Science.gov

Sample records for alternative fuel vehicle

  1. Alternative fuel information: Alternative fuel vehicle outlook

    SciTech Connect

    Not Available

    1994-06-01

    Major automobile manufacturers continue to examine a variety of alternative fuel vehicle (AFV) options in an effort to provide vehicles that meet the fleet requirements of the Clean Air Act Amendments of 1990 (CAAA) and the Energy Policy Act of 1992 (EPACT). The current generation of AFVs available to consumers is somewhat limited as the auto industry attempts to respond to the presently uncertain market. At the same time, however, the automobile industry must anticipate future demand and is therefore engaged in research, development, and production programs on a wide range of alternative fuels. The ultimate composition of the AFV fleet may be determined by state and local regulations which will have the effect of determining demand. Many state and regional groups may require vehicles to meet emission standards more stringent than those required by the federal government. Therefore, a significant impact on the market could occur if emission classifications begin serving as the benchmark for vehicles, rather than simply certifying a vehicle as capable of operating on an ``alternative`` to gasoline. Vehicles classified as Zero-Emissions, or even Inherently Low-Emissions, could most likely be met only by electricity or natural gas, thereby dictating that multi-fuel vehicles would be unable to participate in some clean air markets. In the near-term, the Clinton Administration desires to accelerate the use of alternative fuels as evidenced by an executive order directing the federal government to increase the rate of conversion of the federal fleet beyond that called for in EPACT. The Administration has expressed particular interest in using more compressed natural gas (CNG) as a motor fuel, which has resulted in the auto industry`s strong response of concentrating short-term efforts on CNG vehicles. For the 1994 model year, a number of CNG cars and trucks will be available from major automobile manufacturers.

  2. Alternative fuels and vehicles choice model

    SciTech Connect

    Greene, D.L.

    1994-10-01

    This report describes the theory and implementation of a model of alternative fuel and vehicle choice (AFVC), designed for use with the US Department of Energy`s Alternative Fuels Trade Model (AFTM). The AFTM is a static equilibrium model of the world supply and demand for liquid fuels, encompassing resource production, conversion processes, transportation, and consumption. The AFTM also includes fuel-switching behavior by incorporating multinomial logit-type equations for choice of alternative fuel vehicles and alternative fuels. This allows the model to solve for market shares of vehicles and fuels, as well as for fuel prices and quantities. The AFVC model includes fuel-flexible, bi-fuel, and dedicated fuel vehicles. For multi-fuel vehicles, the choice of fuel is subsumed within the vehicle choice framework, resulting in a nested multinomial logit design. The nesting is shown to be required by the different price elasticities of fuel and vehicle choice. A unique feature of the AFVC is that its parameters are derived directly from the characteristics of alternative fuels and vehicle technologies, together with a few key assumptions about consumer behavior. This not only establishes a direct link between assumptions and model predictions, but facilitates sensitivity testing, as well. The implementation of the AFVC model as a spreadsheet is also described.

  3. OZONE PRECURSOR EMISSIONS FROM ALTERNATIVELY FUELED VEHICLES

    EPA Science Inventory

    Smog chamber tests were conducted using automobile exhaust gas generated during emission tests with a group of alternatively fueled vehicles. he tests were designed to evaluate the photochemical characteristics of organic emissions from vehicles operating on compressed natural ga...

  4. 10 CFR 490.506 - Alternative fueled vehicle credit transfers.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Alternative fueled vehicle credit transfers. 490.506 Section 490.506 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Fueled Vehicle Credit Program § 490.506 Alternative fueled vehicle credit transfers. (a) Any...

  5. 10 CFR 490.506 - Alternative fueled vehicle credit transfers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Alternative fueled vehicle credit transfers. 490.506 Section 490.506 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Fueled Vehicle Credit Program § 490.506 Alternative fueled vehicle credit transfers. (a) Any...

  6. 10 CFR 490.506 - Alternative fueled vehicle credit transfers.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 3 2011-01-01 2011-01-01 false Alternative fueled vehicle credit transfers. 490.506 Section 490.506 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Fueled Vehicle Credit Program § 490.506 Alternative fueled vehicle credit transfers. (a) Any...

  7. 10 CFR 490.506 - Alternative fueled vehicle credit transfers.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Alternative fueled vehicle credit transfers. 490.506 Section 490.506 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Fueled Vehicle Credit Program § 490.506 Alternative fueled vehicle credit transfers. (a) Any...

  8. 10 CFR 490.506 - Alternative fueled vehicle credit transfers.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Alternative fueled vehicle credit transfers. 490.506 Section 490.506 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Fueled Vehicle Credit Program § 490.506 Alternative fueled vehicle credit transfers. (a) Any...

  9. 76 FR 19829 - Clean Alternative Fuel Vehicle and Engine Conversions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-08

    ... include conversions of conventional gasoline or diesel vehicles to hybrid-electric vehicles, and conversions from hybrid-electric vehicles to plug-in hybrid electric vehicles. Since alternative fuel... Parts Manufacturing. 336322 Other Motor Vehicle Electrical and Electronic Equipment...

  10. 16 CFR 309.10 - Alternative vehicle fuel rating.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 16 Commercial Practices 1 2012-01-01 2012-01-01 false Alternative vehicle fuel rating. 309.10... Electricity) and of Manufacturers of Electric Vehicle Fuel Dispensing Systems § 309.10 Alternative vehicle fuel rating. (a) If you are an importer, producer, or refiner of non-liquid alternative vehicle...

  11. 16 CFR 309.10 - Alternative vehicle fuel rating.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 5 U.S.C. 552(a) and 1 CFR part 51. Copies of D 1945-91 and D 1946-90 may be obtained from the... 16 Commercial Practices 1 2013-01-01 2013-01-01 false Alternative vehicle fuel rating. 309.10... LABELING REQUIREMENTS FOR ALTERNATIVE FUELS AND ALTERNATIVE FUELED VEHICLES Requirements for...

  12. 16 CFR 309.10 - Alternative vehicle fuel rating.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 5 U.S.C. 552(a) and 1 CFR part 51. Copies of D 1945-91 and D 1946-90 may be obtained from the... 16 Commercial Practices 1 2014-01-01 2014-01-01 false Alternative vehicle fuel rating. 309.10... LABELING REQUIREMENTS FOR ALTERNATIVE FUELS AND ALTERNATIVE FUELED VEHICLES Requirements for...

  13. Emission control cost-effectiveness of alternative-fuel vehicles

    SciTech Connect

    Wang, Q.; Sperling, D.; Olmstead, J.

    1993-06-14

    Although various legislation and regulations have been adopted to promote the use of alternative-fuel vehicles for curbing urban air pollution problems, there is a lack of systematic comparisons of emission control cost-effectiveness among various alternative-fuel vehicle types. In this paper, life-cycle emission reductions and life-cycle costs were estimated for passenger cars fueled with methanol, ethanol, liquefied petroleum gas, compressed natural gas, and electricity. Vehicle emission estimates included both exhaust and evaporative emissions for air pollutants of hydrocarbon, carbon monoxide, nitrogen oxides, and air-toxic pollutants of benzene, formaldehyde, 1,3-butadiene, and acetaldehyde. Vehicle life-cycle cost estimates accounted for vehicle purchase prices, vehicle life, fuel costs, and vehicle maintenance costs. Emission control cost-effectiveness presented in dollars per ton of emission reduction was calculated for each alternative-fuel vehicle types from the estimated vehicle life-cycle emission reductions and costs. Among various alternative-fuel vehicle types, compressed natural gas vehicles are the most cost-effective vehicle type in controlling vehicle emissions. Dedicated methanol vehicles are the next most cost-effective vehicle type. The cost-effectiveness of electric vehicles depends on improvements in electric vehicle battery technology. With low-cost, high-performance batteries, electric vehicles are more cost-effective than methanol, ethanol, and liquified petroleum gas vehicles.

  14. 16 CFR 309.10 - Alternative vehicle fuel rating.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 5 U.S.C. 552(a) and 1 CFR part 51. Copies of D 1945-91 and D 1946-90 may be obtained from the... Fuels Duties of Importers, Producers, and Refiners of Non-Liquid Alternative Vehicle Fuels (other Than... fuel rating. (a) If you are an importer, producer, or refiner of non-liquid alternative vehicle...

  15. 16 CFR 309.10 - Alternative vehicle fuel rating.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 5 U.S.C. 552(a) and 1 CFR part 51. Copies of D 1945-91 and D 1946-90 may be obtained from the... Fuels Duties of Importers, Producers, and Refiners of Non-Liquid Alternative Vehicle Fuels (other Than... fuel rating. (a) If you are an importer, producer, or refiner of non-liquid alternative vehicle...

  16. 75 FR 29605 - Clean Alternative Fuel Vehicle and Engine Conversions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-26

    ... of conventional gasoline or diesel vehicles to hybrid-electric vehicles, and conversions from hybrid-electric vehicles to plug-in hybrid electric vehicles. Since alternative fuel conversion activity often... Manufacturing. 336322 Other Motor Vehicle Electrical and Electronic Equipment Manufacturing. 336399 All...

  17. Alternate-Fuel Vehicles and Their Application in Schools.

    ERIC Educational Resources Information Center

    Taggart, Chip

    1991-01-01

    Alternative fuels are becoming increasingly attractive from environmental, energy independence, and economic perspectives. Addresses the following topics: (1) federal and state legislation; (2) alternative fuels and their attributes; (3) practical experience with alternative-fuel vehicles in pupil transportation; and (4) options for school…

  18. Alternative Fuel and Advanced Vehicle Tools (AFAVT), AFDC (Fact Sheet)

    SciTech Connect

    Not Available

    2010-01-01

    The Alternative Fuels and Advanced Vehicles Web site offers a collection of calculators, interactive maps, and informational tools to assist fleets, fuel providers, and others looking to reduce petroleum consumption in the transportation sector.

  19. Particulate Measurements and Emissions Characterization of Alternative Fuel Vehicle Exhaust

    SciTech Connect

    Durbin, T. D.; Truex, T. J.; Norbeck, J. M.

    1998-11-19

    The objective of this project was to measure and characterize particulate emissions from light-duty alternative fuel vehicles (AFVs) and equivalent gasoline-fueled vehicles. The project included emission testing of a fleet of 129 gasoline-fueled vehicles and 19 diesel vehicles. Particulate measurements were obtained over Federal Test Procedure and US06 cycles. Chemical characterization of the exhaust particulate was also performed. Overall, the particulate emissions from modern technology compressed natural gas and methanol vehicles were low, but were still comparable to those of similar technology gasoline vehicles.

  20. Alcohol-fueled vehicles: An alternative fuels vehicle, emissions, and refueling infrastructure technology assessment

    SciTech Connect

    McCoy, G.A.; Kerstetter, J.; Lyons, J.K.

    1993-06-01

    Interest in alternative motor vehicle fuels has grown tremendously over the last few years. The 1990 Clean Air Act Amendments, the National Energy Policy Act of 1992 and the California Clean Air Act are primarily responsible for this resurgence and have spurred both the motor fuels and vehicle manufacturing industries into action. For the first time, all three U.S. auto manufacturers are offering alternative fuel vehicles to the motoring public. At the same time, a small but growing alternative fuels refueling infrastructure is beginning to develop across the country. Although the recent growth in alternative motor fuels use is impressive, their market niche is still being defined. Environmental regulations, a key driver behind alternative fuel use, is forcing both car makers and the petroleum industry to clean up their products. As a result, alternative fuels no longer have a lock on the clean air market and will have to compete with conventional vehicles in meeting stringent future vehicle emission standards. The development of cleaner burning gasoline powered vehicles has signaled a shift in the marketing of alternative fuels. While they will continue to play a major part in the clean vehicle market, alternative fuels are increasingly recognized as a means to reduce oil imports. This new role is clearly defined in the National Energy Policy Act of 1992. The Act identifies alternative fuels as a key strategy for reducing imports of foreign oil and mandates their use for federal and state fleets, while reserving the right to require private and municipal fleet use as well.

  1. Vehicle conversion to hybrid gasoline/alternative fuel operation

    NASA Astrophysics Data System (ADS)

    Donakowski, T. D.

    1982-11-01

    The alternative fuels considered are compressed natural gas (CNG), liquefied natural gas (LNG), liquid petroleum gas (LPG), and methanol; vehicles were required to operate in a hybrid or dual-fuel gasoline/alternative fuel mode. Economic feasibility was determined by comparing the costs of continued use of gasoline fuel with the use of alternative fuel and retrofitted equipment. Differences in the amounts of future expenditures are adjusted by means of a total life-cycle costing. All fuels studied are technically feasible to allow a retrofit conversion to hybrid gasoline/alternative fuel operation except for methanol. Conversion to LPG is not recommended for vehicles with more than 100,000 km (60,000 miles) of prior use. Methanol conversion is not recommended for vehicles with more than 50,00 km (30,000 miles).

  2. Vehicle conversion to hybrid gasoline/alternative fuel operation

    NASA Technical Reports Server (NTRS)

    Donakowski, T. D.

    1982-01-01

    The alternative fuels considered are compressed natural gas (CNG), liquefied natural gas (LNG), liquid petroleum gas (LPG), and methanol; vehicles were required to operate in a hybrid or dual-fuel gasoline/alternative fuel mode. Economic feasibility was determined by comparing the costs of continued use of gasoline fuel with the use of alternative fuel and retrofitted equipment. Differences in the amounts of future expenditures are adjusted by means of a total life-cycle costing. All fuels studied are technically feasible to allow a retrofit conversion to hybrid gasoline/alternative fuel operation except for methanol. Conversion to LPG is not recommended for vehicles with more than 100,000 km (60,000 miles) of prior use. Methanol conversion is not recommended for vehicles with more than 50,00 km (30,000 miles).

  3. Vehicle Data for Alternative Fuel Vehicles (AFVs) and Hybrid Fuel Vehicles (HEVs) from the Alternative Fuels and Advanced Vehicles Data Center (AFCD)

    DOE Data Explorer

    The AFDC provides search capabilities for many different models of both light-duty and heavy-duty vehicles. Engine and transmission type, fuel and class, fuel economy and emission certification are some of the facts available. The search will also help users locate dealers in their areas and do cost analyses. Information on alternative fuel vehicles and on advanced technology vehicles, along with calculators, resale and conversion information, links to incentives and programs such as Clean Cities, and dozens of fact sheets and publications make this section of the AFDC a valuable resource for car buyers.

  4. Commercial Training Issues: Heavy Duty Alternative Fuel Vehicles.

    ERIC Educational Resources Information Center

    Eckert, Douglas

    The needs and opportunities in the heavy-duty alternative fuel vehicle training arena were examined in an informal ethnographic study of the appropriateness and effectiveness of the instructional materials currently being used in such training. Interviews were conducted with eight instructors from the National Alternative Fuels Training Program…

  5. 76 FR 31513 - Labeling Requirements for Alternative Fuels and Alternative Fueled Vehicles

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-01

    ...).\\6\\ Examples of the fuel labels appear below. \\4\\ 60 FR 26926 (May 19, 1995). \\5\\ The Commission's... described below. \\9\\ See 75 FR 58078 (Sept. 23, 2010). \\10\\ Although EPA regulations (40 CFR Part 600... the EPA, 99% of FFV owners run their vehicles only on gasoline and never use alternative fuel. 75...

  6. Gas detection for alternate-fuel vehicle facilities.

    PubMed

    Ferree, Steve

    2003-05-01

    Alternative fuel vehicles' safety is driven by local, state, and federal regulations in which fleet owners in key metropolitan [table: see text] areas convert much of their fleet to cleaner-burning fuels. Various alternative fuels are available to meet this requirement, each with its own advantages and requirements. This conversion to alternative fuels leads to special requirements for safety monitoring in the maintenance facilities and refueling stations. A comprehensive gas and flame monitoring system needs to meet the needs of both the user and the local fire marshal. PMID:12754860

  7. Describing current and potential markets for alternative-fuel vehicles

    SciTech Connect

    1996-03-26

    Motor vehicles are a major source of greenhouse gases, and the rising numbers of motor vehicles and miles driven could lead to more harmful emissions that may ultimately affect the world`s climate. One approach to curtailing such emissions is to use, instead of gasoline, alternative fuels: LPG, compressed natural gas, or alcohol fuels. In addition to the greenhouse gases, pollutants can be harmful to human health: ozone, CO. The Clean Air Act Amendments of 1990 authorized EPA to set National Ambient Air Quality Standards to control this. The Energy Policy Act of 1992 (EPACT) was the first new law to emphasize strengthened energy security and decreased reliance on foreign oil since the oil shortages of the 1970`s. EPACT emphasized increasing the number of alternative-fuel vehicles (AFV`s) by mandating their incremental increase of use by Federal, state, and alternative fuel provider fleets over the new few years. Its goals are far from being met; alternative fuels` share remains trivial, about 0.3%, despite gains. This report describes current and potential markets for AFV`s; it begins by assessing the total vehicle stock, and then it focuses on current use of AFV`s in alternative fuel provider fleets and the potential for use of AFV`s in US households.

  8. EMISSIONS AND FUEL ECONOMY OF FEDERAL ALTERNATIVELY FUELED FLEET VEHICLES

    EPA Science Inventory

    This paper presents results from a study designed to investigate the effects of automobile fuels on emissions and fuel economy. The study is part of a larger program mandated by the Alternative Motor Fuels Act of 1988 that requires the Department of Energy (DOE), in cooperation w...

  9. Electric vehicles - an alternative fuels vehicle, emissions, and refueling infrastructure technology assessment

    SciTech Connect

    McCoy, G.A.; Lyons, J.K.

    1993-06-01

    Interest in alternative motor vehicle fuels has grown tremendously over the last few years. The 1990 Clean Air Act Amendments, the National Energy Policy Act of 1992 and the California Clean Air Act are primarily responsible for this resurgence and have spurred both the motor fuels and vehicle manufacturing industries into action. For the first time, all three U.S. auto manufacturers are offering alternative fuel vehicles to the motoring public. At the same time, a small but growing alternative fuels refueling infrastructure is beginning to develop across the country. Although the recent growth in alternative motor fuels use is impressive, their market niche is still being defined. Environmental regulations, a key driver behind alternative fuel use, is forcing both car makers and the petroleum industry to clean up their products. As a result, alternative fuels no longer have a lock on the clean air market and will have to compete with conventionally fuelled vehicles in meeting stringent future vehicle emission standards. The development of cleaner burning gasoline powered vehicles has signaled a shift in the marketing of alternative fuels. While they will continue to play a major part in the clean vehicle market, alternative fuels are increasingly recognized as a means to reduce oil imports. This new role is clearly defined in the National Energy Policy Act of 1992. The Act identifies alternative fuels as a key strategy for reducing imports of foreign oil and mandates their use for federal and state fleets, while reserving the right to require private and municipal fleet use as well. This report discusses electric powered vehicles as an alternative fuels vehicle.

  10. 10 CFR 490.504 - Use of alternative fueled vehicle credits.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 3 2011-01-01 2011-01-01 false Use of alternative fueled vehicle credits. 490.504 Section 490.504 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Fueled Vehicle Credit Program § 490.504 Use of alternative fueled vehicle credits. At the...

  11. 10 CFR 490.504 - Use of alternative fueled vehicle credits.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Use of alternative fueled vehicle credits. 490.504 Section 490.504 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Fueled Vehicle Credit Program § 490.504 Use of alternative fueled vehicle credits. At the...

  12. 10 CFR 490.504 - Use of alternative fueled vehicle credits.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Use of alternative fueled vehicle credits. 490.504 Section 490.504 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Fueled Vehicle Credit Program § 490.504 Use of alternative fueled vehicle credits. At the...

  13. 10 CFR 490.504 - Use of alternative fueled vehicle credits.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Use of alternative fueled vehicle credits. 490.504 Section 490.504 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Fueled Vehicle Credit Program § 490.504 Use of alternative fueled vehicle credits. At the...

  14. 10 CFR 490.504 - Use of alternative fueled vehicle credits.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Use of alternative fueled vehicle credits. 490.504 Section 490.504 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Fueled Vehicle Credit Program § 490.504 Use of alternative fueled vehicle credits. At the...

  15. Low Floor Americans with Disabilities Compliant Alternate Fuel Vehicle Project

    SciTech Connect

    James Bartel

    2004-11-26

    This project developed a low emission, cost effective, fuel efficient, medium-duty community/transit shuttle bus that meets American's with Disabilities Act (ADA) requirements and meets National Energy Policy Act requirements (uses alternative fuel). The Low Profile chassis, which is the basis of this vehicle is configured to be fuel neutral to accommodate various alternative fuels. Demonstration of the vehicle in Yellowstone Park in summer (wheeled operation) and winter (track operation) demonstrated the feasibility and flexibility for this vehicle to provide year around operation throughout the Parks system as well as normal transit operation. The unique configuration of the chassis which provides ADA access with a simple ramp and a flat floor throughout the passenger compartment, provides maximum access for all passengers as well as maximum flexibility to configure the vehicle for each application. Because this product is derived from an existing medium duty truck chassis, the completed bus is 40-50% less expensive than existing low floor transit buses, with the reliability and durability of OEM a medium duty truck.

  16. 16 CFR 309.15 - Posting of non-liquid alternative vehicle fuel rating.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 1 2010-01-01 2010-01-01 false Posting of non-liquid alternative vehicle fuel rating. 309.15 Section 309.15 Commercial Practices FEDERAL TRADE COMMISSION REGULATIONS UNDER SPECIFIC ACTS OF CONGRESS LABELING REQUIREMENTS FOR ALTERNATIVE FUELS AND ALTERNATIVE FUELED VEHICLES Requirements for Alternative Fuels Duties...

  17. Fuel-cycle greenhouse gas emissions impacts of alternative transportation fuels and advanced vehicle technologies.

    SciTech Connect

    Wang, M. Q.

    1998-12-16

    At an international conference on global warming, held in Kyoto, Japan, in December 1997, the United States committed to reduce its greenhouse gas (GHG) emissions by 7% over its 1990 level by the year 2012. To help achieve that goal, transportation GHG emissions need to be reduced. Using Argonne's fuel-cycle model, I estimated GHG emissions reduction potentials of various near- and long-term transportation technologies. The estimated per-mile GHG emissions results show that alternative transportation fuels and advanced vehicle technologies can help significantly reduce transportation GHG emissions. Of the near-term technologies evaluated in this study, electric vehicles; hybrid electric vehicles; compression-ignition, direct-injection vehicles; and E85 flexible fuel vehicles can reduce fuel-cycle GHG emissions by more than 25%, on the fuel-cycle basis. Electric vehicles powered by electricity generated primarily from nuclear and renewable sources can reduce GHG emissions by 80%. Other alternative fuels, such as compressed natural gas and liquefied petroleum gas, offer limited, but positive, GHG emission reduction benefits. Among the long-term technologies evaluated in this study, conventional spark ignition and compression ignition engines powered by alternative fuels and gasoline- and diesel-powered advanced vehicles can reduce GHG emissions by 10% to 30%. Ethanol dedicated vehicles, electric vehicles, hybrid electric vehicles, and fuel-cell vehicles can reduce GHG emissions by over 40%. Spark ignition engines and fuel-cell vehicles powered by cellulosic ethanol and solar hydrogen (for fuel-cell vehicles only) can reduce GHG emissions by over 80%. In conclusion, both near- and long-term alternative fuels and advanced transportation technologies can play a role in reducing the United States GHG emissions.

  18. 10 CFR 490.201 - Alternative fueled vehicle acquisition mandate schedule.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Alternative fueled vehicle acquisition mandate schedule. 490.201 Section 490.201 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Mandatory State Fleet Program § 490.201 Alternative fueled vehicle acquisition...

  19. 10 CFR 490.201 - Alternative fueled vehicle acquisition mandate schedule.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 3 2011-01-01 2011-01-01 false Alternative fueled vehicle acquisition mandate schedule. 490.201 Section 490.201 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Mandatory State Fleet Program § 490.201 Alternative fueled vehicle acquisition...

  20. 10 CFR 490.203 - Light Duty Alternative Fueled Vehicle Plan.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Light Duty Alternative Fueled Vehicle Plan. 490.203 Section 490.203 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Mandatory State Fleet Program § 490.203 Light Duty Alternative Fueled Vehicle Plan. (a) General...

  1. 10 CFR 490.201 - Alternative fueled vehicle acquisition mandate schedule.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Alternative fueled vehicle acquisition mandate schedule. 490.201 Section 490.201 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Mandatory State Fleet Program § 490.201 Alternative fueled vehicle acquisition...

  2. 10 CFR 490.201 - Alternative fueled vehicle acquisition mandate schedule.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Alternative fueled vehicle acquisition mandate schedule. 490.201 Section 490.201 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Mandatory State Fleet Program § 490.201 Alternative fueled vehicle acquisition...

  3. 10 CFR 490.203 - Light Duty Alternative Fueled Vehicle Plan.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Light Duty Alternative Fueled Vehicle Plan. 490.203 Section 490.203 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Mandatory State Fleet Program § 490.203 Light Duty Alternative Fueled Vehicle Plan. (a) General...

  4. 10 CFR 490.203 - Light Duty Alternative Fueled Vehicle Plan.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 3 2011-01-01 2011-01-01 false Light Duty Alternative Fueled Vehicle Plan. 490.203 Section 490.203 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Mandatory State Fleet Program § 490.203 Light Duty Alternative Fueled Vehicle Plan. (a) General...

  5. 10 CFR 490.203 - Light Duty Alternative Fueled Vehicle Plan.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Light Duty Alternative Fueled Vehicle Plan. 490.203 Section 490.203 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Mandatory State Fleet Program § 490.203 Light Duty Alternative Fueled Vehicle Plan. (a) General...

  6. 10 CFR 490.203 - Light Duty Alternative Fueled Vehicle Plan.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Light Duty Alternative Fueled Vehicle Plan. 490.203 Section 490.203 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Mandatory State Fleet Program § 490.203 Light Duty Alternative Fueled Vehicle Plan. (a) General...

  7. 10 CFR 490.201 - Alternative fueled vehicle acquisition mandate schedule.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Alternative fueled vehicle acquisition mandate schedule. 490.201 Section 490.201 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Mandatory State Fleet Program § 490.201 Alternative fueled vehicle acquisition...

  8. 78 FR 23832 - Labeling Requirements for Alternative Fuels and Alternative Fueled Vehicles

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-23

    ...-gasoline mixtures, natural gas, liquefied petroleum gas, hydrogen, coal-derived liquid fuels, fuels derived... component (expressed as a percentage). \\3\\ 60 FR 26926 (May 19, 1995). \\4\\ The Rule requires manufacturers... comments in response.\\8\\ \\6\\ 76 FR 31513 (June 1, 2011) (ANPR on Alternative Fuels Rule). In 2011,...

  9. Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen; Workshop Proceedings

    SciTech Connect

    Melaina, M. W.; McQueen, S.; Brinch, J.

    2008-07-01

    DOE sponsored the Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen workshop to understand how lessons from past experiences can inform future efforts to commercialize hydrogen vehicles. This report contains the proceedings from the workshop.

  10. Primer on Motor Fuel Excise Taxes and the Role of Alternative Fuels and Energy Efficient Vehicles

    SciTech Connect

    Schroeder, Alex

    2015-08-26

    Motor fuel taxes were established to finance our nation’s transportation infrastructure, yet evolving economic, political, and technological influences are constraining this ability. At the federal level, the Highway Trust Fund (HTF), which is primarily funded by motor fuel taxes, has become increasingly dependent on general fund contributions and short-term reauthorizations to prevent insolvency. As a result, there are discussions at both the federal and state levels in which stakeholders are examining the future of motor fuel excise taxes as well as the role of electric and alternative fuel vehicles in that future. On July 1, 2015, six states increased their motor fuel tax rates.

  11. Informal Market Survey of Training Issues: Heavy Duty Alternative Fuel Vehicles.

    ERIC Educational Resources Information Center

    Eckert, Doug

    The needs and opportunities in the heavy-duty alternative fuel vehicle training arena were examined in an informal marketing survey. A list of 277 potential respondents was compiled from the 220 individuals in the National Alternative Fuels Training Program database and 57 names identified from journals in the field of alternative fuels. When 2…

  12. Alternative Fuels and Advanced Vehicles: Resources for Fleet Managers (Clean Cities) (Presentation)

    SciTech Connect

    Brennan, A.

    2011-04-01

    A discussion of the tools and resources on the Clean Cities, Alternative Fuels and Advanced Vehicles Data Center, and the FuelEconomy.gov Web sites that can help vehicle fleet managers make informed decisions about implementing strategies to reduce gasoline and diesel fuel use.

  13. Alternative fuel capabilities of the Mod II Stirling vehicle

    SciTech Connect

    Grandin, A.W.; Ernst, W.D.

    1988-01-01

    The Stirling engine's characteristics make it a prime candidate for both multifuel and alternative fuel uses. In this paper, the relevant engine characteristics of the Mod II Stirling engine are examined, including the external heat system and basic operation. Adaptation of the Stirling to multifuel operation is addressed, and its experience with alternative fuels in automotive applications is summarized. The results of the U.S. Air Force review of the Stirling's multifuel capability are described, and the Stirling's advantages with liquid, gaseous, and solid fuels are discussed.

  14. Alternative fuels for vehicles fleet demonstration program. Final report, volume 2: Appendices

    SciTech Connect

    1997-06-01

    The Alternative Fuels for Vehicles Fleet Demonstration Program (AFV-FDP) was a multiyear effort to collect technical data for use in determining the costs and benefits of alternative-fuel vehicles (AFVs) in typical applications in New York State. This report, Volume 2, includes 13 appendices to Volume 1 that expand upon issues raised therein. Volume 1 provides: (1) Information about the purpose and scope of the AFV-FDP; (2) A summary of AFV-FDP findings organized on the basis of vehicle type and fuel type; (3) A short review of the status of AFV technology development, including examples of companies in the State that are active in developing AFVs and AFV components; and (4) A brief overview of the status of AFV deployment in the State. Volume 3 provides expanded reporting of AFV-FDP technical details, including the complete texts of the brochure Garage Guidelines for Alternative Fuels and the technical report Fleet Experience Survey Report, plus an extensive glossary of AFV terminology. The appendices cover a wide range of issues including: emissions regulations in New York State; production and health effects of ozone; vehicle emissions and control systems; emissions from heavy-duty engines; reformulated gasoline; greenhouse gases; production and characteristics of alternative fuels; the Energy Policy Act of 1992; the Clean Fuel Fleet Program; garage design guidelines for alternative fuels; surveys of fleet managers using alternative fuels; taxes on conventional and alternative fuels; and zero-emission vehicle technology.

  15. Evaluation of oxygen-enrichment system for alternative fuel vehicles

    SciTech Connect

    Poola, R.B.; Sekar, R.R.; Ng, H.K.

    1995-12-01

    This report presents results on the reduction in exhaust emissions achieved by using oxygen-enriched intake air on a flexible fuel vehicle (FFV) that used Indolene and M85 as test fuels. The standard federal test procedure (FTP) and the US Environmental Protection Agency`s (EPA`s) off-cycle (REP05) test were followed. The report also provides a review of literature on the oxygen membrane device and design considerations. It presents information on the sources and contributions of cold-phase emissions to the overall exhaust emissions from light-duty vehicles (LDVs) and on the various emission standards and present-day control technologies under consideration. The effects of oxygen-enriched intake air on FTP and off-cycle emissions are discussed on the basis of test results. Conclusions are drawn from the results and discussion, and different approaches for the practical application of this technology in LDVs are recommended.

  16. Profile of motor-vehicle fleets in Atlanta 1994. Assessing the market for alternative-fuel vehicles

    SciTech Connect

    1995-11-06

    This document reports the results of the EIA survey of motorvehicle fleets, both private and municipal, in Atlanta. These data should be useful to those whose goal is to assist or participate in the early development of alternative-fuel vehicle markets. The data also should be useful to persons implementing motor-vehicle-related clean air programs or analyzing transportation energy use. Persons in the petroleum industry will find useful information regarding conventional fuels and the fuel-purchasing behavior of fleets.

  17. Fuel-cycle greenhouse gas emissions from alternative fuels in Australian heavy vehicles

    NASA Astrophysics Data System (ADS)

    Beer, Tom; Grant, Tim; Williams, David; Watson, Harry

    This paper quantifies the expected pre-combustion and combustion emissions of greenhouse gases from Australian heavy vehicles using alternative fuels. We use the term exbodied emissions for these full fuel-cycle emissions. The fuels examined are low sulfur diesel (LSD), ultra-low sulfur diesel (ULS), compressed natural gas (CNG), liquefied natural gas (LNG), liquefied petroleum gas (LPG), ethanol (from lignocellulose), biodiesel and waste oil. Biodiesel and ethanol have the lowest exbodied greenhouse gas emissions (in grams greenhouse gases per kilometre travelled). Biodiesel reduces exbodied greenhouse gas emissions from 41% to 51% whereas ethanol reduces emissions by 49-55%. In fact, both emit larger quantities of CO 2 than conventional fuels, but as most of the CO 2 is from renewable carbon stocks that fraction is not counted towards the greenhouse gas emissions from the fuel. The gaseous fuels (LPG, CNG) come next with emissions that range from 88% to 92% of diesel. The emissions of greenhouse gases from diesel are reduced if waste oil is used as a diesel extender, but the processing energy required to generate LSD and ULS in Australia increase their greenhouse gas emissions compared to diesel fuel. The extra energy required liquefy and cool LNG means that it has the highest exbodied greenhouse gas emissions of the fuels that were considered.

  18. 49 CFR 536.10 - Treatment of dual-fuel and alternative fuel vehicles-consistency with 49 CFR part 538.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... vehicles—consistency with 49 CFR part 538. (a) Statutory alternative fuel and dual-fuel vehicle fuel... manufacturer must calculate the fuel economy of dual fueled vehicles in accordance with 40 CFR 600.510-12(c... 49 Transportation 6 2014-10-01 2014-10-01 false Treatment of dual-fuel and alternative...

  19. 49 CFR 536.10 - Treatment of dual-fuel and alternative fuel vehicles-consistency with 49 CFR part 538.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... vehicles—consistency with 49 CFR part 538. (a) Statutory alternative fuel and dual-fuel vehicle fuel... manufacturer must calculate the fuel economy of dual fueled vehicles in accordance with 40 CFR 600.510-12(c... 49 Transportation 6 2013-10-01 2013-10-01 false Treatment of dual-fuel and alternative...

  20. Models for conducting economic analysis of alternative-fuel vehicles. Master's thesis

    SciTech Connect

    Grenier, D.R.

    1987-06-01

    The present status of alternative-fuel vehicles, specifically electric-powered and compressed natural gas-powered vehicles is summarized. Specific advantages and disadvantages of each vehicle type, in comparison to the gasoline-powered vehicle, are reviewed. A life-cycle-cost model is formulated for each vehicle type. An integer linear program is derived and explained as a means of determining the optimal mix of vehicles for a command's transportation fleet. The models are tested by running several test cases using data from the Naval Postgraduate School transportation office.

  1. Alternative fuels for vehicles fleet demonstration program final report. Volume 1: Summary

    SciTech Connect

    1997-03-01

    The Alternative Fuels for Vehicles Fleet Demonstration Program (AFV-FDP) was a multiyear effort to collect technical data for use in determining the costs and benefits of alternative-fuel vehicles in typical applications in New York State. During 3 years of collecting data, 7.3 million miles of driving were accumulated, 1,003 chassis-dynamometer emissions tests were performed, 862,000 gallons of conventional fuel were saved, and unique information was developed about garage safety recommendations, vehicle performance, and other topics. Findings are organized by vehicle and fuel type. For light-duty compressed natural gas (CNG) vehicles, technology has evolved rapidly and closed-loop, electronically-controlled fuel systems provide performance and emissions advantages over open-loop, mechanical systems. The best CNG technology produces consistently low tailpipe emissions versus gasoline, and can eliminate evaporative emissions. Reduced driving range remains the largest physical drawback. Fuel cost is low ($/Btu) but capital costs are high, indicating that economics are best with vehicles that are used intensively. Propane produces impacts similar to CNG and is less expensive to implement, but fuel cost is higher than gasoline and safety codes limit use in urban areas. Light-duty methanol/ethanol vehicles provide performance and emissions benefits over gasoline with little impact on capital costs, but fuel costs are high. Heavy-duty CNG engines are evolving rapidly and provide large reductions in emissions versus diesel. Capital costs are high for CNG buses and fuel efficiency is reduced, but the fuel is less expensive and overall operating costs are about equal to those of diesel buses. Methanol buses provide performance and emissions benefits versus diesel, but fuel costs are high. Other emerging technologies were also evaluated, including electric vehicles, hybrid-electric vehicles, and fuel cells.

  2. Clean Cities Guide to Alternative Fuel and Advanced Medium- and Heavy-Duty Vehicles (Book)

    SciTech Connect

    Not Available

    2013-08-01

    Today's fleets are increasingly interested in medium-duty and heavy-duty vehicles that use alternative fuels or advanced technologies that can help reduce operating costs, meet emissions requirements, improve fleet sustainability, and support U.S. energy independence. Vehicle and engine manufacturers are responding to this interest with a wide range of options across a steadily growing number of vehicle applications. This guide provides an overview of alternative fuel power systems?including engines, microturbines, electric motors, and fuel cells?and hybrid propulsion systems. The guide also offers a list of individual medium- and heavy-duty vehicle models listed by application, along with associated manufacturer contact information, fuel type(s), power source(s), and related information.

  3. Clean Cities Guide to Alternative Fuel and Advanced Medium- and Heavy-Duty Vehicles

    SciTech Connect

    2013-08-01

    Today's fleets are increasingly interested in medium-duty and heavy-duty vehicles that use alternative fuels or advanced technologies that can help reduce operating costs, meet emissions requirements, improve fleet sustainability, and support U.S. energy independence. Vehicle and engine manufacturers are responding to this interest with a wide range of options across a steadily growing number of vehicle applications. This guide provides an overview of alternative fuel power systems--including engines, microturbines, electric motors, and fuel cells--and hybrid propulsion systems. The guide also offers a list of individual medium- and heavy-duty vehicle models listed by application, along with associated manufacturer contact information, fuel type(s), power source(s), and related information.

  4. 49 CFR 536.10 - Treatment of dual-fuel and alternative fuel vehicles-consistency with 49 CFR part 538.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... vehicles—consistency with 49 CFR part 538. (a) Statutory alternative fuel and dual-fuel vehicle fuel... 49 Transportation 6 2012-10-01 2012-10-01 false Treatment of dual-fuel and alternative fuel vehicles-consistency with 49 CFR part 538. 536.10 Section 536.10 Transportation Other Regulations...

  5. 49 CFR 536.10 - Treatment of dual-fuel and alternative fuel vehicles-consistency with 49 CFR part 538.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... vehicles—consistency with 49 CFR part 538. (a) Statutory alternative fuel and dual-fuel vehicle fuel... 49 Transportation 6 2011-10-01 2011-10-01 false Treatment of dual-fuel and alternative fuel vehicles-consistency with 49 CFR part 538. 536.10 Section 536.10 Transportation Other Regulations...

  6. 49 CFR 536.10 - Treatment of dual-fuel and alternative fuel vehicles-consistency with 49 CFR part 538.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... vehicles—consistency with 49 CFR part 538. (a) Statutory alternative fuel and dual-fuel vehicle fuel... 49 Transportation 6 2010-10-01 2010-10-01 false Treatment of dual-fuel and alternative fuel vehicles-consistency with 49 CFR part 538. 536.10 Section 536.10 Transportation Other Regulations...

  7. Determinants of alternative fuel vehicle choice in the continental United States.

    SciTech Connect

    Tompkins, M.

    1997-12-18

    This paper describes the ongoing investigation into the determinants of alternative fuel vehicle choice. A stated preference vehicle choice survey was conducted for the 47 of the continental U.S. states, excluding California. The national survey is based on and is an extension of previous studies on alternative fuel vehicle choice for the State of California conducted by the University of California's Institute of Transportation Studies (UC ITS). Researchers at UC ITS have used the stated-preference national survey to produce a series of estimates for new vehicle choice models. Three of these models are presented in this paper. The first two of the models were estimated using only the data from the national survey. The third model presented in this paper pools information from the national and California surveys to estimate a true national model for new vehicle choice.

  8. A comparative analysis of alternative fuels for the INEL vehicle fleet

    SciTech Connect

    Priebe, S.; Boyer, W.; Church, K.

    1992-11-01

    This report summarizes the results of a comparative systems analysis of various alternative fuels for use in the buses, mid-size vehicles, and automobiles that make up the vehicle fleet at the Idaho National Engineering Laboratory (INEL). The study was performed as part of the Laboratory Directed Research and Development (LDRD) Program for EG&G Idaho, Inc. Regulations will require the INEL to reduce total gasoline and diesel fuel use 10% by 1995 compared with 1991 levels, and will require that 50% of all new vehicles be fueled by some type of alternative fuel by 1998. A model was developed to analyze how these goals could be achieved, and what the cost would be to implement the goals.

  9. A comparative analysis of alternative fuels for the INEL vehicle fleet

    SciTech Connect

    Priebe, S.; Boyer, W.; Church, K.

    1992-11-01

    This report summarizes the results of a comparative systems analysis of various alternative fuels for use in the buses, mid-size vehicles, and automobiles that make up the vehicle fleet at the Idaho National Engineering Laboratory (INEL). The study was performed as part of the Laboratory Directed Research and Development (LDRD) Program for EG G Idaho, Inc. Regulations will require the INEL to reduce total gasoline and diesel fuel use 10% by 1995 compared with 1991 levels, and will require that 50% of all new vehicles be fueled by some type of alternative fuel by 1998. A model was developed to analyze how these goals could be achieved, and what the cost would be to implement the goals.

  10. 76 FR 67287 - Alternative Fuel Transportation Program; Alternative Fueled Vehicle Credit Program (Subpart F...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-31

    ..., 1996. 61 FR 10622. EPAct 1992 requires that SFP fleets acquire AFVs as minimum percentages of their... vehicle.'' \\13\\ 61 FR 10630-31. \\14\\ 75 FR 58078, 58111 (Sept. 23, 2010); See also 75 FR 25324, 25665 (May 7, 2010); 76 FR 39478, 39499 (July 6, 2011). 3. Automobile Because the AFTP definitions...

  11. Alternative fuel vehicles for the Federal fleet: Results of the 5-year planning process. Executive Order 12759, Section 11

    SciTech Connect

    Not Available

    1992-08-01

    This report describes five-year plans for acquisition of alternative fuel vehicles (AFVs) by the Federal agencies. These plans will be used to encourage Original Equipment Manufacturers (OEMs) to expand the variety of AFVs produced, reduce the incremental cost of AFVs, and to encourage fuel suppliers to expand the alternative fuel infrastructure and alternative fuel availability. This effort supplements and extends the demonstration and testing of AFVs established by the Department of Energy under the alternative Motor Fuels Act of 1988.

  12. Analysis of operational, institutional and international limitations for alternative fuel vehicles and technologies: Means/methods for implementing changes

    NASA Astrophysics Data System (ADS)

    1992-07-01

    This project focused upon the development of an approach to assist public fleet managers in evaluating the characteristics and availability of alternative fuels (AF's) and alternative fuel vehicles (AFV's) that will serve as possible replacements for vehicles currently serving the needs of various public entities. Also of concern were the institutional/international limitations for alternative fuels and alternative fuel vehicles. The City of Detroit and other public agencies in the Detroit area were the particular focus for the activities. As the development and initial stages of use of alternative fuels and alternative fuel vehicles proceeds, there will be an increasing need to provide information and guidance to decision-makers regarding differences in requirements and features of these fuels and vehicles. There will be differences in requirements for servicing, managing, and regulating. There will also be misunderstanding and misperception. There have been volumes of data collected on AFV'S, and as technology is improved, new data is constantly added. There are not, however, condensed and effective sources of information for public vehicle fleet managers on vehicle and equipment sources, characteristics, performance, costs, and environmental benefits. While theoretical modeling of public fleet requirements has been done, there do not seem to be readily available 'practical'. There is a need to provide the best possible information and means to minimize the problems for introducing the effective use of alternative fuels and alternative fuel vehicles.

  13. Analysis of operational, institutional and international limitations for alternative fuel vehicles and technologies: Means/methods for implementing changes

    SciTech Connect

    Not Available

    1992-07-01

    This project focused upon the development of an approach to assist public fleet managers in evaluating the characteristics and availability of alternative fuels (AF`s) and alternative fuel vehicles (AFV`s) that will serve as possible replacements for vehicles currently serving the needs of various public entities. Also of concern were the institutional/international limitations for alternative fuels and alternative fuel vehicles. The City of Detroit and other public agencies in the Detroit area were the particular focus for the activities. As the development and initial stages of use of alternative fuels and alternative fuel vehicles proceeds, there will be an increasing need to provide information and guidance to decision-makers regarding differences in requirements and features of these fuels and vehicles. There wig be true differences in requirements for servicing, managing, and regulating. There will also be misunderstanding and misperception. There have been volumes of data collected on AFV`S, and as technology is improved, new data is constantly added. There are not, however, condensed and effective sources of information for public vehicle fleet managers on vehicle and equipment sources, characteristics, performance, costs, and environmental benefits. While theoretical modeling of public fleet requirements has been done, there do not seem to be readily available ``practical``. There is a need to provide the best possible information and means to minimize the problems for introducing the effective use of alternative fuels and alternative fuel vehicles.

  14. Toxic emissions from mobile sources: a total fuel-cycle analysis for conventional and alternative fuel vehicles.

    PubMed

    Winebrake, J J; Wang, M Q; He, D

    2001-07-01

    Mobile sources are among the largest contributors of four hazardous air pollutants--benzene, 1,3-butadiene, acetaldehyde, and formaldehyde--in urban areas. At the same time, federal and state governments are promoting the use of alternative fuel vehicles as a means to curb local air pollution. As yet, the impact of this movement toward alternative fuels with respect to toxic emissions has not been well studied. The purpose of this paper is to compare toxic emissions from vehicles operating on a variety of fuels, including reformulated gasoline (RFG), natural gas, ethanol, methanol, liquid petroleum gas (LPG), and electricity. This study uses a version of Argonne National Laboratory's Greenhouse Gas, Regulated Emissions, and Energy Use in Transportation (GREET) model, appropriately modified to estimate toxic emissions. The GREET model conducts a total fuel-cycle analysis that calculates emissions from both downstream (e.g., operation of the vehicle) and upstream (e.g., fuel production and distribution) stages of the fuel cycle. We find that almost all of the fuels studied reduce 1,3-butadiene emissions compared with conventional gasoline (CG). However, the use of ethanol in E85 (fuel made with 85% ethanol) or RFG leads to increased acetaldehyde emissions, and the use of methanol, ethanol, and compressed natural gas (CNG) may result in increased formaldehyde emissions. When the modeling results for the four air toxics are considered together with their cancer risk factors, all the fuels and vehicle technologies show air toxic emission reduction benefits. PMID:15658225

  15. TransAtlas: A U.S. Map of Fuels and Vehicles Data from the Alternative Fuels and Advanced Vehicles (AFDC)

    DOE Data Explorer

    Data stored in the Alternative Fuels and Advanced Vehicles Data Center (AFDC) can provide insight to policymakers, entrepreneurs, fuel users, and other parties interested in reducing petroleum consumption. The National Renewable Energy Laboratory analyzes transportation-related data and identifies trends related to alternative fuels and vehicles. These analyses are posted in the AFDC as technical reports and Excel spreadsheets that can be manipulated by outside users. To provide the most robust collection of information possible, this section also includes links to data analyses from outside the AFDC. These sources are noted in each file. There are also interactive map applications and some PDF documents.

  16. Alternative fuel vehicles for the state fleets: Results of the 5-year planning process

    SciTech Connect

    Not Available

    1993-05-01

    This report documents the first attempt by the Department of Energy (DOE) to work with states to prepare five-year Alternative Fuel Vehicle (AFV) acquisition plans to identify alternative fuels and vehicles that they are planning on or would like to acquire. The DOE Regional Support Offices (RSOs) met with representatives from the states in their regions and assisted in the preparation of the plans. These plans will be used in conjunction with previously gathered Federal five-year plans to encourage Original Equipment Manufacturers (OEMs) to expand the variety of AFVs produced, reduce the incremental cost of AFVs, and to encourage fuel suppliers to expand the alternative fuel infrastructure and alternative fuel availability. By identifying the needs and requirements of state fleets, DOE can begin to describe the specific nature of the future state fleets, and establish a defined market for OEMs and fuel suppliers. DOE initiated the development and collection of the state five-year plans before the signing of the Energy Policy Act, to raise the awareness of states that they will be required by law to acquire AFVs. As a result, several states that had no AFV acquisition plan when queried have developed or are in the process of developing plans. The DOE and its RSOs are still working with the states to develop and refine acquisition plans, and this report should be treated as documentation of work in progress.

  17. Fuel Properties Database from the Alternative Fuels and Advanced Vehicles Data Center (AFDC)

    DOE Data Explorer

    This database contains information on advanced petroleum and non-petroleum based fuels, as well as key data on advanced compression ignition fuels. Included are data on physical, chemical, operational, environmental, safety, and health properties. These data result from tests conducted according to standard methods (mostly American Society for Testing and Materials (ASTM). The source and test methods for each fuel data set are provided with the information. The database can be searched in various ways and can output numbers or explanatory text. Heavy vehicle chassis emission data are also available for some fuels.

  18. Successes and Challenges in the Resale of Alternative Fuel Vehicles: July 2001 - March 2002

    SciTech Connect

    Not Available

    2002-05-01

    This report provides the outcome of Dorfman & O'Neal's effort to examine the resale market for automobiles as it relates to the resale of late-model, original equipment manufacture (OEM), alternative fuel vehicles. Auctions provide an exceptionally rapid, effective, and efficient market for the transfer of property between buyers and sellers at reasonable prices. The first automobile auction in the United States was successful because used cars were in reasonably constant supply, were uniformly packaged, and were easily graded for quality. Also, the auction had sufficient volume to significantly lower the handling and transaction costs for wholesalers and dealers. To this day, the automobile auction industry conducts business primarily with registered wholesalers and dealers. Except for the U.S. General Services Administration (GSA) auctions and some consignment auctions, nearly all automobile auctions are closed to the public. The auction system represents a near-perfect market, validated by the lack of statistical price differences in value of specific model cars between various regions of the country. However, specialty cars may be subject to arbitrage. The buyer purchases the vehicle believing that it can be sold immediately at a profit in another region. A variety of vehicle pricing services are available to serve the consumer and the wholesale automobile industry. Each has a different philosophy for collecting, analyzing, and reporting data. ''The Automobile Lease Guide'' (ALG) is clearly the authority on vehicle residual values. Auction companies continue to apply automated technologies to lower transaction costs. Automated technologies are the only way to track the increasing number of transactions in the growing industry. Nevertheless, people-to-people relationships remain critical to the success of all auction companies. Our assessment is that everyone in the secondary automobile market is aware of alternative fuel vehicles (AFVs) and is interested to

  19. A comparison of estimates of cost-effectiveness of alternative fuels and vehicles for reducing emissions

    SciTech Connect

    Hadder, G.R.

    1995-11-01

    The cost-effectiveness ratio (CER) is a measure of the monetary value of resources expended to obtain reductions in emissions of air pollutants. The CER can lead to selection of the most effective sequence of pollution reduction options. Derived with different methodologies and technical assumptions, CER estimates for alternative fuel vehicles (AFVs) have varied widely among pervious studies. In one of several explanations of LCER differences, this report uses a consistent basis for fuel price to re-estimate CERs for AFVs in reduction of emissions of criteria pollutants, toxics, and greenhouse gases. The re-estimated CERs for a given fuel type have considerable differences due to non-fuel costs and emissions reductions, but the CERs do provide an ordinal sense of cost-effectiveness. The category with CER less than $5,000 per ton includes compressed natural gas and ed Petroleum gas vehicles; and E85 flexible-fueled vehicles (with fuel mixture of 85 percent cellulose-derived ethanol in gasoline). The E85 system would be much less attractive if corn-derived ethanol were used. The CER for E85 (corn-derived) is higher with higher values placed on the reduction of gas emissions. CER estimates are relative to conventional vehicles fueled with Phase 1 California reformulated gasoline (RFG). The California Phase 2 RFG program will be implemented before significant market penetration by AFVs. CERs could be substantially greater if they are calculated incremental to the Phase 2 RFG program. Regression analysis suggests that different assumptions across studies can sometimes have predictable effects on the CER estimate of a particular AFV type. The relative differences in cost and emissions reduction assumptions can be large, and the effect of these differences on the CER estimate is often not predictable. Decomposition of CERs suggests that methodological differences can make large contributions to CER differences among studies.

  20. Alternative Fuels Data Center

    SciTech Connect

    2013-06-01

    Fact sheet describes the Alternative Fuels Data Center, which provides information, data, and tools to help fleets and other transportation decision makers find ways to reduce petroleum consumption through the use of alternative and renewable fuels, advanced vehicles, and other fuel-saving measures.

  1. Greenhouse gas emission impacts of alternative-fueled vehicles: Near-term vs. long-term technology options

    SciTech Connect

    Wang, M.Q.

    1997-05-20

    Alternative-fueled vehicle technologies have been promoted and used for reducing petroleum use, urban air pollution, and greenhouse gas emissions. In this paper, greenhouse gas emission impacts of near-term and long-term light-duty alternative-fueled vehicle technologies are evaluated. Near-term technologies, available now, include vehicles fueled with M85 (85% methanol and 15% gasoline by volume), E85 (85% ethanol that is produced from corn and 15% gasoline by volume), compressed natural gas, and liquefied petroleum gas. Long-term technologies, assumed to be available around the year 2010, include battery-powered electric vehicles, hybrid electric vehicles, vehicles fueled with E85 (ethanol produced from biomass), and fuel-cell vehicles fueled with hydrogen or methanol. The near-term technologies are found to have small to moderate effects on vehicle greenhouse gas emissions. On the other hand, the long-term technologies, especially those using renewable energy (such as biomass and solar energy), have great potential for reducing vehicle greenhouse gas emissions. In order to realize this greenhouse gas emission reduction potential, R and D efforts must continue on the long-term technology options so that they can compete successfully with conventional vehicle technology.

  2. Reformers for the production of hydrogen from methanol and alternative fuels for fuel cell powered vehicles

    SciTech Connect

    Kumar, R.; Ahmed, S.; Krumpelt, M.; Myles, K.M.

    1992-08-01

    The objective of this study was (i) to assess the present state of technology of reformers that convert methanol (or other alternative fuels) to a hydrogen-rich gas mixture for use in a fuel cell, and (ii) to identify the R&D needs for developing reformers for transportation applications. Steam reforming and partial oxidation are the two basic types of fuel reforming processes. The former is endothermic while the latter is exothermic. Reformers are therefore typically designed as heat exchange systems, and the variety of designs used includes shell-and-tube, packed bed, annular, plate, and cyclic bed types. Catalysts used include noble metals and oxides of Cu, Zn, Cr, Al, Ni, and La. For transportation applications a reformer must be compact, lightweight, and rugged. It must also be capable of rapid start-up and good dynamic performance responsive to fluctuating loads. A partial oxidation reformer is likely to be better than a steam reformer based on these considerations, although its fuel conversion efficiency is expected to be lower than that of a steam reformer. A steam reformer better lends itself to thermal integration with the fuel cell system; however, the thermal independence of the reformer from the fuel cell stack is likely to yield much better dynamic performance of the reformer and the fuel cell propulsion power system. For both steam reforming and partial oxidation reforming, research is needed to develop compact, fast start-up, and dynamically responsive reformers. For transportation applications, steam reformers are likely to prove best for fuel cell/battery hybrid power systems, and partial oxidation reformers are likely to be the choice for stand-alone fuel cell power systems.

  3. Reformers for the production of hydrogen from methanol and alternative fuels for fuel cell powered vehicles

    SciTech Connect

    Kumar, R.; Ahmed, S.; Krumpelt, M.; Myles, K.M.

    1992-08-01

    The objective of this study was (i) to assess the present state of technology of reformers that convert methanol (or other alternative fuels) to a hydrogen-rich gas mixture for use in a fuel cell, and (ii) to identify the R D needs for developing reformers for transportation applications. Steam reforming and partial oxidation are the two basic types of fuel reforming processes. The former is endothermic while the latter is exothermic. Reformers are therefore typically designed as heat exchange systems, and the variety of designs used includes shell-and-tube, packed bed, annular, plate, and cyclic bed types. Catalysts used include noble metals and oxides of Cu, Zn, Cr, Al, Ni, and La. For transportation applications a reformer must be compact, lightweight, and rugged. It must also be capable of rapid start-up and good dynamic performance responsive to fluctuating loads. A partial oxidation reformer is likely to be better than a steam reformer based on these considerations, although its fuel conversion efficiency is expected to be lower than that of a steam reformer. A steam reformer better lends itself to thermal integration with the fuel cell system; however, the thermal independence of the reformer from the fuel cell stack is likely to yield much better dynamic performance of the reformer and the fuel cell propulsion power system. For both steam reforming and partial oxidation reforming, research is needed to develop compact, fast start-up, and dynamically responsive reformers. For transportation applications, steam reformers are likely to prove best for fuel cell/battery hybrid power systems, and partial oxidation reformers are likely to be the choice for stand-alone fuel cell power systems.

  4. Total fuel-cycle analysis of heavy-duty vehicles using biofuels and natural gas-based alternative fuels.

    PubMed

    Meyer, Patrick E; Green, Erin H; Corbett, James J; Mas, Carl; Winebrake, James J

    2011-03-01

    Heavy-duty vehicles (HDVs) present a growing energy and environmental concern worldwide. These vehicles rely almost entirely on diesel fuel for propulsion and create problems associated with local pollution, climate change, and energy security. Given these problems and the expected global expansion of HDVs in transportation sectors, industry and governments are pursuing biofuels and natural gas as potential alternative fuels for HDVs. Using recent lifecycle datasets, this paper evaluates the energy and emissions impacts of these fuels in the HDV sector by conducting a total fuel-cycle (TFC) analysis for Class 8 HDVs for six fuel pathways: (1) petroleum to ultra low sulfur diesel; (2) petroleum and soyoil to biodiesel (methyl soy ester); (3) petroleum, ethanol, and oxygenate to e-diesel; (4) petroleum and natural gas to Fischer-Tropsch diesel; (5) natural gas to compressed natural gas; and (6) natural gas to liquefied natural gas. TFC emissions are evaluated for three greenhouse gases (GHGs) (carbon dioxide, nitrous oxide, and methane) and five other pollutants (volatile organic compounds, carbon monoxide, nitrogen oxides, particulate matter, and sulfur oxides), along with estimates of total energy and petroleum consumption associated with each of the six fuel pathways. Results show definite advantages with biodiesel and compressed natural gas for most pollutants, negligible benefits for e-diesel, and increased GHG emissions for liquefied natural gas and Fischer-Tropsch diesel (from natural gas). PMID:21416755

  5. Alternate fuels

    SciTech Connect

    Ryan, T.W.; Worthen, R.P.

    1981-02-01

    The escalating oil prices and shortages of petroleum based fuels for transportation have made research work on various fuel alternatives, especially for transportation engines, a priority of both the private and public sectors. This book contains 18 papers on this subject. The range of options from the development of completely non-petroleum-based fuels and engines to the use of various non-petroleum gasoline and diesel fuel extenders and improvers are discussed.

  6. Demonstration of Alternative Fuel, Light and Heavy Duty Vehicles in State and Municipal Vehicle Fleets

    SciTech Connect

    Kennedy, John H.; Polubiatko, Peter; Tucchio, Michael A.

    2002-02-06

    This project involved the purchase of two Compressed Natural Gas School Buses and two electric Ford Rangers to demonstrate their viability in a municipal setting. Operational and maintenance data were collected for analysis. In addition, an educational component was undertaken with middle school children. The children observed and calculated how electric vehicles could minimize pollutants through comparison to conventionally powered vehicles.

  7. ALTERNATIVE FUELS RESEARCH STRATEGY

    EPA Science Inventory

    The purpose of this document was to lay a foundation for developing the scientific information needed to compare the benefits and risks of various motor vehicle fuels, especially alternative and reformulated fuels in relation to conventional gasoline and diesel fuels. Among the f...

  8. Alternative fuels

    NASA Technical Reports Server (NTRS)

    Grobman, J. S.; Butze, H. F.; Friedman, R.; Antoine, A. C.; Reynolds, T. W.

    1977-01-01

    Potential problems related to the use of alternative aviation turbine fuels are discussed and both ongoing and required research into these fuels is described. This discussion is limited to aviation turbine fuels composed of liquid hydrocarbons. The advantages and disadvantages of the various solutions to the problems are summarized. The first solution is to continue to develop the necessary technology at the refinery to produce specification jet fuels regardless of the crude source. The second solution is to minimize energy consumption at the refinery and keep fuel costs down by relaxing specifications.

  9. Outlook for alternative transportation fuels

    SciTech Connect

    Gushee, D.E.

    1996-12-31

    This presentation provides a brief review of regulatory issues and Federal programs regarding alternative fuel use in automobiles. A number of U.S. DOE initiatives and studies aimed at increasing alternative fuels are outlined, and tax incentives in effect at the state and Federal levels are discussed. Data on alternative fuel consumption and alternative fuel vehicle use are also presented. Despite mandates, tax incentives, and programs, it is concluded alternative fuels will have minimal market penetration. 7 refs., 5 tabs.

  10. Cost-effectiveness of controlling emissions for various alternative-fuel vehicle types, with vehicle and fuel price subsidies estimated on the basis of monetary values of emission reductions

    SciTech Connect

    Wang, M.Q.

    1993-12-31

    Emission-control cost-effectiveness is estimated for ten alternative-fuel vehicle (AFV) types (i.e., vehicles fueled with reformulated gasoline, M85 flexible-fuel vehicles [FFVs], M100 FFVs, dedicated M85 vehicles, dedicated M100 vehicles, E85 FFVS, dual-fuel liquefied petroleum gas vehicles, dual-fuel compressed natural gas vehicles [CNGVs], dedicated CNGVs, and electric vehicles [EVs]). Given the assumptions made, CNGVs are found to be most cost-effective in controlling emissions and E85 FFVs to be least cost-effective, with the other vehicle types falling between these two. AFV cost-effectiveness is further calculated for various cases representing changes in costs of vehicles and fuels, AFV emission reductions, and baseline gasoline vehicle emissions, among other factors. Changes in these parameters can change cost-effectiveness dramatically. However, the rank of the ten AFV types according to their cost-effectiveness remains essentially unchanged. Based on assumed dollars-per-ton emission values and estimated AFV emission reductions, the per-vehicle monetary value of emission reductions is calculated for each AFV type. Calculated emission reduction values ranged from as little as $500 to as much as $40,000 per vehicle, depending on AFV type, dollar-per-ton emission values, and baseline gasoline vehicle emissions. Among the ten vehicle types, vehicles fueled with reformulated gasoline have the lowest per-vehicle value, while EVs have the highest per-vehicle value, reflecting the magnitude of emission reductions by these vehicle types. To translate the calculated per-vehicle emission reduction values to individual AFV users, AFV fuel or vehicle price subsidies are designed to be equal to AFV emission reduction values. The subsidies designed in this way are substantial. In fact, providing the subsidies to AFVs would change most AFV types from net cost increases to net cost decreases, relative to conventional gasoline vehicles.

  11. Multi-level multi-criteria analysis of alternative fuels for waste collection vehicles in the United States.

    PubMed

    Maimoun, Mousa; Madani, Kaveh; Reinhart, Debra

    2016-04-15

    Historically, the U.S. waste collection fleet was dominated by diesel-fueled waste collection vehicles (WCVs); the growing need for sustainable waste collection has urged decision makers to incorporate economically efficient alternative fuels, while mitigating environmental impacts. The pros and cons of alternative fuels complicate the decisions making process, calling for a comprehensive study that assesses the multiple factors involved. Multi-criteria decision analysis (MCDA) methods allow decision makers to select the best alternatives with respect to selection criteria. In this study, two MCDA methods, Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) and Simple Additive Weighting (SAW), were used to rank fuel alternatives for the U.S. waste collection industry with respect to a multi-level environmental and financial decision matrix. The environmental criteria consisted of life-cycle emissions, tail-pipe emissions, water footprint (WFP), and power density, while the financial criteria comprised of vehicle cost, fuel price, fuel price stability, and fueling station availability. The overall analysis showed that conventional diesel is still the best option, followed by hydraulic-hybrid WCVs, landfill gas (LFG) sourced natural gas, fossil natural gas, and biodiesel. The elimination of the WFP and power density criteria from the environmental criteria ranked biodiesel 100 (BD100) as an environmentally better alternative compared to other fossil fuels (diesel and natural gas). This result showed that considering the WFP and power density as environmental criteria can make a difference in the decision process. The elimination of the fueling station and fuel price stability criteria from the decision matrix ranked fossil natural gas second after LFG-sourced natural gas. This scenario was found to represent the status quo of the waste collection industry. A sensitivity analysis for the status quo scenario showed the overall ranking of diesel and

  12. Analysis of operational, institutional and international limitations for alternative fuel vehicles and technologies: Means/methods for implementing changes. [Public fleet groups--information needs

    SciTech Connect

    Not Available

    1992-07-01

    This project focused upon the development of an approach to assist public fleet managers in evaluating the characteristics and availability of alternative fuels (AF's) and alternative fuel vehicles (AFV's) that will serve as possible replacements for vehicles currently serving the needs of various public entities. Also of concern were the institutional/international limitations for alternative fuels and alternative fuel vehicles. The City of Detroit and other public agencies in the Detroit area were the particular focus for the activities. As the development and initial stages of use of alternative fuels and alternative fuel vehicles proceeds, there will be an increasing need to provide information and guidance to decision-makers regarding differences in requirements and features of these fuels and vehicles. There wig be true differences in requirements for servicing, managing, and regulating. There will also be misunderstanding and misperception. There have been volumes of data collected on AFV'S, and as technology is improved, new data is constantly added. There are not, however, condensed and effective sources of information for public vehicle fleet managers on vehicle and equipment sources, characteristics, performance, costs, and environmental benefits. While theoretical modeling of public fleet requirements has been done, there do not seem to be readily available practical''. There is a need to provide the best possible information and means to minimize the problems for introducing the effective use of alternative fuels and alternative fuel vehicles.

  13. Consumer Convenience and the Availability of Retail Stations as a Market Barrier for Alternative Fuel Vehicles: Preprint

    SciTech Connect

    Melaina, M.; Bremson, J.; Solo, K.

    2013-01-01

    The availability of retail stations can be a significant barrier to the adoption of alternative fuel light-duty vehicles in household markets. This is especially the case during early market growth when retail stations are likely to be sparse and when vehicles are dedicated in the sense that they can only be fuelled with a new alternative fuel. For some bi-fuel vehicles, which can also fuel with conventional gasoline or diesel, limited availability will not necessarily limit vehicle sales but can limit fuel use. The impact of limited availability on vehicle purchase decisions is largely a function of geographic coverage and consumer perception. In this paper we review previous attempts to quantify the value of availability and present results from two studies that rely upon distinct methodologies. The first study relies upon stated preference data from a discrete choice survey and the second relies upon a station clustering algorithm and a rational actor value of time framework. Results from the two studies provide an estimate of the discrepancy between stated preference cost penalties and a lower bound on potential revealed cost penalties.

  14. Alternative fuel transit buses

    SciTech Connect

    Motta, R.; Norton, P.; Kelly, K.

    1996-10-01

    The National Renewable Energy Laboratory (NREL) is a U.S. Department of Energy (DOE) national laboratory; this project was funded by DOE. One of NREL`s missions is to objectively evaluate the performance, emissions, and operating costs of alternative fuel vehicles so fleet managers can make informed decisions when purchasing them. Alternative fuels have made greater inroads into the transit bus market than into any other. Each year, the American Public Transit Association (APTA) surveys its members on their inventory and buying plans. The latest APTA data show that about 4% of the 50,000 transit buses in its survey run on an alternative fuel. Furthermore, 1 in 5 of the new transit buses that members have on order are alternative fuel buses. This program was designed to comprehensively and objectively evaluate the alternative fuels in use in the industry.

  15. Alternative Fuels Infrastructure Development

    SciTech Connect

    Bloyd, Cary N.; Stork, Kevin

    2011-02-01

    This summary reviews the status of alternate transportation fuels development and utilization in Thailand. Thailand has continued to work to promote increased consumption of gasohol especially for highethanol content fuels like E85. The government has confirmed its effort to draw up incentives for auto makers to invest in manufacturing E85-compatible vehicles in the country. An understanding of the issues and experiences associated with the introduction of alternative fuels in other countries can help the US in anticipation potential problems as it introduces new automotive fuels.

  16. Atmospheric Photochemistry Studies of Pollutant Emissions from Transportation Vehicles Operating on Alternative Fuels

    SciTech Connect

    Jeffries, H.; Sexton, K.; Yu, J.

    1998-07-01

    This project was undertaken with the goal of improving our ability to predict the changes in urban ozone resulting from the widespread use of alternative fuels in automobiles. This report presents the results in detail.

  17. Alternative Fuel Vehicle Adoption Increases Fleet Gasoline Consumption and Greenhouse Gas Emissions under United States Corporate Average Fuel Economy Policy and Greenhouse Gas Emissions Standards.

    PubMed

    Jenn, Alan; Azevedo, Inês M L; Michalek, Jeremy J

    2016-03-01

    The United States Corporate Average Fuel Economy (CAFE) standards and Greenhouse Gas (GHG) Emission standards are designed to reduce petroleum consumption and GHG emissions from light-duty passenger vehicles. They do so by requiring automakers to meet aggregate criteria for fleet fuel efficiency and carbon dioxide (CO2) emission rates. Several incentives for manufacturers to sell alternative fuel vehicles (AFVs) have been introduced in recent updates of CAFE/GHG policy for vehicles sold from 2012 through 2025 to help encourage a fleet technology transition. These incentives allow automakers that sell AFVs to meet less-stringent fleet efficiency targets, resulting in increased fleet-wide gasoline consumption and emissions. We derive a closed-form expression to quantify these effects. We find that each time an AFV is sold in place of a conventional vehicle, fleet emissions increase by 0 to 60 t of CO2 and gasoline consumption increases by 0 to 7000 gallons (26,000 L), depending on the AFV and year of sale. Using projections for vehicles sold from 2012 to 2025 from the Energy Information Administration, we estimate that the CAFE/GHG AFV incentives lead to a cumulative increase of 30 to 70 million metric tons of CO2 and 3 to 8 billion gallons (11 to 30 billion liters) of gasoline consumed over the vehicles' lifetimes - the largest share of which is due to legacy GHG flex-fuel vehicle credits that expire in 2016. These effects may be 30-40% larger in practice than we estimate here due to optimistic laboratory vehicle efficiency tests used in policy compliance calculations. PMID:26867100

  18. Alternatives to traditional transportation fuels: An overview

    SciTech Connect

    Not Available

    1994-06-01

    This report presents the first compilation by the Energy Information Administration (EIA) of information on alternatives to gasoline and diesel fuel. The purpose of the report is: (1) to provide background information on alternative transportation fuels and replacement fuels compared with gasoline and diesel fuel, and (2) to furnish preliminary estimates of alternative transportation fuels and alternative fueled vehicles as required by the Energy Policy Act of 1992 (EPACT), Title V, Section 503, ``Replacement Fuel Demand Estimates and Supply Information.`` Specifically, Section 503 requires the EIA to report annually on: (1) the number and type of alternative fueled vehicles in existence the previous year and expected to be in use the following year, (2) the geographic distribution of these vehicles, (3) the amounts and types of replacement fuels consumed, and (4) the greenhouse gas emissions likely to result from replacement fuel use. Alternative fueled vehicles are defined in this report as motorized vehicles licensed for on-road use, which may consume alternative transportation fuels. (Alternative fueled vehicles may use either an alternative transportation fuel or a replacement fuel.) The intended audience for the first section of this report includes the Secretary of Energy, the Congress, Federal and State agencies, the automobile manufacturing industry, the transportation fuel manufacturing and distribution industries, and the general public. The second section is designed primarily for persons desiring a more technical explanation of and background for the issues surrounding alternative transportation fuels.

  19. Assessment of costs and benefits of flexible and alternative fuel use in the U.S. transportation sector. Technical report fourteen: Market potential and impacts of alternative fuel use in light-duty vehicles -- A 2000/2010 analysis

    SciTech Connect

    1996-01-01

    In this report, estimates are provided of the potential, by 2010, to displace conventional light-duty vehicle motor fuels with alternative fuels--compressed natural gas (CNG), liquefied petroleum gas (LPG), methanol from natural gas, ethanol from grain and from cellulosic feedstocks, and electricity--and with replacement fuels such as oxygenates added to gasoline. The 2010 estimates include the motor fuel displacement resulting both from government programs (including the Clean Air Act and EPACT) and from potential market forces. This report also provides an estimate of motor fuel displacement by replacement and alterative fuels in the year 2000. However, in contrast to the 2010 estimates, the year 2000 estimate is restricted to an accounting of the effects of existing programs and regulations. 27 figs., 108 tabs.

  20. Hydrogen vehicle fueling station

    SciTech Connect

    Daney, D.E.; Edeskuty, F.J.; Daugherty, M.A.

    1995-09-01

    Hydrogen fueling stations are an essential element in the practical application of hydrogen as a vehicle fuel, and a number of issues such as safety, efficiency, design, and operating procedures can only be accurately addressed by a practical demonstration. Regardless of whether the vehicle is powered by an internal combustion engine or fuel cell, or whether the vehicle has a liquid or gaseous fuel tank, the fueling station is a critical technology which is the link between the local storage facility and the vehicle. Because most merchant hydrogen delivered in the US today (and in the near future) is in liquid form due to the overall economics of production and delivery, we believe a practical refueling station should be designed to receive liquid. Systems studies confirm this assumption for stations fueling up to about 300 vehicles. Our fueling station, aimed at refueling fleet vehicles, will receive hydrogen as a liquid and dispense it as either liquid, high pressure gas, or low pressure gas. Thus, it can refuel any of the three types of tanks proposed for hydrogen-powered vehicles -- liquid, gaseous, or hydride. The paper discusses the fueling station design. Results of a numerical model of liquid hydrogen vehicle tank filling, with emphasis on no vent filling, are presented to illustrate the usefulness of the model as a design tool. Results of our vehicle performance model illustrate our thesis that it is too early to judge what the preferred method of on-board vehicle fuel storage will be in practice -- thus our decision to accommodate all three methods.

  1. Proceedings of the 1993 Windsor Workshop on Alternative Fuels

    SciTech Connect

    Not Available

    1993-10-01

    This report contains viewgraph papers on the following topics on alternative fuels: availability of alternative fueled engines and vehicles; emerging technologies; overcoming barriers to alternative fuels commercialization; infrastructure issues; and new initiatives in research and development.

  2. Vehicle fuel system

    DOEpatents

    Risse, John T.; Taggart, James C.

    1976-01-01

    A vehicle fuel system comprising a plurality of tanks, each tank having a feed and a return conduit extending into a lower portion thereof, the several feed conduits joined to form one supply conduit feeding fuel to a supply pump and using means, unused fuel being returned via a return conduit which branches off to the several return conduits.

  3. 49 CFR 538.9 - Dual fuel vehicle incentive.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION MANUFACTURING INCENTIVES FOR ALTERNATIVE FUEL VEHICLES § 538.9 Dual fuel vehicle incentive. The application of 49 U.S.C. 32905(b) and (d) to qualifying dual fuel vehicles... 49 Transportation 6 2014-10-01 2014-10-01 false Dual fuel vehicle incentive. 538.9 Section...

  4. 49 CFR 538.9 - Dual fuel vehicle incentive.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION MANUFACTURING INCENTIVES FOR ALTERNATIVE FUEL VEHICLES § 538.9 Dual fuel vehicle incentive. The application of 49 U.S.C. 32905(b) and (d) to qualifying dual fuel vehicles... 49 Transportation 6 2010-10-01 2010-10-01 false Dual fuel vehicle incentive. 538.9 Section...

  5. 49 CFR 538.9 - Dual fuel vehicle incentive.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION MANUFACTURING INCENTIVES FOR ALTERNATIVE FUEL VEHICLES § 538.9 Dual fuel vehicle incentive. The application of 49 U.S.C. 32905(b) and (d) to qualifying dual fuel vehicles... 49 Transportation 6 2012-10-01 2012-10-01 false Dual fuel vehicle incentive. 538.9 Section...

  6. Measuring the distribution of equity in terms of energy, environmental, and economic costs in the fuel cycles of alternative fuel vehicles with hydrogen pathway scenarios

    NASA Astrophysics Data System (ADS)

    Meyer, Patrick E.

    Numerous analyses exist which examine the energy, environmental, and economic tradeoffs between conventional gasoline vehicles and hydrogen fuel cell vehicles powered by hydrogen produced from a variety of sources. These analyses are commonly referred to as "E3" analyses because of their inclusion of Energy, Environmental, and Economic indicators. Recent research as sought a means to incorporate social Equity into E3 analyses, thus producing an "E4" analysis. However, E4 analyses in the realm of energy policy are uncommon, and in the realm of alternative transportation fuels, E4 analyses are extremely rare. This dissertation discusses the creation of a novel E4 simulation tool usable to weigh energy, environmental, economic, and equity trade-offs between conventional gasoline vehicles and alternative fuel vehicles, with specific application to hydrogen fuel cell vehicles. The model, dubbed the F uel Life-cycle Analysis of Solar Hydrogen -- Energy, Environment, Economic & Equity model, or FLASH-E4, is a total fuel-cycle model that combines energy, environmental, and economic analysis methodologies with the addition of an equity analysis component. The model is capable of providing results regarding total fuel-cycle energy consumption, emissions production, energy and environmental cost, and level of social equity within a population in which low-income drivers use CGV technology and high-income drivers use a number of advanced hydrogen FCV technologies. Using theories of equity and social indicators conceptually embodied in the Lorenz Curve and Gini Index, the equity of the distribution of societal energy and environmental costs are measured for a population in which some drivers use CGVs and other drivers use FCVs. It is found, based on baseline input data representative of the United States (US), that the distribution of energy and environmental costs in a population in which some drivers use CGVs and other drivers use natural gas-based hydrogen FCVs can be

  7. Alternative Fuels Data Center (Fact Sheet)

    SciTech Connect

    Not Available

    2013-07-01

    Fact sheet describes the Alternative Fuels Data Center, which provides information, data, and tools to help fleets and other transportation decision makers find ways to reduce petroleum consumption through the use of alternative and renewable fuels, advanced vehicles, and other fuel-saving measures.

  8. SEMI-VOLATILE ORGANIC COMPOUNDS FROM VEHICLES POWERED BY GASOLINE, DIESEL AND ALTERNATIVE FUELS: EMISSIONS AND FIELD MEASUREMENTS

    EPA Science Inventory

    This study will result in the development of a new method for the rapid measurement of SVOCs. The characterization of VOC and SVOC emissions of vehicles with different fuel types will improve our understanding of the processes leading to secondary organic aerosol pollution and...

  9. Electric vehicle propulsion alternatives

    NASA Technical Reports Server (NTRS)

    Secunde, R. R.; Schuh, R. M.; Beach, R. F.

    1983-01-01

    Propulsion technology development for electric vehicles is summarized. Analytical studies, technology evaluation, and the development of technology for motors, controllers, transmissions, and complete propulsion systems are included.

  10. 49 CFR 538.9 - Dual fuel vehicle incentive.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 6 2011-10-01 2011-10-01 false Dual fuel vehicle incentive. 538.9 Section 538.9... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION MANUFACTURING INCENTIVES FOR ALTERNATIVE FUEL VEHICLES § 538.9 Dual fuel vehicle incentive. The application of 49 U.S.C. 32905(b) and (d) to qualifying dual fuel...

  11. 49 CFR 538.9 - Dual fuel vehicle incentive.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 6 2013-10-01 2013-10-01 false Dual fuel vehicle incentive. 538.9 Section 538.9... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION MANUFACTURING INCENTIVES FOR ALTERNATIVE FUEL VEHICLES § 538.9 Dual fuel vehicle incentive. The application of 49 U.S.C. 32905(b) and (d) to qualifying dual fuel...

  12. Cost of Ownership and Well-to-Wheels Carbon Emissions/Oil Use of Alternative Fuels and Advanced Light-Duty Vehicle Technologies

    SciTech Connect

    Elgowainy, Mr. Amgad; Rousseau, Mr. Aymeric; Wang, Mr. Michael; Ruth, Mr. Mark; Andress, Mr. David; Ward, Jacob; Joseck, Fred; Nguyen, Tien; Das, Sujit

    2013-01-01

    The U.S. Department of Energy (DOE), Argonne National Laboratory (Argonne), and the National Renewable Energy Laboratory (NREL) updated their analysis of the well-to-wheels (WTW) greenhouse gases (GHG) emissions, petroleum use, and the cost of ownership (excluding insurance, maintenance, and miscellaneous fees) of vehicle technologies that have the potential to significantly reduce GHG emissions and petroleum consumption. The analyses focused on advanced light-duty vehicle (LDV) technologies such as plug-in hybrid, battery electric, and fuel cell electric vehicles. Besides gasoline and diesel, alternative fuels considered include natural gas, advanced biofuels, electricity, and hydrogen. The Argonne Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) and Autonomie models were used along with the Argonne and NREL H2A models.

  13. Alternative Fuels Infrastructure Development

    SciTech Connect

    Bloyd, Cary N.

    2010-06-30

    This summary reviews the status of alternate transportation fuels development and utilization in Thailand. An understanding of the issues and experiences associated with the introduction of alternative fuels in other countries can help the US in anticipation potential problems as it introduces new automotive fuels. Thailand is of particular interest since it introduced E20 to its commercial market in 2007 and the US is now considering introducing E20 into the US market.

  14. [Alternative fuel vehicles for clean cities]. Final report from the City of Philadelphia Managing Director`s Office

    SciTech Connect

    Hadalski, J.M.

    1995-09-30

    The City of Philadelphia was awarded a grant for the ``development of a Public Information Component for the Clean Cities Program involving alternative fuels usage within the city of Philadelphia and the surrounding counties in the Philadelphia region``. During the summer of 1993, it was felt that the public needed considerable information on the costs, benefits, emission data, conversion information, and infrastructure requirements. Embodied in the 1993 proposal was the notion that a model could be developed within some type of structure charged with the tasks of market introduction of alternative fuels in the Greater Philadelphia area in a concerted, comprehensive way. As originally envisioned, in executing this grant, the City had several objectives in mind. Among these were the following: the organizing of various media events to showcase alternative fuels usage; (2) to begin a networking process with fleet managers in the area; (3) to provide sources of information to fleet managers and others interested in, and concerned with the conversion to alternative fuels; (4) documentation on research and analysis associated with alternative fuels.

  15. Alternatives to traditional transportation fuels 1996

    SciTech Connect

    1997-12-01

    Interest in alternative transportation fuels (ATF`s) has increased in recent years due to the drives for cleaner air and less dependence upon foreign oil. This report, Alternatives to Traditional Transportation Fuels 1996, provides information on ATFs, as well as the vehicles that consume them.

  16. Alternative Fuel News, Vol. 2, No. 4

    SciTech Connect

    O'Connor, K.; Riley, C.; Raye, M.

    1998-11-30

    This issue of Alternative Fuel News highlights the accomplishments of the Clean Cities coalitions during the past 5 years. Now Clean Cities advocates in city after city across the US are building stations and driving alternative fuel vehicles, in addition to enhancing public awareness.

  17. Alternative aircraft fuels

    NASA Technical Reports Server (NTRS)

    Longwell, J. P.; Grobman, J.

    1978-01-01

    In connection with the anticipated impossibility to provide on a long-term basis liquid fuels derived from petroleum, an investigation has been conducted with the objective to assess the suitability of jet fuels made from oil shale and coal and to develop a data base which will allow optimization of future fuel characteristics, taking energy efficiency of manufacture and the tradeoffs in aircraft and engine design into account. The properties of future aviation fuels are examined and proposed solutions to problems of alternative fuels are discussed. Attention is given to the refining of jet fuel to current specifications, the control of fuel thermal stability, and combustor technology for use of broad specification fuels. The first solution is to continue to develop the necessary technology at the refinery to produce specification jet fuels regardless of the crude source.

  18. Emissions from ethanol and LPG fueled vehicles

    SciTech Connect

    Pitstick, M.E.

    1992-12-31

    This paper addresses the environmental concerns of using neat ethanol and liquified petroleum gas (LPG) as transportation fuels in the US Low-level blends of ethanol (10%) with gasoline have been used as fuels in the US for more than a decade, but neat ethanol (85% or more) has only been used extensively in Brazil. LPG, which consists mostly of propane, is already used extensively as a vehicle fuel in the US, but its use has been limited primarily to converted fleet vehicles. Increasing US interest in alternative fuels has raised the possibility of introducing neat ethanol vehicles into the market and expanding the number of LPG vehicles. Use of such vehicles and increased production and consumption of fuel ethanol and LPG will undoubtedly have environmental impacts. If the impacts are determined to be severe, they could act as barriers to the introduction of neat ethanol and LPG vehicles. Environmental concerns include exhaust and evaporative emissions and their impact on ozone formation and global warming, toxic emissions from fuel combustion and evaporation, and agricultural emissions from production of ethanol. The paper is not intended to be judgmental regarding the overall attractiveness of ethanol or LPG compared to other transportation fuels. The environmental concerns are reviewed and summarized, but the only conclusion reached is that there is no single concern that is likely to prevent the introduction of neat ethanol fueled vehicles or the increase in LPG fueled vehicles.

  19. Emissions from ethanol and LPG fueled vehicles

    SciTech Connect

    Pitstick, M.E.

    1992-01-01

    This paper addresses the environmental concerns of using neat ethanol and liquified petroleum gas (LPG) as transportation fuels in the US Low-level blends of ethanol (10%) with gasoline have been used as fuels in the US for more than a decade, but neat ethanol (85% or more) has only been used extensively in Brazil. LPG, which consists mostly of propane, is already used extensively as a vehicle fuel in the US, but its use has been limited primarily to converted fleet vehicles. Increasing US interest in alternative fuels has raised the possibility of introducing neat ethanol vehicles into the market and expanding the number of LPG vehicles. Use of such vehicles and increased production and consumption of fuel ethanol and LPG will undoubtedly have environmental impacts. If the impacts are determined to be severe, they could act as barriers to the introduction of neat ethanol and LPG vehicles. Environmental concerns include exhaust and evaporative emissions and their impact on ozone formation and global warming, toxic emissions from fuel combustion and evaporation, and agricultural emissions from production of ethanol. The paper is not intended to be judgmental regarding the overall attractiveness of ethanol or LPG compared to other transportation fuels. The environmental concerns are reviewed and summarized, but the only conclusion reached is that there is no single concern that is likely to prevent the introduction of neat ethanol fueled vehicles or the increase in LPG fueled vehicles.

  20. Alternative fuel information sources

    SciTech Connect

    Not Available

    1994-06-01

    This short document contains a list of more than 200 US sources of information (Name, address, phone number, and sometimes contact) related to the use of alternative fuels in automobiles and trucks. Electric-powered cars are also included.

  1. Hydrogen vehicle fueling station

    SciTech Connect

    Daney, D.E.; Edeskuty, F.J.; Daugherty, M.A.

    1996-12-31

    The authors describe a hydrogen vehicle fueling station that receives and stores hydrogen in liquid form and dispenses it either as a liquid or compressed gas. The economics of distribution that accrue from the favorable weight and volume advantages of liquid hydrogen support this concept both now and for some time to come. The authors model for liquid transfer to a 120 L vehicle tank shows that tank filling times under five minutes are feasible with pump-assisted transfer, or for pressure transfer with subcooling greater than 1 K. The authorsmodel for compressed gas transfer shows that vehicle tank underfilling of nearly 30 percent can occur during rapid refueling. Cooling the fill gas to 214 K completely eliminates the underfilling problem.

  2. Alternative Motor Fuel Use Model

    Energy Science and Technology Software Center (ESTSC)

    1992-11-16

    AMFU is a tool for the analysis and prediction of motor fuel use by highway vehicles. The model advances the art of vehicle stock modeling by including a representation of the choice of motor fuel for flexible and dual fuel vehicles.

  3. Alternatives to traditional transportation fuels 1993

    SciTech Connect

    Not Available

    1995-01-01

    In recent years, gasoline and diesel fuel have accounted for about 80 percent of total transportation fuel and nearly all of the fuel used in on-road vehicles. Growing concerns about the environmental effects of fossil fuel use and the Nation`s high level of dependence on foreign oil are providing impetus for the development of replacements or alternatives for these traditional transportation fuels. (The Energy Policy Act of 1992 definitions of {open_quotes}replacement{close_quotes} and {open_quotes}alternative{close_quotes} fuels are presented in the following box.) The Alternative Motor Fuels Act of 1988, the Clean Air Act Amendments of 1990 (CAAA90) and the Energy Policy Act of 1992 (EPACT) are significant legislative forces behind the growth of replacement fuel use. Alternatives to Traditional Transportation Fuels 1993 provides the number of on-road alternative fueled vehicles in use in the United States, alternative and replacement fuel consumption, and information on greenhouse gas emissions resulting from the production, delivery, and use of replacement fuels for 1992, 1993, and 1995.

  4. Alternative transportation fuels

    SciTech Connect

    Askew, W. S.; McNamara, T. M.; Maxfield, D. P.

    1980-01-01

    The commercialization of alternative fuels is analyzed. Following a synopsis of US energy use, the concept of commercialization, the impacts of supply shortages and demand inelasticity upon commercialization, and the status of alternative fuels commercialization to date in the US are discussed. The US energy market is viewed as essentially numerous submarkets. The interrelationship among these submarkets precludes the need to commercialize for a specific fuel/use. However, the level of consumption, the projected growth in demand, and the inordinate dependence upon foreign fuels dictate that additional fuel supplies in general be brought to the US energy marketplace. Commercialization efforts encompass a range of measures designed to accelerate the arrival of technologies or products in the marketplace. As discussed in this paper, such a union of willing buyers and willing sellers requires that three general conditions be met: product quality comparable to existing products; price competitiveness; and adequate availability of supply. Product comparability presently appears to be the least problematic of these three requirements. Ethanol/gasoline and methanol/gasoline blends, for example, demonstrate the fact that alternative fuel technologies exist. Yet price and availability (i.e., production capacity) remain major obstacles. Given inelasticity (with respect to price) in the US and abroad, supply shortages - actual or contrived - generate upward price pressure and should make once-unattractive alternative fuels more price competitive. It is noted, however, that actual price competitiveness has been slow to occur and that even with price competitiveness, the lengthy time frame needed to achieve significant production capacity limits the near-term impact of alternative fuels.

  5. Hydrogen vehicle fueling station

    SciTech Connect

    Daney, D.E.; Edeskuty, F.J.; Daugherty, M.A.; Prenger, F.C.; Hill, D.D.

    1995-09-01

    The authors describe a hydrogen vehicle fueling station that receives and stores hydrogen in liquid form and dispenses it either as a liquid or compressed gas. The economics that accrue from the favorable weight and volume advantages of liquid hydrogen support this concept both now and probably for some time to come. The model for liquid transfer to a 120-liter vehicle tank shows that transfer times under five minutes are feasible with pump-assisted transfer, or for pressure transfer with subcooling greater than 1 K. The model for compressed gas transfer shows that underfilling of nearly 30% can occur during rapid filling. Cooling the fill gas to 214 K completely eliminates underfilling.

  6. Market penetration scenarios for fuel cell vehicles

    SciTech Connect

    Thomas, C.E.; James, B.D.; Lomax, F.D. Jr.

    1997-12-31

    Fuel cell vehicles may create the first mass market for hydrogen as an energy carrier. Directed Technologies, Inc., working with the US Department of Energy hydrogen systems analysis team, has developed a time-dependent computer market penetration model. This model estimates the number of fuel cell vehicles that would be purchased over time as a function of their cost and the cost of hydrogen relative to the costs of competing vehicles and fuels. The model then calculates the return on investment for fuel cell vehicle manufacturers and hydrogen fuel suppliers. The model also projects the benefit/cost ratio for government--the ratio of societal benefits such as reduced oil consumption, reduced urban air pollution and reduced greenhouse gas emissions to the government cost for assisting the development of hydrogen energy and fuel cell vehicle technologies. The purpose of this model is to assist industry and government in choosing the best investment strategies to achieve significant return on investment and to maximize benefit/cost ratios. The model can illustrate trends and highlight the sensitivity of market penetration to various parameters such as fuel cell efficiency, cost, weight, and hydrogen cost. It can also illustrate the potential benefits of successful R and D and early demonstration projects. Results will be shown comparing the market penetration and return on investment estimates for direct hydrogen fuel cell vehicles compared to fuel cell vehicles with onboard fuel processors including methanol steam reformers and gasoline partial oxidation systems. Other alternative fueled vehicles including natural gas hybrids, direct injection diesels and hydrogen-powered internal combustion hybrid vehicles will also be analyzed.

  7. Fifth annual report to congress. Federal alternative motor fuels programs

    SciTech Connect

    1996-09-01

    This report presents the status of the US Department of Energy`s alternative fuel vehicle demonstration and performance tracking programs being conducted in accordance with the Energy Policy and Conservation Act. These programs comprise the most comprehensive data collection effort ever undertaken on alternative transportation fuels and alternative fuel vehicles. The report summarizes tests and results from the fifth year. Electric vehicles are not included in these programs, and the annual report does not include information on them. Since the inception of the programs, great strides have been made in developing commercially viable alternative fuel vehicle technologies. However, as is the case in the commercialization of all new technologies, some performance problems have been experienced on vehicles involved in early demonstration efforts. Substantial improvements have been recorded in vehicle practicality, safety, and performance in real-world demonstrations. An aspect of particular interest is emissions output. Results from light duty alternative fuel vehicles have demonstrated superior inservice emissions performance. Heavy duty alternative fuel vehicles have demonstrated dramatic reductions in particulate emissions. However, emissions results from vehicles converted to run on alternative fuel have not been as promising. Although the technologies available today are commercially viable in some markets, further improvements in infrastructure and economics will result in greater market expansion. Information is included in this report on light and heavy duty vehicles, transit buses, vehicle conversions, safety, infrastructure support, vehicle availability, and information dissemination.

  8. Fuel economy of hydrogen fuel cell vehicles

    NASA Astrophysics Data System (ADS)

    Ahluwalia, Rajesh K.; Wang, X.; Rousseau, A.; Kumar, R.

    On the basis of on-road energy consumption, fuel economy (FE) of hydrogen fuel cell light-duty vehicles is projected to be 2.5-2.7 times the fuel economy of the conventional gasoline internal combustion engine vehicles (ICEV) on the same platforms. Even with a less efficient but higher power density 0.6 V per cell than the base case 0.7 V per cell at the rated power point, the hydrogen fuel cell vehicles are projected to offer essentially the same fuel economy multiplier. The key to obtaining high fuel economy as measured on standardized urban and highway drive schedules lies in maintaining high efficiency of the fuel cell (FC) system at low loads. To achieve this, besides a high performance fuel cell stack, low parasitic losses in the air management system (i.e., turndown and part load efficiencies of the compressor-expander module) are critical.

  9. Alternative fuels utilization and the automotive emission certification process

    SciTech Connect

    Not Available

    1980-03-01

    The Clean Air Act of 1977 requires that commercially offered automotive fuels and fuel additives be substantially similar to fuels used in certifying model year 1975 and later vehicles. Procedures for certifying that vehicles perform with emissions that meet the Clean Air Act specifications and the impact of this emissions certification process on the use of alternative fuels, such as alcohols, alcohol-gasoline blends and synthetic fuels, in highway vehicles is discussed. (LCL)

  10. Electric and Gasoline Vehicle Fuel Efficiency Analysis

    Energy Science and Technology Software Center (ESTSC)

    1995-05-24

    EAGLES1.1 is PC-based interactive software for analyzing performance (e.g., maximum range) of electric vehicles (EVs) or fuel economy (e.g., miles/gallon) of gasoline vehicles (GVs). The EV model provides a second by second simulation of battery voltage and current for any specified vehicle velocity/time or power/time profile. It takes into account the effects of battery depth-of-discharge (DOD) and regenerative braking. The GV fuel economy model which relates fuel economy, vehicle parameters, and driving cycle characteristics, canmore » be used to investigate the effects of changes in vehicle parameters and driving patterns on fuel economy. For both types of vehicles, effects of heating/cooling loads on vehicle performance can be studied. Alternatively, the software can be used to determine the size of battery needed to satisfy given vehicle mission requirements (e.g., maximum range and driving patterns). Options are available to estimate the time necessary for a vehicle to reach a certain speed with the application of a specified constant power and to compute the fraction of time and/or distance in a drivng cycle for speeds exceeding a given value.« less

  11. Ansaldo programs on fuel cell vehicles

    SciTech Connect

    Marcenaro, B.G.; Federici, F.

    1996-12-31

    The growth in traffic and the importance of maintaining a stable ecology at the global scale, particularly with regard to atmospheric pollution, raises the necessity to realize a new generation of vehicles which are more efficient, more economical and compatible with the environment. At European level, the Car of Tomorrow task force has identified fuel cells as a promising alternative propulsion system. Ansaldo Ricerche has been involved in the development of fuel cell vehicles since the early nineties. Current ongoing programs relates to: (1) Fuel cell bus demonstrator (EQHEPP BUS) Test in 1996 (2) Fuel cell boat demonstrator (EQHHPP BOAT) Test in 1997 (3) Fuel cell passenger car prototype (FEVER) Test in 1997 (4) 2nd generation Fuel cell bus (FCBUS) 1996-1999 (5) 2nd generation Fuel cell passenger car (HYDRO-GEN) 1996-1999.

  12. Clean Cities ozone air quality attainment and maintenance strategies that employ alternative fuel vehicles, with special emphasis on natural gas and propane

    SciTech Connect

    Santini, D.J.; Saricks, C.L.

    1998-08-04

    Air quality administrators across the nation are coming under greater pressure to find new strategies for further reducing automotive generated non-methane hydrocarbon (NMHC) and nitrogen oxide (NOx) emissions. The US Environmental Protection Agency (EPA) has established stringent emission reduction requirements for ozone non-attainment areas that have driven the vehicle industry to engineer vehicles meeting dramatically tightened standards. This paper describes an interim method for including alternative-fueled vehicles (AFVs) in the mix of strategies to achieve local and regional improvements in ozone air quality. This method could be used until EPA can develop the Mobile series of emissions estimation models to include AFVs and until such time that detailed work on AFV emissions totals by air quality planners and emissions inventory builders is warranted. The paper first describes the challenges confronting almost every effort to include AFVs in targeted emissions reduction programs, but points out that within these challenges resides an opportunity. Next, it discusses some basic relationships in the formation of ambient ozone from precursor emissions. It then describes several of the salient provisions of EPA`s new voluntary emissions initiative, which is called the Voluntary Mobile Source Emissions Reduction Program (VMEP). Recent emissions test data comparing gaseous-fuel light-duty AFVs with their gasoline-fueled counterparts is examined to estimate percent emissions reductions achievable with CNG and LPG vehicles. Examples of calculated MOBILE5b emission rates that would be used for summer ozone season planning purposes by an individual Air Quality Control Region (AQCR) are provided. A method is suggested for employing these data to compute appropriate voluntary emission reduction credits where such (lighter) AFVs would be acquired. It also points out, but does not quantify, the substantial reduction credits potentially achievable by substituting gaseous-fueled

  13. Fuel issues for fuel cell vehicles

    SciTech Connect

    Borroni-Bird, C.E.

    1995-12-31

    In the near-term, infrastructure and energy density concerns dictate that the most appropriate fuel for a light-duty fuel cell vehicle is probably not hydrogen; there are also several concerns with using methanol, the generally accepted most convenient fuel. In order to accelerate fuel cell commercialization it may be necessary to use petroleum-based fuels and on-board fuel processors. In the near-term, this approach may reduce fuel cell system efficiency to a level comparable with advanced diesel engines but in the long-term fuel cells powered by hydrogen should be the most efficient and cleanest of all automotive powertrains.

  14. Alternatives to traditional transportation fuels 1995

    SciTech Connect

    1996-12-01

    This report provides information on transportation fuels other than gasoline and diesel, and the vehicles that use these fuels. The Energy Information Administration (EIA) provides this information to support the U.S. Department of Energy`s reporting obligations under Section 503 of the Energy Policy Act of 1992 (EPACT). The principal information contained in this report includes historical and year-ahead estimates of the following: (1) the number and type of alterative-fueled vehicles (AFV`s) in use; (2) the consumption of alternative transportation fuels and {open_quotes}replacement fuels{close_quotes}; and (3) the number and type of alterative-fueled vehicles made available in the current and following years. In addition, the report contains some material on special topics. The appendices include a discussion of the methodology used to develop the estimates (Appendix A), a map defining geographic regions used, and a list of AFV suppliers.

  15. Fourth annual report to Congress, Federal Alternative Motor Fuels Programs

    SciTech Connect

    1995-07-01

    This annual report to Congress presents the current status of the alternative fuel vehicle programs being conducted across the country in accordance with the Alternative Motor Fuels Act of 1988. These programs, which represent the most comprehensive data collection effort ever undertaken on alternative fuels, are beginning their fifth year. This report summarizes tests and results from the fourth year.

  16. Developments in U.S. Alternative Fuel Markets

    EIA Publications

    2001-01-01

    The alternative fueled vehicle (AFV)/alternative fuels industry experienced a number of market-related changes in the second half of the 1990s. This article describes each of the alternative transportation fuels and the AFVs in detail. It provides information on the development to date and looks at trends likely to occur in the future.

  17. Hydrogen Fuel Cell Electric Vehicles (Fact Sheet)

    SciTech Connect

    Not Available

    2011-02-01

    As nations around the world pursue a variety of sustainable transportation solutions, the hydrogen fuel cell electric vehicle (FCEV) presents a promising opportunity for American consumers and automakers. FCEVs offer a sustainable transportation option, provide a cost-competitive alternative for drivers, reduce dependence on imported oil, and enable global economic leadership and job growth.

  18. Prospects for the application of fuel cells in electric vehicles

    NASA Astrophysics Data System (ADS)

    Adcock, P. L.; Barton, R. T.; Dudfield, C. D.; Mitchell, P. J.; Naylor, P.; Newbold, A.

    1992-01-01

    For a hybrid vehicle the use pattern has large effect on the vehicle design. If the vehicle is to be used extensively on the motorway then a continuous high power is required. For the case of a fuel cell battery hybrid vehicle this would require a large fuel cell ( > 30 kW) to meet the sustained high power demand. The current high materials and fabrication cost of most fuel cells prohibits the commercial development of such a system. Consequently if fuel cell vehicles are to enter a 'clean car' market, earlier rather than later, alternative configurations must be sought and compromises in terms of performance are inevitable.

  19. Alternative Fuels Research Laboratory

    NASA Technical Reports Server (NTRS)

    Surgenor, Angela D.; Klettlinger, Jennifer L.; Nakley, Leah M.; Yen, Chia H.

    2012-01-01

    NASA Glenn has invested over $1.5 million in engineering, and infrastructure upgrades to renovate an existing test facility at the NASA Glenn Research Center (GRC), which is now being used as an Alternative Fuels Laboratory. Facility systems have demonstrated reliability and consistency for continuous and safe operations in Fischer-Tropsch (F-T) synthesis and thermal stability testing. This effort is supported by the NASA Fundamental Aeronautics Subsonic Fixed Wing project. The purpose of this test facility is to conduct bench scale F-T catalyst screening experiments. These experiments require the use of a synthesis gas feedstock, which will enable the investigation of F-T reaction kinetics, product yields and hydrocarbon distributions. Currently the facility has the capability of performing three simultaneous reactor screening tests, along with a fourth fixed-bed reactor for catalyst activation studies. Product gas composition and performance data can be continuously obtained with an automated gas sampling system, which directly connects the reactors to a micro-gas chromatograph (micro GC). Liquid and molten product samples are collected intermittently and are analyzed by injecting as a diluted sample into designated gas chromatograph units. The test facility also has the capability of performing thermal stability experiments of alternative aviation fuels with the use of a Hot Liquid Process Simulator (HLPS) (Ref. 1) in accordance to ASTM D 3241 "Thermal Oxidation Stability of Aviation Fuels" (JFTOT method) (Ref. 2). An Ellipsometer will be used to study fuel fouling thicknesses on heated tubes from the HLPS experiments. A detailed overview of the test facility systems and capabilities are described in this paper.

  20. EMISSION AND FUEL ECONOMY OF DOE FLEX-FUEL VEHICLES

    EPA Science Inventory

    The U.S. Department of Energy and the U.S. Environmental Protection Agency have established, through a Memorandum of Understanding, a coordinated framework for collaborative research examining the impact of alternative motor vehicle fuels on air quality and risk to public health ...

  1. EMISSIONS AND FUEL ECONOMY OF DOE FLEX-FUEL VEHICLES

    EPA Science Inventory

    The U.S. Department of Energy and the U.S. Environmental protection Agency have established, through a Memorandum of Understanding, a coordinated framework for collaborative research examining the impact of alternative motor vehicle fuels on air quality and risk to public health ...

  2. NASA Alternative Aviation Fuel Research

    NASA Astrophysics Data System (ADS)

    Anderson, B. E.; Beyersdorf, A. J.; Thornhill, K. L., II; Moore, R.; Shook, M.; Winstead, E.; Ziemba, L. D.; Crumeyrolle, S.

    2015-12-01

    We present an overview of research conducted by NASA Aeronautics Research Mission Directorate to evaluate the performance and emissions of "drop-in" alternative jet fuels, highlighting experiment design and results from the Alternative Aviation Fuel Experiments (AAFEX-I & -II) and Alternative Fuel-Effects on Contrails and Cruise Emissions flight series (ACCESS-I & II). These projects included almost 100 hours of sampling exhaust emissions from the NASA DC-8 aircraft in both ground and airborne operation and at idle to takeoff thrust settings. Tested fuels included Fischer-Tropsch (FT) synthetic kerosenes manufactured from coal and natural-gas feedstocks; Hydro-treated Esters and Fatty-Acids (HEFA) fuels made from beef-tallow and camelina-plant oil; and 50:50 blends of these alternative fuels with Jet A. Experiments were also conducted with FT and Jet A fuels doped with tetrahydrothiophene to examine the effects of fuel sulfur on volatile aerosol and contrail formation and microphysical properties. Results indicate that although the absence of aromatic compounds in the alternative fuels caused DC-8 fuel-system leaks, the fuels did not compromise engine performance or combustion efficiency. And whereas the alternative fuels produced only slightly different gas-phase emissions, dramatic reductions in non-volatile particulate matter (nvPM) emissions were observed when burning the pure alternative fuels, particularly at low thrust settings where particle number and mass emissions were an order of magnitude lower than measured from standard jet fuel combustion; 50:50 blends of Jet A and alternative fuels typically reduced nvPM emissions by ~50% across all thrust settings. Alternative fuels with the highest hydrogen content produced the greatest nvPM reductions. For Jet A and fuel blends, nvPM emissions were positively correlated with fuel aromatic and naphthalene content. Fuel sulfur content regulated nucleation mode aerosol number and mass concentrations within aging

  3. Alternative jet aircraft fuels

    NASA Technical Reports Server (NTRS)

    Grobman, J.

    1979-01-01

    Potential changes in jet aircraft fuel specifications due to shifts in supply and quality of refinery feedstocks are discussed with emphasis on the effects these changes would have on the performance and durability of aircraft engines and fuel systems. Combustion characteristics, fuel thermal stability, and fuel pumpability at low temperature are among the factors considered. Combustor and fuel system technology needs for broad specification fuels are reviewed including prevention of fuel system fouling and fuel system technology for fuels with higher freezing points.

  4. Fuel economy of hybrid fuel cell vehicles.

    SciTech Connect

    Ahluwalia, R.; Wang, X.; Rousseau, A.; Nuclear Engineering Division

    2004-01-01

    The potential improvement in fuel economy of a mid-size fuel-cell vehicle by combining it with an energy storage system has been assessed. An energy management strategy is developed and used to operate the direct hydrogen, pressurized fuel-cell system in a load-following mode and the energy storage system in a charge-sustaining mode. The strategy places highest priority on maintaining the energy storage system in a state where it can supply unanticipated boost power when the fuel-cell system alone cannot meet the power demand. It is found that downsizing a fuel-cell system decreases its efficiency on a drive cycle which is compensated by partial regenerative capture of braking energy. On a highway cycle with limited braking energy the increase in fuel economy with hybridization is small but on the stop-and-go urban cycle the fuel economy can improve by 27%. On the combined highway and urban drive cycles the fuel economy of the fuel-cell vehicle is estimated to increase by up to 15% by hybridizing it with an energy storage system.

  5. Vehicle Design Evaluation Program (VDEP). A computer program for weight sizing, economic, performance and mission analysis of fuel-conservative aircraft, multibodied aircraft and large cargo aircraft using both JP and alternative fuels

    NASA Technical Reports Server (NTRS)

    Oman, B. H.

    1977-01-01

    The NASA Langley Research Center vehicle design evaluation program (VDEP-2) was expanded by (1) incorporating into the program a capability to conduct preliminary design studies on subsonic commercial transport type aircraft using both JP and such alternate fuels as hydrogen and methane;(2) incorporating an aircraft detailed mission and performance analysis capability; and (3) developing and incorporating an external loads analysis capability. The resulting computer program (VDEP-3) provides a preliminary design tool that enables the user to perform integrated sizing, structural analysis, and cost studies on subsonic commercial transport aircraft. Both versions of the VDEP-3 Program which are designated preliminary Analysis VDEP-3 and detailed Analysis VDEP utilize the same vehicle sizing subprogram which includes a detailed mission analysis capability, as well as a geometry and weight analysis for multibodied configurations.

  6. A dynamic simulation tool for hydrogen fuel cell vehicles

    NASA Astrophysics Data System (ADS)

    Moore, R. M.; Hauer, K. H.; Friedman, D.; Cunningham, J.; Badrinarayanan, P.; Ramaswamy, S.; Eggert, A.

    This paper describes a dynamic fuel cell vehicle simulation (FCVSim) tool for the load-following direct-hydrogen (DH) fuel cell vehicle. The emphasis is on simulation of the direct-hydrogen fuel cell system (FC System) within the vehicle simulation tool. This paper is focused on the subsystems that are specific to the load-following direct-hydrogen model. The four major subsystems discussed are the fuel cell stack, the air supply, the water and thermal management (WTM), and the hydrogen supply. The discussion provides the details of these subsystem simulations. The basic vehicle configuration has been previously outlined by Hauer [An Analysis Tool For Fuel Cell Vehicle Hardware and Software (Controls) with an Application to Fuel Economy Comparisons of Alternative System Designs, Dissertation, UC California, Davis, USA, 2001] and Hauer and Moore [Fuel Cells for Automotive Applications, Professional Engineering Publishing, 2003, pp. 157-177, ISBN 1860584233] and is only briefly reviewed in this paper.

  7. Promoting alternative fuels in Philadelphia. Final report

    SciTech Connect

    1996-04-16

    The US Department of Energy`s grant to Citizens Fund was designed to support a grassroots organizing campaign, local coalition building and media activity initially focused on getting the Southeastern Pennsylvania Transit Authority (SEPTA) to acquire clean burning alternative fueled buses (e.g. natural gas). In addition, Citizens Fund through Pennsylvania Citizen Action would become involved in the Philadelphia Clean Cities organization sponsored by the City of Philadelphia through a DOE grant. The city reached out to a substantial number of organizations and community leaders and actively worked to get out the message on the need to promote and use alternatively-fueled vehicles. This report summarizes these activities.

  8. Maximizing Societal Benefits Associated With Alternative Fuel Subsidies: The Case of Plug-in Hybrid Electric Vehicles

    NASA Astrophysics Data System (ADS)

    Nazir, Samir M.

    Government seeks to improve the welfare of its citizenry and intervenes in marketplaces to maximize benefits when externalities are not captured. By analyzing how welfare changes from area to area across the country in response to the same intervention informs where government should act. This thesis analyzes the case of plug-in hybrid electric vehicles (PHEVs). PHEVs have many societal benefits, including improving national security, economic, environmental, and health advantages. The magnitude and distribution of these benefits depends on where PHEVs are deployed. This thesis develops and applies a methodology to determine if the benefits from PHEV deployment vary across the country and for ranking regions where positive PHEV consequences are likely to be maximized. The metrics in this method are proxies of key variables which predict the level of benefits in a county from the deployment of a PHEV there; they include population, health benefits from reduced ozone concentration, vehicle miles traveled per capita, existence of non-federal policies, and CO 2 intensity of electricity. By shedding light on how benefits from PHEV deployment vary across counties, this thesis seeks to better inform where to enact government interventions to maximize the benefits of this technology.

  9. Spent-fuel-storage alternatives

    SciTech Connect

    Not Available

    1980-01-01

    The Spent Fuel Storage Alternatives meeting was a technical forum in which 37 experts from 12 states discussed storage alternatives that are available or are under development. The subject matter was divided into the following five areas: techniques for increasing fuel storage density; dry storage of spent fuel; fuel characterization and conditioning; fuel storage operating experience; and storage and transport economics. Nineteen of the 21 papers which were presented at this meeting are included in this Proceedings. These have been abstracted and indexed. (ATT)

  10. Alternative aircraft fuels technology

    NASA Technical Reports Server (NTRS)

    Grobman, J.

    1976-01-01

    NASA is studying the characteristics of future aircraft fuels produced from either petroleum or nonpetroleum sources such as oil shale or coal. These future hydrocarbon based fuels may have chemical and physical properties that are different from present aviation turbine fuels. This research is aimed at determining what those characteristics may be, how present aircraft and engine components and materials would be affected by fuel specification changes, and what changes in both aircraft and engine design would be required to utilize these future fuels without sacrificing performance, reliability, or safety. This fuels technology program was organized to include both in-house and contract research on the synthesis and characterization of fuels, component evaluations of combustors, turbines, and fuel systems, and, eventually, full-scale engine demonstrations. A review of the various elements of the program and significant results obtained so far are presented.

  11. Alternative aircraft fuels

    NASA Technical Reports Server (NTRS)

    Longwell, J. P.; Grobman, J. S.

    1977-01-01

    The efficient utilization of fossil fuels by future jet aircraft may necessitate the broadening of current aviation turbine fuel specifications. The most significant changes in specifications would be an increased aromatics content and a higher final boiling point in order to minimize refinery energy consumption and costs. These changes would increase the freezing point and might lower the thermal stability of the fuel, and could cause increased pollutant emissions, increased combustor liner temperatures, and poorer ignition characteristics. The effects that broadened specification fuels may have on present-day jet aircraft and engine components and the technology required to use fuels with broadened specifications are discussed.

  12. Alternative aviation turbine fuels

    NASA Technical Reports Server (NTRS)

    Grobman, J.

    1977-01-01

    The efficient utilization of fossil fuels by future jet aircraft may necessitate the broadening of current aviation turbine fuel specifications. The most significant changes in specifications would be an increased aromatics content and a higher final boiling point in order to minimize refinery energy consumption and costs. These changes would increase the freezing point and might lower the thermal stability of the fuel and could cause increased pollutant emissions, increased smoke and carbon formation, increased combustor liner temperatures, and poorer ignition characteristics. This paper discusses the effects that broadened specification fuels may have on present-day jet aircraft and engine components and the technology required to use fuels with broadened specifications.

  13. Hawaii alternative fuels utilization program. Phase 3, final report

    SciTech Connect

    Kinoshita, C.M.; Staackmann, M.

    1996-08-01

    The Hawaii Alternative Fuels Utilization Program originated as a five-year grant awarded by the US Department of Energy (USDOE) to the Hawaii Natural Energy Institute (HNEI) of the University of Hawaii at Manoa. The overall program included research and demonstration efforts aimed at encouraging and sustaining the use of alternative (i.e., substitutes for gasoline and diesel) ground transportation fuels in Hawaii. Originally, research aimed at overcoming technical impediments to the widespread adoption of alternative fuels was an important facet of this program. Demonstration activities centered on the use of methanol-based fuels in alternative fuel vehicles (AFVs). In the present phase, operations were expanded to include flexible fuel vehicles (FFVs) which can operate on M85 or regular unleaded gasoline or any combination of these two fuels. Additional demonstration work was accomplished in attempting to involve other elements of Hawaii in the promotion and use of alcohol fuels for ground transportation in Hawaii.

  14. Sensor system for fuel transport vehicle

    DOEpatents

    Earl, Dennis Duncan; McIntyre, Timothy J.; West, David L.

    2016-03-22

    An exemplary sensor system for a fuel transport vehicle can comprise a fuel marker sensor positioned between a fuel storage chamber of the vehicle and an access valve for the fuel storage chamber of the vehicle. The fuel marker sensor can be configured to measure one or more characteristics of one or more fuel markers present in the fuel adjacent the sensor, such as when the marked fuel is unloaded at a retail station. The one or more characteristics can comprise concentration and/or identity of the one or more fuel markers in the fuel. Based on the measured characteristics of the one or more fuel markers, the sensor system can identify the fuel and/or can determine whether the fuel has been adulterated after the marked fuel was last measured, such as when the marked fuel was loaded into the vehicle.

  15. Alternative Fuel School Bus Information Resources

    SciTech Connect

    Not Available

    2004-04-01

    This 4-page Clean Cities fact sheet provides a list of important resources for learning more about alternative fuels in school buses. It includes information regarding Alternative Fuel School Bus Manufacturers, Alternative Fuel HD Engine Manufacturers, Alternative Fuel School Bus Operators, and Key Web Resources for Alternative Fuels.

  16. Alternative fuels for maritime use

    SciTech Connect

    Not Available

    1980-01-01

    The objectives of this study were to review the potential fuels which may be available to the marine industry from the present to the year 2000 and to define the economic, technical, and environmental/social impacts of these alternative fuels on marine power plants. Thus, this study is aimed at the fuels/prime mover combination. This study should help to guide the industry in choosing the proper power plant for the future - recognizing that a new power plant installed in 1980 will still be in service in the 21st century. The importance of the marine transportation industry and the need to consider alternate fuels are examined. An overview of potential alternate fuels for marine applications is presented, and power plant/fuel interaction is discussed. An in-depth discussion is presented on the impact of the most likely alternate fuels from the viewpoint of maintenance, retrofit capability, safety, and air-quality impacts. Two nonfossil-fuel alternatives sailing ships and nuclear-powered vessels, are discussed. It is concluded that: there is a high probability of using synfuels from tar sands shale, or coal liquids in both existing and future ships; coal and coal/oil slurries have a high probability of use in future ships and medium probability in existing ships; nuclear and sail-power future ships have a medium probability of commercial development; and is a low probability of commercial maritime use of alcohol fuels, methane, or coal/methanol combinations. (LCL)

  17. Alternative fuels for general aviation

    SciTech Connect

    Not Available

    1983-01-01

    The price and availability of fuel continues to be a major barrier to the free expansion of general aviation. Although this increase in fuel prices had a more severe impact on airlines, it has also slowed the demand for general aviation aircraft. With the sales of general aviation aircraft in a depressed state, the development of alternative fuels such as liquid methane, ethanol, methanol, and automobile gasoline can help spur the industry back to health. Recent flight tests of these alternative fuels are examined.

  18. Alternative Fuels in Transportation

    ERIC Educational Resources Information Center

    Kouroussis, Denis; Karimi, Shahram

    2006-01-01

    The realization of dwindling fossil fuel supplies and their adverse environmental impacts has accelerated research and development activities in the domain of renewable energy sources and technologies. Global energy demand is expected to rise during the next few decades, and the majority of today's energy is based on fossil fuels. Alternative…

  19. Alternative Fuel News: Official Publication of the Clean Cities Network and the Alternative Fuels Data Center, Vol. 6, No. 1

    SciTech Connect

    Not Available

    2002-07-01

    Quarterly magazine with articles on auctions of used alternative fuel vehicles (AFVs), Royalty Enterprises of Ohio, and introducing AFVs in neglected urban areas. Plus Ford's new CNG school bus and electric buses in Connecticut.

  20. Motor vehicle fuel analyzer

    DOEpatents

    Hoffheins, Barbara S.; Lauf, Robert J.

    1997-01-01

    A gas detecting system for classifying the type of liquid fuel in a container or tank. The system includes a plurality of semiconductor gas sensors, each of which differs from the other in its response to various organic vapors. The system includes a means of processing the responses of the plurality of sensors such that the responses to any particular organic substance or mixture is sufficiently distinctive to constitute a recognizable "signature". The signature of known substances are collected and divided into two classes based on some other known characteristic of the substances. A pattern recognition system classifies the signature of an unknown substance with reference to the two user-defined classes, thereby classifying the unknown substance with regard to the characteristic of interest, such as its suitability for a particular use.

  1. Motor vehicle fuel analyzer

    DOEpatents

    Hoffheins, B.S.; Lauf, R.J.

    1997-08-05

    A gas detecting system is described for classifying the type of liquid fuel in a container or tank. The system includes a plurality of semiconductor gas sensors, each of which differs from the other in its response to various organic vapors. The system includes a means of processing the responses of the plurality of sensors such that the responses to any particular organic substance or mixture is sufficiently distinctive to constitute a recognizable ``signature``. The signature of known substances are collected and divided into two classes based on some other known characteristic of the substances. A pattern recognition system classifies the signature of an unknown substance with reference to the two user-defined classes, thereby classifying the unknown substance with regard to the characteristic of interest, such as its suitability for a particular use. 14 figs.

  2. Emissions from ethanol- and LPG-fueled vehicles

    SciTech Connect

    Pitstick, M.E.

    1995-06-01

    This paper addresses the environmental concerns of using neat ethanol and liquefied petroleum gas (LPG) as transportation fuels in the United States. Low-level blends of ethanol (10%) with gasoline have been used as fuels in the United States for more than a decade, but neat ethanol (85% or more) has only been used extensively in Brazil. LPG, which consists mostly of propane, is already used extensively as a vehicle fuel in the United States, but its use has been limited primarily to converted fleet vehicles. Increasing U.S. interest in alternative fuels has raised the possibility of introducing neat-ethanol vehicles into the market and expanding the number of LPG vehicles. Use of such vehicles, and increased production and consumption of fuel ethanol and LPG, will undoubtedly have environmental impacts. If the impacts are determined to be severe, they could act as barriers to the introduction of neat-ethanol and LPG vehicles. Environmental concerns include exhaust and evaporative emissions and their impact on ozone formation and global warming, toxic emissions from fuel combustion and evaporation, and agricultural impacts from production of ethanol. The paper is not intended to be judgmental regarding the overall attractiveness of ethanol or LPG as compared with other transportation fuels. The environmental concerns are reviewed and summarized, but only conclusion reached is that there is no single concern that is likely to prevent the introduction of neat-ethanol-fueled vehicles or the increase in LPG-fueled vehicles.

  3. Transportable Emissions Testing Laboratory for Alternative Vehicles Emissions Testing

    SciTech Connect

    Clark, Nigel

    2012-01-31

    The overall objective of this project was to perform research to quantify and improve the energy efficiency and the exhaust emissions reduction from advanced technology vehicles using clean, renewable and alternative fuels. Advanced vehicle and alternative fuel fleets were to be identified, and selected vehicles characterized for emissions and efficiency. Target vehicles were to include transit buses, school buses, vocational trucks, delivery trucks, and tractor-trailers. Gaseous species measured were to include carbon monoxide, carbon dioxide, oxides of nitrogen, hydrocarbons, and particulate matter. An objective was to characterize particulate matter more deeply than by mass. Accurate characterization of efficiency and emissions was to be accomplished using a state-of-the-art portable emissions measurement system and an accompanying chassis dynamometer available at West Virginia University. These two units, combined, are termed the Transportable Laboratory. An objective was to load the vehicles in a real-world fashion, using coast down data to establish rolling resistance and wind drag, and to apply the coast down data to the dynamometer control. Test schedules created from actual vehicle operation were to be employed, and a specific objective of the research was to assess the effect of choosing a test schedule which the subject vehicle either cannot follow or can substantially outperform. In addition the vehicle loading objective was to be met better with an improved flywheel system.

  4. Airport electric vehicle powered by fuel cell

    NASA Astrophysics Data System (ADS)

    Fontela, Pablo; Soria, Antonio; Mielgo, Javier; Sierra, José Francisco; de Blas, Juan; Gauchia, Lucia; Martínez, Juan M.

    Nowadays, new technologies and breakthroughs in the field of energy efficiency, alternative fuels and added-value electronics are leading to bigger, more sustainable and green thinking applications. Within the Automotive Industry, there is a clear declaration of commitment with the environment and natural resources. The presence of passenger vehicles of hybrid architecture, public transport powered by cleaner fuels, non-aggressive utility vehicles and an encouraging social awareness, are bringing to light a new scenario where conventional and advanced solutions will be in force. This paper presents the evolution of an airport cargo vehicle from battery-based propulsion to a hybrid power unit based on fuel cell, cutting edge batteries and hydrogen as a fuel. Some years back, IBERIA (Major Airline operating in Spain) decided to initiate the replacement of its diesel fleet for battery ones, aiming at a reduction in terms of contamination and noise in the surrounding environment. Unfortunately, due to extreme operating conditions in airports (ambient temperature, intensive use, dirtiness, …), batteries suffered a very severe degradation, which took its toll in terms of autonomy. This reduction in terms of autonomy together with the long battery recharge time made the intensive use of this fleet impractical in everyday demanding conditions.

  5. Flexible Fuel Vehicles: Providing a Renewable Fuel Choice (Fact Sheet)

    SciTech Connect

    Not Available

    2010-03-01

    Flexible Fuel vehicles are able to operate using more than one type of fuel. FFVs can be fueled with unleaded gasoline, E85, or any combination of the two. Today more than 7 million vehicles on U.S. highways are flexible fuel vehicles. The fact sheet discusses how E85 affects vehicle performance, the costs and benefits of using E85, and how to find E85 station locations.

  6. Mobile Alternative Fueling Station Locator

    SciTech Connect

    Not Available

    2009-04-01

    The Department of Energy's Alternative Fueling Station Locator is available on-the-go via cell phones, BlackBerrys, or other personal handheld devices. The mobile locator allows users to find the five closest biodiesel, electricity, E85, hydrogen, natural gas, and propane fueling sites using Google technology.

  7. Regional on-road vehicle running emissions modeling and evaluation for conventional and alternative vehicle technologies.

    PubMed

    Frey, H Christopher; Zhai, Haibo; Rouphail, Nagui M

    2009-11-01

    This study presents a methodology for estimating high-resolution, regional on-road vehicle emissions and the associated reductions in air pollutant emissions from vehicles that utilize alternative fuels or propulsion technologies. The fuels considered are gasoline, diesel, ethanol, biodiesel, compressed natural gas, hydrogen, and electricity. The technologies considered are internal combustion or compression engines, hybrids, fuel cell, and electric. Road link-based emission models are developed using modal fuel use and emission rates applied to facility- and speed-specific driving cycles. For an urban case study, passenger cars were found to be the largest sources of HC, CO, and CO(2) emissions, whereas trucks contributed the largest share of NO(x) emissions. When alternative fuel and propulsion technologies were introduced in the fleet at a modest market penetration level of 27%, their emission reductions were found to be 3-14%. Emissions for all pollutants generally decreased with an increase in the market share of alternative vehicle technologies. Turnover of the light duty fleet to newer Tier 2 vehicles reduced emissions of HC, CO, and NO(x) substantially. However, modest improvements in fuel economy may be offset by VMT growth and reductions in overall average speed. PMID:19924983

  8. Storage of fuel in hydrates for natural gas vehicles (NGVs)

    SciTech Connect

    Yevi, G.Y.; Rogers, R.E.

    1996-09-01

    The need for alternative fuels to replace liquid petroleum-based fuels has been accelerated in recent years by environmental concerns, concerns of shortage of imported liquid hydrocarbon, and congressional prompting. The fact is accepted that natural gas is the cheapest, most domestically abundant, and cleanest burning of fossil fuels. However, socio-economical and technical handicaps associated with the safety and efficiency of on-board fuel storage inhibit its practical use in vehicles as an alternative fuel. A concept is presented for safely storing fuel at low pressures in the form of hydrates in natural gas vehicles. Experimental results lead to gas storage capacities of 143 to 159 volumes/volume. Vehicle travel range could be up to 204 mi. Controlled decomposition rate of hydrates is possible for feeding an automotive vehicle. Upon sudden pressure decrease in the event of a vehicle accident, the rate of release of hydrocarbons from the hydrates at constant temperature is 2.63 to 12.50% per min, slow enough to prevent an explosion or a fireball. A model is given for predicting the rates of gas release from hydrates in a vehicle wreck. A storage tank design is proposed and a process is suggested for forming and decomposing hydrates on-board vehicles. A consistent fuel composition is obtained with hydrates.

  9. Comparative analysis of selected fuel cell vehicles

    SciTech Connect

    1993-05-07

    Vehicles powered by fuel cells operate more efficiently, more quietly, and more cleanly than internal combustion engines (ICEs). Furthermore, methanol-fueled fuel cell vehicles (FCVs) can utilize major elements of the existing fueling infrastructure of present-day liquid-fueled ICE vehicles (ICEVs). DOE has maintained an active program to stimulate the development and demonstration o fuel cell technologies in conjunction with rechargeable batteries in road vehicles. The purpose of this study is to identify and assess the availability of data on FCVs, and to develop a vehicle subsystem structure that can be used to compare both FCVs and ICEV, from a number of perspectives--environmental impacts, energy utilization, materials usage, and life cycle costs. This report focuses on methanol-fueled FCVs fueled by gasoline, methanol, and diesel fuel that are likely to be demonstratable by the year 2000. The comparative analysis presented covers four vehicles--two passenger vehicles and two urban transit buses. The passenger vehicles include an ICEV using either gasoline or methanol and an FCV using methanol. The FCV uses a Proton Exchange Membrane (PEM) fuel cell, an on-board methanol reformer, mid-term batteries, and an AC motor. The transit bus ICEV was evaluated for both diesel and methanol fuels. The transit bus FCV runs on methanol and uses a Phosphoric Acid Fuel Cell (PAFC) fuel cell, near-term batteries, a DC motor, and an on-board methanol reformer. 75 refs.

  10. Modular Energy Storage System for Alternative Energy Vehicles

    SciTech Connect

    Thomas, Janice; Ervin, Frank

    2012-05-15

    An electrical vehicle environment was established to promote research and technology development in the area of high power energy management. The project incorporates a topology that permits parallel development of an alternative energy delivery system and an energy storage system. The objective of the project is to develop technologies, specifically power electronics, energy storage electronics and controls that provide efficient and effective energy management between electrically powered devices in alternative energy vehicles plugin electric vehicles, hybrid vehicles, range extended vehicles, and hydrogen-based fuel cell vehicles. In order to meet the project objectives, the Vehicle Energy Management System (VEMS) was defined and subsystem requirements were obtained. Afterwards, power electronics, energy storage electronics and controls were designed. Finally, these subsystems were built, tested individually, and integrated into an electric vehicle system to evaluate and optimize the subsystems performance. Phase 1 of the program established the fundamental test bed to support development of an electrical environment ideal for fuel cell application and the mitigation of many shortcomings of current fuel cell technology. Phase 2, continued development from Phase 1, focusing on implementing subsystem requirements, design and construction of the energy management subsystem, and the integration of this subsystem into the surrogate electric vehicle. Phase 2 also required the development of an Alternative Energy System (AES) capable of emulating electrical characteristics of fuel cells, battery, gen set, etc. Under the scope of the project, a boost converter that couples the alternate energy delivery system to the energy storage system was developed, constructed and tested. Modeling tools were utilized during the design process to optimize both component and system design. This model driven design process enabled an iterative process to track and evaluate the impact

  11. 41 CFR 102-34.325 - What type of fuel do I use in Government motor vehicles?

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...; or (2) Such gasoline is not available locally. (c) You must use alternative fuels in alternative fuel... 41 Public Contracts and Property Management 3 2011-01-01 2011-01-01 false What type of fuel do I... PROPERTY 34-MOTOR VEHICLE MANAGEMENT Motor Vehicle Fueling § 102-34.325 What type of fuel do I use...

  12. 41 CFR 102-34.325 - What type of fuel do I use in Government motor vehicles?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...; or (2) Such gasoline is not available locally. (c) You must use alternative fuels in alternative fuel... 41 Public Contracts and Property Management 3 2013-07-01 2013-07-01 false What type of fuel do I... PROPERTY 34-MOTOR VEHICLE MANAGEMENT Motor Vehicle Fueling § 102-34.325 What type of fuel do I use...

  13. 41 CFR 102-34.325 - What type of fuel do I use in Government motor vehicles?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...; or (2) Such gasoline is not available locally. (c) You must use alternative fuels in alternative fuel... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false What type of fuel do I... PROPERTY 34-MOTOR VEHICLE MANAGEMENT Motor Vehicle Fueling § 102-34.325 What type of fuel do I use...

  14. Modular Energy Storage System for Hydrogen Fuel Cell Vehicles

    SciTech Connect

    Thomas, Janice

    2010-08-27

    The objective of the project is to develop technologies, specifically power electronics, energy storage electronics and controls that provide efficient and effective energy management between electrically powered devices in alternative energy vehicles plug-in electric vehicles, hybrid vehicles, range extended vehicles, and hydrogen-based fuel cell vehicles. The in-depth research into the complex interactions between the lower and higher voltage systems from data obtained via modeling, bench testing and instrumented vehicle data will allow an optimum system to be developed from a performance, cost, weight and size perspective. The subsystems are designed for modularity so that they may be used with different propulsion and energy delivery systems. This approach will allow expansion into new alternative energy vehicle markets.

  15. Alternative Aviation Fuel Experiment (AAFEX)

    NASA Technical Reports Server (NTRS)

    Anderson, B. E.; Beyersdorf, A. J.; Hudgins, C. H.; Plant, J. V.; Thornhill, K. L.; Winstead, E. L.; Ziemba, L. D.; Howard, R.; Corporan, E.; Miake-Lye, R. C.; Herndon, S. C.; Timko, M.; Woods, E.; Dodds, W.; Lee, B.; Santoni, G.; Whitefield, P.; Hagen, D.; Lobo, P.; Knighton, W. B.; Bulzan, D.; Tacina, K.; Wey, C.; VanderWal, R.; Bhargava, A.

    2011-01-01

    The rising cost of oil coupled with the need to reduce pollution and dependence on foreign suppliers has spurred great interest and activity in developing alternative aviation fuels. Although a variety of fuels have been produced that have similar properties to standard Jet A, detailed studies are required to ascertain the exact impacts of the fuels on engine operation and exhaust composition. In response to this need, NASA acquired and burned a variety of alternative aviation fuel mixtures in the Dryden Flight Research Center DC-8 to assess changes in the aircraft s CFM-56 engine performance and emission parameters relative to operation with standard JP-8. This Alternative Aviation Fuel Experiment, or AAFEX, was conducted at NASA Dryden s Aircraft Operations Facility (DAOF) in Palmdale, California, from January 19 to February 3, 2009 and specifically sought to establish fuel matrix effects on: 1) engine and exhaust gas temperatures and compressor speeds; 2) engine and auxiliary power unit (APU) gas phase and particle emissions and characteristics; and 3) volatile aerosol formation in aging exhaust plumes

  16. NREL - Advanced Vehicles and Fuels Basics - Center for Transportation Technologies and Systems 2010

    SciTech Connect

    2010-01-01

    We can improve the fuel economy of our cars, trucks, and buses by designing them to use the energy in fuels more efficiently. Researchers at the National Renewable Energy Laboratory (NREL) are helping the nation achieve these goals by developing transportation technologies like: advanced vehicle systems and components; alternative fuels; as well as fuel cells, hybrid electric, and plug-in hybrid vehicles. For a text version of this video visit http://www.nrel.gov/learning/advanced_vehicles_fuels.html

  17. NREL - Advanced Vehicles and Fuels Basics - Center for Transportation Technologies and Systems 2010

    ScienceCinema

    None

    2013-05-29

    We can improve the fuel economy of our cars, trucks, and buses by designing them to use the energy in fuels more efficiently. Researchers at the National Renewable Energy Laboratory (NREL) are helping the nation achieve these goals by developing transportation technologies like: advanced vehicle systems and components; alternative fuels; as well as fuel cells, hybrid electric, and plug-in hybrid vehicles. For a text version of this video visit http://www.nrel.gov/learning/advanced_vehicles_fuels.html

  18. Why are alcohol fuels still alternate fuels?

    SciTech Connect

    Bata, R.M.

    1994-12-31

    The enthusiasm for using alcohols as alternate fuels in internal combustion engines (ICE) has been accelerating since the middle of 1970 and reached its peak by the middle of 1980. This was due to the serious effect of the exhaust emissions from automotive engines powered with oil-derived fuels coupled with a market rise in the cost of oil-derived fuels. Since then, the cost of oil has been decreasing and the need for alternate fuels has begun to slow down due to this economical reason. Alcohols are excellent fuels since they can be produced from renewable resources and their impact on health and the environment is limited. They are favorable for IC engines because of their high octane rating, burning velocities, and wider flammability limits. Experimental research and in-use applications showed drastic reduction in carbon monoxide (CO), particulate matter (PM), and moderate reduction in hydrocarbon (HC). Adverse effects on nitrogen (NO{sub x}) and aldehyde (CHO) were also noticed.

  19. Dynamic behavior of gasoline fuel cell electric vehicles

    NASA Astrophysics Data System (ADS)

    Mitchell, William; Bowers, Brian J.; Garnier, Christophe; Boudjemaa, Fabien

    As we begin the 21st century, society is continuing efforts towards finding clean power sources and alternative forms of energy. In the automotive sector, reduction of pollutants and greenhouse gas emissions from the power plant is one of the main objectives of car manufacturers and innovative technologies are under active consideration to achieve this goal. One technology that has been proposed and vigorously pursued in the past decade is the proton exchange membrane (PEM) fuel cell, an electrochemical device that reacts hydrogen with oxygen to produce water, electricity and heat. Since today there is no existing extensive hydrogen infrastructure and no commercially viable hydrogen storage technology for vehicles, there is a continuing debate as to how the hydrogen for these advanced vehicles will be supplied. In order to circumvent the above issues, power systems based on PEM fuel cells can employ an on-board fuel processor that has the ability to convert conventional fuels such as gasoline into hydrogen for the fuel cell. This option could thereby remove the fuel infrastructure and storage issues. However, for these fuel processor/fuel cell vehicles to be commercially successful, issues such as start time and transient response must be addressed. This paper discusses the role of transient response of the fuel processor power plant and how it relates to the battery sizing for a gasoline fuel cell vehicle. In addition, results of fuel processor testing from a current Renault/Nuvera Fuel Cells project are presented to show the progress in transient performance.

  20. Expectation dynamics: Ups and downs of alternative fuels

    NASA Astrophysics Data System (ADS)

    Konrad, Kornelia

    2016-03-01

    The transport sector must undergo radical changes if it is to reduce its carbon emissions, calling for alternative vehicles and fuel types. Researchers now analyse the expectation cycles for different fuel technologies and draw lessons for the role of US policy in supporting them.

  1. Methanol as an alternative automotive fuel: CMC's approach and experience

    SciTech Connect

    Ashton, P.M.; McCurdy, G.; Osler, C.F.

    1983-08-01

    This paper highlights experiences of Canadian Methanol Canadien (CMC) in demonstration of both methanol fuel and methanol-gasoline blends in Winnipeg since 1980 and describes CMC's commercial and technical approach to development of methanol as an alternative automotive fuel. CMC's marketing approach is to equip existing retail service station outlets with the capability to dispense a full slate of fuels (methanol, methanol containing gasolines, as well as conventional fuels) with fuel blending occurring at the service station location. In this way, the fuel distribution infrastructure can be put in place to service simultaneously both existing vehicles (with a range of methyl gasoline blends) and new methanol fuelled vehicles while assuming a high degree of blended fuel quality in a cost-effective manner. It is concluded that methanol and methanol containing gasolines are excellent transportation fuels for Canada and elsewhere, and can be readily integrated into existing transport fuel retail infrastructure.

  2. Costs Associated With Propane Vehicle Fueling Infrastructure

    SciTech Connect

    Smith, M.; Gonzales, J.

    2014-08-01

    This document is designed to help fleets understand the cost factors associated with propane vehicle fueling infrastructure. It provides an overview of the equipment and processes necessary to develop a propane fueling station and offers estimated cost ranges.

  3. Costs Associated With Propane Vehicle Fueling Infrastructure

    SciTech Connect

    Smith, M.; Gonzales, J.

    2014-08-05

    This document is designed to help fleets understand the cost factors associated with propane vehicle fueling infrastructure. It provides an overview of the equipment and processes necessary to develop a propane fueling station and offers estimated cost ranges.

  4. Advances in fuel cell vehicle design

    NASA Astrophysics Data System (ADS)

    Bauman, Jennifer

    Factors such as global warming, dwindling fossil fuel reserves, and energy security concerns combine to indicate that a replacement for the internal combustion engine (ICE) vehicle is needed. Fuel cell vehicles have the potential to address the problems surrounding the ICE vehicle without imposing any significant restrictions on vehicle performance, driving range, or refuelling time. Though there are currently some obstacles to overcome before attaining the widespread commercialization of fuel cell vehicles, such as improvements in fuel cell and battery durability, development of a hydrogen infrastructure, and reduction of high costs, the fundamental concept of the fuel cell vehicle is strong: it is efficient, emits zero harmful emissions, and the hydrogen fuel can be produced from various renewable sources. Therefore, research on fuel cell vehicle design is imperative in order to improve vehicle performance and durability, increase efficiency, and reduce costs. This thesis makes a number of key contributions to the advancement of fuel cell vehicle design within two main research areas: powertrain design and DC/DC converters. With regards to powertrain design, this research first analyzes various powertrain topologies and energy storage system types. Then, a novel fuel cell-battery-ultracapacitor topology is presented which shows reduced mass and cost, and increased efficiency, over other promising topologies found in the literature. A detailed vehicle simulator is created in MATLAB/Simulink in order to simulate and compare the novel topology with other fuel cell vehicle powertrain options. A parametric study is performed to optimize each powertrain and general conclusions for optimal topologies, as well as component types and sizes, for fuel cell vehicles are presented. Next, an analytical method to optimize the novel battery-ultracapacitor energy storage system based on maximizing efficiency, and minimizing cost and mass, is developed. This method can be applied

  5. The causes and effects of the Alternative Motor Fuels Act

    NASA Astrophysics Data System (ADS)

    Liu, Yimin

    The corporate average fuel economy (CAFE) standard is the major policy tool to improve the fleet average miles per gallon of automobile manufacturers in the U.S. The Alternative Motor Fuels Act (AMFA) provides special treatment in calculating the fuel economy of alternative fuel vehicles to give manufacturers CAFE incentives to produce more alternative fuel vehicles. AMFA has as its goals an increase in the production of alternative fuel vehicles and a decrease in gasoline consumption and greenhouse gas emissions. This dissertation examines theoretically the effects of the program set up under AMFA. It finds that, under some conditions, this program may actually increase gasoline consumption and greenhouse gas emissions. The dissertation also uses hedonic techniques to examine whether the Alternative Motor Fuels Act (AMFA) has a significant effect on the implicit price of fuel economy and whether the marginal value of vehicle fuel efficiency changes over time. It estimates the change of implicit price in miles per gallon after the production of alternative fuel vehicles (AFVs). Results indicate that every year consumers may evaluate vehicle fuel economy differently, and that since AFVs came to the market, the marginal value of fuel economy from specific companies producing AFVs has decreased. This finding suggests that since the AMFA provides extra Corporate Average Fuel Economy (CAFE) credit for those automakers producing AFVs, the automakers can take advantage of the incentive to produce more profitable conventional vehicles and meet CAFE standards without improving the fleet fuel economy. In this way, manufacturers who produce AFVs are willing to offer a lower price for the fuel economy under the AMFA. Additionally, this paper suggests that the flexible fuel vehicles (FFVs) on the market are not significantly more expensive than comparable conventional vehicles, even if FFVs are also able to run on an alternative fuel and may cost more than conventional vehicles

  6. Alternative fuels for low emissions and improved performance in CI and heavy duty engines

    SciTech Connect

    1995-12-31

    Contents include: Limited durability of the diesel engine with a dual-fuel system on neat sunflower oil; Analysis and testing of a high-pressure micro-compressor; Spark-assisted alcohol operation in a low heat rejection engine; Combustion improvement of heavy-duty methanol engine by using autoignition system; Clean Fleet Alternative Fuels demonstration project; Vehicle fuel economy -- the Clean Fleet Alternative Fuels project; Safety and occupational hygiene results -- Clean Fleet Alternative Fuels project; Vehicle reliability and maintenance -- Clean Fleet Alternative Fuels project; Flammability tests of alcohol/gasoline vapors; Flame luminosity enhancement of neat methanol fuel by non-aromatic hydrocarbon additives; and more.

  7. [Fuel substitution of vehicles by natural gas: Summaries of four final technical reports

    SciTech Connect

    1996-05-01

    This report contains summary information on three meetings and highlights of a fourth meeting held by the Society of Automotive Engineers on natural gas fueled vehicles. The meetings covered the following: Natural gas engine and vehicle technology; Safety aspects of alternately fueled vehicles; Catalysts and emission control--Meeting the legislative standards; and LNG--Strengthening the links.

  8. Alternative fuel information: Facts about CNG and LPG conversion

    SciTech Connect

    O`Connor, K.

    1994-06-01

    As new environmental and energy related laws begin to take effect, increasing numbers of alternative fuel vehicles (AFVs) will be required in federal, state, municipal, and private fleets across the country. The National Energy Policy Act of 1992 and the Clean Air Act Amendments of 1990, along with several new state and local laws, will require fleet managers to either purchase original equipment manufacturer (OEM) vehicles, which are produced by automakers, or convert existing vehicles to run on alternative fuels. Because there is a limited availability and selection of OEM vehicles, conversions are seen as a transition to the time when automakers will produce more AFVs for public sale. A converted vehicle is any vehicle that originally was designed to operate on gasoline, and has been altered to run on an alternative fuel such as compressed natural gas (CNG) or propane (liquefied petroleum gas -- LPG), the two most common types of fuel conversions. In the United States, more than 25,000 vehicles already have been converted to COG, and 300,000 have been converted to LPG.

  9. Tracked-vehicle fuel consumption. Final report

    SciTech Connect

    Not Available

    1987-03-06

    This document describes test procedures for evaluating the fuel efficiency of tracked vehicles under controlled operating conditions. The test data are a major source for comparisons with similar vehicles, and can also serve to predict the operational range of these vehicles during tactical missions.

  10. Simulating the Use of Alternative Fuels in a Turbofan Engine

    NASA Technical Reports Server (NTRS)

    Litt, Jonathan S.; Chin, Jeffrey Chevoor; Liu, Yuan

    2013-01-01

    The interest in alternative fuels for aviation has created a need to evaluate their effect on engine performance. The use of dynamic turbofan engine simulations enables the comparative modeling of the performance of these fuels on a realistic test bed in terms of dynamic response and control compared to traditional fuels. The analysis of overall engine performance and response characteristics can lead to a determination of the practicality of using specific alternative fuels in commercial aircraft. This paper describes a procedure to model the use of alternative fuels in a large commercial turbofan engine, and quantifies their effects on engine and vehicle performance. In addition, the modeling effort notionally demonstrates that engine performance may be maintained by modifying engine control system software parameters to account for the alternative fuel.

  11. Flexible Fuel Vehicles: Providing a Renewable Fuel Choice

    SciTech Connect

    Not Available

    2007-05-01

    This Clean Cities Program fact sheet describes aspects of flexible fuel vehicles such as use of E85, special features, benefits of use, costs, and fueling locations. It discusses performance and lists additional resources.

  12. HFIR spent fuel management alternatives

    SciTech Connect

    Begovich, J.M.; Green, V.M.; Shappert, L.B.; Lotts, A.L.

    1992-10-15

    The High Flux Isotope Reactor (HFIR) at Martin Marietta Energy Systems` Oak Ridge National Laboratory (ORNL) has been unable to ship its spent fuel to Savannah River Site (SRS) for reprocessing since 1985. The HFIR storage pools are expected to fill up in the February 1994 to February 1995 time frame. If a management altemative to existing HFIR pool storage is not identified and implemented before the HFIR pools are full, the HFIR will be forced to shut down. This study investigated several alternatives for managing the HFIR spent fuel, attempting to identify options that could be implemented before the HFIR pools are full. The options investigated were: installing a dedicated dry cask storage facility at ORNL, increasing HFIR pool storage capacity by clearing the HFIR pools of debris and either close-packing or stacking the spent fuel elements, storing the spent fuel at another ORNL pool, storing the spent fuel in one or more hot cells at ORNL, and shipping the spent fuel offsite for reprocessing or storage elsewhere.

  13. HFIR spent fuel management alternatives

    SciTech Connect

    Begovich, J.M.; Green, V.M.; Shappert, L.B.; Lotts, A.L.

    1992-10-15

    The High Flux Isotope Reactor (HFIR) at Martin Marietta Energy Systems' Oak Ridge National Laboratory (ORNL) has been unable to ship its spent fuel to Savannah River Site (SRS) for reprocessing since 1985. The HFIR storage pools are expected to fill up in the February 1994 to February 1995 time frame. If a management altemative to existing HFIR pool storage is not identified and implemented before the HFIR pools are full, the HFIR will be forced to shut down. This study investigated several alternatives for managing the HFIR spent fuel, attempting to identify options that could be implemented before the HFIR pools are full. The options investigated were: installing a dedicated dry cask storage facility at ORNL, increasing HFIR pool storage capacity by clearing the HFIR pools of debris and either close-packing or stacking the spent fuel elements, storing the spent fuel at another ORNL pool, storing the spent fuel in one or more hot cells at ORNL, and shipping the spent fuel offsite for reprocessing or storage elsewhere.

  14. Alternate-fuel reactor studies

    SciTech Connect

    Evans, K. Jr.; Ehst, D.A.; Gohar, Y.; Jung, J.; Mattas, R.F.; Turner, L.R.

    1983-02-01

    A number of studies related to improvements and/or greater understanding of alternate-fueled reactors is presented. These studies cover the areas of non-Maxwellian distributions, materials and lifetime analysis, a /sup 3/He-breeding blanket, tritium-rich startup effects, high field magnet support, and reactor operation spanning the range from full D-T operation to operation with no tritium breeding.

  15. 41 CFR 102-117.130 - Must I select TSPs who use alternative fuels?

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... use alternative fuels? 102-117.130 Section 102-117.130 Public Contracts and Property Management... § 102-117.130 Must I select TSPs who use alternative fuels? No, but, whenever possible, you are encouraged to select TSPs that use alternative fuel vehicles and equipment, under policy in the Clean Air...

  16. 41 CFR 102-117.130 - Must I select TSPs who use alternative fuels?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... use alternative fuels? 102-117.130 Section 102-117.130 Public Contracts and Property Management... § 102-117.130 Must I select TSPs who use alternative fuels? No, but, whenever possible, you are encouraged to select TSPs that use alternative fuel vehicles and equipment, under policy in the Clean Air...

  17. 41 CFR 102-117.130 - Must I select TSPs who use alternative fuels?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... use alternative fuels? 102-117.130 Section 102-117.130 Public Contracts and Property Management... § 102-117.130 Must I select TSPs who use alternative fuels? No, but, whenever possible, you are encouraged to select TSPs that use alternative fuel vehicles and equipment, under policy in the Clean Air...

  18. 41 CFR 102-117.130 - Must I select TSPs who use alternative fuels?

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... use alternative fuels? 102-117.130 Section 102-117.130 Public Contracts and Property Management... § 102-117.130 Must I select TSPs who use alternative fuels? No, but, whenever possible, you are encouraged to select TSPs that use alternative fuel vehicles and equipment, under policy in the Clean Air...

  19. 41 CFR 102-117.130 - Must I select TSPs who use alternative fuels?

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... use alternative fuels? 102-117.130 Section 102-117.130 Public Contracts and Property Management... § 102-117.130 Must I select TSPs who use alternative fuels? No, but, whenever possible, you are encouraged to select TSPs that use alternative fuel vehicles and equipment, under policy in the Clean Air...

  20. Determination of alternative fuels combustion products: Phase 1 report

    SciTech Connect

    Whitney, K.A.

    1997-09-01

    This report describes the laboratory effort to identify and quantify organic exhaust species generated from alternative-fueled light-duty vehicles operating over the Federal Test Procedure on compressed natural gas, liquefied petroleum gas, methanol, ethanol, and reformulated gasoline. The exhaust species from these vehicles were identified and quantified for fuel/air equivalence ratios of 0.8, 1.0, and 1.2, nominally, and were analyzed with and without a vehicle catalyst in place to determine the influence of a catalytic converter on species formation.

  1. Flexible Fuel Vehicles: Providing a Renewable Fuel Choice (Revised)

    SciTech Connect

    Not Available

    2008-06-01

    Clean Cities fact sheet describing aspects of flexible fuel vehicles such as use of E85, special features, benefits of use, costs, and fueling locations. It includes discussion on performance and how to identify these vehicles as well as listing additional resources.

  2. Fleet vehicles in the Unites States: composition, operating characteristics, and fueling practices

    SciTech Connect

    Miaou, S.P.; Hu, P.S.; Young, J.R.

    1992-05-01

    As fleets become a larger proportion of the new vehicle population on the road, they have more influence on the characteristics of the total US motor vehicle population. One of the characteristics which fleets are expected to have the most influence on is the overall vehicle fuel economy. In addition, because of the relatively large market share and the high turnover rate of fleet vehicles, fleets have been considered as a useful initial market for alternative fuel vehicles. In order to analyze fleet market potential and likely market penetration of alternative fuel vehicles and to infrastructure requirements for successful operations of these vehicles in the future, information on fleet sizes and composition, fleet vehicle operating characteristics (such as daily/annual miles of travel), fuel efficiency, and refueling practices, is essential. The purpose of this report is to gather and summarize information from the latest data sources available pertaining to fleet vehicles in the US This report presents fleet vehicle data on composition, operating characteristics, and fueling practices. The questions these data are intended to address include: (1) How are fleet vehicles operated? (2) Where are they located? and (3) What are their usual fueling practices? Since a limited number of alternative fuel fleet vehicles are already in use, data on these vehicles are also included in this report. 17 refs.

  3. Fleet vehicles in the Unites States: composition, operating characteristics, and fueling practices

    SciTech Connect

    Miaou, S.P.; Hu, P.S. ); Young, J.R. )

    1992-05-01

    As fleets become a larger proportion of the new vehicle population on the road, they have more influence on the characteristics of the total US motor vehicle population. One of the characteristics which fleets are expected to have the most influence on is the overall vehicle fuel economy. In addition, because of the relatively large market share and the high turnover rate of fleet vehicles, fleets have been considered as a useful initial market for alternative fuel vehicles. In order to analyze fleet market potential and likely market penetration of alternative fuel vehicles and to infrastructure requirements for successful operations of these vehicles in the future, information on fleet sizes and composition, fleet vehicle operating characteristics (such as daily/annual miles of travel), fuel efficiency, and refueling practices, is essential. The purpose of this report is to gather and summarize information from the latest data sources available pertaining to fleet vehicles in the US This report presents fleet vehicle data on composition, operating characteristics, and fueling practices. The questions these data are intended to address include: (1) How are fleet vehicles operated (2) Where are they located and (3) What are their usual fueling practices Since a limited number of alternative fuel fleet vehicles are already in use, data on these vehicles are also included in this report. 17 refs.

  4. Effect of Intake Air Filter Condition on Vehicle Fuel Economy

    SciTech Connect

    Norman, Kevin M; Huff, Shean P; West, Brian H

    2009-02-01

    The U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy and the U.S. Environmental Protection Agency (EPA) jointly maintain a fuel economy website (www.fueleconomy.gov), which helps fulfill their responsibility under the Energy Policy Act of 1992 to provide accurate fuel economy information [in miles per gallon (mpg)] to consumers. The site provides information on EPA fuel economy ratings for passenger cars and light trucks from 1985 to the present and other relevant information related to energy use such as alternative fuels and driving and vehicle maintenance tips. In recent years, fluctuations in the price of crude oil and corresponding fluctuations in the price of gasoline and diesel fuels have renewed interest in vehicle fuel economy in the United States. (User sessions on the fuel economy website exceeded 20 million in 2008 compared to less than 5 million in 2004 and less than 1 million in 2001.) As a result of this renewed interest and the age of some of the references cited in the tips section of the website, DOE authorized the Oak Ridge National Laboratory (ORNL) Fuels, Engines, and Emissions Research Center (FEERC) to initiate studies to validate and improve these tips. This report documents a study aimed specifically at the effect of engine air filter condition on fuel economy. The goal of this study was to explore the effects of a clogged air filter on the fuel economy of vehicles operating over prescribed test cycles. Three newer vehicles (a 2007 Buick Lucerne, a 2006 Dodge Charger, and a 2003 Toyota Camry) and an older carbureted vehicle were tested. Results show that clogging the air filter has no significant effect on the fuel economy of the newer vehicles (all fuel injected with closed-loop control and one equipped with MDS). The engine control systems were able to maintain the desired AFR regardless of intake restrictions, and therefore fuel consumption was not increased. The carbureted engine did show a decrease in

  5. Fuel Economy and Emissions of a Vehicle Equipped with an Aftermarket Flexible-Fuel Conversion Kit

    SciTech Connect

    Thomas, John F; Huff, Shean P; West, Brian H

    2012-04-01

    The U.S. Environmental Protection Agency (EPA) grants Certificates of Conformity for alternative fuel conversion systems and also offers other forms of premarket registration of conversion kits for use in vehicles more than two model years old. Use of alternative fuels such as ethanol, natural gas, and propane are encouraged by the Energy Policy Act of 1992. Several original equipment manufacturers (OEMs) produce emissions-certified vehicles capable of using alternative fuels, and several alternative fuel conversion system manufacturers produce EPA-approved conversion systems for a variety of alternative fuels and vehicle types. To date, only one manufacturer (Flex Fuel U.S.) has received EPA certifications for ethanol fuel (E85) conversion kits. This report details an independent evaluation of a vehicle with a legal installation of a Flex Fuel U.S. conversion kit. A 2006 Dodge Charger was baseline tested with ethanol-free certification gasoline (E0) and E20 (gasoline with 20 vol % ethanol), converted to flex-fuel operation via installation of a Flex Box Smart Kit from Flex Fuel U.S., and retested with E0, E20, E50, and E81. Test cycles included the Federal Test Procedure (FTP or city cycle), the highway fuel economy test (HFET), and the US06 test (aggressive driving test). Averaged test results show that the vehicle was emissions compliant on E0 in the OEM condition (before conversion) and compliant on all test fuels after conversion. Average nitrogen oxide (NOx) emissions exceeded the Tier 2/Bin 5 intermediate life NO{sub X} standard with E20 fuel in the OEM condition due to two of three test results exceeding this standard [note that E20 is not a legal fuel for non-flexible-fuel vehicles (non-FFVs)]. In addition, one E0 test result before conversion and one E20 test result after conversion exceeded the NOX standard, although the average result in these two cases was below the standard. Emissions of ethanol and acetaldehyde increased with increasing ethanol

  6. Gaseous fueled vehicles: A role for natural gas and hydrogen

    SciTech Connect

    Blazek, C.F.; Jasionowski, W.J.

    1991-01-01

    The commercialization of gaseous hydrogen fueled vehicles requires both the development of hydrogen fueled vehicles and the establishment of a hydrogen fueling infrastructure. These requirements create a classic chicken and egg scenario in that manufacturers will not build and consumers will not buy vehicles without an adequate refueling infrastructure and potential refueling station operators will not invest the needed capital without an adequate market to serve. One solution to this dilemma is to create a bridging strategy whereby hydrogen is introduced gradually via another carrier. The only contending alternative fuel that can act as a bridge to hydrogen fueled vehicles is natural gas. To explore this possibility, IGT is conducting emission tests on its dedicated natural gas vehicle (NGV) test platform to determine what, if any, effects small quantities of hydrogen have on emissions and performance. Furthermore, IGT is actively developing an adsorbent based low-pressure natural gas storage system for NGV applications. This system has also shown promise as a storage media for hydrogen. A discussion of our research results in this area will be presented. Finally, a review of IGT's testing facility will be presented to indicate our capabilities in conducted natural gas/hydrogen vehicle (NGHV) research. 3 refs., 10 figs.

  7. 40 CFR 79.33 - Motor vehicle diesel fuel.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 17 2012-07-01 2012-07-01 false Motor vehicle diesel fuel. 79.33... (CONTINUED) REGISTRATION OF FUELS AND FUEL ADDITIVES Designation of Fuels and Additives § 79.33 Motor vehicle diesel fuel. (a) The following fuels commonly or commercially known or sold as motor vehicle diesel...

  8. 40 CFR 79.33 - Motor vehicle diesel fuel.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 17 2013-07-01 2013-07-01 false Motor vehicle diesel fuel. 79.33... (CONTINUED) REGISTRATION OF FUELS AND FUEL ADDITIVES Designation of Fuels and Additives § 79.33 Motor vehicle diesel fuel. (a) The following fuels commonly or commercially known or sold as motor vehicle diesel...

  9. 40 CFR 79.33 - Motor vehicle diesel fuel.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 17 2014-07-01 2014-07-01 false Motor vehicle diesel fuel. 79.33... (CONTINUED) REGISTRATION OF FUELS AND FUEL ADDITIVES Designation of Fuels and Additives § 79.33 Motor vehicle diesel fuel. (a) The following fuels commonly or commercially known or sold as motor vehicle diesel...

  10. 40 CFR 79.33 - Motor vehicle diesel fuel.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false Motor vehicle diesel fuel. 79.33... (CONTINUED) REGISTRATION OF FUELS AND FUEL ADDITIVES Designation of Fuels and Additives § 79.33 Motor vehicle diesel fuel. (a) The following fuels commonly or commercially known or sold as motor vehicle diesel...

  11. 40 CFR 79.33 - Motor vehicle diesel fuel.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 16 2011-07-01 2011-07-01 false Motor vehicle diesel fuel. 79.33... (CONTINUED) REGISTRATION OF FUELS AND FUEL ADDITIVES Designation of Fuels and Additives § 79.33 Motor vehicle diesel fuel. (a) The following fuels commonly or commercially known or sold as motor vehicle diesel...

  12. Southern Nevada Alternative Fuels Demonstration Project

    SciTech Connect

    Hyde, Dan; Fast, Matthew

    2009-12-31

    The Southern Nevada Alternative Fuels Program is designed to demonstrate, in a day-to-day bus operation, the reliability and efficiency of a hydrogen bus operation under extreme conditions. By using ICE technology and utilizing a virtually emission free fuel, benefits to be derived include air quality enhancement and vehicle performance improvements from domestically produced, renewable energy sources. The project objective is to help both Ford and the City demonstrate and evaluate the performance characteristics of the E-450 H2ICE shuttle buses developed by Ford, which use a 6.8-liter supercharged Triton V-10 engine with a hydrogen storage system equivalent to 29 gallons of gasoline. The technology used during the demonstration project in the Ford buses is a modified internal combustion engine that allows the vehicles to run on 100% hydrogen fuel. Hydrogen gives a more thorough fuel burn which results in more power and responsiveness and less pollution. The resultant emissions from the tailpipe are 2010 Phase II compliant with NO after treatment. The City will lease two of these E-450 H2ICE buses from Ford for two years. The buses are outfitted with additional equipment used to gather information needed for the evaluation. Performance, reliability, safety, efficiency, and rider comments data will be collected. The method of data collection will be both electronically and manually. Emissions readings were not obtained during the project. The City planned to measure the vehicle exhaust with an emissions analyzer machine but discovered the bus emission levels were below the capability of their machine. Passenger comments were solicited on the survey cards. The majority of comments were favorable. The controllable issues encountered during this demonstration project were mainly due to the size of the hydrogen fuel tanks at the site and the amount of fuel that could be dispensed during a specified period of time. The uncontrollable issues encountered during this

  13. Energy demand analysis and alternative fuels. Transportation research record

    SciTech Connect

    Dingemans, D.; Sperling, D.; Greene, D.L.; Hu, P.S.; Hallet, P.

    1986-01-01

    Contents include: Mental maps and the refueling behavior of vehicle drivers; A functional form analysis of the short-run demand for travel and gasoline by one-vehicle households; An assessment methodology for alternative fuels technologies; Drive-up windows, energy, and air quality; Travel characteristics and transportation energy consumption patterns of minority and poor households; An investigation into the use of market segmentation analysis for transportation energy planning.

  14. Alternate-Fueled Flight: Halophytes, Algae, Bio-, and Synthetic Fuels

    NASA Technical Reports Server (NTRS)

    Hendricks, R. C.

    2007-01-01

    Synthetic and biomass fueling are now considered to be near-term aviation alternate fueling. The major impediment is a secure sustainable supply of these fuels at reasonable cost. However, biomass fueling raises major concerns related to uses of common food crops and grasses (some also called "weeds") for processing into aviation fuels. These issues are addressed, and then halophytes and algae are shown to be better suited as sources of aerospace fuels and transportation fueling in general. Some of the history related to alternate fuels use is provided as a guideline for current and planned alternate fuels testing (ground and flight) with emphasis on biofuel blends. It is also noted that lessons learned from terrestrial fueling are applicable to space missions. These materials represent an update and additions to the Workshop on Alternate Fueling Sustainable Supply and Halophyte Summit at Twinsburg, OH, Oct. 17 to 18, 2007 (ref. 1).

  15. Alternate-Fueled Flight: Halophytes, Algae, Bio-, and Synthetic Fuels

    NASA Technical Reports Server (NTRS)

    Hendricks, R. C.

    2012-01-01

    Synthetic and biomass fueling are now considered to be near-term aviation alternate fueling. The major impediment is a secure sustainable supply of these fuels at reasonable cost. However, biomass fueling raises major concerns related to uses of common food crops and grasses (some also called "weeds") for processing into aviation fuels. These issues are addressed, and then halophytes and algae are shown to be better suited as sources of aerospace fuels and transportation fueling in general. Some of the history related to alternate fuels use is provided as a guideline for current and planned alternate fuels testing (ground and flight) with emphasis on biofuel blends. It is also noted that lessons learned from terrestrial fueling are applicable to space missions. These materials represent an update (to 2009) and additions to the Workshop on Alternate Fueling Sustainable Supply and Halophyte Summit at Twinsburg, Ohio, October 17 to 18, 2007.

  16. Association of American Railroads Alternative Fuels Program

    SciTech Connect

    Furber, C.P.

    1985-01-01

    Alternative fuels can be used in locomotive diesel engines as a means to reduce fuel costs or as fuel extenders when sufficient quantities of suitable lower cost fuels are not available. Broadened fuel purchasing guidelines, based on engine fuel tolerance limitation tests, offer a potential for reducing fuel costs. Fuels such as alcohols, certain vegetable oils, shale oils, and heavy oil blends can be used to extend fuel supplies. Fuel tolerance limitations of existing engines can be increased through modifications such as staged injection or the use of ceramic coatings. This paper describes the methods used by the Association of American Railroads Alternative Fuels Research Program to determine engine fuel tolerance limitations and extend engine fuel tolerance limits.

  17. Advanced Vehicle Testing Activity: Hydrogen-Fueled Mercedes Sprinter Van Operating Summary - January 2003

    SciTech Connect

    Karner, D.; Francfort, J.E.

    2003-01-22

    Over the past two years, Arizona Public Service, a subsidiary of Pinnacle West Capital Corporation, in cooperation with the U.S. Department of Energy's Advanced Vehicle Testing Activity, tested four gaseous fuel vehicles as part of its alternative fueled vehicle fleet. One vehicle operated initially using compressed natural gas (CNG) and later a blend of CNG and hydrogen. Of the other three vehicles, one was fueled with pure hydrogen and two were fueled with a blend of CNG and hydrogen. The three blended-fuel vehicles were originally equipped with either factory CNG engines or factory gasoline engines that were converted to run CNG fuel. The vehicles were variously modified to operate on blended fuel and were tested using 15 to 50% blends of hydrogen (by volume). The pure-hydrogen-fueled vehicle was converted from gasoline fuel to operate on 100% hydrogen. All vehicles were fueled from the Arizona Public Service's Alternative Fuel Pilot Plant, which was developed to dispense gaseous fuels, including CNG, blends of CNG and hydrogen, and pure hydrogen with up to 99.9999% purity. The primary objective of the test was to evaluate the safety and reliability of operating vehicles on hydrogen and blended hydrogen fuel, and the interface between the vehicles and the hydrogen fueling infrastructure. A secondary objective was to quantify vehicle emissions, cost, and performance. Over a total of 40,000 fleet test miles, no safety issues were found. Also, significant reductions in emissions were achieved by adding hydrogen to the fuel. This report presents results of testing conducted over 6,864 kilometers (4,265 miles) of operation using the pure-hydrogen-fueled Mercedes Sprinter van.

  18. Advanced Vehicle Testing Activity: Hydrogen-Fueled Mercedes Sprinter Van -- Operating Summary

    SciTech Connect

    Karner, D.; Francfort, James Edward

    2003-01-01

    Over the past two years, Arizona Public Service, a subsidiary of Pinnacle West Capital Corporation, in cooperation with the U.S. Department of Energy's Advanced Vehicle Testing Activity, tested four gaseous fuel vehicles as part of its alternative fueled vehicle fleet. One vehicle operated initially using compressed natural gas (CNG) and later a blend of CNG and hydrogen. Of the other three vehicles, one was fueled with pure hydrogen and two were fueled with a blend of CNG and hydrogen. The three blended-fuel vehicles were originally equipped with either factory CNG engines or factory gasoline engines that were converted to run CNG fuel. The vehicles were variously modified to operate on blended fuel and were tested using 15 to 50% blends of hydrogen (by volume). The pure- hydrogen-fueled vehicle was converted from gasoline fuel to operate on 100% hydrogen. All vehicles were fueled from the Arizona Public Service's Alternative Fuel Pilot Plant, which was developed to dispense gaseous fuels, including CNG, blends of CNG and hydrogen, and pure hydrogen with up to 99.9999% purity. The primary objective of the test was to evaluate the safety and reliability of operating vehicles on hydrogen and blended hydrogen fuel, and the interface between the vehicles and the hydrogen fueling infrastructure. A secondary objective was to quantify vehicle emissions, cost, and performance. Over a total of 40,000 fleet test miles, no safety issues were found. Also, significant reductions in emissions were achieved by adding hydrogen to the fuel. This report presents results of testing conducted over 6,864 kilometers (4,265 miles) of operation using the pure-hydrogen-fueled Mercedes Sprinter van.

  19. Effects of uncertainty in SAPRC90 rate constants and selected product yields on reactivity adjustment factors for alternative fuel vehicle emissions. Final report

    SciTech Connect

    Bergin, M.S.; Russell, A.G.; Yang, Y.J.; Milford, J.B.; Kirchner, F.; Stockwell, W.R.

    1996-07-01

    Tropospheric ozone is formed in the atmosphere by a series of reactions involving volatile organic compounds (VOCs) and nitrogen oxides (NO{sub x}). While NOx emissions are primarily composed of only two compounds, nitrogen oxide (NO) and nitrogen dioxide (NO{sub 2}), there are hundreds of different VOCs being emitted. In general, VOCs promote ozone formation, however, the rate and extent of ozone produced by the individual VOCs varies considerably. For example, it is widely acknowledged that formaldehyde (HCHO) is a very reactive VOC, and produces ozone rapidly and efficiently under most conditions. On the other hand, VOCs such as methane, ethane, propane, and methanol do not react as quickly, and are likely to form less urban ozone than a comparable mass of HCHO. The difference in ozone forming potential is one of the bases for the use of alternative fuels. The fuels considered in this study included compressed natural gas, LPG, mixtures of methanol and gasoline, ethanol and gasoline, and a reformulated gasoline.

  20. A life-cycle comparison of alternative automobile fuels.

    PubMed

    MacLean, H L; Lave, L B; Lankey, R; Joshi, S

    2000-10-01

    We examine the life cycles of gasoline, diesel, compressed natural gas (CNG), and ethanol (C2H5OH)-fueled internal combustion engine (ICE) automobiles. Port and direct injection and spark and compression ignition engines are examined. We investigate diesel fuel from both petroleum and biosources as well as C2H5OH from corn, herbaceous bio-mass, and woody biomass. The baseline vehicle is a gasoline-fueled 1998 Ford Taurus. We optimize the other fuel/powertrain combinations for each specific fuel as a part of making the vehicles comparable to the baseline in terms of range, emissions level, and vehicle lifetime. Life-cycle calculations are done using the economic input-output life-cycle analysis (EIO-LCA) software; fuel cycles and vehicle end-of-life stages are based on published model results. We find that recent advances in gasoline vehicles, the low petroleum price, and the extensive gasoline infrastructure make it difficult for any alternative fuel to become commercially viable. The most attractive alternative fuel is compressed natural gas because it is less expensive than gasoline, has lower regulated pollutant and toxics emissions, produces less greenhouse gas (GHG) emissions, and is available in North America in large quantities. However, the bulk and weight of gas storage cylinders required for the vehicle to attain a range comparable to that of gasoline vehicles necessitates a redesign of the engine and chassis. Additional natural gas transportation and distribution infrastructure is required for large-scale use of natural gas for transportation. Diesel engines are extremely attractive in terms of energy efficiency, but expert judgment is divided on whether these engines will be able to meet strict emissions standards, even with reformulated fuel. The attractiveness of direct injection engines depends on their being able to meet strict emissions standards without losing their greater efficiency. Biofuels offer lower GHG emissions, are sustainable, and

  1. Alternative Fuels Market and Policy Trends (Presentation)

    SciTech Connect

    Schroeder, A. N.

    2013-09-01

    Market forces and policies are increasing opportunities for alternative fuels. There is no one-size-fits-all, catch-all, silver-bullet fuel. States play a critical role in the alternative fuel market and are taking a leading role.

  2. Energy Storage Fuel Cell Vehicle Analysis: Preprint

    SciTech Connect

    Markel, T.; Pesaran, A.; Zolot, M.; Sprik, S.; Tataria, H.; Duong, T.

    2005-04-01

    In recent years, hydrogen fuel cell (FC) vehicle technology has received considerable attention as a strategy to decrease oil consumption and reduce harmful emissions. However, the cost, transient response, and cold performance of FC systems may present significant challenges to widespread adoption of the technology for transportation in the next 15 years. The objectives of this effort were to perform energy storage modeling with fuel cell vehicle simulations to quantify the benefits of hybridization and to identify a process for setting the requirements of ES for hydrogen-powered FC vehicles for U.S. Department of Energy's Energy Storage Program.

  3. Energy Storage Fuel Cell Vehicle Analysis

    SciTech Connect

    Pesaran, A; Markel, T; Zolot, M; Sprik, S; Tataria, H; Duong, T

    2005-08-01

    In recent years, hydrogen fuel cell (FC) vehicle technology has received considerable attention as a strategy to decrease oil consumption and reduce harmful emissions. However, the cost, transient response, and cold performance of FC systems may present significant challenges to widespread adoption of the technology for transportation in the next 15 years. The objectives of this effort were to perform energy storage modeling with fuel cell vehicle simulations to quantify the benefits of hybridization and to identify a process for setting the requirements of ES for hydrogen-powered FC vehicles for U.S. Department of Energy's Energy Storage Program.

  4. Geospatial Analysis and Optimization of Fleet Logistics to Exploit Alternative Fuels and Advanced Transportation Technologies: Preprint

    SciTech Connect

    Sparks, W.; Singer, M.

    2010-06-01

    This paper describes how the National Renewable Energy Laboratory (NREL) is developing geographical information system (GIS) tools to evaluate alternative fuel availability in relation to garage locations and to perform automated fleet-wide optimization to determine where to deploy alternative fuel and advanced technology vehicles and fueling infrastructure.

  5. LIQUID NATURAL GAS (LNG): AN ALTERNATIVE FUEL FROM LANDFILL GAS (LFG) AND WASTEWATER DIGESTER GAS

    SciTech Connect

    VANDOR,D.

    1999-03-01

    This Research and Development Subcontract sought to find economic, technical and policy links between methane recovery at landfill and wastewater treatment sites in New York and Maryland, and ways to use that methane as an alternative fuel--compressed natural gas (CNG) or liquid natural gas (LNG) -- in centrally fueled Alternative Fueled Vehicles (AFVs).

  6. Aviation turbine fuels: An assessment of alternatives

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The general outlook for aviation turbine fuels, the effect that broadening permissible aviation turbine fuel properties could have on the overall availability of such fuels, the fuel properties most likely to be affected by use of lower grade petroleum crudes, and the research and technology required to ensure that aviation turbine fuels and engines can function satisfactorily with fuels having a range of fuel properties differing from those of current specification fuel are assessed. Views of industry representatives on alternative aviation turbine fuels are presented.

  7. State and Alternative Fuel Provider Fleets Alternative Compliance; U.S. Department of Energy (DOE), Energy Efficiency & Renewable Energy (EERE)

    SciTech Connect

    2015-08-01

    The final rule of the Energy Policy Act of 2005 and its associated regulations enable covered state and alternative fuel provider fleets to obtain waivers from the alternative fuel vehicle (AFV)-acquisition requirements of Standard Compliance. Under Alternative Compliance, covered fleets instead meet a petroleum-use reduction requirement. This guidance document is designed to help fleets better understand the Alternative Compliance option and successfully complete the waiver application process.

  8. Alternatives to traditional transportation fuels 1994. Volume 1

    SciTech Connect

    1996-02-01

    In this report, alternative and replacement fuels are defined in accordance with the EPACT. Section 301 of the EPACT defines alternative fuels as: methanol, denatured ethanol, and other alcohols; mixtures containing 85% or more (or such other percentage, but not less than 70%, as determined by the Secretary of Energy, by rule, to provide for requirements relating to cold start, safety, or vehicle functions) by volume of methanol, denatured ethanol, and other alcohols with gasoline or other fuels; natural gas; liquefied petroleum gas; hydrogen; coal-derived liquid fuels; fuels (other than alcohol) derived from biological materials; electricity (including electricity from solar energy); and any other fuel the Secretary determines, by rule, is substantially not petroleum and would yield substantial energy security benefits and substantial environmental benefits. The EPACT defines replacement fuels as the portion of any motor fuel that is methanol, ethanol, or other alcohols, natural gas, liquefied petroleum gas, hydrogen, coal-derived liquid fuels, fuels (other than alcohol) derived from biological materials, electricity (including electricity from solar energy), ethers, or any other fuel the Secretary of Energy determines, by rule, is substantially not petroleum and would yield substantial energy security benefits and substantial environmental benefits. This report covers only those alternative and replacement fuels cited in the EPACT that are currently commercially available or produced in significant quantities for vehicle demonstration purposes. Information about other fuels, such as hydrogen and biodiesel, will be included in later reports as those fuels become more widely used. Annual data are presented for 1992 to 1996. Data for 1996 are based on plans or projections for 1996.

  9. Clean Cities Guide to Alternative Fuel Commercial Lawn Equipment (Brochure)

    SciTech Connect

    Not Available

    2011-10-01

    particularly helpful for organizations that are already using alternative fuels in their vehicles and have an alternative fuel supply or electric charging in place (e.g., golf cart charging stations at most golf courses). On the flip side, experiencing the benefits of using alternative fuels in mowing equipment may encourage organizations to try them in on-road vehicles as well. Whatever the case, alternative fuel commercial lawnmowers are a powerful and cost-effective way to reduce U.S. petroleum dependence and help protect the environment.

  10. Alternate-Fueled Combustion-Sector Emissions

    NASA Technical Reports Server (NTRS)

    Saxena, Nikita T.; Thomas, Anna E.; Shouse, Dale T.; Neuroth, Craig; Hendricks, Robert C.; Lynch, Amy; Frayne, Charles W.; Stutrud, Jeffrey S.; Corporan, Edwin; Hankins, Terry

    2012-01-01

    In order to meet rapidly growing demand for fuel, as well as address environmental concerns, the aviation industry has been testing alternate fuels for performance and technical usability in commercial and military aircraft. Currently, alternate aviation fuels must satisfy MIL-DTL- 83133F(2008) (military) or ASTM D 7566- Annex(2011) (commercial) standards and are termed drop-in fuel replacements. Fuel blends of up to 50% alternative fuel blended with petroleum (JP-8), which have become a practical alternative, are individually certified on the market. In order to make alternate fuels (and blends) a viable option for aviation, the fuel must be able to perform at a similar or higher level than traditional petroleum fuel. They also attempt to curb harmful emissions, and therefore a truly effective alternate fuel would emit at or under the level of currently used fuel. This paper analyzes data from gaseous and particulate emissions of an aircraft combustor sector. The data were evaluated at various inlet conditions, including variation in pressure and temperature, fuel-to-air ratios, and percent composition of alternate fuel. Traditional JP-8+100 data were taken as a baseline, and blends of JP- 8+100 with synthetic-paraffinic-kerosene (SPK) fuel (Fischer-Tropsch (FT)) were used for comparison. Gaseous and particulate emissions, as well as flame luminosity, were assessed for differences between FT composition of 0%, 50%, and 100%. The data showed that SPK fuel (a FT-derived fuel) had slightly lower harmful gaseous emissions, and smoke number information corroborated the hypothesis that SPK-FT fuels are cleaner burning fuels.

  11. Alternative Fuel News: Official Publication of the U.S. Department of Energy's Clean Cities Network and the Alternative Fuels Data Center; Vol. 5, No. 1

    SciTech Connect

    LaRocque, T.

    2001-04-18

    A quarterly magazine with articles on recent changes to the Clean Cities Program; the SuperTruck student engineering challenge; alternative fuel use in delivery fleets; and a propane vehicle rally and conference in February 2001, in Kansas City, Mo.

  12. Carbon monoxide exposure from aircraft fueling vehicles.

    PubMed

    McCammon, C S; Halperin, W F; Lemen, R A

    1981-01-01

    Investigators from the National Institute for Occupational Safety and Health observed deficiencies in maintenance of fueling trucks at an international airport. The exhaust system is vented under the front bumper, a standard design on fueling trucks which is intended to minimize the proximity of the exhaust system to the jet fuel in the vehicles. Carbon monoxide levels were measured in the cabs of 17 fueling trucks with windows closed, heaters on, and in different positions relative to the wind. One truck had an average CO level of 300 ppm, two exceeded 100 ppm, five others exceeded 50 ppm, while levels in the other nine averaged less than or equal to 500 ppm. Levels of CO depended on the mechanical condition of the vehicle and the vehicle's orientation to the wind. Stringent maintenance is required as the exhaust design is not fail-safe. PMID:6166254

  13. 40 CFR 88.304-94 - Clean-fuel Fleet Vehicle Credit Program.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... contained in 40 CFR part 88, subpart A. (b) Program administration. (1)(i) Each state in which there is all... been operated only on the clean alternative fuel on which the vehicle had been certified as a CFFV. (3... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Clean-fuel Fleet Vehicle...

  14. 40 CFR 88.304-94 - Clean-fuel Fleet Vehicle Credit Program.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... contained in 40 CFR part 88, subpart A. (b) Program administration. (1)(i) Each state in which there is all... been operated only on the clean alternative fuel on which the vehicle had been certified as a CFFV. (3... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Clean-fuel Fleet Vehicle...

  15. 40 CFR 88.304-94 - Clean-fuel Fleet Vehicle Credit Program.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... contained in 40 CFR part 88, subpart A. (b) Program administration. (1)(i) Each state in which there is all... been operated only on the clean alternative fuel on which the vehicle had been certified as a CFFV. (3... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Clean-fuel Fleet Vehicle Credit...

  16. Skid steer fuel cell powered unmanned ground vehicle (Burro)

    NASA Astrophysics Data System (ADS)

    Meldrum, Jay S.; Green, Christopher A.

    2008-04-01

    The use of alternative energy technology for vehicle propulsion and auxiliary power is becoming more important. Work is being performed at Michigan Technological University's Keweenaw Research Center on an Army Research Laboratory cooperative agreement to develop two unmanned ground vehicles for military applications. A wide range of alternative energy technologies were investigated. Hydrogen-powered proton exchange membrane fuel cells were identified as the most appropriate alternative energy source. This is due to some development and commercialization which makes the technology "drop-in plug-in" for immediate use. We have previously presented research work on a small unmanned ground vehicle demonstration platform where the fuel cell is the only power source. We now present research work on the integration of a fuel cell onto a larger skid steer platform. The dual-power capability of this vehicle can provide a modest level of propulsion in "engine-off mode" and may also be used to power directed energy devices which have applications in countermine and similar threat technologies.

  17. Isoprenoid based alternative diesel fuel

    DOEpatents

    Lee, Taek Soon; Peralta-Yahya, Pamela; Keasling, Jay D.

    2015-08-18

    Fuel compositions are provided comprising a hydrogenation product of a monocyclic sesquiterpene (e.g., hydrogenated bisabolene) and a fuel additive. Methods of making and using the fuel compositions are also disclosed. ##STR00001##

  18. Alternative Fuels and Their Potential Impact on Aviation

    NASA Technical Reports Server (NTRS)

    Daggett, D.; Hendricks, R.; Walther, R.

    2006-01-01

    With a growing gap between the growth rate of petroleum production and demand, and with mounting environmental needs, the aircraft industry is investigating issues related to fuel availability, candidates for alternative fuels, and improved aircraft fuel efficiency. Bio-derived fuels, methanol, ethanol, liquid natural gas, liquid hydrogen, and synthetic fuels are considered in this study for their potential to replace or supplement conventional jet fuels. Most of these fuels present the airplane designers with safety, logistical, and performance challenges. Synthetic fuel made from coal, natural gas, or other hydrocarbon feedstock shows significant promise as a fuel that could be easily integrated into present and future aircraft with little or no modification to current aircraft designs. Alternatives, such as biofuel, and in the longer term hydrogen, have good potential but presently appear to be better suited for use in ground transportation. With the increased use of these fuels, a greater portion of a barrel of crude oil can be used for producing jet fuel because aircraft are not as fuel-flexible as ground vehicles.

  19. Alternate-Fueled Combustor-Sector Emissions

    NASA Technical Reports Server (NTRS)

    Saxena, Nikita T.; Thomas, Anna E.; Shouse, Dale T.; Neuroth, Craig; Hendricks, Robert C.; Lynch, Amy; Frayne, Charles W.; Stutrud, Jeffrey S.; Corporan, Edwin; Hankins, Terry

    2013-01-01

    In order to meet rapidly growing demand for fuel, as well as address environmental concerns, the aviation industry has been testing alternate fuels for performance and technical usability in commercial and military aircraft. In order to make alternate fuels (and blends) a viable option for aviation, the fuel must be able to perform at a similar or higher level than traditional petroleum fuel. They also attempt to curb harmful emissions, and therefore a truly effective alternate fuel would emit at or under the level of currently used fuel. This report analyzes data from gaseous and particulate emissions of an aircraft combustor sector. The data were evaluated at various inlet conditions, including variation in pressure and temperature, fuel-to-air ratios, and percent composition of alternate fuel. Traditional JP-8+100 data were taken as a baseline, and blends of JP-8+100 with synthetic-paraffinic-kerosene (SPK) fuel (Fischer-Tropsch (FT)) were used for comparison. Gaseous and particulate emissions, as well as flame luminosity, were assessed for differences between FT composition of 0, 50, and 100 percent. The data show that SPK fuel (an FT-derived fuel) had slightly lower harmful gaseous emissions, and smoke number information corroborated the hypothesis that SPK-FT fuels are cleaner burning fuels.

  20. Fuel cell power system for utility vehicle

    SciTech Connect

    Graham, M.; Barbir, F.; Marken, F.; Nadal, M.

    1996-12-31

    Based on the experience of designing and building the Green Car, a fuel cell/battery hybrid vehicle, and Genesis, a hydrogen/oxygen fuel cell powered transporter, Energy Partners has developed a fuel cell power system for propulsion of an off-road utility vehicle. A 10 kW hydrogen/air fuel cell stack has been developed as a prototype for future mass production. The main features of this stack are discussed in this paper. Design considerations and selection criteria for the main components of the vehicular fuel cell system, such as traction motor, air compressor and compressor motor, hydrogen storage and delivery, water and heat management, power conditioning, and control and monitoring subsystem are discussed in detail.

  1. Life cycle models of conventional and alternative-fueled automobiles

    NASA Astrophysics Data System (ADS)

    Maclean, Heather Louise

    This thesis reports life cycle inventories of internal combustion engine automobiles with feasible near term fuel/engine combinations. These combinations include unleaded gasoline, California Phase 2 Reformulated Gasoline, alcohol and gasoline blends (85 percent methanol or ethanol combined with 15 percent gasoline), and compressed natural gas in spark ignition direct and indirect injection engines. Additionally, I consider neat methanol and neat ethanol in spark ignition direct injection engines and diesel fuel in compression ignition direct and indirect injection engines. I investigate the potential of the above options to have a lower environmental impact than conventional gasoline-fueled automobiles, while still retaining comparable pricing and consumer benefits. More broadly, the objective is to assess whether the use of any of the alternative systems will help to lead to the goal of a more sustainable personal transportation system. The principal tool is the Economic Input-Output Life Cycle Analysis model which includes inventories of economic data, environmental discharges, and resource use. I develop a life cycle assessment framework to assemble the array of data generated by the model into three aggregate assessment parameters; economics, externalities, and vehicle attributes. The first step is to develop a set of 'comparable cars' with the alternative fuel/engine combinations, based on characteristics of a conventional 1998 gasoline-fueled Ford Taurus sedan, the baseline vehicle for the analyses. I calculate the assessment parameters assuming that these comparable cars can attain the potential thermal efficiencies estimated by experts for each fuel/engine combination. To a first approximation, there are no significant differences in the assessment parameters for the vehicle manufacture, service, fixed costs, and the end-of-life for any of the options. However, there are differences in the vehicle operation life cycle components and the state of technology

  2. Alternative fuel trucks case studies: Running refuse haulers on compressed natural gas

    SciTech Connect

    Norton, P.; Kelly, K.

    1996-07-01

    This document details the experience of New York City`s compressed natural gas refuse haulers. These 35 ton vehicles have engines that displace 10 liters and provide 240 horsepower. Fuel economy, range, cost, maintenance, repair issues, and emissions are discussed. Photographs and figures illustrate the attributes of these alternative fuel vehicles.

  3. Hydrogen Fuel Pilot Plant and Hydrogen ICE Vehicle Testing

    SciTech Connect

    J. Francfort

    2005-03-01

    The U.S. Department Energy's Advanced Vehicle Testing Activity (AVTA) teamed with Electric Transportation Applications (ETA) and Arizona Public Service (APS) to develop the APS Alternative Fuel (Hydrogen) Pilot Plant that produces and compresses hydrogen on site through an electrolysis process by operating a PEM fuel cell in reverse; natural gas is also compressed onsite. The Pilot Plant dispenses 100% hydrogen, 15 to 50% blends of hydrogen and compressed natural gas (H/CNG), and 100% CNG via a credit card billing system at pressures up to 5,000 psi. Thirty internal combustion engine (ICE) vehicles (including Daimler Chrysler, Ford and General Motors vehicles) are operating on 100% hydrogen and 15 to 50% H/CNG blends. Since the Pilot Plant started operating in June 2002, they hydrogen and H/CNG ICE vehicels have accumulated 250,000 test miles.

  4. Moving beyond alternative fuel hype to decarbonize transportation

    NASA Astrophysics Data System (ADS)

    Melton, Noel; Axsen, Jonn; Sperling, Daniel

    2016-03-01

    In the past three decades, government, industry and other stakeholders have repeatedly been swept up with the ‘fuel du jour’, claiming that a particular alternative fuel vehicle (AFV) technology can succeed in replacing conventional gasoline-powered vehicles. However, AFV technologies have experienced relatively little success, with fossil fuels still accounting for about 95% of global transport energy use. Here, using the US as a case study, we conduct a media analysis to show how society’s attention has skipped among AFV types between 1980 and 2013, including methanol, natural gas, plug-in electric, hybrid electric, hydrogen and biofuels. Although our results provide no indication as to whether hype ultimately has a net positive or negative impact on AFV innovation, we offer several recommendations that governments can follow to move past hype to support significant AFV adoption and displace fossil fuel use in the transportation sector.

  5. Alternative fuels and chemicals from synthesis gas

    SciTech Connect

    Unknown

    1998-08-01

    The overall objectives of this program are to investigate potential technologies for the conversion of synthesis gas to oxygenated and hydrocarbon fuels and industrial chemicals, and to demonstrate the most promising technologies at DOE's LaPorte, Texas, Slurry Phase Alternative Fuels Development Unit (AFDU). The program will involve a continuation of the work performed under the Alternative Fuels from Coal-Derived Synthesis Gas Program and will draw upon information and technologies generated in parallel current and future DOE-funded contracts.

  6. Alternative Fuels and Chemicals From Synthesis Gas

    SciTech Connect

    1998-07-01

    The overall objectives of this program are to investigate potential technologies for the conversion of synthesis gas to oxygenated and hydrocarbon fuels and industrial chemicals, and to demonstrate the most promising technologies at DOE's LaPorte, Texas, Slurry Phase Alternative Fuels Development Unit (AFDU). The program will involve a continuation of the work performed under the Alternative Fuels from Coal-Derived Synthesis Gas Program and will draw upon information and technologies generated in parallel current and future DOE-funded contracts.

  7. ALTERNATIVE FUELS AND CHEMICALS FROM SYNTHESIS GAS

    SciTech Connect

    Unknown

    1998-01-01

    The overall objectives of this program are to investigate potential technologies for the conversion of synthesis gas to oxygenated and hydrocarbon fuels and industrial chemicals, and to demonstrate the most promising technologies at DOE's LaPorte, Texas, Slurry Phase Alternative Fuels Development Unit (AFDU). The program will involve a continuation of the work performed under the Alternative Fuels from Coal-Derived Synthesis Gas Program and will draw upon information and technologies generated in parallel current and future DOE-funded contracts.

  8. ALTERNATIVE FUELS AND CHEMICALS FROM SYNTHESIS GAS

    SciTech Connect

    Unknown

    1999-01-01

    The overall objectives of this program are to investigate potential technologies for the conversion of synthesis gas to oxygenated and hydrocarbon fuels and industrial chemicals, and to demonstrate the most promising technologies at DOE's LaPorte, Texas, Slurry Phase Alternative Fuels Development Unit (AFDU). The program will involve a continuation of the work performed under the Alternative Fuels from Coal-Derived Synthesis Gas Program and will draw upon information and technologies generated in parallel current and future DOE-funded contracts.

  9. Alternative Fuels and Chemicals from Synthesis Gas

    SciTech Connect

    Peter Tijrn

    2003-01-02

    The overall objectives of this program are to investigate potential technologies for the conversion of synthesis gas to oxygenated and hydrocarbon fuels and industrial chemicals, and to demonstrate the most promising technologies at DOE's LaPorte, Texas, Slurry Phase Alternative Fuels Development Unit (AFDU). The program will involve a continuation of the work performed under the Alternative Fuels from Coal-Derived Synthesis Gas Program and will draw upon information and technologies generated in parallel current and future DOE-funded contracts.

  10. GENERIC VERIFICATION PROTOCOL FOR DETERMINATION OF EMISSIONS REDUCTIONS OBTAINED BY USE OF ALTERNATIVE OR REFORMULATED LIQUID FUELS, FUEL ADDITIVES, FUEL EMULSIONS AND LUBRICANTS FOR HIGHWAY AND NONROAD USE DISEL ENGINES AND LIGHT DUTY GASOLINE ENGINES AND VEHICLES

    EPA Science Inventory

    This report sets standards by which the emissions reduction provided by fuel and lubricant technologies can be tested and be tested in a comparable way. It is a generic protocol under the Environmental Technology Verification program.

  11. Determination of alternative fuels combustion products: Phase 3 report

    SciTech Connect

    Whitney, K.A.

    1997-12-01

    This report describes the laboratory efforts to characterize particulate and gaseous exhaust emissions from a passenger vehicle operating on alternative fuels. Tests were conducted at room temperature (nominally 72 F) and 20 F utilizing the chassis dynamometer portion of the FTP for light-duty vehicles. Fuels evaluated include Federal RFG, LPG meeting HD-5 specifications, a national average blend of CNG, E85, and M85. Exhaust particulate generated at room temperature was further characterized to determine polynuclear aromatic content, trace element content, and trace organic constituents. For all fuels except M85, the room temperature particulate emission rate from this vehicle was about 2 to 3 mg/mile. On M85, the particulate emission rate was more than 6 mg/mile. In addition, elemental analysis of particulate revealed an order of magnitude more sulfur and calcium from M85 than any other fuel. The sulfur and calcium indicate that these higher emissions might be due to engine lubricating oil in the exhaust. For RFG, particulate emissions at 20 F were more than six times higher than at room temperature. For alcohol fuels, particulate emissions at 20 F were two to three times higher than at room temperature. For CNG and LPG, particulate emissions were virtually the same at 72 F and 20 F. However, PAH emissions from CNG and LPG were higher than expected. Both gaseous fuels had larger amounts of pyrene, 1-nitropyrene, and benzo(g,h,i)perylene in their emissions than the other fuels.

  12. Assessment of Alternative Aircraft Fuels

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The purpose of this symposium is to provide representatives from industry, government, and academia concerned with the availability and quality of future aviation turbine fuels with recent technical results and a status review of DOD and NASA sponsored fuels research projects. The symposium has included presentations on the potential crude sources, refining methods, and characteristics of future fuels; the effects of changing fuel characteristics on the performance and durability of jet aircraft components and systems; and the prospects for evolving suitable technology to produce and use future fuels.

  13. Onboard fuel reformers for fuel cell vehicles: Equilibrium, kinetic and system modeling

    SciTech Connect

    Kreutz, T.G.; Steinbugler, M.M.; Ogden, J.M.

    1996-12-31

    On-board reforming of liquid fuels to hydrogen for use in proton exchange membrane (PEM) fuel cell electric vehicles (FCEVs) has been the subject of numerous investigations. In many respects, liquid fuels represent a more attractive method of carrying hydrogen than compressed hydrogen itself, promising greater vehicle range, shorter refilling times, increased safety, and perhaps most importantly, utilization of the current fuel distribution infrastructure. The drawbacks of on-board reformers include their inherent complexity [for example a POX reactor includes: a fuel vaporizer, a reformer, water-gas shift reactors, a preferential oxidation (PROX) unit for CO cleanup, heat exchangers for thermal integration, sensors and controls, etc.], weight, and expense relative to compressed H{sub 2}, as well as degraded fuel cell performance due to the presence of inert gases and impurities in the reformate. Partial oxidation (POX) of automotive fuels is another alternative for hydrogen production. This paper provides an analysis of POX reformers and a fuel economy comparison of vehicles powered by on-board POX and SRM fuel processors.

  14. Dimethyl ether (DME) as an alternative fuel

    NASA Astrophysics Data System (ADS)

    Semelsberger, Troy A.; Borup, Rodney L.; Greene, Howard L.

    With ever growing concerns on environmental pollution, energy security, and future oil supplies, the global community is seeking non-petroleum based alternative fuels, along with more advanced energy technologies (e.g., fuel cells) to increase the efficiency of energy use. The most promising alternative fuel will be the fuel that has the greatest impact on society. The major impact areas include well-to-wheel greenhouse gas emissions, non-petroleum feed stocks, well-to-wheel efficiencies, fuel versatility, infrastructure, availability, economics, and safety. Compared to some of the other leading alternative fuel candidates (i.e., methane, methanol, ethanol, and Fischer-Tropsch fuels), dimethyl ether appears to have the largest potential impact on society, and should be considered as the fuel of choice for eliminating the dependency on petroleum. DME can be used as a clean high-efficiency compression ignition fuel with reduced NO x, SO x, and particulate matter, it can be efficiently reformed to hydrogen at low temperatures, and does not have large issues with toxicity, production, infrastructure, and transportation as do various other fuels. The literature relevant to DME use is reviewed and summarized to demonstrate the viability of DME as an alternative fuel.

  15. Modeling of hybrid vehicle fuel economy and fuel engine efficiency

    NASA Astrophysics Data System (ADS)

    Wu, Wei

    "Near-CV" (i.e., near-conventional vehicle) hybrid vehicles, with an internal combustion engine, and a supplementary storage with low-weight, low-energy but high-power capacity, are analyzed. This design avoids the shortcoming of the "near-EV" and the "dual-mode" hybrid vehicles that need a large energy storage system (in terms of energy capacity and weight). The small storage is used to optimize engine energy management and can provide power when needed. The energy advantage of the "near-CV" design is to reduce reliance on the engine at low power, to enable regenerative braking, and to provide good performance with a small engine. The fuel consumption of internal combustion engines, which might be applied to hybrid vehicles, is analyzed by building simple analytical models that reflect the engines' energy loss characteristics. Both diesel and gasoline engines are modeled. The simple analytical models describe engine fuel consumption at any speed and load point by describing the engine's indicated efficiency and friction. The engine's indicated efficiency and heat loss are described in terms of several easy-to-obtain engine parameters, e.g., compression ratio, displacement, bore and stroke. Engine friction is described in terms of parameters obtained by fitting available fuel measurements on several diesel and spark-ignition engines. The engine models developed are shown to conform closely to experimental fuel consumption and motored friction data. A model of the energy use of "near-CV" hybrid vehicles with different storage mechanism is created, based on simple algebraic description of the components. With powertrain downsizing and hybridization, a "near-CV" hybrid vehicle can obtain a factor of approximately two in overall fuel efficiency (mpg) improvement, without considering reductions in the vehicle load.

  16. High resolution modeling of the effects of alternative fuels use on urban air quality: introduction of natural gas vehicles in Barcelona and Madrid Greater Areas (Spain).

    PubMed

    Gonçalves, María; Jiménez-Guerrero, Pedro; Baldasano, José M

    2009-01-01

    The mitigation of the effects of on-road traffic emissions on urban air pollution is currently an environmental challenge. Air quality modeling has become a powerful tool to design environment-related strategies. A wide range of options is being proposed; such as the introduction of natural gas vehicles (NGV), biofuels or hydrogen vehicles. The impacts on air quality of introducing specific NGV fleets in Barcelona and Madrid (Spain) are assessed by means of the WRF-ARW/HERMES/CMAQ modeling system with high spatial-temporal resolution (1 km(2), 1 h). Seven emissions scenarios are defined taking into account the year 2004 vehicle fleet composition of the study areas and groups of vehicles susceptible of change under a realistic perspective. O(3) average concentration rises up to 1.3% in Barcelona and up to 2.5% in Madrid when introducing the emissions scenarios, due to the NO(x) reduction in VOC-controlled areas. Nevertheless, NO(2), PM10 and SO(2) average concentrations decrease, up to 6.1%, 1.5% and 6.6% in Barcelona and up to 20.6%, 8.7% and 14.9% in Madrid, respectively. Concerning SO(2) and PM10 reductions the most effective single scenario is the introduction of 50% of NGV instead of the oldest commercial vehicles; it also reduces NO(2) concentrations in Barcelona, however in Madrid lower levels are attained when substituting 10% of the private cars. This work introduces the WRF-ARW/HERMES/CMAQ modeling system as a useful management tool and proves that the air quality improvement plans must be designed considering the local characteristics. PMID:19022477

  17. Fuel cell drives for road vehicles

    NASA Astrophysics Data System (ADS)

    Charnah, R. M.

    For fuel-cell driven vehicles, including buses, the fuel cell may be the main, determining factor in the system but must be integrated into the complete design process. A Low-Floor Bus design is used to illustrate this point. The influence of advances in drive-train electronics is illustrated as are novel designs for motors and mechanical transmission of power to the wheels allowing the use of novel hub assemblies. A hybrid electric power system is being deployed in which Fuel Cells produce the energy needs but are coupled with batteries especially for acceleration phases and for recuperative braking.

  18. Demonstrating and evaluating heavy-duty alternative fuel operations

    SciTech Connect

    Peerenboom, W.

    1998-02-01

    The principal objectives of this project was to understand the effects of using an alternative fuel on a truck operating fleet through actual operation of trucks. Information to be gathered was expected to be anecdotal, as opposed to statistically viable, because the Trucking Research institute (TRI) recognized that projects could not attract enough trucks to produce statistically credible volumes of data. TRI was to collect operational data, and provide them to NREL, who would enter the data into the alternative fuels database being constructed for heavy-duty trucks at the time. NREL would also perform data analysis, with the understanding that the demonstrations were generally pre-production model engines and vehicles. Other objectives included providing information to the trucking industry on the availability of alternative fuels, developing the alternative fuels marketplace, and providing information on experience with alternative fuels. In addition to providing information to the trucking industry, an objective was for TRI to inform NREL and DOE about the industry, and give feedback on the response of the industry to developments in alternative fuels in trucking. At the outset, only small numbers of vehicles participated in most of the projects. Therefore, they had to be considered demonstrations of feasibility, rather than data gathering tests from which statistically significant conclusions might be drawn. Consequently, data gathered were expected to be useful for making estimates and obtaining valuable practical lessons. Project data and lessons learned are the subjects of separate project reports. This report concerns itself with the work of TRI in meeting the overall objectives of the TRI-NREL partnership.

  19. Fuel economy of hybrid fuel-cell vehicles

    NASA Astrophysics Data System (ADS)

    Ahluwalia, Rajesh K.; Wang, X.; Rousseau, A.

    The potential improvement in fuel economy of a mid-size fuel-cell vehicle by combining it with an energy storage system has been assessed. An energy management strategy is developed and used to operate the direct hydrogen, pressurized fuel-cell system in a load-following mode and the energy storage system in a charge-sustaining mode. The strategy places highest priority on maintaining the energy storage system in a state where it can supply unanticipated boost power when the fuel-cell system alone cannot meet the power demand. It is found that downsizing a fuel-cell system decreases its efficiency on a drive cycle which is compensated by partial regenerative capture of braking energy. On a highway cycle with limited braking energy the increase in fuel economy with hybridization is small but on the stop-and-go urban cycle the fuel economy can improve by 27%. On the combined highway and urban drive cycles the fuel economy of the fuel-cell vehicle is estimated to increase by up to 15% by hybridizing it with an energy storage system.

  20. Hydrogen fuel dispensing station for transportation vehicles

    SciTech Connect

    Singh, S.P.N.; Richmond, A.A.

    1995-07-01

    A technical and economic assessment is being conducted of a hydrogen fuel dispensing station to develop an understanding of the infrastructure requirements for supplying hydrogen fuel for mobile applications. The study includes a process design of a conceptual small-scale, stand-alone, grassroots fuel dispensing facility (similar to the present-day gasoline stations) producing hydrogen by steam reforming of natural gas. Other hydrogen production processes (such as partial oxidation of hydrocarbons and water electrolysis) were reviewed to determine their suitability for manufacturing the hydrogen. The study includes an assessment of the environmental and other regulatory permitting requirements likely to be imposed on a hydrogen fuel dispensing station for transportation vehicles. The assessment concludes that a dispensing station designed to produce 0.75 million standard cubic feet of fuel grade (99.99%+ purity) hydrogen will meet the fuel needs of 300 light-duty vehicles per day. Preliminary economics place the total capital investment (in 1994 US dollars) for the dispensing station at $4.5 million and the annual operating costs at around $1 million. A discounted cash-flow analysis indicates that the fuel hydrogen product price (excluding taxes) to range between $1.37 to $2.31 per pound of hydrogen, depending upon the natural gas price, the plant financing scenario, and the rate of return on equity capital. A report on the assessment is due in June 1995. This paper presents a summary of the current status of the assessment.

  1. Compatibility of elastomers in alternate jet fuels

    NASA Technical Reports Server (NTRS)

    Kalfayan, S. H.; Fedors, R. F.; Reilly, W. W.

    1979-01-01

    The compatibility of elastomeric compositions of known resistance to aircraft fuels was tested for potential use in Jet A type fuels obtainable from alternate sources, such as coal. Since such fuels were not available at the time, synthetic alternate fuels were prepared by adding tetralin to a petroleum based Jet A type fuel to simulate coal derived fuels which are expected to contain higher amounts of aromatic and hydroaromatic hydrocarbons. The elastomeric compounds tested were based on butadiene-acrylonitrile rubber, a castable Thiokol polysulfide rubber, and a castable fluorosilicone rubber. Batches of various cross-link densities of these rubbers were made and their chemical stress relaxation behavior in fuel, air, and nitrogen, their swelling properties, and response to mechanical testing were determined.

  2. An alternative fuel for urban buses-biodiesel blends

    SciTech Connect

    Schumacher, L.G.; Weber, J.A.; Russell, M.D.

    1995-11-01

    Qualitative and quantitative biodiesel fueling performance and operational data have been collected from urban mass transit buses at Bi-State Development Agency in St. Louis Missouri. A total of 10 vehicles were selected for fueling; 5-6V92 TA Detroit Diesel engines have been fueled with a 20/80 biodiesel/diesel fuel blend and 5-6V92 TA Detroit Diesel control vehicles have been fueled on petroleum based low sulfur diesel fuel (LSD). The real-world impact of a biodiesel blend on maintenance, reliability, cost, fuel economy and safety compared to LSD will be presented. In addition, engine exhaust emissions data collected by the University of West Virginia Department of Energy (DOE) sponsored mobile emissions laboratory will be presented. Operational data from Bi-State Development Agency is collected by the University of Missouri and quality control procedures are performed prior to placing the data in the Alternative Fuels Data Center (AFDC). The AFDC is maintained by the National Renewable Energy Laboratory in Golden, Colorado. This effort, which enables transit operators to review a real-world comparison of biodiesel and LSD, has been funded by the National Biodiesel Board with funds provided by the United Soybean Board with national checkoff dollars and the National Renewable Energy Laboratory.

  3. 40 CFR 69.51 - Motor vehicle diesel fuel.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... motor vehicle diesel fuel standards and dye provisions under 40 CFR 80.520 and associated requirements... diesel fuel standards and dye provisions under 40 CFR 80.520 and associated requirements, provided that... under 40 CFR 69.52(c), (d), and (e) for commingled motor vehicle and non-motor vehicle diesel fuel:...

  4. 40 CFR 69.51 - Motor vehicle diesel fuel.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... motor vehicle diesel fuel standards and dye provisions under 40 CFR 80.520 and associated requirements... diesel fuel standards and dye provisions under 40 CFR 80.520 and associated requirements, provided that... under 40 CFR 69.52(c), (d), and (e) for commingled motor vehicle and non-motor vehicle diesel fuel:...

  5. 40 CFR 69.51 - Motor vehicle diesel fuel.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... motor vehicle diesel fuel standards and dye provisions under 40 CFR 80.520 and associated requirements... diesel fuel standards and dye provisions under 40 CFR 80.520 and associated requirements, provided that... under 40 CFR 69.52(c), (d), and (e) for commingled motor vehicle and non-motor vehicle diesel fuel:...

  6. 40 CFR 69.51 - Motor vehicle diesel fuel.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... motor vehicle diesel fuel standards and dye provisions under 40 CFR 80.520 and associated requirements... diesel fuel standards and dye provisions under 40 CFR 80.520 and associated requirements, provided that... under 40 CFR 69.52(c), (d), and (e) for commingled motor vehicle and non-motor vehicle diesel fuel:...

  7. 40 CFR 69.51 - Motor vehicle diesel fuel.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... motor vehicle diesel fuel standards and dye provisions under 40 CFR 80.520 and associated requirements... diesel fuel standards and dye provisions under 40 CFR 80.520 and associated requirements, provided that... under 40 CFR 69.52(c), (d), and (e) for commingled motor vehicle and non-motor vehicle diesel fuel:...

  8. Arizona Public Service - Alternative Fuel (Hydrogen) Pilot Plant Design Report

    SciTech Connect

    James E. Francfort

    2003-12-01

    Hydrogen has promise to be the fuel of the future. Its use as a chemical reagent and as a rocket propellant has grown to over eight million metric tons per year in the United States. Although use of hydrogen is abundant, it has not been used extensively as a transportation fuel. To assess the viability of hydrogen as a transportation fuel and the viability of producing hydrogen using off-peak electric energy, Pinnacle West Capital Corporation (PNW) and its electric utility subsidiary, Arizona Public Service (APS) designed, constructed, and operates a hydrogen and compressed natural gas fueling station—the APS Alternative Fuel Pilot Plant. This report summarizes the design of the APS Alternative Fuel Pilot Plant and presents lessons learned from its design and construction. Electric Transportation Applications prepared this report under contract to the U.S. Department of Energy’s Advanced Vehicle Testing Activity. The Idaho National Engineering and Environmental Laboratory manages these activities for the Advanced Vehicle Testing Activity.

  9. Emerging trends in alternative aviation fuels

    NASA Astrophysics Data System (ADS)

    Corbett, Cody

    The days of petroleum-based aviation fuels are numbered. New regulations to be set in place in the coming years will force current fuels to be phased out in favor of cleaner fuels with less toxic emissions. The alternative fuel industry has already taken its foothold in other modes of transportation, and aviation will soon follow suit. Many companies have cropped up over the last decade, and a few have been around longer, that work hard to develop the alternative aviation fuels of the future. It is important, however, for the aviation community to know what to expect and when to expect it concerning alternative fuels. This study investigates where various companies in the alternative aviation fuel industry currently stand in their development and production processes, and how their products will affect aircraft owners and operators. By interviewing representatives from these companies and analyzing their responses to identify trends, an educated prediction can be made about where the industry is headed and when the aviation community can expect these fuel to be available. The findings of this study indicate that many companies are still in their developmental stages, with a few notable outliers, and that most of these companies expect to see production of their product by 2017. Also, the fuel manufacturers are dealing with all the legal hurdles regarding alternative fuels, so little to no effort will be required on the part of the consumer. These findings, along with their analysis, will enable the aviation community to make educated decisions concerning fuel and their aircraft, as well and do their part to help these beneficial fuels get to market.

  10. Alternate Fuels for Use in Commercial Aircraft

    NASA Technical Reports Server (NTRS)

    Daggett, David L.; Hendricks, Robert C.; Walther, Rainer; Corporan, Edwin

    2008-01-01

    The engine and aircraft Research and Development (R&D) communities have been investigating alternative fueling in near-term, midterm, and far-term aircraft. A drop in jet fuel replacement, consisting of a kerosene (Jet-A) and synthetic fuel blend, will be possible for use in existing and near-term aircraft. Future midterm aircraft may use a biojet and synthetic fuel blend in ultra-efficient airplane designs. Future far-term engines and aircraft in 50-plus years may be specifically designed to use a low- or zero-carbon fuel. Synthetic jet fuels from coal, natural gas, or other hydrocarbon feedstocks are very similar in performance to conventional jet fuel, yet the additional CO2 produced during the manufacturing needs to be permanently sequestered. Biojet fuels need to be developed specifically for jet aircraft without displacing food production. Envisioned as midterm aircraft fuel, if the performance and cost liabilities can be overcome, biofuel blends with synthetic jet or Jet-A fuels have near-term potential in terms of global climatic concerns. Long-term solutions address dramatic emissions reductions through use of alternate aircraft fuels such as liquid hydrogen or liquid methane. Either of these new aircraft fuels will require an enormous change in infrastructure and thus engine and airplane design. Life-cycle environmental questions need to be addressed.

  11. Global Energy Issues and Alternate Fueling

    NASA Technical Reports Server (NTRS)

    Hendricks, Robert C.

    2007-01-01

    This viewgraph presentation describes world energy issues and alternate fueling effects on aircraft design. The contents include: 1) US Uses about 100 Quad/year (1 Q = 10(exp 15) Btu) World Energy Use: about 433 Q/yr; 2) US Renewable Energy about 6%; 3) Nuclear Could Grow: Has Legacy Problems; 4) Energy Sources Primarily NonRenewable Hydrocarbon; 5) Notes; 6) Alternate Fuels Effect Aircraft Design; 7) Conventional-Biomass Issue - Food or Fuel; 8) Alternate fuels must be environmentally benign; 9) World Carbon (CO2) Emissions Problem; 10) Jim Hansen s Global Warming Warnings; 11) Gas Hydrates (Clathrates), Solar & Biomass Locations; 12) Global Energy Sector Response; 13) Alternative Renewables; 14) Stratospheric Sulfur Injection Global Cooling Switch; 15) Potential Global Energy Sector Response; and 16) New Sealing and Fluid Flow Challenges.

  12. Alternative Fuel News, Vol. 7, No. 3

    SciTech Connect

    Not Available

    2003-11-01

    Quarterly magazine with articles on recent additions to the Clean Cities Alternative Fuel Station Locator database, biodiesel buying co-ops, and developing the CNG infrastructure in Bangladesh. Also a memo from CIVITAS 2003.

  13. Rugged ATS turbines for alternate fuels

    SciTech Connect

    Wenglarz, R.A.; Nirmalan, N.V.; Daehler, T.G.

    1995-02-01

    A major national effort is directed to developing advanced turbine systems designed for major improvements in efficiency and emissions performance using natural gas fuels. These turbine designs are also to be adaptable for future operation with alternate coal and biomass derived fuels. For several potential alternate fuel applications, available hot gas cleanup technologies will not likely be adequate to protect the turbine flowpath from deposition and corrosion. Past tests have indicated that cooling turbine airfoil surfaces could ruggedized a high temperature turbine flowpath to alleviate deposition and corrosion. Using this specification. ATS turbine that was evaluated. The initial analyses also showed that two-phase cooling offers the most attractive method of those explored to protect a coal-fueled ATS turbine from deposition and corrosion. This paper describes ruggedization approaches, particularly to counter the extreme deposition and corrosion effects of the high inlet temperatures of ATS turbines using alternate fuels.

  14. Assessment of capital requirements for alternative fuels infrastructure under the PNGV program

    SciTech Connect

    Stork, K.; Singh, M.; Wang, M.; Vyas, A.

    1998-12-31

    This paper presents an assessment of the capital requirements of using six different fuels in the vehicles with tripled fuel economy (3X vehicles) that the Partnership for a new Generation of Vehicles is currently investigating. The six fuels include two petroleum-based fuels (reformulated gasoline and low-sulfur diesel) and four alternative fuels (methanol, ethanol, dimethyl ether, and hydrogen). This study develops estimates of cumulative capital needs for establishing fuels production and distribution infrastructure to accommodate 3X vehicle fuel needs. Two levels of fuel volume-70,000 barrels per day and 1.6 million barrels per day-were established for meeting 3X-vehicle fuel demand. As expected, infrastructure capital needs for the high fuel demand level are much higher than for the low fuel demand level. Between fuel production infrastructure and distribution infrastructure, capital needs for the former far exceed those for the latter. Among the four alternative fuels, hydrogen bears the largest capital needs for production and distribution infrastructure.

  15. Possibility of using alternate fuels in Hungary

    SciTech Connect

    Zombori, J.

    1982-12-01

    In Hungary investigations are aimed at the use of fuel mixtures having a moderate ration of alternate fuels in them. For the last two years engine tests have been carried out with the mixture of diesel oil and sunflower oil, and that of diesel oil and ethanol and they show positive results.

  16. 40 CFR 80.583 - What alternative sampling and testing requirements apply to importers who transport motor vehicle...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false What alternative sampling and testing requirements apply to importers who transport motor vehicle diesel fuel, NRLM diesel fuel, or ECA marine fuel by truck or rail car? 80.583 Section 80.583 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS...

  17. Case history evaluation of methane-fueled vehicles

    SciTech Connect

    Lafrenz, D.J.; Glaub, J.C.; Jones, D.B.

    1981-01-01

    The results of an extensive case history evaluation of methane-fueled vehicles are presented. A questionnaire sent to fleet operators was designed to procure: general information regarding the fleet; information on the fuel and vehicle fuel system (source of methane, heating value of gas, and vehicle fuel tank capacity); vehicle fuel consumption and mileage information; cost information; and information regarding operational difficulties attributable to conversion for operation on methane. Twenty-eight responses were obtained, encompassing nearly 3,500 vehicles. Data from the study have been compiled into several comprehensive tables. The ranges of various parameters are discussed, as well as the operation difficulties that were reported. 13 refs.

  18. A methodology for assessing the market benefits of alternative motor fuels: The Alternative Fuels Trade Model

    SciTech Connect

    Leiby, P.N.

    1993-09-01

    This report describes a modeling methodology for examining the prospective economic benefits of displacing motor gasoline use by alternative fuels. The approach is based on the Alternative Fuels Trade Model (AFTM). AFTM development was undertaken by the US Department of Energy (DOE) as part of a longer term study of alternative fuels issues. The AFTM is intended to assist with evaluating how alternative fuels may be promoted effectively, and what the consequences of substantial alternative fuels use might be. Such an evaluation of policies and consequences of an alternative fuels program is being undertaken by DOE as required by Section 502(b) of the Energy Policy Act of 1992. Interest in alternative fuels is based on the prospective economic, environmental and energy security benefits from the substitution of these fuels for conventional transportation fuels. The transportation sector is heavily dependent on oil. Increased oil use implies increased petroleum imports, with much of the increase coming from OPEC countries. Conversely, displacement of gasoline has the potential to reduce US petroleum imports, thereby reducing reliance on OPEC oil and possibly weakening OPEC`s ability to extract monopoly profits. The magnitude of US petroleum import reduction, the attendant fuel price changes, and the resulting US benefits, depend upon the nature of oil-gas substitution and the supply and demand behavior of other world regions. The methodology applies an integrated model of fuel market interactions to characterize these effects.

  19. Alternative Fuels and Chemicals from Synthesis Gas

    SciTech Connect

    1998-12-02

    The overall objectives of this program are to investigate potential technologies for the conversion of synthesis gas to oxygenated and hydrocarbon fuels and industrial chemicals, and to demonstrate the most promising technologies at DOE�s LaPorte, Texas, Slurry Phase Alternative Fuels Development Unit (AFDU). The program will involve a continuation of the work performed under the Alternative Fuels from Coal-Derived Synthesis Gas Program and will draw upon information and technologies generated in parallel current and future DOE-funded contracts.

  20. Alternative Liquid Fuels Simulation Model (AltSim).

    SciTech Connect

    Baker, Arnold Barry; Williams, Ryan; Drennen, Thomas E.; Klotz, Richard

    2007-10-01

    The Alternative Liquid Fuels Simulation Model (AltSim) is a high-level dynamic simulation model which calculates and compares the production costs, carbon dioxide emissions, and energy balances of several alternative liquid transportation fuels. These fuels include: corn ethanol, cellulosic ethanol, biodiesel, and diesels derived from natural gas (gas to liquid, or GTL) and coal (coal to liquid, or CTL). AltSim allows for comprehensive sensitivity analyses on capital costs, operation and maintenance costs, renewable and fossil fuel feedstock costs, feedstock conversion efficiency, financial assumptions, tax credits, CO{sub 2} taxes, and plant capacity factor. This paper summarizes the preliminary results from the model. For the base cases, CTL and cellulosic ethanol are the least cost fuel options, at $1.60 and $1.71 per gallon, respectively. Base case assumptions do not include tax or other credits. This compares to a $2.35/gallon production cost of gasoline at September, 2007 crude oil prices ($80.57/barrel). On an energy content basis, the CTL is the low cost alternative, at $12.90/MMBtu, compared to $22.47/MMBtu for cellulosic ethanol. In terms of carbon dioxide emissions, a typical vehicle fueled with cellulosic ethanol will release 0.48 tons CO{sub 2} per year, compared to 13.23 tons per year for coal to liquid.

  1. Utilization of alternative fuels in diesel engines

    NASA Technical Reports Server (NTRS)

    Lestz, S. A.

    1984-01-01

    Performance and emission data are collected for various candidate alternate fuels and compare these data to that for a certified petroleum based number two Diesel fuel oil. Results for methanol, ethanol, four vegetable oils, two shale derived oils, and two coal derived oils are reported. Alcohol fumigation does not appear to be a practical method for utilizing low combustion quality fuels in a Diesel engine. Alcohol fumigation enhances the bioactivity of the emitted exhaust particles. While it is possible to inject many synthetic fuels using the engine stock injection system, wholly acceptable performance is only obtained from a fuel whose specifications closely approach those of a finished petroleum based Diesel oil. This is illustrated by the contrast between the poor performance of the unupgraded coal derived fuel blends and the very good performance of the fully refined shale derived fuel.

  2. An investigation on the fuel savings potential of hybrid hydraulic refuse collection vehicles

    SciTech Connect

    Bender, Frank A. Bosse, Thomas; Sawodny, Oliver

    2014-09-15

    Highlights: • Driving cycle acquisition in a refuse collection vehicle. • Vehicle modeling and validation for numerical simulations based on the measured driving cycle. • Fuel consumption analysis for a conventional diesel vehicle and a hybrid hydraulic vehicle. - Abstract: Refuse trucks play an important role in the waste collection process. Due to their typical driving cycle, these vehicles are characterized by large fuel consumption, which strongly affects the overall waste disposal costs. Hybrid hydraulic refuse vehicles offer an interesting alternative to conventional diesel trucks, because they are able to recuperate, store and reuse braking energy. However, the expected fuel savings can vary strongly depending on the driving cycle and the operational mode. Therefore, in order to assess the possible fuel savings, a typical driving cycle was measured in a conventional vehicle run by the waste authority of the City of Stuttgart, and a dynamical model of the considered vehicle was built up. Based on the measured driving cycle and the vehicle model including the hybrid powertrain components, simulations for both the conventional and the hybrid vehicle were performed. Fuel consumption results that indicate savings of about 20% are presented and analyzed in order to evaluate the benefit of hybrid hydraulic vehicles used for refuse collection.

  3. Outlook for alternative energy sources. [aviation fuels

    NASA Technical Reports Server (NTRS)

    Card, M. E.

    1980-01-01

    Predictions are made concerning the development of alternative energy sources in the light of the present national energy situation. Particular emphasis is given to the impact of alternative fuels development on aviation fuels. The future outlook for aircraft fuels is that for the near term, there possibly will be no major fuel changes, but minor specification changes may be possible if supplies decrease. In the midterm, a broad cut fuel may be used if current development efforts are successful. As synfuel production levels increase beyond the 1990's there may be some mixtures of petroleum-based and synfuel products with the possibility of some shale distillate and indirect coal liquefaction products near the year 2000.

  4. Diesel injector carbonization by three alternative fuels

    SciTech Connect

    Goodrum, J.W.; Patel, V.C.; McClendon, R.W.

    1996-05-01

    Three alternative diesel fuels were screened by analysis of fuel injector tip deposits. The test engines were operated on the Peterson (torque) test cycle; the average carbon deposit volume on an injector tip was measured by a computer vision method. Relative coke deposit quantity was obtained by area analysis of injector tip images. Repetitive image areas varied less than 1%. Coke deposit areas for repetitive fuel tests also varied less than 1%. Injector coking tendencies of tested fuels decreased in the following order: peanut oil, no. 2 diesel, tricaprylin, and tributyrin/no. 2 diesel blend. The observed dependence of the relative coke quantity on fuel type was consistent with the results from a photographic technique used previously for fuel screening. 10 refs., 2 figs., 2 tabs.

  5. EPAct Alternative Fuel Transporation Program - State and Alternative Fuel Provider Fleets: Frequently Asked Questions

    SciTech Connect

    2010-03-01

    Factsheet answering frequently asked questions about the U.S. Department of Energy's Alternative Fuel Transportation Program (the Program) that implements provisions of Titles III–V of the Energy Policy Act of 1992 (EPAct). Answers to questions that are frequently asked about the Program by managers of state government and alternative fuel provider fleets are provided in the factsheet.

  6. Methanol reformers for fuel cell powered vehicles: Some design considerations

    SciTech Connect

    Kumar, R.; Ahmed, S.; Krumpelt, M.; Myles, K.M.

    1990-01-01

    Fuel cells are being developed for use in automotive propulsion systems as alternatives for the internal combustion engine in buses, vans, passenger cars. The two most important operational requirements for a stand-alone fuel cell power system for a vehicle are the ability to start up quickly and the ability to supply the necessary power on demand for the dynamically fluctuating load. Methanol is a likely fuel for use in fuel cells for transportation applications. It is a commodity chemical that is manufactured from coal, natural gas, and other feedstocks. For use in a fuel cell, however, the methanol must first be converted (reformed) to a hydrogen-rich gas mixture. The desired features for a methanol reformer include rapid start-up, good dynamic response, high fuel conversion, small size and weight, simple construction and operation, and low cost. In this paper the present the design considerations that are important for developing such a reformer, namely: (1) a small catalyst bed for quick starting, small size, and low weight; (2) multiple catalysts for optimum operation of the dissociation and reforming reactions; (3) reforming by direct heat transfer partial oxidation for rapid response to fluctuating loads; and (4) thermal independence from the rest of the fuel cell system. 10 refs., 1 fig.

  7. US Department of Energy workshop on future fuel technology for heavy vehicles

    SciTech Connect

    1996-12-31

    The objective of the workshop described in this report was to develop consensus on a program strategy for use of alternative fuels in heavy vehicles. Participants represented fuel providers, additive suppliers, the trucking industry, engine manufacturers, and government or national laboratory staff. Breakout sessions were co-facilitated by national laboratory staff and industry representatives.

  8. UPS CNG Truck Fleet Start Up Experience: Alternative Fuel Truck Evaluation Project

    SciTech Connect

    Walkowicz, K.

    2001-08-14

    UPS operates 140 Freightliner Custom Chassis compressed natural gas (CNG)-powered vehicles with Cummins B5.9G engines. Fifteen are participating in the Alternative Fuel Truck Evaluation Project being funded by DOE's Office of Transportation Technologies and the Office of Heavy Vehicle Technologies.

  9. Geography of Existing and Potential Alternative Fuel Markets in the United States

    SciTech Connect

    Johnson, C.; Hettinger, D.

    2014-11-01

    When deploying alternative fuels, it is paramount to match the right fuel with the right location, in accordance with local market conditions. We used six market indicators to evaluate the existing and potential regional market health for each of the five most commonly deployed alternative fuels: electricity (used by plug-in electric vehicles), biodiesel (blends of B20 and higher), E85 ethanol, compressed natural gas (CNG), and propane. Each market indicator was mapped, combined, and evaluated by industry experts. This process revealed the weight the market indicators should be given, with the proximity of fueling stations being the most important indicator, followed by alternative fuel vehicle density, gasoline prices, state incentives, nearby resources, and finally, environmental benefit. Though markets vary among states, no state received 'weak' potential for all five fuels, indicating that all states have an opportunity to use at least one alternative fuel. California, Illinois, Indiana, Pennsylvania, and Washington appear to have the best potential markets for alternative fuels in general, with each sporting strong markets for four of the fuels. Wyoming showed the least potential, with weak markets for all alternative fuels except for CNG, for which it has a patchy market. Of all the fuels, CNG is promising in the greatest number of states--largely because freight traffic provides potential demand for many far-reaching corridor markets and because the sources of CNG are so widespread geographically.

  10. Hydrogen as a fuel for fuel cell vehicles: A technical and economic comparison

    SciTech Connect

    Ogden, J.; Steinbugler, M.; Kreutz, T.

    1997-12-31

    All fuel cells currently being developed for near term use in vehicles require hydrogen as a fuel. Hydrogen can be stored directly or produced onboard the vehicle by reforming methanol, ethanol or hydrocarbon fuels derived from crude oil (e.g., Diesel, gasoline or middle distillates). The vehicle design is simpler with direct hydrogen storage, but requires developing a more complex refueling infrastructure. In this paper, the authors compare three leading options for fuel storage onboard fuel cell vehicles: compressed gas hydrogen storage; onboard steam reforming of methanol; onboard partial oxidation (POX) of hydrocarbon fuels derived from crude oil. Equilibrium, kinetic and heat integrated system (ASPEN) models have been developed to estimate the performance of onboard steam reforming and POX fuel processors. These results have been incorporated into a fuel cell vehicle model, allowing us to compare the vehicle performance, fuel economy, weight, and cost for various fuel storage choices and driving cycles. A range of technical and economic parameters were considered. The infrastructure requirements are also compared for gaseous hydrogen, methanol and hydrocarbon fuels from crude oil, including the added costs of fuel production, storage, distribution and refueling stations. Considering both vehicle and infrastructure issues, the authors compare hydrogen to other fuel cell vehicle fuels. Technical and economic goals for fuel cell vehicle and hydrogen technologies are discussed. Potential roles for hydrogen in the commercialization of fuel cell vehicles are sketched.

  11. Review of alternative fuels data bases

    NASA Technical Reports Server (NTRS)

    Harsha, P. T.; Edelman, R. B.

    1983-01-01

    Based on an analysis of the interaction of fuel physical and chemical properties with combustion characteristics and indicators, a ranking of the importance of various fuel properties with respect to the combustion process was established. This ranking was used to define a suite of specific experiments whose objective is the development of an alternative fuels design data base. Combustion characteristics and indicators examined include droplet and spray formation, droplet vaporization and burning, ignition and flame stabilization, flame temperature, laminar flame speed, combustion completion, soot emissions, NOx and SOx emissions, and the fuels' thermal and oxidative stability and fouling and corrosion characteristics. Key fuel property data is found to include composition, thermochemical data, chemical kinetic rate information, and certain physical properties.

  12. Alternate-Fueled Combustor-Sector Performance

    NASA Technical Reports Server (NTRS)

    Thomas, Anna E.; Saxena, Nikita T.; Shouse, Dale T.; Neuroth, Craig; Hendricks, Robert C.; Lynch, Amy; Frayne, Charles W.; Stutrud, Jeffrey S.; Corporan, Edwin; Hankins, Terry

    2013-01-01

    In order to realize alternative fueling for military and commercial use, the industry has set forth guidelines that must be met by each fuel. These aviation fueling requirements are outlined in MIL-DTL-83133F(2008) or ASTM D 7566 Annex (2011) standards, and are classified as "drop-in" fuel replacements. This report provides combustor performance data for synthetic-paraffinic-kerosene- (SPK-) type (Fischer-Tropsch (FT)) fuel and blends with JP-8+100, relative to JP-8+100 as baseline fueling. Data were taken at various nominal inlet conditions: 75 psia (0.52 MPa) at 500 degF (533 K), 125 psia (0.86 MPa) at 625 degF (603 K), 175 psia (1.21 MPa) at 725 degF (658 K), and 225 psia (1.55 MPa) at 790 degF (694 K). Combustor performance analysis assessments were made for the change in flame temperatures, combustor efficiency, wall temperatures, and exhaust plane temperatures at 3, 4, and 5 percent combustor pressure drop (DP) for fuel:air ratios (F/A) ranging from 0.010 to 0.025. Significant general trends show lower liner temperatures and higher flame and combustor outlet temperatures with increases in FT fueling relative to JP-8+100 fueling. The latter affects both turbine efficiency and blade and vane lives.

  13. Alternate-Fueled Combustor-Sector Performance

    NASA Technical Reports Server (NTRS)

    Thomas, Anna E.; Saxena, Nikita T.; Shouse, Dale T.; Neuroth, Craig; Hendricks, Robert C.; Lynch, Amy; Frayne, Charles W.; Stutrud, Jeffrey S.; Corporan, Edwin; Hankins, Terry

    2012-01-01

    In order to realize alternative fueling for military and commercial use, the industry has set forth guidelines that must be met by each fuel. These aviation fueling requirements are outlined in MILDTL- 83133F(2008) or ASTM D 7566 Annex (2011) standards, and are classified as drop-in fuel replacements. This paper provides combustor performance data for synthetic-paraffinic-kerosene- (SPK-) type (Fisher-Tropsch (FT)) fuel and blends with JP-8+100, relative to JP-8+100 as baseline fueling. Data were taken at various nominal inlet conditions: 75 psia (0.52 MPa) at 500 F (533 K), 125 psia (0.86 MPa) at 625 F (603 K), 175 psia (1.21 MPa) at 725 F (658 K), and 225 psia (1.55 MPa) at 790 F (694 K). Combustor performance analysis assessments were made for the change in flame temperatures, combustor efficiency, wall temperatures, and exhaust plane temperatures at 3%, 4%, and 5% combustor pressure drop (% delta P) for fuel: air ratios (F/A) ranging from 0.010 to 0.025. Significant general trends show lower liner temperatures and higher flame and combustor outlet temperatures with increases in FT fueling relative to JP-8+100 fueling. The latter affects both turbine efficiency and blade/vane life.

  14. Fuel cutoff apparatus for engine-driven vehicle

    SciTech Connect

    Watanabe, T.; Miyata, K.

    1988-05-03

    A fuel cutoff apparatus for use in an engine-driven vehicle is described comprising: an ignition switch having an off-position and an on-position; a fuel supply means for supplying fuel to the engine of the vehicle and comprising a fuel supply solenoid which, when energized, supplies fuel to the engine and, when deenergized, stops the supply of fuel; a normally-closed hydraulically actuated switch means; a fuel cutoff control means comprising an electric circuit including the fuel supply solenoid, and a warning means actuated independently of the driver coil by the hydraulically actuated switch means moving to its closed position.

  15. 40 CFR 600.304-12 - Fuel economy label-special requirements for hydrogen fuel cell vehicles.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... requirements for hydrogen fuel cell vehicles. 600.304-12 Section 600.304-12 Protection of Environment... MOTOR VEHICLES Fuel Economy Labeling § 600.304-12 Fuel economy label—special requirements for hydrogen fuel cell vehicles. Fuel economy labels for hydrogen fuel cell vehicles must meet the...

  16. 40 CFR 600.304-12 - Fuel economy label-special requirements for hydrogen fuel cell vehicles.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... requirements for hydrogen fuel cell vehicles. 600.304-12 Section 600.304-12 Protection of Environment... MOTOR VEHICLES Fuel Economy Labeling § 600.304-12 Fuel economy label—special requirements for hydrogen fuel cell vehicles. Fuel economy labels for hydrogen fuel cell vehicles must meet the...

  17. 40 CFR 600.304-12 - Fuel economy label-special requirements for hydrogen fuel cell vehicles.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... requirements for hydrogen fuel cell vehicles. 600.304-12 Section 600.304-12 Protection of Environment... MOTOR VEHICLES Fuel Economy Labeling § 600.304-12 Fuel economy label—special requirements for hydrogen fuel cell vehicles. Fuel economy labels for hydrogen fuel cell vehicles must meet the...

  18. New Methodology for Estimating Fuel Economy by Vehicle Class

    SciTech Connect

    Chin, Shih-Miao; Dabbs, Kathryn; Hwang, Ho-Ling

    2011-01-01

    Office of Highway Policy Information to develop a new methodology to generate annual estimates of average fuel efficiency and number of motor vehicles registered by vehicle class for Table VM-1 of the Highway Statistics annual publication. This paper describes the new methodology developed under this effort and compares the results of the existing manual method and the new systematic approach. The methodology developed under this study takes a two-step approach. First, the preliminary fuel efficiency rates are estimated based on vehicle stock models for different classes of vehicles. Then, a reconciliation model is used to adjust the initial fuel consumption rates from the vehicle stock models and match the VMT information for each vehicle class and the reported total fuel consumption. This reconciliation model utilizes a systematic approach that produces documentable and reproducible results. The basic framework utilizes a mathematical programming formulation to minimize the deviations between the fuel economy estimates published in the previous year s Highway Statistics and the results from the vehicle stock models, subject to the constraint that fuel consumptions for different vehicle classes must sum to the total fuel consumption estimate published in Table MF-21 of the current year Highway Statistics. The results generated from this new approach provide a smoother time series for the fuel economies by vehicle class. It also utilizes the most up-to-date and best available data with sound econometric models to generate MPG estimates by vehicle class.

  19. Alternative Fuel News: May 2000 Special Edition

    SciTech Connect

    Brennan, A.; Ficker, C.

    2000-05-03

    In this special issue of Alternative Fuel News, the authors summarize DOE's current position on the local government and private fleet rulemaking that has been under consideration. The authors also look at the new area of focus, niche markets. Your participation and input are invited as the authors craft new directions for the nation's transportation future.

  20. Available Alternative Fuel School Bus Products--2004

    SciTech Connect

    Not Available

    2004-04-01

    This 4-page Clean Cities fact sheet provides a list of the currently available (and soon to be available) model year 2004 alternative fuel school bus and school bus engine products. It includes information from Blue Bird Corporation, Collins Bus Corporation, Corbeil Bus, Ford Motor Company, General Motors Corporation, Thomas Built Buses, Inc., Clean Air Partners, Cummins Westport, and Deere & Company.

  1. Fuel cells for vehicle applications in cars - bringing the future closer

    NASA Astrophysics Data System (ADS)

    Panik, Ferdinand

    Among all alternative drive systems, the fuel cell electric propulsion system has the highest potential to compete with the internal combustion engine. For this reason, Daimler-Benz AG has entered into a co-operative alliance with Ballard Power Systems, with the objectives of bringing fuel cell vehicles to the market. Apart from the fuel cell itself, fuel cell vehicles require comprehensive system technology to provide fuel and air supply, cooling, energy management, electric and electronic functions. The system technology determines to a large extent the cost, weight, efficiency, performance and overall customer benefit of fuel cell vehicles. Hence, Daimler-Benz and Ballard are pooling their expertise in fuel cell system technology in a joint company, with the aim of bringing their fuel cell vehicular systems to the stage of maturity required for market entry as early as possible. Hydrogen-fuelled zero-emission fuel cell transit `buses' will be the first market segment addressed, with an emphasis on the North American and European markets. The first buses are already scheduled for delivery to customers in late 1997. Since a liquid fuel like methanol is easier to handle in passenger cars, fuel reforming technologies are developed and will shortly be demonstrated in a prototype, as well. The presentation will cover concepts of fuel cell vehicles with an emphasis on system technology, the related testing procedures and results as well as an outline of market entry strategies.

  2. Spent Nuclear Fuel Alternative Technology Decision Analysis

    SciTech Connect

    Shedrow, C.B.

    1999-11-29

    The Westinghouse Savannah River Company (WSRC) made a FY98 commitment to the Department of Energy (DOE) to recommend a technology for the disposal of aluminum-based spent nuclear fuel (SNF) at the Savannah River Site (SRS). The two technologies being considered, direct co-disposal and melt and dilute, had been previously selected from a group of eleven potential SNF management technologies by the Research Reactor Spent Nuclear Fuel Task Team chartered by the DOE''s Office of Spent Fuel Management. To meet this commitment, WSRC organized the SNF Alternative Technology Program to further develop the direct co-disposal and melt and dilute technologies and ultimately provide a WSRC recommendation to DOE on a preferred SNF alternative management technology.

  3. Air quality effects of alternative fuels. Final report

    SciTech Connect

    Guthrie, P.; Ligocki, M.; Looker, R.; Cohen, J.

    1997-11-01

    To support the Alternative Fuels Utilization Program, a comparison of potential air quality effects of alternative transportation fuels is being performed. This report presents the results of Phase 1 of this program, focusing on reformulated gasoline (RFG), methanol blended with 15 percent gasoline (M85), and compressed natural gas (CNG). The fuels are compared in terms of effects on simulated future concentrations of ozone and mobile source air toxics in a photochemical grid model. The fuel comparisons were carried out for the future year 2020 and assumed complete replacement of gasoline in the projected light-duty gasoline fleet by each of the candidate fuels. The model simulations were carried out for the areas surrounding Los Angeles and Baltimore/DC, and other (non-mobile) sources of atmospheric emissions were projected according to published estimates of economic and population growth, and planned emission control measures specific to each modeling domain. The future-year results are compared to a future-year run with all gasoline vehicle emissions removed. The results of the comparison indicate that the use of M85 is likely to produce similar ozone and air toxics levels as those projected from the use of RFG. Substitution of CNG is projected to produce significantly lower levels of ozone and the mobile source air toxics than those projected for RFG or M85. The relative benefits of CNG substitution are consistent in both modeling domains. The projection methodologies used for the comparison are subject to a large uncertainty, and modeled concentration distributions depend on meteorological conditions. The quantitative comparison of fuel effects is thus likely to be sensitive to alternative assumptions. The consistency of the results for two very different modeling domains, using very different base assumptions, lends credibility to the qualitative differentiation among these fuels. 32 refs., 42 figs., 47 tabs.

  4. Alternative Fuel for Portland Cement Processing

    SciTech Connect

    Schindler, Anton K; Duke, Steve R; Burch, Thomas E; Davis, Edward W; Zee, Ralph H; Bransby, David I; Hopkins, Carla; Thompson, Rutherford L; Duan, Jingran; Venkatasubramanian, Vignesh; Stephen, Giles

    2012-06-30

    The production of cement involves a combination of numerous raw materials, strictly monitored system processes, and temperatures on the order of 1500 °C. Immense quantities of fuel are required for the production of cement. Traditionally, energy from fossil fuels was solely relied upon for the production of cement. The overarching project objective is to evaluate the use of alternative fuels to lessen the dependence on non-renewable resources to produce portland cement. The key objective of using alternative fuels is to continue to produce high-quality cement while decreasing the use of non-renewable fuels and minimizing the impact on the environment. Burn characteristics and thermodynamic parameters were evaluated with a laboratory burn simulator under conditions that mimic those in the preheater where the fuels are brought into a cement plant. A drop-tube furnace and visualization method were developed that show potential for evaluating time- and space-resolved temperature distributions for fuel solid particles and liquid droplets undergoing combustion in various combustion atmospheres. Downdraft gasification has been explored as a means to extract chemical energy from poultry litter while limiting the throughput of potentially deleterious components with regards to use in firing a cement kiln. Results have shown that the clinkering is temperature independent, at least within the controllable temperature range. Limestone also had only a slight effect on the fusion when used to coat the pellets. However, limestone addition did display some promise in regards to chlorine capture, as ash analyses showed chlorine concentrations of more than four times greater in the limestone infused ash as compared to raw poultry litter. A reliable and convenient sampling procedure was developed to estimate the combustion quality of broiler litter that is the best compromise between convenience and reliability by means of statistical analysis. Multi-day trial burns were conducted

  5. 77 FR 14583 - Notice to Manufacturers of Alternative Fuel Vans

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-12

    ... Federal Aviation Administration Notice to Manufacturers of Alternative Fuel Vans AGENCY: Federal Aviation Administration (FAA), U.S. DOT. ACTION: Notice to Manufacturers of Alternative Fuel Vans. SUMMARY: Projects... manufacturers of alternative fuel vans. This notice requests information from manufacturers of alternative...

  6. Cutting fuel costs: alternatives for commercial fishermen

    SciTech Connect

    Hollin, D.; Windh, S.R.

    1984-01-01

    The shrimp industry, in conjunction with the National Marine Fisheries Service, initiated three energy-related studies in 1981 to help shrimpers adjust to high fuel costs. One project, a joint effort of the Mississippi/Alabama Sea Grant Consortium and the Gulf and South Atlantic Fisheries Development Foundation, studied fuel use by shrimp vessels. Meant to provide information that could help suggest alternatives to decrease fuel consumption, the project looked at total fuel consumption; running, fishing and searching times; duration of average drag; and catch rate. A second project, conducted by the Society of Naval Architects and Marine Engineers, looked at fishing vessel fuel use in the U.S. fleet compared to the state of the art of fuel efficiency. The third study, funded through the National Shrimp Congress, was to gather energy conservation information that might help fishermen make decisions about ways to conserve fuel on both a short-term and long-term basis. This report is a summary of the findings of that study.

  7. Fuel cell commercialization issues for light-duty vehicle applications

    NASA Astrophysics Data System (ADS)

    Borroni-Bird, Christopher E.

    The major challenges facing fuel cells in light-duty vehicle applications relate to the high cost of the fuel cell stack components (membrane, electro-catalyst and bipolar plate) which dictate that new manufacturing processes and materials must be developed. Initially, the best fuel for a mass market light-duty vehicle will probably not be the best fuel for the fuel cell (hydrogen); refueling infrastructure and energy density concerns may demand the use of an on-board fuel processor for petroleum-based fuels since this will increase customer acceptance. The use of fuel processors does, however, reduce the fuel cell system's efficiency. Moreover, if such fuels are used then the emissions benefit associated with fuel cells may come with a significant penalty in terms of added complexity, weight, size and cost. However, ultimately, fuel cells powered by hydrogen do promise to be the most efficient and cleanest of automotive powertrains.

  8. Systems impacts of spent fuel disassembly alternatives

    SciTech Connect

    Not Available

    1984-07-01

    Three studies were completed to evaluate four alternatives to the disposal of intact spent fuel assemblies in a geologic repository. A preferred spent fuel waste form for disposal was recommended on consideration of (1) package design and fuel/package interaction, (2) long-term, in-repository performance of the waste form, and (3) overall process performance and costs for packaging, handling, and emplacement. The four basic alternative waste forms considered were (1) end fitting removal, (2) fission gas venting, (3) disassembly and close packing, and (4) shearing/immobilization. None of the findings ruled out any alternative on the basis of waste package considerations or long-term performance of the waste form. The third alternative offers flexibility in loading that may prove attractive in the various geologic media under consideration, greatly reduces the number of packages, and has the lowest unit cost. These studies were completed in October, 1981. Since then Westinghouse Electric Corporation and the Office of Nuclear Waste Isolation have completed studies in related fields. This report is now being published to provide publicly the background material that is contained within. 47 references, 28 figures, 31 tables.

  9. Solid Oxide Fuel Cells Operating on Alternative and Renewable Fuels

    SciTech Connect

    Wang, Xiaoxing; Quan, Wenying; Xiao, Jing; Peduzzi, Emanuela; Fujii, Mamoru; Sun, Funxia; Shalaby, Cigdem; Li, Yan; Xie, Chao; Ma, Xiaoliang; Johnson, David; Lee, Jeong; Fedkin, Mark; LaBarbera, Mark; Das, Debanjan; Thompson, David; Lvov, Serguei; Song, Chunshan

    2014-09-30

    This DOE project at the Pennsylvania State University (Penn State) initially involved Siemens Energy, Inc. to (1) develop new fuel processing approaches for using selected alternative and renewable fuels – anaerobic digester gas (ADG) and commercial diesel fuel (with 15 ppm sulfur) – in solid oxide fuel cell (SOFC) power generation systems; and (2) conduct integrated fuel processor – SOFC system tests to evaluate the performance of the fuel processors and overall systems. Siemens Energy Inc. was to provide SOFC system to Penn State for testing. The Siemens work was carried out at Siemens Energy Inc. in Pittsburgh, PA. The unexpected restructuring in Siemens organization, however, led to the elimination of the Siemens Stationary Fuel Cell Division within the company. Unfortunately, this led to the Siemens subcontract with Penn State ending on September 23rd, 2010. SOFC system was never delivered to Penn State. With the assistance of NETL project manager, the Penn State team has since developed a collaborative research with Delphi as the new subcontractor and this work involved the testing of a stack of planar solid oxide fuel cells from Delphi.

  10. The new generation of vehicles: market opportunities for fuel cells

    NASA Astrophysics Data System (ADS)

    Chalk, Steven G.; Patil, Pandit G.; Venkateswaran, S. R.

    The Partnership for a New Generation of Vehicles (PNGV), a historic US Government-auto industry partnership initiated in 1993, is pursuing three specific, interrelated goals, including the development of the next generation of vehicles capable of achieving up to three times the fuel efficiency of today's comparable vehicles. Fuel cells have been identified as one of three primary propulsion system candidates to meet this triple fuel efficiency goal, since they can dramatically increase automotive propulsion efficiency combined with very low to zero emissions. The US Government is working closely with industry and research institutions in pursuing a strategy of aggressive research and development (R&D) to accelerate the commercialization of fuel cell vehicles. The US Department of Energy has a major role in this fuel cell technology development effort. R&D activities are focused on overcoming the major technical, economic, and infrastructure-related hurdles. The high efficiency, very low emissions, and other favorable characteristics of fuel cells (such as fuel flexibility, low noise, and vibration) create significant market opportunities for fuel cells over the entire spectrum of transportation applications. While the focus of near-term markets for fuel cell vehicles will be urban areas having severe air-quality problems, long-term market prospects are encouraging since fuel cell vehicles can compete on an even ground with conventional vehicles in all key aspects, including vehicle range and refueling. This paper will discuss near- and long-term market opportunities for fuel cells in transportation and provide an update on driving regulatory developments in the USA at the federal and state level. The paper also provides an introduction to the PNGV (focusing on the role and prospects for fuel cells) and discusses the status of fuel cell vehicle development projects.

  11. Study questions environmental impact of fuel-cell vehicles

    NASA Astrophysics Data System (ADS)

    Stafford, Ned

    2015-09-01

    Fuel-cell electric vehicles are seen by many as an environmentally friendly technology that can reduce greenhousegas emissions by producing no harmful emissions. But a new study has found that overall a fuel cell electric vehicle has about the same negative environmental impact as a luxury sports car.

  12. Synthetic and Biomass Alternate Fueling in Aviation

    NASA Technical Reports Server (NTRS)

    Hendricks, R. C.; Bushnell, D. M.

    2009-01-01

    While transportation fueling can accommodate a broad range of alternate fuels, aviation fueling needs are specific, such as the fuel not freezing at altitude or become too viscous to flow properly or of low bulk energy density that shortens range. The fuel must also be compatible with legacy aircraft, some of which are more than 50 years old. Worldwide, the aviation industry alone uses some 85-95 billion gallons of hydrocarbon-based fossil fuel each year, which is about 10% of the transportation industry. US civil aviation alone consumes nearly 14 billion gallons. The enormity of the problem becomes overwhelming, and the aviation industry is taking alternate fueling issues very seriously. Biofuels (algae, cyanobacteria, halophytes, weeds that use wastelands, wastewater and seatwater), when properly sourced, have the capacity to be drop-in fuel replacements for petroleum fuels. As such, biojet from such sources solves the aviation CO2 emissions issue without the downsides of 'conventional' biofuels, such as competing with food and fresh water resources. Of the many current fundamental problems, the major biofuel problem is cost. Both research and development and creative engineering are required to reduce these biofuels costs. Research is also ongoing in several 'improvement' areas including refining/processing and biologics with greater disease resistance, greater bio-oil productivity, reduced water/nutrient requirements, etc. The authors' current research is aimed at aiding industry efforts in several areas. They are considering different modeling approaches, growth media and refining approaches, different biologic feedstocks, methods of sequestering carbon in the processes, fuel certification for aviation use and, overall, ensuring that biofuels are feasible from all aspects - operability, capacity, carbon cycle and financial. The authors are also providing common discussion grounds/opportunities for the various parties, disciplines and concerned organization to

  13. Alternative Fuel News, Vol. 2, No. 6

    SciTech Connect

    NREL

    1999-03-17

    The cover story in this issue of the Alternative Fuel News highlights the niche market principle; the places in which AFVs would best fit. This year's SEP funding is expected to be the springboard needed for the development of niche projects. The Clean Cities Program, by matching those needs and attributes in niches, can dramatically increase the attractiveness of AFVs and make an impact on those high-mileage, high-use fleets.

  14. Spent Nuclear Fuel Alternative Technology Risk Assessment

    SciTech Connect

    Perella, V.F.

    1999-11-29

    A Research Reactor Spent Nuclear Fuel Task Team (RRTT) was chartered by the Department of Energy (DOE) Office of Spent Fuel Management with the responsibility to recommend a course of action leading to a final technology selection for the interim management and ultimate disposition of the foreign and domestic aluminum-based research reactor spent nuclear fuel (SNF) under DOE''s jurisdiction. The RRTT evaluated eleven potential SNF management technologies and recommended that two technologies, direct co-disposal and an isotopic dilution alternative, either press and dilute or melt and dilute, be developed in parallel. Based upon that recommendation, the Westinghouse Savannah River Company (WSRC) organized the SNF Alternative Technology Program to further develop the direct co-disposal and melt and dilute technologies and provide a WSRC recommendation to DOE for a preferred SNF alternative management technology. A technology risk assessment was conducted as a first step in this recommendation process to determine if either, or both, of the technologies posed significant risks that would make them unsuitable for further development. This report provides the results of that technology risk assessment.

  15. Fleet Compliance Results for MY 2010/FY 2011, EPAct Alternative Fuel Transportation Program: State and Alternative Fuel Provider Fleet Compliance Annual Report (Brochure)

    SciTech Connect

    Not Available

    2012-03-01

    This annual report summarizes the compliance results of state and alternative fuel provider fleets covered by the Energy Policy Act of 1992 (EPAct) for model year 2010/fiscal year 2011. The U.S. Department of Energy (DOE) regulates covered state and alternative fuel provider (SFP) fleets under the Energy Policy Act of 1992 (EPAct), as amended. For model year (MY) 2010, the compliance rate for the 2911 covered SFP fleets was 100%. Fleets used either Standard Compliance or Alternative Compliance. The 279 fleets that used Standard Compliance exceeded their aggregate MY 2010 acquisition requirements by 61%. The 12 covered fleets that complied using Alternative Compliance exceeded their aggregate MY 2010 petroleum-use-reduction requirements by 89%. Overall, DOE saw modest decreases from MY 2009 in biodiesel fuel use credits earned and in the number of light-duty vehicles (LDVs) acquired. Compared to years before MY 2009, these rates were far lower. Because covered fleets acquired fewer new vehicles overall in MY 2010, the requirement for alternative fuel vehicles (AFVs), which is proportional to new acquisitions, also dropped.

  16. Proceedings of the 1996 Windsor workshop on alternative fuels

    SciTech Connect

    1996-10-01

    This document contains information which was presented at the 1996 Windsor Workshop on Alternative Fuels. Topics include: international links; industry topics and infrastructure issues; propane; engine developments; the cleanliness of alternative fuels; heavy duty alternative fuel engines; California zev commercialization efforts; and in-use experience.

  17. Evaluation of aftermarket fuel delivery systems for natural gas and LPG vehicles

    SciTech Connect

    Willson, B.

    1992-09-01

    This study was designed to evaluate the effectiveness of aftermarket fuel delivery systems for vehicles fueled by compressed natural gas (CNG) and liquefied petroleum gas (LPG). Most of the CNG and LPG vehicles studied were converted to the alternative fuel after purchase. There are wide variations in the quality of the conversion hardware and the installation. This leads to questions about the overall quality of the converted vehicles, in terms of emissions, safety, and performance. There is a considerable body of emissions data for converted light-duty vehicles, and a smaller amount for medium- and heavy-duty vehicles. However, very few of these data involve real world conditions, and there is growing concern about in-use emissions. This report also attempts to assess factors that could allow in-use emissions to vary from the ``best-case`` results normally reported. The study also addresses issues of fuel supply, fuel composition, performance, safety, and warranty waivers. The report is based on an extensive literature and product survey and on the author`s experience with fuel delivery systems for light-duty vehicles.

  18. Evaluation of aftermarket fuel delivery systems for natural gas and LPG vehicles

    SciTech Connect

    Willson, B. )

    1992-09-01

    This study was designed to evaluate the effectiveness of aftermarket fuel delivery systems for vehicles fueled by compressed natural gas (CNG) and liquefied petroleum gas (LPG). Most of the CNG and LPG vehicles studied were converted to the alternative fuel after purchase. There are wide variations in the quality of the conversion hardware and the installation. This leads to questions about the overall quality of the converted vehicles, in terms of emissions, safety, and performance. There is a considerable body of emissions data for converted light-duty vehicles, and a smaller amount for medium- and heavy-duty vehicles. However, very few of these data involve real world conditions, and there is growing concern about in-use emissions. This report also attempts to assess factors that could allow in-use emissions to vary from the best-case'' results normally reported. The study also addresses issues of fuel supply, fuel composition, performance, safety, and warranty waivers. The report is based on an extensive literature and product survey and on the author's experience with fuel delivery systems for light-duty vehicles.

  19. High Altitude Long Endurance Air Vehicle Analysis of Alternatives and Technology Requirements Development

    NASA Technical Reports Server (NTRS)

    Nickol, Craig L.; Guynn, Mark D.; Kohout, Lisa L.; Ozoroski, Thomas A.

    2007-01-01

    The objective of this study was to develop a variety of High Altitude Long Endurance (HALE) Unmanned Aerial Vehicle (UAV) conceptual designs for two operationally useful missions (hurricane science and communications relay) and compare their performance and cost characteristics. Sixteen potential HALE UAV configurations were initially developed, including heavier-than-air (HTA) and lighter-than-air (LTA) concepts with both consumable fuel and solar regenerative (SR) propulsion systems. Through an Analysis of Alternatives (AoA) down select process, the two leading consumable fuel configurations (one each from the HTA and LTA alternatives) and an HTA SR configuration were selected for further analysis. Cost effectiveness analysis of the consumable fuel configurations revealed that simply maximizing vehicle endurance can lead to a sub-optimum system solution. An LTA concept with a hybrid propulsion system (solar arrays and a hydrogen-air proton exchange membrane fuel cell) was found to have the best mission performance; however, an HTA diesel-fueled wing-body-tail configuration emerged as the preferred consumable fuel concept because of the large size and technical risk of the LTA concept. The baseline missions could not be performed by even the best HTA SR concept. Mission and SR technology trade studies were conducted to enhance understanding of the potential capabilities of such a vehicle. With near-term technology SR-powered HTA vehicles are limited to operation in favorable solar conditions, such as the long days and short nights of summer at higher latitudes. Energy storage system specific energy and solar cell efficiency were found to be the key technology areas for enhancing HTA SR performance.

  20. Refueling Behavior of Flexible Fuel Vehicle Drivers in the Federal Fleet

    SciTech Connect

    Daley, R.; Nangle, J.; Boeckman, G.; Miller, M.

    2014-05-01

    Federal fleets are a frequent subject of legislative and executive efforts to lead a national transition to alternative fuels and advanced vehicle technologies. Section 701 of the Energy Policy Act of 2005 requires that all dual-fueled alternative fuel vehicles in the federal fleet be operated on alternative fuel 100% of the time when they have access to it. However, in Fiscal Year (FY) 2012, drivers of federal flex fuel vehicles (FFV) leased through the General Services Administration refueled with E85 24% of the time when it was available--falling well short of the mandate. The U.S. Department of Energy's National Renewable Energy Laboratory completed a 2-year Laboratory Directed Research and Development project to identify the factors that influence the refueling behavior of federal FFV drivers. The project began with two primary hypotheses. First, information scarcity increases the tendency to miss opportunities to purchase E85. Second, even with perfect information, there are limits to how far drivers will go out of their way to purchase E85. This paper discusses the results of the project, which included a June 2012 survey of federal fleet drivers and an empirical analysis of actual refueling behavior from FY 2009 to 2012. This research will aid in the design and implementation of intervention programs aimed at increasing alternative fuel use and reducing petroleum consumption.

  1. H. R. 1593: This Act may be cited as the Federal Alternative Fuel Fleet Act, introduced in the House of Representatives, One Hundred Second Congress, First Session, March 21, 1991

    SciTech Connect

    Not Available

    1991-01-01

    This bill would provide for the increased use by the Federal government of alternative fuel vehicles. Alternative fuels considered are natural gas, methanol, ethanol, alcohols, mixtures containing 85 percent alcohol, liquid petroleum gas, hydrogen, and electricity. Sections of the bill describe fleet acquisition requirements, fuel economy calculations, availability to the public, vehicle costs, and a Department of Defense study of the feasibility of increasing the use of alternative fuel vehicles operated by this department.

  2. U.S. Department of Energy FreedomCAR & Vehicle Technologies Program Advanced Vehicle Testing Activity, Hydrogen/CNG Blended Fuels Performance Testing in a Ford F-150

    SciTech Connect

    James E. Francfort

    2003-11-01

    Federal regulation requires energy companies and government entities to utilize alternative fuels in their vehicle fleets. To meet this need, several automobile manufacturers are producing compressed natural gas (CNG)-fueled vehicles. In addition, several converters are modifying gasoline-fueled vehicles to operate on both gasoline and CNG (Bifuel). Because of the availability of CNG vehicles, many energy company and government fleets have adopted CNG as their principle alternative fuel for transportation. Meanwhile, recent research has shown that blending hydrogen with CNG (HCNG) can reduce emissions from CNG vehicles. However, blending hydrogen with CNG (and performing no other vehicle modifications) reduces engine power output, due to the lower volumetric energy density of hydrogen in relation to CNG. Arizona Public Service (APS) and the U.S. Department of Energy’s Advanced Vehicle Testing Activity (DOE AVTA) identified the need to determine the magnitude of these effects and their impact on the viability of using HCNG in existing CNG vehicles. To quantify the effects of using various blended fuels, a work plan was designed to test the acceleration, range, and exhaust emissions of a Ford F-150 pickup truck operating on 100% CNG and blends of 15 and 30% HCNG. This report presents the results of this testing conducted during May and June 2003 by Electric Transportation Applications (Task 4.10, DOE AVTA Cooperative Agreement DEFC36- 00ID-13859).

  3. Motor vehicle fuel economy, the forgotten HC control stragegy?

    SciTech Connect

    Deluchi, M.; Wang, Quanlu; Greene, D.L.

    1992-06-01

    Emissions of hydrocarbons from motor vehicles are recognized as major contributors to ozone pollution in urban areas. Petroleum-based motor fuels contain volatile organic compounds (VOC) which, together with oxides of nitrogen, promote the formation of ozone in the troposphere via complex photochemical reactions. VOC emissions from the tailpipe and evaporation from the fuel and engine systems of highway vehicles are believed to account for about 40% of total VOC emissions in any region. But motor fuels also generate emissions throughout the fuel cycle, from crude oil production to refining, storage, transportation, and handling, that can make significant contributions to the total inventory of VOC emissions. Many of these sources of emissions are directly related to the quantity of fuel produced and handled throughout the fuel cycle. It is, therefore, reasonable to expect that a reduction in total fuel throughput might result in a reduction of VOC emissions. In particular, reducing vehicle fuel consumption by increasing vehicle fuel economy should reduce total fuel throughput, thereby cutting total emissions of VOCS. In this report we identify the sources of VOC emissions throughout the motor fuel cycle, quantify them to the extent possible, and describe their dependence on automobile and light truck fuel economy.

  4. Direct-hydrogen-fueled proton-exchange-membrane fuel cell system for transportation applications: Conceptual vehicle design report pure fuel cell powertrain vehicle

    SciTech Connect

    Oei, D.; Kinnelly, A.; Sims, R.; Sulek, M.; Wernette, D.

    1997-02-01

    In partial fulfillment of the Department of Energy (DOE) Contract No. DE-AC02-94CE50389, {open_quotes}Direct-Hydrogen-Fueled Proton-Exchange-Membrane (PEM) Fuel Cell for Transportation Applications{close_quotes}, this preliminary report addresses the conceptual design and packaging of a fuel cell-only powered vehicle. Three classes of vehicles are considered in this design and packaging exercise, the Aspire representing the small vehicle class, the Taurus or Aluminum Intensive Vehicle (AIV) Sable representing the mid-size vehicle and the E-150 Econoline representing the van-size class. A fuel cell system spreadsheet model and Ford`s Corporate Vehicle Simulation Program (CVSP) were utilized to determine the size and the weight of the fuel cell required to power a particular size vehicle. The fuel cell power system must meet the required performance criteria for each vehicle. In this vehicle design and packaging exercise, the following assumptions were made: fuel cell power system density of 0.33 kW/kg and 0.33 kg/liter, platinum catalyst loading less than or equal to 0.25 mg/cm{sup 2} total and hydrogen tanks containing gaseous hydrogen under 340 atm (5000 psia) pressure. The fuel cell power system includes gas conditioning, thermal management, humidity control, and blowers or compressors, where appropriate. This conceptual design of a fuel cell-only powered vehicle will help in the determination of the propulsion system requirements for a vehicle powered by a PEMFC engine in lieu of the internal combustion (IC) engine. Only basic performance level requirements are considered for the three classes of vehicles in this report. Each vehicle will contain one or more hydrogen storage tanks and hydrogen fuel for 560 km (350 mi) driving range. Under these circumstances, the packaging of a fuel cell-only powered vehicle is increasingly difficult as the vehicle size diminishes.

  5. Influence of bio-fuels on passenger car vehicle emissions

    NASA Astrophysics Data System (ADS)

    Petrea, M.; Kapernaum, M.; Wahl, C.

    2009-04-01

    In order to reduce the emissions of air pollutants, vehicles design and fuel formulation have changed. Ultra clean vehicle technologies started to be used in increased number. As a result, the emissions composition is expected to change as well. The use of new technologies and new fuels require new emissions tests especially for non-regulated compounds. The interest in using bio fuels as alternative fuels for petroleum-based ones has increased constantly in the last years. The advantages of the bio fuels usage is given by their similar proprieties, characteristics of renew ability, biodegradability and potential beneficial effects on the exhaust emission. The study involved measurements on a roller test facility of a reference passenger car representing new technologies (emission standards, injection system). The vehicle operated by use of reference gasoline and reference gasoline blended (10 and 20%) with bio-ethanol (EtOH). The measurements used different driving cycles: ARTEMIS cycle, real world driving cycle, NEDC cycle, the standard European driving cycle and additionally, a driving cycle consisting in Idle, 30, 50, 90 km/h. The sampling positions were before and after the catalyst and in the exhaust pipe. The detailed speciation of NMVOC' (non methane volatile organic compounds) was completed by use of active carbon tubes, DNPH (2,4-dinitrophenylhydrazine) tubes and cold traps. The particles were monitored by use of an on-line EEPS (Engine Exhaust Particle Sizer). CO2, NO, NO2 and NOX (NO +NO2) were continuously monitored by use of an on- line FTIR (Fourier transform infrared spectroscopy)- MEXA system. The investigations reveal that among the carbonylic compounds 15 oxygenated species were found in engine out exhaust and only 3 in tailpipe emissions, namely formaldehyde, acetaldehyde and acroleine. These are of great interest due to their impacts on human health. The hydrocarbons emissions decrease by increased of EtOH content. New compounds were observed

  6. Energy utilization and efficiency analysis for hydrogen fuel cell vehicles

    NASA Astrophysics Data System (ADS)

    Moore, R. M.; Hauer, K. H.; Ramaswamy, S.; Cunningham, J. M.

    This paper presents the results of an energy analysis for load-following versus battery-hybrid direct-hydrogen fuel cell vehicles. The analysis utilizes dynamic fuel cell vehicle simulation tools previously presented [R.M. Moore, K.H. Hauer, J. Cunningham, S. Ramaswamy, A dynamic simulation tool for the battery-hybrid hydrogen fuel cell vehicle, Fuel Cells, submitted for publication; R.M. Moore, K.H. Hauer, D.J. Friedman, J.M. Cunningham, P. Badrinarayanan, S.X. Ramaswamy, A. Eggert, A dynamic simulation tool for hydrogen fuel cell vehicles, J. Power Sources, 141 (2005) 272-285], and evaluates energy utilization and efficiency for standardized drive cycles used in the US, Europe and Japan.

  7. Legacy Vehicle Fuel System Testing with Intermediate Ethanol Blends

    SciTech Connect

    Davis, G. W.; Hoff, C. J.; Borton, Z.; Ratcliff, M. A.

    2012-03-01

    The effects of E10 and E17 on legacy fuel system components from three common mid-1990s vintage vehicle models (Ford, GM, and Toyota) were studied. The fuel systems comprised a fuel sending unit with pump, a fuel rail and integrated pressure regulator, and the fuel injectors. The fuel system components were characterized and then installed and tested in sample aging test rigs to simulate the exposure and operation of the fuel system components in an operating vehicle. The fuel injectors were cycled with varying pulse widths during pump operation. Operational performance, such as fuel flow and pressure, was monitored during the aging tests. Both of the Toyota fuel pumps demonstrated some degradation in performance during testing. Six injectors were tested in each aging rig. The Ford and GM injectors showed little change over the aging tests. Overall, based on the results of both the fuel pump testing and the fuel injector testing, no major failures were observed that could be attributed to E17 exposure. The unknown fuel component histories add a large uncertainty to the aging tests. Acquiring fuel system components from operational legacy vehicles would reduce the uncertainty.

  8. Fuel economy and life-cycle cost analysis of a fuel cell hybrid vehicle

    NASA Astrophysics Data System (ADS)

    Jeong, Kwi Seong; Oh, Byeong Soo

    The most promising vehicle engine that can overcome the problem of present internal combustion is the hydrogen fuel cell. Fuel cells are devices that change chemical energy directly into electrical energy without combustion. Pure fuel cell vehicles and fuel cell hybrid vehicles (i.e. a combination of fuel cell and battery) as energy sources are studied. Considerations of efficiency, fuel economy, and the characteristics of power output in hybridization of fuel cell vehicle are necessary. In the case of Federal Urban Driving Schedule (FUDS) cycle simulation, hybridization is more efficient than a pure fuel cell vehicle. The reason is that it is possible to capture regenerative braking energy and to operate the fuel cell system within a more efficient range by using battery. Life-cycle cost is largely affected by the fuel cell size, fuel cell cost, and hydrogen cost. When the cost of fuel cell is high, hybridization is profitable, but when the cost of fuel cell is less than 400 US$/kW, a pure fuel cell vehicle is more profitable.

  9. 26 CFR 1.179A-1 - Recapture of deduction for qualified clean-fuel vehicle property and qualified clean-fuel vehicle...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... vehicle property and qualified clean-fuel vehicle refueling property. 1.179A-1 Section 1.179A-1 Internal... of deduction for qualified clean-fuel vehicle property and qualified clean-fuel vehicle refueling property. (a) In general. If a recapture event occurs with respect to a taxpayer's qualified...

  10. 26 CFR 1.179A-1 - Recapture of deduction for qualified clean-fuel vehicle property and qualified clean-fuel vehicle...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... vehicle property and qualified clean-fuel vehicle refueling property. 1.179A-1 Section 1.179A-1 Internal... of deduction for qualified clean-fuel vehicle property and qualified clean-fuel vehicle refueling property. (a) In general. If a recapture event occurs with respect to a taxpayer's qualified...

  11. 26 CFR 1.179A-1 - Recapture of deduction for qualified clean-fuel vehicle property and qualified clean-fuel vehicle...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... vehicle property and qualified clean-fuel vehicle refueling property. 1.179A-1 Section 1.179A-1 Internal... of deduction for qualified clean-fuel vehicle property and qualified clean-fuel vehicle refueling property. (a) In general. If a recapture event occurs with respect to a taxpayer's qualified...

  12. Hydrogen Fuel Cell Vehicle Fuel Economy Testing at the U.S. EPA National Vehicle and Fuel Emissions Laboratory (SAE Paper 2004-01-2900)

    EPA Science Inventory

    The introduction of hydrogen fuel cell vehicles and their new technology has created the need for development of new fuel economy test procedures and safety procedures during testing. The United States Environmental Protection Agency-National Vehicle Fuels and Emissions Laborato...

  13. Effects of ambient conditions on fuel cell vehicle performance

    NASA Astrophysics Data System (ADS)

    Haraldsson, K.; Alvfors, P.

    Ambient conditions have considerable impact on the performance of fuel cell hybrid vehicles. Here, the vehicle fuel consumption, the air compressor power demand, the water management system and the heat loads of a fuel cell hybrid sport utility vehicle (SUV) were studied. The simulation results show that the vehicle fuel consumption increases with 10% when the altitude increases from 0 m up to 3000 m to 4.1 L gasoline equivalents/100 km over the New European Drive Cycle (NEDC). The increase is 19% on the more power demanding highway US06 cycle. The air compressor is the major contributor to this fuel consumption increase. Its load-following strategy makes its power demand increase with increasing altitude. Almost 40% of the net power output of the fuel cell system is consumed by the air compressor at the altitude of 3000 m with this load-following strategy and is thus more apparent in the high-power US06 cycle. Changes in ambient air temperature and relative humidity effect on the fuel cell system performance in terms of the water management rather in vehicle fuel consumption. Ambient air temperature and relative humidity have some impact on the vehicle performance mostly seen in the heat and water management of the fuel cell system. While the heat loads of the fuel cell system components vary significantly with increasing ambient temperature, the relative humidity did not have a great impact on the water balance. Overall, dimensioning the compressor and other system components to meet the fuel cell system requirements at the minimum and maximum expected ambient temperatures, in this case 5 and 40 °C, and high altitude, while simultaneously choosing a correct control strategy are important parameters for efficient vehicle power train management.

  14. Proposal for a Vehicle Level Test Procedure to Measure Air Conditioning Fuel Use

    SciTech Connect

    Rugh, J. P.

    2010-04-01

    The air-conditioning (A/C) compressor load significantly impacts the fuel economy of conventional vehicles and the fuel use/range of plug-in hybrid electric vehicles (PHEV). A National Renewable Energy Laboratory (NREL) vehicle performance analysis shows the operation of the air conditioner reduces the charge depletion range of a 40-mile range PHEV from 18% to 30% in a worst case hot environment. Designing for air conditioning electrical loads impacts PHEV and electric vehicle (EV) energy storage system size and cost. While automobile manufacturers have climate control procedures to assess A/C performance, and the U.S. EPA has the SCO3 drive cycle to measure indirect A/C emissions, there is no automotive industry consensus on a vehicle level A/C fuel use test procedure. With increasing attention on A/C fuel use due to increased regulatory activities and the development of PHEVs and EVs, a test procedure is needed to accurately assess the impact of climate control loads. A vehicle thermal soak period is recommended, with solar lamps that meet the SCO3 requirements or an alternative heating method such as portable electric heaters. After soaking, the vehicle is operated over repeated drive cycles or at a constant speed until steady-state cabin air temperature is attained. With this method, the cooldown and steady-state A/C fuel use are measured. This method can be run at either different ambient temperatures to provide data for the GREEN-MAC-LCCP model temperature bins or at a single representative ambient temperature. Vehicles with automatic climate systems are allowed to control as designed, while vehicles with manual climate systems are adjusted to approximate expected climate control settings. An A/C off test is also run for all drive profiles. This procedure measures approximate real-world A/C fuel use and assess the impact of thermal load reduction strategies.

  15. An investigation on the fuel savings potential of hybrid hydraulic refuse collection vehicles.

    PubMed

    Bender, Frank A; Bosse, Thomas; Sawodny, Oliver

    2014-09-01

    Refuse trucks play an important role in the waste collection process. Due to their typical driving cycle, these vehicles are characterized by large fuel consumption, which strongly affects the overall waste disposal costs. Hybrid hydraulic refuse vehicles offer an interesting alternative to conventional diesel trucks, because they are able to recuperate, store and reuse braking energy. However, the expected fuel savings can vary strongly depending on the driving cycle and the operational mode. Therefore, in order to assess the possible fuel savings, a typical driving cycle was measured in a conventional vehicle run by the waste authority of the City of Stuttgart, and a dynamical model of the considered vehicle was built up. Based on the measured driving cycle and the vehicle model including the hybrid powertrain components, simulations for both the conventional and the hybrid vehicle were performed. Fuel consumption results that indicate savings of about 20% are presented and analyzed in order to evaluate the benefit of hybrid hydraulic vehicles used for refuse collection. PMID:24953314

  16. Compressed natural gas fueled vehicles: The Houston experience

    SciTech Connect

    Not Available

    1993-12-31

    The report describes the experience of the City of Houston in defining the compressed natural gas fueled vehicle research scope and issues. It details the ways in which the project met initial expectations, and how the project scope, focus, and duration were adjusted in response to unanticipated results. It provides examples of real world successes and failures in efforts to commercialize basic research in adapting a proven technology (natural gas) to a noncommercially proven application (vehicles). Phase one of the demonstration study investigates, develops, documents, and disseminates information regarding the economic, operational, and environmental implications of utilizing compressed natural gas (CNG) in various truck fueling applications. The four (4) truck classes investigated are light duty gasoline trucks, medium duty gasoline trucks, medium duty diesel trucks and heavy duty diesel trucks. The project researches aftermarket CNG conversions for the first three vehicle classes and original equipment manufactured (OEM) CNG vehicles for light duty gasoline and heavy duty diesel classes. In phase two of the demonstration project, critical issues are identified and assessed with respect to implementing use of CNG fueled vehicles in a large vehicle fleet. These issues include defining changes in local, state, and industry CNG fueled vehicle related codes and standards; addressing vehicle fuel storage limitations; using standardized vehicle emission testing procedures and results; and resolving CNG refueling infrastructure implementation issues and related cost factors. The report identifies which CNG vehicle fueling options were tried and failed and which were tried and succeeded, with and without modifications. The conclusions include a caution regarding overly optimistic assessments of CNG vehicle technology at the initiation of the project.

  17. Conceptual design and selection of a biodiesel fuel processor for a vehicle fuel cell auxiliary power unit

    NASA Astrophysics Data System (ADS)

    Specchia, S.; Tillemans, F. W. A.; van den Oosterkamp, P. F.; Saracco, G.

    Within the European project BIOFEAT (biodiesel fuel processor for a fuel cell auxiliary power unit for a vehicle), a complete modular 10 kW e biodiesel fuel processor capable of feeding a PEMFC will be developed, built and tested to generate electricity for a vehicle auxiliary power unit (APU). Tail pipe emissions reduction, increased use of renewable fuels, increase of hydrogen-fuel economy and efficient supply of present and future APU for road vehicles are the main project goals. Biodiesel is the chosen feedstock because it is a completely natural and thus renewable fuel. Three fuel processing options were taken into account at a conceptual design level and compared for hydrogen production: (i) autothermal reformer (ATR) with high and low temperature shift (HTS/LTS) reactors; (ii) autothermal reformer (ATR) with a single medium temperature shift (MTS) reactor; (iii) thermal cracker (TC) with high and low temperature shift (HTS/LTS) reactors. Based on a number of simulations (with the AspenPlus® software), the best operating conditions were determined (steam-to-carbon and O 2/C ratios, operating temperatures and pressures) for each process alternative. The selection of the preferential fuel processing option was consequently carried out, based on a number of criteria (efficiency, complexity, compactness, safety, controllability, emissions, etc.); the ATR with both HTS and LTS reactors shows the most promising results, with a net electrical efficiency of 29% (LHV).

  18. Compact gasoline fuel processor for passenger vehicle APU

    NASA Astrophysics Data System (ADS)

    Severin, Christopher; Pischinger, Stefan; Ogrzewalla, Jürgen

    Due to the increasing demand for electrical power in today's passenger vehicles, and with the requirements regarding fuel consumption and environmental sustainability tightening, a fuel cell-based auxiliary power unit (APU) becomes a promising alternative to the conventional generation of electrical energy via internal combustion engine, generator and battery. It is obvious that the on-board stored fuel has to be used for the fuel cell system, thus, gasoline or diesel has to be reformed on board. This makes the auxiliary power unit a complex integrated system of stack, air supply, fuel processor, electrics as well as heat and water management. Aside from proving the technical feasibility of such a system, the development has to address three major barriers:start-up time, costs, and size/weight of the systems. In this paper a packaging concept for an auxiliary power unit is presented. The main emphasis is placed on the fuel processor, as good packaging of this large subsystem has the strongest impact on overall size. The fuel processor system consists of an autothermal reformer in combination with water-gas shift and selective oxidation stages, based on adiabatic reactors with inter-cooling. The configuration was realized in a laboratory set-up and experimentally investigated. The results gained from this confirm a general suitability for mobile applications. A start-up time of 30 min was measured, while a potential reduction to 10 min seems feasible. An overall fuel processor efficiency of about 77% was measured. On the basis of the know-how gained by the experimental investigation of the laboratory set-up a packaging concept was developed. Using state-of-the-art catalyst and heat exchanger technology, the volumes of these components are fixed. However, the overall volume is higher mainly due to mixing zones and flow ducts, which do not contribute to the chemical or thermal function of the system. Thus, the concept developed mainly focuses on minimization of those

  19. Direct hydrogen fuel cell systems for hybrid vehicles

    NASA Astrophysics Data System (ADS)

    Ahluwalia, Rajesh K.; Wang, X.

    Hybridizing a fuel cell system with an energy storage system offers an opportunity to improve the fuel economy of the vehicle through regenerative braking and possibly to increase the specific power and decrease the cost of the combined energy conversion and storage systems. Even in a hybrid configuration it is advantageous to operate the fuel cell system in a load-following mode and use the power from the energy storage system when the fuel cell alone cannot meet the power demand. This paper discusses an approach for designing load-following fuel cell systems for hybrid vehicles and illustrates it by applying it to pressurized, direct hydrogen, polymer-electrolyte fuel cell (PEFC) systems for a mid-size family sedan. The vehicle level requirements relative to traction power, response time, start-up time and energy conversion efficiency are used to select the important parameters for the PEFC stack, air management system, heat rejection system and the water management system.

  20. Preliminary ecotoxicity assessment of new generation alternative fuels in seawater.

    PubMed

    Rosen, Gunther; Dolecal, Renee E; Colvin, Marienne A; George, Robert D

    2014-06-01

    The United States Navy (USN) is currently demonstrating the viability of environmentally sustainable alternative fuels to power its fleet comprised of aircraft and ships. As with any fuel used in a maritime setting, there is potential for introduction into the environment through transport, storage, and spills. However, while alternative fuels are often presumed to be eco-friendly relative to conventional petroleum-based fuels, their environmental fate and effects on marine environments are essentially unknown. Here, standard laboratory-based toxicity experiments were conducted for two alternative fuels, jet fuel derived from Camelina sativa (wild flax) seeds (HRJ5) and diesel fuel derived from algae (HRD76), and two conventional counterparts, jet fuel (JP5) and ship diesel (F76). Initial toxicity tests performed on water-accommodated fractions (WAF) from neat fuels partitioned into seawater, using four standard marine species in acute and chronic/sublethal tests, indicate that the alternative fuels are significantly less toxic to marine organisms. PMID:24315182

  1. Prospects on fuel economy improvements for hydrogen powered vehicles.

    SciTech Connect

    Rousseau, A.; Wallner, T.; Pagerit, S.; Lohse-Bush, H.

    2008-01-01

    Fuel cell vehicles are the subject of extensive research and development because of their potential for high efficiency and low emissions. Because fuel cell vehicles remain expensive and the demand for hydrogen is therefore limited, very few fueling stations are being built. To try to accelerate the development of a hydrogen economy, some original equipment manufacturers (OEM) in the automotive industry have been working on a hydrogen-fueled internal combustion engine (ICE) as an intermediate step. Despite its lower cost, the hydrogen-fueled ICE offers, for a similar amount of onboard hydrogen, a lower driving range because of its lower efficiency. This paper compares the fuel economy potential of hydrogen-fueled vehicles to their conventional gasoline counterparts. To take uncertainties into account, the current and future status of both technologies were considered. Although complete data related to port fuel injection were provided from engine testing, the map for the direct-injection engine was developed from single-cylinder data. The fuel cell system data represent the status of the current technology and the goals of FreedomCAR. For both port-injected and direct-injected hydrogen engine technologies, power split and series Hybrid Electric Vehicle (HEV) configurations were considered. For the fuel cell system, only a series HEV configuration was simulated.

  2. Alternative Fuels for Washington's School Buses: A Report to the Washington State Legislature.

    ERIC Educational Resources Information Center

    Lyons, John Kim; McCoy, Gilbert A.

    This document presents findings of a study that evaluated the use of both propane and compressed natural gas as alternative fuels for Washington State school buses. It discusses air quality improvement actions by state- and federal-level regulators and summarizes vehicle design, development, and commercialization activities by all major engine,…

  3. Alternative Liquid Fuels Simulation Model (AltSim).

    SciTech Connect

    Williams, Ryan; Baker, Arnold Barry; Drennen, Thomas E.

    2009-12-01

    options to be included under the EISA mandate. The estimated GHG emissions associated with the production of gasoline and diesel are 19.80 and 18.40 kg of CO{sub 2} equivalent per MMBtu (kgCO{sub 2}e/MMBtu), respectively (NETL, 2008). The estimated emissions are significantly higher for several alternatives: ethanol from corn (70.6), GTL (51.9), and CTL without biomass or sequestration (123-161). Projected emissions for several other alternatives are lower; integrating biomass and sequestration in the CTL processes can even result in negative net emissions. For example, CTL with 30% biomass and 91.5% sequestration has estimated production emissions of -38 kgCO{sub 2}e/MMBtu. AltSim also estimates the projected well-to-wheel, or lifecycle, emissions from consuming each of the various fuels. Vehicles fueled with conventional diesel or gasoline and driven 12,500 miles per year emit 5.72-5.93 tons of CO{sub 2} equivalents per year (tCO{sub 2}e/yr). Those emissions are significantly higher for vehicles fueled with 100% ethanol from corn (8.03 tCO{sub 2}e/yr) or diesel from CTL without sequestration (10.86 to 12.85 tCO{sub 2}/yr). Emissions could be significantly lower for vehicles fueled with diesel from CBTL with various shares of biomass. For example, for CTL with 30% biomass and carbon sequestration, emissions would be 2.21 tCO{sub 2}e per year, or just 39% of the emissions for a vehicle fueled with conventional diesel. While the results presented above provide very specific estimates for each option, AltSim's true potential is as a tool for educating policy makers and for exploring 'what if?' type questions. For example, AltSim allows one to consider the affect of various levels of carbon taxes on the production cost estimates, as well as increased costs to the end user on an annual basis. Other sections of AltSim allow the user to understand the implications of various polices in terms of costs to the government or land use requirements. AltSim's structure allows the end

  4. EPAct Alternative Fuel Transportation Program: Success Story (Fact Sheet)

    SciTech Connect

    Not Available

    2010-08-01

    This success story highlights the EPAct Alternative Fuel Transportation Program's series of workshops that bring fleets regulated under the Energy Policy Act of 1992 (EPAct) together with Clean Cities stakeholders and fuel providers to form and strengthen regional partnerships and initiate projects that will deploy more alternative fuel infrastructure.

  5. Environmental implications of alternative-fueled automobiles: Air quality and greenhouse gas tradeoffs

    SciTech Connect

    MaClean, H.L.; Lave, L.B.

    2000-01-15

    The authors analyze alternative fuel-powerstrain options for internal combustion engine automobiles. Fuel/engine efficiency, energy use, pollutant discharges, and greenhouse gas emissions are estimated for spark and compression ignited, direct injected (DI), and indirect injected (II) engines fueled by conventional and reformulated gasoline, reformulated diesel, compressed natural gas (CNG), and alcohols. Since comparisons of fuels and technologies in dissimilar vehicles are misleading, the authors hold emissions level, range, vehicle size class, and style constant. At present, CNG vehicles have the best exhaust emissions performance while DI diesels have the worst. Compared to a conventional gasoline fueled II automobile, greenhouse gases could be reduced by 40% by a DI CNG automobile and by 25% by a DI diesel. Gasoline- and diesel-fueled automobiles are able to attain long ranges with little weight or fuel economy penalty. CNG vehicles have the highest penalty for increasing range, due to their heavy fuel storage systems, but are the most attractive for a 160-km range. DI engines, particularly diesels, may not be able to meet strict emissions standards, at least not without lowering efficiency.

  6. Proceedings of the 1995 SAE alternative fuels conference. P-294

    SciTech Connect

    1995-12-31

    This volume contains 32 papers and five panel discussions related to the fuel substitution of trucks, automobiles, buses, cargo handling equipment, diesel passenger cars, and pickup trucks. Fuels discussed include liquefied natural gas, natural gas, ethanol fuels, methanol fuels, dimethyl ether, methyl esters from various sources (rape oil, used cooking oils, soya, and canola oils), hydrogen fuels, and biodiesel. Other topics include fuel cell powered vehicles, infrastructure requirements for fuel substitution, and economics. Papers have been processed separately for inclusion on the data base.

  7. Flexible Fuel Vehicles: Powered by a Renewable U.S. Fuel

    SciTech Connect

    Not Available

    2007-03-01

    Clean Cities fact sheet describing aspects of flexible fuel vehicles such as use of E85, special features, benefits of use, costs, and fueling locations. It includes discussion on performance and how to identify these vehicles as well as listing additional resources.

  8. Research and Development of a PEM Fuel Cell, Hydrogen Reformer, and Vehicle Refueling Facility

    SciTech Connect

    Edward F. Kiczek

    2007-08-31

    Air Products and Chemicals, Inc. has teamed with Plug Power, Inc. of Latham, NY, and the City of Las Vegas, NV, to develop, design, procure, install and operate an on-site hydrogen generation system, an alternative vehicle refueling system, and a stationary hydrogen fuel cell power plant, located in Las Vegas. The facility will become the benchmark for validating new natural gas-based hydrogen systems, PEM fuel cell power generation systems, and numerous new technologies for the safe and reliable delivery of hydrogen as a fuel to vehicles. Most important, this facility will serve as a demonstration of hydrogen as a safe and clean energy alternative. Las Vegas provides an excellent real-world performance and durability testing environment.

  9. Fuel-cycle energy and emissions impacts of tripled fuel-economy vehicles

    SciTech Connect

    Mintz, M. M.; Vyas, A. D.; Wang, M. Q.

    1997-12-18

    This paper presents estimates of the fill fuel-cycle energy and emissions impacts of light-duty vehicles with tripled fuel economy (3X vehicles) as currently being developed by the Partnership for a New Generation of Vehicles (PNGV). Seven engine and fuel combinations were analyzed: reformulated gasoline, methanol, and ethanol in spark-ignition, direct-injection engines; low-sulfur diesel and dimethyl ether in compression-ignition, direct-injection engines; and hydrogen and methanol in fuel-cell vehicles. Results were obtained for three scenarios: a Reference Scenario without PNGVs, a High Market Share Scenario in which PNGVs account for 60% of new light-duty vehicle sales by 2030, and a Low Market Share Scenario in which PNGVs account for half as many sales by 2030. Under the higher of these two, the fuel-efficiency gain by 3X vehicles translated directly into a nearly 50% reduction in total energy demand, petroleum demand, and carbon dioxide emissions. The combination of fuel substitution and fuel efficiency resulted in substantial reductions in emissions of nitrogen oxide (NO{sub x}), carbon monoxide (CO), volatile organic compounds (VOCs), sulfur oxide, (SO{sub x}), and particulate matter smaller than 10 microns (PM{sub 10}) for most of the engine-fuel combinations examined. The key exceptions were diesel- and ethanol-fueled vehicles for which PM{sub 10} emissions increased.

  10. Analysis of Ares Crew Launch Vehicle Transonic Alternating Flow Phenomenon

    NASA Technical Reports Server (NTRS)

    Sekula, Martin K.; Piatak, David J.; Rausch, Russ D.

    2012-01-01

    A transonic wind tunnel test of the Ares I-X Rigid Buffet Model (RBM) identified a Mach number regime where unusually large buffet loads are present. A subsequent investigation identified the cause of these loads to be an alternating flow phenomenon at the Crew Module-Service Module junction. The conical design of the Ares I-X Crew Module and the cylindrical design of the Service Module exposes the vehicle to unsteady pressure loads due to the sudden transition between a subsonic separated and a supersonic attached flow about the cone-cylinder junction as the local flow randomly fluctuates back and forth between the two flow states. These fluctuations produce a square-wave like pattern in the pressure time histories resulting in large amplitude, impulsive buffet loads. Subsequent testing of the Ares I RBM found much lower buffet loads since the evolved Ares I design includes an ogive fairing that covers the Crew Module-Service Module junction, thereby making the vehicle less susceptible to the onset of alternating flow. An analysis of the alternating flow separation and attachment phenomenon indicates that the phenomenon is most severe at low angles of attack and exacerbated by the presence of vehicle protuberances. A launch vehicle may experience either a single or, at most, a few impulsive loads since it is constantly accelerating during ascent rather than dwelling at constant flow conditions in a wind tunnel. A comparison of a windtunnel- test-data-derived impulsive load to flight-test-data-derived load indicates a significant over-prediction in the magnitude and duration of the buffet load. I. Introduction One

  11. Maintenance and operation of the US Alternative Fuel Center

    SciTech Connect

    Erwin, J.; Ferrill, J.L.; Hetrick, D.L.

    1994-08-01

    The Alternative Fuels Utilization Program (AFUP) of the Office of Energy Efficiency and Renewable Energy has investigated the possibilities and limitations of expanded scope of fuel alternatives and replacement means for transportation fuels from alternative sources. Under the AFUP, the Alternative Fuel Center (AFC) was created to solve problems in the DOE programs that were grappling with the utilization of shale oil and coal liquids for transportation fuels. This report covers the first year at the 3-year contract. The principal objective was to assist the AFUP in accomplishing its general goals with two new fuel initiatives selected for tasks in the project year: (1) Production of low-sulfur, low-olefin catalytically cracked gasoline blendstock; and (2) production of low-reactivity/low-emission gasoline. Supporting goals included maintaining equipment in good working order, performing reformulated gasoline tests, and meeting the needs of other government agencies and industries for fuel research involving custom processing, blending, or analysis of experimental fuels.

  12. Fuel Cell Electric Vehicle Evaluation; NREL (National Renewable Energy Laboratory)

    SciTech Connect

    Kurtz, Jennifer; Sprik, Sam; Ainscough, Chris; Saur, Genevieve

    2015-06-10

    This presentation provides a summary of NREL's FY15 fuel cell electric vehicle evaluation project activities and accomplishments. It was presented at the U.S. Department of Energy Hydrogen and Fuel Cells Program 2015 Annual Merit Review and Peer Evaluation Meeting on June 10, 2015, in Arlington, Virginia.

  13. Alternative materials for solid oxide fuel cells

    SciTech Connect

    Stevenson, J.W.; Armstrong, T.R.

    1994-08-01

    The purpose of this research is to develop alternative materials for solid oxide fuel cell (SOFC) interconnections and electrodes with improved electrical, thermal, and electrochemical properties. A second objective is to develop synthesis and fabrication methods for these materials whereby they can be processed in air into SOFCs. The approach is to (1) develop modifications of the current, state-of-the-art materials used in SOFCs, (2) minimize the number of cations used in the SOFC materials to reduce potential deleterious interactions, (3) improve thermal, electrical, and electrochemical properties, (4) develop methods to synthesize both state-of-the-art and alternative materials for the simultaneous fabrication and consolidation in air of the interconnections and electrodes with the solid electrolyte, and (5) understand electrochemical reactions at materials interfaces and the effects of component composition and processing on those reactions. This paper summarizes a comprehensive study that assessed the effect of ambient oxygen partial pressure on the stability of air-sinterable chromites and the sintering behavior of doped lanthanum manganites.

  14. Potential for compressed natural gas vehicles in centrally-fueled automobile-, truck-, and bus-fleet applications

    SciTech Connect

    Samsa, M.E.

    1991-06-01

    Two prospective alternative fuel implementation scenarios were created to quantify the potential range of compressed natural gas use in fleet vehicles including fleet automobiles; light-, medium-, and heavy-duty fleet trucks; public transit buses; and school buses. The scenarios are based principally on the clean-fuel fleet vehicle provisions contained in the Clean Air Act Amendments of 1990, the California Low Emission Vehicle Regulations, and the assumed future capability of compressed natural gas to meet various levels of tailpipe emission standards. The potential for using compressed natural gas in fleet vehicle applications varies significantly between the scenarios primarily due to assumption about differences in affected vehicle classes, timing of the regulations, and emission levels. By 2010, the potential for compressed natural gas vehicle use ranges from less than 840 thousand to more than 1.3 million fleet vehicles of all types with corresponding gas demand ranging from 140 to 200 billion cubic feet per year.

  15. Study of the combustion of various alternate fuels

    SciTech Connect

    Barfield, B.F.; Acker, G.J. Jr.; Lindsay, M.H.

    1984-01-01

    This research project used two methods for studying the problems facing alternate fuels. The first method studied the use of chemicals to improve fuel characteristics without changing the basic engine design. The second method was to make engine modifications to suit characteristics of the alternate fuel. The result of the two methods studied is a two-part report. Alcohols, solvent-refined coal (SRC-II), vegetable oils, and mixtures of these with diesel fuels and with each other are the alternative fuels discussed and tested. 21 references, 4 figures, 10 tables.

  16. Fuel Cells: A Real Option for Unmanned Aerial Vehicles Propulsion

    PubMed Central

    2014-01-01

    The possibility of implementing fuel cell technology in Unmanned Aerial Vehicle (UAV) propulsion systems is considered. Potential advantages of the Proton Exchange Membrane or Polymer Electrolyte Membrane (PEMFC) and Direct Methanol Fuel Cells (DMFC), their fuels (hydrogen and methanol), and their storage systems are revised from technical and environmental standpoints. Some operating commercial applications are described. Main constraints for these kinds of fuel cells are analyzed in order to elucidate the viability of future developments. Since the low power density is the main problem of fuel cells, hybridization with electric batteries, necessary in most cases, is also explored. PMID:24600326

  17. Fuel cells: a real option for Unmanned Aerial Vehicles propulsion.

    PubMed

    González-Espasandín, Óscar; Leo, Teresa J; Navarro-Arévalo, Emilio

    2014-01-01

    The possibility of implementing fuel cell technology in Unmanned Aerial Vehicle (UAV) propulsion systems is considered. Potential advantages of the Proton Exchange Membrane or Polymer Electrolyte Membrane (PEMFC) and Direct Methanol Fuel Cells (DMFC), their fuels (hydrogen and methanol), and their storage systems are revised from technical and environmental standpoints. Some operating commercial applications are described. Main constraints for these kinds of fuel cells are analyzed in order to elucidate the viability of future developments. Since the low power density is the main problem of fuel cells, hybridization with electric batteries, necessary in most cases, is also explored. PMID:24600326

  18. Analysis of vehicle fuel release resulting in waste tank fire

    SciTech Connect

    STEPHENS, L.S.

    2003-03-21

    This document reevaluates several aspects of the in-tank vehicle fuel fire/deflagration accident formally documented as an independent accident (representative accident [rep acc] 2). This reevaluation includes frequencies for the accidents and incorporates the behavior of gasoline and diesel fuel in more detail than previous analysis. This reevaluation uses data from RPP-13121, ''Historical Summary of Occurrences from the Tank Farm Safety Analysis Report'', Table B-1, ''Tank Farm Events, Off-Normal and Critiques,'' and B-2, ''Summary of Occurrences,'' and from the River Protection Project--Occurrence Reporting & Processing System (ORPS) reports as a basis for changing some of the conclusions formally reported in HNF-SD-WM-CN-037, ''Frequency Analysis of Vehicle Fuel Releases Resulting in Waste Tank Fire''. This calculation note will demonstrate that the in-tank vehicle fuel fire/deflagration accident event may be relocated to other, more bounding accidents.

  19. Fuel economy rebound effect of U.S. household vehicles

    SciTech Connect

    Greene, D.L.; Kahn, J.R.; Gibson, R.C.

    1999-07-01

    This paper presents an econometric estimation of the rebound effect for household vehicle travel in the US based on analysis of survey data collected by the Energy Information Administration (EIA) at approximately three-year intervals over a 15-year period. The rebound effect measures the tendency to take back potential energy savings from fuel economy improvements as increased travel. Vehicle use models were estimated for one-, two-, three-, four-, and five-vehicle households. The results confirm recent estimates based on national or state-level data: a long-run take back of about 20% of potential energy savings. Consumer responses to changes in fuel economy or fuel price per gallon appear to be equal and opposite in sign. Recognizing the interdependencies among miles of travel, fuel economy and price is key to obtaining meaningful results.

  20. 10 CFR 490.306 - Vehicle operation requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Fuel Provider Vehicle Acquisition Mandate § 490.306 Vehicle operation requirements. The alternative fueled..., except when these vehicles are operating in an area where the appropriate alternative fuel is unavailable....

  1. 10 CFR 490.306 - Vehicle operation requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Fuel Provider Vehicle Acquisition Mandate § 490.306 Vehicle operation requirements. The alternative fueled..., except when these vehicles are operating in an area where the appropriate alternative fuel is unavailable....

  2. 10 CFR 490.306 - Vehicle operation requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Fuel Provider Vehicle Acquisition Mandate § 490.306 Vehicle operation requirements. The alternative fueled..., except when these vehicles are operating in an area where the appropriate alternative fuel is unavailable....

  3. 10 CFR 490.306 - Vehicle operation requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Fuel Provider Vehicle Acquisition Mandate § 490.306 Vehicle operation requirements. The alternative fueled..., except when these vehicles are operating in an area where the appropriate alternative fuel is unavailable....

  4. 10 CFR 490.306 - Vehicle operation requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Fuel Provider Vehicle Acquisition Mandate § 490.306 Vehicle operation requirements. The alternative fueled..., except when these vehicles are operating in an area where the appropriate alternative fuel is unavailable....

  5. 40 CFR 80.583 - What alternative sampling and testing requirements apply to importers who transport motor vehicle...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... requirements apply to importers who transport motor vehicle diesel fuel, NRLM diesel fuel, or ECA marine fuel... (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel Sampling and Testing § 80.583...

  6. Maintenance and operation of the USDOE Alternative Fuel Center

    SciTech Connect

    Erwin, J.; Moulton, D.S.; Hetrick, D.L.

    1994-08-01

    The Alternative Fuels Utilization Program (AFUP) of the Office of Energy Efficiency and Renewable Energy has investigated the possibilities and limitations of expanded scope of fuel alternatives and replacement means for transportation fuels from alternative sources. Under the AFUP, the Alternative Fuel Center (AFC) was created to solve problems in the DOE programs that were grappling with the utilization of shale oil and coal liquids for transportation fuels. In year one of this contract, a timeline was set to coordinate uses and operations of the AFC hydrogenation pilot plant among test fuels production project work, facility maintenance, other government work, and work for industry for second-generation operations. In year two, consistent with assisting the AFUP in accomplishing its general goals, the work was done with fuel producers, regulators, and users in mind. AFC capabilities and results were disseminated through tours and outside presentations.

  7. Fuel Cell Propulsion Systems for an All-Electric Personal Air Vehicle

    NASA Technical Reports Server (NTRS)

    Kohout, Lisa L.

    2003-01-01

    There is a growing interest in the use of fuel cells as a power source for all-electric aircraft propulsion as a means to substantially reduce or eliminate environmentally harmful emissions. Among the technologies under consideration for these concepts are advanced proton exchange membrane and solid oxide fuel cells, alternative fuels and fuel processing, and fuel storage. This paper summarizes the results of a first-order feasibility study for an all-electric personal air vehicle utilizing a fuel cell-powered propulsion system. A representative aircraft with an internal combustion engine was chosen as a baseline to provide key parameters to the study, including engine power and subsystem mass, fuel storage volume and mass, and aircraft range. The engine, fuel tank, and associated ancillaries were then replaced with a fuel cell subsystem. Various configurations were considered including: a proton exchange membrane (PEM) fuel cell with liquid hydrogen storage; a direct methanol PEM fuel cell; and a direct internal reforming solid oxide fuel cell (SOFC)/turbine hybrid system using liquid methane fuel. Each configuration was compared to the baseline case on a mass and range basis.

  8. Fuel Cell Propulsion Systems for an All-electric Personal Air Vehicle

    NASA Technical Reports Server (NTRS)

    Kohout, Lisa L.; Schmitz, Paul C.

    2003-01-01

    There is a growing interest in the use of fuel cells as a power source for all-electric aircraft propulsion as a means to substantially reduce or eliminate environmentally harmful emissions. Among the technologies under consideration for these concepts are advanced proton exchange membrane and solid oxide fuel cells, alternative fuels and fuel processing, and fuel storage. This paper summarizes the results of a first-order feasibility study for an all-electric personal air vehicle utilizing a fuel cell-powered propulsion system. A representative aircraft with an internal combustion engine was chosen as a baseline to provide key parameters to the study, including engine power and subsystem mass, fuel storage volume and mass, and aircraft range. The engine, fuel tank, and associated ancillaries were then replaced with a fuel cell subsystem. Various configurations were considered including: a proton exchange membrane (PEM) fuel cell with liquid hydrogen storage; a direct methanol PEM fuel cell; and a direct internal reforming solid oxide fuel cell (SOFC)/turbine hybrid system using liquid methane fuel. Each configuration was compared to the baseline case on a mass and range basis.

  9. Assessment of costs and benefits of flexible and alternative fuel use in the US transportation sector

    SciTech Connect

    Not Available

    1991-10-01

    The DOE is conducting a comprehensive technical analysis of a flexible-fuel transportation system in the United States -- that is, a system that could easily switch between petroleum and another fuel, depending on price and availability. The DOE Alternative Fuels Assessment is aimed directly at questions of energy security and fuel availability, but covers a wide range of issues. This report examines environmental, health, and safety concerns associated with a switch to alternative- and flexible-fuel vehicles. Three potential alternatives to oil-based fuels in the transportation sector are considered: methanol, compressed natural gas (CNG), and electricity. The objective is to describe and discuss qualitatively potential environmental, health, and safety issues that would accompany widespread use of these three fuels. This report presents the results of exhaustive literature reviews; discussions with specialists in the vehicular and fuel-production industries and with Federal, State, and local officials; and recent information from in-use fleet tests. Each chapter deals with the end-use and process emissions of air pollutants, presenting an overview of the potential air pollution contribution of the fuel --relative to that of gasoline and diesel fuel -- in various applications. Carbon monoxide, particulate matter, ozone precursors, and carbon dioxide are emphasized. 67 refs., 6 figs. , 8 tabs.

  10. Fuel economy and emissions evaluation of BMW hydrogen 7 mono-fuel demonstration vehicles.

    SciTech Connect

    Wallner, T.; Lohse-Busch, H.; Gurski, S.; Duoba, M.; Thiel, W.; Martin, D.; Korn, T.; Energy Systems; BMW Group Munich Germany; BMW Group Oxnard USA

    2008-12-01

    This article summarizes the testing of two BMW Hydrogen 7 Mono-Fuel demonstration vehicles at Argonne National Laboratory's Advanced Powertrain Research Facility (APRF). The BMW Hydrogen 7 Mono-Fuel demonstration vehicles are derived from the BMW Hydrogen 7 bi-fuel vehicles and based on a BMW 760iL. The mono-fuel as well as the bi-fuel vehicle(s) is equipped with cryogenic hydrogen on-board storage and a gaseous hydrogen port fuel injection system. The BMW Hydrogen 7 Mono-Fuel demonstration vehicles were tested for fuel economy as well as emissions on the Federal Test Procedure FTP-75 cold-start test as well as the highway test. The results show that these vehicles achieve emissions levels that are only a fraction of the Super Ultra Low Emissions Vehicle (SULEV) standard for nitric oxide (NO{sub x}) and carbon monoxide (CO) emissions. For non-methane hydrocarbon (NMHC) emissions the cycle-averaged emissions are actually 0 g/mile, which require the car to actively reduce emissions compared to the ambient concentration. The fuel economy numbers on the FTP-75 test were 3.7 kg of hydrogen per 100 km, which, on an energy basis, is equivalent to a gasoline fuel consumption of 17 miles per gallon (mpg). Fuel economy numbers for the highway cycle were determined to be 2.1 kg of hydrogen per 100 km or 30 miles per gallon of gasoline equivalent (GGE). In addition to cycle-averaged emissions and fuel economy numbers, time-resolved (modal) emissions as well as air/fuel ratio data is analyzed to further investigate the root causes of the remaining emissions traces. The BMW Hydrogen 7 vehicles employ a switching strategy with lean engine operation at low engine loads and stoichiometric operation at high engine loads that avoids the NO{sub x} emissions critical operating regime with relative air/fuel ratios between 1 < {lambda} < 2. The switching between these operating modes was found to be a major source of the remaining NO{sub x} emissions. The emissions results collected

  11. Investigation of low-cost LNG vehicle fuel tank concepts. Final report

    SciTech Connect

    O`Brien, J.E.; Siahpush, A.

    1998-02-01

    The objective of this study was to investigate development of a low-cost liquid natural gas (LNG) vehicle fuel storage tank with low fuel boil-off, low tank pressure, and high safety margin. One of the largest contributors to the cost of converting a vehicle to LNG is the cost of the LNG fuel tank. To minimize heat leak from the surroundings into the low-temperature fuel, these tanks are designed as cryogenic dewars with double walls separated by an evacuated insulation space containing multi-layer insulation. The cost of these fuel tanks is driven by this double-walled construction, both in terms of materials and labor. The primary focus of the analysis was to try to devise a fuel tank concept that would allow for the elimination of the double-wall requirement. Results of this study have validated the benefit of vacuum/MLI insulation for LNG fuel tanks and the difficulty in identifying viable alternatives. The thickness of a non-vacuum insulation layer would have to be unreasonably large to achieve an acceptable non-venting hold time. Reasonable hold times could be achieved by using an auxiliary tank to accept boil-off vapor from a non-vacuum insulated primary tank, if the vapor in the auxiliary tank can be stored at high pressure. The primary focus of the analysis was to try to devise a fuel tank concept that allowed for the elimination of the double-wall requirement. Thermodynamic relations were developed for analyzing the fuel tank transient response to heat transfer, venting of vapor, and out-flow of either vapor or liquid. One of the major costs associated with conversion of a vehicle to LNG fuel is the cost of the LNG fuel tank. The cost of these tanks is driven by the cryogenic nature of the fuel and by the fundamental design requirements of long non-venting hold times and low storage pressure.

  12. A practical PEM fuel cell model for simulating vehicle power sources

    SciTech Connect

    Amphlett, J.C.; Mann, R.F.; Peppley, B.A.; Roberge, P.R.; Rodrigues, A.

    1995-07-01

    The interest in fuel cell technology as an alternative to internal combustion engines is growing rapidly with the increased concern with environmental issues such s reducing vehicle emissions. Fuel cells offer a power source which produces electrical energy from fuel and oxidant which produce little or no emissions. Fuel cell power sources are being considered for both terrestrial and marine applications. The research and commercialization of such systems require system modeling to determine performance levels and fuel and oxidant requirements. A practical model will have to be flexible in its calculations depending on the information available. A model predicting the performance of a proton exchange membrane fuel cell has been developed for a Ballard Mark V 5 kW 35-cell stack. The parametric model combining both empirical and mechanistic qualities was developed to calculate the cell voltage output in terms of complex relationships between current, stack temperature, and inlet partial pressure of hydrogen and oxygen. The model utilizes an iterative computer solution to obtain a practical flexible model which could calculate any variable in terms of the others. This paper illustrates the use of a practical model to determine the fuel and oxidant requirements to achieve various levels of power required for different vehicle power supplies. Applications to automobiles, buses, locomotives, ships, submarines, and unmanned underwater vehicles with power supplies of 3--3,000 kW were investigated.

  13. Design and performance of a prototype fuel cell powered vehicle

    SciTech Connect

    Lehman, P.A.; Chamberlin, C.E.

    1996-12-31

    The Schatz Energy Research Center (SERC) is now engaged in the Palm Desert Renewable Hydrogen Transportation System Project. The Project involves a consortium which includes the City of Palm Desert, SERC, the U.S. Department of Energy, the South Coast Air Quality Management District, and Sandia and Lawrence Livermore National Laboratories. Its goal to develop a clean and sustainable transportation system for a community will be accomplished by producing a fleet of fuel cell vehicles, installing a refueling infrastructure utilizing hydrogen generated from solar and wind power, and developing and staffing a fuel cell service and diagnostic center. We will describe details of the project and performance goals for the fuel cell vehicles and associated peripheral systems. In the past year during the first stage in the project, SERC has designed and built a prototype fuel cell powered personal utility vehicle (PUV). These steps included: (1) Designing, building, and testing a 4.0 kW proton exchange membrane (PEM) fuel cell as a power plant for the PUV. (2) Designing, building and testing peripherals including the air delivery, fuel storage/delivery, refueling, water circulation, cooling, and electrical systems. (3) Devising a control algorithm for the fuel cell power plant in the PUV. (4) Designing and building a test bench in which running conditions in the PUV could be simulated and the fuel cell and its peripheral systems tested. (5) Installing an onboard computer and associated electronics into the PUV (6) Assembling and road testing the PUV.

  14. 40 CFR 80.531 - How are motor vehicle diesel fuel credits generated?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false How are motor vehicle diesel fuel... (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel Temporary Compliance Option § 80.531...

  15. 40 CFR 80.532 - How are motor vehicle diesel fuel credits used and transferred?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false How are motor vehicle diesel fuel... AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel Temporary Compliance Option §...

  16. 40 CFR 80.532 - How are motor vehicle diesel fuel credits used and transferred?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 16 2011-07-01 2011-07-01 false How are motor vehicle diesel fuel... AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel Temporary Compliance Option §...

  17. 40 CFR 80.531 - How are motor vehicle diesel fuel credits generated?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 16 2011-07-01 2011-07-01 false How are motor vehicle diesel fuel... (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel Temporary Compliance Option § 80.531...

  18. 10 CFR 503.21 - Lack of alternate fuel supply.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Lack of alternate fuel supply. 503.21 Section 503.21 Energy DEPARTMENT OF ENERGY (CONTINUED) ALTERNATE FUELS NEW FACILITIES Temporary Exemptions for New... substantially exceed the cost of using imported petroleum as a primary energy source as defined in § 503.6...

  19. 10 CFR 503.21 - Lack of alternate fuel supply.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false Lack of alternate fuel supply. 503.21 Section 503.21 Energy DEPARTMENT OF ENERGY (CONTINUED) ALTERNATE FUELS NEW FACILITIES Temporary Exemptions for New... substantially exceed the cost of using imported petroleum as a primary energy source as defined in § 503.6...

  20. Alternative cathodes for molten carbonate fuel cells

    SciTech Connect

    Bloom, I.; Lanagan, M.; Roche, M.F.; Krumpelt, M.

    1996-02-01

    Argonne National Laboratory (ANL) is developing advanced cathodes for pressurized operation of the molten carbonate fuel cell (MCFC). The present cathode, lithiated nickel oxide, tends to transport to the anode of the MCFC, where it is deposited as metallic nickel. The rate of transport increases with increasing CO{sub 2} pressure. This increase is due to an increased solubility of nickel oxide (NiO) in the molten carbonate electrolyte. An alternative cathode is lithium cobaltate (LiCoO{sub 2})-Solid solutions of LiCoO{sub 2} in LiFeO{sub 2} show promise for long-lived cathode materials. We have found that small additions of LiCoO{sub 2} to LiFeO{sub 2} markedly decrease the resistivity of the cathode material. Cells containing the LiCoO{sub 2}-LiFeO{sub 2} cathodes have stable performance for more than 2100 h of operation and display lower cobalt migration.

  1. Leveraging Intelligent Vehicle Technologies to Maximize Fuel Economy (Presentation)

    SciTech Connect

    Gonder, J.

    2011-11-01

    Advancements in vehicle electronics, along with communication and sensing technologies, have led to a growing number of intelligent vehicle applications. Example systems include those for advanced driver information, route planning and prediction, driver assistance, and crash avoidance. The National Renewable Energy Laboratory is exploring ways to leverage intelligent vehicle systems to achieve fuel savings. This presentation discusses several potential applications, such as providing intelligent feedback to drivers on specific ways to improve their driving efficiency, and using information about upcoming driving to optimize electrified vehicle control strategies for maximum energy efficiency and battery life. The talk also covers the potential of Advanced Driver Assistance Systems (ADAS) and related technologies to deliver significant fuel savings in addition to providing safety and convenience benefits.

  2. APS Alternative Fuel (Hydrogen) Pilot Plant - Monitoring System Report

    SciTech Connect

    James Francfort; Dimitri Hochard

    2005-07-01

    The U.S. Department of Energy’s (DOE’s) Advanced Vehicle Testing Activity (AVTA), along with Electric Transportation Applications and Arizona Pubic Service (APS), is monitoring the operations of the APS Alternative Fuel (Hydrogen) Pilot Plant to determine the costs to produce hydrogen fuels (including 100% hydrogen as well as hydrogen and compressed natural gas blends) for use by fleets and other operators of advanced-technology vehicles. The hydrogen fuel cost data will be used as benchmark data by technology modelers as well as research and development programs. The Pilot Plant can produce up to 18 kilograms (kg) of hydrogen per day by electrolysis. It can store up to 155 kg of hydrogen at various pressures up to 6,000 psi. The dispenser island can fuel vehicles with 100% hydrogen at 5,000 psi and with blends of hydrogen and compressed natural gas at 3,600 psi. The monitoring system was designed to track hydrogen delivery to each of the three storage areas and to monitor the use of electricity on all major equipment in the Pilot Plant, including the fuel dispenser island. In addition, water used for the electrolysis process is monitored to allow calculation of the total cost of plant operations and plant efficiencies. The monitoring system at the Pilot Plant will include about 100 sensors when complete (50 are installed to date), allowing for analysis of component, subsystems, and plant-level costs. The monitoring software is mostly off-the-shelve, with a custom interface. The majority of the sensors input to the Programmable Automation Controller as 4- to 20-mA analog signals. The plant can be monitored over of the Internet, but the control functions are restricted to the control room equipment. Using the APS general service plan E32 electric rate of 2.105 cents per kWh, during a recent eight-month period when 1,200 kg of hydrogen was produced and the plant capacity factor was 26%, the electricity cost to produce one kg of hydrogen was $3.43. However, the

  3. System comparison of hydrogen with other alternative fuels in terms of EPACT requirements

    SciTech Connect

    Barbir, F.; Oezay, K.; Veziroglu, T.N.

    1996-10-01

    The feasibility of several alternative fuels, namely natural gas, methanol, ethanol, hydrogen and electricity, to replace 10% of gasoline by the year 2000 has been investigated. The analysis was divided in two parts: (i) analysis of vehicle technologies, and (ii) analysis of fuel production storage and distribution, from the primary energy sources to the refueling station. Only technologies that are developed to at least demonstration level were considered. The amount and type of the primary energy sources have been determined for each of the fuels being analyzed. A need for a common denominator for different types of energy has been identified.

  4. Fuel cells for vehicle propulsion applications: A preliminary comparison

    NASA Astrophysics Data System (ADS)

    Kumar, R.; Krumpelt, M.; Myles, K. M.; Nelson, P. A.

    Fuel cells are being considered seriously as a potential replacement for internal combustion engines in buses, vans, and ultimately passenger cars. Concern for air quality in urban areas, the possibility of better fuel efficiency, and the prospect of using coal- or biomass-derived alcohols rather than imported oil as fuel are the major motivations. The challenges are to reduce the capital cost of the fuel cell systems and to adapt them for automative use. This study was conducted to make a preliminary comparison of the major types of fuel cells for vehicle propulsion applications. Simplified schematic flow sheets were devised for different fuel cell types. These flow sheets were then used for thermodynamic analyses. Other factors investigated include startup, transient response capability, and system complexity, but no attempt was made to analyze system behavior with reference to any specific driving cycle. For these analyses, fuel cell systems of 60 kWe (gross) were used, equivalent to the approx. 55 kWe battery systems required for advanced electric vans. Four fuel cell types were considered in this study: phosphoric acid (PAFC), proton exchange membrane (PEM), molten carbonate (MCFC), and monolithic acid oxide (MSOFC). Although an experimental van has been successfully operated with an alkaline fuel cell on bottled hydrogen fuel in Europe, this type of fuel cell was not considered in this study. In our view, the alkaline fuel cell is not compatible with alcohol fuels because of the CO2.

  5. 40 CFR 88.308-94 - Programmatic requirements for clean-fuel fleet vehicles.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-fuel fleet vehicles. 88.308-94 Section 88.308-94 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CLEAN-FUEL VEHICLES Clean-Fuel Fleet Program § 88.308-94 Programmatic requirements for clean-fuel fleet vehicles. (a) Multi-State nonattainment areas. The...

  6. 40 CFR 88.304-94 - Clean-fuel Fleet Vehicle Credit Program.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... contained in 40 CFR part 88, subpart A. (b) Program administration. (1)(i) Each state in which there is all... covered area, a dual-fuel/flexible-fuel vehicle which a fleet owner purchases to comply with covered fleet... the fleet owner receives credit for a dual-fuel/flexible-fuel vehicle purchase, the vehicle must...

  7. Preliminary studies of combustor sensitivity to alternative fuels

    NASA Technical Reports Server (NTRS)

    Humenik, F. M.

    1980-01-01

    Combustion problems associated with using alternative fuels ground power and aeropropulsion applications were studied. Rectangular sections designed to simulate large annular combustor test conditions were examined. The effects of using alternative fuels with reduced hydrogen content, increased aromatic content, and a broad variation in fuel property characteristics were also studied. Data of special interest were collected which include: flame radiation characteristics in the various combustor zones; the correponding increase in liner temperature from increased radiant heat flux; the effect of fuel bound nitrogen on oxides of nitrogen (NO sub x) emissions; and the overall total effect of fuel variations on exhaust emissions.

  8. The road to Clean Cities: Promoting energy security and cleaner air through alternative fuels

    SciTech Connect

    Chun, C.A.

    1997-12-31

    The United States Department of Energy (DOE) Clean Cities Program is a locally-based government/industry partnership program coordinated by DOE to expand the use of alternatives to gasoline and diesel fuel. By combining local decision-making with the voluntary action of partners, the Clean Cities grass roots approach departs from traditional government programs. It creates an effective plan, carried out at the local level, to establish a sustainable alternative fuels market. The broad goals of the Clean Cities Program are to: reduce dependence on foreign oil, improve the environment, and increase economic growth and competitiveness. The key element of success for this program is partnerships -- public/private partnerships that engage the necessary market forces to accomplish the infusion of new alternative fuels and alternative fuel vehicle (AFV) technologies. DOE does not provide direct funding for acquisition of AFVs and products, but rather, provides market development assistance. DOE technical and management resources are targeted at building local coalitions, coordinating technology product suppliers, and improving market and customer information. Clean Cities works directly with local governments and local businesses and shares innovations along the network of Clean Cities coalitions. Since 1993, Clean Cities has made great strides in diversifying transportation fuel consumption. Voluntary Clean Cities partnerships around the United States have heightened public awareness of alternative fuel usage, increased the number of AFVs on the road, and developed alternative fuels infrastructure throughout North America. The Clean Cities Program encourages sustainable development by reducing a community`s dependence on nonrenewable fossil fuels (both domestic and imported), cleaning up the local and global environment, and boosting local economies through the development of alternative fuels industries.

  9. Treatment alternatives for non-fuel-bearing hardware

    SciTech Connect

    Ross, W.A.; Clark, L.L.; Oma, K.H.

    1987-01-01

    This evaluation compared four alternatives for the treatment or processing of non-fuel bearing hardware (NFBH) to reduce its volume and prepare it for disposal. These treatment alternatives are: shredding; shredding and low pressure compaction; shredding and supercompaction; and melting. These alternatives are compared on the basis of system costs, waste form characteristics, and process considerations. The study recommends that melting and supercompaction alternatives be further considered and that additional testing be conducted for these two alternatives.

  10. 40 CFR Appendix Xvi to Part 86 - Pollutant Mass Emissions Calculation Procedure for Gaseous-Fueled Vehicles and for Vehicles...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 19 2011-07-01 2011-07-01 false Pollutant Mass Emissions Calculation... Mass Emissions Calculation Procedure for Gaseous-Fueled Vehicles and for Vehicles Equipped With...-Fueled Vehicle Pollutant Mass Emission Calculation Procedure. (1) For all TLEVs, LEVs, and ULEVs,...

  11. 40 CFR Appendix Xvi to Part 86 - Pollutant Mass Emissions Calculation Procedure for Gaseous-Fueled Vehicles and for Vehicles...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 19 2010-07-01 2010-07-01 false Pollutant Mass Emissions Calculation... Mass Emissions Calculation Procedure for Gaseous-Fueled Vehicles and for Vehicles Equipped With...-Fueled Vehicle Pollutant Mass Emission Calculation Procedure. (1) For all TLEVs, LEVs, and ULEVs,...

  12. Heel and toe driving on fuel cell vehicle

    DOEpatents

    Choi, Tayoung; Chen, Dongmei

    2012-12-11

    A system and method for providing nearly instantaneous power in a fuel cell vehicle. The method includes monitoring the brake pedal angle and the accelerator pedal angle of the vehicle, and if the vehicle driver is pressing both the brake pedal and the accelerator pedal at the same time and the vehicle is in a drive gear, activating a heel and toe mode. When the heel and toe mode is activated, the speed of a cathode compressor is increased to a predetermined speed set-point, which is higher than the normal compressor speed for the pedal position. Thus, when the vehicle brake is removed, the compressor speed is high enough to provide enough air to the cathode, so that the stack can generate nearly immediate power.

  13. 40 CFR 86.1818-12 - Greenhouse gas emission standards for light-duty vehicles, light-duty trucks, and medium-duty...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., including multi-fuel vehicles, vehicles fueled with alternative fuels, hybrid electric vehicles, plug-in hybrid electric vehicles, electric vehicles, and fuel cell vehicles. Unless otherwise specified, multi... on multiple fuels, except plug-in hybrid electric vehicles, a separate in-use standard shall...

  14. 40 CFR 86.1818-12 - Greenhouse gas emission standards for light-duty vehicles, light-duty trucks, and medium-duty...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., including multi-fuel vehicles, vehicles fueled with alternative fuels, hybrid electric vehicles, plug-in hybrid electric vehicles, electric vehicles, and fuel cell vehicles. Unless otherwise specified, multi... multiple fuels, except plug-in hybrid electric vehicles, a separate in-use standard shall be determined...

  15. EAGLES 1.1: A microcomputer software package for analyzing fuel efficiency of electric and gasoline vehicles

    SciTech Connect

    Marr, W.M.

    1994-05-15

    As part of the U.S. Department of Energy`s electric/hybrid vehicle research program, Argonne National Laboratory has developed a computer software package called EAGLES. This paper describes the capability of the software and its many features and potential applications. EAGLES version 1.1 is an interactive microcomputer software package for the analysis of battery performance in electric-vehicle applications, or the estimation of fuel economy for a gasoline vehicle. The principal objective of the electric-vehicle analysis is to enable the prediction of electric-vehicle performance (e.g., vehicle range) on the basis of laboratory test data for batteries. The model provides a second-by-second simulation of battery voltage and current for any specified velocity/time or power/time profile, taking into consideration the effects of battery depth-of-discharge and regenerative braking. Alternatively, the software package can be used to determine the size of the battery needed to satisfy given vehicle mission requirements (e.g., range and driving patterns). For gasoline-vehicle analysis, an empirical model relating fuel economy, vehicle parameters, and driving-cycle characteristics is included in the software package. For both types of vehicles, effects of heating/cooling loads on vehicle performance can be simulated. The software package includes many default data sets for vehicles, driving cycles, and battery technologies. EAGLES 1.1 is written in the FORTRAN language for use on IBM-compatible microcomputers.

  16. Costs Associated With Compressed Natural Gas Vehicle Fueling Infrastructure

    SciTech Connect

    Smith, M.; Gonzales, J.

    2014-09-01

    This document is designed to help fleets understand the cost factors associated with fueling infrastructure for compressed natural gas (CNG) vehicles. It provides estimated cost ranges for various sizes and types of CNG fueling stations and an overview of factors that contribute to the total cost of an installed station. The information presented is based on input from professionals in the natural gas industry who design, sell equipment for, and/or own and operate CNG stations.

  17. Analysis of a fuel cell hybrid commuter railway vehicle

    NASA Astrophysics Data System (ADS)

    Meegahawatte, Danushka; Hillmansen, Stuart; Roberts, Clive; Falco, Marco; McGordon, Andrew; Jennings, Paul

    This study presents paper presents an analysis of the potential CO 2 savings that could be gained through the introduction of hydrogen-powered fuel cells on a commuter-style railway route. Vehicle is modelled as a fuel cell series hybrid. The analysis consists of power/energy flow models of a fuel cell stack, battery pack and hybrid drive controller. The models are implemented in a custom C# application and are capable of providing key parametric information of the simulated journey and individual energy drive components. A typical commuter return journey between Stratford Upon Avon and Birmingham is investigated. The fuel cell stack and battery pack behaviour is assessed for different stack sizes, battery sizes and control strategies to evaluate the performance of the overall system with the aim of understanding the optimum component configuration. Finally, the fuel (H 2) requirements are compared with typical diesel and hybrid-diesel powered vehicles with the aim of understanding the potential energy savings gained from such a fuel cell hybrid vehicle.

  18. 78 FR 20881 - Control of Air Pollution From Motor Vehicles: Tier 3 Motor Vehicle Emission and Fuel Standards...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-08

    ... AGENCY 40 CFR Part 80 RIN 2060-AQ86 Control of Air Pollution From Motor Vehicles: Tier 3 Motor Vehicle... hearings to be held for the proposed rule ``Control of Air Pollution from Motor Vehicles: Tier 3 Motor Vehicle Emission and Fuel Standards'' (the proposed rule is hereinafter referred to as ``Tier 3''),...

  19. Black carbon emissions reductions from combustion of alternative jet fuels

    NASA Astrophysics Data System (ADS)

    Speth, Raymond L.; Rojo, Carolina; Malina, Robert; Barrett, Steven R. H.

    2015-03-01

    Recent measurement campaigns for alternative aviation fuels indicate that black carbon emissions from gas turbines are reduced significantly with the use of alternative jet fuels that are low in aromatic content. This could have significant climate and air quality-related benefits that are currently not accounted for in environmental assessments of alternative jet fuels. There is currently no predictive way of estimating aircraft black carbon emissions given an alternative jet fuel. We examine the results from available measurement campaigns and propose a first analytical approximation (termed 'ASAF') of the black carbon emissions reduction associated with the use of paraffinic alternative jet fuels. We establish a relationship between the reduction in black carbon emissions relative to conventional jet fuel for a given aircraft, thrust setting relative to maximum rated thrust, and the aromatic volume fraction of the (blended) alternative fuel. The proposed relationship is constrained to produce physically meaningful results, makes use of only one free parameter and is found to explain a majority of the variability in measurements across the engines and fuels that have been tested.

  20. Synthetic and Biomass Alternate Fueling in Aviation

    NASA Technical Reports Server (NTRS)

    Hendricks, R.C.; Bushnell, D.M.

    2009-01-01

    Worldwide, aviation alone uses 85 to 95 billion gallons of nonrenewable fossil fuel per year (2008). General transportation fueling can accommodate several different fuels; however, aviation fuels have very specific requirements. Biofuels have been flight demonstrated, are considered renewable, have the capacity to become "drop-in" replacements for Jet-A fuel, and solve the CO2 climate change problem. The major issue is cost; current biomass biofuels are not economically competitive. Biofuel feedstock sources being researched are halophytes, algae, cyanobacteria, weeds-to-crops, wastes with contingent restraints on use of crop land, freshwater, and climate change. There are five major renewable energy sources: solar thermal, solar photovoltaic, wind, drilled geothermal and biomass, each of which have an order of magnitude greater capacity to meet all energy needs. All five address aspects of climate change; biomass has massive potential as an energy fuel feedstock.

  1. Emergency fuels utilization guidebook. Alternative Fuels Utilization Program

    SciTech Connect

    Not Available

    1980-08-01

    The basic concept of an emergency fuel is to safely and effectively use blends of specification fuels and hydrocarbon liquids which are free in the sense that they have been commandeered or volunteered from lower priority uses to provide critical transportation services for short-duration emergencies on the order of weeks, or perhaps months. A wide variety of liquid hydrocarbons not normally used as fuels for internal combustion engines have been categorized generically, including limited information on physical characteristics and chemical composition which might prove useful and instructive to fleet operators. Fuels covered are: gasoline and diesel fuel; alcohols; solvents; jet fuels; kerosene; heating oils; residual fuels; crude oils; vegetable oils; gaseous fuels.

  2. Analyzing Vehicle Fuel Saving Opportunities through Intelligent Driver Feedback

    SciTech Connect

    Gonder, J.; Earleywine, M.; Sparks, W.

    2012-06-01

    Driving style changes, e.g., improving driver efficiency and motivating driver behavior changes, could deliver significant petroleum savings. This project examines eliminating stop-and-go driving and unnecessary idling, and also adjusting acceleration rates and cruising speeds to ideal levels to quantify fuel savings. Such extreme adjustments can result in dramatic fuel savings of over 30%, but would in reality only be achievable through automated control of vehicles and traffic flow. In real-world driving, efficient driving behaviors could reduce fuel use by 20% on aggressively driven cycles and by 5-10% on more moderately driven trips. A literature survey was conducted of driver behavior influences, and pertinent factors from on-road experiments with different driving styles were observed. This effort highlighted important driver influences such as surrounding vehicle behavior, anxiety over trying to get somewhere quickly, and the power/torque available from the vehicle. Existing feedback approaches often deliver efficiency information and instruction. Three recommendations for maximizing fuel savings from potential drive cycle improvement are: (1) leveraging applications with enhanced incentives, (2) using an approach that is easy and widely deployable to motivate drivers, and (3) utilizing connected vehicle and automation technologies to achieve large and widespread efficiency improvements.

  3. TxDOT Goes Beyond Compliance by Purchasing 100% AFVs. EPAct Fleet Information and Regulations, State& Alternative Fuel Provider Program Success Story

    SciTech Connect

    Not Available

    2002-01-01

    Fact sheet features the challenges the Texas Department of Transportation (TxDOT) faced and overcame in complying to a Texas legislation that calls for the acquisition of only alternative fuel vehicles.

  4. Robotic on-orbit fueling of SEI vehicles

    NASA Astrophysics Data System (ADS)

    Clarke, Margaret M.; Haines, David E.; Mauceri, A. J.

    Research to investigate the feasibility of, and to develop concepts for, the robotic supply of consumables on orbit is examined, with emphasis on Space Exploration Initiative (SEI) assets. Principal methods for effecting propellant transfer on orbit are summarized, and the pros and cons of applying robotics to each method are discussed. Methods include direct transfer of fuel and oxidizer, assembly of tanks to the vehicle, and assembly of propulsion modules to the vehicles. Guidelines are developed for the automated/robotic cryogenic propellant transfer mechanism to accomplish on-orbit consumable supply of SEI vehicles by direct fluid transfer. The development of initial design concepts for the LEO fueling of the Mars Transfer System is traced.

  5. Combustion characteristics of gas turbine alternative fuels

    NASA Technical Reports Server (NTRS)

    Rollbuhler, R. James

    1987-01-01

    An experimental investigation was conducted to obtain combustion performance values for specific heavyend, synthetic hydrocarbon fuels. A flame tube combustor modified to duplicate an advanced gas turbine engine combustor was used for the tests. Each fuel was tested at steady-state operating conditions over a range of mass flow rates, fuel-to-air mass ratio, and inlet air temperatures. The combustion pressure, as well as the hardware, were kept nearly constant over the program test phase. Test results were obtained in regards to geometric temperature pattern factors as a function of combustor wall temperatures, the combustion gas temperature, and the combustion emissions, both as affected by the mass flow rate and fuel-to-air ratio. The synthetic fuels were reacted in the combustor such that for most tests their performance was as good, if not better, than the baseline gasoline or diesel fuel tests. The only detrimental effects were that at high inlet air temperature conditions, fuel decomposition occurred in the fuel atomizing nozzle passages resulting in blockage. And the nitrogen oxide emissions were above EPA limits at low flow rate and high operating temperature conditions.

  6. Implementation of alternative bio-based fuels in aviation: The Clean Airports Program

    SciTech Connect

    Shauck, M.E.; Zanin, M.G.

    1997-12-31

    The Renewable Aviation Fuels Development Center at Baylor University in Waco, Texas, was designated, in March 1996, by the US Department of Energy (US DOE) as the national coordinator of the Clean Airports Program. This program, a spin-off of the Clean Cities Program, was initiated to increase the use of alternative fuels in aviation. There are two major fuels used in aviation today, the current piston engine aviation gasoline, and the current turbine engine fuel. The environmental impact of each of these fuels is significant. Aviation Gasoline (100LL), currently used in the General Aviation piston engine fleet, contributes 100% of the emissions containing lead in the USA today. In the case of the turbine engine fuel (Jet fuel), there are two major environmental impacts to be considered: the local, in the vicinity of the airports, and the global impact on climate change. The Clean Airports Program was established to promote the use of clean burning fuels in order to achieve and maintain clean air at and in the vicinities of airports through the use of alternative fuel-powered air and ground transportation vehicles.

  7. Non-methane hydrocarbon emissions from vehicle fuel caps

    NASA Astrophysics Data System (ADS)

    Batterman, Stuart A.; Yu, Yungdae; Jia, Chunrong; Godwin, Christopher

    Vehicles emit non-methane hydrocarbons (NMHCs) from a number of sources, including missing, worn or improperly tightened fuel caps. Inspection and maintenance programs and the On-Board Diagnostic (OBD) system will detect some of these deficiencies, however, even properly tightened caps will emit NMHCs due to permeation, diffusion, cracks and gaps in seals, and failures of pressure-relief mechanisms. These emissions have not been previously quantified. In this study, in-use emissions from fuel caps were measured in 213 tests on vehicles of varying age and condition over several seasons, including cold and warm temperatures. Diffusion/permeation models are presented to complement the experimental work. NMHC emissions from fuel caps were detected from all vehicles, of which benzene constituted 2.5%. Emissions averaged 2.0 mg h -1 (median=0.5 mg h -1), and the distribution of emission rates was highly skewed by a small number of vehicles with much higher emissions, e.g., the 90th, 95th and maximum percentile values were 2.7, 5.0, and 62.7 mg h -1, respectively. Emission rates increased substantially if the fuel cap was loose, in hot weather, and with vehicle age and mileage. Overall, emissions from properly functioning caps are small relative to running and refueling losses, though they may be significant if the gas cap is defective or loose. Further reductions in emissions may be achieved by using new low-torque cap designs, improved elastomers, properly tightening fuel caps, and replacing old caps.

  8. Gasoline Ultra Efficient Fuel Vehicle with Advanced Low Temperature Combustion

    SciTech Connect

    Confer, Keith

    2014-09-30

    The objective of this program was to develop, implement and demonstrate fuel consumption reduction technologies which are focused on reduction of friction and parasitic losses and on the improvement of thermal efficiency from in-cylinder combustion. The program was executed in two phases. The conclusion of each phase was marked by an on-vehicle technology demonstration. Phase I concentrated on short term goals to achieve technologies to reduce friction and parasitic losses. The duration of Phase I was approximately two years and the target fuel economy improvement over the baseline was 20% for the Phase I demonstration. Phase II was focused on the development and demonstration of a breakthrough low temperature combustion process called Gasoline Direct- Injection Compression Ignition (GDCI). The duration of Phase II was approximately four years and the targeted fuel economy improvement was 35% over the baseline for the Phase II demonstration vehicle. The targeted tailpipe emissions for this demonstration were Tier 2 Bin 2 emissions standards.

  9. Fuel and vehicle technology choices for passenger vehicles in achieving stringent CO2 targets: connections between transportation and other energy sectors.

    PubMed

    Grahn, M; Azar, C; Williander, M I; Anderson, J E; Mueller, S A; Wallington, T J

    2009-05-01

    The regionalized Global Energy Transition (GET-R 6.0) model has been modified to include a detailed description of light-duty vehicle options and used to investigate the potential impact of carbon capture and storage (CCS) and concentrating solar power (CSP) on cost-effective fuel/vehicle technologies in a carbon-constrained world. Total CO2 emissions were constrained to achieve stabilization at 400-550 ppm, by 2100, at lowesttotal system cost The dominantfuel/vehicle technologies varied significantly depending on CO2 constraint future cost of vehicle technologies, and availability of CCS and CSP. For many cases, no one technology dominated on a global scale. CCS provides relatively inexpensive low-CO2 electricity and heatwhich prolongs the use of traditional ICEVs. CSP displaces fossil fuel derived electricity, prolongs the use of traditional ICEVs, and promotes electrification of passenger vehicles. In all cases considered, CCS and CSP availability had a major impact on the lowest cost fuel/vehicle technologies, and alternative fuels are needed in response to expected dwindling oil and natural gas supply potential by the end of the century. PMID:19534159

  10. 40 CFR 80.524 - What sulfur content standard applies to motor vehicle diesel fuel downstream of the refinery or...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... to motor vehicle diesel fuel downstream of the refinery or importer? 80.524 Section 80.524 Protection... FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel Motor Vehicle Diesel Fuel Standards and Requirements § 80.524 What sulfur content...

  11. Rape oil methyl ester (RME) and used cooking oil methyl ester (UOME) as alternative fuels

    SciTech Connect

    Hohl, G.H.

    1995-12-31

    The author presents a review about the fleet tests carried out by the Austrian Armed Forces concerning the practical application of a vegetable oil, i.e Rape Oil Methyl Ester (RME) and Used Cooking Oil Methyl Ester (UOME) as alternative fuels for vehicles under military conditions, and reviews other research results carried out in Austria. As a result of over-production in Western European agriculture, the increase in crop yields has led to tremendous surpluses. Alternative agricultural products have been sought. One alternative can be seen in biological fuel production for tractors, whereby the farmer is able to produce his own fuel supply as was the case when he previously provided self-made feed for his horses. For the market introduction different activities were necessary. A considerable number of institutes and organizations including the Austrian Armed Forces have investigated, tested and developed these alternative fuels. The increasing disposal problems of used cooking oil have initiated considerations for its use. The recycling of this otherwise waste product, and its preparation for use as an alternative fuel to diesel oil, seems to be most promising.

  12. 49 CFR 571.303 - Standard No. 303; Fuel system integrity of compressed natural gas vehicles.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... the high pressure side of the fuel system in accordance with the vehicle manufacturer's recommendation... reduce deaths and injuries occurring from fires that result from fuel leakage during and after motor... components used to store or supply CNG to a vehicle's engine. Dedicated CNG vehicle means a vehicle...

  13. 40 CFR 600.006-08 - Data and information requirements for fuel economy data vehicles.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... submit the following information for each fuel economy data vehicle: (i) A description of the vehicle... test fuel property values as specified in § 600.113-08. (ii) A statement of the origin of the vehicle including total mileage accumulation, and modification (if any) form the vehicle configuration in which...

  14. Alternate aircraft fuels: Prospects and operational implications

    NASA Technical Reports Server (NTRS)

    Witcofski, R. D.

    1977-01-01

    The potential use of coal-derived aviation fuels was assessed. The studies addressed the prices and thermal efficiencies associated with the production of coal-derived aviation kerosene, liquid methane and liquid hydrogen and the air terminal requirements and subsonic transport performance when utilizing liquid hydrogen. The fuel production studies indicated that liquid methane can be produced at a lower price and with a higher thermal efficiency than aviation kerosene or liquid hydrogen. Ground facilities of liquefaction, storage, distribution and refueling of liquid hydrogen fueled aircraft at airports appear technically feasibile. The aircraft studies indicate modest onboard energy savings for hydrogen compared to conventional fuels. Liquid hydrogen was found to be superior to both aviation kerosene and liquid methane from the standpoint of aircraft engine emissions.

  15. Vehicle fuel economy and vehicle miles traveled: An empirical investigation of Jevons' Paradox

    NASA Astrophysics Data System (ADS)

    Munyon, Vinola Vincent

    There has been, in recent decades, a concerted effort to promote energy efficiency as a means to reduce energy consumption, along the supply and demand sides. The general thesis is that, ceteris paribus, an increase in energy efficiency would lead to a decrease in the consumption of the good or service rendered efficient. This is in opposition to Jevons' Paradox which states that "It is wholly a confusion of ideas to suppose that the economical use of fuel is equivalent to a diminished consumption. The very contrary is the truth..." (Jevons, 1865). While many studies have applied Jevons' Paradox to various sectors to estimate rebound effects, few have examined if Jevons' Paradox holds when all available factors that could affect consumption of an efficient good/service are controlled for. This study hoped to fill that gap in literature. The study looked at vehicle fuel economy and vehicle miles travelled (VMT) and examined if, all else being equal, a vehicle that was more fuel efficient accrued greater VMT. Using data from the National Household Travel Survey (NHTS, 2009), a multivariate regression model was built (N = 82,485) controlling for driver, household and vehicle attributes. The findings indicated that, at the microlevel, Jevons' Paradox does hold true; a 1% increase in fuel efficiency was associated with a 1.2% increase in VMT.

  16. Alternative Fuel and Advanced Technology Commercial Lawn Equipment (Brochure)

    SciTech Connect

    Not Available

    2014-10-01

    The U.S. Department of Energy's Clean Cities program produced this guide to help inform the commercial mowing industry about product options and potential benefits. This guide provides information about equipment powered by propane, ethanol, compressed natural gas, biodiesel, and electricity, as well as advanced engine technology. In addition to providing an overview for organizations considering alternative fuel lawn equipment, this guide may also be helpful for organizations that want to consider using additional alternative fueled equipment.

  17. Alternative Fuel and Advanced Technology Commercial Lawn Equipment

    SciTech Connect

    2014-10-10

    The U.S. Department of Energy's Clean Cities program produced this guide to help inform the commercial mowing industry about product options and potential benefits. This guide provides information about equipment powered by propane, ethanol, compressed natural gas, biodiesel, and electricity, as well as advanced engine technology. In addition to providing an overview for organizations considering alternative fuel lawn equipment, this guide may also be helpful for organizations that want to consider using additional alternative fueled equipment.

  18. Intelligent Engine Systems: Alternate Fuels Evaluation

    NASA Technical Reports Server (NTRS)

    Ballal, Dilip

    2008-01-01

    The performance and gaseous emissions were measured for a well-stirred reactor operating under lean conditions for two fuels: JP8 and a synthetic Fisher-Tropsch fuel over a range of equivalence ratios from 0.6 down to the lean blowout. The lean blowout characteristics were determined in LBO experiments at loading parameter values from 0.7 to 1.4. The lean blowout characteristics were then explored under higher loading conditions by simulating higher altitude operation with the use of nitrogen as a dilution gas for the air stream. The experiments showed that: (1) The lean blowout characteristics for the two fuels were close under both low loading and high loading conditions. (2) The combustion temperatures and observed combustion efficiencies were similar for the two fuels. (3) The gaseous emissions were similar for the two fuels and the differences in the H2O and CO2 emissions appear to be directly relatable to the C/H ratio for the fuels.

  19. The importance of vehicle costs, fuel prices, and fuel efficiency to HEV market success.

    SciTech Connect

    Santini, D. J.; Patterson, P. D.; Vyas, A. D.

    1999-12-08

    Toyota's introduction of a hybrid electric vehicle (HEV) named ''Prius'' in Japan and Honda's proposed introduction of an HEV in the United States have generated considerable interest in the long-term viability of such fuel-efficient vehicles. A performance and cost projection model developed entirely at Argonne National Laboratory (ANL) is used here to estimate costs. ANL staff developed fuel economy estimates by extending conventional vehicle (CV) modeling done primarily under the National Cooperative Highway Research Program. Together, these estimates are employed to analyze dollar costs vs. benefits of two of many possible HEV technologies. We project incremental costs and fuel savings for a Prius-type low-performance hybrid (14.3 seconds zero to 60 mph acceleration, 260 time) and a higher-performance ''mild'' hybrid vehicle, or MHV (11 seconds 260 time). Each HEV is compared to a U.S. Toyota Corolla with automatic transmission (11 seconds 260 time). The base incremental retail price range, projected a decade hence, is $3,200-$3,750, before considering battery replacement cost. Historical data are analyzed to evaluate the effect of fuel price on consumer preferences for vehicle fuel economy, performance, and size. The relationship between fuel price, the level of change in fuel price, and consumer attitude toward higher fuel efficiency is also evaluated. A recent survey on the value of higher fuel efficiency is presented and U.S. commercial viability of the hybrids is evaluated using discount rates of 2090 and 870. Our analysis, with our current HEV cost estimates and current fuel savings estimates, implies that the U.S. market for such HEVS would be quite limited.

  20. Analysis of vehicle fuel release resulting in waste tank fire

    SciTech Connect

    HARRIS, J.P.

    2003-10-14

    The purpose of the calculation documented here is to support in-tank vehicle fuel fire accident frequencies in the Documented Safety Analysis. This analysis demonstrates that the frequency of the pool fire and deflagration scenarios of the in-tank vehicle fuel fire/deflagration accident are ''extremely unlikely'' to ''unlikely.'' The chains of events that result in each scenario are presented in this document and are the same as used in previous analyses of this accident. Probabilities and frequencies are developed for each event, using wherever possible, information from RPP-13121, Tables B-1 and B-2, and from the River Protection Project ORPS. The estimated probabilities are considered reasonably conservative, but do not necessarily assume the worst possible outcomes or the most conservative possible cases. A sensitivity analysis performed in Section 4.2 shows that if the probability of either the ignition of fuel event or the fuel flows into riser event were underestimated by an order of magnitude, the accident frequency for a pool fire could increase and shift into the ''unlikely'' category. If the probability of an increase in riser strikes, or an increase in broken risers, unignited fuel entering a riser, or a fuel ignition source being present in a tank were underestimated by an order of magnitude, the accident frequency for a deflagration would remain in the ''unlikely'' category. When the likelihood of a broken riser is increased by an order of magnitude, a pool fire remains in the ''extremely unlikely'' category. The DSA accident analysis indicates that an unmitigated flammable gas deflagration resulting from an induced gas release event or an organic solvent fire occurring in either an SST or a DST is an anticipated event (> 10{sup -2}). Deflagration in a DST annulus is considered unlikely (> 10{sup -4} to {le}10{sup -2}). These frequencies clearly bound those of the in-tank vehicle fuel fire family of accidents.

  1. Project plan for fleet operations of federal methanol-fueled vehicles

    SciTech Connect

    Not Available

    1985-04-01

    This project is the culmination of a federal technological support program for the use of alcohol fuels as an option to replace petroleum-based fuels in highway transportation. The activity bridges the gap between the establishment of a sound engineering data base and routine use of neat methanol fuel in conventional fleet vehicle operations. For the past several years, a number of alcohol fuels research and development projects were sponsored and managed by the Alternative Fuels Utilization Program (AFUP) Office of the Department of Energy (DOE). As the work has progressed toward commercialization, the role of government technical support has diminished while industrial involvement has increased. Success in this culminating project will be achieved when DOE can withdraw from project management, and fleet operations using methanol fuel can be perpetuated without such involvement. The State of California and the business community (e.g., Bank of America) have laid the groundwork in their respective sectors, and federal operations will further demonstrate the role that can be played by methanol vehicles in assuring motorist mobility in the future.

  2. Vegetable oils as fuel alternatives - symposium overview

    SciTech Connect

    Pryde, E.H.

    1984-10-01

    Several encouraging statements can be made about the use of vegetable oil products as fuel as a result of the information presented in these symposium papers. Vegetable oil ester fuels have the greatest promise, but further engine endurance tests will be required. These can be carried out best by the engine manufacturers. Microemulsions appear to have promise, but more research and engine testing will be necessary before performance equivalent to the ester fuels can be developed. Such research effort can be justified because microemulsification is a rather uncomplicated physical process and might be adaptable to on-farm operations, which would be doubtful for the more involved transesterfication process. Although some answers have been provided by this symposium, others are still not available; engine testing is continuing throughout the world particularly in those countries that do not have access to petroleum. 9 references.

  3. Engine Materials Compatibility with Alternate Fuels

    SciTech Connect

    Thomson, Jeffery K; Pawel, Steven J; Wilson, Dane F

    2013-05-01

    The compatibility of aluminum and aluminum alloys with synthetic fuel blends comprised of ethanol and reference fuel C (a 50/50 mix of toluene and iso-octane) was examined as a function of water content and temperature. Commercially pure wrought aluminum and several cast aluminum alloys were observed to be similarly susceptible to substantial corrosion in dry (< 50 ppm water) ethanol. Corrosion rates of all the aluminum materials examined were accelerated by increased temperature and ethanol content in the fuel mixture, but inhibited by increased water content. Pretreatments designed to stabilize passive films on aluminum increased the incubation time for onset of corrosion, suggesting film stability is a significant factor in the mechanism of corrosion.

  4. Engine Materials Compatability with Alternative Fuels

    SciTech Connect

    Pawel, Steve; Moore, D.

    2013-04-05

    The compatibility of aluminum and aluminum alloys with synthetic fuel blends comprised of ethanol and reference fuel C (a 50/50 mix of toluene and iso-octane) was examined as a function of water content and temperature. Commercially pure wrought aluminum and several cast aluminum alloys were observed to be similarly susceptible to substantial corrosion in dry (< 50 ppm water) ethanol. Corrosion rates of all the aluminum materials examined were accelerated by increased temperature and ethanol content in the fuel mixture, but inhibited by increased water content. Pretreatments designed to stabilize passive films on aluminum increased the incubation time for onset of corrosion, suggesting film stability is a significant factor in the mechanism of corrosion.

  5. 40 CFR 600.006 - Data and information requirements for fuel economy data vehicles.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... components on the test vehicle as well as the design tolerances. (iv) In the case of electric vehicles, plug... following information for each fuel economy data vehicle: (i) A description of the vehicle, exhaust emission... property values as specified in § 600.113-08. (ii) A statement of the origin of the vehicle including...

  6. 40 CFR 600.006 - Data and information requirements for fuel economy data vehicles.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... components on the test vehicle as well as the design tolerances. (iv) In the case of electric vehicles, plug... following information for each fuel economy data vehicle: (i) A description of the vehicle, exhaust emission... property values as specified in § 600.113-08. (ii) A statement of the origin of the vehicle including...

  7. 40 CFR 600.006-87 - Data and information requirements for fuel economy vehicles.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... vehicle as well as the design tolerances. (iv) In the case of electric vehicles, a copy of calibrations... information for each fuel economy data vehicle: (i) A description of the vehicle, exhaust emission test... origin of the vehicle including total mileage accumulation, and modifications (if any) from the...

  8. 40 CFR 600.006 - Data and information requirements for fuel economy data vehicles.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... components on the test vehicle as well as the design tolerances. (iv) In the case of electric vehicles, plug... following information for each fuel economy data vehicle: (i) A description of the vehicle, exhaust emission... property values as specified in § 600.113-08. (ii) A statement of the origin of the vehicle including...

  9. 40 CFR 600.006-86 - Data and information requirements for fuel economy vehicles.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... components on the test vehicle as well as the design tolerances. (iv) In the case of electric vehicles, the... information for each fuel economy data vehicle: (i) A description of the vehicle, exhaust emission test... origin of the vehicle including total mileage accumulation, and modifications (if any) from the...

  10. 18 CFR 281.304 - Computation of alternative fuel volume.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... alternative fuel volume. 281.304 Section 281.304 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY OTHER REGULATIONS UNDER THE NATURAL GAS POLICY ACT OF 1978 AND RELATED AUTHORITIES NATURAL GAS CURTAILMENT UNDER THE NATURAL GAS POLICY ACT OF 1978 Alternative...

  11. 18 CFR 281.304 - Computation of alternative fuel volume.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... alternative fuel volume. 281.304 Section 281.304 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY OTHER REGULATIONS UNDER THE NATURAL GAS POLICY ACT OF 1978 AND RELATED AUTHORITIES NATURAL GAS CURTAILMENT UNDER THE NATURAL GAS POLICY ACT OF 1978 Alternative...

  12. 18 CFR 281.304 - Computation of alternative fuel volume.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... alternative fuel volume. 281.304 Section 281.304 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY OTHER REGULATIONS UNDER THE NATURAL GAS POLICY ACT OF 1978 AND RELATED AUTHORITIES NATURAL GAS CURTAILMENT UNDER THE NATURAL GAS POLICY ACT OF 1978 Alternative...

  13. 18 CFR 281.304 - Computation of alternative fuel volume.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... alternative fuel volume. 281.304 Section 281.304 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY OTHER REGULATIONS UNDER THE NATURAL GAS POLICY ACT OF 1978 AND RELATED AUTHORITIES NATURAL GAS CURTAILMENT UNDER THE NATURAL GAS POLICY ACT OF 1978 Alternative...

  14. 18 CFR 281.304 - Computation of alternative fuel volume.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... alternative fuel volume. 281.304 Section 281.304 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY OTHER REGULATIONS UNDER THE NATURAL GAS POLICY ACT OF 1978 AND RELATED AUTHORITIES NATURAL GAS CURTAILMENT UNDER THE NATURAL GAS POLICY ACT OF 1978 Alternative...

  15. Certification of alternative aviation fuels and blend components

    SciTech Connect

    Wilson III, George R. ); Edwards, Tim; Corporan, Edwin ); Freerks, Robert L. )

    2013-01-15

    Aviation turbine engine fuel specifications are governed by ASTM International, formerly known as the American Society for Testing and Materials (ASTM) International, and the British Ministry of Defence (MOD). ASTM D1655 Standard Specification for Aviation Turbine Fuels and MOD Defence Standard 91-91 are the guiding specifications for this fuel throughout most of the world. Both of these documents rely heavily on the vast amount of experience in production and use of turbine engine fuels from conventional sources, such as crude oil, natural gas condensates, heavy oil, shale oil, and oil sands. Turbine engine fuel derived from these resources and meeting the above specifications has properties that are generally considered acceptable for fuels to be used in turbine engines. Alternative and synthetic fuel components are approved for use to blend with conventional turbine engine fuels after considerable testing. ASTM has established a specification for fuels containing synthesized hydrocarbons under D7566, and the MOD has included additional requirements for fuels containing synthetic components under Annex D of DS91-91. New turbine engine fuel additives and blend components need to be evaluated using ASTM D4054, Standard Practice for Qualification and Approval of New Aviation Turbine Fuels and Fuel Additives. This paper discusses these specifications and testing requirements in light of recent literature claiming that some biomass-derived blend components, which have been used to blend in conventional aviation fuel, meet the requirements for aviation turbine fuels as specified by ASTM and the MOD. The 'Table 1' requirements listed in both D1655 and DS91-91 are predicated on the assumption that the feedstocks used to make fuels meeting these requirements are from approved sources. Recent papers have implied that commercial jet fuel can be blended with renewable components that are not hydrocarbons (such as fatty acid methyl esters). These are not allowed blend

  16. Gasoline-fueled hybrid vs. conventional vehicle emissions and fuel economy.

    SciTech Connect

    Anderson, J.; Bharathan, D.; He, J.; Plotkin, S.; Santini, D.; Vyas, A.

    1999-06-18

    This paper addresses the relative fuel economy and emissions behavior, both measured and modeled, of technically comparable, contemporary hybrid and conventional vehicles fueled by gasoline, in terms of different driving cycles. Criteria pollutants (hydrocarbons, carbon monoxide, and nitrogen oxides) are discussed, and the potential emissions benefits of designing hybrids for grid connection are briefly considered. In 1997, Toyota estimated that their grid-independent hybrid vehicle would obtain twice the fuel economy of a comparable conventional vehicle on the Japan 10/15 mode driving cycle. This initial result, as well as the fuel economy level (66 mpg), made its way into the U.S. press. Criteria emissions amounting to one-tenth of Japanese standards were cited, and some have interpreted these results to suggest that the grid-independent hybrid can reduce criteria emissions in the U.S. more sharply than can a conventional gasoline vehicle. This paper shows that the potential of contemporary grid-independent hybrid vehicle technology for reducing emissions and fuel consumption under U.S. driving conditions is less than some have inferred. The importance (and difficulty) of doing test and model assessments with comparable driving cycles, comparable emissions control technology, and comparable performance capabilities is emphasized. Compared with comparable-technology conventional vehicles, grid-independent hybrids appear to have no clear criteria pollutant benefits (or disbenefits). (Such benefits are clearly possible with grid-connectable hybrids operating in zero emissions mode.) However, significant reductions in greenhouse gas emissions (i.e., fuel consumption) are possible with hybrid vehicles when they are used to best advantage.

  17. Data collection plan for Phase 2 Alternative Fuels Bus Data Collection Program. Final report

    SciTech Connect

    Krenelka, T

    1993-07-01

    This document constitutes the plan for collecting and reporting data associated with a special set of transit bus demonstrations to be conducted under the Urban Bus Program of the Alternative Motor Fuels Act (AMFA) of 1988. This program, called the Phase 2 Bus Data Collection Program, serves as an adjunct to the Phase I Bus Data Collection Program, collecting detailed data on just a few buses to augment and enhance the Phase 1 data in fulfilling the urban bus requirements of AMFA. Demonstrations will be conducted at a few transit system locations throughout the US and will use alternative fuels and associated technologies to reduce undesirable transit bus exhaust emissions. Several organizations will be involved in the data collection; NREL will manage the program, analyze and store vehicle data, and make these data available through the Alternative Fuels Data Center. This information will enable transit agencies, equipment manufacturers, fuel suppliers, and government policy makers to make informed decisions about buying and using alternative fuels.

  18. 40 CFR 88.304-94 - Clean-fuel Fleet Vehicle Credit Program.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... contained in 40 CFR part 88, subpart A. (b) Program administration. (1)(i) Each state in which there is all... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Clean-fuel Fleet Vehicle Credit...) AIR PROGRAMS (CONTINUED) CLEAN-FUEL VEHICLES Clean-Fuel Fleet Program § 88.304-94 Clean-fuel...

  19. Synthetic and Biomass Alternate Fueling in Aviation

    NASA Technical Reports Server (NTRS)

    Hendricks, Robert C.; Bushnell, Dennis M.

    2009-01-01

    Must use earth's most abundant natural resources - Biomass, Solar, Arid land (43%), Seawater (97%) with nutrients (80%) plus brackish waters and nutrients resolve environmental triangle of conflicts energy-food-freshwater and ultrafine particulate hazards. Requires Paradigm Shift - Develop and Use Solar* for energy; Biomass for aviation and hybrid-electric-compressed air mobility fueling with transition to hydrogen long term.

  20. Fuel properties of biodiesel from alternative feedstocks

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Defined as monoalkyl esters of long-chain fatty acids prepared from plant oils, animal fats, or other lipids, advantages of biodiesel over conventional petroleum diesel fuel include derivation from renewable and domestic feedstocks, superior lubricity and biodegradability, higher cetane number and f...

  1. Ammonia scrubbing makes alternative fuels economical

    SciTech Connect

    Brown, G.N.

    1997-09-01

    The first commercial in-situ forced oxidation ammonia scrubber system developed and patented by GE Environmental Systems (GEESI) has been completed at the Dakota Gasification Company`s Great Plains Synfuels Plant near Beulah, North Dakota, US. The process simultaneously removes acid gases while producing a valuable byproduct. It was developed to eliminate the performance issues associated with first generation ammonia scrubbing systems. In contrast to the ever increasing cost of lower sulfur fuels, the increasing levels of sulfur in the fuel can represent a greater economic benefit to the utility by burning a lower cost fuel coupled with production of a high value by-product. The sale of the by-product ammonium sulfate off-sets most of the scrubber capital and operating costs and in some cases can generate revenue. In this paper, the 300 MW commercial ammonium sulfate process installed in North Dakota is described. The initial operation is discussed. The ammonia scrubbing system economics and materials selections is presented. The ammonia scrubbing process economics for application using various fuels is presented.

  2. Sustainable Transportation: Accelerating Widespread Adoption of Energy Efficient Vehicles & Fuels (Brochure)

    SciTech Connect

    Not Available

    2014-12-01

    While energy efficient transportation strategies have the potential to simultaneously slash oil consumption and reduce greenhouse gas (GHG) emissions, a truly sustainable solution will require more than just putting drivers behind the wheels of new fuel-efficient cars. As the only national laboratory dedicated 100% to renewable energy and energy efficiency, the National Renewable Energy Laboratory (NREL) accelerates widespread adoption of high-performance, low-emission, energy-efficient passenger and freight vehicles, as well as alternative fuels and related infrastructure. Researchers collaborate closely with industry, government, and research partners, using a whole-systems approach to design better batteries, drivetrains, and engines, as well as thermal management, energy storage, power electronic, climate control, alternative fuel, combustion, and emission systems. NREL's sustainable transportation research, development, and deployment (RD&D) efforts are not limited to vehicles, roads, and fueling stations. The lab also explores ways to save energy and reduce GHGs by integrating transportation technology advancements with renewable energy generation, power grids and building systems, urban planning and policy, and fleet operations.

  3. National Fuel Cell Electric Vehicle Learning Demonstration Final Report

    SciTech Connect

    Wipke, K.; Sprik, S.; Kurtz, J.; Ramsden, T.; Ainscough, C.; Saur, G.

    2012-07-01

    This report discusses key analysis results based on data from early 2005 through September 2011 from the U.S. Department of Energy's (DOE's) Controlled Hydrogen Fleet and Infrastructure Validation and Demonstration Project, also referred to as the National Fuel Cell Electric Vehicle (FCEV) Learning Demonstration. This report serves as one of many mechanisms to help transfer knowledge and lessons learned within various parts of DOE's Fuel Cell Technologies Program, as well as externally to other stakeholders. It is the fifth and final such report in a series, with previous reports being published in July 2007, November 2007, April 2008, and September 2010.

  4. Fuel Cell Electric Vehicle Powered by Renewable Hydrogen

    SciTech Connect

    2011-01-01

    The National Renewable Energy Laboratory (NREL) recently received a Borrego fuel cell electric vehicle (FCEV) on loan from Kia for display at a variety of summer events. The Borrego is fueled using renewable hydrogen that is produced and dispensed at NREL's National Wind Technology Center near Boulder, Colorado. The hydrogen dispensed at the station is produced via renewable electrolysis as part of the wind-to-hydrogen project, which uses wind turbines and photovoltaic arrays to power electrolyzer stacks that split water into hydrogen and oxygen. The FCEV features state-of-the-art technology with zero harmful emissions.

  5. Fuel Cell Electric Vehicle Powered by Renewable Hydrogen

    ScienceCinema

    None

    2013-05-29

    The National Renewable Energy Laboratory (NREL) recently received a Borrego fuel cell electric vehicle (FCEV) on loan from Kia for display at a variety of summer events. The Borrego is fueled using renewable hydrogen that is produced and dispensed at NREL's National Wind Technology Center near Boulder, Colorado. The hydrogen dispensed at the station is produced via renewable electrolysis as part of the wind-to-hydrogen project, which uses wind turbines and photovoltaic arrays to power electrolyzer stacks that split water into hydrogen and oxygen. The FCEV features state-of-the-art technology with zero harmful emissions.

  6. Near-Optimal Operation of Dual-Fuel Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Ardema, M. D.; Chou, H. C.; Bowles, J. V.

    1996-01-01

    A near-optimal guidance law for the ascent trajectory from earth surface to earth orbit of a fully reusable single-stage-to-orbit pure rocket launch vehicle is derived. Of interest are both the optimal operation of the propulsion system and the optimal flight path. A methodology is developed to investigate the optimal throttle switching of dual-fuel engines. The method is based on selecting propulsion system modes and parameters that maximize a certain performance function. This function is derived from consideration of the energy-state model of the aircraft equations of motion. Because the density of liquid hydrogen is relatively low, the sensitivity of perturbations in volume need to be taken into consideration as well as weight sensitivity. The cost functional is a weighted sum of fuel mass and volume; the weighting factor is chosen to minimize vehicle empty weight for a given payload mass and volume in orbit.

  7. User's guide to EAGLES Version 1.1: An electric- and gasoline-vehicle fuel-efficiency software package

    NASA Astrophysics Data System (ADS)

    Marr, W. W.

    1995-01-01

    EAGLES is an interactive microcomputer software package for the analysis of fuel efficiency in electric-vehicle (EV) applications or the estimation of fuel economy for a gasoline vehicle. The principal objective of the EV analysis is to enable the prediction of EV performance on the basis of laboratory test data for batteries. The EV model included in the software package provides a second-by-second simulation of battery voltage and current for any specified vehicle velocity/time or power/time profile. The capability of the battery is modeled by an algorithm that relates the battery voltage to the withdrawn (or charged) current, taking into account the effect of battery depth-of-discharge. Alternatively, the software package can be used to determine the size of the battery needed to satisfy given vehicle mission requirements. For gasoline vehicles, a generic fuel-economy model based on data from EPA Test Car List 1991 is included in the software package. For both types of vehicles, effects of heating/cooling loads on vehicle performance, including range penalty for EVs, can be studied. Also available is an option to estimate the time needed by a specified vehicle to reach a certain speed with the application of a constant power and an option to compute the fraction of time and/or distance in a driving cycle at speeds exceeding a specified value. Certain parameters can be changed interactively prior to a run.

  8. How hybrid-electric vehicles are different from conventional vehicles: the effect of weight and power on fuel consumption

    NASA Astrophysics Data System (ADS)

    Reynolds, C.; Kandlikar, M.

    2007-01-01

    An increasingly diverse set of hybrid-electric vehicles (HEVs) is now available in North America. The recent generation of HEVs have higher fuel consumption, are heavier, and are significantly more powerful than the first generation of HEVs. We compare HEVs for sale in the United States in 2007 to equivalent conventional vehicles and determine how vehicle weight and system power affects fuel consumption within each vehicle set. We find that heavier and more powerful hybrid-electric vehicles are eroding the fuel consumption benefit of this technology. Nonetheless, the weight penalty for fuel consumption in HEVs is significantly lower than in equivalent conventional internal combustion engine vehicles (ICEVs). A 100 kg change in vehicle weight increases fuel consumption by 0.7 l/100 km in ICEVs compared with 0.4 l/100 km in HEVs. When the HEVs are compared with their ICEV counterparts in an equivalence model that differentiates between cars and sports-utility vehicles, the average fuel consumption benefit was 2.7 l/100 km. This analysis further reveals that a HEV which is 100 kg heavier than an identical ICEV would have a fuel consumption penalty of 0.15 l/100 km. Likewise, an increase in the HEV's power by 10 kW results in a fuel consumption penalty of 0.27 l/100 km.

  9. Emissions of fuel metals content from a diesel vehicle engine

    NASA Astrophysics Data System (ADS)

    Wang, Ya-Fen; Huang, Kuo-Lin; Li, Chun-Teh; Mi, Hsiao-Hsuan; Luo, Jih-Haur; Tsai, Perng-Jy

    This study was set out to assess the characteristics and significance of metal contents emitted from diesel engines. We found that the emitted concentrations of crust elements (including Al, Ca, Fe, Mg, and Si) were much higher than those of anthropogenic elements (including Ag, Ba, Cd, Co, Cr, Cu, Mn, Mo, Ni, Pb, Sb, Sr, Ti, V, and Zn) from diesel vehicle engine exhausts under the transient-cycle condition. The emission concentrations of particulate matters from diesel vehicle engine were inversely proportional to the specified engine speeds. To the contrary, the increase of engine speeds resulted in increase of fractions of metal contents in particulate matters. We conducted simple linear regression analysis to relate the emission rates of the metal contents in vehicle exhaust to the consumption rates of metal contents in diesel fuel. This study yielded R2=0.999 which suggests that the emission of the metal contents in vehicle exhaust could be fully explained by the consumption of metal contents in diesel fuel. For illustration, we found that the annual emission rates of both crust and anthropogenic elements from all diesel engine vehicles (=269 000 and 58 700 kg yr -1, respectively) were significantly higher than those from the coal power plant, electrical arc furnace, and coke oven (=90 100 and 1660 kg yr -1, 2060 and 173 kg yr -1, and 60 500 and 3740 kg yr -1, respectively) in Taiwan area. The relatively high amount of metal contents emitted from diesel engines strongly suggests that the measurement on the control of metal contents in diesel fuel should be taken in the future.

  10. National Fuel Cell Electric Vehicle Learning Demonstration Final Report

    SciTech Connect

    Wipke, K.; Sprik, S.; Kurtz, J.; Ramsden, T.; Ainscough, C.; Saur, G.

    2012-07-01

    This report discusses key analysis results based on data from early 2005 through September 2011 from the U.S. Department of Energy’s (DOE’s) Controlled Hydrogen Fleet and Infrastructure Validation and Demonstration Project, also referred to as the National Fuel Cell Electric Vehicle (FCEV) Learning Demonstration. It is the fifth and final such report in a series, with previous reports being published in July 2007, November 2007, April 2008, and September 2010.

  11. 40 CFR 80.581 - What are the batch testing and sample retention requirements for motor vehicle diesel fuel, NRLM...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... retention requirements for motor vehicle diesel fuel, NRLM diesel fuel, and ECA marine fuel? 80.581 Section...) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel Sampling and Testing § 80.581 What are the batch testing and sample...

  12. 40 CFR 80.581 - What are the batch testing and sample retention requirements for motor vehicle diesel fuel, NRLM...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... retention requirements for motor vehicle diesel fuel, NRLM diesel fuel, and ECA marine fuel? 80.581 Section...) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel Sampling and Testing § 80.581 What are the batch testing and sample...

  13. Vehicle engines produce exhaust nanoparticles even when not fueled.

    PubMed

    Rönkkö, Topi; Pirjola, Liisa; Ntziachristos, Leonidas; Heikkilä, Juha; Karjalainen, Panu; Hillamo, Risto; Keskinen, Jorma

    2014-01-01

    Vehicle engines produce submicrometer exhaust particles affecting air quality, especially in urban environments. In on-road exhaust studies with a heavy duty diesel vehicle and in laboratory studies with two gasoline-fueled passenger cars, we found that as much as 20-30% of the number of exhaust particles larger than 3 nm may be formed during engine braking conditions-that is, during decelerations and downhill driving while the engine is not fueled. Particles appeared at size ranges extending even below 7 nm and at high number concentrations. Their small size and nonvolatility, coupled with the observation that these particles contain lube-oil-derived metals zinc, phosphorus, and calcium, are suggestive of health risks at least similar to those of exhaust particles observed before. The particles' characteristics indicate that their emissions can be reduced using exhaust after-treatment devices, although these devices have not been mandated for all relevant vehicle types. Altogether, our findings enhance the understanding of the formation vehicle emissions and allow for improved protection of human health in proximity to traffic. PMID:24397401

  14. Development of alternative fuels from coal-derived syngas

    SciTech Connect

    Not Available

    1991-03-22

    The overall objectives of this program are to investigate potential technologies for the conversion of coal-derived synthesis gas to oxygenated fuels, hydrocarbon fuels, fuel intermediates, and octane enhancers, and to demonstrate the most promising technologies at DOE's LaPorte, Texas, Slurry Phase Alternative Fuels development Unit (AFDU). The program will initially involve a continuation of the work performed under the Liquid Phase Methanol Program but will later draw upon information and technologies generated in current and future DOE-funded contracts, as well as test commercially available catalysts. 1 fig., 3 tabs.

  15. Performance Evaluation of Lower-Energy Energy Storage Alternatives for Full-Hybrid Vehicles; NREL (National Renewable Energy Laboratory)

    SciTech Connect

    Gonder, J.; Cosgrove, J.; Pesaran, A.

    2014-02-11

    Automakers have been mass producing hybrid electric vehicles (HEVs) for well over a decade, and the technology has proven to be very effective at reducing per-vehicle fuel use. However, the incremental cost of HEVs such as the Toyota Prius or Ford Fusion Hybrid remains several thousand dollars higher than the cost of comparable conventional vehicles, which has limited HEV market penetration. The b b b b battery energy storage device is typically the component with the greatest contribution toward this cost increment, so significant cost reductions/performance improvements to the energy storage system (ESS) can correspondingly improve the vehicle-level cost/benefit relationship. Such an improvement would in turn lead to larger HEV market penetration and greater aggregate fuel savings. The United States Advanced Battery Consortium (USABC) and the U.S. Department of Energy (DOE) Energy Storage Program managers asked the National Renewable Energy Laboratory (NREL) to collaborate with a USABC Workgroup and analyze the trade-offs between vehicle fuel economy and reducing the decade-old minimum energy requirement for power-assist HEVs. NREL’s analysis showed that significant fuel savings could still be delivered from an ESS with much lower energy storage than the previous targets, which prompted USABC to issue a new set of lower-energy ESS (LEESS) targets that could be satisfied by a variety of technologies. With support from DOE, NREL has developed an HEV test platform for in-vehicle performance and fuel economy validation testing of the hybrid system using such LEESS devices. This presentation describes development of the vehicle test platform, and laboratory as well as in-vehicle evaluation results with alternate energy storage configurations as compared to the production battery system. The alternate energy storage technologies considered include lithium-ion capacitors -- i.e., asymmetric electrochemical energy storage devices possessing one electrode with battery

  16. Exploring Alternative Fuels in Middle Schools

    ERIC Educational Resources Information Center

    Donley, John F.; Stewardson, Gary A.

    2010-01-01

    Alternative energy sources have become increasingly important as the production of domestic oil has declined and dependence on foreign oil has increased. Historically, there have been four time periods during which the United States was in fact crippled by oil shortages. These time periods include: (1) the early 1900s; (2) World War II; (3) the…

  17. Developing alternative feedstocks for fuel alcohol

    SciTech Connect

    Verma, V.K.

    1982-06-01

    This paper briefly reviews recent research to examine the viability of energy sorghum as a feedstock for producing fuel alcohol. Energy sorghum is the name given to any sweet sorghum shown to be feasible for producing fuel alcohol. Energy sorghum can grow on a variety of soils, in 90 day cycles, with up to three crops a year. Crop rotation is rarely needed; most of the nitrogen and potassium returns to the soil. Harmon Engineering and Testing initiated an inhouse program to research sweet sorghum development. Equipment specifications and preliminary results are given. An ''energy farm'' process is explained step by step. Stalk juice, grain, and stalk fiber yields are listed. The use of bagasse and carbon dioxide is also considered.

  18. 40 CFR 600.303-12 - Fuel economy label-special requirements for flexible-fuel vehicles.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-fuel vehicles equipped with gasoline engines. If the vehicle has a diesel engine, all the references to “gas” or “gasoline” in this section are understood to refer to “diesel” or “diesel fuel”,...

  19. 40 CFR 600.303-12 - Fuel economy label-special requirements for flexible-fuel vehicles.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-fuel vehicles equipped with gasoline engines. If the vehicle has a diesel engine, all the references to “gas” or “gasoline” in this section are understood to refer to “diesel” or “diesel fuel”,...

  20. Semi-volatile and particulate emissions from the combustion of alternative diesel fuels.

    PubMed

    Sidhu, S; Graham, J; Striebich, R

    2001-01-01

    Motor vehicle emissions are a major anthropogenic source of air pollution and contribute to the deterioration of urban air quality. In this paper, we report results of a laboratory investigation of particle formation from four different alternative diesel fuels, namely, compressed natural gas (CNG), dimethyl ether (DME), biodiesel, and diesel, under fuel-rich conditions in the temperature range of 800-1200 degrees C at pressures of approximately 24 atm. A single pulse shock tube was used to simulate compression ignition (CI) combustion conditions. Gaseous fuels (CNG and DME) were exposed premixed in air while liquid fuels (diesel and biodiesel) were injected using a high-pressure liquid injector. The results of surface analysis using a scanning electron microscope showed that the particles formed from combustion of all four of the above-mentioned fuels had a mean diameter less than 0.1 microm. From results of gravimetric analysis and fuel injection size it was found that under the test conditions described above the relative particulate yields from CNG, DME, biodiesel, and diesel were 0.30%. 0.026%, 0.52%, and 0.51%, respectively. Chemical analysis of particles showed that DME combustion particles had the highest soluble organic fraction (SOF) at 71%, followed by biodiesel (66%), CNG (38%) and diesel (20%). This illustrates that in case of both gaseous and liquid fuels, oxygenated fuels have a higher SOF than non-oxygenated fuels. PMID:11219694

  1. Urban airshed modeling of air quality impacts of alternative transportation fuel use in Los Angeles and Atlanta

    SciTech Connect

    1997-12-01

    The main objective of NREL in supporting this study is to determine the relative air quality impact of the use of compressed natural gas (CNG) as an alternative transportation fuel when compared to low Reid vapor pressure (RVP) gasoline and reformulated gasoline (RFG). A table lists the criteria, air toxic, and greenhouse gas pollutants for which emissions were estimated for the alternative fuel scenarios. Air quality impacts were then estimated by performing photochemical modeling of the alternative fuel scenarios using the Urban Airshed Model Version 6.21 and the Carbon Bond Mechanism Version IV (CBM-IV) (Geary et al., 1988) Using this model, the authors examined the formation and transport of ozone under alternative fuel strategies for motor vehicle transportation sources for the year 2007. Photochemical modeling was performed for modeling domains in Los Angeles, California, and Atlanta, Georgia.

  2. Alternate Fuel Cell Membranes for Energy Independence

    SciTech Connect

    Storey, Robson, F.; Mauritz, Kenneth, A.; Patton, Derek, L.; Savin, Daniel, A.

    2012-12-18

    The overall objective of this project was the development and evaluation of novel hydrocarbon fuel cell (FC) membranes that possess high temperature performance and long term chemical/mechanical durability in proton exchange membrane (PEM) fuel cells (FC). The major research theme was synthesis of aromatic hydrocarbon polymers of the poly(arylene ether sulfone) (PAES) type containing sulfonic acid groups tethered to the backbone via perfluorinated alkylene linkages and in some cases also directly attached to the phenylene groups along the backbone. Other research themes were the use of nitrogen-based heterocyclics instead of acid groups for proton conduction, which provides high temperature, low relative humidity membranes with high mechanical/thermal/chemical stability and pendant moieties that exhibit high proton conductivities in the absence of water, and synthesis of block copolymers consisting of a proton conducting block coupled to poly(perfluorinated propylene oxide) (PFPO) blocks. Accomplishments of the project were as follows: 1) establishment of a vertically integrated program of synthesis, characterization, and evaluation of FC membranes, 2) establishment of benchmark membrane performance data based on Nafion for comparison to experimental membrane performance, 3) development of a new perfluoroalkyl sulfonate monomer, N,N-diisopropylethylammonium 2,2-bis(p-hydroxyphenyl) pentafluoropropanesulfonate (HPPS), 4) synthesis of random and block copolymer membranes from HPPS, 5) synthesis of block copolymer membranes containing high-acid-concentration hydrophilic blocks consisting of HPPS and 3,3'-disulfonate-4,4'-dichlorodiphenylsulfone (sDCDPS), 6) development of synthetic routes to aromatic polymer backbones containing pendent 1H-1,2,3-triazole moieties, 7) development of coupling strategies to create phase-separated block copolymers between hydrophilic sulfonated prepolymers and commodity polymers such as PFPO, 8) establishment of basic performance

  3. Life-Cycle Analysis of Alternative Aviation Fuels in GREET

    SciTech Connect

    Elgowainy, A.; Han, J.; Wang, M.; Carter, N.; Stratton, R.; Hileman, J.; Malwitz, A.; Balasubramanian, S.

    2012-06-01

    The Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model, developed at Argonne National Laboratory, has been expanded to include well-to-wake (WTWa) analysis of aviation fuels and aircraft. This report documents the key WTWa stages and assumptions for fuels that represent alternatives to petroleum jet fuel. The aviation module in GREET consists of three spreadsheets that present detailed characterizations of well-to-pump and pump-to-wake parameters and WTWa results. By using the expanded GREET version (GREET1_2011), we estimate WTWa results for energy use (total, fossil, and petroleum energy) and greenhouse gas (GHG) emissions (carbon dioxide, methane, and nitrous oxide) for (1) each unit of energy (lower heating value) consumed by the aircraft or(2) each unit of distance traveled/ payload carried by the aircraft. The fuel pathways considered in this analysis include petroleum-based jet fuel from conventional and unconventional sources (i.e., oil sands); Fisher-Tropsch (FT) jet fuel from natural gas, coal, and biomass; bio-jet fuel from fast pyrolysis of cellulosic biomass; and bio-jet fuel from vegetable and algal oils, which falls under the American Society for Testing and Materials category of hydroprocessed esters and fatty acids. For aircraft operation, we considered six passenger aircraft classes and four freight aircraft classes in this analysis. Our analysis revealed that, depending on the feedstock source, the fuel conversion technology, and the allocation or displacement credit methodology applied to co-products, alternative bio-jet fuel pathways have the potential to reduce life-cycle GHG emissions by 55–85 percent compared with conventional (petroleum-based) jet fuel. Although producing FT jet fuel from fossil feedstock sources — such as natural gas and coal — could greatly reduce dependence on crude oil, production from such sources (especially coal) produces greater WTWa GHG emissions compared with petroleum jet

  4. Life-cycle analysis of alternative aviation fuels in GREET

    SciTech Connect

    Elgowainy, A.; Han, J.; Wang, M.; Carter, N.; Stratton, R.; Hileman, J.; Malwitz, A.; Balasubramanian, S.

    2012-07-23

    The Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model, developed at Argonne National Laboratory, has been expanded to include well-to-wake (WTWa) analysis of aviation fuels and aircraft. This report documents the key WTWa stages and assumptions for fuels that represent alternatives to petroleum jet fuel. The aviation module in GREET consists of three spreadsheets that present detailed characterizations of well-to-pump and pump-to-wake parameters and WTWa results. By using the expanded GREET version (GREET1{_}2011), we estimate WTWa results for energy use (total, fossil, and petroleum energy) and greenhouse gas (GHG) emissions (carbon dioxide, methane, and nitrous oxide) for (1) each unit of energy (lower heating value) consumed by the aircraft or (2) each unit of distance traveled/ payload carried by the aircraft. The fuel pathways considered in this analysis include petroleum-based jet fuel from conventional and unconventional sources (i.e., oil sands); Fisher-Tropsch (FT) jet fuel from natural gas, coal, and biomass; bio-jet fuel from fast pyrolysis of cellulosic biomass; and bio-jet fuel from vegetable and algal oils, which falls under the American Society for Testing and Materials category of hydroprocessed esters and fatty acids. For aircraft operation, we considered six passenger aircraft classes and four freight aircraft classes in this analysis. Our analysis revealed that, depending on the feedstock source, the fuel conversion technology, and the allocation or displacement credit methodology applied to co-products, alternative bio-jet fuel pathways have the potential to reduce life-cycle GHG emissions by 55-85 percent compared with conventional (petroleum-based) jet fuel. Although producing FT jet fuel from fossil feedstock sources - such as natural gas and coal - could greatly reduce dependence on crude oil, production from such sources (especially coal) produces greater WTWa GHG emissions compared with petroleum jet

  5. The 1992 natural gas vehicle challenge: EPA emissions and fuel economy testing

    NASA Astrophysics Data System (ADS)

    Bruetsch, Robert I.; Reineman, Martin E.

    1992-06-01

    The report describes the results of a student alternative fuels engineering design competition called the 1992 Natural Gas Vehicle Challenge which was held April 22 through June 1, 1992. Students from eighteen universities in the United States and four universities in Canada competed. the objective of this competition for each participating team was to convert a gaseoline-fueled General Motors (GM) Sierra pickup truck to natural gas operation and complete with students from other universities in the areas of exhaust emissions, fuel economy, performance, and design. This report also includes the comparisons between the results of the student compressed natural gas pickup truck conversions and the test results of similar gasoline-powered trucks and a dedicated compressed natural gas truck provided by General Motors.

  6. Toxicological and performance aspects of oxygenated motor vehicle fuels

    SciTech Connect

    1996-12-31

    At the request of the Environmental Protection Agency, the committee reviewed a draft of a federal report that assesses the effects of oxygenated fuels on public health, air quality, fuel economy, engine performance, and water quality. The committee determined that much of the federal report adequately represents what is known about the effects of methyl tertiary-butyl ether (MTBE) -- the most commonly used additive in the federal oxygenated-fuels program -- on health, the environment, and motor vehicles. MTBE, a chemical added to gasoline to reduce carbon monoxide pollution, appears not to pose a substantial human health risk, but more-definitive data are needed to assess short-term health effects and to determine whether this additive is effective in reducing carbon monoxide pollution in cold environments.

  7. Building an alternative fuel refueling network: How many stations are needed and where should they be placed?

    NASA Astrophysics Data System (ADS)

    Nicholas, Michael Anselm

    Gasoline stations are so numerous that the fear of running out of fuel is likely not a top concern among drivers. This may not be the case with the introduction of a new alternative fuel such as hydrogen or electricity. The next three chapters, originally written as peer reviewed journal papers[1,2,3], examine the characteristics of refueling in today's gasoline network and compares these characteristics to hypothetical new alternative fuel networks. Together, they suggest that alternative fuel networks with many fewer stations than exist in the gasoline network could be acceptable to future consumers. This acceptability is measured in three ways. The first chapter examines the distance from home to the nearest station and finds that if alternative fuel stations were one-third as numerous as gasoline stations, the travel time to the nearest station was virtually identical to that of gasoline stations. The results suggest that even for station networks numbering only one-twentieth the current number of outlets, the difference in travel time with respect to gasoline is relatively small. Acceptability was examined in the second chapter by analyzing the spatial refueling patterns of gasoline. This reveals that the volume of fuel sold is greater around the highways and that the route from home to the nearest highway entrance may account for a large portion of refueling. This suggests that the first alternative fuel stations could be sited along the highway near entrances and could provide acceptable access to fuel for those who use these highway entrances to access the wider region. Subsequent stations could be sited closer to the homes of customers. The third chapter estimates acceptability, measured in terms of initial vehicle purchase price, of refueling away from one's own town. A pilot survey using a map-based questionnaire was distributed to 20 respondents. Respondents chose ten stations locations to enable their most important destinations. The alternative fuel

  8. 26 CFR 1.179A-1 - Recapture of deduction for qualified clean-fuel vehicle property and qualified clean-fuel vehicle...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 26 Internal Revenue 3 2012-04-01 2012-04-01 false Recapture of deduction for qualified clean-fuel vehicle property and qualified clean-fuel vehicle refueling property. 1.179A-1 Section 1.179A-1 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) INCOME TAXES (CONTINUED) Itemized Deductions...

  9. 26 CFR 1.179A-1 - Recapture of deduction for qualified clean-fuel vehicle property and qualified clean-fuel vehicle...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 3 2010-04-01 2010-04-01 false Recapture of deduction for qualified clean-fuel vehicle property and qualified clean-fuel vehicle refueling property. 1.179A-1 Section 1.179A-1 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) INCOME TAXES Itemized Deductions for...

  10. City and County of Denver: Technical comparison between hythane, CNG and gasoline fueled vehicles

    SciTech Connect

    1996-07-01

    The City and County of Denver, in cooperation with the Urban Consortium Energy Task Force of Public Technology, Inc. has completed a unique two-year research and development project designed to test and compare the technical merits of three transportation fuels. Comparisons of the tailpipe emissions from Hythane - a new, blended, alternative motor fuel comprised of 85% compressed natural gas (CNG) and 15% hydrogen measured by volume - to the emissions from gasoline and 100% CNG were conducted. This project has been one of the first pioneering studies of a hydrogen blended fuel and, through its success, has prompted eight additional Hythane research projects to date. Phase I of the project provided results from the Federal Test Procedure (FTP) testing of a light duty pick-up truck operating on Hythane. The purpose of this testing was to quantify any decrease in tailpipe emissions and to determine whether Hythane could meet the California Ultra Low Emission Vehicle standard (ULEV) for light duty trucks. During Phase I, FTP analyses were conducted in both Colorado (high altitude testing) and California (sea level testing) on a converted Chevrolet S-10, pick-up truck by Hydrogen Consultants (HCl), the Colorado Department of Health (CDH) and the California Air Resource Board (CARB). Currently, the only other non-electric vehicle which is capable of meeting the ULEV standard is Chrysler`s natural gas vehicle. There was additional interest in the role Hythane could play as a transitional fuel in the introduction of hydrogen. Hydrogen, a renewable energy carrier, may soon be categorized as a ZEV fuel by the South Coast Air Quality Management District. This factor may encourage the use of Hythane as a transportation fuel that not only meets the ULEV standard, but may provide the bridge necessary to the eventual widespread use of hydrogen.

  11. Guide for Identifying and Converting High-Potential Petroleum Brownfield Sites to Alternative Fuel Stations

    SciTech Connect

    Johnson, C.; Hettinger, D.; Mosey, G.

    2011-05-01

    Former gasoline stations that are now classified as brownfields can be good sites to sell alternative fuels because they are in locations that are convenient to vehicles and they may be seeking a new source of income. However, their success as alternative fueling stations is highly dependent on location-specific criteria. First, this report outlines what these criteria are, how to prioritize them, and then applies that assessment framework to five of the most popular alternative fuels--electricity, natural gas, hydrogen, ethanol, and biodiesel. The second part of this report delves into the criteria and tools used to assess an alternative fuel retail site at the local level. It does this through two case studies of converting former gasoline stations in the Seattle-Eugene area into electric charge stations. The third part of this report addresses steps to be taken after the specific site has been selected. This includes choosing and installing the recharging equipment, which includes steps to take in the permitting process and key players to include.

  12. 10 CFR 490.302 - Vehicle acquisition mandate schedule.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ....302 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Fuel Provider Vehicle Acquisition Mandate § 490.302 Vehicle acquisition mandate schedule. (a..., when the mandated acquisition percentage of alternative fuel vehicles is applied to the number of...

  13. 10 CFR 490.302 - Vehicle acquisition mandate schedule.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ....302 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Fuel Provider Vehicle Acquisition Mandate § 490.302 Vehicle acquisition mandate schedule. (a..., when the mandated acquisition percentage of alternative fuel vehicles is applied to the number of...

  14. 10 CFR 490.302 - Vehicle acquisition mandate schedule.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ....302 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Fuel Provider Vehicle Acquisition Mandate § 490.302 Vehicle acquisition mandate schedule. (a..., when the mandated acquisition percentage of alternative fuel vehicles is applied to the number of...

  15. 10 CFR 490.302 - Vehicle acquisition mandate schedule.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ....302 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Fuel Provider Vehicle Acquisition Mandate § 490.302 Vehicle acquisition mandate schedule. (a..., when the mandated acquisition percentage of alternative fuel vehicles is applied to the number of...

  16. 10 CFR 490.302 - Vehicle acquisition mandate schedule.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ....302 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Fuel Provider Vehicle Acquisition Mandate § 490.302 Vehicle acquisition mandate schedule. (a..., when the mandated acquisition percentage of alternative fuel vehicles is applied to the number of...

  17. Quantifying the Effects of Idle-Stop Systems on Fuel Economy in Light-Duty Passenger Vehicles

    SciTech Connect

    Jeff Wishart; Matthew Shirk

    2012-12-01

    Vehicles equipped with idle-stop (IS) systems are capable of engine shut down when the vehicle is stopped and rapid engine re-start for the vehicle launch. This capability reduces fuel consumption and emissions during periods when the engine is not being utilized to provide propulsion or to power accessories. IS systems are a low-cost and fast-growing technology in the industry-wide pursuit of increased vehicle efficiency, possibly becoming standard features in European vehicles in the near future. In contrast, currently there are only three non-hybrid vehicle models for sale in North America with IS systems and these models are distinctly low-volume models. As part of the United States Department of Energy’s Advanced Vehicle Testing Activity, ECOtality North America has tested the real-world effect of IS systems on fuel consumption in three vehicle models imported from Europe. These vehicles were chosen to represent three types of systems: (1) spark ignition with 12-V belt alternator starter; (2) compression ignition with 12-V belt alternator starter; and (3) direct-injection spark ignition, with 12-V belt alternator starter/combustion restart. The vehicles have undergone both dynamometer and on-road testing; the test results show somewhat conflicting data. The laboratory data and the portion of the on-road data in which driving is conducted on a prescribed route with trained drivers produced significant fuel economy improvement. However, the fleet data do not corroborate improvement, even though the data show significant engine-off time. It is possible that the effects of the varying driving styles and routes in the fleet testing overshadowed the fuel economy improvements. More testing with the same driver over routes that are similar with the IS system-enabled and disabled is recommended. There is anecdotal evidence that current Environmental Protection Agency fuel economy test procedures do not capture the fuel economy gains that IS systems produce in real

  18. 48 CFR 908.1170 - Leasing of fuel-efficient vehicles.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 5 2014-10-01 2014-10-01 false Leasing of fuel-efficient vehicles. 908.1170 Section 908.1170 Federal Acquisition Regulations System DEPARTMENT OF ENERGY COMPETITION ACQUISITION PLANNING REQUIRED SOURCES OF SUPPLIES AND SERVICES Leasing of Motor Vehicles 908.1170 Leasing of fuel-efficient vehicles. (a)...

  19. 41 CFR 102-34.40 - Who must comply with motor vehicle fuel efficiency requirements?

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 41 Public Contracts and Property Management 3 2014-01-01 2014-01-01 false Who must comply with motor vehicle fuel efficiency requirements? 102-34.40 Section 102-34.40 Public Contracts and Property... PROPERTY 34-MOTOR VEHICLE MANAGEMENT Obtaining Fuel Efficient Motor Vehicles § 102-34.40 Who must...

  20. 40 CFR 600.310-12 - Fuel economy label format requirements-electric vehicles.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...-electric vehicles. 600.310-12 Section 600.310-12 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Labeling § 600.310-12 Fuel economy label format requirements—electric vehicles. Fuel economy labels for electric vehicles must meet the specifications described in § 600.302, with the following modifications:...

  1. 41 CFR 102-34.315 - How do we obtain fuel for Government motor vehicles?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... for Government motor vehicles? 102-34.315 Section 102-34.315 Public Contracts and Property Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 34-MOTOR VEHICLE MANAGEMENT Motor Vehicle Fueling § 102-34.315 How do we obtain fuel for...

  2. 41 CFR 102-34.315 - How do we obtain fuel for Government motor vehicles?

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... for Government motor vehicles? 102-34.315 Section 102-34.315 Public Contracts and Property Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 34-MOTOR VEHICLE MANAGEMENT Motor Vehicle Fueling § 102-34.315 How do we obtain fuel for...

  3. 41 CFR 102-34.315 - How do we obtain fuel for Government motor vehicles?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... for Government motor vehicles? 102-34.315 Section 102-34.315 Public Contracts and Property Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 34-MOTOR VEHICLE MANAGEMENT Motor Vehicle Fueling § 102-34.315 How do we obtain fuel for...

  4. Dimethoxymethane and trimethoxymethane as alternative fuels for fuel cells

    NASA Astrophysics Data System (ADS)

    Chetty, Raghuram; Scott, Keith

    The electrooxidation of dimethoxymethane (DMM) and trimethoxymethane (TMM) was studied at different platinum-based electrocatalysts deposited onto a titanium mesh substrate by thermal decomposition of chloride precursors. Half-cell tests showed an increase in oxidation current for the methoxy fuels at the platinum electrode with the alloying of ruthenium and tin. Increase in reaction temperature and reactant concentration showed an increase in current density for the mesh-based anodes similar to carbon-supported catalysts. Single fuel cell tests, employing the titanium mesh anode with PtRu and PtSn catalysts showed maximum power densities up to 31 mW cm -2 and 48 mW cm -2 for 1.0 mol dm -3 aqueous solutions of DMM and TMM, respectively at 60 °C using oxygen.

  5. Alternative Fuel News: Official Publication of the U.S. Department of Energy's Clean Cities Network and the Alternative Fuels Data Center; Vol. 2, No. 2

    SciTech Connect

    Not Available

    1998-05-01

    Official publication of the Clean Cities Network and the Alternative Fuels Data Center featuring alternative fuels activity in every state, the Clean Cities game plan '98, and news from the Automakers.

  6. EPAct Alternative Fuel Transportation Program: State and Alternative Fuel Provider Fleet Compliance Annual Report; Fleet Compliance Results for MY 2013/FY 2014

    SciTech Connect

    2015-09-01

    Compliance rates for covered state government and alternative fuel provider fleets under the Alternative Fuel Transportation Program (pursuant to the Energy Policy Act or EPAct) are reported for MY 2013/FY 2014 in this publication.

  7. Alternative fuels and chemicals from synthesis gas

    SciTech Connect

    Unknown

    1998-12-01

    A DOE/PETC funded study was conducted to examine the use of a liquid phase mixed alcohol synthesis (LPMAS) plant to produce gasoline blending ethers. The LPMAS plant was integrated into three utilization scenarios: a coal fed IGCC power plant, a petroleum refinery using coke as a gasification feedstock, and a standalone natural gas fed partial oxidation plant. The objective of the study was to establish targets for the development of catalysts for the LPMAS reaction. In the IGCC scenario, syngas conversions need only be moderate because unconverted syngas is utilized by the combined cycle system. A once through LPMAS plant achieving syngas conversions in the range of 38--49% was found to be suitable. At a gas hourly space velocity of 5,000 sL/Kg-hr and a methanol:isobutanol selectivity ratio of 1.03, the target catalyst productivity ranges from 370 to 460 g iBuOH/Kg-hr. In the petroleum refinery scenario, high conversions ({approximately}95%) are required to avoid overloading the refinery fuel system with low Btu content unconverted syngas. To achieve these high conversions with the low H{sub 2}/CO ratio syngas, a recycle system was required (because of the limit imposed by methanol equilibrium), steam was injected into the LPMAS reactor, and CO{sub 2} was removed from the recycle loop. At the most economical recycle ratio, the target catalyst productivity is 265 g iBuOH/Kg-hr. In the standalone LPMAS scenario, essentially complete conversions are required to achieve a fuel balanced plant. At the most economical recycle ratio, the target catalyst productivity is 285 g iBuOH/Kg-hr. The economics of this scenario are highly dependent on the cost of the natural gas feedstock and the location of the plant. For all three case scenarios, the economics of a LPMAS plant is marginal at current ether market prices. Large improvements over demonstrated catalyst productivity and alcohol selectivity are required.

  8. Impact of non-petroleum vehicle fuel economy on GHG mitigation potential

    NASA Astrophysics Data System (ADS)

    Luk, Jason M.; Saville, Bradley A.; MacLean, Heather L.

    2016-04-01

    The fuel economy of gasoline vehicles will increase to meet 2025 corporate average fuel economy standards (CAFE). However, dedicated compressed natural gas (CNG) and battery electric vehicles (BEV) already exceed future CAFE fuel economy targets because only 15% of non-petroleum energy use is accounted for when determining compliance. This study aims to inform stakeholders about the potential impact of CAFE on life cycle greenhouse gas (GHG) emissions, should non-petroleum fuel vehicles displace increasingly fuel efficient petroleum vehicles. The well-to-wheel GHG emissions of a set of hypothetical model year 2025 light-duty vehicles are estimated. A reference gasoline vehicle is designed to meet the 2025 fuel economy target within CAFE, and is compared to a set of dedicated CNG vehicles and BEVs with different fuel economy ratings, but all vehicles meet or exceed the fuel economy target due to the policy’s dedicated non-petroleum fuel vehicle incentives. Ownership costs and BEV driving ranges are estimated to provide context, as these can influence automaker and consumer decisions. The results show that CNG vehicles that have lower ownership costs than gasoline vehicles and BEVs with long distance driving ranges can exceed the 2025 CAFE fuel economy target. However, this could lead to lower efficiency CNG vehicles and heavier BEVs that have higher well-to-wheel GHG emissions than gasoline vehicles on a per km basis, even if the non-petroleum energy source is less carbon intensive on an energy equivalent basis. These changes could influence the effectiveness of low carbon fuel standards and are not precluded by the light-duty vehicle GHG emissions standards, which regulate tailpipe but not fuel production emissions.

  9. An update in the 'development of alternate liquid fuels'

    NASA Astrophysics Data System (ADS)

    Rose, M. J.

    The Brookhaven National Laboratory has formulated a series of Alternate Liquid Fuels (AIF), compounded from combustible fluids such as alcohols, mineral oils and solvents, found in the waste streams of the cosmetic, petrochemical, electronics and other industries. These fuels are now being processed by a pilot plant with a productive capacity of 40,000 gallons in 8 hours, at direct costs ranging from $0.26 to $0.29 a gallon depending on selected feedstocks and blend ratios

  10. Electrocatalysis of fuel cell reactions: Investigation of alternate electrolytes

    NASA Technical Reports Server (NTRS)

    Chin, D. T.; Hsueh, K. L.; Chang, H. H.

    1983-01-01

    Oxygen reduction and transport properties of the electrolyte in the phosphoric acid fuel cell are studied. A theoretical expression for the rotating ring-disk electrode technique; the intermediate reaction rate constants for oxygen reduction on platinum in phosphoric acid electrolyte; oxygen reduction mechanism in trifluoromethanesulfonic acid (TFMSA), considered as an alternate electrolyte for the acid fuel cells; and transport properties of the phosphoric acid electrolyte at high concentrations and temperatures are covered.

  11. Potential impacts on air quality of the use of ethanol as an alternative fuel. Final report

    SciTech Connect

    Gaffney, J.S.; Marley, N.A.

    1994-09-01

    The use of ethanol/gasoline mixtures in motor vehicles has been proposed as an alternative fuel strategy that might improve air quality while minimizing US dependence on foreign oil. New enzymatic production methodologies are being explored to develop ethanol as a viable, economic fuel. In an attempt to reduce urban carbon monoxide (CO) and ozone levels, a number of cities are currently mandating the use of ethanol/gasoline blends. However, it is not at all clear that these blended fuels will help to abate urban pollution. In fact, the use of these fuels may lead to increased levels of other air pollutants, specifically aldehydes and peroxyacyl nitrates. Although these pollutants are not currently regulated, their potential health and environmental impacts must be considered when assessing the impacts of alternative fuels on air quality. Indeed, formaldehyde has been identified as an important air pollutant that is currently being considered for control strategies by the State of California. This report focuses on measurements taken in Albuquerque, New Mexico during the summer of 1993 and the winter of 1994 as an initial attempt to evaluate the air quality effects of ethanol/gasoline mixtures. The results of this study have direct implications for the use of such fuel mixtures as a means to reduce CO emissions and ozone in a number of major cities and to bring these urban centers into compliance with the Clean Air Act.

  12. Technical evaluation and assessment of CNG/LPG bi-fuel and flex-fuel vehicle viability

    SciTech Connect

    Sinor, J E

    1994-05-01

    This report compares vehicles using compressed natural gas (CNG), liquefied petroleum gas (LPG), and combinations of the two in bi-fuel or flex-fuel configurations. Evidence shows that environmental and energy advantages can be gained by replacing two-fuel CNG/gasoline vehicles with two-fuel or flex-fuel systems to be economically competitive, it is necessary to develop a universal CNG/LPG pressure-regulator-injector and engine control module to switch from one tank to the other. For flex-fuel CNG/LPG designs, appropriate composition sensors, refueling pumps, fuel tanks, and vaporizers are necessary.

  13. Analysis of dynamic requirements for fuel cell systems for vehicle applications

    NASA Astrophysics Data System (ADS)

    Pischinger, Stefan; Schönfelder, Carsten; Ogrzewalla, Jürgen

    Conventional vehicles with internal combustion engines, as well as battery powered electric vehicles, achieve one of the most important customer requirements; achieving extremely short response times to load changes. Also, fast acceleration times from a cold start to full power in the range of seconds are practicable. New fuel cell-based propulsion systems, as well as auxiliary power units, have to fulfill the same demands to become competitive. This includes heating-up the system to operating temperature as well as the control strategy for start-up. An additional device to supply starting air is necessary, if the compressor motor can only be operated with fuel cell voltage. Since the system components (for example, the air supply or the fuel supply) are not mechanically coupled, as is the case with conventional internal combustion engines, these components have to be controlled by different sensors and actuators. This can be an advantage in optimizing the system, but it also can represent an additional challenge. This paper describes the fuel cell system requirements regarding transient operation and their dependence on system structure. In particular, the requirements for peripheral components such as air supply, fuel supply and the balance of heat in a fuel cell system are examined. Furthermore, the paper outlines the necessity of an electric storage device and its resultant capacity, which will enable faster load changes. Acceleration and deceleration of the vehicle are accomplished through the use of the electric storage device, while the fuel cell system only has to deliver the mean power consumption without higher load peaks. On the basis of system simulation, different concepts are evaluated for use as a propulsion system or APU and, then, critical components are identified. The effects of advanced control strategies regarding the dynamic behavior of the system are demonstrated. Technically, a fuel cell system could be a viable propulsion system alternative

  14. Analysis of dynamic requirements for fuel cell systems for vehicle applications

    NASA Astrophysics Data System (ADS)

    Pischinger, Stefan; Schönfelder, Carsten; Ogrzewalla, Jürgen

    Conventional vehicles with internal combustion engines, as well as battery powered electric vehicles, achieve one of the most important customer requirements; achieving extremely short response times to load changes. Also, fast acceleration times from a cold start to full power in the range of seconds are practicable. New fuel cell-based propulsion systems, as well as auxiliary power units, have to fulfill the same demands to become competitive. This includes heating-up the system to operating temperature as well as the control strategy for start-up. An additional device to supply starting air is necessary, if the compressor motor can only be operated with fuel cell voltage. Since the system components (for example, the air supply or the fuel supply) are not mechanically coupled, as is the case with conventional internal combustion engines, these components have to be controlled by different sensors and actuators. This can be an advantage in optimizing the system, but it also can represent an additional challenge. This paper describes the fuel cell system requirements regarding transient operation and their dependence on system structure. In particular, the requirements for peripheral components such as air supply, fuel supply and the balance of heat in a fuel cell system are examined. Furthermore, the paper outlines the necessity of an electric storage device and its resultant capacity, which will enable faster load changes. Acceleration and deceleration of the vehicle are accomplished through the use of the electric storage device, while the fuel cell system only has to deliver the mean power consumption without higher load peaks. On the basis of system simulation, different concepts are evaluated for use as a propulsion system or APU and, then, critical components are identified. The effects of advanced control strategies regarding the dynamic behavior of the system are demonstrated. Technically, a fuel cell system could be a viable propulsion system alternative

  15. Effects of High Octane Ethanol Blends on Four Legacy Flex-Fuel Vehicles, and a Turbocharged GDI Vehicle

    SciTech Connect

    Thomas, John F; West, Brian H; Huff, Shean P

    2015-03-01

    The U.S. Department of Energy (DOE) is supporting engine and vehicle research to investigate the potential of high-octane fuels to improve fuel economy. Ethanol has very high research octane number (RON) and heat of vaporization (HoV), properties that make it an excellent spark ignition engine fuel. The prospects of increasing both the ethanol content and the octane number of the gasoline pool has the potential to enable improved fuel economy in future vehicles with downsized, downsped engines. This report describes a small study to explore the potential performance benefits of high octane ethanol blends in the legacy fleet. There are over 17 million flex-fuel vehicles (FFVs) on the road today in the United States, vehicles capable of using any fuel from E0 to E85. If a future high-octane blend for dedicated vehicles is on the horizon, the nation is faced with the classic chicken-and-egg dilemma. If today’s FFVs can see a performance advantage with a high octane ethanol blend such as E25 or E30, then perhaps consumer demand for this fuel can serve as a bridge to future dedicated vehicles. Experiments were performed with four FFVs using a 10% ethanol fuel (E10) with 88 pump octane, and a market gasoline blended with ethanol to make a 30% by volume ethanol fuel (E30) with 94 pump octane. The research octane numbers were 92.4 for the E10 fuel and 100.7 for the E30 fuel. Two vehicles had gasoline direct injected (GDI) engines, and two featured port fuel injection (PFI). Significant wide open throttle (WOT) performance improvements were measured for three of the four FFVs, with one vehicle showing no change. Additionally, a conventional (non-FFV) vehicle with a small turbocharged direct-injected engine was tested with a regular grade of gasoline with no ethanol (E0) and a splash blend of this same fuel with 15% ethanol by volume (E15). RON was increased from 90.7 for the E0 to 97.8 for the E15 blend. Significant wide open throttle and thermal efficiency performance

  16. Waste floor covering is an economical alternative fuel

    SciTech Connect

    Martin, N.W.

    1995-03-01

    This article examines why power plants that can use it call waste carpeting an economical alternative fuel. According to recent Environmental Protection Agency (EPA) data, 1.7 millions tons per year (tpy) of post-consumer carpet (PCC) waste are generated by residential and commercial sources. Monsanto and other major nylon producers responded to the magnitude of this figure and their increased environmental sensitivity by sponsoring a project to assess alternatives to landfill disposal of PCC materials. Many alternatives to landfill disposal exist for waste carpet. These include demonstrated recycling options, such as the reuse of thermoplastic resins for polymer applications and carpet reuse in landfill capping systems. Not all materials can be recycled economically, hence, thermal recycling alternatives to landfills are used, including combustion as a substitute fuel in power plant boilers.

  17. 40 CFR 80.500 - What are the implementation dates for the motor vehicle diesel fuel sulfur control program?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... the motor vehicle diesel fuel sulfur control program? 80.500 Section 80.500 Protection of Environment... Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel General Information § 80.500 What are the implementation dates for the motor vehicle diesel fuel sulfur...

  18. 40 CFR 80.500 - What are the implementation dates for the motor vehicle diesel fuel sulfur control program?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... the motor vehicle diesel fuel sulfur control program? 80.500 Section 80.500 Protection of Environment... Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel General Information § 80.500 What are the implementation dates for the motor vehicle diesel fuel sulfur...

  19. Fleet Conversion in Local Government: Determinants of Driver Fuel Choice for Bi-Fuel Vehicles

    ERIC Educational Resources Information Center

    Johns, Kimberly D.; Khovanova, Kseniya M.; Welch, Eric W.

    2009-01-01

    This study evaluates the conversion of one local government's fleet from gasoline to bi-fuel E-85, compressed natural gas, and liquid propane gas powered vehicles at the midpoint of a 10-year conversion plan. This study employs a behavioral model based on the theory of reasoned action to explore factors that influence an individual's perceived and…

  20. Alternative transportation fuels: Infrastructure requirements and environmental impacts for ethanol and hydrogen

    NASA Astrophysics Data System (ADS)

    Wakeley, Heather L.

    a significant increase in natural gas demand will likely raise both prices and import quantities. There is an added challenge of developing hydrogen fuel cell vehicles at costs comparable to conventional vehicles. Two models developed in this thesis have proven useful for evaluating alternative fuels. The linear programming models provide representative estimates of distribution distances for regional fuel use, and thus can be used to estimate costs and environmental impacts. The EIO-LCA Hybrid method is useful for estimating emissions from hydrogen production. This model includes upstream impacts in the LCA, and has the benefit of a lower time and data requirements than a process-based LCA.