Science.gov

Sample records for alternative fuels utilization

  1. Utilization of alternative fuels in diesel engines

    NASA Technical Reports Server (NTRS)

    Lestz, S. A.

    1984-01-01

    Performance and emission data are collected for various candidate alternate fuels and compare these data to that for a certified petroleum based number two Diesel fuel oil. Results for methanol, ethanol, four vegetable oils, two shale derived oils, and two coal derived oils are reported. Alcohol fumigation does not appear to be a practical method for utilizing low combustion quality fuels in a Diesel engine. Alcohol fumigation enhances the bioactivity of the emitted exhaust particles. While it is possible to inject many synthetic fuels using the engine stock injection system, wholly acceptable performance is only obtained from a fuel whose specifications closely approach those of a finished petroleum based Diesel oil. This is illustrated by the contrast between the poor performance of the unupgraded coal derived fuel blends and the very good performance of the fully refined shale derived fuel.

  2. Emergency fuels utilization guidebook. Alternative Fuels Utilization Program

    SciTech Connect

    Not Available

    1980-08-01

    The basic concept of an emergency fuel is to safely and effectively use blends of specification fuels and hydrocarbon liquids which are free in the sense that they have been commandeered or volunteered from lower priority uses to provide critical transportation services for short-duration emergencies on the order of weeks, or perhaps months. A wide variety of liquid hydrocarbons not normally used as fuels for internal combustion engines have been categorized generically, including limited information on physical characteristics and chemical composition which might prove useful and instructive to fleet operators. Fuels covered are: gasoline and diesel fuel; alcohols; solvents; jet fuels; kerosene; heating oils; residual fuels; crude oils; vegetable oils; gaseous fuels.

  3. Hawaii alternative fuels utilization program. Phase 3, final report

    SciTech Connect

    Kinoshita, C.M.; Staackmann, M.

    1996-08-01

    The Hawaii Alternative Fuels Utilization Program originated as a five-year grant awarded by the US Department of Energy (USDOE) to the Hawaii Natural Energy Institute (HNEI) of the University of Hawaii at Manoa. The overall program included research and demonstration efforts aimed at encouraging and sustaining the use of alternative (i.e., substitutes for gasoline and diesel) ground transportation fuels in Hawaii. Originally, research aimed at overcoming technical impediments to the widespread adoption of alternative fuels was an important facet of this program. Demonstration activities centered on the use of methanol-based fuels in alternative fuel vehicles (AFVs). In the present phase, operations were expanded to include flexible fuel vehicles (FFVs) which can operate on M85 or regular unleaded gasoline or any combination of these two fuels. Additional demonstration work was accomplished in attempting to involve other elements of Hawaii in the promotion and use of alcohol fuels for ground transportation in Hawaii.

  4. Alternative fuels utilization and the automotive emission certification process

    SciTech Connect

    Not Available

    1980-03-01

    The Clean Air Act of 1977 requires that commercially offered automotive fuels and fuel additives be substantially similar to fuels used in certifying model year 1975 and later vehicles. Procedures for certifying that vehicles perform with emissions that meet the Clean Air Act specifications and the impact of this emissions certification process on the use of alternative fuels, such as alcohols, alcohol-gasoline blends and synthetic fuels, in highway vehicles is discussed. (LCL)

  5. Alternate fuels

    SciTech Connect

    Ryan, T.W.; Worthen, R.P.

    1981-02-01

    The escalating oil prices and shortages of petroleum based fuels for transportation have made research work on various fuel alternatives, especially for transportation engines, a priority of both the private and public sectors. This book contains 18 papers on this subject. The range of options from the development of completely non-petroleum-based fuels and engines to the use of various non-petroleum gasoline and diesel fuel extenders and improvers are discussed.

  6. Alternative fuels

    NASA Technical Reports Server (NTRS)

    Grobman, J. S.; Butze, H. F.; Friedman, R.; Antoine, A. C.; Reynolds, T. W.

    1977-01-01

    Potential problems related to the use of alternative aviation turbine fuels are discussed and both ongoing and required research into these fuels is described. This discussion is limited to aviation turbine fuels composed of liquid hydrocarbons. The advantages and disadvantages of the various solutions to the problems are summarized. The first solution is to continue to develop the necessary technology at the refinery to produce specification jet fuels regardless of the crude source. The second solution is to minimize energy consumption at the refinery and keep fuel costs down by relaxing specifications.

  7. Alternative Fuels Infrastructure Development

    SciTech Connect

    Bloyd, Cary N.

    2010-06-30

    This summary reviews the status of alternate transportation fuels development and utilization in Thailand. An understanding of the issues and experiences associated with the introduction of alternative fuels in other countries can help the US in anticipation potential problems as it introduces new automotive fuels. Thailand is of particular interest since it introduced E20 to its commercial market in 2007 and the US is now considering introducing E20 into the US market.

  8. Improving low temperature properties of synthetic diesel fuels derived from oil shale. Alternative fuels utilization program

    SciTech Connect

    Frankenfeld, J.W.; Taylor, W.F.

    1980-11-01

    The ability of additives to improve the cold flow properties of shale oil derived fuels boiling in the diesel fuel range was evaluated. Because a commercial shale oil industry did not exist to provide actual samples of finished fuels, a representative range of hydroprocessed shale oil fractions was prepared for use in the additive testing work. Crude oil shale from Occidental Shale Company was fractionated to give three liquids in the diesel fuel boiling range. The initial boiling point in each case was 325/sup 0/F (163/sup 0/C). The final boiling points were 640/sup 0/F (338/sup 0/C), 670/sup 0/F (354/sup 0/C) and 700/sup 0/F (371/sup 0/F). Each fraction was hydrotreated to three different severities (800, 1200 and 1500 psi total pressure) over a Shell 324 nickel molybdate on alumina catalyst at 710 to 750/sup 0/F to afford 9 different model fuels. A variety of commercial and experimental additives were evaluated as cold flow improvers in the model fuels at treat levels of 0.04 to 0.4 wt %. Both the standard pour point test (ASTM D97) and a more severe low temperature flow test (LTFT) were employed. Reductions in pour points of up to 70/sup 0/F and improvements in LTFT temperatures up to 16/sup 0/F were achieved. It is concluded that flow improver additives can play an important role in improving the cold flow properties of future synthetic fuels of the diesel type derived from oil shale.

  9. Alternative Fuels Infrastructure Development

    SciTech Connect

    Bloyd, Cary N.; Stork, Kevin

    2011-02-01

    This summary reviews the status of alternate transportation fuels development and utilization in Thailand. Thailand has continued to work to promote increased consumption of gasohol especially for highethanol content fuels like E85. The government has confirmed its effort to draw up incentives for auto makers to invest in manufacturing E85-compatible vehicles in the country. An understanding of the issues and experiences associated with the introduction of alternative fuels in other countries can help the US in anticipation potential problems as it introduces new automotive fuels.

  10. Utilization of alternative marine fuels for gas turbine power plant onboard ships

    NASA Astrophysics Data System (ADS)

    El Gohary, M. Morsy; Seddiek, Ibrahim Sadek

    2013-03-01

    Marine transportation industry is undergoing a number of problems. Some of these problems are associated with conventional marine fuel-oils. Many researchers have showed that fuel-oil is considered as the main component that causes both environmental and economic problems, especially with the continuous rising of fuel cost. This paper investigates the capability of using natural gas and hydrogen as alternative fuel instead of diesel oil for marine gas turbine, the effect of the alternative fuel on gas turbine thermodynamic performance and the employed mathematical model. The results showed that since the natural gas is categorized as hydrocarbon fuel, the thermodynamic performance of the gas turbine cycle using the natural gas was found to be close to the diesel case performance. The gas turbine thermal efficiency was found to be 1% less in the case of hydrogen compared to the original case of diesel.

  11. Feasibility study of utilization of degummed soybean oil as a substitute for diesel fuel. Biomass alternative fuels program. Final report

    SciTech Connect

    Not Available

    1981-11-01

    The purpose of this project was to determine the economic and technological feasibility of producing a diesel oil substitute or extender from soybean oil. Existing technology was reviewed, to determine the minimum modification necessary for production of an acceptable fuel product. The information developed indicated that the degummed soybean oil produced by existing processing plants is theoretically suitable for use as a diesel fuel extender. This situation is very favorable to early commercialization of degummed soybean oil as a diesel fuel extender during the 1980's. Moreover, a large energy gain is realized when the soybean oil is utilized as fuel. Its heat of combustion is reported as 16,920 Btu per pound, or 130,000 Btu per gallon. Production of soybean oil consumes between 3000 and 5000 Btu per pound or 23,000 and 39,000 Btu per gallon. A resource availability study disclosed that the southeastern region of the United States produces approximately 260 million bushels of soybeans per year. In the same general area, fourteen extraction plants are operating, with a combined annual capacity of approximately 200 million bushels. Thus, regional production is sufficient to support the extraction capacity. Using an average figure of 1.5 gallons of oil per bushel of soybeans gives annual regional oil production of approximately 300 million gallons. An engine test plan was developed and implemented in this project. Data provide a preliminary indication that the blend containing one-third degummed soybean oil and two-thirds No. 2 diesel oil performed satisfactorily. Long term operation on the 50-50 blend is questionable. Detailed data and observations appear in the body of the report. The study also presents detailed engineering, financial, marketing, management and implementation plans for production of the proposed fuel blend, as well as a complete analysis of impacts. 4 references, 55 figures, 56 tables.

  12. Alternative Fuels Data Center

    SciTech Connect

    2013-06-01

    Fact sheet describes the Alternative Fuels Data Center, which provides information, data, and tools to help fleets and other transportation decision makers find ways to reduce petroleum consumption through the use of alternative and renewable fuels, advanced vehicles, and other fuel-saving measures.

  13. Alternative fuel transit buses

    SciTech Connect

    Motta, R.; Norton, P.; Kelly, K.

    1996-10-01

    The National Renewable Energy Laboratory (NREL) is a U.S. Department of Energy (DOE) national laboratory; this project was funded by DOE. One of NREL`s missions is to objectively evaluate the performance, emissions, and operating costs of alternative fuel vehicles so fleet managers can make informed decisions when purchasing them. Alternative fuels have made greater inroads into the transit bus market than into any other. Each year, the American Public Transit Association (APTA) surveys its members on their inventory and buying plans. The latest APTA data show that about 4% of the 50,000 transit buses in its survey run on an alternative fuel. Furthermore, 1 in 5 of the new transit buses that members have on order are alternative fuel buses. This program was designed to comprehensively and objectively evaluate the alternative fuels in use in the industry.

  14. ALTERNATIVE FUELS RESEARCH STRATEGY

    EPA Science Inventory

    The purpose of this document was to lay a foundation for developing the scientific information needed to compare the benefits and risks of various motor vehicle fuels, especially alternative and reformulated fuels in relation to conventional gasoline and diesel fuels. Among the f...

  15. Alternative fuel information: Alternative fuel vehicle outlook

    SciTech Connect

    Not Available

    1994-06-01

    Major automobile manufacturers continue to examine a variety of alternative fuel vehicle (AFV) options in an effort to provide vehicles that meet the fleet requirements of the Clean Air Act Amendments of 1990 (CAAA) and the Energy Policy Act of 1992 (EPACT). The current generation of AFVs available to consumers is somewhat limited as the auto industry attempts to respond to the presently uncertain market. At the same time, however, the automobile industry must anticipate future demand and is therefore engaged in research, development, and production programs on a wide range of alternative fuels. The ultimate composition of the AFV fleet may be determined by state and local regulations which will have the effect of determining demand. Many state and regional groups may require vehicles to meet emission standards more stringent than those required by the federal government. Therefore, a significant impact on the market could occur if emission classifications begin serving as the benchmark for vehicles, rather than simply certifying a vehicle as capable of operating on an ``alternative`` to gasoline. Vehicles classified as Zero-Emissions, or even Inherently Low-Emissions, could most likely be met only by electricity or natural gas, thereby dictating that multi-fuel vehicles would be unable to participate in some clean air markets. In the near-term, the Clinton Administration desires to accelerate the use of alternative fuels as evidenced by an executive order directing the federal government to increase the rate of conversion of the federal fleet beyond that called for in EPACT. The Administration has expressed particular interest in using more compressed natural gas (CNG) as a motor fuel, which has resulted in the auto industry`s strong response of concentrating short-term efforts on CNG vehicles. For the 1994 model year, a number of CNG cars and trucks will be available from major automobile manufacturers.

  16. Evaluation of unthrottled combustion system options for light duty applications with future syncrude derived fuels. Alternative Fuels Utilization Program

    SciTech Connect

    Needham, J. R.; Cooper, B. M.; Norris-Jones, S. R.

    1982-12-01

    An experimental program examining the interaction between several fuel and light duty automotive engine combinations is detailed. Combustion systems addressed covered indirect and direct injection diesel and spark ignited stratified charge. Fuels primarily covered D2, naphtha and intermediate broadcut blends. Low ignition quality diesel fuels were also evaluated. The results indicate the baseline fuel tolerance of each combustion system and enable characteristics of the systems to be compared. Performance, gaseous and particulate emissions aspects were assessed. The data obtained assists in the selection of candidate combustion systems for potential future fuels. Performance and environmental penalties as appropriate are highlighted relative to the individual candidates. Areas of further work for increased understanding are also reviewed.

  17. Alternative aircraft fuels

    NASA Technical Reports Server (NTRS)

    Longwell, J. P.; Grobman, J.

    1978-01-01

    In connection with the anticipated impossibility to provide on a long-term basis liquid fuels derived from petroleum, an investigation has been conducted with the objective to assess the suitability of jet fuels made from oil shale and coal and to develop a data base which will allow optimization of future fuel characteristics, taking energy efficiency of manufacture and the tradeoffs in aircraft and engine design into account. The properties of future aviation fuels are examined and proposed solutions to problems of alternative fuels are discussed. Attention is given to the refining of jet fuel to current specifications, the control of fuel thermal stability, and combustor technology for use of broad specification fuels. The first solution is to continue to develop the necessary technology at the refinery to produce specification jet fuels regardless of the crude source.

  18. Alternative fuel information sources

    SciTech Connect

    Not Available

    1994-06-01

    This short document contains a list of more than 200 US sources of information (Name, address, phone number, and sometimes contact) related to the use of alternative fuels in automobiles and trucks. Electric-powered cars are also included.

  19. Alternative aircraft fuels

    NASA Technical Reports Server (NTRS)

    Longwell, J. P.; Grobman, J. S.

    1977-01-01

    The efficient utilization of fossil fuels by future jet aircraft may necessitate the broadening of current aviation turbine fuel specifications. The most significant changes in specifications would be an increased aromatics content and a higher final boiling point in order to minimize refinery energy consumption and costs. These changes would increase the freezing point and might lower the thermal stability of the fuel, and could cause increased pollutant emissions, increased combustor liner temperatures, and poorer ignition characteristics. The effects that broadened specification fuels may have on present-day jet aircraft and engine components and the technology required to use fuels with broadened specifications are discussed.

  20. Alternative aviation turbine fuels

    NASA Technical Reports Server (NTRS)

    Grobman, J.

    1977-01-01

    The efficient utilization of fossil fuels by future jet aircraft may necessitate the broadening of current aviation turbine fuel specifications. The most significant changes in specifications would be an increased aromatics content and a higher final boiling point in order to minimize refinery energy consumption and costs. These changes would increase the freezing point and might lower the thermal stability of the fuel and could cause increased pollutant emissions, increased smoke and carbon formation, increased combustor liner temperatures, and poorer ignition characteristics. This paper discusses the effects that broadened specification fuels may have on present-day jet aircraft and engine components and the technology required to use fuels with broadened specifications.

  1. Alternative aircraft fuels technology

    NASA Technical Reports Server (NTRS)

    Grobman, J.

    1976-01-01

    NASA is studying the characteristics of future aircraft fuels produced from either petroleum or nonpetroleum sources such as oil shale or coal. These future hydrocarbon based fuels may have chemical and physical properties that are different from present aviation turbine fuels. This research is aimed at determining what those characteristics may be, how present aircraft and engine components and materials would be affected by fuel specification changes, and what changes in both aircraft and engine design would be required to utilize these future fuels without sacrificing performance, reliability, or safety. This fuels technology program was organized to include both in-house and contract research on the synthesis and characterization of fuels, component evaluations of combustors, turbines, and fuel systems, and, eventually, full-scale engine demonstrations. A review of the various elements of the program and significant results obtained so far are presented.

  2. Alternative transportation fuels

    SciTech Connect

    Askew, W. S.; McNamara, T. M.; Maxfield, D. P.

    1980-01-01

    The commercialization of alternative fuels is analyzed. Following a synopsis of US energy use, the concept of commercialization, the impacts of supply shortages and demand inelasticity upon commercialization, and the status of alternative fuels commercialization to date in the US are discussed. The US energy market is viewed as essentially numerous submarkets. The interrelationship among these submarkets precludes the need to commercialize for a specific fuel/use. However, the level of consumption, the projected growth in demand, and the inordinate dependence upon foreign fuels dictate that additional fuel supplies in general be brought to the US energy marketplace. Commercialization efforts encompass a range of measures designed to accelerate the arrival of technologies or products in the marketplace. As discussed in this paper, such a union of willing buyers and willing sellers requires that three general conditions be met: product quality comparable to existing products; price competitiveness; and adequate availability of supply. Product comparability presently appears to be the least problematic of these three requirements. Ethanol/gasoline and methanol/gasoline blends, for example, demonstrate the fact that alternative fuel technologies exist. Yet price and availability (i.e., production capacity) remain major obstacles. Given inelasticity (with respect to price) in the US and abroad, supply shortages - actual or contrived - generate upward price pressure and should make once-unattractive alternative fuels more price competitive. It is noted, however, that actual price competitiveness has been slow to occur and that even with price competitiveness, the lengthy time frame needed to achieve significant production capacity limits the near-term impact of alternative fuels.

  3. Outlook for alternative transportation fuels

    SciTech Connect

    Gushee, D.E.

    1996-12-31

    This presentation provides a brief review of regulatory issues and Federal programs regarding alternative fuel use in automobiles. A number of U.S. DOE initiatives and studies aimed at increasing alternative fuels are outlined, and tax incentives in effect at the state and Federal levels are discussed. Data on alternative fuel consumption and alternative fuel vehicle use are also presented. Despite mandates, tax incentives, and programs, it is concluded alternative fuels will have minimal market penetration. 7 refs., 5 tabs.

  4. Workshop on the utilization of coal as an alternative to petroleum fuels in the Andean region. Volume 2. Contributed papers

    SciTech Connect

    Not Available

    1985-06-28

    Since the advent of the petroleum crisis in the mid-seventies, with its escalating fuel-oil prices, coal production has shown a substantial increase. Worldwide coal reserves are large, and the technology exists to exploit these reserves. Andean countries, especially Peru, are known to have significant underutilized coal reserves, which could prove socially and economically attractive for energy policy and planning and for long-term self-sufficiency. At present, many industrial operations and electric-generating facilities in Bolivia, Ecuador, and Peru are dependent on fuel-oil from diminishing domestic reserves or from imports. With current prices of coal generally about half those for residual petroleum fuels (based on energy content), the potential exists for exploitation of Andean coal as an alternative to petroleum fuels. Greater use of coal resources would help meet the demand for increased energy needed to improve living standards and for increased industrialization in the area.

  5. Hydrogen utilization and alternatives

    NASA Technical Reports Server (NTRS)

    Manvi, R.; Caputo, R.; Fujita, T.

    1975-01-01

    The historical uses of hydrogen are described along with potential new uses which could develop as a result of the diminishing supply of conventional fossil fuels such as natural gas. A perspective view of hydrogen, both as a chemical feedstock and as a fuel, is necessary to understand its relationship to the overall national energy projections. These projections, which show energy usage in terms of use sectors, forms of energy, and sources of energy, do not specifically identify hydrogen as a component of the energy system. By superimposing the traditional roles upon the new opportunities for hydrogen on the energy projections, the role of hydrogen and future projections is developed within the context of the national energy projections. Use, supply, and other factors affecting application are interrelated and are discussed.

  6. Alternative Fuels Research Laboratory

    NASA Technical Reports Server (NTRS)

    Surgenor, Angela D.; Klettlinger, Jennifer L.; Nakley, Leah M.; Yen, Chia H.

    2012-01-01

    NASA Glenn has invested over $1.5 million in engineering, and infrastructure upgrades to renovate an existing test facility at the NASA Glenn Research Center (GRC), which is now being used as an Alternative Fuels Laboratory. Facility systems have demonstrated reliability and consistency for continuous and safe operations in Fischer-Tropsch (F-T) synthesis and thermal stability testing. This effort is supported by the NASA Fundamental Aeronautics Subsonic Fixed Wing project. The purpose of this test facility is to conduct bench scale F-T catalyst screening experiments. These experiments require the use of a synthesis gas feedstock, which will enable the investigation of F-T reaction kinetics, product yields and hydrocarbon distributions. Currently the facility has the capability of performing three simultaneous reactor screening tests, along with a fourth fixed-bed reactor for catalyst activation studies. Product gas composition and performance data can be continuously obtained with an automated gas sampling system, which directly connects the reactors to a micro-gas chromatograph (micro GC). Liquid and molten product samples are collected intermittently and are analyzed by injecting as a diluted sample into designated gas chromatograph units. The test facility also has the capability of performing thermal stability experiments of alternative aviation fuels with the use of a Hot Liquid Process Simulator (HLPS) (Ref. 1) in accordance to ASTM D 3241 "Thermal Oxidation Stability of Aviation Fuels" (JFTOT method) (Ref. 2). An Ellipsometer will be used to study fuel fouling thicknesses on heated tubes from the HLPS experiments. A detailed overview of the test facility systems and capabilities are described in this paper.

  7. NASA Alternative Aviation Fuel Research

    NASA Astrophysics Data System (ADS)

    Anderson, B. E.; Beyersdorf, A. J.; Thornhill, K. L., II; Moore, R.; Shook, M.; Winstead, E.; Ziemba, L. D.; Crumeyrolle, S.

    2015-12-01

    We present an overview of research conducted by NASA Aeronautics Research Mission Directorate to evaluate the performance and emissions of "drop-in" alternative jet fuels, highlighting experiment design and results from the Alternative Aviation Fuel Experiments (AAFEX-I & -II) and Alternative Fuel-Effects on Contrails and Cruise Emissions flight series (ACCESS-I & II). These projects included almost 100 hours of sampling exhaust emissions from the NASA DC-8 aircraft in both ground and airborne operation and at idle to takeoff thrust settings. Tested fuels included Fischer-Tropsch (FT) synthetic kerosenes manufactured from coal and natural-gas feedstocks; Hydro-treated Esters and Fatty-Acids (HEFA) fuels made from beef-tallow and camelina-plant oil; and 50:50 blends of these alternative fuels with Jet A. Experiments were also conducted with FT and Jet A fuels doped with tetrahydrothiophene to examine the effects of fuel sulfur on volatile aerosol and contrail formation and microphysical properties. Results indicate that although the absence of aromatic compounds in the alternative fuels caused DC-8 fuel-system leaks, the fuels did not compromise engine performance or combustion efficiency. And whereas the alternative fuels produced only slightly different gas-phase emissions, dramatic reductions in non-volatile particulate matter (nvPM) emissions were observed when burning the pure alternative fuels, particularly at low thrust settings where particle number and mass emissions were an order of magnitude lower than measured from standard jet fuel combustion; 50:50 blends of Jet A and alternative fuels typically reduced nvPM emissions by ~50% across all thrust settings. Alternative fuels with the highest hydrogen content produced the greatest nvPM reductions. For Jet A and fuel blends, nvPM emissions were positively correlated with fuel aromatic and naphthalene content. Fuel sulfur content regulated nucleation mode aerosol number and mass concentrations within aging

  8. Alternative jet aircraft fuels

    NASA Technical Reports Server (NTRS)

    Grobman, J.

    1979-01-01

    Potential changes in jet aircraft fuel specifications due to shifts in supply and quality of refinery feedstocks are discussed with emphasis on the effects these changes would have on the performance and durability of aircraft engines and fuel systems. Combustion characteristics, fuel thermal stability, and fuel pumpability at low temperature are among the factors considered. Combustor and fuel system technology needs for broad specification fuels are reviewed including prevention of fuel system fouling and fuel system technology for fuels with higher freezing points.

  9. Spent-fuel-storage alternatives

    SciTech Connect

    Not Available

    1980-01-01

    The Spent Fuel Storage Alternatives meeting was a technical forum in which 37 experts from 12 states discussed storage alternatives that are available or are under development. The subject matter was divided into the following five areas: techniques for increasing fuel storage density; dry storage of spent fuel; fuel characterization and conditioning; fuel storage operating experience; and storage and transport economics. Nineteen of the 21 papers which were presented at this meeting are included in this Proceedings. These have been abstracted and indexed. (ATT)

  10. Alternative scenarios utilizing nonterrestrial resources

    NASA Technical Reports Server (NTRS)

    Eldred, Charles H.; Roberts, Barney B.

    1992-01-01

    A collection of alternative scenarios that are enabled or substantially enhanced by the utilization of nonterrestrial resources is provided. We take a generalized approach to scenario building so that our report will have value in the context of whatever goals are eventually chosen. Some of the topics covered include the following: lunar materials processing; asteroid mining; lunar resources; construction of a large solar power station; solar dynamic power for the space station; reduced gravity; mission characteristics and options; and tourism.

  11. Alternative Fuel School Bus Information Resources

    SciTech Connect

    Not Available

    2004-04-01

    This 4-page Clean Cities fact sheet provides a list of important resources for learning more about alternative fuels in school buses. It includes information regarding Alternative Fuel School Bus Manufacturers, Alternative Fuel HD Engine Manufacturers, Alternative Fuel School Bus Operators, and Key Web Resources for Alternative Fuels.

  12. Alternative fuels for maritime use

    SciTech Connect

    Not Available

    1980-01-01

    The objectives of this study were to review the potential fuels which may be available to the marine industry from the present to the year 2000 and to define the economic, technical, and environmental/social impacts of these alternative fuels on marine power plants. Thus, this study is aimed at the fuels/prime mover combination. This study should help to guide the industry in choosing the proper power plant for the future - recognizing that a new power plant installed in 1980 will still be in service in the 21st century. The importance of the marine transportation industry and the need to consider alternate fuels are examined. An overview of potential alternate fuels for marine applications is presented, and power plant/fuel interaction is discussed. An in-depth discussion is presented on the impact of the most likely alternate fuels from the viewpoint of maintenance, retrofit capability, safety, and air-quality impacts. Two nonfossil-fuel alternatives sailing ships and nuclear-powered vessels, are discussed. It is concluded that: there is a high probability of using synfuels from tar sands shale, or coal liquids in both existing and future ships; coal and coal/oil slurries have a high probability of use in future ships and medium probability in existing ships; nuclear and sail-power future ships have a medium probability of commercial development; and is a low probability of commercial maritime use of alcohol fuels, methane, or coal/methanol combinations. (LCL)

  13. Alternative fuels for general aviation

    SciTech Connect

    Not Available

    1983-01-01

    The price and availability of fuel continues to be a major barrier to the free expansion of general aviation. Although this increase in fuel prices had a more severe impact on airlines, it has also slowed the demand for general aviation aircraft. With the sales of general aviation aircraft in a depressed state, the development of alternative fuels such as liquid methane, ethanol, methanol, and automobile gasoline can help spur the industry back to health. Recent flight tests of these alternative fuels are examined.

  14. Alternative Fuels in Transportation

    ERIC Educational Resources Information Center

    Kouroussis, Denis; Karimi, Shahram

    2006-01-01

    The realization of dwindling fossil fuel supplies and their adverse environmental impacts has accelerated research and development activities in the domain of renewable energy sources and technologies. Global energy demand is expected to rise during the next few decades, and the majority of today's energy is based on fossil fuels. Alternative…

  15. Mobile Alternative Fueling Station Locator

    SciTech Connect

    Not Available

    2009-04-01

    The Department of Energy's Alternative Fueling Station Locator is available on-the-go via cell phones, BlackBerrys, or other personal handheld devices. The mobile locator allows users to find the five closest biodiesel, electricity, E85, hydrogen, natural gas, and propane fueling sites using Google technology.

  16. The Mississippi University Research Consortium for the Utilization of Biomass: Production of Alternative Fuels from Waste Biomass Initiative

    SciTech Connect

    Drs. Mark E. Zapp; Todd French; Lewis Brown; Clifford George; Rafael Hernandez; Marvin Salin; Drs. Huey-Min Hwang, Ken Lee, Yi Zhang; Maria Begonia; Drs. Clint Williford; Al Mikell; Drs. Robert Moore; Roger Hester .

    2009-03-31

    The Mississippi Consortium for the Utilization of Biomass was formed via funding from the US Department of Energy's EPSCoR Program, which is administered by the Office of Basic Science. Funding was approved in July of 1999 and received by participating Mississippi institutions by 2000. The project was funded via two 3-year phases of operation (the second phase was awarded based on the high merits observed from the first 3-year phase), with funding ending in 2007. The mission of the Consortium was to promote the utilization of biomass, both cultured and waste derived, for the production of commodity and specialty chemicals. These scientific efforts, although generally basic in nature, are key to the development of future industries within the Southeastern United States. In this proposal, the majority of the efforts performed under the DOE EPSCoR funding were focused primarily toward the production of ethanol from lignocellulosic feedstocks and biogas from waste products. However, some of the individual projects within this program investigated the production of other products from biomass feeds (i.e. acetic acid and biogas) along with materials to facilitate the more efficient production of chemicals from biomass. Mississippi is a leading state in terms of raw biomass production. Its top industries are timber, poultry production, and row crop agriculture. However, for all of its vast amounts of biomass produced on an annual basis, only a small percentage of the biomass is actually industrially produced into products, with the bulk of the biomass being wasted. This situation is actually quite representative of many Southeastern US states. The research and development efforts performed attempted to further develop promising chemical production techniques that use Mississippi biomass feedstocks. The three processes that were the primary areas of interest for ethanol production were syngas fermentation, acid hydrolysis followed by hydrolyzate fermentation, and enzymatic

  17. Alternative Aviation Fuel Experiment (AAFEX)

    NASA Technical Reports Server (NTRS)

    Anderson, B. E.; Beyersdorf, A. J.; Hudgins, C. H.; Plant, J. V.; Thornhill, K. L.; Winstead, E. L.; Ziemba, L. D.; Howard, R.; Corporan, E.; Miake-Lye, R. C.; Herndon, S. C.; Timko, M.; Woods, E.; Dodds, W.; Lee, B.; Santoni, G.; Whitefield, P.; Hagen, D.; Lobo, P.; Knighton, W. B.; Bulzan, D.; Tacina, K.; Wey, C.; VanderWal, R.; Bhargava, A.

    2011-01-01

    The rising cost of oil coupled with the need to reduce pollution and dependence on foreign suppliers has spurred great interest and activity in developing alternative aviation fuels. Although a variety of fuels have been produced that have similar properties to standard Jet A, detailed studies are required to ascertain the exact impacts of the fuels on engine operation and exhaust composition. In response to this need, NASA acquired and burned a variety of alternative aviation fuel mixtures in the Dryden Flight Research Center DC-8 to assess changes in the aircraft s CFM-56 engine performance and emission parameters relative to operation with standard JP-8. This Alternative Aviation Fuel Experiment, or AAFEX, was conducted at NASA Dryden s Aircraft Operations Facility (DAOF) in Palmdale, California, from January 19 to February 3, 2009 and specifically sought to establish fuel matrix effects on: 1) engine and exhaust gas temperatures and compressor speeds; 2) engine and auxiliary power unit (APU) gas phase and particle emissions and characteristics; and 3) volatile aerosol formation in aging exhaust plumes

  18. Why are alcohol fuels still alternate fuels?

    SciTech Connect

    Bata, R.M.

    1994-12-31

    The enthusiasm for using alcohols as alternate fuels in internal combustion engines (ICE) has been accelerating since the middle of 1970 and reached its peak by the middle of 1980. This was due to the serious effect of the exhaust emissions from automotive engines powered with oil-derived fuels coupled with a market rise in the cost of oil-derived fuels. Since then, the cost of oil has been decreasing and the need for alternate fuels has begun to slow down due to this economical reason. Alcohols are excellent fuels since they can be produced from renewable resources and their impact on health and the environment is limited. They are favorable for IC engines because of their high octane rating, burning velocities, and wider flammability limits. Experimental research and in-use applications showed drastic reduction in carbon monoxide (CO), particulate matter (PM), and moderate reduction in hydrocarbon (HC). Adverse effects on nitrogen (NO{sub x}) and aldehyde (CHO) were also noticed.

  19. Maintenance and operation of the US Alternative Fuel Center

    SciTech Connect

    Erwin, J.; Ferrill, J.L.; Hetrick, D.L.

    1994-08-01

    The Alternative Fuels Utilization Program (AFUP) of the Office of Energy Efficiency and Renewable Energy has investigated the possibilities and limitations of expanded scope of fuel alternatives and replacement means for transportation fuels from alternative sources. Under the AFUP, the Alternative Fuel Center (AFC) was created to solve problems in the DOE programs that were grappling with the utilization of shale oil and coal liquids for transportation fuels. This report covers the first year at the 3-year contract. The principal objective was to assist the AFUP in accomplishing its general goals with two new fuel initiatives selected for tasks in the project year: (1) Production of low-sulfur, low-olefin catalytically cracked gasoline blendstock; and (2) production of low-reactivity/low-emission gasoline. Supporting goals included maintaining equipment in good working order, performing reformulated gasoline tests, and meeting the needs of other government agencies and industries for fuel research involving custom processing, blending, or analysis of experimental fuels.

  20. Maintenance and operation of the USDOE Alternative Fuel Center

    SciTech Connect

    Erwin, J.; Moulton, D.S.; Hetrick, D.L.

    1994-08-01

    The Alternative Fuels Utilization Program (AFUP) of the Office of Energy Efficiency and Renewable Energy has investigated the possibilities and limitations of expanded scope of fuel alternatives and replacement means for transportation fuels from alternative sources. Under the AFUP, the Alternative Fuel Center (AFC) was created to solve problems in the DOE programs that were grappling with the utilization of shale oil and coal liquids for transportation fuels. In year one of this contract, a timeline was set to coordinate uses and operations of the AFC hydrogenation pilot plant among test fuels production project work, facility maintenance, other government work, and work for industry for second-generation operations. In year two, consistent with assisting the AFUP in accomplishing its general goals, the work was done with fuel producers, regulators, and users in mind. AFC capabilities and results were disseminated through tours and outside presentations.

  1. Alternatives to traditional transportation fuels: An overview

    SciTech Connect

    Not Available

    1994-06-01

    This report presents the first compilation by the Energy Information Administration (EIA) of information on alternatives to gasoline and diesel fuel. The purpose of the report is: (1) to provide background information on alternative transportation fuels and replacement fuels compared with gasoline and diesel fuel, and (2) to furnish preliminary estimates of alternative transportation fuels and alternative fueled vehicles as required by the Energy Policy Act of 1992 (EPACT), Title V, Section 503, ``Replacement Fuel Demand Estimates and Supply Information.`` Specifically, Section 503 requires the EIA to report annually on: (1) the number and type of alternative fueled vehicles in existence the previous year and expected to be in use the following year, (2) the geographic distribution of these vehicles, (3) the amounts and types of replacement fuels consumed, and (4) the greenhouse gas emissions likely to result from replacement fuel use. Alternative fueled vehicles are defined in this report as motorized vehicles licensed for on-road use, which may consume alternative transportation fuels. (Alternative fueled vehicles may use either an alternative transportation fuel or a replacement fuel.) The intended audience for the first section of this report includes the Secretary of Energy, the Congress, Federal and State agencies, the automobile manufacturing industry, the transportation fuel manufacturing and distribution industries, and the general public. The second section is designed primarily for persons desiring a more technical explanation of and background for the issues surrounding alternative transportation fuels.

  2. Utilizing TEMPO surface estimates to determine changes in emissions, community exposure and environmental impacts from cement kilns across North America using alternative fuels

    NASA Astrophysics Data System (ADS)

    Pegg, M. J.; Gibson, M. D.; Asamany, E.

    2015-12-01

    A major problem faced by all North American (NA) Governments is managing solid waste from residential and non-residential sources. One way to mitigate the need to expand landfill sites across NA is waste diversion for use as alternative fuel in industries such as cement manufacture. Currently, waste plastic, tires, waste shingles and other high carbon content waste destined for landfill are being explored, or currently used, as an alternative supplemental fuels for use in cement kilns across NA. While this is an attractive, environmentally sustainable solution, significant knowledge gaps remain in our fundamental understanding of whether these alternative fuels may lead to increased air pollution emissions from cement kilns across NA. The long-term objective of using TEMPO is to advance fundamental understanding of uncharacterized air pollution emissions and to assess the actual or potential environmental and health impacts of these emissions from cement kilns across NA. TEMPO measurements will be made in concert with in-situ observations augmented by air dispersion, land-use regression and receptor modelling. This application of TEMPO follows on from current research on a series of bench scale and pilot studies for Lafarge Canada Inc., that investigated the change in combustion emissions from various mixtures of coal (C), petroleum coke (PC) and non-recyclable alternative fuels. From our work we demonstrated that using an alternative fuel mixture in a cement kiln has potential to reduce emissions of CO2 by 34%; reduce NOx by 80%, and reduce fuel SO2 emissions by 98%. We also provided evidence that there would be a significant reduction in the formation of secondary ground-level ozone (O3) and secondary PM2.5 in downwind stack plumes if alternative waste derived fuels are used. The application of air dispersion, source apportionment, land use regression; together with remote sensing offers a powerful set of tools with the potential to improve air pollution

  3. HFIR spent fuel management alternatives

    SciTech Connect

    Begovich, J.M.; Green, V.M.; Shappert, L.B.; Lotts, A.L.

    1992-10-15

    The High Flux Isotope Reactor (HFIR) at Martin Marietta Energy Systems` Oak Ridge National Laboratory (ORNL) has been unable to ship its spent fuel to Savannah River Site (SRS) for reprocessing since 1985. The HFIR storage pools are expected to fill up in the February 1994 to February 1995 time frame. If a management altemative to existing HFIR pool storage is not identified and implemented before the HFIR pools are full, the HFIR will be forced to shut down. This study investigated several alternatives for managing the HFIR spent fuel, attempting to identify options that could be implemented before the HFIR pools are full. The options investigated were: installing a dedicated dry cask storage facility at ORNL, increasing HFIR pool storage capacity by clearing the HFIR pools of debris and either close-packing or stacking the spent fuel elements, storing the spent fuel at another ORNL pool, storing the spent fuel in one or more hot cells at ORNL, and shipping the spent fuel offsite for reprocessing or storage elsewhere.

  4. HFIR spent fuel management alternatives

    SciTech Connect

    Begovich, J.M.; Green, V.M.; Shappert, L.B.; Lotts, A.L.

    1992-10-15

    The High Flux Isotope Reactor (HFIR) at Martin Marietta Energy Systems' Oak Ridge National Laboratory (ORNL) has been unable to ship its spent fuel to Savannah River Site (SRS) for reprocessing since 1985. The HFIR storage pools are expected to fill up in the February 1994 to February 1995 time frame. If a management altemative to existing HFIR pool storage is not identified and implemented before the HFIR pools are full, the HFIR will be forced to shut down. This study investigated several alternatives for managing the HFIR spent fuel, attempting to identify options that could be implemented before the HFIR pools are full. The options investigated were: installing a dedicated dry cask storage facility at ORNL, increasing HFIR pool storage capacity by clearing the HFIR pools of debris and either close-packing or stacking the spent fuel elements, storing the spent fuel at another ORNL pool, storing the spent fuel in one or more hot cells at ORNL, and shipping the spent fuel offsite for reprocessing or storage elsewhere.

  5. Alternate-fuel reactor studies

    SciTech Connect

    Evans, K. Jr.; Ehst, D.A.; Gohar, Y.; Jung, J.; Mattas, R.F.; Turner, L.R.

    1983-02-01

    A number of studies related to improvements and/or greater understanding of alternate-fueled reactors is presented. These studies cover the areas of non-Maxwellian distributions, materials and lifetime analysis, a /sup 3/He-breeding blanket, tritium-rich startup effects, high field magnet support, and reactor operation spanning the range from full D-T operation to operation with no tritium breeding.

  6. Coupling hydrogen fuel and carbonless utilities

    SciTech Connect

    Berry, G.D.

    1998-08-01

    A number of previous analyses have focused on comparisons of single hydrogen vehicles to petroleum and alternative fuel vehicles or of stationary hydrogen storage for utility or local power applications. LLNL`s approach is to compare combined transportation/utility storage systems using hydrogen and fossil fuels. Computer models have been constructed to test the hypothesis that combining carbonless electricity sources and vehicles fueled by electrolytic hydrogen can reduce carbon emissions more cost effectively than either approach alone. Three scenarios have been developed and compared using computer simulations, hourly utility demand data, representative data for solar and wind energy sites, and the latest available EIA projections for transportation and energy demand in the US in 2020. Cost projections were based on estimates from GRI, EIA, and a recent DOE/EPRI report on renewable energy technologies. The key question guiding this analysis was: what can be gained by combining hydrogen fuel production and renewable electricity? Bounding scenarios were chosen to analyze three carbon conscious options for the US transportation fuel and electricity supply system beyond 2020: Reference Case -- petroleum transportation and natural gas electric sector; Benchmark Case -- petroleum transportation and carbonless electric sector; and Target Case -- hydrogen transportation and carbonless electric sector.

  7. Alternative Fuel for Portland Cement Processing

    SciTech Connect

    Schindler, Anton K; Duke, Steve R; Burch, Thomas E; Davis, Edward W; Zee, Ralph H; Bransby, David I; Hopkins, Carla; Thompson, Rutherford L; Duan, Jingran; Venkatasubramanian, Vignesh; Stephen, Giles

    2012-06-30

    at a full-scale cement plant with alternative fuels to examine their compatibility with the cement production process. Construction and demolition waste, woodchips, and soybean seeds were used as alternative fuels at a full-scale cement production facility. These fuels were co-fired with coal and waste plastics. The alternative fuels used in this trial accounted for 5 to 16 % of the total energy consumed during these burns. The overall performance of the portland cement produced during the various trial burns performed for practical purposes very similar to the cement produced during the control burn. The cement plant was successful in implementing alternative fuels to produce a consistent, high-quality product that increased cement performance while reducing the environmental footprint of the plant. The utilization of construction and demolition waste, woodchips and soybean seeds proved to be viable replacements for traditional fuels. The future use of these fuels depends on local availability, associated costs, and compatibility with a facility's production process.

  8. Workshop on the utilization of coal as an alternative to petroleum fuels in the Andean Region. Volume 1. Summary report. Held in Lima, Peru on June 24-28, 1985

    SciTech Connect

    1985-12-31

    The Workshop on the Utilization of Coal as an Alternative to Petroleum Fuels in the Andean Region was one regional effort to examine issues involved in developing coal as a major energy source. Held in Lima, Peru, June 24-28, 1985, and funded by the Government of Peru and the U.S. Agency for International Development (AID), the workshop examined technological measures and economic policy initiatives needed to promote coal development, particularly in Peru, Bolivia, and Ecuador.

  9. Alternate-Fueled Flight: Halophytes, Algae, Bio-, and Synthetic Fuels

    NASA Technical Reports Server (NTRS)

    Hendricks, R. C.

    2007-01-01

    Synthetic and biomass fueling are now considered to be near-term aviation alternate fueling. The major impediment is a secure sustainable supply of these fuels at reasonable cost. However, biomass fueling raises major concerns related to uses of common food crops and grasses (some also called "weeds") for processing into aviation fuels. These issues are addressed, and then halophytes and algae are shown to be better suited as sources of aerospace fuels and transportation fueling in general. Some of the history related to alternate fuels use is provided as a guideline for current and planned alternate fuels testing (ground and flight) with emphasis on biofuel blends. It is also noted that lessons learned from terrestrial fueling are applicable to space missions. These materials represent an update and additions to the Workshop on Alternate Fueling Sustainable Supply and Halophyte Summit at Twinsburg, OH, Oct. 17 to 18, 2007 (ref. 1).

  10. Alternate-Fueled Flight: Halophytes, Algae, Bio-, and Synthetic Fuels

    NASA Technical Reports Server (NTRS)

    Hendricks, R. C.

    2012-01-01

    Synthetic and biomass fueling are now considered to be near-term aviation alternate fueling. The major impediment is a secure sustainable supply of these fuels at reasonable cost. However, biomass fueling raises major concerns related to uses of common food crops and grasses (some also called "weeds") for processing into aviation fuels. These issues are addressed, and then halophytes and algae are shown to be better suited as sources of aerospace fuels and transportation fueling in general. Some of the history related to alternate fuels use is provided as a guideline for current and planned alternate fuels testing (ground and flight) with emphasis on biofuel blends. It is also noted that lessons learned from terrestrial fueling are applicable to space missions. These materials represent an update (to 2009) and additions to the Workshop on Alternate Fueling Sustainable Supply and Halophyte Summit at Twinsburg, Ohio, October 17 to 18, 2007.

  11. Association of American Railroads Alternative Fuels Program

    SciTech Connect

    Furber, C.P.

    1985-01-01

    Alternative fuels can be used in locomotive diesel engines as a means to reduce fuel costs or as fuel extenders when sufficient quantities of suitable lower cost fuels are not available. Broadened fuel purchasing guidelines, based on engine fuel tolerance limitation tests, offer a potential for reducing fuel costs. Fuels such as alcohols, certain vegetable oils, shale oils, and heavy oil blends can be used to extend fuel supplies. Fuel tolerance limitations of existing engines can be increased through modifications such as staged injection or the use of ceramic coatings. This paper describes the methods used by the Association of American Railroads Alternative Fuels Research Program to determine engine fuel tolerance limitations and extend engine fuel tolerance limits.

  12. Alternative Fuels Market and Policy Trends (Presentation)

    SciTech Connect

    Schroeder, A. N.

    2013-09-01

    Market forces and policies are increasing opportunities for alternative fuels. There is no one-size-fits-all, catch-all, silver-bullet fuel. States play a critical role in the alternative fuel market and are taking a leading role.

  13. Alternative Fuels Data Center (Fact Sheet)

    SciTech Connect

    Not Available

    2013-07-01

    Fact sheet describes the Alternative Fuels Data Center, which provides information, data, and tools to help fleets and other transportation decision makers find ways to reduce petroleum consumption through the use of alternative and renewable fuels, advanced vehicles, and other fuel-saving measures.

  14. Alternative fuels and vehicles choice model

    SciTech Connect

    Greene, D.L.

    1994-10-01

    This report describes the theory and implementation of a model of alternative fuel and vehicle choice (AFVC), designed for use with the US Department of Energy`s Alternative Fuels Trade Model (AFTM). The AFTM is a static equilibrium model of the world supply and demand for liquid fuels, encompassing resource production, conversion processes, transportation, and consumption. The AFTM also includes fuel-switching behavior by incorporating multinomial logit-type equations for choice of alternative fuel vehicles and alternative fuels. This allows the model to solve for market shares of vehicles and fuels, as well as for fuel prices and quantities. The AFVC model includes fuel-flexible, bi-fuel, and dedicated fuel vehicles. For multi-fuel vehicles, the choice of fuel is subsumed within the vehicle choice framework, resulting in a nested multinomial logit design. The nesting is shown to be required by the different price elasticities of fuel and vehicle choice. A unique feature of the AFVC is that its parameters are derived directly from the characteristics of alternative fuels and vehicle technologies, together with a few key assumptions about consumer behavior. This not only establishes a direct link between assumptions and model predictions, but facilitates sensitivity testing, as well. The implementation of the AFVC model as a spreadsheet is also described.

  15. Advanced fuel system technology for utilizing broadened property aircraft fuels

    NASA Technical Reports Server (NTRS)

    Reck, G. M.

    1980-01-01

    Possible changes in fuel properties are identified based on current trends and projections. The effect of those changes with respect to the aircraft fuel system are examined and some technological approaches to utilizing those fuels are described.

  16. Aviation turbine fuels: An assessment of alternatives

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The general outlook for aviation turbine fuels, the effect that broadening permissible aviation turbine fuel properties could have on the overall availability of such fuels, the fuel properties most likely to be affected by use of lower grade petroleum crudes, and the research and technology required to ensure that aviation turbine fuels and engines can function satisfactorily with fuels having a range of fuel properties differing from those of current specification fuel are assessed. Views of industry representatives on alternative aviation turbine fuels are presented.

  17. Alternate-Fueled Combustion-Sector Emissions

    NASA Technical Reports Server (NTRS)

    Saxena, Nikita T.; Thomas, Anna E.; Shouse, Dale T.; Neuroth, Craig; Hendricks, Robert C.; Lynch, Amy; Frayne, Charles W.; Stutrud, Jeffrey S.; Corporan, Edwin; Hankins, Terry

    2012-01-01

    In order to meet rapidly growing demand for fuel, as well as address environmental concerns, the aviation industry has been testing alternate fuels for performance and technical usability in commercial and military aircraft. Currently, alternate aviation fuels must satisfy MIL-DTL- 83133F(2008) (military) or ASTM D 7566- Annex(2011) (commercial) standards and are termed drop-in fuel replacements. Fuel blends of up to 50% alternative fuel blended with petroleum (JP-8), which have become a practical alternative, are individually certified on the market. In order to make alternate fuels (and blends) a viable option for aviation, the fuel must be able to perform at a similar or higher level than traditional petroleum fuel. They also attempt to curb harmful emissions, and therefore a truly effective alternate fuel would emit at or under the level of currently used fuel. This paper analyzes data from gaseous and particulate emissions of an aircraft combustor sector. The data were evaluated at various inlet conditions, including variation in pressure and temperature, fuel-to-air ratios, and percent composition of alternate fuel. Traditional JP-8+100 data were taken as a baseline, and blends of JP- 8+100 with synthetic-paraffinic-kerosene (SPK) fuel (Fischer-Tropsch (FT)) were used for comparison. Gaseous and particulate emissions, as well as flame luminosity, were assessed for differences between FT composition of 0%, 50%, and 100%. The data showed that SPK fuel (a FT-derived fuel) had slightly lower harmful gaseous emissions, and smoke number information corroborated the hypothesis that SPK-FT fuels are cleaner burning fuels.

  18. Alternatives to traditional transportation fuels 1993

    SciTech Connect

    Not Available

    1995-01-01

    In recent years, gasoline and diesel fuel have accounted for about 80 percent of total transportation fuel and nearly all of the fuel used in on-road vehicles. Growing concerns about the environmental effects of fossil fuel use and the Nation`s high level of dependence on foreign oil are providing impetus for the development of replacements or alternatives for these traditional transportation fuels. (The Energy Policy Act of 1992 definitions of {open_quotes}replacement{close_quotes} and {open_quotes}alternative{close_quotes} fuels are presented in the following box.) The Alternative Motor Fuels Act of 1988, the Clean Air Act Amendments of 1990 (CAAA90) and the Energy Policy Act of 1992 (EPACT) are significant legislative forces behind the growth of replacement fuel use. Alternatives to Traditional Transportation Fuels 1993 provides the number of on-road alternative fueled vehicles in use in the United States, alternative and replacement fuel consumption, and information on greenhouse gas emissions resulting from the production, delivery, and use of replacement fuels for 1992, 1993, and 1995.

  19. Utilization of Alcohol Fuel in Spark Ignition and Diesel Engines.

    ERIC Educational Resources Information Center

    Berndt, Don; Stengel, Ron

    These five units comprise a course intended to prepare and train students to conduct alcohol fuel utilization seminars in spark ignition and diesel engines. Introductory materials include objectives and a list of instructor requirements. The first four units cover these topics: ethanol as an alternative fuel (technical and economic advantages,…

  20. Isoprenoid based alternative diesel fuel

    DOEpatents

    Lee, Taek Soon; Peralta-Yahya, Pamela; Keasling, Jay D.

    2015-08-18

    Fuel compositions are provided comprising a hydrogenation product of a monocyclic sesquiterpene (e.g., hydrogenated bisabolene) and a fuel additive. Methods of making and using the fuel compositions are also disclosed. ##STR00001##

  1. Alternate-Fueled Combustor-Sector Emissions

    NASA Technical Reports Server (NTRS)

    Saxena, Nikita T.; Thomas, Anna E.; Shouse, Dale T.; Neuroth, Craig; Hendricks, Robert C.; Lynch, Amy; Frayne, Charles W.; Stutrud, Jeffrey S.; Corporan, Edwin; Hankins, Terry

    2013-01-01

    In order to meet rapidly growing demand for fuel, as well as address environmental concerns, the aviation industry has been testing alternate fuels for performance and technical usability in commercial and military aircraft. In order to make alternate fuels (and blends) a viable option for aviation, the fuel must be able to perform at a similar or higher level than traditional petroleum fuel. They also attempt to curb harmful emissions, and therefore a truly effective alternate fuel would emit at or under the level of currently used fuel. This report analyzes data from gaseous and particulate emissions of an aircraft combustor sector. The data were evaluated at various inlet conditions, including variation in pressure and temperature, fuel-to-air ratios, and percent composition of alternate fuel. Traditional JP-8+100 data were taken as a baseline, and blends of JP-8+100 with synthetic-paraffinic-kerosene (SPK) fuel (Fischer-Tropsch (FT)) were used for comparison. Gaseous and particulate emissions, as well as flame luminosity, were assessed for differences between FT composition of 0, 50, and 100 percent. The data show that SPK fuel (an FT-derived fuel) had slightly lower harmful gaseous emissions, and smoke number information corroborated the hypothesis that SPK-FT fuels are cleaner burning fuels.

  2. Alternatives to traditional transportation fuels 1996

    SciTech Connect

    1997-12-01

    Interest in alternative transportation fuels (ATF`s) has increased in recent years due to the drives for cleaner air and less dependence upon foreign oil. This report, Alternatives to Traditional Transportation Fuels 1996, provides information on ATFs, as well as the vehicles that consume them.

  3. Alternative Fuel News, Vol. 2, No. 4

    SciTech Connect

    O'Connor, K.; Riley, C.; Raye, M.

    1998-11-30

    This issue of Alternative Fuel News highlights the accomplishments of the Clean Cities coalitions during the past 5 years. Now Clean Cities advocates in city after city across the US are building stations and driving alternative fuel vehicles, in addition to enhancing public awareness.

  4. Alternative fuels and chemicals from synthesis gas

    SciTech Connect

    Unknown

    1998-08-01

    The overall objectives of this program are to investigate potential technologies for the conversion of synthesis gas to oxygenated and hydrocarbon fuels and industrial chemicals, and to demonstrate the most promising technologies at DOE's LaPorte, Texas, Slurry Phase Alternative Fuels Development Unit (AFDU). The program will involve a continuation of the work performed under the Alternative Fuels from Coal-Derived Synthesis Gas Program and will draw upon information and technologies generated in parallel current and future DOE-funded contracts.

  5. Alternative Fuels and Chemicals From Synthesis Gas

    SciTech Connect

    1998-07-01

    The overall objectives of this program are to investigate potential technologies for the conversion of synthesis gas to oxygenated and hydrocarbon fuels and industrial chemicals, and to demonstrate the most promising technologies at DOE's LaPorte, Texas, Slurry Phase Alternative Fuels Development Unit (AFDU). The program will involve a continuation of the work performed under the Alternative Fuels from Coal-Derived Synthesis Gas Program and will draw upon information and technologies generated in parallel current and future DOE-funded contracts.

  6. ALTERNATIVE FUELS AND CHEMICALS FROM SYNTHESIS GAS

    SciTech Connect

    Unknown

    1998-01-01

    The overall objectives of this program are to investigate potential technologies for the conversion of synthesis gas to oxygenated and hydrocarbon fuels and industrial chemicals, and to demonstrate the most promising technologies at DOE's LaPorte, Texas, Slurry Phase Alternative Fuels Development Unit (AFDU). The program will involve a continuation of the work performed under the Alternative Fuels from Coal-Derived Synthesis Gas Program and will draw upon information and technologies generated in parallel current and future DOE-funded contracts.

  7. ALTERNATIVE FUELS AND CHEMICALS FROM SYNTHESIS GAS

    SciTech Connect

    Unknown

    1999-01-01

    The overall objectives of this program are to investigate potential technologies for the conversion of synthesis gas to oxygenated and hydrocarbon fuels and industrial chemicals, and to demonstrate the most promising technologies at DOE's LaPorte, Texas, Slurry Phase Alternative Fuels Development Unit (AFDU). The program will involve a continuation of the work performed under the Alternative Fuels from Coal-Derived Synthesis Gas Program and will draw upon information and technologies generated in parallel current and future DOE-funded contracts.

  8. Alternative Fuels and Chemicals from Synthesis Gas

    SciTech Connect

    Peter Tijrn

    2003-01-02

    The overall objectives of this program are to investigate potential technologies for the conversion of synthesis gas to oxygenated and hydrocarbon fuels and industrial chemicals, and to demonstrate the most promising technologies at DOE's LaPorte, Texas, Slurry Phase Alternative Fuels Development Unit (AFDU). The program will involve a continuation of the work performed under the Alternative Fuels from Coal-Derived Synthesis Gas Program and will draw upon information and technologies generated in parallel current and future DOE-funded contracts.

  9. Alternative Motor Fuel Use Model

    Energy Science and Technology Software Center (ESTSC)

    1992-11-16

    AMFU is a tool for the analysis and prediction of motor fuel use by highway vehicles. The model advances the art of vehicle stock modeling by including a representation of the choice of motor fuel for flexible and dual fuel vehicles.

  10. Assessment of Alternative Aircraft Fuels

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The purpose of this symposium is to provide representatives from industry, government, and academia concerned with the availability and quality of future aviation turbine fuels with recent technical results and a status review of DOD and NASA sponsored fuels research projects. The symposium has included presentations on the potential crude sources, refining methods, and characteristics of future fuels; the effects of changing fuel characteristics on the performance and durability of jet aircraft components and systems; and the prospects for evolving suitable technology to produce and use future fuels.

  11. Dimethyl ether (DME) as an alternative fuel

    NASA Astrophysics Data System (ADS)

    Semelsberger, Troy A.; Borup, Rodney L.; Greene, Howard L.

    With ever growing concerns on environmental pollution, energy security, and future oil supplies, the global community is seeking non-petroleum based alternative fuels, along with more advanced energy technologies (e.g., fuel cells) to increase the efficiency of energy use. The most promising alternative fuel will be the fuel that has the greatest impact on society. The major impact areas include well-to-wheel greenhouse gas emissions, non-petroleum feed stocks, well-to-wheel efficiencies, fuel versatility, infrastructure, availability, economics, and safety. Compared to some of the other leading alternative fuel candidates (i.e., methane, methanol, ethanol, and Fischer-Tropsch fuels), dimethyl ether appears to have the largest potential impact on society, and should be considered as the fuel of choice for eliminating the dependency on petroleum. DME can be used as a clean high-efficiency compression ignition fuel with reduced NO x, SO x, and particulate matter, it can be efficiently reformed to hydrogen at low temperatures, and does not have large issues with toxicity, production, infrastructure, and transportation as do various other fuels. The literature relevant to DME use is reviewed and summarized to demonstrate the viability of DME as an alternative fuel.

  12. EMISSIONS AND FUEL ECONOMY OF FEDERAL ALTERNATIVELY FUELED FLEET VEHICLES

    EPA Science Inventory

    This paper presents results from a study designed to investigate the effects of automobile fuels on emissions and fuel economy. The study is part of a larger program mandated by the Alternative Motor Fuels Act of 1988 that requires the Department of Energy (DOE), in cooperation w...

  13. Synthetic fuel utilization. Final report. Task 330

    SciTech Connect

    Singer, S.

    1983-01-01

    The presence of large coal resources in this country provided the spur for consideration of liquids derived from hydrogenation of coal in the search for alternate liquid fuels to replace petroleum. Previous developments particularly in German industry beginning in 1910 and reaching a capacity of approximately four million tons of products a year by 1944 and more recently a series of plants in South Africa have shown the practicability of coal liquefaction. A few more advanced processes have been developed variously to bench, pilot or commercial scale from among the thirty or more which were subject to study. Limitation in the amount of hydrogen used in these for reasons of economy and processing facility results in products containing major amounts of aromatics as well as significant portions of the sulfur and nitrogen of the coal feed. Combustion of the largely aromatic liquids can present problems in commercial burners designed for petroleum fuels, and combustion staging used to reduce NO/sub x/ emissions with the latter may encounter difficulties from sooting in the coal-derived fuels, which occurs readily with aromatics. This report presents a review of such problems in utilization of synthetic fuels from coal, emphasizing basic engineering and scientific studies which have been made. A research program involving a number of universities, industrial laboratories, and non-profit research institutions was carried out under the direction of the Department of Energy's Pittsburgh Energy Technology Center. This program is also reviewed. The major subjects covered are those of liquefaction product composition and properties, fuel spray and droplet processes, synfuel pyrolysis, combustion mechanics, soot formation, and pollutant emission. Recommendations concerning needs for investigation are made from an evaluation of the current status of the field and the results obtained in the program. 15 references, 1 figure, 7 tables.

  14. Compatibility of elastomers in alternate jet fuels

    NASA Technical Reports Server (NTRS)

    Kalfayan, S. H.; Fedors, R. F.; Reilly, W. W.

    1979-01-01

    The compatibility of elastomeric compositions of known resistance to aircraft fuels was tested for potential use in Jet A type fuels obtainable from alternate sources, such as coal. Since such fuels were not available at the time, synthetic alternate fuels were prepared by adding tetralin to a petroleum based Jet A type fuel to simulate coal derived fuels which are expected to contain higher amounts of aromatic and hydroaromatic hydrocarbons. The elastomeric compounds tested were based on butadiene-acrylonitrile rubber, a castable Thiokol polysulfide rubber, and a castable fluorosilicone rubber. Batches of various cross-link densities of these rubbers were made and their chemical stress relaxation behavior in fuel, air, and nitrogen, their swelling properties, and response to mechanical testing were determined.

  15. Emerging trends in alternative aviation fuels

    NASA Astrophysics Data System (ADS)

    Corbett, Cody

    The days of petroleum-based aviation fuels are numbered. New regulations to be set in place in the coming years will force current fuels to be phased out in favor of cleaner fuels with less toxic emissions. The alternative fuel industry has already taken its foothold in other modes of transportation, and aviation will soon follow suit. Many companies have cropped up over the last decade, and a few have been around longer, that work hard to develop the alternative aviation fuels of the future. It is important, however, for the aviation community to know what to expect and when to expect it concerning alternative fuels. This study investigates where various companies in the alternative aviation fuel industry currently stand in their development and production processes, and how their products will affect aircraft owners and operators. By interviewing representatives from these companies and analyzing their responses to identify trends, an educated prediction can be made about where the industry is headed and when the aviation community can expect these fuel to be available. The findings of this study indicate that many companies are still in their developmental stages, with a few notable outliers, and that most of these companies expect to see production of their product by 2017. Also, the fuel manufacturers are dealing with all the legal hurdles regarding alternative fuels, so little to no effort will be required on the part of the consumer. These findings, along with their analysis, will enable the aviation community to make educated decisions concerning fuel and their aircraft, as well and do their part to help these beneficial fuels get to market.

  16. 1985 EPRI fuel oil utilization workshop: proceedings

    SciTech Connect

    Sanders, C.F.; McDonald, B.L.

    1986-02-01

    A workshop to consider problems related to fuel oil utilization was held in Atlanta, Georgia, on June 19 and 20, 1985. The 35 participants included fuels, engineering, and operating people from 15 utilities. The primary objective of the meeting was the interchange of information related to projects conducted by some of the utilities, EPRI, and others. Through the discussions, EPRI gained useful insight into directions for future studies and utility support efforts. A continuing concern of the utilities is the declining quality of fuel oils available and the inability of current specifications to prevent or predict problems in handling and burning the oils. The presentations at the workshop covered future oil supplies, predicting compatibility, combustion of high-asphaltene oils, operating and test programs to alleviate emission problems, and EPRI's planned projects relating to fuel oil combustion and fuel oil quality. All nine papers in this proceedings have been processed for inclusion in the Energy Data Base.

  17. Proceedings of the 1993 Windsor Workshop on Alternative Fuels

    SciTech Connect

    Not Available

    1993-10-01

    This report contains viewgraph papers on the following topics on alternative fuels: availability of alternative fueled engines and vehicles; emerging technologies; overcoming barriers to alternative fuels commercialization; infrastructure issues; and new initiatives in research and development.

  18. Alternate Fuels for Use in Commercial Aircraft

    NASA Technical Reports Server (NTRS)

    Daggett, David L.; Hendricks, Robert C.; Walther, Rainer; Corporan, Edwin

    2008-01-01

    The engine and aircraft Research and Development (R&D) communities have been investigating alternative fueling in near-term, midterm, and far-term aircraft. A drop in jet fuel replacement, consisting of a kerosene (Jet-A) and synthetic fuel blend, will be possible for use in existing and near-term aircraft. Future midterm aircraft may use a biojet and synthetic fuel blend in ultra-efficient airplane designs. Future far-term engines and aircraft in 50-plus years may be specifically designed to use a low- or zero-carbon fuel. Synthetic jet fuels from coal, natural gas, or other hydrocarbon feedstocks are very similar in performance to conventional jet fuel, yet the additional CO2 produced during the manufacturing needs to be permanently sequestered. Biojet fuels need to be developed specifically for jet aircraft without displacing food production. Envisioned as midterm aircraft fuel, if the performance and cost liabilities can be overcome, biofuel blends with synthetic jet or Jet-A fuels have near-term potential in terms of global climatic concerns. Long-term solutions address dramatic emissions reductions through use of alternate aircraft fuels such as liquid hydrogen or liquid methane. Either of these new aircraft fuels will require an enormous change in infrastructure and thus engine and airplane design. Life-cycle environmental questions need to be addressed.

  19. OZONE PRECURSOR EMISSIONS FROM ALTERNATIVELY FUELED VEHICLES

    EPA Science Inventory

    Smog chamber tests were conducted using automobile exhaust gas generated during emission tests with a group of alternatively fueled vehicles. he tests were designed to evaluate the photochemical characteristics of organic emissions from vehicles operating on compressed natural ga...

  20. Global Energy Issues and Alternate Fueling

    NASA Technical Reports Server (NTRS)

    Hendricks, Robert C.

    2007-01-01

    This viewgraph presentation describes world energy issues and alternate fueling effects on aircraft design. The contents include: 1) US Uses about 100 Quad/year (1 Q = 10(exp 15) Btu) World Energy Use: about 433 Q/yr; 2) US Renewable Energy about 6%; 3) Nuclear Could Grow: Has Legacy Problems; 4) Energy Sources Primarily NonRenewable Hydrocarbon; 5) Notes; 6) Alternate Fuels Effect Aircraft Design; 7) Conventional-Biomass Issue - Food or Fuel; 8) Alternate fuels must be environmentally benign; 9) World Carbon (CO2) Emissions Problem; 10) Jim Hansen s Global Warming Warnings; 11) Gas Hydrates (Clathrates), Solar & Biomass Locations; 12) Global Energy Sector Response; 13) Alternative Renewables; 14) Stratospheric Sulfur Injection Global Cooling Switch; 15) Potential Global Energy Sector Response; and 16) New Sealing and Fluid Flow Challenges.

  1. Alternative Fuel News, Vol. 7, No. 3

    SciTech Connect

    Not Available

    2003-11-01

    Quarterly magazine with articles on recent additions to the Clean Cities Alternative Fuel Station Locator database, biodiesel buying co-ops, and developing the CNG infrastructure in Bangladesh. Also a memo from CIVITAS 2003.

  2. Rugged ATS turbines for alternate fuels

    SciTech Connect

    Wenglarz, R.A.; Nirmalan, N.V.; Daehler, T.G.

    1995-02-01

    A major national effort is directed to developing advanced turbine systems designed for major improvements in efficiency and emissions performance using natural gas fuels. These turbine designs are also to be adaptable for future operation with alternate coal and biomass derived fuels. For several potential alternate fuel applications, available hot gas cleanup technologies will not likely be adequate to protect the turbine flowpath from deposition and corrosion. Past tests have indicated that cooling turbine airfoil surfaces could ruggedized a high temperature turbine flowpath to alleviate deposition and corrosion. Using this specification. ATS turbine that was evaluated. The initial analyses also showed that two-phase cooling offers the most attractive method of those explored to protect a coal-fueled ATS turbine from deposition and corrosion. This paper describes ruggedization approaches, particularly to counter the extreme deposition and corrosion effects of the high inlet temperatures of ATS turbines using alternate fuels.

  3. Southern Nevada Alternative Fuels Demonstration Project

    SciTech Connect

    Hyde, Dan; Fast, Matthew

    2009-12-31

    The Southern Nevada Alternative Fuels Program is designed to demonstrate, in a day-to-day bus operation, the reliability and efficiency of a hydrogen bus operation under extreme conditions. By using ICE technology and utilizing a virtually emission free fuel, benefits to be derived include air quality enhancement and vehicle performance improvements from domestically produced, renewable energy sources. The project objective is to help both Ford and the City demonstrate and evaluate the performance characteristics of the E-450 H2ICE shuttle buses developed by Ford, which use a 6.8-liter supercharged Triton V-10 engine with a hydrogen storage system equivalent to 29 gallons of gasoline. The technology used during the demonstration project in the Ford buses is a modified internal combustion engine that allows the vehicles to run on 100% hydrogen fuel. Hydrogen gives a more thorough fuel burn which results in more power and responsiveness and less pollution. The resultant emissions from the tailpipe are 2010 Phase II compliant with NO after treatment. The City will lease two of these E-450 H2ICE buses from Ford for two years. The buses are outfitted with additional equipment used to gather information needed for the evaluation. Performance, reliability, safety, efficiency, and rider comments data will be collected. The method of data collection will be both electronically and manually. Emissions readings were not obtained during the project. The City planned to measure the vehicle exhaust with an emissions analyzer machine but discovered the bus emission levels were below the capability of their machine. Passenger comments were solicited on the survey cards. The majority of comments were favorable. The controllable issues encountered during this demonstration project were mainly due to the size of the hydrogen fuel tanks at the site and the amount of fuel that could be dispensed during a specified period of time. The uncontrollable issues encountered during this

  4. Possibility of using alternate fuels in Hungary

    SciTech Connect

    Zombori, J.

    1982-12-01

    In Hungary investigations are aimed at the use of fuel mixtures having a moderate ration of alternate fuels in them. For the last two years engine tests have been carried out with the mixture of diesel oil and sunflower oil, and that of diesel oil and ethanol and they show positive results.

  5. A methodology for assessing the market benefits of alternative motor fuels: The Alternative Fuels Trade Model

    SciTech Connect

    Leiby, P.N.

    1993-09-01

    This report describes a modeling methodology for examining the prospective economic benefits of displacing motor gasoline use by alternative fuels. The approach is based on the Alternative Fuels Trade Model (AFTM). AFTM development was undertaken by the US Department of Energy (DOE) as part of a longer term study of alternative fuels issues. The AFTM is intended to assist with evaluating how alternative fuels may be promoted effectively, and what the consequences of substantial alternative fuels use might be. Such an evaluation of policies and consequences of an alternative fuels program is being undertaken by DOE as required by Section 502(b) of the Energy Policy Act of 1992. Interest in alternative fuels is based on the prospective economic, environmental and energy security benefits from the substitution of these fuels for conventional transportation fuels. The transportation sector is heavily dependent on oil. Increased oil use implies increased petroleum imports, with much of the increase coming from OPEC countries. Conversely, displacement of gasoline has the potential to reduce US petroleum imports, thereby reducing reliance on OPEC oil and possibly weakening OPEC`s ability to extract monopoly profits. The magnitude of US petroleum import reduction, the attendant fuel price changes, and the resulting US benefits, depend upon the nature of oil-gas substitution and the supply and demand behavior of other world regions. The methodology applies an integrated model of fuel market interactions to characterize these effects.

  6. Alternative Fuels and Chemicals from Synthesis Gas

    SciTech Connect

    1998-12-02

    The overall objectives of this program are to investigate potential technologies for the conversion of synthesis gas to oxygenated and hydrocarbon fuels and industrial chemicals, and to demonstrate the most promising technologies at DOE�s LaPorte, Texas, Slurry Phase Alternative Fuels Development Unit (AFDU). The program will involve a continuation of the work performed under the Alternative Fuels from Coal-Derived Synthesis Gas Program and will draw upon information and technologies generated in parallel current and future DOE-funded contracts.

  7. Outlook for alternative energy sources. [aviation fuels

    NASA Technical Reports Server (NTRS)

    Card, M. E.

    1980-01-01

    Predictions are made concerning the development of alternative energy sources in the light of the present national energy situation. Particular emphasis is given to the impact of alternative fuels development on aviation fuels. The future outlook for aircraft fuels is that for the near term, there possibly will be no major fuel changes, but minor specification changes may be possible if supplies decrease. In the midterm, a broad cut fuel may be used if current development efforts are successful. As synfuel production levels increase beyond the 1990's there may be some mixtures of petroleum-based and synfuel products with the possibility of some shale distillate and indirect coal liquefaction products near the year 2000.

  8. Ultraclean Fuels Production and Utilization for the Twenty-First Century: Advances toward Sustainable Transportation Fuels

    SciTech Connect

    Fox, Elise B.; Liu, Zhong-Wen; Liu, Zhao-Tie

    2013-11-21

    Ultraclean fuels production has become increasingly important as a method to help decrease emissions and allow the introduction of alternative feed stocks for transportation fuels. Established methods, such as Fischer-Tropsch, have seen a resurgence of interest as natural gas prices drop and existing petroleum resources require more intensive clean-up and purification to meet stringent environmental standards. This review covers some of the advances in deep desulfurization, synthesis gas conversion into fuels and feed stocks that were presented at the 245th American Chemical Society Spring Annual Meeting in New Orleans, LA in the Division of Energy and Fuels symposium on "Ultraclean Fuels Production and Utilization".

  9. Alternatives to traditional transportation fuels 1995

    SciTech Connect

    1996-12-01

    This report provides information on transportation fuels other than gasoline and diesel, and the vehicles that use these fuels. The Energy Information Administration (EIA) provides this information to support the U.S. Department of Energy`s reporting obligations under Section 503 of the Energy Policy Act of 1992 (EPACT). The principal information contained in this report includes historical and year-ahead estimates of the following: (1) the number and type of alterative-fueled vehicles (AFV`s) in use; (2) the consumption of alternative transportation fuels and {open_quotes}replacement fuels{close_quotes}; and (3) the number and type of alterative-fueled vehicles made available in the current and following years. In addition, the report contains some material on special topics. The appendices include a discussion of the methodology used to develop the estimates (Appendix A), a map defining geographic regions used, and a list of AFV suppliers.

  10. Diesel injector carbonization by three alternative fuels

    SciTech Connect

    Goodrum, J.W.; Patel, V.C.; McClendon, R.W.

    1996-05-01

    Three alternative diesel fuels were screened by analysis of fuel injector tip deposits. The test engines were operated on the Peterson (torque) test cycle; the average carbon deposit volume on an injector tip was measured by a computer vision method. Relative coke deposit quantity was obtained by area analysis of injector tip images. Repetitive image areas varied less than 1%. Coke deposit areas for repetitive fuel tests also varied less than 1%. Injector coking tendencies of tested fuels decreased in the following order: peanut oil, no. 2 diesel, tricaprylin, and tributyrin/no. 2 diesel blend. The observed dependence of the relative coke quantity on fuel type was consistent with the results from a photographic technique used previously for fuel screening. 10 refs., 2 figs., 2 tabs.

  11. EPAct Alternative Fuel Transporation Program - State and Alternative Fuel Provider Fleets: Frequently Asked Questions

    SciTech Connect

    2010-03-01

    Factsheet answering frequently asked questions about the U.S. Department of Energy's Alternative Fuel Transportation Program (the Program) that implements provisions of Titles III–V of the Energy Policy Act of 1992 (EPAct). Answers to questions that are frequently asked about the Program by managers of state government and alternative fuel provider fleets are provided in the factsheet.

  12. 10 CFR 490.506 - Alternative fueled vehicle credit transfers.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Alternative fueled vehicle credit transfers. 490.506 Section 490.506 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Fueled Vehicle Credit Program § 490.506 Alternative fueled vehicle credit transfers. (a) Any...

  13. 10 CFR 490.506 - Alternative fueled vehicle credit transfers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Alternative fueled vehicle credit transfers. 490.506 Section 490.506 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Fueled Vehicle Credit Program § 490.506 Alternative fueled vehicle credit transfers. (a) Any...

  14. 10 CFR 490.506 - Alternative fueled vehicle credit transfers.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 3 2011-01-01 2011-01-01 false Alternative fueled vehicle credit transfers. 490.506 Section 490.506 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Fueled Vehicle Credit Program § 490.506 Alternative fueled vehicle credit transfers. (a) Any...

  15. 10 CFR 490.506 - Alternative fueled vehicle credit transfers.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Alternative fueled vehicle credit transfers. 490.506 Section 490.506 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Fueled Vehicle Credit Program § 490.506 Alternative fueled vehicle credit transfers. (a) Any...

  16. 10 CFR 490.506 - Alternative fueled vehicle credit transfers.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Alternative fueled vehicle credit transfers. 490.506 Section 490.506 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Fueled Vehicle Credit Program § 490.506 Alternative fueled vehicle credit transfers. (a) Any...

  17. 78 FR 23832 - Labeling Requirements for Alternative Fuels and Alternative Fueled Vehicles

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-23

    ...-gasoline mixtures, natural gas, liquefied petroleum gas, hydrogen, coal-derived liquid fuels, fuels derived... component (expressed as a percentage). \\3\\ 60 FR 26926 (May 19, 1995). \\4\\ The Rule requires manufacturers... comments in response.\\8\\ \\6\\ 76 FR 31513 (June 1, 2011) (ANPR on Alternative Fuels Rule). In 2011,...

  18. Promoting alternative fuels in Philadelphia. Final report

    SciTech Connect

    1996-04-16

    The US Department of Energy`s grant to Citizens Fund was designed to support a grassroots organizing campaign, local coalition building and media activity initially focused on getting the Southeastern Pennsylvania Transit Authority (SEPTA) to acquire clean burning alternative fueled buses (e.g. natural gas). In addition, Citizens Fund through Pennsylvania Citizen Action would become involved in the Philadelphia Clean Cities organization sponsored by the City of Philadelphia through a DOE grant. The city reached out to a substantial number of organizations and community leaders and actively worked to get out the message on the need to promote and use alternatively-fueled vehicles. This report summarizes these activities.

  19. Review of alternative fuels data bases

    NASA Technical Reports Server (NTRS)

    Harsha, P. T.; Edelman, R. B.

    1983-01-01

    Based on an analysis of the interaction of fuel physical and chemical properties with combustion characteristics and indicators, a ranking of the importance of various fuel properties with respect to the combustion process was established. This ranking was used to define a suite of specific experiments whose objective is the development of an alternative fuels design data base. Combustion characteristics and indicators examined include droplet and spray formation, droplet vaporization and burning, ignition and flame stabilization, flame temperature, laminar flame speed, combustion completion, soot emissions, NOx and SOx emissions, and the fuels' thermal and oxidative stability and fouling and corrosion characteristics. Key fuel property data is found to include composition, thermochemical data, chemical kinetic rate information, and certain physical properties.

  20. Alternate-Fueled Combustor-Sector Performance

    NASA Technical Reports Server (NTRS)

    Thomas, Anna E.; Saxena, Nikita T.; Shouse, Dale T.; Neuroth, Craig; Hendricks, Robert C.; Lynch, Amy; Frayne, Charles W.; Stutrud, Jeffrey S.; Corporan, Edwin; Hankins, Terry

    2013-01-01

    In order to realize alternative fueling for military and commercial use, the industry has set forth guidelines that must be met by each fuel. These aviation fueling requirements are outlined in MIL-DTL-83133F(2008) or ASTM D 7566 Annex (2011) standards, and are classified as "drop-in" fuel replacements. This report provides combustor performance data for synthetic-paraffinic-kerosene- (SPK-) type (Fischer-Tropsch (FT)) fuel and blends with JP-8+100, relative to JP-8+100 as baseline fueling. Data were taken at various nominal inlet conditions: 75 psia (0.52 MPa) at 500 degF (533 K), 125 psia (0.86 MPa) at 625 degF (603 K), 175 psia (1.21 MPa) at 725 degF (658 K), and 225 psia (1.55 MPa) at 790 degF (694 K). Combustor performance analysis assessments were made for the change in flame temperatures, combustor efficiency, wall temperatures, and exhaust plane temperatures at 3, 4, and 5 percent combustor pressure drop (DP) for fuel:air ratios (F/A) ranging from 0.010 to 0.025. Significant general trends show lower liner temperatures and higher flame and combustor outlet temperatures with increases in FT fueling relative to JP-8+100 fueling. The latter affects both turbine efficiency and blade and vane lives.

  1. Alternate-Fueled Combustor-Sector Performance

    NASA Technical Reports Server (NTRS)

    Thomas, Anna E.; Saxena, Nikita T.; Shouse, Dale T.; Neuroth, Craig; Hendricks, Robert C.; Lynch, Amy; Frayne, Charles W.; Stutrud, Jeffrey S.; Corporan, Edwin; Hankins, Terry

    2012-01-01

    In order to realize alternative fueling for military and commercial use, the industry has set forth guidelines that must be met by each fuel. These aviation fueling requirements are outlined in MILDTL- 83133F(2008) or ASTM D 7566 Annex (2011) standards, and are classified as drop-in fuel replacements. This paper provides combustor performance data for synthetic-paraffinic-kerosene- (SPK-) type (Fisher-Tropsch (FT)) fuel and blends with JP-8+100, relative to JP-8+100 as baseline fueling. Data were taken at various nominal inlet conditions: 75 psia (0.52 MPa) at 500 F (533 K), 125 psia (0.86 MPa) at 625 F (603 K), 175 psia (1.21 MPa) at 725 F (658 K), and 225 psia (1.55 MPa) at 790 F (694 K). Combustor performance analysis assessments were made for the change in flame temperatures, combustor efficiency, wall temperatures, and exhaust plane temperatures at 3%, 4%, and 5% combustor pressure drop (% delta P) for fuel: air ratios (F/A) ranging from 0.010 to 0.025. Significant general trends show lower liner temperatures and higher flame and combustor outlet temperatures with increases in FT fueling relative to JP-8+100 fueling. The latter affects both turbine efficiency and blade/vane life.

  2. Alternative Fuel News: May 2000 Special Edition

    SciTech Connect

    Brennan, A.; Ficker, C.

    2000-05-03

    In this special issue of Alternative Fuel News, the authors summarize DOE's current position on the local government and private fleet rulemaking that has been under consideration. The authors also look at the new area of focus, niche markets. Your participation and input are invited as the authors craft new directions for the nation's transportation future.

  3. Available Alternative Fuel School Bus Products--2004

    SciTech Connect

    Not Available

    2004-04-01

    This 4-page Clean Cities fact sheet provides a list of the currently available (and soon to be available) model year 2004 alternative fuel school bus and school bus engine products. It includes information from Blue Bird Corporation, Collins Bus Corporation, Corbeil Bus, Ford Motor Company, General Motors Corporation, Thomas Built Buses, Inc., Clean Air Partners, Cummins Westport, and Deere & Company.

  4. Spent Nuclear Fuel Alternative Technology Decision Analysis

    SciTech Connect

    Shedrow, C.B.

    1999-11-29

    The Westinghouse Savannah River Company (WSRC) made a FY98 commitment to the Department of Energy (DOE) to recommend a technology for the disposal of aluminum-based spent nuclear fuel (SNF) at the Savannah River Site (SRS). The two technologies being considered, direct co-disposal and melt and dilute, had been previously selected from a group of eleven potential SNF management technologies by the Research Reactor Spent Nuclear Fuel Task Team chartered by the DOE''s Office of Spent Fuel Management. To meet this commitment, WSRC organized the SNF Alternative Technology Program to further develop the direct co-disposal and melt and dilute technologies and ultimately provide a WSRC recommendation to DOE on a preferred SNF alternative management technology.

  5. Proceedings: 1991 Conference on Waste Tires as a Utility Fuel

    SciTech Connect

    Not Available

    1991-01-28

    540The objective of the 1991 EPRI Conference on Waste Tires as a Utility Fuel was to provide a status report on tire-derived fuel (TDF) preparation and combustion for power generation. Interest in use of waste tires as fuel is growing due to the need to dispose of the more than 200 million scrap tires generated each year and about two billion tires that now reside in scrap tire piles and landfills in the United States. Thirteen papers were presented at the conference on a range of topics, including alternate fuel cofiring, state scrap tire management programs, tire-derived fuel preparation and properties, cofiring TDF and coal in utility boilers, and fluidized bed combustion of TDF. Based on laboratory testing and early utility test burns of up to 10 percent TDF with coal in cyclone and wet bottom pulverized-coal boilers, it appears that TDF cofiring is technically feasible and does not adversely affect environmental emissions. However, careful control of TDF quality is needed to produce fuel with acceptable particle size and loose metal content in order to avoid fuel handling problems at the power plant. 30 refs., 40 figs., 40 tabs.

  6. ECAS Phase I fuel cell results. [Energy Conservation Alternatives Study

    NASA Technical Reports Server (NTRS)

    Warshay, M.

    1978-01-01

    This paper summarizes and discusses the fuel cell system results of Phase I of the Energy Conversion Alternatives Study (ECAS). Ten advanced electric powerplant systems for central-station baseload generation using coal were studied by NASA in ECAS. Three types of low-temperature fuel cells (solid polymer electrolyte, SPE, aqueous alkaline, and phosphoric acid) and two types of high-temperature fuel cells (molten carbonate, MC, and zirconia solid electrolyte, SE) were studied. The results indicate that (1) overall efficiency increases with fuel cell temperature, and (2) scale-up in powerplant size can produce a significant reduction in cost of electricity (COE) only when it is accompanied by utilization of waste fuel cell heat through a steam bottoming cycle and/or integration with a gasifier. For low-temperature fuel cell systems, the use of hydrogen results in the highest efficiency and lowest COE. In spite of higher efficiencies, because of higher fuel cell replacement costs integrated SE systems have higher projected COEs than do integrated MC systems. Present data indicate that life can be projected to over 30,000 hr for MC fuel cells, but data are not yet sufficient for similarly projecting SE fuel cell life expectancy.

  7. 77 FR 14583 - Notice to Manufacturers of Alternative Fuel Vans

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-12

    ... Federal Aviation Administration Notice to Manufacturers of Alternative Fuel Vans AGENCY: Federal Aviation Administration (FAA), U.S. DOT. ACTION: Notice to Manufacturers of Alternative Fuel Vans. SUMMARY: Projects... manufacturers of alternative fuel vans. This notice requests information from manufacturers of alternative...

  8. Subtask 2.6 - Assessment of Alternative Fuels on CO2 Production

    SciTech Connect

    Debra Pflughoeft-Hassett; Darren Naasz

    2009-06-16

    Many coal-based electric generating units use alternative fuels, and this effort assessed the impact of alternative fuels on CO{sub 2} production and other emissions and also assessed the potential impact of changes in emission regulations under the Clean Air Act (CAA) for facilities utilizing alternative fuels that may be categorized as wastes. Information was assembled from publicly available U.S. Department of Energy Energy Information Administration databases that included alternative fuel use for 2004 and 2005. Alternative fuel types were categorized along with information on usage by coal-based electric, number of facilities utilizing each fuel type, and the heating value of solid, liquid, and gaseous alternative fuels. The sulfur dioxide, nitrogen oxide, and carbon dioxide emissions associated with alternative fuels and primary fuels were also evaluated. Carbon dioxide emissions are also associated with the transport of all fuels. A calculation of carbon dioxide emissions associated with the transport of biomass-based fuels that are typically accessed on a regional basis was made. A review of CAA emission regulations for coal-based electric generating facilities from Section 112 (1) and Section 129 (2) for solid waste incinerators was performed with consideration for a potential regulatory change from Section 112 (1) regulation to Section 129 (2). Increased emission controls would be expected to be required if coal-based electric generating facilities using alternative fuels would be recategorized under CAA Section 129 (2) for solid waste incinerators, and if this change were made, it is anticipated that coal-fired electric generating facilities might reduce the use of alternative fuels. Conclusions included information on the use profile for alternative fuels and the impacts to emissions as well as the impact of potential application of emission regulations for solid waste incinerators to electric generating facilities using alternative fuels.

  9. Cutting fuel costs: alternatives for commercial fishermen

    SciTech Connect

    Hollin, D.; Windh, S.R.

    1984-01-01

    The shrimp industry, in conjunction with the National Marine Fisheries Service, initiated three energy-related studies in 1981 to help shrimpers adjust to high fuel costs. One project, a joint effort of the Mississippi/Alabama Sea Grant Consortium and the Gulf and South Atlantic Fisheries Development Foundation, studied fuel use by shrimp vessels. Meant to provide information that could help suggest alternatives to decrease fuel consumption, the project looked at total fuel consumption; running, fishing and searching times; duration of average drag; and catch rate. A second project, conducted by the Society of Naval Architects and Marine Engineers, looked at fishing vessel fuel use in the U.S. fleet compared to the state of the art of fuel efficiency. The third study, funded through the National Shrimp Congress, was to gather energy conservation information that might help fishermen make decisions about ways to conserve fuel on both a short-term and long-term basis. This report is a summary of the findings of that study.

  10. Fuel cell power system for utility vehicle

    SciTech Connect

    Graham, M.; Barbir, F.; Marken, F.; Nadal, M.

    1996-12-31

    Based on the experience of designing and building the Green Car, a fuel cell/battery hybrid vehicle, and Genesis, a hydrogen/oxygen fuel cell powered transporter, Energy Partners has developed a fuel cell power system for propulsion of an off-road utility vehicle. A 10 kW hydrogen/air fuel cell stack has been developed as a prototype for future mass production. The main features of this stack are discussed in this paper. Design considerations and selection criteria for the main components of the vehicular fuel cell system, such as traction motor, air compressor and compressor motor, hydrogen storage and delivery, water and heat management, power conditioning, and control and monitoring subsystem are discussed in detail.

  11. Systems impacts of spent fuel disassembly alternatives

    SciTech Connect

    Not Available

    1984-07-01

    Three studies were completed to evaluate four alternatives to the disposal of intact spent fuel assemblies in a geologic repository. A preferred spent fuel waste form for disposal was recommended on consideration of (1) package design and fuel/package interaction, (2) long-term, in-repository performance of the waste form, and (3) overall process performance and costs for packaging, handling, and emplacement. The four basic alternative waste forms considered were (1) end fitting removal, (2) fission gas venting, (3) disassembly and close packing, and (4) shearing/immobilization. None of the findings ruled out any alternative on the basis of waste package considerations or long-term performance of the waste form. The third alternative offers flexibility in loading that may prove attractive in the various geologic media under consideration, greatly reduces the number of packages, and has the lowest unit cost. These studies were completed in October, 1981. Since then Westinghouse Electric Corporation and the Office of Nuclear Waste Isolation have completed studies in related fields. This report is now being published to provide publicly the background material that is contained within. 47 references, 28 figures, 31 tables.

  12. Alternate aircraft fuels: Prospects and operational implications

    NASA Technical Reports Server (NTRS)

    Witcofski, R. D.

    1977-01-01

    The potential use of coal-derived aviation fuels was assessed. The studies addressed the prices and thermal efficiencies associated with the production of coal-derived aviation kerosene, liquid methane and liquid hydrogen and the air terminal requirements and subsonic transport performance when utilizing liquid hydrogen. The fuel production studies indicated that liquid methane can be produced at a lower price and with a higher thermal efficiency than aviation kerosene or liquid hydrogen. Ground facilities of liquefaction, storage, distribution and refueling of liquid hydrogen fueled aircraft at airports appear technically feasibile. The aircraft studies indicate modest onboard energy savings for hydrogen compared to conventional fuels. Liquid hydrogen was found to be superior to both aviation kerosene and liquid methane from the standpoint of aircraft engine emissions.

  13. Solid Oxide Fuel Cells Operating on Alternative and Renewable Fuels

    SciTech Connect

    Wang, Xiaoxing; Quan, Wenying; Xiao, Jing; Peduzzi, Emanuela; Fujii, Mamoru; Sun, Funxia; Shalaby, Cigdem; Li, Yan; Xie, Chao; Ma, Xiaoliang; Johnson, David; Lee, Jeong; Fedkin, Mark; LaBarbera, Mark; Das, Debanjan; Thompson, David; Lvov, Serguei; Song, Chunshan

    2014-09-30

    This DOE project at the Pennsylvania State University (Penn State) initially involved Siemens Energy, Inc. to (1) develop new fuel processing approaches for using selected alternative and renewable fuels – anaerobic digester gas (ADG) and commercial diesel fuel (with 15 ppm sulfur) – in solid oxide fuel cell (SOFC) power generation systems; and (2) conduct integrated fuel processor – SOFC system tests to evaluate the performance of the fuel processors and overall systems. Siemens Energy Inc. was to provide SOFC system to Penn State for testing. The Siemens work was carried out at Siemens Energy Inc. in Pittsburgh, PA. The unexpected restructuring in Siemens organization, however, led to the elimination of the Siemens Stationary Fuel Cell Division within the company. Unfortunately, this led to the Siemens subcontract with Penn State ending on September 23rd, 2010. SOFC system was never delivered to Penn State. With the assistance of NETL project manager, the Penn State team has since developed a collaborative research with Delphi as the new subcontractor and this work involved the testing of a stack of planar solid oxide fuel cells from Delphi.

  14. 76 FR 31513 - Labeling Requirements for Alternative Fuels and Alternative Fueled Vehicles

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-01

    ...).\\6\\ Examples of the fuel labels appear below. \\4\\ 60 FR 26926 (May 19, 1995). \\5\\ The Commission's... described below. \\9\\ See 75 FR 58078 (Sept. 23, 2010). \\10\\ Although EPA regulations (40 CFR Part 600... the EPA, 99% of FFV owners run their vehicles only on gasoline and never use alternative fuel. 75...

  15. Arizona Public Service - Alternative Fuel (Hydrogen) Pilot Plant Design Report

    SciTech Connect

    James E. Francfort

    2003-12-01

    Hydrogen has promise to be the fuel of the future. Its use as a chemical reagent and as a rocket propellant has grown to over eight million metric tons per year in the United States. Although use of hydrogen is abundant, it has not been used extensively as a transportation fuel. To assess the viability of hydrogen as a transportation fuel and the viability of producing hydrogen using off-peak electric energy, Pinnacle West Capital Corporation (PNW) and its electric utility subsidiary, Arizona Public Service (APS) designed, constructed, and operates a hydrogen and compressed natural gas fueling station—the APS Alternative Fuel Pilot Plant. This report summarizes the design of the APS Alternative Fuel Pilot Plant and presents lessons learned from its design and construction. Electric Transportation Applications prepared this report under contract to the U.S. Department of Energy’s Advanced Vehicle Testing Activity. The Idaho National Engineering and Environmental Laboratory manages these activities for the Advanced Vehicle Testing Activity.

  16. Annual Report FY2014 Alternative Fuels DISI Engine Research.

    SciTech Connect

    Sjoberg, Carl-Magnus G.

    2015-01-01

    Due to concerns about future petroleum supply and accelerating climate change, increased engine efficiency and alternative fuels are of interest. This project contributes to the science-base needed by industry to develop highly efficient DISI engines that also beneficially exploit the different properties of alternative fuels. Lean operation is studied since it can provide higher efficiencies than traditional non-dilute stoichiometric operation. Since lean operation can lead to issues with ignition stability, slow flame propagation and low combustion efficiency, focus is on techniques that can overcome these challenges. Specifically, fuel stratification can be used to ensure ignition and completeness of combustion, but may lead to soot and NOx emissions challenges. Advanced ignition system and intake air preheating both promote ignition stability. Controlled end-gas autoignition can be used maintain high combustion efficiency for ultra-lean well-mixed conditions. However, the response of both combustion and exhaust emission to these techniques depends on the fuel properties. Therefore, to achieve optimal fuel-economy gains, the combustion-control strategies of the engine must adopt to the fuel being utilized.

  17. FY2015 Annual Report for Alternative Fuels DISI Engine Research.

    SciTech Connect

    Sjöberg, Carl-Magnus G.

    2016-01-01

    Climate change and the need to secure energy supplies are two reasons for a growing interest in engine efficiency and alternative fuels. This project contributes to the science-base needed by industry to develop highly efficient DISI engines that also beneficially exploit the different properties of alternative fuels. Our emphasis is on lean operation, which can provide higher efficiencies than traditional non-dilute stoichiometric operation. Since lean operation can lead to issues with ignition stability, slow flame propagation and low combustion efficiency, we focus on techniques that can overcome these challenges. Specifically, fuel stratification is used to ensure ignition and completeness of combustion but has soot- and NOx- emissions challenges. For ultralean well-mixed operation, turbulent deflagration can be combined with controlled end-gas auto-ignition to render mixed-mode combustion that facilitates high combustion efficiency. However, the response of both combustion and exhaust emissions to these techniques depends on the fuel properties. Therefore, to achieve optimal fuel-economy gains, the engine combustion-control strategies must be adapted to the fuel being utilized.

  18. Synthetic and Biomass Alternate Fueling in Aviation

    NASA Technical Reports Server (NTRS)

    Hendricks, R. C.; Bushnell, D. M.

    2009-01-01

    While transportation fueling can accommodate a broad range of alternate fuels, aviation fueling needs are specific, such as the fuel not freezing at altitude or become too viscous to flow properly or of low bulk energy density that shortens range. The fuel must also be compatible with legacy aircraft, some of which are more than 50 years old. Worldwide, the aviation industry alone uses some 85-95 billion gallons of hydrocarbon-based fossil fuel each year, which is about 10% of the transportation industry. US civil aviation alone consumes nearly 14 billion gallons. The enormity of the problem becomes overwhelming, and the aviation industry is taking alternate fueling issues very seriously. Biofuels (algae, cyanobacteria, halophytes, weeds that use wastelands, wastewater and seatwater), when properly sourced, have the capacity to be drop-in fuel replacements for petroleum fuels. As such, biojet from such sources solves the aviation CO2 emissions issue without the downsides of 'conventional' biofuels, such as competing with food and fresh water resources. Of the many current fundamental problems, the major biofuel problem is cost. Both research and development and creative engineering are required to reduce these biofuels costs. Research is also ongoing in several 'improvement' areas including refining/processing and biologics with greater disease resistance, greater bio-oil productivity, reduced water/nutrient requirements, etc. The authors' current research is aimed at aiding industry efforts in several areas. They are considering different modeling approaches, growth media and refining approaches, different biologic feedstocks, methods of sequestering carbon in the processes, fuel certification for aviation use and, overall, ensuring that biofuels are feasible from all aspects - operability, capacity, carbon cycle and financial. The authors are also providing common discussion grounds/opportunities for the various parties, disciplines and concerned organization to

  19. Alternative Fuel News, Vol. 2, No. 6

    SciTech Connect

    NREL

    1999-03-17

    The cover story in this issue of the Alternative Fuel News highlights the niche market principle; the places in which AFVs would best fit. This year's SEP funding is expected to be the springboard needed for the development of niche projects. The Clean Cities Program, by matching those needs and attributes in niches, can dramatically increase the attractiveness of AFVs and make an impact on those high-mileage, high-use fleets.

  20. Spent Nuclear Fuel Alternative Technology Risk Assessment

    SciTech Connect

    Perella, V.F.

    1999-11-29

    A Research Reactor Spent Nuclear Fuel Task Team (RRTT) was chartered by the Department of Energy (DOE) Office of Spent Fuel Management with the responsibility to recommend a course of action leading to a final technology selection for the interim management and ultimate disposition of the foreign and domestic aluminum-based research reactor spent nuclear fuel (SNF) under DOE''s jurisdiction. The RRTT evaluated eleven potential SNF management technologies and recommended that two technologies, direct co-disposal and an isotopic dilution alternative, either press and dilute or melt and dilute, be developed in parallel. Based upon that recommendation, the Westinghouse Savannah River Company (WSRC) organized the SNF Alternative Technology Program to further develop the direct co-disposal and melt and dilute technologies and provide a WSRC recommendation to DOE for a preferred SNF alternative management technology. A technology risk assessment was conducted as a first step in this recommendation process to determine if either, or both, of the technologies posed significant risks that would make them unsuitable for further development. This report provides the results of that technology risk assessment.

  1. Air quality effects of alternative fuels. Final report

    SciTech Connect

    Guthrie, P.; Ligocki, M.; Looker, R.; Cohen, J.

    1997-11-01

    To support the Alternative Fuels Utilization Program, a comparison of potential air quality effects of alternative transportation fuels is being performed. This report presents the results of Phase 1 of this program, focusing on reformulated gasoline (RFG), methanol blended with 15 percent gasoline (M85), and compressed natural gas (CNG). The fuels are compared in terms of effects on simulated future concentrations of ozone and mobile source air toxics in a photochemical grid model. The fuel comparisons were carried out for the future year 2020 and assumed complete replacement of gasoline in the projected light-duty gasoline fleet by each of the candidate fuels. The model simulations were carried out for the areas surrounding Los Angeles and Baltimore/DC, and other (non-mobile) sources of atmospheric emissions were projected according to published estimates of economic and population growth, and planned emission control measures specific to each modeling domain. The future-year results are compared to a future-year run with all gasoline vehicle emissions removed. The results of the comparison indicate that the use of M85 is likely to produce similar ozone and air toxics levels as those projected from the use of RFG. Substitution of CNG is projected to produce significantly lower levels of ozone and the mobile source air toxics than those projected for RFG or M85. The relative benefits of CNG substitution are consistent in both modeling domains. The projection methodologies used for the comparison are subject to a large uncertainty, and modeled concentration distributions depend on meteorological conditions. The quantitative comparison of fuel effects is thus likely to be sensitive to alternative assumptions. The consistency of the results for two very different modeling domains, using very different base assumptions, lends credibility to the qualitative differentiation among these fuels. 32 refs., 42 figs., 47 tabs.

  2. Fourth annual report to Congress, Federal Alternative Motor Fuels Programs

    SciTech Connect

    1995-07-01

    This annual report to Congress presents the current status of the alternative fuel vehicle programs being conducted across the country in accordance with the Alternative Motor Fuels Act of 1988. These programs, which represent the most comprehensive data collection effort ever undertaken on alternative fuels, are beginning their fifth year. This report summarizes tests and results from the fourth year.

  3. 16 CFR 309.10 - Alternative vehicle fuel rating.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 5 U.S.C. 552(a) and 1 CFR part 51. Copies of D 1945-91 and D 1946-90 may be obtained from the... 16 Commercial Practices 1 2013-01-01 2013-01-01 false Alternative vehicle fuel rating. 309.10... LABELING REQUIREMENTS FOR ALTERNATIVE FUELS AND ALTERNATIVE FUELED VEHICLES Requirements for...

  4. 16 CFR 309.10 - Alternative vehicle fuel rating.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 5 U.S.C. 552(a) and 1 CFR part 51. Copies of D 1945-91 and D 1946-90 may be obtained from the... 16 Commercial Practices 1 2014-01-01 2014-01-01 false Alternative vehicle fuel rating. 309.10... LABELING REQUIREMENTS FOR ALTERNATIVE FUELS AND ALTERNATIVE FUELED VEHICLES Requirements for...

  5. 16 CFR 309.10 - Alternative vehicle fuel rating.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 16 Commercial Practices 1 2012-01-01 2012-01-01 false Alternative vehicle fuel rating. 309.10... Electricity) and of Manufacturers of Electric Vehicle Fuel Dispensing Systems § 309.10 Alternative vehicle fuel rating. (a) If you are an importer, producer, or refiner of non-liquid alternative vehicle...

  6. Alternate-Fuel Vehicles and Their Application in Schools.

    ERIC Educational Resources Information Center

    Taggart, Chip

    1991-01-01

    Alternative fuels are becoming increasingly attractive from environmental, energy independence, and economic perspectives. Addresses the following topics: (1) federal and state legislation; (2) alternative fuels and their attributes; (3) practical experience with alternative-fuel vehicles in pupil transportation; and (4) options for school…

  7. Developments in U.S. Alternative Fuel Markets

    EIA Publications

    2001-01-01

    The alternative fueled vehicle (AFV)/alternative fuels industry experienced a number of market-related changes in the second half of the 1990s. This article describes each of the alternative transportation fuels and the AFVs in detail. It provides information on the development to date and looks at trends likely to occur in the future.

  8. Proceedings of the 1996 Windsor workshop on alternative fuels

    SciTech Connect

    1996-10-01

    This document contains information which was presented at the 1996 Windsor Workshop on Alternative Fuels. Topics include: international links; industry topics and infrastructure issues; propane; engine developments; the cleanliness of alternative fuels; heavy duty alternative fuel engines; California zev commercialization efforts; and in-use experience.

  9. Determination of alternative fuels combustion products: Phase 3 report

    SciTech Connect

    Whitney, K.A.

    1997-12-01

    This report describes the laboratory efforts to characterize particulate and gaseous exhaust emissions from a passenger vehicle operating on alternative fuels. Tests were conducted at room temperature (nominally 72 F) and 20 F utilizing the chassis dynamometer portion of the FTP for light-duty vehicles. Fuels evaluated include Federal RFG, LPG meeting HD-5 specifications, a national average blend of CNG, E85, and M85. Exhaust particulate generated at room temperature was further characterized to determine polynuclear aromatic content, trace element content, and trace organic constituents. For all fuels except M85, the room temperature particulate emission rate from this vehicle was about 2 to 3 mg/mile. On M85, the particulate emission rate was more than 6 mg/mile. In addition, elemental analysis of particulate revealed an order of magnitude more sulfur and calcium from M85 than any other fuel. The sulfur and calcium indicate that these higher emissions might be due to engine lubricating oil in the exhaust. For RFG, particulate emissions at 20 F were more than six times higher than at room temperature. For alcohol fuels, particulate emissions at 20 F were two to three times higher than at room temperature. For CNG and LPG, particulate emissions were virtually the same at 72 F and 20 F. However, PAH emissions from CNG and LPG were higher than expected. Both gaseous fuels had larger amounts of pyrene, 1-nitropyrene, and benzo(g,h,i)perylene in their emissions than the other fuels.

  10. Ammonia scrubbing makes alternative fuels economical

    SciTech Connect

    Brown, G.N.

    1997-09-01

    The first commercial in-situ forced oxidation ammonia scrubber system developed and patented by GE Environmental Systems (GEESI) has been completed at the Dakota Gasification Company`s Great Plains Synfuels Plant near Beulah, North Dakota, US. The process simultaneously removes acid gases while producing a valuable byproduct. It was developed to eliminate the performance issues associated with first generation ammonia scrubbing systems. In contrast to the ever increasing cost of lower sulfur fuels, the increasing levels of sulfur in the fuel can represent a greater economic benefit to the utility by burning a lower cost fuel coupled with production of a high value by-product. The sale of the by-product ammonium sulfate off-sets most of the scrubber capital and operating costs and in some cases can generate revenue. In this paper, the 300 MW commercial ammonium sulfate process installed in North Dakota is described. The initial operation is discussed. The ammonia scrubbing system economics and materials selections is presented. The ammonia scrubbing process economics for application using various fuels is presented.

  11. Preliminary ecotoxicity assessment of new generation alternative fuels in seawater.

    PubMed

    Rosen, Gunther; Dolecal, Renee E; Colvin, Marienne A; George, Robert D

    2014-06-01

    The United States Navy (USN) is currently demonstrating the viability of environmentally sustainable alternative fuels to power its fleet comprised of aircraft and ships. As with any fuel used in a maritime setting, there is potential for introduction into the environment through transport, storage, and spills. However, while alternative fuels are often presumed to be eco-friendly relative to conventional petroleum-based fuels, their environmental fate and effects on marine environments are essentially unknown. Here, standard laboratory-based toxicity experiments were conducted for two alternative fuels, jet fuel derived from Camelina sativa (wild flax) seeds (HRJ5) and diesel fuel derived from algae (HRD76), and two conventional counterparts, jet fuel (JP5) and ship diesel (F76). Initial toxicity tests performed on water-accommodated fractions (WAF) from neat fuels partitioned into seawater, using four standard marine species in acute and chronic/sublethal tests, indicate that the alternative fuels are significantly less toxic to marine organisms. PMID:24315182

  12. The proceedings of the 23rd International Technical Conference on Coal Utilization and Fuel Systems

    SciTech Connect

    Sakkestad, B.A.

    1998-03-01

    This document contains the proceedings of the 23rd International Technical Conference on Coal Utilization and Fuel Systems, held March 9-13, 1998 in Clearwater, Florida. Topics included advanced combustion systems, alternative fuels, coal liquefaction, climate change strategies, international highlights, combustion by-product utilization, co-firing, fuel gas treatment, low nitrogen oxide burners, carbon dioxide mitigation, power plant upgrades, Latin American coal perspective, coal fines utilization, upgraded coal for the power industry, hot gas particulate cleanup, coal conversion, hydraulics and transportation, coal briquetting and coal beneficiation, air toxics, materials and equipment, and coal-water fuels preparation. Separate abstracts have been prepared for the individual papers presented at this conference.

  13. Study of technical and economic feasibility of fuel cell cogeneration applications by electric utilities

    NASA Astrophysics Data System (ADS)

    Ku, W. S.; Wakefield, R. A.

    1981-10-01

    A previous EPRI study showed significant potential penetrations of fuel cells into the future generation mixes of U.S. electric utilities. A new EPRI-sponsored study was conducted to investigate the possible additional benefits of operating these utility-owned fuel cells as cogeneration facilities. Three classes of applications were evaluated: residential and commercial buildings, industrial processes and utility power plants. Incremental breakeven capital costs between cogenerating and electric-only fuel cells were determined with respect to conventional thermal energy supply alternatives. The results showed that there are sufficient economic incentives for fuel cell cogeneration in all three classes of applications.

  14. 16 CFR 309.10 - Alternative vehicle fuel rating.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 5 U.S.C. 552(a) and 1 CFR part 51. Copies of D 1945-91 and D 1946-90 may be obtained from the... Fuels Duties of Importers, Producers, and Refiners of Non-Liquid Alternative Vehicle Fuels (other Than... fuel rating. (a) If you are an importer, producer, or refiner of non-liquid alternative vehicle...

  15. EPAct Alternative Fuel Transportation Program: Success Story (Fact Sheet)

    SciTech Connect

    Not Available

    2010-08-01

    This success story highlights the EPAct Alternative Fuel Transportation Program's series of workshops that bring fleets regulated under the Energy Policy Act of 1992 (EPAct) together with Clean Cities stakeholders and fuel providers to form and strengthen regional partnerships and initiate projects that will deploy more alternative fuel infrastructure.

  16. 16 CFR 309.10 - Alternative vehicle fuel rating.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 5 U.S.C. 552(a) and 1 CFR part 51. Copies of D 1945-91 and D 1946-90 may be obtained from the... Fuels Duties of Importers, Producers, and Refiners of Non-Liquid Alternative Vehicle Fuels (other Than... fuel rating. (a) If you are an importer, producer, or refiner of non-liquid alternative vehicle...

  17. Brown Fat Fuel Utilization and Thermogenesis

    PubMed Central

    Townsend, Kristy L.; Tseng, Yu-Hua

    2014-01-01

    Brown adipose tissue (BAT) dissipates energy as heat to maintain optimal thermogenesis and to contribute to energy expenditure, in rodents and possibly humans. The energetic processes executed by BAT require a readily available fuel supply, which includes glucose and fatty acids (FAs). FAs become available by cellular uptake, de novo lipogenesis, and from multilocular lipid droplets in brown adipocytes. BAT also possesses a great capacity for glucose uptake and metabolism, and an ability to regulate insulin sensitivity. These properties make BAT an appealing target for the treatment of obesity, diabetes and other metabolic disorders. Recent research has revealed a better understanding of the processes of fuel utilization carried out by brown adipocytes, which is the focus of the current review. PMID:24389130

  18. Alternative Fuel and Advanced Vehicle Tools (AFAVT), AFDC (Fact Sheet)

    SciTech Connect

    Not Available

    2010-01-01

    The Alternative Fuels and Advanced Vehicles Web site offers a collection of calculators, interactive maps, and informational tools to assist fleets, fuel providers, and others looking to reduce petroleum consumption in the transportation sector.

  19. Impact of alternative energy forms on public utilities

    NASA Technical Reports Server (NTRS)

    Keith, F. W., Jr.

    1977-01-01

    The investigation of alternative energy sources by the electric utility industry is discussed. Research projects are reviewed in each of the following areas; solar energy, wind energy conversion, photosynthesis of biomass, ocean thermal energy conversion, geothermal energy, fusion, and the environmental impact of alternative energy sources.

  20. Alternative materials for solid oxide fuel cells

    SciTech Connect

    Stevenson, J.W.; Armstrong, T.R.

    1994-08-01

    The purpose of this research is to develop alternative materials for solid oxide fuel cell (SOFC) interconnections and electrodes with improved electrical, thermal, and electrochemical properties. A second objective is to develop synthesis and fabrication methods for these materials whereby they can be processed in air into SOFCs. The approach is to (1) develop modifications of the current, state-of-the-art materials used in SOFCs, (2) minimize the number of cations used in the SOFC materials to reduce potential deleterious interactions, (3) improve thermal, electrical, and electrochemical properties, (4) develop methods to synthesize both state-of-the-art and alternative materials for the simultaneous fabrication and consolidation in air of the interconnections and electrodes with the solid electrolyte, and (5) understand electrochemical reactions at materials interfaces and the effects of component composition and processing on those reactions. This paper summarizes a comprehensive study that assessed the effect of ambient oxygen partial pressure on the stability of air-sinterable chromites and the sintering behavior of doped lanthanum manganites.

  1. Alternative fuels and chemicals from synthesis gas

    SciTech Connect

    Unknown

    1998-12-01

    A DOE/PETC funded study was conducted to examine the use of a liquid phase mixed alcohol synthesis (LPMAS) plant to produce gasoline blending ethers. The LPMAS plant was integrated into three utilization scenarios: a coal fed IGCC power plant, a petroleum refinery using coke as a gasification feedstock, and a standalone natural gas fed partial oxidation plant. The objective of the study was to establish targets for the development of catalysts for the LPMAS reaction. In the IGCC scenario, syngas conversions need only be moderate because unconverted syngas is utilized by the combined cycle system. A once through LPMAS plant achieving syngas conversions in the range of 38--49% was found to be suitable. At a gas hourly space velocity of 5,000 sL/Kg-hr and a methanol:isobutanol selectivity ratio of 1.03, the target catalyst productivity ranges from 370 to 460 g iBuOH/Kg-hr. In the petroleum refinery scenario, high conversions ({approximately}95%) are required to avoid overloading the refinery fuel system with low Btu content unconverted syngas. To achieve these high conversions with the low H{sub 2}/CO ratio syngas, a recycle system was required (because of the limit imposed by methanol equilibrium), steam was injected into the LPMAS reactor, and CO{sub 2} was removed from the recycle loop. At the most economical recycle ratio, the target catalyst productivity is 265 g iBuOH/Kg-hr. In the standalone LPMAS scenario, essentially complete conversions are required to achieve a fuel balanced plant. At the most economical recycle ratio, the target catalyst productivity is 285 g iBuOH/Kg-hr. The economics of this scenario are highly dependent on the cost of the natural gas feedstock and the location of the plant. For all three case scenarios, the economics of a LPMAS plant is marginal at current ether market prices. Large improvements over demonstrated catalyst productivity and alcohol selectivity are required.

  2. Study of the combustion of various alternate fuels

    SciTech Connect

    Barfield, B.F.; Acker, G.J. Jr.; Lindsay, M.H.

    1984-01-01

    This research project used two methods for studying the problems facing alternate fuels. The first method studied the use of chemicals to improve fuel characteristics without changing the basic engine design. The second method was to make engine modifications to suit characteristics of the alternate fuel. The result of the two methods studied is a two-part report. Alcohols, solvent-refined coal (SRC-II), vegetable oils, and mixtures of these with diesel fuels and with each other are the alternative fuels discussed and tested. 21 references, 4 figures, 10 tables.

  3. Alternate Fuel Cell Membranes for Energy Independence

    SciTech Connect

    Storey, Robson, F.; Mauritz, Kenneth, A.; Patton, Derek, L.; Savin, Daniel, A.

    2012-12-18

    properties of experimental membranes, 9) fabrication and FC performance testing of membrane electrode assemblies (MEA) from experimental membranes, and 10) measurement of ex situ and in situ membrane durability of experimental membranes. Although none of the experimental hydrocarbon membranes that issued from the project displayed proton conductivities that met DOE requirements, the project contributed to our basic understanding of membrane structure-property relationships in a number of key respects. An important finding of the benchmark studies is that physical degradation associated with humidity and temperature variations in the FC tend to open new fuel crossover pathways and act synergistically with chemical degradation to accelerate overall membrane degradation. Thus, for long term membrane survival and efficient fuel utilization, membranes must withstand internal stresses due to humidity and temperature changes. In this respect, rigid aromatic hydrocarbon fuel cell membranes, e.g. PAES, offer an advantage over un-modified Nafion membranes. The benchmark studies also showed that broadband dielectric spectroscopy is a potentially powerful tool in assessing shifts in the fundamental macromolecular dynamics caused by Nafion chemical degradation, and thus, this technique is of relevance in interrogating proton exchange membrane durability in fuel cells and macromolecular dynamics as coupled to proton migration, which is of fundamental relevance in proton exchange membranes in fuel cells. A key finding from the hydrocarbon membrane synthesis effort was that rigid aromatic polymers containing isolated ion exchange groups tethered tightly to the backbone (short tether), such as HPPS, provide excellent mechanical and durability properties but do not provide sufficient conductivity, in either random or block configuration, when used as the sole ion exchange monomer. However, we continue to hypothesize that longer tethers, and tethered groups spaced more closely within the

  4. Vehicle conversion to hybrid gasoline/alternative fuel operation

    NASA Astrophysics Data System (ADS)

    Donakowski, T. D.

    1982-11-01

    The alternative fuels considered are compressed natural gas (CNG), liquefied natural gas (LNG), liquid petroleum gas (LPG), and methanol; vehicles were required to operate in a hybrid or dual-fuel gasoline/alternative fuel mode. Economic feasibility was determined by comparing the costs of continued use of gasoline fuel with the use of alternative fuel and retrofitted equipment. Differences in the amounts of future expenditures are adjusted by means of a total life-cycle costing. All fuels studied are technically feasible to allow a retrofit conversion to hybrid gasoline/alternative fuel operation except for methanol. Conversion to LPG is not recommended for vehicles with more than 100,000 km (60,000 miles) of prior use. Methanol conversion is not recommended for vehicles with more than 50,00 km (30,000 miles).

  5. Vehicle conversion to hybrid gasoline/alternative fuel operation

    NASA Technical Reports Server (NTRS)

    Donakowski, T. D.

    1982-01-01

    The alternative fuels considered are compressed natural gas (CNG), liquefied natural gas (LNG), liquid petroleum gas (LPG), and methanol; vehicles were required to operate in a hybrid or dual-fuel gasoline/alternative fuel mode. Economic feasibility was determined by comparing the costs of continued use of gasoline fuel with the use of alternative fuel and retrofitted equipment. Differences in the amounts of future expenditures are adjusted by means of a total life-cycle costing. All fuels studied are technically feasible to allow a retrofit conversion to hybrid gasoline/alternative fuel operation except for methanol. Conversion to LPG is not recommended for vehicles with more than 100,000 km (60,000 miles) of prior use. Methanol conversion is not recommended for vehicles with more than 50,00 km (30,000 miles).

  6. Heavy duty liquid and gaseous fuel emissions database test results from four alternative fuel configurations of the Caterpillar 3406 engine

    SciTech Connect

    Waldman, D.J. )

    1990-06-01

    Through the cooperation of several organizations including the Oak Ridge National Laboratory (ORNL) acting under the auspices of the Doe Alternative Fuels Utilization Program, heavy duty transient and steady-state emissions tests were conducted on four alternative fuel configurations of the Caterpillar 3406 engine. These included a diesel baseline, glow plug ignited methanol (diesel cycle), lean-burn spark ignited natural gas, and dual fuel (diesel pilot ignited natural gas). Results indicated methanol and natural gas both show excellent potential for low NOx and low particulate emissions. With these fuels however, unburned fuel emissions were much higher, especially in the dual fuel case, than the diesel baseline. Particulate emissions from the methanol and lean burn gas engines are thought to be almost entirely lube oil sourced. All of the configurations will require significant reduction in hydrocarbon and/or particulate emissions in order to meet the 1994 EPA emissions standards for heavy duty truck engines. 3 refs., 23 figs., 15 tabs.

  7. 10 CFR 503.21 - Lack of alternate fuel supply.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Lack of alternate fuel supply. 503.21 Section 503.21 Energy DEPARTMENT OF ENERGY (CONTINUED) ALTERNATE FUELS NEW FACILITIES Temporary Exemptions for New... substantially exceed the cost of using imported petroleum as a primary energy source as defined in § 503.6...

  8. 10 CFR 503.21 - Lack of alternate fuel supply.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false Lack of alternate fuel supply. 503.21 Section 503.21 Energy DEPARTMENT OF ENERGY (CONTINUED) ALTERNATE FUELS NEW FACILITIES Temporary Exemptions for New... substantially exceed the cost of using imported petroleum as a primary energy source as defined in § 503.6...

  9. Commercial Training Issues: Heavy Duty Alternative Fuel Vehicles.

    ERIC Educational Resources Information Center

    Eckert, Douglas

    The needs and opportunities in the heavy-duty alternative fuel vehicle training arena were examined in an informal ethnographic study of the appropriateness and effectiveness of the instructional materials currently being used in such training. Interviews were conducted with eight instructors from the National Alternative Fuels Training Program…

  10. Alternative cathodes for molten carbonate fuel cells

    SciTech Connect

    Bloom, I.; Lanagan, M.; Roche, M.F.; Krumpelt, M.

    1996-02-01

    Argonne National Laboratory (ANL) is developing advanced cathodes for pressurized operation of the molten carbonate fuel cell (MCFC). The present cathode, lithiated nickel oxide, tends to transport to the anode of the MCFC, where it is deposited as metallic nickel. The rate of transport increases with increasing CO{sub 2} pressure. This increase is due to an increased solubility of nickel oxide (NiO) in the molten carbonate electrolyte. An alternative cathode is lithium cobaltate (LiCoO{sub 2})-Solid solutions of LiCoO{sub 2} in LiFeO{sub 2} show promise for long-lived cathode materials. We have found that small additions of LiCoO{sub 2} to LiFeO{sub 2} markedly decrease the resistivity of the cathode material. Cells containing the LiCoO{sub 2}-LiFeO{sub 2} cathodes have stable performance for more than 2100 h of operation and display lower cobalt migration.

  11. Gas detection for alternate-fuel vehicle facilities.

    PubMed

    Ferree, Steve

    2003-05-01

    Alternative fuel vehicles' safety is driven by local, state, and federal regulations in which fleet owners in key metropolitan [table: see text] areas convert much of their fleet to cleaner-burning fuels. Various alternative fuels are available to meet this requirement, each with its own advantages and requirements. This conversion to alternative fuels leads to special requirements for safety monitoring in the maintenance facilities and refueling stations. A comprehensive gas and flame monitoring system needs to meet the needs of both the user and the local fire marshal. PMID:12754860

  12. Simulating the Use of Alternative Fuels in a Turbofan Engine

    NASA Technical Reports Server (NTRS)

    Litt, Jonathan S.; Chin, Jeffrey Chevoor; Liu, Yuan

    2013-01-01

    The interest in alternative fuels for aviation has created a need to evaluate their effect on engine performance. The use of dynamic turbofan engine simulations enables the comparative modeling of the performance of these fuels on a realistic test bed in terms of dynamic response and control compared to traditional fuels. The analysis of overall engine performance and response characteristics can lead to a determination of the practicality of using specific alternative fuels in commercial aircraft. This paper describes a procedure to model the use of alternative fuels in a large commercial turbofan engine, and quantifies their effects on engine and vehicle performance. In addition, the modeling effort notionally demonstrates that engine performance may be maintained by modifying engine control system software parameters to account for the alternative fuel.

  13. Preliminary studies of combustor sensitivity to alternative fuels

    NASA Technical Reports Server (NTRS)

    Humenik, F. M.

    1980-01-01

    Combustion problems associated with using alternative fuels ground power and aeropropulsion applications were studied. Rectangular sections designed to simulate large annular combustor test conditions were examined. The effects of using alternative fuels with reduced hydrogen content, increased aromatic content, and a broad variation in fuel property characteristics were also studied. Data of special interest were collected which include: flame radiation characteristics in the various combustor zones; the correponding increase in liner temperature from increased radiant heat flux; the effect of fuel bound nitrogen on oxides of nitrogen (NO sub x) emissions; and the overall total effect of fuel variations on exhaust emissions.

  14. Treatment alternatives for non-fuel-bearing hardware

    SciTech Connect

    Ross, W.A.; Clark, L.L.; Oma, K.H.

    1987-01-01

    This evaluation compared four alternatives for the treatment or processing of non-fuel bearing hardware (NFBH) to reduce its volume and prepare it for disposal. These treatment alternatives are: shredding; shredding and low pressure compaction; shredding and supercompaction; and melting. These alternatives are compared on the basis of system costs, waste form characteristics, and process considerations. The study recommends that melting and supercompaction alternatives be further considered and that additional testing be conducted for these two alternatives.

  15. Advanced fuel system technology for utilizing broadened property aircraft fuels

    NASA Technical Reports Server (NTRS)

    Reck, G. M.

    1980-01-01

    Factors which will determine the future supply and cost of aviation turbine fuels are discussed. The most significant fuel properties of volatility, fluidity, composition, and thermal stability are discussed along with the boiling ranges of gasoline, naphtha jet fuels, kerosene, and diesel oil. Tests were made to simulate the low temperature of an aircraft fuel tank to determine fuel tank temperatures for a 9100-km flight with and without fuel heating; the effect of N content in oil-shale derived fuels on the Jet Fuel Thermal Oxidation Tester breakpoint temperature was measured. Finally, compatibility of non-metallic gaskets, sealants, and coatings with increased aromatic content jet fuels was examined.

  16. Direct Carbon Fuel Cell System Utilizing Solid Carbonaceous Fuels

    SciTech Connect

    Turgut Gur

    2010-04-30

    This 1-year project has achieved most of its objective and successfully demonstrated the viability of the fluidized bed direct carbon fuel cell (FB-DCFC) approach under development by Direct Carbon technologies, LLC, that utilizes solid carbonaceous fuels for power generation. This unique electrochemical technology offers high conversion efficiencies, produces proportionately less CO{sub 2} in capture-ready form, and does not consume or require water for gasification. FB-DCFC employs a specialized solid oxide fuel cell (SOFC) arrangement coupled to a Boudouard gasifier where the solid fuel particles are fluidized and reacted by the anode recycle gas CO{sub 2}. The resulting CO is electrochemically oxidized at the anode. Anode supported SOFC structures employed a porous Ni cermet anode layer, a dense yttria stabilized zirconia membrane, and a mixed conducting porous perovskite cathode film. Several kinds of untreated solid fuels (carbon and coal) were tested in bench scale FBDCFC prototypes for electrochemical performance and stability testing. Single cells of tubular geometry with active areas up to 24 cm{sup 2} were fabricated. The cells achieved high power densities up to 450 mW/cm{sup 2} at 850 C using a low sulfur Alaska coal char. This represents the highest power density reported in the open literature for coal based DCFC. Similarly, power densities up to 175 mW/cm{sup 2} at 850 C were demonstrated with carbon. Electrical conversion efficiencies for coal char were experimentally determined to be 48%. Long-term stability of cell performance was measured under galvanostatic conditions for 375 hours in CO with no degradation whatsoever, indicating that carbon deposition (or coking) does not pose any problems. Similar cell stability results were obtained in coal char tested for 24 hours under galvanostatic conditions with no sign of sulfur poisoning. Moreover, a 50-cell planar stack targeted for 1 kW output was fabricated and tested in 95% CO (balance CO{sub 2

  17. Black carbon emissions reductions from combustion of alternative jet fuels

    NASA Astrophysics Data System (ADS)

    Speth, Raymond L.; Rojo, Carolina; Malina, Robert; Barrett, Steven R. H.

    2015-03-01

    Recent measurement campaigns for alternative aviation fuels indicate that black carbon emissions from gas turbines are reduced significantly with the use of alternative jet fuels that are low in aromatic content. This could have significant climate and air quality-related benefits that are currently not accounted for in environmental assessments of alternative jet fuels. There is currently no predictive way of estimating aircraft black carbon emissions given an alternative jet fuel. We examine the results from available measurement campaigns and propose a first analytical approximation (termed 'ASAF') of the black carbon emissions reduction associated with the use of paraffinic alternative jet fuels. We establish a relationship between the reduction in black carbon emissions relative to conventional jet fuel for a given aircraft, thrust setting relative to maximum rated thrust, and the aromatic volume fraction of the (blended) alternative fuel. The proposed relationship is constrained to produce physically meaningful results, makes use of only one free parameter and is found to explain a majority of the variability in measurements across the engines and fuels that have been tested.

  18. Fifth annual report to congress. Federal alternative motor fuels programs

    SciTech Connect

    1996-09-01

    This report presents the status of the US Department of Energy`s alternative fuel vehicle demonstration and performance tracking programs being conducted in accordance with the Energy Policy and Conservation Act. These programs comprise the most comprehensive data collection effort ever undertaken on alternative transportation fuels and alternative fuel vehicles. The report summarizes tests and results from the fifth year. Electric vehicles are not included in these programs, and the annual report does not include information on them. Since the inception of the programs, great strides have been made in developing commercially viable alternative fuel vehicle technologies. However, as is the case in the commercialization of all new technologies, some performance problems have been experienced on vehicles involved in early demonstration efforts. Substantial improvements have been recorded in vehicle practicality, safety, and performance in real-world demonstrations. An aspect of particular interest is emissions output. Results from light duty alternative fuel vehicles have demonstrated superior inservice emissions performance. Heavy duty alternative fuel vehicles have demonstrated dramatic reductions in particulate emissions. However, emissions results from vehicles converted to run on alternative fuel have not been as promising. Although the technologies available today are commercially viable in some markets, further improvements in infrastructure and economics will result in greater market expansion. Information is included in this report on light and heavy duty vehicles, transit buses, vehicle conversions, safety, infrastructure support, vehicle availability, and information dissemination.

  19. Synthetic and Biomass Alternate Fueling in Aviation

    NASA Technical Reports Server (NTRS)

    Hendricks, R.C.; Bushnell, D.M.

    2009-01-01

    Worldwide, aviation alone uses 85 to 95 billion gallons of nonrenewable fossil fuel per year (2008). General transportation fueling can accommodate several different fuels; however, aviation fuels have very specific requirements. Biofuels have been flight demonstrated, are considered renewable, have the capacity to become "drop-in" replacements for Jet-A fuel, and solve the CO2 climate change problem. The major issue is cost; current biomass biofuels are not economically competitive. Biofuel feedstock sources being researched are halophytes, algae, cyanobacteria, weeds-to-crops, wastes with contingent restraints on use of crop land, freshwater, and climate change. There are five major renewable energy sources: solar thermal, solar photovoltaic, wind, drilled geothermal and biomass, each of which have an order of magnitude greater capacity to meet all energy needs. All five address aspects of climate change; biomass has massive potential as an energy fuel feedstock.

  20. Alternative utilization of wheat starch, Grafton, North Dakota

    SciTech Connect

    Not Available

    1981-02-01

    In 1978, North Dakota State University (NDSU), in cooperation with the Economic Development Administration, completed a study of the feasibility of a vital wheat gluten starch processing plant in North Dakota. The overall objective of this study is to determine the most feasible alternatives for utilizing the by-product starch slurry from a vital wheat gluten processing plant.

  1. Utilization of refuse derived fuels by the United States Navy

    SciTech Connect

    Lehr, D.L.

    1983-07-01

    The Resource Conservation and Recovery Act and the Safe Drinking Water Act are forcing those in charge of landfills to adhere to more stringent operating standards. This, along with the growing scarcity of landfill availability, makes the use of landfills less desirable for solid waste disposal. As such, new disposal methods that are environmentally safe and economically practical must be found. One alternative, that is not really new but which has gained renewed interest, is incineration. The Resource Conservation and Recovery Act also requires that government agencies should direct their installations to recover as many resources as possible. Therefore if incineration is to be implemented, heat recovery should be incorporated into the system. There are several processes available to convert raw refuse into a fuel for use in a heat recovery system. Refuse derived fuels (RDF) can be in the form of raw refuse, densified refuse, powdered refuse, gas, or pyrolytic oil. The only form of RDF that is economically feasible for systems designed to process less than 200 TPD (tons per day) is raw refuse. Most Navy bases generate far less than 200 TPD of solid waste and therefore the Navy has focused most of its attention on modular heat recovery incinerator (HRI) systems that utilize raw refuse as fuel.

  2. Genomics of alternative sulfur utilization in ascomycetous yeasts.

    PubMed

    Linder, Tomas

    2012-10-01

    Thirteen ascomycetous yeast strains with sequenced genomes were assayed for their ability to grow on chemically defined medium with 16 different sulfur compounds as the only significant source of sulfur. These compounds included sulfoxides, sulfones, sulfonates, sulfamates and sulfate esters. Broad utilization of alternative sulfur sources was observed in Komagataella pastoris (syn. Pichia pastoris), Lodderomyces elongisporus, Millerozyma farinosa (syn. Pichia sorbitophila), Pachysolen tannophilus, Scheffersomyces stipitis (syn. Pichia stipitis), Spathaspora passalidarum, Yamadazyma tenuis (syn. Candida tenuis) and Yarrowia lipolytica. Kluyveromyces lactis, Saccharomyces cerevisiae and Zygosaccharomyces rouxii were mainly able to utilize sulfonates and sulfate esters, while Lachancea thermotolerans and Schizosaccharomyces pombe were limited to aromatic sulfate esters. Genome analysis identified several candidate genes with bacterial homologues that had been previously shown to be involved in the utilization of alternative sulfur sources. Analysis of candidate gene promoter sequences revealed a significant overrepresentation of DNA motifs that have been shown to regulate sulfur metabolism in Sacc. cerevisiae. PMID:22790398

  3. Methanol as an alternative automotive fuel: CMC's approach and experience

    SciTech Connect

    Ashton, P.M.; McCurdy, G.; Osler, C.F.

    1983-08-01

    This paper highlights experiences of Canadian Methanol Canadien (CMC) in demonstration of both methanol fuel and methanol-gasoline blends in Winnipeg since 1980 and describes CMC's commercial and technical approach to development of methanol as an alternative automotive fuel. CMC's marketing approach is to equip existing retail service station outlets with the capability to dispense a full slate of fuels (methanol, methanol containing gasolines, as well as conventional fuels) with fuel blending occurring at the service station location. In this way, the fuel distribution infrastructure can be put in place to service simultaneously both existing vehicles (with a range of methyl gasoline blends) and new methanol fuelled vehicles while assuming a high degree of blended fuel quality in a cost-effective manner. It is concluded that methanol and methanol containing gasolines are excellent transportation fuels for Canada and elsewhere, and can be readily integrated into existing transport fuel retail infrastructure.

  4. Combustion characteristics of gas turbine alternative fuels

    NASA Technical Reports Server (NTRS)

    Rollbuhler, R. James

    1987-01-01

    An experimental investigation was conducted to obtain combustion performance values for specific heavyend, synthetic hydrocarbon fuels. A flame tube combustor modified to duplicate an advanced gas turbine engine combustor was used for the tests. Each fuel was tested at steady-state operating conditions over a range of mass flow rates, fuel-to-air mass ratio, and inlet air temperatures. The combustion pressure, as well as the hardware, were kept nearly constant over the program test phase. Test results were obtained in regards to geometric temperature pattern factors as a function of combustor wall temperatures, the combustion gas temperature, and the combustion emissions, both as affected by the mass flow rate and fuel-to-air ratio. The synthetic fuels were reacted in the combustor such that for most tests their performance was as good, if not better, than the baseline gasoline or diesel fuel tests. The only detrimental effects were that at high inlet air temperature conditions, fuel decomposition occurred in the fuel atomizing nozzle passages resulting in blockage. And the nitrogen oxide emissions were above EPA limits at low flow rate and high operating temperature conditions.

  5. Clean Cities Guide to Alternative Fuel Commercial Lawn Equipment (Brochure)

    SciTech Connect

    Not Available

    2011-10-01

    Guide explains the different types of alternative fuel commercial mowers and lists the makes and models of the ones available on the market. Turf grass is a fixture of the American landscape and the American economy. It is the nation's largest irrigated crop, covering more than 40 million acres. Legions of lawnmowers care for this expanse during the growing season-up to year-round in the warmest climates. The annual economic impact of the U.S. turf grass industry has been estimated at more than $62 billion. Lawn mowing also contributes to the nation's petroleum consumption and pollutant emissions. Mowers consume 1.2 billion gallons of gasoline annually, about 1% of U.S. motor gasoline consumption. Commercial mowing accounts for about 35% of this total and is the highest-intensity use. Large property owners and mowing companies cut lawns, sports fields, golf courses, parks, roadsides, and other grassy areas for 7 hours per day and consume 900 to 2,000 gallons of fuel annually depending on climate and length of the growing season. In addition to gasoline, commercial mowing consumes more than 100 million gallons of diesel annually. Alternative fuel mowers are one way to reduce the energy and environmental impacts of commercial lawn mowing. They can reduce petroleum use and emissions compared with gasoline- and diesel-fueled mowers. They may also save on fuel and maintenance costs, extend mower life, reduce fuel spillage and fuel theft, and promote a 'green' image. And on ozone alert days, alternative fuel mowers may not be subject to the operational restrictions that gasoline mowers must abide by. To help inform the commercial mowing industry about product options and potential benefits, Clean Cities produced this guide to alternative fuel commercial lawn equipment. Although the guide's focus is on original equipment manufacturer (OEM) mowers, some mowers can be converted to run on alternative fuels. For more information about propane conversions. This guide may be

  6. Alternative Fuels and Their Potential Impact on Aviation

    NASA Technical Reports Server (NTRS)

    Daggett, D.; Hendricks, R.; Walther, R.

    2006-01-01

    With a growing gap between the growth rate of petroleum production and demand, and with mounting environmental needs, the aircraft industry is investigating issues related to fuel availability, candidates for alternative fuels, and improved aircraft fuel efficiency. Bio-derived fuels, methanol, ethanol, liquid natural gas, liquid hydrogen, and synthetic fuels are considered in this study for their potential to replace or supplement conventional jet fuels. Most of these fuels present the airplane designers with safety, logistical, and performance challenges. Synthetic fuel made from coal, natural gas, or other hydrocarbon feedstock shows significant promise as a fuel that could be easily integrated into present and future aircraft with little or no modification to current aircraft designs. Alternatives, such as biofuel, and in the longer term hydrogen, have good potential but presently appear to be better suited for use in ground transportation. With the increased use of these fuels, a greater portion of a barrel of crude oil can be used for producing jet fuel because aircraft are not as fuel-flexible as ground vehicles.

  7. 76 FR 19829 - Clean Alternative Fuel Vehicle and Engine Conversions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-08

    ... include conversions of conventional gasoline or diesel vehicles to hybrid-electric vehicles, and conversions from hybrid-electric vehicles to plug-in hybrid electric vehicles. Since alternative fuel... Parts Manufacturing. 336322 Other Motor Vehicle Electrical and Electronic Equipment...

  8. Impact of fuel fabrication and fuel management technologies on uranium utilization

    SciTech Connect

    Arnsberger, P.L.; Stucker, D.L.

    1994-12-31

    Uranium utilization in commercial pressurized water reactors is a complex function of original NSSS design, utility energy requirements, fuel assembly design, fuel fabrication materials and fuel management optimization. Fuel design and fabrication technologies have reacted to the resulting market forcing functions with a combination of design and material changes. The technologies employed have included ever-increasing fuel discharge burnup, non-parasitic structural materials, burnable absorbers, and fissile material core zoning schemes (both in the axial and radial direction). The result of these technological advances has improved uranium utilization by roughly sixty percent from the infancy days of nuclear power to present fuel management. Fuel management optimization technologies have also been developed in recent years which provide fuel utilization improvements due to core loading pattern optimization. This paper describes the development and impact of technology advances upon uranium utilization in modem pressurized water reactors.

  9. Driving the Nation Toward a Clean Energy Future: Fuels Utilization Program Fact Sheet

    SciTech Connect

    Thomas, J.

    2000-12-12

    The transportation market in the United States is evolving. As the number of vehicles and miles traveled on American roadways continues to grow, the nation is looking toward advanced vehicles and fuels to meet the increasing demand for more energy efficient, environmentally friendly modes of transport. At the National Renewable Energy Laboratory, the Center for Transportation Technologies and Systems' Fuel Utilization Program is doing its part. We're developing and demonstrating engine and fuel technologies that allow alternative and advanced petroleum fuels to compete with their conventional counterparts.

  10. Alternative Fuel and Advanced Technology Commercial Lawn Equipment (Brochure)

    SciTech Connect

    Not Available

    2014-10-01

    The U.S. Department of Energy's Clean Cities program produced this guide to help inform the commercial mowing industry about product options and potential benefits. This guide provides information about equipment powered by propane, ethanol, compressed natural gas, biodiesel, and electricity, as well as advanced engine technology. In addition to providing an overview for organizations considering alternative fuel lawn equipment, this guide may also be helpful for organizations that want to consider using additional alternative fueled equipment.

  11. Alternative Fuel and Advanced Technology Commercial Lawn Equipment

    SciTech Connect

    2014-10-10

    The U.S. Department of Energy's Clean Cities program produced this guide to help inform the commercial mowing industry about product options and potential benefits. This guide provides information about equipment powered by propane, ethanol, compressed natural gas, biodiesel, and electricity, as well as advanced engine technology. In addition to providing an overview for organizations considering alternative fuel lawn equipment, this guide may also be helpful for organizations that want to consider using additional alternative fueled equipment.

  12. Intelligent Engine Systems: Alternate Fuels Evaluation

    NASA Technical Reports Server (NTRS)

    Ballal, Dilip

    2008-01-01

    The performance and gaseous emissions were measured for a well-stirred reactor operating under lean conditions for two fuels: JP8 and a synthetic Fisher-Tropsch fuel over a range of equivalence ratios from 0.6 down to the lean blowout. The lean blowout characteristics were determined in LBO experiments at loading parameter values from 0.7 to 1.4. The lean blowout characteristics were then explored under higher loading conditions by simulating higher altitude operation with the use of nitrogen as a dilution gas for the air stream. The experiments showed that: (1) The lean blowout characteristics for the two fuels were close under both low loading and high loading conditions. (2) The combustion temperatures and observed combustion efficiencies were similar for the two fuels. (3) The gaseous emissions were similar for the two fuels and the differences in the H2O and CO2 emissions appear to be directly relatable to the C/H ratio for the fuels.

  13. Alternatives to traditional transportation fuels 1994. Volume 1

    SciTech Connect

    1996-02-01

    In this report, alternative and replacement fuels are defined in accordance with the EPACT. Section 301 of the EPACT defines alternative fuels as: methanol, denatured ethanol, and other alcohols; mixtures containing 85% or more (or such other percentage, but not less than 70%, as determined by the Secretary of Energy, by rule, to provide for requirements relating to cold start, safety, or vehicle functions) by volume of methanol, denatured ethanol, and other alcohols with gasoline or other fuels; natural gas; liquefied petroleum gas; hydrogen; coal-derived liquid fuels; fuels (other than alcohol) derived from biological materials; electricity (including electricity from solar energy); and any other fuel the Secretary determines, by rule, is substantially not petroleum and would yield substantial energy security benefits and substantial environmental benefits. The EPACT defines replacement fuels as the portion of any motor fuel that is methanol, ethanol, or other alcohols, natural gas, liquefied petroleum gas, hydrogen, coal-derived liquid fuels, fuels (other than alcohol) derived from biological materials, electricity (including electricity from solar energy), ethers, or any other fuel the Secretary of Energy determines, by rule, is substantially not petroleum and would yield substantial energy security benefits and substantial environmental benefits. This report covers only those alternative and replacement fuels cited in the EPACT that are currently commercially available or produced in significant quantities for vehicle demonstration purposes. Information about other fuels, such as hydrogen and biodiesel, will be included in later reports as those fuels become more widely used. Annual data are presented for 1992 to 1996. Data for 1996 are based on plans or projections for 1996.

  14. Expectation dynamics: Ups and downs of alternative fuels

    NASA Astrophysics Data System (ADS)

    Konrad, Kornelia

    2016-03-01

    The transport sector must undergo radical changes if it is to reduce its carbon emissions, calling for alternative vehicles and fuel types. Researchers now analyse the expectation cycles for different fuel technologies and draw lessons for the role of US policy in supporting them.

  15. Alternative Fuel News: Official Publication of the Clean Cities Network and the Alternative Fuels Data Center, Vol. 6, No. 1

    SciTech Connect

    Not Available

    2002-07-01

    Quarterly magazine with articles on auctions of used alternative fuel vehicles (AFVs), Royalty Enterprises of Ohio, and introducing AFVs in neglected urban areas. Plus Ford's new CNG school bus and electric buses in Connecticut.

  16. Vegetable oils as fuel alternatives - symposium overview

    SciTech Connect

    Pryde, E.H.

    1984-10-01

    Several encouraging statements can be made about the use of vegetable oil products as fuel as a result of the information presented in these symposium papers. Vegetable oil ester fuels have the greatest promise, but further engine endurance tests will be required. These can be carried out best by the engine manufacturers. Microemulsions appear to have promise, but more research and engine testing will be necessary before performance equivalent to the ester fuels can be developed. Such research effort can be justified because microemulsification is a rather uncomplicated physical process and might be adaptable to on-farm operations, which would be doubtful for the more involved transesterfication process. Although some answers have been provided by this symposium, others are still not available; engine testing is continuing throughout the world particularly in those countries that do not have access to petroleum. 9 references.

  17. Engine Materials Compatibility with Alternate Fuels

    SciTech Connect

    Thomson, Jeffery K; Pawel, Steven J; Wilson, Dane F

    2013-05-01

    The compatibility of aluminum and aluminum alloys with synthetic fuel blends comprised of ethanol and reference fuel C (a 50/50 mix of toluene and iso-octane) was examined as a function of water content and temperature. Commercially pure wrought aluminum and several cast aluminum alloys were observed to be similarly susceptible to substantial corrosion in dry (< 50 ppm water) ethanol. Corrosion rates of all the aluminum materials examined were accelerated by increased temperature and ethanol content in the fuel mixture, but inhibited by increased water content. Pretreatments designed to stabilize passive films on aluminum increased the incubation time for onset of corrosion, suggesting film stability is a significant factor in the mechanism of corrosion.

  18. Engine Materials Compatability with Alternative Fuels

    SciTech Connect

    Pawel, Steve; Moore, D.

    2013-04-05

    The compatibility of aluminum and aluminum alloys with synthetic fuel blends comprised of ethanol and reference fuel C (a 50/50 mix of toluene and iso-octane) was examined as a function of water content and temperature. Commercially pure wrought aluminum and several cast aluminum alloys were observed to be similarly susceptible to substantial corrosion in dry (< 50 ppm water) ethanol. Corrosion rates of all the aluminum materials examined were accelerated by increased temperature and ethanol content in the fuel mixture, but inhibited by increased water content. Pretreatments designed to stabilize passive films on aluminum increased the incubation time for onset of corrosion, suggesting film stability is a significant factor in the mechanism of corrosion.

  19. 18 CFR 281.304 - Computation of alternative fuel volume.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... alternative fuel volume. 281.304 Section 281.304 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY OTHER REGULATIONS UNDER THE NATURAL GAS POLICY ACT OF 1978 AND RELATED AUTHORITIES NATURAL GAS CURTAILMENT UNDER THE NATURAL GAS POLICY ACT OF 1978 Alternative...

  20. 18 CFR 281.304 - Computation of alternative fuel volume.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... alternative fuel volume. 281.304 Section 281.304 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY OTHER REGULATIONS UNDER THE NATURAL GAS POLICY ACT OF 1978 AND RELATED AUTHORITIES NATURAL GAS CURTAILMENT UNDER THE NATURAL GAS POLICY ACT OF 1978 Alternative...

  1. 18 CFR 281.304 - Computation of alternative fuel volume.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... alternative fuel volume. 281.304 Section 281.304 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY OTHER REGULATIONS UNDER THE NATURAL GAS POLICY ACT OF 1978 AND RELATED AUTHORITIES NATURAL GAS CURTAILMENT UNDER THE NATURAL GAS POLICY ACT OF 1978 Alternative...

  2. 18 CFR 281.304 - Computation of alternative fuel volume.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... alternative fuel volume. 281.304 Section 281.304 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY OTHER REGULATIONS UNDER THE NATURAL GAS POLICY ACT OF 1978 AND RELATED AUTHORITIES NATURAL GAS CURTAILMENT UNDER THE NATURAL GAS POLICY ACT OF 1978 Alternative...

  3. 18 CFR 281.304 - Computation of alternative fuel volume.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... alternative fuel volume. 281.304 Section 281.304 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY OTHER REGULATIONS UNDER THE NATURAL GAS POLICY ACT OF 1978 AND RELATED AUTHORITIES NATURAL GAS CURTAILMENT UNDER THE NATURAL GAS POLICY ACT OF 1978 Alternative...

  4. Certification of alternative aviation fuels and blend components

    SciTech Connect

    Wilson III, George R. ); Edwards, Tim; Corporan, Edwin ); Freerks, Robert L. )

    2013-01-15

    Aviation turbine engine fuel specifications are governed by ASTM International, formerly known as the American Society for Testing and Materials (ASTM) International, and the British Ministry of Defence (MOD). ASTM D1655 Standard Specification for Aviation Turbine Fuels and MOD Defence Standard 91-91 are the guiding specifications for this fuel throughout most of the world. Both of these documents rely heavily on the vast amount of experience in production and use of turbine engine fuels from conventional sources, such as crude oil, natural gas condensates, heavy oil, shale oil, and oil sands. Turbine engine fuel derived from these resources and meeting the above specifications has properties that are generally considered acceptable for fuels to be used in turbine engines. Alternative and synthetic fuel components are approved for use to blend with conventional turbine engine fuels after considerable testing. ASTM has established a specification for fuels containing synthesized hydrocarbons under D7566, and the MOD has included additional requirements for fuels containing synthetic components under Annex D of DS91-91. New turbine engine fuel additives and blend components need to be evaluated using ASTM D4054, Standard Practice for Qualification and Approval of New Aviation Turbine Fuels and Fuel Additives. This paper discusses these specifications and testing requirements in light of recent literature claiming that some biomass-derived blend components, which have been used to blend in conventional aviation fuel, meet the requirements for aviation turbine fuels as specified by ASTM and the MOD. The 'Table 1' requirements listed in both D1655 and DS91-91 are predicated on the assumption that the feedstocks used to make fuels meeting these requirements are from approved sources. Recent papers have implied that commercial jet fuel can be blended with renewable components that are not hydrocarbons (such as fatty acid methyl esters). These are not allowed blend

  5. Alternative fuel capabilities of the Mod II Stirling vehicle

    SciTech Connect

    Grandin, A.W.; Ernst, W.D.

    1988-01-01

    The Stirling engine's characteristics make it a prime candidate for both multifuel and alternative fuel uses. In this paper, the relevant engine characteristics of the Mod II Stirling engine are examined, including the external heat system and basic operation. Adaptation of the Stirling to multifuel operation is addressed, and its experience with alternative fuels in automotive applications is summarized. The results of the U.S. Air Force review of the Stirling's multifuel capability are described, and the Stirling's advantages with liquid, gaseous, and solid fuels are discussed.

  6. Synthetic and Biomass Alternate Fueling in Aviation

    NASA Technical Reports Server (NTRS)

    Hendricks, Robert C.; Bushnell, Dennis M.

    2009-01-01

    Must use earth's most abundant natural resources - Biomass, Solar, Arid land (43%), Seawater (97%) with nutrients (80%) plus brackish waters and nutrients resolve environmental triangle of conflicts energy-food-freshwater and ultrafine particulate hazards. Requires Paradigm Shift - Develop and Use Solar* for energy; Biomass for aviation and hybrid-electric-compressed air mobility fueling with transition to hydrogen long term.

  7. Fuel properties of biodiesel from alternative feedstocks

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Defined as monoalkyl esters of long-chain fatty acids prepared from plant oils, animal fats, or other lipids, advantages of biodiesel over conventional petroleum diesel fuel include derivation from renewable and domestic feedstocks, superior lubricity and biodegradability, higher cetane number and f...

  8. Describing current and potential markets for alternative-fuel vehicles

    SciTech Connect

    1996-03-26

    Motor vehicles are a major source of greenhouse gases, and the rising numbers of motor vehicles and miles driven could lead to more harmful emissions that may ultimately affect the world`s climate. One approach to curtailing such emissions is to use, instead of gasoline, alternative fuels: LPG, compressed natural gas, or alcohol fuels. In addition to the greenhouse gases, pollutants can be harmful to human health: ozone, CO. The Clean Air Act Amendments of 1990 authorized EPA to set National Ambient Air Quality Standards to control this. The Energy Policy Act of 1992 (EPACT) was the first new law to emphasize strengthened energy security and decreased reliance on foreign oil since the oil shortages of the 1970`s. EPACT emphasized increasing the number of alternative-fuel vehicles (AFV`s) by mandating their incremental increase of use by Federal, state, and alternative fuel provider fleets over the new few years. Its goals are far from being met; alternative fuels` share remains trivial, about 0.3%, despite gains. This report describes current and potential markets for AFV`s; it begins by assessing the total vehicle stock, and then it focuses on current use of AFV`s in alternative fuel provider fleets and the potential for use of AFV`s in US households.

  9. Development of alternative fuels from coal-derived syngas

    SciTech Connect

    Not Available

    1991-03-22

    The overall objectives of this program are to investigate potential technologies for the conversion of coal-derived synthesis gas to oxygenated fuels, hydrocarbon fuels, fuel intermediates, and octane enhancers, and to demonstrate the most promising technologies at DOE's LaPorte, Texas, Slurry Phase Alternative Fuels development Unit (AFDU). The program will initially involve a continuation of the work performed under the Liquid Phase Methanol Program but will later draw upon information and technologies generated in current and future DOE-funded contracts, as well as test commercially available catalysts. 1 fig., 3 tabs.

  10. Exploring Alternative Fuels in Middle Schools

    ERIC Educational Resources Information Center

    Donley, John F.; Stewardson, Gary A.

    2010-01-01

    Alternative energy sources have become increasingly important as the production of domestic oil has declined and dependence on foreign oil has increased. Historically, there have been four time periods during which the United States was in fact crippled by oil shortages. These time periods include: (1) the early 1900s; (2) World War II; (3) the…

  11. Developing alternative feedstocks for fuel alcohol

    SciTech Connect

    Verma, V.K.

    1982-06-01

    This paper briefly reviews recent research to examine the viability of energy sorghum as a feedstock for producing fuel alcohol. Energy sorghum is the name given to any sweet sorghum shown to be feasible for producing fuel alcohol. Energy sorghum can grow on a variety of soils, in 90 day cycles, with up to three crops a year. Crop rotation is rarely needed; most of the nitrogen and potassium returns to the soil. Harmon Engineering and Testing initiated an inhouse program to research sweet sorghum development. Equipment specifications and preliminary results are given. An ''energy farm'' process is explained step by step. Stalk juice, grain, and stalk fiber yields are listed. The use of bagasse and carbon dioxide is also considered.

  12. The causes and effects of the Alternative Motor Fuels Act

    NASA Astrophysics Data System (ADS)

    Liu, Yimin

    The corporate average fuel economy (CAFE) standard is the major policy tool to improve the fleet average miles per gallon of automobile manufacturers in the U.S. The Alternative Motor Fuels Act (AMFA) provides special treatment in calculating the fuel economy of alternative fuel vehicles to give manufacturers CAFE incentives to produce more alternative fuel vehicles. AMFA has as its goals an increase in the production of alternative fuel vehicles and a decrease in gasoline consumption and greenhouse gas emissions. This dissertation examines theoretically the effects of the program set up under AMFA. It finds that, under some conditions, this program may actually increase gasoline consumption and greenhouse gas emissions. The dissertation also uses hedonic techniques to examine whether the Alternative Motor Fuels Act (AMFA) has a significant effect on the implicit price of fuel economy and whether the marginal value of vehicle fuel efficiency changes over time. It estimates the change of implicit price in miles per gallon after the production of alternative fuel vehicles (AFVs). Results indicate that every year consumers may evaluate vehicle fuel economy differently, and that since AFVs came to the market, the marginal value of fuel economy from specific companies producing AFVs has decreased. This finding suggests that since the AMFA provides extra Corporate Average Fuel Economy (CAFE) credit for those automakers producing AFVs, the automakers can take advantage of the incentive to produce more profitable conventional vehicles and meet CAFE standards without improving the fleet fuel economy. In this way, manufacturers who produce AFVs are willing to offer a lower price for the fuel economy under the AMFA. Additionally, this paper suggests that the flexible fuel vehicles (FFVs) on the market are not significantly more expensive than comparable conventional vehicles, even if FFVs are also able to run on an alternative fuel and may cost more than conventional vehicles

  13. Life-Cycle Analysis of Alternative Aviation Fuels in GREET

    SciTech Connect

    Elgowainy, A.; Han, J.; Wang, M.; Carter, N.; Stratton, R.; Hileman, J.; Malwitz, A.; Balasubramanian, S.

    2012-06-01

    The Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model, developed at Argonne National Laboratory, has been expanded to include well-to-wake (WTWa) analysis of aviation fuels and aircraft. This report documents the key WTWa stages and assumptions for fuels that represent alternatives to petroleum jet fuel. The aviation module in GREET consists of three spreadsheets that present detailed characterizations of well-to-pump and pump-to-wake parameters and WTWa results. By using the expanded GREET version (GREET1_2011), we estimate WTWa results for energy use (total, fossil, and petroleum energy) and greenhouse gas (GHG) emissions (carbon dioxide, methane, and nitrous oxide) for (1) each unit of energy (lower heating value) consumed by the aircraft or(2) each unit of distance traveled/ payload carried by the aircraft. The fuel pathways considered in this analysis include petroleum-based jet fuel from conventional and unconventional sources (i.e., oil sands); Fisher-Tropsch (FT) jet fuel from natural gas, coal, and biomass; bio-jet fuel from fast pyrolysis of cellulosic biomass; and bio-jet fuel from vegetable and algal oils, which falls under the American Society for Testing and Materials category of hydroprocessed esters and fatty acids. For aircraft operation, we considered six passenger aircraft classes and four freight aircraft classes in this analysis. Our analysis revealed that, depending on the feedstock source, the fuel conversion technology, and the allocation or displacement credit methodology applied to co-products, alternative bio-jet fuel pathways have the potential to reduce life-cycle GHG emissions by 55–85 percent compared with conventional (petroleum-based) jet fuel. Although producing FT jet fuel from fossil feedstock sources — such as natural gas and coal — could greatly reduce dependence on crude oil, production from such sources (especially coal) produces greater WTWa GHG emissions compared with petroleum jet

  14. Life-cycle analysis of alternative aviation fuels in GREET

    SciTech Connect

    Elgowainy, A.; Han, J.; Wang, M.; Carter, N.; Stratton, R.; Hileman, J.; Malwitz, A.; Balasubramanian, S.

    2012-07-23

    The Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model, developed at Argonne National Laboratory, has been expanded to include well-to-wake (WTWa) analysis of aviation fuels and aircraft. This report documents the key WTWa stages and assumptions for fuels that represent alternatives to petroleum jet fuel. The aviation module in GREET consists of three spreadsheets that present detailed characterizations of well-to-pump and pump-to-wake parameters and WTWa results. By using the expanded GREET version (GREET1{_}2011), we estimate WTWa results for energy use (total, fossil, and petroleum energy) and greenhouse gas (GHG) emissions (carbon dioxide, methane, and nitrous oxide) for (1) each unit of energy (lower heating value) consumed by the aircraft or (2) each unit of distance traveled/ payload carried by the aircraft. The fuel pathways considered in this analysis include petroleum-based jet fuel from conventional and unconventional sources (i.e., oil sands); Fisher-Tropsch (FT) jet fuel from natural gas, coal, and biomass; bio-jet fuel from fast pyrolysis of cellulosic biomass; and bio-jet fuel from vegetable and algal oils, which falls under the American Society for Testing and Materials category of hydroprocessed esters and fatty acids. For aircraft operation, we considered six passenger aircraft classes and four freight aircraft classes in this analysis. Our analysis revealed that, depending on the feedstock source, the fuel conversion technology, and the allocation or displacement credit methodology applied to co-products, alternative bio-jet fuel pathways have the potential to reduce life-cycle GHG emissions by 55-85 percent compared with conventional (petroleum-based) jet fuel. Although producing FT jet fuel from fossil feedstock sources - such as natural gas and coal - could greatly reduce dependence on crude oil, production from such sources (especially coal) produces greater WTWa GHG emissions compared with petroleum jet

  15. Emission control cost-effectiveness of alternative-fuel vehicles

    SciTech Connect

    Wang, Q.; Sperling, D.; Olmstead, J.

    1993-06-14

    Although various legislation and regulations have been adopted to promote the use of alternative-fuel vehicles for curbing urban air pollution problems, there is a lack of systematic comparisons of emission control cost-effectiveness among various alternative-fuel vehicle types. In this paper, life-cycle emission reductions and life-cycle costs were estimated for passenger cars fueled with methanol, ethanol, liquefied petroleum gas, compressed natural gas, and electricity. Vehicle emission estimates included both exhaust and evaporative emissions for air pollutants of hydrocarbon, carbon monoxide, nitrogen oxides, and air-toxic pollutants of benzene, formaldehyde, 1,3-butadiene, and acetaldehyde. Vehicle life-cycle cost estimates accounted for vehicle purchase prices, vehicle life, fuel costs, and vehicle maintenance costs. Emission control cost-effectiveness presented in dollars per ton of emission reduction was calculated for each alternative-fuel vehicle types from the estimated vehicle life-cycle emission reductions and costs. Among various alternative-fuel vehicle types, compressed natural gas vehicles are the most cost-effective vehicle type in controlling vehicle emissions. Dedicated methanol vehicles are the next most cost-effective vehicle type. The cost-effectiveness of electric vehicles depends on improvements in electric vehicle battery technology. With low-cost, high-performance batteries, electric vehicles are more cost-effective than methanol, ethanol, and liquified petroleum gas vehicles.

  16. Alcohol-fueled vehicles: An alternative fuels vehicle, emissions, and refueling infrastructure technology assessment

    SciTech Connect

    McCoy, G.A.; Kerstetter, J.; Lyons, J.K.

    1993-06-01

    Interest in alternative motor vehicle fuels has grown tremendously over the last few years. The 1990 Clean Air Act Amendments, the National Energy Policy Act of 1992 and the California Clean Air Act are primarily responsible for this resurgence and have spurred both the motor fuels and vehicle manufacturing industries into action. For the first time, all three U.S. auto manufacturers are offering alternative fuel vehicles to the motoring public. At the same time, a small but growing alternative fuels refueling infrastructure is beginning to develop across the country. Although the recent growth in alternative motor fuels use is impressive, their market niche is still being defined. Environmental regulations, a key driver behind alternative fuel use, is forcing both car makers and the petroleum industry to clean up their products. As a result, alternative fuels no longer have a lock on the clean air market and will have to compete with conventional vehicles in meeting stringent future vehicle emission standards. The development of cleaner burning gasoline powered vehicles has signaled a shift in the marketing of alternative fuels. While they will continue to play a major part in the clean vehicle market, alternative fuels are increasingly recognized as a means to reduce oil imports. This new role is clearly defined in the National Energy Policy Act of 1992. The Act identifies alternative fuels as a key strategy for reducing imports of foreign oil and mandates their use for federal and state fleets, while reserving the right to require private and municipal fleet use as well.

  17. Utilization of silt as CFB boiler fuel

    SciTech Connect

    Herb, B.; Tsao, T.R.; Bickley, D.

    1994-12-31

    Bituminous silt represents an enormous source of discarded energy that is polluting the environment. Although bituminous silt is a potential opportunity fuel for circulating fluidized bed (CFB) boilers, handling problems and uncertainties about the impact of this fuel on CFB boiler performance and operating economics have prevented its use. Under sponsorship of the Pennsylvania Energy Development Authority, five different technologies having the potential to process silt into CFB boiler fuel were evaluated. The technologies evaluated include: washing, pelletizing, thermal drying, mulling and flaking. The desired goal was to process the silt into a form that can be fed to CFB boilers using conventional coal handling equipment and combusted in an environmentally acceptable manner. Criteria were developed for the product characteristics that are desired and tests were run to evaluate the technical feasibility of each silt processing technology. Based on these test results, the design and cost bases for a commercial silt processing facility were developed for each technology capable of achieving the desired product characteristics. As a result of considering both engineering and economic factors, the technology that best meets the objectives for use of processed silt as CFB boiler fuel was selected for further demonstration testing. This paper will present the results of this project up through the selection of the best silt processing technology.

  18. 10 CFR 490.504 - Use of alternative fueled vehicle credits.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 3 2011-01-01 2011-01-01 false Use of alternative fueled vehicle credits. 490.504 Section 490.504 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Fueled Vehicle Credit Program § 490.504 Use of alternative fueled vehicle credits. At the...

  19. 10 CFR 490.504 - Use of alternative fueled vehicle credits.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Use of alternative fueled vehicle credits. 490.504 Section 490.504 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Fueled Vehicle Credit Program § 490.504 Use of alternative fueled vehicle credits. At the...

  20. 10 CFR 490.504 - Use of alternative fueled vehicle credits.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Use of alternative fueled vehicle credits. 490.504 Section 490.504 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Fueled Vehicle Credit Program § 490.504 Use of alternative fueled vehicle credits. At the...

  1. 10 CFR 490.504 - Use of alternative fueled vehicle credits.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Use of alternative fueled vehicle credits. 490.504 Section 490.504 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Fueled Vehicle Credit Program § 490.504 Use of alternative fueled vehicle credits. At the...

  2. 10 CFR 490.504 - Use of alternative fueled vehicle credits.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Use of alternative fueled vehicle credits. 490.504 Section 490.504 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Fueled Vehicle Credit Program § 490.504 Use of alternative fueled vehicle credits. At the...

  3. 16 CFR 309.15 - Posting of non-liquid alternative vehicle fuel rating.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 1 2010-01-01 2010-01-01 false Posting of non-liquid alternative vehicle fuel rating. 309.15 Section 309.15 Commercial Practices FEDERAL TRADE COMMISSION REGULATIONS UNDER SPECIFIC ACTS OF CONGRESS LABELING REQUIREMENTS FOR ALTERNATIVE FUELS AND ALTERNATIVE FUELED VEHICLES Requirements for Alternative Fuels Duties...

  4. The proceedings of the 23rd international technical conference on coal utilization and fuel systems

    SciTech Connect

    Sakkestad, B.A.

    1998-07-01

    Papers are arranged under the following topical sections: Advanced combustion systems; Alternative fuels; Coal liquefaction; New strategies for coal to accommodate climate change and deregulation; International highlights; Combustion by-product utilization; Co-firing; Flue gas treatment; Low NOx burners; CO{sub 2} mitigation; Power plant upgrades; Latin American coal perspective; Coal fines utilization; Upgraded coal for the power industry; Hot gas particulate cleanup; Coal conversion; Hydraulics and transportation; Coal briquetting and coal beneficiation; Air toxics; Materials and equipment; and Coal-water fuels preparation. 104 papers have been processed separately for inclusion on the database.

  5. Enhanced methanol utilization in direct methanol fuel cell

    DOEpatents

    Ren, Xiaoming; Gottesfeld, Shimshon

    2001-10-02

    The fuel utilization of a direct methanol fuel cell is enhanced for improved cell efficiency. Distribution plates at the anode and cathode of the fuel cell are configured to distribute reactants vertically and laterally uniformly over a catalyzed membrane surface of the fuel cell. A conductive sheet between the anode distribution plate and the anodic membrane surface forms a mass transport barrier to the methanol fuel that is large relative to a mass transport barrier for a gaseous hydrogen fuel cell. In a preferred embodiment, the distribution plate is a perforated corrugated sheet. The mass transport barrier may be conveniently increased by increasing the thickness of an anode conductive sheet adjacent the membrane surface of the fuel cell.

  6. Dimethoxymethane and trimethoxymethane as alternative fuels for fuel cells

    NASA Astrophysics Data System (ADS)

    Chetty, Raghuram; Scott, Keith

    The electrooxidation of dimethoxymethane (DMM) and trimethoxymethane (TMM) was studied at different platinum-based electrocatalysts deposited onto a titanium mesh substrate by thermal decomposition of chloride precursors. Half-cell tests showed an increase in oxidation current for the methoxy fuels at the platinum electrode with the alloying of ruthenium and tin. Increase in reaction temperature and reactant concentration showed an increase in current density for the mesh-based anodes similar to carbon-supported catalysts. Single fuel cell tests, employing the titanium mesh anode with PtRu and PtSn catalysts showed maximum power densities up to 31 mW cm -2 and 48 mW cm -2 for 1.0 mol dm -3 aqueous solutions of DMM and TMM, respectively at 60 °C using oxygen.

  7. Alternative Fuel News: Official Publication of the U.S. Department of Energy's Clean Cities Network and the Alternative Fuels Data Center; Vol. 2, No. 2

    SciTech Connect

    Not Available

    1998-05-01

    Official publication of the Clean Cities Network and the Alternative Fuels Data Center featuring alternative fuels activity in every state, the Clean Cities game plan '98, and news from the Automakers.

  8. EPAct Alternative Fuel Transportation Program: State and Alternative Fuel Provider Fleet Compliance Annual Report; Fleet Compliance Results for MY 2013/FY 2014

    SciTech Connect

    2015-09-01

    Compliance rates for covered state government and alternative fuel provider fleets under the Alternative Fuel Transportation Program (pursuant to the Energy Policy Act or EPAct) are reported for MY 2013/FY 2014 in this publication.

  9. Demonstrating and evaluating heavy-duty alternative fuel operations

    SciTech Connect

    Peerenboom, W.

    1998-02-01

    The principal objectives of this project was to understand the effects of using an alternative fuel on a truck operating fleet through actual operation of trucks. Information to be gathered was expected to be anecdotal, as opposed to statistically viable, because the Trucking Research institute (TRI) recognized that projects could not attract enough trucks to produce statistically credible volumes of data. TRI was to collect operational data, and provide them to NREL, who would enter the data into the alternative fuels database being constructed for heavy-duty trucks at the time. NREL would also perform data analysis, with the understanding that the demonstrations were generally pre-production model engines and vehicles. Other objectives included providing information to the trucking industry on the availability of alternative fuels, developing the alternative fuels marketplace, and providing information on experience with alternative fuels. In addition to providing information to the trucking industry, an objective was for TRI to inform NREL and DOE about the industry, and give feedback on the response of the industry to developments in alternative fuels in trucking. At the outset, only small numbers of vehicles participated in most of the projects. Therefore, they had to be considered demonstrations of feasibility, rather than data gathering tests from which statistically significant conclusions might be drawn. Consequently, data gathered were expected to be useful for making estimates and obtaining valuable practical lessons. Project data and lessons learned are the subjects of separate project reports. This report concerns itself with the work of TRI in meeting the overall objectives of the TRI-NREL partnership.

  10. An update in the 'development of alternate liquid fuels'

    NASA Astrophysics Data System (ADS)

    Rose, M. J.

    The Brookhaven National Laboratory has formulated a series of Alternate Liquid Fuels (AIF), compounded from combustible fluids such as alcohols, mineral oils and solvents, found in the waste streams of the cosmetic, petrochemical, electronics and other industries. These fuels are now being processed by a pilot plant with a productive capacity of 40,000 gallons in 8 hours, at direct costs ranging from $0.26 to $0.29 a gallon depending on selected feedstocks and blend ratios

  11. Electrocatalysis of fuel cell reactions: Investigation of alternate electrolytes

    NASA Technical Reports Server (NTRS)

    Chin, D. T.; Hsueh, K. L.; Chang, H. H.

    1983-01-01

    Oxygen reduction and transport properties of the electrolyte in the phosphoric acid fuel cell are studied. A theoretical expression for the rotating ring-disk electrode technique; the intermediate reaction rate constants for oxygen reduction on platinum in phosphoric acid electrolyte; oxygen reduction mechanism in trifluoromethanesulfonic acid (TFMSA), considered as an alternate electrolyte for the acid fuel cells; and transport properties of the phosphoric acid electrolyte at high concentrations and temperatures are covered.

  12. Thermal value makes tires a decent fuel for utilities

    SciTech Connect

    Marks, J.

    1991-08-01

    This paper reports that there is a use for old tires; and power plants stand to gain operating, economic and public relations benefits by converting them to fuel. A major reason for their value is that fuel derived from waste tires (TDF) has a thermal value of 12,000 to 16,000 Btu/lb. Although most fuel handling system and utility boilers can accommodate TDF, a few issues remain to be resolved. These include a consistent and economic supply of tires, safe burns, and agreement between regulators and utilities. Assuming that these issues can be resolved, utilities stand to cash in on a rich fuel source and earn community recognition for helping to solve a nagging solid waste disposal problem.

  13. Alternative Liquid Fuels Simulation Model (AltSim).

    SciTech Connect

    Baker, Arnold Barry; Williams, Ryan; Drennen, Thomas E.; Klotz, Richard

    2007-10-01

    The Alternative Liquid Fuels Simulation Model (AltSim) is a high-level dynamic simulation model which calculates and compares the production costs, carbon dioxide emissions, and energy balances of several alternative liquid transportation fuels. These fuels include: corn ethanol, cellulosic ethanol, biodiesel, and diesels derived from natural gas (gas to liquid, or GTL) and coal (coal to liquid, or CTL). AltSim allows for comprehensive sensitivity analyses on capital costs, operation and maintenance costs, renewable and fossil fuel feedstock costs, feedstock conversion efficiency, financial assumptions, tax credits, CO{sub 2} taxes, and plant capacity factor. This paper summarizes the preliminary results from the model. For the base cases, CTL and cellulosic ethanol are the least cost fuel options, at $1.60 and $1.71 per gallon, respectively. Base case assumptions do not include tax or other credits. This compares to a $2.35/gallon production cost of gasoline at September, 2007 crude oil prices ($80.57/barrel). On an energy content basis, the CTL is the low cost alternative, at $12.90/MMBtu, compared to $22.47/MMBtu for cellulosic ethanol. In terms of carbon dioxide emissions, a typical vehicle fueled with cellulosic ethanol will release 0.48 tons CO{sub 2} per year, compared to 13.23 tons per year for coal to liquid.

  14. Energy utilization and efficiency analysis for hydrogen fuel cell vehicles

    NASA Astrophysics Data System (ADS)

    Moore, R. M.; Hauer, K. H.; Ramaswamy, S.; Cunningham, J. M.

    This paper presents the results of an energy analysis for load-following versus battery-hybrid direct-hydrogen fuel cell vehicles. The analysis utilizes dynamic fuel cell vehicle simulation tools previously presented [R.M. Moore, K.H. Hauer, J. Cunningham, S. Ramaswamy, A dynamic simulation tool for the battery-hybrid hydrogen fuel cell vehicle, Fuel Cells, submitted for publication; R.M. Moore, K.H. Hauer, D.J. Friedman, J.M. Cunningham, P. Badrinarayanan, S.X. Ramaswamy, A. Eggert, A dynamic simulation tool for hydrogen fuel cell vehicles, J. Power Sources, 141 (2005) 272-285], and evaluates energy utilization and efficiency for standardized drive cycles used in the US, Europe and Japan.

  15. Waste floor covering is an economical alternative fuel

    SciTech Connect

    Martin, N.W.

    1995-03-01

    This article examines why power plants that can use it call waste carpeting an economical alternative fuel. According to recent Environmental Protection Agency (EPA) data, 1.7 millions tons per year (tpy) of post-consumer carpet (PCC) waste are generated by residential and commercial sources. Monsanto and other major nylon producers responded to the magnitude of this figure and their increased environmental sensitivity by sponsoring a project to assess alternatives to landfill disposal of PCC materials. Many alternatives to landfill disposal exist for waste carpet. These include demonstrated recycling options, such as the reuse of thermoplastic resins for polymer applications and carpet reuse in landfill capping systems. Not all materials can be recycled economically, hence, thermal recycling alternatives to landfills are used, including combustion as a substitute fuel in power plant boilers.

  16. Particulate Measurements and Emissions Characterization of Alternative Fuel Vehicle Exhaust

    SciTech Connect

    Durbin, T. D.; Truex, T. J.; Norbeck, J. M.

    1998-11-19

    The objective of this project was to measure and characterize particulate emissions from light-duty alternative fuel vehicles (AFVs) and equivalent gasoline-fueled vehicles. The project included emission testing of a fleet of 129 gasoline-fueled vehicles and 19 diesel vehicles. Particulate measurements were obtained over Federal Test Procedure and US06 cycles. Chemical characterization of the exhaust particulate was also performed. Overall, the particulate emissions from modern technology compressed natural gas and methanol vehicles were low, but were still comparable to those of similar technology gasoline vehicles.

  17. Increasing Fuel Utilization of Breed and Burn Reactors

    NASA Astrophysics Data System (ADS)

    Di Sanzo, Christian Diego

    Breed and Burn reactors (B&B), also referred to Traveling Wave Reactors, are fast spectrum reactors that can be fed indefinitely with depleted uranium only, once criticality is achieved without the need for fuel reprocessing. Radiation damage to the fuel cladding limits the fuel utilization of B&B reactors to ˜ 18-20% FIMA (Fissions of Initial Metal Atoms) -- the minimum burnup required for sustaining the B&B mode of operation. The fuel discharged from this type of cores contain ˜ 10% fissile plutonium. Such a high plutonium content poses environmental and proliferation concerns, but makes it possible to utilize the fuel for further energy production. The objectives of the research reported in this dissertation are to analyze the fuel cycle of B&B reactors and study new strategies to extend the fuel utilization beyond ˜ 18-20% FIMA. First, the B&B reactor physics is examined while recycling the fuel every 20% FIMA via a limited separation processing, using either the melt refining or AIROX dry processes. It was found that the maximum attainable burnup varies from 54% to 58% FIMA -- depending on the recycling process and on the fraction of neutrons lost via leakage and reactivity control. In Chapter 3 the discharge fuel characteristics of B&B reactors operating at 20% FIMA and 55% FIMA is analyzed and compared. It is found that the 20% FIMA reactor discharges a fuel with about ˜ 80% fissile plutonium over total plutonium content. Subsequently a new strategy of minimal reconditioning, called double cladding is proposed to extend the fuel utilization in specifically designed second-tier reactors. It is found that with this strategy it is possible to increase fuel utilization to 30% in a sodium fast reactor and up to 40% when a subcritical B&B core is driven by an accelerator-driven spallation neutron source. Lastly, a fuel cycle using Pressurized Water Reactors (PWR) to reduce the plutonium content of discharged B&B reactors is analyzed. It was found that it is

  18. Alternative fuel and chemicals from synthesis gas

    SciTech Connect

    1996-05-01

    Development of a reliable and cost-effective method of wax/catalyst separation is a key step toward a commercially viable slurry reactor process with iron oxide-based catalyst for Fischer-Tropsch (F-T) synthesis of hydrocarbon transportation fuels. Although a variety of suitable catalysts (including, for example, cobalt-based catalysts) are available, iron oxide-based catalysts are preferred for coal-derived, CO-rich syngas because, in addition to catalyzing the F-T reaction, they simultaneously catalyze the reaction stifling CO to H{sub 2}, obviating a separate shift process block and associated costs. Because of the importance of development of this wax/catalyst separation, a study was initiated in February 1991. P. Z. Zhou of Burns and Roe reviewed the status of F-T wax/catalyst separation techniques. This led to the selection of a filtration system for the separation. Pilot tests were conducted by Mott Porous Metal Products in 1992 to develop this system. Initial results were good, but problems were encountered in follow-up testing. As a result of the testing, a filter was selected for use on the pilot plant. In LaPorte, Texas, APCI has been operating a pilot plant for the development of various synthesis gas technologies with DOE and industry support. The APCI F-T program builds on the DOE-sponsored laboratory-scale work by Mobil, reported in the mid-1980s, which used an iron oxide catalyst to produce high-quality F-T liquids in relatively compact reactors. Separation of the catalyst solids from the wax still represents a challenge. In the summer of 1992, testing of the selected filter was begun as part of the pilot plant testing. The filter performed poorly. Separation of the catalyst was primarily by sedimentation. It was recommended that the wax/catalyst separation be developed further.

  19. Examination of physical properties of fuels and mixtures with alternative fuels

    NASA Astrophysics Data System (ADS)

    Lown, Anne Lauren

    ABSTRACT. EXAMINATION OF PHYSICAL PROPERTIES OF FUELS AND MIXTURES WITH ALTERNATIVE FUELS. By. Anne Lauren Lown. The diversity of alternative fuels is increasing due to new second generation biofuels. By modeling alternative fuels and fuel mixtures, types of fuels can be selected based on their properties, without producing and testing large batches. A number of potential alternative fuels have been tested and modeled to determine their impact when blended with traditional diesel and jet fuels. The properties evaluated include cloud point and pour point temperature, cetane number, distillation curve, and speed of sound. This work represents a novel approach to evaluating the properties of alternative fuels and their mixtures with petroleum fuels. Low temperature properties were evaluated for twelve potential biofuel compounds in mixtures with three diesel fuels and one jet fuel. Functional groups tested included diesters, esters, ketones, and ethers, and alkanes were used for comparison. Alkanes, ethers, esters, and ketones with a low melting point temperature were found to decrease the fuel cloud point temperature. Diesters added to fuels display an upper critical solution temperature, and multiple methods were used to confirm the presence of liquid-liquid immiscibility. These behaviors are independent of chain length and branching, as long as the melting point temperature of the additive is not significantly higher than the cloud point temperature of the fuel. Physical properties were estimated for several potential fuel additive molecules using group contribution methods. Quantum chemical calculations were used for ideal gas heat capacities. Fuel surrogates for three petroleum based fuels and six alternative fuels were developed. The cloud point temperature, distillation curve, cetane number, and average molecular weight for different fuel surrogates were simultaneously represented. The proposed surrogates use the experimental mass fractions of paraffins, and

  20. Experimental Investigation of Turbine Vane Heat Transfer for Alternative Fuels

    SciTech Connect

    Nix, Andrew Carl

    2015-03-23

    modern turbine engines; and What advancements in film cooling hole geometry and design can increase effectiveness of film cooling in turbines burning high-hydrogen coal syngas due to the higher heat loads and mass flow rates of the core flow? Experimental and numerical investigations of advanced cooling geometries that can improve resistance to surface deposition were performed. The answers to these questions were investigated through experimental measurements of turbine blade surface temperature and coolant coverage (via infrared camera images and thermocouples) and time-varying surface roughness in the NETL high-pressure combustion rig with accelerated, simulated surface deposition and advanced cooling hole concepts, coupled with detailed materials analysis and characterization using conventional methods of Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), X-Ray Diffraction (XRD), 3-D Surface Topography (using a 3-D stylus profilometer). Detailed surface temperatures and cooling effectiveness could not be measured due to issues with the NETL infrared camera system. In collaboration with faculty startup funding from the principal investigator, experimental and numerical investigations were performed of an advanced film cooling hole geometry, the anti-vortex hole (AVH), focusing on improving cooling effectiveness and decreasing the counter-rotating vortex of conventional cooling holes which can entrain mainstream particulate matter to the surface. The potential benefit of this program is in gaining a fundamental understanding of how the use of alternative fuels will effect the operation of modern gas turbine engines, providing valuable data for more effective cooling designs for future turbine systems utilizing alternative fuels.

  1. Primer on Motor Fuel Excise Taxes and the Role of Alternative Fuels and Energy Efficient Vehicles

    SciTech Connect

    Schroeder, Alex

    2015-08-26

    Motor fuel taxes were established to finance our nation’s transportation infrastructure, yet evolving economic, political, and technological influences are constraining this ability. At the federal level, the Highway Trust Fund (HTF), which is primarily funded by motor fuel taxes, has become increasingly dependent on general fund contributions and short-term reauthorizations to prevent insolvency. As a result, there are discussions at both the federal and state levels in which stakeholders are examining the future of motor fuel excise taxes as well as the role of electric and alternative fuel vehicles in that future. On July 1, 2015, six states increased their motor fuel tax rates.

  2. Are We There Yet? Alternative Fuels for School Buses

    ERIC Educational Resources Information Center

    Lea, Dennis; Carter, Deborah

    2009-01-01

    America's annual oil consumption continues to increase and is projected to continue the upward spiral into the foreseeable future. Alternative-fuel options are available that are not only cheaper in some cases on an energy-equivalent basis but are also more environmentally friendly. Education leaders need to be concerned with both these facts.…

  3. 75 FR 29605 - Clean Alternative Fuel Vehicle and Engine Conversions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-26

    ... of conventional gasoline or diesel vehicles to hybrid-electric vehicles, and conversions from hybrid-electric vehicles to plug-in hybrid electric vehicles. Since alternative fuel conversion activity often... Manufacturing. 336322 Other Motor Vehicle Electrical and Electronic Equipment Manufacturing. 336399 All...

  4. Other Alternative Diesel Fuels from Vegetable Oils and Animal Fats

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The energy crises of the 1970’s and early 1980’s provided impetus for developing alternative diesel fuels from vegetable oils and animal fats. Other driving forces may be derived from the Clean Air Act and its amendments and farmers desire to develop new uses for surplus agricultural commodities. ...

  5. Effect of Selected Alternative Fuels and Raw Materials on the Cement Clinker Quality

    NASA Astrophysics Data System (ADS)

    Strigáč, Július

    2015-11-01

    The article deals with the study of the effects of alternative fuels and raw materials on the cement clinker quality. The clinker quality was expressed by the content of two principal minerals alite C3S and belite C2S. The additions of alternative fuels ashes and raw materials, in principle, always increased the belite content and conversely reduced the amount of alite. The alternative fuels with high ash content were used such as the meat-bone meal, sewage sludge from sewage treatment plants and paper sludge and the used alternative raw materials were metallurgical slags - granulated blastfurnace slag, air cooled blastfurnace slag and demetallized steel slag, fluidized bed combustion fly ash and waste glass. Meat-bone meal, sewage sludge from sewage treatment plants and paper sludge were evaluated as moderately suitable alternative fuels which can be added in the amounts of 2.8 wt. % addition of meat-bone meals ash, 3.64 wt. % addition of sewage sludge ash and 3.8 wt. % addition of paper sludge ash to the cement raw mixture. Demetallised steel slag is suitable for production of special sulphate resistant cement clinker for CEM I -SR cement with addition up to 5 wt. %. Granulated blastfurnace slag is a suitable alternative raw material with addition 4 wt. %. Air cooled blastfurnace slag is a suitable alternative raw material with addition 4.2 wt. %. Waste glass is not very appropriate alternative raw material with addition only 1.16 wt. %. Fluidized bed combustion fly ash appears not to be equally appropriate alternative raw material for cement clinker burning with less potential utilization in the cement industry and with addition 3.41 wt. %, which forms undesired anhydrite CaSO4 in the cement clinker.

  6. An alternative fuel for urban buses-biodiesel blends

    SciTech Connect

    Schumacher, L.G.; Weber, J.A.; Russell, M.D.

    1995-11-01

    Qualitative and quantitative biodiesel fueling performance and operational data have been collected from urban mass transit buses at Bi-State Development Agency in St. Louis Missouri. A total of 10 vehicles were selected for fueling; 5-6V92 TA Detroit Diesel engines have been fueled with a 20/80 biodiesel/diesel fuel blend and 5-6V92 TA Detroit Diesel control vehicles have been fueled on petroleum based low sulfur diesel fuel (LSD). The real-world impact of a biodiesel blend on maintenance, reliability, cost, fuel economy and safety compared to LSD will be presented. In addition, engine exhaust emissions data collected by the University of West Virginia Department of Energy (DOE) sponsored mobile emissions laboratory will be presented. Operational data from Bi-State Development Agency is collected by the University of Missouri and quality control procedures are performed prior to placing the data in the Alternative Fuels Data Center (AFDC). The AFDC is maintained by the National Renewable Energy Laboratory in Golden, Colorado. This effort, which enables transit operators to review a real-world comparison of biodiesel and LSD, has been funded by the National Biodiesel Board with funds provided by the United Soybean Board with national checkoff dollars and the National Renewable Energy Laboratory.

  7. 75 FR 26165 - Regulation of Fuels and Fuel Additives: Alternative Affirmative Defense Requirements for Ultra...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-11

    ...EPA is issuing a proposed rule to amend the diesel sulfur regulations to allow refiners, importers, distributors, and retailers of highway diesel fuel the option to use an alternative affirmative defense if the Agency finds highway diesel fuel samples above the specified sulfur standard at retail facilities. This rule also proposes to amend the gasoline benzene regulations to allow......

  8. A life-cycle comparison of alternative automobile fuels.

    PubMed

    MacLean, H L; Lave, L B; Lankey, R; Joshi, S

    2000-10-01

    We examine the life cycles of gasoline, diesel, compressed natural gas (CNG), and ethanol (C2H5OH)-fueled internal combustion engine (ICE) automobiles. Port and direct injection and spark and compression ignition engines are examined. We investigate diesel fuel from both petroleum and biosources as well as C2H5OH from corn, herbaceous bio-mass, and woody biomass. The baseline vehicle is a gasoline-fueled 1998 Ford Taurus. We optimize the other fuel/powertrain combinations for each specific fuel as a part of making the vehicles comparable to the baseline in terms of range, emissions level, and vehicle lifetime. Life-cycle calculations are done using the economic input-output life-cycle analysis (EIO-LCA) software; fuel cycles and vehicle end-of-life stages are based on published model results. We find that recent advances in gasoline vehicles, the low petroleum price, and the extensive gasoline infrastructure make it difficult for any alternative fuel to become commercially viable. The most attractive alternative fuel is compressed natural gas because it is less expensive than gasoline, has lower regulated pollutant and toxics emissions, produces less greenhouse gas (GHG) emissions, and is available in North America in large quantities. However, the bulk and weight of gas storage cylinders required for the vehicle to attain a range comparable to that of gasoline vehicles necessitates a redesign of the engine and chassis. Additional natural gas transportation and distribution infrastructure is required for large-scale use of natural gas for transportation. Diesel engines are extremely attractive in terms of energy efficiency, but expert judgment is divided on whether these engines will be able to meet strict emissions standards, even with reformulated fuel. The attractiveness of direct injection engines depends on their being able to meet strict emissions standards without losing their greater efficiency. Biofuels offer lower GHG emissions, are sustainable, and

  9. The Impact of Alternative Fuels on Combustion Kinetics

    SciTech Connect

    Pitz, W J; Westbrook, C K

    2009-07-30

    The research targets the development of detailed kinetic models to quantitatively characterize the impact of alternative fuels on the performance of Navy turbines and diesel engines. Such impacts include kinetic properties such as cetane number, flame speed, and emissions as well as physical properties such as the impact of boiling point distributions on fuel vaporization and mixing. The primary focus will be Fischer-Tropsch liquids made from natural gas, coal or biomass. The models will include both the effects of operation with these alternative fuels as well as blends of these fuels with conventional petroleum-based fuels. The team will develop the requisite kinetic rules for specific reaction types and incorporate these into detailed kinetic mechanisms to predict the combustion performance of neat alternative fuels as well as blends of these fuels with conventional fuels. Reduced kinetic models will be then developed to allow solution of the coupled kinetics/transport problems. This is a collaboration between the Colorado School of Mines (CSM) and the Lawrence Livermore National Laboratory (LLNL). The CSM/LLNL team plans to build on the substantial progress made in recent years in developing accurate detailed chemical mechanisms for the oxidation and pyrolysis of conventional fuels. Particular emphasis will be placed upon reactions of the isoalkanes and the daughter radicals, especially tertiary radicals, formed by abstraction from the isoalkanes. The various components of the program are described. We have been developing the kinetic models for two iso-dodecane molecules, using the same kinetic modeling formalisms that were developed for the gasoline and diesel primary reference fuels. These mechanisms, and the thermochemical and transport coefficient submodels for them, are very close to completion at the time of this report, and we expect them to be available for kinetic simulations early in the coming year. They will provide a basis for prediction and

  10. The market for utility-scale fuel cell plants

    NASA Astrophysics Data System (ADS)

    Watanabe, Yasuo; Matsumoto, Masaru; Takasu, Kazuhiko

    This paper is devoted to a survey of the current technology and future market for utility-scale fuel cell plants. The phosphoric acid fuel cell (PAFC) is entering into the stage where it is practically available for use with natural gas. Large capacity plants such as 11, 5 and 1 MW have been installed and operated in Italy and Japan. Their efficiency ranges from 36 to 42%. The molten carbonate fuel cell (MCFC) is in the demonstrating stage, both the fuel cell and the balance-of-plant (BOP) for natural gas. Demonstration plants of 2 and 1 MW have been under construction in the USA and Japan. Their efficiency will range from 40 to 50%. The solid oxide fuel cell (SOFC) is in the experimental stage around 100 kW for co-generation. Its conceptual system design has been conducted for both centralized and dispersed power plant in a cooperation with Westinghouse and NEDO. A market survey is now considered on the basis that future fuel cells will run for around 40 000 h in a stable manner with competitive performance. The market for fuel cells will be roughly at 2000 MW in Japan by the year 2010. Half of them will be installed for electric companies on the utility scale. The market will be shared between PAFC and MCFC by 10 and 90%, respectively. Current technologies have not reached the stage to precisely forecast when fuel cells will be entering into the market on a utility scale. At the present time, it is worthwhile to consider how the technological and economic requirements will be definitely achieved. After achieving these requirements, fuel cells will be positively introduced and socially accepted as the best energy converting option to save energy and environmental impact. Further efforts will be devoted to meeting the market from the technological and economic aspects.

  11. Moving beyond alternative fuel hype to decarbonize transportation

    NASA Astrophysics Data System (ADS)

    Melton, Noel; Axsen, Jonn; Sperling, Daniel

    2016-03-01

    In the past three decades, government, industry and other stakeholders have repeatedly been swept up with the ‘fuel du jour’, claiming that a particular alternative fuel vehicle (AFV) technology can succeed in replacing conventional gasoline-powered vehicles. However, AFV technologies have experienced relatively little success, with fossil fuels still accounting for about 95% of global transport energy use. Here, using the US as a case study, we conduct a media analysis to show how society’s attention has skipped among AFV types between 1980 and 2013, including methanol, natural gas, plug-in electric, hybrid electric, hydrogen and biofuels. Although our results provide no indication as to whether hype ultimately has a net positive or negative impact on AFV innovation, we offer several recommendations that governments can follow to move past hype to support significant AFV adoption and displace fossil fuel use in the transportation sector.

  12. Life cycle models of conventional and alternative-fueled automobiles

    NASA Astrophysics Data System (ADS)

    Maclean, Heather Louise

    This thesis reports life cycle inventories of internal combustion engine automobiles with feasible near term fuel/engine combinations. These combinations include unleaded gasoline, California Phase 2 Reformulated Gasoline, alcohol and gasoline blends (85 percent methanol or ethanol combined with 15 percent gasoline), and compressed natural gas in spark ignition direct and indirect injection engines. Additionally, I consider neat methanol and neat ethanol in spark ignition direct injection engines and diesel fuel in compression ignition direct and indirect injection engines. I investigate the potential of the above options to have a lower environmental impact than conventional gasoline-fueled automobiles, while still retaining comparable pricing and consumer benefits. More broadly, the objective is to assess whether the use of any of the alternative systems will help to lead to the goal of a more sustainable personal transportation system. The principal tool is the Economic Input-Output Life Cycle Analysis model which includes inventories of economic data, environmental discharges, and resource use. I develop a life cycle assessment framework to assemble the array of data generated by the model into three aggregate assessment parameters; economics, externalities, and vehicle attributes. The first step is to develop a set of 'comparable cars' with the alternative fuel/engine combinations, based on characteristics of a conventional 1998 gasoline-fueled Ford Taurus sedan, the baseline vehicle for the analyses. I calculate the assessment parameters assuming that these comparable cars can attain the potential thermal efficiencies estimated by experts for each fuel/engine combination. To a first approximation, there are no significant differences in the assessment parameters for the vehicle manufacture, service, fixed costs, and the end-of-life for any of the options. However, there are differences in the vehicle operation life cycle components and the state of technology

  13. Utilization of peat as a fuel

    SciTech Connect

    Clemens, D.F.; Evans, G.O. II; Whitehurst, B.M.

    1981-10-01

    This work has dealt primarily with the development and evaluation of peat/No. 2 fuel oil mixtures (POM) and peat/methanol mixtures (PAM). POM and PAM slurries with varied peat loadings, peat moisture contents, and peat particle sizes have been studied by measuring slurry sedimentation ratios in jacketed glass tubes and slurry drain times from the tubes along with the slurry viscosities. The peat moisture content was found to be especially critical in forming stable slurries. Also, in both the PAM and POM systems, it was found that use of the more finely ground peat led to significantly higher sedimentation ratios than the use of coarse peat. Numerous additives selected to improve slurry suspension and flow characteristics have been evaluated. Cab-O-Sil M-5 and Cab-O-Sil PTG were most effective in the POM systems while Attagel X-2059 and Bentone 27 were most effective in the PAM systems. Viscosities have been measured for slurries of varied particle size and modified by selected additives. Viscosities in the PAM system were lower using the coarser peat with higher moisture content while viscosities in the POM system seemed to be lower using the finer, drier peat. Calorimetric studies of powdered peat as well as PAM and POM slurries, with and without additives, were completed. Combustion tests of POM and PAM slurries were carried out using a salamander type shop heater. Successful burns of the POM slurry were accomplished when the slurries were heated to reduce viscosities and the peat was prescreened to remove large wood fibers to avoid plugging of the small burner nozzle. Since the toxicity and low flash point of methanol precluded heating of the PAM slurries, plugging of the small burner routinely occurred. It was also demonstrated that ground peat could be burned by using an eductor connector to a compressed air line.

  14. Fuel-cycle greenhouse gas emissions impacts of alternative transportation fuels and advanced vehicle technologies.

    SciTech Connect

    Wang, M. Q.

    1998-12-16

    At an international conference on global warming, held in Kyoto, Japan, in December 1997, the United States committed to reduce its greenhouse gas (GHG) emissions by 7% over its 1990 level by the year 2012. To help achieve that goal, transportation GHG emissions need to be reduced. Using Argonne's fuel-cycle model, I estimated GHG emissions reduction potentials of various near- and long-term transportation technologies. The estimated per-mile GHG emissions results show that alternative transportation fuels and advanced vehicle technologies can help significantly reduce transportation GHG emissions. Of the near-term technologies evaluated in this study, electric vehicles; hybrid electric vehicles; compression-ignition, direct-injection vehicles; and E85 flexible fuel vehicles can reduce fuel-cycle GHG emissions by more than 25%, on the fuel-cycle basis. Electric vehicles powered by electricity generated primarily from nuclear and renewable sources can reduce GHG emissions by 80%. Other alternative fuels, such as compressed natural gas and liquefied petroleum gas, offer limited, but positive, GHG emission reduction benefits. Among the long-term technologies evaluated in this study, conventional spark ignition and compression ignition engines powered by alternative fuels and gasoline- and diesel-powered advanced vehicles can reduce GHG emissions by 10% to 30%. Ethanol dedicated vehicles, electric vehicles, hybrid electric vehicles, and fuel-cell vehicles can reduce GHG emissions by over 40%. Spark ignition engines and fuel-cell vehicles powered by cellulosic ethanol and solar hydrogen (for fuel-cell vehicles only) can reduce GHG emissions by over 80%. In conclusion, both near- and long-term alternative fuels and advanced transportation technologies can play a role in reducing the United States GHG emissions.

  15. Alternative fuel information: Facts about CNG and LPG conversion

    SciTech Connect

    O`Connor, K.

    1994-06-01

    As new environmental and energy related laws begin to take effect, increasing numbers of alternative fuel vehicles (AFVs) will be required in federal, state, municipal, and private fleets across the country. The National Energy Policy Act of 1992 and the Clean Air Act Amendments of 1990, along with several new state and local laws, will require fleet managers to either purchase original equipment manufacturer (OEM) vehicles, which are produced by automakers, or convert existing vehicles to run on alternative fuels. Because there is a limited availability and selection of OEM vehicles, conversions are seen as a transition to the time when automakers will produce more AFVs for public sale. A converted vehicle is any vehicle that originally was designed to operate on gasoline, and has been altered to run on an alternative fuel such as compressed natural gas (CNG) or propane (liquefied petroleum gas -- LPG), the two most common types of fuel conversions. In the United States, more than 25,000 vehicles already have been converted to COG, and 300,000 have been converted to LPG.

  16. Development of alternative fuels from coal-derived syngas

    SciTech Connect

    Brown, D.M.

    1992-05-19

    The overall objectives of this program are to investigate potential technologies for the conversion of coal-derived synthesis gas to oxygenated fuels, hydrocarbon fuels, fuel intermediates, and octane enhancers; and to demonstrate the most promising technologies at DOE's LaPorte, Texas, Slurry Phase Alternative Fuels Development Unit (AFDU). BASF continues to have difficulties in scaling-up the new isobutanol synthesis catalyst developed in Air Products' laboratories. Investigations are proceeding, but the proposed operation at LaPorte in April is now postponed. DOE has accepted a proposal to demonstrate Liquid Phase Shift (LPS) chemistry at LaPorte as an alternative to isobutanol. There are two principal reasons for carrying out this run. First, following the extensive modifications at the site, operation on a relatively benign'' system is needed before we start on Fischer-Tropsch technology in July. Second, use of shift catalyst in a slurry reactor will enable DOE's program on coal-based Fischer-Tropsch to encompass commercially available cobalt catalysts-up to now they have been limited to iron-based catalysts which have varying degrees of shift activity. In addition, DOE is supportive of continued fuel testing of LaPorte methanol-tests of MIOO at Detroit Diesel have been going particularly well. LPS offers the opportunity to produce methanol as the catalyst, in the absence of steam, is active for methanol synthesis.

  17. Process Developed for Fabricating Engineered Pore Structures for High- Fuel-Utilization Solid Oxide Fuel Cells

    NASA Technical Reports Server (NTRS)

    Sofie, Stephen W.; Cable, Thomas L.; Salamone, Sam M.

    2005-01-01

    Solid oxide fuel cells (SOFCs) have tremendous commercial potential because of their high efficiency, high energy density, and flexible fuel capability (ability to use fossil fuels). The drive for high-power-utilizing, ultrathin electrolytes (less than 10 microns), has placed an increased demand on the anode to provide structural support, yet allow sufficient fuel entry for sustained power generation. Concentration polarization, a condition where the fuel demand exceeds the supply, is evident in all commercial-based anode-supported cells, and it presents a significant roadblock to SOFC commercialization.

  18. Electrocatalysis of fuel cell reactions: Investigation of alternate electrolytes

    NASA Technical Reports Server (NTRS)

    Chin, D. T.; Hsueh, K. L.; Chang, H. H.

    1984-01-01

    Oxygen reduction and transport properties of the electrolyte in the phosphoric acid fuel cell are studied. The areas covered were: (1) development of a theoretical expression for the rotating ring disk electrode technique; (2) determination of the intermediate reaction rate constants for oxygen reduction on platinum in phosphoric acid electrolyte; (3) determination of oxygen reduction mechanism in trifluoreomethanesulfonic acid (TFMSA) which was considered as an alternate electrolyte for the acid fuel cells; and (4) the measurement of transport properties of the phosphoric acid electrolyte at high concentrations and temperatures.

  19. Greenfield Alternative Study LEU-Mo Fuel Fabrication Facility

    SciTech Connect

    Washington Division of URS

    2008-07-01

    This report provides the initial “first look” of the design of the Greenfield Alternative of the Fuel Fabrication Capability (FFC); a facility to be built at a Greenfield DOE National Laboratory site. The FFC is designed to fabricate LEU-Mo monolithic fuel for the 5 US High Performance Research Reactors (HPRRs). This report provides a pre-conceptual design of the site, facility, process and equipment systems of the FFC; along with a preliminary hazards evaluation, risk assessment as well as the ROM cost and schedule estimate.

  20. Determination of alternative fuels combustion products: Phase 1 report

    SciTech Connect

    Whitney, K.A.

    1997-09-01

    This report describes the laboratory effort to identify and quantify organic exhaust species generated from alternative-fueled light-duty vehicles operating over the Federal Test Procedure on compressed natural gas, liquefied petroleum gas, methanol, ethanol, and reformulated gasoline. The exhaust species from these vehicles were identified and quantified for fuel/air equivalence ratios of 0.8, 1.0, and 1.2, nominally, and were analyzed with and without a vehicle catalyst in place to determine the influence of a catalytic converter on species formation.

  1. The California Multimedia Risk Assessment Protocol for Alternative Fuels

    NASA Astrophysics Data System (ADS)

    Hatch, T.; Ginn, T. R.; McKone, T. E.; Rice, D. W.

    2013-12-01

    Any new fuel in California requires approval by the state agencies overseeing human and environmental health. In order to provide a systematic evaluation of new fuel impacts, California now requires a multimedia risk assessment (MMRA) for fuel approval. The fuel MMRA involves all relevant state agencies including: the California Air Resources Board (CARB), the State Water Resources Control Board (SWRCB), the Office of Environmental Health Hazards Assessment (OEHHA), and the Department of Toxic Substances Control (DTSC) overseen by the California Environmental Protection Agency (CalEPA). The lead agency for MMRAs is the CARB. The original law requiring a multimedia assessment is California Health and Safety Code 43830.8. In addition, the low carbon fuel standard (LCFS), the Global Warming Solutions Act (AB32), and the Verified Diesel Emission Control Strategy (VDECS) have provisions that can require a multimedia assessment. In this presentation, I give an overview of the California multimedia risk assessment (MMRA) for new fuels that has been recently developed and applied to several alternative fuels. The objective of the California MMRA is to assess risk of potential impacts of new fuels to multiple environmental media including: air, water, and soil. Attainment of this objective involves many challenges, including varying levels of uncertainty, relative comparison of incommensurate risk factors, and differing levels of priority assigned to risk factors. The MMRA is based on a strategy of relative risk assessment and flexible accommodation of distinct and diverse fuel formulations. The approach is tiered by design, in order to allow for sequentially more sophisticated investigations as knowledge gaps are identified and re-prioritized by the ongoing research. The assessment also involves peer review in order to provide coupling between risk assessment and stakeholder investment, as well as constructive or confrontational feedback. The multimedia assessment

  2. Cost and quality of fuels for electric utility plants, 1994

    SciTech Connect

    1995-07-14

    This document presents an annual summary of statistics at the national, Census division, State, electric utility, and plant levels regarding the quantity, quality, and cost of fossil fuels used to produce electricity. Purpose of this publication is to provide energy decision-makers with accurate, timely information that may be used in forming various perspectives on issues regarding electric power.

  3. Cost and quality of fuels for electric utility plants, 1992

    SciTech Connect

    Not Available

    1993-08-02

    This publication presents an annual summary of statistics at the national, Census division, State, electric utility, and plant levels regarding the quantity, quality, and cost of fossil fuels used to produce electricity. The purpose of this publication is to provide energy decision-makers with accurate and timely information that may be used in forming various perspectives on issues regarding electric power.

  4. Fuel utilization during exercise after 7 days of bed rest

    NASA Technical Reports Server (NTRS)

    Barrows, Linda H.; Harris, Bernard A.; Moore, Alan D.; Siconolfi, Steven F.

    1992-01-01

    Energy yield from carbohydrate, fat, and protein during physical activity is partially dependent on an individual's fitness level. Prolonged exposure to microgravity causes musculoskeletal and cardiovascular deconditioning; these adaptations may alter fuel utilization during space flight. Carbohydrate and fat metabolism during exercise were analyzed before and after 7 days of horizontal bed rest.

  5. A study of ethanol low grade as an alternative fuel for small engine

    NASA Astrophysics Data System (ADS)

    Sugiarto, Bambang; Darsono, Dody; Nurhuda, M.; Wardhana, Ing

    2012-06-01

    The availability of non renewable petroleum fuels insists people to make use of alternative energy sources. Currently petroleum dominates the main source of fuel for combustion. Renewable energy is a solution to deal with this issue. One source of renewable energy is bio ethanol. The previous study conducted distillator compact design by utilizing exhaust gases from motor fuels as a primary means of ethanol processing. The goal is to produce viable products into fuel ethanol of which levels above 90%. In this study, it is conducted at the evaporator temperature control with a load of 300 Watt which this conclusions obtained in previous studies on the load 300 Watts has maximum results obtained to be able of consumption needs of fuel on the genset. At 90°C temperature-controlled at the evaporator produces maximum that is able to meet the fuel consumption for the genset. At 85°C temperature-controlled at the evaporator produces high concentric of alcohol but did not meet of fuel consumption. At temperatures of 90°C can be concluded get the most out due to meet the fuel consumption and also has high concentric of alcohol. Gas have low levels of CO (± 1.2% Vol.), low HC (± 150 ppm Vol.).

  6. Neonatal hypoglycaemia in Nepal 2. Availability of alternative fuels

    PubMed Central

    Costello, A.; Pal, D.; Manandhar, D.; Rajbhandari, S.; Land, J.; Patel, N.

    2000-01-01

    AIMS—To study early neonatal metabolic adaptation in a hospital population of neonates in Nepal.
METHODS—A cross sectional study was made of 578 neonates, 0 to 48 hours after birth, in the main maternity hospital in Kathmandu. The following clinical and nutritional variables were assessed: concentrations and age profiles of blood glucose, hydroxybutyrate, lactate, pyruvate, free fatty acids (FFA) and glycerol; associations between alternative fuel levels and hypoglycaemia; and regression of possible risk factors for ketone availability.
RESULTS—Risk factors for impaired metabolic adaptation were common, especially low birthweight (32%), feeding delays, and cold stress. Blood glucose and ketones rose with age, but important age effects were also found for risk factors like hypothermia, thyroid hormone activities, and feeding practices. Alternative fuel concentrations, except FFA, were significantly reduced in infants with moderate hypoglycaemia during the first 48 hours after birth. Unlike earlier studies, small for gestational age (SGA) infants had significantly higher hydroxybutyrate:glucose ratios which suggested counter regulatory ketogenesis. Hypoglycaemic infants were not hyperinsulinaemic. Regression analysis showed risk factors for impaired counter regulation which included male and large infants, hypothermia, and poorer infant thyroid function. SGA infants and those whose mothers had received no antenatal care had increased counter regulation.
CONCLUSIONS—Alternative fuels are important in the metabolic assessment of neonates, and they might provide effective cerebral metabolism even during moderate hypoglycaemia. Hypoglycaemic infants generally had lower concentrations of alternative fuels through either reduced availability or increased consumption. SGA and post term infants increased counter regulatory ketogenesis with early neonatal hypoglycaemia, but hypothermia, male gender, and low infant T4 were associated with impaired counter

  7. Energy demand analysis and alternative fuels. Transportation research record

    SciTech Connect

    Dingemans, D.; Sperling, D.; Greene, D.L.; Hu, P.S.; Hallet, P.

    1986-01-01

    Contents include: Mental maps and the refueling behavior of vehicle drivers; A functional form analysis of the short-run demand for travel and gasoline by one-vehicle households; An assessment methodology for alternative fuels technologies; Drive-up windows, energy, and air quality; Travel characteristics and transportation energy consumption patterns of minority and poor households; An investigation into the use of market segmentation analysis for transportation energy planning.

  8. Alternative approach for cavitation damage study utilizing repetitive laser pulses

    SciTech Connect

    Ren, Fei; Wang, Jy-An John; Wang, Hong

    2010-01-01

    Cavitation is a common phenomenon in fluid systems that can lead to dramatic degradation of solid materials surface in contact with the cavitating media. Study of cavitation damage has great significance in many engineering fields. Current techniques for cavitation damage study either require large scale equipments or tend to introduce damages from other mechanisms. In this project, we utilized the cavitation phenomenon induced by laser optical breakdown and developed a prototype apparatus for cavitation damage study. In our approach, cavitation was generated by the repetitive pressure waves induced by high-power laser pulses. As proof of principal study, stainless steel and aluminum samples were tested using the novel apparatus. Surface characterization via scanning electron microscopy revealed damages such as indentation and surface pitting, which were similar to those reported in literature using other state-of-the-art techniques. These preliminary results demonstrated the new device was capable of generating cavitation damages and could be used as an alternative method for cavitation damage study.

  9. Low Floor Americans with Disabilities Compliant Alternate Fuel Vehicle Project

    SciTech Connect

    James Bartel

    2004-11-26

    This project developed a low emission, cost effective, fuel efficient, medium-duty community/transit shuttle bus that meets American's with Disabilities Act (ADA) requirements and meets National Energy Policy Act requirements (uses alternative fuel). The Low Profile chassis, which is the basis of this vehicle is configured to be fuel neutral to accommodate various alternative fuels. Demonstration of the vehicle in Yellowstone Park in summer (wheeled operation) and winter (track operation) demonstrated the feasibility and flexibility for this vehicle to provide year around operation throughout the Parks system as well as normal transit operation. The unique configuration of the chassis which provides ADA access with a simple ramp and a flat floor throughout the passenger compartment, provides maximum access for all passengers as well as maximum flexibility to configure the vehicle for each application. Because this product is derived from an existing medium duty truck chassis, the completed bus is 40-50% less expensive than existing low floor transit buses, with the reliability and durability of OEM a medium duty truck.

  10. Alternative fuels for low emissions and improved performance in CI and heavy duty engines

    SciTech Connect

    1995-12-31

    Contents include: Limited durability of the diesel engine with a dual-fuel system on neat sunflower oil; Analysis and testing of a high-pressure micro-compressor; Spark-assisted alcohol operation in a low heat rejection engine; Combustion improvement of heavy-duty methanol engine by using autoignition system; Clean Fleet Alternative Fuels demonstration project; Vehicle fuel economy -- the Clean Fleet Alternative Fuels project; Safety and occupational hygiene results -- Clean Fleet Alternative Fuels project; Vehicle reliability and maintenance -- Clean Fleet Alternative Fuels project; Flammability tests of alcohol/gasoline vapors; Flame luminosity enhancement of neat methanol fuel by non-aromatic hydrocarbon additives; and more.

  11. State and Alternative Fuel Provider Fleets Alternative Compliance; U.S. Department of Energy (DOE), Energy Efficiency & Renewable Energy (EERE)

    SciTech Connect

    2015-08-01

    The final rule of the Energy Policy Act of 2005 and its associated regulations enable covered state and alternative fuel provider fleets to obtain waivers from the alternative fuel vehicle (AFV)-acquisition requirements of Standard Compliance. Under Alternative Compliance, covered fleets instead meet a petroleum-use reduction requirement. This guidance document is designed to help fleets better understand the Alternative Compliance option and successfully complete the waiver application process.

  12. A Comparison Study of Various Nuclear Fuel Cycle Alternatives

    SciTech Connect

    Kwon, Eun-ha; Ko, Won-il

    2007-07-01

    As a nation develops its nuclear strategies, it must consider various aspects of nuclear energy such as sustainability, environmental-friendliness, proliferation-resistance, economics, technologies, and so on. Like all the policy decision, however, a nuclear fuel cycle option can not be superior in all aspects; the nation must identify its top priority and accordingly evaluate all the possible nuclear fuel cycle options. For such a purpose, this paper takes four different fuel cycle options that are likely adopted by the Korean government, considering the current status of nuclear power generation and the 3. Comprehensive Nuclear Energy Promotion Plan (CNEPP) - Once-through Cycle, DUPIC Recycle, Thermal Recycle and GEN-IV Recycle. The paper then evaluates each option in terms of resource utilization and waste generation. The analysis shows that the GEN-IV Recycle appears to be most competitive from these aspects. (authors)

  13. Grease/fat waste utilized as a fuel. Final report

    SciTech Connect

    Davis, J.A.

    1982-09-30

    Chicken processing plants produce wastewater loaded with grease-oil-fat matter. Depending upon plant size, location, and pretreatment requirements some processing plants discharge untreated wastewater directly into publicly owned treatment works (POTW) while other plants pretreat, removing up to 98% of the grease-oil-fat (GOF) matter, prior to discharging the resulting effluent. The purpose of this study is to evaluate the energy potential of the GOF waste, analyze systems to separate the GOF waste from the process wastewater, select possible incineration systems which may utilize the GOF waste as fuel and recover the heat for plant use. The objective of this project is to theoretically determine if the GOF material, presently disposed of as waste, can be utilized as furnace fuel in a manner which is cost effective. Commercially available equipment in the areas of wastewater pretreatment, incineration, and heat recovery are analyzed for effective utilization. Results indicate that chicken processing plant GOF waste can be effectively utilized as fuel rather than disposed as waste which has compounded problems at landfills, treatment plants, oxidation pools, and receiving waters. 2 figures, 11 tables.

  14. Fuel Cells Utilizing Oxygen From Air at Low Pressures

    NASA Technical Reports Server (NTRS)

    Cisar, Alan; Boyer, Chris; Greenwald, Charles

    2006-01-01

    A fuel cell stack has been developed to supply power for a high-altitude aircraft with a minimum of air handling. The fuel cell is capable of utilizing oxygen from ambient air at low pressure with no need for compression. For such an application, it is advantageous to take oxygen from the air (in contradistinction to carrying a supply of oxygen onboard), but it is a challenging problem to design a fuel-cell stack of reasonable weight that can generate sufficient power while operating at reduced pressures. The present fuel-cell design is a response to this challenge. The design features a novel bipolar plate structure in combination with a gas-diffusion structure based on a conductive metal core and a carbon gas-diffusion matrix. This combination makes it possible for the flow fields in the stack to have a large open fraction (ratio between open volume and total volume) to permit large volumes of air to flow through with exceptionally low backpressure. Operations at reduced pressure require a corresponding increase in the volume of air that must be handled to deliver the same number of moles of oxygen to the anodes. Moreover, the increase in the open fraction, relative to that of a comparable prior fuel-cell design, reduces the mass of the stack. The fuel cell has been demonstrated to operate at a power density as high as 105 W/cm2 at an air pressure as low as 2 psia (absolute pressure 14 kPa), which is the atmospheric pressure at an altitude of about 50,000 ft ( 15.2 km). The improvements in the design of this fuel cell could be incorporated into designs of other fuel cells to make them lighter in weight and effective at altitudes higher than those of prior designs. Potential commercial applications for these improvements include most applications now under consideration for fuel cells.

  15. 77 FR 18718 - Petroleum Reduction and Alternative Fuel Consumption Requirements for Federal Fleets

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-28

    ... petroleum consumption and increase in alternative fuel consumption for Federal fleets (77 FR 14,482 (Mar. 12...; ] DEPARTMENT OF ENERGY 10 CFR Part 438 RIN 1904-AB98 Petroleum Reduction and Alternative Fuel Consumption... increase in alternative fuel consumption for Federal fleets. With this Request for Information (RFI),...

  16. 10 CFR 490.201 - Alternative fueled vehicle acquisition mandate schedule.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Alternative fueled vehicle acquisition mandate schedule. 490.201 Section 490.201 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Mandatory State Fleet Program § 490.201 Alternative fueled vehicle acquisition...

  17. 10 CFR 490.201 - Alternative fueled vehicle acquisition mandate schedule.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 3 2011-01-01 2011-01-01 false Alternative fueled vehicle acquisition mandate schedule. 490.201 Section 490.201 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Mandatory State Fleet Program § 490.201 Alternative fueled vehicle acquisition...

  18. 10 CFR 490.203 - Light Duty Alternative Fueled Vehicle Plan.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Light Duty Alternative Fueled Vehicle Plan. 490.203 Section 490.203 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Mandatory State Fleet Program § 490.203 Light Duty Alternative Fueled Vehicle Plan. (a) General...

  19. 10 CFR 490.201 - Alternative fueled vehicle acquisition mandate schedule.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Alternative fueled vehicle acquisition mandate schedule. 490.201 Section 490.201 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Mandatory State Fleet Program § 490.201 Alternative fueled vehicle acquisition...

  20. 10 CFR 490.201 - Alternative fueled vehicle acquisition mandate schedule.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Alternative fueled vehicle acquisition mandate schedule. 490.201 Section 490.201 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Mandatory State Fleet Program § 490.201 Alternative fueled vehicle acquisition...

  1. 41 CFR 102-117.130 - Must I select TSPs who use alternative fuels?

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... use alternative fuels? 102-117.130 Section 102-117.130 Public Contracts and Property Management... § 102-117.130 Must I select TSPs who use alternative fuels? No, but, whenever possible, you are encouraged to select TSPs that use alternative fuel vehicles and equipment, under policy in the Clean Air...

  2. 41 CFR 102-117.130 - Must I select TSPs who use alternative fuels?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... use alternative fuels? 102-117.130 Section 102-117.130 Public Contracts and Property Management... § 102-117.130 Must I select TSPs who use alternative fuels? No, but, whenever possible, you are encouraged to select TSPs that use alternative fuel vehicles and equipment, under policy in the Clean Air...

  3. 10 CFR 490.203 - Light Duty Alternative Fueled Vehicle Plan.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Light Duty Alternative Fueled Vehicle Plan. 490.203 Section 490.203 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Mandatory State Fleet Program § 490.203 Light Duty Alternative Fueled Vehicle Plan. (a) General...

  4. 41 CFR 102-117.130 - Must I select TSPs who use alternative fuels?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... use alternative fuels? 102-117.130 Section 102-117.130 Public Contracts and Property Management... § 102-117.130 Must I select TSPs who use alternative fuels? No, but, whenever possible, you are encouraged to select TSPs that use alternative fuel vehicles and equipment, under policy in the Clean Air...

  5. 41 CFR 102-117.130 - Must I select TSPs who use alternative fuels?

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... use alternative fuels? 102-117.130 Section 102-117.130 Public Contracts and Property Management... § 102-117.130 Must I select TSPs who use alternative fuels? No, but, whenever possible, you are encouraged to select TSPs that use alternative fuel vehicles and equipment, under policy in the Clean Air...

  6. 10 CFR 490.203 - Light Duty Alternative Fueled Vehicle Plan.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 3 2011-01-01 2011-01-01 false Light Duty Alternative Fueled Vehicle Plan. 490.203 Section 490.203 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Mandatory State Fleet Program § 490.203 Light Duty Alternative Fueled Vehicle Plan. (a) General...

  7. 10 CFR 490.203 - Light Duty Alternative Fueled Vehicle Plan.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Light Duty Alternative Fueled Vehicle Plan. 490.203 Section 490.203 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Mandatory State Fleet Program § 490.203 Light Duty Alternative Fueled Vehicle Plan. (a) General...

  8. 10 CFR 490.203 - Light Duty Alternative Fueled Vehicle Plan.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Light Duty Alternative Fueled Vehicle Plan. 490.203 Section 490.203 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Mandatory State Fleet Program § 490.203 Light Duty Alternative Fueled Vehicle Plan. (a) General...

  9. 41 CFR 102-117.130 - Must I select TSPs who use alternative fuels?

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... use alternative fuels? 102-117.130 Section 102-117.130 Public Contracts and Property Management... § 102-117.130 Must I select TSPs who use alternative fuels? No, but, whenever possible, you are encouraged to select TSPs that use alternative fuel vehicles and equipment, under policy in the Clean Air...

  10. 10 CFR 490.201 - Alternative fueled vehicle acquisition mandate schedule.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Alternative fueled vehicle acquisition mandate schedule. 490.201 Section 490.201 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Mandatory State Fleet Program § 490.201 Alternative fueled vehicle acquisition...

  11. Informal Market Survey of Training Issues: Heavy Duty Alternative Fuel Vehicles.

    ERIC Educational Resources Information Center

    Eckert, Doug

    The needs and opportunities in the heavy-duty alternative fuel vehicle training arena were examined in an informal marketing survey. A list of 277 potential respondents was compiled from the 220 individuals in the National Alternative Fuels Training Program database and 57 names identified from journals in the field of alternative fuels. When 2…

  12. Alternate routes for the production of fuels from coal and natural gas

    SciTech Connect

    Gray, D.; Tomlinson, G.; ElSawy, A.

    1994-06-01

    Almost all transportation worldwide is powered by high energy-density liquid hydrocarbon fuels produced from crude oil. Transportation fuels currently use over 50 percent of total world petroleum demand of 66 million barrels per day. Prior MITRE studies indicate that crude oil supply will become severely limited after the year 2030 as increasing world energy demand, driven by population growth and economic development, depletes oil resources. If conventional liquid hydrocarbon fuels that can use existing production and distribution infrastructures are still needed for transportation in the future, then alternate sources of these fuels will have to be utilized. Two such sources are natural gas and coal. Natural gas reserves worldwide are expected to last well into the 21st century, and coal resources are enormous. This paper examines the technologies for producing environmentally superior liquid transportation fuels from coal and natural gas using modern conversion technologies. Estimates of the costs of fuels from these sources are given, and the potential environmental impacts of these fuels are examined.

  13. Environmental aspects of alternative wet technologies for producing energy/fuel from peat. Final report

    SciTech Connect

    Smith, R.T.

    1981-05-01

    Peat in situ contains up to 90% moisture, with about 50% of this moisture trapped as a colloidal gel. This colloidal moisture cannot be removed by conventional dewatering methods (filter presses, etc.) and must be removed by thermal drying, solvent extraction, or solar drying before the peat can be utilized as a fuel feedstock for direct combustion or gasification. To circumvent the drying problem, alternative technologies such as wet oxidation, wet carbonization, and biogasification are possible for producing energy or enhanced fuel from peat. This report describes these three alternative technologies, calculates material balances for given raw peat feed rates of 1000 tph, and evaluates the environmental consequences of all process effluent discharges. Wastewater discharges represent the most significant effluent due to the relatively large quantities of water removed during processing. Treated process water returned to the harvested bog may force in situ, acidic bog water into recieving streams, disrupting local aquatic ecosystems.

  14. Fundamental characterization of alternate fuel effects in continuous combustion systems. Summary technical progress report, August 15, 1978-January 31, 1980

    SciTech Connect

    Blazowski, W.S.; Edelman, R.B.; Wong, E.

    1980-02-27

    The overall objective of this contract is to assist in the development of fuel-flexible combustion systems for gas turbines as well as Rankine and Stirling cycle engines. The primary emphasis of the program is on liquid hydrocarbons produced from non-petroleum resources. Fuel-flexible combustion systems will provide for more rapid transition of these alternative fuels into important future energy utilization centers (especially utility power generation with the combined cycle gas turbine). The specific technical objectives of the program are: (a) develop an improved understanding of relationships between alternative fuel properties and continuous combustion system effects, and (b) provide analytical modeling/correlation capabilities to be used as design aids for development of fuel-tolerant combustion systems. This is the second major report of the program. Key experimental findings during this reporting period concern stirred combustor soot production during operation at controlled temperature conditions, soot production as a function of combustor residence time, an improved measurement technique for total hydrocarbons and initial stirred combustor results of fuel nitrogen conversion. While the results to be presented concern a stirred combustor which utilizes premixed fuel vapor/oxidant mixtures, a new combustor which combusts liquid fuel injected into the reactor as a spray has been developed and will be described. Analytical program progress includes the development of new quasiglobal models of soot formation and assessment of needs for other submodel development.

  15. Technology assessment: Municipal solid waste as a utility fuel

    NASA Astrophysics Data System (ADS)

    Neparstek, M. I.; Cymny, G. A.

    1982-05-01

    This study updates a 1974 EPRI technology assessment of municipal solid waste (MSW) as a utility fuel. An independent and consistent assessment of the development status and conceptual design and economics is presented for the following refuse-to-electricity technologies; mass burning of MSW in a dedicated boiler; preparation of coarse RDF and firing in a dedicated boiler; preparation of wet RDF and firing in a dedicated boiler; preparation of fluff RDF and cofiring with coal in a utility boiler; and preparation of dust RDF and cofiring with coal in a utility boiler. The generated steam is used to drive a turbine-generator and produce electricity. Utility ownership and financing are assumed for the coal-fired power plant used for RDF cofiring and the turbine generators driven by refuse-generated steam. Municipal ownership is assumed for the RDF preparation facilities and the MSW mass burning and RDF-fired dedicated boilers.

  16. Development of biomass as an alternative fuel for gas turbines

    SciTech Connect

    Hamrick, J T

    1991-04-01

    A program to develop biomass as an alternative fuel for gas turbines was started at Aerospace Research Corporation in 1980. The research culminated in construction and installation of a power generation system using an Allison T-56 gas turbine at Red Boiling Springs, Tennessee. The system has been successfully operated with delivery of power to the Tennessee Valley Authority (TVA). Emissions from the system meet or exceed EPA requirements. No erosion of the turbine has been detected in over 760 hours of operation, 106 of which were on line generating power for the TVA. It was necessary to limit the turbine inlet temperature to 1450{degrees}F to control the rate of ash deposition on the turbine blades and stators and facilitate periodic cleaning of these components. Results of tests by researchers at Battelle Memorial Institute -- Columbus Division, give promise that deposits on the turbine blades, which must be periodically removed with milled walnut hulls, can be eliminated with addition of lime to the fuel. Operational problems, which are centered primarily around the feed system and engine configuration, have been adequately identified and can be corrected in an upgraded design. The system is now ready for development of a commercial version. The US Department of Energy (DOE) provided support only for the evaluation of wood as an alternative fuel for gas turbines. However, the system appears to have high potential for integration into a hybrid system for the production of ethanol from sorghum or sugar cane. 7 refs., 23 figs., 18 tabs.

  17. Effect of fuel utilization on the carbon monoxide poisoning dynamics of Polymer Electrolyte Membrane Fuel Cells

    NASA Astrophysics Data System (ADS)

    Pérez, Luis C.; Koski, Pauli; Ihonen, Jari; Sousa, José M.; Mendes, Adélio

    2014-07-01

    The effect of fuel utilization on the poisoning dynamics by carbon monoxide (CO) is studied for future automotive conditions of Polymer Electrolyte Membrane Fuel Cells (PEMFC). Three fuel utilizations are used, 70%, 40% and 25%. CO is fed in a constant concentration mode of 1 ppm and in a constant molar flow rate mode (CO concentrations between 0.18 and 0.57 ppm). The concentrations are estimated on a dry gas basis. The CO concentration of the anode exhaust gas is analyzed using gas chromatography. CO is detected in the anode exhaust gas almost immediately after it is added to the inlet gas. Moreover, the CO concentration of the anode exhaust gas increases with the fuel utilization for both CO feed modes. It is demonstrated that the lower the fuel utilization, the higher the molar flow rate of CO at the anode outlet at early stages of the CO poisoning. These results suggest that the effect of CO in PEMFC systems with anode gas recirculation is determined by the dynamics of its accumulation in the recirculation loop. Consequently, accurate quantification of impurities limits in current fuel specification (ISO 14687-2:2012) should be determined using anode gas recirculation.

  18. Fuel cells are a commercially viable alternative for the production of "clean" energy.

    PubMed

    Niakolas, Dimitris K; Daletou, Maria; Neophytides, Stylianos G; Vayenas, Constantinos G

    2016-01-01

    Fuel cells present a highly efficient and environmentally friendly alternative technology for decentralized energy production. The scope of the present study is to provide an overview of the technological and commercialization readiness level of fuel cells. Specifically, there is a brief description of their general advantages and weaknesses in correlation with various technological actions and political strategies, which are adopted towards their proper positioning in the global market. Some of the most important key performance indicators are also discussed, alongside with a few examples of broad commercialization. It is concluded that the increasing number of companies which utilize and invest on this technology, in combination with the supply chain improvements and the concomitant technological maturity and recognition, reinforce the fuel cell industry so as to become well-aligned for global success. PMID:26667058

  19. Utilization of waste heat in trucks for increased fuel economy

    NASA Technical Reports Server (NTRS)

    Leising, C. J.; Purohit, G. P.; Degrey, S. P.; Finegold, J. G.

    1978-01-01

    Improvements in fuel economy for a broad spectrum of truck engines and waste heat utilization concepts are evaluated and compared. The engines considered are the diesel, spark ignition, gas turbine, and Stirling. The waste heat utilization concepts include preheating, regeneration, turbocharging, turbocompounding, and Rankine engine compounding. Predictions were based on fuel-air cycle analyses, computer simulation, and engine test data. The results reveal that diesel driving cycle performance can be increased by 20% through increased turbocharging, turbocompounding, and Rankine engine compounding. The Rankine engine compounding provides about three times as much improvement as turbocompounding but also costs about three times as much. Performance for either is approximately doubled if applied to an adiabatic diesel.

  20. Apparatus for reforming fuel oil wherein ultrasonic waves are utilized

    SciTech Connect

    Kunishio, M.; Shirai, K.; Takezi, H.

    1981-08-04

    An apparatus for reforming fuel oil wherein ultrasonic waves are utilized. The apparatus comprises a closed vessel, a rotary collector formed in a cylindrical shape, an inlet conduit for supplying fuel oil to be reformed into the vessel, an outlet conduit for delivering reformed oil from the vessel, and a ultrasonic irradiating device. The rotary collector has a layered mesh structure of a fine mesh, preferably of mesh size between 2 mu M and 20 mu m, mounted thereon so that sludge contained in the fuel oil to be reformed is collected on the layered mesh structure. One end of a horn connected to the ultrasonic wave irradiating device faces the layered mesh structure forming a small gap therebetween so that the sludge collected on the layered mesh structure is dissociated by the ultrasonic waves.

  1. Fuel-flexible combined cycles for utility power and cogeneration

    NASA Astrophysics Data System (ADS)

    Roberts, P. B.; Duffy, T. E.; Schreiber, H.

    1980-03-01

    Two combustion turbine combined cycle power plants have been studied for performance and operating economics. Both power plants are in the sizing range that will be suitable for small utility application and use less than 106 GJ/hr (100 million Btu/hr). The first power plant is based on the Solar Turbines International (STI) Mars industrial gas turbine. The combined gas turbine/steam cycle is direct fired with No. 2 diesel fuel. A total installed cost for the system is estimated to be within the band 545 to 660 $/kW. The second power plant is based on STI's Centaur industrial gas turbine. The combined gas turbine/steam cycle is indirectly fired with solid fuel although it is intended that the installation can be initially fired with a liquid fuel.

  2. Effects of Fuel Composition on Combustion Stability and NO X Emissions for Traditional and Alternative Jet Fuels

    NASA Astrophysics Data System (ADS)

    Vijlee, Shazib Z.

    Synthetic jet fuels are studied to help understand their viability as alternatives to traditionally derived jet fuel. Two combustion parameters -- flame stability and NOX emissions -- are used to compare these fuels through experiments and models. At its core, this is a fuels study comparing how chemical makeup and behavior relate. Six 'real', complex fuels are studied in this work -- four are synthetic from alternative sources and two are traditional from petroleum sources. Two of the synthetic fuels are derived from natural gas and coal via the Fischer Tropsch catalytic process. The other two are derived from Camelina oil and tallow via hydroprocessing. The traditional military jet fuel, JP8, is used as a baseline as it is derived from petroleum. The sixth fuel is derived from petroleum and is used to study the effects of aromatic content on the synthetic fuels. The synthetic fuels lack aromatic compounds, which are an important class of hydrocarbons necessary for fuel handling systems to function properly. Several single-component fuels are studied (through models and/or experiments) to facilitate interpretation and understanding. The flame stability study first compares all the 'real', complex fuels for blowout. A toroidal stirred reactor is used to try and isolate temperature and chemical effects. The modeling study of blowout in the toroidal reactor is the key to understanding any fuel-based differences in blowout behavior. A detailed, reacting CFD model of methane is used to understand how the reactor stabilizes the flame and how that changes as the reactor approaches blowout. A 22 species reduced form of GRI 3.0 is used to model methane chemistry. The knowledge of the radical species role is utilized to investigate the differences between a highly aliphatic fuel (surrogated by iso-octane) and a highly aromatic fuel (surrogated by toluene). A perfectly stirred reactor model is used to study the chemical kinetic pathways for these fuels near blowout. The

  3. Fuel oil cleaning as a risk reduction strategy for utility units firing residual fuel oils

    SciTech Connect

    Booth, R.B.

    1995-12-31

    The Clean Air Act Amendments of 1990 (CAAA) ushered in a new era in the regulatory battle to achieve the clean air goals of Congress and the Environmental Protection Agency (EPA). Title III of the CAAA addresses the new air toxic emissions program approach applicable to a wide range and variety of sources, including utility boilers firing residual fuel oils (RFO), while Title IX of the CAAA addresses the implementation of the pollution prevention program. Utilities which burn RFO may be interested in the concept of fuel cleaning as a means to reduce the emission of several fuel related toxics. Such a concept would clearly qualify as a pollution prevention technique. The concept of fuel cleaning has generated some interest with respect to the removal of a number of toxic and/or carcinogenic fuel bound metals. Fuel cleaning would shift the focus of the utilities from the need to employ flue gas treatment and removal technologies on large volumes of combustion exhaust gases, to fuel cleaning technologies applicable to a much smaller volume of fuel oil. The removal of fuel-bound metals prior to combustion would obviously lessen the emission of such metals and reduce the associated risk of such emissions to the surrounding population. This paper presents a very preliminary and general evaluation of the risks associated with RFO combustion for a baseline fuel case as well as a number of cases in which various metals are removed from the baseline oil. The risks are based on a conservative approach to both dispersion modeling and health risk impact assessment.

  4. Update from the NREL Alternative Fuel Transit Bus Evaluation Program

    SciTech Connect

    Chandler, K.; Norton, P.; Clark, N.

    1999-05-01

    The object of this project, which is supported by the U.S. Department of Energy (DOE) through the National Renewable Energy Laboratory (NREL), is to provide a comprehensive comparison of heavy-duty urban transit buses operating on alternative fuels and diesel fuel. Final reports from this project were produced in 1996 from data collection and evaluation of 11 transit buses from eight transit sites. With the publication of these final reports, three issues were raised that needed further investigation: (1) the natural gas engines studied were older, open-loop control engines; (2) propane was not included in the original study; and (3) liquefied natural gas (LNG) was found to be in the early stages of deployment in transit applications. In response to these three issues, the project has continued by emissions testing newer natural gas engines and adding two new data collection sites to study the newer natural gas technology and specifically to measure new technology LNG buses.

  5. A UK utility perspective on irradiated nuclear fuel management

    SciTech Connect

    Wilmer, P.C.

    1994-12-31

    Before privatisation in 1990, the Central Electricity Generating Board (CEGB), had a statutory responsibility for the supply of electricity in England and Wales. Nuclear Electric took over the operation of the CEGB`s nuclear assets whilst remaining in the public sector. It now has to compete with private sector companies within the privatised market for electricity in the UK. The UK has had a tradition of reprocessing originating in the early weapons programme and all irradiated fuel from the Magnox reactors continues to be reprocessed. Specific consideration is given to the fuel used in the Advanced Gas Cooled Reactors (AGR) and the competing irradiated fuel management strategies of early reprocessing British Nuclear Fuel`s (BNFL) Thermal Oxide Reprocessing Plant (THORP) at Sellafield or the alternative of long term storage followed by direct disposal. The fuel management strategy for the UK`s first Pressurised Water Reactor (PWR), Sizewell B, will also be discussed. This review considers the following issues: (1) Plant technology and the effect on back-end strategies; (2) Nuclear Electric`s commercial approach to the changing UK business environment; (3) The inevitability of storage in the management of irradiated fuel; (4) Dry storage as an option in the UK Non economic issues such as safety, public perception, proliferation, International Safeguards and bilateral trade agreements; and (5) The experience of THORP and the issues it raises concerning two stage licensing. This paper not only reflects on the worldwide issues relating to the {open_quotes}reprocess or not decision{close_quotes} but also considers UK specific actions both historic and current. It concludes that whether to exercise the option of reprocessing in the short or long term, or at all, is a matter of commercial and strategic judgement of Nuclear Electric.

  6. Fuel-cycle greenhouse gas emissions from alternative fuels in Australian heavy vehicles

    NASA Astrophysics Data System (ADS)

    Beer, Tom; Grant, Tim; Williams, David; Watson, Harry

    This paper quantifies the expected pre-combustion and combustion emissions of greenhouse gases from Australian heavy vehicles using alternative fuels. We use the term exbodied emissions for these full fuel-cycle emissions. The fuels examined are low sulfur diesel (LSD), ultra-low sulfur diesel (ULS), compressed natural gas (CNG), liquefied natural gas (LNG), liquefied petroleum gas (LPG), ethanol (from lignocellulose), biodiesel and waste oil. Biodiesel and ethanol have the lowest exbodied greenhouse gas emissions (in grams greenhouse gases per kilometre travelled). Biodiesel reduces exbodied greenhouse gas emissions from 41% to 51% whereas ethanol reduces emissions by 49-55%. In fact, both emit larger quantities of CO 2 than conventional fuels, but as most of the CO 2 is from renewable carbon stocks that fraction is not counted towards the greenhouse gas emissions from the fuel. The gaseous fuels (LPG, CNG) come next with emissions that range from 88% to 92% of diesel. The emissions of greenhouse gases from diesel are reduced if waste oil is used as a diesel extender, but the processing energy required to generate LSD and ULS in Australia increase their greenhouse gas emissions compared to diesel fuel. The extra energy required liquefy and cool LNG means that it has the highest exbodied greenhouse gas emissions of the fuels that were considered.

  7. Vehicle Data for Alternative Fuel Vehicles (AFVs) and Hybrid Fuel Vehicles (HEVs) from the Alternative Fuels and Advanced Vehicles Data Center (AFCD)

    DOE Data Explorer

    The AFDC provides search capabilities for many different models of both light-duty and heavy-duty vehicles. Engine and transmission type, fuel and class, fuel economy and emission certification are some of the facts available. The search will also help users locate dealers in their areas and do cost analyses. Information on alternative fuel vehicles and on advanced technology vehicles, along with calculators, resale and conversion information, links to incentives and programs such as Clean Cities, and dozens of fact sheets and publications make this section of the AFDC a valuable resource for car buyers.

  8. Utility reduces fuel cost with heat recovery, industrial byproduct fuel, cogeneration

    SciTech Connect

    Holland, R.J.

    1982-02-01

    A 50-MW North Dakota power plant is refurbished to recover major waste-heat sources. Use of agricultural byproduct fuel and cogeneration also helps to cut future costs. The plant is saving on fuel costs by burning 150-200 tons/day of sunflower seed hulls from a local processing plant. The hulls are pulverized and mixed with the primary fuel, North Dakota lignite. At the same time, the processing plant that supplies the sunflower hulls buys steam from the power plant, thus giving the utility some of the economic benefits of cogeneration.

  9. Alternative Liquid Fuels Simulation Model (AltSim).

    SciTech Connect

    Williams, Ryan; Baker, Arnold Barry; Drennen, Thomas E.

    2009-12-01

    The Alternative Liquid Fuels Simulation Model (AltSim) is a high-level dynamic simulation model which calculates and compares the production and end use costs, greenhouse gas emissions, and energy balances of several alternative liquid transportation fuels. These fuels include: corn ethanol, cellulosic ethanol from various feedstocks (switchgrass, corn stover, forest residue, and farmed trees), biodiesel, and diesels derived from natural gas (gas to liquid, or GTL), coal (coal to liquid, or CTL), and coal with biomass (CBTL). AltSim allows for comprehensive sensitivity analyses on capital costs, operation and maintenance costs, renewable and fossil fuel feedstock costs, feedstock conversion ratio, financial assumptions, tax credits, CO{sub 2} taxes, and plant capacity factor. This paper summarizes the structure and methodology of AltSim, presents results, and provides a detailed sensitivity analysis. The Energy Independence and Security Act (EISA) of 2007 sets a goal for the increased use of biofuels in the U.S., ultimately reaching 36 billion gallons by 2022. AltSim's base case assumes EPA projected feedstock costs in 2022 (EPA, 2009). For the base case assumptions, AltSim estimates per gallon production costs for the five ethanol feedstocks (corn, switchgrass, corn stover, forest residue, and farmed trees) of $1.86, $2.32, $2.45, $1.52, and $1.91, respectively. The projected production cost of biodiesel is $1.81/gallon. The estimates for CTL without biomass range from $1.36 to $2.22. With biomass, the estimated costs increase, ranging from $2.19 per gallon for the CTL option with 8% biomass to $2.79 per gallon for the CTL option with 30% biomass and carbon capture and sequestration. AltSim compares the greenhouse gas emissions (GHG) associated with both the production and consumption of the various fuels. EISA allows fuels emitting 20% less greenhouse gases (GHG) than conventional gasoline and diesels to qualify as renewable fuels. This allows several of the CBTL

  10. Fuel Flexible Combustion Systems for High-Efficiency Utilization of Opportunity Fuels in Gas Turbines

    SciTech Connect

    Venkatesan, Krishna

    2011-11-30

    The purpose of this program was to develop low-emissions, efficient fuel-flexible combustion technology which enables operation of a given gas turbine on a wider range of opportunity fuels that lie outside of current natural gas-centered fuel specifications. The program encompasses a selection of important, representative fuels of opportunity for gas turbines with widely varying fundamental properties of combustion. The research program covers conceptual and detailed combustor design, fabrication, and testing of retrofitable and/or novel fuel-flexible gas turbine combustor hardware, specifically advanced fuel nozzle technology, at full-scale gas turbine combustor conditions. This project was performed over the period of October 2008 through September 2011 under Cooperative Agreement DE-FC26-08NT05868 for the U.S. Department of Energy/National Energy Technology Laboratory (USDOE/NETL) entitled "Fuel Flexible Combustion Systems for High-Efficiency Utilization of Opportunity Fuels in Gas Turbines". The overall objective of this program was met with great success. GE was able to successfully demonstrate the operability of two fuel-flexible combustion nozzles over a wide range of opportunity fuels at heavy-duty gas turbine conditions while meeting emissions goals. The GE MS6000B ("6B") gas turbine engine was chosen as the target platform for new fuel-flexible premixer development. Comprehensive conceptual design and analysis of new fuel-flexible premixing nozzles were undertaken. Gas turbine cycle models and detailed flow network models of the combustor provide the premixer conditions (temperature, pressure, pressure drops, velocities, and air flow splits) and illustrate the impact of widely varying fuel flow rates on the combustor. Detailed chemical kinetic mechanisms were employed to compare some fundamental combustion characteristics of the target fuels, including flame speeds and lean blow-out behavior. Perfectly premixed combustion experiments were conducted to

  11. Integration of alternative feedstreams for biomass treatment and utilization

    DOEpatents

    Hennessey, Susan Marie; Friend, Julie; Dunson, Jr., James B.; Tucker, III, Melvin P.; Elander, Richard T.; Hames, Bonnie

    2011-03-22

    The present invention provides a method for treating biomass composed of integrated feedstocks to produce fermentable sugars. One aspect of the methods described herein includes a pretreatment step wherein biomass is integrated with an alternative feedstream and the resulting integrated feedstock, at relatively high concentrations, is treated with a low concentration of ammonia relative to the dry weight of biomass. In another aspect, a high solids concentration of pretreated biomass is integrated with an alternative feedstream for saccharifiaction.

  12. Effects of Fuel Composition on Combustion Stability and NO X Emissions for Traditional and Alternative Jet Fuels

    NASA Astrophysics Data System (ADS)

    Vijlee, Shazib Z.

    Synthetic jet fuels are studied to help understand their viability as alternatives to traditionally derived jet fuel. Two combustion parameters -- flame stability and NOX emissions -- are used to compare these fuels through experiments and models. At its core, this is a fuels study comparing how chemical makeup and behavior relate. Six 'real', complex fuels are studied in this work -- four are synthetic from alternative sources and two are traditional from petroleum sources. Two of the synthetic fuels are derived from natural gas and coal via the Fischer Tropsch catalytic process. The other two are derived from Camelina oil and tallow via hydroprocessing. The traditional military jet fuel, JP8, is used as a baseline as it is derived from petroleum. The sixth fuel is derived from petroleum and is used to study the effects of aromatic content on the synthetic fuels. The synthetic fuels lack aromatic compounds, which are an important class of hydrocarbons necessary for fuel handling systems to function properly. Several single-component fuels are studied (through models and/or experiments) to facilitate interpretation and understanding. The flame stability study first compares all the 'real', complex fuels for blowout. A toroidal stirred reactor is used to try and isolate temperature and chemical effects. The modeling study of blowout in the toroidal reactor is the key to understanding any fuel-based differences in blowout behavior. A detailed, reacting CFD model of methane is used to understand how the reactor stabilizes the flame and how that changes as the reactor approaches blowout. A 22 species reduced form of GRI 3.0 is used to model methane chemistry. The knowledge of the radical species role is utilized to investigate the differences between a highly aliphatic fuel (surrogated by iso-octane) and a highly aromatic fuel (surrogated by toluene). A perfectly stirred reactor model is used to study the chemical kinetic pathways for these fuels near blowout. The

  13. DEVELOPMENT OF ALTERNATIVE FUELS AND CHEMICALS FROM SYNTHESIS GAS

    SciTech Connect

    Peter J. Tijrn

    2003-05-31

    This Final Report for Cooperative Agreement No. DE-FC22-95PC93052, the ''Development of Alternative Fuels and Chemicals from Synthesis Gas,'' was prepared by Air Products and Chemicals, Inc. (Air Products), and covers activities from 29 December 1994 through 31 July 2002. The overall objectives of this program were to investigate potential technologies for the conversion of synthesis gas (syngas), a mixture primarily of hydrogen (H{sub 2}) and carbon monoxide (CO), to oxygenated and hydrocarbon fuels and industrial chemicals, and to demonstrate the most promising technologies at the LaPorte, Texas Alternative Fuels Development Unit (AFDU). Laboratory work was performed by Air Products and a variety of subcontractors, and focused on the study of the kinetics of production of methanol and dimethyl ether (DME) from syngas, the production of DME using the Liquid Phase Dimethyl Ether (LPDME{trademark}) Process, the conversion of DME to fuels and chemicals, and the production of other higher value products from syngas. Four operating campaigns were performed at the AFDU during the performance period. Tests of the Liquid Phase Methanol (LPMEOH{trademark}) Process and the LPDME{trademark} Process were made to confirm results from the laboratory program and to allow for the study of the hydrodynamics of the slurry bubble column reactor (SBCR) at a significant engineering scale. Two campaigns demonstrated the conversion of syngas to hydrocarbon products via the slurry-phase Fischer-Tropsch (F-T) process. Other topics that were studied within this program include the economics of production of methyl tert-butyl ether (MTBE), the identification of trace components in coal-derived syngas and the means to economically remove these species, and the study of systems for separation of wax from catalyst in the F-T process. The work performed under this Cooperative Agreement has continued to promote the development of technologies that use clean syngas produced from any one of a

  14. Prospectives on the risks of alternative fuel cycles.

    PubMed Central

    Johnson, D H; Kastenberg, W E; Griesmeyer, J M

    1981-01-01

    A commentary is provided on the uncertainties in the data and in qualifying the phenomena relating to the risks imposed by the various steps involved in the use of coal, oil, natural gas, hydropower, and nuclear fuels for the generation of electricity. Uncertainties appear to be extremely large for hydropower which exhibits both large scale ecological impacts and the potential for high consequence, moderate frequency events at specific sites. Major risk-related uncertainties with the use of nuclear fuels include those surrounding nuclear weapons proliferation and reactor accident frequencies and consequences. Uncertainties for coal and oil include specification of the damage function of air transported sulfates and the effects of atmospheric CO2 buildup, acid rain, and groundwater contamination from mine water runoff. Compounding these problems is the potential impact of the growing global competition for a diminishing supply of oil. In the studies reviewed herein, the assessed risks of the nuclear fuel cycle are no greater than those of the primary alternatives. Prudence suggests that we do not totally reject any particular option at this time on the basis of health effects alone; similarly, no option is an undisputed choice. PMID:7270773

  15. Prospectives on the risks of alternative fuel cycles.

    PubMed

    Johnson, D H; Kastenberg, W E; Griesmeyer, J M

    1981-09-01

    A commentary is provided on the uncertainties in the data and in qualifying the phenomena relating to the risks imposed by the various steps involved in the use of coal, oil, natural gas, hydropower, and nuclear fuels for the generation of electricity. Uncertainties appear to be extremely large for hydropower which exhibits both large scale ecological impacts and the potential for high consequence, moderate frequency events at specific sites. Major risk-related uncertainties with the use of nuclear fuels include those surrounding nuclear weapons proliferation and reactor accident frequencies and consequences. Uncertainties for coal and oil include specification of the damage function of air transported sulfates and the effects of atmospheric CO2 buildup, acid rain, and groundwater contamination from mine water runoff. Compounding these problems is the potential impact of the growing global competition for a diminishing supply of oil. In the studies reviewed herein, the assessed risks of the nuclear fuel cycle are no greater than those of the primary alternatives. Prudence suggests that we do not totally reject any particular option at this time on the basis of health effects alone; similarly, no option is an undisputed choice. PMID:7270773

  16. Investigation of an Alternative Fuel Form for the Liquid Salt Cooled Very High Temperature Reactor (LS-VHTR)

    SciTech Connect

    Casino, William A. Jr.

    2006-07-01

    Much of the recent studies investigating the use of liquid salts as reactor coolants have utilized a core configuration of graphite prismatic fuel block assemblies with TRISO particles embedded into cylindrical fuel compacts arranged in a triangular pitch lattice. Although many calculations have been performed for this fuel form in gas cooled reactors, it would be instructive to investigate whether an alternative fuel form may yield improved performance for the liquid salt-cooled Very High Temperature Reactor (LS-VHTR). This study investigates how variations in the fuel form will impact the performance of the LS-VHTR during normal and accident conditions and compares the results with a similar analysis that was recently completed for a LS-VHTR core made up of prismatic block fuel. (author)

  17. Compatibility of alternative fuels with advanced automotive gas turbine and stirling engines. A literature survey

    NASA Technical Reports Server (NTRS)

    Cairelli, J.; Horvath, D.

    1981-01-01

    The application of alternative fuels in advanced automotive gas turbine and Stirling engines is discussed on the basis of a literature survey. These alternative engines are briefly described, and the aspects that will influence fuel selection are identified. Fuel properties and combustion properties are discussed, with consideration given to advanced materials and components. Alternative fuels from petroleum, coal, oil shale, alcohol, and hydrogen are discussed, and some background is given about the origin and production of these fuels. Fuel requirements for automotive gas turbine and Stirling engines are developed, and the need for certain reseach efforts is discussed. Future research efforts planned at Lewis are described.

  18. 40 CFR 86.348-79 - Alternative to fuel H/C analysis.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Alternative to fuel H/C analysis. 86.348-79 Section 86.348-79 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR....348-79 Alternative to fuel H/C analysis. (a) Fuel H/C analysis need not be performed if the...

  19. Geospatial Analysis and Optimization of Fleet Logistics to Exploit Alternative Fuels and Advanced Transportation Technologies: Preprint

    SciTech Connect

    Sparks, W.; Singer, M.

    2010-06-01

    This paper describes how the National Renewable Energy Laboratory (NREL) is developing geographical information system (GIS) tools to evaluate alternative fuel availability in relation to garage locations and to perform automated fleet-wide optimization to determine where to deploy alternative fuel and advanced technology vehicles and fueling infrastructure.

  20. LIQUID NATURAL GAS (LNG): AN ALTERNATIVE FUEL FROM LANDFILL GAS (LFG) AND WASTEWATER DIGESTER GAS

    SciTech Connect

    VANDOR,D.

    1999-03-01

    This Research and Development Subcontract sought to find economic, technical and policy links between methane recovery at landfill and wastewater treatment sites in New York and Maryland, and ways to use that methane as an alternative fuel--compressed natural gas (CNG) or liquid natural gas (LNG) -- in centrally fueled Alternative Fueled Vehicles (AFVs).

  1. Evaluation of Exxon Donor Solvent (EDS) coal-derived liquid as utility diesel fuel. Final report

    SciTech Connect

    Heater, W.R.; Froh, T.W.; Ariga, S.; Baker, Q.A.; Piispanen, W.; Webb, P.; Trayser, D.; Keane, W.J.

    1983-10-01

    The program consisted of three phases: (I) characterization of the physical and chemical properties of EDS, (II) evaluation of EDS in a laboratory medium-speed diesel engine, and (III) evaluation of EDS in a low-speed diesel engine operating at a utility. The characteristics of high aromatic content and low cetane number that were found during Phase I made it unlikely that EDS could be used as a direct substitute for diesel fuel without engine modification to provide ignition assistance. Phase II was conducted on a 12-cylinder General Electric Company 7FDL diesel engine. Blends of up to 30% EDS and 70% 0.2 diesel fuel (DF-2) were successfully consumed. Dual fuel tests were also conducted on a single cylinder by injecting EDS through the existing engine fuel oil system and injecting DF-2 through an auxiliary nozzle as an ignition source. Acceptable operation was achieved using 5 to 10% pilot oil heat input. Phase III was conducted on a 16-cylinder Cooper-Bessemer LSV-16-GDT diesel engine at an EUC plant in Easton, Maryland. Blends of up to 66.7% EDS and 33.3% DF-2 were successfully consumed. Dual fuel tests were also conducted on a single cylinder by injecting EDS through the existing fuel oil system and using a natural-gas-fueled precombustion chamber as an ignition source. Acceptable operation was achieved using 3 to 6% pilot gas heat input. The program confirmed that it is feasible to consume significant proportions of EDS in a diesel engine, but more development is needed before EDS can be considered a viable alternative liquid fuel for diesel engines, and an industrial hygiene program is needed to assure safe handling of the fuel.

  2. Preparation and utilization of slurry fuel with flotation tailing

    SciTech Connect

    Jiang Shixin; Jiang Qiyun; Lui Qing; Shao Peozao; Wang Zuna; Guo Baoxin

    1993-12-31

    Most coal preparation plants treating metallurgical coal employ flotation process for recovering concentrate from -0.5mm fraction. For full utilization of combustibles, the common practice of flotation operation is to give a relatively low ash concentrate while leaving a medium ash tailing as an inferior fuel. In this case, the dilute flotation tailing is thickened and dewatered, giving a filtering cake containing about 20-30% moisture as the final product. Difficulties are confronted in handling of this sticky mass. Besides, combustion of such high-moisture inferior fuel would be less efficient and more pollutant. Ways have been sought to solve these problems. Conversion of such dewatered flotation tailing into slurry fuel is one of possible options in view of its good handleability and high efficiency of carbon burnout in combustion even in small outfits. In Chinese situation, a coal mine area always includes population points and associate utilities and consumes about 5% of coal produced, some of which should be of good quality. Clean and efficient usage of such coal sludge in-situ will be of benefit to the mine in that locally consumed coal could be substituted, which can be in turns loaded out as regular commodity or joining with the main stream to coal preparation plant for production of more premium coal. Datun Coal Preparation Plant employs jig-flotation process and produces concentrate for coking plants. It has a designed annual capacity of treating 1.8 Mt feed coal and the highest record of operation was 2.1 Mt. Average yield of flotation tailing in recent years is 3.5%. Economy would be the prime importance to be considered for converting this sludge into slurry fuel, as preparation of coal slurry is usually considered to be expensive.

  3. Reformers for the production of hydrogen from methanol and alternative fuels for fuel cell powered vehicles

    SciTech Connect

    Kumar, R.; Ahmed, S.; Krumpelt, M.; Myles, K.M.

    1992-08-01

    The objective of this study was (i) to assess the present state of technology of reformers that convert methanol (or other alternative fuels) to a hydrogen-rich gas mixture for use in a fuel cell, and (ii) to identify the R&D needs for developing reformers for transportation applications. Steam reforming and partial oxidation are the two basic types of fuel reforming processes. The former is endothermic while the latter is exothermic. Reformers are therefore typically designed as heat exchange systems, and the variety of designs used includes shell-and-tube, packed bed, annular, plate, and cyclic bed types. Catalysts used include noble metals and oxides of Cu, Zn, Cr, Al, Ni, and La. For transportation applications a reformer must be compact, lightweight, and rugged. It must also be capable of rapid start-up and good dynamic performance responsive to fluctuating loads. A partial oxidation reformer is likely to be better than a steam reformer based on these considerations, although its fuel conversion efficiency is expected to be lower than that of a steam reformer. A steam reformer better lends itself to thermal integration with the fuel cell system; however, the thermal independence of the reformer from the fuel cell stack is likely to yield much better dynamic performance of the reformer and the fuel cell propulsion power system. For both steam reforming and partial oxidation reforming, research is needed to develop compact, fast start-up, and dynamically responsive reformers. For transportation applications, steam reformers are likely to prove best for fuel cell/battery hybrid power systems, and partial oxidation reformers are likely to be the choice for stand-alone fuel cell power systems.

  4. Reformers for the production of hydrogen from methanol and alternative fuels for fuel cell powered vehicles

    SciTech Connect

    Kumar, R.; Ahmed, S.; Krumpelt, M.; Myles, K.M.

    1992-08-01

    The objective of this study was (i) to assess the present state of technology of reformers that convert methanol (or other alternative fuels) to a hydrogen-rich gas mixture for use in a fuel cell, and (ii) to identify the R D needs for developing reformers for transportation applications. Steam reforming and partial oxidation are the two basic types of fuel reforming processes. The former is endothermic while the latter is exothermic. Reformers are therefore typically designed as heat exchange systems, and the variety of designs used includes shell-and-tube, packed bed, annular, plate, and cyclic bed types. Catalysts used include noble metals and oxides of Cu, Zn, Cr, Al, Ni, and La. For transportation applications a reformer must be compact, lightweight, and rugged. It must also be capable of rapid start-up and good dynamic performance responsive to fluctuating loads. A partial oxidation reformer is likely to be better than a steam reformer based on these considerations, although its fuel conversion efficiency is expected to be lower than that of a steam reformer. A steam reformer better lends itself to thermal integration with the fuel cell system; however, the thermal independence of the reformer from the fuel cell stack is likely to yield much better dynamic performance of the reformer and the fuel cell propulsion power system. For both steam reforming and partial oxidation reforming, research is needed to develop compact, fast start-up, and dynamically responsive reformers. For transportation applications, steam reformers are likely to prove best for fuel cell/battery hybrid power systems, and partial oxidation reformers are likely to be the choice for stand-alone fuel cell power systems.

  5. Utilization of alternate chirality enantiomers in microbial communities

    NASA Astrophysics Data System (ADS)

    Pikuta, Elena V.; Hoover, Richard B.

    2010-09-01

    Our previous study of chirality led to interesting findings for some anaerobic extremophiles: the ability to metabolize substrates with alternate chirality enantiomers of amino acids and sugars. We have subsequently found that not just separate microbial species or strains but entire microbial communities have this ability. The functional division within a microbial community on proteo- and sugarlytic links was also reflected in a microbial diet with L-sugars and D-amino acids. Several questions are addressed in this paper. Why and when was this feature developed in a microbial world? Was it a secondary de novo adaptation in a bacterial world? Or is this a piece of genetic information that has been left in modern genomes as an atavism? Is it limited exclusively to prokaryotes, or does this ability also occur in eukaryotes? In this article, we have used a broader approach to study this phenomenon using anaerobic extremophilic strains from our laboratory collection. A series of experiments were performed on physiologically different groups of extremophilic anaerobes (pure and enrichment cultures). The following characteristics were studied: 1) the ability to grow on alternate chirality enantiomers - L-sugars and D- amino acids; 2) Growthinhibitory effect of alternate chirality enantiomers; 3) Stickland reaction with alternate chirality amino acids. The results of this research are presented in this paper.

  6. Utilization of Alternate Chirality Enantiomers in Microbial Communities

    NASA Technical Reports Server (NTRS)

    Pikuta, Elena V.; Hoover, Richard B.

    2010-01-01

    Our previous study of chirality led to interesting findings for some anaerobic extremophiles: the ability to metabolize substrates with alternate chirality enantiomers of amino acids and sugars. We have subsequently found that not just separate microbial species or strains but entire microbial communities have this ability. The functional division within a microbial community on proteo- and sugarlytic links was also reflected in a microbial diet with L-sugars and D-amino acids. Several questions are addressed in this paper. Why and when was this feature developed in a microbial world? Was it a secondary de novo adaptation in a bacterial world? Or is this a piece of genetic information that has been left in modern genomes as an atavism? Is it limited exclusively to prokaryotes, or does this ability also occur in eukaryotes? In this article, we have used a broader approach to study this phenomenon using anaerobic extremophilic strains from our laboratory collection. A series of experiments were performed on physiologically different groups of extremophilic anaerobes (pure and enrichment cultures). The following characteristics were studied: 1) the ability to grow on alternate chirality enantiomers -- L-sugars and D- amino acids; 2) Growth-inhibitory effect of alternate chirality enantiomers; 3) Stickland reaction with alternate chirality amino acids. The results of this research are presented in this paper.

  7. Gas turbine materials evaluation program utilizing coal derived gaseous fuel

    NASA Astrophysics Data System (ADS)

    Williams, M. L.; Yates, C. C.; Manning, G. B.; Peterson, R. R.

    1981-03-01

    A gas turbine materials evaluation test facility under the sponsorship of the U.S. Department of Energy is described. The objective of the mobile test facility is to obtain dynamic and static test data on the erosion/corrosion characteristics of materials exposed to the hot products of the combustion of coal-derived fuels. The engine being utilized for the tests is the WR 24-7 aircraft turbojet unit reconfigurated to burn coke oven gas. Approximately 100 hours of engine operating time have been logged to date.

  8. Effect of Fuel Additives on Spray Performance of Alternative Jet Fuels

    NASA Astrophysics Data System (ADS)

    Kannaiyan, Kumaran; Sadr, Reza

    2015-11-01

    Role of alternative fuels on reducing the combustion pollutants is gaining momentum in both land and air transport. Recent studies have shown that addition of nanoscale metal particles as fuel additives to liquid fuels have a positive effect not only on their combustion performance but also in reducing the pollutant formation. However, most of those studies are still in the early stages of investigation with the addition of nanoparticles at low weight percentages. Such an addition can affect the hydrodynamic and thermo-physical properties of the fuel. In this study, the near nozzle spray performance of gas-to-liquid jet fuel with and without the addition of alumina nanoparticles are investigated at macro- and microscopic levels using optical diagnostic techniques. At macroscopic level, the addition of nanoparticles is seen to enhance the sheet breakup process when compared to that of the base fuel. Furthermore, the microscopic spray characteristics such as droplet size and velocity are also found to be affected. Although the addition of nanoscale metal particles at low weight percentages does not affect the bulk fluid properties, the atomization process is found to be affected in the near nozzle region. Funded by Qatar National Research Fund.

  9. 49 CFR 536.10 - Treatment of dual-fuel and alternative fuel vehicles-consistency with 49 CFR part 538.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... vehicles—consistency with 49 CFR part 538. (a) Statutory alternative fuel and dual-fuel vehicle fuel... manufacturer must calculate the fuel economy of dual fueled vehicles in accordance with 40 CFR 600.510-12(c... 49 Transportation 6 2014-10-01 2014-10-01 false Treatment of dual-fuel and alternative...

  10. 49 CFR 536.10 - Treatment of dual-fuel and alternative fuel vehicles-consistency with 49 CFR part 538.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... vehicles—consistency with 49 CFR part 538. (a) Statutory alternative fuel and dual-fuel vehicle fuel... manufacturer must calculate the fuel economy of dual fueled vehicles in accordance with 40 CFR 600.510-12(c... 49 Transportation 6 2013-10-01 2013-10-01 false Treatment of dual-fuel and alternative...

  11. Air emission from the co-combustion of alternative derived fuels within cement plants: Gaseous pollutants.

    PubMed

    Richards, Glen; Agranovski, Igor E

    2015-02-01

    Cement manufacturing is a resource- and energy-intensive industry, utilizing 9% of global industrial energy use while releasing more than 5% of global carbon dioxide (CO₂) emissions. With an increasing demand of production set to double by 2050, so too will be its carbon footprint. However, Australian cement plants have great potential for energy savings and emission reductions through the substitution of combustion fuels with a proportion of alternative derived fuels (ADFs), namely, fuels derived from wastes. This paper presents the environmental emissions monitoring of 10 cement batching plants while under baseline and ADF operating conditions, and an assessment of parameters influencing combustion. The experiential runs included the varied substitution rates of seven waste streams and the monitoring of seven target pollutants. The co-combustion tests of waste oil, wood chips, wood chips and plastic, waste solvents, and shredded tires were shown to have the minimal influence when compared to baseline runs, or had significantly reduced the unit mass emission factor of pollutants. With an increasing ADF% substitution, monitoring identified there to be no subsequent emission effects and that key process parameters contributing to contaminant suppression include (1) precalciner and kiln fuel firing rate and residence time; (2) preheater and precalciner gas and material temperature; (3) rotary kiln flame temperature; (4) fuel-air ratio and percentage of excess oxygen; and (5) the rate of meal feed and rate of clinker produced. PMID:25947054

  12. Alternate-Fueled Combustor-Sector Performance: Part A: Combustor Performance Part B: Combustor Emissions

    NASA Technical Reports Server (NTRS)

    Shouse, D. T.; Neuroth, C.; Henricks, R. C.; Lynch, A.; Frayne, C.; Stutrud, J. S.; Corporan, E.; Hankins, T.

    2010-01-01

    Alternate aviation fuels for military or commercial use are required to satisfy MIL-DTL-83133F(2008) or ASTM D 7566 (2010) standards, respectively, and are classified as drop-in fuel replacements. To satisfy legacy issues, blends to 50% alternate fuel with petroleum fuels are certified individually on the basis of feedstock. Adherence to alternate fuels and fuel blends requires smart fueling systems or advanced fuel-flexible systems, including combustors and engines without significant sacrifice in performance or emissions requirements. This paper provides preliminary performance (Part A) and emissions and particulates (Part B) combustor sector data for synthetic-parafinic-kerosene- (SPK-) type fuel and blends with JP-8+100 relative to JP-8+100 as baseline fueling.

  13. Coal/biomass fuels and the gas turbine: Utilization of solid fuels and their derivatives

    SciTech Connect

    DeCorso, M.; Newby, R.; Anson, D.; Wenglarz, R.; Wright, I.

    1996-06-01

    This paper discusses key design and development issues in utilizing coal and other solid fuels in gas turbines. These fuels may be burned in raw form or processed to produce liquids or gases in more or less refined forms. The use of such fuels in gas turbines requires resolution of technology issues which are of little or no consequence for conventional natural gas and refined oil fuels. For coal, these issues are primarily related to the solid form in which coal is naturally found and its high ash and contaminant levels. Biomass presents another set of issues similar to those of coal. Among the key areas discussed are effects of ash and contaminant level on deposition, corrosion, and erosion of turbine hot parts, with particular emphasis on deposition effects.

  14. Evaluation of peat as a utility boiler fuel. Final report

    SciTech Connect

    Bongiorno, S.J.; Strianse, R.V.

    1983-03-01

    The objective of this study was to assess the technical and economic feasibility of the direct combustion of peat for electric power generation in the United States. The study includes a review of peat literature, selection of a region in the US to locate a hypothetical peat-harvesting operation, and an assessment of current practices for peat utilization in Europe, including peat harvesting, environmental control, and combustion technology. The conceptual design of a peat-harvesting facility supplying 1.4 million tons/yr of peat to a 2 x 150 MW power plant located in eastern North Carolina is developed for the purpose of estimating peat fuel costs. Environmental-control measures and peat transportation systems are identified. Budget capital and operating costs for a peat-fired power plant are estimated and the busbar cost of electricity compared to that for a 1 x 300 MW coal-fired power plant. Technical feasibility is demonstrated, although environmental acceptability of a large-scale peat harvesting operation must be confirmed on a site-specific basis. Peat fuel costs are found to be less than coal costs for a power plant located adjacent to the peat bogs in eastern North Carolina. The higher capital cost of a peat-fired power plant offsets to some extent the fuel cost advantage. Peat is found to have an electricity cost advantage of about 5 to 25% when compared to coal on a 30 year levelized basis depending on the peat escalation rate assumed.

  15. Alternative Fuel Research in Fischer-Tropsch Synthesis

    NASA Technical Reports Server (NTRS)

    Surgenor, Angela D.; Klettlinger, Jennifer L.; Yen, Chia H.; Nakley, Leah M.

    2011-01-01

    NASA Glenn Research Center has recently constructed an Alternative Fuels Laboratory which is solely being used to perform Fischer-Tropsch (F-T) reactor studies, novel catalyst development and thermal stability experiments. Facility systems have demonstrated reliability and consistency for continuous and safe operations in Fischer-Tropsch synthesis. The purpose of this test facility is to conduct bench scale Fischer-Tropsch (F-T) catalyst screening experiments while focusing on reducing energy inputs, reducing CO2 emissions and increasing product yields within the F-T process. Fischer-Tropsch synthesis is considered a gas to liquid process which reacts syn-gas (a gaseous mixture of hydrogen and carbon monoxide), over the surface of a catalyst material which is then converted into liquids of various hydrocarbon chain length and product distributions1. These hydrocarbons can then be further processed into higher quality liquid fuels such as gasoline and diesel. The experiments performed in this laboratory will enable the investigation of F-T reaction kinetics to focus on newly formulated catalysts, improved process conditions and enhanced catalyst activation methods. Currently the facility has the capability of performing three simultaneous reactor screening tests, along with a fourth fixed-bed reactor used solely for cobalt catalyst activation.

  16. Transitioning to a Hydrogen Future: Learning from the Alternative Fuels Experience

    SciTech Connect

    Melendez, M.

    2006-02-01

    This paper assesses relevant knowledge within the alternative fuels community and recommends transitional strategies and tactics that will further the hydrogen transition in the transportation sector.

  17. Use of MRF residue as alternative fuel in cement production.

    PubMed

    Fyffe, John R; Breckel, Alex C; Townsend, Aaron K; Webber, Michael E

    2016-01-01

    Single-stream recycling has helped divert millions of metric tons of waste from landfills in the U.S., where recycling rates for municipal solid waste are currently over 30%. However, material recovery facilities (MRFs) that sort the municipal recycled streams do not recover 100% of the incoming material. Consequently, they landfill between 5% and 15% of total processed material as residue. This residue is primarily composed of high-energy-content non-recycled plastics and fiber. One possible end-of-life solution for these energy-dense materials is to process the residue into Solid Recovered Fuel (SRF) that can be used as an alternative energy resource capable of replacing or supplementing fuel resources such as coal, natural gas, petroleum coke, or biomass in many industrial and power production processes. This report addresses the energetic and environmental benefits and trade-offs of converting non-recycled post-consumer plastics and fiber derived from MRF residue streams into SRF for use in a cement kiln. An experimental test burn of 118 Mg of SRF in the precalciner portion of the cement kiln was conducted. The SRF was a blend of 60% MRF residue and 40% post-industrial waste products producing an estimated 60% plastic and 40% fibrous material mixture. The SRF was fed into the kiln at 0.9 Mg/h for 24h and then 1.8 Mg/h for the following 48 h. The emissions data recorded in the experimental test burn were used to perform the life-cycle analysis portion of this study. The analysis included the following steps: transportation, landfill, processing and fuel combustion at the cement kiln. The energy use and emissions at each step is tracked for the two cases: (1) The Reference Case, where MRF residue is disposed of in a landfill and the cement kiln uses coal as its fuel source, and (2) The SRF Case, in which MRF residue is processed into SRF and used to offset some portion of coal use at the cement kiln. The experimental test burn and accompanying analysis indicate

  18. The origin of organic pollutants from the combustion of alternative fuels: Phase 5/6 report

    SciTech Connect

    Sidhu, S.; Graham, J.; Taylor, P.; Dellinger, B.

    1998-05-01

    As part of the US Department of Energy National Renewable Energy Laboratory program on alternative automotive fuels, the subcontractor has been conducting studies on the origin and fate of organic pollutants from the combustion of alternative fuels. Laboratory experiments were conducted simulating cold start of four alterative fuels (compressed natural gas, liquefied petroleum gas, methanol-gasoline mix, and ethanol-gasoline mix) using a commercial three-way catalyst under fuel-lean conditions. This report summarizes the results of these experiments. It appears that temperature of the catalyst is a more important parameter for fuel conversion and pollutant formation than oxygen concentration or fuel composition.

  19. Alternative Fuel News: Official Publication of the U.S. Department of Energy's Clean Cities Network and the Alternative Fuels Data Center; Vol. 5, No. 1

    SciTech Connect

    LaRocque, T.

    2001-04-18

    A quarterly magazine with articles on recent changes to the Clean Cities Program; the SuperTruck student engineering challenge; alternative fuel use in delivery fleets; and a propane vehicle rally and conference in February 2001, in Kansas City, Mo.

  20. Geography of Existing and Potential Alternative Fuel Markets in the United States

    SciTech Connect

    Johnson, C.; Hettinger, D.

    2014-11-01

    When deploying alternative fuels, it is paramount to match the right fuel with the right location, in accordance with local market conditions. We used six market indicators to evaluate the existing and potential regional market health for each of the five most commonly deployed alternative fuels: electricity (used by plug-in electric vehicles), biodiesel (blends of B20 and higher), E85 ethanol, compressed natural gas (CNG), and propane. Each market indicator was mapped, combined, and evaluated by industry experts. This process revealed the weight the market indicators should be given, with the proximity of fueling stations being the most important indicator, followed by alternative fuel vehicle density, gasoline prices, state incentives, nearby resources, and finally, environmental benefit. Though markets vary among states, no state received 'weak' potential for all five fuels, indicating that all states have an opportunity to use at least one alternative fuel. California, Illinois, Indiana, Pennsylvania, and Washington appear to have the best potential markets for alternative fuels in general, with each sporting strong markets for four of the fuels. Wyoming showed the least potential, with weak markets for all alternative fuels except for CNG, for which it has a patchy market. Of all the fuels, CNG is promising in the greatest number of states--largely because freight traffic provides potential demand for many far-reaching corridor markets and because the sources of CNG are so widespread geographically.

  1. Industrial- and utility-scale coal-water fuel demonstration projects

    SciTech Connect

    Hathi, V.; Ramezan, M.; Winslow, J.

    1993-01-01

    Laboratory-, pilot-, and large-scale CWF combustion work has been performed primarily in Canada, China, Italy, Japan, Korea, Sweden, and the United States, and several projects are still active. Sponsors have included governments, utilities and their research arms, engine manufacturers, equipment suppliers, and other organizations in attempts to show that CWF is a viable alternative to premium fuels, both in cost and performance. The objective of this report is to present brief summaries of past and current industrial- and utility-scale CWF demonstrations in order to determine what lessons can be learned from these important, highly visible projects directed toward the production of steam and electricity. Particular emphasis is placed on identifying the CWF characteristics; boiler type, geometry, size, and location; length of the combustion tests; and the results concerning system performance, including emissions.

  2. Utilization of waste heat in trucks for increased fuel economy

    NASA Technical Reports Server (NTRS)

    Leising, C. J.; Purohit, G. P.; Degrey, S. P.; Finegold, J. G.

    1978-01-01

    The waste heat utilization concepts include preheating, regeneration, turbocharging, turbocompounding, and Rankine engine compounding. Predictions are based on fuel-air cycle analyses, computer simulation, and engine test data. All options are evaluated in terms of maximum theoretical improvements, but the Diesel and adiabatic Diesel are also compared on the basis of maximum expected improvement and expected improvement over a driving cycle. The study indicates that Diesels should be turbocharged and aftercooled to the maximum possible level. The results reveal that Diesel driving cycle performance can be increased by 20% through increased turbocharging, turbocompounding, and Rankine engine compounding. The Rankine engine compounding provides about three times as much improvement as turbocompounding but also costs about three times as much. Performance for either can be approximately doubled if applied to an adiabatic Diesel.

  3. 49 CFR 536.10 - Treatment of dual-fuel and alternative fuel vehicles-consistency with 49 CFR part 538.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... vehicles—consistency with 49 CFR part 538. (a) Statutory alternative fuel and dual-fuel vehicle fuel... 49 Transportation 6 2012-10-01 2012-10-01 false Treatment of dual-fuel and alternative fuel vehicles-consistency with 49 CFR part 538. 536.10 Section 536.10 Transportation Other Regulations...

  4. 49 CFR 536.10 - Treatment of dual-fuel and alternative fuel vehicles-consistency with 49 CFR part 538.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... vehicles—consistency with 49 CFR part 538. (a) Statutory alternative fuel and dual-fuel vehicle fuel... 49 Transportation 6 2011-10-01 2011-10-01 false Treatment of dual-fuel and alternative fuel vehicles-consistency with 49 CFR part 538. 536.10 Section 536.10 Transportation Other Regulations...

  5. 49 CFR 536.10 - Treatment of dual-fuel and alternative fuel vehicles-consistency with 49 CFR part 538.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... vehicles—consistency with 49 CFR part 538. (a) Statutory alternative fuel and dual-fuel vehicle fuel... 49 Transportation 6 2010-10-01 2010-10-01 false Treatment of dual-fuel and alternative fuel vehicles-consistency with 49 CFR part 538. 536.10 Section 536.10 Transportation Other Regulations...

  6. Study of costs associated with alternative fuels development: A case study. Research report

    SciTech Connect

    Lede, N.W.

    1995-07-01

    The primary objective of the study was to conduct a case study of large-scale fuel conversion project to assess selected costs and related issues. An inventory of public transit agencies engaged in demonstration projects involving alternative fuels as conducted with representative sample of large public transit systems in the nation. Included in the survey were questions pertaining to fuel supply arrangements, fuel reserve storage requirements and/or deficiencies; future plans for managing energy resources and costs associated with fuel conversion/alternative fuels use -- whether planned or currently in operation. The case study approach was used to document the methodological and logistical problems encountered during the course of projects involving alternative fuels use compared with a control sample using diesel fuel. Monthly status reports on the alternative fuel project included data on accumulated mileage, road calls/unscheduled maintenance, fuel consumption, fuel cost per mile, alternative fuel purchases, schedule of activities, personnel, safety , and diesel emission test results. The data collected indicate several conclusions and future implications about technical and safety issues associated with the testing and use of liquefied natural gas (LNG).

  7. Proceedings of the 1995 SAE alternative fuels conference. P-294

    SciTech Connect

    1995-12-31

    This volume contains 32 papers and five panel discussions related to the fuel substitution of trucks, automobiles, buses, cargo handling equipment, diesel passenger cars, and pickup trucks. Fuels discussed include liquefied natural gas, natural gas, ethanol fuels, methanol fuels, dimethyl ether, methyl esters from various sources (rape oil, used cooking oils, soya, and canola oils), hydrogen fuels, and biodiesel. Other topics include fuel cell powered vehicles, infrastructure requirements for fuel substitution, and economics. Papers have been processed separately for inclusion on the data base.

  8. Carpet As An Alternative Fuel in Cement Kilns

    SciTech Connect

    Matthew J Realff

    2007-02-06

    Approximately 5 billion lbs of carpet will be removed from buildings in the US each year for the foreseeable future. This carpet is potentially a valuable resource because it contains plastic in the face of the carpet that can be re-used. However, there are many different types of carpet, and at least four major different plastics used to make the face. The face is woven through a backing fabric and held in place by a “glue” that is in most cases a latex cross-linked polymer which is heavily loaded with chalk (calcium carbonate). This backing has almost no value as a recycled material. In addition, carpet is a bulky material that is difficult to handle and ship and must be kept dry. It would be of significant benefit to the public if this stream of material could be kept out of landfills and some of its potential value unlocked by having high volume alternatives for recycled carpet use. The research question that this project investigated was whether carpet could be used as a fuel in a cement kiln. If this could be done successfully, there is significant capacity in the US cement industry to absorb carpet and use it as a fuel. Cement kilns could serve as a way to stimulate carpet collection and then side streams be taken for higher value uses. The research demonstrated that carpet was technically a suitable fuel, but was unable to conclude that the overall system could be economically feasible at this time with the constraints placed on the project by using an existing system for feeding the kiln. Collection and transportation were relatively straightforward, using an existing collector who had the capacity to collect high volumes of material. The shredding of the carpet into a suitable form for feeding was more challenging, but these problems were successfully overcome. The feeding of the carpet into the kiln was not successfully carried out reliably. The overall economics were not positive under the prevailing conditions of costs for transportation and size

  9. APS Alternative Fuel (Hydrogen) Pilot Plant - Monitoring System Report

    SciTech Connect

    James Francfort; Dimitri Hochard

    2005-07-01

    The U.S. Department of Energy’s (DOE’s) Advanced Vehicle Testing Activity (AVTA), along with Electric Transportation Applications and Arizona Pubic Service (APS), is monitoring the operations of the APS Alternative Fuel (Hydrogen) Pilot Plant to determine the costs to produce hydrogen fuels (including 100% hydrogen as well as hydrogen and compressed natural gas blends) for use by fleets and other operators of advanced-technology vehicles. The hydrogen fuel cost data will be used as benchmark data by technology modelers as well as research and development programs. The Pilot Plant can produce up to 18 kilograms (kg) of hydrogen per day by electrolysis. It can store up to 155 kg of hydrogen at various pressures up to 6,000 psi. The dispenser island can fuel vehicles with 100% hydrogen at 5,000 psi and with blends of hydrogen and compressed natural gas at 3,600 psi. The monitoring system was designed to track hydrogen delivery to each of the three storage areas and to monitor the use of electricity on all major equipment in the Pilot Plant, including the fuel dispenser island. In addition, water used for the electrolysis process is monitored to allow calculation of the total cost of plant operations and plant efficiencies. The monitoring system at the Pilot Plant will include about 100 sensors when complete (50 are installed to date), allowing for analysis of component, subsystems, and plant-level costs. The monitoring software is mostly off-the-shelve, with a custom interface. The majority of the sensors input to the Programmable Automation Controller as 4- to 20-mA analog signals. The plant can be monitored over of the Internet, but the control functions are restricted to the control room equipment. Using the APS general service plan E32 electric rate of 2.105 cents per kWh, during a recent eight-month period when 1,200 kg of hydrogen was produced and the plant capacity factor was 26%, the electricity cost to produce one kg of hydrogen was $3.43. However, the

  10. Electric vehicles - an alternative fuels vehicle, emissions, and refueling infrastructure technology assessment

    SciTech Connect

    McCoy, G.A.; Lyons, J.K.

    1993-06-01

    Interest in alternative motor vehicle fuels has grown tremendously over the last few years. The 1990 Clean Air Act Amendments, the National Energy Policy Act of 1992 and the California Clean Air Act are primarily responsible for this resurgence and have spurred both the motor fuels and vehicle manufacturing industries into action. For the first time, all three U.S. auto manufacturers are offering alternative fuel vehicles to the motoring public. At the same time, a small but growing alternative fuels refueling infrastructure is beginning to develop across the country. Although the recent growth in alternative motor fuels use is impressive, their market niche is still being defined. Environmental regulations, a key driver behind alternative fuel use, is forcing both car makers and the petroleum industry to clean up their products. As a result, alternative fuels no longer have a lock on the clean air market and will have to compete with conventionally fuelled vehicles in meeting stringent future vehicle emission standards. The development of cleaner burning gasoline powered vehicles has signaled a shift in the marketing of alternative fuels. While they will continue to play a major part in the clean vehicle market, alternative fuels are increasingly recognized as a means to reduce oil imports. This new role is clearly defined in the National Energy Policy Act of 1992. The Act identifies alternative fuels as a key strategy for reducing imports of foreign oil and mandates their use for federal and state fleets, while reserving the right to require private and municipal fleet use as well. This report discusses electric powered vehicles as an alternative fuels vehicle.

  11. Alternative fuels for vehicles fleet demonstration program. Final report, volume 2: Appendices

    SciTech Connect

    1997-06-01

    The Alternative Fuels for Vehicles Fleet Demonstration Program (AFV-FDP) was a multiyear effort to collect technical data for use in determining the costs and benefits of alternative-fuel vehicles (AFVs) in typical applications in New York State. This report, Volume 2, includes 13 appendices to Volume 1 that expand upon issues raised therein. Volume 1 provides: (1) Information about the purpose and scope of the AFV-FDP; (2) A summary of AFV-FDP findings organized on the basis of vehicle type and fuel type; (3) A short review of the status of AFV technology development, including examples of companies in the State that are active in developing AFVs and AFV components; and (4) A brief overview of the status of AFV deployment in the State. Volume 3 provides expanded reporting of AFV-FDP technical details, including the complete texts of the brochure Garage Guidelines for Alternative Fuels and the technical report Fleet Experience Survey Report, plus an extensive glossary of AFV terminology. The appendices cover a wide range of issues including: emissions regulations in New York State; production and health effects of ozone; vehicle emissions and control systems; emissions from heavy-duty engines; reformulated gasoline; greenhouse gases; production and characteristics of alternative fuels; the Energy Policy Act of 1992; the Clean Fuel Fleet Program; garage design guidelines for alternative fuels; surveys of fleet managers using alternative fuels; taxes on conventional and alternative fuels; and zero-emission vehicle technology.

  12. Maintenance and operation of the U.S. DOE Alternative Fuel Center. Final subcontract report, 5 August 1994--4 August 1995

    SciTech Connect

    Erwin, J.; Moulton, D.S.

    1996-04-01

    The Alternative Fuel Center (AFC) was established by the US Department of Energy (DOE) as part of the Alternative Fuel Utilization Program (AFUP). The AFC is designed to provide drum quantities of finished transportation fuels from a variety of sources. DOE funded the design, construction, and installation of a hydrogenation pilot plant capable of performing a range of hydrotreating, reforming, and hydrocracking operations. Southwest Research Institute provided the building, utilities, and laboratory and safety systems needed for the pilot plant. The AFC work reported here contributes to the two primary objectives of the AFUP: data for alternative-fuel-capable vehicles to enhance energy security, and data for controlling emissions for improved air quality.

  13. Alternative fuel vehicles for the Federal fleet: Results of the 5-year planning process. Executive Order 12759, Section 11

    SciTech Connect

    Not Available

    1992-08-01

    This report describes five-year plans for acquisition of alternative fuel vehicles (AFVs) by the Federal agencies. These plans will be used to encourage Original Equipment Manufacturers (OEMs) to expand the variety of AFVs produced, reduce the incremental cost of AFVs, and to encourage fuel suppliers to expand the alternative fuel infrastructure and alternative fuel availability. This effort supplements and extends the demonstration and testing of AFVs established by the Department of Energy under the alternative Motor Fuels Act of 1988.

  14. Assessment of costs and benefits of flexible and alternative fuel use in the US transportation sector

    SciTech Connect

    Not Available

    1990-12-01

    In 1988 the Department of Energy (DOE) undertook a comprehensive technical analysis of a flexible-fuel transportation system in the United States. During the next two decades, alternative fuels such as alcohol (methanol or ethanol), compressed natural gas (CNG), and electricity could become practical alternatives to oil-based fuels in the US transportation sector. The DOE Alternative Fuels Assessment is aimed directly at questions of energy security and fuel availability. To keep interested parties informed about the progress of the DOE Alternative Fuels Assessment, the Department periodically publishes reports dealing with particular aspects of this complex study. This report provides an analysis of the expected costs to produce methanol from biomass feedstock.

  15. 49 CFR 525.11 - Termination of exemption; amendment of alternative average fuel economy standard.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... average fuel economy standard. 525.11 Section 525.11 Transportation Other Regulations Relating to... EXEMPTIONS FROM AVERAGE FUEL ECONOMY STANDARDS § 525.11 Termination of exemption; amendment of alternative average fuel economy standard. (a) Any exemption granted under this part for an affected model year...

  16. APPLICATION OF ADVANCED TECHNOLOGY FOR NOX CONTROL: ALTERNATE FUELS AND FLUIDIZED-BED COAL COMBUSTION

    EPA Science Inventory

    The paper discusses the effect of alternate fuels and fluidized coal combustion in controlling the emission of nitrogen oxides (NOx). The current trend in energy use in the U.S. is toward greater use of coal and coal derived fuels, and on ensuring that these fuels are produced an...

  17. 49 CFR 525.11 - Termination of exemption; amendment of alternative average fuel economy standard.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... average fuel economy standard. 525.11 Section 525.11 Transportation Other Regulations Relating to... EXEMPTIONS FROM AVERAGE FUEL ECONOMY STANDARDS § 525.11 Termination of exemption; amendment of alternative average fuel economy standard. (a) Any exemption granted under this part for an affected model year...

  18. 49 CFR 525.11 - Termination of exemption; amendment of alternative average fuel economy standard.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... average fuel economy standard. 525.11 Section 525.11 Transportation Other Regulations Relating to... EXEMPTIONS FROM AVERAGE FUEL ECONOMY STANDARDS § 525.11 Termination of exemption; amendment of alternative average fuel economy standard. (a) Any exemption granted under this part for an affected model year...

  19. 49 CFR 525.11 - Termination of exemption; amendment of alternative average fuel economy standard.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... average fuel economy standard. 525.11 Section 525.11 Transportation Other Regulations Relating to... EXEMPTIONS FROM AVERAGE FUEL ECONOMY STANDARDS § 525.11 Termination of exemption; amendment of alternative average fuel economy standard. (a) Any exemption granted under this part for an affected model year...

  20. Alternative Fuels and Advanced Vehicles: Resources for Fleet Managers (Clean Cities) (Presentation)

    SciTech Connect

    Brennan, A.

    2011-04-01

    A discussion of the tools and resources on the Clean Cities, Alternative Fuels and Advanced Vehicles Data Center, and the FuelEconomy.gov Web sites that can help vehicle fleet managers make informed decisions about implementing strategies to reduce gasoline and diesel fuel use.

  1. 49 CFR 525.11 - Termination of exemption; amendment of alternative average fuel economy standard.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... average fuel economy standard. 525.11 Section 525.11 Transportation Other Regulations Relating to... EXEMPTIONS FROM AVERAGE FUEL ECONOMY STANDARDS § 525.11 Termination of exemption; amendment of alternative average fuel economy standard. (a) Any exemption granted under this part for an affected model year...

  2. ALTERNATIVE FUELS AND CHEMICALS FROM SYNTHESIS GAS. FINAL QUARTERLY STATUS REPORT NO. 10

    SciTech Connect

    1998-11-01

    The overall objectives of this program are to investigate potential technologies for the conversion of synthesis gas to oxygenated and hydrocarbon fuels and industrial chemicals, and to demonstrate the most promising technologies at DOE's LaPorte, Texas, Slurry Phase Alternative Fuels Development Unit (AFDU). The program will involve a continuation of the work performed under the Alternative Fuels from Coal-Derived Synthesis Gas Program and will draw upon information and technologies generated in parallel current and future DOE-funded contracts.

  3. ALTERNATIVE FUELS AND CHEMICALS FROM SYNTHESIS GAS. FINAL QUARTERLY STATUS REPORT

    SciTech Connect

    1999-04-01

    The overall objectives of this program are to investigate potential technologies for the conversion of synthesis gas to oxygenated and hydrocarbon fuels and industrial chemicals, and to demonstrate the most promising technologies at DOE's LaPorte, Texas, Slurry Phase Alternative Fuels Development Unit (AFDU). The program will involve a continuation of the work performed under the Alternative Fuels from Coal-Derived Synthesis Gas Program and will draw upon information and technologies generated in parallel current and future DOE-funded contracts.

  4. Segregated exhaust SOFC generator with high fuel utilization capability

    DOEpatents

    Draper, Robert; Veyo, Stephen E.; Kothmann, Richard E.

    2003-08-26

    A fuel cell generator contains a plurality of fuel cells (6) in a generator chamber (1) and also contains a depleted fuel reactor or a fuel depletion chamber (2) where oxidant (24,25) and fuel (81) is fed to the generator chamber (1) and the depleted fuel reactor chamber (2), where both fuel and oxidant react, and where all oxidant and fuel passages are separate and do not communicate with each other, so that fuel and oxidant in whatever form do not mix and where a depleted fuel exit (23) is provided for exiting a product gas (19) which consists essentially of carbon dioxide and water for further treatment so that carbon dioxide can be separated and is not vented to the atmosphere.

  5. [Research and workshop on alternative fuels for aviation. Final report

    SciTech Connect

    1999-09-01

    an asset which provides an ongoing research capability dedicated to the testing of alternative fuels for aircraft engines. The test stand is now entirely functional with the exception of the electronic ignition unit which still needs adjustments.

  6. Overview of reductants utilized in nuclear fuel reprocessing/recycling

    SciTech Connect

    Patricia Paviet-Hartmann; Catherine Riddle; Keri Campbell; Edward Mausolf

    2013-10-01

    Most of the aqueous processes developed, or under consideration worldwide for the recycling of used nuclear fuel (UNF) utilize the oxido-reduction properties of actinides to separate them from other radionuclides. Generally, after acid dissolution of the UNF, (essentially in nitric acid solution), actinides are separated from the raffinate by liquid-liquid extraction using specific solvents, associated along the process, with a particular reductant that will allow the separation to occur. For example, the industrial PUREX process utilizes hydroxylamine as a plutonium reductant. Hydroxylamine has numerous advantages: not only does it have the proper attributes to reduce Pu(IV) to Pu(III), but it is also a non-metallic chemical that is readily decomposed to innocuous products by heating. However, it has been observed that the presence of high nitric acid concentrations or impurities (such as metal ions) in hydroxylamine solutions increase the likelihood of the initiation of an autocatalytic reaction. Recently there has been some interest in the application of simple hydrophilic hydroxamic ligands such as acetohydroxamic acid (AHA) for the stripping of tetravalent actinides in the UREX process flowsheet. This approach is based on the high coordinating ability of hydroxamic acids with tetravalent actinides (Np and Pu) compared with hexavalent uranium. Thus, the use of AHA offers a route for controlling neptunium and plutonium in the UREX process by complexant based stripping of Np(IV) and Pu(IV) from the TBP solvent phase, while U(VI) ions are not affected by AHA and remain solvated in the TBP phase. In the European GANEX process, AHA is also used to form hydrophilic complexes with actinides and strip them from the organic phase into nitric acid. However, AHA does not decompose completely when treated with nitric acid and hampers nitric acid recycling. In lieu of using AHA in the UREX + process, formohydroxamic acid (FHA), although not commercially available, hold

  7. Overview of reductants utilized in nuclear fuel reprocessing/recycling

    SciTech Connect

    Paviet-Hartmann, P.; Riddle, C.; Campbell, K.; Mausolf, E.

    2013-07-01

    The most widely used reductant to partition plutonium from uranium in the Purex process was ferrous sulfamate, other alternates were proposed such as hydrazine-stabilized ferrous nitrate or uranous nitrate, platinum catalyzed hydrogen, and hydrazine, hydroxylamine salts. New candidates to replace hydrazine or hydroxylamine nitrate (HAN) are pursued worldwide. They may improve the performance of the industrial Purex process towards different operations such as de-extraction of plutonium and reduction of the amount of hydrazine which will limit the formation of hydrazoic acid. When looking at future recycling technologies using hydroxamic ligands, neither acetohydroxamic acid (AHA) nor formohydroxamic acid (FHA) seem promising because they hydrolyze to give hydroxylamine and the parent carboxylic acid. Hydroxyethylhydrazine, HOC{sub 2}H{sub 4}N{sub 2}H{sub 3} (HEH) is a promising non-salt-forming reductant of Np and Pu ions because it is selective to neptunium and plutonium ions at room temperature and at relatively low acidity, it could serve as a replacement of HAN or AHA for the development of a novel used nuclear fuel recycling process.

  8. Tire-derived fuel cofiring test in a pulverized coal utility boiler. Final report

    SciTech Connect

    Joensen, A.W.

    1994-12-01

    In recent years, several states have enacted legislation that outlaws the landfilling of whole tires and forces the implementation of various integrated waste management alternatives to dispose of passenger car and truck tires. Alternate disposal options include source reduction, recycling, composting, incineration, and, as a last resort, landfilling of only shredded tires in conventional landfills or in lined monofills, as required by several states. The high energy content of scrap tires, 13,000-16,000 Btu/lb, has resulted in the use of processed tires as tire-derived fuel (TDF). Previous TDF applications include cement kilns, fluidized bed combustion, stoker, and cyclone-fired boilers. Up to now, no data have been reported for cofiring TDF with coal in pulverized coal boilers. This report presents the results of a Phase I feasibility test program conducted in a 65-MW Babcock and Wilcox pulverized coal steam generator at the City of Ames, Iowa, Municipal Power Plant. This unit currently cofires western coal with refuse-derived fuel (RDF) and utilizes a bottom dump grate to ensure the complete combustion of RDF in the furnace.

  9. Electric utility acid fuel cell stack technology advancement

    NASA Technical Reports Server (NTRS)

    Congdon, J. V.; Goller, G. J.; Greising, G. J.; Obrien, J. J.; Randall, S. A.; Sandelli, G. J.; Breault, R. D.; Austin, G. W.; Bopse, S.; Coykendall, R. D.

    1984-01-01

    The principal effort under this program was directed at the fuel cell stack technology required to accomplish the initial feasibility demonstrations of increased cell stack operating pressures and temperatures, increased cell active area, incorporation of the ribbed substrate cell configuration at the bove conditions, and the introduction of higher performance electrocatalysts. The program results were successful with the primary accomplishments being: (1) fabrication of 10 sq ft ribbed substrate, cell components including higher performing electrocatalysts; (2) assembly of a 10 sq ft, 30-cell short stack; and (3) initial test of this stack at 120 psia and 405 F. These accomplishments demonstrate the feasibility of fabricating and handling large area cells using materials and processes that are oriented to low cost manufacture. An additional accomplishment under the program was the testing of two 3.7 sq ft short stacks at 12 psia/405 F to 5400 and 4500 hours respectively. These tests demonstrate the durability of the components and the cell stack configuration to a nominal 5000 hours at the higher pressure and temperature condition planned for the next electric utility power plant.

  10. Fuel injector utilizing non-thermal plasma activation

    SciTech Connect

    Coates, Don M.; Rosocha, Louis A.

    2009-12-01

    A non-thermal plasma assisted combustion fuel injector that uses an inner and outer electrode to create an electric field from a high voltage power supply. A dielectric material is operatively disposed between the two electrodes to prevent arcing and to promote the formation of a non-thermal plasma. A fuel injector, which converts a liquid fuel into a dispersed mist, vapor, or aerosolized fuel, injects into the non-thermal plasma generating energetic electrons and other highly reactive chemical species.

  11. Alcohol Fuel By-Product Utilization and Production.

    ERIC Educational Resources Information Center

    Boerboom, Jim

    Ten lessons comprise this curriculum intended to assist vocational teachers in establishing and conducting an alcohol fuels workshop on engine modification and plant design. A glossary is provided first. The 10 lessons cover these topics: the alcohol fuel plant, feedstock preparation lab, distillation lab, fuel plant processes, plant design lab,…

  12. Fish oil as an alternative fuel for internal combustion engines

    SciTech Connect

    Blythe, N.X.

    1996-12-31

    This paper presents the results of combustion studies performed with fish oil and fish oil/diesel fuel blends in a medium speed, two cycle, opposed piston engine. Performance and emissions results with blends from 10% to 100% fish oil in diesel fuel are presented. Combustion cycle analysis data comparisons are made between fish oil and diesel fuel operation. Component inspection results and analysis of deposits found in the engine after the tests are also presented. Finally, comparisons between fish oil and other biodiesel fuels are made.

  13. Technical and economic feasibility of alternative fuel use in process heaters and small boilers

    SciTech Connect

    Not Available

    1980-02-01

    The technical and economic feasibility of using alternate fuels - fuels other than oil and natural gas - in combustors not regulated by the Powerplant and Industrial Fuel Use Act of 1978 (FUA) was evaluated. FUA requires coal or alternate fuel use in most large new boilers and in some existing boilers. Section 747 of FUA authorizes a study of the potential for reduced oil and gas use in combustors not subject to the act: small industrial boilers with capacities less than 100 MMBtu/hr, and process heat applications. Alternative fuel use in combustors not regulated by FUA was examined and the impact of several measures to encourage the substitution of alternative fuels in these combustors was analyzed. The primary processes in which significant fuel savings can be achieved are identified. Since feedstock uses of oil and natural gas are considered raw materials, not fuels, feedstock applications are not examined in this analysis. The combustors evaluated in this study comprise approximately 45% of the fuel demand projected in 1990. These uses would account for more than 3.5 million barrels per day equivalent fuel demand in 1990.

  14. Assessment of capital requirements for alternative fuels infrastructure under the PNGV program

    SciTech Connect

    Stork, K.; Singh, M.; Wang, M.; Vyas, A.

    1998-12-31

    This paper presents an assessment of the capital requirements of using six different fuels in the vehicles with tripled fuel economy (3X vehicles) that the Partnership for a new Generation of Vehicles is currently investigating. The six fuels include two petroleum-based fuels (reformulated gasoline and low-sulfur diesel) and four alternative fuels (methanol, ethanol, dimethyl ether, and hydrogen). This study develops estimates of cumulative capital needs for establishing fuels production and distribution infrastructure to accommodate 3X vehicle fuel needs. Two levels of fuel volume-70,000 barrels per day and 1.6 million barrels per day-were established for meeting 3X-vehicle fuel demand. As expected, infrastructure capital needs for the high fuel demand level are much higher than for the low fuel demand level. Between fuel production infrastructure and distribution infrastructure, capital needs for the former far exceed those for the latter. Among the four alternative fuels, hydrogen bears the largest capital needs for production and distribution infrastructure.

  15. Alternative-engine-fuels demonstration and materials test

    SciTech Connect

    Thimsen, D.

    1981-01-01

    A portable demonstration was constructed to measure peak power and specific fuel consumption of a gasoline engine burning gasoline and ethanol, and a diesel engine burning No. 2 diesel and sunflower oil. The demonstrations were given at farm field days. Several metals were subjected to wet ethanol fuels to measure corrosion.

  16. L-Ascorbic acid as an alternative fuel for direct oxidation fuel cells

    NASA Astrophysics Data System (ADS)

    Fujiwara, Naoko; Yamazaki, Shin-ichi; Siroma, Zyun; Ioroi, Tsutomu; Yasuda, Kazuaki

    L-Ascorbic acid (AA) was directly supplied to polymer electrolyte fuel cells (PEFCs) as an alternative fuel. Only dehydroascorbic acid (DHAA) was detected as a product released by the electrochemical oxidation of AA via a two-electron transfer process regardless of the anode catalyst used. The ionomer in the anode may inhibit the mass transfer of AA to the reaction sites by electrostatic repulsion. In addition, polymer resins without an ionic group such as poly(vinylidene fluoride) and poly(vinyl butyral) were also useful for reducing the contact resistance between Nafion membrane and carbon black used as an anode, although an ionomer like Nafion is needed for typical PEFCs. A reaction mechanism at the two-phase boundaries between AA and carbon black was proposed for the anode structure of DAAFCs, since lack of the proton conductivity was compensated by AA. There was too little crossover of AA through a Nafion membrane to cause a serious technical problem. The best performance (maximum power density of 16 mW cm -2) was attained with a Vulcan XC72 anode that included 5 wt.% Nafion at room temperature, which was about one-third of that for a DMFC with a PtRu anode.

  17. Diesel fuel processor for PEM fuel cells: Two possible alternatives (ATR versus SR)

    NASA Astrophysics Data System (ADS)

    Cutillo, A.; Specchia, S.; Antonini, M.; Saracco, G.; Specchia, V.

    There are large efforts in exploring the on-board reforming technologies, which would avoid the actual lack of hydrogen infrastructure and related safety issues. From this view point, the present work deals with the comparison between two different 10 kW e fuel processors (FP) systems for the production of hydrogen-rich fuel gas starting from diesel oil, based respectively on autothermal (ATR) and steam-reforming (SR) process and related CO clean-up technologies; the obtained hydrogen rich gas is fed to the PEMFC stack of an auxiliary power unit (APU). Based on a series of simulations with Matlab/Simulink, the two systems were compared in terms of FP and APU efficiency, hydrogen concentration fed to the FC, water balance and process scheme complexity. Notwithstanding a slightly higher process scheme complexity and a slightly more difficult water recovery, the FP based on the SR scheme, as compared to the ATR one, shows higher efficiency and larger hydrogen concentration for the stream fed to the PEMFC anode, which represent key issues for auxiliary power generation based on FCs as compared, e.g. to alternators.

  18. Experimental clean combustor program, alternate fuels addendum, phase 2

    NASA Technical Reports Server (NTRS)

    Gleason, C. C.; Bahr, D. W.

    1976-01-01

    The characteristics of current and advanced low-emissions combustors when operated with special test fuels simulating broader range combustion properties of petroleum or coal derived fuels were studied. Five fuels were evaluated; conventional JP-5, conventional No. 2 Diesel, two different blends of Jet A and commercial aromatic mixtures - zylene bottoms and haphthalene charge stock, and a fuel derived from shale oil crude which was refined to Jet A specifications. Three CF6-50 engine size combustor types were evaluated; the standard production combustor, a radial/axial staged combustor, and a double annular combustor. Performance and pollutant emissons characteristics at idle and simulated takeoff conditions were evaluated in a full annular combustor rig. Altitude relight characteristics were evaluated in a 60 degree sector combustor rig. Carboning and flashback characteristics at simulated takeoff conditions were evaluated in a 12 degree sector combustor rig. For the five fuels tested, effects were moderate, but well defined.

  19. Addressing the Need for Alternative Transportation Fuels: The Joint BioEnergy Institute

    SciTech Connect

    Blanch, Harvey; Adams, Paul; Andrews-Cramer, Katherine; Frommer, Wolf; Simmons, Blake; Keasling, Jay

    2008-01-18

    Today, carbon-rich fossil fuels, primarily oil, coal, and natural gas, provide 85% of the energy consumed in the U.S. As world demand increases, oil reserves may become rapidly depleted. Fossil fuel use increases CO{sub 2} emissions and raises the risk of global warming. The high energy content of liquid hydrocarbon fuels makes them the preferred energy source for all modes of transportation. In the U.S. alone, transportation consumes >13.8 million barrels of oil per day and generates 0.5 gigatons of carbon per year. This release of greenhouse gases has spurred research into alternative, nonfossil energy sources. Among the options (nuclear, concentrated solar thermal, geothermal, hydroelectric, wind, solar, and biomass), only biomass has the potential to provide a high-energy-content transportation fuel. Biomass is a renewable resource that can be converted into carbon-neutral transporation fuels. Currently, biofuels such as ethanol are produced largely from grains, but there is a large, untapped resource (estimated at more than a billion tons per year) of plant biomass that could be utilized as a renewable, domestic source of liquid fuels. Well-established processes convert the starch content of the grain into sugars that can be fermented to ethanol. The energy efficiency of starch-based biofuels is however not optimal, while plant cell walls (lignocellulose) represent a huge untapped source of energy. Plant-derived biomass contains cellulose, which is more difficult to convert to sugars; hemicellulose, which contains a diversity of carbohydrates that have to be efficiently degraded by microorganisms to fuels; and lignin, which is recalcitrant to degradation and prevents cost-effective fermentation. The development of cost-effective and energy-efficient processes to transform lignocellulosic biomass into fuels is hampered by significant roadblocks, including the lack of specifically developed energy crops, the difficulty in separating biomass components, low

  20. Fleet Compliance Results for MY 2010/FY 2011, EPAct Alternative Fuel Transportation Program: State and Alternative Fuel Provider Fleet Compliance Annual Report (Brochure)

    SciTech Connect

    Not Available

    2012-03-01

    This annual report summarizes the compliance results of state and alternative fuel provider fleets covered by the Energy Policy Act of 1992 (EPAct) for model year 2010/fiscal year 2011. The U.S. Department of Energy (DOE) regulates covered state and alternative fuel provider (SFP) fleets under the Energy Policy Act of 1992 (EPAct), as amended. For model year (MY) 2010, the compliance rate for the 2911 covered SFP fleets was 100%. Fleets used either Standard Compliance or Alternative Compliance. The 279 fleets that used Standard Compliance exceeded their aggregate MY 2010 acquisition requirements by 61%. The 12 covered fleets that complied using Alternative Compliance exceeded their aggregate MY 2010 petroleum-use-reduction requirements by 89%. Overall, DOE saw modest decreases from MY 2009 in biodiesel fuel use credits earned and in the number of light-duty vehicles (LDVs) acquired. Compared to years before MY 2009, these rates were far lower. Because covered fleets acquired fewer new vehicles overall in MY 2010, the requirement for alternative fuel vehicles (AFVs), which is proportional to new acquisitions, also dropped.

  1. Toxic emissions from mobile sources: a total fuel-cycle analysis for conventional and alternative fuel vehicles.

    PubMed

    Winebrake, J J; Wang, M Q; He, D

    2001-07-01

    Mobile sources are among the largest contributors of four hazardous air pollutants--benzene, 1,3-butadiene, acetaldehyde, and formaldehyde--in urban areas. At the same time, federal and state governments are promoting the use of alternative fuel vehicles as a means to curb local air pollution. As yet, the impact of this movement toward alternative fuels with respect to toxic emissions has not been well studied. The purpose of this paper is to compare toxic emissions from vehicles operating on a variety of fuels, including reformulated gasoline (RFG), natural gas, ethanol, methanol, liquid petroleum gas (LPG), and electricity. This study uses a version of Argonne National Laboratory's Greenhouse Gas, Regulated Emissions, and Energy Use in Transportation (GREET) model, appropriately modified to estimate toxic emissions. The GREET model conducts a total fuel-cycle analysis that calculates emissions from both downstream (e.g., operation of the vehicle) and upstream (e.g., fuel production and distribution) stages of the fuel cycle. We find that almost all of the fuels studied reduce 1,3-butadiene emissions compared with conventional gasoline (CG). However, the use of ethanol in E85 (fuel made with 85% ethanol) or RFG leads to increased acetaldehyde emissions, and the use of methanol, ethanol, and compressed natural gas (CNG) may result in increased formaldehyde emissions. When the modeling results for the four air toxics are considered together with their cancer risk factors, all the fuels and vehicle technologies show air toxic emission reduction benefits. PMID:15658225

  2. Alternative Fuel and Advanced Technology Commercial Lawn Equipment (Spanish version); Clean Cities, Energy Efficiency & Renewable Energy (EERE)

    SciTech Connect

    Nelson, Erik

    2015-06-01

    Powering commercial lawn equipment with alternative fuels or advanced engine technology is an effective way to reduce U.S. dependence on petroleum, reduce harmful emissions, and lessen the environmental impacts of commercial lawn mowing. Numerous alternative fuel and fuel-efficient advanced technology mowers are available. Owners turn to these mowers because they may save on fuel and maintenance costs, extend mower life, reduce fuel spillage and fuel theft, and demonstrate their commitment to sustainability.

  3. A laboratory fuel efficiency and emissions comparison between Tanzanian traditional and improved biomass cooking stoves and alternative fuels

    NASA Astrophysics Data System (ADS)

    Mitchell, B. R.; Maggio, J. C.; Paterson, K.

    2010-12-01

    Large amounts of aerosols are emitted from domestic biomass burning globally every day. Nearly three billion people cook in their homes using traditional fires and stoves. Biomass is the primary fuel source which results in detrimental levels of indoor air pollution as well as having a strong impact on climate change. Variations in emissions occur depending on the combustion process and stove design as well as the condition and type of fuel used. The three most commonly used fuels for domestic biomass burning are wood, charcoal, and crop residue. In addition to these commonly used fuels and because of the increased difficulty of obtaining charcoal and wood due to a combination of deforestation and new governmental restrictions, alternative fuels are becoming more prevalent. In the Republic of Tanzania a field campaign was executed to test previously adopted and available traditional and improved cooking stoves with various traditional and alternative fuels. The tests were conducted over a two month period and included four styles of improved stoves, two styles of traditional cooking methods, and eight fuel types. The stoves tested include a sawdust stove, ceramic and brick insulated metal stoves, and a mud stove. A traditional three-stone fire was also tested as a benchmark by which to compare the other stoves. Fuel types tested include firewood, charcoal (Acacia), sawdust, pressed briquettes, charcoal dust briquettes, and carbonized crop residue. Water boiling tests were conducted on each stove with associated fuel types during which boiling time, water temperature, CO, CO2, and PM2.5μm emissions were recorded. All tests were conducted on-site in Arusha, Tanzania enabling the use of local materials and fuels under local conditions. It was found that both stove design and fuel type play a critical role in the amount of emissions produced. The most influential design aspect affecting emissions was the size of the combustion chamber in combination with air intake

  4. Regional refining models for alternative fuels using shale and coal synthetic crudes: identification and evaluation of optimized alternative fuels. Annual report, March 20, 1979-March 19, 1980

    SciTech Connect

    Sefer, N.R.; Russell, J.A.

    1980-11-01

    The initial phase has been completed in the project to evaluate alternative fuels for highway transportation from synthetic crudes. Three refinery models were developed for Rocky Mountain, Mid-Continent and Great Lakes regions to make future product volumes and qualities forecast for 1995. Projected quantities of shale oil and coal oil syncrudes were introduced into the raw materials slate. Product slate was then varied from conventional products to evaluate maximum diesel fuel and broadcut fuel in all regions. Gasoline supplement options were evaluated in one region for 10% each of methanol, ethanol, MTBE or synthetic naphtha in the blends along with syncrude components. Compositions and qualities of the fuels were determined for the variation in constraints and conditions established for the study. Effects on raw materials, energy consumption and investment costs were reported. Results provide the basis to formulate fuels for laboratory and engine evaluation in future phases of the project.

  5. Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen; Workshop Proceedings

    SciTech Connect

    Melaina, M. W.; McQueen, S.; Brinch, J.

    2008-07-01

    DOE sponsored the Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen workshop to understand how lessons from past experiences can inform future efforts to commercialize hydrogen vehicles. This report contains the proceedings from the workshop.

  6. UPS CNG Truck Fleet Final Results: Alternative Fuel Truck Evaluation Project (Brochure)

    SciTech Connect

    Not Available

    2002-08-01

    This report provides transportation professionals with quantitative, unbiased information on the cost, maintenance, operational and emissions characteristics of CNG as one alternative to conventional diesel fuel for heavy-duty trucking applications.

  7. Atmospheric Photochemistry Studies of Pollutant Emissions from Transportation Vehicles Operating on Alternative Fuels

    SciTech Connect

    Jeffries, H.; Sexton, K.; Yu, J.

    1998-07-01

    This project was undertaken with the goal of improving our ability to predict the changes in urban ozone resulting from the widespread use of alternative fuels in automobiles. This report presents the results in detail.

  8. Assessment of costs and benefits of flexible and alternative fuel use in the US transportation sector

    SciTech Connect

    Not Available

    1991-10-01

    The DOE is conducting a comprehensive technical analysis of a flexible-fuel transportation system in the United States -- that is, a system that could easily switch between petroleum and another fuel, depending on price and availability. The DOE Alternative Fuels Assessment is aimed directly at questions of energy security and fuel availability, but covers a wide range of issues. This report examines environmental, health, and safety concerns associated with a switch to alternative- and flexible-fuel vehicles. Three potential alternatives to oil-based fuels in the transportation sector are considered: methanol, compressed natural gas (CNG), and electricity. The objective is to describe and discuss qualitatively potential environmental, health, and safety issues that would accompany widespread use of these three fuels. This report presents the results of exhaustive literature reviews; discussions with specialists in the vehicular and fuel-production industries and with Federal, State, and local officials; and recent information from in-use fleet tests. Each chapter deals with the end-use and process emissions of air pollutants, presenting an overview of the potential air pollution contribution of the fuel --relative to that of gasoline and diesel fuel -- in various applications. Carbon monoxide, particulate matter, ozone precursors, and carbon dioxide are emphasized. 67 refs., 6 figs. , 8 tabs.

  9. Alternative fuel transit buses: The Pierce Transit Success Story

    SciTech Connect

    1996-10-01

    The Pierce transit program for operating mass transit buses on compressed natural gas (CNG) is described. Cost, reliability, fuel efficiency, emission of combustion products, and future trends are discussed.

  10. Potential alternative fuel sources for agricultural crops and plant components

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The changing landscape of agricultural production is placing unprecedented demands on farmers as they face increasing global competition and greater natural resource conservation challenges. However, shrinking profit margins due to increasing input costs, particularly of fuel and fertilizer, can res...

  11. Biodiesel: The use of vegetable oils and their derivatives as alternative diesel fuels

    SciTech Connect

    Knothe, G.; Bagby, M.O.

    1996-10-01

    Vegetable oils and their derivatives (especially methyl esters), commonly referred to as {open_quotes}biodiesel{close_quotes}, are prominent candidates as alternative diesel fuels. They have advanced from being purely experimental fuels to initial stages of commercialization. They are technically competitive with or offer technical advantages compared to conventional diesel fuel. Besides being a renewable resource, biodiesel reduces most emissions while engine performance and fuel economy are nearly identical compared to conventional fuels. Several problems, however, remain, which include economics, combustion, some emissions, lube oil contamination, and low-temperature properties. An overview on all the mentioned aspects of biodiesel will be presented.

  12. Solid oxide fuel cells for transportation: A clean, efficient alternative for propulsion

    NASA Astrophysics Data System (ADS)

    Kumar, R.; Krumpelt, M.; Myles, K. M.

    Fuel cells show great promise for providing clean and efficient transportation power. Of the fuel cell propulsion systems under investigation, the solid oxide fuel cell (SOFC) is particularly attractive for heavy duty transportation applications that have a relatively long duty cycle, such as locomotives, trucks, and barges. Advantages of the SOFC include a simple, compact system configuration; inherent fuel flexibility for hydrocarbon and alternative fuels; and minimal water management. The specific advantages of the SOFC for powering a railroad locomotive are examined. Feasibility, practicality, and safety concerns regarding SOFCs in transportation applications are discussed.

  13. Alternative Sources of Energy - An Introduction to Fuel Cells

    USGS Publications Warehouse

    Merewether, E.A.

    2003-01-01

    Fuel cells are important future sources of electrical power and could contribute to a reduction in the amount of petroleum imported by the United States. They are electrochemical devices similar to a battery and consist of a container, an anode, a cathode, catalysts, an intervening electrolyte, and an attached electrical circuit. In most fuel cell systems, hydrogen is supplied to the anode and oxygen to the cathode which results in the production of electricity, water, and heat. Fuel cells are comparatively efficient and reliable, have no moving parts, operate without combustion, and are modular and scale-able. Their size and shape are flexible and adaptable. In operation, they are nearly silent, are relatively safe, and generally do not pollute the environment. During recent years, scientists and engineers have developed and refined technologies relevant to a variety of fuel cells. Types of fuel cells are commonly identified by the composition of their electrolyte, which could be either phosphoric acid, an alkaline solution, a molten carbonate, a solid metal oxide, or a solid polymer membrane. The electrolyte in stationary power plants could be phosphoric acid, molten carbonates, or solid metal oxides. For vehicles and smaller devices, the electrolyte could be an alkaline solution or a solid polymer membrane. For most fuel cell systems, the fuel is hydrogen, which can be extracted by several procedures from many hydrogen-bearing substances, including alcohols, natural gas (mainly methane), gasoline, and water. There are important and perhaps unresolved technical problems associated with using fuel cells to power vehicles. The catalysts required in several systems are expensive metals of the platinum group. Moreover, fuel cells can freeze and not work in cold weather and can be damaged by impacts. Storage tanks for the fuels, particularly hydrogen, must be safe, inexpensive, of a reasonable size, and contain a supply sufficient for a trip of several hundred miles

  14. The road to Clean Cities: Promoting energy security and cleaner air through alternative fuels

    SciTech Connect

    Chun, C.A.

    1997-12-31

    The United States Department of Energy (DOE) Clean Cities Program is a locally-based government/industry partnership program coordinated by DOE to expand the use of alternatives to gasoline and diesel fuel. By combining local decision-making with the voluntary action of partners, the Clean Cities grass roots approach departs from traditional government programs. It creates an effective plan, carried out at the local level, to establish a sustainable alternative fuels market. The broad goals of the Clean Cities Program are to: reduce dependence on foreign oil, improve the environment, and increase economic growth and competitiveness. The key element of success for this program is partnerships -- public/private partnerships that engage the necessary market forces to accomplish the infusion of new alternative fuels and alternative fuel vehicle (AFV) technologies. DOE does not provide direct funding for acquisition of AFVs and products, but rather, provides market development assistance. DOE technical and management resources are targeted at building local coalitions, coordinating technology product suppliers, and improving market and customer information. Clean Cities works directly with local governments and local businesses and shares innovations along the network of Clean Cities coalitions. Since 1993, Clean Cities has made great strides in diversifying transportation fuel consumption. Voluntary Clean Cities partnerships around the United States have heightened public awareness of alternative fuel usage, increased the number of AFVs on the road, and developed alternative fuels infrastructure throughout North America. The Clean Cities Program encourages sustainable development by reducing a community`s dependence on nonrenewable fossil fuels (both domestic and imported), cleaning up the local and global environment, and boosting local economies through the development of alternative fuels industries.

  15. NEUTRON REACTOR FUEL ELEMENT UTILIZING ZIRCONIUM-BASE ALLOYS

    DOEpatents

    Saller, H.A.; Keeler, J.R.; Szumachowski, E.R.

    1957-11-12

    This patent relates to clad fuel elements for use in neutronic reactors and is drawn to such a fuel element which consists of a core of fissionable material, comprised of an alloy of zirconium and U/sup 235/ enriched uranium, encased in a jacket of a binary zirconium-tin alloy in which the tin content ranges between 1 and 15% by weight.

  16. Alternative fuel trucks case studies: Running refuse haulers on compressed natural gas

    SciTech Connect

    Norton, P.; Kelly, K.

    1996-07-01

    This document details the experience of New York City`s compressed natural gas refuse haulers. These 35 ton vehicles have engines that displace 10 liters and provide 240 horsepower. Fuel economy, range, cost, maintenance, repair issues, and emissions are discussed. Photographs and figures illustrate the attributes of these alternative fuel vehicles.

  17. Sugar cane bagasse: an alternative fuel in the Brazilian citrus industry

    SciTech Connect

    Guerra, J.L.; Steger, E.

    1988-05-01

    This article will briefly discuss the production of sugar cane bagasse and advantages for using it as an alternative fuel. In particular, this article will focus on how Citrosuco Paulista, (a multi-plant producer of citrus concentrates), modified its existing boilers and dryers to accommodate the new sugar cane bagasse fuel.

  18. Impacts of Western Area Power Administration`s power marketing alternatives on electric utility systems

    SciTech Connect

    Veselka, T.D.; Portante, E.C.; Koritarov, V.

    1995-03-01

    This technical memorandum estimates the effects of alternative contractual commitments that may be initiated by the Western Area Power Administration`s Salt Lake City Area Office. It also studies hydropower operational restrictions at the Salt Lake City Area Integrated Projects in combination with these alternatives. Power marketing and hydropower operational effects are estimated in support of Western`s Electric Power Marketing Environmental Impact Statement (EIS). Electricity production and capacity expansion for utility systems that will be directly affected by alternatives specified in the EIS are simulated. Cost estimates are presented by utility type and for various activities such as capacity expansion, generation, long-term firm purchases and sales, fixed operation and maintenance expenses, and spot market activities. Operational changes at hydropower facilities are also investigated.

  19. 46 CFR 58.50-15 - Alternate material for construction of independent fuel tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... listed in 46 CFR 58.50-5, Table 58.50-5(a) and in 46 CFR 58.50-10, Table 58.50-10(a) may be used for fuel... 46 Shipping 2 2010-10-01 2010-10-01 false Alternate material for construction of independent fuel...) MARINE ENGINEERING MAIN AND AUXILIARY MACHINERY AND RELATED SYSTEMS Independent Fuel Tanks §...

  20. 10 CFR 503.21 - Lack of alternate fuel supply.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... a temporary exemption due to the unavailability of an adequate and reliable supply of an alternate... petitioner must certify that: (1) A good faith effort has been to obtain an adequate and reliable supply...

  1. 10 CFR 503.21 - Lack of alternate fuel supply.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... a temporary exemption due to the unavailability of an adequate and reliable supply of an alternate... petitioner must certify that: (1) A good faith effort has been to obtain an adequate and reliable supply...

  2. 10 CFR 503.21 - Lack of alternate fuel supply.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... a temporary exemption due to the unavailability of an adequate and reliable supply of an alternate... petitioner must certify that: (1) A good faith effort has been to obtain an adequate and reliable supply...

  3. Utilization of Used Nuclear Fuel in a Potential Future US Fuel Cycle Scenario - 13499

    SciTech Connect

    Worrall, Andrew

    2013-07-01

    from the FRs due to time in the core, cooling time, reprocessing, and re-fabrication time is built into the analysis, along with impacts in delays and other key assumptions and sensitivities have been investigated. The results of this assessment highlight how the UNF from future reactors (LWRs and FRs) and the resulting fissile materials (U and Pu) from reprocessing can be effectively utilized, and show that the timings of future nuclear programs are key considerations (both for reactors and fuel cycle facilities). The analysis also highlights how the timings are relevant to managing the UNF and how such an analysis can therefore assist in informing the potential future R and D strategy and needs of the US fuel cycle programs and reactor technology. (authors)

  4. Cost and quality of fuels for electric utility plants: Energy data report. 1980 annual

    SciTech Connect

    Not Available

    1981-06-25

    In 1980 US electric utilities reported purchasng 594 million tons of coal, 408.5 million barrels of oil and 3568.7 billion ft/sup 3/ of gas. As compared with 1979 purchases, coal rose 6.7%, oil decreased 20.9%, and gas increased for the fourth year in a row. This volume presents tabulated and graphic data on the cost and quality of fossil fuel receipts to US electric utilities plants with a combined capacity of 25 MW or greater. Information is included on fuel origin and destination, fuel types, and sulfur content, plant types, capacity, and flue gas desulfurization method used, and fuel costs. (LCL)

  5. Barriers to the utilization of synthetic fuels for transportation

    NASA Technical Reports Server (NTRS)

    Parker, H. W.; Reilly, M. J.

    1981-01-01

    The principal types of engines for transportation uses are reviewed and the specifications for conventional fuels are compared with specifications for synthetic fuels. Synfuel processes nearing the commercialization phase are reviewed. The barriers to using synfuels can be classified into four groups: technical, such as the uncertainty that a new engine design can satisfy the desired performance criteria; environmental, such as the risk that the engine emissions cannot meet the applicable environmental standards; economic, including the cost of using a synfuel relative to conventional transportation fuels; and market, involving market penetration by offering new engines, establishing new distribution systems and/or changing user expectations.

  6. Safe operating procedures for alternative fuel buses: A synthesis of transit practice

    SciTech Connect

    Not Available

    1993-01-01

    The synthesis will be of interest to transit agency managers, maintenance managers, and other personnel concerned with the operation of bus fleets using alternative fuels to meet national and local requirements related to air quality and energy diversification. Information on the use of methanol, ethanol, compressed natural gas (CNG), liquified petroleum gas (LPG), liquified natural gas (LNG), and other alternatives is included.

  7. Application of fuel cells with heat recovery for integrated utility systems

    NASA Technical Reports Server (NTRS)

    Shields, V.; King, J. M., Jr.

    1975-01-01

    This paper presents the results of a study of fuel cell powerplants with heat recovery for use in an integrated utility system. Such a design provides for a low pollution, noise-free, highly efficient integrated utility. Use of the waste heat from the fuel cell powerplant in an integrated utility system for the village center complex of a new community results in a reduction in resource consumption of 42 percent compared to conventional methods. In addition, the system has the potential of operating on fuels produced from waste materials (pyrolysis and digester gases); this would provide further reduction in energy consumption.

  8. Alternative-fueled truck demonstration natural gas program: Caterpillar G3406LE development and demonstration

    SciTech Connect

    1995-06-01

    In 1990, the California Energy Commission, the South Coast Air Quality Management District, and the Southern California Gas Company joined together to sponsor the development and demonstration of compressed natural gas engines for Class 8 heavy-duty line-haul trucking applications. This program became part of an overall Alternative-Fueled Truck Demonstration Program, with the goal of advancing the technological development of alternative-fueled engines. The demonstration showed natural gas to be a technically viable fuel for Class 8 truck engines.

  9. Alternative fuels and chemicals from synthesis gas. Fourth quarterly report, 1994

    SciTech Connect

    1997-10-01

    The overall objectives of this program are to investigate potential technologies for the conversion of synthesis gas to oxygenated and hydrocarbon fuels and industrial chemicals, and to demonstrate the most promising technologies at DOE`s LaPorte, Texas, Slurry Phase Alternative Fuels Development Unit (AFDU). The program will involve a continuation of the work performed under the Alternative Fuels from Coal-Derived Synthesis Gas Program and will draw upon information and technologies generated in parallel current and future DOE-funded contracts.

  10. Spent fuel utilization in a compact traveling wave reactor

    SciTech Connect

    Hartanto, Donny; Kim, Yonghee

    2012-06-06

    In recent years, several innovative designs of nuclear reactors are proposed. One of them is Traveling Wave Reactor (TWR). The unique characteristic of a TWR is the capability of breeding its own fuel in the reactor. The reactor is fueled by mostly depleted, natural uranium or spent nuclear fuel and a small amount of enriched uranium to initiate the fission process. Later on in the core, the reactor gradually converts the non-fissile material into the fissile in a process like a traveling wave. In this work, a TWR with spent nuclear fuel blanket was studied. Several parameters such as reactivity coefficients, delayed neutron fraction, prompt neutron generation lifetime, and fission power, were analyzed. The discharge burnup composition was also analyzed. The calculation is performed by a continuous energy Monte Carlo code McCARD.

  11. Aviation Management Perception of Biofuel as an Alternative Fuel Source

    NASA Astrophysics Data System (ADS)

    Marticek, Michael

    The purpose of this phenomenological study was to explore lived experiences and perceptions from a population of 75 aviation managers in various locations in Pennsylvania about the use of aviation biofuel and how it will impact the aviation industry. The primary research question for this study focused on the impact of biofuel on the airline industry and how management believes biofuel can contribute to the reduction of fossil fuel. Grounded in the conceptual framework of sustainability, interview data collected from 27 airline and fueling leaders were analyzed for like terms, coded, and reduced to 3 themes. Data were organized and prioritized based on frequency of mention. The findings represented themes of (a) flight planning tools, (b) production, and (c) costs that are associated with aviation fuel. The results confirmed findings addressed in the literature review, specifically that aviation biofuel will transform the airline industry through lower cost and production. These findings have broad applicability for all management personnel in the aviation industry. Implications for social change and improved business environments could be realized with a cleaner environment, reduced fuel emissions, and improved air quality.

  12. Final Technical Report for Alternative Fuel Source Study-An Energy Efficient and Environmentally Friendly Approach

    SciTech Connect

    Zee, Ralph; Schindler, Anton; Duke, Steve; Burch, Thom; Bransby, David; Stafford, Don

    2010-08-31

    The objective of this project is to conduct research to determine the feasibility of using alternate fuel sources for the production of cement. Successful completion of this project will also be beneficial to other commercial processes that are highly energy intensive. During this report period, we have completed all the subtasks in the preliminary survey. Literature searches focused on the types of alternative fuels currently used in the cement industry around the world. Information was obtained on the effects of particular alternative fuels on the clinker/cement product and on cement plant emissions. Federal regulations involving use of waste fuels were examined. Information was also obtained about the trace elements likely to be found in alternative fuels, coal, and raw feeds, as well as the effects of various trace elements introduced into system at the feed or fuel stage on the kiln process, the clinker/cement product, and concrete made from the cement. The experimental part of this project involves the feasibility of a variety of alternative materials mainly commercial wastes to substitute for coal in an industrial cement kiln in Lafarge NA and validation of the experimental results with energy conversion consideration.

  13. An overview of alternative fossil fuel price and carbon regulation scenarios

    SciTech Connect

    Wiser, Ryan; Bolinger, Mark

    2004-10-01

    The benefits of the Department of Energy's research and development (R&D) efforts have historically been estimated under business-as-usual market and policy conditions. In recognition of the insurance value of R&D, however, the Office of Energy Efficiency and Renewable Energy (EERE) and the Office of Fossil Energy (FE) have been exploring options for evaluating the benefits of their R&D programs under an array of alternative futures. More specifically, an FE-EERE Scenarios Working Group (the Working Group) has proposed to EERE and FE staff the application of an initial set of three scenarios for use in the Working Group's upcoming analyses: (1) a Reference Case Scenario, (2) a High Fuel Price Scenario, which includes heightened natural gas and oil prices, and (3) a Carbon Cap-and-Trade Scenario. The immediate goal is to use these scenarios to conduct a pilot analysis of the benefits of EERE and FE R&D efforts. In this report, the two alternative scenarios being considered by EERE and FE staff--carbon cap-and-trade and high fuel prices--are compared to other scenarios used by energy analysts and utility planners. The report also briefly evaluates the past accuracy of fossil fuel price forecasts. We find that the natural gas prices through 2025 proposed in the FE-EERE Scenarios Working Group's High Fuel Price Scenario appear to be reasonable based on current natural gas prices and other externally generated gas price forecasts and scenarios. If anything, an even more extreme gas price scenario might be considered. The price escalation from 2025 to 2050 within the proposed High Fuel Price Scenario is harder to evaluate, primarily because few existing forecasts or scenarios extend beyond 2025, but, at first blush, it also appears reasonable. Similarly, we find that the oil prices originally proposed by the Working Group in the High Fuel Price Scenario appear to be reasonable, if not conservative, based on: (1) the current forward market for oil, (2) current oil prices

  14. Emissions tradeoffs among alternative marine fuels: total fuel cycle analysis of residual oil, marine gas oil, and marine diesel oil.

    PubMed

    Corbett, James J; Winebrake, James J

    2008-04-01

    Worldwide concerns about sulfur oxide (SOx) emissions from ships are motivating the replacement of marine residual oil (RO) with cleaner, lower-sulfur fuels, such as marine gas oil (MGO) and marine diesel oil (MDO). Vessel operators can use MGO and MDO directly or blended with RO to achieve environmental and economic objectives. Although expected to be much cleaner in terms of criteria pollutants, these fuels require additional energy in the upstream stages of the fuel cycle (i.e., fuel processing and refining), and thus raise questions about the net impacts on greenhouse gas emissions (primarily carbon dioxide [CO2]) because of production and use. This paper applies the Total Energy and Environmental Analysis for Marine Systems (TEAMS) model to conduct a total fuel cycle analysis of RO, MGO, MDO, and associated blends for a typical container ship. MGO and MDO blends achieve significant (70-85%) SOx emissions reductions compared with RO across a range of fuel quality and refining efficiency assumptions. We estimate CO2 increases of less than 1% using best estimates of fuel quality and refinery efficiency parameters and demonstrate how these results vary based on parameter assumptions. Our analysis suggests that product refining efficiency influences the CO2 tradeoff more than differences in the physical and energy parameters of the alternative fuels, suggesting that modest increases in CO2 could be offset by efficiency improvements at some refineries. Our results help resolve conflicting estimates of greenhouse gas tradeoffs associated with fuel switching and other emissions control policies. PMID:18422040

  15. Analysis of thorium-salted fuels to improve uranium utilization in the once-through fuel cycle

    SciTech Connect

    Eschbach, E.A.; Merrill, E.T.; Prichard, A.W.

    1981-09-01

    Calculations and analyses indicate that no improvement can be achieved in uranium utilization for the once-through LWR fuel cycle over use of slightly enriched uranium by employing thorium distributed with uranium. The study included thorium additions: (1) slight amounts, (2) larger amounts, in either intimately mixed or in duplex pellets, (3) in spectrally shifted or not spectrally shifted reactors, and (4) in three- or five-year reactivity limited exposures. While thorium-uranium combinations improves the initial conversion ratio, the reactivity lifetime was not extended enough to override the additional uranium required. The effective fission cross-section of the bred /sup 233/U relative to /sup 239/Pu's in typical LWR neutron spectra is not large enough for /sup 233/U to make as great a contribution to end-of-life reactivity as /sup 239/Pu in a slightly enriched uranium fuel element. /sup 233/U's reactivity contribution relative to /sup 239/Pu's is lower in fuel configurations such as slightly enriched uranium LWR fuel loads. On the other hand, /sup 233/U's reactivity contribution appears more positive for reactors that involve lower average concentrations of thermal neutron absorbers. If /sup 238/U-thorium fuels reprocessed, the recovered /sup 233/U would increase uranium utilization, but may not reduce fuel cycle costs. The thorium-salted fuels exhibit substantially flatter reactivity characteristics with exposure time. Spectral shift helped the utilization of uranium and thorium.

  16. The life cycle assessment of alternative fuel chains for urban buses and trolleybuses.

    PubMed

    Kliucininkas, L; Matulevicius, J; Martuzevicius, D

    2012-05-30

    This paper describes a comparative analysis of public transport alternatives in the city of Kaunas, Lithuania. An LCA (Life Cycle Assessment) inventory analysis of fuel chains was undertaken using the midi urban bus and a similar type of trolleybus. The inventory analysis of fuel chains followed the guidelines provided by the ISO 14040 and ISO 14044 standards. The ReCiPe Life Cycle Impact Assessment (LCIA) methodology was used to quantify weighted damage originating from five alternative fuel chains. The compressed biogas fuel chain had the lowest weighted damage value, namely 45.7 mPt/km, whereas weighted damage values of the fuel chains based on electricity generation for trolleybuses were 60.6 mPt/km (for natural gas) and 78.9 mPt/km (for heavy fuel oil). The diesel and compressed natural gas fuel chains exhibited considerably higher damage values of 114.2 mPt/km and 132.6 mPt/km, respectively. The comparative life cycle assessment of fuel chains suggested that biogas-powered buses and electric trolleybuses can be considered as the best alternatives to use when modernizing the public transport fleet in Kaunas. PMID:22326758

  17. Thermodynamic analysis of alternative marine fuels for marine gas turbine power plants

    NASA Astrophysics Data System (ADS)

    El Gohary, Mohamed M.; Ammar, Nader R.

    2016-03-01

    The marine shipping industry faces challenges to reduce engine exhaust emissions and greenhouse gases (GHGs) from ships, and in particular, carbon dioxide. International regulatory bodies such as the International Maritime Organization and National Environmental Agencies of many countries have issued rules and regulations to drastically reduce GHG and emissions emanating from marine sources. This study investigates the possibility of using natural gas and hydrogen as alternative fuels to diesel oil for marine gas turbines and uses a mathematical model to assess the effect of these alternative fuels on gas turbine thermodynamic performance. Results show that since natural gas is categorized as a hydrocarbon fuel, the thermodynamic performance of the gas turbine cycle using natural gas was close to that of the diesel case. However, the gas turbine thermal efficiency was found to be slightly lower for natural gas and hydrogen fuels compared to diesel fuel.

  18. Findings and Recommendations from the NIST Workshop on Alternative Fuels and Materials: Biocorrosion

    PubMed Central

    Mansfield, Elisabeth; Sowards, Jeffrey W.; Crookes-Goodson, Wendy J.

    2015-01-01

    In 2013, the Applied Chemicals and Materials Division of the National Institute of Standards and Technology (NIST) hosted a workshop to identify and prioritize research needs in the area of biocorrosion. Materials used to store and distribute alternative fuels have experienced an increase in corrosion due to the unique conditions caused by the presence of microbes and the chemistry of biofuels and biofuel precursors. Participants in this workshop, including experts from the microbiological, fuel, and materials communities, delved into the unique materials and chemical challenges that occur with production, transport, and storage of alternative fuels. Discussions focused on specific problems including: a) the changing composition of “drop-in” fuels and the impact of that composition on materials; b) the influence of microbial populations on corrosion and fuel quality; and c) state-of-the-art measurement technologies for monitoring material degradation and biofilm formation. PMID:26958436

  19. Liquid fuel molten salt reactors for thorium utilization

    DOE PAGESBeta

    Gehin, Jess C.; Powers, Jeffrey J.

    2016-04-08

    Molten salt reactors (MSRs) represent a class of reactors that use liquid salt, usually fluoride- or chloride-based, as either a coolant with a solid fuel (such as fluoride salt-cooled high temperature reactors) or as a combined coolant and fuel with fuel dissolved in a carrier salt. For liquid-fuelled MSRs, the salt can be processed online or in a batch mode to allow for removal of fission products as well as introduction of fissile fuel and fertile materials during reactor operation. The MSR is most commonly associated with the 233U/thorium fuel cycle, as the nuclear properties of 233U combined with themore » online removal of parasitic absorbers allow for the ability to design a thermal-spectrum breeder reactor; however, MSR concepts have been developed using all neutron energy spectra (thermal, intermediate, fast, and mixed-spectrum zoned concepts) and with a variety of fuels including uranium, thorium, plutonium, and minor actinides. Early MSR work was supported by a significant research and development (R&D) program that resulted in two experimental systems operating at ORNL in the 1960s, the Aircraft Reactor Experiment and the Molten Salt Reactor Experiment. Subsequent design studies in the 1970s focusing on thermal-spectrum thorium-fueled systems established reference concepts for two major design variants: (1) a molten salt breeder reactor (MSBR), with multiple configurations that could breed additional fissile material or maintain self-sustaining operation; and (2) a denatured molten salt reactor (DMSR) with enhanced proliferation-resistance. T MSRs has been selected as one of six most promising Generation IV systems and development activities have been seen in fast-spectrum MSRs, waste-burning MSRs, MSRs fueled with low-enriched uranium (LEU), as well as more traditional thorium fuel cycle-based MSRs. This study provides an historical background of MSR R&D efforts, surveys and summarizes many of the recent development, and provides analysis comparing

  20. Evaluation of oxygen-enrichment system for alternative fuel vehicles

    SciTech Connect

    Poola, R.B.; Sekar, R.R.; Ng, H.K.

    1995-12-01

    This report presents results on the reduction in exhaust emissions achieved by using oxygen-enriched intake air on a flexible fuel vehicle (FFV) that used Indolene and M85 as test fuels. The standard federal test procedure (FTP) and the US Environmental Protection Agency`s (EPA`s) off-cycle (REP05) test were followed. The report also provides a review of literature on the oxygen membrane device and design considerations. It presents information on the sources and contributions of cold-phase emissions to the overall exhaust emissions from light-duty vehicles (LDVs) and on the various emission standards and present-day control technologies under consideration. The effects of oxygen-enriched intake air on FTP and off-cycle emissions are discussed on the basis of test results. Conclusions are drawn from the results and discussion, and different approaches for the practical application of this technology in LDVs are recommended.

  1. Investigation of SSME alternate high pressure fuel turbopump lift-off seal fluid and structural dynamic interaction

    NASA Technical Reports Server (NTRS)

    Elrod, David A.

    1989-01-01

    The Space Shuttle main engine (SSME) alternate turbopump development program (ATD) high pressure fuel turbopump (HPFTP) design utilizes an innovative lift-off seal (LOS) design that is located in close proximity to the turbine end bearing. Cooling flow exiting the bearing passes through the lift-off seal during steady state operation. The potential for fluid excitation of lift-off seal structural resonances is investigated. No fluid excitation of LOS resonances is predicted. However, if predicted LOS natural frequencies are significantly lowered by the presence of the coolant, pressure oscillations caused by synchronous whirl of the HPFTP rotor may excite a resonance.

  2. Developing an accelerated test of coking tendencies of alternative fuels

    SciTech Connect

    Clevenger, M.D.; Bagby, M.O.; Schwab, A.W.; Goering, C.E.; Savage, L.D.

    1988-07-01

    Burning vegetable oils in direct-injected diesel engines leads to nozzle and combustion chamber coking and eventually to engine damage. Because typical durability tests to detect coking tendencies of fuels are expensive, a one-cylinder diesel engine was instrumented and automated to enable external detection of engine coking in only 5 h. The heat release pattern revealed shifts to later burning as coke accumulated in the engine, but exhaust emissions showed little correlation with coke accumulation.

  3. The history, genotoxicity and carcinogenicity of carbon-based fuels and their emissions: part 4 - alternative fuels.

    PubMed

    Claxton, Larry D

    2015-01-01

    Much progress has been made in reducing the pollutants emitted from various combustors (including diesel engines and power plants) by the use of alternative fuels; however, much more progress is needed. Not only must researchers improve fuels and combustors, but also there is a need to improve the toxicology testing and analytical chemistry methods associated with these complex mixtures. Emissions from many alternative carbonaceous fuels are mutagenic and carcinogenic. Depending on their source and derivation, alternative carbonaceous fuels before combustion may or may not be genotoxic; however, in order to know their genotoxicity, appropriate chemical analysis and/or bioassay must be performed. Newly developed fuels and combustors must be tested to determine if they provide a public health advantage over existing technologies - including what tradeoffs can be expected (e.g., decreasing levels of PAHs versus increasing levels of NOx and possibly nitroarenes in ambient air). Another need is to improve exposure estimations which presently are a weak link in doing risk analyses. PMID:25795115

  4. Thermal Aspects of Using Alternative Nuclear Fuels in Supercritical Water-Cooled Reactors

    NASA Astrophysics Data System (ADS)

    Grande, Lisa Christine

    A SuperCritical Water-cooled Nuclear Reactor (SCWR) is a Generation IV concept currently being developed worldwide. Unique to this reactor type is the use of light-water coolant above its critical point. The current research presents a thermal-hydraulic analysis of a single fuel channel within a Pressure Tube (PT)-type SCWR with a single-reheat cycle. Since this reactor is in its early design phase many fuel-channel components are being investigated in various combinations. Analysis inputs are: steam cycle, Axial Heat Flux Profile (AHFP), fuel-bundle geometry, and thermophysical properties of reactor coolant, fuel sheath and fuel. Uniform and non-uniform AHFPs for average channel power were applied to a variety of alternative fuels (mixed oxide, thorium dioxide, uranium dicarbide, uranium nitride and uranium carbide) enclosed in an Inconel-600 43-element bundle. The results depict bulk-fluid, outer-sheath and fuel-centreline temperature profiles together with the Heat Transfer Coefficient (HTC) profiles along the heated length of fuel channel. The objective is to identify the best options in terms of fuel, sheath material and AHFPS in which the outer-sheath and fuel-centreline temperatures will be below the accepted temperature limits of 850°C and 1850°C respectively. The 43-element Inconel-600 fuel bundle is suitable for SCWR use as the sheath-temperature design limit of 850°C was maintained for all analyzed cases at average channel power. Thoria, UC2, UN and UC fuels for all AHFPs are acceptable since the maximum fuel-centreline temperature does not exceed the industry accepted limit of 1850°C. Conversely, the fuel-centreline temperature limit was exceeded for MOX at all AHFPs, and UO2 for both cosine and downstream-skewed cosine AHFPs. Therefore, fuel-bundle modifications are required for UO2 and MOX to be feasible nuclear fuels for SCWRs.

  5. Implementation of alternative bio-based fuels in aviation: The Clean Airports Program

    SciTech Connect

    Shauck, M.E.; Zanin, M.G.

    1997-12-31

    The Renewable Aviation Fuels Development Center at Baylor University in Waco, Texas, was designated, in March 1996, by the US Department of Energy (US DOE) as the national coordinator of the Clean Airports Program. This program, a spin-off of the Clean Cities Program, was initiated to increase the use of alternative fuels in aviation. There are two major fuels used in aviation today, the current piston engine aviation gasoline, and the current turbine engine fuel. The environmental impact of each of these fuels is significant. Aviation Gasoline (100LL), currently used in the General Aviation piston engine fleet, contributes 100% of the emissions containing lead in the USA today. In the case of the turbine engine fuel (Jet fuel), there are two major environmental impacts to be considered: the local, in the vicinity of the airports, and the global impact on climate change. The Clean Airports Program was established to promote the use of clean burning fuels in order to achieve and maintain clean air at and in the vicinities of airports through the use of alternative fuel-powered air and ground transportation vehicles.

  6. Applications study of advanced power generation systems utilizing coal-derived fuels, volume 2

    NASA Technical Reports Server (NTRS)

    Robson, F. L.

    1981-01-01

    Technology readiness and development trends are discussed for three advanced power generation systems: combined cycle gas turbine, fuel cells, and magnetohydrodynamics. Power plants using these technologies are described and their performance either utilizing a medium-Btu coal derived fuel supplied by pipeline from a large central coal gasification facility or integrated with a gasification facility for supplying medium-Btu fuel gas is assessed.

  7. Testing and preformance measurement of straight vegetable oils as an alternative fuel for diesel engines

    NASA Astrophysics Data System (ADS)

    Lakshminarayanan, Arunachalam

    Rising fuel prices, growing energy demand, concerns over domestic energy security and global warming from greenhouse gas emissions have triggered the global interest in bio-energy and bio-fuel crop development. Backlash from these concerns can result in supply shocks of traditional fossil fuels and create immense economic pressure. It is thus widely argued that bio-fuels would particularly benefit developing countries by off-setting their dependencies on imported petroleum. Domestically, the transportation sector accounts for almost 40% of liquid fuel consumption, while on-farm application like tractors and combines for agricultural purposes uses close to an additional 18%. It is estimated that 40% of the farm budget can be attributed to the fuel costs. With the cost of diesel continuously rising, farmers are now looking at using Straight Vegetable Oil (SVO) as an alternative fuel by producing their own fuel crops. This study evaluates conventional diesel compared to the use of SVO like Camelina, Canola and Juncea grown on local farms in Colorado for their performance and emissions on a John Deere 4045 Tier-II engine. Additionally, physical properties like density and viscosity, metal/mineral content, and cold flow properties like CFPP and CP of these oils were measured using ASTM standards and compared to diesel. It was found that SVOs did not show significant differences compared to diesel fuel with regards to engine emissions, but did show an increase in thermal efficiency. Therefore, this study supports the continued development of SVO production as a viable alternative to diesel fuels, particularly for on-farm applications. The need for providing and developing a sustainable, economic and environmental friendly fuel alternative has taken an aggressive push which will require a strong multidisciplinary education in the field of bio-energy. Commercial bio-energy development has the potential to not only alleviate the energy concerns, but also to give renewed

  8. The Sport-Utility Vehicle: Debating Fuel-Economy Standards in Thermodynamics

    ERIC Educational Resources Information Center

    Mayer, Shannon

    2008-01-01

    This paper describes a debate about national fuel-economy standards for sport-utility vehicles (SUVs) used as a foundation for exploring a public policy issue in the physical science classroom. The subject of automobile fuel economy benefits from a familiarity with thermodynamics, specifically heat engines, and is therefore applicable to a broad…

  9. Fuel composition and secondary organic aerosol formation: gas-turbine exhaust and alternative aviation fuels.

    PubMed

    Miracolo, Marissa A; Drozd, Greg T; Jathar, Shantanu H; Presto, Albert A; Lipsky, Eric M; Corporan, Edwin; Robinson, Allen L

    2012-08-01

    A series of smog chamber experiments were performed to investigate the effects of fuel composition on secondary particulate matter (PM) formation from dilute exhaust from a T63 gas-turbine engine. Tests were performed at idle and cruise loads with the engine fueled on conventional military jet fuel (JP-8), Fischer-Tropsch synthetic jet fuel (FT), and a 50/50 blend of the two fuels. Emissions were sampled into a portable smog chamber and exposed to sunlight or artificial UV light to initiate photo-oxidation. Similar to previous studies, neat FT fuel and a 50/50 FT/JP-8 blend reduced the primary particulate matter emissions compared to neat JP-8. After only one hour of photo-oxidation at typical atmospheric OH levels, the secondary PM production in dilute exhaust exceeded primary PM emissions, except when operating the engine at high load on FT fuel. Therefore, accounting for secondary PM production should be considered when assessing the contribution of gas-turbine engine emissions to ambient PM levels. FT fuel substantially reduced secondary PM formation in dilute exhaust compared to neat JP-8 at both idle and cruise loads. At idle load, the secondary PM formation was reduced by a factor of 20 with the use of neat FT fuel, and a factor of 2 with the use of the blend fuel. At cruise load, the use of FT fuel resulted in no measured formation of secondary PM. In every experiment, the secondary PM was dominated by organics with minor contributions from sulfate when the engine was operated on JP-8 fuel. At both loads, FT fuel produces less secondary organic aerosol than JP-8 because of differences in the composition of the fuels and the resultant emissions. This work indicates that fuel reformulation may be a viable strategy to reduce the contribution of emissions from combustion systems to secondary organic aerosol production and ultimately ambient PM levels. PMID:22732009

  10. Alternative fuel vehicles for the state fleets: Results of the 5-year planning process

    SciTech Connect

    Not Available

    1993-05-01

    This report documents the first attempt by the Department of Energy (DOE) to work with states to prepare five-year Alternative Fuel Vehicle (AFV) acquisition plans to identify alternative fuels and vehicles that they are planning on or would like to acquire. The DOE Regional Support Offices (RSOs) met with representatives from the states in their regions and assisted in the preparation of the plans. These plans will be used in conjunction with previously gathered Federal five-year plans to encourage Original Equipment Manufacturers (OEMs) to expand the variety of AFVs produced, reduce the incremental cost of AFVs, and to encourage fuel suppliers to expand the alternative fuel infrastructure and alternative fuel availability. By identifying the needs and requirements of state fleets, DOE can begin to describe the specific nature of the future state fleets, and establish a defined market for OEMs and fuel suppliers. DOE initiated the development and collection of the state five-year plans before the signing of the Energy Policy Act, to raise the awareness of states that they will be required by law to acquire AFVs. As a result, several states that had no AFV acquisition plan when queried have developed or are in the process of developing plans. The DOE and its RSOs are still working with the states to develop and refine acquisition plans, and this report should be treated as documentation of work in progress.

  11. Rape oil methyl ester (RME) and used cooking oil methyl ester (UOME) as alternative fuels

    SciTech Connect

    Hohl, G.H.

    1995-12-31

    The author presents a review about the fleet tests carried out by the Austrian Armed Forces concerning the practical application of a vegetable oil, i.e Rape Oil Methyl Ester (RME) and Used Cooking Oil Methyl Ester (UOME) as alternative fuels for vehicles under military conditions, and reviews other research results carried out in Austria. As a result of over-production in Western European agriculture, the increase in crop yields has led to tremendous surpluses. Alternative agricultural products have been sought. One alternative can be seen in biological fuel production for tractors, whereby the farmer is able to produce his own fuel supply as was the case when he previously provided self-made feed for his horses. For the market introduction different activities were necessary. A considerable number of institutes and organizations including the Austrian Armed Forces have investigated, tested and developed these alternative fuels. The increasing disposal problems of used cooking oil have initiated considerations for its use. The recycling of this otherwise waste product, and its preparation for use as an alternative fuel to diesel oil, seems to be most promising.

  12. Regenerative Fuel Cell System As Alternative Energy Storage For Space

    NASA Astrophysics Data System (ADS)

    Lucas, J.; Bockstahler, K.; Funke, H.; Jehle, W.; Markgraf, S.; Henn, N.; Schautz, M.

    2011-10-01

    Next generation telecommunication satellites will demand more power. Power levels of 20 to 30kW are foreseen for the next 10 years. Battery technology that can sustain 30kW for eclipse lengths of up to 72 minutes (equals amount of stored energy of 36kWh) will represent a major impact on the total mass of the satellite, even with Li-ion battery technologies, which are estimated to reach an energy density of 250Wh/kg (begin of life) on cell level i.e. 150Wh/kg on subsystem level in 10 years. For the high power level another technology is needed to reach the next goal of 300 - 350Wh/kg on subsystem level. One candidate is the Regenerative Fuel Cell (RFC) technology which proves to be superior to batteries with increasing power demand and increasing discharge time. Such an RFC system based on hydrogen and oxygen technology consists of storage for the reactants (H2, O2 and H2O), a fuel cell (FC) and an electrolyser (ELY). In charge mode, the electrolyser splits water in hydrogen and oxygen using electrical power from solar cells. The gases are stored in appropriate tanks. In discharge mode, during time intervals of power demand, O2 and H2 are converted in the fuel cell to generate electricity under formation of water as by-product. The water is stored in tanks and during charge mode rerouted to the electrolyser thus creating a closed-loop process. Today Astrium is developing an RFCS as energy storage and supply unit for some future ESA missions. A complete RFCS breadboard has been established and the operational behaviour of the system is being tested. First test results, dedicated experience gained from system testing and a comparison with the analytical prediction will be discussed and presented.

  13. Accuracy of trace element determinations in alternate fuels

    NASA Technical Reports Server (NTRS)

    Greenbauer-Seng, L. A.

    1980-01-01

    A review of the techniques used at Lewis Research Center (LeRC) in trace metals analysis is presented, including the results of Atomic Absorption Spectrometry and DC Arc Emission Spectrometry of blank levels and recovery experiments for several metals. The design of an Interlaboratory Study conducted by LeRC is presented. Several factors were investigated, including: laboratory, analytical technique, fuel type, concentration, and ashing additive. Conclusions drawn from the statistical analysis will help direct research efforts toward those areas most responsible for the poor interlaboratory analytical results.

  14. Clean Cities Case Study: UPS delivers with Alternative Fuels

    SciTech Connect

    Frailey, M.

    1999-08-30

    In the fall of 1994, the UPS fleet in Landover, Maryland, began operating 20 vehicles on CNG. UPS selected CNG because natural gas is an abundant domestic resource that is available in almost every city in the US, and it also generally costs less than other fuels. The UPS project, funded by DOE through NREL and managed by TRI, was designed to test the feasibility of using CNG in a medium-duty pick-up and delivery fleet. This study is intended only to illustrate approaches that organizations could use in adopting AFVs into their fleets.

  15. Alternative fuels for vehicles fleet demonstration program final report. Volume 1: Summary

    SciTech Connect

    1997-03-01

    The Alternative Fuels for Vehicles Fleet Demonstration Program (AFV-FDP) was a multiyear effort to collect technical data for use in determining the costs and benefits of alternative-fuel vehicles in typical applications in New York State. During 3 years of collecting data, 7.3 million miles of driving were accumulated, 1,003 chassis-dynamometer emissions tests were performed, 862,000 gallons of conventional fuel were saved, and unique information was developed about garage safety recommendations, vehicle performance, and other topics. Findings are organized by vehicle and fuel type. For light-duty compressed natural gas (CNG) vehicles, technology has evolved rapidly and closed-loop, electronically-controlled fuel systems provide performance and emissions advantages over open-loop, mechanical systems. The best CNG technology produces consistently low tailpipe emissions versus gasoline, and can eliminate evaporative emissions. Reduced driving range remains the largest physical drawback. Fuel cost is low ($/Btu) but capital costs are high, indicating that economics are best with vehicles that are used intensively. Propane produces impacts similar to CNG and is less expensive to implement, but fuel cost is higher than gasoline and safety codes limit use in urban areas. Light-duty methanol/ethanol vehicles provide performance and emissions benefits over gasoline with little impact on capital costs, but fuel costs are high. Heavy-duty CNG engines are evolving rapidly and provide large reductions in emissions versus diesel. Capital costs are high for CNG buses and fuel efficiency is reduced, but the fuel is less expensive and overall operating costs are about equal to those of diesel buses. Methanol buses provide performance and emissions benefits versus diesel, but fuel costs are high. Other emerging technologies were also evaluated, including electric vehicles, hybrid-electric vehicles, and fuel cells.

  16. Development of Fuel-Flexible Combustion Systems Utilizing Opportunity Fuels in Gas Turbines

    SciTech Connect

    2008-12-01

    General Electric Global Research will define, develop, and test new fuel nozzle technology concepts for gas turbine operation on a wide spectrum of opportunity fuels and/or fuel blends. This will enable gas turbine operation on ultra-low Btu fuel streams such as very weak natural gas, highly-diluted industrial process gases, or gasified waste streams that are out of the capability range of current turbine systems.

  17. Complementary and alternative medicine utilization in Texas hospices: prevalence, importance, and challenges.

    PubMed

    Olotu, Busuyi S; Brown, Carolyn M; Lawson, Kenneth A; Barner, Jamie C

    2014-05-01

    The purpose of this study was to describe the prevalence, importance, and challenges of complementary and alternative medicine (CAM) utilization in Texas hospices. Mail surveys were sent to 369 hospices in Texas, and 110 useful surveys were returned. Results showed that a majority (n = 62, 56.4%) of hospices offer CAM to their clients, with the most popularly offered CAMs being massage, music, and relaxation therapies. Despite the availability of CAM services in most hospices, and that the utilization of CAM has the potential to improve overall quality of life of patients, our results showed that a sizeable proportion of patients in these hospices are not utilizing the provided CAMs. Funding and personnel constraints were substantial obstacles to offering CAM. PMID:23625931

  18. Clean Cities Guide to Alternative Fuel and Advanced Medium- and Heavy-Duty Vehicles (Book)

    SciTech Connect

    Not Available

    2013-08-01

    Today's fleets are increasingly interested in medium-duty and heavy-duty vehicles that use alternative fuels or advanced technologies that can help reduce operating costs, meet emissions requirements, improve fleet sustainability, and support U.S. energy independence. Vehicle and engine manufacturers are responding to this interest with a wide range of options across a steadily growing number of vehicle applications. This guide provides an overview of alternative fuel power systems?including engines, microturbines, electric motors, and fuel cells?and hybrid propulsion systems. The guide also offers a list of individual medium- and heavy-duty vehicle models listed by application, along with associated manufacturer contact information, fuel type(s), power source(s), and related information.

  19. Clean Cities Guide to Alternative Fuel and Advanced Medium- and Heavy-Duty Vehicles

    SciTech Connect

    2013-08-01

    Today's fleets are increasingly interested in medium-duty and heavy-duty vehicles that use alternative fuels or advanced technologies that can help reduce operating costs, meet emissions requirements, improve fleet sustainability, and support U.S. energy independence. Vehicle and engine manufacturers are responding to this interest with a wide range of options across a steadily growing number of vehicle applications. This guide provides an overview of alternative fuel power systems--including engines, microturbines, electric motors, and fuel cells--and hybrid propulsion systems. The guide also offers a list of individual medium- and heavy-duty vehicle models listed by application, along with associated manufacturer contact information, fuel type(s), power source(s), and related information.

  20. A comparative analysis of alternative fuels for the INEL vehicle fleet

    SciTech Connect

    Priebe, S.; Boyer, W.; Church, K.

    1992-11-01

    This report summarizes the results of a comparative systems analysis of various alternative fuels for use in the buses, mid-size vehicles, and automobiles that make up the vehicle fleet at the Idaho National Engineering Laboratory (INEL). The study was performed as part of the Laboratory Directed Research and Development (LDRD) Program for EG&G Idaho, Inc. Regulations will require the INEL to reduce total gasoline and diesel fuel use 10% by 1995 compared with 1991 levels, and will require that 50% of all new vehicles be fueled by some type of alternative fuel by 1998. A model was developed to analyze how these goals could be achieved, and what the cost would be to implement the goals.

  1. A comparative analysis of alternative fuels for the INEL vehicle fleet

    SciTech Connect

    Priebe, S.; Boyer, W.; Church, K.

    1992-11-01

    This report summarizes the results of a comparative systems analysis of various alternative fuels for use in the buses, mid-size vehicles, and automobiles that make up the vehicle fleet at the Idaho National Engineering Laboratory (INEL). The study was performed as part of the Laboratory Directed Research and Development (LDRD) Program for EG G Idaho, Inc. Regulations will require the INEL to reduce total gasoline and diesel fuel use 10% by 1995 compared with 1991 levels, and will require that 50% of all new vehicles be fueled by some type of alternative fuel by 1998. A model was developed to analyze how these goals could be achieved, and what the cost would be to implement the goals.

  2. Alternate extractants to tributyl phosphate for reactor fuel reprocessing

    SciTech Connect

    Crouse, D.J.; Arnold, W.D.; Hurst, F.J.

    1983-01-01

    Both tri(n-hexyl) phosphate (THP) and tri(2-ethylhexyl) phosphate (TEHP) have some important potential process advantages over TBP for reactor fuel reprocessing. These include negligible aqueous phase solubility and less tendency toward third phase and crud formation. The alkyl chain branching of TEHP makes it much more stable to chemical degradation than TBP and probably also accounts for its much weaker ruthenium extraction. The higher uranium and plutonium extraction power of THP and TEHP allows higher solvent loadings in extraction but makes them somewhat more difficult to strip. The phase separation properties of 1.09 M solutions of THP and TEHP are inferior to those of 1.09 M TBP (30 vol %) but are favorable at lower concentrations. Use of more dilute THP and TEHP solutions is recommended for this reason and to obtain a better balance of extraction power in the extraction versus stripping steps.

  3. Determination of alternative fuels combustion products: Phase 2 final report

    SciTech Connect

    Whitney, K.A.

    1997-06-01

    This report describes the laboratory efforts to accomplish four independent tasks: (1) speciation of hydrocarbon exhaust emissions from a light-duty vehicle operated over the chassis dynamometer portion of the light-duty FTP after modifications for operation on butane and butane blends; (2) evaluation of NREL`s Variable Conductance Vacuum Insulated Catalytic Converter Test Article 4 for the reduction of cold-start FTP exhaust emissions after extended soak periods for a Ford FFV Taurus operating on E85; (3) support of UDRI in an attempt to define correlations between engine-out combustion products identified by SwRI during chassis dynamometer testing, and those found during flow tube reactor experiments conducted by UDRI; and (4) characterization of small-diameter particulate matter from a Ford Taurus FFV operating in a simulated fuel-rich failure mode on CNG, LPG, M85, E85, and reformulated gasoline. 22 refs., 18 figs., 17 tabs.

  4. N-butanol and isobutanol as alternatives to gasoline: Comparison of port fuel injector characteristics

    NASA Astrophysics Data System (ADS)

    Fenkl, Michael; Pechout, Martin; Vojtisek, Michal

    2016-03-01

    The paper reports on an experimental investigation of the relationship between the pulse width of a gasoline engine port fuel injector and the quantity of the fuel injected when butanol is used as a fuel. Two isomers of butanol, n-butanol and isobutanol, are considered as potential candidates for renewable, locally produced fuels capable of serving as a drop-in replacement fuel for gasoline, as an alternative to ethanol which poses material compatibility and other drawbacks. While the injected quantity of fuel is typically a linear function of the time the injector coil is energized, the flow through the port fuel injector is complex, non ideal, and not necessarily laminar, and considering that butanol has much higher viscosity than gasoline, an experimental investigation was conducted. A production injector, coupled to a production fueling system, and driven by a pulse width generator was operated at various pulse lengths and frequencies, covering the range of engine rpm and loads on a car engine. The results suggest that at least at room temperature, the fueling rate remains to be a linear function of the pulse width for both n-butanol and isobutanol, and the volumes of fuel injected are comparable for gasoline and both butanol isomers.

  5. Fuel Properties Database from the Alternative Fuels and Advanced Vehicles Data Center (AFDC)

    DOE Data Explorer

    This database contains information on advanced petroleum and non-petroleum based fuels, as well as key data on advanced compression ignition fuels. Included are data on physical, chemical, operational, environmental, safety, and health properties. These data result from tests conducted according to standard methods (mostly American Society for Testing and Materials (ASTM). The source and test methods for each fuel data set are provided with the information. The database can be searched in various ways and can output numbers or explanatory text. Heavy vehicle chassis emission data are also available for some fuels.

  6. A fuel cycle assessment guide for utility and state energy planners

    SciTech Connect

    Not Available

    1994-07-01

    This guide, one in a series of documents designed to help assess fuel cycles, is a framework for setting parameters, collecting data, and analyzing fuel cycles for supply-side and demand-side management. It provides an automated tool for entering comparative fuel cycle data that are meaningful to state and utility integrated resource planning, collaborative, and regional energy planning activities. It outlines an extensive range of energy technology characteristics and environmental, social, and economic considerations within each stage of a fuel cycle. The guide permits users to focus on specific stages or effects that are relevant to the technology being evaluated and that meet the user`s planning requirements.

  7. Data collection plan for Phase 2 Alternative Fuels Bus Data Collection Program. Final report

    SciTech Connect

    Krenelka, T

    1993-07-01

    This document constitutes the plan for collecting and reporting data associated with a special set of transit bus demonstrations to be conducted under the Urban Bus Program of the Alternative Motor Fuels Act (AMFA) of 1988. This program, called the Phase 2 Bus Data Collection Program, serves as an adjunct to the Phase I Bus Data Collection Program, collecting detailed data on just a few buses to augment and enhance the Phase 1 data in fulfilling the urban bus requirements of AMFA. Demonstrations will be conducted at a few transit system locations throughout the US and will use alternative fuels and associated technologies to reduce undesirable transit bus exhaust emissions. Several organizations will be involved in the data collection; NREL will manage the program, analyze and store vehicle data, and make these data available through the Alternative Fuels Data Center. This information will enable transit agencies, equipment manufacturers, fuel suppliers, and government policy makers to make informed decisions about buying and using alternative fuels.

  8. Evaluation of alternative treatments for spent fuel rod consolidation wastes and other miscellaneous commercial transuranic wastes

    SciTech Connect

    Ross, W.A.; Schneider, K.J.; Oma, K.H.; Smith, R.I.; Bunnell, L.R.

    1986-05-01

    Eight alternative treatments (and four subalternatives) are considered for both existing commercial transuranic wastes and future wastes from spent fuel consolidation. Waste treatment is assumed to occur at a hypothetical central treatment facility (a Monitored Retrieval Storage facility was used as a reference). Disposal in a geologic repository is also assumed. The cost, process characteristics, and waste form characteristics are evaluated for each waste treatment alternative. The evaluation indicates that selection of a high-volume-reduction alternative can save almost $1 billion in life-cycle costs for the management of transuranic and high-activity wastes from 70,000 MTU of spent fuel compared to the reference MRS process. The supercompaction, arc pyrolysis and melting, and maximum volume reduction alternatives are recommended for further consideration; the latter two are recommended for further testing and demonstration.

  9. Potential use of California lignite and other alternate fuel for enhanced oil recovery. Phase I and II. Final report. [As alternative fuels for steam generation in thermal EOR

    SciTech Connect

    Shelton, R.; Shimizu, A.; Briggs, A.

    1980-02-01

    The Nation's continued reliance on liquid fossil fuels and decreasing reserves of light oils gives increased impetus to improving the recovery of heavy oil. Thermal enhanced oil recovery EOR techniques, such as steam injection, have generally been the most effective for increasing heavy oil production. However, conventional steam generation consumes a large fraction of the produced oil. The substitution of alternate (solid) fuels would release much of this consumed oil to market. This two-part report focuses on two solid fuels available in California, the site of most thermal EOR - petroleum coke and lignite. Phase I, entitled Economic Analysis, shows detailed cost comparisons between the two candidate fuels and also with Western coal. The analysis includes fuels characterizations, process designs for several combustion systems, and a thorough evaluation of the technical and economic uncertainties. In Phase II, many technical parameters of petroleum coke combustion were measured in a pilot-plant fluidized bed. The results of the study showed that petroleum coke combustion for EOR is feasible and cost effective in a fluidized bed combustor.

  10. Reducing transit bus emissions: Alternative fuels or traffic operations?

    NASA Astrophysics Data System (ADS)

    Alam, Ahsan; Hatzopoulou, Marianne

    2014-06-01

    In this study, we simulated the operations and greenhouse gas (GHG) emissions of transit buses along a busy corridor and quantified the effects of two different fuels (conventional diesel and compressed natural gas) as well as a set of driving conditions on emissions. Results indicate that compressed natural gas (CNG) reduces GHG emissions by 8-12% compared to conventional diesel, this reduction could increase to 16% with high levels of traffic congestion. However, the benefits of switching from conventional diesel to CNG are less apparent when the road network is uncongested. We also investigated the effects of bus operations on emissions by applying several strategies such as transit signal priority (TSP), queue jumper lanes, and relocation of bus stops. Results show that in congested conditions, TSP alone can reduce GHG emissions by 14% and when combined with improved technology; a reduction of 23% is achieved. The reduction benefits are even more apparent when other transit operational improvements are combined with TSP. Finally a sensitivity analysis was performed to investigate the effect of operational improvements on emissions under varying levels of network congestion. We observe that under “extreme congestion”, the benefits of TSP decrease.

  11. Alternatives for management of wastes generated by the formerly utilized sites remedial action program and supplement

    SciTech Connect

    Gilbert, T.L.; Peterson, J.M.; Vocke, R.W.; Alexander, J.K.

    1983-03-01

    Alternatives for disposal or stabilization of the wastes generated by the US Department of Energy's Formerly Utilized Sites Remedial Action Program (FUSRAP) are identified and compared, with emphasis on the long-term aspects. These wastes consist of soil material and rubble containing trace amounts of radionuclides. A detailed pathway analysis for the dose to the maximally exposed individual is carried out using an adaptation of the natural analogue method. Comparisons of the different alternatives, based on the results of the pathway analysis and qualitative cost considerations, indicate that, if the hazard is such that the wastes must be removed and disposed of rather than stabilized in place, disposal by immediate dispersal is preferable to containment, and containment followed by slow planned dispersal is preferable to containment without dispersal. The Supplement presents refinements of work that was reported at the 1982 International Decommissioning Symposium. The new material consists of revisions of the estimates of the predicted potential dose to the maximally exposed individual and a more detailed comparative assessment of the radiological impacts of alternatives for management of wastes generated by the US Department of Energy's Formerly Utilized Sites Remedial Action Program (FUSRAP).

  12. Tiger Teams Technical Assistance: Reliable, Universal Open Architecture for Card Access to Dispense Alternative Fuels

    SciTech Connect

    Not Available

    2002-03-01

    Report discusses the dilemma of incorporating consistent, convenient, universal card access (or ''pay-at-the-pump'') systems into alternative fueling stations across the country. The state of California continues to be in the forefront of implementing alternative fuels for transportation applications. Aggressive efforts to deploy alternative fuel vehicles (AFVs) in California have highlighted the need to provide adequate fueling stations and develop appropriate, user-friendly means to purchase fuel at the pump. Since these fuels are not typically provided by petroleum companies at conventional fueling stations, and acceptance of cash is often not an option, a payment method must be developed that is consistent with the way individual AFV operators are accustomed to purchasing automotive fuels--with a credit card. At the same time, large fleets like the California Department of General Services must be able to use a single fuel card that offers comprehensive fleet management services. The Gas Technology Institute's Infrastructure Working Group (IWG) and its stakeholders have identified the lack of a common card reader system as a hurdle to wider deployment of AFVs in California and the United States. In conjunction with the U.S. Department of Energy's (DOE) National Clean Cities Program, the IWG has outlined a multi-phased strategy to systematically address the barriers to develop a more ''open'' architecture that's similar to the way gasoline and diesel are currently dispensed. Under the auspices of the IWG, survey results were gathered (circa 1999) from certain fuel providers, as a means to more carefully study card reader issues and their potential solutions. Pilot programs featuring card reader systems capable of accepting wider payment options have been attempted in several regions of the United States with mixed success. In early 2001, DOE joined the National Renewable Energy Laboratory (NREL), the California Energy Commission (CEC) and the South Coast Air

  13. System comparison of hydrogen with other alternative fuels in terms of EPACT requirements

    SciTech Connect

    Barbir, F.; Oezay, K.; Veziroglu, T.N.

    1996-10-01

    The feasibility of several alternative fuels, namely natural gas, methanol, ethanol, hydrogen and electricity, to replace 10% of gasoline by the year 2000 has been investigated. The analysis was divided in two parts: (i) analysis of vehicle technologies, and (ii) analysis of fuel production storage and distribution, from the primary energy sources to the refueling station. Only technologies that are developed to at least demonstration level were considered. The amount and type of the primary energy sources have been determined for each of the fuels being analyzed. A need for a common denominator for different types of energy has been identified.

  14. Semi-volatile and particulate emissions from the combustion of alternative diesel fuels.

    PubMed

    Sidhu, S; Graham, J; Striebich, R

    2001-01-01

    Motor vehicle emissions are a major anthropogenic source of air pollution and contribute to the deterioration of urban air quality. In this paper, we report results of a laboratory investigation of particle formation from four different alternative diesel fuels, namely, compressed natural gas (CNG), dimethyl ether (DME), biodiesel, and diesel, under fuel-rich conditions in the temperature range of 800-1200 degrees C at pressures of approximately 24 atm. A single pulse shock tube was used to simulate compression ignition (CI) combustion conditions. Gaseous fuels (CNG and DME) were exposed premixed in air while liquid fuels (diesel and biodiesel) were injected using a high-pressure liquid injector. The results of surface analysis using a scanning electron microscope showed that the particles formed from combustion of all four of the above-mentioned fuels had a mean diameter less than 0.1 microm. From results of gravimetric analysis and fuel injection size it was found that under the test conditions described above the relative particulate yields from CNG, DME, biodiesel, and diesel were 0.30%. 0.026%, 0.52%, and 0.51%, respectively. Chemical analysis of particles showed that DME combustion particles had the highest soluble organic fraction (SOF) at 71%, followed by biodiesel (66%), CNG (38%) and diesel (20%). This illustrates that in case of both gaseous and liquid fuels, oxygenated fuels have a higher SOF than non-oxygenated fuels. PMID:11219694

  15. Experience with the combustion of alternate fuels in a CFB pilot plant

    SciTech Connect

    Alliston, M.G.; Probst, S.G.; Wu, S.; Edvardsson, C.M.

    1995-12-31

    A circulating fluidized bed pilot plant has been operated for several years in Williamsport, Pennsylvania, by Tampella Power Corporation to test the combustion characteristics of many different types of fuels. The fuels tested at the facility include: bituminous and anthracite coals; bituminous (gob) and anthracite (culm) waste; fluid and delayed petroleum coke; Colorado and Israel oil shales; tire derived fuel (TDF); refuse derived fuel (RDF); paper mill sludge and bark; and refinery process off-gas. Each of these fuels presented special fuel and ash handling problems that needed to be addressed before successful testing could be accomplished; these problems are more urgent on the pilot scale than in the commercial scale due to the corresponding reduction in equipment size. Each of these fuels also behaved differently in terms of combustion characteristics and gaseous emissions, as would be expected on the basis of their vastly different physical and chemical properties. This paper describes the major experiences obtained during the pilot plant testing of each of these alternative fuels, including summaries of the tested fuels and their measured emissions, limestone performance when applicable, and practical considerations.

  16. Advanced alternate planar geometry solid oxide fuel cells

    SciTech Connect

    Elangovan, S.; Prouse, D.; Khandkar, A.; Donelson, R.; Marianowski, L. )

    1992-11-01

    The potential of high temperature Solid Oxide Fuel Cells as high performance, high efficiency energy conversion device is well known. Investigation of several cell designs have been undertaken by various researchers to derive the maximum performance benefit from the device while maintaining a lower cost of production to meet the commercialization cost target. The present investigation focused on the planar SOFC design which allows for the use of mature low cost production processes to be employed. A novel design concept was investigated which allows for improvements in performance through increased interface stability, and lowering of cost through enhanced structural integrity and the use of low cost metal interconnects. The new cell design consisted of a co-sintered porous/dense/porous zirconia layer with the electrode material infiltrated into the porous layers. The two year program conducted by a team involving Ceramatec and the Institute of Gas Technology, culminated in a multi-cell stack test that exhibited high performance. Considerable progress was achieved in the selection of cell components, and establishing and optimizing the cell and stack fabrication parameters. It was shown that the stack components exhibited high conductivities and low creep at the operating temperature. The inter-cell resistive losses were shown to be small through out-of-cell characterization. The source of performance loss was identified to be the anode electrolyte interface. This loss however can be minimized by improving the anode infiltration technique. Manifolding and sealing of the planar devices posed considerable challenge. Even though the open circuit voltage was 250 mV/cell lower than theoretical, the two cell stack had a performance of 300 mA/cm[sup 2] at 0.4V/cell with an area specific resistance of 1 [Omega]-cm[sup 2]/cell. improvements in manifolding are expected to provide much higher performance.

  17. Advanced alternate planar geometry solid oxide fuel cells. Final report

    SciTech Connect

    Elangovan, S.; Prouse, D.; Khandkar, A.; Donelson, R.; Marianowski, L.

    1992-11-01

    The potential of high temperature Solid Oxide Fuel Cells as high performance, high efficiency energy conversion device is well known. Investigation of several cell designs have been undertaken by various researchers to derive the maximum performance benefit from the device while maintaining a lower cost of production to meet the commercialization cost target. The present investigation focused on the planar SOFC design which allows for the use of mature low cost production processes to be employed. A novel design concept was investigated which allows for improvements in performance through increased interface stability, and lowering of cost through enhanced structural integrity and the use of low cost metal interconnects. The new cell design consisted of a co-sintered porous/dense/porous zirconia layer with the electrode material infiltrated into the porous layers. The two year program conducted by a team involving Ceramatec and the Institute of Gas Technology, culminated in a multi-cell stack test that exhibited high performance. Considerable progress was achieved in the selection of cell components, and establishing and optimizing the cell and stack fabrication parameters. It was shown that the stack components exhibited high conductivities and low creep at the operating temperature. The inter-cell resistive losses were shown to be small through out-of-cell characterization. The source of performance loss was identified to be the anode electrolyte interface. This loss however can be minimized by improving the anode infiltration technique. Manifolding and sealing of the planar devices posed considerable challenge. Even though the open circuit voltage was 250 mV/cell lower than theoretical, the two cell stack had a performance of 300 mA/cm{sup 2} at 0.4V/cell with an area specific resistance of 1 {Omega}-cm{sup 2}/cell. improvements in manifolding are expected to provide much higher performance.

  18. A fuel conservation study for transport aircraft utilizing advanced technology and hydrogen fuel

    NASA Technical Reports Server (NTRS)

    Berry, W.; Calleson, R.; Espil, J.; Quartero, C.; Swanson, E.

    1972-01-01

    The conservation of fossil fuels in commercial aviation was investigated. Four categories of aircraft were selected for investigation: (1) conventional, medium range, low take-off gross weight; (2) conventional, long range, high take-off gross weights; (3) large take-off gross weight aircraft that might find future applications using both conventional and advanced technology; and (4) advanced technology aircraft of the future powered with liquid hydrogen fuel. It is concluded that the hydrogen fueled aircraft can perform at reduced size and gross weight the same payload/range mission as conventionally fueled aircraft.

  19. Total fuel-cycle analysis of heavy-duty vehicles using biofuels and natural gas-based alternative fuels.

    PubMed

    Meyer, Patrick E; Green, Erin H; Corbett, James J; Mas, Carl; Winebrake, James J

    2011-03-01

    Heavy-duty vehicles (HDVs) present a growing energy and environmental concern worldwide. These vehicles rely almost entirely on diesel fuel for propulsion and create problems associated with local pollution, climate change, and energy security. Given these problems and the expected global expansion of HDVs in transportation sectors, industry and governments are pursuing biofuels and natural gas as potential alternative fuels for HDVs. Using recent lifecycle datasets, this paper evaluates the energy and emissions impacts of these fuels in the HDV sector by conducting a total fuel-cycle (TFC) analysis for Class 8 HDVs for six fuel pathways: (1) petroleum to ultra low sulfur diesel; (2) petroleum and soyoil to biodiesel (methyl soy ester); (3) petroleum, ethanol, and oxygenate to e-diesel; (4) petroleum and natural gas to Fischer-Tropsch diesel; (5) natural gas to compressed natural gas; and (6) natural gas to liquefied natural gas. TFC emissions are evaluated for three greenhouse gases (GHGs) (carbon dioxide, nitrous oxide, and methane) and five other pollutants (volatile organic compounds, carbon monoxide, nitrogen oxides, particulate matter, and sulfur oxides), along with estimates of total energy and petroleum consumption associated with each of the six fuel pathways. Results show definite advantages with biodiesel and compressed natural gas for most pollutants, negligible benefits for e-diesel, and increased GHG emissions for liquefied natural gas and Fischer-Tropsch diesel (from natural gas). PMID:21416755

  20. Utilizing Divers in Support of Spent Fuel Basin Closure Subproject

    SciTech Connect

    Allen Nellesen

    2005-01-01

    A number of nuclear facilities in the world are aging and with this comes the fact that we have to either keep repairing them or decommission them. At the Department of Energy Idaho Site (DOEID) there are a number of facilities that are being decommissioned, but the facilities that pose the highest risk to the large aquifer that flows under the site are given highest priorities. Aging spent nuclear fuel pools at DOE-ID are among the facilities that pose the highest risk, therefore four pools were targeted for decommissioning in Fiscal Year 2004. To accomplish this task the Idaho Completion Project (ICP) of Bechtel BWXT Idaho, LLC, put together an integrated Basin Closure Subproject team. The team was assigned a goal to look beyond traditional practices at the Idaho National Engineering and Environmental Laboratory (INEEL) to find ways to get the basin closure work done safer and more efficiently. The Idaho Completion Project (ICP) was faced with a major challenge – cleaning and preparing aging spent nuclear fuel basins for closure by removing sludge and debris, as necessary, and removing water to eliminate a potential risk to the Snake River Plain Aquifer. The project included cleaning and removing water from four basins. Two of the main challenges to a project like this is the risk of contamination from the basin walls and floors becoming airborne as the water is removed and keeping personnel exposures ALARA. ICP’s baseline plan had workers standing at the edges of the basins and on rafts or bridge cranes and then using long-handled tools to manually scrub the walls of basin surfaces. This plan had significant risk of skin contamination events, workers falling into the water, or workers sustaining injuries from the awkward working position. Analysis of the safety and radiation dose risks presented by this approach drove the team to look for smarter ways to get the work done.

  1. Capacity utilization and fuel consumption in the electric power industry, 1970-1981

    SciTech Connect

    Lewis, E.W.

    1982-07-01

    This report updates the 1980 Energy Information Administration (EIA) publication entitled Trends in the Capacity Utilization and Fuel Consumption of Electric Utility Powerplants, 1970-1978, DOE/EIA-184/32. The analysis covers the period from 1970 through 1981, and examines trends during the period prior to the 1973 Arab oil embargo (1970-1973), after the embargo (1974-1977), and during the immediate past (1978-1981). The report also addresses other factors affecting the electric utility industry since the oil embargo: the reduction in foreign oil supplies as a result of the 1979 Iranian crisis, the 1977 drought in the western United States, the 1978 coal strike by the United Mine Workers Union, and the shutdown of nuclear plants in response to the accident at Three Mile Island. Annual data on electric utility generating capacity, net generation, and fuel consumption are provided to identify changes in patterns of power plant capacity utilization and dispatching.

  2. Coal desulfurization during the combustion of coal/oil/water emulsions: an economic alternative clean liquid fuel. Final report

    SciTech Connect

    Not Available

    1983-04-01

    This report presents the Phase II results of a combustion program designed to assess the feasibility of utilizing coal/oil/water (COW) emulsions as a fuel for fire tube package boilers. Also examined was the effect of the addition of alkaline absorbents to the fuel for sulfur dioxide capture. Presented are the findings of testing involving optimizing sulfur dioxide removal while still maintaining a rheologically favorable fuel. Overall performance of COW as a boiler fuel was evaluated over long term operation. Emphasis was placed on burner design as well as coal characteristics. Three different bituminous coals were used during this program. Results indicate that COW emulsions may be a feasible alternative for oil in industrial fire tube boilers if the major problem, deposition buildup, can be resolved. This appears possible with a proper soot blower design. Soda ash is a viable means for obtaining at least 80% removal, using a 1:1 molar ratio. However, the deposition problem with soda ash indicated that stack injection may be a more feasible approach.

  3. Analysis of operational, institutional and international limitations for alternative fuel vehicles and technologies: Means/methods for implementing changes

    NASA Astrophysics Data System (ADS)

    1992-07-01

    This project focused upon the development of an approach to assist public fleet managers in evaluating the characteristics and availability of alternative fuels (AF's) and alternative fuel vehicles (AFV's) that will serve as possible replacements for vehicles currently serving the needs of various public entities. Also of concern were the institutional/international limitations for alternative fuels and alternative fuel vehicles. The City of Detroit and other public agencies in the Detroit area were the particular focus for the activities. As the development and initial stages of use of alternative fuels and alternative fuel vehicles proceeds, there will be an increasing need to provide information and guidance to decision-makers regarding differences in requirements and features of these fuels and vehicles. There will be differences in requirements for servicing, managing, and regulating. There will also be misunderstanding and misperception. There have been volumes of data collected on AFV'S, and as technology is improved, new data is constantly added. There are not, however, condensed and effective sources of information for public vehicle fleet managers on vehicle and equipment sources, characteristics, performance, costs, and environmental benefits. While theoretical modeling of public fleet requirements has been done, there do not seem to be readily available 'practical'. There is a need to provide the best possible information and means to minimize the problems for introducing the effective use of alternative fuels and alternative fuel vehicles.

  4. Analysis of operational, institutional and international limitations for alternative fuel vehicles and technologies: Means/methods for implementing changes

    SciTech Connect

    Not Available

    1992-07-01

    This project focused upon the development of an approach to assist public fleet managers in evaluating the characteristics and availability of alternative fuels (AF`s) and alternative fuel vehicles (AFV`s) that will serve as possible replacements for vehicles currently serving the needs of various public entities. Also of concern were the institutional/international limitations for alternative fuels and alternative fuel vehicles. The City of Detroit and other public agencies in the Detroit area were the particular focus for the activities. As the development and initial stages of use of alternative fuels and alternative fuel vehicles proceeds, there will be an increasing need to provide information and guidance to decision-makers regarding differences in requirements and features of these fuels and vehicles. There wig be true differences in requirements for servicing, managing, and regulating. There will also be misunderstanding and misperception. There have been volumes of data collected on AFV`S, and as technology is improved, new data is constantly added. There are not, however, condensed and effective sources of information for public vehicle fleet managers on vehicle and equipment sources, characteristics, performance, costs, and environmental benefits. While theoretical modeling of public fleet requirements has been done, there do not seem to be readily available ``practical``. There is a need to provide the best possible information and means to minimize the problems for introducing the effective use of alternative fuels and alternative fuel vehicles.

  5. Preliminary Evaluation of Alternate Designs for HFIR Low-Enriched Uranium Fuel

    SciTech Connect

    Renfro, David; Chandler, David; Cook, David; Ilas, Germina; Jain, Prashant; Valentine, Jennifer

    2014-10-30

    Engineering design studies of the feasibility of conversion of the High Flux Isotope Reactor (HFIR) from high-enriched uranium (HEU) to low-enriched uranium (LEU) fuel are ongoing at Oak Ridge National Laboratory (ORNL) as part of an effort sponsored by the U.S. Department of Energy’s Global Threat Reduction Initiative (GTRI)/Reduced Enrichment for Research and Test Reactors (RERTR) program. The fuel type selected by the program for the conversion of the five high-power research reactors in the U.S. that still use HEU fuel is a new U-Mo monolithic fuel. Studies by ORNL have previously indicated that HFIR can be successfully converted using the new fuel provided (1) the reactor power can be increased from 85 MW to 100 MW and (2) the fuel can be fabricated to a specific reference design. Fabrication techniques for the new fuel are under development by the program but are still immature, especially for the “complex” aspects of the HFIR fuel design. In FY 2012, the program underwent a major shift in focus to emphasize developing and qualifying processes for the fabrication of reliable and affordable LEU fuel. In support of this new focus and in an effort to ensure that the HFIR fuel design is as suitable for reliable fabrication as possible, ORNL undertook the present study to propose and evaluate several alternative design features. These features include (1) eliminating the fuel zone axial contouring in the previous reference design by substituting a permanent neutron absorber in the lower unfueled region of all of the fuel plates, (2) relocating the burnable neutron absorber from the fuel plates of the inner fuel element to the side plates of the inner fuel element (the fuel plates of the outer fuel element do not contain a burnable absorber), (3) relocating the fuel zone inside the fuel plate to be centered on the centerline of the depth of the plate, and (4) reshaping the radial contour of the relocated fuel zone to be symmetric about this centerline. The

  6. Preliminary Evaluation of Alternate Designs for HFIR Low-Enriched Uranium Fuel

    SciTech Connect

    Renfro, David G; Chandler, David; Cook, David Howard; Ilas, Germina; Jain, Prashant K; Valentine, Jennifer R

    2014-11-01

    Engineering design studies of the feasibility of conversion of the High Flux Isotope Reactor (HFIR) from high-enriched uranium (HEU) to low-enriched uranium (LEU) fuel are ongoing at Oak Ridge National Laboratory (ORNL) as part of an effort sponsored by the U.S. Department of Energy s Global Threat Reduction Initiative (GTRI)/Reduced Enrichment for Research and Test Reactors (RERTR) program. The fuel type selected by the program for the conversion of the five high-power research reactors in the U.S. that still use HEU fuel is a new U-Mo monolithic fuel. Studies by ORNL have previously indicated that HFIR can be successfully converted using the new fuel provided (1) the reactor power can be increased from 85 MW to 100 MW and (2) the fuel can be fabricated to a specific reference design. Fabrication techniques for the new fuel are under development by the program but are still immature, especially for the complex aspects of the HFIR fuel design. In FY 2012, the program underwent a major shift in focus to emphasize developing and qualifying processes for the fabrication of reliable and affordable LEU fuel. In support of this new focus and in an effort to ensure that the HFIR fuel design is as suitable for reliable fabrication as possible, ORNL undertook the present study to propose and evaluate several alternative design features. These features include (1) eliminating the fuel zone axial contouring in the previous reference design by substituting a permanent neutron absorber in the lower unfueled region of all of the fuel plates, (2) relocating the burnable neutron absorber from the fuel plates of the inner fuel element to the side plates of the inner fuel element (the fuel plates of the outer fuel element do not contain a burnable absorber), (3) relocating the fuel zone inside the fuel plate to be centered on the centerline of the depth of the plate, and (4) reshaping the radial contour of the relocated fuel zone to be symmetric about this centerline. The present

  7. Alternative Fuels and Hybrid Technology: A Classroom Activity Designed to Evaluate a Contemporary Problem

    ERIC Educational Resources Information Center

    Roy MacArthur, Amy H.; Copper, Christine L.

    2009-01-01

    As petroleum reserves are being depleted worldwide and energy costs are increasing, the use of alternative fuels is being more widely considered as a solution to the impending energy crisis. In this classroom activity students are presented with a real-world problem in which they must evaluate the properties and environmental impacts of a variety…

  8. Guide for Identifying and Converting High-Potential Petroleum Brownfield Sites to Alternative Fuel Stations

    SciTech Connect

    Johnson, C.; Hettinger, D.; Mosey, G.

    2011-05-01

    Former gasoline stations that are now classified as brownfields can be good sites to sell alternative fuels because they are in locations that are convenient to vehicles and they may be seeking a new source of income. However, their success as alternative fueling stations is highly dependent on location-specific criteria. First, this report outlines what these criteria are, how to prioritize them, and then applies that assessment framework to five of the most popular alternative fuels--electricity, natural gas, hydrogen, ethanol, and biodiesel. The second part of this report delves into the criteria and tools used to assess an alternative fuel retail site at the local level. It does this through two case studies of converting former gasoline stations in the Seattle-Eugene area into electric charge stations. The third part of this report addresses steps to be taken after the specific site has been selected. This includes choosing and installing the recharging equipment, which includes steps to take in the permitting process and key players to include.

  9. Alternative Fuels for Washington's School Buses: A Report to the Washington State Legislature.

    ERIC Educational Resources Information Center

    Lyons, John Kim; McCoy, Gilbert A.

    This document presents findings of a study that evaluated the use of both propane and compressed natural gas as alternative fuels for Washington State school buses. It discusses air quality improvement actions by state- and federal-level regulators and summarizes vehicle design, development, and commercialization activities by all major engine,…

  10. Historical Perspective of Clean Cities and Alternative Fuels Data Center Trends

    SciTech Connect

    O'Connor, J. K.

    2007-09-01

    This document draws on the wealth of information housed in the U.S. Department of Energy's Alternative Fuels Data Center at the National Renewable Energy Laboratory. Trends and analyses are examined from data as far back as 1991. The findings of those trends and salient features are summarized.

  11. UPS CNG Truck Fleet Start Up Experience: Alternative Fuel Truck Evaluation Project

    SciTech Connect

    Walkowicz, K.

    2001-08-14

    UPS operates 140 Freightliner Custom Chassis compressed natural gas (CNG)-powered vehicles with Cummins B5.9G engines. Fifteen are participating in the Alternative Fuel Truck Evaluation Project being funded by DOE's Office of Transportation Technologies and the Office of Heavy Vehicle Technologies.

  12. Alternative Liquid Fuels Simulation Model (AltSim) v. 2.0

    Energy Science and Technology Software Center (ESTSC)

    2010-02-24

    The Alternative Liquid Fuels Simulation Model (AltSim) is a high-level dynamic simulation model which calculates and compares the production and end use costs, energy balances, and greenhouse gas emissions for several alternative liquid transportation fuels. These fuels include: corn ethanol, cellulosic ethanol from various feedstocks, biodiesel, and diesels derived from natural gas (gas to liquid, or GTL), coal (coal to liquid, or CTL), and coal with biomass (CBTL). AltSim allows for comprehensive sensitivity analyses onmore » capital costs, operation and maintenance costs, renewable and fossil fuel feedstock costs, feedstock conversion efficiency, financial assumptions, tax credits, CO2 taxes, and plant capacity factor. AltSim also includes policy tools to allow for consideration of greenhouse gas offset policies, production tax credits, and land use requirements. The main goal is to allow interested stakeholders to understand the complicated economic and environmental tradeoffs associated with the various options. The software is designed to address policy questions related to the economic competitiveness of technologies under different economic and technical assumptions. This model will be used to inform policy makers and staff about the economic and environmental tradeoffs associated with various fuel alternatives.« less

  13. Direct Utilization of Coal Syngas in High Temperature Fuel Cells

    SciTech Connect

    Celik, Ismail B.

    2014-10-30

    This EPSCoR project had two primary goals: (i) to build infrastructure and work force at WVU to support long-term research in the area of fuel cells and related sciences; (ii) study effects of various impurities found in coal-syngas on performance of Solid Oxide Fuel Cells (SOFC). As detailed in this report the WVU research team has made significant accomplishments in both of these areas. What follows is a brief summary of these accomplishments: State-of-the-art test facilities and diagnostic tools have been built and put into use. These include cell manufacturing, half-cell and full-cell test benches, XPS, XRD, TEM, Raman, EDAX, SEM, EIS, and ESEM equipment, unique in-situ measurement techniques and test benches (Environmental EM, Transient Mass-Spectrometer-MS, and IR Optical Temperature measurements). In addition, computational capabilities have been developed culminating in a multi-scale multi-physics fuel cell simulation code, DREAM-SOFC, as well as a Beowulf cluster with 64 CPU units. We have trained 16 graduate students, 10 postdoctoral fellows, and recruited 4 new young faculty members who have actively participated in the EPSCoR project. All four of these faculty members have already been promoted to the tenured associate professor level. With the help of these faculty and students, we were able to secure 14 research awards/contracts amounting to a total of circa $5.0 Million external funding in closely related areas of research. Using the facilities mentioned above, the effects of PH3, HCl, Cl2, and H2S on cell performance have been studied in detail, mechanisms have been identified, and also remedies have been proposed and demonstrated in the laboratory. For example, it has been determined that PH3 reacts rapidly with Ni to from secondary compounds which may become softer or even melt at high temperature and then induce Ni migration to the surface of the cell changing the material and micro-structural properties of the cell drastically. It is found that

  14. Utilization and perceived effectiveness of complementary and alternative medicine in patients with dystonia.

    PubMed

    Junker, Judith; Oberwittler, Christoph; Jackson, Didi; Berger, Klaus

    2004-02-01

    The use of complementary and alternative medicine (CAM) is increasing worldwide, especially by patients with chronic diseases. To date, no data are available about utilization and perceived effectiveness of CAM in patients with dystonia. A questionnaire survey on utilization and costs of CAM was completed by 180 members of the German Dystonia Society, a patient advocate group. In total, 131 dystonia patients (73%) were current or former users of CAM, 55 patients used CAM in addition to botulinum toxin A injections, and 86 patients had experience with three or more CAM methods. The options used most widely were acupuncture (56%), relaxation techniques (44%), homeopathy (27%), and massages (26%). Among users of specific CAM methods, breathing therapy, Feldenkrais, massages, and relaxation techniques were perceived as most effective. On average, patients spent 1,513 Euro on CAM without reimbursement. There was no correlation between costs and perceived effectiveness of different methods. In line with other studies on chronically ill patients, our results show that dystonia patients frequently utilize CAM methods, often in addition to conventional treatment. There is a growing need to evaluate scientifically the effect of CAM methods on symptom severity and quality of life in dystonia, to prevent utilization of costly and ineffective CAM treatments. PMID:14978670

  15. Hygroscopic Properties of Aircraft Engine Exhaust Aerosol Produced From Traditional and Alternative Fuels

    NASA Astrophysics Data System (ADS)

    Moore, R.; Ziemba, L. D.; Beyersdorf, A. J.; Thornhill, K. L.; Winstead, E. L.; Crumeyrolle, S.; Chen, G.; Anderson, B. E.

    2012-12-01

    Aircraft emissions of greenhouse gases and aerosols constitute an important component of anthropogenic climate forcing, of which aerosol-cloud interactions remain poorly understood. It is currently thought that the ability of these aerosols to alter upper tropospheric cirrus cloud properties may produce radiative forcings many times larger than the impact of linear contrails alone and which may partially offset the impact of greenhouse gas emissions from aviation (Burkhardt and Karcher, Nature, 2011). Consequently, it is important to characterize the ability of these engine-emitted aerosol to act as cloud condensation nuclei (CCN) and ice nuclei (IN) to form clouds. While a number of studies in the literature have examined aerosol-cloud interactions for laboratory-generated soot or from aircraft engines burning traditional fuels, limited attention has been given to how switching to alternative jet fuels impacts the ability of engine-emitted aerosols to form clouds. The key to understanding these changes is the aerosol hygroscopicity. To address this need, the second NASA Alternative Aviation Fuel Experiment (AAFEX-II) was conducted in 2011 to examine the aerosol emissions from the NASA DC-8 under a variety of different engine power and fuel type conditions. Five fuel types were considered including traditional JP-8 fuel, synthetic Fischer-Tropsh (FT) fuel , sulfur-doped FT fuel (FTS) , hydrotreated renewable jet (HRJ) fuel, and a 50:50 blend of JP-8 with HRJ. Emissions were sampled from the DC-8 on the airport jetway at a distance of 145 meters downwind of the engine by a comprehensive suite of aerosol instrumentation that provided information on the aerosol concentration, size distribution, soot mass, and CCN activity. Concurrent measurements of carbon dioxide were used to account for plume dilution so that characteristic emissions indices could be determined. It is found that both engine power and fuel type significantly influence the hygroscopic properties of

  16. Fuel utilization improvement in PWRs using the denatured /sup 233/U-Th cycle

    SciTech Connect

    Jones, H.M.; Schwenk, G.A.; Toops, E.C.; Yotinen, V.O.

    1980-06-01

    A number of changes in PWR core design and/or operating strategy were evaluated to assess the fuel utilization improvement achievable by their implementation in a PWR using thorium-based fuel and operating in a recycle mode. The reference PWR for this study was identical to the B and W Standard Plant except that the fuel pellets were of denatured (/sup 233/U//sup 238/U-Th)O/sub 2/. An initial scoping study identified the three most promising improvement concepts as (1) a very tight lattice, (2) thorium blankets, and (3) ThO/sub 2/ rods placed in available guide tubes. A conceptual core design incorporating these changes was then developed, and the fuel utilization of this modified design was compared with that of the reference case.

  17. Alternative fuels and chemicals from synthesis gas. Quarterly report, April 1--June 30, 1995

    SciTech Connect

    1995-12-31

    The overall objectives of this program are to investigate potential technologies for the conversion of synthesis gas to oxygenated and hydrocarbon fuels and industrial chemicals, and to demonstrate the most promising technologies at DOE`s LaPorte, Texas, Slurry Phase Alternative Fuels Development Unit (AFDU). The program will involve a continuation of the work performed under the Alternative Fuels from Coal-Derived Synthesis Gas Program and will draw upon information and technologies generated in parallel current and future DOE-funded contracts. The paper reports the progress on the following tasks: engineering and modifications: AFDU shakedown, operations, deactivation and disposal; and research and development on new processes for DME, chemistry and catalyst development, and oxygenates via synthesis gas.

  18. An economic analysis of using alternative fuels in a mass burn boiler.

    PubMed

    Kaylen, Michael S

    2005-11-01

    In this study the economic feasibility of using alternative fuels in a mass burn boiler for a chemical plant in northeastern Missouri is analyzed. The key consideration is whether biomass (switchgrass and crop residues) is economically preferred to other available fuels. Research reveals an abundance of alternative fuels for which the plant would receive a tipping fee, including municipal solid waste and used tires. Since the plant would have to pay for biomass, it does not appear in the optimal solution. An economic optimization model shows the marginal cost to the plant of using biomass would increase as more biomass is used, displacing quantities of more valuable (in terms of tipping fees per BTU) waste materials. PMID:16084375

  19. Analysis of Burnup and Economic Potential of Alternative Fuel Materials in Thermal Reactors

    SciTech Connect

    Oggianu, Stella Maris; No, Hee Cheon; Kazimi, Mujid S.

    2003-09-15

    A strategy is proposed for the assessment of nuclear fuel material economic potential use in future light water reactors (LWRs). In this methodology, both the required enrichment and the fuel performance limits are considered. In order to select the best fuel candidate, the optimal burnup that produces the lowest annual fuel cost within the burnup potential for a given fuel material and smear density ratio is determined.Several nuclear materials are presented as examples of the application of the methodology proposed in this paper. The alternative fuels considered include uranium dioxide (UO{sub 2}), uranium carbide (UC), uranium nitride (UN), metallic uranium (U-Zr alloy), combined thorium and uranium oxides (ThO{sub 2}/UO{sub 2}), and combined thorium and uranium metals (U/Th). For these examples, a typical LWR lattice geometry in a zirconium-based cladding was assumed. The uncertainties in the results presented are large due to the scarcity of experimental data regarding the behavior of the considered materials at high burnups. Also, chemical compatibility issues are to be considered separately.The same methodology can be applied in the future to evaluate the economic potential of other nuclear fuel materials including different cladding designs, dispersions of ceramics into ceramics, dispersions of ceramics into metals, and also for geometries other than the traditional circular fuel pin.

  20. Environmental implications of alternative-fueled automobiles: Air quality and greenhouse gas tradeoffs

    SciTech Connect

    MaClean, H.L.; Lave, L.B.

    2000-01-15

    The authors analyze alternative fuel-powerstrain options for internal combustion engine automobiles. Fuel/engine efficiency, energy use, pollutant discharges, and greenhouse gas emissions are estimated for spark and compression ignited, direct injected (DI), and indirect injected (II) engines fueled by conventional and reformulated gasoline, reformulated diesel, compressed natural gas (CNG), and alcohols. Since comparisons of fuels and technologies in dissimilar vehicles are misleading, the authors hold emissions level, range, vehicle size class, and style constant. At present, CNG vehicles have the best exhaust emissions performance while DI diesels have the worst. Compared to a conventional gasoline fueled II automobile, greenhouse gases could be reduced by 40% by a DI CNG automobile and by 25% by a DI diesel. Gasoline- and diesel-fueled automobiles are able to attain long ranges with little weight or fuel economy penalty. CNG vehicles have the highest penalty for increasing range, due to their heavy fuel storage systems, but are the most attractive for a 160-km range. DI engines, particularly diesels, may not be able to meet strict emissions standards, at least not without lowering efficiency.

  1. Potential impacts on air quality of the use of ethanol as an alternative fuel. Final report

    SciTech Connect

    Gaffney, J.S.; Marley, N.A.

    1994-09-01

    The use of ethanol/gasoline mixtures in motor vehicles has been proposed as an alternative fuel strategy that might improve air quality while minimizing US dependence on foreign oil. New enzymatic production methodologies are being explored to develop ethanol as a viable, economic fuel. In an attempt to reduce urban carbon monoxide (CO) and ozone levels, a number of cities are currently mandating the use of ethanol/gasoline blends. However, it is not at all clear that these blended fuels will help to abate urban pollution. In fact, the use of these fuels may lead to increased levels of other air pollutants, specifically aldehydes and peroxyacyl nitrates. Although these pollutants are not currently regulated, their potential health and environmental impacts must be considered when assessing the impacts of alternative fuels on air quality. Indeed, formaldehyde has been identified as an important air pollutant that is currently being considered for control strategies by the State of California. This report focuses on measurements taken in Albuquerque, New Mexico during the summer of 1993 and the winter of 1994 as an initial attempt to evaluate the air quality effects of ethanol/gasoline mixtures. The results of this study have direct implications for the use of such fuel mixtures as a means to reduce CO emissions and ozone in a number of major cities and to bring these urban centers into compliance with the Clean Air Act.

  2. Water consumption footprint and land requirements of large-scale alternative diesel and jet fuel production.

    PubMed

    Staples, Mark D; Olcay, Hakan; Malina, Robert; Trivedi, Parthsarathi; Pearlson, Matthew N; Strzepek, Kenneth; Paltsev, Sergey V; Wollersheim, Christoph; Barrett, Steven R H

    2013-01-01

    Middle distillate (MD) transportation fuels, including diesel and jet fuel, make up almost 30% of liquid fuel consumption in the United States. Alternative drop-in MD and biodiesel could potentially reduce dependence on crude oil and the greenhouse gas intensity of transportation. However, the water and land resource requirements of these novel fuel production technologies must be better understood. This analysis quantifies the lifecycle green and blue water consumption footprints of producing: MD from conventional crude oil; Fischer-Tropsch MD from natural gas and coal; fermentation and advanced fermentation MD from biomass; and hydroprocessed esters and fatty acids MD and biodiesel from oilseed crops, throughout the contiguous United States. We find that FT MD and alternative MD derived from rainfed biomass have lifecycle blue water consumption footprints of 1.6 to 20.1 Lwater/LMD, comparable to conventional MD, which ranges between 4.1 and 7.4 Lwater/LMD. Alternative MD derived from irrigated biomass has a lifecycle blue water consumption footprint potentially several orders of magnitude larger, between 2.7 and 22 600 Lwater/LMD. Alternative MD derived from biomass has a lifecycle green water consumption footprint between 1.1 and 19 200 Lwater/LMD. Results are disaggregated to characterize the relationship between geo-spatial location and lifecycle water consumption footprint. We also quantify the trade-offs between blue water consumption footprint and areal MD productivity, which ranges from 490 to 4200 LMD/ha, under assumptions of rainfed and irrigated biomass cultivation. Finally, we show that if biomass cultivation for alternative MD is irrigated, the ratio of the increase in areal MD productivity to the increase in blue water consumption footprint is a function of geo-spatial location and feedstock-to-fuel production pathway. PMID:24066845

  3. The origin and fate of organic pollutants from the combustion of alternative fuels

    SciTech Connect

    1995-06-01

    The overall objective of this project is to determine the impact of alternative fuels on air quality, particularly ozone formation. The objective will be met through three steps: (1) qualitative identification of alternative fuel combustion products, (2) quantitative measurement of specific emission levels of these products, and (3) determination of the fate of the combustion products in the atmosphere. The alternative fuels of interest are methanol, ethanol, natural gas, and LP gas. The role of the University of Dayton Research Institute (UDRI) in this project is two-fold. First, fused silica flow reactor instrumentation is being used to obtain both qualitative identification and quantitative data on the thermal degradation products from the fuel-lean (oxidative), stoichiometric, and fuel-rich (pyrolytic) decomposition of methanol, ethanol, liquefied petroleum gas, and natural gas. Secondly, a laser photolysis/laser-induced fluorescence (LP/LIF) apparatus is being used to determine the rates and mechanisms of reaction of selected degradation products under atmospheric conditions. This draft final report contains the results of the second year of the study. The authors initially discuss the results of their flow reactor studies. This is followed by a discussion of the initial results from their LP/LIF studies of the reaction of hydroxyl (OH) radicals with methanol and ethanol. In the coming year, they plan to obtain quantitative data on the oxidation of methyl-t-butyl-ether and reformulated gasoline under fuel-lean, stoichiometric, and fuel-rich conditions. They also plan to conduct a mechanistic analysis of the reaction of OH with acetaldehyde and formaldehyde over an extended temperature range.

  4. Assessment of the impacts of spent fuel disassembly alternatives on the Nuclear Waste Isolation System. [Preparing and packaging spent fuel assemblies for geologic disposal

    SciTech Connect

    Not Available

    1984-07-01

    The objective of this report was to evaluate four possible alternative methods of preparing and packaging spent fuel assemblies for geologic disposal against the Reference Process of unmodified spent fuel. The four alternative processes were: (1) End fitting removal, (2) Fission gas venting and resealing, (3) Fuel bundle disassembly and close packing of fuel pins, and (4) Fuel shearing and immobilization. Systems analysis was used to develop a basis of comparison of the alternatives. Conceptual processes and facility layouts were devised for each of the alternatives, based on technology deemed feasible for the purpose. Assessments were made of 15 principal attributes from the technical, operational, safety/risk, and economic considerations related to each of the alternatives, including both the surface packaging and underground repository operations. Specific attributes of the alternative processes were evaluated by assigning a number for each that expressed its merit relative to the corresponding attribute of the Reference Process. Each alternative process was then ranked by summing the numbers for attributes in each of the four assessment areas and collectively. Fuel bundle disassembly and close packing of fuel pins was ranked the preferred method of disposal of spent fuel. 63 references, 46 figures, 46 tables.

  5. 10 CFR 503.31 - Lack of alternate fuel supply for the first 10 years of useful life.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false Lack of alternate fuel supply for the first 10 years of useful life. 503.31 Section 503.31 Energy DEPARTMENT OF ENERGY (CONTINUED) ALTERNATE FUELS NEW FACILITIES... useful life. (a) Eligibility. Section 212(a)(1)(A)(i) of the Act provides for a permanent exemption...

  6. 10 CFR 503.31 - Lack of alternate fuel supply for the first 10 years of useful life.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Lack of alternate fuel supply for the first 10 years of useful life. 503.31 Section 503.31 Energy DEPARTMENT OF ENERGY (CONTINUED) ALTERNATE FUELS NEW FACILITIES... useful life. (a) Eligibility. Section 212(a)(1)(A)(i) of the Act provides for a permanent exemption...

  7. 10 CFR 503.31 - Lack of alternate fuel supply for the first 10 years of useful life.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false Lack of alternate fuel supply for the first 10 years of useful life. 503.31 Section 503.31 Energy DEPARTMENT OF ENERGY (CONTINUED) ALTERNATE FUELS NEW FACILITIES... useful life. (a) Eligibility. Section 212(a)(1)(A)(i) of the Act provides for a permanent exemption...

  8. 10 CFR 503.31 - Lack of alternate fuel supply for the first 10 years of useful life.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Lack of alternate fuel supply for the first 10 years of useful life. 503.31 Section 503.31 Energy DEPARTMENT OF ENERGY (CONTINUED) ALTERNATE FUELS NEW FACILITIES... useful life. (a) Eligibility. Section 212(a)(1)(A)(i) of the Act provides for a permanent exemption...

  9. 10 CFR 503.31 - Lack of alternate fuel supply for the first 10 years of useful life.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Lack of alternate fuel supply for the first 10 years of useful life. 503.31 Section 503.31 Energy DEPARTMENT OF ENERGY (CONTINUED) ALTERNATE FUELS NEW FACILITIES... useful life. (a) Eligibility. Section 212(a)(1)(A)(i) of the Act provides for a permanent exemption...

  10. Alternative transportation fuels: Infrastructure requirements and environmental impacts for ethanol and hydrogen

    NASA Astrophysics Data System (ADS)

    Wakeley, Heather L.

    Alternative fuels could replace a significant portion of the 140 billion gallons of annual US gasoline use. Considerable attention is being paid to processes and technologies for producing alternative fuels, but an enormous investment in new infrastructure will be needed to have substantial impact on the demand for petroleum. The economics of production, distribution, and use, along with environmental impacts of these fuels, will determine the success or failure of a transition away from US petroleum dependence. This dissertation evaluates infrastructure requirements for ethanol and hydrogen as alternative fuels. It begins with an economic case study for ethanol and hydrogen in Iowa. A large-scale linear optimization model is developed to estimate average transportation distances and costs for nationwide ethanol production and distribution systems. Environmental impacts of transportation in the ethanol life cycle are calculated using the Economic Input-Output Life Cycle Assessment (EIO-LCA) model. An EIO-LCA Hybrid method is developed to evaluate impacts of future fuel production technologies. This method is used to estimate emissions for hydrogen production and distribution pathways. Results from the ethanol analyses indicate that the ethanol transportation cost component is significant and is the most variable. Costs for ethanol sold in the Midwest, near primary production centers, are estimated to be comparable to or lower than gasoline costs. Along with a wide range of transportation costs, environmental impacts for ethanol range over three orders of magnitude, depending on the transport required. As a result, intensive ethanol use should be encouraged near ethanol production areas. Fossil fuels are likely to remain the primary feedstock sources for hydrogen production in the near- and mid-term. Costs and environmental impacts of hydrogen produced from natural gas and transported by pipeline are comparable to gasoline. However, capital costs are prohibitive and

  11. Polycyclic aromatic hydrocarbon emissions from the combustion of alternative fuels in a gas turbine engine.

    PubMed

    Christie, Simon; Raper, David; Lee, David S; Williams, Paul I; Rye, Lucas; Blakey, Simon; Wilson, Chris W; Lobo, Prem; Hagen, Donald; Whitefield, Philip D

    2012-06-01

    We report on the particulate-bound polycyclic aromatic hydrocarbons (PAH) in the exhaust of a test-bed gas turbine engine when powered by Jet A-1 aviation fuel and a number of alternative fuels: Sasol fully synthetic jet fuel (FSJF), Shell gas-to-liquid (GTL) kerosene, and Jet A-1/GTL 50:50 blended kerosene. The concentration of PAH compounds in the exhaust emissions vary greatly between fuels. Combustion of FSJF produces the greatest total concentration of PAH compounds while combustion of GTL produces the least. However, when PAHs in the exhaust sample are measured in terms of the regulatory marker compound benzo[a]pyrene, then all of the alternative fuels emit a lower concentration of PAH in comparison to Jet A-1. Emissions from the combustion of Jet A-1/GTL blended kerosene were found to have a disproportionately low concentration of PAHs and appear to inherit a greater proportion of the GTL emission characteristics than would be expected from volume fraction alone. The data imply the presence of a nonlinear relation between fuel blend composition and the emission of PAH compounds. For each of the fuels, the speciation of PAH compounds present in the exhaust emissions were found to be remarkably similar (R(2) = 0.94-0.62), and the results do provide evidence to support the premise that PAH speciation is to some extent indicative of the emission source. In contrast, no correlation was found between the PAH species present in the fuel with those subsequently emitted in the exhaust. The results strongly suggests that local air quality measured in terms of the particulate-bound PAH burden could be significantly improved by the use of GTL kerosene either blended with or in place of Jet A-1 kerosene. PMID:22534092

  12. Effects of Alternative Fuels and Aromatics on Gas-Turbine Particle Emissions

    NASA Astrophysics Data System (ADS)

    Thornhill, K. L., II; Moore, R.; Winstead, E.; Anderson, B. E.; Klettlinger, J. L.; Ross, R. C.; Surgenor, A.

    2015-12-01

    This presentation describes experiments conducted with a Honeywell GTCP36-150 Auxiliary Power Unit (APU) to evaluate the effects of varying fuel composition on particle emissions. The APU uses a single-stage compressor stage, gas turbine engine with a can-type combustor to generate bypass flow and electrical power for supporting small aircraft and helicopters. It is installed in a "hush-house" at NASA Glenn Research Center and is configured as a stand-alone unit that can be fueled from an onboard tank or external supply. It operates at constant RPM, but its fuel flow can be varied by changing the electrical load or volume of bypass flow. For these tests, an external bank of resistors were attached to the APU's DC and AC electrical outlets and emissions measurements were made at low, medium and maximum electrical current loads. Exhaust samples were drawn from several points downstream in the exhaust duct and fed to an extensive suite of gas and aerosol sensors installed within a mobile laboratory parked nearby. Aromatic- and sulfur-free synthetic kerosenes from Rentech, Gevo, UOP, Amyris and Sasol were tested and their potential to reduce PM emissions evaluated against a single Jet A1 base fuel. The role of aromatic compounds in regulating soot emissions was also evaluated by adding metered amounts of aromatic blends (Aro-100, AF-Blend, SAK) and pure compounds (tetracontane and 1-methylnaphthalene) to a base alternative fuel (Sasol). Results show that, relative to Jet A1, alternative fuels reduce nonvolatile particle number emissions by 50-80% and--by virtue of producing much smaller particles—mass emissions by 65-90%; fuels with the highest hydrogen content produced the greatest reductions. Nonvolatile particle emissions varied in proportion to fuel aromatic content, with additives containing the most complex ring structures producing the greatest emission enhancements.

  13. Fueling the Car of Tomorrow: An Alternative Fuels Curriculum for High School Science Classes

    ERIC Educational Resources Information Center

    Schumack, Mark; Baker, Stokes; Benvenuto, Mark; Graves, James; Haman, Arthur; Maggio, Daniel

    2010-01-01

    It is no secret that many high school students are fascinated with automobiles. The activities in "Fueling the Car of Tomorrow"--a free high school science curriculum, available online--(see "On the web")--capitalize on this heightened awareness and provide relevant learning opportunities designed to reinforce basic physics, chemistry, biology,…

  14. Production, characterization and fuel properties of alternative diesel fuel from pyrolysis of waste plastic grocery bags

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pyrolysis of HDPE waste grocery bags followed by distillation resulted in a liquid hydrocarbon mixture that consisted of saturated aliphatic paraffins (96.8%), aliphatic olefins (2.6%), and aromatics (0.6%) that corresponded to the boiling range of conventional petroleum diesel fuel (#1 diesel 182–2...

  15. Fuel property enhancement of biodiesel fuels from common and alternative feedstocks via complementary blending

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fatty acid methyl esters (biodiesel) prepared from field pennycress and meadowfoam seed oils were blended with methyl esters from camelina, cottonseed, palm, and soybean oils in an effort to ameliorate technical deficiencies inherent to these biodiesel fuels. For instance, camelina, cottonseed, and ...

  16. Assessment of spent-fuel waste-form/stabilizer alternatives for geologic disposal

    SciTech Connect

    Einziger, R.E.; Himes, D.A.

    1982-06-01

    The Office of Nuclear Waste Isolation (ONWI) is studying the possibility of burying canisterized unreprocessed spent fuel in a deep geologic repository. One aspect of this study is an assessment of the possible spent fuel waste forms. The fuel performance portion of the Waste Form Assessment was to evaluate five candidate spent fuel waste forms for postemplacement performance with emphasis on their ability to retard the release of radionuclides to the repository geology. Spent fuel waste forms under general consideration were: (1) unaltered fuel assembly; (2) fuel assembly with end fittings removed to shorten the length; (3 rods vented to remove gases and resealed; (4) disassembled fuel bundles to close-pack the rods; and (5) rods chopped and fragments immobilized in a matrix material. Thirteen spent fuel waste forms, classified by generic stabilizer type, were analyzed for relative in-repository performance based on: (1) waste form/stabilizer support against lithostatic pressure; (2) long-term stability for radionuclide retention; (3) minimization of cladding degradation; (4) prevention of canister/repository breach due to pressurization; (5) stabilizer heat transfer; (6) the stabilizer as an independent barrier to radionuclide migration; and (7) prevention of criticality. The waste form candidates were ranked as follows: (1) the best waste form/stabilizer combination is the intact assembly, with or without end bells, vented (and resealed) or unvented, with a solid stabilizer; (2) a suitable alternative is the combination of bundled close-packed rods with a solid stabilizer around the outside of the bundle to resist lithostatic pressure; and (3) the other possible waste forms are of lower ranking with the worst waste form/stabilizer combination being the intact assembly with a gas stabilizer or the chopped fuel.

  17. Suggested alternative starch utilization system from the human gut bacterium Bacteroides thetaiotaomicron.

    PubMed

    Chaudet, Marcia M; Rose, David R

    2016-06-01

    The human digestive system is host to a highly populated ecosystem of bacterial species that significantly contributes to our assimilation of dietary carbohydrates. Bacteroides thetaiotaomicron is a member of this ecosystem, and participates largely in the role of the gut microbiome by breaking down dietary complex carbohydrates. This process of acquiring glycans from the colon lumen is predicted to rely on the mechanisms of proteins that are part of a classified system known as polysaccharide utilization loci (PUL). These loci are responsible for binding substrates at the cell outer membrane, internalizing them, and then hydrolyzing them within the periplasm into simple sugars. Here we report our investigation into specific components of a PUL, and suggest an alternative starch utilization system in B. thetaiotaomicron. Our analysis of an outer membrane binding protein, a SusD homolog, highlights its contribution to this PUL by acquiring starch-based sugars from the colon lumen. Through our structural characterization of two Family GH31 α-glucosidases, we reveal the flexibility of this bacterium with respect to utilizing a range of starch-derived glycans with an emphasis on branched substrates. With these results we demonstrate the predicted function of a gene locus that is capable of contributing to starch hydrolysis in the human colon. PMID:27093479

  18. Quantification of aldehydes emissions from alternative and renewable aviation fuels using a gas turbine engine

    NASA Astrophysics Data System (ADS)

    Li, Hu; Altaher, Mohamed A.; Wilson, Chris W.; Blakey, Simon; Chung, Winson; Rye, Lucas

    2014-02-01

    In this research three renewable aviation fuel blends including two HEFA (Hydrotreated Ester and Fatty Acid) blends and one FAE (Fatty Acids Ethyl Ester) blend with conventional Jet A-1 along with a GTL (Gas To Liquid) fuel have been tested for their aldehydes emissions on a small gas turbine engine. Three strong ozone formation precursors: formaldehyde, acetaldehyde and acrolein were measured in the exhaust at different operational modes and compared to neat Jet A-1. The aim is to assess the impact of renewable and alternative aviation fuels on aldehydes emissions from aircraft gas turbine engines so as to provide informed knowledge for the future deployment of new fuels in aviation. The results show that formaldehyde was a major aldehyde species emitted with a fraction of around 60% of total measured aldehydes emissions for all fuels. Acrolein was the second major emitted aldehyde species with a fraction of ˜30%. Acetaldehyde emissions were very low for all the fuels and below the detention limit of the instrument. The formaldehyde emissions at cold idle were up to two to threefold higher than that at full power. The fractions of formaldehyde were 6-10% and 20% of total hydrocarbon emissions in ppm at idle and full power respectively and doubled on a g kg-1-fuel basis.

  19. Stirling based fuel cell hybrid systems: An alternative for molten carbonate fuel cells

    NASA Astrophysics Data System (ADS)

    Sánchez, D.; Chacartegui, R.; Torres, M.; Sánchez, T.

    This paper presents a new design for high temperature fuel cell and bottoming thermal engine hybrid systems. Now, instead of the commonly used gas turbine engine, an externally fired - Stirling - piston engine is used, showing outstanding performance when compared to previous designs. Firstly, a comparison between three thermal cycles potentially usable for recovering waste heat from the cell is presented, concluding the interest of the Stirling engine against other solutions used in the past. Secondly, the interest shown in the previous section is confirmed when the complete hybrid system is analyzed. Advantages are not only related to pure thermal and electrochemical parameters like specific power or overall efficiency. Additionally, further benefits can be obtained from the atmospheric operation of the fuel cell and the possibility to disconnect the bottoming engine from the cell to operate the latter on stand alone mode. This analysis includes on design and off design operation.

  20. Alternate-Fueled Combustor-Sector Performance. Parts A and B; (A) Combustor Performance; (B) Combustor Emissions

    NASA Technical Reports Server (NTRS)

    Shouse, D. T.; Hendricks, R. C.; Lynch, A.; Frayne, C. W.; Stutrud, J. S.; Corporan, E.; Hankins, T.

    2012-01-01

    Alternate aviation fuels for military or commercial use are required to satisfy MIL-DTL-83133F(2008) or ASTM D 7566 (2010) standards, respectively, and are classified as "drop-in" fuel replacements. To satisfy legacy issues, blends to 50% alternate fuel with petroleum fuels are certified individually on the basis of processing and assumed to be feedstock agnostic. Adherence to alternate fuels and fuel blends requires "smart fueling systems" or advanced fuel-flexible systems, including combustors and engines, without significant sacrifice in performance or emissions requirements. This paper provides preliminary performance (Part A) and emissions and particulates (Part B) combustor sector data. The data are for nominal inlet conditions at 225 psia and 800 F (1.551 MPa and 700 K), for synthetic-paraffinic-kerosene- (SPK-) type (Fisher-Tropsch (FT)) fuel and blends with JP-8+100 relative to JP-8+100 as baseline fueling. Assessments are made of the change in combustor efficiency, wall temperatures, emissions, and luminosity with SPK of 0%, 50%, and 100% fueling composition at 3% combustor pressure drop. The performance results (Part A) indicate no quantifiable differences in combustor efficiency, a general trend to lower liner and higher core flow temperatures with increased FT fuel blends. In general, emissions data (Part B) show little differences, but with percent increase in FT-SPK-type fueling, particulate emissions and wall temperatures are less than with baseline JP-8. High-speed photography illustrates both luminosity and combustor dynamic flame characteristics.

  1. ENVIRONMENTAL EFFECTS OF UTILIZING SOLID WASTE AS A SUPPLEMENTARY POWER PLANT FUEL

    EPA Science Inventory

    The results of 3 years of research on the utilization of shredded and magnetically separated municipal refuse to supplement high-sulfur coal as fuel in a stroker-fired boiler are presented. During the first half of the research, a refuse handling and furnace feed system consistin...

  2. The origin of organic pollutants from the combustion of alternative fuels: Phase IV report

    SciTech Connect

    Taylor, P.H.; Dellinger, B.; Sidhu, S.K.

    1997-06-01

    As part of the US-DOE`s on-going interest in the use of alternative automotive fuels, the University of Dayton Research Institute has been conducting research on pollutant emissions resulting from the combustion of candidate fuels. This research, under the direction and sponsorship of the NREL, has been concerned primarily with the combustion of compressed natural gas, liquefied petroleum gas (LPG), methanol, and ethanol. In the first 24 months of this program, studies of the oxygen rich, stoichiometric, and fuel-rich thermal degradation of these fuels in the temperature range of 300 to 1100{degrees}C at atmospheric pressure and for reaction times of 1.0 and 2.0 s were completed. Trace organic products were identified and quantified for each fuel as a function of temperature. The results of these studies agreed well with the results of tail-pipe emission studies in that the types and quantity of emissions measured in both the laboratory and engine tests were shown to be very similar under certain operating conditions. However, some chemicals were observed in the laboratory studies that were not observed in the engine studies and vice versa. This result is important in that it has implications concerning the origin of these emissions. Experiments concerning the NO perturbed oxidation of methanol, M85, ethanol, and E85 indicated the presence of complex oxidation chemistry. At mild temperatures, NO addition resulted in enhanced fuel conversion. At elevated temperatures, an inhibitory effect was observed through increased yields of both partial oxidation and pyrolysis-type reaction products. Comparison of flow reactor product distributions with engine test results generally indicated improved comparisons when NO was added to the fuel. Analysis of secondary components of alcohol fuels resulted in some unexpected observations. Several previously unidentified species were observed in these experiments which may impact atmospheric reactivity assessments of these fuels.

  3. POTENTIAL OF GREENHOUSE GASES REDUCTION BY FUEL CROP CULTIVATION UTILIZING SEWAGE SLUDGE IN JAPAN

    NASA Astrophysics Data System (ADS)

    Honda, Ryo; Fukushi, Kensuke

    Potential of greenhouse gases (GHG) reduction was estimated and compared in six scenarios of fuel crop cultivation by utilizing sewage sludge in Japan. Bioethanol from corn and biodiesel fuel from soybean was selected as biofuel produced. When all the sludge discharged from sewage treatment plants in 18 major cities was utilized for soybean cultivation and subsequent biodiesel fuel production, produced biofuel corresponded to 4.0% of GHG emitted from sewage treatment in Japan. On the other hand, cultivation area for fuel crop cultivation was found to be the regulating factor. When fuel crop was cultivated only in abandoned agricultural fields, produced biofuel corresponded to 0.60% and 0.62%, respectively, in the case that corn and soybean was cultivated. Production of biodiesel fuel from soybean was estimated to have more net reduction potential than bioehanol production from corn when sludge production is limited, because required sewage sludge compost was 2.5-times larger in corn although reduction potential per crop area was 2-times larger in bioethanol production from corn.

  4. Alternative dispute resolution programs in health care: a study of organizational utilization.

    PubMed

    Rotarius, T M; Liberman, A; Osterman, K C; Putnam, P

    1999-03-01

    The hyperturbulence in today's health care environment acts as a primer that escalates the frequency and severity of business conflicts. Several alternative dispute resolution (ADR) programs are described, with ADR suggested as a viable approach in assisting organizations in resolving conflicts. The data indicate that all of the health care organizations surveyed utilize some form of ADR to resolve conflict. The most common conflict resolution objective found is win/win, and respondents felt that ADR effectively met intended objectives. While the data gathered for this study are from a limited geographic region in Central Florida, the results can likely be generalized to many socially and ethnically diverse regions of the country. PMID:10351047

  5. Computational fluid dynamic simulations of chemical looping fuel reactors utilizing gaseous fuels

    SciTech Connect

    Mahalatkar, K.; Kuhlman, J.; Huckaby, E.D.; O'Brien, T.

    2011-01-01

    A computational fluid dynamic(CFD) model for the fuel reactor of chemical looping combustion technology has been developed,withspecialfocusonaccuratelyrepresentingtheheterogeneous chemicalreactions.Acontinuumtwo-fluidmodelwasusedtodescribeboththegasandsolidphases. Detailedsub-modelstoaccountforfluid–particleandparticle–particleinteractionforceswerealso incorporated.Twoexperimentalcaseswereanalyzedinthisstudy(Son andKim,2006; Mattisonetal., 2001). SimulationswerecarriedouttotestthecapabilityoftheCFDmodeltocapturechangesinoutletgas concentrationswithchangesinnumberofparameterssuchassuperficialvelocity,metaloxide concentration,reactortemperature,etc.Fortheexperimentsof Mattissonetal.(2001), detailedtime varyingoutletconcentrationvalueswerecompared,anditwasfoundthatCFDsimulationsprovideda reasonablematchwiththisdata.

  6. REDUCTION OF CO2 EMISSIONS FROM MOBILE SOURCES BY ALTERNATIVE FUELS DERIVED FROM BIOMASS

    EPA Science Inventory

    The paper discusses process options for utilizing biomass to obtain greatest reduction of carbon dioxide (CO2) emissions from motor vehicles at least cost. (NOTE: The Energy Policy Act of 1992 seeks to displace 30% of the U.S. petroleum requirement by the year 2010 with an altern...

  7. Determinants of alternative fuel vehicle choice in the continental United States.

    SciTech Connect

    Tompkins, M.

    1997-12-18

    This paper describes the ongoing investigation into the determinants of alternative fuel vehicle choice. A stated preference vehicle choice survey was conducted for the 47 of the continental U.S. states, excluding California. The national survey is based on and is an extension of previous studies on alternative fuel vehicle choice for the State of California conducted by the University of California's Institute of Transportation Studies (UC ITS). Researchers at UC ITS have used the stated-preference national survey to produce a series of estimates for new vehicle choice models. Three of these models are presented in this paper. The first two of the models were estimated using only the data from the national survey. The third model presented in this paper pools information from the national and California surveys to estimate a true national model for new vehicle choice.

  8. 76 FR 5319 - Regulation of Fuel and Fuel Additives: Alternative Test Method for Olefins in Gasoline

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-31

    ... rulemaking (Docket ID Number EPA-HQ-OAR-2008-0558). \\2\\ See Air Docket EPA-HQ-OAR-2008-0558-0002. \\3\\ 73 FR 74350, December 8, 2008. \\4\\ 73 FR 74403, December 8, 2008. \\5\\ See Air Docket EPA-HQ-OAR-2008-0558-0005. \\6\\ 74 FR 6233, February 6, 2009. EPA is proposing to allow ASTM D6550-05 (SFC) as an alternative...

  9. FEED SYSTEM INNOVATION FOR GASIFICATION OF LOCALLY ECONOMICAL ALTERNATIVE FUELS (FIGLEAF)

    SciTech Connect

    Michael L. Swanson; Mark A. Musich; Darren D. Schmidt

    2001-11-01

    The Feed System Innovation for Gasification of Locally Economical Alternative Fuels (FIGLEAF) project is being conducted by the Energy and Environmental Research Center and Gasification Engineering Corporation of Houston, Texas (a subsidiary of Global Energy Inc., Cincinnati, Ohio), with 80% cofunding from the U.S. Department of Energy. The goal of the project is to identify and evaluate low-value fuels that could serve as alternative feedstocks and to develop a feed system to facilitate their use in integrated gasification combined cycle and gasification coproduction facilities. The long-term goal, to be accomplished in a subsequent project, is to install a feed system for the selected fuels at Global Energy's commercial-scale 262-MW Wabash River Coal Gasification Facility in West Terre Haute, Indiana. The feasibility study undertaken for the project consists of identifying and evaluating the economic feasibility of potential fuel sources, developing a feed system design capable of providing a fuel at 400 psig to the second stage of the E-Gas (Destec) gasifier to be cogasified with coal at up to 30% on a Btu basis, performing bench- and pilot-scale testing to verify concepts and clarify decision-based options, reviewing prior art with respect to high-pressure feed system designs, and determining the economics of cofeeding alternative feedstocks with the conceptual feed system design. Activities and results thus far include the following. Several potential alternative fuels have been obtained for evaluation and testing as potential feedstocks, including sewage sludge, used railroad ties, urban wood waste, municipal solid waste, and used waste tires/tire-derived fuel. Only fuels with potential tipping fees were considered; potential energy crop fuels were not considered since they would have a net positive cost to the plant. Based on the feedstock assessment, sewage sludge has been selected as one of the primary feedstocks for consideration at the Wabash plant

  10. Laser cleaning: an alternative method for removing oil-spill fuel residues

    NASA Astrophysics Data System (ADS)

    Mateo, M. P.; Nicolas, G.; Piñon, V.; Ramil, A.; Yañez, A.

    2005-07-01

    Cleaning methods employed in last oil spills usually require direct contact or the intervention of external agents that can lead to additional contamination and damage of treated surfaces. As an alternative, a laser-based methodology is proposed in this work for controlled removal of fuel residues caused by the accident of Prestige tanker from rocks, as well as tools and equipment employed in fuel retaining and elimination procedures. Ablation thresholds of fuel crust and underlying material have been investigated with the aim to establish operational parameters that preserve the structural integrity and identity of the latter. The clean-up process was controlled by the self-limiting nature of the process or by laser-induced plasma spectroscopy. Contaminated, no contaminated and cleaned areas of the samples have been characterized by complementary microscopy techniques to help in the task of optimizing the laser cleaning procedure and checking the effectiveness of the removal process.

  11. Effects of Burning Alternative Fuel in a 5-Cup Combustor Sector

    NASA Technical Reports Server (NTRS)

    Tacina, K. M.; Chang, C. T.; Lee, C.-M.; He, Z.; Herbon, J.

    2015-01-01

    A goal of NASA's Environmentally Responsible Aviation (ERA) program is to develop a combustor that will reduce the NOx emissions and that can burn both standard and alternative fuels. To meet this goal, NASA partnered with General Electric Aviation to develop a 5-cup combustor sector; this sector was tested in NASA Glenn's Advanced Subsonic Combustion Rig (ASCR). To verify that the combustor sector was fuel-flexible, it was tested with a 50-50 blend of JP-8 and a biofuel made from the camelina sativa plant. Results from this test were compared to results from tests where the fuel was neat JP-8. Testing was done at three combustor inlet conditions: cruise, 30% power, and 7% power. When compared to burning JP-8, burning the 50-50 blend did not significantly affect emissions of NOx, CO, or total hydrocarbons. Furthermore, it did not significantly affect the magnitude and frequency of the dynamic pressure fluctuations.

  12. FEED SYSTEM INNOVATION FOR GASIFICATION OF LOCALLY ECONOMICAL ALTERNATIVE FUELS (FIGLEAF)

    SciTech Connect

    Michael L. Swanson; Mark A. Musich; Darren D. Schmidt; Joseph K. Schultz

    2003-02-01

    The Feed System Innovation for Gasification of Locally Economical Alternative Fuels (FIGLEAF) project was conducted by the Energy & Environmental Research Center and Gasification Engineering Corporation of Houston, Texas (a subsidiary of Global Energy Inc., Cincinnati, Ohio), with 80% cofunding from the U.S. Department of Energy (DOE). The goal of the project was to identify and evaluate low-value fuels that could serve as alternative feedstocks and to develop a feed system to facilitate their use in integrated gasification combined-cycle and gasification coproduction facilities. The long-term goal, to be accomplished in a subsequent project, is to install a feed system for the selected fuel(s) at Global Energy's commercial-scale 262-MW Wabash River Coal Gasification Facility in West Terre Haute, Indiana. The feasibility study undertaken for the project consisted of identifying and evaluating the economic feasibility of potential fuel sources, developing a feed system design capable of providing a fuel at 400 psig to the second stage of the E-Gas (Destec) gasifier to be cogasified with coal, performing bench- and pilot-scale testing to verify concepts and clarify decision-based options, reviewing information on high-pressure feed system designs, and determining the economics of cofeeding alternative feedstocks with the conceptual feed system design. A preliminary assessment of feedstock availability within Indiana and Illinois was conducted. Feedstocks evaluated included those with potential tipping fees to offset processing cost: sewage sludge, municipal solid waste, used railroad ties, urban wood waste (UWW), and used tires/tire-derived fuel. Agricultural residues and dedicated energy crop fuels were not considered since they would have a net positive cost to the plant. Based on the feedstock assessment, sewage sludge was selected as the primary feedstock for consideration at the Wabash River Plant. Because of the limited waste heat available for drying and the

  13. Issues for storing plant-based alternative fuels in marine environments.

    PubMed

    Lee, Jason S; Ray, Richard I; Little, Brenda J; Duncan, Kathleen E; Aktas, Deniz F; Oldham, Athenia L; Davidova, Irene A; Suflita, Joseph M

    2014-06-01

    Two coastal seawaters (Key West, FL, USA and the Persian Gulf, Bahrain, representing oligotrophic and eutrophic environments, respectively) were used to evaluate potential biodegradation and corrosion problems during exposure to alternative and conventional fuels. Uncoated carbon steel was exposed at the fuel/seawater interface and polarization resistance was monitored. Under typical marine storage conditions, dioxygen in natural seawater exposed to fuel and carbon steel was reduced to <0.1parts-per-million within 2d due to consumption by corrosion reactions and aerobic microbial respiration. Sulfides, produced by anaerobic sulfate-reducing bacteria, and chlorides were co-located in corrosion products. Transient dioxygen influenced both metabolic degradation pathways and resulting metabolites. Catechols, indicative of aerobic biodegradation, persisted after 90d exposures. Detection of catechols suggested that initial exposure to dioxygen resulted in the formation of aerobic metabolites that exacerbated subsequent corrosion processes. PMID:24411308

  14. Laminar flow-based micro fuel cell utilizing grooved electrode surface

    NASA Astrophysics Data System (ADS)

    Ha, Seung-Mo; Ahn, Yoomin

    2014-12-01

    Microfluidic fuel cells have low power density and poor fuel utilization due to the generation of a reaction depletion zone. In this study, cell electrodes patterned with grooves are proposed for passive control of the depletion zone, where a secondary transport flow over the grooved electrode replenishes the depleted layers. The proposed membrane-less fuel cell is composed of a polydimethylsiloxane layer over a photoresist microchannel wall and a glass substrate that contains platinum electrodes. The optimum gap between the electrodes and the height of grooves are designed based on a computational fluid dynamics simulation. Hydrogen peroxide is used both as a fuel (when it is mixed with sodium hydroxide) and as an oxidant (when it is mixed with sulfuric acid). During the experiments, electrodes of various lengths are integrated on the bottom of the Y-channel. Experimental results show that the effect of grooves on cell performance is independent of fuel rate and fuel concentration, but the effect is remarkable when the length of the electrode is large. The peak power density with grooved electrodes improves by a maximum of 13.93% compared to that of planar electrodes. This grooved electrode-based fuel cell is expected to be a useful microdevice for power generation.

  15. Solid oxide fuel cell bi-layer anode with gadolinia-doped ceria for utilization of solid carbon fuel

    NASA Astrophysics Data System (ADS)

    Kellogg, Isaiah D.; Koylu, Umit O.; Dogan, Fatih

    Pyrolytic carbon was used as fuel in a solid oxide fuel cell (SOFC) with a yttria-stabilized zirconia (YSZ) electrolyte and a bi-layer anode composed of nickel oxide gadolinia-doped ceria (NiO-GDC) and NiO-YSZ. The common problems of bulk shrinkage and emergent porosity in the YSZ layer adjacent to the GDC/YSZ interface were avoided by using an interlayer of porous NiO-YSZ as a buffer anode layer between the electrolyte and the NiO-GDC primary anode. Cells were fabricated from commercially available component powders so that unconventional production methods suggested in the literature were avoided, that is, the necessity of glycine-nitrate combustion synthesis, specialty multicomponent oxide powders, sputtering, or chemical vapor deposition. The easily-fabricated cell was successfully utilized with hydrogen and propane fuels as well as carbon deposited on the anode during the cyclic operation with the propane. A cell of similar construction could be used in the exhaust stream of a diesel engine to capture and utilize soot for secondary power generation and decreased particulate pollution without the need for filter regeneration.

  16. LNG Vehicle High-Pressure Fuel System and ''Cold Energy'' Utilization

    SciTech Connect

    powers,Charles A.; Derbidge, T. Craig

    2001-03-27

    A high-pressure fuel system for LNG vehicles with direct-injection natural gas engines has been developed and demonstrated on a heavy-duty truck. A new concept for utilizing the ''cold energy'' associated with LNG vehicles to generate mechanical power to drive auxiliary equipment (such as high-pressure fuel pumps) has also been developed and demonstrated in the laboratory. The high-pressure LNG fuel system development included the design and testing of a new type of cryogenic pump utilizes multiple chambers and other features to condense moderate quantities of sucked vapor and discharge supercritical LNG at 3,000 to 4,000 psi. The pump was demonstrated on a Class 8 truck with a Westport high-pressure direct-injection Cummins ISX engine. A concept that utilizes LNG's ''cold energy'' to drive a high-pressure fuel pump without engine attachments or power consumption was developed. Ethylene is boiled and superheated by the engine coolant, and it is cooled and condensed by rejecting h eat to the LNG. Power is extracted in a full-admission blowdown process, and part of this power is applied to pump the ethylene liquid to the boiler pressure. Tests demonstrated a net power output of 1.1. hp at 1.9 Lbm/min of LNG flow, which is adequate to isentropically pump the LNG to approximately 3,400 psi..

  17. Management of radioactive waste gases from the nuclear fuel cycle. Volume I. Comparison of alternatives

    SciTech Connect

    Evans, A.G.; Prout, W.E.; Buckner, J.T.; Buckner, M.R.

    1980-12-01

    Alternatives were compared for collection and fixation of radioactive waste gases released during normal operation of the nuclear fuel cycle, and for transportation and storage/disposal of the resulting waste forms. The study used a numerical rating scheme to evaluate and compare the alternatives for krypton-85, iodine-129, and carbon-14; whereas a subjective evaluation, based on published reports and engineering judgement, was made for transportation and storage/disposal options. Based on these evaluations, certain alternatives are recommended for an integrated scheme for waste management of each of the subject waste gases. Phase II of this project, which is concerned with the development of performance criteria for the waste forms associated with the subject gases, will be completed by the end of 1980. This work will be documented as Volume II of this report.

  18. Literature review of United States utilities computer codes for calculating actinide isotope content in irradiated fuel

    SciTech Connect

    Horak, W.C.; Lu, Ming-Shih

    1991-12-01

    This paper reviews the accuracy and precision of methods used by United States electric utilities to determine the actinide isotopic and element content of irradiated fuel. After an extensive literature search, three key code suites were selected for review. Two suites of computer codes, CASMO and ARMP, are used for reactor physics calculations; the ORIGEN code is used for spent fuel calculations. They are also the most widely used codes in the nuclear industry throughout the world. Although none of these codes calculate actinide isotopics as their primary variables intended for safeguards applications, accurate calculation of actinide isotopic content is necessary to fulfill their function.

  19. Partial replacement of non renewable fossil fuels energy by the use of waste materials as alternative fuels

    NASA Astrophysics Data System (ADS)

    Indrawati, V.; Manaf, A.; Purwadi, G.

    2009-09-01

    This paper reports recent investigations on the use of biomass like rice husk, palm kernel shell, saw dust and municipal waste to reduce the use of fossil fuels energy in the cement production. Such waste materials have heat values in the range approximately from 2,000 to 4,000 kcal/kg. These are comparable to the average value of 5800 kcal/kg from fossil materials like coals which are widely applied in many industrial processing. Hence, such waste materials could be used as alternative fuels replacing the fossil one. It is shown that replacement of coals with such waste materials has a significant impact on cost effectiveness as well as sustainable development. Variation in moisture content of the waste materials, however should be taken into account because this is one of the parameter that could not be controlled. During fuel combustion, some amount of the total energy is used to evaporate the water content and thus the net effective heat value is less.

  20. Selection and properties of alternative forming fluids for TRISO fuel kernel production

    SciTech Connect

    Baker, M. P.; King, J. C.; Gorman, B. P.; Marshall, Doug W.

    2013-01-01

    Current Very High Temperature Reactor (VHTR) designs incorporate TRi-structural ISOtropic (TRISO) fuel, which consists of a spherical fissile fuel kernel surrounded by layers of pyrolytic carbon and silicon carbide. An internal sol-gel process forms the fuel kernel using wet chemistry to produce uranium oxyhydroxide gel spheres by dropping a cold precursor solution into a hot column of trichloroethylene (TCE). Over time, gelation byproducts inhibit complete gelation, and the TCE must be purified or discarded. The resulting TCE waste stream contains both radioactive and hazardous materials and is thus considered a mixed hazardous waste. Changing the forming fluid to a non-hazardous alternative could greatly improve the economics of TRISO fuel kernel production. Selection criteria for a replacement forming fluid narrowed a list of ~10,800 chemicals to yield ten potential replacement forming fluids: 1-bromododecane, 1- bromotetradecane, 1-bromoundecane, 1-chlorooctadecane, 1-chlorotetradecane, 1-iododecane, 1-iodododecane, 1-iodohexadecane, 1-iodooctadecane, and squalane. The density, viscosity, and surface tension for each potential replacement forming fluid were measured as a function of temperature between 25 °C and 80 °C. Calculated settling velocities and heat transfer rates give an overall column height approximation. 1-bromotetradecane, 1-chlorooctadecane, and 1-iodododecane show the greatest promise as replacements, and future tests will verify their ability to form satisfactory fuel kernels.