systems rather than just the transportation/transmission components because the requirements of each option may affect the requirements of other energy system components. PNL's assessment consists of two parts. The first part, which is the subject of this document, is a detailed description of the technical, cost, resource and environmental characteristics of each system component and technologies available for these components. The second part is a computer-based model that PNL has developed to simulate construction and operation of alternative system configurations and to compare the performance of these systems under a variety of economic and technical conditions. This document consists of six chapters and two appendices. A more thorough description of coal-based electric energy systems is presented in the Introduction and Chapter 1. Each of the subsequent chapters describes technologies for five system components: Western coal resources (Chapter 2), coal transportation (Chapter 3), coal gasification and gas transmission (Chapter 4), and electric power transmission (Chapter 6).

  13. Energy infrastructure: Mapping future electricity demand

    NASA Astrophysics Data System (ADS)

    Janetos, Anthony C.

    2016-08-01

    Electricity distribution system planners rely on estimations of future energy demand to build adequate supply, but these are complicated to achieve. An approach that combines spatially resolved projections of population movement and climate change offers a method for building better demand maps to mid-century.

  14. Behavior of Caenorhabditis elegans in alternating electric field and its application to their localization and control

    NASA Astrophysics Data System (ADS)

    Rezai, Pouya; Siddiqui, Asad; Selvaganapathy, Ponnambalam Ravi; Gupta, Bhagwati P.

    2010-04-01

    Caenorhabditis elegans is an attractive model organism because of its genetic similarity to humans and the ease of its manipulation in the laboratory. Recently, it was shown that a direct current electric field inside microfluidic channel induces directed movement that is highly sensitive, reliable, and benign. In this letter, we describe the worm's movement response to alternating electric fields in a similar channel setup. We demonstrate that the 1 Hz and higher frequency of alternating current field can effectively localize worms in the channel. This discovery could potentially help design microfluidic devices for high throughput automated analysis of worms.

  15. Nanostructured Materials for Renewable Alternative Energy

    SciTech Connect

    Parsons, Gregory

    2013-07-24

    This project has been in effect from July 25th, 2008 to July 24th, 2013. It supported 19 graduate students and 6 post-doctoral students and resulted in 23 publications, 7 articles in preparation, 44 presentations, and many other outreach efforts. Two representative recent publications are appended to this report. The project brought in more than $750,000 in cost share from North Carolina State University. The project funds also supported the purchase and installation of approximately $667,000 in equipment supporting solar energy research.

  16. Alternative Energy Sources. Experiments You Can Do...from Edison.

    ERIC Educational Resources Information Center

    Benrey, Ronald M.; Schultz, Robert F.

    Eight experiments dealing with alternative energy sources are presented. Each experiment includes an introductory section which provides background information and discusses the promises and problems of the particular energy source, a list of materials needed to complete the experiment, and the procedures to be used. The experiments involve:…

  17. Nuclear apple and the solar orange: alternatives in world energy

    SciTech Connect

    Grenon, M.

    1981-01-01

    Future energy demands are discussed in relation to the depletion of fossil fuel resources, their relative merits and their social, economic, political, and environmental impacts. Four candidates are best able to replace fossil fuels: nuclear energy from fission, nuclear energy from fusion, solar energy, and geothermal energy. The problem of developing policies that can promote such dissimilar energy sources as nuclear and solar energy is evident in the unequal treatment they now receive. The abundance of remaining fossil fuels will allow time to make appropriate decisions and plan a transition to new energy forms. It is important to avoid making irreversible decisions too hastily and to reintroduce imagination into energy policy by using this time to explore the soft and flexible technologies. Although studying the future implications of energy alternatives is necessary, it is also important to avoid solutions that underestimate future energy needs or to become paralyzed by indecision. 8 figures, 9 tables. (DCK)

  18. Alternative biomass sources for thermal energy generation

    NASA Astrophysics Data System (ADS)

    Steensen, Torge; Müller, Sönke; Dresen, Boris; Büscher, Olaf

    2015-04-01

    Traditionally, renewable biomass energy sources comprise forests, agriculture and other large vegetation units. With the increasing demand on those landscape elements, including conflicts of interest to nature conservation and food production, the research focus should also incorporate smaller vegetation entities. In this study, we highlight the availability of small-scale features like roadside vegetation or hedges, which are rarely featured in maps. Roadside vegetation, however, is well known and regularly trimmed to allow the passing of traffic but the cut material is rarely harvested. Here, we combine a remote-sensing-based approach to quantify the seasonal biomass harvests with a GIS-based method to outline optimal transportation routes to, and the location of, storage units and power plants. Our main data source will be ESA's upcoming Sentinel-2 optical satellite. Spatial resolution of 10 meters in the visible and near infrared requires the use of spectral unmixing to derive end member spectra of the targeted biomass objects. Additional stereo-matching and LIDAR measurements allow the accompanying height estimate to derive the biomass volume and its changes over time. GIS data bases from the target areas allow the discrimination between traditional, large features (e.g. forests and agriculture) as well as previously unaccounted for, smaller vegetation units. With the mapped biomass occurrence and additional, GIS-based infrastructure information, we can outline transport routes that take into account local restrictions like nature reserve areas, height or weight limitations as well as transport costs in relation to potential gains. This information can then be processed to outline optimal places for power plants. To simulate the upcoming Sentinel-2 data sets, we use airborne data from the AISA Eagle, spatially and spectrally down-sampled to match Sentinel 2's resolution. Our test scenario is an area in western Germany, the Kirchheller Heide, close to the city

  19. 77 FR 32038 - Energy Conservation Program: Alternative Efficiency Determination Methods and Alternative Rating...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-31

    ... the Federal Register on April 18, 2011. 76 FR 21673. The RFI requested suggestions, comments, and... ;dct=FR%252BPR%252BN%252BO%252BSR%252BPS;rpp=25;po=0;D=EER E-2011-BT-TP-0024. Table II.1--Stakeholders... Efficiency Determination Methods and Alternative Rating Methods AGENCY: Office of Energy Efficiency...

  20. Shock wave generated by high-energy electric spark discharge

    NASA Astrophysics Data System (ADS)

    Liu, Qingming; Zhang, Yunming

    2014-10-01

    Shock wave generated by electric spark discharge was studied experimentally and the shock wave energy was evaluated in this paper. A pressure measurement system was established to study the pressure field of the electric spark discharge process. A series of electric spark discharge experiments were carried out and the energy of the electric spark used in present study was in the range of 10 J, 100 J, and 1000 J, respectively. The shock wave energy released from the electric spark discharge process was calculated by using the overpressure values at different measurement points near the electric spark discharge center. The good consistency of shock wave energies calculated by pressure histories at different measuring points in the same electric spark discharge experiment illustrates the applicability of the weak shock wave theory in calculating the energy of shock wave induced by electric spark discharge process. The result showed that shock wave formed at the initial stage of electric spark discharge process, and the shock wave energy is only a little part of electric spark energy. From the analysis of the shock wave energy and electric spark energy, a good linear relationship between shock wave energy and electric spark energy was established, which make it possible to calculate shock wave energy by measuring characteristic parameters of electric spark discharge process instead of shock wave. So, the initiation energy of direct initiation of detonation can be determined easily by measuring the parameters of electric spark discharge process.

  1. Energy demand analysis and alternative fuels. Transportation research record

    SciTech Connect

    Dingemans, D.; Sperling, D.; Greene, D.L.; Hu, P.S.; Hallet, P.

    1986-01-01

    Contents include: Mental maps and the refueling behavior of vehicle drivers; A functional form analysis of the short-run demand for travel and gasoline by one-vehicle households; An assessment methodology for alternative fuels technologies; Drive-up windows, energy, and air quality; Travel characteristics and transportation energy consumption patterns of minority and poor households; An investigation into the use of market segmentation analysis for transportation energy planning.

  2. Electrical Energy Storage and the Grid

    NASA Astrophysics Data System (ADS)

    Howes, Ruth

    2007-05-01

    Demand for electricity varies seasonally, daily, and on much shorter time scales. Renewable energy sources such as solar or wind power are naturally intermittent. Nuclear power plants can respond to a narrow range of fluctuating demand quickly and to larger fluctuations in hours. However, they are most efficient when operated at a constant power output. Thus implementing either nuclear power or power from renewables requires either a system for storage of electrical energy that can respond quickly to demand or a back-up power source, usually a gas turbine plant that has a quick response time. We have studied six technologies for storing electrical energy from the grid: pumped hydropower, compressed air storage, batteries, flywheels, superconducting magnetic energy storage, and electrochemical capacitors. In addition, the power conversion systems (PCS) that connect storage to the grid are both expensive and critical to the success of a storage technology. Each of these six technologies offers different benefits, is at a different stage of readiness for commercial use, and offers opportunities for research. Advantages and disadvantages for each of the technologies and PCS will be discussed. To cite this abstract, use the following reference: http://meetings.aps.org/link/BAPS.2007.OSS07.E1.1

  3. Electrical Experiments. VT-214-12-6. Part VI. Poly-Phase Alternators.

    ERIC Educational Resources Information Center

    Connecticut State Dept. of Education, Hartford. Div. of Vocational Education.

    Designed for high school electronics students, this sixth document in a series of six electrical learning activity packages focuses on phase alternators. An introductory section gives the objective for the activities, an introduction, and an outline of the content. The remainder of the guidebook is comprised of information sheets and job sheets on…

  4. 76 FR 69712 - Application To Export Electric Energy; BP Energy Company

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-09

    ... Application To Export Electric Energy; BP Energy Company AGENCY: Office of Electricity Delivery and Energy... its authority to transmit electric energy from the United States to Canada pursuant to section 202(e... (DOE) issued Order No. EA-315, which authorized BP Energy to transmit electric energy from the...

  5. 76 FR 69713 - Application To Export Electric Energy; BP Energy Company

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-09

    ... Application To Export Electric Energy; BP Energy Company AGENCY: Office of Electricity Delivery and Energy... its authority to transmit electric energy from the United States to Mexico pursuant to section 202(e... Order No. EA-314, which authorized BP Energy to transmit electric energy from the United States...

  6. 75 FR 12737 - Application To Export Electric Energy; Integrys Energy Services, Inc.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-17

    ... Application To Export Electric Energy; Integrys Energy Services, Inc. AGENCY: Office of Electricity Delivery.... (Integrys Energy) has applied to renew its authority to transmit electric energy from the United States to... authorizing Integrys Energy to transmit electric energy from the United States to Canada as a power......

  7. 77 FR 31341 - Application To Export Electric Energy; DC Energy, LLC

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-25

    ... Application To Export Electric Energy; DC Energy, LLC AGENCY: Office of Electricity Delivery and Energy... authority to transmit electric energy from the United States to Canada pursuant to section 202(e) of the... Energy to transmit electric energy from the United States to Canada as a power marketer for a...

  8. Impacts of Western Area Power Administration`s power marketing alternatives on electric utility systems

    SciTech Connect

    Veselka, T.D.; Portante, E.C.; Koritarov, V.

    1995-03-01

    This technical memorandum estimates the effects of alternative contractual commitments that may be initiated by the Western Area Power Administration`s Salt Lake City Area Office. It also studies hydropower operational restrictions at the Salt Lake City Area Integrated Projects in combination with these alternatives. Power marketing and hydropower operational effects are estimated in support of Western`s Electric Power Marketing Environmental Impact Statement (EIS). Electricity production and capacity expansion for utility systems that will be directly affected by alternatives specified in the EIS are simulated. Cost estimates are presented by utility type and for various activities such as capacity expansion, generation, long-term firm purchases and sales, fixed operation and maintenance expenses, and spot market activities. Operational changes at hydropower facilities are also investigated.

  9. Barriers to electric energy efficiency in Ghana

    NASA Astrophysics Data System (ADS)

    Berko, Joseph Kofi, Jr.

    Development advocates argue that sustainable development strategies are the best means to permanently improve living standards in developing countries. Advocates' arguments are based on the technical, financial, and environmental advantages of sustainable development. However, they have not addressed the organizational and administrative decision-making issues which are key to successful implementation of sustainable development in developing countries. Using the Ghanaian electricity industry as a case study, this dissertation identifies and analyzes organizational structures, administrative mechanisms, and decision-maker viewpoints that critically affect the success of adoption and implementation of energy efficiency within a sustainable development framework. Utilizing semi-structured interviews in field research, decision-makers' perceptions of the pattern of the industry's development, causes of the electricity supply shortfall, and barriers to electricity-use efficiency were identified. Based on the initial findings, the study formulated a set of policy initiatives to establish support for energy use efficiency. In a second set of interviews, these policy suggestions were presented to some of the top decision-makers to elicit their reactions. According to the decision-makers, the electricity supply shortfall is due to rapid urbanization and increased industrial consumption as a result of the structural adjustment program, rural electrification, and the sudden release of suppressed loads. The study found a lack of initiative and collaboration among industry decision-makers, and a related divergence in decision-makers' concerns and viewpoints. Also, lacking are institutional support systems and knowledge of proven energy efficiency strategies and technologies. As a result, planning, and even the range of perceived solutions to choose from are supply-side oriented. The final chapter of the study presents implications of its findings and proposes that any

  10. Proceedings of the conference on alternative energy sources for Texas

    SciTech Connect

    Rothman, I.N.

    1981-01-01

    Four primary areas of study for alternative energy sources for Texas are considered. These are: energy demand supply and economics; prospects for energy resources (oil, lignite, coal, nuclear, goethermal and solar) and conservation; financial and technical constraints; and future planning. The following papers are presented: US energy outlook to 1990; energy supply and demand projections; comparative economics of solar energy in the generation of big power; gas present and future prospects; prospects for enhanced recovery of oil in Texas; the outlook for coal in USA; implementation of nuclear power in Texas; future outlook - geopressured-geothermal energy for Texas; future prospects for conservation and solar energy; financing and money supply constraints; technical constraints to energy supply increase; planning for the future - the crisis that drones on. Two papers have been abstracted separately.

  11. FEMP (Federal Energy Management Program) presents alternative financing guidance memoranda

    SciTech Connect

    1998-06-01

    Utility financing of energy efficient measures becomes easier to accomplish with the two new alternative financing guidance memoranda, released April 17, 1998, that address the use of utility incentives for Federal facilities. The memoranda have been approved by the Alternative Financing Guidance Committee on the Interagency Energy Management Task Force. The memoranda include: (1) Policy Statement No. 001: Authority to Sole Source Utility Service Contracts as Referenced in Section 152 of the Energy Policy Act (EPACT) of 1992; and (2) Policy Statement No. 002: Congressional Notification for Utility Projects Under the Authority of Section 152 of the Energy Policy Act (EPACT) of 1992. The purpose for developing the financing memoranda was to address specific issues within current Federal procurement regulations that require clarification or guidance. This new guidance will allow for increased use of utility incentives as a means of financing energy efficient and life cycle cost-effective projects in Federal facilities.

  12. 75 FR 78980 - Application to Export Electric Energy; Direct Energy Marketing, Inc.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-17

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Application to Export Electric Energy; Direct Energy Marketing, Inc. AGENCY: Office of Electricity Delivery and Energy Reliability, DOE. ACTION: Notice of Application. SUMMARY: Direct Energy Marketing,...

  13. 78 FR 65978 - Application to Export Electric Energy; Brookfield Energy Marketing Inc.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-04

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Application to Export Electric Energy; Brookfield Energy Marketing Inc. AGENCY: Office of Electricity Delivery and Energy Reliability, DOE. ACTION: Notice of application. SUMMARY: Brookfield Energy Marketing...

  14. (Energy and electricity supply and demand)

    SciTech Connect

    Wilbanks, T.J.

    1990-10-09

    At the request of the International Atomic Energy Agency (IAEA), representing eleven international agencies which are sponsoring the 1991 Helsinki Symposium on Electricity and the Environment, I traveled to Brussels to participate in the second meeting of one of four advisory groups established to prepare for the Symposium. At the meeting, I was involved in a review of a draft issue paper being prepared for the Symposium and of the Symposium program.

  15. Thermal and Electrical Analysis of MARS Rover RTG, and Performance Comparison of Alternative Design Options.

    SciTech Connect

    Schock, Alfred; Or, Chuen T; Skrabek, Emanuel A

    1989-09-29

    The paper describes the thermal, thermoelectric and electrical analysis of Radioisotope Thermoelectric Generators (RTGs) for powering the MARS Rover vehicle, which is a critical element of the unmanned Mars Rover and Sample Return mission (MRSR). The work described was part of an RTG design study conducted by Fairchild Space Company for the U.S. Department of Energy, in support of the Jet Propulsion Laboratory's MRSR Project.; A companion paper presented at this conference described a reference mission scenario, al illustrative Rover design and activity pattern on Mars, its power system requirements and environmental constraints, a design approach enabling RTG operation in the Martian atmosphere, and the design and the structural and mass analysis of a conservative baseline RTG employing safety-qualified heat source modules and reliability-proven thermoelectric converter elements.; The present paper presents a detailed description of the baseline RTG's thermal, thermoelectric, and electrical analysis. It examines the effect of different operating conditions (beginning versus end of mission, water-cooled versus radiation-cooled, summer day versus winter night) on the RTG's performance. Finally, the paper describes and analyzes a number of alternative RTG designs, to determine the effect of different power levels (250W versus 125W), different thermoelectric element designs (standard versus short unicouples versus multicouples) and different thermoelectric figures of merit (0.00058K(superscript -1) to 0.000140K (superscript -1) on the RTG's specific power.; The results presented show the RTG performance achievable with current technology, and the performance improvements that would be achievable with various technology developments. It provides a basis for selecting the optimum strategy for meeting the Mars Rover design goals with minimal programmatic risk and cost.; There is a duplicate copy and also a duplicate copy in the ESD files.

  16. Storing the Electric Energy Produced by an AC Generator

    ERIC Educational Resources Information Center

    Carvalho, P. Simeao; Lima, Ana Paula; Carvalho, Pedro Simeao

    2010-01-01

    Producing energy from renewable energy sources is nowadays a priority in our society. In many cases this energy comes as electric energy, and when we think about electric energy generators, one major issue is how we can store that energy. In this paper we discuss how this can be done and give some ideas for applications that can serve as a…

  17. Energy-efficient electric motors study

    NASA Astrophysics Data System (ADS)

    1981-03-01

    A survey conducted of purchasers of integral horsepower polyphase motors measured current knowledge of and awareness of energy efficient motors, decision making criteria, information sources, purchase and usage patterns, and related factors. The data obtained were used for the electric motor market penetration analysis. Additionally, a telephone survey was made. The study also provides analyses of distribution channels, commercialization constraints, and the impacts of government programs and rising energy prices. Study findings, conclusions, and recommendations are presented. Sample questionnaires and copies of letters to respondents are presented in appendices as well as descriptions of the methods used.

  18. Conceptual design of thermal energy storage systems for near-term electric utility applications

    NASA Technical Reports Server (NTRS)

    Hall, E. W.

    1980-01-01

    Promising thermal energy storage systems for midterm applications in conventional electric utilities for peaking power generation are evaluated. Conceptual designs of selected thermal energy storage systems integrated with conventional utilities are considered including characteristics of alternate systems for peaking power generation, viz gas turbines and coal fired cycling plants. Competitive benefit analysis of thermal energy storage systems with alternate systems for peaking power generation and recommendations for development and field test of thermal energy storage with a conventional utility are included. Results indicate that thermal energy storage is only marginally competitive with coal fired cycling power plants and gas turbines for peaking power generation.

  19. 78 FR 50409 - Kansas Municipal Energy Agency v. Sunflower Electric Power Corporation, Mid-Kansas Electric...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-19

    ... Energy Regulatory Commission Kansas Municipal Energy Agency v. Sunflower Electric Power Corporation, Mid-Kansas Electric Company, LLC, Southwest Power Pool, Inc.; Notice of Complaint Take notice that on August... Municipal Energy Agency (Complainant) filed a formal complaint against Sunflower Electric Power...

  20. 76 FR 20968 - Application To Export Electric Energy; DC Energy Texas, LLC

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-14

    ... Application To Export Electric Energy; DC Energy Texas, LLC AGENCY: Office of Electricity Delivery and Energy... authority to transmit electric energy from the United States to Mexico pursuant to section 202(e) of the... application from DCE Texas requesting authority to transmit electric energy from the United States to...

  1. 77 FR 15091 - Application To Export Electric Energy; DTE Energy Trading, Inc.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-14

    ... Application To Export Electric Energy; DTE Energy Trading, Inc. AGENCY: Office of Electricity Delivery and... Trading) has applied to renew its authority to transmit electric energy from the United States to Canada... Order No. EA-211, which authorized DTE Energy Trading to transmit electric energy from the United...

  2. 77 FR 50487 - Application To Export Electric Energy; RBC Energy Services LP

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-21

    ... Application To Export Electric Energy; RBC Energy Services LP AGENCY: Office of Electricity Delivery and... applied to renew its authority to transmit electric energy from the United States to Canada pursuant to... Order No. EA-328 authorizing RBC Energy to transmit electric energy from the United States to Canada...

  3. The use of hydrazine as an alternate source of energy

    NASA Technical Reports Server (NTRS)

    Carvalho, J. A., Jr.; Bressan, C.; Ferreira, J. L.

    1984-01-01

    The potentials of using hydrazine as an alternative source of energy was studied. Three chemical reactions are considered: oxidation with air, oxidation with hydrogen peroxide, and thermocatalytic decomposition. Performance data of gasoline, ethylic alcohol, and propane are compared. An item about the NO(x) emissions by the various investigated reactions is included. Promising results are shown, mainly those regarding the available energy per unit volume of unburned gases (vaporized fuel and oxidizer).

  4. Using Alternate Energy Sources. The Illinois Plan for Industrial Education.

    ERIC Educational Resources Information Center

    Illinois State Univ., Normal.

    This guide, which is one in the "Exploration" series of curriculum guides intended to assist junior high and middle school industrial educators in helping their students explore diverse industrial situations and technologies used in industry, deals with using alternate energy sources. The following topics are covered in the individual lessons:…

  5. 75 FR 51025 - Application to Export Electric Energy; Vitol Inc.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-18

    ... Application to Export Electric Energy; Vitol Inc. AGENCY: Office of Electricity Delivery and Energy... transmit electric energy from the United States to Canada pursuant to section 202(e) of the Federal Power.... 824a(e)). On August 5, 2010, DOE received an application from Vitol for authority to transmit...

  6. 77 FR 48148 - Energy Alternatives Wholesale, LLC; Supplemental Notice That Initial Market-Based Rate Filing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-13

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Energy Alternatives Wholesale, LLC; Supplemental Notice That Initial Market... in the above-referenced proceeding, of Energy Alternatives Wholesale, LLC's application for...

  7. Evaluation of alternative future energy scenarios for Brazil using an energy mix model

    NASA Astrophysics Data System (ADS)

    Coelho, Maysa Joppert

    The purpose of this study is to model and assess the performance and the emissions impacts of electric energy technologies in Brazil, based on selected economic scenarios, for a time frame of 40 years, taking the year of 1995 as a base year. A Base scenario has been developed, for each of three economic development projections, based upon a sectoral analysis. Data regarding the characteristics of over 300 end-use technologies and 400 energy conversion technologies have been collected. The stand-alone MARKAL technology-based energy-mix model, first developed at Brookhaven National Laboratory, was applied to a base case study and five alternative case studies, for each economic scenario. The alternative case studies are: (1) minimum increase in the thermoelectric contribution to the power production system of 20 percent after 2010; (2) extreme values for crude oil price; (3) minimum increase in the renewable technologies contribution to the power production system of 20 percent after 2010; (4) uncertainty on the cost of future renewable conversion technologies; and (5) model is forced to use the natural gas plants committed to be built in the country. Results such as the distribution of fuel used for power generation, electricity demand across economy sectors, total CO2 emissions from burning fossil fuels for power generation, shadow price (marginal cost) of technologies, and others, are evaluated and compared to the Base scenarios previous established. Among some key findings regarding the Brazilian energy system it may be inferred that: (1) diesel technologies are estimated to be the most cost-effective thermal technology in the country; (2) wind technology is estimated to be the most cost-effective technology to be used when a minimum share of renewables is imposed to the system; and (3) hydroelectric technologies present the highest cost/benefit relation among all conversion technologies considered. These results are subject to the limitations of key input

  8. The Energy Crisis in the Public Schools; Alternative Solutions.

    ERIC Educational Resources Information Center

    Grossbach, Wilmar; Shaffer, William

    One hundred and eighty school personnel held a workshop with representatives of the petroleum, natural gas, and electrical power industries. The objectives of the workshop were (1) to provide participants with a common body of knowledge and a common understanding of the energy crisis and its implications for the public schools, (2) to delineate…

  9. Linear oscillations of a drop in uniform alternating electric fields. [Annual report, 1989

    SciTech Connect

    Yang, Wenrui; Carleson, T.E.

    1990-10-01

    Oscillations of a conducting drop immersed in a dielectric fluid in an alternating electric field has been modelled in order to understand the enhancement of the transport processes by the electric field. Numerical solutions for oscillation amplitude, velocity distribution, resonant frequency and streamlines were obtained. The effects of viscosity and density on the resonant frequency and the velocity distribution were investigated. It was found that the resonant frequency of viscous fluids was always smaller than the free oscillation frequency of the same droplet. The predicted scanning frequency response curve and the streamlines agree well with the experimental observations.

  10. Enhancement of crystal homogeneity of protein crystals under application of an external alternating current electric field

    SciTech Connect

    Koizumi, H.; Uda, S.; Fujiwara, K.; Nozawa, J.; Tachibana, M.; Kojima, K.

    2014-10-06

    X-ray diffraction rocking-curve measurements were performed on tetragonal hen egg white (HEW) lysozyme crystals grown with and without the application of an external alternating current (AC) electric field. The crystal quality was assessed by the full width at half maximum (FWHM) value for each rocking curve. For two-dimensional maps of the FWHMs measured on the 440 and the 12 12 0 reflection, the crystal homogeneity was improved under application of an external electric field at 1 MHz, compared with that without. In particular, the significant improvement of the crystal homogeneity was observed for the 12 12 0 reflection.

  11. 75 FR 38514 - Application to Export Electric Energy; Brookfield Energy Marketing LP

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-02

    ... Application to Export Electric Energy; Brookfield Energy Marketing LP AGENCY: Office of Electricity Delivery and Energy Reliability, DOE. ACTION: Notice of application. SUMMARY: Brookfield Energy Marketing LP... power marketing agencies and other entities within the United States. The existing...

  12. Alternative energy sources session ocean thermal energy conversion: Technology development

    NASA Astrophysics Data System (ADS)

    Richards, W. E.; Vadus, J. R.

    1980-03-01

    Four ocean-energy technologies with significant promise are explored: ocean thermal energy conversion; wave power; ocean currents; and salinity gradients. The major funding emphasis has been in OTEC. Technical developments, accomplishments and major findings, remaining problems, and proposed plans for the future are discussed.

  13. Energy flow for electric power system deregulation

    NASA Astrophysics Data System (ADS)

    Lin, Chia-Hung

    Over the past few years, the electric power utility industry in North America and other countries has experienced a strong drive towards deregulation. People have considered the necessity of deregulation of electric utilities for higher energy efficiency and energy saving. The vertically integrated monopolistic industry is being transferred into a horizontally integrated competitive structure in some countries. Wheeling charges are a current high priority problem throughout the power industry, for independent power producers, as well as regulators. Nevertheless the present transmission pricing mechanism fails to be adjusted by a customer loading condition. Customer loading is dynamic, but the present wheeling charge method is fixed, not real-time. A real-time wheeling charge method is developed in this dissertation. This dissertation introduces a concept of a power flow network which can be used for the calculation of power contribution factors in a network. The contribution factor is defined as the ratio of the power contributed by a particular source to a line flow or bus load to the total output of the source. Generation, transmission, and distribution companies can employ contribution factors for the calculation of energy cost, wheeling charges, and loss compensation. Based on the concept of contribution factors, a proposed loss allocation method is developed in this dissertation. Besides, counterflow condition will be given a credit in the proposed loss allocation method. A simple 22-bus example was used for evaluating the contribution factors, proposed wheeling charge method, and loss allocation method.

  14. Bioelectrorheological model of the cell. 5. Electrodestruction of cellular membrane in alternating electric field.

    PubMed Central

    Pawłowski, P; Szutowicz, I; Marszałek, P; Fikus, M

    1993-01-01

    Recently proposed analysis of the extensil stress developed in a cellular membrane subjected to an alternating electric field (Pawłowski, P., and M. Fikus, 1993. Bioelectrorheological model of the cell. 4. Analysis of the extensil deformation of the membrane in an alternating field. Biophys. J. 65:535-540) was applied in calculations of extensil stress threshold values, sigma eo[d], producing experimentally observed electrodestruction of cells within the frequency range of 7 x 10(1) - 3 x 10(5) Hz. It was shown that the susceptibility (s[d] = 1/sigma eo[d]), of the membrane to this process varies with field frequency and depends on the type of cells. Electrodestruction is facilitated in the 10(5)-Hz field. A rheological hypothesis explaining the experimentally observed dependence of membrane stability on electric field frequency was proposed and successfully tested for two other phenomena: electroporation and electrofusion. PMID:8369458

  15. Bioelectrorheological model of the cell. 5. Electrodestruction of cellular membrane in alternating electric field.

    PubMed

    Pawłowski, P; Szutowicz, I; Marszałek, P; Fikus, M

    1993-07-01

    Recently proposed analysis of the extensil stress developed in a cellular membrane subjected to an alternating electric field (Pawłowski, P., and M. Fikus, 1993. Bioelectrorheological model of the cell. 4. Analysis of the extensil deformation of the membrane in an alternating field. Biophys. J. 65:535-540) was applied in calculations of extensil stress threshold values, sigma eo[d], producing experimentally observed electrodestruction of cells within the frequency range of 7 x 10(1) - 3 x 10(5) Hz. It was shown that the susceptibility (s[d] = 1/sigma eo[d]), of the membrane to this process varies with field frequency and depends on the type of cells. Electrodestruction is facilitated in the 10(5)-Hz field. A rheological hypothesis explaining the experimentally observed dependence of membrane stability on electric field frequency was proposed and successfully tested for two other phenomena: electroporation and electrofusion. PMID:8369458

  16. Pyro-electric energy harvesting with a high Curie temperature material LiNbO3

    NASA Astrophysics Data System (ADS)

    Karim, Hasanul; Sarker, MD Rashedul Hasan; Shahriar, Shaimum; Shuvo, Mohammad Arif Ishtiaque; Delfin, Diego; Hodges, Deidra; Love, Norman; Lin, Yirong

    2016-04-01

    Energy harvesting has been gaining significant interest as a potential solution for energizing next generation sensor and energy storage devices. The most widely investigated material for piezoelectric and pyro-electric energy harvesting to date is PZT (Lead Zirconate Titanate), owing to its good piezoelectric and pyro-electric properties. However, Lead is detrimental to human health and to the environment. Hence, alternative materials are required to be investigated for this purpose. In this paper, a lead free material Lithium Niobate (LNB) is reported as a potential material for pyro-electric energy harvesting. Although, it has lower pyro-electric properties than PZT, it has better properties than other lead free alternatives of PZT such as ZnO. In addition, LNB has a high curie point of 1142 °C, which makes it suitable for high temperature environment where other pyro-electric materials are not suitable. Therefore, a single crystal LNB has been investigated as a source of energy harvesting under alternative heating and cooling environment. A commercial 0.2 F super-capacitor was used as the energy storage device.

  17. 76 FR 11437 - Application To Export Electric Energy; Societe Generale Energy Corp.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-02

    ... Application To Export Electric Energy; Societe Generale Energy Corp. AGENCY: Office of Electricity Delivery.... (SGEC) has applied for authority to transmit electric energy from the United States to Canada pursuant... application from the SGEC for authority to transmit electric energy from the United States to Canada as...

  18. 77 FR 23238 - Application To Export Electric Energy; Citigroup Energy Canada ULC

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-18

    ... Application To Export Electric Energy; Citigroup Energy Canada ULC AGENCY: Office of Electricity Delivery and... applied to renew its authority to transmit electric energy from the United States to Canada pursuant to.... EA-326 authorizing CECU to transmit electric energy from the United States to Canada as a...

  19. 76 FR 30325 - Application to Export Electric Energy; E-T Global Energy, LLC

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-25

    ... Energy Regulatory Commission Application to Export Electric Energy; E-T Global Energy, LLC AGENCY: Office... Global Energy, LLC (E-T Global) has applied for authority to transmit electric energy from the United... authority to transmit electric energy from the United States to Mexico for five years as a power...

  20. Refrigerator-freezer energy testing with alternative refrigerants

    NASA Astrophysics Data System (ADS)

    Vineyard, E. A.; Sand, J. R.; Miller, W. A.

    1989-07-01

    As a result of the Montreal Protocol that limits the production of ozone-depleting refrigerants, manufacturers are searching for alternatives to replace the R12 that is presently used in residential refrigerator-freezers. Before an alternative can be selected, several issues must be resolved. Among these are energy impacts, system compatibility, cost, and availability. In an effort to determine the energy impacts of some of the alternatives, energy consumption tests were performed in accordance with section 8 of the Association of Home Appliance Manufacturers (AHAM) standard for household refrigerators and household freezers. The results are presented for an 18 cubic foot (0.51 cubic meter), top-mount refrigerator-freezer with a static condenser using the following refrigerants: R12, R500, R12/Dimethyl-ether (DME), R22/R142b, and R134a. Conclusions from the AHAM test are that R500 and R12 /DME have a reduced energy consumption relative to R12 when replaced in the test unit with no modifications to the refrigeration system. Run times were slightly lower than R12 for both refrigerants indicating a higher capacity. While the R134a and R22/R142b results were less promising, changes to the refrigeration system, such as a different capillary tube or compressor, may improve performance.

  1. Deformation analysis of vesicles in an alternating-current electric field

    NASA Astrophysics Data System (ADS)

    Tang, Yu-Gang; Liu, Ying; Feng, Xi-Qiao

    2014-08-01

    In this paper the shape equation for axisymmetric vesicles subjected to an ac electric field is derived on the basis of the liquid-crystal model. The equilibrium morphology of a lipid vesicle is determined by the minimization of its free energy in coupled mechanical and ac electric fields. Besides elastic bending, the effects of the osmotic pressure difference, surface tension, Maxwell pressure, and flexoelectric and dielectric properties of phospholipid membrane as well are taken into account. The influences of elastic bending, osmotic pressure difference, and surface tension on the frequency-dependent behavior of a vesicle membrane in an ac electric field are examined. The singularity of the ac electric field is also investigated. Our theoretical results of vesicle deformation agree well with previous experimental and numerical results. The present study provides insights into the physical mechanisms underpinning the frequency-dependent morphological evolution of vesicles in the electric and mechanical fields.

  2. Ferrofluid based micro-electrical energy harvesting

    NASA Astrophysics Data System (ADS)

    Purohit, Viswas; Mazumder, Baishakhi; Jena, Grishma; Mishra, Madhusha; Materials Department, University of California, Santa Barbara, CA93106 Collaboration

    2013-03-01

    Innovations in energy harvesting have seen a quantum leap in the last decade. With the introduction of low energy devices in the market, micro energy harvesting units are being explored with much vigor. One of the recent areas of micro energy scavenging is the exploitation of existing vibrational energy and the use of various mechanical motions for the same, useful for low power consumption devices. Ferrofluids are liquids containing magnetic materials having nano-scale permanent magnetic dipoles. The present work explores the possibility of the use of this property for generation of electricity. Since the power generation is through a liquid material, it can take any shape as well as response to small acceleration levels. In this work, an electromagnet-based micropower generator is proposed to utilize the sloshing of the ferrofluid within a controlled chamber which moves to different low frequencies. As compared to permanent magnet units researched previously, ferrofluids can be placed in the smallest of containers of different shapes, thereby giving an output in response to the slightest change in motion. Mechanical motion from 1- 20 Hz was able to give an output voltage in mV's. In this paper, the efficiency and feasibility of such a system is demonstrated.

  3. Nanoscale heat transfer and thermoelectrics for alternative energy

    NASA Astrophysics Data System (ADS)

    Robinson, Richard

    2011-03-01

    In the area of alternative energy, thermoelectrics have experienced an unprecedented growth in popularity because of their ability to convert waste heat into electricity. Wired in reverse, thermoelectrics can act as refrigeration devices, where they are promising because they are small in size and lightweight, have no moving parts, and have rapid on/off cycles. However, due to their low efficiencies bulk thermoelectrics have historically been a niche market. Only in the last decade has thermoelectric efficiency exceeded ~ 20 % due to fabrication of nanostructured materials. Nanoscale materials have this advantage because electronic and acoustic confinement effects can greatly increase thermoelectric efficiency beyond bulk values. In this talk, I will introduce our work in the area of nanoscale heat transfer with the goal of more efficient thermoelectrics. I will discuss our experiments and methods to study acoustic confinement in nanostructures and present some of our new nanostructured thermoelectric materials. To study acoustic confinement we are building a nanoscale phonon spectrometer. The instrument can excite phonon modes in nanostructures in the ~ 100 s of GHz. Ballistic phonons from the generator are used to probe acoustic confinement and surface scattering effects. Transmission studies using this device will help optimize materials and morphologies for more efficient nanomaterial-based thermoelectrics. For materials, our group has synthesized nano-layer superlattices of Na x Co O2 . Sodium cobaltate was recently discovered to have a high Seebeck coeficent and is being studied as an oxide thermoelectric material. The thickness of our nano-layers ranges from 5 nm to 300 nm while the lengths can be varied between 10 μ m and 4 mm. Typical aspect ratios are 40 nm: 4 mm, or 1:100,000. Thermoelectric characterization of samples with tilted multiple-grains along the measurement axis indicate a thermoelectric efficiency on par with current polycrystalline samples

  4. A summary of the ECAS performance and cost results for MHD system. [Energy Conversion Alternatives Study

    NASA Technical Reports Server (NTRS)

    Seikel, G. R.; Sovie, R. J.; Burns, R. K.; Barna, G. J.; Burkhart, J. A.; Nainiger, J. J.; Smith, J. M.

    1976-01-01

    The interagency-funded, NASA-coordinated Energy Conversion Alternatives Study (ECAS) has studied the potential of various advanced power plant concepts using coal and coal-derived fuel. Principle studies were conducted through prime contracts with the General Electric Company and the Westinghouse Electric Corporation. The results indicate that open-cycle coal-fired direct-preheat MHD systems have potentially one of the highest coal-pile-to-bus-bar efficiencies and also one of the lowest costs of electricity (COE) of the systems studied. Closed-cycle MHD systems may have the potential to approach the efficiency and COE of open-cycle MHD. The 1200-1500 F liquid-metal MHD systems studied do not appear to have the potential of exceeding the efficiency or competing with the COE of advanced steam plants.

  5. 76 FR 647 - Energy Conservation Program: Test Procedures for Electric Motors and Small Electric Motors

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-05

    ... FR 54114. After determining that energy conservation standards for small electric motors would be... of test procedures for certain small electric motors. 71 FR 38807 (July 10, 2006). Pursuant to... adopting test procedures for measuring the energy efficiency of small electric motors. 74 FR 32059....

  6. Transformative research issues and opportunities in alternative energy generation and storage.

    SciTech Connect

    Rockett, A.; Chung, Y. W.; Blaschek, H.; Butterfield, S.; Chance, R. R.; Ferekides, C.; Robinson, M.; Snyder, S. W; Thackeray, M.

    2011-01-01

    This article presents a summary of research issues and opportunities in alternative energy source research identified by panels of experts assembled by the Engineering Directorate of the US National Science Foundation. The objective was to identify transformative research issues and opportunities to make alternative energy sources viable. The article presents motivations for energy research, grand challenges, and specific challenges in the research areas covered. The grand challenges identified for the United States include supplying 30% of US electricity from photovoltaics by 2030, supplying 25% of US electricity from wind by 2025, displacing 30% of US hydrocarbon use by 2030 with bio-based products, and providing a practical 250-300 W h/kg energy storage system by 2025. Similar challenges could be outlined along the same lines for the remainder of the world. Examples of specific areas of research focus identified as promising include high performance p-type transparent conductors, multijunction thin-film photovoltaic devices, defects in chalcogenide semiconductors, experimental study and numerical modeling of the fluid mechanics of airflow as applied to wind turbines, improved materials for wind turbines, methods for creating high energy density transportable biological feedstocks, biorefinery processes yielding infrastructure-compatible biofuels and biochemicals directly, and improved electrodes and electrolytes for Li ion batteries. Arguments for each of these as research priorities are given.

  7. Generating Electric Power in the Pacific Northwest. Implications of Alternative Technologies

    NASA Astrophysics Data System (ADS)

    Pernin, Christopher G.; Bernstein, Mark A.; Mejia, Andrea; Shih, Howard; Rueter, Fred

    2002-01-01

    The Pacific Northwest faces some critical energy issues over the next 20 years. There is significant uncertainty about energy supplies, energy prices, and the implications of competitive energy markets. Therefore, as energy demands continue to rise, it is important for the states in the region to understand the risks and opportunities of different energy supply and demand options. This report addresses issues in electricity supply and demand for four states in the Pacific Northwest: Idaho, Montana, Oregon, and Washington. For much of the past 50 years, these states have relied heavily on hydroelectric power to meet their energy needs, and this inexpensive electricity has helped keep electricity rates low in the region, compared with the rest of the United States. However, the region cannot add much new hydroelectric capacity, so increasing demands for electricity in the future will have to be met by other sources. It is expected that the bulk of new electricity-generating capacity will come from natural-gas-fired power plants. While the combined share of electricity generated by hydroelectric and natural-gas-fired plants is expected to remain the same through 2010 (together, they provide 86 percent of the capacity in the region, the remainder being provided primarily by coal and nuclear plants), the proportion generated by natural gas will rise dramatically. Table S.1 summarizes the shares of current and future expected generating capacity in the region. The changes in the shares provided by the two major sources will have a number of consequences for the states in the region.

  8. Alternative futures for the Department of Energy National Laboratories

    SciTech Connect

    Not Available

    1995-02-01

    This Task Force was asked to propose alternate futures for the Department of Energy laboratories noted in the report. The authors` intensive ten months` study revealed multiple missions and sub-missions--traditional missions and new missions--programs and projects--each with factors of merit. They respectively suggest that the essence of what the Department, and particularly the laboratories, should and do stand for: the energy agenda. Under the overarching energy agenda--the labs serving the energy opportunities--they comment on their national security role, the all important energy role, all related environmental roles, the science and engineering underpinning for all the above, a focused economic role, and conclude with governance/organization change recommendations.

  9. Development of alternative energy science and engineering in the Caribbean

    NASA Astrophysics Data System (ADS)

    Bonnet, J. A., Jr.; Koehler, W. C., Jr.

    1983-11-01

    A pilot designed to improve the capabilities of Caribbean universities and research institutes in helping solve the energy problems of the region is discussed. Most of the region is almost entirely dependent on imported petroleum to satisfy its energy needs. That dependency has exascerbated economic problems with the escalation of petroleum prices in the past ten years. A potential solution to reduce both the high degree of dependence and economic costs is to develop other energy systems. A project to foster cooperative research efforts to assist in the introduction of alternative energy solutions was developed. A network of scientists and engineers working in energy was established to promote cooperation, interchange of technical information and development of joint projects.

  10. Social issues and energy alternatives: the context of conflict over nuclear waste. Final report

    SciTech Connect

    Lindell, M.K.; Earle, T.C.; Perry, R.W.

    1980-06-01

    The perceived risks and benefits of electric power alternatives were used to explore the context of attitudes toward nuclear power. Supporters and opponents of nuclear power responded to thirty-three items which referred to five categories of energy issue: the production potential of electric, risks of those technologies, power generation technologies, energy conservation, comparisons of risks among technologies and comparisons between risks and benefits of each technology. The results are summarized. The nuclear supporters studied here do favor nuclear power. However, they believe that there are limited prospects for contributions from solar, wind and hydroelectric technologies. They also believe that there are serious disadvantages to conservation. Nuclear opponents, on the other hand, disagree that there are such limited prospects for solar and wind, although they are neutral on the prospects for increased hydro capacity. They also do not believe that conservation necessarily poses serious adverse consequences either for themselves or others.

  11. FreedomCAR :electrical energy storage system abuse test manual for electric and hybrid electric vehicle applications.

    SciTech Connect

    Doughty, Daniel Harvey; Crafts, Chris C.

    2006-08-01

    This manual defines a complete body of abuse tests intended to simulate actual use and abuse conditions that may be beyond the normal safe operating limits experienced by electrical energy storage systems used in electric and hybrid electric vehicles. The tests are designed to provide a common framework for abuse testing various electrical energy storage systems used in both electric and hybrid electric vehicle applications. The manual incorporates improvements and refinements to test descriptions presented in the Society of Automotive Engineers Recommended Practice SAE J2464 ''Electric Vehicle Battery Abuse Testing'' including adaptations to abuse tests to address hybrid electric vehicle applications and other energy storage technologies (i.e., capacitors). These (possibly destructive) tests may be used as needed to determine the response of a given electrical energy storage system design under specifically defined abuse conditions. This manual does not provide acceptance criteria as a result of the testing, but rather provides results that are accurate and fair and, consequently, comparable to results from abuse tests on other similar systems. The tests described are intended for abuse testing any electrical energy storage system designed for use in electric or hybrid electric vehicle applications whether it is composed of batteries, capacitors, or a combination of the two.

  12. Neutrino alternatives for missing energy events at colliders

    SciTech Connect

    Chang, Spencer; Gouvea, Andre de

    2009-07-01

    If the dark matter consists of a weakly interacting massive particle, it can be produced and studied at future collider experiments like those at the LHC. The production of collider-stable weakly interacting massive particles is characterized by hard scattering events with large missing transverse energy. Here we emphasize and discuss the fact that the discovery of events inconsistent with the standard model with large missing transverse energy need not point to the existence of new, collider-stable particles. We explore an alternative explanation where the only sources of missing transverse energy are standard model neutrinos. We present concrete examples of such scenarios, focusing on supersymmetric models with R-parity violation. We also discuss means of differentiating neutrino missing energy signals from the production of new collider-stable particles. These include both model-dependent signals, such as particle tags and flavor counts, as well as model-independent tests that attempt to measure the missing particle mass.

  13. Performance Evaluation of Lower-Energy Energy Storage Alternatives for Full-Hybrid Vehicles; NREL (National Renewable Energy Laboratory)

    SciTech Connect

    Gonder, J.; Cosgrove, J.; Pesaran, A.

    2014-02-11

    Automakers have been mass producing hybrid electric vehicles (HEVs) for well over a decade, and the technology has proven to be very effective at reducing per-vehicle fuel use. However, the incremental cost of HEVs such as the Toyota Prius or Ford Fusion Hybrid remains several thousand dollars higher than the cost of comparable conventional vehicles, which has limited HEV market penetration. The b b b b battery energy storage device is typically the component with the greatest contribution toward this cost increment, so significant cost reductions/performance improvements to the energy storage system (ESS) can correspondingly improve the vehicle-level cost/benefit relationship. Such an improvement would in turn lead to larger HEV market penetration and greater aggregate fuel savings. The United States Advanced Battery Consortium (USABC) and the U.S. Department of Energy (DOE) Energy Storage Program managers asked the National Renewable Energy Laboratory (NREL) to collaborate with a USABC Workgroup and analyze the trade-offs between vehicle fuel economy and reducing the decade-old minimum energy requirement for power-assist HEVs. NREL’s analysis showed that significant fuel savings could still be delivered from an ESS with much lower energy storage than the previous targets, which prompted USABC to issue a new set of lower-energy ESS (LEESS) targets that could be satisfied by a variety of technologies. With support from DOE, NREL has developed an HEV test platform for in-vehicle performance and fuel economy validation testing of the hybrid system using such LEESS devices. This presentation describes development of the vehicle test platform, and laboratory as well as in-vehicle evaluation results with alternate energy storage configurations as compared to the production battery system. The alternate energy storage technologies considered include lithium-ion capacitors -- i.e., asymmetric electrochemical energy storage devices possessing one electrode with battery

  14. 77 FR 20375 - Application to Export Electric Energy; Rainbow Energy Marketing Corporation

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-04

    ... Application to Export Electric Energy; Rainbow Energy Marketing Corporation AGENCY: Office of Electricity Delivery and Energy Reliability, DOE. ACTION: Notice of application. SUMMARY: Rainbow Energy Marketing Corporation (Rainbow) has applied to renew its authority to transmit electric energy from the United States...

  15. 75 FR 57912 - Application To Export Electric Energy; Rainbow Energy Marketing Corporation

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-23

    ... Application To Export Electric Energy; Rainbow Energy Marketing Corporation AGENCY: Office of Electricity Delivery and Energy Reliability, DOE. ACTION: Notice of application. SUMMARY: Rainbow Energy Marketing Corporation (Rainbow) has applied for authority to transmit electric energy from the United States to...

  16. 75 FR 45111 - Electric Quarterly Reports; Strategic Energy Management Corp.; Solaro Energy Marketing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-02

    ...] Electric Quarterly Reports; Strategic Energy Management Corp.; Solaro Energy Marketing Corporation; Notice... Order, the Commission directed Strategic Energy Management Corp. and Solaro Energy Marketing Corporation... Energy Management Corp. and Solaro Energy Marketing Corporation) have failed to file their...

  17. Near-microsecond human aquaporin 4 gating dynamics in static and alternating external electric fields: Non-equilibrium molecular dynamics.

    PubMed

    English, Niall J; Garate, José-A

    2016-08-28

    An extensive suite of non-equilibrium molecular-dynamics simulation has been performed for ∼0.85-0.9 μs of human aquaporin 4 in the absence and presence of externally applied static and alternating electric fields applied along the channels (in both axial directions in the static case, taken as the laboratory z-axis). These external fields were of 0.0065 V/Å (r.m.s.) intensity (of the same order as physiological electrical potentials); alternating fields ranged in frequency from 2.45 to 500 GHz. In-pore gating dynamics was studied, particularly of the relative propensities for "open" and "closed" states of the conserved arginines in the arginine/aromatic area (itself governed in no small part by external-field response of the dipolar alignment of the histidine-201 residue in the selectivity filter). In such a manner, the intimate connection of field-response governing "two-state" histidine states was established statistically and mechanistically. Given the appreciable size of the energy barriers for histidine-201 alignment, we have also performed non-equilibrium metadynamics/local-elevation of static fields applied along both directions to construct the free-energy landscape thereof in terms of external-field direction, elucidating the importance of field direction on energetics. We conclude from direct measurement of deterministic molecular dynamics in conjunction with applied-field metadynamics that the intrinsic electric field within the channel points along the +z-axis, such that externally applied static fields in this direction serve to "open" the channel in the selectivity-filter and the asparagine-proline-alanine region. PMID:27586951

  18. 77 FR 31342 - Application To Export Electric Energy; Emera Energy Services Subsidiaries

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-25

    ... Application To Export Electric Energy; Emera Energy Services Subsidiaries AGENCY: Office of Electricity... subsidiaries of Emera Incorporated (Emera) have applied separately to renew its authority to transmit electric... EA-325, authorizing the Emera Subsidiaries to transmit electric energy from the United States...

  19. Instability of surface electron cyclotron TM-modes influenced by non-monochromatic alternating electric field

    NASA Astrophysics Data System (ADS)

    Girka, I. O.; Girka, V. O.; Sydora, R. D.; Thumm, M.

    2016-06-01

    The influence of non-monochromaticity of an external alternating electric field on excitation of TM eigenmodes at harmonics of the electron cyclotron frequency is considered here. These TM-modes propagate along the plasma interface in a metal waveguide. An external static constant magnetic field is oriented perpendicularly to the plasma interface. The problem is solved theoretically using the kinetic Vlasov-Boltzmann equation for description of plasma particles motion and the Maxwell equations for description of the electromagnetic mode fields. The external alternating electric field is supposed to be a superposition of two waves, whose amplitudes are different and their frequencies correlate as 2:1. An infinite set of equations for electric field harmonics of these modes is derived with the aid of nonlinear boundary conditions. This set is solved using the wave packet approach consisting of the main harmonic frequency and two nearest satellite temporal harmonics. Analytical studies of the obtained set of equations allow one to find two different regimes of parametric instability, namely, enhancement and suppression of the instability. Numerical analysis of the instability is carried out for the three first electron cyclotron harmonics.

  20. Water-in-oil emulsification in a non-uniform alternating electric field

    NASA Astrophysics Data System (ADS)

    Choi, Suhwan; Saveliev, Alexei

    2015-11-01

    The emulsification of a water microdroplet placed in castor oil was performed using a non-uniform alternating electric field formed in the pin-to-plate geometry. A non-uniform electric field of ~40 kV/mm alternating with a frequency of 6.7 kHz was generated near the pin electrode. The applied frequency exceeded charge relaxation frequency of castor oil (0.3 Hz) and was below charge relaxation frequency of deionized water (7.8 kHz) used in the experiments. The emulsification process was captured with a CCD camera. The emulsification process started with entrainment of the water droplet in the high electric filed region near the pin electrode under the dielectrophoretic force. Upon touching the pin, the microdroplet was disintegrated in numerous channels and secondary droplets. The process continued by entrainment of secondary droplets and continuous size reduction. Three droplet breakup mechanisms were identified: drop elongation and capillary breakup, ac electrospraying of individual droplets, chain and bridge formation and decay. The quasi-steady narrow size distribution of emulsified water droplets with diameters close to 1 μm was formed after a few minutes. The generated emulsion was confined near the needle electrode due to the dielectrophoretic force. The emulsion had a well-defined boundary with a shape resembling a pendant drop suspended on the pin electrode.

  1. Energy and cost savings results for advanced technology systems from the Cogeneration Technology Alternatives Study /CTAS/

    NASA Technical Reports Server (NTRS)

    Sagerman, G. D.; Barna, G. J.; Burns, R. K.

    1979-01-01

    The Cogeneration Technology Alternatives Study (CTAS), a program undertaken to identify the most attractive advanced energy conversion systems for industrial cogeneration applications in the 1985-2000 time period, is described, and preliminary results are presented. Two cogeneration options are included in the analysis: a topping application, in which fuel is input to the energy conversion system which generates electricity and waste heat from the conversion system is used to provide heat to the process, and a bottoming application, in which fuel is burned to provide high temperature process heat and waste heat from the process is used as thermal input to the energy conversion system which generates energy. Steam turbines, open and closed cycle gas turbines, combined cycles, diesel engines, Stirling engines, phosphoric acid and molten carbonate fuel cells and thermionics are examined. Expected plant level energy savings, annual energy cost savings, and other results of the economic analysis are given, and the sensitivity of these results to the assumptions concerning fuel prices, price of purchased electricity and the potential effects of regional energy use characteristics is discussed.

  2. Alternative energy sources for non-highway transportation. Appendices

    SciTech Connect

    Not Available

    1980-06-01

    A planning study was made for DOE on alternate fuels for non-highway transportation (aircraft, rail, marine, and pipeline). The study provides DOE with a recommendation of what alternate fuels may be of interest to non-highway transportation users from now through 2025 and recommends R and D needed to allow non-petroleum derived fuels to be used in non-highway transportation. Volume III contains all of the references for the data used in the preliminary screening and is presented in 4 subvolumes. Volume IIIA covers the background information on the various prime movers used in the non-highway transportation area, the physical property data, the fuel-prime mover interaction and a review of some alternate energy forms. Volume IIIB covers the economics of producing, tranporting, and distributing the various fuels. Volume IIIC is concerned with the environment issues in production and use of the fuels, the energy efficiency in use and production, the fuel logistics considerations, and the overall ratings and selection of the fuels and prime movers for the detailed evaluation. Volume IIID covers the demand-related issues.

  3. Off-peak electric energy for poultry feed processing

    SciTech Connect

    Tyson, E.J.

    1987-01-01

    Off-peak electric energy can be used for poultry feed processing, achieving substantial reduction in electric energy cost. In addition, high efficiency equipment and conservation measures add to energy cost savings. Careful planning and evaluation of time-of-use rates can maximize the savings for each type of enterprise.

  4. Analysis of alternative strategies for energy conservation in new buildings

    SciTech Connect

    Fang, J.M.; Tawil, J.J.

    1980-12-01

    Building Energy Performance Standards (BEPS) were mandated by the Energy Conservation Standards for New Buildings Act of 1976 (Title III of Energy Conservation and Production Act) to promote energy efficiency and the use of renewable resources in new buildings. The report analyzes alternative Federal strategies and their component policy instruments and recommends a strategy for achieving the goals of the Act. The concern is limited to space conditioning (heating, cooling, and lighting) and water heating. The policy instruments considered include greater reliance on market forces; research and development; information, education and demonstration programs; tax incentives and sanctions; mortgage and finance programs; and regulations and standards. The analysis starts with an explanation of the barriers to energy conservation in the residential and commercial sectors. Individual policy instruments are then described and evaluated with respect to energy conservation, economic efficiency, equity, political impacts, and implementation and other transitional impacts. Five possible strategies are identified: (1) increased reliance on the market place; (2) energy consumption tax and supply subsidies; (3) BEPS with no sanctions and no incentives; (4) BEPS with sanctions and incentives (price control); and (5) BEPS with sanctions and incentives (no price controls). A comparative analysis is performed. Elements are proposed for inclusion in a comprehensive strategy for conservation in new buildings. (MCW)

  5. Coal and peat in the sub-Saharan region of Africa: alternative energy options?

    USGS Publications Warehouse

    Weaver, J.N.; Landis, E.R.

    1990-01-01

    Coal and peat are essentially unused and in some cases unknown in sub-Saharan Africa. However, they might comprise valuable alternative energy sources in some or all of the developing nations of the region. The 11 countries considered in this appraisal reportedly contain coal and peat. On the basis of regional geology, another five countries might also contain coal-bearing rocks. If the resource potential is adequate, coal and peat might be utilized in a variety of ways including substituting for fuelwood, generating electricity, supplying process heat for local industry and increasing agricultural productivity. -from Author

  6. Short and long term energy source technologies for electrically-heated catalysts

    SciTech Connect

    Bass, E.A.; Johnston, R.; Hunt, B.; Rodriguez, G.; Gottberg, I.; Ishizuka, A.; Hall, W.

    1996-12-31

    A consortium of six companies formed by Southwest Research Institute conducted an investigation into alternative electric power supplies for electrically heated catalysts (EHCs). Previous studies showed that, due to their high power and energy requirements upon engine start, battery-powered EHCs would cause premature failure of common lead-acid batteries. This project identified and characterized several alternative electric energy sources. Production starting, lighting, and ignition (SLI) batteries were evaluated along with lead-acid electric vehicle batteries, nickel-cadmium aircraft batteries, prototype ultracapacitors, and a modified alternator. Battery Council International and US Advanced Battery Consortium test methods were employed where applicable. Evaluations included ambient and low-temperature ({minus}18 C) constant-current discharge characterization, low-temperature peak-power determination, self-discharge, and passenger car Federal Test Procedure (FTP) emissions and fuel economy. As demonstrated by discharge-energy and peak-power tests, some EV batteries may have potential for the EHC/SLI application. Other appeared to be poorly suited due to low-temperature problems. The best low-temperature performance was observed with ultracapacitors. These units were also the least to be affected by the power versus energy trade-off. The problems with these prototype storage units were high cost and self-discharge rate. Alternator power for EHCs as an alternative to energy storage devices was successfully demonstrated on a vehicle. Power produced was a linear function of engine speed and EHC load. High-voltage switching devices will be necessary for successful use of alternator power on EHCs. A fuel economy penalty was expected, but not observed during the FTP vehicle demonstration.

  7. Microbial growth inhibition by alternating electric fields in mice with Pseudomonas aeruginosa lung infection.

    PubMed

    Giladi, Moshe; Porat, Yaara; Blatt, Alexandra; Shmueli, Esther; Wasserman, Yoram; Kirson, Eilon D; Palti, Yoram

    2010-08-01

    High-frequency, low-intensity electric fields generated by insulated electrodes have previously been shown to inhibit bacterial growth in vitro. In the present study, we tested the effect of these antimicrobial fields (AMFields) on the development of lung infection caused by Pseudomonas aeruginosa in mice. We demonstrate that AMFields (10 MHz) significantly inhibit bacterial growth in vivo, both as a stand-alone treatment and in combination with ceftazidime. In addition, we show that peripheral (skin) heating of about 2 degrees C can contribute to bacterial growth inhibition in the lungs of mice. We suggest that the combination of alternating electric fields, together with the heat produced during their application, may serve as a novel antibacterial treatment modality. PMID:20547811

  8. Impact of electric cars on national energy consumption

    NASA Astrophysics Data System (ADS)

    Agarwal, P. D.

    1980-02-01

    Energy utilization of electric vehicles is discussed in terms of energy efficiency in comparison to internal combustion engine automobiles, starting from oil or coal as the prime energy source. It is found that although an electric car does not save primary energy resources, it can transfer some of the transportation fuel needs from petroleum to coal, nuclear, or hydropower. With reference to the impact of electric vehicles on reduction of petroleum consumption, it is shown that the dependence of the United States on foreign oil can be reduced much more quickly and at much lower cost by converting electric utility boilers from oil to coal.

  9. Experimental Study of Entropy Production in Cells under Alternating Electric Field

    NASA Astrophysics Data System (ADS)

    Ding, Chang-Jiang; Luo, Liao-Fu

    2012-08-01

    We put forward a new method for measuring the entropy production in the living cell. It involves heating the sample by alternating the electric field and recording the outward heat flow. The entropy production in a normal cell MCF10A and a cancerous cell MDA-MB-231 were measured and compared. The results show that the method is effective for the entropy measurement of a living organism. The scaled electro-induced entropy production rate (SEEP) of MDA-MB-231 monotonically increases with the electric field strength at 5-40 V/cm. While that of MCF10A changes non-monotonically and there exists a peak at 5-30 V/cm. The electro-induced entropy production ratio (EEPR) is smaller than 1 in a large range of field strengths, from 5 to 25 V/cm, which reveals that under 5-25 V/cm electric field exposure, the direction of the entropy flow may be changed from normal tissue to cancerous cells. We present a facile and effective strategy for experimentally investigating the thermodynamic properties of the cell and give a deeper insight into the physical difference between normal and cancerous cells under electric field exposure.

  10. Impacts on irrigated agriculture of changes in electricity costs resulting from Western Area Power Administration`s power marketing alternatives

    SciTech Connect

    Edwards, B.K.; Flaim, S.J.; Howitt, R.E.; Palmer, S.C.

    1995-03-01

    Irrigation is a major factor in the growth of US agricultural productivity, especially in western states, which account for more than 85% of the nation`s irrigated acreage. In some of these states, almost all cropland is irrigated, and nearly 50% of the irrigation is done with electrically powered pumps. Therefore, even small increases in the cost of electricity could have a disproportionate impact on irrigated agriculture. This technical memorandum examines the impacts that could result from proposed changes in the power marketing programs of the Western Area Power Administration`s Salt Lake City Area Office. The changes could increase the cost of power to all Western customers, including rural municipalities and irrigation districts that rely on inexpensive federal power to pump water. The impacts are assessed by translating changes in Western`s wholesale power rate into changes in the cost of pumping water as an input for agricultural production. Farmers can adapt to higher electricity prices in many ways, such as (1) using different pumping fuels, (2) adding workers and increasing management to irrigate more efficiently, and (3) growing more drought-tolerant crops. This study projects several responses, including using less groundwater and planting fewer waterintensive crops. The study finds that when dependence on Western`s power is high, the cost of power can have a major effect on energy use, agricultural practices, and the distribution of planted acreage. The biggest percentage changes in farm income would occur (1) in Nevada and Utah (however, all projected changes are less than 2% of the baseline) and (2) under the marketing alternatives that represent the lowest capacity and energy offer considered in Western`s Electric Power Marketing Environmental Impact Statement. The aggregate impact on farm incomes and the value of total farm production would be much smaller than that suggested by the changes in water use and planted acreage.

  11. 77 FR 26607 - Energy Conservation Program: Test Procedures for Electric Motors and Small Electric Motors

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-04

    ... efficiency of electric motors. 64 FR 54114. After determining that energy conservation standards for small electric motors would be technologically feasible and economically justified, see 71 FR 38799 (July 10... electric motors. 74 FR 32059 (July 7, 2009). That rule followed from an earlier December 2008 proposal...

  12. Alternative energy sources for non-highway transportation: technical section

    SciTech Connect

    Not Available

    1980-06-01

    Eighteen different alternative fuels were considered in the preliminary screening, from three basic resource bases. Coal can be used to provide 13 of the fuels; oil shale was the source for three of the fuels; and biomass provided the resource base for two fuels not provided from coal. In the case of biomass, six different fuels were considered. Nuclear power and direct solar radiation were also considered. The eight prime movers that were considered in the preliminary screening are boiler/steam turbine; open and closed cycle gas turbines; low and medium speed diesels; spark ignited and stratified charge Otto cycles; electric motor; Stirling engine; free piston; and fuel cell/electric motor. Modes of transport considered are pipeline, marine, railroad, and aircraft. Section 2 gives the overall summary and conclusions, the future outlook for each mode of transportation, and the R and D suggestions by mode of transportation. Section 3 covers the preliminary screening phase and includes a summary of the data base used. Section 4 presents the methodology used to select the fuels and prime movers for the detailed study. Sections 5 through 8 cover the detailed evaluation of the pipeline, marine, railroad, and aircraft modes of transportation. Section 9 covers the demand related issues.

  13. 75 FR 17036 - Energy Conservation Program: Energy Conservation Standards for Small Electric Motors; Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-05

    ... Part 431 RIN 1904-AB70 Energy Conservation Program: Energy Conservation Standards for Small Electric... rule regarding the energy conservation standards for small electric motors, which was published on... energy conservation standards for small electric motors. Due to a drafting error, an incorrect...

  14. Alternate Energy Sources for Thermalplastic Binding Agent Consolidation

    SciTech Connect

    Frame, B.J.

    1999-01-01

    A study was conducted to investigate microwave and electron beam technologies as alternate energy sources to consolidate fiber coated with a thermoplastic binding agent into preforms for composite molding applications. Bench experiments showed that both microwave and electron beam energy can produce heat sufficient to melt and consolidate a thermoplastic binding agent applied to fiberglass mat, and several two- and three-dimensional fiberglass preforms were produced with each method. In both cases, it is postulated that the heating was accomplished by the effective interaction of the microwave or electron beam energy with the combination of the mat preform and the tooling used to shape the preform. Both methods contrast with conventional thermal energy applied via infrared heaters or from a heated tool in which the heat to melt the thermoplastic binding agent must diffuse over time from the outer surface of the preform toward its center under a thermal gradient. For these reasons, the microwave and electron beam energy techniques have the potential to rapidly consolidate thick fiber preforms more efficiently than the thermal process. With further development, both technologies have the potential to make preform production more cost effective by decreasing cycle time in the preform tool, reducing energy costs, and by enabling the use of less expensive tooling materials. Descriptions of the microwave and electron beam consolidation experiments and a summary of the results are presented in this report.

  15. Thermoacoustic energy effects in electrical arcs.

    PubMed

    Capelli-Schellpfeffer, M; Miller, G H; Humilier, M

    1999-10-30

    Electrical arcs commonly occur in electrical injury incidents. Historically, safe work distances from an energized surface along with personal barrier protection have been employee safety strategies used to minimize electrical arc hazard exposures. Here, the two-dimensional computational simulation of an electrical arc explosion is reported using color graphics to depict the temperature and acoustic force propagation across the geometry of a hypothetical workroom during a time from 0 to 50 ms after the arc initiation. The theoretical results are compared to the experimental findings of staged tests involving a mannequin worker monitored for electrical current flow, temperature, and pressure, and reported data regarding neurologic injury thresholds. This report demonstrates a credible link between electrical explosions and the risk for pressure (acoustic) wave trauma. Our ultimate goal is to protect workers through the design and implementation of preventive strategies that properly account for all electrical arc-induced hazards, including electrical, thermal, and acoustic effects. PMID:10842616

  16. Quantitative analysis on electric dipole energy in Rashba band splitting

    NASA Astrophysics Data System (ADS)

    Hong, Jisook; Rhim, Jun-Won; Kim, Changyoung; Ryong Park, Seung; Hoon Shim, Ji

    2015-09-01

    We report on quantitative comparison between the electric dipole energy and the Rashba band splitting in model systems of Bi and Sb triangular monolayers under a perpendicular electric field. We used both first-principles and tight binding calculations on p-orbitals with spin-orbit coupling. First-principles calculation shows Rashba band splitting in both systems. It also shows asymmetric charge distributions in the Rashba split bands which are induced by the orbital angular momentum. We calculated the electric dipole energies from coupling of the asymmetric charge distribution and external electric field, and compared it to the Rashba splitting. Remarkably, the total split energy is found to come mostly from the difference in the electric dipole energy for both Bi and Sb systems. A perturbative approach for long wave length limit starting from tight binding calculation also supports that the Rashba band splitting originates mostly from the electric dipole energy difference in the strong atomic spin-orbit coupling regime.

  17. Solar Power and the Electric Grid, Energy Analysis (Fact Sheet)

    SciTech Connect

    Not Available

    2010-03-01

    In today's electricity generation system, different resources make different contributions to the electricity grid. This fact sheet illustrates the roles of distributed and centralized renewable energy technologies, particularly solar power, and how they will contribute to the future electricity system. The advantages of a diversified mix of power generation systems are highlighted.

  18. 77 FR 41873 - In the Matter of Alternative Energy Sources, Inc., Arlington Hospitality, Inc., Consolidated Oil...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-16

    ... From the Federal Register Online via the Government Publishing Office SECURITIES AND EXCHANGE COMMISSION In the Matter of Alternative Energy Sources, Inc., Arlington Hospitality, Inc., Consolidated Oil... current and accurate information concerning the securities of Alternative Energy Sources, Inc. because...

  19. Lifeline electric rates and alternative approaches to the problems of low-income ratepayers. Ten case studies of implemented programs

    SciTech Connect

    Not Available

    1980-07-01

    Program summaries, issue developments, governmental processes, and impacts are discussed for 10 case studies dealing with lifeline electric rates and alternative approaches to the problems of low-income ratepayers, namely; the Boston Edison rate freeze; the California lifeline; Florida Power and Light conservation rate; the Iowa-Illinois Gas and Electric small-use rate; the Maine demonstration lifeline program; the Massachusetts Electric Company A-65 rate; the Michigan optional senior citizen rate; the Narragansett Electric Company A-65 SSI rate; the Northern States Power Company conservation rate break; and the Potomac Electric Power Company rate freeze. (MCW)

  20. Energy Efficiency Under Alternative Carbon Policies. Incentives, Measurement, and Interregional Effects

    SciTech Connect

    Steinberg, Daniel C.; Boyd, Erin

    2015-08-28

    In this report, we examine and compare how tradable mass-based polices and tradable rate-based policies create different incentives for energy efficiency investments. Through a generalized demonstration and set of examples, we show that as a result of the output subsidy they create, traditional rate-based policies, those that do not credit energy savings from efficiency measures, reduce the incentive for investment in energy efficiency measures relative to an optimally designed mass-based policy or equivalent carbon tax. We then show that this reduced incentive can be partially addressed by modifying the rate-based policy such that electricity savings from energy efficiency measures are treated as a source of zero-carbon generation within the framework of the standard, or equivalently, by assigning avoided emissions credit to the electricity savings at the rate of the intensity target. These approaches result in an extension of the output subsidy to efficiency measures and eliminate the distortion between supply-side and demand-side options for GHG emissions reduction. However, these approaches do not address electricity price distortions resulting from the output subsidy that also impact the value of efficiency measures. Next, we assess alternative approaches for crediting energy efficiency savings within the framework of a rate-based policy. Finally, we identify a number of challenges that arise in implementing a rate-based policy with efficiency crediting, including the requirement to develop robust estimates of electricity savings in order to assess compliance, and the requirement to track the regionality of the generation impacts of efficiency measures to account for their interstate effects.

  1. 77 FR 20805 - Application to Export Electric Energy; PPL EnergyPlus, LLC

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-06

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Application to Export Electric Energy; PPL EnergyPlus, LLC AGENCY: Office of Electricity Delivery and Energy Reliability, DOE. ACTION: Notice of application. SUMMARY: PPL EnergyPlus, LLC. (PPL EnergyPlus) has applied...

  2. Energy Conversion and Storage Requirements for Hybrid Electric Aircraft

    NASA Technical Reports Server (NTRS)

    Misra, Ajay

    2016-01-01

    Among various options for reducing greenhouse gases in future large commercial aircraft, hybrid electric option holds significant promise. In the hybrid electric aircraft concept, gas turbine engine is used in combination with an energy storage system to drive the fan that propels the aircraft, with gas turbine engine being used for certain segments of the flight cycle and energy storage system being used for other segments. The paper will provide an overview of various energy conversion and storage options for hybrid electric aircraft. Such options may include fuel cells, batteries, super capacitors, multifunctional structures with energy storage capability, thermoelectric, thermionic or a combination of any of these options. The energy conversion and storage requirements for hybrid electric aircraft will be presented. The role of materials in energy conversion and storage systems for hybrid electric aircraft will be discussed.

  3. Wind energy as a significant source of electricity

    SciTech Connect

    Nix, R G

    1995-01-01

    Wind energy is a commercially available renewable energy source, with state-of-the-art wind plants producing electricity at about $0.05 per kWh. However, even at that production cost, wind-generated electricity is not yet fully cost-competitive with coal- or natural-gas-produced electricity for the bulk electricity market. The wind is a proven energy source; it is not resource-limited in the US, and there are no insolvable technical constraints. This paper describes current and historical technology, characterizes existing trends, and describes the research and development required to reduce the cost of wind-generated electricity to full competitiveness with fossil-fuel-generated electricity for the bulk electricity market. Potential markets are described.

  4. Alternative Energy Science and Policy: Biofuels as a Case Study

    NASA Astrophysics Data System (ADS)

    Ammous, Saifedean H.

    This dissertation studies the science and policy-making of alternative energy using biofuels as a case study, primarily examining the instruments that can be used to alleviate the impacts of climate change and their relative efficacy. Three case studies of policy-making on biofuels in the European Union, United States of America and Brazil are presented and discussed. It is found that these policies have had large unintended negative consequences and that they relied on Lifecycle Analysis studies that had concluded that increased biofuels production can help meet economic, energy and environmental goals. A close examination of these Lifecycle Analysis studies reveals that their results are not conclusive. Instead of continuing to attempt to find answers from Lifecycle Analyses, this study suggests an alternative approach: formulating policy based on recognition of the ignorance of real fuel costs and pollution. Policies to combat climate change are classified into two distinct approaches: policies that place controls on the fuels responsible for emissions and policies that target the pollutants themselves. A mathematical model is constructed to compare these two approaches and address the central question of this study: In light of an ignorance of the cost and pollution impacts of different fuels, are policies targeting the pollutants themselves preferable to policies targeting the fuels? It is concluded that in situations where the cost and pollution functions of a fuel are unknown, subsidies, mandates and caps on the fuel might result in increased or decreased greenhouse gas emissions; on the other hand, a tax or cap on carbon dioxide results in the largest decrease possible of greenhouse gas emissions. Further, controls on greenhouse gases are shown to provide incentives for the development and advancement of cleaner alternative energy options, whereas controls on the fuels are shown to provide equal incentives to the development of cleaner and dirtier

  5. Electric Energy. The Prime Mover of a Technological Society.

    ERIC Educational Resources Information Center

    Bonfadini, John E.

    1991-01-01

    Provides technology educators with an overview of the electric utility industry and present and future developments in energy technology. Discusses the process of teaching about energy in technology education programs. (SK)

  6. Space electric power design study. [laser energy conversion

    NASA Technical Reports Server (NTRS)

    Martini, W. R.

    1976-01-01

    The conversion of laser energy to electrical energy is discussed. Heat engines in which the laser heats the gas inside the engine through a window as well as heat engines in which the gas is heated by a thermal energy storage reservoir which has been heated by laser radiation are both evaluated, as well as the necessary energy storage, transmission and conversion components needed for a full system. Preliminary system concepts are presented and a recommended development program is outlined. It appears possible that a free displacer Stirling engine operating directly a linear electric generator can convert 65% of the incident laser energy into electricity.

  7. Energy cane as a multiple-products alternative

    SciTech Connect

    Alexander, A.G.

    1984-01-01

    CANE SUGAR planting as it was formerly known is in serious and essentially irreversible trouble. Diversification of sugarcane to alternative farm crops is indicated in some instances. Yet, for the most part, the more logical alternative is an internal diversification to a multiple-products biomass commodity. Sometimes termed the energy cane approach, its keystones are the management of sugarcane as a quantitative rather than qualitative entity, and the inclusion of certain tropical-grass relatives to assist cane in its year-round supply of biomass to industrial consumers. Managed in this way, absolute tonnages of whole cane are increased materially beyond what is possible from sugar-crop management. Juice quality declines but sugar yields are significant as a function of high biomass tonnages per acre. Usage of the lignocellulose can range from low-quality humid boiler fuel in furnaces designed for refuse incineration, to higher-quality fuels in more efficient boilers, to proprietary fuels and chemical products, and to lignocellulose supply as the feedstock for primary chemicals production. The latter might include, for example, synthesis gas and petrochemicals in tropical regions lacking natural gas, naphtha, or coal as starting materials. Diversification of sugarcane to completely new farm commodities is opposed in favor of internal diversification to a high-growth, multiple-products commodity. Decisive issues here are as much educational as they are technical. The energy cane concept maintains that sugarcane is a future resource of enormous national and international value. It should develop accordingly where decision-taking is by persons who respect the cane plant and who have done their homework on its alternative-use potentials. 35 references, 5 figures, 6 tables.

  8. A Project-Based, STEM-Integrated Alternative Energy Team Challenge for Teachers

    ERIC Educational Resources Information Center

    Felix, Allison; Harris, John

    2010-01-01

    The topic of alternative energy is not only relevant to a multitude of issues today, it is also an effective vehicle for developing instruction that applies across a variety of content disciplines and academic standards. Since many of the issues associated with alternative energy are open-ended, alternative energy also lends itself to…

  9. Daemen Alternative Energy/Geothermal Technologies Demonstration Program Erie County

    SciTech Connect

    Beiswanger, Jr, Robert C

    2010-05-20

    The purpose of the Daemen Alternative Energy/Geothermal Technologies Demonstration Project is to demonstrate the use of geothermal technology as model for energy and environmental efficiency in heating and cooling older, highly inefficient buildings. The former Marian Library building at Daemen College is a 19,000 square foot building located in the center of campus. Through this project, the building was equipped with geothermal technology and results were disseminated. Gold LEED certification for the building was awarded. 1) How the research adds to the understanding of the area investigated. This project is primarily a demonstration project. Information about the installation is available to other companies, organizations, and higher education institutions that may be interested in using geothermal energy for heating and cooling older buildings. 2) The technical effectiveness and economic feasibility of the methods or techniques investigated or demonstrated. According to the modeling and estimates through Stantec, the energy-efficiency cost savings is estimated at 20%, or $24,000 per year. Over 20 years this represents $480,000 in unrestricted revenue available for College operations. See attached technical assistance report. 3) How the project is otherwise of benefit to the public. The Daemen College Geothermal Technologies Ground Source Heat Pumps project sets a standard for retrofitting older, highly inefficient, energy wasting and environmentally irresponsible buildings quite typical of many of the buildings on the campuses of regional colleges and universities. As a model, the project serves as an energy-efficient system with significant environmental advantages. Information about the energy-efficiency measures is available to other colleges and universities, organizations and companies, students, and other interested parties. The installation and renovation provided employment for 120 individuals during the award period. Through the new Center, Daemen will

  10. Considering the total cost of electricity from sunlight and the alternatives

    DOE PAGESBeta

    none,

    2015-04-15

    Photovoltaic (PV) electricity generation has grown to about 17 GW in the United States, corresponding to one tenth of the global capacity. Most deployment in the country has happened during the last 6 years. Reflecting back in time, in early 2008 this author and his collaborators James Mason and Ken Zweibel, published in Scientific American and in Energy Policy a Solar Grand Plan demonstrating the feasibility of renewable energy in providing 69% of the U.S. electricity demand by 2050, while reducing CO2 emissions by 60% from 2005 levels; the PV contribution to this plan was assessed to be 250 GWmore » by 2030, and 2,900 GW by 2050 [1]. The DOE’s more detailed SunShot vision study, released in 2012, showed the possibility of having 300 GW of PV installed in the United States by 2030, and 630 GW by 2050.« less

  11. Considering the total cost of electricity from sunlight and the alternatives

    SciTech Connect

    none,

    2015-04-15

    Photovoltaic (PV) electricity generation has grown to about 17 GW in the United States, corresponding to one tenth of the global capacity. Most deployment in the country has happened during the last 6 years. Reflecting back in time, in early 2008 this author and his collaborators James Mason and Ken Zweibel, published in Scientific American and in Energy Policy a Solar Grand Plan demonstrating the feasibility of renewable energy in providing 69% of the U.S. electricity demand by 2050, while reducing CO2 emissions by 60% from 2005 levels; the PV contribution to this plan was assessed to be 250 GW by 2030, and 2,900 GW by 2050 [1]. The DOE’s more detailed SunShot vision study, released in 2012, showed the possibility of having 300 GW of PV installed in the United States by 2030, and 630 GW by 2050.

  12. Controlled Soil Warming Powered by Alternative Energy for Remote Field Sites

    PubMed Central

    Johnstone, Jill F.; Henkelman, Jonathan; Allen, Kirsten; Helgason, Warren; Bedard-Haughn, Angela

    2013-01-01

    Experiments using controlled manipulation of climate variables in the field are critical for developing and testing mechanistic models of ecosystem responses to climate change. Despite rapid changes in climate observed in many high latitude and high altitude environments, controlled manipulations in these remote regions have largely been limited to passive experimental methods with variable effects on environmental factors. In this study, we tested a method of controlled soil warming suitable for remote field locations that can be powered using alternative energy sources. The design was tested in high latitude, alpine tundra of southern Yukon Territory, Canada, in 2010 and 2011. Electrical warming probes were inserted vertically in the near-surface soil and powered with photovoltaics attached to a monitoring and control system. The warming manipulation achieved a stable target warming of 1.3 to 2°C in 1 m2 plots while minimizing disturbance to soil and vegetation. Active control of power output in the warming plots allowed the treatment to closely match spatial and temporal variations in soil temperature while optimizing system performance during periods of low power supply. Active soil heating with vertical electric probes powered by alternative energy is a viable option for remote sites and presents a low-disturbance option for soil warming experiments. This active heating design provides a valuable tool for examining the impacts of soil warming on ecosystem processes. PMID:24386125

  13. Role of Energy Storage with Renewable Electricity Generation

    SciTech Connect

    Denholm, P.; Ela, E.; Kirby, B.; Milligan, M.

    2010-01-01

    Renewable energy sources, such as wind and solar, have vast potential to reduce dependence on fossil fuels and greenhouse gas emissions in the electric sector. Climate change concerns, state initiatives including renewable portfolio standards, and consumer efforts are resulting in increased deployments of both technologies. Both solar photovoltaics (PV) and wind energy have variable and uncertain (sometimes referred to as intermittent) output, which are unlike the dispatchable sources used for the majority of electricity generation in the United States. The variability of these sources has led to concerns regarding the reliability of an electric grid that derives a large fraction of its energy from these sources as well as the cost of reliably integrating large amounts of variable generation into the electric grid. In this report, we explore the role of energy storage in the electricity grid, focusing on the effects of large-scale deployment of variable renewable sources (primarily wind and solar energy).

  14. 75 FR 12737 - Applications To Export Electric Energy; Noble Energy Marketing and Trade Corp.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-17

    ... Applications To Export Electric Energy; Noble Energy Marketing and Trade Corp. AGENCY: Office of Electricity... applications, Noble Energy Marketing and Trade Corp. (NEMT) has applied for authority to transmit electric... using international transmission facilities located at the United States borders with Mexico and...

  15. The Potential of Solar as Alternative Energy Source for Socio-Economic Wellbeing in Rural Areas, Malaysia

    NASA Astrophysics Data System (ADS)

    Alam, Rashidah Zainal; Siwar, Chamhuri; Ludin, Norasikin Ahmad

    Malaysia's energy sector is highly dependent on fossil fuels as a primary energy source. Economic growth and socio-economic wellbeing also rely on the utilization of energy in daily life routine. Nevertheless, the increasing cost for electricity and declining fossil fuels resources causes various negative impacts to the people and environment especially in rural areas. This prompted Malaysia to shift towards alternative energy sources such as solar energy to ensure social, economic and environmental benefits. The solar energy is one of the potential renewable energy sources in tropical countries particularly in Malaysia. The paper attempts to analyze the benefits and advantages related to energy efficiency of solar for sustainable energy use and socio economic wellbeing in rural areas, Malaysia. The paper uses secondary sources of data such as policies, regulations and research reports from relevant ministries and agencies to attain the objectives. As a signatory country to the UN Convention on Climate Change and the Kyoto Protocol, Malaysia has taken initiatives for decreasing energy dependence on oil to reduce greenhouse gas emissions (GHG) for sustainable development. The paper shows solar energy becomes one of the promising alternative energy sources to alleviate energy poverty in Malaysia for rural areas. Finally, solar energy has increased socio-economic wellbeing and develops green potential and toward achieving energy efficiency in energy sector of Malaysia by preserving environment as well as reducing carbon emission.

  16. Regenerative Fuel Cell System As Alternative Energy Storage For Space

    NASA Astrophysics Data System (ADS)

    Lucas, J.; Bockstahler, K.; Funke, H.; Jehle, W.; Markgraf, S.; Henn, N.; Schautz, M.

    2011-10-01

    Next generation telecommunication satellites will demand more power. Power levels of 20 to 30kW are foreseen for the next 10 years. Battery technology that can sustain 30kW for eclipse lengths of up to 72 minutes (equals amount of stored energy of 36kWh) will represent a major impact on the total mass of the satellite, even with Li-ion battery technologies, which are estimated to reach an energy density of 250Wh/kg (begin of life) on cell level i.e. 150Wh/kg on subsystem level in 10 years. For the high power level another technology is needed to reach the next goal of 300 - 350Wh/kg on subsystem level. One candidate is the Regenerative Fuel Cell (RFC) technology which proves to be superior to batteries with increasing power demand and increasing discharge time. Such an RFC system based on hydrogen and oxygen technology consists of storage for the reactants (H2, O2 and H2O), a fuel cell (FC) and an electrolyser (ELY). In charge mode, the electrolyser splits water in hydrogen and oxygen using electrical power from solar cells. The gases are stored in appropriate tanks. In discharge mode, during time intervals of power demand, O2 and H2 are converted in the fuel cell to generate electricity under formation of water as by-product. The water is stored in tanks and during charge mode rerouted to the electrolyser thus creating a closed-loop process. Today Astrium is developing an RFCS as energy storage and supply unit for some future ESA missions. A complete RFCS breadboard has been established and the operational behaviour of the system is being tested. First test results, dedicated experience gained from system testing and a comparison with the analytical prediction will be discussed and presented.

  17. Teach with Energy! FUNdamental Energy, Electricity, and Science Lessons for Grades K-3.

    ERIC Educational Resources Information Center

    National Energy Foundation, Salt Lake City, UT.

    This book is an energy, electricity, and science resource guide for teachers of grades K-3. The types of energy covered are: coal, oil, natural gas, nuclear energy, renewable energy sources, electricity and food. Thirty-one interdisciplinary energy lessons are the heart of the book. Each lesson is teacher tested and can be incorporated into the…

  18. Teach with Energy! FUNdamental Energy, Electricity, and Science Lessons for Grades 4-6.

    ERIC Educational Resources Information Center

    National Energy Foundation, Salt Lake City, UT.

    This book is an energy, electricity, and science resource guide for teachers of grades K-3. The types of energy covered are: coal, oil, natural gas, nuclear energy, renewable energy sources, electricity and food. Thirty-one interdisciplinary energy lessons are the heart of the book. Each lesson is teacher tested and can be incorporated into the…

  19. 75 FR 75994 - Application To Export Electric Energy; Sempra Energy Trading LLC

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-07

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Application To Export Electric Energy; Sempra Energy Trading LLC AGENCY: Office of Electricity Delivery and Energy Reliability, DOE. ACTION: Notice of application. SUMMARY: Sempra Energy Trading LLC (SET)...

  20. 77 FR 50486 - Application To Export Electric Energy; TexMex Energy, LLC

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-21

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Application To Export Electric Energy; TexMex Energy, LLC AGENCY: Office of Electricity Delivery and Energy Reliability, DOE. ACTION: Notice of application. SUMMARY: TexMex Energy, LLC (TexMex) has applied to renew...

  1. 78 FR 14778 - Application to Export Electric Energy; Shell Energy North America (US), L.P.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-07

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Application to Export Electric Energy; Shell Energy North America (US), L.P. AGENCY: Office of Electricity Delivery and Energy Reliability, DOE. ACTION: Notice of application. SUMMARY: Shell Energy North...

  2. 78 FR 14779 - Application to Export Electric Energy; Shell Energy North America (US), L.P.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-07

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Application to Export Electric Energy; Shell Energy North America (US), L.P. AGENCY: Office of Electricity Delivery and Energy Reliability, DOE. ACTION: Notice of application. SUMMARY: Shell Energy North...

  3. 76 FR 50476 - Application To Export Electric Energy; Glacial Energy of Texas, Inc.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-15

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Application To Export Electric Energy; Glacial Energy of Texas, Inc. AGENCY: Office of Electricity Delivery and Energy Reliability, DOE. ACTION: Notice of Application. SUMMARY: Glacial Energy of Texas,...

  4. 75 FR 76962 - Application To Export Electric Energy; MAG Energy Solutions, Inc.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-10

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Application To Export Electric Energy; MAG Energy Solutions, Inc. AGENCY: Office of Electricity Delivery and Energy Reliability, DOE. ACTION: Notice of Application. SUMMARY: MAG Energy Solutions, Inc. (MAG...

  5. 76 FR 3882 - Application To Export Electric Energy; Intercom Energy, Inc.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-21

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Application To Export Electric Energy; Intercom Energy, Inc. AGENCY: Office of Electricity Delivery and Energy Reliability, DOE. ACTION: Notice of application. SUMMARY: Intercom Energy, Inc. (Intercom) has applied...

  6. 77 FR 1474 - Application To Export Electric Energy; AEP Energy Partners, Inc.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-10

    ... From the Federal Register Online via the Government Publishing Office ] DEPARTMENT OF ENERGY Application To Export Electric Energy; AEP Energy Partners, Inc. AGENCY: Office of Electricity Delivery and Energy Reliability, DOE. ACTION: Notice of application. SUMMARY: AEP Energy Partners, Inc. (AEPEP)...

  7. Plasmonic Nanomaterials for Optical-to-Electrical Energy Conversion

    NASA Astrophysics Data System (ADS)

    Sheldon, Matthew

    High-quality semiconductor solids have been the dominant photovoltaic materials platform for decades. Although several alternative approaches have been proposed, e.g. dye-sensitized cells or polymeric solids, none compete in terms of cost and conversion efficiency, the crucial benchmarks for industrial scale implementation. However, semiconductors suffer from several fundamental limitations relating to the microscopic mechanism of power conversion that preclude them, even theoretically, from achieving conversion efficiency at the Carnot limit of 95%. Indeed, the fundamentally different tasks of semiconductors in photovoltaic devices, both as optical absorbers, and separately, for electron-hole pair separation and collection, often demand opposing trade-offs in materials optimization. Alternatively, recent advances in subwavelength metal optics, e.g. nanophotonics, metamaterials, and plasmonics, provide several new examples where nanostructured metals perform the separate tasks of absorption and charge separation necessary for photovoltaic power conversion. Nanostructured metals are extremely efficient broadband absorbers of radiation, with tailorable optical properties throughout the visible and infrared spectrum. It is traditionally assumed that the lack of a band gap and consequent fast electronic relaxation (fs) and short mean free path (100 nm) hinders efficient carrier collection. However, new phenomena resulting from the remarkable energy concentration and nanoscale collection geometry afforded by plasmonic systems suggest new strategies may be possible that use all metal structures. In this talk, I will describe two ongoing studies in our laboratory that exemplify opportunities for metal-based optical energy conversion: (1) Excitation with circularly polarized illumination can induce strong, persistent electrical drift currents in resonant metal nanostructures via the inverse faraday effect. (2) Plasmonic absorption in metal nanostructures provides an

  8. Don't forget alternate energy sources: biomass, geothermal, wind

    SciTech Connect

    Miskell, J.T.

    1981-01-01

    The United States is probably the most fortunate country in the world in terms of potential energy resources, and that is part of the problem in developing alternate sources. Which ones should be given preference, and which ones will give the quickest, most economic return on investment. The exploration of converting potential plant life to energy is already underway. One such plant is the milkweed. The milky latex substance of the weed contains 30% hydrocarbon and 70% water. About 7% to 10% of the plant weight is extractable crude oil. The unused plant residue can be processed to produce alcohol. In Utah, a milkweed project yielded 2.5 pounds of oil from 35 lbs. of milkweed. The California Commission is looking into the possibility of using two million tons of rice straw, now left in the fields to be burned. The basic thrust of geothermal activity is still the dry steam plants in the Geyser field in California, but the movement to develop more prevalent hot water persists. Binary production and the use of moderate hot water are gaining in acceptance. The government's goal for wind for the year 2000 is 2% of total energy usage. Both utility and consumer participation will be required to meet that goal. Utilities will have to install 20,000 to 30,000 large-scale machines and nearly 1 million would have to be installed by consumers for homes and farms. Movement is already underway.

  9. Energy First - An Alternate Approach to Teaching Physics

    NASA Astrophysics Data System (ADS)

    Michal, Emil, Jr.

    1997-04-01

    During the Fall 1996 semester a section of calculus-based physics was taught at El Paso Community College using an ''Energy First'' approach. Results of student performance on the Force Concept Inventory (D. Hestenes, et.al.) in this section will be compared with another section of students at EPCC whose instruction followed a traditional presentation of first semester topics in physics. ''Energy First-An Alternate Approach to Teaching'' was presented at the Summer 1996 AAPT meeting where results of a university class of first semester calculus-based physics were reported. Over years of instruction at the community college and university level, ''Energy First'' has enhanced student understanding of physical concepts, increased student course completion rates and improved student abilities to apply physical concepts to various situations. A description of topic selection and order of presentation will be provided for the classes taught. How this approach could be adapted for various physics courses will also be discussed. The idea of text rich problems also will be touched on.

  10. Economy in energy through alternative sources of energy in mass-housing of developing countries

    SciTech Connect

    Sinha, I.B.

    1980-12-01

    Energy is an integral part of the development process and a major determinant for the improvement of the quality of life in human settlements. Skyrocketing oil price increases in recent years has made development increasingly difficult for at least two-thirds of the developing countries. An increasing number of developing countries are searching for new sources of energy and more efficient use of what is available. So, there is a need for well thought-out comprehensive energy saving program. There is a need for radical thinking in devising new and innovative energy policies, which should be dynamic, technologically flexible, and responsive to the needs and aspirations of people. There is large percentage of energy used in buildings which can be economised in the planning of new settlements. The paper discusses and recommends the adoption of some of the straight-forward technology through which there is a full scope for minimizing the usage of energy in housing. Moving ahead, the paper also makes suggestions to developing countries how to develop and adopt alternative sources of energy in housing; especially solar energy, for cooling and heating purposes, because in solar energy most of the developing countries are very rich. Further, the paper strongly recommends that Universities, Colleges, and Schools should teach the latest concepts of energy conservation and use of alternative energy sources. However, the largest savings in energy consumption would arise from a real desire and economy consciousness on the part of the individual in the community to limit energy usage.

  11. Teaching physics using project-based engineering curriculum with a theme of alternative energy

    NASA Astrophysics Data System (ADS)

    Tasior, Bryan

    The Next Generation Science Standards (NGSS) provide a new set of science standards that, if adopted, shift the focus from content knowledge-based to skill-based education. Students will be expected to use science to investigate the natural world and solve problems using the engineering design process. The world also is facing an impending crisis related to climate, energy supply and use, and alternative energy development. Education has an opportunity to help provide the much needed paradigm shift from our current methods of providing the energy needs of society. The purpose of this research was to measure the effectiveness of a unit that accomplishes the following objectives: uses project-based learning to teach the engineering process and standards of the NGSS, addresses required content expectations of energy and electricity from the HSCE's, and provides students with scientific evidence behind issues (both environmental and social/economic) relating to the energy crisis and current dependence of fossil fuels as our primary energy source. The results of the research indicate that a physics unit can be designed to accomplish these objectives. The unit that was designed, implemented and reported here also shows that it was highly effective at improving students' science content knowledge, implementing the engineering design standards of the NGSS, while raising awareness, knowledge and motivations relating to climate and the energy crisis.

  12. Thermal and electrical analysis of Mars Rover RTG, and performance comparison of alternative design options

    NASA Astrophysics Data System (ADS)

    Schock, Alfred; Or, Chuen T.; Skrabek, Emil A.

    This paper describes the thermal, thermoelectric, and electrical analysis of Radioisotope Thermoelectric Generators (RTGs) for powering the Mars Rover vehicle, which is a critical element of the unmanned Mars Rover and Sample Return mission (MRSR). It describes an analytical approach and computer code developed for this task, and examines the effect on the RTG's performance of different operating conditions. The paper also describes and analyzes a number of alternative RTG designs, to determine the effect of different power levels, different thermoelectric element designs, and different thermoelectric figures of merit on the RTG's specific power. The results presented show the RTG performance achievable with current technology, and the performance improvements that would be achievable with various technology developments. It provides a basis for selecting the optimum strategy for meeting the Mars Rover design goals with minimal programmatic risk and cost.

  13. Orientation of Schizosaccharomyces POMBE Nonliving Cells under Alternating Uniform and Nonuniform Electric Fields

    PubMed Central

    Iglesias, F. J.; López, M. C.; Santamaría, C.; Domínguez, A.

    1985-01-01

    When nonliving cells of Schizosaccharomyces pombe were subjected to the action of alternating uniform and nonuniform electric fields, two types of orientation were produced. The first one, with its longest axis parallel to the field lines, is similar to that obtained with living cells. The second, perpendicular to the direction of the field, is produced for relatively high frequencies and low conductivities; this probably takes place when the conductivities of the external and internal media (cell cytoplasm) become equal. A mixed cell population is produced in a discrete interval of the parameters used. Our results provide direct evidence that cell alignment does not depend on the physiological state of the cells. ImagesFIGURE 1FIGURE 3 PMID:19431597

  14. Essays in energy economics: The electricity industry

    NASA Astrophysics Data System (ADS)

    Martinez-Chombo, Eduardo

    Electricity demand analysis using cointegration and error-correction models with time varying parameters: The Mexican case. In this essay we show how some flexibility can be allowed in modeling the parameters of the electricity demand function by employing the time varying coefficient (TVC) cointegrating model developed by Park and Hahn (1999). With the income elasticity of electricity demand modeled as a TVC, we perform tests to examine the adequacy of the proposed model against the cointegrating regression with fixed coefficients, as well as against the spuriousness of the regression with TVC. The results reject the specification of the model with fixed coefficients and favor the proposed model. We also show how some flexibility is gained in the specification of the error correction model based on the proposed TVC cointegrating model, by including more lags of the error correction term as predetermined variables. Finally, we present the results of some out-of-sample forecast comparison among competing models. Electricity demand and supply in Mexico. In this essay we present a simplified model of the Mexican electricity transmission network. We use the model to approximate the marginal cost of supplying electricity to consumers in different locations and at different times of the year. We examine how costs and system operations will be affected by proposed investments in generation and transmission capacity given a forecast of growth in regional electricity demands. Decomposing electricity prices with jumps. In this essay we propose a model that decomposes electricity prices into two independent stochastic processes: one that represents the "normal" pattern of electricity prices and the other that captures temporary shocks, or "jumps", with non-lasting effects in the market. Each contains specific mean reverting parameters to estimate. In order to identify such components we specify a state-space model with regime switching. Using Kim's (1994) filtering algorithm

  15. Operating Reserve Implication of Alternative Implementations of an Energy Imbalance Service on Wind Integration in the Western Interconnection: Preprint

    SciTech Connect

    Milligan, M.; Kirby, B.; King, J.; Beuning, S.

    2011-07-01

    During the past few years, there has been significant interest in alternative ways to manage power systems over a larger effective electrical footprint. Large regional transmission organizations in the Eastern Interconnection have effectively consolidated balancing areas, achieving significant economies of scale that result in a reduction in required reserves. Conversely, in the Western Interconnection there are many balancing areas, which will result in challenges if there is significant wind and solar energy development in the region. A recent proposal to the Western Electricity Coordinating Council suggests a regional energy imbalance service (EIS). To evaluate this EIS, a number of analyses are in process or are planned. This paper describes one part of an analysis of the EIS's implication on operating reserves under several alternative scenarios of the market footprint and participation. We improve on the operating reserves method utilized in the Eastern Wind Integration and Transmission Study and apply this modified approach to data from the Western Wind and Solar Integration Study.

  16. Manipulating single annealed polyelectrolyte under alternating current electric fields: Collapse versus accumulation

    PubMed Central

    Wang, Shengqin; Zhu, Yingxi

    2012-01-01

    Effective manipulation and understanding of the structural and dynamic behaviors of a single polyelectrolyte (PE) under alternating current (AC) electric fields are of great scientific and technological importance because of its intimate relevance to emerging bionanotechnology. In this work, we employ fluorescence correlation spectroscopy (FCS) to study the conformational and AC-electrokinetic behaviors of a model annealed PE, poly(2-vinyl pyridine) (P2VP) under both spatially uniform and non-uniform AC fields at a single molecule level. Under spatially uniform AC-fields, we observe a gradual and continuous coil-to-globule conformational transition (CGT) of single P2VP at varied AC-frequency when a critical AC-field strength is exceeded, in contrast to the pH-induced abrupt CGT in the absence of AC-fields. On the contrary, under spatially non-uniform AC-fields, we observe field-driven net flow and accumulation of P2VP near high AC-field regions due to combined AC electro-osmosis and dielectrophoresis but surprisingly no conformational change. Thus, distinct AC-electric polarization effect on single annealed PE subject to AC-field homogeneity is suggested. PMID:22655024

  17. Molecular stretching of long DNA in agarose gel using alternating current electric fields.

    PubMed Central

    Kaji, Noritada; Ueda, Masanori; Baba, Yoshinobu

    2002-01-01

    We demonstrate a novel method for stretching a long DNA molecule in agarose gel with alternating current (AC) electric fields. The molecular motion of a long DNA (T4 DNA; 165.6 kb) in agarose gel was studied using fluorescence microscopy. The effects of a wide range of field frequencies, field strengths, and gel concentrations were investigated. Stretching was only observed in the AC field when a frequency of approximately 10 Hz was used. The maximal length of the stretched DNA had the longest value when a field strength of 200 to 400 V/cm was used. Stretching was not sensitive to a range of agarose gel concentrations from 0.5 to 3%. Together, these experiments indicate that the optimal conditions for stretching long DNA in an AC electric field are a frequency of 10 Hz with a field strength of 200 V/cm and a gel concentration of 1% agarose. Using these conditions, we were able to successfully stretch Saccharomyces cerevisiae chromosomal DNA molecules (225-2,200 kb). These results may aid in the development of a novel method to stretch much longer DNA, such as human chromosomal DNA, and may contribute to the analysis of a single chromosomal DNA from a single cell. PMID:11751320

  18. Water film motor driven by alternating electric fields: Its dynamical characteristics

    NASA Astrophysics Data System (ADS)

    Liu, Zhong-Qiang; Zhang, Guang-Cai; Li, Ying-Jun; Jiang, Su-Rong

    2012-03-01

    The “liquid film motor,” a novel device with important implications for basic research and technology, is analyzed. It works perfectly with both direct current (dc) and alternating current (ac) fields. We develop a mathematical model describing electrohydrodynamical (EHD) motions induced by ac fields, which are more complex and have wider technological applications than those produced by dc fields. The main characteristics of these motions, derived in our paper and in full agreement with the experimental ones, are as follows: (i) Rotation of the film requires that the frequencies of the ac fields are exactly the same and their magnitudes surpass a threshold, which depends on their phase difference. (ii) Vibrations may be induced by fields with different frequencies. (iii) The EHD motions strongly depend on the polarization induced by the external electric field. However, these motions are little affected by the liquid's electrical conductivity, viscosity, dielectric constant, and density. Our model also predicts several features, which have yet to be experimentally verified.

  19. Electric dipole moment planning with a resurrected BNL Alternating Gradient Synchrotron electron analog ring

    NASA Astrophysics Data System (ADS)

    Talman, Richard M.; Talman, John D.

    2015-07-01

    There has been much recent interest in directly measuring the electric dipole moments (EDM) of the proton and the electron, because of their possible importance in the present day observed matter/antimatter imbalance in the Universe. Such a measurement will require storing a polarized beam of "frozen spin" particles, 15 MeV electrons or 230 MeV protons, in an all-electric storage ring. Only one such relativistic electric accelerator has ever been built—the 10 MeV "electron analog" ring at Brookhaven National Laboratory in 1954; it can also be referred to as the "AGS analog" ring to make clear it was a prototype for the Alternating Gradient Synchrotron (AGS) proton ring under construction at that time at BNL. (Its purpose was to investigate nonlinear resonances as well as passage through "transition" with the newly invented alternating gradient proton ring design.) By chance this electron ring, long since dismantled and its engineering drawings disappeared, would have been appropriate both for measuring the electron EDM and to serve as an inexpensive prototype for the arguably more promising, but 10 times more expensive, proton EDM measurement. Today it is cheaper yet to "resurrect" the electron analog ring by simulating its performance computationally. This is one purpose for the present paper. Most existing accelerator simulation codes cannot be used for this purpose because they implicitly assume magnetic bending. The new ual/eteapot code, described in detail in an accompanying paper, has been developed for modeling storage ring performance, including spin evolution, in electric rings. Illustrating its use, comparing its predictions with the old observations, and describing new expectations concerning spin evolution and code performance, are other goals of the paper. To set up some of these calculations has required a kind of "archeological physics" to reconstitute the detailed electron analog lattice design from a 1991 retrospective report by Plotkin as well

  20. Health and safety implications of alternative energy technologies. II. Solar

    NASA Astrophysics Data System (ADS)

    Etnier, E. L.; Watson, A. P.

    1981-09-01

    No energy technology is risk free when all aspects of its utilization are taken into account. Every energy technology has some attendant direct and indirect health and safety concerns. Solar technologies examined in this paper are wind, ocean thermal energy gradients, passive, photovoltaic, satellite power systems, low- and high-temperature collectors, and central power stations, as well as tidal power. For many of these technologies, insufficient historical data are available from which to assess the health risks and environmental impacts. However, their similarities to other projects make certain predictions possible. For example, anticipated problems in worker safety in constructing ocean thermal energy conversion systems will be similar to those associated with other large-scale construction projects, like deep-sea oil drilling platforms. Occupational hazards associated with photovoltaic plant operation would be those associated with normal electricity generation, although for workers involved in the actual production of photovoltaic materials, there is some concern for the toxic effects of the materials used, including silicon, cadmium, and gallium arsenide. Satellite power systems have several unique risks. These include the effects of long-term space travel for construction workers, effects on the ozone layer and the attendant risk of skin cancer in the general public, and the as-yet-undetermined effects of long-term, low-level microwave exposure. Hazards may arise from three sources in solar heating and cooling systems: water contamination from corrosion inhibitors, heat transfer fluids, and bactericides; collector over-heating, fires, and “out-gassing” and handling and disposal of system fluids and wastes. Similar concerns exist for solar thermal power systems. Even passive solar systems may increase indoor exposure levels to various air pollutants and toxic substances, eitherdirectly from the solar system itself or indirectly by trapping released

  1. EXTENDING NUCLEAR ENERGY TO NON-ELECTRICAL APPLICATIONS

    SciTech Connect

    R. Boardman; M. McKellar; D. Ingersoll; Z. Houghton; , R. Bromm; C. Desportes

    2014-09-01

    Electricity represents less than half of all energy consumed in the United States and globally. Although a few commercial nuclear power plants world-wide provide energy to non-electrical applications such as district heating and water desalination, nuclear energy has been largely relegated to base-load electricity production. A new generation of smaller-sized nuclear power plants offers significant promise for extending nuclear energy to many non-electrical applications. The NuScale small modular reactor design is especially well suited for these non-traditional customers due to its small unit size, very robust reactor protection features and a highly flexible and scalable plant design. A series of technical and economic evaluation studies have been conducted to assess the practicality of using a NuScale plant to provide electricity and heat to a variety of non-electrical applications, including water desalination, oil refining, and hydrogen production. The studies serve to highlight the unique design features of the NuScale plant for these applications and provide encouraging conclusions regarding the technical and economic viability of extending clean nuclear energy to a broad range of non-electrical energy consumers.

  2. 75 FR 80292 - Energy Conservation Program: Energy Conservation Standards for Electric Motors

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-22

    ...). 74 FR 12058 (March 23, 2009) It was recently discovered that the efficiency levels under 10 CFR 431... Part 431 RIN 1904-AB71 Energy Conservation Program: Energy Conservation Standards for Electric Motors..., promulgating energy conservation standards for certain electric motors as prescribed in the Energy Policy...

  3. 78 FR 64207 - Application To Export Electric Energy; TEC Energy Inc.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-28

    ... Application To Export Electric Energy; TEC Energy Inc. AGENCY: Office of Electricity Delivery and Energy Reliability, DOE. ACTION: Notice of Application. SUMMARY: TEC Energy Inc. (TEC) has applied for authority to... Act (16 U.S.C. 824a(e)). On September 13, 2013, DOE received an application from TEC for authority...

  4. 75 FR 57911 - Application To Export Electric Energy; GDF SUEZ Energy Marketing NA, Inc.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-23

    ... Application To Export Electric Energy; GDF SUEZ Energy Marketing NA, Inc. AGENCY: Office of Electricity Delivery and Energy Reliability, DOE. ACTION: Notice of application. SUMMARY: GDF SUEZ Energy Marketing NA... utilities, Federal power marketing agencies and other entities within the United States. The...

  5. A bioelectrolyte cell — an alternate source of energy

    NASA Astrophysics Data System (ADS)

    Sai Kumar, A.; Kolli, Naveen

    An electrochemical cell is fabricated using an extract of the leaves of Ipomoea aquatica from the family Convolvulaceae as the electrolyte. To obtain a close value to the available energy density, the cell is discharged at a current drain of 1 μA and is calculated to be 1.1 Wh/kg of electrolyte. A second cell is fabricated with a paste of the leave as the electrolyte. The initial open-circuit voltage is 1.16 V. An observation is made regarding the variation of current under short-circuit condition with respect to time, which is unlike the variation observed for any other electrochemical cell. The curve features are discussed and interpreted. This observation opens a new field of interest for electrochemists, molecular biologists, botanist, etc. It is expected to signify the electrical activity associated with the majority of processes in plant metabolism. The promising feature lies in supporting devices with high voltage and low current requirements. With proper design, the cell can be employed on a larger scale to meet energy requirements.

  6. Direct Conversion of Radioisotope Energy to Electricity

    SciTech Connect

    Marks Prelas; Alexey Spitsyn; Alejandro Suarez; Eric Stienfelds; Dickerson Moreno; Bia-Ling Hsu; Tushar Ghosh; Robert Tompson; Sudarshan Loyalka; Dabir Viswanath

    2003-09-09

    A new chemical reactor has been tested for Field Enhanced Diffusion by Optical Activation doping and purification of SiC, GaN and AlN films. Different conditions have been used on SiC, GaN and AlN samples including temperature variation, electrical field variation, variations in electrical current and optical activation. A 5mW (630-680) nm laser was used for optical activation. It was observed that optical activation has a major effect on ion drift rates. It was also observed that the magnitude of the electrical current also enhanced ion drift rates by a postulated current drag mechanism. I-V characteristic curves were measured to verify changes in the electrical properties of the samples SIMS was used to analyze the concentrations of impurities in the film samples before and after treatment. It has been demonstrated that the field-enhanced diffusion by optical activation method can dope and purify the films. As a result, the electrical properties of the wafers have been significantly improved during treatment especially in cases where a laser is used.

  7. Separation of long linear polymers in gel electrophoresis with alternating electric fields: A theoretical study using the necklace model

    NASA Astrophysics Data System (ADS)

    Terranova, G. R.; Mártin, H. O.; Aldao, C. M.

    2012-06-01

    The necklace model, which mimics the reptation of a chain of N beads in a square lattice, is used to study the drift velocity of charged linear polymers in gels under an applied electric field that periodically changes its direction. The characteristics of the model allow us to determine the effects of the alternating electric field on the chains’ dynamics. We explain why chains of different N can be made to move in opposite directions with a nonuniform electric field with certain values of intensity and frequency. The key point is that, when alternating electric fields are applied, longer chains spend more time out of the steady-state regime than lower chains. Numerical results are obtained by means of Monte Carlo simulations and they are qualitatively in agreement with experiments of DNA migration in gel electrophoresis.

  8. Electrical Load and Energy Management. Course Outline and Instructional Materials.

    ERIC Educational Resources Information Center

    Wang, Paul

    Presented are 13 lecture outlines with accompanying handouts and reference lists for teaching school administrators and maintenance personnel the use of electrical load management as an energy conservation tool. To aid course participants in making cost effective use of electrical power, methods of load management in a variety of situations are…

  9. The Energy Opportunity: A View from an Electric Industry.

    ERIC Educational Resources Information Center

    Young, H. J.

    1978-01-01

    Stresses the rapid expansion of electric power use in the United States and contends that the current emphasis must be on expanding the generating capacity of electricity from coal and nuclear fuels. Journal available from Energy Information Associates, Inc., P. O. Box 18076, Capitol Hill Station, Denver, Colorado 80218. (KC)

  10. Gasohol: An Energy Alternative. A Basic Teaching Unit on Energy. Revised.

    ERIC Educational Resources Information Center

    McDermott, Hugh, Ed.; Scharmann, Larry, Ed.

    This 2-3 week high school chemistry unit is designed to provide students with an awareness of Gasohol as an energy alternative. Gasohol is a blend of 10 percent pure ethanol and 90 percent unleaded gasoline. The unit consists of nine activities (five laboratory experiments, three informational readings, and a sample problem activity). The five…

  11. Storage of electric and magnetic energy in passive nonreciprocal networks

    NASA Technical Reports Server (NTRS)

    Smith, W. E.

    1969-01-01

    Examination of the relation of stored electric and magnetic energy within a system to the terminal behavior of nonreciprocal passive networks shows both similarities and important differences between wholly reciprocal systems and systems containing nonreciprocal elements.

  12. World Energy Projection System Plus Model Documentation: World Electricity Model

    EIA Publications

    2011-01-01

    This report documents the objectives, analytical approach and development of the World Energy Projection System Plus (WEPS ) World Electricity Model. It also catalogues and describes critical assumptions, computational methodology, parameter estimation techniques, and model source code.

  13. "Finite part" electric and magnetic stored energies for planar antennas

    NASA Technical Reports Server (NTRS)

    Cockrell, C. R.

    1981-01-01

    A pair of formulas representing the time-average "finite part" electric and magnetic stored energies for planar antennas are derived. It is also shown that the asymptotic reciprocal relationship between quality factor and relative bandwidth exists for planar antennas.

  14. A Brownian dynamics simulation of a colloidal particle in an alternating electric field very near an electrode

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Prieve, Dennis

    2013-11-01

    In previous experiments, a single 6 μm sphere, immersed in a 0.15 mol/m3 electrolyte solution, was put in an alternating electric field (6 kV/m, 100 Hz to 10 kHz) acting normal to a nearby planar electrode. Even in the absence of the applied field, the particle is confined by a potential energy well formed by gravitational attraction and double-layer repulsion. While monitoring the elevation of the particle (order of 300 nm) with Total Internal Reflection Microscopy at millisecond intervals and with the AC field, the particle was observed to experience a steady attraction to the electrode, even when the deterministic oscillations were imperceptibly small. While dielectrophoresis could produce a steady attraction, the observed attraction has a frequency dependence which is not consistent with this force. In this work, we use Brownian dynamics simulation to explore the role of several nonlinearities in the equation of motion: 1) a position-dependent drag coefficient, 2) a position-dependent oscillating force and 3) a non-parabolic shape for the confining potential energy profile (non-linear spring).

  15. Piezoelectric-based electrical energy harvesting and storage methods and electronics for munitions

    NASA Astrophysics Data System (ADS)

    Rastegar, J.; Pereira, C.; Ervin, M.; Feng, D.

    2014-04-01

    The U.S. Armament Research development Center (ARDEC) and the Army Research Laboratories in Adelphi, Maryland, and their small business collaborator (Omnitek Partners, LLC) have been developing alternatives to current reserve batteries for certain munitions applications. It is shown that using a novel passive method, efficiency of over 70 percent could be achieved in the transfer of generated electrical charges to appropriate selected storage mediums. The paper also describes the development of test-beds to simulate electrical charge generation of the energy harvesting power sources during the firing and the flight for use in the design and evaluation of the collection electronics.

  16. Energy dependence on the electric activities of a neuron

    NASA Astrophysics Data System (ADS)

    Song, Xin-Lin; Jin, Wu-Yin; Ma, Jun

    2015-12-01

    A nonlinear circuit can be designed by using inductor, resistor, capacitor and other electric devices, and the electromagnetic field energy can be released from the circuit in the oscillating state. The generation of spikes or bursting states in neurons could be energetically a costly process. Based on the Helmholtz’s theorem, a Hamilton energy function is defined to detect the energy shift induced by transition of electric modes in a Hindmarsh-Rose neuron. It is found that the energy storage is dependent on the external forcing, and energy release is associated with the electric mode. As a result, the bursting state and chaotic state could be helpful to release the energy in the neuron quickly. Project supported by the National Natural Science Foundation of China (Grant Nos. 11372122 and 11365014).

  17. 75 FR 54618 - CAlifornians for Renewable Energy, Inc. (CARE) v. Pacific Gas and Electric Company, Southern...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-08

    ... Energy Regulatory Commission CAlifornians for Renewable Energy, Inc. (CARE) v. Pacific Gas and Electric Company, Southern California Edison Company, San Diego Gas & Electric Company, California Public Utilities... for Renewable Energy, Inc. (Complainant) filed a complaint against Pacific Gas and Electric...

  18. Modeling new approaches for electric energy efficiency

    SciTech Connect

    Munns, Diane

    2008-03-15

    To align utilities and consumers' interests, three incentive methods have emerged to foster efficiency: shared savings, bonus return on equity, and energy service company. A fourth incentive method, virtual power plant, is being proposed by Duke Energy. (author)

  19. Energy storage specification requirements for hybrid-electric vehicle

    SciTech Connect

    Burke, A.F.

    1993-09-01

    A study has been made of energy storage unit requirements for hybrid-electric vehicles. The drivelines for these vehicles included both primary energy storage units and/or pulse power units. The primary energy storage units were sized to provide ``primary energy`` ranges up to 60 km. The total power capability of the drivelines were such that the vehicles had 0 to 100 km/h acceleration times of 10 to 12 s. The power density requirements for primary energy storage devices to be used in hybrid vehicles are much higher than that for devices to be used in electric vehicles. The energy density and power density requirements for pulse-power devices for hybrid vehicles, are not much different than those in an electric vehicle. The cycle life requirements for primary energy-storage units for hybrid vehicles are about double that for electric vehicles, because of the reduced size of the storage units in the hybrid vehicles. The cycle life for pulse-power devices for hybrid vehicles is about the same as for electric vehicles having battery load leveling. Because of the need for additional components in the hybrid driveline, the cost of the energy storage units in hybrid vehicles should be much less (at least a factor of two) than those in electric vehicles. There are no presently available energy storage units that meet all the specifications for hybrid vehicle applications, but ultracapacitors and bipolar lead-acid batteries are under development that have the potential for meeting them. If flywheel systems having a mechanical system energy density of 40 to 50 W{center_dot}h/kg and an electrical system power density of 2 to 3 kw/kg can be developed, they would have the potential of meeting specifications for primary storage and pulse power units.

  20. Energy Management Guide for Building Management. Electricity.

    ERIC Educational Resources Information Center

    Consolidated Edison Co., Brooklyn, NY.

    This guide is intended for use by commercial building management and operating staffs to encourage energy conservation. The measures suggested are meant to allow building operation at optimum efficiency while minimizing energy waste. Though mainly applicable to multistory buildings, the suggested energy conservation measures are also adaptable to…

  1. Solar Electricity and Solar Fuels: Status and Perspectives in the Context of the Energy Transition.

    PubMed

    Armaroli, Nicola; Balzani, Vincenzo

    2016-01-01

    The energy transition from fossil fuels to renewables is already ongoing, but it will be a long and difficult process because the energy system is a gigantic and complex machine. Key renewable energy production data show the remarkable growth of solar electricity technologies and indicate that crystalline silicon photovoltaics (PV) and wind turbines are the workhorses of the first wave of renewable energy deployment on the TW scale around the globe. The other PV alternatives (e.g., copper/indium/gallium/selenide (CIGS) or CdTe), along with other less mature options, are critically analyzed. As far as fuels are concerned, the situation is significantly more complex because making chemicals with sunshine is far more complicated than generating electric current. The prime solar artificial fuel is molecular hydrogen, which is characterized by an excellent combination of chemical and physical properties. The routes to make it from solar energy (photoelectrochemical cells (PEC), dye-sensitized photoelectrochemical cells (DSPEC), PV electrolyzers) and then synthetic liquid fuels are presented, with discussion on economic aspects. The interconversion between electricity and hydrogen, two energy carriers directly produced by sunlight, will be a key tool to distribute renewable energies with the highest flexibility. The discussion takes into account two concepts that are often overlooked: the energy return on investment (EROI) and the limited availability of natural resources-particularly minerals-which are needed to manufacture energy converters and storage devices on a multi-TW scale. PMID:26584653

  2. Multiple cases of striking genetic similarity between alternate electric fish signal morphs in sympatry.

    PubMed

    Arnegard, Matthew E; Bogdanowicz, Steven M; Hopkins, Carl D

    2005-02-01

    Striking trait polymorphisms are worthy of study in natural populations because they can often shed light on processes of phenotypic divergence and specialization, adaptive evolution, and (in some cases) the early stages of speciation. We examined patterns of genetic variation within and between populations of mormyrid fishes that are morphologically cryptic in sympatry but produce alternate types of electric organ discharge (EOD). Other species in a large group containing a clade of these morphologically cryptic EOD types produce stereotyped, species-typical EOD waveforms thought to function in mate recognition. First, for six populations from Gabon's Brienomyrus species flock, we confirm that forms of electric fish that exhibit distinctive morphologies and unique EOD waveforms (i.e., good reference species) are reproductively isolated from coexisting congeners. These sympatric species deviate from genetic panmixia across five microsatellite loci. Given this result, we examined three focal pairs of syntopic and morphologically cryptic EOD waveform types that are notable exceptions to the pattern of robust genetic partitioning among unique waveform classes within assemblages. These exceptional pairs constitute a monophyletic group within the Brienomyrus flock known as the magnostipes complex. One member of each pair (type I) produces a head-negative EOD, while the other member (either type II or type III, depending on location) produces a longer duration EOD differing in waveform from type I. We show that signal development in these pairs begins with juveniles of all magnostipes-complex morphs emitting head-positive EODs resembling those of type II adults. Divergence of EOD waveforms occurs with growth such that there are two discrete and fixed signal types in morphologically indistinguishable adults at each of several localities. Strong microsatellite partitioning between allopatric samples of any of these morphologically cryptic signal types suggests that

  3. Energy intensity, electricity consumption, and advanced manufacturing-technology usage

    SciTech Connect

    Doms, M.E.; Dunne, T.

    1995-07-01

    This article reports on the relationship between the usage of advanced manufacturing technologies (AMTs) and energy consumption patterns in manufacturing plants. Using data from the Survey of Manufacturing Technology and the 1987 Census of Manufactures, we model the energy intensity and the electricity intensity of plants as functions of AMT usage and plant age. The main findings are that plants that utilize AMTs are less-energy intensive than plants not using AMTs, but consume proportionately more electricity as a fuel source. Additionally, older plants are generally more energy intensive and rely on fossil fuels to a greater extent than younger plants. 25 refs., 3 tabs.

  4. Education for energy conservation and alternate energy in the state of Nevada

    SciTech Connect

    Coyle, N.J.

    1981-01-01

    This study was designed to cover the opinions of secondary vocational and non-vocational teachers of agriculture, industrial arts, and trade and industry in the State of Nevada regarding the salient aspects of energy conservation and alternate-energy use. A questionnaire was developed to seek answers to the questions of who was teaching these concepts, to whom, to what degree, how much importance is placed on them, and how well qualified did teachers feel to teach them. Some of the major conclusions drawn from this study are: (1) Although they felt poorly prepared, teachers were very interested in and were teaching both secondary and adult classes covering energy conservation and wise alternate-energy use. (2) Many teachers reported their facilities, tools, and equipment were inadequate to teach these areas of energy. (3) Teachers expressed a need for various kinds of training in order to teach these areas of energy. Workshops, graduate courses, seminars, and in-service classes were requested. (4) Statistically significant differences were discovered and analyzed. Some of the major recommendations made on the basis of this study are: (1) Further study of the teaching of energy should be made, particularly at the elementary, post-secondary, and adult levels. (2) Many more workshops should be offered. (3) Many more teaching materials should be developed and a system for their dissemination should be designed and initiated. (4) Monies should be obtained to allow teachers to have adequate facilities, tools, equipment, and time to teach these important energy concepts.

  5. Cost analysis of energy storage systems for electric utility applications

    SciTech Connect

    Akhil, A.; Swaminathan, S.; Sen, R.K.

    1997-02-01

    Under the sponsorship of the Department of Energy, Office of Utility Technologies, the Energy Storage System Analysis and Development Department at Sandia National Laboratories (SNL) conducted a cost analysis of energy storage systems for electric utility applications. The scope of the study included the analysis of costs for existing and planned battery, SMES, and flywheel energy storage systems. The analysis also identified the potential for cost reduction of key components.

  6. Quantitative analysis on electric dipole energy in Rashba band splitting.

    PubMed

    Hong, Jisook; Rhim, Jun-Won; Kim, Changyoung; Ryong Park, Seung; Hoon Shim, Ji

    2015-01-01

    We report on quantitative comparison between the electric dipole energy and the Rashba band splitting in model systems of Bi and Sb triangular monolayers under a perpendicular electric field. We used both first-principles and tight binding calculations on p-orbitals with spin-orbit coupling. First-principles calculation shows Rashba band splitting in both systems. It also shows asymmetric charge distributions in the Rashba split bands which are induced by the orbital angular momentum. We calculated the electric dipole energies from coupling of the asymmetric charge distribution and external electric field, and compared it to the Rashba splitting. Remarkably, the total split energy is found to come mostly from the difference in the electric dipole energy for both Bi and Sb systems. A perturbative approach for long wave length limit starting from tight binding calculation also supports that the Rashba band splitting originates mostly from the electric dipole energy difference in the strong atomic spin-orbit coupling regime. PMID:26323493

  7. Quantitative analysis on electric dipole energy in Rashba band splitting

    PubMed Central

    Hong, Jisook; Rhim, Jun-Won; Kim, Changyoung; Ryong Park, Seung; Hoon Shim, Ji

    2015-01-01

    We report on quantitative comparison between the electric dipole energy and the Rashba band splitting in model systems of Bi and Sb triangular monolayers under a perpendicular electric field. We used both first-principles and tight binding calculations on p-orbitals with spin-orbit coupling. First-principles calculation shows Rashba band splitting in both systems. It also shows asymmetric charge distributions in the Rashba split bands which are induced by the orbital angular momentum. We calculated the electric dipole energies from coupling of the asymmetric charge distribution and external electric field, and compared it to the Rashba splitting. Remarkably, the total split energy is found to come mostly from the difference in the electric dipole energy for both Bi and Sb systems. A perturbative approach for long wave length limit starting from tight binding calculation also supports that the Rashba band splitting originates mostly from the electric dipole energy difference in the strong atomic spin-orbit coupling regime. PMID:26323493

  8. Rapid immunohistochemistry based on alternating current electric field for intraoperative diagnosis of brain tumors.

    PubMed

    Tanino, Mishie; Sasajima, Toshio; Nanjo, Hiroshi; Akesaka, Shiori; Kagaya, Masami; Kimura, Taichi; Ishida, Yusuke; Oda, Masaya; Takahashi, Masataka; Sugawara, Taku; Yoshioka, Toshiaki; Nishihara, Hiroshi; Akagami, Yoichi; Goto, Akiteru; Minamiya, Yoshihiro; Tanaka, Shinya

    2015-01-01

    Rapid immunohistochemistry (R-IHC) can contribute to the intraoperative diagnosis of central nervous system (CNS) tumors. We have recently developed a new IHC method based on an alternating current electric field to facilitate the antigen-antibody reaction. To ensure the requirement of R-IHC for intraoperative diagnosis, 183 cases of CNS tumors were reviewed regarding the accuracy rate of diagnosis without R-IHC. The diagnostic accuracy was 90.7 % (166/183 cases) [corrected] in which definitive diagnoses were not provided in 17 cases because of the failure of glioma grading and differential diagnosis of lymphoma and glioma. To establish the clinicopathological application, R-IHC for frozen specimens was compared with standard IHC for permanent specimens. 33 gliomas were analyzed, and the Ki-67/MIB-1 indices of frozen specimens by R-IHC were consistent with the grade and statistically correlated with those of permanent specimens. Thus, R-IHC provided supportive information to determine the grade of glioma. For discrimination between glioma and lymphoma, R-IHC was able to provide clear results of CD20 and Ki-67/MIB-1 in four frozen specimens of CNS lymphoma as well as standard IHC. We conclude that the R-IHC for frozen specimens can provide important information for intraoperative diagnosis of CNS tumors. PMID:24807101

  9. HARNESSING OCEAN WAVE ENERGY TO GENERATE ELECTRICITY

    EPA Science Inventory

    A technical challenge to sustainability is finding an energy source that is abundant enough to meet global demands without producing greenhouse gases or radioactive waste. Energy from ocean surface waves can provide the people of this planet a clean, endless power source to me...

  10. A comparison of alternative energy storage systems for automobiles

    NASA Astrophysics Data System (ADS)

    The performance potentials of primary batteries, fuel cells, and flywheel-transmission systems in comparison with secondary batteries as alternates to conventional internal combustion engine automobile power systems are discussed. A number of areas of research that are recommended for attention as part of a well-rounded investigation of alternatives are outlined.

  11. Efficient conversion of solar energy to biomass and electricity

    PubMed Central

    2014-01-01

    The Earth receives around 1000 W.m−2 of power from the Sun and only a fraction of this light energy is able to be converted to biomass (chemical energy) via the process of photosynthesis. Out of all photosynthetic organisms, microalgae, due to their fast growth rates and their ability to grow on non-arable land using saline water, have been identified as potential source of raw material for chemical energy production. Electrical energy can also be produced from this same solar resource via the use of photovoltaic modules. In this work we propose a novel method of combining both of these energy production processes to make full utilisation of the solar spectrum and increase the productivity of light-limited microalgae systems. These two methods of energy production would appear to compete for use of the same energy resource (sunlight) to produce either chemical or electrical energy. However, some groups of microalgae (i.e. Chlorophyta) only require the blue and red portions of the spectrum whereas photovoltaic devices can absorb strongly over the full range of visible light. This suggests that a combination of the two energy production systems would allow for a full utilization of the solar spectrum allowing both the production of chemical and electrical energy from the one facility making efficient use of available land and solar energy. In this work we propose to introduce a filter above the algae culture to modify the spectrum of light received by the algae and redirect parts of the spectrum to generate electricity. The electrical energy generated by this approach can then be directed to running ancillary systems or producing extra illumination for the growth of microalgae. We have modelled an approach whereby the productivity of light-limited microalgae systems can be improved by at least 4% through using an LED array to increase the total amount of illumination on the microalgae culture. PMID:24976951

  12. United States biomass energy: An assessment of costs and infrastructure for alternative uses of biomass energy crops as an energy feedstock

    NASA Astrophysics Data System (ADS)

    Morrow, William Russell, III

    Reduction of the negative environmental and human health externalities resulting from both the electricity and transportation sectors can be achieved through technologies such as clean coal, natural gas, nuclear, hydro, wind, and solar photovoltaic technologies for electricity; reformulated gasoline and other fossil fuels, hydrogen, and electrical options for transportation. Negative externalities can also be reduced through demand reductions and efficiency improvements in both sectors. However, most of these options come with cost increases for two primary reasons: (1) most environmental and human health consequences have historically been excluded from energy prices; (2) fossil energy markets have been optimizing costs for over 100 years and thus have achieved dramatic cost savings over time. Comparing the benefits and costs of alternatives requires understanding of the tradeoffs associated with competing technology and lifestyle choices. As bioenergy is proposed as a large-scale feedstock within the United States, a question of "best use" of bioenergy becomes important. Bioenergy advocates propose its use as an alternative energy resource for electricity generation and transportation fuel production, primarily focusing on ethanol. These advocates argue that bioenergy offers environmental and economic benefits over current fossil energy use in each of these two sectors as well as in the U.S. agriculture sector. Unfortunately, bioenergy research has offered very few comparisons of these two alternative uses. This thesis helps fill this gap. This thesis compares the economics of bioenergy utilization by a method for estimating total financial costs for each proposed bioenergy use. Locations for potential feedstocks and bio-processing facilities (co-firing switchgrass and coal in existing coal fired power plants and new ethanol refineries) are estimated and linear programs are developed to estimate large-scale transportation infrastructure costs for each sector

  13. Potential impacts of the Energy Policy Act on electricity and natural gas provider fleets

    SciTech Connect

    Vyas, A.D.; Wang, M.Q.

    1996-03-01

    Section 501 of the 1992 Energy Policy and Conservation Act (EPACT) mandates that alternative-fuel providers who may sell such fuels for transportation uses acquire alternative-fuel vehicles (AFVs). The potential impacts of this mandate on the two largest groups of alternative-fuel providers--electricity and natural gas (NG) providers--are presented. Nationwide, 166 electric-only utility companies, 127 NG-only utility companies, and 55 dual-utility companies will be covered by EPACT. Together, these companies own/operate nearly 122,000 light-duty vehicles in the EPACT-defined metropolitan areas. Some 63 natural gas producers and transporters, which have 9700 light-duty vehicles, are also covered. We project that covered fuel providers will purchase 2710 AFVs in 1996 and 13, 650 AFVs by 2001. We estimate that natural gas companies already have 19.4% of their existing light-duty vehicle stocks as AFVs, dual companies have 10.0%, natural gas producers and transporters have 7. 0%, and electric companies have only 1.6%. If the existing AFVs count toward meeting the Section 501 requirements, NG providers (NG utilities, dual utilities, and NG producers and transporters) will need to make little additional effort, but electric companies will have to make substantial commitments to meet the requirements.

  14. Drop oscillation and mass transfer in alternating electric fields. Progress report, May 30, 1991--June 1, 1992

    SciTech Connect

    Carleson, T.E.

    1992-06-24

    In certain cases droplet direct contact heat transfer rates can be significantly enhanced by the application of an alternating electric field. This field can produce shape oscillations in a droplet which will enhance mixing. The theoretical evaluation of the effect of the interaction of the field with drop charge on the hydrodynamics has been completed for small amplitude oscillations. Previous work with a zero order perturbation method was followed up with a first order perturbation method to evaluate the effect of drop distortion on drop charge and field distribution. The first order perturbation results show secondary drop oscillations of four modes and two frequencies in each mode. The most significant secondary oscillation has the same mode and frequency as the second mode oscillation predicted from the first order perturbation work. The resonant frequency of all oscillations decrease with increasing electric field strength and drop charge. Work is currently underway to evaluate the heat transfer enhancement from an applied alternating electric field.

  15. Specific features of attenuated light transmission by liquid-crystal twist cells in constant and alternating electric fields

    NASA Astrophysics Data System (ADS)

    Konshina, E. A.; Amosova, L. P.

    2012-07-01

    Optical transmission characteristics of dual-frequency nematic liquid crystal (NLC) twist cells with different alignment layers (rubbed polyimide and obliquely deposited cerium dioxide) have been studied in constant and alternating electric fields. It has been established that a change in the optical (twist effect) threshold and dynamic range of attenuated transmission depend both on the boundary conditions (that influence the screening of applied voltage) and on the parameters of the applied electric field. The maximum dynamic range (49.5 dB) has been obtained in the cell with a CeO2 alignment layer controlled by a constant potential. In the case of an alternating electric field, the dynamic range decreases because of reduced effective voltage.

  16. Energy Alternatives and the Role of Industrial Arts

    ERIC Educational Resources Information Center

    Owens, Frank C.; Pinelli, Thomas E.

    1977-01-01

    Reviews the energy crisis, discusses energy conservation, and suggests methods for integrating components of energy education into industrial arts curriculum. Consumer and occupational aspects of energy are discussed briefly. (TA)

  17. Comparative health and safety assessment of the satellite power system and other electrical generation alternatives

    SciTech Connect

    Not Available

    1980-12-01

    The work reported here is an analysis of existing data on the health and safety risks of a satellite power system and six electrical generation systems: a combined-cycle coal power system with a low-Btu gasifier and open-cycle gas turbine; a light water fission power system without fuel reprocessing; a liquid-metal, fast-breeder fission reactor; a centralized and decentralized, terrestrial, solar-photovoltaic power system; and a first-generation design for a fusion power system. The systems are compared on the basis of expected deaths and person-days lost per year associated with 1000 MW of average electricity generation. Risks are estimated and uncertainties indicated for all phases of the energy production cycle, including fuel and raw material extraction and processing, direct and indirect component manufacture, on-site construction, and system operation and maintenance. Also discussed is the potential significance of related major health and safety issues that remain largely unquantifiable. The appendices provide more detailed information on risks, uncertainties, additional research needed, and references for the identified impacts of each system.

  18. Electricity's "Disappearing Act": Understanding Energy Consumption and Phantom Loads

    ERIC Educational Resources Information Center

    Rusk, Bryan; Mahfouz, Tarek; Jones, James

    2011-01-01

    Energy exists in many forms and can be converted from one form to another. However, this conversion is not 100% efficient, and energy is lost in the form of heat during conversion. In addition, approximately 6% of the monthly consumption of the average American household's electricity is neither lost nor used by its residents. These losses are…

  19. Conservation of Mechanical and Electric Energy: Simple Experimental Verification

    ERIC Educational Resources Information Center

    Ponikvar, D.; Planinsic, G.

    2009-01-01

    Two similar experiments on conservation of energy and transformation of mechanical into electrical energy are presented. Both can be used in classes, as they offer numerous possibilities for discussion with students and are simple to perform. Results are presented and are precise within 20% for the version of the experiment where measured values…

  20. Superconducting magnetic energy storage for asynchronous electrical systems

    DOEpatents

    Boenig, H.J.

    1984-05-16

    It is an object of the present invention to provide superconducting magnetic energy storage for a plurality of asynchronous electrical systems. It is a further object of the present invention to provide load leveling and stability improvement in a plurality of independent ac systems using a single superconducting magnetic energy storage coil.

  1. The Harnessed Atom. Nuclear Energy & Electricity. Teacher Guide.

    ERIC Educational Resources Information Center

    Department of Energy, Washington, DC. Nuclear Energy Office.

    This document is part of a nuclear energy curriculum designed for grades six through eight. The complete kit includes a written text, filmstrip, review exercises, activities for the students, and this teachers guide. The 19 lessons in the curriculum are divided into four units including: (1) "Energy and Electricity"; (2) "Understanding Atoms and…

  2. Electrical Power and Illumination Systems. Energy Technology Series.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This course in electrical power and illumination systems is one of 16 courses in the Energy Technology Series developed for an Energy Conservation-and-Use Technology curriculum. Intended for use in two-year postsecondary technical institutions to prepare technicians for employment, the courses are also useful in industry for updating employees in…

  3. Mapping alternative energy paths for taiwan to reach a sustainable future: An application of the leap model

    NASA Astrophysics Data System (ADS)

    Chen, Wei-Ming

    Energy is the backbone of modern life which is highly related to national security, economic growth, and environmental protection. For Taiwan, a region having limited conventional energy resources but constructing economies and societies with high energy intensity, energy became the throat of national security and development. This dissertation explores energy solutions for Taiwan by constructing a sustainable and comprehensive energy planning framework (SCENE) and by simulating alternative energy pathways on the horizon to 2030. The Long-range Energy Alternatives Planning system (LEAP) is used as a platform for the energy simulation. The study models three scenarios based on the E4 (energy -- environment -- economic -- equity) perspectives. Three scenarios refer to the business-as-usual scenario (BAU), the government target scenario (GOV), and the renewable and efficiency scenario (REEE). The simulation results indicate that the most promising scenario for Taiwan is the REEE scenario, which aims to save 48.7 million tonnes of oil equivalent (Mtoe) of final energy consumption. It avoids USD 11.1 billion on electricity expenditure in final demand sectors. In addition, the cost of the REEE path is the lowest among all scenarios before 2020 in the electricity generation sector. In terms of global warming potential (GWP), the REEE scenario could reduce 35 percent of the GWP in the demand sectors, the lowest greenhouse gases emission in relation to all other scenarios. Based on lowest energy consumption, competitive cost, and least harm to the environment, the REEE scenario is the best option to achieve intergenerational equity. This dissertation proposes that promoting energy efficiency and utilizing renewable energy is the best strategy for Taiwan. For efficiency improvement, great energy saving potentials do exist in Taiwan so that Taiwan needs more ambitious targets, policies, and implementation mechanisms for energy efficiency enhancement to slow down and decrease

  4. Optimal Wind Energy Integration in Large-Scale Electric Grids

    NASA Astrophysics Data System (ADS)

    Albaijat, Mohammad H.

    The major concern in electric grid operation is operating under the most economical and reliable fashion to ensure affordability and continuity of electricity supply. This dissertation investigates the effects of such challenges, which affect electric grid reliability and economic operations. These challenges are: 1. Congestion of transmission lines, 2. Transmission lines expansion, 3. Large-scale wind energy integration, and 4. Phaser Measurement Units (PMUs) optimal placement for highest electric grid observability. Performing congestion analysis aids in evaluating the required increase of transmission line capacity in electric grids. However, it is necessary to evaluate expansion of transmission line capacity on methods to ensure optimal electric grid operation. Therefore, the expansion of transmission line capacity must enable grid operators to provide low-cost electricity while maintaining reliable operation of the electric grid. Because congestion affects the reliability of delivering power and increases its cost, the congestion analysis in electric grid networks is an important subject. Consequently, next-generation electric grids require novel methodologies for studying and managing congestion in electric grids. We suggest a novel method of long-term congestion management in large-scale electric grids. Owing to the complication and size of transmission line systems and the competitive nature of current grid operation, it is important for electric grid operators to determine how many transmission lines capacity to add. Traditional questions requiring answers are "Where" to add, "How much of transmission line capacity" to add, and "Which voltage level". Because of electric grid deregulation, transmission lines expansion is more complicated as it is now open to investors, whose main interest is to generate revenue, to build new transmission lines. Adding a new transmission capacity will help the system to relieve the transmission system congestion, create

  5. 3rd Miami international conference on alternative energy sources

    SciTech Connect

    Nejat Veziroglu, T.

    1980-01-01

    The conference includes sessions on solar energy, ocean thermal energy, wind energy, hydro power, nuclear breeders and nuclear fusion, synthetic fuels from coal or wastes, hydrogen production and uses, formulation of workable policies on energy use and energy conservation, heat and energy storage, and energy education. The volume of the proceedings presents the papers and lectures in condensed format grouped by subject under forty-two sessions for 319 presentations.

  6. 78 FR 73589 - Energy Conservation Program: Energy Conservation Standards for Commercial and Industrial Electric...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-06

    ... electric motor requirements. 64 FR 54114. In response to EISA 2007, on March 23, 2009, DOE updated, among... and energy conservation standards. 74 FR 12058. On December 22, 2008, DOE proposed to update the test procedures under 10 CFR part 431 both for electric motors and small electric motors. 73 FR 78220....

  7. A DSP based power electronics interface for alternative /renewable energy system.

    SciTech Connect

    1999-09-28

    This report is an update on the research project involving the implementation of a DSP-based power electronics interface for alternate/renewable energy systems, that was funded by the Department of Energy under the Inventions and Innovations program.

  8. The Relationship Between Oil and Gas Industry Investment in Alternative Energy and Corporate Social Responsibility

    NASA Astrophysics Data System (ADS)

    Konyushikhin, Maxim

    The U.S. Energy Information Administration forecasted energy consumption in the United States to increase approximately 19% between 2006 and 2030, or about 0.7% annually. The research problem addressed in this study was that the oil and gas industry's interest in alternative energy is contrary to its current business objectives and profit goals. The purpose of the quantitative study was to explore the relationship between oil and gas industry investments in alternative energy and corporate social responsibilities. Research questions addressed the relationship between alternative energy investment and corporate social responsibility, the role of oil and gas companies in alternative energy investment, and why these companies chose to invest in alternative energy sources. Systems theory was the conceptual framework, and data were collected from a sample of 25 companies drawn from the 28,000 companies in the oil and gas industry from 2004 to 2009. Multiple regression and correlation analysis were used to answer the research questions and test hypotheses using corporate financial data and company profiles related to alternative energy investment and corporate social responsibility in terms of oil and gas industry financial support of programs that serve the greater social good. Results indicated significant relationships between alternative energy investment and corporate social responsibility. With an increasing global population with energy requirements in excess of what is available using traditional means, the industry should increase investment in alternative sources. The research results may promote positive social change by increasing public awareness regarding the degree to which oil and gas companies invest in developing alternative energy sources, which might, in turn, inspire public pressure on companies in the oil and gas industry to pursue use of alternative energy.

  9. 76 FR 37809 - The Connecticut Transmission Municipal Electric Energy Cooperative; Notice of Request for Waiver...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-28

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission The Connecticut Transmission Municipal Electric Energy Cooperative; Notice... Municipal Electric Energy Cooperative filed a petition requesting full waiver or exemption from...

  10. Tests of an alternating current propulsion subsystem for electric vehicles on a road load simulator

    NASA Technical Reports Server (NTRS)

    Stenger, F. J.

    1982-01-01

    The test results of a breadboard version of an ac electric-vehicle propulsion subsystem are presented. The breadboard was installed in the NASA Lewis Research Center Road Load Simulator facility and tested under steady-state and transient conditions. Steady-state tests were run to characterize the system and component efficiencies over the complete speed-torque range within the capability of the propulsion subsystem in the motoring mode of operation. Transient tests were performed to determine the energy consumption of the breadboard over the acceleration and cruise portions of SAE J227 and driving schedules B, C, and D. Tests in the regenerative mode were limited to the low-gear-speed range of the two speed transaxle used in the subsystem. The maximum steady-state subsystem efficiency observed for the breadboard was 81.5 percent in the high-gear-speed range in the motoring mode, and 76 percent in the regenerative braking mode (low gear). The subsystem energy efficiency during the transient tests ranged from 49.2 percent for schedule B to 68.4 percent for Schedule D.

  11. Tests of an alternating current propulsion subsystem for electric vehicles on a road load simulator

    NASA Astrophysics Data System (ADS)

    Stenger, F. J.

    1982-12-01

    The test results of a breadboard version of an ac electric-vehicle propulsion subsystem are presented. The breadboard was installed in the NASA Lewis Research Center Road Load Simulator facility and tested under steady-state and transient conditions. Steady-state tests were run to characterize the system and component efficiencies over the complete speed-torque range within the capability of the propulsion subsystem in the motoring mode of operation. Transient tests were performed to determine the energy consumption of the breadboard over the acceleration and cruise portions of SAE J227 and driving schedules B, C, and D. Tests in the regenerative mode were limited to the low-gear-speed range of the two speed transaxle used in the subsystem. The maximum steady-state subsystem efficiency observed for the breadboard was 81.5 percent in the high-gear-speed range in the motoring mode, and 76 percent in the regenerative braking mode (low gear). The subsystem energy efficiency during the transient tests ranged from 49.2 percent for schedule B to 68.4 percent for Schedule D.

  12. 75 FR 78798 - In the Matter of Alternate Energy Holdings, Inc.; Order of Suspension of Trading

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-16

    ... From the Federal Register Online via the Government Publishing Office SECURITIES AND EXCHANGE COMMISSION In the Matter of Alternate Energy Holdings, Inc.; Order of Suspension of Trading December 14, 2010... information concerning the securities of Alternate Energy Holdings, Inc. (``AEHI'') because of...

  13. Benefits and Costs of Aggressive Energy Efficiency Programs and the Impacts of Alternative Sources of Funding: Case Study of Massachusetts

    SciTech Connect

    Cappers, Peter; Satchwell, Andrew; Goldman, Charles; Schlegel, Jeff

    2010-08-06

    Increased interest by state (and federal) policymakers and regulatory agencies in pursuing aggressive energy efficiency efforts could deliver significant utility bill savings for customers while having long-term implications for ratepayers (e.g. potential rate impacts). Equity and distributional concerns associated with the authorized recovery of energy efficiency program costs may necessitate the pursuit of alternative program funding approaches. In 2008, Massachusetts passed the Green Communities Act which directed its energy efficiency (EE) program administrators to obtain all cost-effective EE resources. This goal has translated into achieving annual electric energy savings equivalent to a 2.4% reduction in retail sales from energy efficiency programs in 2012. Representatives of electricity consumer groups supported the new portfolio of EE programs (and the projected bill savings) but raised concerns about the potential rate impacts associated with achieving such aggressive EE goals, leading policymakers to seek out alternative funding sources which can potentially mitigate these effects. Utility administrators have also raised concerns about under-recovery of fixed costs when aggressive energy efficiency programs are pursued and have proposed ratemaking policies (e.g. decoupling) and business models that better align the utility's financial interests with the state's energy efficiency public policy goals. Quantifying these concerns and identifying ways they can be addressed are crucial steps in gaining the support of major stakeholder groups - lessons that can apply to other states looking to significantly increase savings targets that can be achieved from their own ratepayer-funded energy efficiency programs. We use a pro-forma utility financial model to quantify the bill and rate impacts on electricity customers when very aggressive annual energy efficiency savings goals ({approx}2.4%) are achieved over the long-term and also assess the impact of different

  14. Auroral electron beams - Electric currents and energy sources

    NASA Astrophysics Data System (ADS)

    Kaufmann, R. L.

    1981-09-01

    The energy sources, electric equipotentials and electric currents associated with auroral electron acceleration observed during rocket flight 18:152 are discussed. Steep flow gradients at the interface between the convection boundary layer and the plasma sheet are considered as the probable source of energy for dayside and dawn and dusk auroras, while it is suggested that the cross tail potential drop may provide an energy source for some midnight auroras. Birkeland currents that flow along distorted field lines are shown possibly to be important in the mechanism that produces U-shaped equipotentials in the ionosphere, as well as unexpected jumps in ionospheric or magnetotail currents and unusual electric fields and plasma drift in the magnetotail. The production of equipotential structures under oppositely directed higher-altitude electric fields is discussed, and it is pointed out that cold ionospheric plasma can enter the structure in a cusp-shaped region where fields are weak. The rocket data reveals that the sudden change in conductivity at the edge of the bright arc and the constancy of the electric field produce sudden changes in the Hall and Pedersen currents. It is concluded that current continuity is satisfied primarily by east-west changes in the electric field or conductivity.

  15. Model of electric energy accumulation for solar flares

    NASA Astrophysics Data System (ADS)

    Krivodubskij, Valery

    The model of accumulation of energy (in the form of electric charges) for solar flares is proposed. We called this mechanism as "model of electric conditional capacitor". The model explains a localization of flares near the neutral magnetic field lines with strong gradients of the field in the vicinity of active centres (sunspots). The inhomogeneous structure of magnetic fields in vicinity of sunspots and the turbulent motions influence on electric conductivity of solar plasma play key roles in this model. Electric currents serve as a source for accumulation of energy. These currents are excited due to the large-scale hydrodynamic (convective) plasma motions across the weak common magnetic field of the Sun. According to introduced mechanism, charges are accumulated at the boundaries of the limited region (near the neutral magnetic field lines with reduced turbulent electric conductivity) because of strong currents in the outside regions (with increased conductivity). Subsequent electric breakdown in the region conditional capacitor serves as a trigger mechanism for releasing of the accumulated energy.

  16. A comparative analysis of well-to-wheel primary energy demand and greenhouse gas emissions for the operation of alternative and conventional vehicles in Switzerland, considering various energy carrier production pathways

    NASA Astrophysics Data System (ADS)

    Yazdanie, Mashael; Noembrini, Fabrizio; Dossetto, Lionel; Boulouchos, Konstantinos

    2014-03-01

    This study provides a comprehensive analysis of well-to-wheel (WTW) primary energy demand and greenhouse gas (GHG) emissions for the operation of conventional and alternative passenger vehicle drivetrains. Results are determined based on a reference vehicle, drivetrain/production process efficiencies, and lifecycle inventory data specific to Switzerland. WTW performance is compared to a gasoline internal combustion engine vehicle (ICEV). Both industrialized and novel hydrogen and electricity production pathways are evaluated. A strong case is presented for pluggable electric vehicles (PEVs) due to their high drivetrain efficiency. However, WTW performance strongly depends on the electricity source. A critical electricity mix can be identified which divides optimal drivetrain performance between the EV, ICEV, and plug-in hybrid vehicle. Alternative drivetrain and energy carrier production pathways are also compared by natural resource. Fuel cell vehicle (FCV) performance proves to be on par with PEVs for energy carrier (EC) production via biomass and natural gas resources. However, PEVs outperform FCVs via solar energy EC production pathways. ICE drivetrains using alternative fuels, particularly biogas and CNG, yield remarkable WTW energy and emission reductions as well, indicating that alternative fuels, and not only alternative drivetrains, play an important role in the transition towards low-emission vehicles in Switzerland.

  17. Remote Electric Power Transfer Between Spacecrafts by Infrared Beamed Energy

    NASA Astrophysics Data System (ADS)

    Chertok, Boris E.; Evdokimov, Roman A.; Legostaev, Victor P.; Lopota, Vitaliy A.; Sokolov, Boris A.; Tugaenko, Vjacheslav Yu.

    2011-11-01

    High efficient wireless electric energy transmission (WET) technology between spacecrafts by laser channel is proposed. WET systems could be used for remote power supplying of different consumers in space. First of all, there are autonomous technology modules for microgravity experiments, micro and nano satellites, different equipment for explorations of planetary surfaces, space transport vehicles with electric rocket propulsion systems. The main components of the WET technology consist of radiation sources on the base of semiconductor IR laser diodes; systems for narrow laser beam creation; special photovoltaic receivers for conversion of monochromatic IR radiation with high energy density to electric power. The multistage space experiment for WET technology testing is described. During this experiment energy will be transmitted from International Space Station to another spacecrafts like cargo transport vehicles (Progress or/and ATV) and micro satellites.

  18. Guest Editorial Electric Machines in Renewable Energy Applications

    SciTech Connect

    Aliprantis, Dionysios; El-Sharkawi, Mohamed; Muljadi, Eduard; Brown, Ian; Chiba, Akira; Dorrell, David; Erlich, Istvan; Kerszenbaum, Isidor Izzy; Levi, Emil; Mayor, Kevin; Mohammed, Osama; Papathanassiou, Stavros; Popescu, Mircea; Qiao, Wei; Wu, Dezheng

    2015-12-01

    The main objective of this special issue is to collect and disseminate publications that highlight recent advances and breakthroughs in the area of renewable energy resources. The use of these resources for production of electricity is increasing rapidly worldwide. As of 2015, a majority of countries have set renewable electricity targets in the 10%-40% range to be achieved by 2020-2030, with a few notable exceptions aiming for 100% generation by renewables. We are experiencing a truly unprecedented transition away from fossil fuels, driven by environmental, energy security, and socio-economic factors.Electric machines can be found in a wide range of renewable energy applications, such as wind turbines, hydropower and hydrokinetic systems, flywheel energy storage devices, and low-power energy harvesting systems. Hence, the design of reliable, efficient, cost-effective, and controllable electric machines is crucial in enabling even higher penetrations of renewable energy systems in the smart grid of the future. In addition, power electronic converter design and control is critical, as they provide essential controllability, flexibility, grid interface, and integration functions.

  19. Calibration of Electric Field Induced Energy Level Shifts in Argon

    NASA Astrophysics Data System (ADS)

    Hebner, Greg

    1999-10-01

    Argon is a commonly used gas in a number of discharges. As such it is an ideal candidate for spectroscopic based electric field measurements within the sheath and bulk discharge regions. Recently, measurements demonstrated the use of the Stark induced shifts of high lying energy levels in Argon to make spatially and temporally resolved electric field measurements [1]. However, that method relied on the cross calibration of known and calculable shifts in helium discharges to calibrate, in-situ, the energy level shifts in Argon. This poster shows the use of an atomic beam system to calibrate the electric field induced shift of high lying energy levels directly. In addition, data on very high lying argon levels, up to the 20 F manifold, were obtained. Comparison of our electric field induced energy level shift calibration curves with previous work will be shown. The possibility of using this system to calibrate energy level shifts in other gases of technological interest to the microelectronics and lighting industry will be discussed. [1]. J. B. Kim, K. Kawamura, Y. W. Choi, M. D. Bowden, K. Muraoka and V. Helbig, IEEE Transactions on Plasma Science, 26(5), 1556 (1998). This work was performed at Sandia National Laboratories and supported by the United States Department of Energy (DE-AC04-94AL85000).

  20. 78 FR 42512 - Application to Export Electric Energy; Royal Bank of Canada

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-16

    ... Application to Export Electric Energy; Royal Bank of Canada AGENCY: Office of Electricity Delivery and Energy... authority to transmit electric energy from the United States to Canada pursuant to section 202(e) of the... transmit electric energy from the United States to Canada as a power marketer for a five-year term...

  1. 76 FR 53888 - Application to Export Electric Energy; Morgan Stanley Capital Group Inc.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-30

    ... Application to Export Electric Energy; Morgan Stanley Capital Group Inc. AGENCY: Office of Electricity... Inc. (MSCG) has applied to renew its authority to transmit electric energy from the United States to...-year term. The electric energy that MSCG proposes to export to Mexico would be surplus energy...

  2. Hawaii Integrated Energy Assessment. Volume V. Rules, regulations, permits and policies affecting the development of alternate energy sources in Hawaii

    SciTech Connect

    Not Available

    1980-01-01

    A comprehensive presentaton of the major permits, regulations, rules, and controls which are likely to affect the development of alternate energy sources in Hawaii is presented. An overview of the permit process, showing the major categories and types of permits and controls for energy alternatives is presented. This is followed by a brief resume of current and projected changes designed to streamline the permit process. The permits, laws, regulations, and controls that are applicable to the development of energy alternatives in Hawaii are described. The alternate energy technologies affected, a description of the permit or control, and the requirements for conformance are presented for each applicable permit. Federal, state, and county permits and controls are covered. The individual energy technologies being considered as alternatives to the State's present dependence on imported fossil fuels are emphasized. The alternate energy sources covered are bioconversion, geothermal, ocean thermal, wind, solar (direct), and solid waste. For each energy alternative, the significant permits are summarized with a brief explanation of why they may be necessary. The framework of policy development at each of the levels of government with respect to the alternate energy sources is covered.

  3. Alternative Energy: A Guide to Free Information for Educators.

    ERIC Educational Resources Information Center

    White, Janet A.

    This guide was compiled to help teachers and students locate free educational materials (both lessons and nontechnical background references) on renewable energy resources and energy conservation. The 214 entries are arranged by these topic areas: (1) energy efficiency and renewables; (2) biomass; (3) hydropower; (4) solar thermal energy; (5)…

  4. Investigation of the Influence of the Clearance of Linear Alternator on Thermo-acoustic Electricity Generator without Resonator

    NASA Astrophysics Data System (ADS)

    Wang, Yufang; Li, Zhengyu; Li, Qing

    This paper proposes a thermo-acoustic electricity generator without resonator, which is realized by a looped-tube traveling-wave thermo-acoustic engine coupled with two linear alternators. A linear alternator is the resonating element of the thermo-acoustic engine, so its impedance determines the operating status and the clearance exerts a direct influence on it. A test bed is set to measure the clearance. An exact formula is determined after the analysis of data processing. This conclusion is used in the simulation of the influence of clearance and damping based on DeltaEC. At last, a series of experiments have been done to compare with the simulation.

  5. GEODE An electrical energy supply with high availability

    SciTech Connect

    Mertz, J.L.; Gerard, M.J.; Girard, J.

    1983-10-01

    Project GEODE describes an electrical energy supply characterized by its very high availability. It is to be used in the PTT (French Telephone Company) telephone exchanges and is targeted for an unavailability of better than 10/sup -6/. In order to achieve this performance Merlin Gerin has adopted: a double bus bar architecture, remote controlled electrical equipment, a motor-generator set specifically designed for this project, and computer assisted surveillance. The authors present the overall reliability calculations for this project along with that for energy sources. The E.d.F (French Utility Company) network and the Motor-Generators.

  6. Analysis of renewable energy sources and electric vehicle penetration into energy systems predominantly based on lignite

    NASA Astrophysics Data System (ADS)

    Dedinec, A.; Jovanovski, B.; Gajduk, A.; Markovska, N.; Kocarev, L.

    2016-05-01

    We consider an integration of renewable energy into transport and electricity sectors through vehicle to grid (V2G) technologies for an energy system that is predominantly based on lignite. The national energy system of Macedonia is modeled using EnergyPLAN which integrates energy for electricity, transport and heat, and includes hourly fluctuations in human needs and the environment. We show that electric-vehicles can provide the necessary storage enabling a fully renewable energy profile for Macedonia that can match the country's growing demand for energy. Furthermore, a large penetration of electric vehicles leads to a dramatic reduction of 47% of small particles and other air pollutants generated by car traffic in 2050.

  7. Development of Electricity Generation from Renewable Energy Sources in Turkey

    NASA Astrophysics Data System (ADS)

    Kentel, E.

    2011-12-01

    Electricity is mainly produced from coal, natural gas and hydropower in Turkey. However, almost all the natural gas and high quality coal are imported. Thus, increasing the shares of both hydro and other renewables in energy supply is necessary to decrease dependency of the country on foreign sources. In 2008, the total installed capacity of Turkey was around 42000 MW and 66 % of this was from thermal sources. The remaining 33 % was from hydro, which leaves only one percent for the other renewable energy sources. The share of renewable energy in the energy budget of Turkey has increased in the last two decades; however, in 2008, only 17 % of the total electricity generation was realized from renewable sources most of which was hydro. According to State Hydraulic Works (SHW) which is the primary executive state agency responsible for the planning, operating and managing of Turkey's water resources, Turkey utilizes only around 35% of its economically viable hydro potential. The current situation clearly demonstrates the need for increasing the share of renewables in the energy budget. New laws, such as the Electricity Market Law, have been enacted and the following items were identified by the Ministry of Energy and Natural Resources of Turkey among primary energy policies and priorities: (i) decreasing dependency on foreign resources by prioritizing utilization of natural resources, (ii) increasing the share of renewable energy resources in the energy budget of Turkey; (iii) minimization of adverse environmental impacts of production and utilization of natural resources. The government's energy policy increased investments in renewable energy resources; however lack of a needed legal framework brought various environmental and social problems with this fast development. The development of the share of renewable resources in the energy budget, current government policy, and environmental concerns related with renewables, and ideas to improve the overall benefits of

  8. Productive resources in students' ideas about energy: An alternative analysis of Watts' original interview transcripts

    NASA Astrophysics Data System (ADS)

    Harrer, Benedikt W.; Flood, Virginia J.; Wittmann, Michael C.

    2013-12-01

    For over 30 years, researchers have investigated students’ ideas about energy with the intent of reforming instructional practice. In this pursuit, Watts contributed an influential study with his 1983 paper “Some alternative views of energy” [Phys. Educ. 18, 213 (1983)]. Watts’ “alternative frameworks” continue to be used for categorizing students’ non-normative ideas about energy. Using a resources framework, we propose an alternate analysis of student responses from Watts’ interviews. In our analysis, we show how students’ activated resources about energy are disciplinarily productive. We suggest that fostering seeds of scientific understandings in students’ ideas about energy may play an important role in their development of scientific literacy.

  9. 76 FR 3881 - Application To Export Electric Energy; TransAlta Energy Marketing (U.S.) Inc.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-21

    ... Application To Export Electric Energy; TransAlta Energy Marketing (U.S.) Inc. AGENCY: Office of Electricity Delivery and Energy Reliability, DOE. ACTION: Notice of application. SUMMARY: TransAlta Energy Marketing (U... be surplus energy purchased from electric utilities, Federal power marketing agencies, and...

  10. Local alternative energy futures: developing economies/building communities

    SciTech Connect

    Totten, M.; Glass, B.; Freedberg, M.; Webb, L.

    1980-12-01

    A separate abstract was prepared for each of the three parts of the conference. A sufficient range of information is presented to enable interested parties to explore the viable alternatives for community self-sufficiency. The parts are entitled: Financial Incentives and Funding Sources; Standards, Regulations, Mandates, Ordinances, Covenants; and Community/Economic Development. (MCW)

  11. Electrohydrodynamic Displacement of Polarizable Liquid Interfaces in an Alternating Current Electric Field

    NASA Astrophysics Data System (ADS)

    Gagnon, Zachary

    2015-11-01

    In this work, we investigate Maxwell-Wagner polarization at electrically polarizable liquid interfaces. An AC electric field is applied across a liquid electrical interface created between two co-flowing microfluidic fluid streams with different electrical properties. When potentials as low as 2 volts are applied, we observe a frequency dependent interfacial displacement that is dependent on the relative differences in the electrical conductivity and dielectric constant between the two liquids. At low frequency this deflection is dependent on electrical conductivity, and only depends on dielectric constant at high frequency. At intermediate frequencies, we observe a crossover that is independent of applied voltage, sensitive to both fluid electrical properties, and where no displacement is observed. An analytical polarization model is presented that predicts the liquid interfacial crossover frequency, the dependence of interfacial displacement on liquid electrical conductivity and dielectric constant, and accurately scales the interface displacement measurements. The results show that liquid interfaces are capable of polarizing under AC electric fields and being precisely deflected in a direction and magnitude that is dependent on the applied electric field frequency.

  12. Model of Electric Energy Accumulation for Solar Flares

    NASA Astrophysics Data System (ADS)

    Krivodubskij, Valery N.

    2015-08-01

    The model of accumulation of energy (in the form of electric charges) for solar flares is proposed. We have named this mechanism as "model of the conditioned electric capacitor". Two magnetohydrodynamics effects play the key role in the proposed model. The essence of the first effect is that the turbulent motion sharply reduces the conductivity coefficient of solar plasma (turbulent conductivity). Meanwhile, a strong magnetic field in some parts of the active regions suppresses turbulence (second effect), thereby neutralizing turbulence impact on conductivity. As a result, near the neutral lines of the magnetic field, the portions of solar plasma will be coexisting with different values of conductivity. The electric current, excited by the large-scale plasma hydrodynamic motions across the mean magnetic field, serves as a source for energy accumulation. The electric charges must be accumulated at the boundaries of the region with reduced turbulent conductivity because of the difference of conductivity values near the neutral magnetic lines ("conditioned capacitor"). The subsequent electrical breakdown in the bulk of "capacitor" will serve as a trigger mechanism for releasing the stored energy.

  13. Manufacturing Industrial Development for the Alternative Energy Systems-Final Report

    SciTech Connect

    Dr. Chuck Ryan, National Center for Manufacturing Sciences; Dr. Dawn White, Accio Energy; Mr. Duncan Pratt, General Electric Global Research

    2013-01-30

    NCMS identified and developed critical manufacturing technology assessments vital to the affordable manufacturing of alternative-energy systems. NCMS leveraged technologies from other industrial sectors and worked with our extensive member organizations to provide DOE with two projects with far-reaching impact on the generation of wind energy. In the response for a call for project ideas, 26 project teams submitted ideas. Following a detailed selection criteria, two projects were chosen for development: Advanced Manufacturing for Modular Electro-kinetic (E-K) Wind Energy Conversion Technology - The goal of this project was to demonstrate that a modular wind energy technology based on electrohydrodynamic wind energy principles and employing automotive heritage high volume manufacturing techniques and modular platform design concepts can result in significant cost reductions for wind energy systems at a range of sizes from 100KW to multi-MW. During this program, the Accio/Boeing team made major progress on validating the EHD wind energy technology as commercially viable in the wind energy sector, and moved along the manufacturing readiness axis with a series of design changes that increased net system output. Hybrid Laser Arc Welding for Manufacture of Wind Towers - The goal of this research program was to reduce the cost of manufacturing wind towers through the introduction of hybrid laser arc welding (HLAW) into the supply chain for manufacturing wind towers. HLAW has the potential to enhance productivity while reducing energy consumption to offset the foreign low-cost labor advantage and thereby enhance U.S. competitiveness. HLAW technology combines laser welding and arc welding to produce an energy efficient, high productivity, welding process for heavy manufacturing. This process leverages the ability of a laser to produce deep weld penetration and the ability of gas metal arc welding (GMAW) to deposit filler material, thereby producing stable, high quality

  14. Energy Harvesting from the Stray Electromagnetic Field around the Electrical Power Cable for Smart Grid Applications.

    PubMed

    Khan, Farid Ullah

    2016-01-01

    For wireless sensor node (WSN) applications, this paper presents the harvesting of energy from the stray electromagnetic field around an electrical power line. Inductive and capacitive types of electrodynamic energy harvesters are developed and reported. For the produced energy harvesters, solid core and split-core designs are adopted. The inductive energy harvester comprises a copper wound coil which is produced on a mild steel core. However, the capacitive prototypes comprise parallel, annular discs separated by Teflon spacers. Moreover, for the inductive energy harvesters' wound coil and core, the parametric analysis is also performed. A Teflon housing is incorporated to protect the energy harvester prototypes from the harsh environmental conditions. Among the inductive energy harvesters, prototype-5 has performed better than the other harvesters and produces a maximum rms voltage of 908 mV at the current level of 155 A in the power line. However, at the same current flow, the capacitive energy harvesters produce a maximum rms voltage of 180 mV. The alternating output of the prototype-5 is rectified, and a super capacitor (1 F, 5.5 V) and rechargeable battery (Nickel-Cadmium, 3.8 V) are charged with it. Moreover, with the utilization of a prototype-5, a self-powered wireless temperature sensing and monitoring system for an electrical transformer is also developed and successfully implemented. PMID:27579343

  15. Energy Harvesting from the Stray Electromagnetic Field around the Electrical Power Cable for Smart Grid Applications

    PubMed Central

    2016-01-01

    For wireless sensor node (WSN) applications, this paper presents the harvesting of energy from the stray electromagnetic field around an electrical power line. Inductive and capacitive types of electrodynamic energy harvesters are developed and reported. For the produced energy harvesters, solid core and split-core designs are adopted. The inductive energy harvester comprises a copper wound coil which is produced on a mild steel core. However, the capacitive prototypes comprise parallel, annular discs separated by Teflon spacers. Moreover, for the inductive energy harvesters' wound coil and core, the parametric analysis is also performed. A Teflon housing is incorporated to protect the energy harvester prototypes from the harsh environmental conditions. Among the inductive energy harvesters, prototype-5 has performed better than the other harvesters and produces a maximum rms voltage of 908 mV at the current level of 155 A in the power line. However, at the same current flow, the capacitive energy harvesters produce a maximum rms voltage of 180 mV. The alternating output of the prototype-5 is rectified, and a super capacitor (1 F, 5.5 V) and rechargeable battery (Nickel-Cadmium, 3.8 V) are charged with it. Moreover, with the utilization of a prototype-5, a self-powered wireless temperature sensing and monitoring system for an electrical transformer is also developed and successfully implemented. PMID:27579343

  16. Energy control strategy for a hybrid electric vehicle

    DOEpatents

    Phillips, Anthony Mark; Blankenship, John Richard; Bailey, Kathleen Ellen; Jankovic, Miroslava

    2002-08-27

    An energy control strategy (10) for a hybrid electric vehicle that controls an electric motor during bleed and charge modes of operation. The control strategy (10) establishes (12) a value of the power level at which the battery is to be charged. The power level is used to calculate (14) the torque to be commanded to the electric motor. The strategy (10) of the present invention identifies a transition region (22) for the electric motor's operation that is bounded by upper and lower speed limits. According to the present invention, the desired torque is calculated by applying equations to the regions before, during and after the transition region (22), the equations being a function of the power level and the predetermined limits and boundaries.

  17. Energy control strategy for a hybrid electric vehicle

    DOEpatents

    Phillips, Anthony Mark; Blankenship, John Richard; Bailey, Kathleen Ellen; Jankovic, Miroslava

    2002-01-01

    An energy control strategy (10) for a hybrid electric vehicle that controls an electric motor during bleed and charge modes of operation. The control strategy (10) establishes (12) a value of the power level at which the battery is to be charged. The power level is used to calculate (14) the torque to be commanded to the electric motor. The strategy (10) of the present invention identifies a transition region (22) for the electric motor's operation that is bounded by upper and lower speed limits. According to the present invention, the desired torque is calculated by applying equations to the regions before, during and after the transition region (22), the equations being a function of the power level and the predetermined limits and boundaries.

  18. NV energy electricity storage valuation : a study for the DOE Energy Storage Systems program.

    SciTech Connect

    Ellison, James F.; Bhatnagar, Dhruv; Samaan, Nader; Jin, Chunlian

    2013-06-01

    This study examines how grid-level electricity storage may benefit the operations of NV Energy, and assesses whether those benefits are likely to justify the cost of the storage system. To determine the impact of grid-level storage, an hourly production cost model of the Nevada Balancing Authority (%22BA%22) as projected for 2020 was created. Storage was found to add value primarily through the provision of regulating reserve. Certain storage resources were found likely to be cost-effective even without considering their capacity value, as long as their effectiveness in providing regulating reserve was taken into account. Giving fast resources credit for their ability to provide regulating reserve is reasonable, given the adoption of FERC Order 755 (%22Pay-for-performance%22). Using a traditional five-minute test to determine how much a resource can contribute to regulating reserve does not adequately value fast-ramping resources, as the regulating reserve these resources can provide is constrained by their installed capacity. While an approximation was made to consider the additional value provided by a fast-ramping resource, a more precise valuation requires an alternate regulating reserve methodology. Developing and modeling a new regulating reserve methodology for NV Energy was beyond the scope of this study, as was assessing the incremental value of distributed storage.

  19. Universal access to electricity in Burkina Faso: scaling-up renewable energy technologies

    NASA Astrophysics Data System (ADS)

    Moner-Girona, M.; Bódis, K.; Huld, T.; Kougias, I.; Szabó, S.

    2016-08-01

    This paper describes the status quo of the power sector in Burkina Faso, its limitations, and develops a new methodology that through spatial analysis processes with the aim to provide a possible pathway for universal electricity access. Following the SE4All initiative approach, it recommends the more extensive use of distributed renewable energy systems to increase access to electricity on an accelerated timeline. Less than 5% of the rural population in Burkina Faso have currently access to electricity and supply is lacking at many social structures such as schools and hospitals. Energy access achievements in Burkina Faso are still very modest. According to the latest SE4All Global Tracking Framework (2015), the access to electricity annual growth rate in Burkina Faso from 2010 to 2012 is 0%. The rural electrification strategy for Burkina Faso is scattered in several electricity sector development policies: there is a need of defining a concrete action plan. Planning and coordination between grid extension and the off-grid electrification programme is essential to reach a long-term sustainable energy model and prevent high avoidable infrastructure investments. This paper goes into details on the methodology and findings of the developed Geographic Information Systems tool. The aim of the dynamic planning tool is to provide support to the national government and development partners to define an alternative electrification plan. Burkina Faso proves to be paradigm case for the methodology as its national policy for electrification is still dominated by grid extension and the government subsidising fossil fuel electricity production. However, the results of our analysis suggest that the current grid extension is becoming inefficient and unsustainable in order to reach the national energy access targets. The results also suggest that Burkina Faso’s rural electrification strategy should be driven local renewable resources to power distributed mini-grids. We find that

  20. Distributed Frequency Control of Prosumer-Based Electric Energy Systems

    SciTech Connect

    Nazari, MH; Costello, Z; Feizollahi, MJ; Grijalva, S; Egerstedt, M

    2014-11-01

    In this paper, we propose a distributed frequency regulation framework for prosumer-based electric energy systems, where a prosumer (producer-consumer) is defined as an intelligent agentwhich can produce, consume, and/or store electricity. Despite the frequency regulators being distributed, stability can be ensured while avoiding inter-area oscillations using a limited control effort. To achieve this, a fully distributed one-step model-predictive control protocol is proposed and analyzed, whereby each prosumer communicates solely with its neighbors in the network. The efficacy of the proposed frequency regulation framework is shown through simulations on two real-world electric energy systems of different scale and complexity. We show that prosumers can indeed bring frequency and power deviations to their desired values after small perturbations.

  1. Energy Saving in DC Electric Railways by Battery Substation

    NASA Astrophysics Data System (ADS)

    Sugimoto, Takeshi

    New rolling vehicles used in dc electric railways are of the regenerative type. At less busy time a part of regenerative power is not used for powering vehicles, and canceled by changed air brake. Recently, significant attention has been paid to the development of secondary batteries for hybrid and electric motorcars. The use of this battery enables reduction in electric power consumption. Because we can charge excess regenerative power and use for powering vehicles after. Before the fact we compared the actual and simulated effective coefficient of regenerative energy, we confirmed the suitability of the simulation model. In this simulation, we studied the energy-saving effect of the battery substations and determined the battery capacity at which maximum power saving is achieved. We found that the power consumption could be reduced remarkably by using a 15-20kWh battery substation.

  2. Emission reductions from woody biomass waste for energy as an alternative to open burning.

    PubMed

    Springsteen, Bruce; Christofk, Tom; Eubanks, Steve; Mason, Tad; Clavin, Chris; Storey, Brett

    2011-01-01

    Woody biomass waste is generated throughout California from forest management, hazardous fuel reduction, and agricultural operations. Open pile burning in the vicinity of generation is frequently the only economic disposal option. A framework is developed to quantify air emissions reductions for projects that alternatively utilize biomass waste as fuel for energy production. A demonstration project was conducted involving the grinding and 97-km one-way transport of 6096 bone-dry metric tons (BDT) of mixed conifer forest slash in the Sierra Nevada foothills for use as fuel in a biomass power cogeneration facility. Compared with the traditional open pile burning method of disposal for the forest harvest slash, utilization of the slash for fuel reduced particulate matter (PM) emissions by 98% (6 kg PM/BDT biomass), nitrogen oxides (NOx) by 54% (1.6 kg NOx/BDT), nonmethane volatile organics (NMOCs) by 99% (4.7 kg NMOCs/BDT), carbon monoxide (CO) by 97% (58 kg CO/BDT), and carbon dioxide equivalents (CO2e) by 17% (0.38 t CO2e/BDT). Emission contributions from biomass processing and transport operations are negligible. CO2e benefits are dependent on the emission characteristics of the displaced marginal electricity supply. Monetization of emissions reductions will assist with fuel sourcing activities and the conduct of biomass energy projects. PMID:21305889

  3. Decision analysis: a tool to guide the R and D selection of alternative energy sources

    SciTech Connect

    Kriz, T.

    1980-05-01

    The array of alternative energy sources which are vying for the federal government's R and D dollar is formidable when compared to the politically acceptable amount which can be used to fund the research. To guide how these funds should be dispersed, a rational, defensible procedure is needed which can repeatedly be applied as new technologies and new information become available. The procedure advanced in this paper is a decision analysis technique known as multi attribute decision analysis (MADA) and its use is illustrated in an evaluation and ranking of solar thermal electric power generating systems. Since the ultimate purchase decision is made in the market place, the preferences of potential users have been sampled and brought to bear on the ranking. The focus of this description is on the formulation of the problem structure and the decision model, the treatment of uncertainty, and how the results relate to the questions asked by and of the Department of Energy, which funded the study. A final note proposes how decision analysis can be used to address the broader questions of choice among competing technologies with cautions concerning misuse of the procedure.

  4. Electric Transport Traction Power Supply System With Distributed Energy Sources

    NASA Astrophysics Data System (ADS)

    Abramov, E. Y.; Schurov, N. I.; Rozhkova, M. V.

    2016-04-01

    The paper states the problem of traction substation (TSS) leveling of daily-load curve for urban electric transport. The circuit of traction power supply system (TPSS) with distributed autonomous energy source (AES) based on photovoltaic (PV) and energy storage (ES) units is submitted here. The distribution algorithm of power flow for the daily traction load curve leveling is also introduced in this paper. In addition, it illustrates the implemented experiment model of power supply system.

  5. Alternative energy sources for non-highway transportation: executive summary

    SciTech Connect

    Not Available

    1980-06-01

    A planning study was made for DOE on alternate fuels for non-highway transportation (aircraft, rail, marine, and pipeline). The study provides DOE with a recommendation of what alternate fuels may be of interest to non-highway transportation users from now through 2025 and recommends R and D needed to allow non-petroleum derived fuels to be used in non-highway transportation. In the near term (present-1985), there is unlikely to be any major change in the fuels used in any of the four modes of transportation except that the average quality of the marine fuel is likely to get worse. In the mid-term period (1985-2000), there will be a transition to non-petroleum fuels, based primarily on shale oil derived liquids assuming a shale oil industry is started during this time.

  6. Fuel Cell Electric Vehicle Evaluation; NREL (National Renewable Energy Laboratory)

    SciTech Connect

    Kurtz, Jennifer; Sprik, Sam; Ainscough, Chris; Saur, Genevieve

    2015-06-10

    This presentation provides a summary of NREL's FY15 fuel cell electric vehicle evaluation project activities and accomplishments. It was presented at the U.S. Department of Energy Hydrogen and Fuel Cells Program 2015 Annual Merit Review and Peer Evaluation Meeting on June 10, 2015, in Arlington, Virginia.

  7. Impacts of Western Area Power Administration`s power marketing alternatives on retail electricity rates and utility financial viability

    SciTech Connect

    Bodmer, E.; Fisher, R.E.; Hemphill, R.C.

    1995-03-01

    Changes in power contract terms for customers of Western`s Salt Lake City Area Office affect electricity rates for consumers of electric power in Arizona, Colorado, Nevada, New Mexico, Utah, and Wyoming. The impacts of electricity rate changes on consumers are studied by measuring impacts on the rates charged by individual utility systems, determining the average rates in regional areas, and conducting a detailed rate analysis of representative utility systems. The primary focus is an evaluation of the way retail electricity rates for Western`s preference customers vary with alternative pricing and power quantity commitment terms under Western`s long-term contracts to sell power (marketing programs). Retail rate impacts are emphasized because changes in the price of electricity are the most direct economic effect on businesses and residences arising from different Western contractual and operational policies. Retail rates are the mechanism by which changes in cost associated with Western`s contract terms are imposed on ultimate consumers, and rate changes determine the dollar level of payments for electric power incurred by the affected consumers. 41 figs., 9 tabs.

  8. Inducing self-rotation of cells with natural and artificial melanin in a linearly polarized alternating current electric field

    PubMed Central

    Ouyang, Mengxing; Ki Cheung, Wing; Liang, Wenfeng; Mai, John D.; Keung Liu, Wing; Jung Li, Wen

    2013-01-01

    The phenomenon of self-rotation observed in naturally and artificially pigmented cells under an applied linearly polarized alternating current (non-rotating) electrical field has been investigated. The repeatable and controllable rotation speeds of the cells were quantified and their dependence on dielectrophoretic parameters such as frequency, voltage, and waveform was studied. Moreover, the rotation behavior of the pigmented cells with different melanin content was compared to quantify the correlation between self-rotation and the presence of melanin. Most importantly, macrophages, which did not originally rotate in the applied non-rotating electric field, began to exhibit self-rotation that was very similar to that of the pigmented cells, after ingesting foreign particles (e.g., synthetic melanin or latex beads). We envision the discovery presented in this paper will enable the development of a rapid, non-intrusive, and automated process to obtain the electrical conductivities and permittivities of cellular membrane and cytoplasm in the near future. PMID:24404075

  9. 77 FR 61592 - Arkansas Electric Cooperative Corporation; Mississippi Delta Energy Agency; Clarksdale Public...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-10

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Arkansas Electric Cooperative Corporation; Mississippi Delta Energy Agency... (FPA), 16 USC 824(e) and Sec. 825(h), Arkansas Electric Cooperative Corporation, Mississippi...

  10. 77 FR 11515 - Application To Export Electric Energy; Pilot Power Group, Inc.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-27

    ... Application To Export Electric Energy; Pilot Power Group, Inc. AGENCY: Office of Electricity Delivery and...) has applied for authority to transmit electric energy from the United States to Mexico pursuant to... Power for authority to transmit electric energy from the United States to Mexico for five years as...

  11. 76 FR 20651 - Application To Export Electric Energy; Cargill Power Markets, LLC

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-13

    ... Application To Export Electric Energy; Cargill Power Markets, LLC AGENCY: Office of Electricity Delivery and... applied for authority to transmit electric energy from the United States to Mexico pursuant to section 202..., 2011, DOE received an application from CPM for authority to transmit electric energy from the...

  12. 78 FR 11633 - Application To Export Electric Energy; ConocoPhillips Company

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-19

    ... Application To Export Electric Energy; ConocoPhillips Company AGENCY: Office of Electricity Delivery and... to renew its authority to transmit electric energy from the United States to Mexico pursuant to... transmit electric energy from the United States to Mexico as a power marketer for a five-year term...

  13. 76 FR 37797 - Application to Export Electric Energy; Freepoint Commodities, LLC

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-28

    ... Application to Export Electric Energy; Freepoint Commodities, LLC AGENCY: Office of Electricity Delivery and... authority to transmit electric energy from the United States to Mexico pursuant to section 202(e) of the... from Freepoint Commodities requesting authority to transmit electric energy from the United States...

  14. 76 FR 37797 - Application to Export Electric Energy; Freepoint Commodities, LLC

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-28

    ... Application to Export Electric Energy; Freepoint Commodities, LLC AGENCY: Office of Electricity Delivery and... authority to transmit electric energy from the United States to Canada pursuant to section 202(e) of the... application from Freepoint Commodities requesting authority to transmit electric energy from the United...

  15. 75 FR 22578 - Application To Export Electric Energy; Centre Lane Trading Limited

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-29

    ... Application To Export Electric Energy; Centre Lane Trading Limited AGENCY: Office of Electricity Delivery and... applied for authority to transmit electric energy from the United States to Canada pursuant to section 202... application from CLT for authority to transmit electric energy from the United States to Canada as a...

  16. 75 FR 22579 - Application To Export Electric Energy; Morgan Stanley Capital Group Inc.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-29

    ... Application To Export Electric Energy; Morgan Stanley Capital Group Inc. AGENCY: Office of Electricity... Inc. (MSCG) has applied to renew its authority to transmit electric energy from the United States to...-185 authorizing MSGC to transmit electric energy from the United States to Canada as a power...

  17. Electric energy costs and firm productivity in the countries of the Pacific Alliance

    NASA Astrophysics Data System (ADS)

    Camacho, Anamaria

    This paper explores the relation between energy as an input of production and firm-level productivity for Chile, Colombia, Mexico and Peru, all country members of the Pacific Alliance economic bloc. The empirical literature, has explored the impact of infrastructure on productivity; however there is limited analysis on the impact of particular infrastructure variables, such as energy, on productivity at the firm level in Latin America. Therefore, this study conducts a quantitative assessment of the responsiveness of productivity to energy cost and quality for Chile, Colombia, Mexico and Peru. For this, the empirical strategy is to estimate a Cobb-Douglas production function using the World Bank's Enterprise Survey to obtain comparable measures of output and inputs of production. This approach provides estimates of input factor elasticities for all of the factors of production including energy. The results indicate that electric energy costs explain cross-country differences in firm level productivity. For the particular case of Colombia, the country exhibits the lowest capital and labor productivity of the PA, and firm output is highly responsive to changes in energy use. As a result, the evidence suggests that policies reducing electric energy costs are an efficient alternative to increase firm performance, particularly in the case of Colombia.

  18. Renewable energy alternatives - a growing opportunity for engineering & technology education

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A hallmark of the United States’ economic growth is an ever-increasing demand for energy, which has traditionally been met primarily by combusting the hydrocarbons found in fossil fuels. As national security and environmental concerns grow, renewable energy resources are gaining increased attention...

  19. Evaluation of alternative insulating oils for use in transformers and other electrical apparatus: Characteristics of insulating oils for electrical application

    NASA Astrophysics Data System (ADS)

    Rouse, T. O.

    1980-02-01

    There is a realistic possibility that demand for traditional naphthenic transformer oils will exceed the available supply in the mid 1980's. The results of a program directed toward evaluating alternate fluids are summarized. Oils derived from paraffinic crude sources are predicted to be more plentiful. The results of studies suggest that these paraffinic coils will be satisfactory supplements replacement fluids. Because of the differences in low temperature behavior of the two types of oils, careful consideration must be given to matching a given oil to a given application.

  20. Heat to electricity conversion by cold carrier emissive energy harvesters

    NASA Astrophysics Data System (ADS)

    Strandberg, Rune

    2015-12-01

    This paper suggests a method to convert heat to electricity by the use of devices called cold carrier emissive energy harvesters (cold carrier EEHs). The working principle of such converters is explained and theoretical power densities and efficiencies are calculated for ideal devices. Cold carrier EEHs are based on the same device structure as hot carrier solar cells, but works in an opposite way. Whereas a hot carrier solar cell receives net radiation from the sun and converts some of this radiative heat flow into electricity, a cold carrier EEH sustains a net outflux of radiation to the surroundings while converting some of the energy supplied to it into electricity. It is shown that the most basic type of cold carrier EEHs have the same theoretical efficiency as the ideal emissive energy harvesters described earlier by Byrnes et al. In the present work, it is also shown that if the emission from the cold carrier EEH originates from electron transitions across an energy gap where a difference in the chemical potential of the electrons above and below the energy gap is sustained, power densities slightly higher than those given by Byrnes et al. can be achieved.

  1. Heat to electricity conversion by cold carrier emissive energy harvesters

    SciTech Connect

    Strandberg, Rune

    2015-12-07

    This paper suggests a method to convert heat to electricity by the use of devices called cold carrier emissive energy harvesters (cold carrier EEHs). The working principle of such converters is explained and theoretical power densities and efficiencies are calculated for ideal devices. Cold carrier EEHs are based on the same device structure as hot carrier solar cells, but works in an opposite way. Whereas a hot carrier solar cell receives net radiation from the sun and converts some of this radiative heat flow into electricity, a cold carrier EEH sustains a net outflux of radiation to the surroundings while converting some of the energy supplied to it into electricity. It is shown that the most basic type of cold carrier EEHs have the same theoretical efficiency as the ideal emissive energy harvesters described earlier by Byrnes et al. In the present work, it is also shown that if the emission from the cold carrier EEH originates from electron transitions across an energy gap where a difference in the chemical potential of the electrons above and below the energy gap is sustained, power densities slightly higher than those given by Byrnes et al. can be achieved.

  2. Heterobarrier for converting hot-phonon energy to electric potential

    NASA Astrophysics Data System (ADS)

    Shin, Seungha; Melnick, Corey; Kaviany, Massoud

    2013-02-01

    We show that hot phonons emitted in energy conversion or resistive processes can be converted to electric potential in heterobarrier structures. Using phonon and electron interaction kinetics and self-consistent ensemble Monte Carlo, we find the favorable conditions for unassisted absorption of hot phonons and design graded heterobarriers for their direct conversion into electric energy. Tandem barriers with nearly optical-phonon height allow for substantial potential gain without current loss. We find that 19% of hot phonons can be harvested with an optimized GaAs/AlxGa1-xAs barrier structure over a range of current and electron densities, thus enhancing the overall energy conversion efficiency and reducing waste heat.

  3. Research for electric energy systems -- an annual report

    SciTech Connect

    Anderson, W.E.

    1993-10-01

    This report documents the technical progress in the two investigations which make up the project {open_quotes}Support of Research Projects for Electrical Energy Systems,{close_quotes} Department of Energy Task Order Number 137, funded by the US Department of Energy and performed by the Electricity Division of the National Institute of Standards and Technology (NIST). The first investigation is concerned with the measurement of magnetic fields in support of epidemiogical and in vitro studies of biological field effects. During 1992, the derivation of equations which predict differences between the average magnetic flux density using circular coil probes and the flux density at the center of the probe, assuming a dipole magnetic field, were completed. The information gained using these equations allows the determination of measurement uncertainty due to probe size when magnetic fields from many electrical appliances are characterized. Consultations with various state and federal organizations and the development of standards related to electric and magnetic field measurements continued. The second investigation is concerned with two different activities related to compressed-gas insulated high voltage systems: (1) the measurement of dissociative electron attachment cross sections and negative ion production in S{sub 2}F{sub 10}, S{sub 2}OF{sub 10}, and S{sub 2}O{sub 2}F{sub 10}, and (2) Monte-Carlo simulations of ac-generated partial-discharge pulses that can occur in SF{sub 6}-insulated power systems and can be sources of gas decomposition.

  4. Thermal-to-electric energy conversion using ferroelectric film capacitors

    NASA Astrophysics Data System (ADS)

    Kozyrev, A. B.; Platonov, R. A.; Soldatenkov, O. I.

    2014-10-01

    The capacitive ferroelectric thermoelectric converter harvesting electrical energy through non-linear capacitance variation caused by changes in temperature is analyzed. The ferroelectric material used was the thin (0.5 μm) Ba0.3Sr0.7TiO3 film. On the basis of experimental dependencies of the ferroelectric film permittivity on temperature ranging from 100 K to 350 K under different electric fields up to 80 V/μm, the optimum values of operating temperatures and electric field for the energy harvesting optimization were determined. For the temperature oscillations of ±15 K around room temperature and electric field about 40 V/μm, the harvested energy was estimated as 30 mJ/cm3. It is shown that the use of thin ferroelectric films for rapid capacitance variation versus temperature and microelectromechanical systems for fast temperature modulations may be a relevant solution for creation of small power scale generators for portable electronics.

  5. Fort Lewis electric energy baseline and efficiency resource assessment

    SciTech Connect

    Secrest, T.J.; Currie, J.W.; DeSteese, J.G.; Dirks, J.A.; Marseille, T.J.; Parker, G.B.; Richman, E.E.; Shankle, S.A.

    1991-10-01

    In support of the US DOE Federal Energy Management Program, the Pacific Northwest Laboratory is developing a fuel-neutral approach for identifying, evaluating, and acquiring all cost-effective energy projects at federal installations. Fort Lewis, a US Army installation near Tacoma, Washington, was selected as the pilot site for developing this approach. This site was chosen in conjunction with the interests of the Bonneville Power Administration to develop programs for its federal sector customers and the Army Forces Command to develop an in-house program to upgrade the energy efficiency of its installations. This report documents the electricity assessment portion of the approach, providing an estimate of the electricity use baseline and efficiency improvement potential for major sectors and end uses at the Fort. Although the assessment did not identify all possible efficiency improvement opportunities, it is estimated that electricity use can be reduced by at least 20% cost-effectively at the $0.045/kWh marginal cost of electricity in the Pacific Northwest. 12 refs., 3 figs., 7 tabs.

  6. Vehicle to grid: electric vehicles as an energy storage solution

    NASA Astrophysics Data System (ADS)

    McGee, Rodney; Waite, Nicholas; Wells, Nicole; Kiamilev, Fouad E.; Kempton, Willett M.

    2013-05-01

    With increased focus on intermittent renewable energy sources such as wind turbines and photovoltaics, there comes a rising need for large-scale energy storage. The vehicle to grid (V2G) project seeks to meet this need using electric vehicles, whose high power capacity and existing power electronics make them a promising energy storage solution. This paper will describe a charging system designed by the V2G team that facilitates selective charging and backfeeding by electric vehicles. The system consists of a custom circuit board attached to an embedded linux computer that is installed both in the EVSE (electric vehicle supply equipment) and in the power electronics unit of the vehicle. The boards establish an in-band communication link between the EVSE and the vehicle, giving the vehicle internet connectivity and the ability to make intelligent decisions about when to charge and discharge. This is done while maintaining compliance with existing charging protocols (SAEJ1772, IEC62196) and compatibility with standard "nonintelligent" cars and chargers. Through this system, the vehicles in a test fleet have been able to successfully serve as portable temporary grid storage, which has implications for regulating the electrical grid, providing emergency power, or supplying power to forward military bases.

  7. Development of an International Electric Cooperative Initiative on Energy Efficiency

    SciTech Connect

    Paul Clark; David South

    2004-05-01

    NRECA conceived of the International Electric Cooperative Initiative on Energy Efficiency (IECIEE) in order to provide an ongoing means of contributing voluntary actions on greenhouse gas emissions mitigation as an integral component of its international programs and projects. This required designing the IECIEE to be integrated directly with the core interests and attributes of participating cooperatives in the U.S. and Latin America, which was the initial focus area selected for the IECIEE. In the case of NRECA International, the core interests related to promoting and strengthening the electric cooperative model, which has proved highly successful in maximizing operational efficiencies in electric power generation, distribution and retailing, as compared to government-owned entities. The approach involved three basic components: (i) establishing the IECIEE mechanism, which involved setting up a functioning organizational vehicle providing for investment, management, and emissions credit accounting; (ii) developing a portfolio of projects in countries where NRECA International could effectively implement the broader mandate of cooperative development as energy efficient suppliers and distributors of electrical energy; and (iii) conducting outreach to obtain the commitment of participants and resources from U.S. and Latin American cooperatives and partnering agencies in the development financing community.

  8. Thermal-to-electric energy conversion using ferroelectric film capacitors

    SciTech Connect

    Kozyrev, A. B.; Platonov, R. A.; Soldatenkov, O. I.

    2014-10-28

    The capacitive ferroelectric thermoelectric converter harvesting electrical energy through non-linear capacitance variation caused by changes in temperature is analyzed. The ferroelectric material used was the thin (0.5 μm) Ba{sub 0.3}Sr{sub 0.7}TiO{sub 3} film. On the basis of experimental dependencies of the ferroelectric film permittivity on temperature ranging from 100 K to 350 K under different electric fields up to 80 V/μm, the optimum values of operating temperatures and electric field for the energy harvesting optimization were determined. For the temperature oscillations of ±15 K around room temperature and electric field about 40 V/μm, the harvested energy was estimated as 30 mJ/cm{sup 3}. It is shown that the use of thin ferroelectric films for rapid capacitance variation versus temperature and microelectromechanical systems for fast temperature modulations may be a relevant solution for creation of small power scale generators for portable electronics.

  9. Preliminary results on the conversion of laser energy into electricity

    NASA Technical Reports Server (NTRS)

    Thompson, R. W.; Manista, E. J.; Alger, D. L.

    1978-01-01

    A preliminary experiment was performed to investigate conversion of 10.6 micron laser energy to electrical energy via a laser-sustained argon plasma. Short-circuit currents of 0.7 A were measured between a thoriated-tungsten emitter and collector electrodes immersed in the laser-sustained argon plasma. Open-circuit voltages of about 1.5 V were inferred from the current-voltage load characteristics. The dominant mechanism of laser energy conversion is uncertain at this time. Much higher output powers appear possible.

  10. An assessment of ocean thermal energy conversion as an advanced electric generation methodology

    NASA Astrophysics Data System (ADS)

    Heydt, Gerald T.

    1993-03-01

    Ocean thermal energy conversion (OTEC) is a process that employs the temperature difference between surface and deep ocean water to alternately evaporate and condense a working fluid. In the open-cycle OTEC configuration, the working fluid is seawater. In the closed-cycle configuration, a working fluid such as propane is used. In this paper, OTEC is assessed for its practical merits for electric power generation, and the history of the process is reviewed. Because the OTEC principle operates under a small net temperature difference regime, rather large amounts of seawater and working fluid are required. The energy requirements for pumping these fluids may be greater than the energy recovered from the OTEC engine itself. The concept of net power production is discussed. The components of a typical OTEC plant are discussed with emphasis on the evaporator heat exchanger. Operation of an OTEC electric generating station is discussed, including transient operation. Perhaps the most encouraging aspect of OTEC is the recent experiments and efforts at the Natural Energy Laboratory in Hawaii, which are discussed in the paper. Remarks are made on bottlenecks and the future of OTEC as an advanced electric generation methodology.

  11. An assessment of ocean thermal energy conversion as an advanced electric generation methodology

    SciTech Connect

    Heydt, G.T. . School of Electrical Engineering)

    1993-03-01

    Ocean thermal energy conversion (OTEC) is a process that employs the temperature difference between surface and deep ocean water to alternately evaporate and condense a working fluid. In the open-cycle OTEC configuration, the working fluid is seawater. In the closed-cycle configuration, a working fluid such as propane is used. In this paper, OTEC is assessed for its practical merits for electric power generation. The process is not new--and its history is reviewed. Because the OTEC principle operates under a small net temperature difference regime, rather large amounts of seawater and working fluid are required. The energy requirements for pumping these fluids may be greater than the energy recovered from the OTEC engine itself. The concept of net power production is discussed. The components of a typical OTEC plant are discussed with emphasis on the evaporator heat exchanger. Operation of an OTEC electric generating station is discussed, including transient operation. Perhaps the most encouraging aspect of OTEC is the recent experiments and efforts at the Natural Energy Laboratory--Hawaii (NELH). The NELH work is summarized in the paper. Remarks are made on bottlenecks and the future of OTEC as an advanced electric generation methodology.

  12. Safety's impact on an alternative energy source: coal

    SciTech Connect

    Denton, D.K.

    1983-01-01

    Our ability to make underground mines a safe place to work will be a major concern to those seeking to use coal as an energy source. Increased production will stimulate a heightened concern for making mining a more effective energy resource. This effectiveness means that unless safe performance is achieved, the cost of poor safety, such as loss of lives and costly delays due to breakdowns and other failures, will greatly reduce productivity of underground mining operations. As such, coal companies and miners must be prepared to safely manage their operation before underground mining makes a significant effect on energy independence.

  13. Stepwise drying of medicinal plants as alternative to reduce time and energy processing

    NASA Astrophysics Data System (ADS)

    Cuervo-Andrade, S. P.; Hensel, O.

    2016-07-01

    The objective of drying medicinal plants is to extend the shelf life and conserving the fresh characteristics. This is achieved by reducing the water activity (aw) of the product to a value which will inhibit the growth and development of pathogenic and spoilage microorganisms, significantly reducing enzyme activity and the rate at which undesirable chemical reactions occur. The technical drying process requires an enormous amount of thermal and electrical energy. An improvement in the quality of the product to be dried and at the same time a decrease in the drying cost and time are achieved through the utilization of a controlled conventional drying method, which is based on a good utilization of the renewable energy or looking for other alternatives which achieve lower processing times without sacrificing the final product quality. In this work the method of stepwise drying of medicinal plants is presented as an alternative to the conventional drying that uses a constant temperature during the whole process. The objective of stepwise drying is the decrease of drying time and reduction in energy consumption. In this process, apart from observing the effects on decreases the effective drying process time and energy, the influence of the different combinations of drying phases on several characteristics of the product are considered. The tests were carried out with Melissa officinalis L. variety citronella, sowed in greenhouse. For the stepwise drying process different combinations of initial and final temperature, 40/50°C, are evaluated, with different transition points associated to different moisture contents (20, 30, 40% and 50%) of the product during the process. Final quality of dried foods is another important issue in food drying. Drying process has effect in quality attributes drying products. This study was determining the color changes and essential oil loses by reference the measurement of the color and essential oil content of the fresh product was

  14. Analysis of alternative strategies for energy conservation in new buildings

    NASA Astrophysics Data System (ADS)

    Fang, J. M.; Tawil, J.

    1980-12-01

    The policy instruments considered include: greater reliance on market forces; research and development; information, education and demonstration programs; tax incentives and sanctions; mortgage and finance programs; and regulations and standards. The analysis starts with an explanation of the barriers to energy conservation in the residential and commercial sectors. Individual policy instruments are described and evaluated with respect to energy conservation, economic efficiency, equity, political impacts, and implementation and other transitional impacts. Five possible strategies are identified: (1) increased reliance on the market place; (2) energy consumption tax and supply subsidies; (3) Building Energy Performance Standards (BEPS) with no sanctions and no incentives; (4) BEPS with sanctions and incentives (price control); and (5) BEPS with sanctions and incentives (no price controls). A comparative analysis is performed. Elements are proposed for inclusion in a comprehensive strategy for conservation in new buildings.

  15. Cogeneration Technology Alternatives Study (CTAS). Volume 4: Energy conversion systems

    NASA Technical Reports Server (NTRS)

    Brown, D. H.; Gerlaugh, H. E.; Priestley, R. R.

    1980-01-01

    Industrial processes from the largest energy consuming sectors were used as a basis for matching a similar number of energy conversion systems that are considered as candidate which can be made available by the 1985 to 2000 time period. The sectors considered included food, textiles, lumber, paper, chemicals, petroleum, glass, and primary metals. The energy conversion systems included steam and gas turbines, diesels, thermionics, stirling, closed-cycle and steam injected gas turbines, and fuel cells. Fuels considered were coal, both coal and petroleum-based residual and distillate liquid fuels, and low Btu gas obtained through the on-site gasification of coal. An attempt was made to use consistent assumptions and a consistent set of ground rules specified by NASA for determining performance and cost. The advanced and commercially available cogeneration energy conversion systems studied in CTAS are fined together with their performance, capital costs, and the research and developments required to bring them to this level of performance.

  16. Comparing energy technology alternatives from an environmental perspective

    SciTech Connect

    House, P W; Coleman, J A; Shull, R D; Matheny, R W; Hock, J C

    1981-02-01

    A number of individuals and organizations advocate the use of comparative, formal analysis to determine which are the safest methods for producing and using energy. Some have suggested that the findings of such analyses should be the basis upon which final decisions are made about whether to actually deploy energy technologies. Some of those who support formal comparative analysis are in a position to shape the policy debate on energy and environment. An opposing viewpoint is presented, arguing that for technical reasons, analysis can provide no definitive or rationally credible answers to the question of overall safety. Analysis has not and cannot determine the sum total of damage to human welfare and ecological communities from energy technologies. Analysis has produced estimates of particular types of damage; however, it is impossible to make such estimates comparable and commensurate across different classes of technologies and environmental effects. As a result of the deficiencies, comparative analysis connot form the basis of a credible, viable energy policy. Yet, without formal comparative analysis, how can health, safety, and the natural environment be protected. This paper proposes a method for improving the Nation's approach to this problem. The proposal essentially is that health and the environment should be considered as constraints on the deployment of energy technologies, constraints that are embodied in Government regulations. Whichever technologies can function within these constraints should then compete among themselves. This competition should be based on market factors like cost and efficiency and on political factors like national security and the questions of equity.

  17. Towards greener and more sustainable batteries for electrical energy storage

    NASA Astrophysics Data System (ADS)

    Larcher, D.; Tarascon, J.-M.

    2015-01-01

    Ever-growing energy needs and depleting fossil-fuel resources demand the pursuit of sustainable energy alternatives, including both renewable energy sources and sustainable storage technologies. It is therefore essential to incorporate material abundance, eco-efficient synthetic processes and life-cycle analysis into the design of new electrochemical storage systems. At present, a few existing technologies address these issues, but in each case, fundamental and technological hurdles remain to be overcome. Here we provide an overview of the current state of energy storage from a sustainability perspective. We introduce the notion of sustainability through discussion of the energy and environmental costs of state-of-the-art lithium-ion batteries, considering elemental abundance, toxicity, synthetic methods and scalability. With the same themes in mind, we also highlight current and future electrochemical storage systems beyond lithium-ion batteries. The complexity and importance of recycling battery materials is also discussed.

  18. Towards greener and more sustainable batteries for electrical energy storage.

    PubMed

    Larcher, D; Tarascon, J-M

    2015-01-01

    Ever-growing energy needs and depleting fossil-fuel resources demand the pursuit of sustainable energy alternatives, including both renewable energy sources and sustainable storage technologies. It is therefore essential to incorporate material abundance, eco-efficient synthetic processes and life-cycle analysis into the design of new electrochemical storage systems. At present, a few existing technologies address these issues, but in each case, fundamental and technological hurdles remain to be overcome. Here we provide an overview of the current state of energy storage from a sustainability perspective. We introduce the notion of sustainability through discussion of the energy and environmental costs of state-of-the-art lithium-ion batteries, considering elemental abundance, toxicity, synthetic methods and scalability. With the same themes in mind, we also highlight current and future electrochemical storage systems beyond lithium-ion batteries. The complexity and importance of recycling battery materials is also discussed. PMID:25515886

  19. Alternative Energy Saving Technology Analysis Report for Richland High School Renovation Project

    SciTech Connect

    Liu, Bing

    2004-08-09

    On July 8, 2004, L&S Engineering, Inc. submitted a technical assistance request to Pacific Northwest National Laboratory (PNNL) to help estimate the potential energy savings and cost effectiveness of the solar energy and daylighting design alternatives for Richland High School Renovation Project in Richland, WA. L&S Engineering expected PNNL to evaluate the potential energy savings and energy cost savings, the probable installation costs, incentives or grants to reduce the installed costs and simple payback for the following alternative measures: (1) Daylighting in New Gym; (2) Solar Photovoltaics; (3) Solar Domestic Hot Water Pre-Heat; and (4) Solar Outside Air Pre-Heat Following are the findings of the energy savings and cost-effectiveness analysis of above alternative energy saving technologies.

  20. Ultra-fast and energy-efficient sintering of ceramics by electric current concentration

    NASA Astrophysics Data System (ADS)

    Zapata-Solvas, E.; Gómez-García, D.; Domínguez-Rodríguez, A.; Todd, R. I.

    2015-02-01

    Electric current activated/assisted sintering (ECAS) techniques, such as electrical discharge sintering (EDS) or resistive sintering (RS), have been intensively investigated for longer than 50 years. In this work, a novel system including an electrically insulated graphite die for Spark Plasma Sintering (SPS) is described, which allows the sintering of any refractory ceramic material in less than 1 minute starting from room temperature with heating rates higher than 2000°C/min and an energy consumption up to 100 times lower than with SPS. The system alternates or combines direct resistive sintering (DRS) and indirect resistive sintering (IRS). Electrical insulation of the die has been achieved through the insertion of a film made of alumina fibers between the graphite die and the graphite punches, which are protected from the alumina fiber film by a graphite foil. This system localized the electric current directly through the sample (conductive materials) as in DRS and EDS, or through the thin graphite foil (non-conductive materials) as in IRS, and is the first system capable of being used under EDS or RS conditions independently combining current concentration/localization phenomena.

  1. Ultra-fast and energy-efficient sintering of ceramics by electric current concentration

    PubMed Central

    Zapata-Solvas, E.; Gómez-García, D.; Domínguez-Rodríguez, A.; Todd, R. I.

    2015-01-01

    Electric current activated/assisted sintering (ECAS) techniques, such as electrical discharge sintering (EDS) or resistive sintering (RS), have been intensively investigated for longer than 50 years. In this work, a novel system including an electrically insulated graphite die for Spark Plasma Sintering (SPS) is described, which allows the sintering of any refractory ceramic material in less than 1 minute starting from room temperature with heating rates higher than 2000°C/min and an energy consumption up to 100 times lower than with SPS. The system alternates or combines direct resistive sintering (DRS) and indirect resistive sintering (IRS). Electrical insulation of the die has been achieved through the insertion of a film made of alumina fibers between the graphite die and the graphite punches, which are protected from the alumina fiber film by a graphite foil. This system localized the electric current directly through the sample (conductive materials) as in DRS and EDS, or through the thin graphite foil (non-conductive materials) as in IRS, and is the first system capable of being used under EDS or RS conditions independently combining current concentration/localization phenomena. PMID:25686537

  2. Modified gravity theories: Alternatives to the missing mass and missing energy problems

    NASA Astrophysics Data System (ADS)

    Soussa, Marc Edward

    Modified theories of gravity are examined and shown to be alternative possibilities to the standard paradigms of dark matter and dark energy in explaining the currently observed cosmological phenomenology. Special consideration is given to the relativistic extension of Modified Newtonian Dynamics (MOND) in supplanting the need for dark matter. A specific modification of the Einstein-Hilbert action (whereby an inverse power of the Ricci scalar is added) is shown to serve as an alternative to dark energy.

  3. Alternative Sources of Energy - An Introduction to Fuel Cells

    USGS Publications Warehouse

    Merewether, E.A.

    2003-01-01

    Fuel cells are important future sources of electrical power and could contribute to a reduction in the amount of petroleum imported by the United States. They are electrochemical devices similar to a battery and consist of a container, an anode, a cathode, catalysts, an intervening electrolyte, and an attached electrical circuit. In most fuel cell systems, hydrogen is supplied to the anode and oxygen to the cathode which results in the production of electricity, water, and heat. Fuel cells are comparatively efficient and reliable, have no moving parts, operate without combustion, and are modular and scale-able. Their size and shape are flexible and adaptable. In operation, they are nearly silent, are relatively safe, and generally do not pollute the environment. During recent years, scientists and engineers have developed and refined technologies relevant to a variety of fuel cells. Types of fuel cells are commonly identified by the composition of their electrolyte, which could be either phosphoric acid, an alkaline solution, a molten carbonate, a solid metal oxide, or a solid polymer membrane. The electrolyte in stationary power plants could be phosphoric acid, molten carbonates, or solid metal oxides. For vehicles and smaller devices, the electrolyte could be an alkaline solution or a solid polymer membrane. For most fuel cell systems, the fuel is hydrogen, which can be extracted by several procedures from many hydrogen-bearing substances, including alcohols, natural gas (mainly methane), gasoline, and water. There are important and perhaps unresolved technical problems associated with using fuel cells to power vehicles. The catalysts required in several systems are expensive metals of the platinum group. Moreover, fuel cells can freeze and not work in cold weather and can be damaged by impacts. Storage tanks for the fuels, particularly hydrogen, must be safe, inexpensive, of a reasonable size, and contain a supply sufficient for a trip of several hundred miles

  4. Optimizing the Electrical Power in an Energy Harvesting System

    NASA Astrophysics Data System (ADS)

    Coccolo, Mattia; Litak, Grzegorz; Seoane, Jesús M.; Sanjuán, Miguel A. F.

    In this paper, we study the vibrational resonance (VR) phenomenon as a useful mechanism for energy harvesting purposes. A system, driven by a low frequency and a high frequency forcing, can give birth to the vibrational resonance phenomenon, when the two forcing amplitudes resonate and a maximum in amplitude is reached. We apply this idea to a bistable oscillator that can convert environmental kinetic energy into electrical energy, that is, an energy harvester. Normally, the VR phenomenon is studied in terms of the forcing amplitudes or of the frequencies, that are not always easy to adjust and change. Here, we study the VR generated by tuning another parameter that is possible to manipulate when the forcing values depend on the environmental conditions. We have investigated the dependence of the maximum response due to the VR for small and large variations in the forcing amplitudes and frequencies. Besides, we have plotted color coded figures in the space of the two forcing amplitudes, in which it is possible to appreciate different patterns in the electrical power generated by the system. These patterns provide useful information on the forcing amplitudes in order to produce the optimal electrical power.

  5. Colleges Offer New Alternative-Energy Degrees, Fueled by Student Demand

    ERIC Educational Resources Information Center

    Basken, Paul

    2009-01-01

    More U.S. college students are enrolling in power- and energy-engineering courses, but the increase is not enough to meet the need, says a new report by the IEEE, the professional association of electrical engineers. About 45% of engineers at electric utilities are expected to retire or leave their jobs within five years, creating as many as…

  6. 10 CFR 431.446 - Small electric motors energy conservation standards and their effective dates.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 3 2011-01-01 2011-01-01 false Small electric motors energy conservation standards and... EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL AND INDUSTRIAL EQUIPMENT Small Electric Motors Energy Conservation Standards § 431.446 Small electric motors energy conservation standards and their effective dates. (a)...

  7. 10 CFR 431.446 - Small electric motors energy conservation standards and their effective dates. [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Small electric motors energy conservation standards and... EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL AND INDUSTRIAL EQUIPMENT Small Electric Motors Energy Conservation Standards § 431.446 Small electric motors energy conservation standards and their effective dates....

  8. 10 CFR 431.446 - Small electric motors energy conservation standards and their effective dates.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Small electric motors energy conservation standards and... EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL AND INDUSTRIAL EQUIPMENT Small Electric Motors Energy Conservation Standards § 431.446 Small electric motors energy conservation standards and their effective dates. (a)...

  9. 10 CFR 431.446 - Small electric motors energy conservation standards and their effective dates.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Small electric motors energy conservation standards and... EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL AND INDUSTRIAL EQUIPMENT Small Electric Motors Energy Conservation Standards § 431.446 Small electric motors energy conservation standards and their effective dates. (a)...

  10. 10 CFR 431.446 - Small electric motors energy conservation standards and their effective dates.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Small electric motors energy conservation standards and... EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL AND INDUSTRIAL EQUIPMENT Small Electric Motors Energy Conservation Standards § 431.446 Small electric motors energy conservation standards and their effective dates. (a)...

  11. An alternative method for the analysis of neuron passive electrical data which uses integrals of voltage transients.

    PubMed

    Engelhardt, J K; Morales, F R; Chase, M H

    1998-06-01

    The traditional method for analyzing passive electrical data from neurons when specific morphological data are unavailable consists of decomposing the voltage response of the cell into a series of exponential functions (the peeling method) and substituting the time constants of these exponential functions into equations derived from cable theory (Rall W, Core conductor theory and cable properties of neurons. In: Handbook of Physiology. The Nervous System. Cellular Biology of Neurons. Bethesda, MD. Am Physiol Soc. Section 1, Part 1, 1977;1(3):39-97). In the present report, an alternative method is examined for analyzing these kinds of data, the integrals of transients method (Eisenberg RS, Mathias RT. Structural analysis of electrical properties of cells and tissues. CRC Critical Reviews in Bioengineering 1980;4:203-232). The integrals required are easily obtained from input resistance data and any theoretical model that is appropriate for the neurons under study can be used, provided that the impedance function can be determined. In order to demonstrate this alternative method, a simple 3-compartment model with both dendritic taper and somatic shunt is used to model data obtained from fast-type alpha-motoneurons in the spinal cord of the cat. These results are compared with results obtained using the traditional peeling method. This comparison indicates that passive electrical data from fast-type motoneurons are best analyzed using a theoretical model that includes both dendritic taper and somatic shunt. Furthermore, our results show that the integrals of transients method can facilitate this analysis. PMID:9696318

  12. Implications of solar energy alternatives for community design

    SciTech Connect

    Santos, A.; Steinitz, C.

    1980-06-01

    A graduate-level studio at the Harvard School of Design explored how a policy of solar-based energy independence will influence the design of a new community of approximately 4500 housing units and other uses. Three large sites outside Tucson (a cooling problem), Atlanta (a humidity problem), and Boston (a heating problem) were selected. Each is typical of its region. A single program was assumed and designed for. Each site had two teams, one following a compact approach and one following a more dispersed approach. Each was free to choose the most appropriate mix of (solar) technology and scale, and was free to integrate energy and community in the design as it saw fit. These choice and integration issues are key areas where our experience may be of interest to those involved in community design and solar energy.

  13. Electrical signature analysis applications for non-intrusive automotive alternator diagnostics

    SciTech Connect

    Ayers, C.W.

    1996-03-01

    Automotive alternators are designed to supply power for automobile engine ignition systems as well as charge the storage battery. This product is used in a large market where consumers are concerned with acoustic noise and vibration that comes from the unit. as well as overall quality and dependability. Alternators and generators in general are used in industries other than automotive, such as transportation and airline industries and in military applications. Their manufacturers are interested in pursuing state-of-the-art methods to achieve higher quality and reduced costs. Preliminary investigations of non-intrusive diagnostic techniques utilizing the inherent voltage signals of alternators have been performed with promising results. These techniques are based on time and frequency domain analyses of specially conditioned signals taken from several alternators under various test conditions. This paper discusses investigations that show correlations of the alternator output voltage to airborne noise production. In addition these signals provide insight into internal magnetic characteristics that relate to design and/or assembly problems.

  14. Possibilities of utilizing alternative energy sources for combined heat supply systems in the Baltic

    SciTech Connect

    Shipkovs, P.; Grislis, V.; Zebergs, V. )

    1991-01-01

    The problem of alternative energy sources is an issue of major importance for the Baltic republics because of the limited supply of conventional energy resources. One of the ways to solve this problem could be the introduction of combined heat supply systems (CHSS). The combined heat supply systems are such systems where various energy sources in different regimes are made use of to ensure the optimum temperature on residential and industrial premises. The influence of climatic conditions on the selection of heat supply systems has been studied at large. In the present paper the use of alternative energy sources (AES) in combined heat supply systems (CHSS) is described.

  15. 75 FR 1634 - MMS Information Collection Activity: 1010-0176, Renewable Energy and Alternate Uses of Existing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-12

    ... governments that submit information or comments relative to alternative energy-related uses of the OCS... information to administer and carry out the offshore alternative energy program via Federal Register Notices... $2,866,000 non-hour costs Subpart B--Issuance of OCS Alternative Energy Leases 200; 224; 231;...

  16. The value of electricity storage in energy-only electricity markets

    NASA Astrophysics Data System (ADS)

    McConnell, D.; Forcey, T.; Sandiford, M.

    2015-12-01

    Price volatility and the prospect of increasing renewable energy generation have raised interest in the potential opportunities for storage technologies in energy-only electricity markets. In this paper we explore the value of a price-taking storage device in such a market, the National Electricity Market (NEM) in Australia. Our analysis suggests that under optimal operation, there is little value in having more than six hours of storage in this market. However, the inability to perfectly forecast wholesale prices, particularly extreme price spikes, may warrant some additional storage. We found that storage devices effectively provide a similar service as peak generators (such as Open Cycle Gas Turbines) and are similarly dependent on and exposed to extreme price events, with revenue for a merchant generator highly skewed to a few days of the year. In contrast to previous studies, this results in the round trip efficiency of the storage being relatively insignificant. Financing using hedging strategies similar to a peak generator effectively reduces the variability of revenue and exposure of storage to extreme prices. Our case study demonstrates that storage may have a competitive advantage over other peaking generators on the NEM, due to its ability to earn revenue outside of extreme peak events. As a consequence the outlook for storage options on the NEM is dependent on volatility, in turn dependent on capacity requirements. Further to this, increased integration of renewable energy may both depend on storage and improve the outlook for storage in technologies in electricity markets.

  17. Experiments in Alternative Energy Program Design: Final Report, Volume One

    SciTech Connect

    Farhar, B. C.

    1989-04-01

    The Solar Energy Research Institute issued a Notice of Program Interest (NOPI) which resulted in the selection of six projects. The balance of this report briefly describes each of the six projects in turn, and then evaluates the NOPI process, which was in itself an experiment.

  18. Alternative Fueled Vehicles Competitiveness and Energy Security Act of 2013

    THOMAS, 113th Congress

    Sen. Wyden, Ron [D-OR

    2013-06-26

    06/26/2013 Read twice and referred to the Committee on Energy and Natural Resources. (text of measure as introduced: CR S5270-5272) (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  19. The Most Economic, Socially Viable, and Environmentally Sustainable Alternative Energy

    ERIC Educational Resources Information Center

    Vanderburg, Willem H.

    2008-01-01

    The strengths and weaknesses of current energy planning can be attributed to the limited economic, social, and environmental contexts taken into account as a result of the current intellectual and professional division of labor. A preventive approach is developed by which the ratio of desired to undesired effects can be substantially improved. It…

  20. Deaging and Asymmetric Energy Landscapes in Electrically Biased Ferroelectrics

    SciTech Connect

    Tutuncu, Goknur; Damjanovic, Dragan; Chen, Jun; Jones, Jacob L.

    2015-09-01

    In ferroic materials, the dielectric, piezoelectric, magnetic, and elastic coefficients are significantly affected by the motion of domain walls. This motion can be described as the propagation of a wall across various types and strengths of pinning centers that collectively constitute a force profile or energetic landscape. Biased domain structures and asymmetric energy landscapes can be created through application of high fields (such as during electrical poling), and the material behavior in such states is often highly asymmetric. In some cases, this behavior can be considered as the electric analogue to the Bauschinger effect. The present Letter uses time-resolved, high-energy x-ray Bragg scattering to probe this asymmetry and the associated deaging effect in the ferroelectric morphotropic phase boundary composition 0.36BiScO{sub 3}-0.64PbTiO{sub 3}.

  1. Deaging and Asymmetric Energy Landscapes in Electrically Biased Ferroelectrics

    NASA Astrophysics Data System (ADS)

    Tutuncu, Goknur; Damjanovic, Dragan; Chen, Jun; Jones, Jacob L.

    2012-04-01

    In ferroic materials, the dielectric, piezoelectric, magnetic, and elastic coefficients are significantly affected by the motion of domain walls. This motion can be described as the propagation of a wall across various types and strengths of pinning centers that collectively constitute a force profile or energetic landscape. Biased domain structures and asymmetric energy landscapes can be created through application of high fields (such as during electrical poling), and the material behavior in such states is often highly asymmetric. In some cases, this behavior can be considered as the electric analogue to the Bauschinger effect. The present Letter uses time-resolved, high-energy x-ray Bragg scattering to probe this asymmetry and the associated deaging effect in the ferroelectric morphotropic phase boundary composition 0.36BiScO3-0.64PbTiO3.

  2. Deaging and asymmetric energy landscapes in electrically biased ferroelectrics.

    PubMed

    Tutuncu, Goknur; Damjanovic, Dragan; Chen, Jun; Jones, Jacob L

    2012-04-27

    In ferroic materials, the dielectric, piezoelectric, magnetic, and elastic coefficients are significantly affected by the motion of domain walls. This motion can be described as the propagation of a wall across various types and strengths of pinning centers that collectively constitute a force profile or energetic landscape. Biased domain structures and asymmetric energy landscapes can be created through application of high fields (such as during electrical poling), and the material behavior in such states is often highly asymmetric. In some cases, this behavior can be considered as the electric analogue to the Bauschinger effect. The present Letter uses time-resolved, high-energy x-ray Bragg scattering to probe this asymmetry and the associated deaging effect in the ferroelectric morphotropic phase boundary composition 0.36BiScO3 - 0.64PbTiO3. PMID:22680904

  3. Battery model for electrical power system energy balance

    NASA Technical Reports Server (NTRS)

    Hafen, D. P.

    1983-01-01

    A model to simulate nickel-cadmium battery performance and response in a spacecraft electrical power system energy balance calculation was developed. The voltage of the battery is given as a function of temperature, operating depth-of-charge (DOD), and battery state-of-charge. Also accounted for is charge inefficiency. A battery is modeled by analysis of the results of a multiparameter battery cycling test at various temperatures and DOD's.

  4. High energy XeBr electric discharge laser

    DOEpatents

    Sze, R.C.; Scott, P.B.

    A high energy XeBr laser for producing coherent radiation at 282 nm is disclosed. The XeBr laser utilizes an electric discharge as the excitation source to minimize formation of molecular ions thereby minimizing absorption of laser radiation by the active medium. Additionally, HBr, is used as the halogen donor which undergoes harpooning reactions with Xe/sub M/ to form XeBr.

  5. High energy XeBr electric discharge laser

    DOEpatents

    Sze, Robert C.; Scott, Peter B.

    1981-01-01

    A high energy XeBr laser for producing coherent radiation at 282 nm. The XeBr laser utilizes an electric discharge as the excitation source to minimize formation of molecular ions thereby minimizing absorption of laser radiation by the active medium. Additionally, HBr is used as the halogen donor which undergoes harpooning reactions with Xe.sub.M * to form XeBr*.

  6. EMR modelling of a hydrogen-based electrical energy storage

    NASA Astrophysics Data System (ADS)

    Agbli, K. S.; Hissel, D.; Péra, M.-C.; Doumbia, I.

    2011-05-01

    This paper deals with multi-physics modelling of the stationary system. This modelling is the first step to reach the fuel cell system dimensioning aim pursued. Besides this modelling approach based on the stationary energetic system, the novelty in this paper is both the new approach of the photovoltaic EMR modelling and the EMR of the hydrogen storage process. The granular modelling approach is used to model each component of the system. Considering a stand alone PEM fuel cell system, hydrogen is expected to be produced and stored on the spot from renewable energy (photovoltaic) in order to satisfy the fuel availability. In fact, to develop a generic and modular model, energetic macroscopic representation (EMR) is used as graphical modelling tool. Allowing to be easily grasped by the experts even not necessarily gotten used to the modelling formalism, EMR is helpful to model the multi-domains energetic chain. The solar energy through solar module is converted in electrical energy; part of this energy is transformed in chemical energy (hydrogen) thanks to an electrolyser. Then the hydrogen is compressed into a tank across a storage system. The latter part of the solar module energy is stored as electrical energy within supercapacitor or lead-acid battery. Using the modularity feature of the EMR, the whole system is modelled entity by entity; afterwards by putting them together the overall system has been reconstructed. According to the scale effect of the system entities, some simulation and/or experimental results are given. Given to the different aims which are pursued in the sustainable energy framework like prediction, control and optimisation, EMR modelling approach is a reliable option for the energy management in real time of energetic system in macroscopic point of view.

  7. Variety of alternative stable phase-locking in networks of electrically coupled relaxation oscillators.

    PubMed

    Meyrand, Pierre; Bem, Tiaza

    2014-01-01

    We studied the dynamics of a large-scale model network comprised of oscillating electrically coupled neurons. Cells are modeled as relaxation oscillators with short duty cycle, so they can be considered either as models of pacemaker cells, spiking cells with fast regenerative and slow recovery variables or firing rate models of excitatory cells with synaptic depression or cellular adaptation. It was already shown that electrically coupled relaxation oscillators exhibit not only synchrony but also anti-phase behavior if electrical coupling is weak. We show that a much wider spectrum of spatiotemporal patterns of activity can emerge in a network of electrically coupled cells as a result of switching from synchrony, produced by short external signals of different spatial profiles. The variety of patterns increases with decreasing rate of neuronal firing (or duty cycle) and with decreasing strength of electrical coupling. We study also the effect of network topology--from all-to-all--to pure ring connectivity, where only the closest neighbors are coupled. We show that the ring topology promotes anti-phase behavior as compared to all-to-all coupling. It also gives rise to a hierarchical organization of activity: during each of the main phases of a given pattern cells fire in a particular sequence determined by the local connectivity. We have analyzed the behavior of the network using geometric phase plane methods and we give heuristic explanations of our findings. Our results show that complex spatiotemporal activity patterns can emerge due to the action of stochastic or sensory stimuli in neural networks without chemical synapses, where each cell is equally coupled to others via gap junctions. This suggests that in developing nervous systems where only electrical coupling is present such a mechanism can lead to the establishment of proto-networks generating premature multiphase oscillations whereas the subsequent emergence of chemical synapses would later stabilize

  8. A survey of the electrical energy requirement of hotels in Hong Kong

    SciTech Connect

    Chow, W.K.; Chan, K.T. . Dept. of Building Services Engineering)

    1993-01-01

    Electrical energy consumption in commercial buildings accounts for about 50 percent of the total electricity produced in Hong Kong. Investigation of the electrical energy requirement in these buildings is essential to energy conservation. With it, norms of energy use for the buildings in use can be deduced and can be used to establish energy management programs. This article reports on a pioneer investigation on the electrical energy use of hotels in Hong Kong. A survey on the actual consumption in 20 hotels has been conducted, and results are presented. Significance of the norms and the various end-use components of the total electrical energy requirement are discussed.

  9. Alternative Approaches to Calculate Benefits of an Energy Imbalance Market With Wind and Solar Energy: Preprint

    SciTech Connect

    Kirby, B.; King, J.; Milligan, M.

    2012-06-01

    The anticipated increase in variable generation in the Western Interconnection over the next several years has raised concerns about how to maintain system balance, especially in smaller Balancing Authority Areas (BAAs). Given renewable portfolio standards in the West, it is possible that more than 50 gigawatts of wind capacity will be installed by 2020. Significant quantities of solar generation are likely to be added as well. The consequent increase in variability and uncertainty that must be managed by the conventional generation fleet and responsive loads has resulted in a proposal for an Energy Imbalance Market (EIM). This paper extends prior work to estimate the reserve requirements for regulation, spinning, and non-spinning reserves with and without the EIM. We also discuss alternative approaches to allocating reserve requirements and show that some apparently attractive allocation methods have undesired consequences.

  10. Diagnosing alternative conceptions of Fermi energy among undergraduate students

    NASA Astrophysics Data System (ADS)

    Sharma, Sapna; Ahluwalia, Pardeep Kumar

    2012-07-01

    Physics education researchers have scientifically established the fact that the understanding of new concepts and interpretation of incoming information are strongly influenced by the preexisting knowledge and beliefs of students, called epistemological beliefs. This can lead to a gap between what students actually learn and what the teacher expects them to learn. In a classroom, as a teacher, it is desirable that one tries to bridge this gap at least on the key concepts of a particular field which is being taught. One such key concept which crops up in statistical physics/solid-state physics courses, and around which the behaviour of materials is described, is Fermi energy (εF). In this paper, we present the results which emerged about misconceptions on Fermi energy in the process of administering a diagnostic tool called the Statistical Physics Concept Survey developed by the authors. It deals with eight themes of basic importance in learning undergraduate solid-state physics and statistical physics. The question items of the tool were put through well-established sequential processes: definition of themes, Delphi study, interview with students, drafting questions, administration, validity and reliability of the tool. The tool was administered to a group of undergraduate students and postgraduate students, in a pre-test and post-test design. In this paper, we have taken one of the themes i.e. Fermi energy of the diagnostic tool for our analysis and discussion. Students’ responses and reasoning comments given during interview were analysed. This analysis helped us to identify prevailing misconceptions/learning gaps among students on this topic. How spreadsheets can be effectively used to remove the identified misconceptions and help appreciate the finer nuances while visualizing the behaviour of the system around Fermi energy, normally sidestepped both by the teachers and learners, is also presented in this paper.

  11. 75 FR 41166 - Office of Electricity Delivery and Energy Reliability; Notice of Reestablishment of the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-15

    ... of Electricity Delivery and Energy Reliability; Notice of Reestablishment of the Electricity Advisory... the Electricity Advisory Committee has been reestablished for a two-year period. The Committee will provide advice to the Office of Electricity Delivery and Energy Reliability (DOE), on its programs...

  12. Hot dry rock: A versatile alternative energy technology

    SciTech Connect

    Duchane, D.V.

    1995-01-01

    Hot dry rock (HDR) is the most abundant geothermal resource, and is found almost everywhere at depth. The technology to extract energy from HDR for practical use has been under development at the Los Alamos National Laboratory for more than twenty years. During the 1970`s, the possibility of mining the heat from HDR by circulating water through an engineered geothermal reservoir was first demonstrated on a small scale. Between 1980 and 1986 a larger, deeper, and hotter HDR reservoir was constructed. This large reservoir was subsequently mated to a permanent surface plant. A number of flow tests of this large HDR reservoir were conducted between 1991 and 1995. The results of these tests have indicated that it should be practical to operate an HDR heat mining facility to produce power on a sustained basis. An industry-led, government cost-shared project to produce and market energy generated from HDR is currently being put in place. That project should help demonstrate that HDR reservoirs can be operated to provide energy for long periods of time at rates sufficient to be commercially viable. In the longer run, additional applications of HDR technology such as water and waste treatment, and steam generation for oil field flooding may come into widespread use.

  13. Characterization of alternative electric generation technologies for the SPS comparative assessment: volume 2, central-station technologies

    SciTech Connect

    Not Available

    1980-08-01

    The SPS Concept Development and Evaluation Program includes a comparative assessment. An early first step in the assessment process is the selection and characterization of alternative technologies. This document describes the cost and performance (i.e., technical and environmental) characteristics of six central station energy alternatives: (1) conventional coal-fired powerplant; (2) conventional light water reactor (LWR); (3) combined cycle powerplant with low-Btu gasifiers; (4) liquid metal fast breeder reactor (LMFBR); (5) photovoltaic system without storage; and (6) fusion reactor.

  14. Energy planning, electric utility regulation, and social research

    SciTech Connect

    Stokes, E.D.

    1983-01-01

    Energy planning in the US is analyzed with the use of a general model of planning which delineates several social issues central to the effort. These issues are concerned with centralization and decentralization of control, process and deterministic planning approaches, and the welfare of society and individuals. The area of electric-utility regulation is used to focus the analysis on administrative policy-making, the ecology of organizations, and the use of information in bureaucratic decision-making. The implications of these activities for social research in the energy field are explored as they relate to the issues embodied in the general planning model.

  15. Solar-hydrogen energy as an alternative energy source for mobile robots and the new-age car

    NASA Astrophysics Data System (ADS)

    Sulaiman, A.; Inambao, F.; Bright, G.

    2014-07-01

    The disastrous effects of climate change as witnessed in recent violent storms, and the stark reality that fossil fuels are not going to last forever, is certain to create renewed demands for alternative energy sources. One such alternative source, namely solar energy, although unreliable because of its dependence on available sunlight, can nevertheless be utilised to generate a secondary source of energy, namely hydrogen, which can be stored and thereby provide a constant and reliable source of energy. The only draw-back with hydrogen, though, is finding efficient means for its storage. This study demonstrates how this problem can be overcome by the use of metal hydrides which offers a very compact and safe way of storing hydrogen. It also provides a case study of how solar and hydrogen energy can be combined in an energy system to provide an efficient source of energy that can be applied for modern technologies such as a mobile robot. Hydrogen energy holds out the most promise amongst the various alternative energy sources, so much so that it is proving to be the energy source of choice for automobile manufacturers in their quest for alternative fuels to power their cars of the future.

  16. USD Catalysis Group for Alternative Energy - Final report

    SciTech Connect

    Hoefelmeyer, James

    2014-10-03

    I. Project Summary Catalytic processes are a major technological underpinning of modern society, and are essential to the energy sector in the processing of chemical fuels from natural resources, fine chemicals synthesis, and energy conversion. Advances in catalyst technology are enormously valuable since these lead to reduced chemical waste, reduced energy loss, and reduced costs. New energy technologies, which are critical to future economic growth, are also heavily reliant on catalysts, including fuel cells and photo-electrochemical cells. Currently, the state of South Dakota is underdeveloped in terms of research infrastructure related to catalysis. If South Dakota intends to participate in significant economic growth opportunities that result from advances in catalyst technology, then this area of research needs to be made a high priority for investment. To this end, a focused research effort is proposed in which investigators from The University of South Dakota (USD) and The South Dakota School of Mines and Technology (SDSMT) will contribute to form the South Dakota Catalysis Group (SDCG). The multidisciplinary team of the (SDCG) include: (USD) Dan Engebretson, James Hoefelmeyer, Ranjit Koodali, and Grigoriy Sereda; (SDSMT) Phil Scott Ahrenkiel, Hao Fong, Jan Puszynski, Rajesh Shende, and Jacek Swiatkiewicz. The group is well suited to engage in a collaborative project due to the resources available within the existing programs. Activities within the SDCG will be monitored through an external committee consisting of three distinguished professors in chemistry. The committee will provide expert advice and recommendations to the SDCG. Advisory meetings in which committee members interact with South Dakota investigators will be accompanied by individual oral and poster presentations in a materials and catalysis symposium. The symposium will attract prominent scientists, and will enhance the visibility of research in the state of South Dakota. The SDCG requests

  17. A novel, high energy-density electrical storage device for electric weapons

    NASA Astrophysics Data System (ADS)

    Schroeder, Jon M.

    1992-08-01

    Three different energy storage variants were developed and tested during Phase 1. Each was based on the close-coupled, thermopile storage principle. First, direct current was stored in a thermopile ring, which was open-switched into a dummy load to measure the energy release. In the second variant, alternating magnetic energy was stored in a split ring. Energy storage was caused by pumping alternating current in the thermopile circuit, connected as an LC oscillator. Both methods were found to store energy and each delivered pulse power, resulting in a twenty-to-one pulse-power advantage between energy released from the store and energy available from the power supply at the input. Power was drawn from these systems in a millisecond, making use of a specially developed, sequentially opening switch that takes full advantage of the MOSFET's nanosecond hyper-operating speed, the intermediate switching speed of a silicon controlled rectifier (SCR), and a slower speed electro-mechanical switch. Further work with modifications of these two storage methods led then to the development of an inductor-to-inductor (L(sup 2)) electromagnetic storage system. This new type storage device seems to out perform the first two methods by roughly two orders of magnitude in storage capacity. During flux pump experiments, we also found that the L(sup 2) prototype system could be tuned to operate efficiently at certain particular frequencies depending on the value of capacitor chosen, placed across the two conductors, to tune in steps between 50 Hz and 50 MHz, possibly operating efficiently in the GHz range.

  18. Tuning a resonant energy harvester using a generalized electrical load

    NASA Astrophysics Data System (ADS)

    Cammarano, A.; Burrow, S. G.; Barton, D. A. W.; Carrella, A.; Clare, L. R.

    2010-05-01

    A fundamental drawback of vibration-based energy harvesters is that they typically feature a resonant mass/spring mechanical system to amplify the small source vibrations; the limited bandwidth of the mechanical amplifier restricts the effectiveness of the energy harvester considerably. By extending the range of input frequencies over which a vibration energy harvester can generate useful power, e.g. through adaptive tuning, it is not only possible to open up a wider range of applications, such as those where the source frequency changes over time, but also possible to relax the requirements for precision manufacture or the need for mechanical adjustment in situ. In this paper, a vibration-based energy harvester connected to a generalized electrical load (containing both real and reactive impedance) is presented. It is demonstrated that the reactive component of the electrical load can be used to tune the harvester system to significantly increase the output power away from the resonant peak of the device. An analytical model of the system is developed, which includes non-ideal components arising from the physical implementation, and the results are confirmed by experiment. The - 3 dB (half-power) bandwidth of the prototype energy harvester is shown to be over three times greater when presented with an optimized load impedance compared to that for the same harvester presented with an optimized resistive only load.

  19. Variable Uses of Alternative Conceptions: A Case Study in Current Electricity.

    ERIC Educational Resources Information Center

    Heller, Patricia M.; Finley, Fred N.

    1992-01-01

    Fourteen elementary and middle school teachers from an inservice physics course were found to share a common core of strongly held propositions that formed a coherent, but incorrect and contradictory, model of the sequential flow of electrical current. Theoretical and practical implications of these teachers' beliefs with respect to both…

  20. Variable Uses of Alternative Conceptions: A Case Study in Current Electricity.

    ERIC Educational Resources Information Center

    Heller, Patricia; Finley, Fred

    In order to investigate the nature of students' prior knowledge of current electricity and how they applied their knowledge to different problems, 5 middle school science teachers and 11 elementary school teachers were given a written test that required them to: (1) predict what happens to the brightness of a bulb if a change is made to the…

  1. Dual system (energy management/electrical submetering) retrofit

    SciTech Connect

    Hirschfeld, H.E.; Lopes, J.S.

    1998-07-01

    This paper discussed implementation of an innovative and state-of-the-art Dual System, capable of both energy management and electrical submetering, that was installed in a large New York City multi-family residential master-metered housing complex during 1997. Both technical and non-technical issues affected the decision-making process. The selection of the Dual System represented a compromise necessary for the project to overcome barriers and obtain utility rebates. The Dual System enables the sharing of control (EMS) and metering (Submetering) signals through the use of powerline carrier (PLC) communications, minimizing installation costs and resident intrusion. The EMS controls individual apartment electrical heating and cooling equipment by activating remote switching equipment installed on the unit circuits in order to reduce electric consumption, primarily when tenants are not at home. When tenants are at home, they can manually override the system. The submetering application (when implemented) will involve the measurement and billing of electric use in individual apartment units. Without submetering, individual apartment electric costs are allocated based on methods other than actual usage (e.g., number of rooms). With submetering, individual apartments are metered by management, which then allocates and bills utility costs fairly to residents in proportion to actual consumption. Residents would thus pay for what they use and have the incentive to conserve. The project has shown that both EMS and Submetering can be installed in a rental property in a rent-regulated environment and overcome the many barriers encountered. It provides strong and compelling evidence supporting policy favoring submetering as both an energy conservation measure and as an equitable means of allocating building operating costs. Both prior studies and preliminary data from the Project confirm the potential for savings for submetering and EMS (so far, only 5.8% for EMS vs 20% in

  2. Osteoblastic differentiation and stress response of human mesenchymal stem cells exposed to alternating current electric fields

    PubMed Central

    2011-01-01

    Background Electric fields are integral to many biological events, from maintaining cellular homeostasis to embryonic development to healing. The application of electric fields offers substantial therapeutic potential, while optimal dosing regimens and the underlying mechanisms responsible for the positive clinical impact are poorly understood. Methods The purpose of this study was to track the differentiation profile and stress response of human bone marrow derived mesenchymal stem cells (hMSCs) undergoing osteogenic differentiation during exposure to a 20 mV/cm, 60 kHz electric field. Morphological and biochemical changes were imaged using endogenous two-photon excited fluorescence (TPEF) and quantitatively assessed through eccentricity calculations and extraction of the redox ratio from NADH, FAD and lipofuscin contributions. Real time reverse transcriptase-polymerase chain reactions (RT-PCR) were used to track osteogenic differentiation markers, namely alkaline phosphatase (ALP) and collagen type 1 (col1), and stress response markers, such as heat shock protein 27 (hsp27) and heat shock protein 70 (hsp70). Comparisons of collagen deposition between the stimulated hMSCs and controls were examined through second harmonic generation (SHG) imaging. Results Quantitative differences in cell morphology, as described through an eccentricity ratio, were found on days 2 and days 5 (p < 0.05) in samples exposed to the electric field. A delayed but two fold increase in ALP and col1 transcript was detected by week 2 (p < 0.05) in differentiating hMSCs exposed to an electric field in comparison to the nonstimulated controls. Upregulation in stress marker, hsp27, and type 1 collagen deposition were correlated with this response. Increases in NADH, FAD, and lipofuscin were traced in the stimulation group during the first week of field exposure with differences statistically significant on day 10 (p < 0.05). Changes in hsp27 expression correlate well with changes in lipofuscin

  3. What Do You Know about Alternative Energy? Development and Use of a Diagnostic Instrument for Upper Secondary School Science

    NASA Astrophysics Data System (ADS)

    Poh-Ai Cheong, Irene; Johari, Marliza; Said, Hardimah; Treagust, David F.

    2015-01-01

    The need for renewable and non-fossil fuels is now recognised by nations throughout the world. Consequently, an understanding of alternative energy is needed both in schools and in everyday life-long learning situations. This study developed a two-tier instrument to diagnose students' understanding and alternative conceptions about alternative energy in terms of: sources of alternative energy, greenhouse gas emission, as well as advantages, and disadvantages. Results obtained with Years 10 and 11 students (n = 491) using the 12-item two-tier instrument (α = 0.61) showed that students' understanding of alternative energy was low (M = 7.03; SD = 3.90). The 23 alternative conceptions about alternative energy sources that could be identified from the instrument are reported. The implications for teaching and learning about alternative energy and suggestions for further development and improvement of the instrument are presented.

  4. Review of material recovery from used electric and electronic equipment-alternative options for resource conservation.

    PubMed

    Friege, Henning

    2012-09-01

    For waste from electric and electronic equipment, the WEEE Directive stipulates the separate collection of electric and electronic waste. As to new electric and electronic devices, the Restriction of Hazardous Substances (RoHS) Directive bans the use of certain chemicals dangerous for man and environment. From the implementation of the WEEE directive, many unsolved problems have been documented: poor collection success, emission of dangerous substances during collection and recycling, irretrievable loss of valuable metals among others. As to RoHS, data from the literature show a satisfying success. The problems identified in the process can be reduced to some basic dilemmas at the borders between waste management, product policy and chemical safety. The objectives of the WEEE Directive and the specific targets for use and recycling of appliances are not consistent. There is no focus on scarce resources. Extended producer responsibility is not sufficient to guarantee sustainable waste management. Waste management reaches its limits due to problems of implementation but also due to physical laws. A holistic approach is necessary looking at all branch points and sinks in the stream of used products and waste from electric and electronic equipment. This may be done with respect to the general rules for sustainable management of material streams covering the three dimensions of sustainable policy. The relationships between the players in the field of electric and electronic devices have to be taken into account. Most of the problems identified in the implementation process will not be solved by the current amendment of the WEEE Directive. PMID:22993131

  5. Energy potential and alternative usages of biogas and sludge from UASB reactors: case study of the Laboreaux wastewater treatment plant.

    PubMed

    Rosa, A P; Conesa, J A; Fullana, A; Melo, G C B; Borges, J M; Chernicharo, C A L

    2016-01-01

    This work assessed the energy potential and alternative usages of biogas and sludge generated in upflow anaerobic sludge blanket reactors at the Laboreaux sewage treatment plant (STP), Brazil. Two scenarios were considered: (i) priority use of biogas for the thermal drying of dehydrated sludge and the use of the excess biogas for electricity generation in an ICE (internal combustion engine); and (ii) priority use of biogas for electricity generation and the use of the heat of the engine exhaust gases for the thermal drying of the sludge. Scenario 1 showed that the electricity generated is able to supply 22.2% of the STP power demand, but the thermal drying process enables a greater reduction or even elimination of the final volume of sludge to be disposed. In Scenario 2, the electricity generated is able to supply 57.6% of the STP power demand; however, the heat in the exhaust gases is not enough to dry the total amount of dehydrated sludge. PMID:27054741

  6. 75 FR 33610 - Application To Export Electric Energy; H.Q. Energy Services (U.S.) Inc.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-14

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Application To Export Electric Energy; H.Q. Energy Services (U.S.) Inc. AGENCY: Office of Electricity Delivery and Energy Reliability, DOE. ACTION: Notice of application. SUMMARY: H.Q. Energy Services (U.S.)...

  7. Synthesis and processing of materials for direct thermal-to-electric energy conversion and storage

    NASA Astrophysics Data System (ADS)

    Thompson, Travis

    Currently, fossil fuels are the primary source of energy. Mechanical heat engines convert the chemical potential energy in fossil fuels to useful electrical energy through combustion; a relatively low efficiency process that generates carbon dioxide. This practice has led to a significant increase in carbon dioxide emissions and is contributing to climate change. However, not all heat engines are mechanical. Alternative energy generation technologies to mechanical heat engines are known, yet underutilized. Thermoelectric generators are solid-state devices originally developed by NASA to power deep space spacecraft, which can also convert heat into electricity but without any moving parts. Similar to their mechanical counterparts, any heat source, including the burning of fossil fuels, can be used. However, clean heat sources, such as concentrated solar, can alternatively be used. Since the energy sources for many of the alternative energy technologies is intermittent, including concentrated solar for thermoelectric devices, load matching is difficult or impossible and an energy storage technology is needed in addition to the energy conversion technology. This increases the overall cost and complexity of the systems since two devices are required and represents a significant barrier for mass adoption of an alternative energy technology. However, it is possible to convert heat energy to electrical energy and store excess charge for use at a later time when the demand increases, in a single device. One such of a device is a thermogalvanic generator and is the electrochemical analog of electronic thermoelectric devices. Essentially, a thermogalvanic device represents the combination of thermoelectric and galvanic systems. As such, the rich history of strategies developed by both the thermoelectric community to better the performance of thermoelectric devices and by the electrochemical community to better traditional galvanic devices (i.e. batteries) can be applied to

  8. Essays on alternative energy policies affecting the US transportation sector

    NASA Astrophysics Data System (ADS)

    O'Rear, Eric G.

    This dissertation encompasses three essays evaluating the impacts of different policies targeting the greenhouse gas (GHG) emissions, fuel demands, etc. of the transportation sector. Though there are some similarities across the three chapters, each essay stands alone as an independent work. The 2010 US EPA MARKAL model is used in each essay to evaluate policy effects. Essay 1 focuses on the recent increases in Corporate Average Fuel Economy (CAFE) standards, and the implications of a "rebound effect." These increases are compared to a carbon tax generating similar reductions in system-wide emissions. As anticipated, the largest reductions in fuel use by light-duty vehicles (LDV) and emissions are achieved under CAFE. Consideration of the rebound effect does little to distort CAFE benefits. Our work validates many economists' belief that a carbon tax is a more efficient approach. However, because the tax takes advantage of cheaper abatement opportunities in other sectors, reductions in transportation emissions will be much lower than what we observe with CAFE. Essay 2 compares CAFE increases with what some economists suggest would be a much more "efficient" alternative -- a system-wide oil tax internalizing some environmental externalities. Because oil taxes are likely to be implemented in addition to CAFE standards, we consider a combined policy case reflecting this. Our supplementary analysis approximates the appropriate tax rates to produce similar reductions in oil demands as CAFE (CAFE-equivalent tax rates). We discover that taxes result in greater and more cost-effective reductions in system-wide emissions and net oil imports than CAFE. The current fuel tax system is compared to three versions of a national vehicle miles traveled (VMT) tax charged to all LDVs in Essay 3. VMT taxes directly charge motorists for each mile driven and help to correct the problem of eroding tax revenues given the failure of today's fuel taxes to adjust with inflation. Results

  9. Future electricity production methods. Part 1: Nuclear energy

    NASA Astrophysics Data System (ADS)

    Nifenecker, Hervé

    2011-02-01

    The global warming challenge aims at stabilizing the concentrations of Green House Gas (GHG) in the atmosphere. Carbon dioxide is the most effective of the anthropogenic GHG and is essentially produced by consumption of fossil fuels. Electricity production is the dominant cause of CO2 emissions. It is, therefore, crucial that the share of 'carbon less' electricity production techniques increases at a fast pace. This is the more so, that 'clean' electricity would be useful to displace 'dirty' techniques in other fields such as heat production and transportation. Here we examine the extent to which nuclear energy could be operational in providing 'clean' electricity. A nuclear intensive scenario is shown to give the possibility to divide CO2 emissions by a factor of 2 worldwide, within 50 years. However, the corresponding sharp increase in nuclear power will put a heavy burden on uranium reserves and will necessitate the development of breeding reactors as soon as possible. A review of present and future reactors is given with special attention to the safety issues. The delicate question of nuclear fuel cycle is discussed concerning uranium reserves and management of used fuels. It is shown that dealing with nuclear wastes is more a socio-political problem than a technical one. The third difficult question associated with the development of nuclear energy is the proliferation risk. It is advocated that, while this is, indeed, a very important question, it is only weakly related to nuclear power development. Finally, the possibilities of nuclear fusion are discussed and it is asserted that, under no circumstances, could nuclear fusion give a significant contribution to the solution of the energy problem before 50 years, too late for dealing with the global warming challenge.

  10. Biomass: An Alternative Source of Energy for Eighth or Ninth Grade Science.

    ERIC Educational Resources Information Center

    Heyward, Lillie; Murff, Marye

    This teaching unit develops the possibility of using biomass as an alternative source of energy. The concept of biomass is explained and the processes associated with its conversion to energy are stated. Suggestions for development of biomass technology in different geographic areas are indicated. Lessons for 6 days are presented for use with…

  11. 77 FR 61633 - Information Collection: Renewable Energy and Alternate Uses of Existing Facilities on the Outer...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-10

    ...To comply with the Paperwork Reduction Act of 1995 (PRA), the Bureau of Ocean Energy Management (BOEM) is inviting comments on a collection of information that we will submit to the Office of Management and Budget (OMB) for review and approval. The information collection request (ICR) concerns the paperwork requirements in the regulations under ``Renewable Energy and Alternate Uses of Existing......

  12. Solar Panels and Alternative Energy in the Eighth-Grade Classroom

    ERIC Educational Resources Information Center

    Buck, Laura

    2010-01-01

    In this solar panels and alternative energy project, students were challenged to develop a researchable question about solar energy and electronics and devise a means of answering it. Students worked cooperatively, with specific roles for each member, conducting research, conducting experiments, analyzing results, and writing the final…

  13. Land-Rich Colleges Explore Opportunities to Create Alternative-Energy Sources

    ERIC Educational Resources Information Center

    Carlson, Scott

    2008-01-01

    In a time of expensive energy and concerns about climate change, land may be a major asset for colleges, providing a vastly different opportunity than it did in the past, when it was merely a place to set down new buildings, new campuses, or research parks. Since new alternative-energy technologies like wind and solar demand a lot of land--along…

  14. 78 FR 13695 - Information Collection: Renewable Energy and Alternate Uses of Existing Facilities on the Outer...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-28

    ...To comply with the Paperwork Reduction Act of 1995 (PRA), the Bureau of Ocean Energy Management (BOEM) is notifying the public that we have submitted an information collection request (ICR) to the Office of Management and Budget (OMB) for review and approval. This ICR concerns the paperwork requirements in the regulations under ``Renewable Energy and Alternate Uses of Existing Facilities on......

  15. Energy efficiency of alternative coke-free metallurgical technologies

    SciTech Connect

    V.G. Lisienko; A.V. Lapteva; A.E. Paren'kov

    2009-02-15

    Energy analysis is undertaken for the blast-furnace process, for liquid-phase processes (Corex, Hismelt, Romelt), for solid-phase pellet reduction (Midrex, HYL III, LP-V in a shaft furnace), for steel production in systems consisting of a blast furnace and a converter, a Midrex unit and an arc furnace, or a Romelt unit and an arc furnace, and for scrap processing in an arc furnace or in an LP-V shaft furnace. Three blast-furnace processes with sinter and coke are adopted as the basis of comparison, as in: the standard blast-furnace process used in Russia; the improved blast-furnace process with coal-dust injection; and the production of vanadium hot metal from vanadium-bearing titanomagnetite ore (with a subsequent duplex process, ferrovanadium production, and its use in the arc furnace).

  16. Status of photoelectrochemical production of hydrogen and electrical energy

    NASA Technical Reports Server (NTRS)

    Byvik, C. E.; Walker, G. H.

    1976-01-01

    The efficiency for conversion of electromagnetic energy to chemical and electrical energy utilizing semiconductor single crystals as photoanodes in electrochemical cells was investigated. Efficiencies as high as 20 percent were achieved for the conversion of 330 nm radiation to chemical energy in the form of hydrogen by the photoelectrolysis of water in a SrTiO3 based cell. The SrTiO3 photoanodes were shown to be stable in 9.5 M NaOH solutions for periods up to 48 hours. Efficiencies of 9 percent were measured for the conversion of broadband visible radiation to hydrogen using n-type GaAs crystals as photoanodes. Crystals of GaAs coated with 500 nm of gold, silver, or tin for surface passivation show no significant change in efficiency. By suppressing the production of hydrogen in a CdSe-based photogalvanic cell, an efficiency of 9 percent was obtained in conversion of 633 nm light to electrical energy. A CdS-based photogalvanic cell produced a conversion efficiency of 5 percent for 500 nm radiation.

  17. 77 FR 11515 - Application to Export Electric Energy; NRG Power Marketing LLC

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-27

    ... Application to Export Electric Energy; NRG Power Marketing LLC AGENCY: Office of Electricity Delivery and Energy Reliability, DOE. ] ACTION: Notice of application. SUMMARY: NRG Power Marketing LLC (NRGPML) has... would be surplus energy purchased from electric utilities and Federal power marketing agencies...

  18. Supercapacitors for the energy management of electric vehicles

    NASA Astrophysics Data System (ADS)

    Faggioli, Eugenio; Rena, Piergeorgio; Danel, Veronique; Andrieu, X.; Mallant, Ronald; Kahlen, Hans

    The integration of the on-board energy source of an electrically propelled vehicle with a supercapacitor bank (SB) as a peak power unit, can lead to substantial benefits in terms of electric vehicle performances, battery life and energy economy. Different architectures may be envisaged, to be chosen according to technical-economical trade-off. A research activity, supported by the European Community in the frame of the Joule III program and titled `Development of Supercapacitors for Electric Vehicles' (contract JOE3-CT95-0001), has been in progress since the beginning of 1996. The partners involved are SAFT (project leader), Alcatel Alsthom Research (France), Centro Ricerche Fiat (Italy), University of Kaiserslautern (Germany), Danionics (DK) and ECN (Netherlands). Its objective is to develop a SB and its electronic control and to integrate them in two different full-scale traction systems, supplied, respectively, by sealed lead traction batteries and by a fuel cell system. Through the bench tests, it will be possible to evaluate the impact of the SB on both traction systems. In this paper, a project overview will be given; the power management strategy principles, the supercapacitor's control electronic devices, the system's architecture and the supercapacitor's requirements on the base of the simulation results, will be examined.

  19. Advantages of an electrical control and energy management system

    PubMed

    Pal; Huff

    2000-01-01

    This paper discusses an electrical control and energy management system (ECEMS) that was installed at Indian Petrochemicals Corporation Limited (IPCL) Nagathone Gas Cracker complex located in Maharashtra, India. This distributed control system (DCS) provided computer assisted control in the areas of: Demand control; Automatic generation control, including MW and MVAR management; Power factor control; Automatic tap changer control; Load shedding; Automatic synchronization of generator and ties; Remote control of breakers. Previously, IPCL, like most other petrochemical companies in India, relied on operator control for power house functions. The process is always automated, but the power house equipment is usually manually controlled. Electrical control and energy management systems are not thought to be necessary. However, in this case the consultants for IPCL and the DCS supplier convinced IPCL that an ECEMS would save them enough money in operating costs to pay for the new control system. The control system discussed in this paper reduced operating costs by satisfying the process steam and power demands in the most cost-effective manner. In addition, the system took action to respond to electrical disturbances, such as loss of tie line and generator tripping, so that stable conditions were restored. PMID:10826290

  20. Frequency and temperature dependence of complex strontium titanate electrorheological fluids under an alternating electric field

    NASA Astrophysics Data System (ADS)

    Ma, Yong; Zhang, Yuling; Lu, Kunquan

    1998-05-01

    The electrorheological (ER) behavior of suspensions of water-free complex strontium titanate particles, synthesized by means of a modified sol-gel technique, in silicone oil have been investigated under an ac electric field. The frequency and temperature dependence of the shear stress show that the shear stress decreases monotonically with frequency and reaches a maximum value when the temperature is around 70 °C. The ER behavior has been explained on the basis of dielectric measurements.