Science.gov

Sample records for alters colorectal transport

  1. Somatic gene copy number alterations in colorectal cancer: new quest for cancer drivers and biomarkers.

    PubMed

    Wang, H; Liang, L; Fang, J-Y; Xu, J

    2016-04-21

    Colorectal cancer (CRC) results from the accumulation of genetic alterations, and somatic copy number alterations (CNAs) are crucial for the development of CRC. Genome-wide survey of CNAs provides opportunities for identifying cancer driver genes in an unbiased manner. The detection of aberrant CNAs may provide novel markers for the early diagnosis and personalized treatment of CRC. A major challenge in array-based profiling of CNAs is to distinguish the alterations that play causative roles from the random alterations that accumulate during colorectal carcinogenesis. In this view, we systematically discuss the frequent CNAs in CRC, focusing on functional genes that have potential diagnostic, prognostic and therapeutic significance. PMID:26257062

  2. Association of Fusobacterium nucleatum with immunity and molecular alterations in colorectal cancer

    PubMed Central

    Nosho, Katsuhiko; Sukawa, Yasutaka; Adachi, Yasushi; Ito, Miki; Mitsuhashi, Kei; Kurihara, Hiroyoshi; Kanno, Shinichi; Yamamoto, Itaru; Ishigami, Keisuke; Igarashi, Hisayoshi; Maruyama, Reo; Imai, Kohzoh; Yamamoto, Hiroyuki; Shinomura, Yasuhisa

    2016-01-01

    The human intestinal microbiome plays a major role in human health and diseases, including colorectal cancer. Colorectal carcinogenesis represents a heterogeneous process with a differing set of somatic molecular alterations, influenced by diet, environmental and microbial exposures, and host immunity. Fusobacterium species are part of the human oral and intestinal microbiota. Metagenomic analyses have shown an enrichment of Fusobacterium nucleatum (F. nucleatum) in colorectal carcinoma tissue. Using 511 colorectal carcinomas from Japanese patients, we assessed the presence of F. nucleatum. Our results showed that the frequency of F. nucleatum positivity in the Japanese colorectal cancer was 8.6% (44/511), which was lower than that in United States cohort studies (13%). Similar to the United States studies, F. nucleatum positivity in Japanese colorectal cancers was significantly associated with microsatellite instability (MSI)-high status. Regarding the immune response in colorectal cancer, high levels of infiltrating T-cell subsets (i.e., CD3+, CD8+, CD45RO+, and FOXP3+ cells) have been associated with better patient prognosis. There is also evidence to indicate that molecular features of colorectal cancer, especially MSI, influence T-cell-mediated adaptive immunity. Concerning the association between the gut microbiome and immunity, F. nucleatum has been shown to expand myeloid-derived immune cells, which inhibit T-cell proliferation and induce T-cell apoptosis in colorectal cancer. This finding indicates that F. nucleatum possesses immunosuppressive activities by inhibiting human T-cell responses. Certain microRNAs are induced during the macrophage inflammatory response and have the ability to regulate host-cell responses to pathogens. MicroRNA-21 increases the levels of IL-10 and prostaglandin E2, which suppress antitumor T-cell-mediated adaptive immunity through the inhibition of the antigen-presenting capacities of dendritic cells and T-cell proliferation in

  3. Altered Purinergic Signaling in Colorectal Dorsal Root Ganglion Neurons Contributes to Colorectal Hypersensitivity

    PubMed Central

    La, Jun-Ho; Bielefeldt, Klaus; Gebhart, G. F.

    2010-01-01

    Irritable bowel syndrome (IBS) is a functional gastrointestinal disorder characterized by pain and hypersensitivity in the relative absence of colon inflammation or structural changes. To assess the role of P2X receptors expressed in colorectal dorsal root ganglion (c-DRG) neurons and colon hypersensitivity, we studied excitability and purinergic signaling of retrogradely labeled mouse thoracolumbar (TL) and lumbosacral (LS) c-DRG neurons after intracolonic treatment with saline or zymosan (which reproduces 2 major features of IBS—persistent colorectal hypersensitivity without inflammation) using patch-clamp, immunohistochemical, and RT-PCR techniques. Although whole cell capacitances did not differ between LS and TL c-DRG neurons and were not changed after zymosan treatment, membrane excitability was increased in LS and TL c-DRG neurons from zymosan-treated mice. Purinergic agonist adenosine-5′-triphosphate (ATP) and α,β-methylene ATP [α,β-meATP] produced inward currents in TL c-DRG neurons were predominantly P2X3-like fast (∼70% of responsive neurons); P2X2/3-like slow currents were more common in LS c-DRG neurons (∼35% of responsive neurons). Transient currents were not produced by either agonist in c-DRG neurons from P2X3−/− mice. Neither total whole cell Kv current density nor the sustained or transient Kv components was changed in c-DRG neurons after zymosan treatment. The number of cells expressing P2X3 protein and its mRNA and the kinetic properties of ATP- and α,β-meATP-evoked currents in c-DRG neurons were not changed by zymosan treatment. However, the EC50 of α,β-meATP for the fast current decreased significantly in TL c-DRG neurons. These findings suggest that colorectal hypersensitivity produced by intracolonic zymosan increases excitability and enhances purinergic signaling in c-DRG neurons. PMID:20861433

  4. Altered purinergic signaling in colorectal dorsal root ganglion neurons contributes to colorectal hypersensitivity.

    PubMed

    Shinoda, Masamichi; La, Jun-Ho; Bielefeldt, Klaus; Gebhart, G F

    2010-12-01

    Irritable bowel syndrome (IBS) is a functional gastrointestinal disorder characterized by pain and hypersensitivity in the relative absence of colon inflammation or structural changes. To assess the role of P2X receptors expressed in colorectal dorsal root ganglion (c-DRG) neurons and colon hypersensitivity, we studied excitability and purinergic signaling of retrogradely labeled mouse thoracolumbar (TL) and lumbosacral (LS) c-DRG neurons after intracolonic treatment with saline or zymosan (which reproduces 2 major features of IBS-persistent colorectal hypersensitivity without inflammation) using patch-clamp, immunohistochemical, and RT-PCR techniques. Although whole cell capacitances did not differ between LS and TL c-DRG neurons and were not changed after zymosan treatment, membrane excitability was increased in LS and TL c-DRG neurons from zymosan-treated mice. Purinergic agonist adenosine-5'-triphosphate (ATP) and α,β-methylene ATP [α,β-meATP] produced inward currents in TL c-DRG neurons were predominantly P2X(3)-like fast (∼70% of responsive neurons); P2X(2/3)-like slow currents were more common in LS c-DRG neurons (∼35% of responsive neurons). Transient currents were not produced by either agonist in c-DRG neurons from P2X(3)(-/-) mice. Neither total whole cell Kv current density nor the sustained or transient Kv components was changed in c-DRG neurons after zymosan treatment. The number of cells expressing P2X(3) protein and its mRNA and the kinetic properties of ATP- and α,β-meATP-evoked currents in c-DRG neurons were not changed by zymosan treatment. However, the EC(50) of α,β-meATP for the fast current decreased significantly in TL c-DRG neurons. These findings suggest that colorectal hypersensitivity produced by intracolonic zymosan increases excitability and enhances purinergic signaling in c-DRG neurons. PMID:20861433

  5. Identification of a chromosome 18q gene that is altered in colorectal cancers

    SciTech Connect

    Fearon, E.R.; Nigro, J.M.; Simons, J.W.; Ruppert, J.M.; Preisinger, A.C.; Vogelstein, B.; Cho, K.R.; Kern, S.E.; Hamilton, S.R. ); Thomas, G. )

    1990-01-05

    A contiguous stretch of DNA comprising 370 kilobase pairs (kb) has now been cloned from a region of chromosome 18q suspected to reside near this gene. Potential exons in the 370-kb region were defined by human-rodent sequence identities, and the expression of potential exons was assessed by an exon-connection strategy based on the polymerase chain reaction. Expressed exons were used as probes for cDNA screening to obtain clones that encoded a portion of a gene termed DCC; this cDNA was encoded by at least eight exons within the 370-kb genomic region. The predicted amino acid sequence of the cDNA specified a protein with sequence similarity to neural cell adhesion molecules and other related cell surface glycoproteins. While the DCC gene was expressed in most normal tissues, including colonic mucosa, its expression was greatly reduced or absent in most colorectal carcinomas tested. Somatic mutations within the DCC gene observed in colorectal cancers included a homozygous deletion of the 5{prime} end of the gene, a point mutation within one of the introns, and ten examples of DNA insertions within a 0.17-kb fragment immediately downstream of one of the exons. The DCC gene may play a role in the pathogenesis of human colorectal neoplasia, perhaps through alteration of the normal cell-cell interactions controlling growth.

  6. ‘Druggable’ alterations detected by Ion Torrent in metastatic colorectal cancer patients

    PubMed Central

    FANG, WEIJIA; RADOVICH, MILAN; ZHENG, YULONG; FU, CAI-YUN; ZHAO, PENG; MAO, CHENGYU; ZHENG, YI; ZHENG, SHUSEN

    2014-01-01

    The frequency and poor prognosis of patients with metastatic colorectal cancer (mCRC) emphasizes the requirement for improved biomarkers for use in the treatment and prognosis of mCRC. In the present study, somatic variants in exonic regions of key cancer genes were identified in mCRC patients. Formalin-fixed, paraffin-embedded tissues obtained by biopsy of the metastases of mCRC patients were collected, and the DNA was extracted and sequenced using the Ion Torrent Personal Genome Machine. For the targeted amplification of known cancer genes, the Ion AmpliSeq™ Cancer Panel, which is designed to detect 739 Catalogue of Somatic Mutations in Cancer (COSMIC) mutations in 604 loci from 46 oncogenes and tumor suppressor genes using as little as 10 ng of input DNA, was used. The sequencing results were then analyzed using the Ampliseq™ Variant Caller plug-in within the Ion Torrent Suite software. In addition, Ingenuity Pathway software was used to perform a pathway analysis. The Cox regression analysis was also conducted to investigate the potential correlation between alteration numbers and clinical factors, including response rate, disease-free survival and overall survival. Among 10 specimens, 65 genetic alterations were identified in 24 genes following the exclusion of germline mutations using the SNP database, whereby 41% of the alterations were also present in the COSMIC database. No clinical factors were found to significantly correlate with the alteration numbers in the patients by statistical analysis. However, pathway analysis identified ‘colorectal cancer metastasis signaling’ as the most commonly mutated canonical pathway. This analysis further revealed mutated genes in the Wnt, phosphoinositide 3-kinase (PI3K)/AKT and transforming growth factor (TGF)-β/SMAD signaling pathways. Notably, 11 genes, including the expected APC, BRAF, KRAS, PIK3CA and TP53 genes, were mutated in at least two samples. Notably, 90% (9/10) of mCRC patients harbored at least

  7. Foscarnet alters antidiuretic hormone-mediated transport.

    PubMed Central

    Hoch, B S; Shahmehdi, S J; Louis, B M; Lipner, H I

    1995-01-01

    Therapy with foscarnet is associated with acute renal failure. Prior studies have emphasized foscarnet's proximal tubular toxicity, but there have been isolated reports of foscarnet-induced nephrogenic diabetes insipidus. As a phosphate analog, foscarnet is a competitive inhibitor of NaPO4 cotransport. However, foscarnet's effect on antidiuretic hormone (ADH)-induced transport has not been previously investigated. We studied foscarnet's modulation of transport in the toad urinary bladder. Foscarnet at 10 microM to 10 mM did not alter basal water or urea flux. Urea transport induced by a maximal dose of ADH (24 mIU/ml) was inhibited by 0.1 to 5.0 mM foscarnet. In tissues challenged with 0.5 to 1.0 mIU of ADH per ml, 1.0 to 10 mM foscarnet increased water flow but did not alter urea flux. Foscarnet also increased water flow induced by 1.0 to 10 microM forskolin. In tissues pretreated with 10 microM naproxen, foscarnet did not alter water flow induced by 0.5 to 1.0 mIU of ADH per ml or forskolin. These results indicate that foscarnet stimulates water flow induced by 0.5 to 1.0 mIU of ADH per ml at a site proximal to that of the generation of cyclic AMP and inhibits urea flux induced by a maximal dose of ADH at a separate site. In humans, foscarnet nephrotoxicity is likely not limited to the proximal nephron, but extends to the collecting duct. Patients receiving foscarnet should be closely monitored for disorders of urinary concentration. PMID:8540707

  8. Targeted molecular profiling of rare genetic alterations in colorectal cancer using next-generation sequencing.

    PubMed

    Jauhri, Mayank; Bhatnagar, Akanksha; Gupta, Satish; Shokeen, Yogender; Minhas, Sachin; Aggarwal, Shyam

    2016-10-01

    Mutation frequencies of common genetic alterations in colorectal cancer have been in the spotlight for many years. This study highlights few rare somatic mutations, which possess the attributes of a potential CRC biomarker yet are often neglected. Next-generation sequencing was performed over 112 tumor samples to detect genetic alterations in 31 rare genes in colorectal cancer. Mutations were detected in 26/31 (83.9 %) uncommon genes, which together contributed toward 149 gene mutations in 67/112 (59.8 %) colorectal cancer patients. The most frequent mutations include KDR (19.6 %), PTEN (17 %), FBXW7 (10.7 %), SMAD4 (10.7 %), VHL (8 %), KIT (8 %), MET (7.1 %), ATM (6.3 %), CTNNB1 (4.5 %) and CDKN2A (4.5 %). RB1, ERBB4 and ERBB2 mutations were persistent in 3.6 % patients. GNAS, FGFR2 and FGFR3 mutations were persistent in 1.8 % patients. Ten genes (EGFR, NOTCH1, SMARCB1, ABL1, STK11, SMO, RET, GNAQ, CSF1R and FLT3) were found mutated in 0.9 % patients. Lastly, no mutations were observed in AKT, HRAS, MAP2K1, PDGFR and JAK2. Significant associations were observed between VHL with tumor site, ERBB4 and SMARCB1 with tumor invasion, CTNNB1 with lack of lymph node involvement and CTNNB1, FGFR2 and FGFR3 with TNM stage. Significantly coinciding mutation pairs include PTEN and SMAD4, PTEN and KDR, EGFR and RET, EGFR and RB1, FBXW7 and CTNNB1, KDR and FGFR2, FLT3 and CTNNB1, RET and RB1, ATM and SMAD4, ATM and CDKN2A, ERBB4 and SMARCB1. This study elucidates few potential colorectal cancer biomarkers, specifically KDR, PTEN, FBXW7 and SMAD4, which are found mutated in more than 10 % patients. PMID:27568332

  9. Altered colorectal afferent function associated with TNBS-induced visceral hypersensitivity in mice

    PubMed Central

    La, Jun-Ho; Tanaka, Takahiro; Schwartz, Erica S.; McMurray, Timothy P.; Gebhart, G. F.

    2012-01-01

    Inflammation of the distal bowel is often associated with abdominal pain and hypersensitivity, but whether and which colorectal afferents contribute to the hypersensitivity is unknown. Using a mouse model of 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitis, we investigated colorectal hypersensitivity following intracolonic TNBS and associated changes in colorectum and afferent functions. C57BL/6 mice were treated intracolonically with TNBS or saline. Visceromotor responses to colorectal distension (15–60 mmHg) were recorded over 8 wk in TNBS- and saline-treated (control) mice. In other mice treated with TNBS or saline, colorectal inflammation was assessed by myeloperoxidase assay and immunohistological staining. In vitro single-fiber recordings were conducted on both TNBS and saline-treated mice to assess colorectal afferent function. Mice exhibited significant colorectal hypersensitivity through day 14 after TNBS treatment that resolved by day 28 with no resensitization through day 56. TNBS induced a neutrophil- and macrophage-based colorectal inflammation as well as loss of nerve fibers, all of which resolved by days 14–28. Single-fiber recordings revealed a net increase in afferent drive from stretch-sensitive colorectal afferents at day 14 post-TNBS and reduced proportions of mechanically insensitive afferents (MIAs) at days 14–28. Intracolonic TNBS-induced colorectal inflammation was associated with the development and recovery of hypersensitivity in mice, which correlated with a transient increase and recovery of sensitization of stretch-sensitive colorectal afferents and MIAs. These results indicate that the development and maintenance of colorectal hypersensitivity following inflammation are mediated by peripheral drive from stretch-sensitive colorectal afferents and a potential contribution from MIAs. PMID:22859364

  10. Alterations in plasminogen activation correlate with epithelial cell dysplasia grading in colorectal adenomas.

    PubMed Central

    Protiva, P.; Sordat, I.; Chaubert, P.; Saraga, E.; Trân-Thang, C.; Sordat, B.; Blum, A. L.; Dorta, G.

    1998-01-01

    Proteases are important for neoplastic invasion but a specific role for the plasminogen activator system in the progression of colorectal epithelial dysplasia to adenomatous lesions remains unclear. Consecutive tissue cryosections of 51 adenomas, 49 distant mucosa samples and five mucosa samples from control subjects were histopathologically analysed for dysplasia grade and tissue type, urokinase plasminogen activator levels and plasminogen activator inhibitor type 1 (PAI-1) using immunosorbent methods. Plasminogen activation and urokinase-mediated proteolytic activity levels were assessed using in situ zymography. Plasminogen activation and tissue-type activator levels were lower in adenomas than in mucosae (P < 0.001). PAI-1 concentration and urokinase levels were higher in adenomas than in mucosae (P < 0.001 and P < 0.001 respectively). In adenomas, urokinase concentration increased in parallel with PAI-1, but only the urokinase levels correlated with the dysplasia grade (P < 0.01). Thus, the alterations in plasminogen activation correlated with epithelial cell dysplasia grading. In the mucosa to adenoma transition, a marked decrease in tissue-type plasminogen activator occurred. In adenomas, this decrease was accompanied by a concomitant increase in urokinase and PAI-1. The urokinase level only continued to rise in parallel with the dysplasia grade. Resulting protease-antiprotease imbalance in high-grade dysplasia may represent the phenotypic change associated with malignant transformation and invasive behaviour. Images Figure 2 PMID:9461001

  11. Exome capture sequencing of adenoma reveals genetic alterations in multiple cellular pathways at the early stage of colorectal tumorigenesis.

    PubMed

    Zhou, Donger; Yang, Liu; Zheng, Liangtao; Ge, Weiting; Li, Dan; Zhang, Yong; Hu, Xueda; Gao, Zhibo; Xu, Jinghong; Huang, Yanqin; Hu, Hanguang; Zhang, Hang; Zhang, Hao; Liu, Mingming; Yang, Huanming; Zheng, Lei; Zheng, Shu

    2013-01-01

    Most of colorectal adenocarcinomas are believed to arise from adenomas, which are premalignant lesions. Sequencing the whole exome of the adenoma will help identifying molecular biomarkers that can predict the occurrence of adenocarcinoma more precisely and help understanding the molecular pathways underlying the initial stage of colorectal tumorigenesis. We performed the exome capture sequencing of the normal mucosa, adenoma and adenocarcinoma tissues from the same patient and sequenced the identified mutations in additional 73 adenomas and 288 adenocarcinomas. Somatic single nucleotide variations (SNVs) were identified in both the adenoma and adenocarcinoma by comparing with the normal control from the same patient. We identified 12 nonsynonymous somatic SNVs in the adenoma and 42 nonsynonymous somatic SNVs in the adenocarcinoma. Most of these mutations including OR6X1, SLC15A3, KRTHB4, RBFOX1, LAMA3, CDH20, BIRC6, NMBR, GLCCI1, EFR3A, and FTHL17 were newly reported in colorectal adenomas. Functional annotation of these mutated genes showed that multiple cellular pathways including Wnt, cell adhesion and ubiquitin mediated proteolysis pathways were altered genetically in the adenoma and that the genetic alterations in the same pathways persist in the adenocarcinoma. CDH20 and LAMA3 were mutated in the adenoma while NRXN3 and COL4A6 were mutated in the adenocarcinoma from the same patient, suggesting for the first time that genetic alterations in the cell adhesion pathway occur as early as in the adenoma. Thus, the comparison of genomic mutations between adenoma and adenocarcinoma provides us a new insight into the molecular events governing the early step of colorectal tumorigenesis. PMID:23301059

  12. Laminin gene LAMB4 is somatically mutated and expressionally altered in gastric and colorectal cancers.

    PubMed

    Choi, Mi Ryoung; An, Chang Hyeok; Yoo, Nam Jin; Lee, Sug Hyung

    2015-01-01

    Laminins are important in tumor invasion and metastasis as well as in maintenance of normal epithelial cell structures. However, mutation status of laminin chain-encoding genes remains unknown in cancers. Aim of this study was to explore whether laminin chain genes are mutated and expressionally altered in gastric (GC) and colorectal cancers (CRC). In a public database, we found that laminin chain genes LAMA1, LAMA3, LAMB1 and LAMB4 had mononucleotide repeats in the coding sequences that might be mutation targets in the cancers with microsatellite instability (MSI). We analyzed the genes in 88 GC and 139 CRC [high MSI (MSI-H) or stable MSI/low MSI (MSS/MSI-L)] by single strand conformation polymorphism analysis and DNA sequencing. In the present study, we found LAMB4 (11.8% of GC and 7.6% of CRC with MSI-H), LAMA3 (2.9% of GC and 2.5 of CRC with MSI-H), LAMA1 (5.9% of GC with MSI-H) and LAMB1 frameshift mutations (1.3% of CRC with MSI-H). These mutations were not found in MSS/MSI-L (0/114). We also analyzed LAMB4 expression in GC and CRC by immunohistochemistry. Loss of LAMB4 expression was identified in 17-32% of the GC and CRC. Of note, the loss expression was more common in the cancers with LAMB4 mutation or those with MSI-H. Our data show that frameshift mutations of LAMA1, LAMA3, LAMB1 and LAMB4, and loss of LAMB4 may be features of GC and CRC with MSI-H. PMID:25257191

  13. DNA methylation and expression of the folate transporter genes in colorectal cancer.

    PubMed

    Farkas, Sanja A; Befekadu, Rahel; Hahn-Strömberg, Victoria; Nilsson, Torbjörn K

    2015-07-01

    Folate has a central role in the cell metabolism. This study aims to explore the DNA methylation pattern of the folate transporter genes FOLR1, PCFT, and RFC1 as well as the corresponding protein expressions in colorectal cancer (CRC) tissue and adjacent non-cancerous mucosa (ANCM). Our results showed statistically significant differences in the DNA-methylated fraction of all three genes at several gene regions; we identified three differentially methylated CpG sites in the FOLR1 gene, five CpG sites in the PCFT gene, and six CpG sites in the RFC1 gene. There was a pronounced expression of the FRα and RFC proteins in both the CRC and ANCM tissues, though the expression was attenuated in cancer compared to the paired ANCM tissues. The PCFT protein was undetectable or expressed at a very low level in both tissue types. Higher methylated fractions of the CpG sites 3-5 in the RFC1 gene were associated with a lower protein expression, suggestive of epigenetic regulation by DNA methylation of the RFC1 gene in the colorectal cancer. Our results did not show any association between the RFC and FRα protein expression and tumor stage, TNM classification, or tumor location. In conclusion, this is the first study to simultaneously evaluate both DNA methylation and protein expression of all three folate transporter genes, FOLR1, PCFT, and RFC1, in colorectal cancer. The results encourage further investigation into the possible prognostic implications of folate transporter expression and DNA methylation. PMID:25697897

  14. Epigenetic alteration of DNA in mucosal wash fluid predicts invasiveness of colorectal tumors.

    PubMed

    Kamimae, Seiko; Yamamoto, Eiichiro; Yamano, Hiro-o; Nojima, Masanori; Suzuki, Hiromu; Ashida, Masami; Hatahira, Tomo; Sato, Akiko; Kimura, Tomoaki; Yoshikawa, Kenjiro; Harada, Taku; Hayashi, Seiko; Takamaru, Hiroyuki; Maruyama, Reo; Kai, Masahiro; Nishiwaki, Morie; Sugai, Tamotsu; Sasaki, Yasushi; Tokino, Takashi; Shinomura, Yasuhisa; Imai, Kohzoh; Toyota, Minoru

    2011-05-01

    Although conventional colonoscopy is considered the gold standard for detecting colorectal tumors, accurate staging is often difficult because advanced histology may be present in small colorectal lesions. We collected DNA present in mucosal wash fluid from patients undergoing colonoscopy and then assessed the methylation levels of four genes frequently methylated in colorectal cancers to detect invasive tumors. We found that methylation levels in wash fluid were significantly higher in patients with invasive than those with noninvasive tumors. Cytologic and K-ras mutation analyses suggested that mucosal wash fluid from invasive tumors contained greater numbers of tumor cells than wash fluid from noninvasive tumors. Among the four genes, levels of mir-34b/c methylation had the greatest correlation with the invasion and showed the largest area under the receiver operating characteristic curve (AUC = 0.796). Using cutoff points of mir-34b/c methylation determined by efficiency considerations, the sensitivity/specificity were 0.861/0.657 for the 13.0% (high sensitivity) and 0.765/0.833 for the 17.8% (well-balanced) cutoffs. In the validation test set, the AUC was also very high (0.915), the sensitivity/specificity were 0.870/0.875 for 13.0% and 0.565/0.958 for 17.8%. Using the diagnostic tree constructed by an objective algorithm, the diagnostic accuracy of the invasiveness of colorectal cancer was 91.3% for the training set and 85.1% for the test set. Our results suggest that analysis of the methylation of DNA in mucosal wash fluid may be a good molecular marker for predicting the invasiveness of colorectal tumors. PMID:21543345

  15. Norepinephrine Transporter Heterozygous Knockout Mice Exhibit Altered Transport and Behavior

    PubMed Central

    Fentress, HM; Klar, R; Krueger, JK; Sabb, T; Redmon, SN; Wallace, NM; Shirey-Rice, JK; Hahn, MK

    2013-01-01

    The norepinephrine (NE) transporter (NET) regulates synaptic NE availability for noradrenergic signaling in the brain and sympathetic nervous system. Although genetic variation leading to a loss of NET expression has been implicated in psychiatric and cardiovascular disorders, complete NET deficiency has not been found in people, limiting the utility of NET knockout mice as a model for genetically-driven NET dysfunction. Here, we investigate NET expression in NET heterozygous knockout male mice (NET+/−), demonstrating that they display an ~50% reduction in NET protein levels. Surprisingly, these mice display no significant deficit in NET activity, assessed in hippocampal and cortical synaptosomes. We found that this compensation in NET activity was due to enhanced activity of surface-resident transporters, as opposed to surface recruitment of NET protein or compensation through other transport mechanisms, including serotonin, dopamine or organic cation transporters. We hypothesize that loss of NET protein in the NET+/− mouse establishes an activated state of existing, surface NET proteins. NET+/− mice exhibit increased anxiety in the open field and light-dark box and display deficits in reversal learning in the Morris Water Maze. These data suggest recovery of near basal activity in NET+/− mice appears to be insufficient to limit anxiety responses or support cognitive performance that might involve noradrenergic neurotransmission. The NET+/− mice represent a unique model to study the loss and resultant compensatory changes in NET that may be relevant to behavior and physiology in human NET deficiency disorders. PMID:24102798

  16. Norepinephrine transporter heterozygous knockout mice exhibit altered transport and behavior.

    PubMed

    Fentress, H M; Klar, R; Krueger, J J; Sabb, T; Redmon, S N; Wallace, N M; Shirey-Rice, J K; Hahn, M K

    2013-11-01

    The norepinephrine (NE) transporter (NET) regulates synaptic NE availability for noradrenergic signaling in the brain and sympathetic nervous system. Although genetic variation leading to a loss of NET expression has been implicated in psychiatric and cardiovascular disorders, complete NET deficiency has not been found in people, limiting the utility of NET knockout mice as a model for genetically driven NET dysfunction. Here, we investigate NET expression in NET heterozygous knockout male mice (NET(+/-) ), demonstrating that they display an approximately 50% reduction in NET protein levels. Surprisingly, these mice display no significant deficit in NET activity assessed in hippocampal and cortical synaptosomes. We found that this compensation in NET activity was due to enhanced activity of surface-resident transporters, as opposed to surface recruitment of NET protein or compensation through other transport mechanisms, including serotonin, dopamine or organic cation transporters. We hypothesize that loss of NET protein in the NET(+/-) mouse establishes an activated state of existing surface NET proteins. The NET(+/-) mice exhibit increased anxiety in the open field and light-dark box and display deficits in reversal learning in the Morris water maze. These data suggest that recovery of near basal activity in NET(+/-) mice appears to be insufficient to limit anxiety responses or support cognitive performance that might involve noradrenergic neurotransmission. The NET(+/-) mice represent a unique model to study the loss and resultant compensatory changes in NET that may be relevant to behavior and physiology in human NET deficiency disorders. PMID:24102798

  17. CDK8 expression in 470 colorectal cancers in relation to beta-catenin activation, other molecular alterations and patient survival.

    PubMed

    Firestein, Ron; Shima, Kaori; Nosho, Katsuhiko; Irahara, Natsumi; Baba, Yoshifumi; Bojarski, Emeric; Giovannucci, Edward L; Hahn, William C; Fuchs, Charles S; Ogino, Shuji

    2010-06-15

    Alterations in the Wnt/beta-catenin pathway define a key event in the pathogenesis of colon cancer. We have recently shown that CDK8, the gene encoding a cyclin-dependent kinase (CDK) component of the Mediator complex, acts as a colon cancer oncogene that is necessary for beta-catenin activity. Here, we tested the hypothesis that colorectal cancers with CDK8 expression have distinct clinical, prognostic and molecular attributes. Among 470 colorectal cancers identified in 2 prospective cohort studies, CDK8 expression was detected in 329 (70%) tumors by immunohistochemistry. Cox proportional hazards model and backward stepwise elimination were used to compute hazard ratio (HR) of deaths according to CDK8 status, initially adjusted for various patient and molecular features, including beta-catenin, p53, p21, p27 (CDK inhibitors), cyclin D1, fatty acid synthase (FASN), cyclooxygenase-2 (COX-2), microsatellite instability (MSI), CpG island methylator phenotype (CIMP), LINE-1 methylation, and mutations in KRAS, BRAF and PIK3CA. CDK8 expression in colorectal cancer was independently associated with beta-catenin activation (p = 0.0002), female gender (p < 0.0001) and FASN overexpression (p = 0.0003). Among colon cancer patients, CDK8 expression significantly increased colon cancer-specific mortality in both univariate analysis [HR 1.70; 95% confidence interval (CI), 1.03-2.83; p = 0.039] and multivariate analysis (adjusted HR 2.05; 95% CI, 1.18-3.56; p = 0.011) that was adjusted for potential confounders including beta-catenin, COX-2, FASN, LINE-1 hypomethylation, CIMP and MSI. CDK8 expression was unrelated with clinical outcome among rectal cancer patients. These data support a potential link between CDK8 and beta-catenin, and suggest that CDK8 may identify a subset of colon cancer patients with a poor prognosis. PMID:19790197

  18. Inflammatory bowel disease alters intestinal bile acid transporter expression.

    PubMed

    Jahnel, Jörg; Fickert, Peter; Hauer, Almuthe C; Högenauer, Christoph; Avian, Alexander; Trauner, Michael

    2014-09-01

    The enterohepatic circulation of bile acids (BAs) critically depends on absorption of BA in the terminal ileum and colon, which can be affected by inflammatory bowel disease (IBD). Diarrhea in IBD is believed to result in part from BA malabsorption (BAM). We explored whether IBD alters mRNA expression of key intestinal BA transporters, BA detoxifying systems, and nuclear receptors that regulate BA transport and detoxification. Using real-time polymerase chain reaction, mucosal biopsy specimens from the terminal ileum in Crohn's disease (CD) patients and from the descending colon in ulcerative colitis (UC) patients were assessed for mRNA expression. Levels were compared with healthy controls. The main ileal BA uptake transporter, the apical sodium dependent bile acid transporter, was downregulated in active CD and UC and in CD in remission. Other significant changes such as repression of breast cancer-related protein and sulphotransferase 2A1 were seen only during active disease. In UC, pancolitis (but not exclusively left-sided colitis) was associated with altered expression of major BA transporters [multidrug resistance-associated protein 3 (MRP3), MRP4, multidrug resistance gene 1, organic solute transporter α/β] and nuclear receptors (pregnane X receptor, vitamin D receptor) in the descending colon. UC pancolitis leads to broad changes and CD ileitis to selective changes in intestinal BA transporter expression. Early medical manipulation of intestinal BA transporters may help prevent BAM. PMID:24965812

  19. Altered expression of caspases-4 and -5 during inflammatory bowel disease and colorectal cancer: Diagnostic and therapeutic potential.

    PubMed

    Flood, B; Oficjalska, K; Laukens, D; Fay, J; O'Grady, A; Caiazza, F; Heetun, Z; Mills, K H G; Sheahan, K; Ryan, E J; Doherty, G A; Kay, E; Creagh, E M

    2015-07-01

    Caspases are a group of proteolytic enzymes involved in the co-ordination of cellular processes, including cellular homeostasis, inflammation and apoptosis. Altered activity of caspases, particularly caspase-1, has been implicated in the development of intestinal diseases, such as inflammatory bowel disease (IBD) and colorectal cancer (CRC). However, the involvement of two related inflammatory caspase members, caspases-4 and -5, during intestinal homeostasis and disease has not yet been established. This study demonstrates that caspases-4 and -5 are involved in IBD-associated intestinal inflammation. Furthermore, we found a clear correlation between stromal caspase-4 and -5 expression levels, inflammation and disease activity in ulcerative colitis patients. Deregulated intestinal inflammation in IBD patients is associated with an increased risk of developing CRC. We found robust expression of caspases-4 and -5 within intestinal epithelial cells, exclusively within neoplastic tissue, of colorectal tumours. An examination of adjacent normal, inflamed and tumour tissue from patients with colitis-associated CRC confirmed that stromal expression of caspases-4 and -5 is increased in inflamed and dysplastic tissue, while epithelial expression is restricted to neoplastic tissue. In addition to identifying caspases-4 and -5 as potential targets for limiting intestinal inflammation, this study has identified epithelial-expressed caspases-4 and -5 as biomarkers with diagnostic and therapeutic potential in CRC. PMID:25943872

  20. 49 CFR 37.43 - Alteration of transportation facilities by public entities.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 1 2013-10-01 2013-10-01 false Alteration of transportation facilities by public entities. 37.43 Section 37.43 Transportation Office of the Secretary of Transportation TRANSPORTATION SERVICES FOR INDIVIDUALS WITH DISABILITIES (ADA) Transportation Facilities § 37.43 Alteration of transportation facilities by public entities....

  1. Neoadjuvant treatment of colorectal liver metastases is associated with altered contrast enhancement on computed tomography.

    PubMed

    Bethke, Anne; Kühne, Katrin; Platzek, Ivan; Stroszczynski, Christian

    2011-01-01

    Neoadjuvant systemic therapy may induce steatosis or sinusoid obstruction syndrome in the liver. The aim of this study was to investigate the influence of systemic therapy with irinotecan, oxaliplatin and cetuximab on conspicuity of liver metastases on computed tomography (CT). CT scans of 48 patients with initial unresectable colorectal liver metastases which were treated in a Europe-wide, opened, randomized phase II trial receiving oxaliplatin or irinotecan combined with folinic acid and cetuximab were analysed. The density of the metastases and the liver parenchyma before and after systemic therapy were analysed by region-of-interest technique and the tumour-to-liver difference (dHU TLD). The mean density of liver parenchyma and liver metastases did not vary significantly before and after neoadjuvant therapy on plain (56.3 ± 8.1 HU, 54.8 ± 13.5 HU) and arterial enhanced CT (76.0 ± 15.7 HU, 70.5 ± 20.4 HU). There was a significant reduction (105.6 ± 17.3 HU, 93.3 ± 18.2 HU) in the density of liver parenchyma on portal venous scans after systemic therapy (p < 0.0001) and a reduction of dHU TLD, consecutively. In patients with colorectal liver metastases, neoadjuvant chemotherapy may have a toxic impact on liver parenchyma resulting in reduced tumour-to-liver contrast in contrast-enhanced CT. This may lead to underestimation of real lesion size. PMID:21771709

  2. Ceramide-induced alterations in dopamine transporter function.

    PubMed

    Riddle, Evan L; Rau, Kristi S; Topham, Matthew K; Hanson, Glen R; Fleckenstein, Annette E

    2003-01-01

    The purpose of this study was to determine the effects of ceramide on dopamine and serotonin (5-HT, 5-hydroxytryptamine) transporters. Exposure of rat striatal synaptosomes to C2-ceramide caused a reversible, concentration-dependent decrease in plasmalemmal dopamine uptake. In contrast, ceramide exposure increased striatal 5-HT synaptosomal uptake. This increase did not appear to be due to an increased uptake by the 5-HT transporter. Rather, the increase appeared to result from an increase in 5-HT transport through the dopamine transporter, an assertion evidenced by findings that this increase: (1) does not occur in hippocampal synaptosomes (i.e., a preparation largely devoid of dopamine transporters), (2) occurs in striatal synaptosomes prepared from para-chloroamphetamine-treated rats (i.e., a preparation lacking 5-HT transporters), (3) is attenuated by pretreatment with methylphenidate (i.e., a relatively selective dopamine reuptake inhibitor) and (4) is inhibited by exposure to exogenous dopamine (i.e., which presumably competes for uptake with 5-HT). Taken together, these results reveal that ceramide is a novel modulator of monoamine transporter function, and may alter the affinity of dopamine transporters for its primary substrate. PMID:12498904

  3. Mutational analysis of genes coding for cell surface proteins in colorectal cancer cell lines reveal novel altered pathways, druggable mutations and mutated epitopes for targeted therapy

    PubMed Central

    Correa, Bruna R.; Bettoni, Fabiana; Koyama, Fernanda C.; Navarro, Fabio C.P.; Perez, Rodrigo O.; Mariadason, John; Sieber, Oliver M.; Strausberg, Robert L.; Simpson, Andrew J.G.; Jardim, Denis L.F.; Reis, Luiz Fernando L.; Parmigiani, Raphael B.; Galante, Pedro A.F.; Camargo, Anamaria A.

    2014-01-01

    We carried out a mutational analysis of 3,594 genes coding for cell surface proteins (Surfaceome) in 23 colorectal cancer cell lines, searching for new altered pathways, druggable mutations and mutated epitopes for targeted therapy in colorectal cancer. A total of 3,944 somatic non-synonymous substitutions and 595 InDels, occurring in 2,061 (57%) Surfaceome genes were catalogued. We identified 48 genes not previously described as mutated in colorectal tumors in the TCGA database, including genes that are mutated and expressed in >10% of the cell lines (SEMA4C, FGFRL1, PKD1, FAM38A, WDR81, TMEM136, SLC36A1, SLC26A6, IGFLR1). Analysis of these genes uncovered important roles for FGF and SEMA4 signaling in colorectal cancer with possible therapeutic implications. We also found that cell lines express on average 11 druggable mutations, including frequent mutations (>20%) in the receptor tyrosine kinases AXL and EPHA2, which have not been previously considered as potential targets for colorectal cancer. Finally, we identified 82 cell surface mutated epitopes, however expression of only 30% of these epitopes was detected in our cell lines. Notwithstanding, 92% of these epitopes were expressed in cell lines with the mutator phenotype, opening new venues for the use of “general” immune checkpoint drugs in this subset of patients. PMID:25193853

  4. Inhibition of Fried Meat-Induced Colorectal DNA Damage and Altered Systemic Genotoxicity in Humans by Crucifera, Chlorophyllin, and Yogurt

    PubMed Central

    Shaughnessy, Daniel T.; Gangarosa, Lisa M.; Schliebe, Barbara; Umbach, David M.; Xu, Zongli; MacIntosh, Beth; Knize, Mark G.; Matthews, Peggy P.; Swank, Adam E.; Sandler, Robert S.; DeMarini, David M.; Taylor, Jack A.

    2011-01-01

    Dietary exposures implicated as reducing or causing risk for colorectal cancer may reduce or cause DNA damage in colon tissue; however, no one has assessed this hypothesis directly in humans. Thus, we enrolled 16 healthy volunteers in a 4-week controlled feeding study where 8 subjects were randomly assigned to dietary regimens containing meat cooked at either low (100°C) or high temperature (250°C), each for 2 weeks in a crossover design. The other 8 subjects were randomly assigned to dietary regimens containing the high-temperature meat diet alone or in combination with 3 putative mutagen inhibitors: cruciferous vegetables, yogurt, and chlorophyllin tablets, also in a crossover design. Subjects were nonsmokers, at least 18 years old, and not currently taking prescription drugs or antibiotics. We used the Salmonella assay to analyze the meat, urine, and feces for mutagenicity, and the comet assay to analyze rectal biopsies and peripheral blood lymphocytes for DNA damage. Low-temperature meat had undetectable levels of heterocyclic amines (HCAs) and was not mutagenic, whereas high-temperature meat had high HCA levels and was highly mutagenic. The high-temperature meat diet increased the mutagenicity of hydrolyzed urine and feces compared to the low-temperature meat diet. The mutagenicity of hydrolyzed urine was increased nearly twofold by the inhibitor diet, indicating that the inhibitors enhanced conjugation. Inhibitors decreased significantly the mutagenicity of un-hydrolyzed and hydrolyzed feces. The diets did not alter the levels of DNA damage in non-target white blood cells, but the inhibitor diet decreased nearly twofold the DNA damage in target colorectal cells. To our knowledge, this is the first demonstration that dietary factors can reduce DNA damage in the target tissue of fried-meat associated carcinogenesis. Trial Registration ClinicalTrials.gov NCT00340743. PMID:21541030

  5. Tumor Genome Wide DNA Alterations Assessed by Array CGH in Patients with Poor and Excellent Survival Following Operation for Colorectal Cancer

    PubMed Central

    Lagerstedt, Kristina K.; Staaf, Johan; Jönsson, Göran; Hansson, Elisabeth; Lönnroth, Christina; Kressner, Ulf; Lindström, Lars; Nordgren, Svante; Borg, Åke; Lundholm, Kent

    2007-01-01

    Genome wide DNA alterations were evaluated by array CGH in addition to RNA expression profiling in colorectal cancer from patients with excellent and poor survival following primary operations. DNA was used for CGH in BAC and cDNA arrays. Global RNA expression was determined by 44K arrays. DNA and RNA from tumor and normal colon were used from cancer patients grouped according to death, survival or Dukes A, B, C and D tumor stage. Confirmed DNA alterations in all Dukes A – D were judged relevant for carcinogenesis, while changes in Dukes C and D only were regarded relevant for tumor progression. Copy number gain was more common than loss in tumor tissue (p < 0.01). Major tumor DNA alterations occurred in chromosome 8, 13, 18 and 20, where short survival included gain in 8q and loss in 8p. Copy number gains related to tumor progression were most common on chromosome 7, 8, 19, 20, while corresponding major losses appeared in chromosome 8. Losses at chromosome 18 occurred in all Dukes stages. Normal colon tissue from cancer patients displayed gains in chromosome 19 and 20. Mathematical Vector analysis implied a number of BAC-clones in tumor DNA with genes of potential importance for death or survival. The genomic variation in colorectal cancer cells is tremendous and emphasizes that BAC array CGH is presently more powerful than available statistical models to discriminate DNA sequence information related to outcome. Present results suggest that a majority of DNA alterations observed in colorectal cancer are secondary to tumor progression. Therefore, it would require an immense work to distinguish primary from secondary DNA alterations behind colorectal cancer. PMID:19455253

  6. Alterations in K-ras, APC and p53-multiple genetic pathway in colorectal cancer among Indians.

    PubMed

    Malhotra, Pooja; Anwar, Mumtaz; Nanda, Neha; Kochhar, Rakesh; Wig, Jai Dev; Vaiphei, Kim; Mahmood, Safrun

    2013-06-01

    The incidence of colorectal cancer (CRC) is increasing rapidly in Asian countries during the past few decades, but no comprehensive analysis has been done to find out the exact cause of this disease. In this study, we investigated the frequencies of mutations and expression pattern of K-ras, APC (adenomatosis polyposis coli) and p53 in tumor, adjoining and distant normal mucosa and to correlate these alterations with patients clinicopathological parameters as well as with the survival. Polymerase chain reaction (PCR)-restriction digestion was used to detect mutations in K-ras and PCR-SSCP (Single Strand Conformation Polymorphism) followed by DNA sequencing was used to detect mutations in APC and p53 genes. Immunohistochemistry was used to detect the expression pattern of K-ras, APC and p53 proteins. The frequencies of mutations of K-ras, APC and p53 in 30 tumor tissues samples were 26.7 %, 46.7 % and 20 %, respectively. Only 3.3 % of tumors contained mutations in all the three genes. The most common combination of mutation was APC and p53 whereas mutation in both p53 and K-ras were extremely rare. There was no association between the mutations and expression pattern of K-ras, APC and p53 (p>0.05). In Indians, the frequency of alterations of K-ras and APC is similar as in Westerns, whereas the frequency of p53 mutation is slightly lower. The lack of multiple mutations in tumor specimens suggests that these genetic alterations might have independent influences on CRC development and there could be multiple alternative genetic pathways to CRC in our present study cohort. PMID:23526092

  7. Do high risk patients alter their lifestyle to reduce risk of colorectal cancer?

    PubMed Central

    2014-01-01

    Background Colorectal cancer (CRC) may be reduced by healthy lifestyle behaviours. We determined the extent of self-reported lifestyle changes in people at increased risk of CRC, and the association of these reports with anxiety, risk and knowledge-based variables. Methods We randomly selected 250 participants who had undergone surveillance colonoscopy for family history of CRC. A telephone interview was conducted, recording demographics and family history. Self-reported lifestyle change due to thoughts about CRC across a range of dietary and lifestyle variables was assessed on a four-point scale. Participants’ perceptions of the following were recorded: risk factor knowledge, personal risk, and worry due to family history. General anxiety was assessed using the GAD-7 scale. Ordinal logistic regression was used to calculate adjusted results. Results There were 148 participants (69% response). 79.7% reported at least one healthy change. Change in diet and physical activity were most frequently reported (fiber, 63%; fruit and vegetables, 54%; red meat, 47%; physical activity, 45%), with consumption of tobacco, alcohol, and body weight less likely (tobacco, 25%; alcohol, 26%; weight 31%). People were more likely to report healthy change with lower levels of generalized anxiety, higher worry due to family history, or greater perceived knowledge of CRC risk factors. Risk perception and risk due to family history were not associated with healthy changes. Conclusions Self-reported lifestyle changes due to thoughts about CRC were common. Lower general anxiety levels, worries due to family history, and perceived knowledge of risk factors may stimulate healthy changes. PMID:24507382

  8. Altered Reward Circuitry in the Norepinephrine Transporter Knockout Mouse

    PubMed Central

    Hall, F. Scott; Uhl, George R.; Bearer, Elaine L.; Jacobs, Russell E.

    2013-01-01

    Synaptic levels of the monoamine neurotransmitters dopamine, serotonin, and norepinephrine are modulated by their respective plasma membrane transporters, albeit with a few exceptions. Monoamine transporters remove monoamines from the synaptic cleft and thus influence the degree and duration of signaling. Abnormal concentrations of these neuronal transmitters are implicated in a number of neurological and psychiatric disorders, including addiction, depression, and attention deficit/hyperactivity disorder. This work concentrates on the norepinephrine transporter (NET), using a battery of in vivo magnetic resonance imaging techniques and histological correlates to probe the effects of genetic deletion of the norepinephrine transporter on brain metabolism, anatomy and functional connectivity. MRS recorded in the striatum of NET knockout mice indicated a lower concentration of NAA that correlates with histological observations of subtle dysmorphisms in the striatum and internal capsule. As with DAT and SERT knockout mice, we detected minimal structural alterations in NET knockout mice by tensor-based morphometric analysis. In contrast, longitudinal imaging after stereotaxic prefrontal cortical injection of manganese, an established neuronal circuitry tracer, revealed that the reward circuit in the NET knockout mouse is biased toward anterior portions of the brain. This is similar to previous results observed for the dopamine transporter (DAT) knockout mouse, but dissimilar from work with serotonin transporter (SERT) knockout mice where Mn2+ tracings extended to more posterior structures than in wildtype animals. These observations correlate with behavioral studies indicating that SERT knockout mice display anxiety-like phenotypes, while NET knockouts and to a lesser extent DAT knockout mice display antidepressant-like phenotypic features. Thus, the mainly anterior activity detected with manganese-enhanced MRI in the DAT and NET knockout mice is likely indicative of

  9. Osmotic stress alters chromatin condensation and nucleocytoplasmic transport

    SciTech Connect

    Finan, John D.; Leddy, Holly A.; Guilak, Farshid

    2011-05-06

    Highlights: {yields} The rate of nucleocytoplasmic transport increases under hyper-osmotic stress. {yields} The mechanism is a change in nuclear geometry, not a change in permeability of the nuclear envelope. {yields} Intracytoplasmic but not intranuclear diffusion is sensitive to osmotic stress. {yields} Pores in the chromatin of the nucleus enlarge under hyper-osmotic stress. -- Abstract: Osmotic stress is a potent regulator of biological function in many cell types, but its mechanism of action is only partially understood. In this study, we examined whether changes in extracellular osmolality can alter chromatin condensation and the rate of nucleocytoplasmic transport, as potential mechanisms by which osmotic stress can act. Transport of 10 kDa dextran was measured both within and between the nucleus and the cytoplasm using two different photobleaching methods. A mathematical model was developed to describe fluorescence recovery via nucleocytoplasmic transport. As osmolality increased, the diffusion coefficient of dextran decreased in the cytoplasm, but not the nucleus. Hyper-osmotic stress decreased nuclear size and increased nuclear lacunarity, indicating that while the nucleus was getting smaller, the pores and channels interdigitating the chromatin had expanded. The rate of nucleocytoplasmic transport was increased under hyper-osmotic stress but was insensitive to hypo-osmotic stress, consistent with the nonlinear osmotic properties of the nucleus. The mechanism of this osmotic sensitivity appears to be a change in the size and geometry of the nucleus, resulting in a shorter effective diffusion distance for the nucleus. These results may explain physical mechanisms by which osmotic stress can influence intracellular signaling pathways that rely on nucleocytoplasmic transport.

  10. Network signatures of nuclear and cytoplasmic density alterations in a model of pre and postmetastatic colorectal cancer

    NASA Astrophysics Data System (ADS)

    Damania, Dhwanil; Subramanian, Hariharan; Backman, Vadim; Anderson, Eric C.; Wong, Melissa H.; McCarty, Owen J. T.; Phillips, Kevin G.

    2014-01-01

    Cells contributing to the pathogenesis of cancer possess cytoplasmic and nuclear structural alterations that accompany their aberrant genetic, epigenetic, and molecular perturbations. Although it is known that architectural changes in primary and metastatic tumor cells can be quantified through variations in cellular density at the nanometer and micrometer spatial scales, the interdependent relationships among nuclear and cytoplasmic density as a function of tumorigenic potential has not been thoroughly investigated. We present a combined optical approach utilizing quantitative phase microscopy and partial wave spectroscopic microscopy to perform parallel structural characterizations of cellular architecture. Using the isogenic SW480 and SW620 cell lines as a model of pre and postmetastatic transition in colorectal cancer, we demonstrate that nuclear and cytoplasmic nanoscale disorder, micron-scale dry mass content, mean dry mass density, and shape metrics of the dry mass density histogram are uniquely correlated within and across different cellular compartments for a given cell type. The correlations of these physical parameters can be interpreted as networks whose nodal importance and level of connection independence differ according to disease stage. This work demonstrates how optically derived biophysical parameters are linked within and across different cellular compartments during the architectural orchestration of the metastatic phenotype.

  11. Network signatures of nuclear and cytoplasmic density alterations in a model of pre and postmetastatic colorectal cancer

    PubMed Central

    Damania, Dhwanil; Subramanian, Hariharan; Backman, Vadim; Anderson, Eric C.; Wong, Melissa H.; McCarty, Owen J. T.; Phillips, Kevin G.

    2014-01-01

    Abstract. Cells contributing to the pathogenesis of cancer possess cytoplasmic and nuclear structural alterations that accompany their aberrant genetic, epigenetic, and molecular perturbations. Although it is known that architectural changes in primary and metastatic tumor cells can be quantified through variations in cellular density at the nanometer and micrometer spatial scales, the interdependent relationships among nuclear and cytoplasmic density as a function of tumorigenic potential has not been thoroughly investigated. We present a combined optical approach utilizing quantitative phase microscopy and partial wave spectroscopic microscopy to perform parallel structural characterizations of cellular architecture. Using the isogenic SW480 and SW620 cell lines as a model of pre and postmetastatic transition in colorectal cancer, we demonstrate that nuclear and cytoplasmic nanoscale disorder, micron-scale dry mass content, mean dry mass density, and shape metrics of the dry mass density histogram are uniquely correlated within and across different cellular compartments for a given cell type. The correlations of these physical parameters can be interpreted as networks whose nodal importance and level of connection independence differ according to disease stage. This work demonstrates how optically derived biophysical parameters are linked within and across different cellular compartments during the architectural orchestration of the metastatic phenotype. PMID:24441943

  12. Altered Neurocircuitry in the Dopamine Transporter Knockout Mouse Brain

    PubMed Central

    Zhang, Xiaowei; Bearer, Elaine L.; Boulat, Benoit; Hall, F. Scott; Uhl, George R.; Jacobs, Russell E.

    2010-01-01

    The plasma membrane transporters for the monoamine neurotransmitters dopamine, serotonin, and norepinephrine modulate the dynamics of these monoamine neurotransmitters. Thus, activity of these transporters has significant consequences for monoamine activity throughout the brain and for a number of neurological and psychiatric disorders. Gene knockout (KO) mice that reduce or eliminate expression of each of these monoamine transporters have provided a wealth of new information about the function of these proteins at molecular, physiological and behavioral levels. In the present work we use the unique properties of magnetic resonance imaging (MRI) to probe the effects of altered dopaminergic dynamics on meso-scale neuronal circuitry and overall brain morphology, since changes at these levels of organization might help to account for some of the extensive pharmacological and behavioral differences observed in dopamine transporter (DAT) KO mice. Despite the smaller size of these animals, voxel-wise statistical comparison of high resolution structural MR images indicated little morphological change as a consequence of DAT KO. Likewise, proton magnetic resonance spectra recorded in the striatum indicated no significant changes in detectable metabolite concentrations between DAT KO and wild-type (WT) mice. In contrast, alterations in the circuitry from the prefrontal cortex to the mesocortical limbic system, an important brain component intimately tied to function of mesolimbic/mesocortical dopamine reward pathways, were revealed by manganese-enhanced MRI (MEMRI). Analysis of co-registered MEMRI images taken over the 26 hours after introduction of Mn2+ into the prefrontal cortex indicated that DAT KO mice have a truncated Mn2+ distribution within this circuitry with little accumulation beyond the thalamus or contralateral to the injection site. By contrast, WT littermates exhibit Mn2+ transport into more posterior midbrain nuclei and contralateral mesolimbic structures at

  13. SNPs in transporter and metabolizing genes as predictive markers for oxaliplatin treatment in colorectal cancer patients.

    PubMed

    Kap, Elisabeth J; Seibold, Petra; Scherer, Dominique; Habermann, Nina; Balavarca, Yesilda; Jansen, Lina; Zucknick, Manuela; Becker, Natalia; Hoffmeister, Michael; Ulrich, Alexis; Benner, Axel; Ulrich, Cornelia M; Burwinkel, Barbara; Brenner, Hermann; Chang-Claude, Jenny

    2016-06-15

    Oxaliplatin is frequently used as part of a chemotherapeutic regimen with 5-fluorouracil in the treatment of colorectal cancer (CRC). The cellular availability of oxaliplatin is dependent on metabolic and transporter enzymes. Variants in genes encoding these enzymes may cause variation in response to oxaliplatin and could be potential predictive markers. Therefore, we used a two-step procedure to comprehensively investigate 1,444 single nucleotide polymorphisms (SNPs) from these pathways for their potential as predictive markers for oxaliplatin treatment, using 623 stage II-IV CRC patients (of whom 201 patients received oxaliplatin) from a German prospective patient cohort treated with adjuvant or palliative chemotherapy. First, all genes were screened using the global test that evaluated SNP*oxaliplatin interaction terms per gene. Second, one model was created by backward elimination on all SNP*oxaliplatin interactions of the selected genes. The statistical procedure was evaluated using bootstrap analyses. Nine genes differentially associated with overall survival according to oxaliplatin treatment (unadjusted p values < 0.05) were selected. Model selection resulted in the inclusion of 14 SNPs from eight genes (six transporter genes, ABCA9, ABCB11, ABCC10, ATP1A1, ATP1B2, ATP8B3, and two metabolism genes GSTM5, GRHPR), which significantly improved model fit. Using bootstrap analysis we show an improvement of the prediction error of 3.7% in patients treated with oxaliplatin. Several variants in genes involved in metabolism and transport could thus be potential predictive markers for oxaliplatin treatment in CRC patients. If confirmed, inclusion of these variants in a predictive test could identify patients who are more likely to benefit from treatment with oxaliplatin. PMID:26835885

  14. 49 CFR 37.43 - Alteration of transportation facilities by public entities.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 1 2010-10-01 2010-10-01 false Alteration of transportation facilities by public... transportation facilities by public entities. (a)(1) When a public entity alters an existing facility or a part of an existing facility used in providing designated public transportation services in a way...

  15. 49 CFR 37.43 - Alteration of transportation facilities by public entities.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 1 2012-10-01 2012-10-01 false Alteration of transportation facilities by public... transportation facilities by public entities. (a)(1) When a public entity alters an existing facility or a part of an existing facility used in providing designated public transportation services in a way...

  16. 49 CFR 37.43 - Alteration of transportation facilities by public entities.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 1 2011-10-01 2011-10-01 false Alteration of transportation facilities by public... transportation facilities by public entities. (a)(1) When a public entity alters an existing facility or a part of an existing facility used in providing designated public transportation services in a way...

  17. 49 CFR 37.43 - Alteration of transportation facilities by public entities.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 1 2014-10-01 2014-10-01 false Alteration of transportation facilities by public... transportation facilities by public entities. (a)(1) When a public entity alters an existing facility or a part of an existing facility used in providing designated public transportation services in a way...

  18. Novel understanding of ABC transporters ABCB1/MDR/P-glycoprotein, ABCC2/MRP2, and ABCG2/BCRP in colorectal pathophysiology

    PubMed Central

    Andersen, Vibeke; Svenningsen, Katrine; Knudsen, Lina Almind; Hansen, Axel Kornerup; Holmskov, Uffe; Stensballe, Allan; Vogel, Ulla

    2015-01-01

    AIM: To evaluate ATP-binding cassette (ABC) transporters in colonic pathophysiology as they had recently been related to colorectal cancer (CRC) development. METHODS: Literature search was conducted on PubMed using combinations of the following terms: ABC transporters, ATP binding cassette transporter proteins, inflammatory bowel disease, ulcerative, colitis, Crohns disease, colorectal cancer, colitis, intestinal inflammation, intestinal carcinogenesis, ABCB1/P-glycoprotein (P-gp/CD243/MDR1), ABCC2/multidrug resistance protein 2 (MRP2) and ABCG2/breast cancer resistance protein (BCRP), Abcb1/Mdr1a, abcc2/Mrp2, abcg2/Bcrp, knock-out mice, tight junction, membrane lipid function. RESULTS: Recently, human studies reported that changes in the levels of ABC transporters were early events in the adenoma-carcinoma sequence leading to CRC. A link between ABCB1, high fat diet and gut microbes in relation to colitis was suggested by the animal studies. The finding that colitis was preceded by altered gut bacterial composition suggests that deletion of Abcb1 leads to fundamental changes of host-microbiota interaction. Also, high fat diet increases the frequency and severity of colitis in specific pathogen-free Abcb1 KO mice. The Abcb1 KO mice might thus serve as a model in which diet/environmental factors and microbes may be controlled and investigated in relation to intestinal inflammation. Potential molecular mechanisms include defective transport of inflammatory mediators and/or phospholipid translocation from one side to the other of the cell membrane lipid bilayer by ABC transporters affecting inflammatory response and/or function of tight junctions, phagocytosis and vesicle trafficking. Also, diet and microbes give rise to molecules which are potential substrates for the ABC transporters and which may additionally affect ABC transporter function through nuclear receptors and transcriptional regulation. Another critical role of ABCB1 was suggested by the finding that

  19. Overexpression of Arginine Transporter CAT-1 Is Associated with Accumulation of L-Arginine and Cell Growth in Human Colorectal Cancer Tissue

    PubMed Central

    Wang, Junchen; Yang, Chunzhang; Mao, Huiming; Fu, Xuelian; Wu, Yanling; Cai, Jingping; Han, Junyi; Xu, Zengguang; Zhuang, Zhengping; Liu, Zhongmin; Hu, Hai; Chen, Bingguan

    2013-01-01

    We previously showed that L-arginine (Arg) accumulates in colorectal cancer tissues. The aim of this study was to investigate the mechanism by which Arg accumulates and determine its biological significance. The concentration of Arg and Citrulline (Cit) in sera and tumor tissues from colorectal cancer (CRC) patients was analyzed by high-performance liquid chromatography (HPLC). The expression of Arg transporters was analyzed by quantitative reverse transcription polymerase chain reaction (qRT-PCR) and immunohistochemical analysis of tissue microarray. We also transfected the colon cancer cell line HCT-116 with siRNA specific for the Arg transporter CAT-1 and measured the induction of apoptosis by flow cytometry and cell proliferation by MTT assay. Consistent with our previous results, serum Arg and Cit concentrations in colorectal cancer patients were significantly lower than those in normal volunteers, while Arg and Cit concentrations in colorectal cancer tissues were significantly higher than in matched adjacent normal colon tissues. Quantitative RT-PCR showed that the CAT-1 gene was highly overexpressed in 70.5% of colorectal cancer tissue samples relative to adjacent normal colon tissues in all 122 patients with colorectal cancer. Immunohistochemical analysis of tissue microarray confirmed that the expression of CAT-1 was higher in all 25 colorectal cancer tissues tested. CAT-1 siRNA significantly induced apoptosis of HCT-116 cells and subsequently inhibited cell growth by 20–50%. Our findings indicate that accumulation of L-Arg and Cit and cell growth in colorectal cancer tissues is associated with over-expression of the Arg transporter gene CAT-1. Our results may be useful for the development of molecular diagnostic tools and targeted therapy for colorectal cancer. PMID:24040099

  20. Absence of somatic alterations of the EB1 gene adenomatous polyposis coli-associated protein in human sporadic colorectal cancers.

    PubMed Central

    Jaïs, P.; Sabourin, J. C.; Bombled, J.; Rougier, P.; Lasser, P.; Duvillard, P.; Bénard, J.; Bressac-de Paillerets, B.

    1998-01-01

    The human EB1 gene product was recently found, by a yeast two-hybrid screening, to be associated with the carboxy terminus of the APC (adenomatous polyposis coli) protein, the product of a tumour-suppressor gene thought to act as a gatekeeper in colorectal carcinogenesis. Because virtually all of the APC mutations result in the synthesis of carboxy-terminal truncated proteins, mutant APC proteins are expected to lose their ability to interact with EB1 gene product. Thus, the interaction between APC and EB1 proteins may be important for the tumour-suppressor activity of APC protein, and raises the hypothesis that EB1 is also involved in sporadic colorectal tumorigenesis. To investigate this hypothesis, somatic mutations in the entire coding sequence of EB1 cDNA were searched by reverse transcriptase single-strand conformational polymorphism (SSCP) analysis in 21 sporadic colorectal cancers and seven adenomas. None of these tumours contained somatic mutation, whereas a silent cDNA variant was identified in 14% of alleles. Furthermore, to investigate whether EB1 locus was included within a region subjected to losses of heterozygosity, four polymorphism markers surrounding EB1 locus were surveyed. Only one out of 28 colorectal tumours contained a loss of heterozygosity at the D20S107 marker. In conclusion, the present findings strongly suggest that EB1 gene is not involved in somatic colorectal carcinogenesis. Images Figure 2 Figure 3 PMID:9823979

  1. ABC-Transporter Expression Does Not Correlate with Response to Irinotecan in Patients with Metastatic Colorectal Cancer

    PubMed Central

    Trumpi, K.; Emmink, B.L.; Prins, A.M.; van Oijen, M.G.H.; van Diest, P.J.; Punt, C.J.A.; Koopman, M.; Kranenburg, O.; Rinkes, I.H.M. Borel

    2015-01-01

    Background: Active efflux of irinotecan by ATP-binding cassette (ABC)-transporters, in particular ABCB1 and ABCG2, is a well-established drug resistance mechanism in vitro and in pre-clinical mouse models, but its relevance in colorectal cancer (CRC) patients is unknown. Therefore, we assessed the association between ABC-transporter expression and tumour response to irinotecan in patients with metastatic CRC. Methods: Tissue microarrays of a large cohort of metastatic CRC patients treated with irinotecan in a prospective study (CAIRO study; n=566) were analysed for expression of ABCB1 and ABCG2 by immunohistochemistry. Kaplan-Meier and Cox proportional hazard regression analyses were performed to assess the association of ABC transporter expression with irinotecan response. Gene expression profiles of 17 paired tumours were used to assess the concordance of ABCB1/ABCG2 expression in primary CRC and corresponding metastases. Results: The response to irinotecan was not significantly different between primary tumours with positive versus negative expression of ABCB1 (5.8 vs 5.7 months, p=0.696) or ABCG2 (5.7 vs 6.1 months, p=0.811). Multivariate analysis showed neither ABCB1 nor ABCG2 were independent predictors for progression free survival. There was a mediocre to poor concordance between ABC-transporter expression in paired tumours. Conclusion: In metastatic CRC, ABC-transporter expression in the primary tumour does not predict irinotecan response. PMID:26516354

  2. A colorectal cell line with alterations in E-cadherin and epithelial biology may be an in vitro model of colitis.

    PubMed Central

    Perry, I; Hardy, R; Jones, T; Jankowski, J

    1999-01-01

    BACKGROUND: It has been shown previously in ulcerative colitis tissue that E-cadherin can occasionally be mutated in the extracellular domain early in neoplastic progression. E-cadherin is known to maintain differentiation and inhibits invasion in vivo. AIMS: To assess the mechanisms by which such dysfunction occurs. METHODS: Four human colorectal cancer cell lines, HCA-7 colonies 1, 3, 6, and 30, derived from a single heterogeneous colorectal cancer were studied. The HCA-7 cell line has p53 mutations and a random errors of replication "positive" phenotype, as is seen in early colitis associated cancers or hereditary nonpolyposis coli cancer (HNPCC). RESULTS: Cell lines 6 and 30 expressed E-cadherin abundantly and this correlated positively with their degree of differentiation and organisation; however, both cell lines had loss of heterozygosity of E-cadherin. Interestingly, E-cadherin production was downregulated in the poorly differentiated cell line 1, and this was associated with major chromosomal rearrangements of 16q. This cell line also had a mutation in the homophilic binding domain of exon 4, which was associated with disaggregation by low titres of a function blocking antibody, and an invasive phenotype. CONCLUSIONS: These multiple biological alterations further characterise the complex association that E-cadherin has with tumour heterogeneity and suggest that this series of cell lines may be a useful model of colitis associated or HNPCC associated tumorigenesis. PMID:10694944

  3. A Functional Variant at miR-520a Binding Site in PIK3CA Alters Susceptibility to Colorectal Cancer in a Chinese Han Population

    PubMed Central

    Ding, Lifang; Jiang, Zao; Chen, Qiaoyun; Qin, Rong; Fang, Yue

    2015-01-01

    An increasing body of evidence has indicated that polymorphisms in the miRNA binding site of target gene can alter the ability of miRNAs to bind their target genes and modulate the risk of cancer. We aimed to investigate the association between a miR-520a binding site polymorphism rs141178472 in the PIK3CA 3′-UTR and the risk of colorectal cancer (CRC) in a Chinese Han population. The polymorphism rs141178472 was analyzed in a case-control study, including 386 CRC patients and 394 age- and sex-matched controls; the relationship between the polymorphism and the risk of colorectal cancer was examined. Individuals carrying the rs141178472 CC genotype or C allele had an increased risk of developing CRC (CC versus TT, OR (95% CI): 1.716 (1.084–2.716), P = 0.022; C versus T, OR (95% CI): 1.258 (1.021–1.551), P = 0.033). Furthermore, the expression of PIK3CA was detected in the peripheral blood mononucleated cell of CRC patients, suggesting that mRNA levels of PIK3CA might be associated with SNP rs141178472. These findings provide evidence that a miR-520a binding site polymorphism rs141178472 in the PIK3CA 3′-UTR may play a role in the etiology of CRC. PMID:25834816

  4. Fluoxetine-induced alterations in human platelet serotonin transporter expression: serotonin transporter polymorphism effects

    PubMed Central

    Little, Karley Y.; Zhang, Lian; Cook, Edwin

    2006-01-01

    Objective Long-term antidepressant drug exposure may regulate its target molecule — the serotonin transporter (SERT). This effect could be related to an individual's genotype for an SERT promoter polymorphism (human serotonin transporter coding [5-HTTLPR]). We aimed to determine the effects of fluoxetine exposure on human platelet SERT levels. Method We harvested platelet samples from 21 healthy control subjects. The platelets were maintained alive ex vivo for 24 hours while being treated with 0.1 μM fluoxetine or vehicle. The effects on SERT immunoreactivity (IR) were then compared. Each individual's SERT promoter genotype was also determined to evaluate whether fluoxetine effects on SERT were related to genotype. Results Fluoxetine exposure replicably altered SERT IR within individuals. Both the magnitude and the direction of effect were related to a person's SERT genotype. People who were homozygous for the short gene (SS) displayed decreased SERT IR, whereas those who were homozygous for the long gene (LL) demonstrated increased SERT IR. A mechanistic experiment suggested that some individuals with the LL genotype might experience increased conversion of complexed SERT to primary SERT during treatment. Conclusions These preliminary results suggest that antidepressant effects after longer-term use may include changes in SERT expression levels and that the type and degree of effect may be related to the 5-HTTLPR polymorphism. PMID:16951736

  5. Associations of beta-catenin alterations and MSI screening status with expression of key cell cycle regulating proteins and survival from colorectal cancer

    PubMed Central

    2013-01-01

    Background Despite their pivotal roles in colorectal carcinogenesis, the interrelationship and prognostic significance of beta-catenin alterations and microsatellite instability (MSI) in colorectal cancer (CRC) needs to be further clarified. In this paper, we studied the associations between beta-catenin overexpression and MSI status with survival from CRC, and with expression of p21, p27, cyclin D1 and p53, in a large, prospective cohort study. Methods Immunohistochemical MSI-screening status and expression of p21, p27 and p53 was assessed in tissue microarrays with tumours from 557 cases of incident CRC in the Malmö Diet and Cancer Study. Chi Square and Spearman’s correlation tests were used to explore the associations between beta-catenin expression, MSI status, clinicopathological characteristics and investigative parameters. Kaplan-Meier analysis and Cox proportional hazards modelling were used to assess the relationship between beta-catenin overexpression, MSI status and cancer specific survival (CSS). Results Positive MSI screening status was significantly associated with older age, female sex, proximal tumour location, non-metastatic disease, and poor differentiation, and inversely associated with beta-catenin overexpression. Beta-catenin overexpression was significantly associated with distal tumour location, low T-stage and well-differentiated tumours. Patients with MSI tumours had a significantly prolonged CSS in the whole cohort, and in stage III-IV disease, also in multivariable analysis, but not in stage I-II disease. Beta-catenin overexpression was associated with a favourable prognosis in the full cohort and in patients with stage III-IV disease. Neither MSI nor beta-catenin status were predictive for response to adjuvant chemotherapy in curatively treated stage III patients. P53 and p27 expression was positively associated with beta-catenin overexpression and inversely associated with MSI. Cyclin D1 expression was positively associated with MSI

  6. Long-term modeling of alteration-transport coupling: Application to a fractured Roman glass

    NASA Astrophysics Data System (ADS)

    Verney-Carron, Aurélie; Gin, Stéphane; Frugier, Pierre; Libourel, Guy

    2010-04-01

    To improve confidence in glass alteration models, as used in nuclear and natural applications, their long-term predictive capacity has to be validated. For this purpose, we develop a new model that couples geochemical reactions with transport and use a fractured archaeological glass block that has been altered for 1800 years under well-constrained conditions in order to test the capacity of the model. The chemical model considers three steps in the alteration process: (1) formation of a hydrated glass by interdiffusion, whose kinetics are controlled by a pH and temperature dependent diffusion coefficient; (2) the dissolution of the hydrated glass, whose kinetics are based on an affinity law; (3) the precipitation of secondary phases if thermodynamic saturation is reached. All kinetic parameters were determined from experiments. The model was initially tested on alteration experiments in different solutions (pure water, Tris, seawater). It was then coupled with diffusive transport in solution to simulate alteration in cracks within the glass. Results of the simulations run over 1800 years are in good agreement with archaeological glass block observations concerning the nature of alteration products (hydrated glass, smectites, and carbonates) and crack alteration thicknesses. External cracks in direct contact with renewed seawater were altered at the forward dissolution rate and are filled with smectites (400-500 μm). Internal cracks are less altered (by 1 or 2 orders of magnitude) because of the strong coupling between alteration chemistry and transport. The initial crack aperture, the distance to the surface, and sealing by secondary phases account for these low alteration thicknesses. The agreement between simulations and observations thus validates the predictive capacity of this coupled geochemical model and increases more generally the robustness and confidence in glass alteration models to predict long-term behavior of nuclear waste in geological disposal or

  7. AB060. A4164G alteration of mitochondrial MT-ND1 gene in a Vietnamese patient group with colorectal cancer

    PubMed Central

    Bich, Pham Thi; Chang, Hoang Thi; Ha, Do Minh; Van To, Ta; Thai, Trinh Hong

    2015-01-01

    Background and objective Colorectal cancer (CRC) is one of the most common cancers which is increasing all over the world and in Vietnam. Many causes of disease have been identified, including variations in nuclear genes and mitochondrial genes. The MT-ND1 gene is located in the heavy strand of mitochondrial DNA and encodes NADH dehydrogenase 1 protein. Some mutations were detected in mitochondrial DNA of CRC patients such as T3394C, T4216C and C3497T. These mutations occur in high conservative region, thus can effect on structure and function of the NADH dehydrogenase 1. In this study, we investigated the incidence of A4164G and T4216C alterations of mitochondrial MT-ND1 gene in Vietnamese CRC patients and whether these alterations might be associated with some pathological characteristics of CRC. Methods A total of 107 Vietnamese CRC patients and 100 controls were determined for A4164G and T4216C alterations by using PCR-RFLP and sequencing methods. Relationship between the genotype and pathological characteristics of CRC patients was calculated by using χ2 test. Odds ratio and 95% confidence interval were calculated as an estimate of the relative risk. Results The results showed that there were 14.95% CRC tissue samples, 10.53% cancer blood samples and 9% blood control samples with the A4164G alteration in the MT-ND1 gene. T4216C mutation was not found in those samples. There was no difference of A4164G distribution in subgroups of age, gender, size of tumor (P>0.05), but difference in site of tumor and TNM (lymph-node-metastasis) stage (P<0.05). The A4164G alteration was only found in 22.22% blood samples of CRC patients which had A4164G alteration in the tissue samples. So A4164G alteration can be a somatic mutation in these CRC patients. Conclusions The difference of A4164G alteration between tumor tissue, adjacent tissue and blood of the same patient in some CRC cases can be considered as an evidence of somatic mutation in these CRC patients in Vietnam.

  8. Altered carnitine transport in pressure-overload hypertrophied rat hearts

    SciTech Connect

    O'Rourke, B.; Foster, K.; Reibel, D.K.

    1986-03-01

    The authors have previously observed reduced carnitine levels in hypertrophied hearts of rats subjected to aortic constriction. In an attempt to determine the mechanism for reduced myocardial carnitine content, carnitine transport was examined in isolated perfused hearts. Hearts were excised from sham-operated and aortic-constricted rats 3 weeks following surgery and perfused at 60 mm Hg aortic pressure with buffer containing various concentrations of L-/sup 14/C-carnitine. Carnitine uptake by control and hypertrophied hearts was linear throughout 30 minutes of perfusion with 40 ..mu..M carnitine. Total carnitine uptake was significantly reduced by 25% in hypertrophied hearts at each time point examined. The reduction in uptake by hypertrophied hearts was also evident when hearts were perfused with 100 or 200 ..mu..M carnitine. When 0.05 mM mersalyl acid was included in the buffer to inhibit the carrier-mediated component of transport, no difference in carnitine uptake was observed indicating that the transport of carnitine by diffusion was unaltered in the hypertrophied myocardium. Carrier-mediated carnitine uptake (total uptake - uptake by diffusion) was significantly reduced by approximately 40% in hypertrophied hearts at all concentrations examined. Thus, the reduction in carnitine content in the pressure-overload hypertrophied rat heart appears to be due to a reduction in carrier-mediated carnitine uptake by the heart.

  9. Low-sulfur coal usage alters transportation strategies

    SciTech Connect

    Stein, H.

    1995-07-01

    As electricity production has grown, so has the amount of coal burned by US utilities. In order to comply with the 1990 Clean Air Act Amendments (CAAA), many utilities have changed from high-sulfur coal to lower-sulfur coal to reduce sulfur dioxide emissions. The primary mode of transporting coal to utilities remains the railroad, and coal represents the largest freight tonnage shipped - two out of every five tons. Since coal is so important to the railroads, it is logical that as utilities have changed their coal-buying strategies, the railroads` strategies have also changed. The increased demand for Western coal has caused rail lines some capacity problems which they are attempting to meet head-on by buying new railcars and locomotives and expanding track capacities. The new railcars typically have aluminum bodies to reduce empty weight, enabling them to carry larger loads of coal. Train locomotives are also undergoing upgrade changes. Most new locomotives have as motors to drive the wheels which deliver more motive power (traction) to the wheel trucks. In fact the motors are up to 30% more efficient at getting the traction to the trucks. Trackage is also being expanded to alleviate serious congestion on the tracks when moving Western coal.

  10. Pyrethroid pesticide-induced alterations in dopamine transporter function

    PubMed Central

    Elwan, Mohamed A.; Richardson, Jason R.; Guillot, Thomas S.; Caudle, W. Michael; Miller, Gary W.

    2016-01-01

    Parkinson’s disease (PD) is a progressive neurodegenerative disease affecting the nigrostriatal dopaminergic pathway. Several epidemiological studies have demonstrated an association between pesticide exposure and the incidence of PD. Studies from our laboratory and others have demonstrated that certain pesticides increase levels of the dopamine transporter (DAT), an integral component of dopaminergic neurotransmission and a gateway for dopaminergic neurotoxins. Here, we report that repeated exposure (3 injections over 2 weeks) of mice to two commonly used pyrethroid pesticides, deltamethrin (3 mg/kg) and permethrin (0.8 mg/kg), increases DAT-mediated dopamine uptake by 31 and 28%, respectively. Using cells stably expressing DAT, we determined that exposure (10 min) to deltamethrin and permethrin (1 nM–100 μM) had no effect on DAT-mediated dopamine uptake. Extending exposures to both pesticides for 30 min (10 μM) or 24 h (1, 5, and 10 μM) resulted in significant decrease in dopamine uptake. This reduction was not the result of competitive inhibition, loss of DAT protein, or cytotoxicity. However, there was an increase in DNA fragmentation, an index of apoptosis, in cells exhibiting reduced uptake at 30 min and 24 h. These data suggest that up-regulation of DAT by in vivo pyrethroid exposure is an indirect effect and that longer-term exposure of cells results in apoptosis. Since DAT can greatly affect the vulnerability of dopamine neurons to neurotoxicants, up-regulation of DAT by deltamethrin and permethrin may increase the susceptibility of dopamine neurons to toxic insult, which may provide insight into the association between pesticide exposure and PD. PMID:16005927

  11. Pyrethroid pesticide-induced alterations in dopamine transporter function

    SciTech Connect

    Elwan, Mohamed A.; Richardson, Jason R.; Guillot, Thomas S.; Caudle, W. Michael; Miller, Gary W. . E-mail: gary.miller@emory.edu

    2006-03-15

    Parkinson's disease (PD) is a progressive neurodegenerative disease affecting the nigrostriatal dopaminergic pathway. Several epidemiological studies have demonstrated an association between pesticide exposure and the incidence of PD. Studies from our laboratory and others have demonstrated that certain pesticides increase levels of the dopamine transporter (DAT), an integral component of dopaminergic neurotransmission and a gateway for dopaminergic neurotoxins. Here, we report that repeated exposure (3 injections over 2 weeks) of mice to two commonly used pyrethroid pesticides, deltamethrin (3 mg/kg) and permethrin (0.8 mg/kg), increases DAT-mediated dopamine uptake by 31 and 28%, respectively. Using cells stably expressing DAT, we determined that exposure (10 min) to deltamethrin and permethrin (1 nM-100 {mu}M) had no effect on DAT-mediated dopamine uptake. Extending exposures to both pesticides for 30 min (10 {mu}M) or 24 h (1, 5, and 10 {mu}M) resulted in significant decrease in dopamine uptake. This reduction was not the result of competitive inhibition, loss of DAT protein, or cytotoxicity. However, there was an increase in DNA fragmentation, an index of apoptosis, in cells exhibiting reduced uptake at 30 min and 24 h. These data suggest that up-regulation of DAT by in vivo pyrethroid exposure is an indirect effect and that longer-term exposure of cells results in apoptosis. Since DAT can greatly affect the vulnerability of dopamine neurons to neurotoxicants, up-regulation of DAT by deltamethrin and permethrin may increase the susceptibility of dopamine neurons to toxic insult, which may provide insight into the association between pesticide exposure and PD.

  12. Colorectal Cancer

    MedlinePlus

    ... and rectum are part of the large intestine. Colorectal cancer occurs when tumors form in the lining of ... both men and women. The risk of developing colorectal cancer rises after age 50. You're also more ...

  13. Colorectal polyps

    MedlinePlus

    ... SJ, et al. United States Multi-Society Task Force on Colorectal Cancer. Guidelines for colonoscopy surveillance after ... consensus update by the US Multi-Society Task Force on Colorectal Cancer. Gastroenterology . 2012;143:844-857. ...

  14. Colorectal Cancer

    MedlinePlus

    ... rectum are part of the large intestine. Colorectal cancer occurs when tumors form in the lining of ... men and women. The risk of developing colorectal cancer rises after age 50. You're also more ...

  15. Propionate alters ion transport by rabbit distal colon

    SciTech Connect

    Horvath, P.J.; Weiser, M.M.; Duffey, M.E.

    1986-03-01

    The primary anions of the colon are short-chain fatty acids (SCFA) produced by intestinal microorganisms from endogenous secretions and dietary fiber. The effects of the SCFA propionate on ion transport by the epithelium of rabbit distal colon were studied on tissues stripped of underlying musculature and mounted in Ussing chambers. When tissues were bathed with NaCl Ringer's solutions at 37/sup 0/C (5% CO/sub 2/-21mM HCO/sub 3/, pH 7.4) replacement of 33mM Cl/sup -/ in both tissue baths by propionate reduced short-circuit current (Isc) from 86 to 35 ..mu..A/cm/sup 2/ and increased transepithelial conductance (G/sub t/) from 3.6 to 5.6mS/cm/sup 2/. Unidirectional /sup 14/C-propionate flux measurements revealed that this ion was secreted at a rate of 0.5..mu..Eq/cm/sup 2/hr. Intracellular measurements with potential and pH sensitive microelectrodes showed that propionate reduced intracellular pH (PH/sub i/) from 6.84 to 6.68 (P < 0.02), depolarized the apical membrane potential (phi/sub a/) by 4mV (P < 0.02) and decreased the membrane fractional resistance (f/sub R/) from .78 to .71 (P < 0.001). Addition of 0.1mM amiloride to the mucosal bath reversed Isc to -18..mu..A/cm/sup 2/, decreased G/sub t/ to 5.3mS/cm/sup 2/, hyperpolarized phi/sub a/ by 5mV (P < 0.05) and increased f/sub R/ to 0.85 (P < 0.001). Amiloride had no effect on pH/sub i/. These results show that propionate can be secreted by rabbit distal colon and that exposure to this SCFA causes cell acidification and electrophysiological changes consistent with H/sup +/ secretion.

  16. CHROMATOGRAPHIC ALTERATION OF A NONIONIC SURFACTANT MIXTURE DURING TRANSPORT IN DENSE NONAQUEOUS PHASE LIQUID CONTAMINATED SEDIMENT (R826650)

    EPA Science Inventory

    Chromatographic alteration of a nonionic surfactant mixture during transport through DNAPL-contaminated aquifer sediment may occur due to differential loss of oligomers to sediment and to dense nonaqueous phase liquid (DNAPL). These losses may significantly alter the solubilizing...

  17. Alteration of human hepatic drug transporter activity and expression by cigarette smoke condensate.

    PubMed

    Sayyed, Katia; Vee, Marc Le; Abdel-Razzak, Ziad; Jouan, Elodie; Stieger, Bruno; Denizot, Claire; Parmentier, Yannick; Fardel, Olivier

    2016-07-01

    Smoking is well-known to impair pharmacokinetics, through inducing expression of drug metabolizing enzymes. In the present study, we demonstrated that cigarette smoke condensate (CSC) also alters activity and expression of hepatic drug transporters, which are now recognized as major actors of hepatobiliary elimination of drugs. CSC thus directly inhibited activities of sinusoidal transporters such as OATP1B1, OATP1B3, OCT1 and NTCP as well as those of canalicular transporters like P-glycoprotein, MRP2, BCRP and MATE1, in hepatic transporters-overexpressing cells. CSC similarly counteracted constitutive OATP, NTCP and OCT1 activities in human highly-differentiated hepatic HepaRG cells. In parallel, CSC induced expression of BCRP at both mRNA and protein level in HepaRG cells, whereas it concomitantly repressed mRNA expression of various transporters, including OATP1B1, OATP2B1, OAT2, NTCP, OCT1 and BSEP, and enhanced that of MRP4. Such changes in transporter gene expression were found to be highly correlated to those caused by 2,3,7,8-tetrachlorodibenzo-p-dioxin, a reference activator of the aryl hydrocarbon receptor (AhR) pathway, and were counteracted, for some of them, by siRNA-mediated AhR silencing. This suggests that CSC alters hepatic drug transporter levels via activation of the AhR cascade. Importantly, drug transporter expression regulations as well as some transporter activity inhibitions occurred for a range of CSC concentrations similar to those required for inducing drug metabolizing enzymes and may therefore be hypothesized to be relevant for smokers. Taken together, these data established human hepatic transporters as targets of cigarette smoke, which could contribute to known alteration of pharmacokinetics and some liver adverse effects caused by smoking. PMID:27450509

  18. Expression and localization of the immunophilin FKBP51 in colorectal carcinomas and primary metastases, and alterations following oxaliplatin-based chemotherapy

    PubMed Central

    Rotoli, Deborah; Morales, Manuel; Del Carmen Maeso, María; Del Pino García, María; Morales, Araceli; Ávila, Julio; Martín-Vasallo, Pablo

    2016-01-01

    The immunophilin FK506-binding protein 5 (FKBP51) is a scaffold protein that serves a pivotal role in the regulation of multiple signaling pathways, integrating external and internal stimuli into distinct signal outputs. In a previous study, we identified several genes that are significantly up- or downregulated in the peripheral white cells (PWCs) of colorectal adenocarcinoma (CRC) patients undergoing oxaliplatin-based chemotherapy. In our screening, FKBP51 gene expression was downregulated following chemotherapy. In order to determine whether this alteration in gene expression observed in PWCs may be detected at the protein level in tumors and metastases following the administration of adjuvant chemotherapy, an immunohistochemical analysis of FKBP51 in CRC and primary metastasis tissues was performed. The present study confirmed the downregulation of FKBP51 gene expression elicited by chemotherapy with folinic acid (leucovorin), fluorouracil and oxaliplatin in metastasized liver tissue that had been resected after the oxaliplatin-based chemotherapy, compared with tissue section samples of CRC from patients (prior to antineoplastic treatment). Furthermore, the results indicated that, in CRC tissue sections, the expression of FKBP51 protein is associated with an immature phenotype of stromal fibroblasts and with the epithelial-to-mesenchymal transition (EMT) phenotype, suggesting a role for this protein in the EMT process in CRC. Finally, the observation that only certain cells of the stroma express FKBP51 protein suggests a potential role for this immunophilin as a stroma cell subtype marker. PMID:27446431

  19. Preferential Radionuclide Transport in a Tuff with Altered Zones: Micro-scale Mapping

    NASA Astrophysics Data System (ADS)

    Hu, Q.; Liu, X.; Zuo, R.

    2009-12-01

    Understanding radionuclide transport in fractured rock is important for performance assessment of proposed radioactive waste disposal sites. We performed laboratory tests to study water imbibition and radionuclide transport into initially dry tuff by contacting one end of a sample with water containing a mixture of tracers (Re, 99Tc, Sr, Cs, 235U, 237Np, and 242Pu). The tuff sample, collected from Yucca Mountain, Nevada, is a cube 1-cm on each side and has a 1-mm thick altered gray zone embedded within the tuff matrix. Such gray zones are observed to be adjacent to lithophysae and fractures, are primarily quartz and tridymite, and have different hydraulic and chemical properties from the rock matrix. Capillary-driven imbibition transports tracer chemicals away from the imbibing face, causing separation of non-sorbing and sorbing tracers in tuff. Using a micro-scale profiling technique of laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS), we directly mapped the distribution of radionuclides along the altered zone (as well as transverse to the unaltered matrix). We found that the altered zone shows higher permeability, and less retardation of sorbing radionuclides, than the unaltered matrix, leading to preferential transport along the altered zone. Transverse profiling of the unaltered matrix indicated only limited penetration of strongly sorbing radionuclides, such as Pu.

  20. Altered magnesium transport in slices of kidney cortex from chemically-induced diabetic rats

    SciTech Connect

    Hoskins, B.

    1981-10-01

    The uptake of magnesium-28 was measured in slices of kidney cortex from rats with alloxan-diabetes and from rats with streptozotocin-diabetes of increasing durations. In both forms of chemically-induced diabetes, magnesium-28 uptake by kidney cortex slices was significantly increased over uptake measured in kidney cortex slices from control rats. Immediate institution of daily insulin therapy to the diabetic rats prevented the diabetes-induced elevated uptake of magnesium without controlling blood glucose levels. Late institution of daily insulin therapy was ineffective in restoring the magnesium uptake to control values. These alterations in magnesium uptake occurred prior to any evidence of nephropathy (via the classic indices of proteinuria and increased BUN levels). The implications of these findings, together with our earlier demonstrations of altered calcium transport by kidney cortex slices from chemically-induced diabetic rats, are discussed in terms of disordered divalent cation transport being at least part of the basic pathogenesis underlying diabetic nephropathy.

  1. Altered regulation of hepatic efflux transporters disrupts acetaminophen disposition in pediatric nonalcoholic steatohepatitis.

    PubMed

    Canet, Mark J; Merrell, Matthew D; Hardwick, Rhiannon N; Bataille, Amy M; Campion, Sarah N; Ferreira, Daniel W; Xanthakos, Stavra A; Manautou, Jose E; A-Kader, H Hesham; Erickson, Robert P; Cherrington, Nathan J

    2015-06-01

    Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease, representing a spectrum of liver pathologies that include simple hepatic steatosis and the more advanced nonalcoholic steatohepatitis (NASH). The current study was conducted to determine whether pediatric NASH also results in altered disposition of acetaminophen (APAP) and its two primary metabolites, APAP-sulfate and APAP-glucuronide. Pediatric patients with hepatic steatosis (n = 9) or NASH (n = 3) and healthy patients (n = 12) were recruited in a small pilot study design. All patients received a single 1000-mg dose of APAP. Blood and urine samples were collected at 1, 2, and 4 hours postdose, and APAP and APAP metabolites were determined by high-performance liquid chromatography. Moreover, human liver tissues from patients diagnosed with various stages of NAFLD were acquired from the Liver Tissue Cell Distribution System to investigate the regulation of the membrane transporters, multidrug resistance-associated protein 2 and 3 (MRP2 and MRP3, respectively). Patients with the more severe disease (i.e., NASH) had increased serum and urinary levels of APAP-glucuronide along with decreased serum levels of APAP-sulfate. Moreover, an induction of hepatic MRP3 and altered canalicular localization of the biliary efflux transporter, MRP2, describes the likely mechanism for the observed increase in plasma retention of APAP-glucuronide, whereas altered regulation of sulfur activation genes may explain decreased sulfonation activity in NASH. APAP-glucuronide and APAP-sulfate disposition is altered in NASH and is likely due to hepatic membrane transporter dysregulation as well as altered intracellular sulfur activation. PMID:25788542

  2. Embryonic Stem Cell Proliferation Stimulated By Altered Anabolic Metabolism From Glucose Transporter 2-Transported Glucosamine.

    PubMed

    Jung, Jin Hyuk; Iwabuchi, Kumiko; Yang, Zhihong; Loeken, Mary R

    2016-01-01

    The hexose transporter, GLUT2 (SLC2A2), which is expressed by mouse embryos, is important for survival before embryonic day 10.5, but its function in embryos is unknown. GLUT2 can transport the amino sugar glucosamine (GlcN), which could increase substrate for the hexosamine biosynthetic pathway (HBSP) that produces UDP-N-acetylglucosamine for O-linked N-acetylglucosamine modification (O-GlcNAcylation) of proteins. To understand this, we employed a novel murine embryonic stem cell (ESC) line that, like mouse embryos, expresses functional GLUT2 transporters. GlcN stimulated ESC proliferation in a GLUT2-dependent fashion but did not regulate pluripotency. Stimulation of proliferation was not due to increased O-GlcNAcylation. Instead, GlcN decreased dependence of the HBSP on fructose-6-PO4 and glutamine. Consequently, glycolytic- and glutamine-derived intermediates that are needed for anabolic metabolism were increased. Thus, maternally obtained GlcN may increase substrates for biomass accumulation by embryos, as exogenous GlcN does for GLUT2-expressing ESC, and may explain the need for GLUT2 expression by embryos. PMID:27311888

  3. Embryonic Stem Cell Proliferation Stimulated By Altered Anabolic Metabolism From Glucose Transporter 2-Transported Glucosamine

    PubMed Central

    Jung, Jin Hyuk; Iwabuchi, Kumiko; Yang, Zhihong; Loeken, Mary R.

    2016-01-01

    The hexose transporter, GLUT2 (SLC2A2), which is expressed by mouse embryos, is important for survival before embryonic day 10.5, but its function in embryos is unknown. GLUT2 can transport the amino sugar glucosamine (GlcN), which could increase substrate for the hexosamine biosynthetic pathway (HBSP) that produces UDP-N-acetylglucosamine for O-linked N-acetylglucosamine modification (O-GlcNAcylation) of proteins. To understand this, we employed a novel murine embryonic stem cell (ESC) line that, like mouse embryos, expresses functional GLUT2 transporters. GlcN stimulated ESC proliferation in a GLUT2-dependent fashion but did not regulate pluripotency. Stimulation of proliferation was not due to increased O-GlcNAcylation. Instead, GlcN decreased dependence of the HBSP on fructose-6-PO4 and glutamine. Consequently, glycolytic- and glutamine-derived intermediates that are needed for anabolic metabolism were increased. Thus, maternally obtained GlcN may increase substrates for biomass accumulation by embryos, as exogenous GlcN does for GLUT2-expressing ESC, and may explain the need for GLUT2 expression by embryos. PMID:27311888

  4. Chronic methylphenidate alters locomotor activity and dopamine transporters differently from cocaine.

    PubMed

    Izenwasser, S; Coy, A E; Ladenheim, B; Loeloff, R J; Cadet, J L; French, D

    1999-06-01

    Continuous infusion of cocaine produces partial behavioral tolerance to its locomotor activating effects, while daily injections produce sensitization. Methylphenidate binds with a similar affinity to cocaine at the dopamine transporter, but has a much lower affinity for the serotonin transporter than does cocaine. This study was done to compare the effects of chronic methylphenidate with chronic cocaine. The pattern of locomotor activity over a 7 day treatment period was significantly different from cocaine. Methylphenidate elevated activity on each day, compared to saline, yet neither tolerance to a continuous infusion of the drug, nor sensitization to repeated daily injections was produced. We have previously shown that neither of these treatments with cocaine produces significant alterations in dopamine transporter density 1 day after the end of treatment. In contrast, methylphenidate injections significantly decreased dopamine transporters in rostral caudate putamen, with no change in nucleus accumbens. Continuous infusion of methylphenidate had no effect on dopamine transporters in either brain region. These findings provide further evidence that different classes of dopamine uptake inhibitors may interact with the dopamine transporter in qualitatively different manners. Furthermore, it is possible that the inhibition of serotonin uptake by cocaine may contribute to the adaptations in behavioral activity that are seen during chronic treatment. PMID:10414438

  5. Assessment of the Relation between the Expression of Oxaliplatin Transporters in Colorectal Cancer and Response to FOLFOX-4 Adjuvant Chemotherapy: A Case Control Study

    PubMed Central

    Le Roy, Bertrand; Tixier, Lucie; Pereira, Bruno; Sauvanet, Pierre; Buc, Emmanuel; Pétorin, Caroline; Déchelotte, Pierre; Pezet, Denis; Balayssac, David

    2016-01-01

    Background Adjuvant chemotherapy for colorectal cancer is mainly based on the combination of 5-fluorouracil, folinic acid and oxaliplatin (FOLFOX-4). The pharmacological target of oxaliplatin remains intracellular and therefore dependent on its entry into cells. The intracellular distribution of oxaliplatin is mediated by organic cation transporters 1, 2 and 3 (OCT1, 2 and 3), copper transporter 1 (CTR1) and ATPase Cu2+ transporting beta polypeptide (ATP7B) and may modulate the efficacy of oxaliplatin-based chemotherapy. The aim of this study was to perform a retrospective study to assess the relation between the expression of oxaliplatin transporters in colorectal cancer before chemotherapy and the response to FOLFOX-4 adjuvant chemotherapy in responder and non-responder patients. Methods This retrospective study was conducted at a single center (University Hospital of Clermont-Ferrand, France). The target population was patients with resectable colorectal cancer operated between 2006 and 2013. Inclusion criteria were defined for the responder patients as no cancer recurrence 3 years after the end of chemotherapy, and for the non-responder patients as cancer recurrence within 1 year. Other inclusion criteria were stages IIb–IV cancers, first-line adjuvant FOLFOX-4 chemotherapy, and the availability of resected primary tumor samples. Exclusion criteria were preoperative chemotherapy and/or radiotherapy, a targeted therapy, other anticancer drugs, cancer recurrence between the first and the third year after the end of chemotherapy and follow-up < 3 years. Immunostaining of oxaliplatin transporters (OCT1, 2, 3, CTR1 and ATP7B) and Ki-67 was assessed in tumor samples. Results Retrospectively, 31 patients have been selected according to inclusion and exclusion criteria (15 responders and 16 non-responders). Before FOLFOX-4 regimen, OCT3 expression was significantly lower in responder patients compared to non-responders (p<0.001). According to multivariate analysis

  6. BRAF, PIK3CA, and HER2 Oncogenic Alterations According to KRAS Mutation Status in Advanced Colorectal Cancers with Distant Metastasis

    PubMed Central

    Koh, Jiwon; Kwak, Yoonjin; Seo, An Na; Park, Kyoung Un; Kim, Duck-Woo; Kang, Sung-Bum; Kim, Woo Ho; Lee, Hye Seung

    2016-01-01

    Background Anti-EGFR antibody–based treatment is an important therapeutic strategy for advanced colorectal cancer (CRC); despite this, several mutations—including KRAS, BRAF, and PIK3CA mutations, and HER2 amplification—are associated with the mechanisms underlying the development of resistance to anti-EGFR therapy. The aim of our study was to investigate the frequencies and clinical implications of these genetic alterations in advanced CRC. Methods KRAS, BRAF, and PIK3CA mutations were determined by Cobas real-time polymerase chain reaction (PCR) in 191 advanced CRC patients with distant metastasis. Microsatellite instability (MSI) status was determined by a fragmentation assay and HER2 amplification was assessed by silver in situ hybridization. In addition, KRAS mutations were investigated by the Sanger sequencing method in 97 of 191 CRC cases. Results Mutations in KRAS, BRAF, and PIK3CA were found in 104 (54.5%), 6 (3.1%), and 25 (13.1%) cases of advanced CRC, respectively. MSI-high status and HER2 amplification were observed in 3 (1.6%) and 16 (8.4%) cases, respectively. PIK3CA mutations were more frequently found in KRAS mutant type (18.3%) than KRAS wild type (6.9%) (P = 0.020). In contrast, HER2 amplifications and BRAF mutations were associated with KRAS wild type with borderline significance (P = 0.052 and 0.094, respectively). In combined analyses with KRAS, BRAF and HER2 status, BRAF mutations or HER2 amplifications were associated with the worst prognosis in the wild type KRAS group (P = 0.004). When comparing the efficacy of detection methods, the results of real time PCR analysis revealed 56 of 97 (57.7%) CRC cases with KRAS mutations, whereas Sanger sequencing revealed 49 cases (50.5%). Conclusions KRAS mutations were found in 54.5% of advanced CRC patients. Our results support that subgrouping using PIK3CA and BRAF mutation or HER2 amplification status, in addition to KRAS mutation status, is helpful for managing advanced CRC patients. PMID

  7. Serum 25-hydroxyvitamin D, vitamin D binding protein, and risk of colorectal cancer in the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial

    PubMed Central

    Weinstein, Stephanie J.; Purdue, Mark P.; Smith-Warner, Stephanie A.; Mondul, Alison M.; Black, Amanda; Ahn, Jiyoung; Huang, Wen-Yi; Horst, Ronald L.; Kopp, William; Rager, Helen; Ziegler, Regina G.; Albanes, Demetrius

    2014-01-01

    The potential role of vitamin D in cancer prevention has generated substantial interest, and laboratory experiments indicate several anti-cancer properties for vitamin D compounds. Prospective studies of circulating 25-hydroxyvitamin D [25(OH)D], the accepted biomarker of vitamin D status, suggest an inverse association with colorectal cancer risk, but with some inconsistencies. Furthermore, the direct or indirect impact of the key transport protein, vitamin D binding protein (DBP), has not been examined. We conducted a prospective study of serum 25(OH)D and DBP concentrations and colorectal cancer risk in the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial, based on 476 colorectal cancer cases and 476 controls, matched on age, sex, race, and date of serum collection. All subjects underwent sigmoidoscopic screening at baseline and once during follow-up. Conditional logistic regression estimated odds ratios (ORs) and 95% confidence intervals (CIs). Circulating 25(OH)D was inversely associated with colorectal cancer (OR=0.60, 95% CI 0.38-0.94 for highest versus lowest quintile, p-trend 0.01). Adjusting for recognized colorectal cancer risk factors and accounting for seasonal vitamin D variation did not alter the findings. Neither circulating DBP nor the 25(OH)D:DBP molar ratio, a proxy for free circulating 25(OH)D, was associated with risk (OR=0.82, 95% CI 0.54-1.26, and OR=0.79, 95% CI 0.52-1.21, respectively), and DBP did not modify the 25(OH)D association. The current study eliminated confounding by colorectal cancer screening behavior, and supports an association between higher vitamin D status and substantially lower colorectal cancer risk, but does not indicate a direct or modifying role for DBP. PMID:25156182

  8. Serum 25-hydroxyvitamin D, vitamin D binding protein and risk of colorectal cancer in the Prostate, Lung, Colorectal and Ovarian Cancer Screening Trial.

    PubMed

    Weinstein, Stephanie J; Purdue, Mark P; Smith-Warner, Stephanie A; Mondul, Alison M; Black, Amanda; Ahn, Jiyoung; Huang, Wen-Yi; Horst, Ronald L; Kopp, William; Rager, Helen; Ziegler, Regina G; Albanes, Demetrius

    2015-03-15

    The potential role of vitamin D in cancer prevention has generated substantial interest, and laboratory experiments indicate several anti-cancer properties for vitamin D compounds. Prospective studies of circulating 25-hydroxyvitamin D [25(OH)D], the accepted biomarker of vitamin D status, suggest an inverse association with colorectal cancer risk, but with some inconsistencies. Furthermore, the direct or indirect impact of the key transport protein, vitamin D binding protein (DBP), has not been examined. We conducted a prospective study of serum 25(OH)D and DBP concentrations and colorectal cancer risk in the Prostate, Lung, Colorectal and Ovarian Cancer Screening Trial, based on 476 colorectal cancer cases and 476 controls, matched on age, sex, race and date of serum collection. All subjects underwent sigmoidoscopic screening at baseline and once during follow-up. Conditional logistic regression estimated odds ratios (ORs) and 95% confidence intervals (CIs). Circulating 25(OH)D was inversely associated with colorectal cancer (OR = 0.60, 95% CI 0.38-0.94 for highest versus lowest quintile, p trend 0.01). Adjusting for recognized colorectal cancer risk factors and accounting for seasonal vitamin D variation did not alter the findings. Neither circulating DBP nor the 25(OH)D:DBP molar ratio, a proxy for free circulating 25(OH)D, was associated with risk (OR = 0.82, 95% CI 0.54-1.26, and OR = 0.79, 95% CI 0.52-1.21, respectively), and DBP did not modify the 25(OH)D association. The current study eliminated confounding by colorectal cancer screening behavior, and supports an association between higher vitamin D status and substantially lower colorectal cancer risk, but does not indicate a direct or modifying role for DBP. PMID:25156182

  9. Genetical and comparative genomics of Brassica under altered Ca supply identifies Arabidopsis Ca-transporter orthologs.

    PubMed

    Graham, Neil S; Hammond, John P; Lysenko, Artem; Mayes, Sean; O Lochlainn, Seosamh; Blasco, Bego; Bowen, Helen C; Rawlings, Chris J; Rios, Juan J; Welham, Susan; Carion, Pierre W C; Dupuy, Lionel X; King, Graham J; White, Philip J; Broadley, Martin R

    2014-07-01

    Although Ca transport in plants is highly complex, the overexpression of vacuolar Ca(2+) transporters in crops is a promising new technology to improve dietary Ca supplies through biofortification. Here, we sought to identify novel targets for increasing plant Ca accumulation using genetical and comparative genomics. Expression quantitative trait locus (eQTL) mapping to 1895 cis- and 8015 trans-loci were identified in shoots of an inbred mapping population of Brassica rapa (IMB211 × R500); 23 cis- and 948 trans-eQTLs responded specifically to altered Ca supply. eQTLs were screened for functional significance using a large database of shoot Ca concentration phenotypes of Arabidopsis thaliana. From 31 Arabidopsis gene identifiers tagged to robust shoot Ca concentration phenotypes, 21 mapped to 27 B. rapa eQTLs, including orthologs of the Ca(2+) transporters At-CAX1 and At-ACA8. Two of three independent missense mutants of BraA.cax1a, isolated previously by targeting induced local lesions in genomes, have allele-specific shoot Ca concentration phenotypes compared with their segregating wild types. BraA.CAX1a is a promising target for altering the Ca composition of Brassica, consistent with prior knowledge from Arabidopsis. We conclude that multiple-environment eQTL analysis of complex crop genomes combined with comparative genomics is a powerful technique for novel gene identification/prioritization. PMID:25082855

  10. [Epigenetics and colorectal cancer].

    PubMed

    Menéndez, Pablo; Villarejo, Pedro; Padilla, David; Menéndez, José María; Rodríguez Montes, José Antonio

    2012-05-01

    The epigenetic and physiological mechanisms that alter the structure of chromatin include the methylation of DNA, changes in the histones, and changes in RNA. A literature review has been carried out using PubMed on the evidence published on the association between epigenetics and colorectal cancer. The scientific literature shows that epigenetic changes, such as genetic modifications may be very significant in the origin of neoplastic disease, contributing both to the development and progression of the disease. PMID:22425513

  11. Morphology Alters Fluid Transport and the Ability of Organisms to Mix Oceanic Waters.

    PubMed

    Katija, Kakani

    2015-10-01

    Mixing in the ocean is opposed by the stratification of fluid, such that density of seawater increases with greater depth. The mechanisms by which mixing occurs have been attributed largely to physical processes that include atmospheric forcing, tides, and internal waves. Biogenic mixing, another potential source of mixing in the ocean, may generate significant transport of fluid during diel vertical migrations of organisms. Biogenic mixing is not limited to the near-surface or to regions of rough bottom topography, as are other physical mixing processes, and may contribute significantly to the energy budget of mixing in mid-ocean. "Fluid drift", a mechanism first described by Charles Galton Darwin, has been identified as a mechanism that allows for long-distance, vertical transport of fluid by the smallest of swimming organisms. However, little is known about how fluid drift varies with morphology and behavior of swimming organisms. We conducted numerical simulations of theoretical and experimentally measured flows of swimming medusae (Phyllorhiza sp.), and compared the volume of the drift induced by these flows. Our numerical simulations of fluid drift showed that morphology coupled with swimming behavior alters the transport of fluid both spatially and temporally. Given empirical velocity field data, the methods presented here allow us to systematically compare fluid transport across taxa, and enable us to deduce the potential of swimming organisms to influence fluid transport. PMID:26117832

  12. Alterations in gut transport of minerals and in binding proteins during simulated weightlessness

    NASA Technical Reports Server (NTRS)

    Bikle, D. D.

    1984-01-01

    The structural components of the skeleton develop and are maintained in a 1 g environment, shaped by the mechanical load to which they are constantly exposed. Altering such a mechanical load by reducing the gravitational force imposed on the system, as in space flight, has profound effects on the skeleton and permits an exploration of the molecular events which regulate normal skeletal homeostasis. The objective was to determine whether simulated weightlessness reduced intestinal calcium transport, and if so, to determine the molecular mechanisms for such an effect. A nonstressful tail suspension in which the rats gained weight normally while suspended was used to simulate weightlessness. A significant change in intestinal calcium transport was not demonstrated. However, a cyclic change in bone formation with suspension was shown. Based on these observations, the objective changed to determination of the hormonal regulation of bone formation during simulated weightlessness.

  13. Alteration of O-GlcNAcylation affects serine phosphorylation and regulates gene expression and activity of pyruvate kinase M2 in colorectal cancer cells.

    PubMed

    Chaiyawat, Parunya; Chokchaichamnankit, Daranee; Lirdprapamongkol, Kriengsak; Srisomsap, Chantragan; Svasti, Jisnuson; Champattanachai, Voraratt

    2015-10-01

    O-GlcNAcylation is a dynamic post-translational modification that has extensive crosstalk with phosphorylation either at the same or adjacent sites of various proteins. We have previously reported that O-GlcNAcylation level was increased in primary breast and colorectal cancer, but the interplay of the two modifications remains unclear. Therefore, we explored crosstalk of the modifications by RNA interference against O-GlcNAc transferase (OGT) in colorectal cancer cells. Two-dimensional immunoblotting and mass spectrometric analysis showed that the levels of O-GlcNAc and serine phosphorylation of many proteins including serine hydroxymethyltransferase, cytokeratin-8, pyruvate kinase M2 (PKM2), heterogeneous nuclear ribonucleoprotein L, and lamin-B1, were reduced in siOGT cells compared to siScramble cells. In HT29 cells, immunoprecipitated PKM2 revealed decreased O-GlcNAc and serine phosphorylation levels after siOGT knockdown, but increased levels after treatment with Thiamet-G, an inhibitor of O-GlcNAcase (OGA). In addition, when global O-GlcNAcylation was enhanced by treating cells with Thiamet-G, PKM2 expression level was upregulated, but PKM2-specific activity was decreased. On the other hand, in OGT knockdown cells, PKM2 expression level was downregulated, but PKM2-specific activity was increased. Moreover, the metastatic colorectal cancer cells, SW620, had more O-GlcNAc-PKM2 and showed lower PKM2-specific activity compared to the non-metastatic colorectal cancer SW480 cells. These results suggested roles of O-GlcNAcylation in modulating serine phosphorylation, as well as in regulating PKM2 activity and expression. Interfering levels of O-GlcNAcylation of PKM2 may be a novel target in controlling cancer metabolism and tumorigenesis of colorectal cancer. PMID:26252736

  14. The Altered Renal and Hepatic Expression of Solute Carrier Transporters (SLCs) in Type 1 Diabetic Mice

    PubMed Central

    Xu, Chenghao; Zhu, Ling; Chan, Ting; Lu, Xiaoxi; Shen, Weiyong; Gillies, Mark C.; Zhou, Fanfan

    2015-01-01

    Diabetes mellitus is a chronic metabolic disorder that significantly affects human health and well-being. The Solute carrier transporters (SLCs), particularly the Organic anion/cation transporters (Oats/Octs/Octns), Organic anion transporting polypeptides (Oatps) and Oligopeptide transporters (Pepts) are essential membrane proteins responsible for cellular uptake of many endogenous and exogenous substances such as clinically important drugs. They are widely expressed in mammalian key organs especially the kidney and liver, in which they facilitate the influx of various drug molecules, thereby determining their distribution and elimination in body. The altered expression of SLCs in diabetes mellitus could have a profound and clinically significant influence on drug therapies. In this study, we extensively investigated the renal and hepatic expression of twenty essential SLCs in the type 1 diabetic Ins2Akita murine model that develops both hyperglycemia and diabetes-related complications using real-time PCR and immunoblotting analysis. We found that the renal expression of mOatp1a1, mOatp1a6, mOat1, mOat3, mOat5, mOct2 and mPept2 was decreased; while that of mPept1 was increased at the mRNA level in the diabetic mice compared with non-diabetic controls. We found up-regulated mRNA expression of mOatp1a4, mOatp1c1, mOctn2, mOct3 and mPept1 as well as down-regulation of mOatp1a1 in the livers of diabetic mice. We confirmed the altered protein expression of several SLCs in diabetic mice, especially the decreased renal and hepatic expression of mOatp1a1. We also found down-regulated protein expression of mOat3 and mOctn1 in the kidneys as well as increased protein expression of mOatp1a4 and mOct3 in the livers of diabetic mice. Our findings contribute to better understanding the modulation of SLC transporters in type 1 diabetes mellitus, which is likely to affect the pharmacokinetic performance of drugs that are transported by these transporters and therefore, forms the

  15. HIV-1 Alters Intestinal Expression of Drug Transporters and Metabolic Enzymes: Implications for Antiretroviral Drug Disposition.

    PubMed

    Kis, Olena; Sankaran-Walters, Sumathi; Hoque, M Tozammel; Walmsley, Sharon L; Dandekar, Satya; Bendayan, Reina

    2016-05-01

    This study investigated the effects of HIV-1 infection and antiretroviral therapy (ART) on the expression of intestinal drug efflux transporters, i.e., P-glycoprotein (Pgp), multidrug resistance-associated proteins (MRPs), and breast cancer resistance protein (BCRP), and metabolic enzymes, such as cytochrome P450s (CYPs), in the human upper intestinal tract. Intestinal biopsy specimens were obtained from HIV-negative healthy volunteers, ART-naive HIV-positive (HIV(+)) subjects, and HIV(+) subjects receiving ART (10 in each group). Intestinal tissue expression of drug transporters and metabolic enzymes was examined by microarray, real-time quantitative reverse transcription-PCR (qPCR), and immunohistochemistry analyses. Microarray analysis demonstrated significantly lower expression of CYP3A4 and ABCC2/MRP2 in the HIV(+) ART-naive group than in uninfected subjects. qPCR analysis confirmed significantly lower expression of ABCC2/MRP2 in ART-naive subjects than in the control group, while CYP3A4 and ABCG2/BCRP showed a trend toward decreased expression. Protein expression of MRP2 and BCRP was also significantly lower in the HIV(+) naive group than in the control group and was partially restored to baseline levels in HIV(+) subjects receiving ART. In contrast, gene and protein expression of ABCB1/Pgp was significantly increased in HIV(+) subjects on ART relative to HIV(+) ART-naive subjects. These data demonstrate that the expression of drug-metabolizing enzymes and efflux transporters is significantly altered in therapy-naive HIV(+) subjects and in those receiving ART. Since CYP3A4, Pgp, MRPs, and BCRP metabolize or transport many antiretroviral drugs, their altered expression with HIV infection may negatively impact drug pharmacokinetics in HIV(+) subjects. This has clinical implications when using data from healthy volunteers to guide ART. PMID:26902756

  16. Aminoaciduria and altered renal expression of luminal amino acid transporters in mice lacking novel gene collectrin.

    PubMed

    Malakauskas, Sandra M; Quan, Hui; Fields, Timothy A; McCall, Shannon J; Yu, Ming-Jiun; Kourany, Wissam M; Frey, Campbell W; Le, Thu H

    2007-02-01

    Defects in renal proximal tubule transport manifest in a number of human diseases. Although variable in clinical presentation, disorders such as Hartnup disease, Dent's disease, and Fanconi syndrome are characterized by wasting of solutes commonly recovered by the proximal tubule. One common feature of these disorders is aminoaciduria. There are distinct classes of amino acid transporters located in the apical and basal membranes of the proximal tubules that reabsorb >95% of filtered amino acids, yet few details are known about their regulation. We present our physiological characterization of a mouse line with targeted deletion of the gene collectrin that is highly expressed in the kidney. Collectrin-deficient mice display a reduced urinary concentrating capacity due to enhanced solute clearance resulting from profound aminoaciduria. The aminoaciduria is generalized, characterized by loss of nearly every amino acid, and results in marked crystalluria. Furthermore, in the kidney, collectrin-deficient mice have decreased plasma membrane populations of amino acid transporter subtypes B(0)AT1, rBAT, and b(0,+)AT, as well as altered cellular distribution of EAAC1. Our data suggest that collectrin is a novel mediator of renal amino acid transport and may provide further insight into the pathogenesis of a number of human disease correlates. PMID:16985211

  17. Leukemia-Associated Mutations in Nucleophosmin Alter Recognition by CRM1: Molecular Basis of Aberrant Transport

    PubMed Central

    Arregi, Igor; Falces, Jorge; Olazabal-Herrero, Anne; Alonso-Mariño, Marián; Taneva, Stefka G.; Rodríguez, José A.; Urbaneja, María A.; Bañuelos, Sonia

    2015-01-01

    Nucleophosmin (NPM) is a nucleocytoplasmic shuttling protein, normally enriched in nucleoli, that performs several activities related to cell growth. NPM mutations are characteristic of a subtype of acute myeloid leukemia (AML), where mutant NPM seems to play an oncogenic role. AML-associated NPM mutants exhibit altered subcellular traffic, being aberrantly located in the cytoplasm of leukoblasts. Exacerbated export of AML variants of NPM is mediated by the nuclear export receptor CRM1, and due, in part, to a mutationally acquired novel nuclear export signal (NES). To gain insight on the molecular basis of NPM transport in physiological and pathological conditions, we have evaluated the export efficiency of NPM in cells, and present new data indicating that, in normal conditions, wild type NPM is weakly exported by CRM1. On the other hand, we have found that AML-associated NPM mutants efficiently form complexes with CRM1HA (a mutant CRM1 with higher affinity for NESs), and we have quantitatively analyzed CRM1HA interaction with the NES motifs of these mutants, using fluorescence anisotropy and isothermal titration calorimetry. We have observed that the affinity of CRM1HA for these NESs is similar, which may help to explain the transport properties of the mutants. We also describe NPM recognition by the import machinery. Our combined cellular and biophysical studies shed further light on the determinants of NPM traffic, and how it is dramatically altered by AML-related mutations. PMID:26091065

  18. Sources, transport and alterations of metal compounds: an overview. I. Arsenic, beryllium, cadmium, chromium, and nickel.

    PubMed Central

    Fishbein, L

    1981-01-01

    An overview is presented of the current state of knowledge of the salient aspects of the sources, transport, and alterations of arsenic, beryllium, cadmium, chromium, and nickel. This information is considered vital for a better assessment of the scope of potential human hazard to these ubiquitous toxicants and their compounds. Stress is focused on both natural and industrial activities, particularly on the latter's projected trends. Increasing use patterns per se of most of these metals, as well as aspects of waste disposal and the anticipated increased combustion of fossil fuels for power generation and space heating (particularly in the United States), are major causes of potential health concern. Additionally, attention is drawn to the need for increased research to fill the gaps in our knowledge in these vital areas, all in the hope of permitting a more facile identification and quantification of the potential hazard to exposure to these agents. PMID:7023934

  19. Altered corticostriatal neurotransmission and modulation in dopamine transporter knock-down mice.

    PubMed

    Wu, Nanping; Cepeda, Carlos; Zhuang, Xiaoxi; Levine, Michael S

    2007-07-01

    Dopamine (DA) modulates glutamate neurotransmission in the striatum. Abnormal DA modulation has been implicated in neurological and psychiatric disorders. The development of DA transporter knock-down (DAT-KD) mice has permitted modeling of these disorders and has shed new light on DA modulation. DAT-KD mice exhibit increased extracellular DA, hyperactivity, and alterations in habituation. We used whole cell patch-clamp recordings from visually identified striatal neurons in slices to examine the effects of DAT-KD on corticostriatal transmission. Electrophysiological recordings from medium-sized spiny neurons in the dorsal striatum revealed alterations in both amplitude and frequency, of spontaneous glutamate receptor-mediated synaptic currents in cells from DAT-KD mice. Furthermore, kinetic analyses revealed that these currents had shorter half-amplitude durations and faster decay times. In contrast, GABA-receptor-mediated synaptic currents were not altered. Striatal neurons from DAT-KD mice also responded differently to amphetamine, cocaine, and DA D2-receptor agonists or antagonists compared with wildtype (WT) littermate controls. In WTs amphetamine and cocaine reduced the frequency of spontaneous glutamate currents and these effects appeared to be mediated by activation of D2 receptors. In contrast, in DAT-KD mice either no changes or only small increases in frequency occurred. D2-receptor agonists or antagonists also had opposing effects in WT and DAT-KD mice. Together, these results indicate that chronically increased extracellular DA produces long-lasting changes in corticostriatal communication that may be mediated by changes in D2-receptor function. These findings have implications for understanding mechanisms underlying attention deficit hyperactivity disorder and Tourette's syndrome and may provide insights into novel therapeutic approaches. PMID:17522168

  20. Conformational Exchange in a Membrane Transport Protein Is Altered in Protein Crystals

    SciTech Connect

    Freed, Daniel M.; Horanyi, Peter S.; Wiener, Michael C.; Cafiso, David S.

    2010-09-27

    Successful macromolecular crystallography requires solution conditions that may alter the conformational sampling of a macromolecule. Here, site-directed spin labeling is used to examine a conformational equilibrium within BtuB, the Escherichia coli outer membrane transporter for vitamin B{sub 12}. Electron paramagnetic resonance (EPR) spectra from a spin label placed within the N-terminal energy coupling motif (Ton box) of BtuB indicate that this segment is in equilibrium between folded and unfolded forms. In bilayers, substrate binding shifts this equilibrium toward the unfolded form; however, EPR spectra from this same spin-labeled mutant indicate that this unfolding transition is blocked in protein crystals. Moreover, crystal structures of this spin-labeled mutant are consistent with the EPR result. When the free energy difference between substates is estimated from the EPR spectra, the crystal environment is found to alter this energy by 3 kcal/mol when compared to the bilayer state. Approximately half of this energy change is due to solutes or osmolytes in the crystallization buffer, and the remainder is contributed by the crystal lattice. These data provide a quantitative measure of how a conformational equilibrium in BtuB is modified in the crystal environment, and suggest that more-compact, less-hydrated substates will be favored in protein crystals.

  1. Conformational Exchange in a Membrane Transport Protein Is Altered in Protein Crystals

    SciTech Connect

    D Freed; P Horanyi; M Wiener; D Cafiso

    2011-12-31

    Successful macromolecular crystallography requires solution conditions that may alter the conformational sampling of a macromolecule. Here, site-directed spin labeling is used to examine a conformational equilibrium within BtuB, the Escherichia coli outer membrane transporter for vitamin B{sub 12}. Electron paramagnetic resonance (EPR) spectra from a spin label placed within the N-terminal energy coupling motif (Ton box) of BtuB indicate that this segment is in equilibrium between folded and unfolded forms. In bilayers, substrate binding shifts this equilibrium toward the unfolded form; however, EPR spectra from this same spin-labeled mutant indicate that this unfolding transition is blocked in protein crystals. Moreover, crystal structures of this spin-labeled mutant are consistent with the EPR result. When the free energy difference between substates is estimated from the EPR spectra, the crystal environment is found to alter this energy by 3 kcal/mol when compared to the bilayer state. Approximately half of this energy change is due to solutes or osmolytes in the crystallization buffer, and the remainder is contributed by the crystal lattice. These data provide a quantitative measure of how a conformational equilibrium in BtuB is modified in the crystal environment, and suggest that more-compact, less-hydrated substates will be favored in protein crystals.

  2. Calcium Intake and Ion Transporter Genetic Polymorphisms Interact in Human Colorectal Neoplasia Risk in a 2-Phase Study123

    PubMed Central

    Zhu, Xiangzhu; Liang, Ji; Shrubsole, Martha J.; Ness, Reid M.; Cai, Qiuyin; Long, Jirong; Chen, Zhi; Li, Guoliang; Wiese, Dawn; Zhang, Bing; Smalley, Walter E.; Edwards, Todd L.; Giovannucci, Edward; Zheng, Wei; Dai, Qi

    2014-01-01

    Background: The kidney-specific sodium-potassium-chloride cotransporter (NKCC2) protein encoded by solute carrier family 12 member 1 (SLC12A1) is the direct downstream effector of the inward-rectifier potassium channel (ROMK) encoded by potassium inwardly-rectifying channel, subfamily J, member 1 (KCNJ1), both of which are critical for calcium reabsorption in the kidney. Objective: We hypothesized that polymorphisms in KCNJ1, SLC12A1, and 7 other genes may modify the association between calcium intake and colorectal neoplasia risk. Methods: We conducted a 2-phase study in 1336 cases and 2891 controls from the Tennessee Colorectal Polyp Study. Results: In phase I, we identified 5 single-nucleotide polymorphisms (SNPs) that significantly interacted with calcium intake in adenoma risk. In phase II, rs2855798 in KCNJ1 was replicated. In combined analysis of phases I and II, the P values for interactions between calcium intake and rs2855798 were 1 × 10−4 for all adenoma and 5 × 10−3 for multiple/advanced adenoma. The highest calcium intake was not associated with risk among those with no variant allele but was significantly associated with a 41% reduced adenoma risk among those who carried at least 1 variant allele in KCNJ1. The corresponding reduction in risk of multiple or advanced adenomas was 52% among those with at least 1 variant allele. The P values for interactions between calcium intake and combined SNPs from the KCNJ1 and SLC12A1 genes were 7.5 × 10−5 for adenoma and 9.9 × 10−5 for multiple/advanced adenoma. The highest calcium intake was not associated with risk among those with nonvariant alleles in 2 genes but was significantly associated with a 34% reduced adenoma risk among those who carried a variant allele in 1 of the genes. The corresponding reduction in risk of multiple or advanced adenomas was 64% among those with variant alleles in both genes. Conclusion: These findings, if confirmed, will be critical for the development of personalized

  3. Genetic and chemical reductions in protein phosphatase activity alter auxin transport, gravity response, and lateral root growth

    NASA Technical Reports Server (NTRS)

    Rashotte, A. M.; DeLong, A.; Muday, G. K.; Brown, C. S. (Principal Investigator)

    2001-01-01

    Auxin transport is required for important growth and developmental processes in plants, including gravity response and lateral root growth. Several lines of evidence suggest that reversible protein phosphorylation regulates auxin transport. Arabidopsis rcn1 mutant seedlings exhibit reduced protein phosphatase 2A activity and defects in differential cell elongation. Here we report that reduced phosphatase activity alters auxin transport and dependent physiological processes in the seedling root. Root basipetal transport was increased in rcn1 or phosphatase inhibitor-treated seedlings but showed normal sensitivity to the auxin transport inhibitor naphthylphthalamic acid (NPA). Phosphatase inhibition reduced root gravity response and delayed the establishment of differential auxin-induced gene expression across a gravity-stimulated root tip. An NPA treatment that reduced basipetal transport in rcn1 and cantharidin-treated wild-type plants also restored a normal gravity response and asymmetric auxin-induced gene expression, indicating that increased basipetal auxin transport impedes gravitropism. Increased auxin transport in rcn1 or phosphatase inhibitor-treated seedlings did not require the AGR1/EIR1/PIN2/WAV6 or AUX1 gene products. In contrast to basipetal transport, root acropetal transport was normal in phosphatase-inhibited seedlings in the absence of NPA, although it showed reduced NPA sensitivity. Lateral root growth also exhibited reduced NPA sensitivity in rcn1 seedlings, consistent with acropetal transport controlling lateral root growth. These results support the role of protein phosphorylation in regulating auxin transport and suggest that the acropetal and basipetal auxin transport streams are differentially regulated.

  4. The rib1 Mutant of Arabidopsis Has Alterations in Indole-3-Butyric Acid Transport, Hypocotyl Elongation, and Root Architecture1

    PubMed Central

    Poupart, Julie; Rashotte, Aaron M.; Muday, Gloria K.; Waddell, Candace S.

    2005-01-01

    Polar transport of the auxin indole-3-butyric acid (IBA) has recently been shown to occur in Arabidopsis (Arabidopis thaliana) seedlings, yet the physiological importance of this process has yet to be fully resolved. Here we describe the first demonstration of altered IBA transport in an Arabidopsis mutant, and show that the resistant to IBA (rib1) mutation results in alterations in growth, development, and response to exogenous auxin consistent with an important physiological role for IBA transport. Both hypocotyl and root IBA basipetal transport are decreased in rib1 and root acropetal IBA transport is increased. While indole-3-acetic acid (IAA) transport levels are not different in rib1 compared to wild type, root acropetal IAA transport is insensitive to the IAA efflux inhibitor naphthylphthalamic acid in rib1, as is the dependent physiological process of lateral root formation. These observed changes in IBA transport are accompanied by altered rib1 phenotypes. Previously, rib1 roots were shown to be less sensitive to growth inhibition by IBA, but to have a wild-type response to IAA in root elongation. rib1 is also less sensitive to IBA in stimulation of lateral root formation and in hypocotyl elongation under most, but not all, light and sucrose conditions. rib1 has wild-type responses to IAA, except under one set of conditions, low light and 1.5% sucrose, in which both hypocotyl elongation and lateral root formation show altered IAA response. Taken together, our results support a model in which endogenous IBA influences wild-type seedling morphology. Modifications in IBA distribution in seedlings affect hypocotyl and root elongation, as well as lateral root formation. PMID:16258013

  5. Cronobacter sakazakii infection alters serotonin transporter and improved fear memory retention in the rat.

    PubMed

    Sivamaruthi, Bhagavathi S; Madhumita, Rajkumar; Balamurugan, Krishnaswamy; Rajan, Koilmani E

    2015-01-01

    It is well established that Cronobacter sakazakii infection cause septicemia, necrotizing enterocolitis and meningitis. In the present study, we tested whether the C. sakazakii infection alter the learning and memory through serotonin transporter (SERT). To investigate the possible effect on SERT, on postnatal day-15 (PND-15), wistar rat pups were administered with single dose of C. sakazakii culture (infected group; 10(7) CFU) or 100 μL of Luria-Bertani broth (medium control) or without any treatment (naïve control). All the individuals were subjected to passive avoidance test on PND-30 to test their fear memory. We show that single dose of C. sakazakii infection improved fear memory retention. Subsequently, we show that C. sakazakii infection induced the activation of toll-like receptor-3 and heat-shock proteins-90 (Hsp-90). On the other hand, level of serotonin (5-hydroxytryptamine) and SERT protein was down-regulated. Furthermore, we show that C. sakazakii infection up-regulate microRNA-16 (miR-16) expression. The observed results highlight that C. sakazakii infections was responsible for improved fear memory retention and may have reduced the level of SERT protein, which is possibly associated with the interaction of up-regulated Hsp-90 with SERT protein or miR-16 with SERT mRNA. Taken together, observed results suggest that C. sakazakii infection alter the fear memory possibly through SERT. Hence, this model may be effective to test the C. sakazakii infection induced changes in synaptic plasticity through SERT and effect of other pharmacological agents against pathogen induced memory disorder. PMID:26388777

  6. Cronobacter sakazakii infection alters serotonin transporter and improved fear memory retention in the rat

    PubMed Central

    Sivamaruthi, Bhagavathi S.; Madhumita, Rajkumar; Balamurugan, Krishnaswamy; Rajan, Koilmani E.

    2015-01-01

    It is well established that Cronobacter sakazakii infection cause septicemia, necrotizing enterocolitis and meningitis. In the present study, we tested whether the C. sakazakii infection alter the learning and memory through serotonin transporter (SERT). To investigate the possible effect on SERT, on postnatal day-15 (PND-15), wistar rat pups were administered with single dose of C. sakazakii culture (infected group; 107 CFU) or 100 μL of Luria-Bertani broth (medium control) or without any treatment (naïve control). All the individuals were subjected to passive avoidance test on PND-30 to test their fear memory. We show that single dose of C. sakazakii infection improved fear memory retention. Subsequently, we show that C. sakazakii infection induced the activation of toll-like receptor-3 and heat-shock proteins-90 (Hsp-90). On the other hand, level of serotonin (5-hydroxytryptamine) and SERT protein was down-regulated. Furthermore, we show that C. sakazakii infection up-regulate microRNA-16 (miR-16) expression. The observed results highlight that C. sakazakii infections was responsible for improved fear memory retention and may have reduced the level of SERT protein, which is possibly associated with the interaction of up-regulated Hsp-90 with SERT protein or miR-16 with SERT mRNA. Taken together, observed results suggest that C. sakazakii infection alter the fear memory possibly through SERT. Hence, this model may be effective to test the C. sakazakii infection induced changes in synaptic plasticity through SERT and effect of other pharmacological agents against pathogen induced memory disorder. PMID:26388777

  7. Membrane Cholesterol Modulates the Outward Facing Conformation of the Dopamine Transporter and Alters Cocaine Binding*

    PubMed Central

    Hong, Weimin C.; Amara, Susan G.

    2010-01-01

    Clearance of synaptically released dopamine is regulated by the plasmalemmal dopamine transporter (DAT), an integral membrane protein that resides within a complex lipid milieu. Here we demonstrate that cholesterol, a major component of the lipid bilayer, can modulate the conformation of DAT and alter cocaine binding to DAT. In striatal synaptosomes and transfected cells, DAT was in cholesterol-rich membrane fractions after mild detergent extraction. After increasing the membrane cholesterol content by treatment of water-soluble cholesterol (cholesterol mixed with methyl-β-cyclodextrin), we observed an increase in DAT binding Bmax values for cocaine analogs [3H]WIN35428 and [125I]RTI-55, but similar levels of DAT proteins on the cell surface were shown by surface biotinylation assays. Membrane cholesterol addition also markedly enhanced the accessibility of cysteine sulfhydryl moieties in DAT as probed by a membrane-impermeable maleimide-biotin conjugate. We identified cysteine 306, a juxtamembrane residue on transmembrane domain 6 (TM6) of DAT, as the intrinsic residue exhibiting enhanced reactivity. Similar effects on DAT cysteine accessibility and radioligand binding were observed with addition of zinc, a reagent known to promote the outward facing conformation of DAT. Using substituted cysteine mutants on various positions likely to be extracellular, we identified additional residues located on TM1, TM6, TM7, and TM12 of DAT that are sensitive to alterations in the membrane cholesterol content. Our findings in transfected cells and native tissues support the hypothesis that DAT adopts an outward facing conformation in a cholesterol-rich membrane environment, suggesting a novel modulatory role of the surrounding membrane lipid milieu on DAT function. PMID:20688912

  8. Membrane cholesterol modulates the outward facing conformation of the dopamine transporter and alters cocaine binding.

    PubMed

    Hong, Weimin C; Amara, Susan G

    2010-10-15

    Clearance of synaptically released dopamine is regulated by the plasmalemmal dopamine transporter (DAT), an integral membrane protein that resides within a complex lipid milieu. Here we demonstrate that cholesterol, a major component of the lipid bilayer, can modulate the conformation of DAT and alter cocaine binding to DAT. In striatal synaptosomes and transfected cells, DAT was in cholesterol-rich membrane fractions after mild detergent extraction. After increasing the membrane cholesterol content by treatment of water-soluble cholesterol (cholesterol mixed with methyl-β-cyclodextrin), we observed an increase in DAT binding B(max) values for cocaine analogs [(3)H]WIN35428 and [(125)I]RTI-55, but similar levels of DAT proteins on the cell surface were shown by surface biotinylation assays. Membrane cholesterol addition also markedly enhanced the accessibility of cysteine sulfhydryl moieties in DAT as probed by a membrane-impermeable maleimide-biotin conjugate. We identified cysteine 306, a juxtamembrane residue on transmembrane domain 6 (TM6) of DAT, as the intrinsic residue exhibiting enhanced reactivity. Similar effects on DAT cysteine accessibility and radioligand binding were observed with addition of zinc, a reagent known to promote the outward facing conformation of DAT. Using substituted cysteine mutants on various positions likely to be extracellular, we identified additional residues located on TM1, TM6, TM7, and TM12 of DAT that are sensitive to alterations in the membrane cholesterol content. Our findings in transfected cells and native tissues support the hypothesis that DAT adopts an outward facing conformation in a cholesterol-rich membrane environment, suggesting a novel modulatory role of the surrounding membrane lipid milieu on DAT function. PMID:20688912

  9. MCD diet-induced steatohepatitis is associated with alterations in asymmetric dimethylarginine (ADMA) and its transporters.

    PubMed

    Di Pasqua, Laura G; Berardo, Clarissa; Rizzo, Vittoria; Richelmi, Plinio; Croce, Anna Cleta; Vairetti, Mariapia; Ferrigno, Andrea

    2016-08-01

    Using an experimental model of NASH induced by a methionine-choline-deficient (MCD) diet, we investigated whether changes occur in serum and tissue levels of asymmetric dimethylarginine (ADMA). Male Wistar rats underwent NASH induced by 8-week feeding with an MCD diet. Serum and hepatic biopsies at 2, 4 and 8 weeks were taken, and serum enzymes, ADMA and nitrate/nitrite (NOx), were evaluated. Hepatic biopsies were used for mRNA and protein expression analysis of dimethylarginine dimethylaminohydrolase-1 (DDAH-1) and protein methyltransferases (PRMT-1), enzymes involved in ADMA metabolism and synthesis, respectively, and ADMA transporters (CAT-1, CAT-2A and CAT-2B). Lipid peroxides (TBARS), glutathione, ATP/ADP and DDAH activity were quantified. An increase in serum AST and ALT was detected in MCD animals. A time-dependent decrease in serum and tissue ADMA and increase in mRNA expression of DDAH-1 and PRMT-1 as well as higher rates of mRNA expression of CAT-1 and lower rates of CAT-2A and CAT-2B were found after 8-week MCD diet. An increase in serum NOx and no changes in protein expression in DDAH-1 and CAT-1 and higher content in CAT-2 and PRMT-1 were found at 8 weeks. Hepatic DDAH activity decreased with a concomitant increase in oxidative stress, as demonstrated by high TBARS levels and low glutathione content. In conclusion, a decrease in serum and tissue ADMA levels in the MCD rats was found associated with a reduction in DDAH activity due to the marked oxidative stress observed. Changes in ADMA levels and its transporters are innovative factors in the onset and progression of hepatic alterations correlated with MCD diet-induced NASH. PMID:27357826

  10. Altered microtubule dynamics and vesicular transport in mouse and human MeCP2-deficient astrocytes.

    PubMed

    Delépine, Chloé; Meziane, Hamid; Nectoux, Juliette; Opitz, Matthieu; Smith, Amos B; Ballatore, Carlo; Saillour, Yoann; Bennaceur-Griscelli, Annelise; Chang, Qiang; Williams, Emily Cunningham; Dahan, Maxime; Duboin, Aurélien; Billuart, Pierre; Herault, Yann; Bienvenu, Thierry

    2016-01-01

    Rett syndrome (RTT) is a rare X-linked neurodevelopmental disorder, characterized by normal post-natal development followed by a sudden deceleration in brain growth with progressive loss of acquired motor and language skills, stereotypic hand movements and severe cognitive impairment. Mutations in the methyl-CpG-binding protein 2 (MECP2) cause more than 95% of classic cases. Recently, it has been shown that the loss of Mecp2 from glia negatively influences neurons in a non-cell-autonomous fashion, and that in Mecp2-null mice, re-expression of Mecp2 preferentially in astrocytes significantly improved locomotion and anxiety levels, restored respiratory abnormalities to a normal pattern and greatly prolonged lifespan compared with globally null mice. We now report that microtubule (MT)-dependent vesicle transport is altered in Mecp2-deficient astrocytes from newborn Mecp2-deficient mice compared with control wild-type littermates. Similar observation has been made in human MECP2 p.Arg294* iPSC-derived astrocytes. Importantly, administration of Epothilone D, a brain-penetrant MT-stabilizing natural product, was found to restore MT dynamics in Mecp2-deficient astrocytes and in MECP2 p.Arg294* iPSC-derived astrocytes in vitro. Finally, we report that relatively low weekly doses of Epothilone D also partially reversed the impaired exploratory behavior in Mecp2(308/y) male mice. These findings represent a first step toward the validation of an innovative treatment for RTT. PMID:26604147

  11. Altered dopamine transporter function and phosphorylation following chronic cocaine self-administration and extinction in rats.

    PubMed

    Ramamoorthy, Sammanda; Samuvel, Devadoss J; Balasubramaniam, Annamalai; See, Ronald E; Jayanthi, Lankupalle D

    2010-01-15

    Cocaine binds with the dopamine transporter (DAT), an effect that has been extensively implicated in its reinforcing effects. However, persisting adaptations in DAT regulation after cocaine self-administration have not been extensively investigated. Here, we determined the changes in molecular mechanisms of DAT regulation in the caudate-putamen (CPu) and nucleus accumbens (NAcc) of rats with a history of cocaine self-administration, followed by 3weeks of withdrawal under extinction conditions (i.e., no cocaine available). DA uptake was significantly higher in the CPu of cocaine-experienced animals as compared to saline-yoked controls. DAT V(max) was elevated in the CPu without changes in apparent affinity for DA. In spite of elevated CPu DAT activity, total and surface DAT density and DAT-PP2Ac (protein phosphatase 2A catalytic subunit) interaction remained unaltered, although p-Ser- DAT phosphorylation was elevated. In contrast to the CPu, there were no differences between cocaine and saline rats in the levels of DA uptake, DAT V(max) and K(m) values, total and surface DAT, p-Ser-DAT phosphorylation, or DAT-PP2Ac interactions in the NAcc. These results show that chronic cocaine self-administration leads to lasting, regionally specific alterations in striatal DA uptake and DAT-Ser phosphorylation. Such changes may be related to habitual patterns of cocaine-seeking observed during relapse. PMID:20035724

  12. Auxin Transport and Ribosome Biogenesis Mutant/Reporter Lines to Study Plant Cell Growth and Proliferation under Altered Gravity

    NASA Astrophysics Data System (ADS)

    Valbuena, Miguel A.; Manzano, Ana I.; van Loon, Jack JWA.; Saez-Vasquez, Julio; Carnero-Diaz, Eugenie; Herranz, Raul; Medina, F. J.

    2013-02-01

    We tested different Arabidopsis thaliana strains to check their availability for space use in the International Space Station (ISS). We used mutants and reporter gene strains affecting factors of cell proliferation and cell growth, to check variations induced by an altered gravity vector. Seedlings were grown either in a Random Positioning Machine (RPM), under simulated microgravity (μg), or in a Large Diameter Centrifuge (LDC), under hypergravity (2g). A combination of the two devices (μgRPM+LDC) was also used. Under all gravity alterations, seedling roots were longer than in control 1g conditions, while the levels of the nucleolar protein nucleolin were depleted. Alterations in the pattern of expression of PIN2, an auxin transporter, and of cyclin B1, a cell cycle regulator, were shown. All these alterations are compatible with previous space data, so the use of these strains will be useful in the next experiments in ISS, under real microgravity.

  13. MDR1 synonymous polymorphisms alter transporter specificity and protein stability in a stable epithelial monolayer.

    PubMed

    Fung, King Leung; Pan, James; Ohnuma, Shinobu; Lund, Paul E; Pixley, Jessica N; Kimchi-Sarfaty, Chava; Ambudkar, Suresh V; Gottesman, Michael M

    2014-01-15

    The drug efflux function of P-glycoprotein (P-gp) encoded by MDR1 can be influenced by genetic polymorphisms, including two synonymous changes in the coding region of MDR1. Here we report that the conformation of P-gp and its drug efflux activity can be altered by synonymous polymorphisms in stable epithelial monolayers expressing P-gp. Several cell lines with similar MDR1 DNA copy number were developed and termed LLC-MDR1-WT (expresses wild-type P-gp), LLC-MDR1-3H (expresses common haplotype P-gp), and LLC-MDR1-3HA (a mutant that carries a different valine codon in position 3435). These cell lines express similar levels of recombinant mRNA and protein. P-gp in each case is localized on the apical surface of polarized cells. However, the haplotype and its mutant P-gps fold differently from the wild-type, as determined by UIC2 antibody shift assays and limited proteolysis assays. Surface biotinylation experiments suggest that the non-wild-type P-gps have longer recycling times. Drug transport assays show that wild-type and haplotype P-gp respond differently to P-gp inhibitors that block efflux of rhodamine 123 or mitoxantrone. In addition, cytotoxicity assays show that the LLC-MDR1-3H cells are more resistant to mitoxantrone than the LLC-MDR1-WT cells after being treated with a P-gp inhibitor. Expression of polymorphic P-gp, however, does not affect the host cell's morphology, growth rate, or monolayer formation. Also, ATPase activity assays indicate that neither basal nor drug-stimulated ATPase activities are affected in the variant P-gps. Taken together, our findings indicate that "silent" polymorphisms significantly change P-gp function, which would be expected to affect interindividual drug disposition and response. PMID:24305879

  14. The reactivity of chlorite surfaces: Microscopic alteration processes and the transport behaviour of uranium(VI)

    NASA Astrophysics Data System (ADS)

    Bosbach, D.; Brandt, F.; Arnold, T.; Krawczyk-Baersch, E.; Bernhard, G.

    2003-04-01

    The transport of U(VI) in phyllite rocks or on granitic fractures is significantly affected by the dissolution of chlorite and the re-precipitation of various secondary phases. However, in order to be able to predict the behaviour of radionuclides in these systems a sound understanding of the reaction kinetics of chlorite alteration/dissolution processes as well as the precipitation of secondary phases is required. We have studied the dissolution of chlorite with mixed-flow reactor experiments and in-situ AFM observations far from equilibrium over a broad pH range. Key parameters such as the reactive surface area as well as the stoichiometry and pH dependency of the dissolution reaction were determined. Speciation calculations indicate that no secondary phases have formed (except under neutral pH conditions). Under acidic conditions the brucite-like layer of the chlorite structure dissolves faster than the 2:1 TOT layer whereas above pH 8 a reverse dissolution behaviour was observed. Under acidic conditions (pH < 5) chlorite transforms to a vermiculite-like clay mineral, which has also been identified in field studies. In addition, static batch dissolution experiments with chlorite were performed in order to mimic more closely natural systems. In these experiments various secondary phases including hydrous ferrous oxides (HFO) were formed as coatings on chlorite surfaces and as colloids in solution. Batch adsorption experiments indicate that U(VI) has a strong affinity to HFO and that retardation of U(VI) occurs via adsorption to immobile HFO coatings on chlorite surfaces. Heterogeneous HFO formation seems to be favoured on {hk0} edge surfaces in the near neutral pH range. The formation mechanism of HFO coatings was studied systematically with titration experiments, in order to be able to quantify the homogeneous and heterogeneous formation of these secondary phases as a function of the geochemical conditions.

  15. Infectious Prion Protein Alters Manganese Transport and Neurotoxicity in a Cell Culture Model of Prion Disease

    PubMed Central

    Martin, Dustin P.; Anantharam, Vellareddy; Jin, Huajun; Witte, Travis; Houk, Robert; Kanthasamy, Arthi; Kanthasamy, Anumantha G.

    2011-01-01

    Protein misfolding and aggregation are considered key features of many neurodegenerative diseases, but biochemical mechanisms underlying protein misfolding and the propagation of protein aggregates are not well understood. Prion disease is a classical neurodegenerative disorder resulting from the misfolding of endogenously expressed normal cellular prion protein (PrPC). Although the exact function of PrPC has not been fully elucidated, studies have suggested that it can function as a metal binding protein. Interestingly, increased brain manganese (Mn) levels have been reported in various prion diseases indicating divalent metals also may play a role in the disease process. Recently, we reported that PrPC protects against Mn-induced cytotoxicity in a neural cell culture model. To further understand the role of Mn in prion diseases, we examined Mn neurotoxicity in an infectious cell culture model of prion disease. Our results show CAD5 scrapie-infected cells were more resistant to Mn neurotoxicity as compared to uninfected cells (EC50 = 428.8 μM for CAD5 infected cells vs. 211.6 μM for uninfected cells). Additionally, treatment with 300 μM Mn in persistently infected CAD5 cells showed a reduction in mitochondrial impairment, caspase-3 activation, and DNA fragmentation when compared to uninfected cells. Scrapie-infected cells also showed significantly reduced Mn uptake as measured by inductively coupled plasma-mass spectrometry (ICP-MS), and altered expression of metal transporting proteins DMT1 and transferrin. Together, our data indicate that conversion of PrP to the pathogenic isoform enhances its ability to regulate Mn homeostasis, and suggest that understanding the interaction of metals with disease-specific proteins may provide further insight to protein aggregation in neurodegenerative diseases. PMID:21871919

  16. A Potential Role for Alterations of Zinc and Zinc Transport Proteins in the Progression of Alzheimer’s Disease

    PubMed Central

    Lovell, M.A.

    2010-01-01

    Although multiple studies have suggested a role for alterations of zinc (Zn) and zinc transport (ZnT) proteins in the pathogenesis of Alzheimer’s disease (AD), the exact role of this essential trace element in the progression of AD remains unclear. The following review discusses the normal role of Zn and ZnT proteins in brain and the potential effects of their alteration in the pathogenesis of AD particularly in the processing of the amyloid precursor protein and amyloid beta peptide generation and aggregation. PMID:19276540

  17. Hypoxia Alters Ocular Drug Transporter Expression and Activity in Rat and Calf Models: Implications for Drug Delivery

    PubMed Central

    Kadam, Rajendra S.; Ramamoorthy, Preveen; LaFlamme, Daniel J.; McKinsey, Timothy A.; Kompella, Uday B.

    2014-01-01

    calf ocular tissues showed that PEPT, OCT, and ATB0+ functional activity was down regulated, whereas MCT functional activity was up regulated in hypoxic cornea and SCRPE. Gene expression analysis of these transporters in rat tissues was consistent with the functional transport assays except for PEPT transporters. Conclusions Chronic hypoxia results in significant alterations in the mRNA expression and functional activity of solute transporters in ocular tissues. PMID:23607566

  18. Five Myths about Colorectal Cancer

    MedlinePlus

    ... ACS » Your Local Offices Close + - Text Size Five Myths About Colorectal Cancer In many cases, colorectal cancer ... screening tests you need, when you need them. Myth: Colorectal cancer is a man’s disease. Truth: Colorectal ...

  19. Alterations in function and expression of ABC transporters at blood-brain barrier under diabetes and the clinical significances

    PubMed Central

    Liu, Li; Liu, Xiao-Dong

    2014-01-01

    Diabetes is a systematic metabolic disease, which often develops a number of well-recognized vascular complications including brain complications which may partly result from the dysfunction of blood-brain barrier (BBB). BBB is generally considered as a mechanism for protecting the brain from unwanted actions resulting from substances in the blood and maintaining brain homeostasis via monitoring the entry or efflux of compounds. ATP-binding cassette (ABC) family of transporters including P-glycoprotein (P-GP) and breast cancer-related protein (BCRP), widely expressed in the luminal membrane of the microvessel endothelium and in the apical membrane of the choroids plexus epithelium, play important roles in the function of BBB. However, these transporters are easily altered by some diseases. The present article was focused on the alteration in expression and function of both P-GP and BCRP at BBB by diabetes and the clinical significances. PMID:25540622

  20. Prenatal transportation alters the metabolic response of Brahman bull calves exposed to a lipopolysaccharide (LPS) challenge

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study was designed to determine if prenatal transportation influences the metabolic response to a postnatal lipopolysaccharide (LPS) challenge. Pregnant Brahman cows (n=96) matched by age and parity were separated into transported (TRANS; n=48; transported for 2 hours on gestational day 60, 80,...

  1. Three dimensional model evaluation of physical alterations of the Caloosahatchee River and Estuary: Impact on salt transport

    NASA Astrophysics Data System (ADS)

    Sun, Detong; Wan, Yongshan; Qiu, Chelsea

    2016-05-01

    Numerical hydrodynamic modeling provides quantitative understanding of how physical alterations of an estuary may alter the waterbody hydrodynamics and the rate of mixing with the ocean. In this study, a three dimensional hydrodynamic model (CH3D) was used to compare simulated salinities between the existing condition and five historical cases representing varying physical alterations of the Caloosahatchee Estuary involving (1) removal of the headwater structure (S-79); (2) removal of the downstream causeway to Sanibel Island; (3) backfilling an oyster bar near the estuary month; (4) refilling the navigation channel; and (5) the pre-development bathymetric condition. The results suggested that some alterations including the Sanibel Causeway, backfilling the oyster bar and the S-79 structure may have some local effects but did not change estuarine salinity structure significantly. Refilling the navigation channel had a more profound effect, resulting in a dry season salinity reduction of about 5 when compared with the existing condition. The reduced salt transport was more pronounced with the pre-development bathymetry because the estuary as a whole was much shallower than today. The significant system-wide increase in salt transport caused by the historic dredging of the navigation channel in the Caloosahatchee Estuary has significant implications in the development of attainable environmental flow targets for protecting the estuarine ecosystem.

  2. Chemoprevention of colorectal cancer

    PubMed Central

    LANGMAN, M; BOYLE, P

    1998-01-01

    Department of Medicine, Queen Elizabeth Hospital, Birmingham B15 2TH, UK P BOYLE Colorectal cancer is the fourth commonest form of cancer in men with 678 000 estimated new cases per year worldwide, representing 8.9% of all new cancers. The disease is most frequent in Occidental countries and particularly so in North America, Australia, New Zealand, and parts of Europe. Prospects for colorectal cancer control are bright and a number of possible approaches could prove fruitful. Among these, pharmaceutical measures seem to be valid and logical approaches to the prevention of colorectal cancer and diminishing its impact. Such approaches could concentrate in primary prevention in at-risk subjects or be applied in altering the course of precursor or established disease. Treatments used must fulfil basic requirements of biological plausibility and safety in continued use in large numbers of subjects. Those available include vitamins and minerals, and other drugs with potential as antioxidants, immune modulators or promoters of cell differentiation or apoptosis. Of the various regimens suggested, vitamin A supplementation may even predispose to adverse outcomes, and antioxidant vitamins in general have no coherent body of evidence to support their use. N-acetylcysteine and ursodeoxycholic acid have promising characteristics but there are as yet no clinical data to support the use of the former in gut epithelial cancer, and formal dose ranging studies must be carried out before the latter is submitted to large scale trial. Folate shows promising characteristics but non-steroidal anti-inflammatory drugs and vitamin D seem the most promising agents. Both seem to reduce the incidence of disease, and to reduce growth rates and/or induce differentiation or apoptosis in gut epithelial cancer cells. Both are also well understood pharmacologically. They may be preferred to newer selective compounds in the same class until these newer compounds are confirmed as safe for widespread

  3. Prevalence of unidirectional Na+-dependent adenosine transport and altered potential for adenosine generation in diabetic cardiac myocytes.

    PubMed

    Podgorska, M; Kocbuch, K; Grden, M; Szutowicz, A; Pawelczyk, T

    2006-05-01

    Adenosine is an important physiological regulator of the cardiovascular system. The goal of our study was to assess the expression level of nucleoside transporters (NT) in diabetic rat cardiomyocytes and to examine the activities of adenosine metabolizing enzymes. Isolated rat cardiomyocytes displayed the presence of detectable amounts of mRNA for ENT1, ENT2, CNT1, and CNT2. Overall adenosine (10 microM) transport in cardiomyocytes isolated from normal rat was 36 pmol/mg/min. The expression level of equilibrative transporters (ENT1, ENT2) decreased and of concentrative transporters (CNT1, CNT2) increased in myocytes isolated from diabetic rat. Consequently, overall adenosine transport decreased by 30%, whereas Na(+)-dependent adenosine uptake increased 2-fold, and equilibrative transport decreased by 60%. The activity ratio of AMP deaminase/5'-nucleotidase in cytosol of normal cardiomyocytes was 11 and increased to 15 in diabetic cells. The activity of ecto-5'-nucleotidase increased 2-fold in diabetic cells resulting in a rise of the activity ratio of ecto-5'-nucleotidase/adenosine deaminase from 28 to 56.These results indicate that in rat cardiomyocytes diabetes alters activities of adenosine metabolizing enzymes in such a way that conversion of AMP to IMP is favored in the cytosolic compartment, whereas the capability to produce adenosine extracellularly is increased. This is accompanied by an increased unidirectional Na(+)-dependent uptake of adenosine and significantly reduced bidirectional adenosine transport. PMID:16369729

  4. Phosphorylation at serine 52 and 635 does not alter the transport properties of glucosinolate transporter AtGTR1

    PubMed Central

    Jørgensen, Morten Egevang; Olsen, Carl Erik; Halkier, Barbara Ann; Nour-Eldin, Hussam Hassan

    2016-01-01

    Little is known about how plants regulate transporters of defense compounds. In A. thaliana, glucosinolates are transported between tissues by NPF2.10 (AtGTR1) and NPF2.11 (AtGTR2). Mining of the PhosPhat4.0 database showed two cytosol exposed phosphorylation sites for AtGTR1 and one membrane-buried phosphorylation site for AtGTR2. In this study, we investigate whether mutation of the two potential regulatory sites of AtGTR1 affected transport of glucosinolates in Xenopus oocytes. Characterization of AtGTR1 phosphorylation mutants showed that phosphorylation of AtGTR1 - at the two reported phosphorylation sites - is not directly involved in regulating AtGTR1 transport activity. We hypothesize a role for AtGTR1-phosphorylation in regulating protein-protein interactions. PMID:26340317

  5. Colorectal Carcinogenesis, Radiation Quality, and the Ubiquitin-Proteasome Pathway

    PubMed Central

    Datta, Kamal; Suman, Shubhankar; Kumar, Santosh; Fornace, Albert J

    2016-01-01

    Adult colorectal epithelium undergoes continuous renewal and maintains homeostatic balance through regulated cellular proliferation, differentiation, and migration. The canonical Wnt signaling pathway involving the transcriptional co-activator β-catenin is important for colorectal development and normal epithelial maintenance, and deregulated Wnt/β-catenin signaling has been implicated in colorectal carcinogenesis. Colorectal carcinogenesis has been linked to radiation exposure, and radiation has been demonstrated to alter Wnt/β-catenin signaling, as well as the proteasomal pathway involved in the degradation of the signaling components and thus regulation of β-catenin. The current review discusses recent progresses in our understanding of colorectal carcinogenesis in relation to different types of radiation and roles that radiation quality plays in deregulating β-catenin and ubiquitin-proteasome pathway (UPP) for colorectal cancer initiation and progression. PMID:26819641

  6. Exposure to altered gravity conditions results in hypoxia-related enhancement of the presynaptic transporter-mediated release of glutamate.

    NASA Astrophysics Data System (ADS)

    Borisova, Tatiana

    High-affinity Na+-dependent glutamate transporters locate in the plasma membrane and maintain the low concentration of glutamate in synaptic cleft by the uptake of glutamate into neurons. Under hypoxic conditions glutamate transporters contribute to the glutamate release due to functioning in reverse mode. The release of glutamate via reverse-operated Na+-dependent glutamate transporters was investigated in brain synaptosomes under conditions of centrifugeinduced hypergravity. Flow cytometric analisis revealed similarity in the size and cytoplasmic granularity of control and hypergravity synaptosomes. Protonophore FCCP dissipates the proton gradient across synaptic vesicle thus synaptic vesicles are not able to keep glutamate inside. 1 microM FCCP induced the release of 4. 8 ±1. 0 % and 8. 0 ±1. 0 % of total accumulated synaptosomal label in control and G-loaded animals, respectively. Ca 2+-independent high- KCl stimulated L-[14C]glutamate release from synaptosomes preliminary treated with FCCP increased considerably from 27. 0 ± 2. 2 % to 35. 0 ± 2. 3 % after centrifuge-induced hypergravity. No-transportable inhibitor of glutamate transporter DL-threo-beta-benzyloxyaspartate was found to inhibit high-KCl and FCCP-stimulated release of L-[14C]glutamate, thus the release was concluded to occur due to reversal of glutamate transporters. We have also found the inhibition of the activity of Na \\ K ATPase in the plasma membrane of synaptosomes after hypergravity that might also contribute to the enhancement of the transporter-mediated release of glutamate. These hypergravity-induced alterations in the transporter-mediated release of glutamate were suggested to correlate with the hypoxic injury of neurons. The changes we have revealed for the transporter-mediated release of glutamate may lead to mental disorders, upcoming seizures and neurotoxicity under hypergravity conditions.

  7. Real time measurements of sediment transport and bed morphology during channel altering flow and sediment transport events

    NASA Astrophysics Data System (ADS)

    Curran, Joanna Crowe; Waters, Kevin A.; Cannatelli, Kristen M.

    2015-09-01

    Real-time measurements of bed changes over a reach are a missing piece needed to link bed morphology with sediment transport processes during unsteady flows when the bed adjusts quickly to changing transport rates or visual observation of the bed is precluded by fine sediment in the water column. A new technique is presented that provides continuous measurement of sediment movement over the length of a flume. A bedload monitoring system (BLMS) was developed that makes use of pressure pillows under a false flume bottom to measure sediment and water weights over discrete flume channel sections throughout a flow event. This paper details the construction of the BLMS and provides examples of its use in a laboratory setting to reconstruct bed slopes during unsteady flows and to create a real-time record of sediment transport rates across the flume channel bed during a sediment transporting flow. Data gathered from the BLMS compared well against techniques commonly in use in flume studies. When the BLMS was analyzed in conjunction with bed surface DEMs and differenced DEMs, a complete transport and bed adjustment picture was constructed. The difference DEMs provided information on the spatial extent of bed morphology changes. The BLMS supplied the data record necessary to reconstruct sediment transport records through the downstream channel, including locations and time periods of temporary sediment storage and supply. The BLMS makes it possible to construct a continuous record of the spatial distribution of sediment movement through the flume, including areas of temporary aggradation and degradation. Exciting implications of future research that incorporates a BLMS include a more informed management of river systems as a result of improved temporal predictions of sediment movement and the associated changes in channel slope and bed morphology.

  8. Integrated proteomic and genomic analysis of colorectal cancer

    Cancer.gov

    Investigators who analyzed 95 human colorectal tumor samples have determined how gene alterations identified in previous analyses of the same samples are expressed at the protein level. The integration of proteomic and genomic data, or proteogenomics, pro

  9. ALUMINUM ALTERS CALCIUM TRANSPORT IN PLASMA MEMBRANE AND ENDOPLASMIC RETICULUM FROM RAT BRAIN

    EPA Science Inventory

    Calcium is actively transported into intracellular organelles and out of the cytoplasm by Ca2+/Mg2+-ATPases located in the endoplasmic reticulum and plasma membranes. he effects of aluminum on calcium transport were examined in the adult rat brain. 5Ca-uptake was examined in micr...

  10. Diet and supplements and their impact on colorectal cancer

    PubMed Central

    Pericleous, Marinos; Mandair, Dalvinder

    2013-01-01

    Background Colorectal cancer is the third commonest cancer and the third leading cause of cancer death among men and women. It has been proposed that dietary factors are responsible for 70-90% of colorectal cancer and diet optimization may prevent most cases. Aim To evaluate the role of dietary components and supplements in colorectal cancer. Methods Bibliographical searches were performed in Pubmed for the terms “diet and colorectal cancer”, “diet and colon cancer”, “diet and rectal cancer”, “nutrition and colorectal cancer”, “probiotics and colorectal cancer”, “prebiotics and colorectal cancer”, “alcohol and cancer” and “colorectal cancer epidemiology”. Results Consumption of processed or red meat, especially when cooked at high temperatures may be associated with increased risk of colorectal cancer. The evidence for dietary fibre is unclear but foods that contain high amounts of fibre are usually rich in polyphenols which have been shown to alter molecular processes that can encourage colorectal carcinogenesis. Meta-analyses provide evidence on the benefits of circulating, diet-derived and supplemented, vitamin D and Calcium. We also found that diets rich in Folate may prevent colorectal carcinoma. The evidence on dietary micronutrients such as Zinc and Selenium in association with colorectal cancer is not conclusive. It has been suggested that there may be a direct association between alcohol intake and colorectal cancer. In vitro and in vivo studies have highlighted a possible protective role of prebiotics and probiotics. Conclusions The lack of randomized trials and the presence of confounding factors including smoking, physical activity, obesity and diabetes may often yield inconclusive results. Carefully designed randomized trials are recommended. PMID:24294513

  11. Colorectal Cancer Prevention

    MedlinePlus

    ... Genetics of Colorectal Cancer Colorectal cancer is the second leading cause of death from cancer in the ... professional versions have detailed information written in technical language. The patient versions are written in easy-to- ...

  12. Homeostasis of the astrocytic glutamate transporter GLT-1 is altered in mouse models of Lafora disease.

    PubMed

    Muñoz-Ballester, Carmen; Berthier, Arnaud; Viana, Rosa; Sanz, Pascual

    2016-06-01

    Lafora disease (LD, OMIM 254780) is a fatal rare disorder characterized by epilepsy and neurodegeneration. Although in recent years a lot of information has been gained on the molecular basis of the neurodegeneration that accompanies LD, the molecular basis of epilepsy is poorly understood. Here, we present evidence indicating that the homeostasis of glutamate transporter GLT-1 (EAAT2) is compromised in mouse models of LD. Our results indicate that primary astrocytes from LD mice have reduced capacity of glutamate transport, probably because they present a reduction in the levels of the glutamate transporter at the plasma membrane. On the other hand, the overexpression in cellular models of laforin and malin, the two proteins related to LD, results in an accumulation of GLT-1 (EAAT2) at the plasma membrane and in a severe reduction of the ubiquitination of the transporter. All these results suggest that the laforin/malin complex slows down the endocytic recycling of the GLT-1 (EAAT2) transporter. Since, defects in the function of this transporter lead to excitotoxicity and epilepsy, we suggest that the epilepsy that accompanies LD could be due, at least in part, to deficiencies in the function of the GLT-1 (EAAT2) transporter. PMID:26976331

  13. Dysfunction of Organic Anion Transporting Polypeptide 1a1 Alters Intestinal Bacteria and Bile Acid Metabolism in Mice

    PubMed Central

    Zhang, Youcai; Limaye, Pallavi B.; Lehman-McKeeman, Lois D.; Klaassen, Curtis D.

    2012-01-01

    Organic anion transporting polypeptide 1a1 (Oatp1a1) is predominantly expressed in liver and is able to transport bile acids (BAs) in vitro. Male Oatp1a1-null mice have increased concentrations of taurodeoxycholic acid (TDCA), a secondary BA generated by intestinal bacteria, in both serum and livers. Therefore, in the present study, BA concentrations and intestinal bacteria in wild-type (WT) and Oatp1a1-null mice were quantified to investigate whether the increase of secondary BAs in Oatp1a1-null mice is due to alterations in intestinal bacteria. The data demonstrate that Oatp1a1-null mice : (1) have similar bile flow and BA concentrations in bile as WT mice; (2) have a markedly different BA composition in the intestinal contents, with a decrease in conjugated BAs and an increase in unconjugated BAs; (3) have BAs in the feces that are more deconjugated, desulfated, 7-dehydroxylated, 3-epimerized, and oxidized, but less 7-epimerized; (4) have 10-fold more bacteria in the small intestine, and 2-fold more bacteria in the large intestine which is majorly due to a 200% increase in Bacteroides and a 30% reduction in Firmicutes; and (5) have a different urinary excretion of bacteria-related metabolites than WT mice. In conclusion, the present study for the first time established that lack of a liver transporter (Oatp1a1) markedly alters the intestinal environment in mice, namely the bacteria composition. PMID:22496825

  14. Dysfunction of organic anion transporting polypeptide 1a1 alters intestinal bacteria and bile acid metabolism in mice.

    PubMed

    Zhang, Youcai; Limaye, Pallavi B; Lehman-McKeeman, Lois D; Klaassen, Curtis D

    2012-01-01

    Organic anion transporting polypeptide 1a1 (Oatp1a1) is predominantly expressed in liver and is able to transport bile acids (BAs) in vitro. Male Oatp1a1-null mice have increased concentrations of taurodeoxycholic acid (TDCA), a secondary BA generated by intestinal bacteria, in both serum and livers. Therefore, in the present study, BA concentrations and intestinal bacteria in wild-type (WT) and Oatp1a1-null mice were quantified to investigate whether the increase of secondary BAs in Oatp1a1-null mice is due to alterations in intestinal bacteria. The data demonstrate that Oatp1a1-null mice : (1) have similar bile flow and BA concentrations in bile as WT mice; (2) have a markedly different BA composition in the intestinal contents, with a decrease in conjugated BAs and an increase in unconjugated BAs; (3) have BAs in the feces that are more deconjugated, desulfated, 7-dehydroxylated, 3-epimerized, and oxidized, but less 7-epimerized; (4) have 10-fold more bacteria in the small intestine, and 2-fold more bacteria in the large intestine which is majorly due to a 200% increase in Bacteroides and a 30% reduction in Firmicutes; and (5) have a different urinary excretion of bacteria-related metabolites than WT mice. In conclusion, the present study for the first time established that lack of a liver transporter (Oatp1a1) markedly alters the intestinal environment in mice, namely the bacteria composition. PMID:22496825

  15. Genetical and Comparative Genomics of Brassica under Altered Ca Supply Identifies Arabidopsis Ca-Transporter Orthologs[W][OPEN

    PubMed Central

    Graham, Neil S.; Hammond, John P.; Lysenko, Artem; Mayes, Sean; Ó Lochlainn, Seosamh; Blasco, Bego; Bowen, Helen C.; Rawlings, Chris J.; Rios, Juan J.; Welham, Susan; Carion, Pierre W.C.; Dupuy, Lionel X.; King, Graham J.; White, Philip J.; Broadley, Martin R.

    2014-01-01

    Although Ca transport in plants is highly complex, the overexpression of vacuolar Ca2+ transporters in crops is a promising new technology to improve dietary Ca supplies through biofortification. Here, we sought to identify novel targets for increasing plant Ca accumulation using genetical and comparative genomics. Expression quantitative trait locus (eQTL) mapping to 1895 cis- and 8015 trans-loci were identified in shoots of an inbred mapping population of Brassica rapa (IMB211 × R500); 23 cis- and 948 trans-eQTLs responded specifically to altered Ca supply. eQTLs were screened for functional significance using a large database of shoot Ca concentration phenotypes of Arabidopsis thaliana. From 31 Arabidopsis gene identifiers tagged to robust shoot Ca concentration phenotypes, 21 mapped to 27 B. rapa eQTLs, including orthologs of the Ca2+ transporters At-CAX1 and At-ACA8. Two of three independent missense mutants of BraA.cax1a, isolated previously by targeting induced local lesions in genomes, have allele-specific shoot Ca concentration phenotypes compared with their segregating wild types. BraA.CAX1a is a promising target for altering the Ca composition of Brassica, consistent with prior knowledge from Arabidopsis. We conclude that multiple-environment eQTL analysis of complex crop genomes combined with comparative genomics is a powerful technique for novel gene identification/prioritization. PMID:25082855

  16. Effects of altered cytoplasmic domains on transport of the vesicular stomatitis virus glycoprotein are transferable to other proteins.

    PubMed Central

    Guan, J L; Ruusala, A; Cao, H; Rose, J K

    1988-01-01

    Alterations of the cytoplasmic domain of the vesicular stomatitis virus glycoprotein (G protein) were shown previously to affect transport of the protein from the endoplasmic reticulum, and recent studies have shown that this occurs without detectable effects on G protein folding and trimerization (R. W. Doms et al., J. Cell Biol., in press). Deletions within this domain slowed exit of the mutant proteins from the endoplasmic reticulum, and replacement of this domain with a foreign 12-amino-acid sequence blocked all transport out of the endoplasmic reticulum. To extend these studies, we determined whether such effects of cytoplasmic domain changes were transferable to other proteins. Three different assays showed that the effects of the mutations on transport of two membrane-anchored secretory proteins were the same as those observed with vesicular stomatitis virus G protein. In addition, possible effects on oligomerization were examined for both transported and nontransported forms of membrane-anchored human chorionic gonadotropin-alpha. These membrane-anchored forms, like the nonanchored human chorionic gonadotropin-alpha, had sedimentation coefficients consistent with a monomeric structure. Taken together, our results provide strong evidence that these cytoplasmic mutations affect transport by affecting interactions at or near the cytoplasmic side of the membrane. Images PMID:2841589

  17. Early alterations in soleus GLUT-4, glucose transport, and glycogen in voluntary running rats

    NASA Technical Reports Server (NTRS)

    Henriksen, Erik J.; Halseth, Amy E.

    1994-01-01

    Voluntary wheel running (WR) by juvenile female rats was used as a noninterventional model of soleus muscle functional overload to study the regulation of insulin-stimulated glucose transport activity by the glucose transporter (GLUT-4 isoform) protein level and glycogen concentration. Soleus total protein content was significantly greater (+18%;P greater than 0.05) than in age-matched controls after 1 wk of WR, and this hypertrophic response continued in weeks 2-4 (+24-32%). GLUT-4 protein was 39% greater than in controls in 1-wk WR soleus, and this adaptation was accompanied by a similar increase in in vitro insulin-stimulated glucose transport activity(+29%). After 2 and 4 wk of WR, however, insulin-stimulated glucose transport activity had returned to control levels, despite a continued elevation (+25-28%) of GLUT-4 protein. At these two time points, glycogen concentration was significantly enhanced in WR soleus (+21-42%), which coincided with significant reductions in glycogen synthase activity ratios (-23 to-41%). These results indicate that, in this model of soleus muscle functional overload, the GLUT-4 protein level may initially regulate insulin-stimulated glucose transport activity in the absence of changes in other modifying factors. However,this regulation of glucose transport activity by GLUT-4 protein may be subsequently overridden by elevated glycogen concentration.

  18. Alterations in adhesion, transport, and membrane characteristics in an adhesion-deficient pseudomonad

    SciTech Connect

    DeFlaun, M.F.; Streger, S.; Condee, C.W.; Oppenheimer, S.R.; Fletcher, M.

    1999-02-01

    A stable adhesion-deficient mutant of Burkholderia cepacia G4, a soil pseudomonad, was selected in a sand column assay. This mutant (ENV435) was compared to the wild-type strain by examining the adhesion of the organisms to silica sand and their transport through two aquifer sediments that differed in their sand, silt, and clay contents. The authors compared the longitudinal transport of the wild type and the adhesion mutant to the transport of a conservative chloride tracer in 25-cm-long glass columns. The transport of the wild-type strain was severely retarded compared to the transport of the conservative tracer in a variety of aquifer sediments, while the adhesion mutant and the conservative tracer traveled at similar rates. An intact sediment core study produced similar results; ENV435 was transported at a faster rate and in much greater numbers than G4. The results of hydrophobic interaction chromatography revealed that G4 was significantly more hydrophobic than ENV435, and polyacrylamide gel electrophoresis revealed significant differences in the lipopolysaccharide O-antigens of the adhesion mutant and the wild type. Differences in this cell surface polymer may explain the decreased adhesion of strain ENV435.

  19. Alterations in Adhesion, Transport, and Membrane Characteristics in an Adhesion-Deficient Pseudomonad

    PubMed Central

    DeFlaun, M. F.; Oppenheimer, S. R.; Streger, S.; Condee, C. W.; Fletcher, M.

    1999-01-01

    A stable adhesion-deficient mutant of Burkholderia cepacia G4, a soil pseudomonad, was selected in a sand column assay. This mutant (ENV435) was compared to the wild-type strain by examining the adhesion of the organisms to silica sand and their transport through two aquifer sediments that differed in their sand, silt, and clay contents. We compared the longitudinal transport of the wild type and the adhesion mutant to the transport of a conservative chloride tracer in 25-cm-long glass columns. The transport of the wild-type strain was severely retarded compared to the transport of the conservative tracer in a variety of aquifer sediments, while the adhesion mutant and the conservative tracer traveled at similar rates. An intact sediment core study produced similar results; ENV435 was transported at a faster rate and in much greater numbers than G4. The results of hydrophobic interaction chromatography revealed that G4 was significantly more hydrophobic than ENV435, and polyacrylamide gel electrophoresis revealed significant differences in the lipopolysaccharide O-antigens of the adhesion mutant and the wild type. Differences in this cell surface polymer may explain the decreased adhesion of strain ENV435. PMID:9925613

  20. Gut microbiota imbalance and colorectal cancer

    PubMed Central

    Gagnière, Johan; Raisch, Jennifer; Veziant, Julie; Barnich, Nicolas; Bonnet, Richard; Buc, Emmanuel; Bringer, Marie-Agnès; Pezet, Denis; Bonnet, Mathilde

    2016-01-01

    The gut microbiota acts as a real organ. The symbiotic interactions between resident micro-organisms and the digestive tract highly contribute to maintain the gut homeostasis. However, alterations to the microbiome caused by environmental changes (e.g., infection, diet and/or lifestyle) can disturb this symbiotic relationship and promote disease, such as inflammatory bowel diseases and cancer. Colorectal cancer is a complex association of tumoral cells, non-neoplastic cells and a large amount of micro-organisms, and the involvement of the microbiota in colorectal carcinogenesis is becoming increasingly clear. Indeed, many changes in the bacterial composition of the gut microbiota have been reported in colorectal cancer, suggesting a major role of dysbiosis in colorectal carcinogenesis. Some bacterial species have been identified and suspected to play a role in colorectal carcinogenesis, such as Streptococcus bovis, Helicobacter pylori, Bacteroides fragilis, Enterococcus faecalis, Clostridium septicum, Fusobacterium spp. and Escherichia coli. The potential pro-carcinogenic effects of these bacteria are now better understood. In this review, we discuss the possible links between the bacterial microbiota and colorectal carcinogenesis, focusing on dysbiosis and the potential pro-carcinogenic properties of bacteria, such as genotoxicity and other virulence factors, inflammation, host defenses modulation, bacterial-derived metabolism, oxidative stress and anti-oxidative defenses modulation. We lastly describe how bacterial microbiota modifications could represent novel prognosis markers and/or targets for innovative therapeutic strategies. PMID:26811603

  1. HUMMR, a hypoxia- and HIF-1α–inducible protein, alters mitochondrial distribution and transport

    PubMed Central

    Li, Yan; Lim, Seung; Hoffman, David; Aspenstrom, Pontus; Federoff, Howard J.

    2009-01-01

    Mitochondrial transport is critical for maintenance of normal neuronal function. Here, we identify a novel mitochondria protein, hypoxia up-regulated mitochondrial movement regulator (HUMMR), which is expressed in neurons and is markedly induced by hypoxia-inducible factor 1 α (HIF-1α). Interestingly, HUMMR interacts with Miro-1 and Miro-2, mitochondrial proteins that are critical for mediating mitochondrial transport. Interestingly, knockdown of HUMMR or HIF-1 function in neurons exposed to hypoxia markedly reduces mitochondrial content in axons. Because mitochondrial transport and distribution are inextricably linked, the impact of reduced HUMMR function on the direction of mitochondrial transport was also explored. Loss of HUMMR function in hypoxia diminished the percentage of motile mitochondria moving in the anterograde direction and enhanced the percentage moving in the retrograde direction. Thus, HUMMR, a novel mitochondrial protein induced by HIF-1 and hypoxia, biases mitochondria transport in the anterograde direction. These findings have broad implications for maintenance of neuronal viability and function during physiological and pathological states. PMID:19528298

  2. Interacting Effects of Discharge and Channel Morphology on Transport of Semibuoyant Fish Eggs in Large, Altered River Systems

    PubMed Central

    Worthington, Thomas A.; Brewer, Shannon K.; Farless, Nicole; Grabowski, Timothy B.; Gregory, Mark S.

    2014-01-01

    Habitat fragmentation and flow regulation are significant factors related to the decline and extinction of freshwater biota. Pelagic-broadcast spawning cyprinids require moving water and some length of unfragmented stream to complete their life cycle. However, it is unknown how discharge and habitat features interact at multiple spatial scales to alter the transport of semi-buoyant fish eggs. Our objective was to assess the relationship between downstream drift of semi-buoyant egg surrogates (gellan beads) and discharge and habitat complexity. We quantified transport time of a known quantity of beads using 2–3 sampling devices at each of seven locations on the North Canadian and Canadian rivers. Transport time was assessed based on median capture time (time at which 50% of beads were captured) and sampling period (time period when 2.5% and 97.5% of beads were captured). Habitat complexity was assessed by calculating width∶depth ratios at each site, and several habitat metrics determined using analyses of aerial photographs. Median time of egg capture was negatively correlated to site discharge. The temporal extent of the sampling period at each site was negatively correlated to both site discharge and habitat-patch dispersion. Our results highlight the role of discharge in driving transport times, but also indicate that higher dispersion of habitat patches relates to increased retention of beads within the river. These results could be used to target restoration activities or prioritize water use to create and maintain habitat complexity within large, fragmented river systems. PMID:24802361

  3. Interacting effects of discharge and channel morphology on transport of semibuoyant fish eggs in large, altered river systems.

    PubMed

    Worthington, Thomas A; Brewer, Shannon K; Farless, Nicole; Grabowski, Timothy B; Gregory, Mark S

    2014-01-01

    Habitat fragmentation and flow regulation are significant factors related to the decline and extinction of freshwater biota. Pelagic-broadcast spawning cyprinids require moving water and some length of unfragmented stream to complete their life cycle. However, it is unknown how discharge and habitat features interact at multiple spatial scales to alter the transport of semi-buoyant fish eggs. Our objective was to assess the relationship between downstream drift of semi-buoyant egg surrogates (gellan beads) and discharge and habitat complexity. We quantified transport time of a known quantity of beads using 2-3 sampling devices at each of seven locations on the North Canadian and Canadian rivers. Transport time was assessed based on median capture time (time at which 50% of beads were captured) and sampling period (time period when 2.5% and 97.5% of beads were captured). Habitat complexity was assessed by calculating width∶depth ratios at each site, and several habitat metrics determined using analyses of aerial photographs. Median time of egg capture was negatively correlated to site discharge. The temporal extent of the sampling period at each site was negatively correlated to both site discharge and habitat-patch dispersion. Our results highlight the role of discharge in driving transport times, but also indicate that higher dispersion of habitat patches relates to increased retention of beads within the river. These results could be used to target restoration activities or prioritize water use to create and maintain habitat complexity within large, fragmented river systems. PMID:24802361

  4. Reduced ability to release adenosine by diabetic rat cardiac fibroblasts due to altered expression of nucleoside transporters

    PubMed Central

    Podgorska, Marzena; Kocbuch, Katarzyna; Grden, Marzena; Szutowicz, Andrzej; Pawelczyk, Tadeusz

    2006-01-01

    Adenosine produced by cardiac cells is known to attenuate the proliferation of cardiac fibroblasts (CFs), inhibit collagen synthesis, and protect the myocardium against ischaemic and reperfusion injury. Diabetic patients' hearts exhibit ventricular hypertrophy and demonstrate reduced tolerance to hypoxia or ischaemia. In this study, we characterize the effects of glucose and insulin on processes that determine the release of adenosine from CFs. We showed that during ATP depletion, rat CFs cultured in the absence of insulin release significantly less adenosine compared to cells grown in the presence of insulin. Moreover, under both conditions the quantity of released adenosine depends on glucose concentration. We demonstrate that this is due to altered expression of nucleoside transporters. High glucose (25 mm) induced 85% decrease in nucleoside transporter ENT1 mRNA levels. Decrease of the insulin level below 10−11m resulted in over 3-fold increase in the nucleoside transporter CNT2 mRNA content. Measurements of adenosine transport in CFs cultured in the presence of 5 mm glucose and 10 nm insulin showed that the bidirectional equilibrative adenosine transport accounted for 70% of the overall adenosine uptake. However, cells grown in the presence of high glucose (25 mm) demonstrated 65% decrease of the bidirectional equilibrative adenosine transport. Experiments on CFs cultured in the absence of insulin showed that the unidirectional Na+-dependent adenosine uptake rose in these cells more than 4-fold. These results indicate that the development of diabetes may result in an increased uptake of interstitial adenosine by CFs, and reduction of the ability of these cells to release adenosine during ATP deprivation. PMID:16873415

  5. Altered expression of Mg(2+) transport proteins during Parkinson's disease-like dopaminergic cell degeneration in PC12 cells.

    PubMed

    Shindo, Yutaka; Yamanaka, Ryu; Suzuki, Koji; Hotta, Kohji; Oka, Kotaro

    2016-08-01

    Mg(2+) is an essential cation to maintain cellular functions, and intracellular Mg(2+) concentration ([Mg(2+)]i) is regulated by Mg(2+) channels and transporters. In our previous study, we demonstrated that MPP(+) elicits Mg(2+) influx across the cell membrane and Mg(2+) mobilization from mitochondria, and the resulting [Mg(2+)]i is an important determinants of the cell viability in MPP(+) model of Parkinson's disease (PD). It indicates that cellular Mg(2+) transport is one of the important factors to determine the progress of PD. However, whether the expression levels of Mg(2+) transport proteins change in the progress of PD has still been obscure. In this study, we estimated the mRNA expression levels of Mg(2+) transport proteins upon the exposure to MPP(+). In thirteen Mg(2+) transport proteins examined, mRNA expression level of SLC41A2 was increased and that of ACDP2, NIPA1 and MMgT2 were decreased. Knockdown of SLC41A2, ACDP2 or NIPA1 accelerated the MPP(+)-induced cell degeneration, and overexpression attenuated it. The decrease in the mRNA expression levels of NIPA1 and MMgT2 were also elicited by rotenone, H2O2 and FCCP, indicating that mitochondrial dysfunction related to this down-regulation. The increase in that of SLC41A2 was induced by an uncoupler, FCCP, as well as MPP(+), suggesting that it is an intrinsic protection mechanism against depolarized mitochondrial membrane potential and/or cellular ATP depletion. Our results shown here indicate that alteration of Mg(2+) transport proteins is implicated in the MPP(+) model of PD, and it affects cell degeneration. PMID:27157538

  6. Phosphate depletion modulates auxin transport in Triticum aestivum leading to altered root branching

    PubMed Central

    Talboys, Peter J.; Healey, John R.; Withers, Paul J. A.; Jones, Davey L.

    2014-01-01

    Understanding the mechanisms by which nutritional signals impact upon root system architecture is a key facet in the drive for greater nutrient application efficiency in agricultural systems. Cereal plants reduce their rate of lateral root emergence under inorganic phosphate (Pi) shortage; this study uses molecular and pharmacological techniques to dissect this Pi response in Triticum aestivum. Plants were grown in coarse sand washed in high- or low-Pi nutrient solution before being assessed for their root branching density and expression of AUX/IAA and PIN genes. Seedlings were also grown on media containing [14C]indole acetic acid to measure basipetal auxin transport. Seedlings grown in low-Pi environments displayed less capacity to transport auxin basipetally from the seminal root apex, a reduction in root expression of PIN auxin transporter genes, and perturbed expression of a range of AUX/IAA auxin response genes. Given the known importance of basipetally transported auxin in stimulating lateral root initiation, it is proposed here that, in T. aestivum, Pi availability directly influences lateral root production through modulation of PIN expression. Understanding such processes is important in the drive for greater efficiency in crop use of Pi fertilizers in agricultural settings. PMID:25086590

  7. Phosphate depletion modulates auxin transport in Triticum aestivum leading to altered root branching.

    PubMed

    Talboys, Peter J; Healey, John R; Withers, Paul J A; Jones, Davey L

    2014-09-01

    Understanding the mechanisms by which nutritional signals impact upon root system architecture is a key facet in the drive for greater nutrient application efficiency in agricultural systems. Cereal plants reduce their rate of lateral root emergence under inorganic phosphate (Pi) shortage; this study uses molecular and pharmacological techniques to dissect this Pi response in Triticum aestivum. Plants were grown in coarse sand washed in high- or low-Pi nutrient solution before being assessed for their root branching density and expression of AUX/IAA and PIN genes. Seedlings were also grown on media containing [(14)C]indole acetic acid to measure basipetal auxin transport. Seedlings grown in low-Pi environments displayed less capacity to transport auxin basipetally from the seminal root apex, a reduction in root expression of PIN auxin transporter genes, and perturbed expression of a range of AUX/IAA auxin response genes. Given the known importance of basipetally transported auxin in stimulating lateral root initiation, it is proposed here that, in T. aestivum, Pi availability directly influences lateral root production through modulation of PIN expression. Understanding such processes is important in the drive for greater efficiency in crop use of Pi fertilizers in agricultural settings. PMID:25086590

  8. Prenatal Transportation Stress Alters Temperament and Serum Cortisol Concentrations in Suckling Brahman Calves

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This experiment examined the relationship between prenatal stress and subsequent calf temperament through weaning. The prenatal stressor utilized was repeated transportation of pregnant Brahman cows for 2 hours at 60, 80, 100, 120, and 140 days of gestation. Prenatally stressed calves (n = 41) were ...

  9. Inhibition of Nucleotide Sugar Transport in Trypanosoma brucei Alters Surface Glycosylation*

    PubMed Central

    Liu, Li; Xu, Yu-Xin; Caradonna, Kacey L.; Kruzel, Emilia K.; Burleigh, Barbara A.; Bangs, James D.; Hirschberg, Carlos B.

    2013-01-01

    Nucleotide sugar transporters (NSTs) are indispensible for the biosynthesis of glycoproteins by providing the nucleotide sugars needed for glycosylation in the lumen of the Golgi apparatus. Mutations in NST genes cause human and cattle diseases and impaired cell walls of yeast and fungi. Information regarding their function in the protozoan parasite, Trypanosoma brucei, a causative agent of African trypanosomiasis, is unknown. Here, we characterized the substrate specificities of four NSTs, TbNST1–4, which are expressed in both the insect procyclic form (PCF) and mammalian bloodstream form (BSF) stages. TbNST1/2 transports UDP-Gal/UDP-GlcNAc, TbNST3 transports GDP-Man, and TbNST4 transports UDP-GlcNAc, UDP-GalNAc, and GDP-Man. TbNST4 is the first NST shown to transport both pyrimidine and purine nucleotide sugars and is demonstrated here to be localized at the Golgi apparatus. RNAi-mediated silencing of TbNST4 in the procyclic form caused underglycosylated surface glycoprotein EP-procyclin. Similarly, defective glycosylation of the variant surface glycoprotein (VSG221) as well as the lysosomal membrane protein p67 was observed in Δtbnst4 BSF T. brucei. Relative infectivity analysis showed that defects in glycosylation of the surface coat resulting from tbnst4 deletion were insufficient to impact the ability of this parasite to infect mice. Notably, the fact that inactivation of a single NST gene results in measurable defects in surface glycoproteins in different life cycle stages of the parasite highlights the essential role of NST(s) in glycosylation of T. brucei. Thus, results presented in this study provide a framework for conducting functional analyses of other NSTs identified in T. brucei. PMID:23443657

  10. Inhibition of nucleotide sugar transport in Trypanosoma brucei alters surface glycosylation.

    PubMed

    Liu, Li; Xu, Yu-Xin; Caradonna, Kacey L; Kruzel, Emilia K; Burleigh, Barbara A; Bangs, James D; Hirschberg, Carlos B

    2013-04-12

    Nucleotide sugar transporters (NSTs) are indispensible for the biosynthesis of glycoproteins by providing the nucleotide sugars needed for glycosylation in the lumen of the Golgi apparatus. Mutations in NST genes cause human and cattle diseases and impaired cell walls of yeast and fungi. Information regarding their function in the protozoan parasite, Trypanosoma brucei, a causative agent of African trypanosomiasis, is unknown. Here, we characterized the substrate specificities of four NSTs, TbNST1-4, which are expressed in both the insect procyclic form (PCF) and mammalian bloodstream form (BSF) stages. TbNST1/2 transports UDP-Gal/UDP-GlcNAc, TbNST3 transports GDP-Man, and TbNST4 transports UDP-GlcNAc, UDP-GalNAc, and GDP-Man. TbNST4 is the first NST shown to transport both pyrimidine and purine nucleotide sugars and is demonstrated here to be localized at the Golgi apparatus. RNAi-mediated silencing of TbNST4 in the procyclic form caused underglycosylated surface glycoprotein EP-procyclin. Similarly, defective glycosylation of the variant surface glycoprotein (VSG221) as well as the lysosomal membrane protein p67 was observed in Δtbnst4 BSF T. brucei. Relative infectivity analysis showed that defects in glycosylation of the surface coat resulting from tbnst4 deletion were insufficient to impact the ability of this parasite to infect mice. Notably, the fact that inactivation of a single NST gene results in measurable defects in surface glycoproteins in different life cycle stages of the parasite highlights the essential role of NST(s) in glycosylation of T. brucei. Thus, results presented in this study provide a framework for conducting functional analyses of other NSTs identified in T. brucei. PMID:23443657

  11. Chemical transport during formation and alteration of Martian impact and volcanic deposits

    NASA Technical Reports Server (NTRS)

    Newsom, H. E.

    1992-01-01

    Much of the surface of Mars, including volcanic and cratered terrains, probably experienced alteration and degassing processes. These processes may have depleted or enriched many important elements in surface materials, including bedrock, dust, and soils. The composition of the martian soil may represent the best estimate, for some elements, of the average composition of the martian crust, similar to the composition of loess created by glacial action on the Earth. The martian soil may represent the only convenient, globally or regionally averaged sample of the martian crust. In order to understand the composition of the source material for the soil, however, we need to understand the contributions of volcanic vs. impact sources for this material and the chemical fractionations involved in its production. The processes to be addressed include degassing of volcanic deposits, as observed in the Valley of Ten Thousand Smokes at Katmai, Alaska, and degassing of meltbearing impact ejecta as inferred for suevite ejecta sheets at the Ries Crater, and alteration or palagonitization of volcanic deposits, as documented for volcanos in British Columbia and many other volcanic terrains, and impact crater deposits. The process of palagonitization has been the subject of several studies with reference to Mars, and palagonite is a good analogue for the spectroscopic properties of the martian dust. The role of impact in cratering has not been as well studied, although other researchers have established that both degassing and alteration are common features of impact crater deposits. Other relevant sources of experimental data include the extensive literature on the corrosion of nuclear waste glass and leaching of shocked materials.

  12. Activation of guanylate cyclase-C attenuates stretch responses and sensitization of mouse colorectal afferents

    PubMed Central

    Feng, Bin; Kiyatkin, Michael E.; La, Jun-Ho; Ge, Pei; Solinga, Robert; Silos-Santiago, Inmaculada; Gebhart, G.F.

    2013-01-01

    Irritable bowel syndrome (IBS) is characterized by altered bowel habits, persistent pain and discomfort, and typically colorectal hypersensitivity. Linaclotide, a peripherally-restricted 14-amino acid peptide approved for the treatment of IBS with constipation, relieves constipation and reduces IBS-associated pain in these patients presumably by activation of guanylate cyclase-C (GC-C), which stimulates production and release of cyclic guanosine monophosphate (cGMP) from intestinal epithelial cells. We investigated whether activation of GC-C by the endogenous agonist uroguanylin or the primary downstream effector of that activation, cGMP, directly modulates responses and sensitization of mechanosensitive colorectal primary afferents. The distal 2 cm of mouse colorectum with attached pelvic nerve was harvested, pinned flat mucosal side up for in vitro single-fiber recordings and the encoding properties of mechanosensitive afferents (serosal, mucosal, muscular and muscular-mucosal) to probing and circumferential stretch studied. Both cGMP (10–300μM) and uroguanylin (1–1000nM) applied directly to colorectal receptive endings significantly reduced responses of muscular and muscular-mucosal afferents to stretch; serosal and mucosal afferents were not affected. Sensitized responses (i.e., increased responses to stretch) of muscular and muscular-mucosal afferents were reversed by cGMP, returning responses to stretch to control. Blocking the transport of cGMP from colorectal epithelia by probenecid, a mechanism validated by studies in cultured intestinal T84 cells, abolished the inhibitory effect of uroguanylin on muscular-mucosal afferents. These results suggest that GC-C agonists like linaclotide alleviate colorectal pain and hypersensitivity by dampening stretch-sensitive afferent mechanosensitivity and normalizing afferent sensitization. PMID:23739979

  13. Colorectal Cancer

    MedlinePlus

    ... malignant tumor and enter the bloodstream or the lymphatic system where they travel to other organs in the body. Among other things, the lymphatic system transports white blood cells that fight infection. When ...

  14. [Colorectal carcinoma in Cronkhite-Canada syndrome].

    PubMed

    Zügel, N P; Hehl, J A; Jechart, G; Tannapfel, A; Wienbeck, M; Witte, J

    2001-05-01

    We report a 63-year-old lady with Cronkhite-Canada syndrome, who developed colorectal cancer. A hemicolectomy was performed, and the tumor specimen was prepared for DNA-analysis and immunohistochemical screening. We found a mutation of p53 gene without APC- and ras-gene alteration and expression of erbB2-protooncogen. The polyps in non-hereditary Cronkhite-Canada-syndrom are neither adenomatous nor hyperplastic, but patients often develop colorectal cancers. The steps of mutation do not follow the adenoma-carcinoma sequence, first described by Vogelstein 1988. This and previous observations suggest that carcinogenesis in Cronkhite-Canada syndrome follows another independent sequence. PMID:11413916

  15. Chronic hypoxia enhances adenosine release in rat PC12 cells by altering adenosine metabolism and membrane transport.

    PubMed

    Kobayashi, S; Zimmermann, H; Millhorn, D E

    2000-02-01

    Acute exposure to hypoxia causes a release of adenosine (ADO) that is inversely related to the O2 levels in oxygen-sensitive pheochromocytoma (PC12) cells. In the current study, chronic exposure (48 h) of PC12 cells to moderate hypoxia (5% O2) significantly enhanced the release of ADO during severe, acute hypoxia (1% O2). Investigation into the intra- and extracellular mechanisms underpinning the secretion of ADO in PC12 cells chronically exposed to hypoxia revealed changes in gene expression and activities of several key enzymes associated with ADO production and metabolism, as well as the down-regulation of a nucleoside transporter. Decreases in the enzymatic activities of ADO kinase and ADO deaminase accompanied by an increase in those of cytoplasmic and ecto-5'-nucleotidases bring about an increased capacity to produce intra- and extracellular ADO. This increased potential to generate ADO and decreased capacity to metabolize ADO indicate that PC12 cells shift toward an ADO producer phenotype during hypoxia. The reduced function of the rat equilibrative nucleoside transporter rENT1 also plays a role in controlling extracellular ADO levels. The hypoxia-induced alterations in the ADO metabolic enzymes and the rENT1 transporter seem to increase the extracellular concentration of ADO. The biological significance of this regulation is unclear but is likely to be associated with modulating cellular activity during hypoxia. PMID:10646513

  16. Prenatal alcohol exposure alters methyl metabolism and programs serotonin transporter and glucocorticoid receptor expression in brain.

    PubMed

    Ngai, Ying Fai; Sulistyoningrum, Dian C; O'Neill, Ryan; Innis, Sheila M; Weinberg, Joanne; Devlin, Angela M

    2015-09-01

    Prenatal alcohol exposure (PAE) programs the fetal hypothalamic-pituitary-adrenal (HPA) axis, resulting in HPA dysregulation and hyperresponsiveness to stressors in adulthood. Molecular mechanisms mediating these alterations are not fully understood. Disturbances in one-carbon metabolism, a source of methyl donors for epigenetic processes, contributes to alcoholic liver disease. We assessed whether PAE affects one-carbon metabolism (including Mtr, Mat2a, Mthfr, and Cbs mRNA) and programming of HPA function genes (Nr3c1, Nr3c2, and Slc6a4) in offspring from ethanol-fed (E), pair-fed (PF), and ad libitum-fed control (C) dams. At gestation day 21, plasma total homocysteine and methionine concentrations were higher in E compared with C dams, and E fetuses had higher plasma methionine concentrations and lower whole brain Mtr and Mat2a mRNA compared with C fetuses. In adulthood (55 days), hippocampal Mtr and Cbs mRNA was lower in E compared with C males, whereas Mtr, Mat2a, Mthfr, and Cbs mRNA were higher in E compared with C females. We found lower Nr3c1 mRNA and lower nerve growth factor inducible protein A (NGFI-A) protein in the hippocampus of E compared with PF females, whereas hippocampal Slc6a4 mRNA was higher in E than C males. By contrast, hypothalamic Slc6a4 mRNA was lower in E males and females compared with C offspring. This was accompanied by higher hypothalamic Slc6a4 mean promoter methylation in E compared with PF females. These findings demonstrate that PAE is associated with alterations in one-carbon metabolism and has long-term and region-specific effects on gene expression in the brain. These findings advance our understanding of mechanisms of HPA dysregulation associated with PAE. PMID:26180184

  17. Altered Expression of Brain Monocarboxylate Transporter 1 in Models of Temporal Lobe Epilepsy

    PubMed Central

    Lauritzen, Fredrik; Perez, Edgar L.; Melillo, Eric R.; Roh, Jung-Min; Zaveri, Hitten P.; Lee, Tih-Shih W.; Wang, Yue; Bergersen, Linda H.; Eid, Tore

    2012-01-01

    Monocarboxylate transporter 1 (MCT1) facilitates the transport of monocarboxylate fuels (lactate, pyruvate and ketone bodies) and acidic drugs, such as valproic acid, across cell membranes. We recently reported that MCT1 is deficient on microvessels in the epileptogenic hippocampal formation in patients with medication-refractory temporal lobe epilepsy (TLE). To further define the role of MCT1 in the pathophysiology of TLE, we used immunohistochemistry and stereological analysis to localize and quantify the transporter in the hippocampal formation in three novel and highly relevant rat models of TLE and in nonepileptic control animals. One model utilizes methionine sulfoximine to induce brain glutamine synthetase deficiency and recurrent limbic seizures, while two models employ an episode of perforant pathway stimulation to cause epilepsy. MCT1 was lost on microvessels and upregulated on astrocytes in the hippocampal formation in all models of TLE. Notably, the loss of MCT1 on microvessels was not due to a reduction in microvessel density. The similarities in MCT1 expression among human subjects with TLE and several animal models of the disease strongly suggest a critical role of this molecule in the pathogenesis of TLE. We hypothesize that the downregulation of MCT1 may promote seizures via impaired uptake of ketone bodies and antiepileptic drugs by the epileptogenic brain. We also propose that the overexpression of MCT1 on astrocytes may lead to increased uptake or release of monocarboxylates by these cells, with important implications for brain metabolism and excitability. These hypotheses can now be rigorously tested in several animal models that replicate key features of human TLE. PMID:21856423

  18. Evidence for altered ion transport in Saccharomyces cerevisiae overexpressing human MDR 1 protein.

    PubMed

    Fritz, F; Howard, E M; Hoffman, M M; Roepe, P D

    1999-03-30

    Recently [Hoffman, M. M., and Roepe, P. D. (1997) Biochemistry 36, 11153-11168] we presented evidence for a novel Na+- and Cl--dependent H+ transport process in LR73/hu MDR 1 CHO transfectants that likely explains pHi, volume, and membrane potential changes in eukaryotic cells overexpressing the hu MDR 1 protein. To further explore this process, we have overexpressed human MDR 1 protein in yeast strain 9.3 following a combination of approaches used previously [Kuchler, K., and Thorner, J. (1992) Proc. Natl. Acad. Sci. U.S.A. 89, 2302-2306; Ruetz, S., et al. (1993) Proc. Natl. Acad. Sci. U.S.A. 90, 11588-11592]. Thus, a truncated hu MDR 1 cDNA was cloned behind a tandem array of sterile 6 (Ste6) and alchohol dehydrogenase (Adh) promoters to create the yeast expression vector pFF1. Valinomycin resistance of intact cells and Western blot analysis with purified yeast plasma membranes confirmed the overexpression of full length, functional, and properly localized hu MDR 1 protein in independently isolated 9.3/pFF1 colonies. Interestingly, relative valinomycin resistance and growth of the 9.3/hu MDR 1 strains are found to strongly depend on the ionic composition of the growth medium. Atomic absorption reveals significant differences in intracellular K+ for 9.3/hu MDR 1 versus control yeast. Transport assays using [3H]tetraphenylphosphonium ([3H]TPP+) reveal perturbations in membrane potential for 9.3/hu MDR 1 yeast that are stimulated by KCl and alkaline pHex. ATPase activity of purified plasma membrane fractions from yeast strains and LR73/hu MDR 1 CHO transfectants constructed previously [Hoffman, M. M., et al. (1996) J. Gen. Physiol. 108, 295-313] was compared. MDR 1 ATPase activity exhibits a higher pH optimum and different salt dependencies, relative to yeast H+ ATPase. Inside-out plasma membrane vesicles (ISOV) fabricated from 9.3/hu MDR 1 and control strains were analyzed for formation of H+ gradients +/- verapamil. Similar pharmacologic profiles are found for

  19. Multidrug Transporters and Alterations in Sterol Biosynthesis Contribute to Azole Antifungal Resistance in Candida parapsilosis

    PubMed Central

    Berkow, Elizabeth L.; Manigaba, Kayihura; Parker, Josie E.; Barker, Katherine S.; Kelly, Stephen L.

    2015-01-01

    While much is known concerning azole resistance in Candida albicans, considerably less is understood about Candida parapsilosis, an emerging species of Candida with clinical relevance. We conducted a comprehensive analysis of azole resistance in a collection of resistant C. parapsilosis clinical isolates in order to determine which genes might play a role in this process within this species. We examined the relative expression of the putative drug transporter genes CDR1 and MDR1 and that of ERG11. In isolates overexpressing these genes, we sequenced the genes encoding their presumed transcriptional regulators, TAC1, MRR1, and UPC2, respectively. We also sequenced the sterol biosynthesis genes ERG3 and ERG11 in these isolates to find mutations that might contribute to this phenotype in this Candida species. Our findings demonstrate that the putative drug transporters Cdr1 and Mdr1 contribute directly to azole resistance and suggest that their overexpression is due to activating mutations in the genes encoding their transcriptional regulators. We also observed that the Y132F substitution in ERG11 is the only substitution occurring exclusively among azole-resistant isolates, and we correlated this with specific changes in sterol biosynthesis. Finally, sterol analysis of these isolates suggests that other changes in sterol biosynthesis may contribute to azole resistance in C. parapsilosis. PMID:26169412

  20. Osmotically induced cell volume changes alter anterograde and retrograde transport, Golgi structure, and COPI dissociation.

    PubMed

    Lee, T H; Linstedt, A D

    1999-05-01

    Physiological conditions that impinge on constitutive traffic and affect organelle structure are not known. We report that osmotically induced cell volume changes, which are known to occur under a variety of conditions, rapidly inhibited endoplasmic reticulum (ER)-to-Golgi transport in mammalian cells. Both ER export and ER Golgi intermediate compartment (ERGIC)-to-Golgi trafficking steps were blocked, but retrograde transport was active, and it mediated ERGIC and Golgi collapse into the ER. Extensive tubulation and relatively rapid Golgi resident redistribution were observed under hypo-osmotic conditions, whereas a slower redistribution of the same markers, without apparent tubulation, was observed under hyperosmotic conditions. The osmotic stress response correlated with the perturbation of COPI function, because both hypo- and hyperosmotic conditions slowed brefeldin A-induced dissociation of betaCOP from Golgi membranes. Remarkably, Golgi residents reemerged after several hours of sustained incubation in hypotonic or hypertonic medium. Reemergence was independent of new protein synthesis but required PKC, an activity known to mediate cell volume recovery. Taken together these results indicate the existence of a coupling between cell volume and constitutive traffic that impacts organelle structure through independent effects on anterograde and retrograde flow and that involves, in part, modulation of COPI function. PMID:10233155

  1. Multidrug Transporters and Alterations in Sterol Biosynthesis Contribute to Azole Antifungal Resistance in Candida parapsilosis.

    PubMed

    Berkow, Elizabeth L; Manigaba, Kayihura; Parker, Josie E; Barker, Katherine S; Kelly, Stephen L; Rogers, P David

    2015-10-01

    While much is known concerning azole resistance in Candida albicans, considerably less is understood about Candida parapsilosis, an emerging species of Candida with clinical relevance. We conducted a comprehensive analysis of azole resistance in a collection of resistant C. parapsilosis clinical isolates in order to determine which genes might play a role in this process within this species. We examined the relative expression of the putative drug transporter genes CDR1 and MDR1 and that of ERG11. In isolates overexpressing these genes, we sequenced the genes encoding their presumed transcriptional regulators, TAC1, MRR1, and UPC2, respectively. We also sequenced the sterol biosynthesis genes ERG3 and ERG11 in these isolates to find mutations that might contribute to this phenotype in this Candida species. Our findings demonstrate that the putative drug transporters Cdr1 and Mdr1 contribute directly to azole resistance and suggest that their overexpression is due to activating mutations in the genes encoding their transcriptional regulators. We also observed that the Y132F substitution in ERG11 is the only substitution occurring exclusively among azole-resistant isolates, and we correlated this with specific changes in sterol biosynthesis. Finally, sterol analysis of these isolates suggests that other changes in sterol biosynthesis may contribute to azole resistance in C. parapsilosis. PMID:26169412

  2. Tissue Plasminogen Activator Alters Intracellular Sequestration of Zinc through Interaction with the Transporter ZIP4

    SciTech Connect

    Emmetsberger, Jaime; Mirrione, Martine M.; Zhou, Chun; Fernandez-Monreal, Monica; Siddiq, Mustafa M.; Ji, Kyungmin; Tsirka, Stella E.

    2010-09-17

    Glutamatergic neurons contain free zinc packaged into neurotransmitter-loaded synaptic vesicles. Upon neuronal activation, the vesicular contents are released into the synaptic space, whereby the zinc modulates activity of postsynaptic neurons though interactions with receptors, transporters and exchangers. However, high extracellular concentrations of zinc trigger seizures and are neurotoxic if substantial amounts of zinc reenter the cells via ion channels and accumulate in the cytoplasm. Tissue plasminogen activator (tPA), a secreted serine protease, is also proepileptic and excitotoxic. However, tPA counters zinc toxicity by promoting zinc import back into the neurons in a sequestered form that is nontoxic. Here, we identify the zinc influx transporter, ZIP4, as the pathway through which tPA mediates the zinc uptake. We show that ZIP4 is upregulated after excitotoxin stimulation of the mouse, male and female, hippocampus. ZIP4 physically interacts with tPA, correlating with an increased intracellular zinc influx and lysosomal sequestration. Changes in prosurvival signals support the idea that this sequestration results in neuroprotection. These experiments identify a mechanism via which neurons use tPA to efficiently neutralize the toxic effects of excessive concentrations of free zinc.

  3. Osmotically Induced Cell Volume Changes Alter Anterograde and Retrograde Transport, Golgi Structure, and COPI Dissociation

    PubMed Central

    Lee, Tina H.; Linstedt, Adam D.

    1999-01-01

    Physiological conditions that impinge on constitutive traffic and affect organelle structure are not known. We report that osmotically induced cell volume changes, which are known to occur under a variety of conditions, rapidly inhibited endoplasmic reticulum (ER)-to-Golgi transport in mammalian cells. Both ER export and ER Golgi intermediate compartment (ERGIC)-to-Golgi trafficking steps were blocked, but retrograde transport was active, and it mediated ERGIC and Golgi collapse into the ER. Extensive tubulation and relatively rapid Golgi resident redistribution were observed under hypo-osmotic conditions, whereas a slower redistribution of the same markers, without apparent tubulation, was observed under hyperosmotic conditions. The osmotic stress response correlated with the perturbation of COPI function, because both hypo- and hyperosmotic conditions slowed brefeldin A-induced dissociation of βCOP from Golgi membranes. Remarkably, Golgi residents reemerged after several hours of sustained incubation in hypotonic or hypertonic medium. Reemergence was independent of new protein synthesis but required PKC, an activity known to mediate cell volume recovery. Taken together these results indicate the existence of a coupling between cell volume and constitutive traffic that impacts organelle structure through independent effects on anterograde and retrograde flow and that involves, in part, modulation of COPI function. PMID:10233155

  4. Colorectal Cancer Screening: Stool DNA and Other Noninvasive Modalities

    PubMed Central

    Bailey, James R.; Aggarwal, Ashish; Imperiale, Thomas F.

    2016-01-01

    Colorectal cancer screening dates to the discovery of pre-cancerous adenomatous tissue. Screening modalities and guidelines directed at prevention and early detection have evolved and resulted in a significant decrease in the prevalence and mortality of colorectal cancer via direct visualization or using specific markers. Despite continued efforts and an overall reduction in deaths attributed to colorectal cancer over the last 25 years, colorectal cancer remains one of the most common causes of malignancy-associated deaths. In attempt to further reduce the prevalence of colorectal cancer and associated deaths, continued improvement in screening quality and adherence remains key. Noninvasive screening modalities are actively being explored. Identification of specific genetic alterations in the adenoma-cancer sequence allow for the study and development of noninvasive screening modalities beyond guaiac-based fecal occult blood testing which target specific alterations or a panel of alterations. The stool DNA test is the first noninvasive screening tool that targets both human hemoglobin and specific genetic alterations. In this review we discuss stool DNA and other commercially available noninvasive colorectal cancer screening modalities in addition to other targets which previously have been or are currently under study. PMID:26934885

  5. No association between mitochondrial DNA copy number and colorectal adenomas.

    PubMed

    Thyagarajan, Bharat; Guan, Weihua; Fedirko, Veronika; Barcelo, Helene; Tu, Huakang; Gross, Myron; Goodman, Michael; Bostick, Roberd M

    2016-08-01

    Despite previously reported associations between peripheral blood mtDNA copy number and colorectal cancer, it remains unclear whether altered mtDNA copy number in peripheral blood is a risk factor for colorectal cancer or a biomarker for undiagnosed colorectal cancer. Though colorectal adenomas are well-recognized precursor lesions to colorectal cancer, no study has evaluated an association between mtDNA copy number and colorectal adenoma risk. Hence, we investigated an association between peripheral blood mtDNA copy number and incident, sporadic colorectal adenoma in 412 colorectal adenoma cases and 526 cancer-free controls pooled from three colonoscopy-based case-control studies that used identical methods for case ascertainment, risk factor determination, and biospecimen collection. We also evaluated associations between relative mtDNA copy number and markers of oxidative stress, including circulating F2 -isoprostanes, carotenoids, and fluorescent oxidation products. We measured mtDNA copy number using a quantitative real time polymerase chain reaction (PCR). We used unconditional logistic regression to analyze the association between mtDNA copy number and colorectal adenoma risk after multivariable adjustment. We found no association between logarithmically transformed relative mtDNA copy number, analyzed as a continuous variable, and colorectal adenoma risk (odds ratio = 1.02, 95%CI: 0.82-1.27; P = 0.86). There were no statistically significant associations between relative mtDNA copy number and other markers of oxidative stress. Our findings, taken together with those from previous studies, suggest that relative mtDNA copy number in peripheral blood may more likely be a marker of early colorectal cancer than of risk for the disease or of in vivo oxidative stress. © 2015 Wiley Periodicals, Inc. PMID:26258394

  6. Effect of altered thyroid status on the transport of hepatobiliary radiopharmaceuticals

    SciTech Connect

    Pahuja, D.N.; Noronha, O.P.

    1985-10-01

    The effect of induced hypothyroidism (by feeding an antithyroid drug-propylthiouracil) on the transport and clearance of the routinely used hepatobiliary radiopharmaceuticals--radioiodinated iodine- T (131I) rose bengal and technetium-99m-N-(4-n-butylphenylcarbamoylmethyl) iminodiacetate, was studied in the rats. Hypothyroidism was associated with depressed growth and retarded clearance of these radiotracers from the in vivo system. Treatment of the hypothyroid rats with thyroxine (2-5 micrograms/100 g b.w. day) for 6 wk, restored these parameters towards normal values. These data suggest that delayed clearance of these hepatobiliary tracers could be related to reduced metabolic rate accompanied with the hypotonia and hypomotility of intestine normally observed in the hypothyroid state.

  7. Pathophysiological mechanisms of death resistance in colorectal carcinoma

    PubMed Central

    Huang, Ching-Ying; Yu, Linda Chia-Hui

    2015-01-01

    Colon cancers develop adaptive mechanisms to survive under extreme conditions and display hallmarks of unlimited proliferation and resistance to cell death. The deregulation of cell death is a key factor that contributes to chemoresistance in tumors. In a physiological context, balance between cell proliferation and death, and protection against cell damage are fundamental processes for maintaining gut epithelial homeostasis. The mechanisms underlying anti-death cytoprotection and tumor resistance often bear common pathways, and although distinguishing them would be a challenge, it would also provide an opportunity to develop advanced anti-cancer therapeutics. This review will outline cell death pathways (i.e., apoptosis, necrosis, and necroptosis), and discuss cytoprotective strategies in normal intestinal epithelium and death resistance mechanisms of colon tumor. In colorectal cancers, the intracellular mechanisms of death resistance include the direct alteration of apoptotic and necroptotic machinery and the upstream events modulating death effectors such as tumor suppressor gene inactivation and pro-survival signaling pathways. The autocrine, paracrine and exogenous factors within a tumor microenvironment can also instigate resistance against apoptotic and necroptotic cell death in colon cancers through changes in receptor signaling or transporter uptake. The roles of cyclooxygenase-2/prostaglandin E2, growth factors, glucose, and bacterial lipopolysaccharides in colorectal cancer will be highlighted. Targeting anti-death pathways in the colon cancer tissue might be a promising approach outside of anti-proliferation and anti-angiogenesis strategies for developing novel drugs to treat refractory tumors. PMID:26557002

  8. ESKIMO1 disruption in Arabidopsis alters vascular tissue and impairs water transport.

    PubMed

    Lefebvre, Valérie; Fortabat, Marie-Noëlle; Ducamp, Aloïse; North, Helen M; Maia-Grondard, Alessandra; Trouverie, Jacques; Boursiac, Yann; Mouille, Gregory; Durand-Tardif, Mylène

    2011-01-01

    Water economy in agricultural practices is an issue that is being addressed through studies aimed at understanding both plant water-use efficiency (WUE), i.e. biomass produced per water consumed, and responses to water shortage. In the model species Arabidopsis thaliana, the ESKIMO1 (ESK1) gene has been described as involved in freezing, cold and salt tolerance as well as in water economy: esk1 mutants have very low evapo-transpiration rates and high water-use efficiency. In order to establish ESK1 function, detailed characterization of esk1 mutants has been carried out. The stress hormone ABA (abscisic acid) was present at high levels in esk1 compared to wild type, nevertheless, the weak water loss of esk1 was independent of stomata closure through ABA biosynthesis, as combining mutant in this pathway with esk1 led to additive phenotypes. Measurement of root hydraulic conductivity suggests that the esk1 vegetative apparatus suffers water deficit due to a defect in water transport. ESK1 promoter-driven reporter gene expression was observed in xylem and fibers, the vascular tissue responsible for the transport of water and mineral nutrients from the soil to the shoots, via the roots. Moreover, in cross sections of hypocotyls, roots and stems, esk1 xylem vessels were collapsed. Finally, using Fourier-Transform Infrared (FTIR) spectroscopy, severe chemical modifications of xylem cell wall composition were highlighted in the esk1 mutants. Taken together our findings show that ESK1 is necessary for the production of functional xylem vessels, through its implication in the laying down of secondary cell wall components. PMID:21408051

  9. Altering behavioral responses and dopamine transporter protein with antisense peptide nucleic acids.

    PubMed

    Tyler-McMahon, B M; Stewart, J A; Jackson, J; Bitner, M D; Fauq, A; McCormick, D J; Richelson, E

    2001-10-01

    The dopamine transporter (DAT) plays a role in locomotion and is an obligatory target for amphetamines. We designed and synthesized an antisense peptide nucleic acid (PNA) to rat DAT to examine the effect of this antisense molecule on locomotion and on responsiveness to amphetamines. Rats were injected intraperitoneally daily for 9 days with either saline, an antisense DAT PNA, a scrambled DAT PNA, or a mismatch DAT PNA. On days 7 and 9 after initial motility measurements were taken, the animals were challenged with 10 mg/kg of amphetamine and scored for motility. On day 7, there was no significant difference between the baseline levels of activity of any of the groups or their responses to amphetamine. On day 9, the antisense PNA-treated rats showed a statistically significant increase in their resting motility (P < 0.01). When these rats were challenged with amphetamine, motility of the saline-, scrambled PNA-, and mismatch PNA-treated animals showed increases of 31-, 36-, and 20-fold, respectively, while the antisense PNA-treated animals showed increases of only 3.4-fold (P < 0.01). ELISA results revealed a 32% decrease in striatal DAT in antisense PNA-treated rats compared with the saline, scrambled PNA, and mismatch PNA controls (P < 0.001). These results extend our previous findings that brain proteins can be knocked down in a specific manner by antisense molecules administered extracranially. Additionally, these results suggest some novel approaches for the treatment of diseases dependent upon the function of the dopamine transporter. PMID:11543728

  10. Postnatal manganese exposure alters dopamine transporter function in adult rats: Potential impact on nonassociative and associative processes.

    PubMed

    McDougall, S A; Reichel, C M; Farley, C M; Flesher, M M; Der-Ghazarian, T; Cortez, A M; Wacan, J J; Martinez, C E; Varela, F A; Butt, A E; Crawford, C A

    2008-06-23

    In the present study, we examined whether exposing rats to a high-dose regimen of manganese chloride (Mn) during the postnatal period would depress presynaptic dopamine functioning and alter nonassociative and associative behaviors. To this end, rats were given oral supplements of Mn (750 microg/day) on postnatal days (PD) 1-21. On PD 90, dopamine transporter (DAT) immunoreactivity and [3H]dopamine uptake were assayed in the striatum and nucleus accumbens, while in vivo microdialysis was used to measure dopamine efflux in the same brain regions. The effects of postnatal Mn exposure on nigrostriatal functioning were evaluated by assessing rotorod performance and amphetamine-induced stereotypy in adulthood. In terms of associative processes, both cocaine-induced conditioned place preference (CPP) and sucrose-reinforced operant responding were examined. Results showed that postnatal Mn exposure caused persistent declines in DAT protein expression and [3H]dopamine uptake in the striatum and nucleus accumbens, as well as long-term reductions in striatal dopamine efflux. Rotorod performance did not differ according to exposure condition, however Mn-exposed rats did exhibit substantially more amphetamine-induced stereotypy than vehicle controls. Mn exposure did not alter performance on any aspect of the CPP task (preference, extinction, or reinstatement testing), nor did Mn affect progressive ratio responding (a measure of motivation). Interestingly, acquisition of a fixed ratio task was impaired in Mn-exposed rats, suggesting a deficit in procedural learning. In sum, these results indicate that postnatal Mn exposure causes persistent declines in various indices of presynaptic dopaminergic functioning. Mn-induced alterations in striatal functioning may have long-term impact on associative and nonassociative behavior. PMID:18485605

  11. Genetic alterations in fatty acid transport and metabolism genes are associated with metastatic progression and poor prognosis of human cancers

    PubMed Central

    Nath, Aritro; Chan, Christina

    2016-01-01

    Reprogramming of cellular metabolism is a hallmark feature of cancer cells. While a distinct set of processes drive metastasis when compared to tumorigenesis, it is yet unclear if genetic alterations in metabolic pathways are associated with metastatic progression of human cancers. Here, we analyzed the mutation, copy number variation and gene expression patterns of a literature-derived model of metabolic genes associated with glycolysis (Warburg effect), fatty acid metabolism (lipogenesis, oxidation, lipolysis, esterification) and fatty acid uptake in >9000 primary or metastatic tumor samples from the multi-cancer TCGA datasets. Our association analysis revealed a uniform pattern of Warburg effect mutations influencing prognosis across all tumor types, while copy number alterations in the electron transport chain gene SCO2, fatty acid uptake (CAV1, CD36) and lipogenesis (PPARA, PPARD, MLXIPL) genes were enriched in metastatic tumors. Using gene expression profiles, we established a gene-signature (CAV1, CD36, MLXIPL, CPT1C, CYP2E1) that strongly associated with epithelial-mesenchymal program across multiple cancers. Moreover, stratification of samples based on the copy number or expression profiles of the genes identified in our analysis revealed a significant effect on patient survival rates, thus confirming prominent roles of fatty acid uptake and metabolism in metastatic progression and poor prognosis of human cancers. PMID:26725848

  12. Genetic alterations in fatty acid transport and metabolism genes are associated with metastatic progression and poor prognosis of human cancers.

    PubMed

    Nath, Aritro; Chan, Christina

    2016-01-01

    Reprogramming of cellular metabolism is a hallmark feature of cancer cells. While a distinct set of processes drive metastasis when compared to tumorigenesis, it is yet unclear if genetic alterations in metabolic pathways are associated with metastatic progression of human cancers. Here, we analyzed the mutation, copy number variation and gene expression patterns of a literature-derived model of metabolic genes associated with glycolysis (Warburg effect), fatty acid metabolism (lipogenesis, oxidation, lipolysis, esterification) and fatty acid uptake in >9000 primary or metastatic tumor samples from the multi-cancer TCGA datasets. Our association analysis revealed a uniform pattern of Warburg effect mutations influencing prognosis across all tumor types, while copy number alterations in the electron transport chain gene SCO2, fatty acid uptake (CAV1, CD36) and lipogenesis (PPARA, PPARD, MLXIPL) genes were enriched in metastatic tumors. Using gene expression profiles, we established a gene-signature (CAV1, CD36, MLXIPL, CPT1C, CYP2E1) that strongly associated with epithelial-mesenchymal program across multiple cancers. Moreover, stratification of samples based on the copy number or expression profiles of the genes identified in our analysis revealed a significant effect on patient survival rates, thus confirming prominent roles of fatty acid uptake and metabolism in metastatic progression and poor prognosis of human cancers. PMID:26725848

  13. Effects of human alterations on the hydrodynamics and sediment transport in the Sacramento-San Joaquin Delta, California

    NASA Astrophysics Data System (ADS)

    Marineau, M. D.; Wright, S. A.

    2015-03-01

    The Sacramento-San Joaquin Delta, California, (Delta) has been significantly altered since the mid-nineteenth century. Many existing channels have been widened or deepened and new channels have been created for navigation and water conveyance. Tidal marshes have been drained and leveed to form islands that have subsided, some of which have permanently flooded. To understand how these alterations have affected hydrodynamics and sediment transport in the Delta, we analysed measurements from 27 sites, along with other spatial data, and previous literature. Results show that: (a) the permanent flooding of islands results in an increase in the shear velocity of channels downstream, (b) artificial widening and deepening of channels generally results in a decrease in shear velocity except when the channel is also located downstream of a flooded island, (c) 1.5 Mt/year of sediment was deposited in the Delta (1997-2010), and of this deposited sediment, 0.31 Mt/year (21%) was removed through dredging.

  14. Effects of human alterations on the hydrodynamics and sediment transport in the Sacramento-San Joaquin Delta, California

    USGS Publications Warehouse

    Marineau, Mathieu D.; Wright, Scott A.

    2015-01-01

    The Sacramento-San Joaquin Delta, California, (Delta) has been significantly altered since the mid-nineteenth century. Many existing channels have been widened or deepened and new channels have been created for navigation and water conveyance. Tidal marshes have been drained and leveed to form islands that have subsided, some of which have permanently flooded. To understand how these alterations have affected hydrodynamics and sediment transport in the Delta, we analysed measurements from 27 sites, along with other spatial data, and previous literature. Results show that: (a) the permanent flooding of islands results in an increase in the shear velocity of channels downstream, (b) artificial widening and deepening of channels generally results in a decrease in shear velocity except when the channel is also located downstream of a flooded island, (c) 1.5 Mt/year of sediment was deposited in the Delta (1997–2010), and of this deposited sediment, 0.31 Mt/year (21%) was removed through dredging.

  15. Prenatal transportation stress alters temperament and serum cortisol concentrations in suckling Brahman calves.

    PubMed

    Littlejohn, B P; Price, D M; Banta, J P; Lewis, A W; Neuendorff, D A; Carroll, J A; Vann, R C; Welsh, T H; Randel, R D

    2016-02-01

    This experiment examined the relationship between prenatal stress and subsequent calf temperament through weaning. The prenatal stressor used was repeated transportation of pregnant Brahman cows for 2 h at 60 ± 5, 80 ± 5, 100 ± 5, 120 ± 5, and 140 ± 5 d of gestation. Prenatally stressed calves ( = 41) were compared with controls ( = 44; dams did not undergo transportation during pregnancy) from 2 wk of age until weaning (average age at weaning = 174.8 ± 1.3 d). Temperament was defined by pen score (PS; 1 = calm and 5 = excitable), exit velocity (EV; m/sec), and temperament score (TS; (PS + EV)/2) and was recorded for each calf on d -168, -140, -112, -84, -56, -28, and 0 relative to weaning (d 0 = weaning). Cortisol concentrations were determined in serum samples obtained on d -168, -140, -28, and 0 relative to weaning. Birth weight and weaning weight were not different between treatment groups ( > 0.1). Pen score was greater ( = 0.03) in prenatally stressed calves (2.84 ± 0.21) relative to controls (2.31 ± 0.21). Exit velocity was greater ( < 0.01) in prenatally stressed calves (2.1 ± 0.14 m/sec) than in controls (1.61 ± 0.14 m/sec). Exit velocity was affected by a treatment × calf sex interaction ( = 0.04) and was greater in prenatally stressed females. Exit velocity was also affected by day ( < 0.0001). Temperament score was greater ( = 0.01) in prenatally stressed calves (2.45 ± 0.16) than in controls (1.95 ± 0.16). Temperament score was affected by day ( < 0.01). Basal cortisol concentrations were greater ( = 0.04) in prenatally stressed calves (15.87 ± 1.04 ng/mL) than in controls (13.42 ± 1.03 ng/mL). Basal cortisol concentrations were greater ( < 0.01) in females (16.61 ± 1.06 ng/mL) than in males (12.68 ± 1.02 ng/mL). Cortisol concentrations were positively correlated ( < 0.01) with PS ( = 0.55, < 0.01), EV ( = 0.4, < 0.01), and TS ( = 0.55, < 0.01). Overall, suckling Brahman calves that were prenatally stressed were more temperamental and

  16. Alteration of natural (37)Ar activity concentration in the subsurface by gas transport and water infiltration.

    PubMed

    Guillon, Sophie; Sun, Yunwei; Purtschert, Roland; Raghoo, Lauren; Pili, Eric; Carrigan, Charles R

    2016-05-01

    High (37)Ar activity concentration in soil gas is proposed as a key evidence for the detection of underground nuclear explosion by the Comprehensive Nuclear Test-Ban Treaty. However, such a detection is challenged by the natural background of (37)Ar in the subsurface, mainly due to Ca activation by cosmic rays. A better understanding and improved capability to predict (37)Ar activity concentration in the subsurface and its spatial and temporal variability is thus required. A numerical model integrating (37)Ar production and transport in the subsurface is developed, including variable soil water content and water infiltration at the surface. A parameterized equation for (37)Ar production in the first 15 m below the surface is studied, taking into account the major production reactions and the moderation effect of soil water content. Using sensitivity analysis and uncertainty quantification, a realistic and comprehensive probability distribution of natural (37)Ar activity concentrations in soil gas is proposed, including the effects of water infiltration. Site location and soil composition are identified as the parameters allowing for a most effective reduction of the possible range of (37)Ar activity concentrations. The influence of soil water content on (37)Ar production is shown to be negligible to first order, while (37)Ar activity concentration in soil gas and its temporal variability appear to be strongly influenced by transient water infiltration events. These results will be used as a basis for practical CTBTO concepts of operation during an OSI. PMID:26939033

  17. ATP-binding cassette transporter A7 (ABCA7) loss of function alters Alzheimer amyloid processing.

    PubMed

    Satoh, Kanayo; Abe-Dohmae, Sumiko; Yokoyama, Shinji; St George-Hyslop, Peter; Fraser, Paul E

    2015-10-01

    The ATP-binding cassette transporter A7 (ABCA7) has been identified as a susceptibility factor of late onset Alzheimer disease in genome-wide association studies. ABCA7 has been shown to mediate phagocytosis and affect membrane trafficking. The current study examined the impact of ABCA7 loss of function on amyloid precursor protein (APP) processing and generation of amyloid-β (Aβ). Suppression of endogenous ABCA7 in several different cell lines resulted in increased β-secretase cleavage and elevated Aβ. ABCA7 knock-out mice displayed an increased production of endogenous murine amyloid Aβ42 species. Crossing ABCA7-deficient animals to an APP transgenic model resulted in significant increases in the soluble Aβ as compared with mice expressing normal levels of ABCA7. Only modest changes in the amount of insoluble Aβ and amyloid plaque densities were observed once the amyloid pathology was well developed, whereas Aβ deposition was enhanced in younger animals. In vitro studies indicated a more rapid endocytosis of APP in ABCA7 knock-out cells that is mechanistically consistent with the increased Aβ production. These in vitro and in vivo findings indicate a direct role of ABCA7 in amyloid processing that may be associated with its primary biological function to regulate endocytic pathways. Several potential loss-of-function ABCA7 mutations and deletions linked to Alzheimer disease that in some instances have a greater impact than apoE allelic variants have recently been identified. A reduction in ABCA7 expression or loss of function would be predicted to increase amyloid production and that may be a contributing factor in the associated Alzheimer disease susceptibility. PMID:26260791

  18. Serotonin transporter polymorphism alters citalopram effects on human pain responses to physical pain.

    PubMed

    Ma, Yina; Wang, Chenbo; Luo, Siyang; Li, Bingfeng; Wager, Tor D; Zhang, Wenxia; Rao, Yi; Han, Shihui

    2016-07-15

    Humans exhibit substantial inter-individual differences in pain perception, which contributes to variability in analgesic efficacy. Individual differences in pain sensitivity have been linked with variation in the serotonin transporter gene (5-HTTLPR), and selective serotonin reuptake inhibitors (SSRIs) such as citalopram have been increasingly used as treatments for multiple pain conditions. We combined genotyping, pharmacological challenge, and neuroimaging during painful electrical stimulation to reveal how serotonin genetics and pharmacology interact to influence pain perception and its underlying neurobiological mechanisms. In a double-blind, placebo-controlled procedure, we acutely administrated citalopram (30mgpo) to short/short (s/s) and long/long (l/l) healthy male 5-HTTLPR homozygotes during functional MRI with painful and non-painful electrical stimulation. 5-HTTLPR genotype modulated citalopram effects on pain-related brain responses in the thalamus, cerebellum, anterior insula, midcingulate cortex and inferior frontal cortex. Specifically, citalopram significantly reduced pain-related brain responses in l/l but not in s/s homozygotes. Moreover, the interaction between 5-HTTLPR genotype and pain-related brain activity was a good predictor of the citalopram-induced reductions in pain reports. The genetic modulations of citalopram effects on brain-wide pain processing were paralleled by significant effects on the Neurological Pain Signature, a multivariate brain pattern validated to be sensitive and specific to physical pain. This work provides neurobiological mechanism by which genetic variation shapes brain responses to pain perception and treatment efficacy. These findings have important implications for the types of individuals for whom serotonergic treatments provide effective pain relief, which is critical for advancing personalized pain treatment. PMID:27132044

  19. SLC6A3 coding variant Ala559Val found in two autism probands alters dopamine transporter function and trafficking.

    PubMed

    Bowton, E; Saunders, C; Reddy, I A; Campbell, N G; Hamilton, P J; Henry, L K; Coon, H; Sakrikar, D; Veenstra-VanderWeele, J M; Blakely, R D; Sutcliffe, J; Matthies, H J G; Erreger, K; Galli, A

    2014-01-01

    Emerging evidence associates dysfunction in the dopamine (DA) transporter (DAT) with the pathophysiology of autism spectrum disorder (ASD). The human DAT (hDAT; SLC6A3) rare variant with an Ala to Val substitution at amino acid 559 (hDAT A559V) was previously reported in individuals with bipolar disorder or attention-deficit hyperactivity disorder (ADHD). We have demonstrated that this variant is hyper-phosphorylated at the amino (N)-terminal serine (Ser) residues and promotes an anomalous DA efflux phenotype. Here, we report the novel identification of hDAT A559V in two unrelated ASD subjects and provide the first mechanistic description of its impaired trafficking phenotype. DAT surface expression is dynamically regulated by DAT substrates including the psychostimulant amphetamine (AMPH), which causes hDAT trafficking away from the plasma membrane. The integrity of DAT trafficking directly impacts DA transport capacity and therefore dopaminergic neurotransmission. Here, we show that hDAT A559V is resistant to AMPH-induced cell surface redistribution. This unique trafficking phenotype is conferred by altered protein kinase C β (PKCβ) activity. Cells expressing hDAT A559V exhibit constitutively elevated PKCβ activity, inhibition of which restores the AMPH-induced hDAT A559V membrane redistribution. Mechanistically, we link the inability of hDAT A559V to traffic in response to AMPH to the phosphorylation of the five most distal DAT N-terminal Ser. Mutation of these N-terminal Ser to Ala restores AMPH-induced trafficking. Furthermore, hDAT A559V has a diminished ability to transport AMPH, and therefore lacks AMPH-induced DA efflux. Pharmacological inhibition of PKCβ or Ser to Ala substitution in the hDAT A559V background restores AMPH-induced DA efflux while promoting intracellular AMPH accumulation. Although hDAT A559V is a rare variant, it has been found in multiple probands with neuropsychiatric disorders associated with imbalances in DA neurotransmission

  20. Altered Expression and Localization of Ion Transporters Contribute to Diarrhea in Mice With Salmonella-Induced Enteritis

    PubMed Central

    MARCHELLETTA, RONALD R.; GAREAU, MELANIE G.; MCCOLE, DECLAN F.; OKAMOTO, SHARON; ROEL, ELISE; KLINKENBERG, RACHEL; GUINEY, DONALD G.; FIERER, JOSHUA; BARRETT, KIM E.

    2014-01-01

    hyperplasia in Salmonella-infected mice. CONCLUSIONS Salmonella infection induces diarrhea by altering expression and/or function of transporters that mediate water absorption in the colon, likely reflecting the fact that epithelial cells have less time to differentiate into surface cells when proliferation rates are increased by infection. PMID:24001788

  1. Diabetes Alters the Expression and Translocation of the Insulin-Sensitive Glucose Transporters 4 and 8 in the Atria

    PubMed Central

    Maria, Zahra; Campolo, Allison R.; Lacombe, Veronique A.

    2015-01-01

    Although diabetes has been identified as a major risk factor for atrial fibrillation, little is known about glucose metabolism in the healthy and diabetic atria. Glucose transport into the cell, the rate-limiting step of glucose utilization, is regulated by the Glucose Transporters (GLUTs). Although GLUT4 is the major isoform in the heart, GLUT8 has recently emerged as a novel cardiac isoform. We hypothesized that GLUT-4 and -8 translocation to the atrial cell surface will be regulated by insulin and impaired during insulin-dependent diabetes. GLUT protein content was measured by Western blotting in healthy cardiac myocytes and type 1 (streptozotocin-induced, T1Dx) diabetic rodents. Active cell surface GLUT content was measured using a biotinylated photolabeled assay in the perfused heart. In the healthy atria, insulin stimulation increased both GLUT-4 and -8 translocation to the cell surface (by 100% and 240%, respectively, P<0.05). Upon insulin stimulation, we reported an increase in Akt (Th308 and s473 sites) and AS160 phosphorylation, which was positively (P<0.05) correlated with GLUT4 protein content in the healthy atria. During diabetes, active cell surface GLUT-4 and -8 content was downregulated in the atria (by 70% and 90%, respectively, P<0.05). Akt and AS160 phosphorylation was not impaired in the diabetic atria, suggesting the presence of an intact insulin signaling pathway. This was confirmed by the rescued translocation of GLUT-4 and -8 to the atrial cell surface upon insulin stimulation in the atria of type 1 diabetic subjects. In conclusion, our data suggest that: 1) both GLUT-4 and -8 are insulin-sensitive in the healthy atria through an Akt/AS160 dependent pathway; 2) GLUT-4 and -8 trafficking is impaired in the diabetic atria and rescued by insulin treatment. Alterations in atrial glucose transport may induce perturbations in energy production, which may provide a metabolic substrate for atrial fibrillation during diabetes. PMID:26720696

  2. DNA Methylation and Colorectal Cancer

    PubMed Central

    Ashktorab, Hassan; Brim, Hassan

    2014-01-01

    Colorectal cancer (CRC) is one of the major cancers in the world and second death-causing cancer in the US. CRC development involves genetic and epigenetic alterations. Changes in DNA methylation status are believed to be involved at different stages of CRC. Promoter silencing via DNA methylation and hypomethylation of oncogenes alter genes’ expression, and can be used as a tool for the early detection of colonic lesions. DNA methylation use as diagnostic and prognostic marker has been described for many cancers including CRC. CpG Islands Methylator Phenotype (CIMP) is one of the underlying CRC mechanisms. This review aims to define methylation signatures in CRC. The analysis of DNA methylation profile in combination with the pathological diagnosis would be useful in predicting CRC tumors’ evolution and their prognostic behavior. PMID:25580099

  3. Loss of Slc26a9 anion transporter alters intestinal electrolyte and HCO3(-) transport and reduces survival in CFTR-deficient mice.

    PubMed

    Liu, Xuemei; Li, Taolang; Riederer, Brigitte; Lenzen, Henrike; Ludolph, Lisa; Yeruva, Sunil; Tuo, Biguang; Soleimani, Manoocher; Seidler, Ursula

    2015-06-01

    Slc26a9 is an anion transporter that is strongly expressed in the stomach and lung. Slc26a9 variants were recently found associated with a higher incidence of meconium ileus in cystic fibrosis (CF) infants, raising the question whether Slc26a9 is expressed in the intestine and what its functional role is. Slc26a9 messenger RNA (mRNA) was found highly expressed in the mucosae of the murine and human upper gastrointestinal tract, with an abrupt decrease in expression levels beyond the duodenum. Absence of SLC26a9 expression strongly increased the intestinally related mortality in cystic fibrosis transmembrane conductance regulator (CFTR)-deficient mice. Proximal duodenal JHCO3(-) and fluid secretion were reduced in the absence of Slc26a9 expression. In the proximal duodenum of young Slc26a9 KO mice, the glands and villi/crypts were elongated and proliferation was enhanced. This difference was lost with ageing, as were the alterations in fluid movement, whereas the reduction in JHCO3(-) remained. Laser dissection followed by qPCR suggested Slc26a9 expression to be crypt-predominant in the duodenum. In summary, deletion of Slc26a9 caused bicarbonate secretory and fluid absorptive changes in the proximal duodenal mucosa and increased the postweaning death rates in CFTR-deficient mice. Functional alterations in the duodenum were most prominent at young ages. We assume that the association of meconium ileus and Slc26a9 variants may be related to maldigestion and impaired downstream signaling caused by loss of upper GI tract digestive functions, aggravating the situation of lack of secretion and sticky mucus at the site of obstruction in CF intestine. PMID:24965066

  4. Environmental Effects of Sediment Transport Alteration and Impacts on Protected Species: Edgartown Tidal Energy Project

    SciTech Connect

    Barrett, Stephen B; Schlezinger, David, Ph.D; Cowles, Geoff, Ph.D; Hughes, Patricia; Samimy,; Roland, I; and Terray, E, Ph.D.

    2012-12-29

    and foundation scouring. Woods Hole Oceanographic Institution, cooperating with SMAST, developed an oceanographic model to predict changes in sediment transport as a result of the proposed tidal energy project. Provincetown Center for Coastal Studies prepared background material on protected species - including whales, seals, and sea turtles - in the project area and implemented an initial tagging program to record location specific information on seals and sea turtles. HMMH communicated research plans and findings with local stakeholder groups, state and federal resource agency staff, and the ocean power industry. The information is being used to prepare environmental permit applications and obtain approvals for project construction.

  5. Transport and Breakdown of Organic Matter in Urban and Forested Streams: The Effects of Altered Hydrology and Landscape Position

    NASA Astrophysics Data System (ADS)

    Belt, K. T.; Swan, C. M.; Pouyat, R. V.; Kaushal, S.; Groffman, P. M.; Stack, W. P.; Fisher, G. T.

    2006-05-01

    A better understanding of how urbanization and trees interact to alter organic matter transport and cycling is needed to assess retention in catchments and streams, as well as to estimate the magnitude of carbon fluxes to the atmosphere and to downstream aquatic ecosystems. The influx of particulate and dissolved organic matter (POM/DOC) to headwater streams normally originates within or near riparian areas, and is important to aquatic food webs in stream ecosystems. Urban catchments, however, have huge effective drainage densities (due to storm drainage infrastructure), which facilitate a POM/DOC "gutter subsidy" to streams that dwarfs riparian inputs and alters benthic litter quality (and represents a major short-circuit in the carbon vegetation-soil cycle.) We measured in-situ leaf litter breakdown rates, flows, DOC, BOD and nutrients in forested, suburban and urban streams of the BES LTER and Baltimore City DPW sampling networks, which encompassed a variety of urban and rural landscapes. Sycamore and Planetree leaf litter in-situ experiments revealed faster breakdown rates for suburban and urban landscape litter than for riparian litter, with rates being much faster than literature values for forested catchments. DOC, BOD and nutrient data (storm and dry weather) from BES/DPW stream sites showed much higher concentrations and loads in the more urbanized catchments and indicate the streams are likely heterotrophic and experience transient but high dissolved oxygen demands. High nutrient concentrations, faster litter breakdown rates, and substantially higher upland urban fluxes of organic matter (particulate and dissolved) in urban streams suggest that export rates are likely substantially higher than in forested systems and that carbon loads to both downstream aquatic systems and to the atmosphere (as CO2) are substantial.

  6. Chronic desipramine treatment alters tyrosine hydroxylase but not norepinephrine transporter immunoreactivity in norepinephrine axons in the rat prefrontal cortex

    PubMed Central

    Erickson, Susan L.; Gandhi, Anjalika R.; Asafu-Adjei, Josephine K.; Sampson, Allan R.; Miner, LeeAnn; Blakely, Randy D.; Sesack, Susan R.

    2011-01-01

    Pharmacological blockade of norepinephrine (NE) reuptake is clinically effective in treating several mental disorders. Drugs that bind to the NE transporter (NET) alter both protein levels and activity of NET and also the catecholamine synthetic enzyme tyrosine hydroxylase (TH). We examined the rat prefrontal cortex (PFC) by electron microscopy to determine whether the density and subcellular distribution of immunolabeling for NET and colocalization of NET with TH within individual NE axons were altered by chronic treatment with the selective NE uptake inhibitor desipramine (DMI). Following DMI treatment (21 days, 15 mg/kg/day), NET-immunoreactive (-ir) axons were significantly less likely to colocalize TH. This finding is consistent with reports of reduced TH levels and activity in the locus coeruleus after chronic DMI and indicates a reduction of NE synthetic capacity in the PFC. Measures of NET expression and membrane localization, including the number of NET-ir profiles per tissue area sampled, the number of gold particles per NET-ir profile area, and the proportion of gold particles associated with the plasma membrane, were similar in DMI and vehicle treated rats. These findings were verified using two different antibodies directed against distinct epitopes of the NET protein. The results suggest that chronic DMI treatment does not reduce NET expression within individual NE axons in vivo or induce an overall translocation of NET protein away from the plasma membrane in the PFC as measured by ultrastructural immunogold labeling. Our findings encourage consideration of possible postranslational mechanisms for regulating NET activity in antidepressant-induced modulation of NE clearance. PMID:21208501

  7. Subsurface Transport Over Reactive Multiphases (STORM): A general, coupled, nonisothermal multiphase flow, reactive transport, and porous medium alteration simulator, Version 2 user's guide

    SciTech Connect

    DH Bacon; MD White; BP McGrail

    2000-03-07

    The Hanford Site, in southeastern Washington State, has been used extensively to produce nuclear materials for the US strategic defense arsenal by the Department of Energy (DOE) and its predecessors, the US Atomic Energy Commission and the US Energy Research and Development Administration. A large inventory of radioactive and mixed waste has accumulated in 177 buried single- and double shell tanks. Liquid waste recovered from the tanks will be pretreated to separate the low-activity fraction from the high-level and transuranic wastes. Vitrification is the leading option for immobilization of these wastes, expected to produce approximately 550,000 metric tons of Low Activity Waste (LAW) glass. This total tonnage, based on nominal Na{sub 2}O oxide loading of 20% by weight, is destined for disposal in a near-surface facility. Before disposal of the immobilized waste can proceed, the DOE must approve a performance assessment, a document that described the impacts, if any, of the disposal facility on public health and environmental resources. Studies have shown that release rates of radionuclides from the glass waste form by reaction with water determine the impacts of the disposal action more than any other independent parameter. This report describes the latest accomplishments in the development of a computational tool, Subsurface Transport Over Reactive Multiphases (STORM), Version 2, a general, coupled non-isothermal multiphase flow and reactive transport simulator. The underlying mathematics in STORM describe the rate of change of the solute concentrations of pore water in a variably saturated, non-isothermal porous medium, and the alteration of waste forms, packaging materials, backfill, and host rocks.

  8. Heterodimerization, Altered Subcellular Localization, and Function of Multiple Zinc Transporters in Viable Cells Using Bimolecular Fluorescence Complementation

    PubMed Central

    Golan, Yarden; Berman, Bluma; Assaraf, Yehuda G.

    2015-01-01

    Zinc plays a crucial role in numerous key physiological functions. Zinc transporters (ZnTs) mediate zinc efflux and compartmentalization in intracellular organelles; thus, ZnTs play a central role in zinc homeostasis. We have recently shown the in situ dimerization and function of multiple normal and mutant ZnTs using bimolecular fluorescence complementation (BiFC). Prompted by these findings, we here uncovered the heterodimerization, altered subcellular localization, and function of multiple ZnTs in live cells using this sensitive BiFC technique. We show that ZnT1, -2, -3, and -4 form stable heterodimers at distinct intracellular compartments, some of which are completely different from their homodimer localization. Specifically, unlike the plasma membrane (PM) localization of ZnT1 homodimers, ZnT1-ZnT3 heterodimers localized at intracellular vesicles. Furthermore, upon heterodimerization with ZnT1, the zinc transporters ZnT2 and ZnT4 surprisingly localized at the PM, as opposed to their vesicular homodimer localization. We further demonstrate the deleterious effect that the G87R-ZnT2 mutation, associated with transient neonatal zinc deficiency, has on ZnT1, ZnT3, and ZnT4 upon heterodimerization. The functionality of the various ZnTs was assessed by the dual BiFC-Zinquin assay. We also undertook a novel transfection competition assay with ZnT cDNAs to confirm that the driving force for heterodimer formation is the core structure of ZnTs and not the BiFC tags. These findings uncover a novel network of homo- and heterodimers of ZnTs with distinct subcellular localizations and function, hence highlighting their possible role in zinc homeostasis under physiological and pathological conditions. PMID:25657003

  9. Organic anion transporter 3 (Oat3/Slc22a8) knockout mice exhibit altered clearance and distribution of penicillin G

    PubMed Central

    VanWert, Adam L.; Bailey, Rachel M.; Sweet, Douglas H.

    2010-01-01

    The interaction of renal basolateral organic anion transporter 3 (Oat3) with commonly used pharmacotherapeutics (e.g., NSAIDs, β-lactams, and methotrexate) has been studied extensively in vitro. However, the in vivo role of Oat3 in drug disposition, in the context of other transporters, glomerular filtration, and metabolism, has not been established. Moreover, recent investigations have identified inactive human OAT3 polymorphisms. Therefore, this investigation was designed to elucidate the in vivo role of Oat3 in the disposition of penicillin G and prototypical substrates using an Oat3 knockout mouse model. Oat3 deletion resulted in a doubling of penicillin’s half-life (P < 0.05) and a reduced volume of distribution (P < 0.01), together yielding a plasma clearance that was one-half (P < 0.05, males) to one-third (P < 0.001, females) of that in wild-type mice. Inhibition of Oat3 abolished the differences in penicillin G elimination between genotypes. Hepatic accumulation of penicillin was 2.3 times higher in male knockouts (P < 0.05) and 3.7 times higher in female knockouts (P < 0.001). Female knockouts also exhibited impaired estrone-3-sulfate clearance. Oat3 deletion did not impact p-aminohippurate elimination, providing correlative evidence to studies in Oat1 knockout mice that suggest Oat1 governs tubular uptake of p-aminohippurate. Collectively, these findings are the first to indicate that functional Oat3 is necessary for proper elimination of xenobiotic and endogenous compounds in vivo. Thus Oat3 plays a distinct role in determining the efficacy and toxicity of drugs. Dysfunctional human OAT3 polymorphisms or instances of polypharmacy involving OAT3 substrates may result in altered systemic accumulation of β-lactams and other clinically relevant compounds. PMID:17686950

  10. Altered Expression of Transporters, its Potential Mechanisms and Influences in the Liver of Rodent Models Associated with Diabetes Mellitus and Obesity.

    PubMed

    Ma, Leilei; He, Lei; Wang, Le; Li, Li; Lin, Xuena; Pan, Guoyu

    2016-06-01

    Diabetes mellitus is becoming an increasingly prevalent disease that concerns patients and healthcare professionals worldwide. Among many anti-diabetic agents in clinical uses, numerous reports are available on their altered pharmacokinetics because of changes in the expression of drug transporters and metabolic enzymes under diabetic states. These changes may affect the safety and efficacy of therapeutic agents and/or drug-drug interaction with co-administered agents. Therefore, the changes in transporter expression should be identified, and the underlying mechanisms should be clarified. This review summarizes the progress of recent studies on the alterations in important uptake and efflux transporters in liver of diabetic animals and their regulatory pathways. PMID:26597190

  11. What Is Colorectal Cancer?

    MedlinePlus

    ... on staging, see “ Colorectal cancer stages ” The normal colon and rectum The colon and rectum are parts ... through the anus . Types of cancer in the colon and rectum Adenocarcinomas make up more than 95% ...

  12. Chemoprevention of colorectal cancer.

    PubMed

    Lang, Michaela; Gasche, Christoph

    2015-01-01

    Colorectal cancer has become one of the most prevalent malignant diseases for both men and women. Patients with inflammatory bowel diseases or certain inherited cancer syndromes are at high risk of developing colorectal cancer and have naturally the highest need for cancer prevention. In familial adenomatous polyposis (FAP) and Lynch syndrome, most of the underlying germline mutations can be detected by DNA sequencing, and medical counselling of affected individuals involves both surveillance tests and chemopreventive measures. However, as the mechanisms leading to colorectal cancer differ in these high-risk groups, the molecular action of chemopreventive drugs needs to be adjusted to the certain pathway of carcinogenesis. In the last decades, a number of drugs have been tested, including sulindac, aspirin, celecoxib, and mesalazine, but some of them are still controversially discussed. This review summarizes the advances and current standards of colorectal cancer prevention in patients with inflammatory bowel disease, FAP and Lynch syndrome. PMID:25531498

  13. Colorectal Cancer Coalition

    MedlinePlus

    ... Million Strong Shop Join the Movement Share Your Story Check our Calendar Colorectal Support Community Latest News Help Wanted Read Blogs Get Social Free Printable Coloring Sheets Action Alerts About Our ...

  14. Tests for Colorectal Cancer

    MedlinePlus

    ... to look for colorectal cancer Imaging tests use sound waves, x-rays, magnetic fields, or radioactive substances to ... has spread to the liver. Ultrasound Ultrasound uses sound waves and their echoes to create images of the ...

  15. Epidemiology of colorectal cancer.

    PubMed

    Boyle, Peter; Leon, Maria Elena

    2002-01-01

    Colorectal cancer is a important public health problem: there are nearly one million new cases of colorectal cancer diagnosed world-wide each year and half a million deaths. Recent reports show that, in the US, it was the most frequent form of cancer among persons aged 75 years and older. Given that the majority of cancers occur in elder people and with the ageing of the population in mind, this observation gives further impetus to investigating prevention and treatment strategies among this subgroup of the population. Screening research, recommendations and implementation is an obvious priority. While there are many questions to be resolved, it is apparent that many facets of colorectal cancer are becoming increasingly understood and prospects for prevention are becoming apparent. Achieving colorectal cancer control is the immediate challenge. PMID:12421722

  16. [Colorectal foreign bodies].

    PubMed

    Thim, Troels; Laurberg, Søren

    2006-09-25

    A patient with a retained anally introduced colorectal foreign body or complications hereof needs appropriate treatment. The patient may be in danger and is certainly in discomfort. The problem is relatively rare; however, its incidence may be expected to increase. Guidelines for handling of the situation are lacking in many textbooks. Here, a suggestion for handling of a patient with a retained colorectal foreign body or complications hereof is presented. PMID:17032594

  17. Colorectal cancer in adolescents.

    PubMed Central

    Shankar, A.; Renaut, A. J.; Whelan, J.; Taylor, I.

    1999-01-01

    Colorectal cancer, one of the most common malignancies among adults, is rare in adolescence. This low incidence coupled with non-specific symptoms and aggressive natural history leads to a poorer prognosis than in reported adult series. This article describes two cases of colorectal cancer in adolescents and reviews the literature regarding this rare condition. Earlier diagnosis and a greater understanding of the natural history may lead to improved treatment with concomitant improvements in survival. Images Figure 1 Figure 2 PMID:10364965

  18. Colorectal carcinoma: Pathologic aspects

    PubMed Central

    Fleming, Matthew; Ravula, Sreelakshmi; Tatishchev, Sergei F.

    2012-01-01

    Colorectal carcinoma is one of the most common cancers and one of the leading causes of cancer-related death in the United States. Pathologic examination of biopsy, polypectomy and resection specimens is crucial to appropriate patient managemnt, prognosis assessment and family counseling. Molecular testing plays an increasingly important role in the era of personalized medicine. This review article focuses on the histopathology and molecular pathology of colorectal carcinoma and its precursor lesions, with an emphasis on their clinical relevance. PMID:22943008

  19. Screening for colorectal cancer.

    PubMed Central

    Campbell, W. J.; Moorehead, R. J.

    1997-01-01

    Colorectal carcinoma represents a major cause of cancer deaths in the United Kingdom. Tumours detected at an early or even premalignant stage have a better prognosis. In this review we consider the argument for screening for colorectal carcinomas and discuss the means available and the implications of implementing screening programmes using some of these methods. A suggestion is made for the more rational use of limited resources to target those at greatest risk. PMID:9185482

  20. Screening for colorectal cancer.

    PubMed

    He, Jin; Efron, Jonathan E

    2011-01-01

    March is national colorectal cancer awareness month. It is estimated that as many as 60% of colorectal cancer deaths could be prevented if all men and women aged 50 years or older were screened routinely. In 2000, Katie Couric's televised colonoscopy led to a 20% increase in screening colonoscopies across America, a stunning rise called the "Katie Couric Effect". This event demonstrated how celebrity endorsement affects health behavior. Currently, discussion is ongoing about the optimal strategy for CRC screening, particularly the costs of screening colonoscopy. The current CRC screening guidelines are summarized in Table 2. Debates over the optimum CRC screening test continue in the face of evidence that 22 million Americans aged 50 to 75 years are not screened for CRC by any modality and 25,000 of those lives may have been saved if they had been screened for CRC. It is clear that improving screening rates and reducing disparities in underscreened communities and population subgroups could further reduce colorectal cancer morbidity and mortality. National Institutes of Health consensus identified the following priority areas to enhance the use and quality of colorectal cancer screening: Eliminate financial barriers to colorectal cancer screening and appropriate follow-up of positive results of colorectal cancer screening. Develop systems to ensure the high quality of colorectal cancer screening programs. Conduct studies to determine the comparative effectiveness of the various colorectal cancer screening methods in usual practice settings. Encouraging population adherence to screening tests and allowing patients to select the tests they prefer may do more good (as long as they choose something) than whatever procedure is chosen by the medical profession as the preferred test. PMID:21954677

  1. Altered mnemonic functions and resistance to NMDA receptor antagonism by forebrain conditional knockout of glycine transporter 1

    PubMed Central

    Singer, Philipp; Yee, Benjamin K.; Feldon, Joram; Iwasato, Takuji; Itohara, Shigeyoshi; Grampp, Thomas; Prenosil, George; Benke, Dietmar; Möhler, Hanns; Boison, Detlev

    2009-01-01

    Converging evidence from pharmacological and molecular studies has led to the suggestion that inhibition of glycine transporter 1 (GlyT1) constitutes an effective means to boost N-methyl-D-aspartate receptor (NMDAR) activity by increasing the extra-cellular concentration of glycine in the vicinity of glutamatergic synapses. However, the precise extent and limitation of this approach to alter cognitive function, and therefore its potential as a treatment strategy against psychiatric conditions marked by cognitive impairments, remains to be fully examined. Here, we generated mutant mice lacking GlyT1 in the entire forebrain including neurons and glia. This conditional knockout system allows a more precise examination of GlyT1 down-regulation in the brain on behaviour and cognition. The mutation was highly effective in attenuating the motor-stimulating effect of acute NMDAR blockade by phencyclidine, although no appreciable elevation in NMDAR-mediated EPSC was observed in the hippocampus. Enhanced cognitive performance was observed in spatial working memory and object recognition memory while spatial reference memory and associative learning remained unaltered. These findings provide further credence for the potential cognitive enhancing effects of brain GlyT1 inhibition. At the same time, they indicated potential phenotypic differences when compared with other constitutive and conditional GlyT1 knockout lines, and highlighted the possibility of a functional divergence between the neuronal and glia subpopulations of GlyT1 in the regulation of learning and memory processes. The relevance of this distinction to the design of future GlyT1 blockers as therapeutic tools in the treatment of cognitive disorders remains to be further investigated. PMID:19332109

  2. [Epidemiology of colorectal cancer].

    PubMed

    Bouvier, Anne-Marie; Launoy, Guy

    2015-06-01

    The incidence of colorectal cancer increased in France until the 2000s' then decreased. Time trends in incidence for this cancer varied according to its sublocation along the gut. Incidence increased for right and left colon cancers, whereas it remained stable for sigmoid cancers in males and decreased in females. Incidence decreased over time for rectal cancers. The proportion of colorectal cancer in the overall French cancer prevalence is 12%. In 2008, 121,000 patients had a colorectal cancer diagnosed in the 5 previous years. The cumulative risk of colorectal cancer increased from 3.9% for males born around 1900 to 4.9% for those born around 1930 and then slightly decreased, being 4.5% among those born around 1950. It remained at the same level for females and was 2.9% for those born around 1950. The prognosis of colorectal cancer improved over time. Net 5-year survival increased in males from 53% for cancers diagnosed between 1989 and 1991 to 58% for those diagnosed between 2001 and 2004. The highest improvement of 10 year survival rates concerned left colon and rectosigmoid junction (+19% in a decade). The progressive set up of national colorectal screening since the early 2000's and the introduction of recent immunological tests in 2015 should decrease the mortality for this cancer and, at term, should decrease its incidence too. PMID:26298897

  3. New Molecular Features of Colorectal Cancer Identified - Office of Cancer Clinical Proteomics Research

    Cancer.gov

    Investigators from the National Cancer Institute's Clinical Proteomic Tumor Analysis Consortium (CPTAC) who comprehensively analyzed 95 human colorectal tumor samples, have determined how gene alterations identified in previous analyses of the same samples

  4. Get Tested for Colorectal Cancer

    MedlinePlus

    ... section Colorectal Cancer 4 of 6 sections Take Action! Take Action: Get Tested The best way to prevent colorectal ... I at Risk? 5 of 6 sections Take Action: Healthy Habits Quit smoking. People who smoke are ...

  5. 6 Common Cancers - Colorectal Cancer

    MedlinePlus

    ... Home Current Issue Past Issues 6 Common Cancers - Colorectal Cancer Past Issues / Spring 2007 Table of Contents For ... of colon cancer. Photo: AP Photo/Ron Edmonds Colorectal Cancer Cancer of the colon (large intestine) or rectum ( ...

  6. Risks of Colorectal Cancer Screening

    MedlinePlus

    ... Genetics of Colorectal Cancer Colorectal cancer is the second leading cause of death from cancer in the ... professional versions have detailed information written in technical language. The patient versions are written in easy-to- ...

  7. Developments in Colorectal Cancer Screening

    MedlinePlus

    ... on. Feature: Colorectal Cancer Developments in Colorectal Cancer Screening Summer 2016 Table of Contents Dr. Asad Umar, ... know to help determine the best colon cancer screening test for them? Colonoscopy is considered the gold ...

  8. Endobronchial metastases of colorectal cancer.

    PubMed

    Rosado Dawid, Natalia-Zuberoa; Villegas Fernández, Francisco Ramón; Rodríguez Cruz, María Del Mar; Ramos Meca, Asunción

    2016-04-01

    Colorectal metastases affecting trachea or bronchi are highly unusual. Up to 26% of endotracheal/endobronchial metastases are due to colorectal cancer. Treatment and palliative management rely on a multidisciplinary team to improve their quality of life. PMID:26856850

  9. 6 Common Cancers - Colorectal Cancer

    MedlinePlus

    ... Bar Home Current Issue Past Issues 6 Common Cancers - Colorectal Cancer Past Issues / Spring 2007 Table of Contents For ... colon cancer. Photo: AP Photo/Ron Edmonds Colorectal Cancer Cancer of the colon (large intestine) or rectum ( ...

  10. Expression of AQP5 and AQP8 in human colorectal carcinoma and their clinical significance

    PubMed Central

    2012-01-01

    Background The aquaporins (AQPs) are a family of small membrane transport proteins whose overexpression has been implicated in tumorigenesis. However, the expression of AQP5 and AQP8 in colorectal cancer and the clinical significance remain unexplored. This study aimed to detect the expression of AQP5 and AQP8 in clinical samples of colorectal cancer and analyze the correlations of their expression with the clinicopathological features of colorectal cancer. Methods Forty pairs of colorectal cancer tissue and paraneoplastic normal tissue were obtained at the time of surgery from patients with colorectal cancer. The expression of AQP5 and AQP8 was detected by immunohistochemical staining and reverse transcriptase polymerase chain reaction. Results AQP5 was mainly expressed in colorectal carcinoma cells and barely expressed in paraneoplastic normal tissues. By contrast, AQP8 was mainly expressed in paraneoplastic normal tissues and barely expressed in colorectal carcinoma cells. AQP5 expression was not significantly associated with the sex or age of the patient with colorectal cancer (P>0.05), but was closely associated with the differentiation, tumor-nodes-metastasis stage and distant lymph node metastasis of colorectal carcinoma (P<0.05). Conclusions AQP5 might be a novel prognostic biomarker for patients with colorectal cancer. PMID:23148732

  11. MTDH genetic variants in colorectal cancer patients

    PubMed Central

    Gnosa, Sebastian; Ticha, Ivana; Haapaniemi, Staffan; Sun, Xiao-Feng

    2016-01-01

    The colorectal carcinogenesis is a complex process encompassing genetic alterations. The oncoprotein AEG-1, encoded by the MTDH gene, was shown previously to be involved in colorectal cancer (CRC). The aim of this study was to determine the frequency and the spectrum of MTDH variants in tumor tissue, and their relationship to clinicopathological variables in CRC patients. The study included tumors from 356 unselected CRC patients. Mutation analysis of the MTDH gene, including coding region and adjacent intronic sequences, was performed by direct DNA sequencing. The corresponding normal colorectal tissue was analyzed in the carriers of exonic variant to confirm germline or somatic origin. We detected 42 intronic variants, where 25 were novel. Furthermore, we found 8 exonic variants of which four, one missense (c.977C > G-germline) and three frameshift mutations (c.533delA-somatic, c.1340dupA-unknown origin, c.1731delA-unknown origin), were novel. In silico prediction analyses suggested four deleterious variants (c.232G > T, c.533delA, c.1340dupA, and c.1731delA). There were no correlations between the MTDH variants and tumor stage, differentiation or patient survival. We described several novel exonic and intronic variants of the MTDH gene. The detection of likely pathogenic truncating mutations and alterations in functional protein domains indicate their clinical significance, although none of the variants had prognostic potential. PMID:26983693

  12. Prenatal transportation alters the acute phase response (APR) of bull calves exposed to a lipopolysaccharide (LPS) challenge

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study was designed to determine if prenatal transportation influences the acute phase response (APR) to a postnatal Lipopolysaccharide (LPS) challenge. Pregnant Brahman cows (n=96) matched by age and parity were separated into transported (TRANS; n=48; transported for 2 hours on gestational day...

  13. Missense Polymorphisms in the Adenomatous Polyposis Coli Gene and Colorectal Cancer Risk

    PubMed Central

    Cleary, Sean P.; Kim, Hyeja; Croitoru, Marina E.; Redston, Mark; Knight, Julia A.; Gallinger, Steven; Gryfe, Robert

    2009-01-01

    PURPOSE Whereas truncating germline mutations of the adenomatous polyposis coli (APC) gene give rise to familial adenomatous polyposis, missense polymorphisms of APC may confer a weaker risk for colorectal cancer. METHODS We sequenced the entire open reading frame of the APC gene and tested for two common MYH mutations in a population-based series of patients with colorectal cancer and 5 to 99 adenomas. Missense adenomatous polyposis coli alterations identified in this colorectal cancer multiple-polyp population were analyzed in a population-based series of patients with colorectal cancer and healthy control subjects. RESULTS Germline APC or mutY human homologue (MYH) alterations were identified in 16 of 39 colorectal cancer-multiple polyp patients. Four missense APC gene alterations (S130G, E1317Q, Dl822V, G2502S) were observed in 13 individuals and 3 additional patients carried presumed pathogenic (APC Y94X, biallelic MYH Y165C and heterozygous MYH G382D) mutations. When independently assessed in 971 patients with colorectal cancer and 954 healthy control subjects, none of the identified missense APC alterations conferred a significantly increased risk for colorectal cancer, odds ratio (95 percent confidence intervals): S130G=3.1 (0.29–32.25), E1317Q= 1.08 (0.59–2.74), G2502S= 1 (0.65–1.63), D1822V (heterozygous)=0.79 (0.64–0.98), D1822V (homozygous) =0.82 (0.63–1.27). CONCLUSIONS Germline missense APC alterations observed in 33 percent of patients with multiple colorectal neoplasms seemed to play a limited role in colorectal cancer risk when independently assessed by a population-based, case-control analysis. PMID:18612690

  14. Germline EPHB2 Receptor Variants in Familial Colorectal Cancer

    PubMed Central

    Zogopoulos, George; Jorgensen, Claus; Bacani, Julinor; Montpetit, Alexandre; Lepage, Pierre; Ferretti, Vincent; Chad, Lauren; Selvarajah, Subani; Zanke, Brent; Hudson, Thomas J.; Pawson, Tony; Gallinger, Steven

    2008-01-01

    Familial clustering of colorectal cancer occurs in 15–20% of cases, however recognized cancer syndromes explain only a small fraction of this disease. Thus, the genetic basis for the majority of hereditary colorectal cancer remains unknown. EPHB2 has recently been implicated as a candidate tumor suppressor gene in colorectal cancer. The aim of this study was to evaluate the contribution of EPHB2 to hereditary colorectal cancer. We screened for germline EPHB2 sequence variants in 116 population-based familial colorectal cancer cases by DNA sequencing. We then estimated the population frequencies and characterized the biological activities of the EPHB2 variants identified. Three novel nonsynonymous missense alterations were detected. Two of these variants (A438T and G787R) result in significant residue changes, while the third leads to a conservative substitution in the carboxy-terminal SAM domain (V945I). The former two variants were found once in the 116 cases, while the V945I variant was present in 2 cases. Genotyping of additional patients with colorectal cancer and control subjects revealed that A438T and G787R represent rare EPHB2 alleles. In vitro functional studies show that the G787R substitution, located in the kinase domain, causes impaired receptor kinase activity and is therefore pathogenic, whereas the A438T variant retains its receptor function and likely represents a neutral polymorphism. Tumor tissue from the G787R variant case manifested loss of heterozygosity, with loss of the wild-type allele, supporting a tumor suppressor role for EPHB2 in rare colorectal cancer cases. Rare germline EPHB2 variants may contribute to a small fraction of hereditary colorectal cancer. PMID:18682749

  15. Schisandra chinensis Peptidoglycan-Assisted Transmembrane Transport of Lignans Uniquely Altered the Pharmacokinetic and Pharmacodynamic Mechanisms in Human HepG2 Cell Model

    PubMed Central

    Chyau, Charng-Cherng; Ker, Yaw-Bee; Chang, Chi-Huang; Huang, Shiau-Huei; Wang, Hui-Er; Peng, Chiung-Chi; Peng, Robert Y.

    2014-01-01

    Schisandra chinensis (Turz Baill) (S. chinensis) (SC) fruit is a hepatoprotective herb containing many lignans and a large amount of polysaccharides. A novel polysaccharide (called SC-2) was isolated from SC of MW 841 kDa, which exhibited a protein-to-polysaccharide ratio of 0.4089, and showed a characteristic FTIR spectrum of a peptidoglycan. Powder X-ray diffraction revealed microcrystalline structures within SC-2. SC-2 contained 10 monosaccharides and 15 amino acids (essential amino acids of 78.12%w/w). In a HepG2 cell model, SC-2 was shown by MTT and TUNEL assay to be completely non-cytotoxic. A kinetic analysis and fluorescence-labeling technique revealed no intracellular disposition of SC-2. Combined treatment of lignans with SC-2 enhanced the intracellular transport of schisandrin B and deoxyschisandrin but decreased that of gomisin C, resulting in alteration of cell-killing bioactivity. The Second Law of Thermodynamics allows this type of unidirectional transport. Conclusively, SC-2 alters the transport and cell killing capability by a “Catcher-Pitcher Unidirectional Transport Mechanism”. PMID:24475039

  16. Clinical aspects of urea cycle dysfunction and altered brain energy metabolism on modulation of glutamate receptors and transporters in acute and chronic hyperammonemia.

    PubMed

    Natesan, Vijayakumar; Mani, Renuka; Arumugam, Ramakrishnan

    2016-07-01

    In living organisms, nitrogen arise primarily as ammonia (NH3) and ammonium (NH4(+)), which is a main component of the nucleic acid pool and proteins. Although nitrogen is essential for growth and maintenance in animals, but when the nitrogenous compounds exceeds the normal range which can quickly lead to toxicity and death. Urea cycle is the common pathway for the disposal of excess nitrogen through urea biosynthesis. Hyperammonemia is a consistent finding in many neurological disorders including congenital urea cycle disorders, reye's syndrome and acute liver failure leads to deleterious effects. Hyperammonemia and liver failure results in glutamatergic neurotransmission which contributes to the alteration in the function of the glutamate-nitric oxide-cGMP pathway, modulates the important cerebral process. Even though ammonia is essential for normal functioning of the central nervous system (CNS), in particular high concentrations of ammonia exposure to the brain leads to the alterations of glutamate transport by the transporters. Several glutamate transporters have been recognized in the central nervous system and each has a unique physiological property and distribution. The loss of glutamate transporter activity in brain during acute liver failure and hyperammonemia is allied with increased extracellular brain glutamate concentrations which may be conscientious for the cerebral edema and ultimately cell death. PMID:27261594

  17. Serrated colorectal cancer: Molecular classification, prognosis, and response to chemotherapy

    PubMed Central

    Murcia, Oscar; Juárez, Miriam; Hernández-Illán, Eva; Egoavil, Cecilia; Giner-Calabuig, Mar; Rodríguez-Soler, María; Jover, Rodrigo

    2016-01-01

    Molecular advances support the existence of an alternative pathway of colorectal carcinogenesis that is based on the hypermethylation of specific DNA regions that silences tumor suppressor genes. This alternative pathway has been called the serrated pathway due to the serrated appearance of tumors in histological analysis. New classifications for colorectal cancer (CRC) were proposed recently based on genetic profiles that show four types of molecular alterations: BRAF gene mutations, KRAS gene mutations, microsatellite instability, and hypermethylation of CpG islands. This review summarizes what is known about the serrated pathway of CRC, including CRC molecular and clinical features, prognosis, and response to chemotherapy. PMID:27053844

  18. Serrated colorectal cancer: Molecular classification, prognosis, and response to chemotherapy.

    PubMed

    Murcia, Oscar; Juárez, Miriam; Hernández-Illán, Eva; Egoavil, Cecilia; Giner-Calabuig, Mar; Rodríguez-Soler, María; Jover, Rodrigo

    2016-04-01

    Molecular advances support the existence of an alternative pathway of colorectal carcinogenesis that is based on the hypermethylation of specific DNA regions that silences tumor suppressor genes. This alternative pathway has been called the serrated pathway due to the serrated appearance of tumors in histological analysis. New classifications for colorectal cancer (CRC) were proposed recently based on genetic profiles that show four types of molecular alterations: BRAF gene mutations, KRAS gene mutations, microsatellite instability, and hypermethylation of CpG islands. This review summarizes what is known about the serrated pathway of CRC, including CRC molecular and clinical features, prognosis, and response to chemotherapy. PMID:27053844

  19. Shoot Na+ Exclusion and Increased Salinity Tolerance Engineered by Cell Type–Specific Alteration of Na+ Transport in Arabidopsis[W][OA

    PubMed Central

    Møller, Inge S.; Gilliham, Matthew; Jha, Deepa; Mayo, Gwenda M.; Roy, Stuart J.; Coates, Juliet C.; Haseloff, Jim; Tester, Mark

    2009-01-01

    Soil salinity affects large areas of cultivated land, causing significant reductions in crop yield globally. The Na+ toxicity of many crop plants is correlated with overaccumulation of Na+ in the shoot. We have previously suggested that the engineering of Na+ exclusion from the shoot could be achieved through an alteration of plasma membrane Na+ transport processes in the root, if these alterations were cell type specific. Here, it is shown that expression of the Na+ transporter HKT1;1 in the mature root stele of Arabidopsis thaliana decreases Na+ accumulation in the shoot by 37 to 64%. The expression of HKT1;1 specifically in the mature root stele is achieved using an enhancer trap expression system for specific and strong overexpression. The effect in the shoot is caused by the increased influx, mediated by HKT1;1, of Na+ into stelar root cells, which is demonstrated in planta and leads to a reduction of root-to-shoot transfer of Na+. Plants with reduced shoot Na+ also have increased salinity tolerance. By contrast, plants constitutively expressing HKT1;1 driven by the cauliflower mosaic virus 35S promoter accumulated high shoot Na+ and grew poorly. Our results demonstrate that the modification of a specific Na+ transport process in specific cell types can reduce shoot Na+ accumulation, an important component of salinity tolerance of many higher plants. PMID:19584143

  20. Management of Colorectal Trauma

    PubMed Central

    2011-01-01

    Although the treatment strategy for colorectal trauma has advanced during the last part of the twentieth century and the result has improved, compared to other injuries, problems, such as high septic complication rates and mortality rates, still exist, so standard management for colorectal trauma is still a controversial issue. For that reason, we designed this article to address current recommendations for management of colorectal injuries based on a review of literature. According to the reviewed data, although sufficient evidence exists for primary repair being the treatment of choice in most cases of nondestructive colon injuries, many surgeons are still concerned about anastomotic leakage or failure, and prefer to perform a diverting colostomy. Recently, some reports have shown that primary repair or resection and anastomosis, is better than a diverting colostomy even in cases of destructive colon injuries, but it has not fully established as the standard treatment. The same guideline as that for colonic injury is applied in cases of intraperitoneal rectal injuries, and, diversion, primary repair, and presacral drainage are regarded as the standards for the management of extraperitoneal rectal injuries. However, some reports state that primary repair without a diverting colostomy has benefit in the treatment of extraperitoneal rectal injury, and presacral drainage is still controversial. In conclusion, ideally an individual management strategy would be developed for each patient suffering from colorectal injury. To do this, an evidence-based treatment plan should be carefully developed. PMID:21980586

  1. [Nutrition and colorectal cancer].

    PubMed

    Ströhle, Alexander; Maike, Wolters; Hahn, Andreas

    2007-01-01

    Diet plays an important role in the pathogenesis of colorectal cancer. Current prospective cohort studies and metaanalysis enable a reevaluation of how food or nutrients such as fiber and fat influence cancer risk. Based on the evidence criteria of the WHO/FAD, risk reduction by a high intake of fruit is assessed as possible, while a lowered risk by a high vegetable intake is probable. Especially raw vegetables and fruits seem to exert anticancer properties. The evidence of a risk reducing effect of whole grain relating to colorectal cancer is assessed as probable whereas the evidence of an increased risk by high consumption of refined white flour products and sweets is (still) insufficient despite some evidences. There is a probable risk reducing effect of milk and dairy products. e available data on eggs and red meat indicate a possible risk increasing influence. Stronger clues for a risk increasing effect have been shown for meat products leading to an evidence assessed as probable. Owing to varied interpretations of the data on fiber, the evidence of a risk reducing effect relating to colorectal cancer is assessed as possible or insufficient. The available data on alcohol consumption indicate a possible risk increasing effect. In contrast to former evaluations, diets rich in fat seem to increase colorectal cancer risk only indirectly as part of a hypercaloric diet by advancing the obesity risk. Thus, the evidence of obesity, especially visceral obesity, as a risk of colorectal cancer is judged as convincing today. Prospective cohort studies suggest that people who get higher than average amounts of folic acid from multivitamin supplements have lower risks of colorectal cancer. The evidence for a risk reducing effect of calcium, selenium, vitamin D and vitamin E on colorectal cancer is insufficient. As primary prevention, a diet rich in vegetables, fruits, whole grain products, and legumes added by low-fat dairy products, fish, and poultry can be recommended. In

  2. Radioimmunodetection of colorectal cancer

    SciTech Connect

    Kim, E.E.; Deland, F.H.; Casper, S.; Corgan, R.L.; Primus, F.J.; Goldenberg, D.M.

    1980-03-15

    This study examines the accuracy of colorectal cancer radioimmunodetection. Twenty-seven patients with a history of histologically-confirmed colonic or rectal carcinoma received a high-titer, purified goat anti-CEA IgG labelled with /sup 131/I at a total dose of at least 1.0 ..mu..Ci. Various body views were scanned at 24 and 48 hours after administration of the radioantibody. Three additional cases were evaluated; one had a villous adenoma in the rectum and received the /sup 131/I-labeled anti-CEA IgG, while two colonic carcinoma patients received normal goat IgG labelled with /sup 131/I. All of the 7 cases with primary colorectal cancer showed true-positive tumor localization, while 20 of 25 sites of metastatic colorectal cancer detected by immune scintigraphy were corroborated by other detection measures. The sensitivity of the radioimmunodetection of colorectal cancers (primary and metastatic) was found to be 90% (true-positive rate), the putative specificity (true-negative rate) was 94%, and the apparent overall accuracy of the technique was 93%. Neither the case of a villous adenoma receiving the anti-CEA IgG nor the two cases of colonic cancer receiving normal goat IgG showed tumor radiolocalization. Very high circulating CEA titers did not appear to hinder successful tumor radiolocalization. These findings suggest that in colorectal cancers the method of CEA radioimmunodetection may be of value in preoperatively determining the location and extent of disease, in assessing possible recurrence or spread postoperatively, and in localizing the source of CEA production in patients with rising or elevated CEA titers. An ancilliary benefit could be a more tumor-specific detection test for confirming the findings of other, more conventional diagnostic measures.

  3. Extracellular Cl(-) regulates human SO4 (2-)/anion exchanger SLC26A1 by altering pH sensitivity of anion transport.

    PubMed

    Wu, Meng; Heneghan, John F; Vandorpe, David H; Escobar, Laura I; Wu, Bai-Lin; Alper, Seth L

    2016-08-01

    Genetic deficiency of the SLC26A1 anion exchanger in mice is known to be associated with hyposulfatemia and hyperoxaluria with nephrolithiasis, but many aspects of human SLC26A1 function remain to be explored. We report here the functional characterization of human SLC26A1, a 4,4'-diisothiocyanato-2,2'-stilbenedisulfonic acid (DIDS)-sensitive, electroneutral sodium-independent anion exchanger transporting sulfate, oxalate, bicarbonate, thiosulfate, and (with divergent properties) chloride. Human SLC26A1-mediated anion exchange differs from that of its rodent orthologs in its stimulation by alkaline pHo and inhibition by acidic pHo but not pHi and in its failure to transport glyoxylate. SLC26A1-mediated transport of sulfate and oxalate is highly dependent on allosteric activation by extracellular chloride or non-substrate anions. Extracellular chloride stimulates apparent V max of human SLC26A1-mediated sulfate uptake by conferring a 2-log decrease in sensitivity to inhibition by extracellular protons, without changing transporter affinity for extracellular sulfate. In contrast to SLC26A1-mediated sulfate transport, SLC26A1-associated chloride transport is activated by acid pHo, shows reduced sensitivity to DIDS, and exhibits cation dependence of its DIDS-insensitive component. Human SLC26A1 resembles SLC26 paralogs in its inhibition by phorbol ester activation of protein kinase C (PKC), which differs in its undiminished polypeptide abundance at or near the oocyte surface. Mutation of SLC26A1 residues corresponding to candidate anion binding site-associated residues in avian SLC26A5/prestin altered anion transport in patterns resembling those of prestin. However, rare SLC26A1 polymorphic variants from a patient with renal Fanconi Syndrome and from a patient with nephrolithiasis/calcinosis exhibited no loss-of-function phenotypes consistent with disease pathogenesis. PMID:27125215

  4. Growth and Invasion of Sporadic Colorectal Adenocarcinomas in Terms of Genetic Change

    PubMed Central

    Roh, Seon Ae; Choi, Eun Young; Cho, Dong Hyung; Jang, Se Jin; Kim, Seon Young; Kim, Yong Sung

    2010-01-01

    Integrative genetic changes were examined in relation to tumor growth and progression of sporadic colorectal cancers. Ninety-two sporadic colorectal cancer patients and 12 human colorectal cancer cell lines were evaluated. Genetic changes in representative steps of colorectal tumorigenesis were determined. Biological characteristics, i.e., clinicopathologic parameters, expression of invasion-associated molecules, and in vitro invasion and migration, in association with these changes were further analyzed. Adenomatous polyposis coli (APC) and/or Wnt-activated alterations occurred in 66% patients, whereas mismatch repair (MMR) defects and/or RAF-mediated alterations were identified in 47% patients. The crossover rate between these two alterations was 26%. Differential mRNA expression of ARK5 was closely associated with that of MMP2, MMP9, and S100A4 (P≤0.044-0.001). Additionally, enhanced ARK5 mRNA expression was more frequent in tumors displaying RAF-mediated alterations and crossover pathways (P=0.01 and 0.03, respectively). Upregulation of CEA mRNA was more common in the advanced stages (P=0.034), while VEGF expression was greater in poorly differentiated or mucinous tumors (P=0.042). The high expressions of MMP2 and MMP9 were closely associated with invasion and migration of colorectal tumors and cell lines. Our results conclusively show that specific pathways of colorectal tumorigenesis are closely associated with characteristic tumor growth and invasion. PMID:20191032

  5. Low speed wind tunnel investigation of span load alteration, forward-located spoilers, and splines as trailing-vortex-hazard alleviation devices on a transport aircraft model

    NASA Technical Reports Server (NTRS)

    Croom, D. R.; Dunham, R. E., Jr.

    1975-01-01

    The effectiveness of a forward-located spoiler, a spline, and span load alteration due to a flap configuration change as trailing-vortex-hazard alleviation methods was investigated. For the transport aircraft model in the normal approach configuration, the results indicate that either a forward-located spoiler or a spline is effective in reducing the trailing-vortex hazard. The results also indicate that large changes in span loading, due to retraction of the outboard flap, may be an effective method of reducing the trailing-vortex hazard.

  6. Prostaglandin E2-induced colonic secretion in patients with and without colorectal neoplasia

    PubMed Central

    2010-01-01

    Background The pathogenesis for colorectal cancer remains unresolved. A growing body of evidence suggests a direct correlation between cyclooxygenase enzyme expression, prostaglandin E2 metabolism and neoplastic development. Thus further understanding of the regulation of epithelial functions by prostaglandin E2 is needed. We hypothesized that patients with colonic neoplasia have altered colonic epithelial ion transport and express functionally different prostanoid receptor levels in this respect. Methods Patients referred for colonoscopy were included and grouped into patients with and without colorectal neoplasia. Patients without endoscopic findings of neoplasia served as controls. Biopsy specimens were obtained from normally appearing mucosa in the sigmoid part of colon. Biopsies were mounted in miniaturized modified Ussing air-suction chambers. Indomethacin (10 μM), various stimulators and inhibitors of prostanoid receptors and ion transport were subsequently added to the chamber solutions. Electrogenic ion transport parameters (short circuit current and slope conductance) were recorded. Tissue pathology and tissue damage before and after experiments was assessed by histology. Results Baseline short circuit current and slope conductance did not differ between the two groups. Patients with neoplasia were significantly more sensitive to indomethacin with a decrease in short circuit current of 15.1 ± 2.6 μA·cm-2 compared to controls, who showed a decrease of 10.5 ± 2.1 μA·cm-2 (p = 0.027). Stimulation or inhibition with theophylline, ouabain, bumetanide, forskolin or the EP receptor agonists prostaglandin E2, butaprost, sulprostone and prostaglandin E1 (OH) did not differ significantly between the two groups. Histology was with normal findings in both groups. Conclusions Epithelial electrogenic transport is more sensitive to indomethacin in normal colonic mucosa from patients with previous or present colorectal neoplasia compared to colonic mucosa from

  7. Acute changes in cellular zinc alters zinc uptake rates prior to zinc transporter gene expression in Jurkat cells.

    PubMed

    Holland, Tai C; Killilea, David W; Shenvi, Swapna V; King, Janet C

    2015-12-01

    A coordinated network of zinc transporters and binding proteins tightly regulate cellular zinc levels. Canonical responses to zinc availability are thought to be mediated by changes in gene expression of key zinc transporters. We investigated the temporal relationships of actual zinc uptake with patterns of gene expression in membrane-bound zinc transporters in the human immortalized T lymphocyte Jurkat cell line. Cellular zinc levels were elevated or reduced with exogenous zinc sulfate or N,N,N',N-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN), respectively. Excess zinc resulted in a rapid 44 % decrease in the rate of zinc uptake within 10 min. After 120 min, the expression of metallothionein (positive control) increased, as well as the zinc exporter, ZnT1; however, the expression of zinc importers did not change during this time period. Zinc chelation with TPEN resulted in a rapid twofold increase in the rate of zinc uptake within 10 min. After 120 min, the expression of ZnT1 decreased, while again the expression of zinc importers did not change. Overall, zinc transporter gene expression kinetics did not match actual changes in cellular zinc uptake with exogenous zinc or TPEN treatments. This suggests zinc transporter regulation may be the initial response to changes in zinc within Jurkat cells. PMID:26420239

  8. Alterations in hepatic mRNA expression of phase II enzymes and xenobiotic transporters after targeted disruption of hepatocyte nuclear factor 4 alpha.

    PubMed

    Lu, Hong; Gonzalez, Frank J; Klaassen, Curtis

    2010-12-01

    Hepatocyte nuclear factor 4 alpha (HNF4a) is a liver-enriched master regulator of liver function. HNF4a is important in regulating hepatic expression of certain cytochrome P450s. The purpose of this study was to use mice lacking HNF4a expression in liver (HNF4a-HNull) to elucidate the role of HNF4a in regulating hepatic expression of phase II enzymes and transporters in mice. Compared with male wild-type mice, HNF4a-HNull male mouse livers had (1) markedly lower messenger RNAs (mRNAs) encoding the uptake transporters sodium taurocholate cotransporting polypeptide, organic anion transporting polypeptide (Oatp) 1a1, Oatp2b1, organic anion transporter 2, sodium phosphate cotransporter type 1, sulfate anion transporter 1, sodium-dependent vitamin C transporter 1, the phase II enzymes Uridine 5'-diphospho (UDP)-glucuronosyltransferase (Ugt) 2a3, Ugt2b1, Ugt3a1, Ugt3a2, sulfotransferase (Sult) 1a1, Sult1b1, Sult5a1, the efflux transporters multidrug resistance-associated protein (Mrp) 6, and multidrug and toxin extrusion 1; (2) moderately lower mRNAs encoding Oatp1b2, organic cation transporter (Oct) 1, Ugt1a5, Ugt1a9, glutathione S-transferase (Gst) m4, Gstm6, and breast cancer resistance protein; but (3) higher mRNAs encoding Oatp1a4, Octn2, Ugt1a1, Sult1e1, Sult2a2, Gsta4, Gstm1-m3, multidrug resistance protein (Mdr) 1a, Mrp3, and Mrp4. Hepatic signaling of nuclear factor E2-related factor 2 and pregnane X receptor appear to be activated in HNF4a-HNull mice. In conclusion, HNF4a deficiency markedly alters hepatic mRNA expression of a large number of phase II enzymes and transporters, probably because of the loss of HNF4a, which is a transactivator and a determinant of gender-specific expression and/or adaptive activation of signaling pathways important in hepatic regulation of these phase II enzymes and transporters. PMID:20935164

  9. Worldwide variations in colorectal cancer.

    PubMed

    Center, Melissa M; Jemal, Ahmedin; Smith, Robert A; Ward, Elizabeth

    2009-01-01

    Previous studies have documented significant international variations in colorectal cancer rates. However, these studies were limited because they were based on old data or examined only incidence or mortality data. In this article, the colorectal cancer burden and patterns worldwide are described using the most recently updated cancer incidence and mortality data available from the International Agency for Research on Cancer (IARC). The authors provide 5-year (1998-2002), age-standardized colorectal cancer incidence rates for select cancer registries in IARC's Cancer Incidence in Five Continents, and trends in age-standardized death rates by single calendar year for select countries in the World Health Organization mortality database. In addition, available information regarding worldwide colorectal cancer screening initiatives are presented. The highest colorectal cancer incidence rates in 1998-2002 were observed in registries from North America, Oceania, and Europe, including Eastern European countries. These high rates are most likely the result of increases in risk factors associated with "Westernization," such as obesity and physical inactivity. In contrast, the lowest colorectal cancer incidence rates were observed from registries in Asia, Africa, and South America. Colorectal cancer mortality rates have declined in many longstanding as well as newly economically developed countries; however, they continue to increase in some low-resource countries of South America and Eastern Europe. Various screening options for colorectal cancer are available and further international consideration of targeted screening programs and/or recommendations could help alleviate the burden of colorectal cancer worldwide. PMID:19897840

  10. Differential colorectal carcinogenesis: Molecular basis and clinical relevance.

    PubMed

    Morán, Alberto; Ortega, Paloma; de Juan, Carmen; Fernández-Marcelo, Tamara; Frías, Cristina; Sánchez-Pernaute, Andrés; Torres, Antonio José; Díaz-Rubio, Eduardo; Iniesta, Pilar; Benito, Manuel

    2010-03-15

    Colorectal cancer (CCR) is one of the most frequent cancers in developed countries. It poses a major public health problem and there is renewed interest in understanding the basic principles of the molecular biology of colorectal cancer. It has been established that sporadic CCRs can arise from at least two different carcinogenic pathways. The traditional pathway, also called the suppressor or chromosomal instability pathway, follows the Fearon and Vogelstein model and shows mutation in classical oncogenes and tumour suppressor genes, such as K-ras, adenomatous polyposis coli, deleted in colorectal cancer, or p53. Alterations in the Wnt pathway are also very common in this type of tumour. The second main colorectal carcinogenesis pathway is the mutator pathway. This pathway is present in nearly 15% of all cases of sporadic colorectal cancer. It is characterized by the presence of mutations in the microsatellite sequences caused by a defect in the DNA mismatch repair genes, mostly in hMLH1 or hMSH2. These two pathways have clear molecular differences, which will be reviewed in this article, but they also present distinct histopathological features. More strikingly, their clinical behaviours are completely different, having the "mutator" tumours a better outcome than the "suppressor" tumours. PMID:21160823

  11. Helicobacter pylori and colorectal neoplasia: Is there a causal link?

    PubMed

    Papastergiou, Vasilios; Karatapanis, Stylianos; Georgopoulos, Sotirios D

    2016-01-14

    Ever since Helicobacter pylori (H. pylori) was recognized as an infectious cause of gastric cancer, there has been increasing interest in examining its potential role in colorectal carcinogenesis. Data from case-control and cross-sectional studies, mostly relying on hospital-based samples, and several meta-analyses have shown a positive statistical relationship between H. pylori infection and colorectal neoplasia. However, the possibility exists that the results have been influenced by bias, including the improper selection of patients and disparities with respect to potential confounders. While the evidence falls short of a definitive causal link, it appears that infection with H. pylori/H. pylori-related gastritis is associated with an increased, although modest, risk of colorectal adenoma and cancer. The pathogenic mechanisms responsible for this association remain uncertain. H. pylori has been detected in colorectal malignant tissues; however, the possibility that H. pylori is a direct activator of colonic carcinogenesis remains purely hypothetical. On the other hand, experimental data have indicated a series of potential oncogenic interactions between these bacteria and colorectal mucosa, including induction and perpetuation of inflammatory responses, alteration of gut microflora and release of toxins and/or hormonal mediators, such as gastrin, which may contribute to tumor formation. PMID:26811614

  12. Helicobacter pylori and colorectal neoplasia: Is there a causal link?

    PubMed Central

    Papastergiou, Vasilios; Karatapanis, Stylianos; Georgopoulos, Sotirios D

    2016-01-01

    Ever since Helicobacter pylori (H. pylori) was recognized as an infectious cause of gastric cancer, there has been increasing interest in examining its potential role in colorectal carcinogenesis. Data from case-control and cross-sectional studies, mostly relying on hospital-based samples, and several meta-analyses have shown a positive statistical relationship between H. pylori infection and colorectal neoplasia. However, the possibility exists that the results have been influenced by bias, including the improper selection of patients and disparities with respect to potential confounders. While the evidence falls short of a definitive causal link, it appears that infection with H. pylori/H. pylori-related gastritis is associated with an increased, although modest, risk of colorectal adenoma and cancer. The pathogenic mechanisms responsible for this association remain uncertain. H. pylori has been detected in colorectal malignant tissues; however, the possibility that H. pylori is a direct activator of colonic carcinogenesis remains purely hypothetical. On the other hand, experimental data have indicated a series of potential oncogenic interactions between these bacteria and colorectal mucosa, including induction and perpetuation of inflammatory responses, alteration of gut microflora and release of toxins and/or hormonal mediators, such as gastrin, which may contribute to tumor formation. PMID:26811614

  13. An ABC Transporter Mutation Alters Root Exudation of Phytochemicals that Provoke an Overhaul of Natural Soil Microbiota.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    It has been shown that Arabidopsis root exudates can support the fungal community in native soils but not in non-native soils and recent evidence demonstrates the involvement of ABC transporters in the root secretion of phytochemicals. In this paper we examined differences in the root exudate profil...

  14. [Colorectal cancer screening].

    PubMed

    Castells, Antoni

    2013-10-01

    Colorectal cancer is the paradigm of tumoral growth that is susceptible to preventive measures, especially screening. Various screening strategies with demonstrated efficacy and efficiency are currently available, notable examples being the fecal occult blood test and endoscopic tests. In addition, new modalities have appeared in the last few years that could become viable alternatives in the near future. The present article reviews the most important presentations on colorectal screening at the annual congress of the American Gastroenterological Association held in Orlando in May 2013, with special emphasis on the medium- and long-term results of strategies using the fecal occult blood test and flexible sigmoidoscopy, as well as initial experiences with the use of new biomarkers. PMID:24160954

  15. Adenosine protects Sprague Dawley rats from high-fat diet and repeated acute restraint stress-induced intestinal inflammation and altered expression of nutrient transporters.

    PubMed

    Lee, C Y

    2015-04-01

    This study investigated the effect of repeated acute restraint stress and high-fat diet (HFD) on intestinal expression of nutrient transporters, concomitant to intestinal inflammation. The ability of adenosine to reverse any change was examined. Six-week-old male Sprague Dawley rats were divided into eight groups: control or non-stressed (C), rats exposed to restraint stress for 6 h per day for 14 days (S), control rats fed with HFD (CHF) and restraint-stressed rats fed with HFD (SHF); four additional groups received the same treatments and were also given 50 mg/l adenosine dissolved in drinking water. Fasting blood glucose, plasma insulin, adiponectin and corticosterone were measured. Intestinal expression of SLC5A1, SLC2A2, NPC1L1 and TNF-α was analysed. Histological evaluation was conducted to observe for morphological and anatomical changes in the intestinal tissues. Results showed that HFD feeding increased glucose and insulin levels, and repeated acute restraint stress raised the corticosterone level by 22%. Exposure to both stress and HFD caused a further increase in corticosterone to 41%, while decreasing plasma adiponectin level. Restraint stress altered intestinal expression of SLC5A1, SLC2A2 and NPC1L1. These changes were enhanced in SHF rats. Adenosine was found to alleviate HFD-induced increase in glucose and insulin levels, suppress elevation of corticosterone in S rats and improve the altered nutrient transporters expression profiles. It also prevented upregulation of TNF-α in the intestine of SHF rats. In summary, a combination of stress and HFD exaggerated stress- and HFD-induced pathophysiological changes in the intestine, and biochemical parameters related to obesity. Adenosine attenuated the elevation of corticosterone and altered expression of SLC5A1, NPC1L1 and TNF-α. PMID:25196093

  16. Techniques for colorectal anastomosis

    PubMed Central

    Ho, Yik-Hong; Ashour, Mohamed Ahmed Tawfik

    2010-01-01

    Colorectal anastomotic leak remains one of the most feared post-operative complications, particularly after anterior resection of the rectum with, the shift from abdomino-peritoneal resections to total mesorectal excision and primary anastomosis. The literature fails to demonstrate superiority of stapled over hand-sewn techniques in colorectal anastomosis, regardless of the level of anastomosis, although a high stricture rate was noted in the former technique. Thus, improvements in safety aspects of anastomosis and alternatives to hand-sewn and stapled techniques are being sought. Here, we review alternative anastomotic techniques used to fashion bowel anastomosis. Compression anastomosis using compression anastomotic clips, endoluminal compression anastomotic rings, AKA-2, biofragmental anastomotic rings, or Magnamosis all involve the concept of creating a sutureless end-to-end anastomosis by compressing two bowel ends together, leading to a simultaneous necrosis and healing process that joins the two lumens. Staple line reinforcement is a new approach that reduce the drawbacks of staplers used in colorectal practice, i.e. leakage, bleeding, misfiring, and inadequate tissue approximation. Various non-absorbable, semi or fully absorbable materials are now available. Two other techniques can provide alternative anastomotic support to the suture line: a colorectal drain and a polyester stent, which can be utilized in ultra-low rectal excision and can negate the formation of a defunctioning stoma. Doxycycline coated sutures have been used to overcome the post-operative weakness in anastomosis secondary to rapid matrix degradation mediated by matrix metalloproteinase. Another novel technique, the electric welding system, showed promising results in construction of a safe, neat, smooth sutureless bowel anastomosis. Various anastomotic techniques have been shown to be comparable to the standard techniques of suturing and stapling. However, most of these alternatives need

  17. Biology of colorectal cancer

    PubMed Central

    Arvelo, Francisco; Sojo, Felipe; Cotte, Carlos

    2015-01-01

    Colorectal cancer is a serious health problem, a challenge for research, and a model for studying the molecular mechanisms involved in its development. According to its incidence, this pathology manifests itself in three forms: family, hereditary, and most commonly sporadic, apparently not associated with any hereditary or familial factor. For the types having inheritance patterns and a family predisposition, the tumours develop through defined stages ranging from adenomatous lesions to the manifestation of a malignant tumour. It has been established that environmental and hereditary factors contribute to the development of colorectal cancer, as indicated by the accumulation of mutations in oncogenes, genes which suppress and repair DNA, signaling the existence of various pathways through which the appearance of tumours may occur. In the case of the suppressive and mutating tracks, these are characterised by genetic disorders related to the phenotypical changes of the morphological progression sequence in the adenoma/carcinoma. Moreover, alternate pathways through mutation in BRAF and KRAS genes are associated with the progression of polyps to cancer. This review surveys the research done at the cellular and molecular level aimed at finding specific alternative therapeutic targets for fighting colorectal cancer. PMID:25932044

  18. Neurological effects of inorganic arsenic exposure: altered cysteine/glutamate transport, NMDA expression and spatial memory impairment

    PubMed Central

    Ramos-Chávez, Lucio A.; Rendón-López, Christian R. R.; Zepeda, Angélica; Silva-Adaya, Daniela; Del Razo, Luz M.; Gonsebatt, María E.

    2015-01-01

    Inorganic arsenic (iAs) is an important natural pollutant. Millions of individuals worldwide drink water with high levels of iAs. Chronic exposure to iAs has been associated with lower IQ and learning disabilities as well as memory impairment. iAs is methylated in tissues such as the brain generating mono and dimethylated species. iAs methylation requires cellular glutathione (GSH), which is the main antioxidant in the central nervous system (CNS). In humans, As species cross the placenta and are found in cord blood. A CD1 mouse model was used to investigate effects of gestational iAs exposure which can lead to oxidative damage, disrupted cysteine/glutamate transport and its putative impact in learning and memory. On postnatal days (PNDs) 1, 15 and 90, the expression of membrane transporters related to GSH synthesis and glutamate transport and toxicity, such as xCT, EAAC1, GLAST and GLT1, as well as LAT1, were analyzed. Also, the expression of the glutamate receptor N-methyl-D-aspartate (NMDAR) subunits NR2A and B as well as the presence of As species in cortex and hippocampus were investigated. On PND 90, an object location task was performed to associate exposure with memory impairment. Gestational exposure to iAs affected the expression of cysteine/glutamate transporters in cortex and hippocampus and induced a negative modulation of NMDAR NR2B subunit in the hippocampus. Behavioral tasks showed significant spatial memory impairment in males while the effect was marginal in females. PMID:25709567

  19. Kinetic compartmental analysis of carnitine metabolism in the human carnitine deficiency syndromes. Evidence for alterations in tissue carnitine transport.

    PubMed Central

    Rebouche, C J; Engel, A G

    1984-01-01

    The human primary carnitine deficiency syndromes are potentially fatal disorders affecting children and adults. The molecular etiologies of these syndromes have not been determined. In this investigation, we considered the hypothesis that these syndromes result from defective transport of carnitine into tissues, particularly skeletal muscle. The problem was approached by mathematical modeling, by using the technique of kinetic compartmental analysis. A tracer dose of L-[methyl-3H]carnitine was administered intravenously to six normal subjects, one patient with primary muscle carnitine deficiency (MCD), and four patients with primary systemic carnitine deficiency (SCD). Specific radioactivity was followed in plasma for 28 d. A three-compartment model (extracellular fluid, muscle, and "other tissues") was adopted. Rate constants, fluxes, pool sizes, and turnover times were calculated. Results of these calculations indicated reduced transport of carnitine into muscle in both forms of primary carnitine deficiency. However, in SCD, the reduced rate of carnitine transport was attributed to reduced plasma carnitine concentration. In MCD, the results are consistent with an intrinsic defect in the transport process. Abnormal fluctuations of the plasma carnitine, but of a different form, occurred in MCD and SCD. The significance of these are unclear, but in SCD they suggest abnormal regulation of the muscle/plasma carnitine concentration gradient. In 8 of 11 subjects, carnitine excretion was less than dietary carnitine intake. Carnitine excretion rates calculated by kinetic compartmental analysis were higher than corresponding rates measured directly, indicating degradation of carnitine. However, we found no radioactive metabolites of L-[methyl-3H]carnitine in urine. These observations suggest that dietary carnitine was metabolized in the gastrointestinal tract. PMID:6707204

  20. Glutamate transporters alterations in the reorganizing dentate gyrus are associated with progressive seizure activity in chronic epileptic rats.

    PubMed

    Gorter, Jan A; Van Vliet, Erwin A; Proper, Evelien A; De Graan, Pierre N E; Ghijsen, Wim E J M; Lopes Da Silva, Fernando H; Aronica, Eleonora

    2002-01-21

    The expression of glial and neuronal glutamate transporter proteins was investigated in the hippocampal region at different time points after electrically induced status epilepticus (SE) in the rat. This experimental rat model for mesial temporal lobe epilepsy is characterized by cell loss, gliosis, synaptic reorganization, and chronic seizures after a latent period. Despite extensive gliosis, immunocytochemistry revealed only an up-regulation of both glial transporters localized at the outer aspect of the inner molecular layer (iml) in chronic epileptic rats. The neuronal EAAC1 transporter was increased in many somata of individual CA1-3 neurons and granule cells that had survived after SE; this up-regulation was still present in the chronic epileptic phase. In contrast, a permanent decrease of EAAC1 immunoreactivity was observed in the iml of the dentate gyrus. This permanent decrease in EAAC1 expression, which was only observed in rats that experienced progressive spontaneous seizure activity, could lead to abnormal glutamate levels in the iml once new abnormal glutamatergic synaptic contacts are formed by means of sprouted mossy fibers. Considering the steady growth of reorganizing mossy fibers in the iml, the absence of a glutamate reuptake mechanism in this region could contribute to progression of spontaneous seizure activity, which occurs with a similar time course. PMID:11793340

  1. Epigenetics and Colorectal Cancer Pathogenesis

    PubMed Central

    Bardhan, Kankana; Liu, Kebin

    2013-01-01

    Colorectal cancer (CRC) develops through a multistage process that results from the progressive accumulation of genetic mutations, and frequently as a result of mutations in the Wnt signaling pathway. However, it has become evident over the past two decades that epigenetic alterations of the chromatin, particularly the chromatin components in the promoter regions of tumor suppressors and oncogenes, play key roles in CRC pathogenesis. Epigenetic regulation is organized at multiple levels, involving primarily DNA methylation and selective histone modifications in cancer cells. Assessment of the CRC epigenome has revealed that virtually all CRCs have aberrantly methylated genes and that the average CRC methylome has thousands of abnormally methylated genes. Although relatively less is known about the patterns of specific histone modifications in CRC, selective histone modifications and resultant chromatin conformation have been shown to act, in concert with DNA methylation, to regulate gene expression to mediate CRC pathogenesis. Moreover, it is now clear that not only DNA methylation but also histone modifications are reversible processes. The increased understanding of epigenetic regulation of gene expression in the context of CRC pathogenesis has led to development of epigenetic biomarkers for CRC diagnosis and epigenetic drugs for CRC therapy. PMID:24216997

  2. MicroRNA Methylation in Colorectal Cancer.

    PubMed

    Kaur, Sippy; Lotsari-Salomaa, Johanna E; Seppänen-Kaijansinkko, Riitta; Peltomäki, Päivi

    2016-01-01

    Epigenetic alterations such as DNA methylation, histone modifications and non-coding RNA (including microRNA) associated gene silencing have been identified as a major characteristic in human cancers. These alterations may occur more frequently than genetic mutations and play a key role in silencing tumor suppressor genes or activating oncogenes, thereby affecting multiple cellular processes. In recent years, studies have shown that microRNAs, that act as posttranscriptional regulators of gene expression are frequently deregulated in colorectal cancer (CRC), via aberrant DNA methylation. Over the past decade, technological advances have revolutionized the field of epigenetics and have led to the identification of numerous epigenetically dysregulated miRNAs in CRC, which are regulated by CpG island hypermethylation and DNA hypomethylation. In addition, aberrant DNA methylation of miRNA genes holds a great promise in several clinical applications such as biomarkers for early screening, prognosis, and therapeutic applications in CRC. PMID:27573897

  3. Prognostic Value of Colorectal Cancer Biomarkers

    PubMed Central

    Bianchi, Paolo; Laghi, Luigi; Delconte, Gabriele; Malesci, Alberto

    2011-01-01

    Despite the large amount of data in cancer biology and many studies into the likely survival of colorectal cancer (CRC) patients, knowledge regarding the issue of CRC prognostic biomarkers remains poor. The Tumor-Node-Metastasis (TNM) staging system continues to be the most powerful and reliable predictor of the clinical outcome of CRC patients. The exponential increase of knowledge in the field of molecular genetics has lead to the identification of specific alterations involved in the malignant progression. Many of these genetic alterations were proposed as biomarkers which could be used in clinical practice to estimate CRC prognosis. Recently there has been an explosive increase in the number of putative biomarkers able to predict the response to specific adjuvant treatment. In this review we explore and summarize data concerning prognostic and predictive biomarkers and we attempt to shed light on recent research that could lead to the emergence of new biomarkers in CRC. PMID:24212797

  4. The impact of ornithogenic inputs on phosphorous transport from altered wetland soils to waterways in East Mediterranean ecosystem.

    PubMed

    Litaor, M Iggy; Reichmann, O; Dente, E; Naftaly, A; Shenker, M

    2014-03-01

    Large flocks of Eurasian crane (Grus grus, >35,000) have begun wintering in an altered wetland agro-ecosystem located in Northern Israel, a phenomenon that attracts more than 400,000 eco-tourists a year. A 100-ha plot has been used to feed the cranes in order to protect nearby fields. The objective of this study was to evaluate the influence of this bird's feeding practice on the P status of the altered wetland soils and waterways. We installed a series of wells at two depths (40 and 90 cm) between two major waterways in the feeding area and monitored the hydraulic heads and collected groundwater samples for elemental analyses. We collected six soil cores and four sediment samples from the waterways and conducted sequential P extraction. We found significant increase in groundwater soluble reactive P (SRP) (>0.5 mg l(-1)) compared with much lower concentrations (~0.06 mg l(-1)) collected in the period prior to the feeding. We found significant decrease in Fe((II)), Ca, and SO4 concentrations in the shallow groundwater (33, 208, and 213 mg l(-1), respectively) compared with the period prior to the feeding (47, 460, and 370 mg l(-1) respectively). An increase in the more labile P fraction was observed in soils and sediments compared with the period before the feeding. The P input by bird excrement to the feeding area was estimated around 700 kg P per season, while P removal by plant harvesting was estimated around 640 kg Pyr(-1). This finding supports the current eco-tourism practices in the middle of intensive farming area, suggesting little impact on waterways. PMID:24361445

  5. Obesity and age-related alterations in the gene expression of zinc-transporter proteins in the human brain

    PubMed Central

    Olesen, R H; Hyde, T M; Kleinman, J E; Smidt, K; Rungby, J; Larsen, A

    2016-01-01

    The incidence of Alzheimer's disease (AD) is increasing. Major risk factors for AD are advancing age and diabetes. Lately, obesity has been associated with an increased risk of dementia. Obese and diabetic individuals are prone to decreased circulating levels of zinc, reducing the amount of zinc available for crucial intracellular processes. In the brain, zinc co-localizes with glutamate in synaptic vesicles, and modulates NMDA receptor activity. Intracellular zinc is involved in apoptosis and fluctuations in cytoplasmic Zn2+ affect modulation of intracellular signaling. The ZNT and ZIP proteins participate in intracellular zinc homeostasis. Altered expression of zinc-regulatory proteins has been described in AD patients. Using microarray data from human frontal cortex (BrainCloud), this study investigates expression of the SCLA30A (ZNT) and SCLA39A (ZIP) families of genes in a Caucasian and African-American sample of 145 neurologically and psychiatrically normal individuals. Expression of ZNT3 and ZNT4 were significantly reduced with increasing age, whereas expression of ZIP1, ZIP9 and ZIP13 were significantly increased. Increasing body mass index (BMI) correlated with a significant reduction in ZNT1 expression similar to what is seen in the early stages of AD. Increasing BMI also correlated with reduced expression of ZNT6. In conclusion, we found that the expression of genes that regulate intracellular zinc homeostasis in the human frontal cortex is altered with increasing age and affected by increasing BMI. With the increasing rates of obesity throughout the world, these findings warrant continuous scrutiny of the long-term consequences of obesity on brain function and the development of neurodegenerative diseases. PMID:27300264

  6. Obesity and age-related alterations in the gene expression of zinc-transporter proteins in the human brain.

    PubMed

    Olesen, R H; Hyde, T M; Kleinman, J E; Smidt, K; Rungby, J; Larsen, A

    2016-01-01

    The incidence of Alzheimer's disease (AD) is increasing. Major risk factors for AD are advancing age and diabetes. Lately, obesity has been associated with an increased risk of dementia. Obese and diabetic individuals are prone to decreased circulating levels of zinc, reducing the amount of zinc available for crucial intracellular processes. In the brain, zinc co-localizes with glutamate in synaptic vesicles, and modulates NMDA receptor activity. Intracellular zinc is involved in apoptosis and fluctuations in cytoplasmic Zn(2+) affect modulation of intracellular signaling. The ZNT and ZIP proteins participate in intracellular zinc homeostasis. Altered expression of zinc-regulatory proteins has been described in AD patients. Using microarray data from human frontal cortex (BrainCloud), this study investigates expression of the SCLA30A (ZNT) and SCLA39A (ZIP) families of genes in a Caucasian and African-American sample of 145 neurologically and psychiatrically normal individuals. Expression of ZNT3 and ZNT4 were significantly reduced with increasing age, whereas expression of ZIP1, ZIP9 and ZIP13 were significantly increased. Increasing body mass index (BMI) correlated with a significant reduction in ZNT1 expression similar to what is seen in the early stages of AD. Increasing BMI also correlated with reduced expression of ZNT6. In conclusion, we found that the expression of genes that regulate intracellular zinc homeostasis in the human frontal cortex is altered with increasing age and affected by increasing BMI. With the increasing rates of obesity throughout the world, these findings warrant continuous scrutiny of the long-term consequences of obesity on brain function and the development of neurodegenerative diseases. PMID:27300264

  7. Intestinal deletion of leptin signaling alters activity of nutrient transporters and delayed the onset of obesity in mice.

    PubMed

    Tavernier, Annabelle; Cavin, Jean-Baptiste; Le Gall, Maude; Ducroc, Robert; Denis, Raphaël G P; Cluzeaud, Françoise; Guilmeau, Sandra; Sakar, Yassine; Barbot, Laurence; Kapel, Nathalie; Le Beyec, Johanne; Joly, Francisca; Chua, Streamson; Luquet, Serge; Bado, Andre

    2014-09-01

    The importance of B-isoform of leptin receptor (LEPR-B) signaling in the hypothalamus, pancreas, or liver has been well characterized, but in the intestine, a unique site of entry for dietary nutrition into the body, it has been relatively ignored. To address this question, we characterized a mouse model deficient for LEPR-B specifically in intestinal epithelial cells (IECs). (IEC)LEPR-B-knockout (KO) and wild-type (WT) mice were generated by Cre-Lox strategy and fed a normal or high-fat diet (HFD). The analyses of the animals involved histology and immunohistochemistry of intestinal mucosa, indirect calorimetric measurements, whole-body composition, and expression and activities of nutrient transporters. (IEC)LEPR-B-KO mice exhibited a 2-fold increase in length of jejunal villi and have normal growth on a normal diet but were less susceptible (P<0.01) to HFD-induced obesity. No differences occurred in energy intake and expenditure between (IEC)LEPR-B-WT and -KO mice, but (IEC)LEPR-B-KO mice fed an HFD showed increased excreted fats (P<0.05). Activities of the Na(+)/glucose cotransporter SGLT-1 and GLUT2 were unaffected in LEPR-B-KO jejunum, while GLUT5-mediated fructose transport and PepT1-mediated peptide transport were substantially reduced (P<0.01). These data demonstrate that intestinal LEPR-B signaling is important for the onset of diet-induced obesity. They suggest that intestinal LEPR-B could be a potential per os target for prevention against obesity. PMID:24928195

  8. Calcium channel blockers ameliorate iron overload-associated hepatic fibrosis by altering iron transport and stellate cell apoptosis.

    PubMed

    Zhang, Ying; Zhao, Xin; Chang, Yanzhong; Zhang, Yuanyuan; Chu, Xi; Zhang, Xuan; Liu, Zhenyi; Guo, Hui; Wang, Na; Gao, Yonggang; Zhang, Jianping; Chu, Li

    2016-06-15

    Liver fibrosis is the principal cause of morbidity and mortality in patients with iron overload. Calcium channel blockers (CCBs) can antagonize divalent cation entry into renal and myocardial cells and inhibit fibrogenic gene expression. We investigated the potential of CCBs to resolve iron overload-associated hepatic fibrosis. Kunming mice were assigned to nine groups (n=8 per group): control, iron overload, deferoxamine, high and low dose verapamil, high and low dose nimodipine, and high and low dose diltiazem. Iron deposition and hepatic fibrosis were measured in mouse livers. Expression levels of molecules associated with transmembrane iron transport were determined by molecular biology approaches. In vitro HSC-T6 cells were randomized into nine groups (the same groups as the mice). Changes in proliferation, apoptosis, and metalloproteinase expression in cells were detected to assess the anti-fibrotic effects of CCBs during iron overload conditions. We found that CCBs reduced hepatic iron content, intracellular iron deposition, the number of hepatic fibrotic areas, collagen expression levels, and hydroxyproline content. CCBs rescued abnormal expression of α1C protein in L-type voltage-dependent calcium channel (LVDCC) and down-regulated divalent metal transporter-1 (DMT-1) expression in mouse livers. In iron-overloaded HSC-T6 cells, CCBs reduced iron deposition, inhibited proliferation, induced apoptosis, and elevated expression of matrix metalloproteinase-13 (MMP-13) and tissue inhibitor of metalloproteinase-1 (TIMP-1). CCBs are potential therapeutic agents that can be used to address hepatic fibrosis during iron overload. They resolve hepatic fibrosis probably correlated with regulating transmembrane iron transport and inhibiting HSC growth. PMID:27095094

  9. Recent Developments in Colorectal Imaging

    PubMed Central

    Pickhardt, Perry J.

    2014-01-01

    Purpose of review The aim of this review is to provide an update on important recent advances in radiologic colorectal imaging, with emphasis on detection, staging, and surveillance of colorectal neoplasia. Recent findings Colorectal imaging advances with magnetic resonance (MR), CT colonography (CTC), and positron emission tomography (PET) over the past year or so have been substantial. Progress in MR imaging for rectal cancer was most notable in terms of assessment of response to neoadjuvant therapy. Continued maturation and clinical validation of CTC was observed for the evaluation of advanced neoplasia, among other areas. Multimodality approaches to colorectal imaging that incorporate functional PET data have also made impressive strides forward. Summary Recent advances in cross-sectional and functional radiologic imaging of the colorectum will positively impact the clinical capabilities for noninvasive evaluation of colorectal neoplasia PMID:25394232

  10. Associations of hormone replacement therapy and oral contraceptives with risk of colorectal cancer defined by clinicopathological factors, beta-catenin alterations, expression of cyclin D1, p53, and microsatellite-instability

    PubMed Central

    2014-01-01

    Background Postmenopausal hormone therapy (HRT) and oral contraceptive (OC) use have in several studies been reported to be associated with a decreased colorectal cancer (CRC) risk. However, data on the association between HRT and OC and risk of different clinicopathological and molecular subsets of CRC are lacking. The aim of this molecular pathological epidemiology study was therefore to evaluate the associations between HRT and OC use and risk of specific CRC subgroups, overall and by tumour site. Method In the population-based prospective cohort study Mamö Diet and Cancer, including 17035 women, 304 cases of CRC were diagnosed up until 31 December 2008. Immunohistochemical expression of beta-catenin, cyclin D1, p53 and MSI-screening status had previously been assessed in tissue microarrays with tumours from 280 cases. HRT was assessed as current use of combined HRT (CHRT) or unopposed oestrogen (ERT), and analysed among 12583 peri-and postmenopausal women. OC use was assessed as ever vs never use among all women in the cohort. A multivariate Cox regression model was applied to determine hazard ratios for risk of CRC, overall and according to molecular subgroups, in relation to HRT and OC use. Results There was no significantly reduced risk of CRC by CHRT or ERT use, however a reduced risk of T-stage 1–2 tumours was seen among CHRT users (HR: 0.24; 95% CI: 0.09-0.77). Analysis stratified by tumour location revealed a reduced overall risk of rectal, but not colon, cancer among CHRT and ERT users, including T stage 1–2, lymph node negative, distant metastasis-free, cyclin D1 - and p53 negative tumours. In unadjusted analysis, OC use was significantly associated with a reduced overall risk of CRC (HR: 0.56; 95% CI: 0.44-0.71), but this significance was not retained in adjusted analysis (HR: 1.05: 95% CI: 0.80-1.37). A similar risk reduction was seen for the majority of clinicopathological and molecular subgroups. Conclusion Our findings provide information on

  11. A Bed Load Monitoring System for Real Time Sediment Transport and Bed Morphology during Channel Altering Events

    NASA Astrophysics Data System (ADS)

    Curran, J. C.; Waters, K. A.; Cannatelli, K.

    2014-12-01

    A new technique is presented that provides continuous measurement of sediment movement over the length of a flume. Real-time measurements of bed changes over a reach are a missing piece needed to link bed morphology with sediment transport processes during unsteady flows when the bed adjusts quickly to changing transport rates or visual observation of the bed is precluded by fine sediment in the water column. A bed load monitoring system (BLMS) was developed that records the sediment and water loads over discrete bed lengths throughout a flow event. It was designed for laboratory application where controlled measurement methods are possible. Upon data processing, the BLMS provides a continuous measure of the sediment load across the bed from which sediment movement rates through the reach, including areas of temporary aggradation or degradation, can be reconstructed. Examples are provided of how the bed load monitoring system has been applied during sediment feed and sediment recirculation experiments to further the interpretation of channel processes occurring during large flows. We detail the use of the BLMS to measure bed slopes during unsteady flows and to measure the movement of sediment downstream following different methods of dam removal. We evaluate the BLMS for use where DEM differencing was also applied to illustrate the information provided by each measurement method. Exciting implications of future research that incorporates a BLMS include a more informed management of river systems as a result of improved temporal predictions of sediment movement and the associated changes in channel slope and morphology.

  12. Pulmonary artery banding alters the expression of Ca2+ transport proteins in the right atrium in rabbits.

    PubMed

    Gupta, Subash C; Varian, Kenneth D; Bal, Naresh C; Abraham, Jessica L; Periasamy, Muthu; Janssen, Paul M L

    2009-06-01

    Following pulmonary artery banding (PAB), the contractile function of right ventricle diminishes over time. Subsequently, the right atrium (RA) has to contract against a higher afterload, but it is unknown to what extent ventricular dysfunction has an effect on the atrial contractility. We hypothesized that right ventricular pressure overload may have an affect on atrial contractility and Ca(2+) transport protein expression. Therefore, we induced pressure overload of the right ventricle by PAB for 10 wk in rabbits and examined the changes in the expression of Ca(2+) transport proteins in the atrium. We demonstrate that PAB significantly decreased the expression of sarco(endo)plasmic reticulum Ca(2+)-ATPase (Serca) 2a while expression of Na(+)/Ca(2+) exchanger-1 was significantly upregulated in the RA but not in the left atria of rabbit hearts, indicating that pressure is the major trigger. A decrease in Serca2a expression was concomitant with a significant decrease in sarcolipin (SLN), possibly indicating a compensatory role of SLN. The decreased expression of SLN was unable to completely restore sarcoplasmic reticulum Ca(2+) uptake function of Serca2a. Functional contractile assessments in isolated trabeculae showed no difference between PAB- and sham-operated rabbits at 1 Hz but displayed an enhanced force development at higher frequencies and in the presence of isoproterenol, while twitch timing was unaffected. Our results indicate that right ventricular mechanical overload due to PAB affects the expression of the Ca(2+)-handling proteins in the RA in rabbits. PMID:19376811

  13. Mutations in the Plasmodium falciparum chloroquine resistance transporter, PfCRT, enlarge the parasite's food vacuole and alter drug sensitivities.

    PubMed

    Pulcini, Serena; Staines, Henry M; Lee, Andrew H; Shafik, Sarah H; Bouyer, Guillaume; Moore, Catherine M; Daley, Daniel A; Hoke, Matthew J; Altenhofen, Lindsey M; Painter, Heather J; Mu, Jianbing; Ferguson, David J P; Llinás, Manuel; Martin, Rowena E; Fidock, David A; Cooper, Roland A; Krishna, Sanjeev

    2015-01-01

    Mutations in the Plasmodium falciparum chloroquine resistance transporter, PfCRT, are the major determinant of chloroquine resistance in this lethal human malaria parasite. Here, we describe P. falciparum lines subjected to selection by amantadine or blasticidin that carry PfCRT mutations (C101F or L272F), causing the development of enlarged food vacuoles. These parasites also have increased sensitivity to chloroquine and some other quinoline antimalarials, but exhibit no or minimal change in sensitivity to artemisinins, when compared with parental strains. A transgenic parasite line expressing the L272F variant of PfCRT confirmed this increased chloroquine sensitivity and enlarged food vacuole phenotype. Furthermore, the introduction of the C101F or L272F mutation into a chloroquine-resistant variant of PfCRT reduced the ability of this protein to transport chloroquine by approximately 93 and 82%, respectively, when expressed in Xenopus oocytes. These data provide, at least in part, a mechanistic explanation for the increased sensitivity of the mutant parasite lines to chloroquine. Taken together, these findings provide new insights into PfCRT function and PfCRT-mediated drug resistance, as well as the food vacuole, which is an important target of many antimalarial drugs. PMID:26420308

  14. An ABC Transporter Mutation Alters Root Exudation of Phytochemicals That Provoke an Overhaul of Natural Soil Microbiota1[C][W][OA

    PubMed Central

    Badri, Dayakar V.; Quintana, Naira; El Kassis, Elie G.; Kim, Hye Kyong; Choi, Young Hae; Sugiyama, Akifumi; Verpoorte, Robert; Martinoia, Enrico; Manter, Daniel K.; Vivanco, Jorge M.

    2009-01-01

    Root exudates influence the surrounding soil microbial community, and recent evidence demonstrates the involvement of ATP-binding cassette (ABC) transporters in root secretion of phytochemicals. In this study, we examined effects of seven Arabidopsis (Arabidopsis thaliana) ABC transporter mutants on the microbial community in native soils. After two generations, only the Arabidopsis abcg30 (Atpdr2) mutant had significantly altered both the fungal and bacterial communities compared with the wild type using automated ribosomal intergenic spacer analysis. Similarly, root exudate profiles differed between the mutants; however, the largest variance from the wild type (Columbia-0) was observed in abcg30, which showed increased phenolics and decreased sugars. In support of this biochemical observation, whole-genome expression analyses of abcg30 roots revealed that some genes involved in biosynthesis and transport of secondary metabolites were up-regulated, while some sugar transporters were down-regulated compared with genome expression in wild-type roots. Microbial taxa associated with Columbia-0 and abcg30 cultured soils determined by pyrosequencing revealed that exudates from abcg30 cultivated a microbial community with a relatively greater abundance of potentially beneficial bacteria (i.e. plant-growth-promoting rhizobacteria and nitrogen fixers) and were specifically enriched in bacteria involved in heavy metal remediation. In summary, we report how a single gene mutation from a functional plant mutant influences the surrounding community of soil organisms, showing that genes are not only important for intrinsic plant physiology but also for the interactions with the surrounding community of organisms as well. PMID:19854857

  15. Single-quantum-dot tracking reveals altered membrane dynamics of an attention-deficit/hyperactivity-disorder-derived dopamine transporter coding variant.

    PubMed

    Kovtun, Oleg; Sakrikar, Dhananjay; Tomlinson, Ian D; Chang, Jerry C; Arzeta-Ferrer, Xochitl; Blakely, Randy D; Rosenthal, Sandra J

    2015-04-15

    The presynaptic, cocaine- and amphetamine-sensitive dopamine (DA) transporter (DAT, SLC6A3) controls the intensity and duration of synaptic dopamine signals by rapid clearance of DA back into presynaptic nerve terminals. Abnormalities in DAT-mediated DA clearance have been linked to a variety of neuropsychiatric disorders, including addiction, autism, and attention deficit/hyperactivity disorder (ADHD). Membrane trafficking of DAT appears to be an important, albeit incompletely understood, post-translational regulatory mechanism; its dysregulation has been recently proposed as a potential risk determinant of these disorders. In this study, we demonstrate a link between an ADHD-associated DAT mutation (Arg615Cys, R615C) and variation on DAT transporter cell surface dynamics, a combination only previously studied with ensemble biochemical and optical approaches that featured limited spatiotemporal resolution. Here, we utilize high-affinity, DAT-specific antagonist-conjugated quantum dot (QD) probes to establish the dynamic mobility of wild-type and mutant DATs at the plasma membrane of living cells. Single DAT-QD complex trajectory analysis revealed that the DAT 615C variant exhibited increased membrane mobility relative to DAT 615R, with diffusion rates comparable to those observed after lipid raft disruption. This phenomenon was accompanied by a loss of transporter mobilization triggered by amphetamine, a common component of ADHD medications. Together, our data provides the first dynamic imaging of single DAT proteins, providing new insights into the relationship between surface dynamics and trafficking of both wild-type and disease-associated transporters. Our approach should be generalizable to future studies that explore the possibilities of perturbed surface DAT dynamics that may arise as a consequence of genetic alterations, regulatory changes, and drug use that contribute to the etiology or treatment of neuropsychiatric disorders. PMID:25747272

  16. Age-related alterations in the diffusional transport of amino acids across the human Bruch's-choroid complex

    NASA Astrophysics Data System (ADS)

    Hussain, Ali A.; Rowe, Lisa; Marshall, John

    2002-01-01

    Photoreceptor maintenance is dependent on effective delivery of nutrients from the choroidal circulation by way of the acellular Bruch's membrane and the retinal pigment epithelium. Aging of Bruch's membrane is associated with thickening, increased cross linking of fibers, and deposition of debris culminating in reduced porosity. The present study has investigated the effects of aging on the diffusional transport of eight amino acids across Bruch's membrane in 19 human donors. Diffusion studies were carried out in Ussing chambers, and the amount of time-dependent transfer of amino acids across the preparation was quantified by reverse-phase high-performance liquid chromatography. Diffusion rates for all amino acids showed a significant linear decline with aging of donor. The importance of this reduction in delivery of amino acids is discussed with reference to both normal physiology and age-related macular degeneration.

  17. Transportation.

    ERIC Educational Resources Information Center

    Crank, Ron

    This instructional unit is one of 10 developed by students on various energy-related areas that deals specifically with transportation and energy use. Its objective is for the student to be able to discuss the implication of energy usage as it applies to the area of transportation. Some topics covered are efficiencies of various transportation…

  18. Metabolism-Induced CaCO3 Biomineralization During Reactive Transport in a Micromodel: Implications for Porosity Alteration.

    PubMed

    Singh, Rajveer; Yoon, Hongkyu; Sanford, Robert A; Katz, Lynn; Fouke, Bruce W; Werth, Charles J

    2015-10-20

    The ability of Pseudomonas stutzeri strain DCP-Ps1 to drive CaCO3 biomineralization has been investigated in a microfluidic flowcell (i.e., micromodel) that simulates subsurface porous media. Results indicate that CaCO3 precipitation occurs during NO3(-) reduction with a maximum saturation index (SIcalcite) of ∼1.56, but not when NO3(-) was removed, inactive biomass remained, and pH and alkalinity were adjusted to SIcalcite ∼ 1.56. CaCO3 precipitation was promoted by metabolically active cultures of strain DCP-Ps1, which at similar values of SIcalcite, have a more negative surface charge than inactive strain DCP-Ps1. A two-stage NO3(-) reduction (NO3(-) → NO2(-) → N2) pore-scale reactive transport model was used to evaluate denitrification kinetics, which was observed in the micromodel as upper (NO3(-) reduction) and lower (NO2(-) reduction) horizontal zones of biomass growth with CaCO3 precipitation exclusively in the lower zone. Model results are consistent with two biomass growth regions and indicate that precipitation occurred in the lower zone because the largest increase in pH and alkalinity is associated with NO2(-) reduction. CaCO3 precipitates typically occupied the entire vertical depth of pores and impacted porosity, permeability, and flow. This study provides a framework for incorporating microbial activity in biogeochemistry models, which often base biomineralization only on SI (caused by biotic or abiotic reactions) and, thereby, underpredict the extent of this complex process. These results have wide-ranging implications for understanding reactive transport in relevance to groundwater remediation, CO2 sequestration, and enhanced oil recovery. PMID:26348257

  19. 4,4'-Methylenedianiline Alters Serotonergic Transport in a Novel, Sex-Specific Model of Pulmonary Arterial Hypertension in Rats.

    PubMed

    Carroll-Turpin, Michelle; Hebert, Valeria; Chotibut, Tanya; Wensler, Heather; Krentzel, Dallas; Varner, Kurt James; Burn, Brendan R; Chen, Yi-Fan; Abreo, Fleurette; Dugas, Tammy Renee

    2015-09-01

    Pulmonary arterial hypertension (PAH) is a cardiovascular disorder characterized by elevated pulmonary artery pressure as a result of arterial wall thickening. Patients are 3-4 times more likely to be women than men. This gender discrepancy demonstrates a need for an animal model with similar sex differences. 4,4'-Methylenedianiline (DAPM) is an aromatic amine used industrially in the synthesis of polyurethanes. Chronic, intermittent treatment of male and female rats with DAPM resulted in medial hyperplasia of pulmonary arterioles, exclusively in females, coupled to increases in pulmonary arterial pressures. Significant increases in plasma levels of endothelin-1 (ET-1) and serotonin, but decreases in nitrite [Formula: see text], were observed in females treated with DAPM. A decrease was observed in the serum ratio of the estrogen metabolites 2-hydroxyestradiol (2-OHE1)/16α-hydroxyestrogen (16α-OHE1). In females, ET-1,[Formula: see text] , and 2-OHE1/16α-OHE1 were significantly correlated with peak pressure gradient, an indirect measure of pulmonary arterial pressure. Expression of the serotonin transport protein (SERT) was significantly higher in the arteries of DAPM-treated females. In vitro, DAPM induced human pulmonary vascular smooth muscle cell proliferation and serotonin uptake, both of which were inhibited by treatment with the estrogen receptor antagonist ICI 182,780 or the selective serotonin reuptake inhibitor fluoxetine. DAPM also induced the release of serotonin from human pulmonary endothelial cells in culture, which is blocked by ICI 182,780. Taken together, this suggests that DAPM-mediated dysregulation of serotonin transport is estrogen-receptor dependent. Thus, DAPM-induced PAH pathology may be a new tool to clarify the sex selectivity of PAH disease pathogenesis. PMID:26116029

  20. Familial colorectal cancer.

    PubMed

    Lung, M S; Trainer, A H; Campbell, I; Lipton, L

    2015-05-01

    Identifying individuals with a genetic predisposition to developing familial colorectal cancer (CRC) is crucial to the management of the affected individual and their family. In order to do so, the physician requires an understanding of the different gene mutations and clinical manifestations of familial CRC. This review summarises the genetics, clinical manifestations and management of the known familial CRC syndromes, specifically Lynch syndrome, familial adenomatous polyposis, MUTYH-associated neoplasia, juvenile polyposis syndrome and Peutz-Jeghers syndrome. An individual suspected of having a familial CRC with an underlying genetic predisposition should be referred to a familial cancer centre to enable pre-test counselling and appropriate follow up. PMID:25955461

  1. G-actin guides p53 nuclear transport: potential contribution of monomeric actin in altered localization of mutant p53

    PubMed Central

    Saha, Taniya; Guha, Deblina; Manna, Argha; Panda, Abir Kumar; Bhat, Jyotsna; Chatterjee, Subhrangsu; Sa, Gaurisankar

    2016-01-01

    p53 preserves genomic integrity by restricting anomaly at the gene level. Till date, limited information is available for cytosol to nuclear shuttling of p53; except microtubule-based trafficking route, which utilizes minus-end directed motor dynein. The present study suggests that monomeric actin (G-actin) guides p53 traffic towards the nucleus. Histidine-tag pull-down assay using purified p53(1–393)-His and G-actin confirms direct physical association between p53 and monomeric G-actin. Co-immunoprecipitation data supports the same. Confocal imaging explores intense perinuclear colocalization between p53 and G-actin. To address atomistic details of the complex, constraint-based docked model of p53:G-actin complex was generated based on crystal structures. MD simulation reveals that p53 DNA-binding domain arrests very well the G-actin protein. Docking benchmark studies have been carried out for a known crystal structure, 1YCS (complex between p53DBD and BP2), which validates the docking protocol we adopted. Co-immunoprecipitation study using “hot-spot” p53 mutants suggested reduced G-actin association with cancer-associated p53 conformational mutants (R175H and R249S). Considering these findings, we hypothesized that point mutation in p53 structure, which diminishes p53:G-actin complexation results in mutant p53 altered subcellular localization. Our model suggests p53Arg249 form polar-contact with Arg357 of G-actin, which upon mutation, destabilizes p53:G-actin interaction and results in cytoplasmic retention of p53R249S. PMID:27601274

  2. Sublethal exposure to azamethiphos causes neurotoxicity, altered energy allocation and high mortality during simulated live transport in American lobster.

    PubMed

    Couillard, C M; Burridge, L E

    2015-05-01

    In the Bay of Fundy, New Brunswick, sea lice outbreaks in caged salmon are treated with pesticides including Salmosan(®), applied as bath treatments and then released into the surrounding seawater. The effect of chronic exposure to low concentrations of this pesticide on neighboring lobster populations is a concern. Adult male lobsters were exposed to 61 ngL(-1) of azamethiphos (a.i. in Salmosan(®) formulation) continuously for 10 days. In addition to the direct effects of pesticide exposure, effects on the ability to cope with shipping conditions and the persistence of the effects after a 24h depuration period in clean seawater were assessed. Indicators of stress and hypoxia (serum total proteins, hemocyanin and lactate), oxidative damage (protein carbonyls in gills and serum) and altered energy allocation (hepatosomatic and gonadosomatic indices, hepatopancreas lipids) were assessed in addition to neurotoxicity (chlolinesterase activity in muscle). Directly after exposure, azamethiphos-treated lobsters had inhibition of muscle cholinesterase, reduced gonadosomatic index and enhanced hepatosomatic index and hepatopancreas lipid content. All these responses persisted after 24-h depuration, increasing the risk of cumulative impacts with further exposure to chemical or non-chemical stressors. In both control and treated lobsters exposed to simulated shipment conditions, concentrations of protein and lactate in serum, and protein carbonyls in gills increased. However, mortality rate was higher in azamethiphos-treated lobsters (33 ± 14%) than in controls (2.6 ± 4%). Shipment and azamethiphos had cumulative impacts on serum proteins. Both direct effects on neurological function and energy allocation and indirect effect on ability to cope with shipping stress could have significant impacts on lobster population and/or fisheries. PMID:25499691

  3. G-actin guides p53 nuclear transport: potential contribution of monomeric actin in altered localization of mutant p53.

    PubMed

    Saha, Taniya; Guha, Deblina; Manna, Argha; Panda, Abir Kumar; Bhat, Jyotsna; Chatterjee, Subhrangsu; Sa, Gaurisankar

    2016-01-01

    p53 preserves genomic integrity by restricting anomaly at the gene level. Till date, limited information is available for cytosol to nuclear shuttling of p53; except microtubule-based trafficking route, which utilizes minus-end directed motor dynein. The present study suggests that monomeric actin (G-actin) guides p53 traffic towards the nucleus. Histidine-tag pull-down assay using purified p53(1-393)-His and G-actin confirms direct physical association between p53 and monomeric G-actin. Co-immunoprecipitation data supports the same. Confocal imaging explores intense perinuclear colocalization between p53 and G-actin. To address atomistic details of the complex, constraint-based docked model of p53:G-actin complex was generated based on crystal structures. MD simulation reveals that p53 DNA-binding domain arrests very well the G-actin protein. Docking benchmark studies have been carried out for a known crystal structure, 1YCS (complex between p53DBD and BP2), which validates the docking protocol we adopted. Co-immunoprecipitation study using "hot-spot" p53 mutants suggested reduced G-actin association with cancer-associated p53 conformational mutants (R175H and R249S). Considering these findings, we hypothesized that point mutation in p53 structure, which diminishes p53:G-actin complexation results in mutant p53 altered subcellular localization. Our model suggests p53Arg249 form polar-contact with Arg357 of G-actin, which upon mutation, destabilizes p53:G-actin interaction and results in cytoplasmic retention of p53R249S. PMID:27601274

  4. Primary Prevention of Colorectal Cancer

    PubMed Central

    Chan, Andrew T.; Giovannucci, Edward L.

    2010-01-01

    Colorectal cancer has been strongly associated with a Western lifestyle. In the past several decades, much has been learned about the dietary, lifestyle, and medication risk factors for this malignancy. Although there is controversy about the role of specific nutritional factors, consideration of the dietary pattern as a whole appears useful for formulating recommendations. For example, several studies have shown that high intake of red and processed meats, highly refined grains and starches, and sugars is related to increased risk of colorectal cancer. Replacing these factors with poultry, fish, and plant sources as the primary source of protein; unsaturated fats as the primary source of fat; and unrefined grains, legumes and fruits as the primary source of carbohydrates is likely to lower risk of colorectal cancer. Although a role for supplements, including vitamin D, folate, and vitamin B6, remains uncertain, calcium supplementation is likely to be at least modestly beneficial. With respect to lifestyle, compelling evidence indicates that avoidance of smoking and heavy alcohol use, prevention of weight gain, and the maintenance of a reasonable level of physical activity are associated with markedly lower risks of colorectal cancer. Medications such as aspirin and non-steroidal anti-inflammatory drugs and post-menopausal hormones for women are associated with significant reductions in colorectal cancer risk, though their utility is affected by associated risks. Taken together, modifications in diet and lifestyle should substantially reduce the risk of colorectal cancer and could complement screening in reducing colorectal cancer incidence. PMID:20420944

  5. How Amazonian deforestation can alter the South American circulation regime: Insights from a non-linear moisture transport model

    NASA Astrophysics Data System (ADS)

    Boers, Niklas; Marwan, Norbert; Barbosa, Henrique; Kurths, Jürgen

    2015-04-01

    A key driver of South American climate are the low-level trade winds from the tropical Atlantic Ocean towards the continent. After crossing the Amazon Basin, they are blocked by the Andes mountain range, and forced southward to the subtropics. These winds are crucial for the atmospheric moisture supply in most parts of South America. In particular, the hydrology of the two largest river basins of the Continent, namely the Amazon and the La Plata Basins, strongly depend on the moisture inflow provided by the trade winds. In turn, the Amazon rainforest can be assumed to have a strong influence on this low-level moisture circulation over South America by exchanging moisture with the atmosphere through precipitation and evapotranspiration. A pronounced positive feedback in this context is established through precipitation-induced release of latent heat over the Amazon Basin, which significantly enhances the moisture inflow from the tropical Atlantic Ocean toward the continent and can thus be considered to be crucial for the existence of today's South American climate. Ongoing deforestation and resulting reduction in evapotranspiration rates in particular in the eastern Amazon carry the risk of a strongly nonlinear response in these interactions with the low-level atmosphere. We propose a simple differential transport model describing the cascading moisture transport from the eastern coast of South America across the Amazon Basin to the Andes, taking into account the nonlinearity associated with the release of latent heat. The results of the model suggest that the system is indeed very sensitive to relatively small reductions of the evapotranspiration rates in the eastern Amazon Basin. These reductions increase river runoff, but limit the moisture availability farther west. This leads to a reduction in precipitation rates and thereby diminishes the release of latent heat which, in turn, reduces the overall moisture inflow. We show that, according to our model, there

  6. Culture-independent analysis of the gut microbiota in colorectal cancer and polyposis.

    PubMed

    Scanlan, Pauline D; Shanahan, Fergus; Clune, Yvonne; Collins, John K; O'Sullivan, Gerald C; O'Riordan, Micheal; Holmes, Elaine; Wang, Yulan; Marchesi, Julian R

    2008-03-01

    A role for the intestinal microbiota is routinely cited as a potential aetiological factor in colorectal cancer initiation and progression. As the majority of bacteria in the gut are refractory to culture we investigated this ecosystem in subjects with colorectal cancer and with adenomatous polyposis who are at high risk of developing colorectal cancer, using culture-independent methods. Twenty colorectal cancer and 20 polypectomized volunteers were chosen for this analysis. An exploration of the diversity and temporal stability of the dominant bacteria and several bacterial subgroups was undertaken using 16S rRNA gene denaturing gradient gel electrophoresis and ribosomal intergenic spacer analysis (RISA). Metabonomic analysis of the distal gut microbiota's environment was also undertaken. A significantly reduced temporal stability and increased diversity for the microbiota of subjects with colorectal cancer and polyposis was evident. A significantly increased diversity of the Clostridium leptum and C. coccoides subgroups was also noted for both disease groups. A clear division in the metabonome was observed for the colorectal cancer and polypectomized subjects compared with control volunteers. The intestinal microbiota and their metabolites are significantly altered in both colorectal cancer and polypectomized subjects compared with controls. PMID:18237311

  7. Functional TLR5 genetic variants affect human colorectal cancer survival.

    PubMed

    Klimosch, Sascha N; Försti, Asta; Eckert, Jana; Knezevic, Jelena; Bevier, Melanie; von Schönfels, Witigo; Heits, Nils; Walter, Jessica; Hinz, Sebastian; Lascorz, Jesus; Hampe, Jochen; Hartl, Dominik; Frick, Julia-Stefanie; Hemminki, Kari; Schafmayer, Clemens; Weber, Alexander N R

    2013-12-15

    Toll-like receptors (TLR) are overexpressed on many types of cancer cells, including colorectal cancer cells, but little is known about the functional relevance of these immune regulatory molecules in malignant settings. Here, we report frequent single-nucleotide polymorphisms (SNP) in the flagellin receptor TLR5 and the TLR downstream effector molecules MyD88 and TIRAP that are associated with altered survival in a large cohort of Caucasian patients with colorectal cancer (n = 613). MYD88 rs4988453, a SNP that maps to a promoter region shared with the acetyl coenzyme-A acyl-transferase-1 (ACAA1), was associated with decreased survival of patients with colorectal cancer and altered transcriptional activity of the proximal genes. In the TLR5 gene, rs5744174/F616L was associated with increased survival, whereas rs2072493/N592S was associated with decreased survival. Both rs2072493/N592S and rs5744174/F616L modulated TLR5 signaling in response to flagellin or to different commensal and pathogenic intestinal bacteria. Notably, we observed a reduction in flagellin-induced p38 phosphorylation, CD62L shedding, and elevated expression of interleukin (IL)-6 and IL-1β mRNA in human primary immune cells from TLR5 616LL homozygote carriers, as compared with 616FF carriers. This finding suggested that the well-documented effect of cytokines like IL-6 on colorectal cancer progression might be mediated by TLR5 genotype-dependent flagellin sensing. Our results establish an important link between TLR signaling and human colorectal cancer with relevance for biomarker and therapy development. PMID:24154872

  8. Age-related alterations in oxidatively damaged proteins of mouse skeletal muscle mitochondrial electron transport chain complexes

    PubMed Central

    Choksi, Kashyap B.; Nuss, Jonathan E.; DeFord, James H.; Papaconstantinou, John

    2010-01-01

    Age-associated mitochondrial dysfunction is a major source of reactive oxygen species (ROS) and oxidative modification to proteins. Mitochondrial electron transport chain (ETC) complexes I and III are the sites of ROS production and we hypothesize that proteins of the ETC complexes are primary targets of ROS-mediated modification which impairs their structure and function. The pectoralis, primarily an aerobic red muscle, and quadriceps, primarily an anaerobic white muscle, have different rates of respiration and oxygen-carrying capacity, and hence, different rates of ROS production. This raises the question of whether these muscles exhibit different levels of oxidative protein modification. Our studies reveal that the pectoralis shows a dramatic age-related decline in almost all complex activities that correlates with increased oxidative modification. Similar complex proteins were modified in the quadriceps, at a significantly lower level with less change in enzyme and ETC coupling function. We postulate that mitochondrial ROS causes damage to specific ETC subunits which increases with age and leads to further mitochondrial dysfunction. We conclude that physiological characteristics of the pectoralis vs quadriceps may play a role in age-associated rate of mitochondrial dysfunction and in the decline in tissue function. PMID:18598756

  9. Prenatal Exposure to Sodium Arsenite Alters Placental Glucose 1, 3, and 4 Transporters in Balb/c Mice

    PubMed Central

    Gutiérrez-Torres, Daniela Sarahí; González-Horta, Carmen; Del Razo, Luz María; Infante-Ramírez, Rocío; Ramos-Martínez, Ernesto; Levario-Carrillo, Margarita; Sánchez-Ramírez, Blanca

    2015-01-01

    Inorganic arsenic (iAs) exposure induces a decrease in glucose type 4 transporter (GLUT4) expression on the adipocyte membrane, which may be related to premature births and low birth weight infants in women exposed to iAs at reproductive age. The aim of this study was to analyze the effect of sodium arsenite (NaAsO2) exposure on GLUT1, GLUT3, and GLUT4 protein expression and on placental morphology. Female Balb/c mice (n = 15) were exposed to 0, 12, and 20 ppm of NaAsO2 in drinking water from 8th to 18th day of gestation. Morphological changes and GLUT1, GLUT3, and GLUT4 expression were evaluated in placentas by immunohistochemical and image analysis and correlated with iAs and arsenical species concentration, which were quantified by atomic absorption spectroscopy. NaAsO2 exposure induced a significant decrease in fetal and placental weight (P < 0.01) and increases in infarctions and vascular congestion. Whereas GLUT1 expression was unchanged in placentas from exposed group, GLUT3 expression was found increased. In contrast, GLUT4 expression was significantly lower (P < 0.05) in placentas from females exposed to 12 ppm. The decrease in placental GLUT4 expression might affect the provision of adequate fetal nutrition and explain the low fetal weight observed in the exposed groups. PMID:26339590

  10. MzPIP2;1: An Aquaporin Involved in Radial Water Movement in Both Water Uptake and Transportation, Altered the Drought and Salt Tolerance of Transgenic Arabidopsis

    PubMed Central

    Lei, Qiong; Feng, Chao; Gao, Yinan; Zheng, Xiaodong; Zhao, Yu; Wang, Zhi; Kong, Jin

    2015-01-01

    Background Plants are unavoidably subjected to various abiotic stressors, including high salinity, drought and low temperature, which results in water deficit and even death. Water uptake and transportation play a critical role in response to these stresses. Many aquaporin proteins, localized at different tissues, function in various transmembrane water movements. We targeted at the key aquaporin in charge of both water uptake in roots and radial water transportation from vascular tissues through the whole plant. Results The MzPIP2;1 gene encoding a plasma membrane intrinsic protein was cloned from salt-tolerant apple rootstock Malus zumi Mats. The GUS gene was driven by MzPIP2;1 promoter in transgenic Arabidopsis. It indicated that MzPIP2;1 might function in the epidermal and vascular cells of roots, parenchyma cells around vessels through the stems and vascular tissues of leaves. The ectopically expressed MzPIP2;1 conferred the transgenic Arabidopsis plants enhanced tolerance to slight salt and drought stresses, but sensitive to moderate salt stress, which was indicated by root length, lateral root number, fresh weight and K+/Na+ ratio. In addition, the possible key cis-elements in response to salt, drought and cold stresses were isolated by the promoter deletion experiment. Conclusion The MzPIP2;1 protein, as a PIP2 aquaporins subgroup member, involved in radial water movement, controls water absorption and usage efficiency and alters transgenic plants drought and salt tolerance. PMID:26562158