Science.gov

Sample records for alters intratumoral drug

  1. Intratumoral Drug Delivery with Nanoparticulate Carriers

    PubMed Central

    Holback, Hillary

    2011-01-01

    Stiff extracellular matrix, elevated interstitial fluid pressure, and the affinity for the tumor cells in the peripheral region of a solid tumor mass have long been recognized as significant barriers to diffusion of small-molecular-weight drugs and antibodies. However, their impacts on nanoparticle-based drug delivery have begun to receive due attention only recently. This article reviews biological features of many solid tumors that influence transport of drugs and nanoparticles and properties of nanoparticles relevant to their intratumoral transport, studied in various tumor models. We also discuss several experimental approaches employed to date for enhancement of intratumoral nanoparticle penetration. The impact of nanoparticle distribution on the effectiveness of chemotherapy remains to be investigated and should be considered in the design of new nanoparticulate drug carriers. PMID:21213021

  2. Overcoming Intratumor Heterogeneity of Polygenic Cancer Drug Resistance with Improved Biomarker Integration1

    PubMed Central

    Rehemtulla, Alnawaz

    2012-01-01

    Improvements in technology and resources are helping to advance our understanding of cancer-initiating events as well as factors involved with tumor progression, adaptation, and evasion of therapy. Tumors are well known to contain diverse cell populations and intratumor heterogeneity affords neoplasms with a diverse set of biologic characteristics that can be used to evolve and adapt. Intratumor heterogeneity has emerged as a major hindrance to improving cancer patient care. Polygenic cancer drug resistance necessitates reconsidering drug designs to include polypharmacology in pursuit of novel combinatorial agents having multitarget activity to overcome the diverse and compensatory signaling pathways in which cancer cells use to survive and evade therapy. Advances will require integration of different biomarkers such as genomics and imaging to provide for more adequate elucidation of the spatially varying location, type, and extent of diverse intratumor signaling molecules to provide for a rationale-based personalized cancer medicine strategy. PMID:23308059

  3. Microdialysis for assessing intratumoral drug disposition in brain cancers: a tool for rational drug development

    PubMed Central

    Blakeley, Jaishri; Portnow, Jana

    2014-01-01

    Importance of the field: Many promising targeted agents and combination therapies are being investigated for brain cancer. However, the results from recent clinical trials have been disappointing. A better understanding of the disposition of drug in the brain early in drug development would facilitate appropriate channeling of new drugs into brain cancer clinical trials. Areas covered in this review: Barriers to successful drug activity against brain cancer and issues affecting intratumoral drug concentrations are reviewed. The use of the microdialysis technique for extracellular fluid (ECF) sampling and its application to drug distribution studies in brain are reviewed using published literature from 1995 to the present. The benefits and limitations of microdialysis for performing neuorpharmacokinetic (nPK) and neuropharmacodynamic (nPD) studies are discussed. What the reader will gain: The reader will gain an appreciation of the challenges involved in identifying agents likely to have efficacy in brain cancer, an understanding of the general principles of microdialysis, and the power and limitations of using this technique in early drug development for brain cancer therapies. Take home message: A major factor preventing efficacy of anti-brain cancer drugs is limited access to tumor. Intracerebral microdialysis allows sampling of drug in the brain ECF. The resulting nPK/nPD data can aid in the rational selection of drugs for investigation in brain tumor clinical trials. PMID:20969450

  4. Chemical Structure and Concentration of Intratumor Catabolites Determine Efficacy of Antibody Drug Conjugates

    PubMed Central

    Yu, Shang-Fan; Ma, Yong; Xu, Keyang; Dragovich, Peter S.; Pillow, Thomas H.; Liu, Luna; Del Rosario, Geoffrey; He, Jintang; Pei, Zhonghua; Sadowsky, Jack D.; Erickson, Hans K.; Hop, Cornelis E. C. A.; Khojasteh, S. Cyrus

    2016-01-01

    Despite recent technological advances in quantifying antibody drug conjugate (ADC) species, such as total antibody, conjugated antibody, conjugated drug, and payload drug in circulation, the correlation of their exposures with the efficacy of ADC outcomes in vivo remains challenging. Here, the chemical structures and concentrations of intratumor catabolites were investigated to better understand the drivers of ADC in vivo efficacy. Anti-CD22 disulfide-linked pyrrolobenzodiazepine (PBD-dimer) conjugates containing methyl- and cyclobutyl-substituted disulfide linkers exhibited strong efficacy in a WSU-DLCL2 xenograft mouse model, whereas an ADC derived from a cyclopropyl linker was inactive. Total ADC antibody concentrations and drug-to-antibody ratios (DAR) in circulation were similar between the cyclobutyl-containing ADC and the cyclopropyl-containing ADC; however, the former afforded the release of the PBD-dimer payload in the tumor, but the latter only generated a nonimmolating thiol-containing catabolite that did not bind to DNA. These results suggest that intratumor catabolite analysis rather than systemic pharmacokinetic analysis may be used to better explain and predict ADC in vivo efficacy. These are good examples to demonstrate that the chemical nature and concentration of intratumor catabolites depend on the linker type used for drug conjugation, and the potency of the released drug moiety ultimately determines the ADC in vivo efficacy. PMID:27417182

  5. Synthesis and characterization of DNA nano-meso-microspheres as drug delivery carriers for intratumoral chemotherapy

    NASA Astrophysics Data System (ADS)

    Enriquez Schumacher, Iris Vanessa

    Conventional cancer chemotherapy results in systemic toxicity which severely limits effectiveness and often adversely affects patient quality of life. There is a need to find new drugs and delivery methods for less toxic therapy. Previous studies concerning DNA complexing with chemotherapy drugs suggest unique opportunities for DNA as a mesosphere drug carrier. The overall objective of this research was devoted to the synthesis and evaluation of novel DNA-drug nano-mesospheres designed for localized chemotherapy via intratumoral injection. My research presents DNA nano-meso-microspheres (DNA-MS) that were prepared using a modified steric stabilization method originally developed in this lab for the preparation of albumin MS. DNA-MS were prepared with glutaraldehyde covalent crosslinking (genipin crosslinking was attempted) through the DNA base pairs. In addition, novel crosslinking of DNA-MS was demonstrated using chromium, gadolinium, or iron cations through the DNA phosphate groups. Covalent and ionic crosslinked DNA-MS syntheses yielded smooth and spherical particle morphologies with multimodal size distributions. Optimized DNA-MS syntheses produced particles with narrow and normal size distributions in the 50nm to 5mum diameter size range. In aqueous dispersions approximately 200% swelling was observed with dispersion stability for more than 48 hours. Typical process conditions included a 1550rpm initial mixing speed and particle filtration through 20mum filters to facilitate preparation. DNA-MS were in situ loaded during synthesis for the first time with mitoxantrone, 5-fluorouracil, and methotrexate. DNA-MS drug incorporation was 12%(w/w) for mitoxantrone, 9%(w/w) for methotrexate, and 5%(w/w) for 5-fluorouracil. In vitro drug release into phosphate buffered saline was observed for over 35 days by minimum sink release testing. The effect of gadolinium crosslink concentration on mitoxantrone release was evaluated at molar equivalences in the range of 20% to

  6. Synthesis and characterization of drug loaded albumin mesospheres for intratumoral chemotherapy

    NASA Astrophysics Data System (ADS)

    Freeman, Shema Taian

    Conventional chemotherapy is problematic due to toxic complications. Intratumoral (IT) drug delivery, offers a new, less toxic, potentially more effective treatment concept. The objectives of this research encompassed (1) an investigation of the synthesis of BSA mesospheres (MS) employing genipin (GEN) as a novel crosslinking agent, (2) comparison with glutaraldehyde (GTA) crosslinked mesosphere, (3) a study of process parameters to define conditions for the synthesis of 1-10microm drug loaded mesospheres, and (4) investigation of the drug delivery properties of such mesospheres for IT chemotherapy. Smooth, spherical BSA-MS, crosslinked with glutaraldehyde and genipin, were prepared in a dry particle size range of 1microm to 10microm. It was shown that increasing dispersion stirring rate, crosslinking time and GEN/BSA ratio led to a decrease in particle size and a narrower particle distribution. It was also shown that increasing crosslinking time, GEN/BSA ratio, BSA concentrations, GEN concentration slowed enzymatic degradation. Post-loading and in situ drug loading methods were studied for the incorporation of cyclophosphamide and cisplatin into mesospheres. Maximum post loading of cisplatin was 3.2% (w/w) and 2.6% (w/w) with GEN and with GTA crosslinking. For cyclophosphamide 8.2% (w/w) and 7.1% (w/w) loading was achieved with GEN and GTA respectively. In situ drug loaded MS genipin and glutaraldehyde crosslinked mesospheres were also synthesized with 1.8% (w/w) cisplatin (using GEN) and 1.2% (w/w) (using GTA). Maximum loading of 13.3% (w/w) was achieved for cyclophosphamide in genipin crosslinked mesospheres. The cytotoxicity of in situ loaded genipin and glutaraldehyde crosslinked cisplatin mesospheres was evaluated using a murine Lewis lung model. Both genipin and glutaraldehyde crosslinked BSA-cisplatin mesospheres proved to be cytotoxic during a 48 hour test. Ultimately a standard set of processing parameters (BSA concentration, CAB concentration, GEN

  7. Vitamin D Enhances the Efficacy of Irinotecan through miR-627-Mediated Inhibition of Intratumoral Drug Metabolism.

    PubMed

    Sun, Meiyan; Zhang, Qunshu; Yang, Xiaoyu; Qian, Steven Y; Guo, Bin

    2016-09-01

    Cytochrome P450 enzyme CYP3A4 is an important drug-metabolizing enzyme, and high levels of tumoral expression of CYP3A4 are linked to drug resistance. We investigated the function of vitamin D-regulated miR-627 in intratumoral CYP3A4 suppression and its role in enhancing the efficacy of chemotherapy. We found that miR-627 targets CYP3A4 and suppresses CYP3A4 expression in colon cancer cell lines. Furthermore, calcitriol (the active form of vitamin D) suppressed CYP3A4 expression by activating miR-627. As a result, calcitriol inhibited CYP3A4-mediated metabolism of irinotecan (a topoisomerase I inhibitor) in cancer cells. We show that calcitriol enhanced the efficacy of irinotecan in growth inhibition and apoptosis induction. When miR-627 is inhibited, calcitriol fails to enhance the activity of irinotecan. In addition, overexpression of miR-627 or siRNA knockdown of CYP3A4 enhanced the efficacy of irinotecan in growth inhibition and apoptosis induction. In contrast, overexpression of CYP3A4 abolished the effects of calcitriol on the activity of irinotecan. Using a nude mouse xenograft model, we demonstrated that calcitriol inhibited CYP3A4 and enhanced the in vivo antitumor activity of irinotecan without causing side effects. Our study identified a novel target for improving cancer therapy, i.e., modulating the intratumoral CYP3A4-mediated drug metabolism with vitamin D. This strategy could enhance the therapeutic efficacy without eliciting the side effects. Mol Cancer Ther; 15(9); 2086-95. ©2016 AACR. PMID:27458137

  8. Doxorubicin-Loaded QuadraSphere Microspheres: Plasma Pharmacokinetics and Intratumoral Drug Concentration in an Animal Model of Liver Cancer

    SciTech Connect

    Lee, Kwang-Hun; Liapi, Eleni A.; Cornell, Curt; Reb, Philippe; Buijs, Manon; Vossen, Josephina A.; Ventura, Veronica Prieto; Geschwind, Jean-Francois H.

    2010-06-15

    The purpose of this study was to evaluate, in vitro and in vivo, doxorubicin-loaded poly (vinyl alcohol-sodium acrylate) copolymer microspheres [QuadraSphere microspheres (QSMs)] for transcatheter arterial delivery in an animal model of liver cancer. Doxorubicin loading efficiency and release profile were first tested in vitro. In vivo, 15 rabbits, implanted with a Vx-2 tumor in the liver, were divided into three groups of five rabbits each, based on the time of euthanasia. Twenty-five milligrams of QSMs was diluted in 10 ml of a 10 mg/ml doxorubicin solution and 10 ml of nonionic contrast medium for a total volume of 20 ml. One milliliter of a drug-loaded QSM solution containing 5 mg of doxorubicin was injected into the tumor feeding artery. Plasma doxorubicin and doxorubicinol concentrations, and intratumoral and peritumoral doxorubicin tissue concentrations, were measured. Tumor specimens were pathologically evaluated to record tumor necrosis. As a control, one animal was blandly embolized with plain QSMs in each group. In vitro testing of QSM doxorubicin loadability and release over time showed 82-94% doxorubicin loadability within 2 h and 6% release within the first 6 h after loading, followed by a slow release pattern. In vivo, the doxorubicin plasma concentration declined at 40 min. The peak doxorubicin intratumoral concentration was observed at 3 days and remained detectable till the study's end point (7 days). Mean percentage tumor cell death in the doxorubicin QSM group was 90% at 7 days and 60% in the bland QSM embolization group. In conclusion, QSMs can be efficiently loaded with doxorubicin. Initial experiments with doxorubicin-loaded QSMs show a safe pharmacokinetic profile and effective tumor killing in an animal model of liver cancer.

  9. Synergistic anti-tumor activity through combinational intratumoral injection of an in-situ injectable drug depot.

    PubMed

    Kim, Da Yeon; Kwon, Doo Yeon; Kwon, Jin Seon; Park, Ji Hoon; Park, Seung Hun; Oh, Hyun Ju; Kim, Jae Ho; Min, Byoung Hyun; Park, Kinam; Kim, Moon Suk

    2016-04-01

    Here, we describe combinational chemotherapy via intratumoral injection of doxorubicin (Dox) and 5-fluorouracil (Fu) to enhance the efficacy and reduce the toxicity of systemically administered Fu and Dox in cancer patients. As the key concept in this work, mixture formulations of Dox-loaded microcapsules (Dox-M) and Fu-loaded Pluronic(®) hydrogels (Fu-HP) or Fu-loaded diblock copolymer hydrogels (Fu-HC) have been employed as drug depots. The in vitro and in vivo drug depot was designed as a formulation of Dox-M dispersed inside an outer shell of Fu-HP or Fu-HC after injection. The Dox-M/Fu-HP and Dox-M/Fu-HC formulations are free flowing at room temperature, indicating injectability, and formed a structural gelatinous depot in vitro and in vivo at body temperature. The Fu-HP, Fu-HC, Dox-M/Fu-HP, Dox-M/Fu-HC, and Dox-M formulations were easily injected into tumor centers in mice using a needle. Dox-M/Fu-HC produced more significant inhibitory effects against tumor growth than that by Dox-M/Fu-HP, while Fu-HP, Fu-HC and Dox-M had the weakest inhibitory effects of the tested treatments. The in vivo study of Dox and Fu biodistribution showed that high Dox and Fu concentrations were maintained in the target tumor only, while distribution to normal tissues was not observed, indicating that Dox and Fu concentrations below their toxic plasma concentrations should not cause significant systemic toxicity. The Dox-M/Fu-HP and Dox-M/Fu-HC drug depots described in this work showed excellent performance as chemotherapeutic delivery systems. The results reported here indicate that intratumoral injection using combination chemotherapy with Dox-M/Fu-HP or Dox-M/Fu-HC could be of translational research by enhancing the synergistic inhibitory effects of Dox and Fu on tumor growth, while reducing their systemic toxicity in cancer patients. PMID:26874285

  10. Design and Development of a Robotized System Coupled to µCT Imaging for Intratumoral Drug Evaluation in a HCC Mouse Model

    PubMed Central

    Bour, Gaétan; Martel, Fernand; Goffin, Laurent; Bayle, Bernard; Gangloff, Jacques; Aprahamian, Marc; Marescaux, Jacques; Egly, Jean-Marc

    2014-01-01

    Hepatocellular carcinoma (HCC) is one of the most common cancer related deaths worldwide. One of the main challenges in cancer treatment is drug delivery to target cancer cells specifically. Preclinical evaluation of intratumoral drugs in orthotopic liver cancer mouse models is difficult, as percutaneous injection hardly can be precisely performed manually. In the present study we have characterized a hepatoma model developing a single tumor nodule by implantation of Hep55.1C cells in the liver of syngeneic C57BL/6J mice. Tumor evolution was followed up by µCT imaging, and at the histological and molecular levels. This orthotopic, poorly differentiated mouse HCC model expressing fibrosis, inflammation and cancer markers was used to assess the efficacy of drugs. We took advantage of the high precision of a previously developed robotized system for automated, image-guided intratumoral needle insertion, to administer every week in the tumor of the Hep55.1C mouse model. A significant tumor growth inhibition was observed using our robotized system, whereas manual intraperitoneal administration had no effect, by comparison to untreated control mice. PMID:25203629

  11. Design and development of a robotized system coupled to µCT imaging for intratumoral drug evaluation in a HCC mouse model.

    PubMed

    Bour, Gaétan; Martel, Fernand; Goffin, Laurent; Bayle, Bernard; Gangloff, Jacques; Aprahamian, Marc; Marescaux, Jacques; Egly, Jean-Marc

    2014-01-01

    Hepatocellular carcinoma (HCC) is one of the most common cancer related deaths worldwide. One of the main challenges in cancer treatment is drug delivery to target cancer cells specifically. Preclinical evaluation of intratumoral drugs in orthotopic liver cancer mouse models is difficult, as percutaneous injection hardly can be precisely performed manually. In the present study we have characterized a hepatoma model developing a single tumor nodule by implantation of Hep55.1C cells in the liver of syngeneic C57BL/6J mice. Tumor evolution was followed up by µCT imaging, and at the histological and molecular levels. This orthotopic, poorly differentiated mouse HCC model expressing fibrosis, inflammation and cancer markers was used to assess the efficacy of drugs. We took advantage of the high precision of a previously developed robotized system for automated, image-guided intratumoral needle insertion, to administer every week in the tumor of the Hep55.1C mouse model. A significant tumor growth inhibition was observed using our robotized system, whereas manual intraperitoneal administration had no effect, by comparison to untreated control mice. PMID:25203629

  12. Intra-tumor distribution of PEGylated liposome upon repeated injection: No possession by prior dose.

    PubMed

    Nakamura, Hiroyuki; Abu Lila, Amr S; Nishio, Miho; Tanaka, Masao; Ando, Hidenori; Kiwada, Hiroshi; Ishida, Tatsuhiro

    2015-12-28

    Liposomes have proven to be a viable means for the delivery of chemotherapeutic agents to solid tumors. However, significant variability has been detected in their intra-tumor accumulation and distribution, resulting in compromised therapeutic outcomes. We recently examined the intra-tumor accumulation and distribution of weekly sequentially administered oxaliplatin (l-OHP)-containing PEGylated liposomes. In that study, the first and second doses of l-OHP-containing PEGylated liposomes were distributed diversely and broadly within tumor tissues, resulting in a potent anti-tumor efficacy. However, little is known about the mechanism underlying such a diverse and broad liposome distribution. Therefore, in the present study, we investigated the influence of dosage interval on the intra-tumor accumulation and distribution of "empty" PEGylated liposomes. Intra-tumor distribution of sequentially administered "empty" PEGylated liposomes was altered in a dosing interval-dependent manner. In addition, the intra-tumor distribution pattern was closely related to the chronological alteration of tumor blood flow as well as vascular permeability in the growing tumor tissue. These results suggest that the sequential administrations of PEGylated liposomes in well-spaced intervals might allow the distribution to different areas and enhance the total bulk accumulation within tumor tissue, resulting in better therapeutic efficacy of the encapsulated payload. This study may provide useful information for a better design of therapeutic regimens involving multiple administrations of nanocarrier drug delivery systems. PMID:26548975

  13. Minimal-invasive magnetic heating of tumors does not alter intra-tumoral nanoparticle accumulation, allowing for repeated therapy sessions: an in vivo study in mice

    NASA Astrophysics Data System (ADS)

    Kettering, Melanie; Richter, Heike; Wiekhorst, Frank; Bremer-Streck, Sibylle; Trahms, Lutz; Alois Kaiser, Werner; Hilger, Ingrid

    2011-12-01

    Localized magnetic heating treatments (hyperthermia, thermal ablation) using superparamagnetic iron oxide nanoparticles (MNPs) continue to be an active area of cancer research. For generating the appropriate heat to sufficiently target cell destruction, adequate MNP concentrations need to be accumulated into tumors. Furthermore, the knowledge of MNP bio-distribution after application and additionally after heating is significant, firstly because of the possibility of repeated heating treatments if MNPs remain at the target region and secondly to study potential adverse effects dealing with MNP dilution from the target region over time. In this context, little is known about the behavior of MNPs after intra-tumoral application and magnetic heating. Therefore, the present in vivo study on the bio-distribution of intra-tumorally injected MNPs in mice focused on MNP long term monitoring of pre and post therapy over seven days using multi-channel magnetorelaxometry (MRX). Subsequently, single-channel MRX was adopted to study the bio-distribution of MNPs in internal organs and tumors of sacrificed animals. We found no distinct change of total MNP amounts in vivo during long term monitoring. Most of the MNP amounts remained in the tumors; only a few MNPs were detected in liver and spleen and less than 1% of totally injected MNPs were excreted. Apparently, the application of magnetic heating and the induction of apoptosis did not affect MNP accumulation. Our results indicate that MNP mainly remained within the injection side after magnetic heating over a seven-days-observation and therefore not affecting healthy tissue. As a consequence, localized magnetic heating therapy of tumors might be applied periodically for a better therapeutic outcome.

  14. Mind Altering Drugs and the Future

    ERIC Educational Resources Information Center

    Evans, Wayne O.

    1971-01-01

    A researcher in psychopharmacology foresees a flood of new drugs that will make man feel happy, cause him to forget his past, and arouse his sexual desires. Man may actually have the possibility of attaining sustained happiness, or something like it, through drugs, and so must ask the question, Is happiness what I most want?" (Author)

  15. In Vivo Confocal Fluorescence Imaging of the Intratumor Distribution of the Photosensitizer Mono-l-Aspartylchlorin-e61

    PubMed Central

    Mitra, Soumya; Foster, Thomas H

    2008-01-01

    We present an in vivo fluorescence microscopic evaluation of intratumor distribution of the photosensitizer mono-l-aspartylchlorin-e6 (NPe6) in an intradermal mouse EMT6 tumor model. Although the identification of favorable photophysical and pharmacological properties has led to the development of new photosensitizers in photodynamic therapy, their intratumor distribution kinetics have remained relatively understudied. In this study, we used confocal fluorescence microscopy to follow the transport of NPe6 in vivo after systemic administration through the tail vein. Labeling of vasculature using fluorophore-conjugated anti-CD31 antibodies allows visualization of the uptake of NPe6 in tumor and normal vessels and its partitioning kinetics into the adjacent parenchyma for 3 hours after injection. During the initial 60 minutes after injection, the drug is predominantly confined to the vasculature. Subsequently, it significantly redistributes throughout the extravascular regions with no discernable difference in its extravasation rate between tumor and normal tissues. Further, we investigate the sensitizer's altered intratumor distribution in response to photodynamic therapy irradiation and observe that treatment-induced changes in vessel permeability caused enhanced accumulation of NPe6 in the extravascular space. Our findings are of immediate clinical relevance and demonstrate the importance of an in vivo imaging approach to examine the dynamic process of intratumor drug distribution. PMID:18472960

  16. Alterations of chemotherapeutic pharmacokinetic profiles by drug–drug interactions

    PubMed Central

    Ghalib, Mohammed; Chaudhary, Imran; Goel, Sanjay

    2012-01-01

    Background Drug interactions in oncology are common place and largely ignored as we tolerate high thresholds of ‘toxic’ drug responses in these patients. However, in the era of ‘targeted’ or seemingly ‘less toxic’ therapy, these interactions are more commonly flagged and contribute significantly towards poor ‘quality of life’ and medical fatalities. Objective This review and opinion article focuses on alteration of chemotherapeutic pharmacokinetic profiles by drug interactions in the setting of polypharmacy. The assumption is that the drugs, with changes in their pharmacokinetics, will contribute towards changes in their pharmacodynamics. Methods The examples cited for such drug–drug interactions are culled from published literature with an emphasis on those interactions that have been well characterized at the molecular level. Results Although very few drug interaction studies have been performed on approved oncology based drugs, it is clear that drugs whose pharmacokinetics profiles are closely related to their pharmacodynamics will indeed result in clinically important drug interactions. Some newer mechanisms are described that involve interactions at the level of gene transcription, whereby, drug metabolism is significantly altered. However, for any given drug interaction, there does not seem to be a comprehensive model describing interactions. Conclusions Mechanisms based drug interactions are plentiful in oncology; however, there is an absolute lack of a comprehensive model that would predict drug–drug interactions. PMID:19239394

  17. Deciphering intratumor heterogeneity using cancer genome analysis.

    PubMed

    Ryu, Daeun; Joung, Je-Gun; Kim, Nayoung K D; Kim, Kyu-Tae; Park, Woong-Yang

    2016-06-01

    Intratumor heterogeneity within individual cancer tissues underlies the numerous phenotypes of cancer. Tumor subclones ultimately affect therapeutic outcomes due to their distinct molecular features. Drug-resistant subclones are present at a low frequency in tissues at the time of biopsy, but can also arise as a result of acquired somatic mutations. A number of different approaches have been utilized to understand the nature of intratumor heterogeneity. Clonal analysis using whole exome or genome sequencing data can help monitor subclones in the context of tumor progression. Multiregional biopsies permit the molecular characterization of subclones within tumors. Deep sequencing has also provided researchers with the ability to measure the low allele fraction variant within a small number of cells. Ultimately, single-cell sequencing will enable the identification of every minor population within a tumor microenvironment. In the clinical context, the ability to identify and monitor the subclonal architecture of a tumor is valuable for the development of precise cancer therapeutic methods. PMID:27126234

  18. Drug metabolism alterations in nonalcoholic fatty liver disease

    PubMed Central

    Merrell, Matthew D.; Cherrington, Nathan J.

    2013-01-01

    Drug-metabolizing enzymes play a vital role in the elimination of the majority of therapeutic drugs. The major organ involved in drug metabolism is the liver. Chronic liver diseases have been identified as a potential source of significant interindividual variation in metabolism. Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease in the United States, affecting between 60 and 90 million Americans, yet the vast majority of NAFLD patients are undiagnosed. NAFLD encompasses a spectrum of pathologies, ranging from steatosis to nonalcoholic steatohepatitis and fibrosis. Numerous animal studies have investigated the effects of NAFLD on hepatic gene expression, observing significant alterations in mRNA, protein, and activity levels. Information on the effects of NAFLD in human patients is limited, though several significant investigations have recently been published. Significant alterations in the activity of drug-metabolizing enzymes may affect the clearance of therapeutic drugs, with the potential to result in adverse drug reactions. With the enormous prevalence of NAFLD, it is conceivable that every drug currently on the market is being given to patients with NAFLD. The current review is intended to present the results from both animal models and human patients, summarizing the observed alterations in the expression and activity of the phase I and II drug-metabolizing enzymes. PMID:21612324

  19. Maternal separation alters drug intake patterns in adulthood in rats.

    PubMed

    Moffett, M C; Vicentic, A; Kozel, Marie; Plotsky, Paul; Francis, D D; Kuhar, M J

    2007-02-01

    Maternal separation/handling (MS/H) is an animal model of early life stress that causes profound neurochemical and behavioral alterations in pups that persist into adulthood. Many recent studies have used the MS/H model to study changes in drug effects in adulthood that are linked to behavioral treatments and stressors in the perinatal period. The drug effects focused on in this review are the reinforcing properties of the abused drugs, cocaine and alcohol. A striking finding is that variations in maternal separation and handling cause changes in ethanol and cocaine self-administration. Further, these changes indicate that various manipulations in the perinatal period can have long lasting effects of interest to biochemical pharmacologists. This article will review recent studies on ethanol and cocaine self-administration using the MS/H model and the neurochemical alterations that may play a role in the effects of MS/H on ethanol and cocaine self-administration. Studying the MS/H model can provide important clues into the vulnerability to drug abuse and perhaps identify a crucial window of opportunity for therapeutic intervention. PMID:16962564

  20. Imaging the intratumoral-peritumoral extracellular pH gradient of gliomas.

    PubMed

    Coman, Daniel; Huang, Yuegao; Rao, Jyotsna U; De Feyter, Henk M; Rothman, Douglas L; Juchem, Christoph; Hyder, Fahmeed

    2016-03-01

    Solid tumors have an acidic extracellular pH (pHe ) but near neutral intracellular pH (pHi ). Because acidic pHe milieu is conducive to tumor growth and builds resistance to therapy, simultaneous mapping of pHe inside and outside the tumor (i.e., intratumoral-peritumoral pHe gradient) fulfills an important need in cancer imaging. We used Biosensor Imaging of Redundant Deviation in Shifts (BIRDS), which utilizes shifts of non-exchangeable protons from macrocyclic chelates (e.g., 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetrakis(methylene phosphonate) or DOTP(8-) ) complexed with paramagnetic thulium (Tm(3) (+) ) ion, to generate in vivo pHe maps in rat brains bearing 9L and RG2 tumors. Upon TmDOTP(5-) infusion, MRI identified the tumor boundary by enhanced water transverse relaxation and BIRDS allowed imaging of intratumoral-peritumoral pHe gradients. The pHe measured by BIRDS was compared with pHi measured with (31) P-MRS. In normal tissue, pHe was similar to pHi , but inside the tumor pHe was lower than pHi . While the intratumoral pHe was acidic for both tumor types, peritumoral pHe varied with tumor type. The intratumoral-peritumoral pHe gradient was much larger for 9L than RG2 tumors because in RG2 tumors acidic pHe was found in distal peritumoral regions. The increased presence of Ki-67 positive cells beyond the RG2 tumor border suggested that RG2 was more invasive than the 9L tumor. These results indicate that extensive acidic pHe beyond the tumor boundary correlates with tumor cell invasion. In summary, BIRDS has sensitivity to map the in vivo intratumoral-peritumoral pHe gradient, thereby creating preclinical applications in monitoring cancer therapeutic responses (e.g., with pHe -altering drugs). Copyright © 2016 John Wiley & Sons, Ltd. PMID:26752688

  1. Targeting intratumoral androgens: statins and beyond.

    PubMed

    Schweizer, Michael T; Yu, Evan Y

    2016-09-01

    While initially effective, androgen deprivation therapy (ADT) is not curative, and nearly all men with advanced prostate cancer will eventually progress to the more resistant, and ultimately lethal form of the disease, so called castration-resistant prostate cancer (CRPC). The maintenance of androgens within the prostate cancer microenvironment likely represents one of the key mechanisms by which this transition from hormone-sensitive to CRPC occurs. This can be accomplished either through intratumoral androgen biosynthesis or the active transport of androgens and androgenic precursors into the tumor microenvironment. More recently, preclinical and clinical data supported therapeutic strategies that seek to target these two mechanisms, either through the use of drugs that impair androgen biosynthesis (e.g. inhibiting the steroidogenic enzymes CYP17 and AKR1C3 with abiraterone and indomethacin, respectively) or drugs that inhibit the SLCO transporters responsible for importing androgens (e.g. statins). PMID:27583031

  2. [Hemostasis-altering drugs and regional anesthetic techniques: safety guidelines].

    PubMed

    Llau Pitarch, J V; De Andrés Ibáñez, J; Gomar Sancho, C; Gómez Luque, A; Hidalgo Martínez, F; Torres Morera, L M

    2004-03-01

    New developments--in the form of emerging clinical settings for regional anesthesia as well as problems arising with the concomitant use of regional techniques and hemostasis-altering drugs--require the ongoing revision of safety guidelines. The annual meeting of ESRA held in Spain in 2003 saw the discussion and clarification of a variety of issues of current concern, including conclusions reached on the estimated risk of spinal hematoma when published safety guidelines are followed or not, precautions to take in epidural anesthesia during cardiac surgery, guidelines for using fondaparinux for thromboprophylaxis, the circumstances under which neuroaxial techniques can be used safely in patients under the effects of platelet aggregation inhibitors such as thienopyridine, and the application of epidural anesthesia in parturients with eclampsia who have received platelet aggregation inhibitors. Conclusions drawn at the meeting enrich and clarify certain important safety issues related to local and regional anesthesia in patients receiving antiplatelet drugs and/or anticoagulants. PMID:15200185

  3. Asplatin enhances drug efficacy by altering the cellular response.

    PubMed

    Cheng, Qinqin; Shi, Hongdong; Wang, Hongxia; Wang, Jun; Liu, Yangzhong

    2016-07-13

    Aspirin, a widely used anti-inflammatory drug, has been shown to be effective for the prevention and remission of cancers (Science, 2012, 337(21) 1471-1473). Asplatin, a Pt(iv) prodrug of cisplatin with the ligation of aspirin (c,c,t-[PtCl2(NH3)2(OH)(aspirin)]), demonstrates significantly higher cytotoxicity than cisplatin towards tumor cells and almost fully overcomes the drug resistance of cisplatin resistant cells. In this work, we have studied the molecular mechanism of asplatin by investigating the cellular response to this compound in order to understand the prominent inhibitory effect on the proliferation of cancer cells. The apoptosis analyses and the related gene expression measurements show that aspirin released from asplatin significantly modulates the cellular response to the platinum agent. Asplatin promotes the apoptosis via the BCL-2 associated mitochondrial pathway. The down-regulation of BCL-2 along with the up-regulation of BAX and BAK enhances the mitochondrial outer membrane permeability, resulting in the cytochrome c release from mitochondria into the cytosol. This event promotes the apoptosis by activation of caspase processing. Consequently, the ligation of aspirin significantly enhances the drug efficacy of the platinum complex in the low micromolar range. The alteration of the cellular response is probably responsible for the circumvention of the cisplatin resistance by asplatin. These results provide an insight into the mechanism of asplatin and provide information for designing new classic platinum drugs. PMID:27125788

  4. Oral drug delivery systems comprising altered geometric configurations for controlled drug delivery.

    PubMed

    Moodley, Kovanya; Pillay, Viness; Choonara, Yahya E; du Toit, Lisa C; Ndesendo, Valence M K; Kumar, Pradeep; Cooppan, Shivaan; Bawa, Priya

    2012-01-01

    Recent pharmaceutical research has focused on controlled drug delivery having an advantage over conventional methods. Adequate controlled plasma drug levels, reduced side effects as well as improved patient compliance are some of the benefits that these systems may offer. Controlled delivery systems that can provide zero-order drug delivery have the potential for maximizing efficacy while minimizing dose frequency and toxicity. Thus, zero-order drug release is ideal in a large area of drug delivery which has therefore led to the development of various technologies with such drug release patterns. Systems such as multilayered tablets and other geometrically altered devices have been created to perform this function. One of the principles of multilayered tablets involves creating a constant surface area for release. Polymeric materials play an important role in the functioning of these systems. Technologies developed to date include among others: Geomatrix(®) multilayered tablets, which utilizes specific polymers that may act as barriers to control drug release; Procise(®), which has a core with an aperture that can be modified to achieve various types of drug release; core-in-cup tablets, where the core matrix is coated on one surface while the circumference forms a cup around it; donut-shaped devices, which possess a centrally-placed aperture hole and Dome Matrix(®) as well as "release modules assemblage", which can offer alternating drug release patterns. This review discusses the novel altered geometric system technologies that have been developed to provide controlled drug release, also focusing on polymers that have been employed in such developments. PMID:22312236

  5. Oral Drug Delivery Systems Comprising Altered Geometric Configurations for Controlled Drug Delivery

    PubMed Central

    Moodley, Kovanya; Pillay, Viness; Choonara, Yahya E.; du Toit, Lisa C.; Ndesendo, Valence M. K.; Kumar, Pradeep; Cooppan, Shivaan; Bawa, Priya

    2012-01-01

    Recent pharmaceutical research has focused on controlled drug delivery having an advantage over conventional methods. Adequate controlled plasma drug levels, reduced side effects as well as improved patient compliance are some of the benefits that these systems may offer. Controlled delivery systems that can provide zero-order drug delivery have the potential for maximizing efficacy while minimizing dose frequency and toxicity. Thus, zero-order drug release is ideal in a large area of drug delivery which has therefore led to the development of various technologies with such drug release patterns. Systems such as multilayered tablets and other geometrically altered devices have been created to perform this function. One of the principles of multilayered tablets involves creating a constant surface area for release. Polymeric materials play an important role in the functioning of these systems. Technologies developed to date include among others: Geomatrix® multilayered tablets, which utilizes specific polymers that may act as barriers to control drug release; Procise®, which has a core with an aperture that can be modified to achieve various types of drug release; core-in-cup tablets, where the core matrix is coated on one surface while the circumference forms a cup around it; donut-shaped devices, which possess a centrally-placed aperture hole and Dome Matrix® as well as “release modules assemblage”, which can offer alternating drug release patterns. This review discusses the novel altered geometric system technologies that have been developed to provide controlled drug release, also focusing on polymers that have been employed in such developments. PMID:22312236

  6. Alteration of drug metabolizing enzymes in sulphite oxidase deficiency

    PubMed Central

    Tutuncu, Begum; Kuçukatay, Vural; Arslan, Sevki; Sahin, Barbaros; Semiz, Asli; Sen, Alaattin

    2012-01-01

    The aim of this study was to investigate the possible effects of sulphite oxidase (SOX, E.C. 1.8.3.1) deficiency on xenobiotic metabolism. For this purpose, SOX deficiency was produced in rats by the administration of a low molybdenum diet with concurrent addition of 200 ppm tungsten to their drinking water. First, hepatic SOX activity in deficient groups was measured to confirm SOX deficiency. Then, aminopyrine N-demethylase, aniline 4-hydroxylase, aromatase, caffeine N-demethylase, cytochrome b5 reductase, erythromycin N-demethylase, ethoxyresorufin O-deethylase, glutathione S-transferase, N-nitrosodimethylamine N-demethylase and penthoxyresorufin O-deethylase activities were determined to follow changes in the activity of drug metabolizing enzymes in SOX-deficient rats. Our results clearly demonstrated that SOX deficiency significantly elevated A4H, caffeine N-demethylase, erythromycin N-demethylase and N-nitrosodimethylamine N-demethylase activities while decreasing ethoxyresorufin O-deethylase and aromatase activities. These alterations in drug metabolizing enzymes can contribute to the varying susceptibility and response of sulphite-sensitive individuals to different drugs and/or therapeutics used for treatments. PMID:22798713

  7. HIV-1 Alters Intestinal Expression of Drug Transporters and Metabolic Enzymes: Implications for Antiretroviral Drug Disposition.

    PubMed

    Kis, Olena; Sankaran-Walters, Sumathi; Hoque, M Tozammel; Walmsley, Sharon L; Dandekar, Satya; Bendayan, Reina

    2016-05-01

    This study investigated the effects of HIV-1 infection and antiretroviral therapy (ART) on the expression of intestinal drug efflux transporters, i.e., P-glycoprotein (Pgp), multidrug resistance-associated proteins (MRPs), and breast cancer resistance protein (BCRP), and metabolic enzymes, such as cytochrome P450s (CYPs), in the human upper intestinal tract. Intestinal biopsy specimens were obtained from HIV-negative healthy volunteers, ART-naive HIV-positive (HIV(+)) subjects, and HIV(+) subjects receiving ART (10 in each group). Intestinal tissue expression of drug transporters and metabolic enzymes was examined by microarray, real-time quantitative reverse transcription-PCR (qPCR), and immunohistochemistry analyses. Microarray analysis demonstrated significantly lower expression of CYP3A4 and ABCC2/MRP2 in the HIV(+) ART-naive group than in uninfected subjects. qPCR analysis confirmed significantly lower expression of ABCC2/MRP2 in ART-naive subjects than in the control group, while CYP3A4 and ABCG2/BCRP showed a trend toward decreased expression. Protein expression of MRP2 and BCRP was also significantly lower in the HIV(+) naive group than in the control group and was partially restored to baseline levels in HIV(+) subjects receiving ART. In contrast, gene and protein expression of ABCB1/Pgp was significantly increased in HIV(+) subjects on ART relative to HIV(+) ART-naive subjects. These data demonstrate that the expression of drug-metabolizing enzymes and efflux transporters is significantly altered in therapy-naive HIV(+) subjects and in those receiving ART. Since CYP3A4, Pgp, MRPs, and BCRP metabolize or transport many antiretroviral drugs, their altered expression with HIV infection may negatively impact drug pharmacokinetics in HIV(+) subjects. This has clinical implications when using data from healthy volunteers to guide ART. PMID:26902756

  8. Ultra-structural hair alterations of drug abusers: a scanning electron microscopic investigation.

    PubMed

    Turkmenoglu, Fatma Pinar; Kasirga, Ugur Baran; Celik, Hakan Hamdi

    2015-01-01

    As drug abuse carries a societal stigma, patients do not often report their history of drug abuse to the healthcare providers. However, drug abuse is highly co-morbid with a host of other health problems such as psychiatric disorders and skin diseases, and majority of individuals with drug use disorders seek treatment in the first place for other problems. Therefore, it is very important for physicians to be aware of clinical signs and symptoms of drug use. Recently diagnostic value of dermatologic tissue alterations associated with drug abuse has become a very particular interest because skin changes were reported to be the earliest noticeable consequence of drug abuse prompting earlier intervention and treatment. Although hair is an annex of skin, alterations on hair structure due to drug use have not been demonstrated. This study represents the first report on ultra-structural hair alterations of drug abusers. We have investigated ultra-structure of the hair samples obtained from 6 cocaine, 6 heroin, 7 cannabis and 4 lysergic acid diethylamide (LSD) abusers by scanning electron microscope (SEM). SEM analysis of hair samples gave us drug-specific discriminating alterations. We suggest that results of this study will make a noteworthy contribution to cutaneous alterations associated with drug abuse which are regarded as the earliest clinical manifestations, and this SEM approach is a very specific and effective tool in the detection of abuse of respective drugs, leading early treatment. PMID:26309532

  9. Ultra-structural hair alterations of drug abusers: a scanning electron microscopic investigation

    PubMed Central

    Turkmenoglu, Fatma Pinar; Kasirga, Ugur Baran; Celik, Hakan Hamdi

    2015-01-01

    As drug abuse carries a societal stigma, patients do not often report their history of drug abuse to the healthcare providers. However, drug abuse is highly co-morbid with a host of other health problems such as psychiatric disorders and skin diseases, and majority of individuals with drug use disorders seek treatment in the first place for other problems. Therefore, it is very important for physicians to be aware of clinical signs and symptoms of drug use. Recently diagnostic value of dermatologic tissue alterations associated with drug abuse has become a very particular interest because skin changes were reported to be the earliest noticeable consequence of drug abuse prompting earlier intervention and treatment. Although hair is an annex of skin, alterations on hair structure due to drug use have not been demonstrated. This study represents the first report on ultra-structural hair alterations of drug abusers. We have investigated ultra-structure of the hair samples obtained from 6 cocaine, 6 heroin, 7 cannabis and 4 lysergic acid diethylamide (LSD) abusers by scanning electron microscope (SEM). SEM analysis of hair samples gave us drug-specific discriminating alterations. We suggest that results of this study will make a noteworthy contribution to cutaneous alterations associated with drug abuse which are regarded as the earliest clinical manifestations, and this SEM approach is a very specific and effective tool in the detection of abuse of respective drugs, leading early treatment. PMID:26309532

  10. Biological and therapeutic impact of intratumor heterogeneity in cancer evolution.

    PubMed

    McGranahan, Nicholas; Swanton, Charles

    2015-01-12

    Precision medicine requires an understanding of cancer genes and mutational processes, as well as an appreciation of the extent to which these are found heterogeneously in cancer cells during tumor evolution. Here, we explore the processes shaping the cancer genome, placing these within the context of tumor evolution and their impact on intratumor heterogeneity and drug development. We review evidence for constraints and contingencies to tumor evolution and highlight the clinical implications of diversity within tumors. We outline the limitations of genome-driven targeted therapies and explore future strategies, including immune and adaptive approaches, to address this therapeutic challenge. PMID:25584892

  11. Paroxysmal Perceptual Alteration: Drug-Induced Phenomenon or Schizophrenic Psychopathology?

    PubMed

    Praharaj, Samir Kumar; Kongasseri, Sreejayan; Acharya, Mahima

    2016-01-01

    Brief and repetitive episodes of perceptual changes, termed paroxysmal perceptual alteration (PPA), have been described in association with antipsychotic treatment. We report a case of paranoid schizophrenia who had such perceptual changes akin to PPA for 15 years, which was not related to antipsychotic treatment. There was a rapid resolution of PPA after treatment with low-dose clonazepam. PMID:26954463

  12. [Pharmacokinetic alterations in pregnancy and use of therapeutic drug monitoring].

    PubMed

    Panchaud, Alice; Weisskopf, Etienne; Winterfeld, Ursula; Baud, David; Guidi, Monia; Eap, Chin B; Csajka, Chantal; Widmer, Nicolas

    2014-01-01

    Following the thalidomide tragedy, pharmacological research in pregnant women focused primarily on drug safety for the unborn child and remains only limited regarding the efficacy and safety of treatment for the mother. Significant physiological changes during pregnancy may yet affect the pharmacokinetics of drugs and thus compromise its efficacy and/or safety. Therapeutic drug monitoring (TDM) would maximize the potential effectiveness of treatments, while minimizing the potential risk of toxicity for the mother and the fetus. At present, because of the lack of concentration-response relationship studies in pregnant women, TDM can rely only on individual assessment (based on an effective concentration before pregnancy) and remains reserved only to unexpected situations such as signs of toxicity or unexplained inefficiency. PMID:25011648

  13. Breast cancer intra-tumor heterogeneity

    PubMed Central

    2014-01-01

    In recent years it has become clear that cancer cells within a single tumor can display striking morphological, genetic and behavioral variability. Burgeoning genetic, epigenetic and phenomenological data support the existence of intra-tumor genetic heterogeneity in breast cancers; however, its basis is yet to be fully defined. Two of the most widely evoked concepts to explain the origin of heterogeneity within tumors are the cancer stem cell hypothesis and the clonal evolution model. Although the cancer stem cell model appeared to provide an explanation for the variability among the neoplastic cells within a given cancer, advances in massively parallel sequencing have provided several lines of evidence to suggest that intra-tumor genetic heterogeneity likely plays a fundamental role in the phenotypic heterogeneity observed in cancers. Many challenges remain, however, in the interpretation of the next generation sequencing results obtained so far. Here we review the models that explain tumor heterogeneity, the causes of intra-tumor genetic diversity and their impact on our understanding and management of breast cancer, methods to study intra-tumor heterogeneity and the assessment of intra-tumor genetic heterogeneity in the clinic. PMID:25928070

  14. Acute neuroactive drug exposures alter locomotor activity in larval zebrafish

    EPA Science Inventory

    In an effort to develop a rapid in vivo screen for EPA's prioritization of toxic chemicals, we are characterizing the locomotor activity of zebrafish (Danio rerio) larvae after exposure to prototypic drugs that act on the central nervous system. MPTP (1-methyl-4phenyl- 1 ,2,3,6-...

  15. Acute Neuroactive Drug Exposures alter Locomotor Activity in Larval Zebrafish

    EPA Science Inventory

    As part of the development of a rapid in vivo screen for prioritization of toxic chemicals, we have begun to characterize the locomotor activity of zebrafish (Danio rerio) larvae by assessing the acute effects of prototypic drugs that act on the central nervous system. Initially,...

  16. Drug Disposition Alterations in Liver Disease: Extra-hepatic Effects in Cholestasis and Nonalcoholic Steatohepatitis

    PubMed Central

    Canet, Mark J; Cherrington, Nathan J

    2015-01-01

    Introduction The pharmacokinetics of drugs and xenobiotics, namely pharmaceuticals, is influenced by a host of factors that include genetics, physiological factors, and environmental stressors. The importance of disease on the disposition of xenobiotics has been increasingly recognized among medical professionals for alterations in key enzymes and membrane transporters that influence drug disposition and contribute to the development of adverse drug reactions. Areas Covered This review will survey pertinent literature of how liver disease alters the pharmacokinetics of drugs and other xenobiotics. The focus will be on nonalcoholic steatohepatitis as well as cholestatic liver diseases. A review of basic pharmacokinetic principles, with a special emphasis on xenobiotic metabolizing enzymes and membrane transporters will be provided. Specifically, examples of how genetic alterations affect metabolism and excretion, respectively, will be highlighted. Lastly, the idea of “extra-hepatic” regulation will be explored, citing examples of how disease manifestation in the liver may affect drug disposition in distal sites, such as the kidney. Expert Opinion An expert opinion will be provided highlighting the definite need for data in understanding extra-hepatic regulation of membrane transporters in the presence of liver disease and its potential to dramatically alter the pharmacokinetic and toxicokinetic profile of numerous drugs and xenobiotics. PMID:24989624

  17. Mitoxantrone-loaded albumin microspheres for localized intratumoral chemotherapy of breast cancer

    NASA Astrophysics Data System (ADS)

    Almond, Brett Anthony

    The safety and efficacy of conventional chemotherapy is limited by its toxicity. The direct intratumoral injection of free or microsphere-loaded antineoplastic drugs is a promising modality for the treatment of solid tumors. Intratumoral chemotherapy delivers high localized doses of cytotoxic drugs to the tumor tissues than does systemic (intravenous) chemotherapy and it decreases systemic drug concentrations and toxicities. The use of drug-loaded microspheres also provides a prolonged release of drug into the surrounding tumor tissues, increasing exposure of the neoplasm to therapeutic levels of the cytotoxic drug. Mitoxantrone and 5-fluorouracil-loaded albumin microspheres were synthesized. The microspheres were synthesized using a suspension crosslinking technique and a glutardehyde crosslinking agent. The particle-size distribution of the microspheres was controlled by adjusting the emulsion energy and the concentration of cellulose acetate butyrate, the emulsion stabilization agent. Both microsphere size and crosslink density (glutaraldehyde concentration) were found to affect the in vitro release of loaded drugs in in vitro infinite sink conditions. The in vivo efficacy and toxicity of intratumoral chemotherapy with free and microsphere-loaded mitoxantrone were evaluated in a 16/C murine mammary adenocarcinoma model. Intratumoral chemotherapy with free mitoxantrone significantly improved survival and decreased toxicity compared to intravenously delivered drug. The efficacy of two size distributions of mitoxantrone-loaded albumin microspheres, corresponding to mean diameters of 5 to 10 mum and 20 to 40 mum, were evaluated delivered both alone and in combination with free mitoxantrone. Intratumoral injection of mitoxantrone-loaded microspheres was found to allow the safe delivery of increased doses compared to free drug. The maximum tolerated doses were approximately 40 mg/kg compared to 12 mg/kg, respectively. Intratumoral chemotherapy using free and

  18. Increased efficacy of photodynamic therapy of R3230AC mammary adenocarcinoma by intratumoral injection of Photofrin II.

    PubMed Central

    Gibson, S. L.; van der Meid, K. R.; Murant, R. S.; Hilf, R.

    1990-01-01

    Photodynamic therapy consists of the systemic administration of a derivative of haematoporphyrin (Photofrin II) followed 24-72 h later by exposure of malignant lesions to photoradiation. We investigated the efficacy of this treatment after direct intratumoral injection of Photofrin II. This direct treatment regimen resulted in higher rates of inhibition of mitochondrial cytochrome c oxidase (5.13% J-1 cm-2 x 10(-1) and succinate dehydrogenase (3.14% J-1 cm-2 x 10(-1] in vitro at 2 h after intratumoral injection compared to rates of inhibition obtained after intraperitoneal drug administration: 0.51 and 0.42% J-1 cm-2 x 10(-1), respectively. A significant delay in tumour growth in vivo was observed in animals that received intratumoral injections 2 h before photoradiation compared to animals injected intraperitoneally at either 2 or 24 h before photoradiation. The treatment protocols were compared with control groups, consisting of Photofrin II administration intratumorally or intraperitoneally without photoradiation, or photoradiation in the absence of Photofrin II. These data indicate that the intratumoral injection regimen with Photofrin II enhanced the efficacy of photodynamic therapy. The greater delay in tumour growth observed after intratumoral administration of Photofrin II suggests a mechanism favouring direct cell damage. PMID:2139578

  19. Intratumoral Mistletoe (Viscum album L) Therapy in Patients With Unresectable Pancreas Carcinoma: A Retrospective Analysis.

    PubMed

    Schad, Friedemann; Atxner, Jan; Buchwald, Dirk; Happe, Antje; Popp, Stephan; Kröz, Matthias; Matthes, Harald

    2014-07-01

    Pancreatic carcinoma remains one of the main causes for cancer-related death. Intratumoral application of anticancer agents is discussed as a promising method for solid tumors such as pancreatic cancer. Endoscopic ultrasound provides a good tool to examine and treat the pancreas. European mistletoe (Viscum album L) is a phytotherapeutic commonly used in integrative oncology in Central Europe. Its complementary use seeks to induce immunostimulation and antitumoral effects as well as alleviate chemotherapeutic side effects. Intratumoral mistletoe application has induced local tumor response in various cancer entities. This off-label use needs to be validated carefully in terms of safety and benefits. Here we report on 39 patients with advanced, inoperable pancreatic cancer, who received in total 223 intratumoral applications of mistletoe, endoscopic ultrasound guided or under transabdominal ultrasound control. No severe procedure-related events were reported. Adverse drug reactions were mainly increased body temperature or fever in 14% and 11% of the applications, respectively. Other adverse drug reactions, such as pain or nausea, occurred in less than 7% of the procedures. No severe adverse drug reaction was recorded. Patients received standard first- and second-line chemotherapy and underwent adequate palliative surgical interventions as well as additive subcutaneous and partly intravenous mistletoe application. A median survival of 11 months was observed for all patients, or 11.8 and 8.3 months for stages III and IV, respectively. Due to the multimodal therapeutic setting and the lack of a control group, the effect of intratumoral mistletoe administration alone remains unclear. This retrospective analysis suggests that intratumoral-applicated mistletoe might contribute to improve survival of patients with pancreatic cancer. In conclusion, the application is feasible and safe, and its efficacy should be evaluated in a randomized controlled trial. PMID:24363283

  20. Spatial distribution and antitumor activities after intratumoral injection of fragmented fibers with loaded hydroxycamptothecin.

    PubMed

    Wei, Jiaojun; Luo, Xiaoming; Chen, Maohua; Lu, Jinfu; Li, Xiaohong

    2015-09-01

    There was only a small percentage of drug delivered to tumors after systemic administration, and solid tumors also have many barriers to prevent drug penetration within tumors. In the current study, intratumoral injection of drug-loaded fiber fragments was proposed to overcome these barriers, allowing drug accumulation at the target site to realize the therapeutic efficacy. Fragmented fibers with hydroxycamptothecin (HCPT) loaded were constructed by cryocutting of aligned electrospun fibers, and the fiber lengths of 5 (FF-5), 20 (FF-20), and 50μm (FF-50) could be easily controlled by adjusting the slice thickness. Fragmented fibers were homogeneously dispersed into 2% sodium alginate solution, and could be smoothly injected through 26G1/2 syringe needles. FF-5, FF-20 and FF-50 fiber fragments indicated similar release profiles except a lower burst release from FF-50. In vitro viability tests showed that FF-5 and FF-20 fiber fragments caused higher cytotoxicity and apoptosis rates than FF-50. After intratumoral injection into murine H22 subcutaneous tumors, fragmented fibers with longer lengths indicated a higher accumulation into tumors and a better retention at the injection site, but showed less apparent diffusion within tumor tissues. In addition to the elimination of invasive surgery, HCPT-loaded fiber fragments showed superior in vivo antitumor activities and fewer side effects than intratumoral implantation of drug-loaded fiber mats. Compared with FF-5 and FF-50, FF-20 fiber fragments indicated optimal spatial distribution of HCPT within tumors and achieved the most significant effects on the animal survival, tumor growth inhibition and tumor cell apoptosis induction. It is suggested that the intratumoral injection of drug-loaded fiber fragments provided an efficient strategy to improve patient compliance, allow the retention of fragmented fibers and spatial distribution of drugs within tumor tissues to achieve a low systemic toxicity and an optimal

  1. Anti-angiogenic therapy increases intratumoral adenovirus distribution by inducing collagen degradation

    PubMed Central

    Thaci, Bart; Ulasov, Ilya V.; Ahmed, Atique U.; Ferguson, Sherise D.; Han, Yu; Lesniak, Maciej S.

    2012-01-01

    Conditionally replicating adenoviruses (CRAd) are a promising class of gene therapy agents that can overcome already known glioblastoma (GBM) resistance mechanisms but have limited distribution upon direct intratumoral (i.t.) injection. Collagen bundles in the extracellular matrix (ECM) play an important role in inhibiting virus distribution. In fact, ECM pre-treatment with collagenases improves virus distributions to tumor cells. Matrix metalloproteinases (MMPs) are an endogenous class of collagenases secreted by tumor cells whose function can be altered by different drugs including anti-angiogenic agents, such as bevacizumab. In this study we hypothesized that up-regulation of MMP activity during antiangiogenic therapy can improve CRAd-S-pk7 distribution in GBM. We find that MMP-2 activity in human U251 GBM xenografts increases (*p=0.03) and collagen IV content decreases (*p=0.01) during vascular endothelial growth factor (VEGF-A) antibody neutralization. After proving that collagen IV inhibits CRAd-S-pk7 distribution in U251 xenografts (Spearman rho= −0.38; **p=0.003), we show that VEGF blocking antibody treatment followed by CRAd-S-pk7 i.t. injection reduces U251 tumor growth more than each individual agent alone (***p<0.0001). Our data proposes a novel approach to improve virus distribution in tumors by relying on the early effects of anti-angiogenic therapy. PMID:22673390

  2. Anti-angiogenic therapy increases intratumoral adenovirus distribution by inducing collagen degradation.

    PubMed

    Thaci, B; Ulasov, I V; Ahmed, A U; Ferguson, S D; Han, Y; Lesniak, M S

    2013-03-01

    Conditionally replicating adenoviruses (CRAd) are a promising class of gene therapy agents that can overcome already known glioblastoma (GBM) resistance mechanisms but have limited distribution upon direct intratumoral (i.t.) injection. Collagen bundles in the extracellular matrix (ECM) have an important role in inhibiting virus distribution. In fact, ECM pre-treatment with collagenases improves virus distributions to tumor cells. Matrix metalloproteinases (MMPs) are an endogenous class of collagenases secreted by tumor cells whose function can be altered by different drugs including anti-angiogenic agents, such as bevacizumab. In this study we hypothesized that upregulation of MMP activity during anti-angiogenic therapy can improve CRAd-S-pk7 distribution in GBM. We find that MMP-2 activity in human U251 GBM xenografts increases (*P=0.03) and collagen IV content decreases (*P=0.01) during vascular endothelial growth factor (VEGF-A) antibody neutralization. After proving that collagen IV inhibits CRAd-S-pk7 distribution in U251 xenografts (Spearman rho=-0.38; **P=0.003), we show that VEGF-blocking antibody treatment followed by CRAd-S-pk7 i.t. injection reduces U251 tumor growth more than each individual agent alone (***P<0.0001). Our data propose a novel approach to improve virus distribution in tumors by relying on the early effects of anti-angiogenic therapy. PMID:22673390

  3. Conjugation of pH-Responsive Nanoparticles to Neural Stem Cells Improves Intratumoral Therapy

    PubMed Central

    Mooney, Rachael; Weng, Yiming; Garcia, Elizabeth; Bhojane, Sukhada; Smith-Powell, Leslie; Kim, Seung U.; Annala, Alexander J.; Aboody, Karen S.; Berlin, Jacob M.

    2014-01-01

    Intratumoral drug delivery is an inherently appealing approach for concentrating toxic chemotherapies at the site of action. This mode of administration is currently used in a number of clinical treatments such as neoadjuvant, adjuvant, and even standalone therapies when radiation and surgery are not possible. However, even when injected locally, it is difficult to achieve efficient distribution of chemotherapeutics throughout the tumor. This is primarily attributed to the high interstitial pressure which results in gradients that drive fluid away from the tumor center. The stiff extracellular matrix also limits drug penetration throughout the tumor. We have previously shown that neural stem cells can penetrate tumor interstitium, actively migrating even to hypoxic tumor cores. When used to deliver therapeutics, these migratory neural stem cells result in dramatically enhanced tumor coverage relative to conventional delivery approaches. We recently showed that neural stem cells maintain their tumor tropic properties when surface-conjugated to nanoparticles. Here we demonstrate that this hybrid delivery system can be used to improve the efficacy of docetaxel-loaded nanoparticles when administered intratumorally. This was achieved by conjugating drug-loaded nanoparticles to the surface of neural stem cells using a bond that allows the stem cells to efficiently distribute nanoparticles throughout the tumor before releasing the drug for uptake by tumor cells. The modular nature of this system suggests that it could be used to improve the efficacy of many chemotherapy drugs after intratumoral administration. PMID:24952368

  4. Computational Analysis of Single Nucleotide Polymorphisms Associated with Altered Drug Responsiveness in Type 2 Diabetes

    PubMed Central

    Costa, Valerio; Federico, Antonio; Pollastro, Carla; Ziviello, Carmela; Cataldi, Simona; Formisano, Pietro; Ciccodicola, Alfredo

    2016-01-01

    Type 2 diabetes (T2D) is one of the most frequent mortality causes in western countries, with rapidly increasing prevalence. Anti-diabetic drugs are the first therapeutic approach, although many patients develop drug resistance. Most drug responsiveness variability can be explained by genetic causes. Inter-individual variability is principally due to single nucleotide polymorphisms, and differential drug responsiveness has been correlated to alteration in genes involved in drug metabolism (CYP2C9) or insulin signaling (IRS1, ABCC8, KCNJ11 and PPARG). However, most genome-wide association studies did not provide clues about the contribution of DNA variations to impaired drug responsiveness. Thus, characterizing T2D drug responsiveness variants is needed to guide clinicians toward tailored therapeutic approaches. Here, we extensively investigated polymorphisms associated with altered drug response in T2D, predicting their effects in silico. Combining different computational approaches, we focused on the expression pattern of genes correlated to drug resistance and inferred evolutionary conservation of polymorphic residues, computationally predicting the biochemical properties of polymorphic proteins. Using RNA-Sequencing followed by targeted validation, we identified and experimentally confirmed that two nucleotide variations in the CAPN10 gene—currently annotated as intronic—fall within two new transcripts in this locus. Additionally, we found that a Single Nucleotide Polymorphism (SNP), currently reported as intergenic, maps to the intron of a new transcript, harboring CAPN10 and GPR35 genes, which undergoes non-sense mediated decay. Finally, we analyzed variants that fall into non-coding regulatory regions of yet underestimated functional significance, predicting that some of them can potentially affect gene expression and/or post-transcriptional regulation of mRNAs affecting the splicing. PMID:27347941

  5. Functional alterations of astrocytes in mental disorders: pharmacological significance as a drug target

    PubMed Central

    Koyama, Yutaka

    2015-01-01

    Astrocytes play an essential role in supporting brain functions in physiological and pathological states. Modulation of their pathophysiological responses have beneficial actions on nerve tissue injured by brain insults and neurodegenerative diseases, therefore astrocytes are recognized as promising targets for neuroprotective drugs. Recent investigations have identified several astrocytic mechanisms for modulating synaptic transmission and neural plasticity. These include altered expression of transporters for neurotransmitters, release of gliotransmitters and neurotrophic factors, and intercellular communication through gap junctions. Investigation of patients with mental disorders shows morphological and functional alterations in astrocytes. According to these observations, manipulation of astrocytic function by gene mutation and pharmacological tools reproduce mental disorder-like behavior in experimental animals. Some drugs clinically used for mental disorders affect astrocyte function. As experimental evidence shows their role in the pathogenesis of mental disorders, astrocytes have gained much attention as drug targets for mental disorders. In this paper, I review functional alterations of astrocytes in several mental disorders including schizophrenia, mood disorder, drug dependence, and neurodevelopmental disorders. The pharmacological significance of astrocytes in mental disorders is also discussed. PMID:26217185

  6. Alteration of human hepatic drug transporter activity and expression by cigarette smoke condensate.

    PubMed

    Sayyed, Katia; Vee, Marc Le; Abdel-Razzak, Ziad; Jouan, Elodie; Stieger, Bruno; Denizot, Claire; Parmentier, Yannick; Fardel, Olivier

    2016-07-01

    Smoking is well-known to impair pharmacokinetics, through inducing expression of drug metabolizing enzymes. In the present study, we demonstrated that cigarette smoke condensate (CSC) also alters activity and expression of hepatic drug transporters, which are now recognized as major actors of hepatobiliary elimination of drugs. CSC thus directly inhibited activities of sinusoidal transporters such as OATP1B1, OATP1B3, OCT1 and NTCP as well as those of canalicular transporters like P-glycoprotein, MRP2, BCRP and MATE1, in hepatic transporters-overexpressing cells. CSC similarly counteracted constitutive OATP, NTCP and OCT1 activities in human highly-differentiated hepatic HepaRG cells. In parallel, CSC induced expression of BCRP at both mRNA and protein level in HepaRG cells, whereas it concomitantly repressed mRNA expression of various transporters, including OATP1B1, OATP2B1, OAT2, NTCP, OCT1 and BSEP, and enhanced that of MRP4. Such changes in transporter gene expression were found to be highly correlated to those caused by 2,3,7,8-tetrachlorodibenzo-p-dioxin, a reference activator of the aryl hydrocarbon receptor (AhR) pathway, and were counteracted, for some of them, by siRNA-mediated AhR silencing. This suggests that CSC alters hepatic drug transporter levels via activation of the AhR cascade. Importantly, drug transporter expression regulations as well as some transporter activity inhibitions occurred for a range of CSC concentrations similar to those required for inducing drug metabolizing enzymes and may therefore be hypothesized to be relevant for smokers. Taken together, these data established human hepatic transporters as targets of cigarette smoke, which could contribute to known alteration of pharmacokinetics and some liver adverse effects caused by smoking. PMID:27450509

  7. Spatiotemporally photoradiation-controlled intratumoral depot for combination of brachytherapy and photodynamic therapy for solid tumor.

    PubMed

    Mukerji, Ratul; Schaal, Jeffrey; Li, Xinghai; Bhattacharyya, Jayanta; Asai, Daisuke; Zalutsky, Michael R; Chilkoti, Ashutosh; Liu, Wenge

    2016-02-01

    In an attempt to spatiotemporally control both tumor retention and the coverage of anticancer agents, we developed a photoradiation-controlled intratumoral depot (PRCITD) driven by convection enhanced delivery (CED). This intratumoral depot consists of recombinant elastin-like polypeptide (ELP) containing periodic cysteine residues and is conjugated with a photosensitizer, chlorin-e6 (Ce6) at the N-terminus of the ELP. We hypothesized that this cysteine-containing ELP (cELP) can be readily crosslinked through disulfide bonds upon exposure to oxidative agents, specifically the singlet oxygen produced during photodynamic stimulation. Upon intratumoral injection, CED drives the distribution of the soluble polypeptide freely throughout the tumor interstitium. Formation and retention of the depot was monitored using fluorescence molecular tomography imaging. When imaging shows that the polypeptide has distributed throughout the entire tumor, 660-nm light is applied externally at the tumor site. This photo-radiation wavelength excites Ce6 and generates reactive oxygen species (ROS) in the presence of oxygen. The ROS induce in situ disulfide crosslinking of the cysteine thiols, stabilizing the ELP biopolymer into a stable therapeutic depot. Our results demonstrate that this ELP design effectively forms a hydrogel both in vitro and in vivo. These depots exhibit high stability in subcutaneous tumor xenografts in nude mice and significantly improved intratumoral retention compared to controls without crosslinking, as seen by fluorescent imaging and iodine-125 radiotracer studies. The photodynamic therapy provided by the PRCITD was found to cause significant tumor inhibition in a Ce6 dose dependent manner. Additionally, the combination of PDT and intratumoral radionuclide therapy co-delivered by PRCITD provided a greater antitumor effect than either monotherapy alone. These results suggest that the PRCITD could provide a stable platform for delivering synergistic, anti

  8. Tumour-associated macrophages act as a slow-release reservoir of nano-therapeutic Pt(IV) pro-drug

    PubMed Central

    Miller, Miles A.; Zheng, Yao-Rong; Gadde, Suresh; Pfirschke, Christina; Zope, Harshal; Engblom, Camilla; Kohler, Rainer H.; Iwamoto, Yoshiko; Yang, Katherine S.; Askevold, Bjorn; Kolishetti, Nagesh; Pittet, Mikael; Lippard, Stephen J.; Farokhzad, Omid C.; Weissleder, Ralph

    2015-01-01

    Therapeutic nanoparticles (TNPs) aim to deliver drugs more safely and effectively to cancers, yet clinical results have been unpredictable owing to limited in vivo understanding. Here we use single-cell imaging of intratumoral TNP pharmacokinetics and pharmacodynamics to better comprehend their heterogeneous behaviour. Model TNPs comprising a fluorescent platinum(IV) pro-drug and a clinically tested polymer platform (PLGA-b-PEG) promote long drug circulation and alter accumulation by directing cellular uptake toward tumour-associated macrophages (TAMs). Simultaneous imaging of TNP vehicle, its drug payload and single-cell DNA damage response reveals that TAMs serve as a local drug depot that accumulates significant vehicle from which DNA-damaging Pt payload gradually releases to neighbouring tumour cells. Correspondingly, TAM depletion reduces intratumoral TNP accumulation and efficacy. Thus, nanotherapeutics co-opt TAMs for drug delivery, which has implications for TNP design and for selecting patients into trials. PMID:26503691

  9. Drug Metabolism within the Brain Changes Drug Response: Selective Manipulation of Brain CYP2B Alters Propofol Effects

    PubMed Central

    Khokhar, Jibran Y; Tyndale, Rachel F

    2011-01-01

    Drug-metabolizing cytochrome P450 (CYPs) enzymes are expressed in the liver, as well as in extrahepatic tissues such as the brain. Here we show for the first time that drug metabolism by a CYP within the brain, illustrated using CYP2B and the anesthetic propofol (2, 6-diisopropylphenol, Diprivan), can meaningfully alter the pharmacological response to a CNS acting drug. CYP2B is expressed in the brains of animals and humans, and this CYP isoform is able to metabolize centrally acting substrates such as propofol, ecstasy, and serotonin. Rats were given intracerebroventricularly (i.c.v.) injections of vehicle, C8-xanthate, or 8-methoxypsoralen (CYP2B mechanism-based inhibitors) and then tested for sleep time following propofol (80 mg/kg intraperitoneally). Both inhibitors significantly increased sleep-time (1.8- to 2-fold) and brain propofol levels, while having no effect on plasma propofol levels. Seven days of nicotine treatment can induce the expression of brain, but not hepatic, CYP2B, and this induction reduced propofol sleep times by 2.5-fold. This reduction was reversed in a dose-dependent manner by i.c.v. injections of inhibitor. Sleep times correlated with brain (r=0.76, P=0.0009), but not plasma (r=0.24, P=0.39) propofol concentrations. Inhibitor treatments increased brain, but not plasma, propofol levels, and had no effect on hepatic enzyme activity. These data indicate that brain CYP2B can metabolize neuroactive substrates (eg, propofol) and can alter their pharmacological response. This has wider implications for localized CYP-mediated metabolism of drugs, neurotransmitters, and neurotoxins within the brain by this highly variable enzyme family and other CYP subfamilies expressed in the brain. PMID:21107310

  10. Modified chitosan thermosensitive hydrogel enables sustained and efficient anti-tumor therapy via intratumoral injection.

    PubMed

    Jiang, Yingchun; Meng, Xuanyu; Wu, Zhenghong; Qi, Xiaole

    2016-06-25

    Thermosensitive in situ hydrogels are potential candidates to achieve intratumoral administration, nevertheless their weak mechanical strength always lead to serious drug leakage and burst. Herein, we developed a chitosan based thermosensitive hydrogel of high mechanical strength, which was modified by glutaraldehyde (GA) and polyvinyl alcohol (PVA), for intratumoral delivery of paclitaxel (PTX). The modified hydrogel system could achieve sol-gel transition at 35.79±0.4°C and exhibit a 7.03-fold greater mechanical strength compared with simple chitosan hydrogel. Moreover, the drug release of PTX loaded modified hydrogel in PBS (pH 7.4) was found to be extended to 13 days. After intratumoral administration in mice bearing H22 tumors, PTX-loaded modified hydrogels exhibited a 3.72-fold greater antitumor activity compared with Taxol(®). Overall, these modified hydrogel systems demonstrated to be a promising way to achieve efficient sustained release and enhanced anti-tumor therapy efficiency of anticancer drugs through in situ tumor injectable administration. PMID:27083815

  11. Altering Antimalarial Drug Regimens May Dramatically Enhance and Restore Drug Effectiveness.

    PubMed

    Kay, Katherine; Hodel, Eva Maria; Hastings, Ian M

    2015-10-01

    There is considerable concern that malaria parasites are starting to evolve resistance to the current generation of antimalarial drugs, the artemisinin-based combination therapies (ACTs). We use pharmacological modeling to investigate changes in ACT effectiveness likely to occur if current regimens are extended from 3 to 5 days or, alternatively, given twice daily over 3 days. We show that the pharmacology of artemisinins allows both regimen changes to substantially increase the artemisinin killing rate. Malaria patients rarely contain more than 10(12) parasites, while the standard dosing regimens allow approximately 1 in 10(10) parasites to survive artemisinin treatment. Parasite survival falls dramatically, to around 1 in 10(17) parasites if the dose is extended or split; theoretically, this increase in drug killing appears to be more than sufficient to restore failing ACT efficacy. One of the most widely used dosing regimens, artemether-lumefantrine, already successfully employs a twice-daily dosing regimen, and we argue that twice-daily dosing should be incorporated into all ACT regimen design considerations as a simple and effective way of ensuring the continued long-term effectiveness of ACTs. PMID:26239993

  12. Altering Antimalarial Drug Regimens May Dramatically Enhance and Restore Drug Effectiveness

    PubMed Central

    Hodel, Eva Maria; Hastings, Ian M.

    2015-01-01

    There is considerable concern that malaria parasites are starting to evolve resistance to the current generation of antimalarial drugs, the artemisinin-based combination therapies (ACTs). We use pharmacological modeling to investigate changes in ACT effectiveness likely to occur if current regimens are extended from 3 to 5 days or, alternatively, given twice daily over 3 days. We show that the pharmacology of artemisinins allows both regimen changes to substantially increase the artemisinin killing rate. Malaria patients rarely contain more than 1012 parasites, while the standard dosing regimens allow approximately 1 in 1010 parasites to survive artemisinin treatment. Parasite survival falls dramatically, to around 1 in 1017 parasites if the dose is extended or split; theoretically, this increase in drug killing appears to be more than sufficient to restore failing ACT efficacy. One of the most widely used dosing regimens, artemether-lumefantrine, already successfully employs a twice-daily dosing regimen, and we argue that twice-daily dosing should be incorporated into all ACT regimen design considerations as a simple and effective way of ensuring the continued long-term effectiveness of ACTs. PMID:26239993

  13. Drugs of abuse: the highs and lows of altered mental states in the emergency department.

    PubMed

    Meehan, Timothy J; Bryant, Sean M; Aks, Steven E

    2010-08-01

    The diagnosis and management of poisoned patients presenting with alterations in mental status can be challenging, as patients are often unable (or unwilling) to provide an adequate history. Several toxidromes exist. Recognition hinges upon vital signs and the physical examination. Understanding these "toxic syndromes" may guide early therapy and management, providing insight into the patient's underlying medical problem. Despite toxidrome recognition guiding antidotal therapy, the fundamental aspect of managing these patients involves meticulous supportive care. The authors begin with a discussion of various toxidromes and then delve into the drugs responsible for each syndrome. They conclude with a discussion on drug-facilitated sexual assault ("date rape"), which is both an underrecognized problem in the emergency department (ED) and representative of the drug-related problems faced in a modern ED. PMID:20709248

  14. Short-term fasting alters cytochrome P450-mediated drug metabolism in humans.

    PubMed

    Lammers, Laureen A; Achterbergh, Roos; de Vries, Emmely M; van Nierop, F Samuel; Klümpen, Heinz-Josef; Soeters, Maarten R; Boelen, Anita; Romijn, Johannes A; Mathôt, Ron A A

    2015-06-01

    Experimental studies indicate that short-term fasting alters drug metabolism. However, the effects of short-term fasting on drug metabolism in humans need further investigation. Therefore, the aim of this study was to evaluate the effects of short-term fasting (36 h) on P450-mediated drug metabolism. In a randomized crossover study design, nine healthy subjects ingested a cocktail consisting of five P450-specific probe drugs [caffeine (CYP1A2), S-warfarin (CYP2C9), omeprazole (CYP2C19), metoprolol (CYP2D6), and midazolam (CYP3A4)] on two occasions (control study after an overnight fast and after 36 h of fasting). Blood samples were drawn for pharmacokinetic analysis using nonlinear mixed effects modeling. In addition, we studied in Wistar rats the effects of short-term fasting on hepatic mRNA expression of P450 isoforms corresponding with the five studied P450 enzymes in humans. In the healthy subjects, short-term fasting increased oral caffeine clearance by 20% (P = 0.03) and decreased oral S-warfarin clearance by 25% (P < 0.001). In rats, short-term fasting increased mRNA expression of the orthologs of human CYP1A2, CYP2C19, CYP2D6, and CYP3A4 (P < 0.05), and decreased the mRNA expression of the ortholog of CYP2C9 (P < 0.001) compared with the postabsorptive state. These results demonstrate that short-term fasting alters cytochrome P450-mediated drug metabolism in a nonuniform pattern. Therefore, short-term fasting is another factor affecting cytochrome P450-mediated drug metabolism in humans. PMID:25795462

  15. Collections of simultaneously altered genes as biomarkers of cancer cell drug response.

    PubMed

    Masica, David L; Karchin, Rachel

    2013-03-15

    Computational analysis of cancer pharmacogenomics data has resulted in biomarkers predictive of drug response, but the majority of response is not captured by current methods. Methods typically select single biomarkers or groups of related biomarkers but do not account for response that is strictly dependent on many simultaneous genetic alterations. This shortcoming reflects the combinatorics and multiple-testing problem associated with many-body biologic interactions. We developed a novel approach, Multivariate Organization of Combinatorial Alterations (MOCA), to partially address these challenges. Extending on previous work that accounts for pairwise interactions, the approach rapidly combines many genomic alterations into biomarkers of drug response, using Boolean set operations coupled with optimization; in this framework, the union, intersection, and difference Boolean set operations are proxies of molecular redundancy, synergy, and resistance, respectively. The algorithm is fast, broadly applicable to cancer genomics data, is of immediate use for prioritizing cancer pharmacogenomics experiments, and recovers known clinical findings without bias. Furthermore, the results presented here connect many important, previously isolated observations. PMID:23338612

  16. Time-dependent metabolomic profiling of Ketamine drug action reveals hippocampal pathway alterations and biomarker candidates.

    PubMed

    Weckmann, K; Labermaier, C; Asara, J M; Müller, M B; Turck, C W

    2014-01-01

    Ketamine, an N-methyl-D-aspartate receptor (NMDAR) antagonist, has fast-acting antidepressant activities and is used for major depressive disorder (MDD) patients who show treatment resistance towards drugs of the selective serotonin reuptake inhibitor (SSRI) type. In order to better understand Ketamine's mode of action, a prerequisite for improved drug development efforts, a detailed understanding of the molecular events elicited by the drug is mandatory. In the present study we have carried out a time-dependent hippocampal metabolite profiling analysis of mice treated with Ketamine. After a single injection of Ketamine, our metabolomics data indicate time-dependent metabolite level alterations starting already after 2 h reflecting the fast antidepressant effect of the drug. In silico pathway analyses revealed that several hippocampal pathways including glycolysis/gluconeogenesis, pentose phosphate pathway and citrate cycle are affected, apparent by changes not only in metabolite levels but also connected metabolite level ratios. The results show that a single injection of Ketamine has an impact on the major energy metabolism pathways. Furthermore, seven of the identified metabolites qualify as biomarkers for the Ketamine drug response. PMID:25386958

  17. Dramatyping: a generic algorithm for detecting reasonable temporal correlations between drug administration and lab value alterations

    PubMed Central

    2016-01-01

    According to the World Health Organization, one of the criteria for the standardized assessment of case causality in adverse drug reactions is the temporal relationship between the intake of a drug and the occurrence of a reaction or a laboratory test abnormality. This article presents and describes an algorithm for the detection of a reasonable temporal correlation between the administration of a drug and the alteration of a laboratory value course. The algorithm is designed to process normalized lab values and is therefore universally applicable. It has a sensitivity of 0.932 for the detection of lab value courses that show changes in temporal correlation with the administration of a drug and it has a specificity of 0.967 for the detection of lab value courses that show no changes. Therefore, the algorithm is appropriate to screen the data of electronic health records and to support human experts in revealing adverse drug reactions. A reference implementation in Python programming language is available. PMID:27042396

  18. Dramatyping: a generic algorithm for detecting reasonable temporal correlations between drug administration and lab value alterations.

    PubMed

    Newe, Axel

    2016-01-01

    According to the World Health Organization, one of the criteria for the standardized assessment of case causality in adverse drug reactions is the temporal relationship between the intake of a drug and the occurrence of a reaction or a laboratory test abnormality. This article presents and describes an algorithm for the detection of a reasonable temporal correlation between the administration of a drug and the alteration of a laboratory value course. The algorithm is designed to process normalized lab values and is therefore universally applicable. It has a sensitivity of 0.932 for the detection of lab value courses that show changes in temporal correlation with the administration of a drug and it has a specificity of 0.967 for the detection of lab value courses that show no changes. Therefore, the algorithm is appropriate to screen the data of electronic health records and to support human experts in revealing adverse drug reactions. A reference implementation in Python programming language is available. PMID:27042396

  19. Subtoxic Alterations in Hepatocyte-Derived Exosomes: An Early Step in Drug-Induced Liver Injury?

    PubMed

    Holman, Natalie S; Mosedale, Merrie; Wolf, Kristina K; LeCluyse, Edward L; Watkins, Paul B

    2016-06-01

    Drug-induced liver injury (DILI) is a significant clinical and economic problem in the United States, yet the mechanisms that underlie DILI remain poorly understood. Recent evidence suggests that signaling molecules released by stressed hepatocytes can trigger immune responses that may be common across DILI mechanisms. Extracellular vesicles released by hepatocytes, principally hepatocyte-derived exosomes (HDEs), may constitute one such signal. To examine HDE alterations as a function of drug-induced stress, this work utilized prototypical hepatotoxicant acetaminophen (APAP) in male Sprague-Dawley (SD) rats, SD rat hepatocytes, and primary human hepatocytes. HDE were isolated using ExoQuick precipitation reagent and analyzed by quantification of the liver-specific RNAs albumin and microRNA-122 (miR-122). In vivo, significant elevations in circulating exosomal albumin mRNA were observed at subtoxic APAP exposures. Significant increases in exosomal albumin mRNA were also observed in primary rat hepatocytes at subtoxic APAP concentrations. In primary human hepatocytes, APAP elicited increases in both exosomal albumin mRNA and exosomal miR-122 without overt cytotoxicity. However, the number of HDE produced in vitro in response to APAP did not increase with exosomal RNA quantity. We conclude that significant drug-induced alterations in the liver-specific RNA content of HDE occur at subtoxic APAP exposures in vivo and in vitro, and that these changes appear to reflect selective packaging rather than changes in exosome number. The current findings demonstrate that translationally relevant HDE alterations occur in the absence of overt hepatocellular toxicity, and support the hypothesis that HDE released by stressed hepatocytes may mediate early immune responses in DILI. PMID:26962055

  20. Factors Controlling the Pharmacokinetics, Biodistribution and Intratumoral Penetration of Nanoparticles

    PubMed Central

    Ernsting, Mark J.; Murakami, Mami; Roy, Aniruddha; Li, Shyh-Dar

    2014-01-01

    Nanoparticle drug delivery to the tumor is impacted by multiple factors: nanoparticles must evade clearance by renal filtration and the reticuloendothelial system, extravasate through the enlarged endothelial gaps in tumors, penetrate through dense stroma in the tumor microenvironment to reach the tumor cells, remain in the tumor tissue for a prolonged period of time, and finally release the active agent to induce pharmacological effect. The physicochemical properties of nanoparticles such as size, shape, surface charge, surface chemistry (PEGylation, ligand conjugation) and composition affect the pharmacokinetics, biodistribution, intratumoral penetration and tumor bioavailability. On the other hand, tumor biology (blood flow, perfusion, permeability, interstitial fluid pressure and stroma content) and patient characteristics (age, gender, tumor type, tumor location, body composition and prior treatments) also have impact on drug delivery by nanoparticles. It is now believed that both nanoparticles and the tumor microenvironment have to be optimized or adjusted for optimal delivery. This review provides a comprehensive summary of how these nanoparticle and biological factors impact nanoparticle delivery to tumors, with discussion on how the tumor microenvironment can be adjusted and how patients can be stratified by imaging methods to receive the maximal benefit of nanomedicine. Perspectives and future directions are also provided. PMID:24075927

  1. Current Approaches for Improving Intratumoral Accumulation and Distribution of Nanomedicines

    PubMed Central

    Durymanov, Mikhail O; Rosenkranz, Andrey A; Sobolev, Alexander S

    2015-01-01

    The ability of nanoparticles and macromolecules to passively accumulate in solid tumors and enhance therapeutic effects in comparison with conventional anticancer agents has resulted in the development of various multifunctional nanomedicines including liposomes, polymeric micelles, and magnetic nanoparticles. Further modifications of these nanoparticles have improved their characteristics in terms of tumor selectivity, circulation time in blood, enhanced uptake by cancer cells, and sensitivity to tumor microenvironment. These “smart” systems have enabled highly effective delivery of drugs, genes, shRNA, radioisotopes, and other therapeutic molecules. However, the resulting therapeutically relevant local concentrations of anticancer agents are often insufficient to cause tumor regression and complete elimination. Poor perfusion of inner regions of solid tumors as well as vascular barrier, high interstitial fluid pressure, and dense intercellular matrix are the main intratumoral barriers that impair drug delivery and impede uniform distribution of nanomedicines throughout a tumor. Here we review existing methods and approaches for improving tumoral uptake and distribution of nano-scaled therapeutic particles and macromolecules (i.e. nanomedicines). Briefly, these strategies include tuning physicochemical characteristics of nanomedicines, modulating physiological state of tumors with physical impacts or physiologically active agents, and active delivery of nanomedicines using cellular hitchhiking. PMID:26155316

  2. Trochlear Nerve Schwannoma With Repeated Intratumoral Hemorrhage.

    PubMed

    Liu, Pengfei; Bao, Yuhai; Zhang, Wenchuan

    2016-09-01

    Trochlear nerve schwannoma is extremely rare, with only 35 pathologically confirmed patients being reported in the literature. Here, the authors report a patient of trochlear nerve schwannoma in the prepontine cistern manifesting as facial pain and double vision and presenting the image characteristics of repeated intratumoral hemorrhage, which has never been reported in the literature. Total tumor along with a portion of the trochlear nerve was removed by using a retrosigmoid approach. Facial pain disappeared after operation, and the diplopia remained. Follow-up studies have shown no tumor recurrence for 2 years and the simultaneous alleviation of diplopia. Information regarding the clinical presentation, radiological features and surgical outcomes of trochlear nerve schwannoma are discussed and reviewed in the paper. PMID:27607129

  3. Smart design of intratumoral thermosensitive β-lapachone hydrogels by Artificial Neural Networks.

    PubMed

    Díaz-Rodríguez, P; Landin, M

    2012-08-20

    This study presents Artificial Neural Networks (ANN) as a tool for designing injectable intratumoral formulations of the anticancer drug β-lapachone. This methodology permits insight into the interactions between variables and determines the design space of the formulation without the restrictions of an experimental design. An ANN model for two critical parameters of the formulations; the amount of solubilized drug and gel temperature was developed and validated. The model allowed an understanding of interactions between ingredients in the formulation and the fundamental phenomena as the formation of polypseudorotaxanes to be detected and quantified. PMID:22613207

  4. Modifying drug-reinforced behavior by altering the economic conditions of the drug and a nondrug reinforcer.

    PubMed Central

    Carroll, M E; Carmona, G G; May, S A

    1991-01-01

    Six rhesus monkeys were trained to self-administer orally delivered phencyclidine (0.25 mg/mL) and saccharin (0.03% wt/vol) under concurrent fixed-ratio 16 schedules. In Condition 1 the fixed-ratio requirement for phencyclidine was changed from 16 to 4, 8, 16, 32, 64, 128 and 16 while the fixed-ratio requirement for saccharin deliveries remained constant at 16. In Condition 2 the fixed-ratio value for saccharin was systematically altered while the fixed-ratio requirement for phencyclidine remained at 16, and in Condition 3 the fixed-ratio requirements for both phencyclidine and saccharin were altered simultaneously. Water was then substituted for saccharin, and the series of fixed-ratio manipulations was replicated. The phencyclidine concentration was reduced to 0.125 mg/mL and Conditions 1 and 3 were repeated. When the fixed-ratio requirement for phencyclidine was increased and the fixed-ratio requirement for saccharin or water remained fixed at 16, phencyclidine deliveries decreased when saccharin (vs. water) was concurrently available. The magnitude of the decrease ranged from 20% to 90% (of the concurrent water condition) as the fixed-ratio requirement for phencyclidine increased from 4 to 128. When the fixed-ratio requirement for phencyclidine remained at 16 and the fixed-ratio requirements for concurrent saccharin or water varied between 4 and 128, phencyclidine deliveries decreased by 30% to 40% due to the concurrent availability of saccharin (vs. water). This decrease occurred only at the three lowest fixed-ratio values when saccharin intake was relatively high. When the fixed-ratio requirements for both phencyclidine and concurrent saccharin or water were varied simultaneously, phencyclidine deliveries were reduced from 20% to 45% when saccharin (vs. water) was concurrently present. There was little effect of reducing the phencyclidine concentration when the data were analyzed in terms of unit price (responses per milligram). Thus, changes in the fixed

  5. Functional network alterations and their structural substrate in drug-resistant epilepsy

    PubMed Central

    Caciagli, Lorenzo; Bernhardt, Boris C.; Hong, Seok-Jun; Bernasconi, Andrea; Bernasconi, Neda

    2014-01-01

    The advent of MRI has revolutionized the evaluation and management of drug-resistant epilepsy by allowing the detection of the lesion associated with the region that gives rise to seizures. Recent evidence indicates marked chronic alterations in the functional organization of lesional tissue and large-scale cortico-subcortical networks. In this review, we focus on recent methodological developments in functional MRI (fMRI) analysis techniques and their application to the two most common drug-resistant focal epilepsies, i.e., temporal lobe epilepsy related to mesial temporal sclerosis and extra-temporal lobe epilepsy related to focal cortical dysplasia. We put particular emphasis on methodological developments in the analysis of task-free or “resting-state” fMRI to probe the integrity of intrinsic networks on a regional, inter-regional, and connectome-wide level. In temporal lobe epilepsy, these techniques have revealed disrupted connectivity of the ipsilateral mesiotemporal lobe, together with contralateral compensatory reorganization and striking reconfigurations of large-scale networks. In cortical dysplasia, initial observations indicate functional alterations in lesional, peri-lesional, and remote neocortical regions. While future research is needed to critically evaluate the reliability, sensitivity, and specificity, fMRI mapping promises to lend distinct biomarkers for diagnosis, presurgical planning, and outcome prediction. PMID:25565942

  6. Intratumoral chemotherapy for lung cancer: re-challenge current targeted therapies

    PubMed Central

    Hohenforst-Schmidt, Wolfgang; Zarogoulidis, Paul; Darwiche, Kaid; Vogl, Thomas; Goldberg, Eugene P; Huang, Haidong; Simoff, Michael; Li, Qiang; Browning, Robert; Turner, Francis J; Le Pivert, Patrick; Spyratos, Dionysios; Zarogoulidis, Konstantinos; Celikoglu, Seyhan I; Celikoglu, Firuz; Brachmann, Johannes

    2013-01-01

    Strategies to enhance the already established doublet chemotherapy regimen for lung cancer have been investigated for more than 20 years. Initially, the concept was to administer chemotherapy drugs locally to the tumor site for efficient diffusion through passive transport within the tumor. Recent advances have enhanced the diffusion of pharmaceuticals through active transport by using pharmaceuticals designed to target the genome of tumors. In the present study, five patients with non-small cell lung cancer epidermal growth factor receptor (EGFR) negative stage IIIa–IV International Union Against Cancer 7 (UICC-7), and with Eastern Cooperative Oncology Group (ECOG) 2 scores were administered platinum-based doublet chemotherapy using combined intratumoral-regional and intravenous route of administration. Cisplatin analogues were injected at 0.5%–1% concentration within the tumor lesion and proven malignant lymph nodes according to pretreatment histological/cytological results and the concentration of systemic infusion was decreased to 70% of a standard protocol. This combined intravenous plus intratumoral-regional chemotherapy is used as a first line therapy on this short series of patients. To the best of our knowledge this is the first report of direct treatment of involved lymph nodes with cisplatin by endobronchial ultrasound drug delivery with a needle without any adverse effects. The initial overall survival and local response are suggestive of a better efficacy compared to established doublet cisplatin–based systemic chemotherapy in (higher) standard concentrations alone according to the UICC 7 database expected survival. An extensive search of the literature was performed to gather information of previously published literature of intratumoral chemo-drug administration and formulation for this treatment modality. Our study shows a favorable local response, more than a 50% reduction, for a massive tumor mass after administration of five sessions of

  7. Intra-tumor heterogeneity: lessons from microbial evolution and clinical implications.

    PubMed

    de Bruin, Elza C; Taylor, Tiffany B; Swanton, Charles

    2013-01-01

    Multiple subclonal populations of tumor cells can coexist within the same tumor. This intra-tumor heterogeneity will have clinical implications and it is therefore important to identify factors that drive or suppress such heterogeneous tumor progression. Evolutionary biology can provide important insights into this process. In particular, experimental evolution studies of microbial populations, which exist as clonal populations that can diversify into multiple subclones, have revealed important evolutionary processes driving heterogeneity within a population. There are transferrable lessons that can be learnt from these studies that will help us to understand the process of intra-tumor heterogeneity in the clinical setting. In this review, we summarize drivers of microbial diversity that have been identified, such as mutation rate and environmental influences, and discuss how knowledge gained from microbial experimental evolution studies may guide us to identify and understand important selective factors that promote intra-tumor heterogeneity. Furthermore, we discuss how these factors could be used to direct and optimize research efforts to improve patient care, focusing on therapeutic resistance. Finally, we emphasize the need for longitudinal studies to address the impact of these potential tumor heterogeneity-promoting factors on drug resistance, metastatic potential and clinical outcome. PMID:24267946

  8. The anti-melanoma efficiency of the intratumoral injection of cucurbitacin-loaded sustained release carriers: in situ-forming implants.

    PubMed

    Guo, Jianbo; Wang, Junwei; Cai, Chenchen; Xu, Jinghua; Yu, Hongdan; Xu, Hui; Xing, Tang

    2015-08-01

    Our previous studies revealed that the PLGA-based particulate systems loaded with cucurbitacin showed limited anti-melanoma efficiency in xenograft animal models after intratumoral injection, which was due to the undesirable initial burst release and the leakage of the particulate carriers from the injection site through the pinhole. In this paper, two categories of in situ-forming implants (ISFIs) for intratumoral injection, PLGA ISFIs and SAIB ISFIs, were systemically evaluated for their potentials for on solid tumor treatment via intratumoral injection. The in vitro drug release profiles of these two ISFIs were different due to the different sol-gel transition properties. The pharmacodynamics results revealed that SAIB ISFIs displayed obvious therapeutic efficiencies to melanoma, and multi-points injection of SASIB ISFIs displayed better efficiency than single-point injection. The different sol-gel transition properties and mechanism for PLGA ISFIs and SAIB ISFIs affected both the drug release and strongly impacted the pharmacokinetic parameters and pharmacodynamic effectiveness. Also, the adhesive property of SAIB to the local tissue could extend the retention and inhibit the leakage of the SAIB ISFIs, thus enhanced the anticancer effectiveness. Comparison of the various intratumoral injection systems, appropriate drug release profiles (lower initial burst and steady release) and good retention (minimum leakage from the injection site) would benefit to the antitumor effects of the intratumoral depots. PMID:25609378

  9. Alterations of prefrontal cortical microRNAs in methamphetamine self-administering rats: From controlled drug intake to escalated drug intake.

    PubMed

    Du, Hao-Yue; Cao, Dan-Ni; Chen, Ying; Wang, Lv; Wu, Ning; Li, Jin

    2016-01-12

    Drug addiction is a process that transits from recreative and regular drug use into compulsive drug use. The two patterns of drug use, controlled drug intake and escalated drug intake, represent different stages in the development of drug addiction; and escalation of drug use is a hallmark of addiction. Accumulating studies indicate that microRNAs (miRNAs) play key regulatory roles in drug addiction. However, the molecular adaptations in escalation of drug use, as well as the difference in the adaptations between escalated and controlled drug use, remain unclear. In the present study, 28 altered miRNAs in the prefrontal cortex (PFC) were found in the groups of controlled methamphetamine self-administration (1h/session) and escalated self-administration (6h/session), and some of them were validated. Compared with saline control group, miR-186 was verified to be up-regulated while miR-195 and miR-329 were down-regulated in the rats with controlled methamphetamine use. In the rats with escalated drug use, miR-127, miR-186, miR-222 and miR-24 were verified to be up-regulated while miR-329 was down-regulated compared with controls. Furthermore, bioinformatic analysis indicated that the predicted targets of these verified miRNAs involved in the processes of neuronal apoptosis and synaptic plasticity. However, the putative regulated molecules may be different between controlled and escalated drug use groups. Taken together, we detected the altered miRNAs in rat PFC under the conditions of controlled methamphetamine use and escalated use respectively, which may extend our understanding of the molecular adaptations underlying the transition from controlled drug use to addiction. PMID:26592480

  10. Intratumor Heterogeneity and Branched Evolution Revealed by Multiregion Sequencing

    PubMed Central

    Math, M.; Tarpey, Patrick; Varela, Ignacio; Phillimore, Benjamin; Begum, Sharmin; McDonald, Neil Q.; Butler, Adam; Jones, David; Raine, Keiran; Latimer, Calli; Santos, Claudio R.; Nohadani, Mahrokh; Eklund, Aron C.; Spencer-Dene, Bradley; Clark, Graham; Pickering, Lisa; Stamp, Gordon; Gore, Martin; Szallasi, Zoltan; Downward, Julian; Futreal, P. Andrew

    2016-01-01

    Background Intratumor heterogeneity may foster tumor evolution and adaptation and hinder personalized-medicine strategies that depend on results from single tumor-biopsy samples. Methods To examine intratumor heterogeneity, we performed exome sequencing, chromosome aberration analysis, and ploidy profiling on multiple spatially separated samples obtained from primary renal carcinomas and associated metastatic sites. We characterized the consequences of intratumor heterogeneity using immunohistochemical analysis, mutation functional analysis, and profiling of messenger RNA expression. Results Phylogenetic reconstruction revealed branched evolutionary tumor growth, with 63 to 69% of all somatic mutations not detectable across every tumor region. Intratumor heterogeneity was observed for a mutation within an autoinhibitory domain of the mammalian target of rapamycin (mTOR) kinase, correlating with S6 and 4EBP phosphorylation in vivo and constitutive activation of mTOR kinase activity in vitro. Mutational intratumor heterogeneity was seen for multiple tumor-suppressor genes converging on loss of function; SETD2, PTEN, and KDM5C underwent multiple distinct and spatially separated inactivating mutations within a single tumor, suggesting convergent phenotypic evolution. Gene-expression signatures of good and poor prognosis were detected in different regions of the same tumor. Allelic composition and ploidy profiling analysis revealed extensive intratumor heterogeneity, with 26 of 30 tumor samples from four tumors harboring divergent allelic-imbalance profiles and with ploidy heterogeneity in two of four tumors. Conclusions Intratumor heterogeneity can lead to underestimation of the tumor genomics landscape portrayed from single tumor-biopsy samples and may present major challenges to personalized-medicine and biomarker development. Intratumor heterogeneity, associated with heterogeneous protein function, may foster tumor adaptation and therapeutic failure through

  11. Intratumoral Hemorrhage in a Patient With Cerebellar Hemangioblastoma

    PubMed Central

    Wang, Zhen; Hu, Jun; Xu, Liang; Malaguit, Jay; Chen, Sheng

    2015-01-01

    Abstract Spontaneous hemorrhage is rarely associated with hemangioblastomas. Intratumoral hemorrhage occurring in cerebellar hemangioblastomas is more rare. A 25-year-old man was admitted to our hospital with headache. We found a round cystic lesion with solid part in the right cerebellum. The lesion was resected. The final pathological diagnosis was hemangioblastomas. The radiological features of this case were similar to normal hemangioblastomas, whereas our histological examination showed the occurrence of the intratumoral hemorrhage. If the hemangioblastoma ruptures in our case, the outcome of the patient will be worse. It is difficult to identify the intratumoral hemorrhage of hemangioblastomas and quite dangerous if it is diagnosed late. Diagnosing an intratumoral hemorrhage of hemangioblastomas still needs a further discussion. Genetic screening may help us make an early diagnosis. Furthermore, the mechanism about intratumoral hemorrhage of hemangioblastomas remains unknown. The mutation of D6Mit135 gene on chromosome 6 may be responsible for the vascular dilation and hemorrhage induction in the hemangioblastomas. Tumor size, upregulation of vascular endothelial growth factor, spinalradicular location, and solid type are also factors relating to the hemorrhage of hemangioblastomas. The purpose of reporting our case is 2-fold: to remind clinicians to consider the possibility of internal hemorrhaging while diagnosing this disease, and provide a starting point to discuss mechanisms regarding the intratumoral hemorrhage of hemangioblastomas. PMID:25634201

  12. [Drug-induced alteration of the alveolar content of pulmonary surfactant ].

    PubMed

    Alcindor, L G

    1982-05-01

    Pulmonary surfactant is a lipoprotein made up mostly of tensio-active phospholipids. It is synthesized by type II pneumocytes and accumulates as lamellar bodies before being excreted into pulmonary alveoli where it fills intercellular spaces and results in a liquid film (about 1 micron thick) covering the alveolar wall. Surfactant turnover occurs through the action of phospholipases from the alveolus or pneumocytes. Level of alveolar surfactant dependents on the ratio of synthesis and degradation of its principal constituent, dipalmitoyl-phosphatidylcholine. Many substances are known to be able of alter this ratio. Among these, synthetic glucocorticosteroids appear to be the most active in increasing alveolar surfactant. The multiple possible sites of action of these steroids explain their relative efficacy in the prevention of respiratory distress in humans. Studies in progress should increase the number and the quality of drugs available for this purpose. PMID:6896976

  13. Direct intratumoral infusion of liposome encapsulated rhenium radionuclides for cancer therapy: Effects of nonuniform intratumoral dose distribution

    SciTech Connect

    Hrycushko, Brian A.; Li Shihong; Goins, Beth; Otto, Randal A.; Bao, Ande

    2011-03-15

    Purpose: Focused radiation therapy by direct intratumoral infusion of lipid nanoparticle (liposome)-carried beta-emitting radionuclides has shown promising results in animal model studies; however, little is known about the impact the intratumoral liposomal radionuclide distribution may have on tumor control. The primary objective of this work was to investigate the effects the intratumoral absorbed dose distributions from this cancer therapy modality have on tumor control and treatment planning by combining dosimetric and radiobiological modeling with in vivo imaging data. Methods: {sup 99m}Tc-encapsulated liposomes were intratumorally infused with a single injection location to human head and neck squamous cell carcinoma xenografts in nude rats. High resolution in vivo planar imaging was performed at various time points for quantifying intratumoral retention following infusion. The intratumoral liposomal radioactivity distribution was obtained from 1 mm resolution pinhole collimator SPECT imaging coregistered with CT imaging of excised tumors at 20 h postinfusion. Coregistered images were used for intratumoral dosimetric and radiobiological modeling at a voxel level following extrapolation to the therapeutic analogs, {sup 186}Re/{sup 188}Re liposomes. Effective uniform dose (EUD) and tumor control probability (TCP) were used to assess therapy effectiveness and possible methods of improving upon tumor control with this radiation therapy modality. Results: Dosimetric analysis showed that average tumor absorbed doses of 8.6 Gy/MBq (318.2 Gy/mCi) and 5.7 Gy/MBq (209.1 Gy/mCi) could be delivered with this protocol of radiation delivery for {sup 186}Re/{sup 188}Re liposomes, respectively, and 37-92 MBq (1-2.5 mCi)/g tumor administered activity; however, large intratumoral absorbed dose heterogeneity, as seen in dose-volume histograms, resulted in insignificant values of EUD and TCP for achieving tumor control. It is indicated that the use of liposomes encapsulating

  14. Drug-induced and genetic alterations in stress-responsive systems: Implications for specific addictive diseases.

    PubMed

    Zhou, Yan; Proudnikov, Dmitri; Yuferov, Vadim; Kreek, Mary Jeanne

    2010-02-16

    From the earliest work in our laboratory, we hypothesized, and with studies conducted in both clinical research and animal models, we have shown that drugs of abuse, administered or self-administered, on a chronic basis, profoundly alter stress-responsive systems. Alterations of expression of specific genes involved in stress responsivity, with increases or decreases in mRNA levels, receptor, and neuropeptide levels, and resultant changes in hormone levels, have been documented to occur after chronic intermittent exposure to heroin, morphine, other opiates, cocaine, other stimulants, and alcohol in animal models and in human molecular genetics. The best studied of the stress-responsive systems in humans and mammalian species in general is undoubtedly the HPA axis. In addition, there are stress-responsive systems in other parts in the brain itself, and some of these include components of the HPA axis, such as CRF and CRF receptors, along with POMC gene and gene products. Several other stress-responsive systems are known to influence the HPA axis, such as the vasopressin-vasopressin receptor system. Orexin-hypocretin, acting at its receptors, may effect changes which suggest that it should be properly categorized as a stress-responsive system. However, less is known about the interactions and connectivity of some of these different neuropeptide and receptor systems, and in particular, about the possible connectivity of fast-acting (e.g., glutamate and GABA) and slow-acting (including dopamine, serotonin, and norepinephrine) neurotransmitters with each of these stress-responsive components and the resultant impact, especially in the setting of chronic exposure to drugs of abuse. Several of these stress-responsive systems and components, primarily based on our laboratory-based and human molecular genetics research of addictive diseases, will be briefly discussed in this review. PMID:19914222

  15. Drug-induced and Genetic Alterations in Stress-Responsive Systems: Implications for Specific Addictive Diseases

    PubMed Central

    Zhou, Yan; Proudnikov, Dmitri; Yuferov, Vadim; Kreek, Mary Jeanne

    2009-01-01

    From the earliest work in our laboratory, we hypothesized, and with studies conducted in both clinical research and animal models, we have shown that drugs of abuse, administered or self-administered, on a chronic basis, profoundly alter stress-responsive systems. Alterations of expression of specific genes involved in stress responsivity, with increases or decreases in mRNA levels, receptor and neuropeptide levels, and resultant changes in hormone levels, have been documented to occur after chronic intermittent exposure to heroin, morphine, other opiates, cocaine, other stimulants and alcohol in animal models and in human molecular genetics. The best studied of the stress-responsive systems in humans and mammalian species in general is undoubtedly the HPA axis. In addition, there are stress-responsive systems in other parts in the brain itself, and some of these include components of the HPA axis, such as CRF and CRF receptors, along with POMC gene and gene products. Several other stress-responsive systems are known to influence the HPA axis, such as the vasopressin-vasopressin receptor system. Orexin-hypocretin, acting at its receptors, may effect changes which suggest that it should be properly categorized as a stress-responsive system. However, less is known about the interactions and connectivity of some of these different neuropeptide and receptor systems, and in particular, about the possible connectivity of fast-acting (e.g., glutamate and GABA) and slow-acting (including dopamine, serotonin and norepinephrine) neurotransmitters with each of these stress-responsive components and the resultant impact, especially in the setting of chronic exposure to drugs of abuse. Several of these stress-responsive systems and components, primarily based on our laboratory-based and human molecular genetics research of addictive diseases, will be briefly discussed in this review. PMID:19914222

  16. Towards inverse modeling of intratumor heterogeneity

    NASA Astrophysics Data System (ADS)

    Brutovsky, Branislav; Horvath, Denis

    2015-08-01

    Development of resistance limits efficiency of present anticancer therapies and preventing it remains a big challenge in cancer research. It is accepted, at the intuitive level, that resistance emerges as a consequence of the heterogeneity of cancer cells at the molecular, genetic and cellular levels. Produced by many sources, tumor heterogeneity is extremely complex time dependent statistical characteristics which may be quantified by measures defined in many different ways, most of them coming from statistical mechanics. In this paper, we apply the Markovian framework to relate population heterogeneity to the statistics of the environment. As, from an evolutionary viewpoint, therapy corresponds to a purposeful modi- fication of the cells' fitness landscape, we assume that understanding general relationship between the spatiotemporal statistics of a tumor microenvironment and intratumor heterogeneity will allow to conceive the therapy as an inverse problem and to solve it by optimization techniques. To account for the inherent stochasticity of biological processes at cellular scale, the generalized distancebased concept was applied to express distances between probabilistically described cell states and environmental conditions, respectively.

  17. Alteration of the diffusional barrier property of the nail leads to greater terbinafine drug loading and permeation.

    PubMed

    Nair, Anroop B; Sammeta, Srinivasa M; Kim, Hyun D; Chakraborty, Bireswar; Friden, Phillip M; Murthy, S Narasimha

    2009-06-22

    The diffusional barrier property of biological systems varies with ultrastructural organization of the tissues and/or cells, and often plays an important role in drug delivery. The nail plate is a thick, hard and impermeable membrane which makes topical nail drug delivery challenging. The current study investigated the effect of physical and chemical alteration of the nail on the trans-ungual drug delivery of terbinafine hydrochloride (TH) under both passive and iontophoretic conditions. Physical alterations were carried out by dorsal or ventral nail layer abrasion, while chemical alterations were performed by defatting or keratolysis or ionto-keratolysis of the nails. Terbinafine permeation into and across the nail plate following various nail treatments showed similar trends in both passive and iontophoretic delivery, although the extent of drug delivery varied with treatment. Application of iontophoresis to the abraded nails significantly improved (P<0.05) TH permeation and loading compared to abraded nails without iontophoresis or normal nails with iontophoresis. Drug permeation was not enhanced when the nail plate was defatted. Keratolysis moderately enhanced the permeation but not the drug load. Ionto-keratolysis enhanced TH permeation and drug load significantly (P<0.05) during passive and iontophoretic delivery as compared to untreated nails. Ionto-keratolysis may be more efficient in permeabilization of nail plates than long term exposure to keratolysing agents. PMID:19481686

  18. Re-Directing an Alkylating Agent to Mitochondria Alters Drug Target and Cell Death Mechanism

    PubMed Central

    Wisnovsky, Simon P.; Pereira, Mark P.; Wang, Xiaoming; Hurren, Rose; Parfitt, Jeremy; Larsen, Lesley; Smith, Robin A. J.; Murphy, Michael P.; Schimmer, Aaron D.; Kelley, Shana O.

    2013-01-01

    We have successfully delivered a reactive alkylating agent, chlorambucil (Cbl), to the mitochondria of mammalian cells. Here, we characterize the mechanism of cell death for mitochondria-targeted chlorambucil (mt-Cbl) in vitro and assess its efficacy in a xenograft mouse model of leukemia. Using a ρ° cell model, we show that mt-Cbl toxicity is not dependent on mitochondrial DNA damage. We also illustrate that re-targeting Cbl to mitochondria results in a shift in the cell death mechanism from apoptosis to necrosis, and that this behavior is a general feature of mitochondria-targeted Cbl. Despite the change in cell death mechanisms, we show that mt-Cbl is still effective in vivo and has an improved pharmacokinetic profile compared to the parent drug. These findings illustrate that mitochondrial rerouting changes the site of action of Cbl and also alters the cell death mechanism drastically without compromising in vivo efficacy. Thus, mitochondrial delivery allows the exploitation of Cbl as a promiscuous mitochondrial protein inhibitor with promising therapeutic potential. PMID:23585833

  19. Hypoxia Alters Ocular Drug Transporter Expression and Activity in Rat and Calf Models: Implications for Drug Delivery

    PubMed Central

    Kadam, Rajendra S.; Ramamoorthy, Preveen; LaFlamme, Daniel J.; McKinsey, Timothy A.; Kompella, Uday B.

    2014-01-01

    Purpose Chronic hypoxia, a key stimulus for neovascularization, has been implicated in the pathology of proliferative diabetic retinopathy, retinopathy of prematurity and wet age related macular degeneration. The aim of the present study was to determine the effect of chronic hypoxia on drug transporter mRNA expression and activity in ocular barriers. Methods Sprague Dawley rats were exposed to hypobaric hypoxia (PB = 380 mm Hg) for 6 weeks and neonatal calves were maintained under hypobaric hypoxia (PB = 445 mm Hg) for 2 weeks. Age matched controls for rats and calves were maintained at ambient altitude and normoxia. The effect of hypoxia on transporter expression was analyzed by qRT-PCR analysis of transporter mRNA expression in hypoxic and control rat choroid-retina. Effect of hypoxia on the activity of PEPT, OCT, ATB0+, and MCT transporters was evaluated using in vitro transport studies of model transporter substrates across calf cornea and sclera-choroid-RPE (SCRPE). Results Quantitative gene expression analysis of 84 transporters in rat choroid-retina showed that 29 transporter genes were up regulated or down regulated by ≥1.5-fold in hypoxia. Nine ATP binding cassette (ABC) families of efflux transporters including MRP3, MRP4, MRP5, MRP6, MRP7, Abca17, Abc2, Abc3, and RGD1562128 were up regulated. For solute carrier family transporters, 11 transporters including SLC10a1, SLC16a3, SLC22a7, SLC22a8, SLC29a1, SLC29a2, SLC2a1, SLC3a2, SLC5a4, SLC7a11, and SLC7a4 were up regulated, while 4 transporters including SLC22a2, SLC22a9, SLC28a1, and SLC7a9 were down regulated in hypoxia. Of the 3 aquaporin (Aqp) water channels, Aqp-9 was down regulated and Aqp-1 was up regulated during hypoxia. Gene expression analysis showed down regulation of OCT-1, OCT-2, and ATB0+ and up regulation of MCT-3 in hypoxic rat choroid-retina, without any effect on the expression of PEPT-1 and PEPT-2 expression. Functional activity assays of PEPT, OCT, ATB0+, and MCT transporters in

  20. Intratumor photosensitizer injection for photodynamic therapy: Pre-clinical experience with methylene blue, Pc 4, and Photofrin

    NASA Astrophysics Data System (ADS)

    Baran, Timothy M.; Foster, Thomas H.

    2016-03-01

    Intravenous administration of some photosensitizers, including the FDA-approved Photofrin, results in significant systemic photosensitivity and a 2-3-day drug-light interval. Direct intratumor injection of photosensitizer could potentially eliminate these negative aspects of photodynamic therapy (PDT), while requiring a lower photosensitizer dose to achieve comparable drug concentration in the target tissue. We performed PDT using intratumor injection of 3 photosensitizers, methylene blue (MB), Pc 4, and Photofrin, in mouse tumor models. After a 0-15 minute drug-light interval, illumination was delivered by appropriate diode lasers. For animals receiving MB or Pc 4, surface illumination was delivered using a microlens-terminated fiber. For animals receiving Photofrin, interstitial illumination was delivered by a 1 cm diffuser. In animals receiving MB or Pc 4, tumor dimensions were measured daily post-PDT, with a cure being defined as no palpable tumor 90 days post-treatment. For Photofrin, animals were sacrificed 24 hours post-PDT and tumors were excised, with samples HE stained to assess PDT-induced necrosis. 55% of tumors were cured with MB-PDT, and significant tumor growth delay (p=0.002) was observed for Pc 4. For Photofrin PDT, the mean necrosis radius was 3.4+/-0.8 mm, compared to 2.9+/-1.3 mm for systemic administration, which was not a significant difference (p=0.58). Intratumoral injection of the photosensitizers methylene blue, Pc 4, and Photofrin is feasible, and results in appreciable tumor response. Further investigation is necessary to optimize treatment protocols and assess the systemic photosensitivity induced by intratumor injection.

  1. Effect of lipid bilayer alteration on transdermal delivery of a high-molecular-weight and lipophilic drug: studies with paclitaxel.

    PubMed

    Panchagnula, Ramesh; Desu, Hariraghuram; Jain, Amit; Khandavilli, Sateesh

    2004-09-01

    Skin forms an excellent barrier against drug permeation, due to the rigid lamellar structure of the stratum corneum (SC) lipids. Poor permeability of drugs can be enhanced through alteration in partition and diffusion coefficients, or concentration gradient of drug with an appropriate choice of solvent system, along with penetration enhancers. The aim of the current investigation was to assess applicability of lipid bilayer alteration by fatty acids and terpenes toward the permeation enhancement of a high-molecular-weight, lipophilic drug, paclitaxel (PCL) through rat skin. From among the fatty acids studied using ethanol/isopropyl myristate (1:1) vehicle, no significant enhancement in flux of PCL was observed (p > 0.05). In the case of cis mono and polyunsaturated fatty acids lag time was found to be similar to control (p > 0.05). This suggests that the permeation of a high-molecular-weight, lipophilic drug may not be enhanced by the alteration of the lipid bilayer, or the main barrier to permeation could lie in lower hydrophilic layers of skin. A significant increase in lag time was observed with trans unsaturated fatty acids unlike the cis isomers, and this was explained on the basis of conformation and preferential partitioning of fatty acids into skin. From among the terpenes, flux of PCL with cineole was significantly different from other studied terpenes and controls, and after treatment with menthol and menthone permeability was found to be reduced. Menthol and menthone cause loosening of the SC lipid bilayer due to breaking of hydrogen bonding between ceramides, resulting in penetration of water into the lipids of the SC lipid bilayer that leads to creation of new aqueous channels and is responsible for increased hydrophilicity of SC. This increased hydrophilicity of the SC bilayer might have resulted in unfavorable conditions for ethanol/isopropyl myristate (1:1) along with PCL to penetrate into skin, therefore permeability was reduced. The findings of

  2. Drug-induced alterations in the extracellular signal-regulated kinase (ERK) signalling pathway: implications for reinforcement and reinstatement.

    PubMed

    Zhai, Haifeng; Li, Yanqin; Wang, Xi; Lu, Lin

    2008-02-01

    Drug addiction, characterized by high rates of relapse, is recognized as a kind of neuroadaptive disorder. Since the extracellular signal-regulated kinase (ERK) pathway is critical to neuroplasticity in the adult brain, understanding the role this pathway plays is important for understanding the molecular mechanism underlying drug addiction and relapse. Here, we review previous literatures that focus on the effects of exposure to cocaine, amphetamine, Delta(9)-tetrahydrocannabinol (THC), nicotine, morphine, and alcohol on ERK signaling in the mesocorticolimbic dopamine system; these alterations of ERK signaling have been thought to contribute to the drug's rewarding effects and to the long-term maladaptation induced by drug abuse. We then discuss the possible upstreams of the ERK signaling pathway activated by exposure of drugs of abuse and the environmental cues previously paired with drugs. Finally, we argue that since ERK activation is a key molecular process in reinstatement of conditioned place preference and drug self-administration, the pharmacological manipulation of the ERK pathway is a potential treatment strategy for drug addiction. PMID:18041576

  3. Possible drug–drug interaction in dogs and cats resulted from alteration in drug metabolism: A mini review

    PubMed Central

    Sasaki, Kazuaki; Shimoda, Minoru

    2015-01-01

    Pharmacokinetic drug–drug interactions (in particular at metabolism) may result in fatal adverse effects in some cases. This basic information, therefore, is needed for drug therapy even in veterinary medicine, as multidrug therapy is not rare in canines and felines. The aim of this review was focused on possible drug–drug interactions in dogs and cats. The interaction includes enzyme induction by phenobarbital, enzyme inhibition by ketoconazole and fluoroquinolones, and down-regulation of enzymes by dexamethasone. A final conclusion based upon the available literatures and author’s experience is given at the end of the review. PMID:26257936

  4. Analysis of intratumor heterogeneity unravels lung cancer evolution.

    PubMed

    de Bruin, Elza C; McGranahan, Nicholas; Swanton, Charles

    2015-01-01

    Lung cancer is a disease with dismal outcome. We recently reported a detailed intratumor heterogeneity analysis in 7 non-small cell lung cancer samples, revealing spatially separated driver events as well as the temporal dynamics of mutational processes and demonstrating an important role for APOBEC-mediated heterogeneity later in disease evolution. PMID:27308463

  5. Analysis of intratumor heterogeneity unravels lung cancer evolution

    PubMed Central

    de Bruin, Elza C; McGranahan, Nicholas; Swanton, Charles

    2015-01-01

    Lung cancer is a disease with dismal outcome. We recently reported a detailed intratumor heterogeneity analysis in 7 non-small cell lung cancer samples, revealing spatially separated driver events as well as the temporal dynamics of mutational processes and demonstrating an important role for APOBEC-mediated heterogeneity later in disease evolution. PMID:27308463

  6. Chemokine nitration prevents intratumoral infiltration of antigen-specific T cells

    PubMed Central

    Ugel, Stefano; Del Pozzo, Federica; Soldani, Cristiana; Zilio, Serena; Avella, Debora; De Palma, Antonella; Mauri, PierLuigi; Monegal, Ana; Rescigno, Maria; Savino, Benedetta; Colombo, Piergiuseppe; Jonjic, Nives; Pecanic, Sanja; Lazzarato, Loretta; Fruttero, Roberta; Gasco, Alberto; Bronte, Vincenzo; Viola, Antonella

    2011-01-01

    Tumor-promoted constraints negatively affect cytotoxic T lymphocyte (CTL) trafficking to the tumor core and, as a result, inhibit tumor killing. The production of reactive nitrogen species (RNS) within the tumor microenvironment has been reported in mouse and human cancers. We describe a novel RNS-dependent posttranslational modification of chemokines that has a profound impact on leukocyte recruitment to mouse and human tumors. Intratumoral RNS production induces CCL2 chemokine nitration and hinders T cell infiltration, resulting in the trapping of tumor-specific T cells in the stroma that surrounds cancer cells. Preconditioning of the tumor microenvironment with novel drugs that inhibit CCL2 modification facilitates CTL invasion of the tumor, suggesting that these drugs may be effective in cancer immunotherapy. Our results unveil an unexpected mechanism of tumor evasion and introduce new avenues for cancer immunotherapy. PMID:21930770

  7. Intratumor heterogeneity, variability and plasticity: questioning the current concepts in classification and treatment of hepatocellular carcinoma

    PubMed Central

    2016-01-01

    In the classical view, the formation of a primary tumor is the consequence of a mutational event that first affects a single cell that subsequently passes through a multitude of consecutive hyperplastic and dysplastic stages. At the end of this pathogenetic sequence a cell arises that is potentially able to expanse infinitely having capacity to form a homogenous tumor mass. In contrary to this clonal expansion concept, the majority of primary human tumors display already a startling heterogeneity that can be reflected in different morphological features, physiological activities, and genetic diversity. In the past it was speculated that this cancer cell plasticity within a tumor is the result of an adaptive process that is induced by specific inhibiting therapies. In regard to the formation of hepatocellular carcinoma (HCC) this dogma was once challenged in a recent study that analysed tumor areas that were taken from HCC patients without medical pretreatment. Most of the analyzed samples showed highly significant intratumor heterogeneity. This affected morphological attributes, immunohistochemical stainability of five tumor-associated markers [α-fetoprotein (AFP), EpCAM, CK7, CD44 and glutamine synthetase], and integrity of genes (β-catenin and p53) that are critically involved in the pathogenesis of HCC. Altogether, this study showed that intratumor heterogeneity is a frequent finding in HCC that may contribute to treatment failure and drug resistance in HCC patients. PMID:27115013

  8. Intratumor heterogeneity, variability and plasticity: questioning the current concepts in classification and treatment of hepatocellular carcinoma.

    PubMed

    Weiskirchen, Ralf

    2016-04-01

    In the classical view, the formation of a primary tumor is the consequence of a mutational event that first affects a single cell that subsequently passes through a multitude of consecutive hyperplastic and dysplastic stages. At the end of this pathogenetic sequence a cell arises that is potentially able to expanse infinitely having capacity to form a homogenous tumor mass. In contrary to this clonal expansion concept, the majority of primary human tumors display already a startling heterogeneity that can be reflected in different morphological features, physiological activities, and genetic diversity. In the past it was speculated that this cancer cell plasticity within a tumor is the result of an adaptive process that is induced by specific inhibiting therapies. In regard to the formation of hepatocellular carcinoma (HCC) this dogma was once challenged in a recent study that analysed tumor areas that were taken from HCC patients without medical pretreatment. Most of the analyzed samples showed highly significant intratumor heterogeneity. This affected morphological attributes, immunohistochemical stainability of five tumor-associated markers [α-fetoprotein (AFP), EpCAM, CK7, CD44 and glutamine synthetase], and integrity of genes (β-catenin and p53) that are critically involved in the pathogenesis of HCC. Altogether, this study showed that intratumor heterogeneity is a frequent finding in HCC that may contribute to treatment failure and drug resistance in HCC patients. PMID:27115013

  9. The Utility of Impulsive Bias and Altered Decision Making as Predictors of Drug Efficacy and Target Selection: Rethinking Behavioral Screening for Antidepressant Drugs.

    PubMed

    Marek, Gerard J; Day, Mark; Hudzik, Thomas J

    2016-03-01

    Cognitive dysfunction may be a core feature of major depressive disorder, including affective processing bias, abnormal response to negative feedback, changes in decision making, and increased impulsivity. Accordingly, a translational medicine paradigm predicts clinical action of novel antidepressants by examining drug-induced changes in affective processing bias. With some exceptions, these concepts have not been systematically applied to preclinical models to test new chemical entities. The purpose of this review is to examine whether an empirically derived behavioral screen for antidepressant drugs may screen for compounds, at least in part, by modulating an impulsive biasing of responding and altered decision making. The differential-reinforcement-of-low-rate (DRL) 72-second schedule is an operant schedule with a documented fidelity for discriminating antidepressant drugs from nonantidepressant drugs. However, a theoretical basis for this empirical relationship has been lacking. Therefore, this review will discuss whether response bias toward impulsive behavior may be a critical screening characteristic of DRL behavior requiring long inter-response times to obtain rewards. This review will compare and contrast DRL behavior with the five-choice serial reaction time task, a test specifically designed for assessing motoric impulsivity, with respect to psychopharmacological testing and the neural basis of distributed macrocircuits underlying these tasks. This comparison suggests that the existing empirical basis for the DRL 72-second schedule as a pharmacological screen for antidepressant drugs is complemented by a novel hypothesis that altering impulsive response bias for rodents trained on this operant schedule is a previously unrecognized theoretical cornerstone for this screening paradigm. PMID:26699144

  10. Dual Receptor Recognizing Cell Penetrating Peptide for Selective Targeting, Efficient Intratumoral Diffusion and Synthesized Anti-Glioma Therapy

    PubMed Central

    Liu, Yayuan; Mei, Ling; Xu, Chaoqun; Yu, Qianwen; Shi, Kairong; Zhang, Li; Wang, Yang; Zhang, Qianyu; Gao, Huile; Zhang, Zhirong; He, Qin

    2016-01-01

    Cell penetrating peptides (CPPs) were widely used for drug delivery to tumor. However, the nonselective in vivo penetration greatly limited the application of CPPs-mediated drug delivery systems. And the treatment of malignant tumors is usually followed by poor prognosis and relapse due to the existence of extravascular core regions of tumor. Thus it is important to endue selective targeting and stronger intratumoral diffusion abilities to CPPs. In this study, an RGD reverse sequence dGR was conjugated to a CPP octa-arginine to form a CendR (R/KXXR/K) motif contained tandem peptide R8-dGR (RRRRRRRRdGR) which could bind to both integrin αvβ3 and neuropilin-1 receptors. The dual receptor recognizing peptide R8-dGR displayed increased cellular uptake and efficient penetration ability into glioma spheroids in vitro. The following in vivo studies indicated the active targeting and intratumoral diffusion capabilities of R8-dGR modified liposomes. When paclitaxel was loaded in the liposomes, PTX-R8-dGR-Lip induced the strongest anti-proliferation effect on both tumor cells and cancer stem cells, and inhibited the formation of vasculogenic mimicry channels in vitro. Finally, the R8-dGR liposomal drug delivery system prolonged the medium survival time of intracranial C6 bearing mice by 2.1-fold compared to the untreated group, and achieved an exhaustive anti-glioma therapy including anti-tumor cells, anti-vasculogenic mimicry and anti-brain cancer stem cells. To sum up, all the results demonstrated that R8-dGR was an ideal dual receptor recognizing CPP with selective glioma targeting and efficient intratumoral diffusion, which could be further used to equip drug delivery system for effective glioma therapy. PMID:26877777

  11. Drug induced increases in CNS dopamine alter monocyte, macrophage and T cell functions: implications for HAND

    PubMed Central

    Gaskill, Peter J.; Calderon, Tina M.; Coley, Jacqueline S.; Berman, Joan W.

    2013-01-01

    Central nervous system (CNS) complications resulting from HIV infection remain a major public health problem as individuals live longer due to the success of combined antiretroviral therapy (cART). As many as 70% of HIV infected people have HIV associated neurocognitive disorders (HAND). Many HIV infected individuals abuse drugs, such as cocaine, heroin or methamphetamine, that may be important cofactors in the development of HIV CNS disease. Despite different mechanisms of action, all drugs of abuse increase extracellular dopamine in the CNS. The effects of dopamine on HIV neuropathogenesis are not well understood, and drug induced increases in CNS dopamine may be a common mechanism by which different types of drugs of abuse impact the development of HAND. Monocytes and macrophages are central to HIV infection of the CNS and to HAND. While T cells have not been shown to be a major factor in HIV-associated neuropathogenesis, studies indicate that T cells may play a larger role in the development of HAND in HIV infected drug abusers. Drug induced increases in CNS dopamine may dysregulate functions of, or increase HIV infection in, monocytes, macrophages and T cells in the brain. Thus, characterizing the effects of dopamine on these cells is important for understanding the mechanisms that mediate the development of HAND in drug abusers. PMID:23456305

  12. Intra-tumor Genetic Heterogeneity in Rectal Cancer

    PubMed Central

    Hardiman, Karin M.; Ulintz, Peter J.; Kuick, Rork; Hovelson, Daniel H.; Gates, Christopher M.; Bhasi, Ashwini; Grant, Ana Rodrigues; Liu, Jianhua; Cani, Andi K.; Greenson, Joel; Tomlins, Scott; Fearon, Eric R.

    2015-01-01

    Colorectal cancer arises in part from the cumulative effects of multiple gene lesions. Recent studies in selected cancer types have revealed significant intra-tumor genetic heterogeneity and highlighted its potential role in disease progression and resistance to therapy. We hypothesized the existence of significant intra-tumor genetic heterogeneity in rectal cancers involving variations in localized somatic mutations and copy number abnormalities. Two or three spatially disparate regions from each of six rectal tumors were dissected and subjected to next-generation whole exome DNA sequencing, Oncoscan SNP arrays, and targeted confirmatory sequencing and analysis. The resulting data were integrated to define subclones using SciClone. Mutant-allele tumor heterogeneity (MATH) scores, mutant allele frequency correlation, and mutation percent concordance were calculated, and copy number analysis including measurement of correlation between samples was performed. Somatic mutations profiles in individual cancers were similar to prior studies, with some variants found in previously reported significantly mutated genes and many patient-specific mutations in each tumor. Significant intra-tumor heterogeneity was identified in the spatially disparate regions of individual cancers. All tumors had some heterogeneity but the degree of heterogeneity was quite variable in the samples studied. We found that 67–97% of exonic somatic mutations were shared among all regions of an individual’s tumor. The SciClone computational method identified 2 to 8 shared and unshared subclones in the spatially disparate areas in each tumor. MATH scores ranged from 7 to 41. Allele frequency correlation scores ranged from R2 = 0.69 to 0.96. Measurements of correlation between samples for copy number changes varied from R2 = 0.74 to 0.93. All tumors had some heterogeneity, but the degree was highly variable in the samples studied. The occurrence of significant intra-tumor heterogeneity may allow

  13. Evidence for centrophenoxine as a protective drug in aluminium induced behavioral and biochemical alteration in rat brain.

    PubMed

    Nehru, Bimla; Bhalla, Punita; Garg, Aarti

    2006-10-01

    Potential use of various nootropic drugs have been a burning area of research on account of various physical and chemical insult in brain under different toxicological conditions. One of the nootropic drug centrophenoxine, also known as an anti-aging drug has been exploited in the present experiment under aluminium toxic conditions. Aluminium was administered by oral gavage at a dose level of 100 mg/Kg x b x wt/day for a period of six weeks. To elucidate the region specific response, study was carried out in two different regions of brain namely cerebrum and cerebellum. Following aluminium exposure, a significant decrease in the activities of enzymes namely Hexokinase, Lactate dehydrogenase, Succinate dehydrogenase, Mg(2+) dependent ATPase was observed in both the regions. Moreover, the activity of acetylcholinesterase was also reported to be significantly decreased. Post-treatment with centrophenoxine was able to restore the altered enzyme activities and the effect was observed in both the regions of brain although the activity of lactate dehydrogenase and acetylcholinesterase did not register significant increase in the cerebellum region. Further, centrophenoxine was able to improve the altered short-term memory and cognitive performance resulted from aluminium exposure. From the present study, it can be concluded that centrophenoxine has a potential and can be exploited in other toxicological conditions also. PMID:16969689

  14. Quantitative Chemical-Genetic Interaction Map Connects Gene Alterations to Drug Responses | Office of Cancer Genomics

    Cancer.gov

    In a recent Cancer Discovery report, CTD2 researchers at the University of California in San Francisco developed a new quantitative chemical-genetic interaction mapping approach to evaluate drug sensitivity or resistance in isogenic cell lines. Performing a high-throughput screen with isogenic cell lines allowed the researchers to explore the impact of a panel of emerging and established drugs on cells overexpressing a single cancer-associated gene in isolation.

  15. CRISPR-Barcoding for Intratumor Genetic Heterogeneity Modeling and Functional Analysis of Oncogenic Driver Mutations.

    PubMed

    Guernet, Alexis; Mungamuri, Sathish Kumar; Cartier, Dorthe; Sachidanandam, Ravi; Jayaprakash, Anitha; Adriouch, Sahil; Vezain, Myriam; Charbonnier, Françoise; Rohkin, Guy; Coutant, Sophie; Yao, Shen; Ainani, Hassan; Alexandre, David; Tournier, Isabelle; Boyer, Olivier; Aaronson, Stuart A; Anouar, Youssef; Grumolato, Luca

    2016-08-01

    Intratumor genetic heterogeneity underlies the ability of tumors to evolve and adapt to different environmental conditions. Using CRISPR/Cas9 technology and specific DNA barcodes, we devised a strategy to recapitulate and trace the emergence of subpopulations of cancer cells containing a mutation of interest. We used this approach to model different mechanisms of lung cancer cell resistance to EGFR inhibitors and to assess effects of combined drug therapies. By overcoming intrinsic limitations of current approaches, CRISPR-barcoding also enables investigation of most types of genetic modifications, including repair of oncogenic driver mutations. Finally, we used highly complex barcodes inserted at a specific genome location as a means of simultaneously tracing the fates of many thousands of genetically labeled cancer cells. CRISPR-barcoding is a straightforward and highly flexible method that should greatly facilitate the functional investigation of specific mutations, in a context that closely mimics the complexity of cancer. PMID:27453044

  16. Noninvasive visualization of in vivo release and intratumoral distribution of surrogate MR contrast agent using the dual MR contrast technique.

    PubMed

    Onuki, Yoshinori; Jacobs, Igor; Artemov, Dmitri; Kato, Yoshinori

    2010-09-01

    A direct evaluation of the in vivo release profile of drugs from carriers is a clinical demand in drug delivery systems, because drug release characterized in vitro correlates poorly with in vivo release. The purpose of this study is to demonstrate the in vivo applicability of the dual MR contrast technique as a useful tool for noninvasive monitoring of the stability and the release profile of drug carriers, by visualizing in vivo release of the encapsulated surrogate MR contrast agent from carriers and its subsequent intratumoral distribution profile. The important aspect of this technique is that it incorporates both positive and negative contrast agents within a single carrier. GdDTPA, superparamagnetic iron oxide nanoparticles, and 5-fluorouracil were encapsulated in nano- and microspheres composed of poly(D,L-lactide-co-glycolide), which was used as a model carrier. In vivo studies were performed with orthotopic xenograft of human breast cancer. The MR-based technique demonstrated here has enabled visualization of the delivery of carriers, and release and intratumoral distribution of the encapsulated positive contrast agent. This study demonstrated proof-of-principle results for the noninvasive monitoring of in vivo release and distribution profiles of MR contrast agents, and thus, this technique will make a great contribution to the field. PMID:20580427

  17. Modulation of PF10_0355 (MSPDBL2) Alters Plasmodium falciparum Response to Antimalarial Drugs

    PubMed Central

    Van Tyne, Daria; Uboldi, Alessandro D.; Healer, Julie; Cowman, Alan F.

    2013-01-01

    Malaria's ability to rapidly adapt to new drugs has allowed it to remain one of the most devastating infectious diseases of humans. Understanding and tracking the genetic basis of these adaptations are critical to the success of treatment and intervention strategies. The novel antimalarial resistance locus PF10_0355 (Pfmspdbl2) was previously associated with the parasite response to halofantrine, and functional validation confirmed that overexpression of this gene lowered parasite sensitivity to both halofantrine and the structurally related antimalarials mefloquine and lumefantrine, predominantly through copy number variation. Here we further characterize the role of Pfmspdbl2 in mediating the antimalarial drug response of Plasmodium falciparum. Knockout of Pfmspdbl2 increased parasite sensitivity to halofantrine, mefloquine, and lumefantrine but not to unrelated antimalarials, further suggesting that this gene mediates the parasite response to a specific class of antimalarial drugs. A single nucleotide polymorphism encoding a C591S mutation within Pfmspdbl2 had the strongest association with halofantrine sensitivity and showed a high derived allele frequency among Senegalese parasites. Transgenic parasites expressing the ancestral Pfmspdbl2 allele were more sensitive to halofantrine and structurally related antimalarials than were parasites expressing the derived allele, revealing an allele-specific effect on drug sensitivity in the absence of copy number effects. Finally, growth competition experiments showed that under drug pressure, parasites expressing the derived allele of Pfmspdbl2 outcompeted parasites expressing the ancestral allele within a few generations. Together, these experiments demonstrate that modulation of Pfmspdbl2 affects malaria parasite responses to antimalarial drugs. PMID:23587962

  18. Alterations in brain-stem auditory evoked potentials among drug addicts

    PubMed Central

    Garg, Sonia; Sharma, Rajeev; Mittal, Shilekh; Thapar, Satish

    2015-01-01

    Objective: To compare the absolute latencies, the interpeak latencies, and amplitudes of different waveforms of brainstem auditory evoked potentials (BAEP) in different drug abusers and controls, and to identify early neurological damage in persons who abuse different drugs so that proper counseling and timely intervention can be undertaken. Methods: In this cross-sectional study, BAEP’s were assessed by a data acquisition and analysis system in 58 male drug abusers in the age group of 15-45 years as well as in 30 age matched healthy controls. The absolute peak latencies and the interpeak latencies of BAEP were analyzed by applying one way ANOVA and student t-test. The study was carried out at the GGS Medical College, Faridkot, Punjab, India between July 2012 and May 2013. Results: The difference in the absolute peak latencies and interpeak latencies of BAEP in the 2 groups was found to be statistically significant in both the ears (p<0.05). However, the difference in the amplitude ratio in both the ears was found to be statistically insignificant. Conclusion: Chronic intoxication by different drugs has been extensively associated with prolonged absolute peak latencies and interpeak latencies of BAEP in drug abusers reflecting an adverse effect of drug dependence on neural transmission in central auditory nerve pathways. PMID:26166594

  19. Modulation of PF10_0355 (MSPDBL2) alters Plasmodium falciparum response to antimalarial drugs.

    PubMed

    Van Tyne, Daria; Uboldi, Alessandro D; Healer, Julie; Cowman, Alan F; Wirth, Dyann F

    2013-07-01

    Malaria's ability to rapidly adapt to new drugs has allowed it to remain one of the most devastating infectious diseases of humans. Understanding and tracking the genetic basis of these adaptations are critical to the success of treatment and intervention strategies. The novel antimalarial resistance locus PF10_0355 (Pfmspdbl2) was previously associated with the parasite response to halofantrine, and functional validation confirmed that overexpression of this gene lowered parasite sensitivity to both halofantrine and the structurally related antimalarials mefloquine and lumefantrine, predominantly through copy number variation. Here we further characterize the role of Pfmspdbl2 in mediating the antimalarial drug response of Plasmodium falciparum. Knockout of Pfmspdbl2 increased parasite sensitivity to halofantrine, mefloquine, and lumefantrine but not to unrelated antimalarials, further suggesting that this gene mediates the parasite response to a specific class of antimalarial drugs. A single nucleotide polymorphism encoding a C591S mutation within Pfmspdbl2 had the strongest association with halofantrine sensitivity and showed a high derived allele frequency among Senegalese parasites. Transgenic parasites expressing the ancestral Pfmspdbl2 allele were more sensitive to halofantrine and structurally related antimalarials than were parasites expressing the derived allele, revealing an allele-specific effect on drug sensitivity in the absence of copy number effects. Finally, growth competition experiments showed that under drug pressure, parasites expressing the derived allele of Pfmspdbl2 outcompeted parasites expressing the ancestral allele within a few generations. Together, these experiments demonstrate that modulation of Pfmspdbl2 affects malaria parasite responses to antimalarial drugs. PMID:23587962

  20. Intra-tumoral heterogeneity of gemcitabine delivery and mass transport in human pancreatic cancer

    PubMed Central

    Koay, Eugene J.; Baio, Flavio E.; Ondari, Alexander; Truty, Mark J.; Cristini, Vittorio; Thomas, Ryan M.; Chen, Rong; Chatterjee, Deyali; Kang, Ya’an; Zhang, Joy; Court, Laurence; Bhosale, Priya R.; Tamm, Eric P.; Qayyum, Aliya; Crane, Christopher H.; Javle, Milind; Katz, Matthew H.; Gottumukkala, Vijaya N.; Rozner, Marc A.; Shen, Haifa; Lee, Jeffrey E.; Wang, Huamin; Chen, Yuling; Plunkett, William; Abbruzzese, James L.; Wolff, Robert A.; Maitra, Anirban; Ferrari, Mauro; Varadhachary, Gauri R.; Fleming, Jason B.

    2014-01-01

    There is substantial heterogeneity in the clinical behavior of pancreatic cancer and in its response to therapy. Some of this variation may be due to differences in delivery of cytotoxic therapies between patients and within individual tumors. Indeed, in 12 patients with resectable pancreatic cancer, we previously demonstrated wide inter-patient variability in the delivery of gemcitabine as well as in the mass transport properties of tumors as measured by computed tomography (CT) scans. However, the variability of drug delivery and transport properties within pancreatic tumors is currently unknown. Here, we analyzed regional measurements of gemcitabine DNA incorporation in the tumors of the same 12 patients to understand the degree of intra-tumoral heterogeneity of drug delivery. We also developed a volumetric segmentation approach to measure mass transport properties from the CT scans of these patients and tested inter-observer agreement with this new methodology. Our results demonstrate significant heterogeneity of gemcitabine delivery within individual pancreatic tumors and across the patient cohort, with gemcitabine DNA incorporation in the inner portion of the tumors ranging from 38 to 74% of the total. Similarly, the CT-derived mass transport properties of the tumors had a high degree of heterogeneity, ranging from minimal difference to almost 200% difference between inner and outer portions of the tumor. Our quantitative method to derive transport properties from CT scans demonstrated less than 5% difference in gemcitabine prediction at the average CT-derived transport value across observers. These data illustrate significant inter-patient and intra-tumoral heterogeneity in the delivery of gemcitabine, and highlight how this variability can be reproducibly accounted for using principles of mass transport. With further validation as a biophysical marker, transport properties of tumors may be useful in patient selection for therapy and prediction of

  1. Intra-tumoral heterogeneity of gemcitabine delivery and mass transport in human pancreatic cancer

    NASA Astrophysics Data System (ADS)

    Koay, Eugene J.; Baio, Flavio E.; Ondari, Alexander; Truty, Mark J.; Cristini, Vittorio; Thomas, Ryan M.; Chen, Rong; Chatterjee, Deyali; Kang, Ya'an; Zhang, Joy; Court, Laurence; Bhosale, Priya R.; Tamm, Eric P.; Qayyum, Aliya; Crane, Christopher H.; Javle, Milind; Katz, Matthew H.; Gottumukkala, Vijaya N.; Rozner, Marc A.; Shen, Haifa; Lee, Jeffrey E.; Wang, Huamin; Chen, Yuling; Plunkett, William; Abbruzzese, James L.; Wolff, Robert A.; Maitra, Anirban; Ferrari, Mauro; Varadhachary, Gauri R.; Fleming, Jason B.

    2014-12-01

    There is substantial heterogeneity in the clinical behavior of pancreatic cancer and in its response to therapy. Some of this variation may be due to differences in delivery of cytotoxic therapies between patients and within individual tumors. Indeed, in 12 patients with resectable pancreatic cancer, we previously demonstrated wide inter-patient variability in the delivery of gemcitabine as well as in the mass transport properties of tumors as measured by computed tomography (CT) scans. However, the variability of drug delivery and transport properties within pancreatic tumors is currently unknown. Here, we analyzed regional measurements of gemcitabine DNA incorporation in the tumors of the same 12 patients to understand the degree of intra-tumoral heterogeneity of drug delivery. We also developed a volumetric segmentation approach to measure mass transport properties from the CT scans of these patients and tested inter-observer agreement with this new methodology. Our results demonstrate significant heterogeneity of gemcitabine delivery within individual pancreatic tumors and across the patient cohort, with gemcitabine DNA incorporation in the inner portion of the tumors ranging from 38 to 74% of the total. Similarly, the CT-derived mass transport properties of the tumors had a high degree of heterogeneity, ranging from minimal difference to almost 200% difference between inner and outer portions of the tumor. Our quantitative method to derive transport properties from CT scans demonstrated less than 5% difference in gemcitabine prediction at the average CT-derived transport value across observers. These data illustrate significant inter-patient and intra-tumoral heterogeneity in the delivery of gemcitabine, and highlight how this variability can be reproducibly accounted for using principles of mass transport. With further validation as a biophysical marker, transport properties of tumors may be useful in patient selection for therapy and prediction of

  2. Intra-tumoral heterogeneity of gemcitabine delivery and mass transport in human pancreatic cancer.

    PubMed

    Koay, Eugene J; Baio, Flavio E; Ondari, Alexander; Truty, Mark J; Cristini, Vittorio; Thomas, Ryan M; Chen, Rong; Chatterjee, Deyali; Kang, Ya'an; Zhang, Joy; Court, Laurence; Bhosale, Priya R; Tamm, Eric P; Qayyum, Aliya; Crane, Christopher H; Javle, Milind; Katz, Matthew H; Gottumukkala, Vijaya N; Rozner, Marc A; Shen, Haifa; Lee, Jeffrey E; Wang, Huamin; Chen, Yuling; Plunkett, William; Abbruzzese, James L; Wolff, Robert A; Maitra, Anirban; Ferrari, Mauro; Varadhachary, Gauri R; Fleming, Jason B

    2014-01-01

    There is substantial heterogeneity in the clinical behavior of pancreatic cancer and in its response to therapy. Some of this variation may be due to differences in delivery of cytotoxic therapies between patients and within individual tumors. Indeed, in 12 patients with resectable pancreatic cancer, we previously demonstrated wide inter-patient variability in the delivery of gemcitabine as well as in the mass transport properties of tumors as measured by computed tomography (CT) scans. However, the variability of drug delivery and transport properties within pancreatic tumors is currently unknown. Here, we analyzed regional measurements of gemcitabine DNA incorporation in the tumors of the same 12 patients to understand the degree of intra-tumoral heterogeneity of drug delivery. We also developed a volumetric segmentation approach to measure mass transport properties from the CT scans of these patients and tested inter-observer agreement with this new methodology. Our results demonstrate significant heterogeneity of gemcitabine delivery within individual pancreatic tumors and across the patient cohort, with gemcitabine DNA incorporation in the inner portion of the tumors ranging from 38 to 74% of the total. Similarly, the CT-derived mass transport properties of the tumors had a high degree of heterogeneity, ranging from minimal difference to almost 200% difference between inner and outer portions of the tumor. Our quantitative method to derive transport properties from CT scans demonstrated less than 5% difference in gemcitabine prediction at the average CT-derived transport value across observers. These data illustrate significant inter-patient and intra-tumoral heterogeneity in the delivery of gemcitabine, and highlight how this variability can be reproducibly accounted for using principles of mass transport. With further validation as a biophysical marker, transport properties of tumors may be useful in patient selection for therapy and prediction of

  3. Chronic treatment with anti-bipolar drugs causes intracellular alkalinization in astrocytes, altering their functions.

    PubMed

    Song, Dan; Li, Baoman; Yan, Enzhi; Man, Yi; Wolfson, Marina; Chen, Ye; Peng, Liang

    2012-11-01

    Bipolar disorder I and II are affective disorders with mood changes between depressive and manic (bipolar I) or hypomanic (bipolar II) periods. Current therapy of these conditions is chronic treatment with one or more of the anti-bipolar drugs, Li(+) ('lithium'), carbamazepine and valproic acid. The pathophysiology of bipolar disorder is multifactorial and far from clear. Recent data on the dependence of normal brain function on neuronal-astrocytic interactions raise the possibility of astrocytic involvement. We will discuss our previously published and new results on effects of chronic treatment of primary cultures of normal mouse astrocytes with any of three conventional anti-bipolar drugs. The focus will be on several drug-induced events in relation to therapeutic effects of the drugs, such as myo-inositol uptake, intracellular pH and alkalinization, drug-induced modulation of glutamatergic activity in astrocytes and release of astrocytic 'gliotransmitters'. Finally, we will discuss the importance of phospholipase A2 (PLA(2)) and arachidonic acid cascade in drug-treated astrocytes, partly based on Dr. Barneda Cuirana's published thesis. All three drugs cause gradual intracellular alkalinization through different mechanisms. Alkalinization inhibit myo-inositol uptake, resulting in reduced inositolphosphate/phospholipid signaling. Accordingly, transmitter-induced increase in free intracellular Ca(2+) ([Ca(2+)](i)) becomes inhibited, aborting release of astrocytic 'gliotransmitters'. The reduction of "gliotransmitter" effects on neurons may have therapeutic effects in mania. Alkalinization also up-regulates expression of cPLA(2), an enzyme releasing arachidonic acid, and triggered arachidonic acid cascade and production, but perhaps not release, of prostaglandins. Whenever tested, identical effects were observed in freshly isolated astrocytes, but not neurons, from carbamazepine-treated healthy animals. PMID:22965852

  4. Comparative effects of chelating drugs on trace metal and biochemical alterations in the rat

    SciTech Connect

    Misra, M.; Athar, M.; Hasan, S.K.; Srivastava, R.C.

    1988-08-01

    Chelation therapy is the most successful modality for the management of heavy metal poisoning. The success of these drugs stem from their multidentate polyfunctional chelating behavior. The therapeutic mechanism for chelating drugs involves their interaction with toxic metals leading to their rapid excretion from the body. However, because of their indiscriminate affinity for various metal ions, the potential interactions between these drugs and endogenous trace metals is of concern. It was, therefore, of importance to define new chelating drugs which in addition to being effective as an antidote in metal poisoning may possess low undesirable toxicity. In the present communication the authors compare the acute effect of Cyclam with those of other conventional chelating drugs namely, triethylenetetramine (TETA), reduced glutathione (GSH), ethylenediamine tetraacetic acid (EDTA), cyclohexanediamine tetraacetic acid (CDTA), diethylene triamine pentaacetic acid (DTPA) and hydroxyethylenediamine triacetic acid (HEDTA) on (i) serum levels of Cu, Zn, lactate dehydrogenase (LDH), glutamyloxaloacetic transaminase (GOT) and ceruloplasmin (CP); (ii) hepatic and renal levels of Cu, Mn, Zn and Fe and (iii) hepatic and renal levels of GSH, glutathione-S-transferase (GST) and phosphoglucomutase (PGM) at various time intervals (16, 24 and 72 hrs) after their administration to rats.

  5. Genomic alterations in BCL2L1 and DLC1 contribute to drug sensitivity in gastric cancer.

    PubMed

    Park, Hansoo; Cho, Sung-Yup; Kim, Hyerim; Na, Deukchae; Han, Jee Yun; Chae, Jeesoo; Park, Changho; Park, Ok-Kyoung; Min, Seoyeon; Kang, Jinjoo; Choi, Boram; Min, Jimin; Kwon, Jee Young; Suh, Yun-Suhk; Kong, Seong-Ho; Lee, Hyuk-Joon; Liu, Edison T; Kim, Jong-Il; Kim, Sunghoon; Yang, Han-Kwang; Lee, Charles

    2015-10-01

    Gastric cancer (GC) is the third leading cause of cancer-related deaths worldwide. Recent high-throughput analyses of genomic alterations revealed several driver genes and altered pathways in GC. However, therapeutic applications from genomic data are limited, largely as a result of the lack of druggable molecular targets and preclinical models for drug selection. To identify new therapeutic targets for GC, we performed array comparative genomic hybridization (aCGH) of DNA from 103 patients with GC for copy number alteration (CNA) analysis, and whole-exome sequencing from 55 GCs from the same patients for mutation profiling. Pathway analysis showed recurrent alterations in the Wnt signaling [APC, CTNNB1, and DLC1 (deleted in liver cancer 1)], ErbB signaling (ERBB2, PIK3CA, and KRAS), and p53 signaling/apoptosis [TP53 and BCL2L1 (BCL2-like 1)] pathways. In 18.4% of GC cases (19/103), amplification of the antiapoptotic gene BCL2L1 was observed, and subsequently a BCL2L1 inhibitor was shown to markedly decrease cell viability in BCL2L1-amplified cell lines and in similarly altered patient-derived GC xenografts, especially when combined with other chemotherapeutic agents. In 10.9% of cases (6/55), mutations in DLC1 were found and were also shown to confer a growth advantage for these cells via activation of Rho-ROCK signaling, rendering these cells more susceptible to a ROCK inhibitor. Taken together, our study implicates BCL2L1 and DLC1 as potential druggable targets for specific subsets of GC cases. PMID:26401016

  6. Altered subjective reward valuation among drug-deprived heavy marijuana users: Aversion to uncertainty

    PubMed Central

    Hefner, Kathryn R.; Starr, Mark. J.; Curtin, John. J.

    2015-01-01

    Marijuana is the most commonly used illicit drug in the United States and its use is rising. Nonetheless, scientific efforts to clarify the risk for addiction and other harm associated with marijuana use have been lacking. Maladaptive decision-making is a cardinal feature of addiction that is likely to emerge in heavy users. In particular, distorted subjective reward valuation related to homeostatic or allostatic processes has been implicated for many drugs of abuse. Selective changes in responses to uncertainty have been observed in response to intoxication and deprivation from various drugs of abuse. To assess for these potential neuroadaptive changes in reward valuation associated with marijuana deprivation, we examined the subjective value of uncertain and certain rewards among deprived and non-deprived heavy marijuana users in a behavioral economics decision-making task. Deprived users displayed reduced valuation of uncertain rewards, particularly when these rewards were more objectively valuable. This uncertainty aversion increased with increasing quantity of marijuana use. These results suggest comparable decision-making vulnerability from marijuana use as other drugs of abuse, and highlights targets for intervention. PMID:26595464

  7. Drugs Targeting the Dopaminergic Nervous System Alter Locomotion in Larval Zebrafish

    EPA Science Inventory

    As part of an effort at the US Environmental Protection Agency to develop a rapid in vivo screen for prioritization of toxic chemicals, we have begun to characterize the locomotor activity of zebrafish (Danio rerio) larvae. This includes assessing the acute effects of drugs that ...

  8. Psychotropic drugs attenuate lipopolysaccharide-induced hypothermia by altering hypothalamic levels of inflammatory mediators in rats.

    PubMed

    Nassar, Ahmad; Sharon-Granit, Yael; Azab, Abed N

    2016-07-28

    Recent evidence suggests that inflammation may contribute to the pathophysiology of mental disorders and that psychotropic drugs exert various effects on brain inflammation. The administration of bacterial endotoxin (lipopolysaccharide, LPS) to mammals is associated with robust production of inflammatory mediators and pathological changes in body temperature. The objective of the present study was to examine the effects of four different psychotropic drugs on LPS-induced hypothermia and production of prostaglandin (PG) E2, tumor necrosis factor (TNF)-α and phosphorylated-p65 (P-p65) levels in hypothalamus of LPS-treated rats. Rats were treated once daily with lithium (100mg/kg), carbamazepine (40mg/kg), haloperidol (2mg/kg), imipramine (20mg/kg) or vehicle (NaCl 0.9%) for 29 days. On day 29, rats were injected with LPS (1mg/kg) or saline. At 1.5h post LPS injection body temperature was measured, rats were sacrificed, blood was collected and their hypothalami were excised, homogenized and centrifuged. PGE2, TNF-α and nuclear P-p65 levels were determined by specific ELISA kits. We found that lithium, carbamazepine, haloperidol and imipramine significantly attenuated LPS-induced hypothermia, resembling the effect of classic anti-inflammatory drugs. Moreover, lithium, carbamazepine, haloperidol and imipramine differently but significantly affected the levels of PGE2, TNF-α and P-p65 in plasma and hypothalamus of LPS-treated rats. The results suggest that psychotropic drugs attenuate LPS-induced hypothermia by reducing hypothalamic production of inflammatory constituents, particularly PGE2. The effects of psychotropic drugs on brain inflammation may contribute to their therapeutic mechanism but also to their toxicological profile. PMID:27181513

  9. Intratumor mapping of intracellular water lifetime: metabolic images of breast cancer?

    PubMed Central

    Springer, Charles S; Li, Xin; Tudorica, Luminita A; Oh, Karen Y; Roy, Nicole; Chui, Stephen Y-C; Naik, Arpana M; Holtorf, Megan L; Afzal, Aneela; Rooney, William D; Huang, Wei

    2014-01-01

    Shutter-speed pharmacokinetic analysis of dynamic-contrast-enhanced (DCE)-MRI data allows evaluation of equilibrium inter-compartmental water interchange kinetics. The process measured here – transcytolemmal water exchange – is characterized by the mean intracellular water molecule lifetime (τi). The τi biomarker is a true intensive property not accessible by any formulation of the tracer pharmacokinetic paradigm, which inherently assumes it is effectively zero when applied to DCE-MRI. We present population-averaged in vivo human breast whole tumor τi changes induced by therapy, along with those of other pharmacokinetic parameters. In responding patients, the DCE parameters change significantly after only one neoadjuvant chemotherapy cycle: while Ktrans (measuring mostly contrast agent (CA) extravasation) and kep (CA intravasation rate constant) decrease, τi increases. However, high-resolution, (1 mm)2, parametric maps exhibit significant intratumor heterogeneity, which is lost by averaging. A typical 400 ms τi value means a trans-membrane water cycling flux of 1013 H2O molecules s−1/cell for a 12 µm diameter cell. Analyses of intratumor variations (and therapy-induced changes) of τi in combination with concomitant changes of ve (extracellular volume fraction) indicate that the former are dominated by alterations of the equilibrium cell membrane water permeability coefficient, PW, not of cell size. These can be interpreted in light of literature results showing that τi changes are dominated by a PW(active) component that reciprocally reflects the membrane driving P-type ATPase ion pump turnover. For mammalian cells, this is the Na+,K+-ATPase pump. These results promise the potential to discriminate metabolic and microenvironmental states of regions within tumors in vivo, and their changes with therapy. PMID:24798066

  10. Heterogeneous glioblastoma cell cross-talk promotes phenotype alterations and enhanced drug resistance.

    PubMed

    Motaln, Helena; Koren, Ana; Gruden, Kristina; Ramšak, Živa; Schichor, Christian; Lah, Tamara T

    2015-12-01

    Glioblastoma multiforme is the most lethal of brain cancer, and it comprises a heterogeneous mixture of functionally distinct cancer cells that affect tumor progression. We examined the U87, U251, and U373 malignant cell lines as in vitro models to determine the impact of cellular cross-talk on their phenotypic alterations in co-cultures. These cells were also studied at the transcriptome level, to define the mechanisms of their observed mutually affected genomic stability, proliferation, invasion and resistance to temozolomide. This is the first direct demonstration of the neural and mesenchymal molecular fingerprints of U87 and U373 cells, respectively. U87-cell conditioned medium lowered the genomic stability of U373 (U251) cells, without affecting cell proliferation. In contrast, upon exposure of U87 cells to U373 (U251) conditioned medium, U87 cells showed increased genomic stability, decreased proliferation rates and increased invasion, due to a plethora of produced cytokines identified in the co-culture media. This cross talk altered the expression 264 genes in U87 cells that are associated with proliferation, inflammation, migration, and adhesion, and 221 genes in U373 cells that are associated with apoptosis, the cell cycle, cell differentiation and migration. Indirect and direct co-culturing of U87 and U373 cells showed mutually opposite effects on temozolomide resistance. In conclusion, definition of transcriptional alterations of distinct glioblastoma cells upon co-culturing provides better understanding of the mechanisms of glioblastoma heterogeneity, which will provide the basis for more informed glioma treatment in the future. PMID:26517510

  11. Heterogeneous glioblastoma cell cross-talk promotes phenotype alterations and enhanced drug resistance

    PubMed Central

    Motaln, Helena; Koren, Ana; Gruden, Kristina; Ramšak, Živa; Schichor, Christian; Lah, Tamara T.

    2015-01-01

    Glioblastoma multiforme is the most lethal of brain cancer, and it comprises a heterogeneous mixture of functionally distinct cancer cells that affect tumor progression. We examined the U87, U251, and U373 malignant cell lines as in vitro models to determine the impact of cellular cross-talk on their phenotypic alterations in co-cultures. These cells were also studied at the transcriptome level, to define the mechanisms of their observed mutually affected genomic stability, proliferation, invasion and resistance to temozolomide. This is the first direct demonstration of the neural and mesenchymal molecular fingerprints of U87 and U373 cells, respectively. U87-cell conditioned medium lowered the genomic stability of U373 (U251) cells, without affecting cell proliferation. In contrast, upon exposure of U87 cells to U373 (U251) conditioned medium, U87 cells showed increased genomic stability, decreased proliferation rates and increased invasion, due to a plethora of produced cytokines identified in the co-culture media. This cross talk altered the expression 264 genes in U87 cells that are associated with proliferation, inflammation, migration, and adhesion, and 221 genes in U373 cells that are associated with apoptosis, the cell cycle, cell differentiation and migration. Indirect and direct co-culturing of U87 and U373 cells showed mutually opposite effects on temozolomide resistance. In conclusion, definition of transcriptional alterations of distinct glioblastoma cells upon co-culturing provides better understanding of the mechanisms of glioblastoma heterogeneity, which will provide the basis for more informed glioma treatment in the future. PMID:26517510

  12. Altered drug susceptibility during host adaptation of a Plasmodium falciparum strain in a non-human primate model.

    PubMed

    Obaldía, Nicanor; Dow, Geoffrey S; Gerena, Lucia; Kyle, Dennis; Otero, William; Mantel, Pierre-Yves; Baro, Nicholas; Daniels, Rachel; Mukherjee, Angana; Childs, Lauren M; Buckee, Caroline; Duraisingh, Manoj T; Volkman, Sarah K; Wirth, Dyann F; Marti, Matthias

    2016-01-01

    Infections with Plasmodium falciparum, the most pathogenic of the Plasmodium species affecting man, have been reduced in part due to artemisinin-based combination therapies. However, artemisinin resistant parasites have recently emerged in South-East Asia. Novel intervention strategies are therefore urgently needed to maintain the current momentum for control and elimination of this disease. In the present study we characterize the phenotypic and genetic properties of the multi drug resistant (MDR) P. falciparum Thai C2A parasite strain in the non-human Aotus primate model, and across multiple passages. Aotus infections with C2A failed to clear upon oral artesunate and mefloquine treatment alone or in combination, and ex vivo drug assays demonstrated reduction in drug susceptibility profiles in later Aotus passages. Further analysis revealed mutations in the pfcrt and pfdhfr loci and increased parasite multiplication rate (PMR) across passages, despite elevated pfmdr1 copy number. Altogether our experiments suggest alterations in parasite population structure and increased fitness during Aotus adaptation. We also present data of early treatment failures with an oral artemisinin combination therapy in a pre-artemisinin resistant P. falciparum Thai isolate in this animal model. PMID:26880111

  13. Altered drug susceptibility during host adaptation of a Plasmodium falciparum strain in a non-human primate model

    PubMed Central

    Obaldía III, Nicanor; Dow, Geoffrey S.; Gerena, Lucia; Kyle, Dennis; Otero, William; Mantel, Pierre-Yves; Baro, Nicholas; Daniels, Rachel; Mukherjee, Angana; Childs, Lauren M.; Buckee, Caroline; Duraisingh, Manoj T.; Volkman, Sarah K.; Wirth, Dyann F.; Marti, Matthias

    2016-01-01

    Infections with Plasmodium falciparum, the most pathogenic of the Plasmodium species affecting man, have been reduced in part due to artemisinin-based combination therapies. However, artemisinin resistant parasites have recently emerged in South-East Asia. Novel intervention strategies are therefore urgently needed to maintain the current momentum for control and elimination of this disease. In the present study we characterize the phenotypic and genetic properties of the multi drug resistant (MDR) P. falciparum Thai C2A parasite strain in the non-human Aotus primate model, and across multiple passages. Aotus infections with C2A failed to clear upon oral artesunate and mefloquine treatment alone or in combination, and ex vivo drug assays demonstrated reduction in drug susceptibility profiles in later Aotus passages. Further analysis revealed mutations in the pfcrt and pfdhfr loci and increased parasite multiplication rate (PMR) across passages, despite elevated pfmdr1 copy number. Altogether our experiments suggest alterations in parasite population structure and increased fitness during Aotus adaptation. We also present data of early treatment failures with an oral artemisinin combination therapy in a pre-artemisinin resistant P. falciparum Thai isolate in this animal model. PMID:26880111

  14. Managing Local Swelling Following Intratumoral Electro-Chemo-Gene Therapy

    PubMed Central

    Cutrera, Jeffry; King, Glenn; Jones, Pamela; Gumpel, Elias; Xia, Xueqing

    2014-01-01

    Summary Delivering genes and other materials directly into the tumor tissue causes specifically localized and powerfully enhanced efficacy of treatments; however, these specific effects can cause rapid, drastic changes in the appearance, texture, and consistency of the tumor. These changes complicate clinical response measurements which can confound the results and render recurring treatments difficult to perform and clinical response measurements nearly impossible to accurately obtain. One of these complicating issues is local swelling. Here, we will demonstrate how swelling caused by intratumoral gene treatments can confound the clinical results and impede further treatments, and we will demonstrate an easy technique to help to overcome this potential hurdle. PMID:24510827

  15. Hemiballismus as a complication of an intratumoral chemotherapy catheter.

    PubMed

    Zuccarelli, Britton; Aalbers, Brian; Grabb, Paul

    2016-08-01

    We report an unusual case of delayed bilateral, right greater than left hemiballismus in a 15-year-old female patient with a history of a craniopharyngioma 2years following the insertion of a right intratumoral chemotherapy catheter. Following cyst decompression, the catheter was found to have changed position, traversing the basal ganglia structures, namely the right subthalamic nucleus. Her movement disorder near-completely resolved immediately following removal of the catheter. A review of the current literature and proposed pathophysiological mechanisms are discussed. PMID:26964474

  16. Alterations in myocardial energy metabolism induced by the anti-cancer drug doxorubicin.

    PubMed

    Tokarska-Schlattner, Malgorzata; Wallimann, Theo; Schlattner, Uwe

    2006-09-01

    Doxorubicin and other anthracyclines are among the most potent chemotherapeutic drugs for the treatment of acute leukaemia, lymphomas and different types of solid tumours such as breast, liver and lung cancers. Their clinical use is, however, limited by the risk of severe cardiotoxicity, which can lead to irreversible congestive heart failure. There is increasing evidence that essential components of myocardial energy metabolism are among the highly sensitive and early targets of doxorubicin-induced damage. Here we review doxorubicin-induced detrimental changes in cardiac energetics, with an emphasis on the emerging importance of defects in energy-transferring and -signalling systems, like creatine kinase and AMP-activated protein kinase. PMID:16945832

  17. Cigarette smoke induces alterations in the drug-binding properties of human serum albumin.

    PubMed

    Clerici, Marco; Colombo, Graziano; Secundo, Francesco; Gagliano, Nicoletta; Colombo, Roberto; Portinaro, Nicola; Giustarini, Daniela; Milzani, Aldo; Rossi, Ranieri; Dalle-Donne, Isabella

    2014-04-01

    Albumin is the most abundant plasma protein and serves as a transport and depot protein for numerous endogenous and exogenous compounds. Earlier we had shown that cigarette smoke induces carbonylation of human serum albumin (HSA) and alters its redox state. Here, the effect of whole-phase cigarette smoke on HSA ligand-binding properties was evaluated by equilibrium dialysis and size-exclusion HPLC or tryptophan fluorescence. The binding of salicylic acid and naproxen to cigarette smoke-oxidized HSA resulted to be impaired, unlike that of curcumin and genistein, chosen as representative ligands. Binding of the hydrophobic fluorescent probe 4,4'-bis(1-anilino-8-naphtalenesulfonic acid) (bis-ANS), intrinsic tryptophan fluorescence, and susceptibility to enzymatic proteolysis revealed slight changes in albumin conformation. These findings suggest that cigarette smoke-induced modifications of HSA may affect the binding, transport and bioavailability of specific ligands in smokers. PMID:24388826

  18. Comparison of hyperthermia and adrenaline to enhance the intratumoral accumulation of cisplatin in a murin model of peritoneal carcinomatosis

    PubMed Central

    2011-01-01

    Background The best method to deliver intraperitoneal chemotherapy (IPC) for peritoneal carcinomatosis from ovarian cancer is not well defined. The aim of this study was to assess the ability of hyperthermia and adrenaline to enhance the intratumoral accumulation of cisplatin in a rat model of peritoneal carcinomatosis. Methods Four groups of 5 BDIX rats with ovarian peritoneal carcinomatosis underwent IPC with 30 mg/l of cisplatin according to the following conditions: normothermia at 37° for 1 or 2 hours, hyperthermia at 42°C for 1 hour or normothermia at 37°C for 2 hours with 2 mg/l adrenaline. Tissue platinum content was measured by atomic absorption spectroscopy. The effect of hyperthermia, adrenaline and the duration of exposure to the drug was measured in vivo (tissue concentration of platinum in tumor, abdominal and extra abdominal tissues) and in vitro (cytotoxicity on human ovarian cancer cells). Results In vitro, hyperthermia and longer exposure enhanced the accumulation and the cytotoxic effect of cisplatin on cancer cells. In vivo, only the 2 hours treatment with adrenaline resulted in increased platinum concentrations. The rats treated with adrenaline showed significantly lower concentrations of cisplatin in extra peritoneal tissues than those treated with hyperthermia. Conclusion Adrenaline is more effective than hyperthermia in order to enhance the intratumoral concentration of cisplatin in rats with peritoneal carcinomatosis from ovarian origin. It may also decrease the systemic absorption of the drug. PMID:21214912

  19. Amprenavir complexes with HIV-1 protease and its drug-resistant mutants altering hydrophobic clusters

    SciTech Connect

    Shen, Chen-Hsiang; Wang, Yuan-Fang; Kovalevsky, Andrey Y.; Harrison, Robert W.; Weber, Irene T.

    2010-10-22

    The structural and kinetic effects of amprenavir (APV), a clinical HIV protease (PR) inhibitor, were analyzed with wild-type enzyme and mutants with single substitutions of V32I, I50V, I54V, I54M, I84V and L90M that are common in drug resistance. Crystal structures of the APV complexes at resolutions of 1.02-1.85 {angstrom} reveal the structural changes due to the mutations. Substitution of the larger side chains in PR{sub V32I}, PR{sub I54M} and PR{sub L90M} resulted in the formation of new hydrophobic contacts with flap residues, residues 79 and 80, and Asp25, respectively. Mutation to smaller side chains eliminated hydrophobic interactions in the PR{sub I50V} and PR{sub I54V} structures. The PR{sub I84V}-APV complex had lost hydrophobic contacts with APV, the PR{sub V32I}-APV complex showed increased hydrophobic contacts within the hydrophobic cluster and the PR{sub I50V} complex had weaker polar and hydrophobic interactions with APV. The observed structural changes in PR{sub I84V}-APV, PR{sub V32I}-APV and PR{sub I50V}-APV were related to their reduced inhibition by APV of six-, 10- and 30-fold, respectively, relative to wild-type PR. The APV complexes were compared with the corresponding saquinavir complexes. The PR dimers had distinct rearrangements of the flaps and 80's loops that adapt to the different P1{prime} groups of the inhibitors, while maintaining contacts within the hydrophobic cluster. These small changes in the loops and weak internal interactions produce the different patterns of resistant mutations for the two drugs.

  20. Alteration of Type I collagen microstructure induced by estrogen depletion can be prevented with drug treatment

    PubMed Central

    Cauble, Meagan A; Rothman, Edward; Welch, Kathleen; Fang, Ming; Duong, Le T; Pennypacker, Brenda L; Orr, Bradford G; Banaszak Holl, Mark M

    2015-01-01

    Two independent biological replicates of estrogen depletion were employed with differing drug treatment conditions. Data Set I consisted of 9-month-old New Zealand white female rabbits treated as follows: sham-operated (n=11), ovariectomized (OVX; n=12), OVX+200 μg kg−1 alendronate (ALN), 3 × a week for 27 weeks (n=12) and OVX+10 mg kg−1 Cathepsin-K inhibitor (CatKI) daily for 27 weeks. Data Set II consisted of 6-month-old New Zealand white female rabbits that were sham-operated (n=12), OVX (n=12) or OVX+0.05 mg kg−1 17β-estradiol (ERT) 3 × a week for 13 weeks (n=12). Samples from the cortical femur were polished and demineralized to make them suitable for atomic force microscopy (AFM) imaging. Type I collagen fibrils present in bundles or sheets, running parallel to each other, were combined into a class termed Parallel. Fibrils present outside of such structures, typically in images with an angular range of non-parallel fibrils, were combined into a class termed Oblique. The percentage of fibrils coded as Parallel for Sham animals in Data Sets I and II was 52% and 53%, respectively. The percentage of fibrils coded as Parallel for OVX animals in Data Sets I and II was 35% in both cases. ALN and ERT drug treatments reduced the change from 18 to 12%, whereas CatKI treatment reduced the change to 5%. PMID:26131356

  1. A synonymous codon change alters the drug sensitivity of ΔF508 cystic fibrosis transmembrane conductance regulator.

    PubMed

    Bali, Vedrana; Lazrak, Ahmed; Guroji, Purushotham; Fu, Lianwu; Matalon, Sadis; Bebok, Zsuzsanna

    2016-01-01

    Synonymous mutations, such as I507-ATC→ATT, in deletion of Phe508 in cystic fibrosis transmembrane conductance regulator (ΔF508 CFTR), the most frequent disease-associated mutant of CFTR, may affect protein biogenesis, structure, and function and contribute to an altered disease phenotype. Small-molecule drugs are being developed to correct ΔF508 CFTR. To understand correction mechanisms and the consequences of synonymous mutations, we analyzed the effect of mechanistically distinct correctors, corrector 4a (C4) and lumacaftor (VX-809), on I507-ATT and I507-ATC ΔF508 CFTR biogenesis and function. C4 stabilized I507-ATT ΔF508 CFTR band B, but without considerable biochemical and functional correction. VX-809 biochemically corrected ∼10% of both of the variants, leading to stable, forskolin+3-isobutyl-1-methylxanthine (IBMX)-activated whole-cell currents in the presence of the corrector. Omitting VX-809 during whole-cell recordings led to a spontaneous decline of the currents, suggesting posttranslational stabilization by VX-809. Treatment of cells with the C4+VX-809 combination resulted in enhanced rescue and 2-fold higher forskolin+IBMX-activated currents of both I507-ATT and I507-ATC ΔF508 CFTR, compared with VX-809 treatment alone. The lack of an effect of C4 on I507-ATC ΔF508 CFTR, but its additive effect in combination with VX-809, implies that C4 acted on VX-809-modified I507-ATC ΔF508 CFTR. Our results suggest that binding of C4 and VX-809 to ΔF508 CFTR is conformation specific and provide evidence that synonymous mutations can alter the drug sensitivity of proteins. PMID:26336913

  2. Altering Antibody-Drug Conjugate Binding to the Neonatal Fc Receptor Impacts Efficacy and Tolerability.

    PubMed

    Hamblett, Kevin J; Le, Tiep; Rock, Brooke M; Rock, Dan A; Siu, Sophia; Huard, Justin N; Conner, Kip P; Milburn, Robert R; O'Neill, Jason W; Tometsko, Mark E; Fanslow, William C

    2016-07-01

    Antibody-drug conjugates (ADC) rely on the target-binding specificity of an antibody to selectively deliver potent drugs to cancer cells. IgG antibody half-life is regulated by neonatal Fc receptor (FcRn) binding. Histidine 435 of human IgG was mutated to alanine (H435A) to explore the effect of FcRn binding on the pharmacokinetics, efficacy, and tolerability of two separate maytansine-based ADC pairs with noncleavable linkers, (c-DM1 and c-H435A-DM1) and (7v-Cys-may and 7v-H435A-Cys-may). The in vitro cell-killing potency of each pair of ADCs was similar, demonstrating that H435A showed no measurable impact on ADC bioactivity. The H435A mutant antibodies showed no detectable binding to human or mouse FcRn in vitro, whereas their counterpart wild-type IgG ADCs were found to bind to FcRn at pH = 6.0. In xenograft bearing SCID mice expressing mouse FcRn, the AUC of 7v-Cys-may was 1.6-fold higher than that of 7v-H435A-may, yet the observed efficacy was similar. More severe thrombocytopenia was observed with 7v-H435A-Cys-may as compared to 7v-Cys-may at multiple dose levels. The AUC of c-DM1 was approximately 3-fold higher than that of c-H435A-DM1 in 786-0 xenograft bearing SCID mice, which led to a 3-fold difference in efficacy by dose. Murine FcRn knockout, human FcRn transgenic line 32 SCID animals bearing 786-0 xenografts showed an amplified exposure difference between c-DM1 and c-H435A-DM1 as compared to murine FcRn expressing SCID mice, leading to a 10-fold higher dose required for efficacy despite a 6-fold higher AUC of the c-H435A-DM1. The accelerated clearance observed for the noncleavable maytansine ADCs with the H435A FcRn mutation led to reduced efficacy at equivalent doses and exacerbation of clinical pathology parameters (decreased tolerability) at equivalent doses. The results show that reduced ADC clearance mediated by FcRn modulation can improve therapeutic index. PMID:27248573

  3. The anti-inflammatory drug indomethacin alters nanoclustering in synthetic and cell plasma membranes.

    PubMed

    Zhou, Yong; Plowman, Sarah J; Lichtenberger, Lenard M; Hancock, John F

    2010-11-01

    The nonsteroidal anti-inflammatory drug indomethacin exhibits diverse biological effects, many of which have no clear molecular mechanism. Membrane-bound receptors and enzymes are sensitive to their phospholipid microenvironment. Amphipathic indomethacin could therefore potentially modulate cell signaling by changing membrane properties. Here we examined the effect of indomethacin on membrane lateral heterogeneity. Fluorescence lifetime imaging of cells expressing lipid-anchored probes revealed that treatment of BHK cells with therapeutic levels of indomethacin enhances cholesterol-dependent nanoclustering, but not cholesterol-independent nanoclustering. Immuno-electron microscopy and quantitative spatial mapping of intact plasma membrane sheets similarly showed a selective effect of indomethacin on promoting cholesterol-dependent, but not cholesterol-independent, nanoclustering. To further evaluate the biophysical effects of indomethacin, we measured fluorescence polarization of the phase-sensitive probe Laurdan and FRET between phase-partitioning probes in model bilayers. Therapeutic levels of indomethacin enhanced phase separation in DPPC/DOPC/Chol (1:1:1) and DPPC/Chol membranes in a temperature-dependent manner, but had minimal effect on the phase behavior of pure DOPC at any temperature. Taken together, the imaging results on intact epithelial cells and the biophysical assays of model membranes suggest that indomethacin can enhance phase separation and stabilize cholesterol-dependent nanoclusters in biological membranes. These effects on membrane lateral heterogeneity may have significant consequences for cell signaling cascades that are assembled on the plasma membrane. PMID:20826816

  4. The Anti-inflammatory Drug Indomethacin Alters Nanoclustering in Synthetic and Cell Plasma Membranes*

    PubMed Central

    Zhou, Yong; Plowman, Sarah J.; Lichtenberger, Lenard M.; Hancock, John F.

    2010-01-01

    The nonsteroidal anti-inflammatory drug indomethacin exhibits diverse biological effects, many of which have no clear molecular mechanism. Membrane-bound receptors and enzymes are sensitive to their phospholipid microenvironment. Amphipathic indomethacin could therefore potentially modulate cell signaling by changing membrane properties. Here we examined the effect of indomethacin on membrane lateral heterogeneity. Fluorescence lifetime imaging of cells expressing lipid-anchored probes revealed that treatment of BHK cells with therapeutic levels of indomethacin enhances cholesterol-dependent nanoclustering, but not cholesterol-independent nanoclustering. Immuno-electron microscopy and quantitative spatial mapping of intact plasma membrane sheets similarly showed a selective effect of indomethacin on promoting cholesterol-dependent, but not cholesterol-independent, nanoclustering. To further evaluate the biophysical effects of indomethacin, we measured fluorescence polarization of the phase-sensitive probe Laurdan and FRET between phase-partitioning probes in model bilayers. Therapeutic levels of indomethacin enhanced phase seperation in DPPC/DOPC/Chol (1:1:1) and DPPC/Chol membranes in a temperature-dependent manner, but had minimal effect on the phase behavior of pure DOPC at any temperature. Taken together, the imaging results on intact epithelial cells and the biophysical assays of model membranes suggest that indomethacin can enhance phase separation and stabilize cholesterol-dependent nanoclusters in biological membranes. These effects on membrane lateral heterogeneity may have significant consequences for cell signaling cascades that are assembled on the plasma membrane. PMID:20826816

  5. Sexual differentiation of the brain: a model for drug-induced alterations of the reproductive system

    SciTech Connect

    Gorski, R.A.

    1986-12-01

    The process of the sexual differentiation of the brain represents a valuable model system for the study of the chemical modification of the mammalian brain. Although there are numerous functional and structural sex differences in the adult brain, these are imposed on an essentially feminine or bipotential brain by testicular hormones during a critical phase of perinatal development in the rat. It is suggested that a relatively marked structural sex difference in the rat brain, the sexually dimorphic nucleus of the preoptic area (SDN-POA), is a morphological signature of the permanent or organizational action of estradiol derived from the aromatization of testicular testosterone. The SDN-POA of the male rat is severalfold larger in volume and is composed of more neurons than that of the female. The observation that the mitotic formation of the neurons of the SDN-POA is specifically prolonged has enabled us to identify the time course and pathway of neuronal migration into the nucleus. Study of the development of the SDN-POA suggests that estradiol in the male increases the number of neurons which survive a phase of neuronal death by exerting a neurite growth promoting action and/or a direct neuronotrophic action. Finally, although it is clear that gonadal hormones have dramatic permanent effects on the brain during perinatal development, even after puberty and in adulthood gonadal steroids can alter neuronal structure and, perhaps as a corollary to this, have permanent effects on reproductive function. Although the brain may be most sensitive to gonadal hormones or exogenous chemical factors during perinatal development, such as sensitivity does not appear limited to this period.

  6. A Surface Biotinylation Strategy for Reproducible Plasma Membrane Protein Purification and Tracking of Genetic and Drug-Induced Alterations.

    PubMed

    Hörmann, Katrin; Stukalov, Alexey; Müller, André C; Heinz, Leonhard X; Superti-Furga, Giulio; Colinge, Jacques; Bennett, Keiryn L

    2016-02-01

    Plasma membrane (PM) proteins contribute to the identity of a cell, mediate contact and communication, and account for more than two-thirds of known drug targets.1-8 In the past years, several protocols for the proteomic profiling of PM proteins have been described. Nevertheless, comparative analyses have mainly focused on different variations of one approach.9-11 We compared sulfo-NHS-SS-biotinylation, aminooxy-biotinylation, and surface coating with silica beads to isolate PM proteins for subsequent analysis by one-dimensional gel-free liquid chromatography mass spectrometry. Absolute and relative numbers of PM proteins and reproducibility parameters on a qualitative and quantitative level were assessed. Sulfo-NHS-SS-biotinylation outperformed aminooxy-biotinylation and surface coating using silica beads for most of the monitored criteria. We further simplified this procedure by a competitive biotin elution strategy achieving an average PM annotated protein fraction of 54% (347 proteins). Computational analysis using additional databases and prediction tools revealed that in total over 90% of the purified proteins were associated with the PM, mostly as interactors. The modified sulfo-NHS-SS-biotinylation protocol was validated by tracking changes in the plasma membrane proteome composition induced by genetic alteration and drug treatment. Glycosylphosphatidylinositol (GPI)-anchored proteins were depleted in PM purifications from cells deficient in the GPI transamidase component PIGS, and treatment of cells with tunicamycin significantly reduced the abundance of N-glycoproteins in surface purifications. PMID:26699813

  7. Psychotropic drugs in mixture alter swimming behaviour of Japanese medaka (Oryzias latipes) larvae above environmental concentrations.

    PubMed

    Chiffre, Axelle; Clérandeau, Christelle; Dwoinikoff, Charline; Le Bihanic, Florane; Budzinski, Hélène; Geret, Florence; Cachot, Jérôme

    2016-03-01

    Psychiatric pharmaceuticals, such as anxiolytics, sedatives, hypnotics and antidepressors, are among the most prescribed active substances in the world. The occurrence of these compounds in the environment, as well as the adverse effects they can have on non-target organisms, justifies the growing concern about these emerging environmental pollutants. This study aims to analyse the effects of six psychotropic drugs, valproate, cyamemazine, citalopram, sertraline, fluoxetine and oxazepam, on the survival and locomotion of Japanese medaka Oryzias latipes larvae. Newly hatched Japanese medaka were exposed to individual compounds for 72 h, at concentrations ranging from 10 μg L(-1) to 10 mg L(-1). Lethal concentrations 50 % (LC50) were estimated at 840, 841 and 9,136 μg L(-1) for fluoxetine, sertraline and citalopram, respectively, while other compounds did not induce any significant increase in mortality. Analysis of the swimming behaviour of larvae, including total distance moved, mobility and location, provided an estimated lowest observed effect concentration (LOEC) of 10 μg L(-1) for citalopram and oxazepam, 12.2 μg L(-1) for cyamemazine, 100 μg L(-1) for fluoxetine, 1,000 μg L(-1) for sertraline and >10,000 μg L(-1) for valproate. Realistic environmental mixture of the six psychotropic compounds induced disruption of larval locomotor behaviour at concentrations about 10- to 100-fold greater than environmental concentrations. PMID:25175354

  8. Nonsteroidal anti-inflammatory drugs alter vasa recta diameter via pericytes.

    PubMed

    Kennedy-Lydon, Teresa; Crawford, Carol; Wildman, Scott S; Peppiatt-Wildman, Claire M

    2015-10-01

    We have previously shown that vasa recta pericytes are known to dilate vasa recta capillaries in the presence of PGE2 and contract vasa recta capillaries when endogenous production of PGE2 is inhibited by the nonselective nonsteroidal anti-inflammatory drug (NSAID) indomethacin. In the present study, we used a live rat kidney slice model to build on these initial observations and provide novel data that demonstrate that nonselective, cyclooxygenase-1-selective, and cyclooxygenase -2-selective NSAIDs act via medullary pericytes to elicit a reduction of vasa recta diameter. Real-time images of in situ vasa recta were recorded, and vasa recta diameters at pericyte and nonpericyte sites were measured offline. PGE2 and epoprostenol (a prostacyclin analog) evoked dilation of vasa recta specifically at pericyte sites, and PGE2 significantly attenuated pericyte-mediated constriction of vasa recta evoked by both endothelin-1 and ANG II. NSAIDs (indomethacin > SC-560 > celecoxib > meloxicam) evoked significantly greater constriction of vasa recta capillaries at pericyte sites than at nonpericyte sites, and indomethacin significantly attenuated the pericyte-mediated vasodilation of vasa recta evoked by PGE2, epoprostenol, bradykinin, and S-nitroso-N-acetyl-l-penicillamine. Moreover, a reduction in PGE2 was measured using an enzyme immune assay after superfusion of kidney slices with indomethacin. In addition, immunohistochemical techniques were used to demonstrate the population of EP receptors in the medulla. Collectively, these data demonstrate that pericytes are sensitive to changes in PGE2 concentration and may serve as the primary mechanism underlying NSAID-associated renal injury and/or further compound-associated tubular damage. PMID:26202223

  9. Long-term alterations in vulnerability to addiction to drugs of abuse and in brain gene expression after early life ethanol exposure.

    PubMed

    Barbier, Estelle; Pierrefiche, Olivier; Vaudry, David; Vaudry, Hubert; Daoust, Martine; Naassila, Mickaël

    2008-12-01

    Exposure to ethanol early in life can have long-lasting implications on brain function and drug of abuse response later in life. The present study investigated in rats, the long-term consequences of pre- and postnatal (early life) ethanol exposure on drug consumption/reward and the molecular targets potentially associated with these behavioral alterations. Since a relationship has been demonstrated between heightened drugs intake and susceptibility to drugs-induced locomotor activity/sensitization, anxiolysis, we tested these behavioral responses, depending on the drug, in control and early life ethanol-exposed animals. Our results show that progeny exposed to early life ethanol displayed increased consumption of ethanol solutions and increased sensitivity to cocaine rewarding effects assessed in the conditioned place preference test. Offspring exposed to ethanol were more sensitive to the anxiolytic effect of ethanol and the increased sensitivity could, at least in part, explain the alteration in the consumption of ethanol for its anxiolytic effects. In addition, the sensitivity to hypothermic effects of ethanol and ethanol metabolism were not altered by early life ethanol exposure. The sensitization to cocaine (20 mg/kg) and to amphetamine (1.2 mg/kg) was increased after early life ethanol exposure and, could partly explain, an increase in the rewarding properties of psychostimulants. Gene expression analysis revealed that expression of a large number of genes was altered in brain regions involved in the reinforcing effects of drugs of abuse. Dopaminergic receptors and transporter binding sites were also down-regulated in the striatum of ethanol-exposed offspring. Such long-term neurochemical alterations in transmitter systems and in the behavioral responses to ethanol and other drugs of abuse may confer an increased liability for addiction in exposed offspring. PMID:18713641

  10. Drug-Metabolizing Activity, Protein and Gene Expression of UDP-Glucuronosyltransferases Are Significantly Altered in Hepatocellular Carcinoma Patients

    PubMed Central

    Lu, Linlin; Zhou, Juan; Shi, Jian; Peng, Xiao-juan; Qi, Xiao-xiao; Wang, Ying; Li, Fang-yuan; Zhou, Fu-Yuan; Liu, Liang; Liu, Zhong-Qiu

    2015-01-01

    UDP-glucuronosyltransferases (UGTs), the most important enzymes in body detoxification and homeostasis maintaining, govern the glucuronidation reaction of various endogenous and environmental carcinogens. The metabolic function of UGTs can be severely influenced by hepatocellular carcinoma (HCC), the fifth prevalent and third malignant cancer worldwide. Particularly in China, HBV-positive HCC account for approximately 80% of HCC patients. But rare papers addressed the alteration on the metabolism of UGTs specific substrates, translational and transcriptional activity of UGTs in HBV-positive HCC patients. In present study, we choose the main UGT isoforms, UGT1As, UGT1A1, UGT1A9, UGT1A4 and UGT2B7, to determine the alterations of metabolic activity, protein and gene expression of UGTs in HBV-positive HCC. The corresponding specific substrates such as genistein, SN-38, tamoxifen, propofol and zidovudine were utilized respectively in UGTs metabolic activity determination. Furthermore, the plausible mechanism responsible for UGTs alterations was addressed by analyzing the protein and gene expressions in tumor and the adjacent normal tissues in HBV-positive HCC. The results revealed that in the tumor human liver microsomes (HLMs), either Vmax (maximum reaction rate, Rmax for UGT1A1) or the clearance rates (Vmax/Km, Clint) of UGT1A, UGT1A1, UGT1A4, UGT1A9 and UGT2B7 were significant lower than those of in the adjacent normal HLMs. Subsequently, the relative protein and gene expressions of these isoforms were notably decreased in most of tumor tissues comparing with the adjacent normal tissues. More interestingly, in tumor tissues, the metabolic activity reduction ratio of each UGT isoform was closely related to its protein reduction ratio, indicating that decreasing protein level would contribute to the reduced metabolic function of UGTs in HBV-positive HCC. In summary, our study firstly determined the alteration of UGT function in HBV-positive HCC patients, which would

  11. Drug-Metabolizing Activity, Protein and Gene Expression of UDP-Glucuronosyltransferases Are Significantly Altered in Hepatocellular Carcinoma Patients.

    PubMed

    Lu, Linlin; Zhou, Juan; Shi, Jian; Peng, Xiao-juan; Qi, Xiao-xiao; Wang, Ying; Li, Fang-Yuan; Zhou, Fu-Yuan; Liu, Liang; Liu, Zhong-Qiu

    2015-01-01

    UDP-glucuronosyltransferases (UGTs), the most important enzymes in body detoxification and homeostasis maintaining, govern the glucuronidation reaction of various endogenous and environmental carcinogens. The metabolic function of UGTs can be severely influenced by hepatocellular carcinoma (HCC), the fifth prevalent and third malignant cancer worldwide. Particularly in China, HBV-positive HCC account for approximately 80% of HCC patients. But rare papers addressed the alteration on the metabolism of UGTs specific substrates, translational and transcriptional activity of UGTs in HBV-positive HCC patients. In present study, we choose the main UGT isoforms, UGT1As, UGT1A1, UGT1A9, UGT1A4 and UGT2B7, to determine the alterations of metabolic activity, protein and gene expression of UGTs in HBV-positive HCC. The corresponding specific substrates such as genistein, SN-38, tamoxifen, propofol and zidovudine were utilized respectively in UGTs metabolic activity determination. Furthermore, the plausible mechanism responsible for UGTs alterations was addressed by analyzing the protein and gene expressions in tumor and the adjacent normal tissues in HBV-positive HCC. The results revealed that in the tumor human liver microsomes (HLMs), either V(max) (maximum reaction rate, R(max) for UGT1A1) or the clearance rates (V(max)/K(m), Clint) of UGT1A, UGT1A1, UGT1A4, UGT1A9 and UGT2B7 were significant lower than those of in the adjacent normal HLMs. Subsequently, the relative protein and gene expressions of these isoforms were notably decreased in most of tumor tissues comparing with the adjacent normal tissues. More interestingly, in tumor tissues, the metabolic activity reduction ratio of each UGT isoform was closely related to its protein reduction ratio, indicating that decreasing protein level would contribute to the reduced metabolic function of UGTs in HBV-positive HCC. In summary, our study firstly determined the alteration of UGT function in HBV-positive HCC patients, which

  12. Two-Step Delivery: Exploiting the Partition Coefficient Concept to Increase Intratumoral Paclitaxel Concentrations In vivo Using Responsive Nanoparticles

    PubMed Central

    Colby, Aaron H.; Liu, Rong; Schulz, Morgan D.; Padera, Robert F.; Colson, Yolonda L.; Grinstaff, Mark W.

    2016-01-01

    Drug dose, high local target tissue concentration, and prolonged duration of exposure are essential criteria in achieving optimal drug performance. However, systemically delivered drugs often fail to effectively address these factors with only fractions of the injected dose reaching the target tissue. This is especially evident in the treatment of peritoneal cancers, including mesothelioma, ovarian, and pancreatic cancer, which regularly employ regimens of intravenous and/or intraperitoneal chemotherapy (e.g., gemcitabine, cisplatin, pemetrexed, and paclitaxel) with limited results. Here, we show that a “two-step” nanoparticle (NP) delivery system may address this limitation. This two-step approach involves the separate administration of NP and drug where, first, the NP localizes to tumor. Second, subsequent administration of drug then rapidly concentrates into the NP already stationed within the target tissue. This two-step method results in a greater than 5-fold increase in intratumoral drug concentrations compared to conventional “drug-alone” administration. These results suggest that this unique two-step delivery may provide a novel method for increasing drug concentrations in target tissues. PMID:26740245

  13. Two-Step Delivery: Exploiting the Partition Coefficient Concept to Increase Intratumoral Paclitaxel Concentrations In vivo Using Responsive Nanoparticles

    NASA Astrophysics Data System (ADS)

    Colby, Aaron H.; Liu, Rong; Schulz, Morgan D.; Padera, Robert F.; Colson, Yolonda L.; Grinstaff, Mark W.

    2016-01-01

    Drug dose, high local target tissue concentration, and prolonged duration of exposure are essential criteria in achieving optimal drug performance. However, systemically delivered drugs often fail to effectively address these factors with only fractions of the injected dose reaching the target tissue. This is especially evident in the treatment of peritoneal cancers, including mesothelioma, ovarian, and pancreatic cancer, which regularly employ regimens of intravenous and/or intraperitoneal chemotherapy (e.g., gemcitabine, cisplatin, pemetrexed, and paclitaxel) with limited results. Here, we show that a “two-step” nanoparticle (NP) delivery system may address this limitation. This two-step approach involves the separate administration of NP and drug where, first, the NP localizes to tumor. Second, subsequent administration of drug then rapidly concentrates into the NP already stationed within the target tissue. This two-step method results in a greater than 5-fold increase in intratumoral drug concentrations compared to conventional “drug-alone” administration. These results suggest that this unique two-step delivery may provide a novel method for increasing drug concentrations in target tissues.

  14. Intratumoral diversity of telomere length in individual neuroblastoma tumors.

    PubMed

    Pezzolo, Annalisa; Pistorio, Angela; Gambini, Claudio; Haupt, Riccardo; Ferraro, Manuela; Erminio, Giovanni; De Bernardi, Bruno; Garaventa, Alberto; Pistoia, Vito

    2015-04-10

    The purpose of the work was to investigate telomere length (TL) and mechanisms involved in TL maintenance in individual neuroblastoma (NB) tumors. Primary NB tumors from 102 patients, ninety Italian and twelve Spanish, diagnosed from 2000 to 2008 were studied. TL was investigated by quantitative fluorescence in situ hybridization (IQ-FISH) that allows to analyze individual cells in paraffin-embedded tissues. Fluorescence intensity of chromosome 2 centromere was used as internal control to normalize TL values to ploidy. Human telomerase reverse transcriptase (hTERT) expression was detected by immunofluorescence in 99/102 NB specimens.The main findings are the following: 1) two intratumoral subpopulations of cancer cells displaying telomeres of different length were identified in 32/102 tumors belonging to all stages. 2) hTERT expression was detected in 99/102 tumors, of which 31 displayed high expression and 68 low expression. Alternative lengthening of telomeres (ALT)-mechanism was present in 60/102 tumors, 20 of which showed high hTERT expression. Neither ALT-mechanism nor hTERT expression correlated with heterogeneous TL. 3) High hTERT expression and ALT positivity were associated with significantly reduced Overall Survival. 4) High hTERT expression predicted relapse irrespective of patient age. Intratumoral diversity in TL represents a novel feature in NB.In conclusion, diversity of TL in individual NB tumors was strongly associated with disease progression and death, suggesting that these findings are of translational relevance. The combination of high hTERT expression and ALT positivity may represent a novel biomarker of poor prognosis that deserves further investigation. PMID:25595889

  15. Understanding Intratumoral Heterogeneity: Lessons from the Analysis of At-Risk Tissue and Premalignant Lesions in the Colon.

    PubMed

    Sievers, Chelsie K; Leystra, Alyssa A; Clipson, Linda; Dove, William F; Halberg, Richard B

    2016-08-01

    Advances in DNA sequencing have created new opportunities to better understand the biology of cancers. Attention is currently focused on precision medicine: does a cancer carry a mutation that is targetable with already available drugs? But, the timing at which multiple, targetable mutations arise during the adenoma to carcinoma sequence remains unresolved. Borras and colleagues identified mutations and allelic imbalance in at-risk mucosa and early polyps in the human colon. Their analyses indicate that mutations in key genes can arise quite early during tumorigenesis and that polyps are often multiclonal with at least two clones. These results are consistent with the "Big Bang" model of tumorigenesis, which postulates that intratumoral heterogeneity is a consequence of a mutational burst in the first few cell divisions following initiation that drives divergence from a single founder with unique but related clones coevolving. Emerging questions center around the ancestry of the tumor and impact of early intratumoral heterogeneity on tumor establishment, growth, progression, and most importantly, response to therapeutic intervention. Additional sequencing studies in which samples, especially at-risk tissue and premalignant neoplasms, are analyzed from animal models and humans will further our understanding of tumorigenesis and lead to more effective strategies for prevention and treatment. Cancer Prev Res; 9(8); 638-41. ©2016 AACRSee related article by Borras, et al., Cancer Prev Res 2016;9(6):417-427. PMID:27199343

  16. Suppression of pancreatic ductal adenocarcinoma growth by intratumoral delivery of attenuated Salmonella typhimurium using a dual fluorescent live tracking system

    PubMed Central

    Zhou, Sujin; Zhao, Zhenggang; Lin, Yan; Gong, Sijia; Li, Fanghong; Pan, Jinshun; Li, Xiaoxi; Gao, Zhuo; Zhao, Allan Z.

    2016-01-01

    ABSTRACT Pancreatic ductal adenocarcinoma (PDAC) has the poorest prognosis among all malignancies and is resistant to almost all current therapies. Attenuated Salmonella typhimurium strain VNP20009 has been deployed as powerful anticancer agent in a variety of animal cancer models, and previous phase 1 clinical trials have proven its safety profiles. However, thus far, little is known about its effect on PDAC. Here, we established CFPAC-1 cell lines expressing an mKate2 protein and thus emitting far-red fluorescence in the subsequent xenograft implant. VNP20009 strain was further engineered to carry a luciferase cDNA, which catalyzes the light-emitting reaction to allow the observation of salmonella distribution and accumulation within tumor with live imaging. Using such VNP20009 strain and intratumoral delivery, we could reduce the growth of pancreatic cancer by inducing apoptosis and severe necrosis in a dosage dependent manner. Consistent with this finding, intratumoral delivery of VNP20009 also increase caspase-3 activity and the expression of Bax protein. In summary, we revealed that VNP20009 is a promising bacterial agent for the treatment of PDAC, and that we have established a dual fluorescent imaging system as a valuable tool for noninvasive live imaging of solid tumor and engineered bacterial drug. PMID:27089121

  17. Injectable intratumoral depot of thermally responsive polypeptide-radionuclide conjugates delays tumor progression in a mouse model

    PubMed Central

    Liu, Wenge; MacKay, J. Andrew; Dreher, Matthew R.; Chen, Mingnan; McDaniel, Jonathan R.; Simnick, Andrew J.; Callahan, Daniel J.; Zalutsky, Michael R.; Chilkoti, Ashutosh

    2010-01-01

    This study evaluated a biodegradable drug delivery system for local cancer radiotherapy consisting of a thermally sensitive elastin-like polypeptide (ELP) conjugated to a therapeutic radionuclide. Two ELPs (49 kD) were synthesized using genetic engineering to test the hypothesis that injectable biopolymeric depots can retain radionuclides locally and reduce the growth of tumors. A thermally sensitive polypeptide, ELP1, was designed to spontaneously undergo a soluble-insoluble phase transition (forming viscous microparticles) between room temperature and body temperature upon intratumoral injection, while ELP2 was designed to remain soluble upon injection and to serve as a negative control for the effect of aggregate assembly. After intratumoral administration of radionuclide conjugates of ELPs into implanted tumor xenografts in nude mice, their retention within the tumor, spatio-temporal distribution, and therapeutic effect were quantified. The residence time of the radionuclide-ELP1 in the tumor was significantly longer than the thermally insensitive ELP2 conjugate. In addition, the thermal transition of ELP1 significantly protected the conjugated radionuclide from dehalogenation, whereas the conjugated radionuclide on ELP2 was quickly eliminated from the tumor and cleaved from the biopolymer. These attributes of the thermally sensitive ELP1 depot improved the antitumor efficacy of iodine-131 compared to the soluble ELP2 control. This novel injectable and biodegradable depot has the potential to control advanced-stage cancers by reducing the bulk of inoperable tumors, enabling surgical removal of de-bulked tumors, and preserving healthy tissues. PMID:20117157

  18. Photodynamic Therapy Induced Enhancement of Tumor Vasculature Permeability Using an Upconversion Nanoconstruct for Improved Intratumoral Nanoparticle Delivery in Deep Tissues

    PubMed Central

    Gao, Weidong; Wang, Zhaohui; Lv, Liwei; Yin, Deyan; Chen, Dan; Han, Zhihao; Ma, Yi; Zhang, Min; Yang, Man; Gu, Yueqing

    2016-01-01

    Photodynamic therapy (PDT) has recently emerged as an approach to enhance intratumoral accumulation of nanoparticles. However, conventional PDT is greatly limited by the inability of the excitation light to sufficiently penetrate tissue, rendering PDT ineffective in the relatively deep tumors. To address this limitation, we developed a novel PDT platform and reported for the first time the effect of deep-tissue PDT on nanoparticle uptake in tumors. This platform employed c(RGDyK)-conjugated upconversion nanoparticles (UCNPs), which facilitate active targeting of the nanoconstruct to tumor vasculature and achieve the deep-tissue photosensitizer activation by NIR light irradiation. Results indicated that our PDT system efficiently enhanced intratumoral uptake of different nanoparticles in a deep-seated tumor model. The optimal light dose for deep-tissue PDT (34 mW/cm2) was determined and the most robust permeability enhancement was achieved by administering the nanoparticles within 15 minutes following PDT treatment. Further, a two-step treatment strategy was developed and validated featuring the capability of improving the therapeutic efficacy of Doxil while simultaneously reducing its cardiotoxicity. This two-step treatment resulted in a tumor inhibition rate of 79% compared with 56% after Doxil treatment alone. These findings provide evidence in support of the clinical application of deep-tissue PDT for enhanced nano-drug delivery. PMID:27279907

  19. Alterations of the vascular basal lamina in the cerebral cortex in drug abuse: a combined morphometric and immunohistochemical investigation.

    PubMed

    Büttner, Andreas; Kroehling, Claus; Mall, Gita; Penning, Randolph; Weis, Serge

    2005-07-01

    In drug abusers, white matter hyperintensities, perfusion deficits, and metabolic disturbances are detected by neuroimaging analyses in different brain regions. A specific pattern of involvement or a predominance of a specific brain region cannot be drawn. To examine changes of the cerebral microvasculature as a possible morphological substrate of the neuroimaging findings, brain specimens of 12 polydrug abusers and 8 controls were obtained at autopsy. The basal lamina of blood vessels from the frontal, temporal, parietal, and occipital lobes was analysed by means of immunohistochemistry for collagen type IV. The numerical density of vessels was determined in the gray and white matter, and their staining intensity was rated using a three-point scale. In the gray and white matter of polydrug abusers, the number of vessels showing strong immunoreactivity for collagen type IV was significantly reduced, whereas the number of vessels with mild and moderate immunoreactivity was increased as compared to controls. The total numerical density of vessels was not significantly changed. Our results show a significant reduction in immunoreactivity for collagen type IV in the brains from polydrug abusers compared to controls, which may be due to a thinning of the basal lamina of cerebral vessels. The data of the present study show morphological changes of the basal lamina in the brain of polydrug abusers, which might represent the morphological substrate of a disturbed blood-brain barrier. However, it remains yet to be established if the observed changes are responsible for the alterations seen in different neuroimaging analyses and which drug might be of major pathogenetic significance. PMID:15943945

  20. Doxorubicin-induced co-assembling nanomedicines with temperature-sensitive acidic polymer and their in-situ-forming hydrogels for intratumoral administration.

    PubMed

    Wan, Jiangshan; Geng, Shinan; Zhao, Hao; Peng, Xiaole; Zhou, Qing; Li, Han; He, Ming; Zhao, Yanbing; Yang, Xiangliang; Xu, Huibi

    2016-08-10

    Doxorubicin (DOX)-induced co-assembling nanomedicines (D-PNAx) with temperature-sensitive PNAx triblock polymers have been developed for regional chemotherapy against liver cancer via intratumoral administration in the present work. Owing to the formation of insoluble DOX carboxylate, D-PNAx nanomedicines showed high drug-loading and entrapment efficacy via a simple mixing of doxorubicin hydrochloride and PNAx polymers. The sustained releasing profile of D-PNA100 nanomedicines indicated that only 9.4% of DOX was released within 1day, and 60% was released during 10days. Based on DOX-induced co-assembling behavior and their temperature sensitive in-situ-forming hydrogels, D-PNA100 nanomedicines showed excellent antitumor activity against H22 tumor using intratumoral administration. In contrast to that by free DOX solution (1.13±0.04 times at 9days) and blank PNA100 (2.11±0.34 times), the tumor volume treated by D-PNA100 had been falling to only 0.77±0.13 times of original tumor volume throughout the experimental period. In vivo biodistribution of DOX indicated that D-PNA100 nanomedicines exhibited much stronger DOX retention in tumor tissues than free DOX solution via intratumoral injection. D-PNA100 nanomedicines were hopeful to be developed as new temperature sensitive in-situ-forming hydrogels via i.t. injection for regional chemotherapy. PMID:27282415

  1. Intratumoral heterogeneity: Clonal cooperation in epithelial-to-mesenchymal transition and metastasis

    PubMed Central

    Neelakantan, Deepika; Drasin, David J; Ford, Heide L

    2015-01-01

    Although phenotypic intratumoral heterogeneity was first described many decades ago, the advent of next-generation sequencing has provided conclusive evidence that in addition to phenotypic diversity, significant genotypic diversity exists within tumors. Tumor heterogeneity likely arises both from clonal expansions, as well as from differentiation hierarchies existent in the tumor, such as that established by cancer stem cells (CSCs) and non-CSCs. These differentiation hierarchies may arise due to genetic mutations, epigenetic alterations, or microenvironmental influences. An additional differentiation hierarchy within epithelial tumors may arise when only a few tumor cells trans-differentiate into mesenchymal-like cells, a process known as epithelial-to-mesenchymal transition (EMT). Again, this process can be influenced by both genetic and non-genetic factors. In this review we discuss the evidence for clonal interaction and cooperation for tumor maintenance and progression, particularly with respect to EMT, and further address the far-reaching effects that tumor heterogeneity may have on cancer therapy. PMID:25482627

  2. Pan-cancer analysis of intratumor heterogeneity as a prognostic determinant of survival

    PubMed Central

    Desrichard, Alexis; Şenbabaoğlu, Yasin; Hakimi, A. Ari; Makarov, Vladimir; Reis-Filho, Jorge S.; Chan, Timothy A.

    2016-01-01

    As tumors accumulate genetic alterations, an evolutionary process occurs in which genetically distinct subclonal populations of cells co-exist, resulting in intratumor genetic heterogeneity (ITH). The clinical implications of ITH remain poorly defined. Data are limited with respect to whether ITH is an independent determinant of patient survival outcomes, across different cancer types. Here, we report the results of a pan-cancer analysis of over 3300 tumors, showing a varied landscape of ITH across 9 cancer types. While some gene mutations are subclonal, the majority of driver gene mutations are clonal events, present in nearly all cancer cells. Strikingly, high levels of ITH are associated with poorer survival across diverse types of cancer. The adverse impact of high ITH is independent of other clinical, pathologic and molecular factors. High ITH tends to be associated with lower levels of tumor-infiltrating immune cells, but this association is not able to explain the observed survival differences. Together, these data show that ITH is a prognostic marker in multiple cancers. These results illuminate the natural history of cancer evolution, indicating that tumor heterogeneity represents a significant obstacle to cancer control. PMID:26840267

  3. Alterations in primary motor cortex neurotransmission and gene expression in hemi-parkinsonian rats with drug-induced dyskinesia.

    PubMed

    Lindenbach, D; Conti, M M; Ostock, C Y; Dupre, K B; Bishop, C

    2015-12-01

    Treatment of Parkinson's disease (PD) with dopamine replacement relieves symptoms of poverty of movement, but often causes drug-induced dyskinesias. Accumulating clinical and pre-clinical evidence suggests that the primary motor cortex (M1) is involved in the pathophysiology of PD and that modulating cortical activity may be a therapeutic target in PD and dyskinesia. However, surprisingly little is known about how M1 neurotransmitter tone or gene expression is altered in PD, dyskinesia or associated animal models. The present study utilized the rat unilateral 6-hydroxydopamine (6-OHDA) model of PD/dyskinesia to characterize structural and functional changes taking place in M1 monoamine innervation and gene expression. 6-OHDA caused dopamine pathology in M1, although the lesion was less severe than in the striatum. Rats with 6-OHDA lesions showed a PD motor impairment and developed dyskinesia when given L-DOPA or the D1 receptor agonist, SKF81297. M1 expression of two immediate-early genes (c-Fos and ARC) was strongly enhanced by either L-DOPA or SKF81297. At the same time, expression of genes specifically involved in glutamate and GABA signaling were either modestly affected or unchanged by lesion and/or treatment. We conclude that M1 neurotransmission and signal transduction in the rat 6-OHDA model of PD/dyskinesia mirror features of human PD, supporting the utility of the model to study M1 dysfunction in PD and the elucidation of novel pathophysiological mechanisms and therapeutic targets. PMID:26363150

  4. Comedications alter drug-induced liver injury reporting frequency: Data mining in the WHO VigiBase™.

    PubMed

    Suzuki, Ayako; Yuen, Nancy A; Ilic, Katarina; Miller, Richard T; Reese, Melinda J; Brown, H Roger; Ambroso, Jeffrey I; Falls, J Gregory; Hunt, Christine M

    2015-08-01

    Polypharmacy is common, and may modify mechanisms of drug-induced liver injury. We examined the effect of these drug-drug interactions on liver safety reports of four drugs highly associated with hepatotoxicity. In the WHO VigiBase™, liver event reports were examined for acetaminophen, isoniazid, valproic acid, and amoxicillin/clavulanic acid. Then, we evaluated the liver event reporting frequency of these 4 drugs in the presence of co-reported medications. Each of the 4 primary drugs was reported as having more than 2000 liver events, and co-reported with more than 600 different medications. Overall, the effect of 2275 co-reported drugs (316 drug classes) on the reporting frequency was analyzed. Decreased liver event reporting frequency was associated with 245 drugs/122 drug classes, including anti-TNFα, opioids, and folic acid. Increased liver event reporting frequency was associated with 170 drugs/82 drug classes; in particular, halogenated hydrocarbons, carboxamides, and bile acid sequestrants. After adjusting for age, gender, and other co-reported drug classes, multiple co-reported drug classes were significantly associated with decreased/increased liver event reporting frequency in a drug-specific/unspecific manner. In conclusion, co-reported medications were associated with changes in the liver event reporting frequency of drugs commonly associated with hepatotoxicity, suggesting that comedications may modify drug hepatic safety. PMID:25988394

  5. Unsupervised Deconvolution of Dynamic Imaging Reveals Intratumor Vascular Heterogeneity and Repopulation Dynamics

    PubMed Central

    Chen, Li; Choyke, Peter L.; Wang, Niya; Clarke, Robert; Bhujwalla, Zaver M.; Hillman, Elizabeth M. C.; Wang, Ge; Wang, Yue

    2014-01-01

    With the existence of biologically distinctive malignant cells originated within the same tumor, intratumor functional heterogeneity is present in many cancers and is often manifested by the intermingled vascular compartments with distinct pharmacokinetics. However, intratumor vascular heterogeneity cannot be resolved directly by most in vivo dynamic imaging. We developed multi-tissue compartment modeling (MTCM), a completely unsupervised method of deconvoluting dynamic imaging series from heterogeneous tumors that can improve vascular characterization in many biological contexts. Applying MTCM to dynamic contrast-enhanced magnetic resonance imaging of breast cancers revealed characteristic intratumor vascular heterogeneity and therapeutic responses that were otherwise undetectable. MTCM is readily applicable to other dynamic imaging modalities for studying intratumor functional and phenotypic heterogeneity, together with a variety of foreseeable applications in the clinic. PMID:25379705

  6. DREAMing: a simple and ultrasensitive method for assessing intratumor epigenetic heterogeneity directly from liquid biopsies

    PubMed Central

    Pisanic, Thomas R.; Athamanolap, Pornpat; Poh, Weijie; Chen, Chen; Hulbert, Alicia; Brock, Malcolm V.; Herman, James G.; Wang, Tza-Huei

    2015-01-01

    Many cancers comprise heterogeneous populations of cells at primary and metastatic sites throughout the body. The presence or emergence of distinct subclones with drug-resistant genetic and epigenetic phenotypes within these populations can greatly complicate therapeutic intervention. Liquid biopsies of peripheral blood from cancer patients have been suggested as an ideal means of sampling intratumor genetic and epigenetic heterogeneity for diagnostics, monitoring and therapeutic guidance. However, current molecular diagnostic and sequencing methods are not well suited to the routine assessment of epigenetic heterogeneity in difficult samples such as liquid biopsies that contain intrinsically low fractional concentrations of circulating tumor DNA (ctDNA) and rare epigenetic subclonal populations. Here we report an alternative approach, deemed DREAMing (Discrimination of Rare EpiAlleles by Melt), which uses semi-limiting dilution and precise melt curve analysis to distinguish and enumerate individual copies of epiallelic species at single-CpG-site resolution in fractions as low as 0.005%, providing facile and inexpensive ultrasensitive assessment of locus-specific epigenetic heterogeneity directly from liquid biopsies. The technique is demonstrated here for the evaluation of epigenetic heterogeneity at p14ARF and BRCA1 gene-promoter loci in liquid biopsies obtained from patients in association with non-small cell lung cancer (NSCLC) and myelodysplastic/myeloproliferative neoplasms (MDS/MPN), respectively. PMID:26304549

  7. Comedications alter drug-induced liver injury reporting frequency: Data mining in the WHO VigiBase™

    PubMed Central

    Suzuki, Ayako; Yuen, Nancy A.; Ilic, Katarina; Miller, Richard T.; Reese, Melinda J.; Brown, H. Roger; Ambroso, Jeffrey I.; Falls, J. Gregory; Hunt, Christine M.

    2015-01-01

    Polypharmacy is common, and may modify mechanisms of drug-induced liver injury. We examined the effect of these drug–drug interactions on liver safety reports of four drugs highly associated with hepatotoxicity. In the WHO VigiBase™, liver event reports were examined for acetaminophen, isoniazid, valproic acid, and amoxicillin/clavulanic acid. Then, we evaluated the liver event reporting frequency of these 4 drugs in the presence of co-reported medications. Each of the 4 primary drugs was reported as having more than 2000 liver events, and co-reported with more than 600 different medications. Overall, the effect of 2275 co-reported drugs (316 drug classes) on the reporting frequency was analyzed. Decreased liver event reporting frequency was associated with 245 drugs/122 drug classes, including anti-TNFα, opioids, and folic acid. Increased liver event reporting frequency was associated with 170 drugs/82 drug classes; in particular, halogenated hydrocarbons, carboxamides, and bile acid sequestrants. After adjusting for age, gender, and other co-reported drug classes, multiple co-reported drug classes were significantly associated with decreased/increased liver event reporting frequency in a drug-specific/unspecific manner. In conclusion, co-reported medications were associated with changes in the liver event reporting frequency of drugs commonly associated with hepatotoxicity, suggesting that comedications may modify drug hepatic safety. PMID:25988394

  8. Intratumoral Heterogeneity of MicroRNA Expression in Rectal Cancer

    PubMed Central

    Andersen, Rikke Fredslund; Nielsen, Boye Schnack; Sørensen, Flemming Brandt; Appelt, Ane Lindegaard; Jakobsen, Anders; Hansen, Torben Frøstrup

    2016-01-01

    Introduction An increasing number of studies have investigated microRNAs (miRNAs) as potential markers of diagnosis, treatment and prognosis. So far, agreement between studies has been minimal, which may in part be explained by intratumoral heterogeneity of miRNA expression. The aim of the present study was to assess the heterogeneity of a panel of selected miRNAs in rectal cancer, using two different technical approaches. Materials and Methods The expression of the investigated miRNAs was analysed by real-time quantitative polymerase chain reaction (RT-qPCR) and in situ hybridization (ISH) in tumour specimens from 27 patients with T3-4 rectal cancer. From each tumour, tissue from three different luminal localisations was examined. Inter- and intra-patient variability was assessed by calculating intraclass correlation coefficients (ICCs). Correlations between RT-qPCR and ISH were evaluated using Spearman’s correlation. Results ICCsingle (one sample from each patient) was higher than 50% for miRNA-21 and miRNA-31. For miRNA-125b, miRNA-145, and miRNA-630, ICCsingle was lower than 50%. The ICCmean (mean of three samples from each patient) was higher than 50% for miRNA-21(RT-qPCR and ISH), miRNA-125b (RT-qPCR and ISH), miRNA-145 (ISH), miRNA-630 (RT-qPCR), and miRNA-31 (RT-qPCR). For miRNA-145 (RT-qPCR) and miRNA-630 (ISH), ICCmean was lower than 50%. Spearman correlation coefficients, comparing results obtained by RT-qPCR and ISH, respectively, ranged from 0.084 to 0.325 for the mean value from each patient, and from -0.085 to 0.515 in the section including the deepest part of the tumour. Conclusion Intratumoral heterogeneity may influence the measurement of miRNA expression and consequently the number of samples needed for representative estimates. Our findings with two different methods suggest that one sample is sufficient for adequate assessment of miRNA-21 and miRNA-31, whereas more samples would improve the assessment of miRNA-125b, miRNA-145, and miRNA-630

  9. Intratumoral hemorrhage in a patient with cerebellar hemangioblastoma: a case report and review.

    PubMed

    Wang, Zhen; Hu, Jun; Xu, Liang; Malaguit, Jay; Chen, Sheng

    2015-01-01

    Spontaneous hemorrhage is rarely associated with hemangioblastomas. Intratumoral hemorrhage occurring in cerebellar hemangioblastomas is more rare. A 25-year-old man was admitted to our hospital with headache. We found a round cystic lesion with solid part in the right cerebellum. The lesion was resected. The final pathological diagnosis was hemangioblastomas. The radiological features of this case were similar to normal hemangioblastomas, whereas our histological examination showed the occurrence of the intratumoral hemorrhage. If the hemangioblastoma ruptures in our case, the outcome of the patient will be worse. It is difficult to identify the intratumoral hemorrhage of hemangioblastomas and quite dangerous if it is diagnosed late. Diagnosing an intratumoral hemorrhage of hemangioblastomas still needs a further discussion. Genetic screening may help us make an early diagnosis. Furthermore, the mechanism about intratumoral hemorrhage of hemangioblastomas remains unknown. The mutation of D6Mit135 gene on chromosome 6 may be responsible for the vascular dilation and hemorrhage induction in the hemangioblastomas. Tumor size, upregulation of vascular endothelial growth factor, spinalradicular location, and solid type are also factors relating to the hemorrhage of hemangioblastomas. The purpose of reporting our case is 2-fold: to remind clinicians to consider the possibility of internal hemorrhaging while diagnosing this disease, and provide a starting point to discuss mechanisms regarding the intratumoral hemorrhage of hemangioblastomas. PMID:25634201

  10. Intratumoral distribution of EGFR-amplified and EGFR-mutated cells in pulmonary adenocarcinoma.

    PubMed

    Soma, Shingo; Tsuta, Koji; Takano, Toshimi; Hatanaka, Yutaka; Yoshida, Akihiko; Suzuki, Kenji; Asamura, Hisao; Tsuda, Hitoshi

    2014-03-01

    Alterations in the epidermal growth factor receptor (EGFR) gene are associated with carcinogenesis in non-small cell lung cancer. However, the intratumoral distribution of these abnormalities has not been elucidated. This study included patients with surgically resected lung adenocarcinoma. The predominant histological growth pattern was determined. Chromogenic in situ hybridization (CISH) and EGFR-mutation specific-antibodies were used for analysis of changes in gene copy number and EGFR mutations, respectively. EGFR mutation detected immunohistochemistry (IHC) and amplification were identified in 31 (53%) and 30 (52%) cases, respectively. The predominant growth patterns in the 58 tumors evaluated were papillary (28, 48%), lepidic (8, 14%), acinar (15, 26%), and solid (7, 12%). EGFR mutations were the least common in cases with a solid predominant pattern. The incidence of EGFR amplification did not differ among predominant patterns. Analyzing each histological subtype, no differences were noted between the prevalence of EGFR-IHC positive and CISH-positive rates. In the analysis of EGFR amplification, CISH-positive status was more prevalent in IHC-positive cases than in IHC-negative cases. All 19 cases that were both IHC and CISH positive were analyzed. In 17 cases (90%), the IHC-positive area was equal to or larger than the CISH-positive area. Among the histological subtypes of lung adenocarcinoma, the solid predominant subtype was distinguishable by its infrequent EGFR mutations. EGFR gene mutations preceded changes in oncogenic drive, more so than did EGFR gene number alterations during the developmental process of lung adenocarcinoma. PMID:24355440

  11. Behavioral and molecular neuroepigenetic alterations in prenatally stressed mice: relevance for the study of chromatin remodeling properties of antipsychotic drugs.

    PubMed

    Dong, E; Tueting, P; Matrisciano, F; Grayson, D R; Guidotti, A

    2016-01-01

    We have recently reported that mice born from dams stressed during pregnancy (PRS mice), in adulthood, have behavioral deficits reminiscent of behaviors observed in schizophrenia (SZ) and bipolar (BP) disorder patients. Furthermore, we have shown that the frontal cortex (FC) and hippocampus of adult PRS mice, like that of postmortem chronic SZ patients, are characterized by increases in DNA-methyltransferase 1 (DNMT1), ten-eleven methylcytosine dioxygenase 1 (TET1) and exhibit an enrichment of 5-methylcytosine (5MC) and 5-hydroxymethylcytosine (5HMC) at neocortical GABAergic and glutamatergic gene promoters. Here, we show that the behavioral deficits and the increased 5MC and 5HMC at glutamic acid decarboxylase 67 (Gad1), reelin (Reln) and brain-derived neurotrophic factor (Bdnf) promoters and the reduced expression of the messenger RNAs (mRNAs) and proteins corresponding to these genes in FC of adult PRS mice is reversed by treatment with clozapine (5 mg kg(-1) twice a day for 5 days) but not by haloperidol (1 mg kg(-1) twice a day for 5 days). Interestingly, clozapine had no effect on either the behavior, promoter methylation or the expression of these mRNAs and proteins when administered to offspring of nonstressed pregnant mice. Clozapine, but not haloperidol, reduced the elevated levels of DNMT1 and TET1, as well as the elevated levels of DNMT1 binding to Gad1, Reln and Bdnf promoters in PRS mice suggesting that clozapine, unlike haloperidol, may limit DNA methylation by interfering with DNA methylation dynamics. We conclude that the PRS mouse model may be useful preclinically in screening for the potential efficacy of antipsychotic drugs acting on altered epigenetic mechanisms. Furthermore, PRS mice may be invaluable for understanding the etiopathogenesis of SZ and BP disorder and for predicting treatment responses at early stages of the illness allowing for early detection and remedial intervention. PMID:26756904

  12. Intratumor Heterogeneity of ALK-Rearrangements and Homogeneity of EGFR-Mutations in Mixed Lung Adenocarcinoma

    PubMed Central

    Marino, Federica Zito; Liguori, Giuseppina; Aquino, Gabriella; La Mantia, Elvira; Bosari, Silvano; Ferrero, Stefano; Rosso, Lorenzo; Gaudioso, Gabriella; De Rosa, Nicla; Scrima, Marianna; Martucci, Nicola; La Rocca, Antonello; Normanno, Nicola; Morabito, Alessandro; Rocco, Gaetano; Botti, Gerardo; Franco, Renato

    2015-01-01

    Background Non Small Cell Lung Cancer is a highly heterogeneous tumor. Histologic intratumor heterogeneity could be ‘major’, characterized by a single tumor showing two different histologic types, and ‘minor’, due to at least 2 different growth patterns in the same tumor. Therefore, a morphological heterogeneity could reflect an intratumor molecular heterogeneity. To date, few data are reported in literature about molecular features of the mixed adenocarcinoma. The aim of our study was to assess EGFR-mutations and ALK-rearrangements in different intratumor subtypes and/or growth patterns in a series of mixed adenocarcinomas and adenosquamous carcinomas. Methods 590 Non Small Cell Lung Carcinomas tumor samples were revised in order to select mixed adenocarcinomas with available tumor components. Finally, only 105 mixed adenocarcinomas and 17 adenosquamous carcinomas were included in the study for further analyses. Two TMAs were built selecting the different intratumor histotypes. ALK-rearrangements were detected through FISH and IHC, and EGFR-mutations were detected through IHC and confirmed by RT-PCR. Results 10/122 cases were ALK-rearranged and 7 from those 10 showing an intratumor heterogeneity of the rearrangements. 12/122 cases were EGFR-mutated, uniformly expressing the EGFR-mutated protein in all histologic components. Conclusion Our data suggests that EGFR-mutations is generally homogeneously expressed. On the contrary, ALK-rearrangement showed an intratumor heterogeneity in both mixed adenocarcinomas and adenosquamous carcinomas. The intratumor heterogeneity of ALK-rearrangements could lead to a possible impact on the therapeutic responses and the disease outcomes. PMID:26422230

  13. Intratumoral Immunocytokine Treatment Results in Enhanced Antitumor Effects

    PubMed Central

    Johnson, Erik E.; Lum, Hillary D.; Rakhmilevich, Alexander L.; Schmidt, Brian E.; Furlong, Meghan; Buhtoiarov, Ilia N.; Hank, Jacquelyn A.; Raubitschek, Andrew; Colcher, David; Reisfeld, Ralph A.; Gillies, Stephen D.; Sondel, Paul M.

    2008-01-01

    Immunocytokines (IC), consisting of tumor-specific monoclonal antibodies fused to the immunostimulatory cytokine interleukin 2 (IL2), exert significant antitumor effects in several murine tumor models. We investigated whether intratumoral (IT) administration of IC provided enhanced antitumor effects against subcutaneous tumors. Three unique ICs (huKS-IL2, hu14.18-IL2, and GcT84.66-IL2) were administered systemically or IT to evaluate their antitumor effects against tumors expressing the appropriate IC-targeted tumor antigens. The effect of IT injection of the primary tumor on a distant tumor was also evaluated. Here, we show that IT injection of IC resulted in enhanced antitumor effects against B16-KSA melanoma, NXS2 neuroblastoma, and human M21 melanoma xenografts when compared to intravenous (IV) IC injection. Resolution of both primary and distant subcutaneous tumors, and a tumor-specific memory response were demonstrated following IT treatment in immunocompetent mice bearing NXS2 tumors. The IT effect of huKS-IL2 IC was antigen-specific, enhanced compared to IL2 alone, and dose-dependent. Hu14.18-IL2 also showed greater IT effects than IL2 alone. The antitumor effect of IT IC did not always require T cells since IT IC induced antitumor effects against tumors in both SCID and nude mice. Localization studies using radiolabeled 111In-GcT84.66-IL2 IC confirmed that IT injection resulted in a higher concentration of IC at the tumor site than IV administration. In conclusion, we suggest that IT IC is more effective than IV administration against palpable tumors. Further testing is required to determine how to potentially incorporate IT administration of IC into an antitumor regimen that optimizes local and systemic anticancer therapy. PMID:18438664

  14. Impact of peritumoral and intratumoral budding in esophageal adenocarcinomas.

    PubMed

    Thies, Svenja; Guldener, Lars; Slotta-Huspenina, Julia; Zlobec, Inti; Koelzer, Viktor H; Lugli, Alessandro; Kröll, Dino; Seiler, Christian A; Feith, Marcus; Langer, Rupert

    2016-06-01

    Tumor budding has prognostic significance in many carcinomas and is defined as the presence of detached isolated single cells or small cell clusters up to 5 cells at the invasion front (peritumoral budding [PTB]) or within the tumor (intratumoral budding [ITB]). For esophageal adenocarcinomas (EACs), there are currently only few data about the impact of this morphological feature. We investigated tumor budding in a large collective of 200 primarily resected EACs. Pancytokeratin staining was demonstrated to be superior to hematoxylin and eosin staining for the detection of buds with substantial to excellent interobserver agreement and used for subsequent analysis. PTB and ITB were scored across 10 high-power fields (HPFs). The median count of tumor buds was 130/10 HPFs for PTB (range, 2-593) and 80/10 HPFs for ITB (range, 1-656). PTB and ITB correlated significantly with each other (r = 0.9; P < .001). High PTB and ITB rates were seen in more advanced tumor categories (P < .001 each); tumors with lymph node metastases (P < .001/P = .002); and lymphatic, vascular, and perineural invasion and higher tumor grading (P < .001 each). Survival analysis showed an association with worse survival for high-grade ITB (P = .029) but not PTB (P = .385). However, in multivariate analysis, lymph node and resection status, but not ITB, were independent prognostic parameters. In conclusion, PTB and ITB can be observed in EAC to various degrees. High-grade budding is associated with aggressive tumor phenotype. Assessment of tumor budding, especially ITB, may provide additional prognostic information about tumor behavior and may be useful in specific cases for risk stratification of EAC patients. PMID:26980046

  15. Application of a proapoptotic peptide to intratumorally spreading cancer therapy

    PubMed Central

    Chen, Renwei; Braun, Gary B; Luo, Xiuquan; Sugahara, Kazuki N.; Teesalu, Tambet; Ruoslahti, Erkki

    2013-01-01

    Bit1 is a pro-apoptotic mitochondrial protein associated with anoikis. Upon cell detachment, Bit1 is released into the cytoplasm and triggers caspase-independent cell death. Bit1 consists of 179 amino acids; the C-terminal two thirds of the molecule functions as a peptidyl-tRNA hydrolase, while the N-terminus contains a mitochondrial localization signal. Here, we localize the cell death domain (CDD) to the N-terminal 62 amino acids of Bit1 by transfecting cells with truncated Bit1 cDNA constructs. CDD was more potent in killing cells than the full-length Bit1 protein when equivalent amounts of cDNA were transfected. To develop Bit1 CDD into a cancer therapeutic we engineered a recombinant protein consisting of the CDD fused to iRGD, which is a tumor-specific peptide with unique tumor-penetrating and cell-internalizing properties. iRGD-CDD internalized into cultured tumor cells through a neuropilin-1-activated pathway and triggered cell death. Importantly, iRGD-CDD spread extensively within the tumor when injected intratumorally into orthotopically implanted breast tumors in mice. Repeated treatment with iRGD-CDD strongly inhibited tumor growth, resulting in an average reduction of 77% in tumor volume and eradication of some tumors. The caspase independence of Bit1-induced cell death makes CDD a potentially attractive anti-cancer agent because tumor resistance to the main mechanisms of apoptosis is circumvented. Using iRGD to facilitate the spreading of a therapeutic agent throughout the tumor mass may be a useful adjunct to local therapy of tumors that are surgically inoperable or difficult to treat systemically. PMID:23248118

  16. Peri-tumoral leakage during intra-tumoral convection-enhanced delivery has implications for efficacy of peri-tumoral infusion before removal of tumor.

    PubMed

    Yang, Xiaoliang; Saito, Ryuta; Nakamura, Taigen; Zhang, Rong; Sonoda, Yukihiko; Kumabe, Toshihiro; Forsayeth, John; Bankiewicz, Krystof; Tominaga, Teiji

    2016-03-01

    In cases of malignant brain tumors, infiltrating tumor cells that exist at the tumor-surrounding brain tissue always escape from cytoreductive surgery and, protected by blood-brain barrier (BBB), survive the adjuvant chemoradiotherapy, eventually leading to tumor recurrence. Local interstitial delivery of chemotherapeutic agents is a promising strategy to target these cells. During our effort to develop effective drug delivery methods by intra-tumoral infusion of chemotherapeutic agents, we found consistent pattern of leakage from the tumor. Here we describe our findings and propose promising strategy to cover the brain tissue surrounding the tumor with therapeutic agents by means of convection-enhanced delivery. First, the intracranial tumor isograft model was used to define patterns of leakage from tumor mass after intra-tumoral infusion of the chemotherapeutic agents. Liposomal doxorubicin, although first distributed inside the tumor, distributed diffusely into the surrounding normal brain once the leakage happen. Trypan blue dye was used to evaluate the distribution pattern of peri-tumoral infusions. When infused intra- or peri-tumorally, infusates distributed robustly into the tumor border. Subsequently, volume of distributions with different infusion scheduling; including intra-tumoral infusion, peri-tumoral infusion after tumor resection, peri-tumoral infusion without tumor removal with or without systemic infusion of steroids, were compared with Evans-blue dye. Peri-tumoral infusion without tumor removal resulted in maximum volume of distribution. Prior use of steroids further increased the volume of distribution. Local interstitial drug delivery targeting tumor surrounding brain tissue before tumor removal should be more effective when targeting the invading cells. PMID:24865286

  17. Intratumoral heterogeneity identified at the epigenetic, genetic and transcriptional level in glioblastoma

    PubMed Central

    Parker, Nicole R.; Hudson, Amanda L.; Khong, Peter; Parkinson, Jonathon F.; Dwight, Trisha; Ikin, Rowan J.; Zhu, Ying; Cheng, Zhangkai Jason; Vafaee, Fatemeh; Chen, Jason; Wheeler, Helen R.; Howell, Viive M.

    2016-01-01

    Heterogeneity is a hallmark of glioblastoma with intratumoral heterogeneity contributing to variability in responses and resistance to standard treatments. Promoter methylation status of the DNA repair enzyme O6-methylguanine DNA methyltransferase (MGMT) is the most important clinical biomarker in glioblastoma, predicting for therapeutic response. However, it does not always correlate with response. This may be due to intratumoral heterogeneity, with a single biopsy unlikely to represent the entire lesion. Aberrations in other DNA repair mechanisms may also contribute. This study investigated intratumoral heterogeneity in multiple glioblastoma tumors with a particular focus on the DNA repair pathways. Transcriptional intratumoral heterogeneity was identified in 40% of cases with variability in MGMT methylation status found in 14% of cases. As well as identifying intratumoral heterogeneity at the transcriptional and epigenetic levels, targeted next generation sequencing identified between 1 and 37 unique sequence variants per specimen. In-silico tools were then able to identify deleterious variants in both the base excision repair and the mismatch repair pathways that may contribute to therapeutic response. As these pathways have roles in temozolomide response, these findings may confound patient management and highlight the importance of assessing multiple tumor biopsies. PMID:26940435

  18. Comparison of circulating and intratumoral regulatory T cells in patients with renal cell carcinoma.

    PubMed

    Asma, Gati; Amal, Gorrab; Raja, Marrakchi; Amine, Derouiche; Mohammed, Chebil; Amel, Ben Ammar Elgaaied

    2015-05-01

    The clear evidence that tumor-infiltrating lymphocytes (TIL) exists in the tumor microenvironment raises the question why renal cell carcinoma (RCC) progresses. Numerous studies support the implication of CD4(+)CD25(high) regulatory T (Treg) cells in RCC development. We aimed in this study to characterize the phenotype and function of circulating and intratumoral Treg cells of RCC patient in order to evaluate their implication in the inhibition of the local antitumor immune response. Our results demonstrate that the proportion of Treg in TIL was, in average, similar to that found in circulating CD4(+) T cells of patients or healthy donors. However, intratumoral Treg exhibit a marked different phenotype when compared with the autologous circulating Treg. A higher CD25 mean level, HLA-DR, Fas, and GITR, and a lower CD45RA expression were observed in intratumoral Treg, suggesting therefore that these cells are effector in the tumor microenvironment. Additionally, intratumoral Treg showed a higher inhibitory function on autologous CD4(+)CD25(-) T cells when compared with circulating Treg that may be explained by an overexpression of FoxP3 transcription factor. These findings suggest that intratumoral Treg could be major actors in the impairment of local antitumor immune response for RCC patients. PMID:25563193

  19. Disruption of BSEP Function in HepaRG Cells Alters Bile Acid Disposition and Is a Susceptive Factor to Drug-Induced Cholestatic Injury.

    PubMed

    Qiu, Xi; Zhang, Yueping; Liu, Tongtong; Shen, Hong; Xiao, Yongling; Bourner, Maureen J; Pratt, Jennifer R; Thompson, David C; Marathe, Punit; Humphreys, W Griffith; Lai, Yurong

    2016-04-01

    In the present study, we characterized in vitro biosynthesis and disposition of bile acids (BAs) as well as hepatic transporter expression followed by ABCB11 (BSEP) gene knockout in HepaRG cells (HepaRG-KO cells). BSEP KO in HepaRG cells led to time-dependent BA accumulation, resulting in reduced biosynthesis of BAs and altered BA disposition. In HepaRG-KO cells, the expression of NTCP, OATP1B1, OATP2B1, BCRP, P-gp, and MRP2 were reduced, whereas MRP3 and OCT1 were up-regulated. As a result, BSEP KO altered the disposition of BAs and subsequently underwent adaptive regulations of BA synthesis and homeostasis to enable healthy growth of the cells. Although BSEP inhibitors caused no or slight increase of BAs in HepaRG wild type cells (HepaRG-WT cells), excessive intracellular accumulation of BAs was observed in HepaRG-KO cells exposed to bosentan and troglitazone, but not dipyridamole. LDH release in the medium was remarkably increased in HepaRG-KO cultures exposed to troglitazone (50 μM), suggesting drug-induced cellular injury. The results revealed that functional impairment of BSEP predisposes the cells to altered BA disposition and is a susceptive factor to drug-induced cholestatic injury. In total, BSEP inhibition might trigger the processes but is not a sole determinant of cholestatic cellular injury. As intracellular BA accumulation is determined by BSEP function and the subsequent adaptive gene regulation, assessment of intracellular BA accumulation in HepaRG-KO cells could be a useful approach to evaluate drug-induced liver injury (DILI) potentials of drugs that could disrupt other BA homeostasis pathways beyond BSEP inhibition. PMID:26910619

  20. An intercalation mechanism as a mode of action exerted by psychotropic drugs: results of altered phospholipid substrate availabilities in membranes?

    PubMed Central

    Lund, Anders; Pryme, Ian F.; Holmsen, Holm

    2010-01-01

    Patients respond differently to psychotropic drugs, and this is currently a controversial theme among psychiatrists. The effects of 16 psychotropics on cell membrane parameters have been reported. These drugs belong to three major groups used in therapeutic psychiatry: antipsychotics, antidepressants, and anxiolytic/hypnotics. Human platelets, lacking dopamine (D2) receptors (proposed targets of most psychotropics), have been used as a cell model. Here we discuss the effects of these drugs on three metabolic phenomena and also results from Langmuir experiments. Diazepam, in contrast to the remaining drugs, had negligible effects on metabolic phenomena and had no effects in Langmuir experiments. Psychotropic drugs may work through intercalation in membrane phospholipids. It is possible that the fluidity of membranes, rich in essential fatty acids, the content being influenced by diet, could be a contributing factor to the action of psychotropics. This might in turn explain the observed major differences in therapeutic response among patients. PMID:21270935

  1. Acute brainstem compression by intratumoral hemorrhages in an intracranial hypoglossal schwannoma.

    PubMed

    Inoue, Hiromasa; Nakagawa, Yasuhisa; Ikemura, Mayumi; Usugi, Eri; Kiyofuji, Yuma; Nata, Masayuki

    2013-09-01

    A 77-year-old female in the hospital was found tachycardic and hypothermic by a nurse, and the patient's respiration subsequently ceased. Forensic autopsy revealed an intracranial cystic tumor that would have compressed the brainstem. On microscopic examination, the tumor was diagnosed as an Antoni A schwannoma growth, and recent multiple intratumoral hemorrhages in the intracranial schwannoma were observed, suggesting the sudden enlargement of the intracranial schwannoma due to intratumoral hemorrhaging. Accordingly, we diagnosed the cause of death as brainstem compression induced by the intratumoral hemorrhaging in the intracranial schwannoma. Meanwhile, a rhinopharyngeal tumor was also detected by the autopsy, which was compatible with an antemortem diagnosis of a dumbbell-shaped hypoglossal schwannoma. PMID:23541888

  2. Intratumoral iron oxide nanoparticle hyperthermia and radiation cancer treatment

    NASA Astrophysics Data System (ADS)

    Hoopes, P. J.; Strawbridge, R. R.; Gibson, U. J.; Zeng, Q.; Pierce, Z. E.; Savellano, M.; Tate, J. A.; Ogden, J. A.; Baker, I.; Ivkov, R.; Foreman, A. R.

    2007-02-01

    The potential synergism and benefit of combined hyperthermia and radiation for cancer treatment is well established, but has yet to be optimized clinically. Specifically, the delivery of heat via external arrays /applicators or interstitial antennas has not demonstrated the spatial precision or specificity necessary to achieve appropriate a highly positive therapeutic ratio. Recently, antibody directed and possibly even non-antibody directed iron oxide nanoparticle hyperthermia has shown significant promise as a tumor treatment modality. Our studies are designed to determine the effects (safety and efficacy) of iron oxide nanoparticle hyperthermia and external beam radiation in a murine breast cancer model. Methods: MTG-B murine breast cancer cells (1 x 106) were implanted subcutaneous in 7 week-old female C3H/HeJ mice and grown to a treatment size of 150 mm3 +/- 50 mm3. Tumors were then injected locally with iron oxide nanoparticles and heated via an alternating magnetic field (AMF) generator operated at approximately 160 kHz and 400 - 550 Oe. Tumor growth was monitored daily using standard 3-D caliper measurement technique and formula. specific Mouse tumors were heated using a cooled, 36 mm diameter square copper tube induction coil which provided optimal heating in a 1 cm wide region in the center of the coil. Double dextran coated 80 nm iron oxide nanoparticles (Triton Biosystems) were used in all studies. Intra-tumor, peri-tumor and rectal (core body) temperatures were continually measured throughout the treatment period. Results: Preliminary in vivo nanoparticle-AMF hyperthermia (167 KHz and 400 or 550 Oe) studies demonstrated dose responsive cytotoxicity which enhanced the effects of external beam radiation. AMF associated eddy currents resulted in nonspecific temperature increases in exposed tissues which did not contain nanoparticles, however these effects were minor and not injurious to the mice. These studies also suggest that iron oxide nanoparticle

  3. In vivo assessment of intratumoral aspirin injection to treat hepatic tumors

    PubMed Central

    Saad-Hossne, Rogério; Teixeira, Fábio Vieira; Denadai, Rafael

    2013-01-01

    AIM: To study the antineoplastic efficacy of 10% aspirin intralesional injection on VX2 hepatic tumors in a rabbit model. METHODS: Thirty-two male rabbits (age: 6-9 wk; body weight: 1700-2500 g) were inoculated with VX2 hepatic tumor cells (104 cells/rabbit) via supra-umbilical median laparotomy. On day 4 post-implantation, when the tumors were about 1 cm in diameter, the rabbits were randomly divided into the following groups (n = 8 each group) to assess early (24 h) and late (7 d) antineoplastic effects of intratumoral injection of 10% bicarbonate aspirin solution (experimental groups) in comparison to intratumoral injection of physiological saline solution (control groups): group 1, 24 h control; group 2, 24 h experimental; group 3, 7 d control; group 4, 7 d experimental. The serum biochemistry profile (measurements of glycemia, alkaline phosphatase, gamma-glutamyl transferase, aspartate aminotransferase, and alanine aminotransferase) and body weight measurements were obtained for all animals at the following time points: D0, before tumor implant; D4, day of treatment; D5, day of sacrifice for groups 1 and 2; D11, day of sacrifice for groups 3 and 4. Gross assessments of the abdominal and thoracic cavities were carried out upon sacrifice. The resected liver tissues, including hepatic tumors, were qualitatively (general morphology, signs of necrosis) and quantitatively (tumor area) assessed by histopathological analysis. RESULTS: Gross examination showed no alterations, besides the left hepatic lobe tumors, had occurred in the thoracic and abdominal cavities of any animal at any time point evaluated. However, the features of the tumor foci were distinctive between the groups. Compared to the control groups, which showed normal unabated tumor progression, the aspirin-treated groups showed imprecise but limited tumor boundaries and a general red-white coloration (indicating hemorrhaging) at 24 h post-treatment, and development of yellow-white areas of a cicatricial

  4. GBR 12909 administration as an animal model of bipolar mania: time course of behavioral, brain oxidative alterations and effect of mood stabilizing drugs.

    PubMed

    Queiroz, Ana Isabelle G; de Araújo, Maíra Moraes; da Silva Araújo, Tatiane; de Souza, Greicy Coelho; Cavalcante, Lígia Menezes; de Jesus Souza Machado, Michel; de Lucena, David Freitas; Quevedo, João; Macêdo, Danielle

    2015-10-01

    Polymorphisms in the human dopamine transporter (DAT) are associated with bipolar endophenotype. Based on this, the acute inhibition of DAT using GBR12909 causes behavioral alterations that are prevented by valproate (VAL), being related to a mania-like model. Herein our first aim was to analyze behavioral and brain oxidative alterations during a 24 h period post-GBR12909 to better characterize this model. Our second aim was to determine the preventive effects of lithium (Li) or VAL 2 h post-GBR12909. For this, adult male mice received GBR12909 or saline being evaluated at 2, 4, 8, 12 or 24 h post-administration. Hyperlocomotion, levels of reduced glutathione (GSH) and lipid peroxidation in brain areas were assessed at all these time-points. GBR12909 caused hyperlocomotion at 2 and 24 h. Rearing behavior increased only at 2 h. GSH levels decreased in the hippocampus and striatum at the time points of 2, 4, 8 and 12 h. Increased lipid peroxidation was detected at the time-points of 2 and 12 h in all brain areas studied. At the time-point of 2 h post-GBR12909 Li prevented the hyperlocomotion and rearing alterations, while VAL prevented only rearing alterations. Both drugs prevented pro-oxidative changes. In conclusion, we observed that the main behavioral and oxidative alterations took place at the time-period of 2 h post-GBR12909, what points to this time-period as the best for the assessment of alterations in this model. Furthermore, the present study expands the predictive validity of the model by the determination of the preventive effects of Li. PMID:26073232

  5. Prenatal Stress Alters Progestogens to Mediate Susceptibility to Sex-Typical, Stress-Sensitive Disorders, such as Drug Abuse: A Review.

    PubMed

    Frye, Cheryl A; Paris, Jason J; Osborne, Danielle M; Campbell, Joannalee C; Kippin, Tod E

    2011-01-01

    Maternal-offspring interactions begin prior to birth. Experiences of the mother during gestation play a powerful role in determining the developmental programming of the central nervous system. In particular, stress during gestation alters developmental programming of the offspring resulting in susceptibility to sex-typical and stress-sensitive neurodevelopmental, neuropsychiatric, and neurodegenerative disorders. However, neither these effects, nor the underlying mechanisms, are well understood. Our hypothesis is that allopregnanolone, during gestation, plays a particularly vital role in mitigating effects of stress on the developing fetus and may mediate, in part, alterations apparent throughout the lifespan. Specifically, altered balance between glucocorticoids and progestogens during critical periods of development (stemming from psychological, immunological, and/or endocrinological stressors during gestation) may permanently influence behavior, brain morphology, and/or neuroendocrine-sensitive processes. 5α-reduced progestogens are integral in the developmental programming of sex-typical, stress-sensitive, and/or disorder-relevant phenotypes. Prenatal stress (PNS) may alter these responses and dysregulate allopregnanolone and its normative effects on stress axis function. As an example of a neurodevelopmental, neuropsychiatric, and/or neurodegenerative process, this review focuses on responsiveness to drugs of abuse, which is sensitive to PNS and progestogen milieu. This review explores the notion that allopregnanolone may effect, or be influenced by, PNS, with consequences for neurodevelopmental-, neuropsychiatric-, and/or neurodegenerative- relevant processes, such as addiction. PMID:22022315

  6. COMPARISON OF IN VITRO AND IN VIVO METHODS FOR EVALUATING ALTERATIONS IN HEPATIC DRUG METABOLISM FOLLOWING MERCURIC CHLORIDE ADMINISTRATION

    EPA Science Inventory

    Mercuric chloride was administered once ip to female Fischer 344 rats at doses of 0, 0.2, 0.6, and 1.8 mg/kg. Although there were no alterations in the urinary excretion of lactate dehydrogenase, significant elevations in the activities of urinary alkaline phosphatase, glutamicpy...

  7. Slow drug delivery decreased total body clearance and altered bioavailability of immediate- and controlled-release oxycodone formulations.

    PubMed

    Li, Yan; Sun, Duxin; Palmisano, Maria; Zhou, Simon

    2016-02-01

    Oxycodone is a commonly used analgesic with a large body of pharmacokinetic data from various immediate-release or controlled-release formulations, under different administration routes, and in diverse populations. Longer terminal half-lives from extravascular administration as compared to IV administration have been attributed to flip-flop pharmacokinetics with the rate constant of absorption slower than elimination. However, PK parameters from the extravascular studies showed faster absorption than elimination. Sustained release formulations guided by the flip-flop concept produced mixed outcomes in formulation development and clinical studies. This research aims to develop a mechanistic knowledge of oxycodone ADME, and provide a consistent interpretation of diverging results and insight to guide further extended release development and optimize the clinical use of oxycodone. PK data of oxycodone in human studies were collected from literature and digitized. The PK data were analyzed using a new PK model with Weibull function to describe time-varying drug releases/ oral absorption, and elimination dependent upon drug input to the portal vein. The new and traditional PK models were coded in NONMEM. Sensitivity analyses were conducted to address the relationship between rates of drug release/absorption and PK profiles plus terminal half-lives. Traditional PK model could not be applied consistently to describe drug absorption and elimination of oxycodone. Errors were forced on absorption, elimination, or both parameters when IV and PO profiles were fitted separately. The new mechanistic PK model with Weibull function on absorption and slower total body clearance caused by slower absorption adequately describes the complex interplay between oxycodone absorption and elimination in vivo. Terminal phase of oxycodone PK profile was shown to reflect slower total body drug clearance due to slower drug release/absorption from oral formulations. Mechanistic PK models with

  8. Interrogation of individual intratumoral B lymphocytes from lung cancer patients for molecular target discovery.

    PubMed

    Campa, Michael J; Moody, M Anthony; Zhang, Ruijun; Liao, Hua-Xin; Gottlin, Elizabeth B; Patz, Edward F

    2016-02-01

    Intratumoral B lymphocytes are an integral part of the lung tumor microenvironment. Interrogation of the antibodies they express may improve our understanding of the host response to cancer and could be useful in elucidating novel molecular targets. We used two strategies to explore the repertoire of intratumoral B cell antibodies. First, we cloned VH and VL genes from single intratumoral B lymphocytes isolated from one lung tumor, expressed the genes as recombinant mAbs, and used the mAbs to identify the cognate tumor antigens. The Igs derived from intratumoral B cells demonstrated class switching, with a mean VH mutation frequency of 4%. Although there was no evidence for clonal expansion, these data are consistent with antigen-driven somatic hypermutation. Individual recombinant antibodies were polyreactive, although one clone demonstrated preferential immunoreactivity with tropomyosin 4 (TPM4). We found that higher levels of TPM4 antibodies were more common in cancer patients, but measurement of TPM4 antibody levels was not a sensitive test for detecting cancer. Second, in an effort to focus our recombinant antibody expression efforts on those B cells that displayed evidence of clonal expansion driven by antigen stimulation, we performed deep sequencing of the Ig genes of B cells collected from seven different tumors. Deep sequencing demonstrated somatic hypermutation but no dominant clones. These strategies may be useful for the study of B cell antibody expression, although identification of a dominant clone and unique therapeutic targets may require extensive investigation. PMID:26739486

  9. Hyaluronidase Expression by an Oncolytic Adenovirus Enhances Its Intratumoral Spread and Suppresses Tumor Growth

    PubMed Central

    Guedan, Sonia; Rojas, Juan José; Gros, Alena; Mercade, Elena; Cascallo, Manel; Alemany, Ramon

    2010-01-01

    Successful virotherapy requires efficient virus spread within tumors. We tested whether the expression of hyaluronidase, an enzyme which dissociates the extracellular matrix (ECM), could enhance the intratumoral distribution of an oncolytic adenovirus and improve its therapeutic activity. As a proof of concept, we demonstrated that intratumoral coadministration of hyaluronidase in mice-bearing tumor xenografts improves the antitumor activity of an oncolytic adenovirus. Next, we constructed a replication-competent adenovirus expressing a soluble form of the human sperm hyaluronidase (PH20) under the control of the major late promoter (MLP) (AdwtRGD-PH20). Intratumoral treatment of human melanoma xenografts with AdwtRGD-PH20 resulted in degradation of hyaluronan (HA), enhanced viral distribution, and induced tumor regression in all treated tumors. Finally, the PH20 cDNA was inserted in an oncolytic adenovirus that selectively kills pRb pathway-defective tumor cells. The antitumoral activity of the novel oncolytic adenovirus expressing PH20 (ICOVIR17) was compared to that of the parental virus ICOVIR15. ICOVIR17 showed more antitumor efficacy following intratumoral and systemic administration in mice with prestablished tumors, along with an improved spread of the virus within the tumor. Importantly, a single intravenous dose of ICOVIR17 induced tumor regression in 60% of treated tumors. These results indicate that ICOVIR17 is a promising candidate for clinical testing. PMID:20442708

  10. Drug-induced hemolytic anemia and thrombocytopenia associated with alterations of cell membrane lipids and acanthocyte formation.

    PubMed

    Poulet, Frederique M; Penraat, Kelley; Collins, Nathaniel; Evans, Ellen; Thackaberry, Evan; Manfra, Denise; Engstrom, Laura; Geissler, Richard; Geraci-Erck, Maria; Frugone, Carlos; Abutarif, Malaz; Fine, Jay S; Peterson, Brianna L; Cummings, Brian S; Johnson, Robert C

    2010-10-01

    CXCR3 is a chemokine receptor, upregulated upon activation of T cells and expressed on nearly 100% of T cells in sites of inflammation. SCH 900875 is a selective CXCR3 receptor antagonist. Thrombocytopenia and severe hemolytic anemia with acanthocytosis occurred in rats at doses of 75, 100, and 150 mg/kg/day. Massively enlarged spleens corresponded histologically to extramedullary hematopoiesis, macrophages, and hemosiderin pigment and sinus congestion. Phagocytosed erythrocytes and platelets were within splenic macrophages. IgG and/or IgM were not detected on erythrocyte and platelet membranes. Ex vivo increased osmotic fragility of RBCs was observed. Lipid analysis of the RBC membrane revealed modifications in phosphatidylcholine, overall cholesterol, and/or sphingomyelin. Platelets exhibited slender filiform processes on their plasma membranes, analogous to those of acanthocytes. The presence of similar morphological abnormalities in acanthocytes and platelets suggests that possibly similar alterations in the lipid composition of the plasma membrane have taken place in both cell types. This phenotype correlated with alterations in plasma lipids (hypercholesterolemia and low triglycerides) that occurred after SCH 900875 administration, although other factors cannot be excluded. The increased cell destruction was considered triggered by alterations in the lipid profile of the plasma membranes of erythrocytes and platelets, as reflected morphologically. PMID:20805317

  11. Pharmacokinetic and pharmacodynamic alterations of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors: drug-drug interactions and interindividual differences in transporter and metabolic enzyme functions.

    PubMed

    Shitara, Yoshihisa; Sugiyama, Yuichi

    2006-10-01

    3-Hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors (statins) are widely used for the treatment of hypercholesterolemia. Their efficacy in preventing cardiovascular events has been shown by a large number of clinical trials. However, myotoxic side effects, sometimes severe, including myopathy or rhabdomyolysis, are associated with the use of statins. In some cases, such toxicity is associated with pharmacokinetic alterations. In this review, the pharmacokinetic aspects and physicochemical properties of statins are reviewed in order to understand the mechanism governing their pharmacokinetic alterations. Among the statins, simvastatin, lovastatin and atorvastatin are metabolized by cytochrome P450 3A4 (CYP3A4) while fluvastatin is metabolized by CYP2C9. Cerivastatin is subjected to 2 metabolic pathways mediated by CYP2C8 and 3A4. Pravastatin, rosuvastatin and pitavastatin undergo little metabolism. Their plasma clearances are governed by the transporters involved in the hepatic uptake and biliary excretion. Also for other statins, which are orally administered as open acid forms (i.e. fluvastatin, cerivastatin and atorvastatin), hepatic uptake transporter(s) play important roles in their clearances. Based on such information, pharmacokinetic alterations of statins can be predicted following coadministration of other drugs or in patients with lowered activities in drug metabolism and/or transport. We also present a quantitative analysis of the effect of some factors on the pharmacokinetics of statins based on a physiologically based pharmacokinetic model. To avoid a pharmacokinetic alteration, we need to have information about the metabolizing enzyme(s) and transporter(s) involved in the pharmacokinetics of statins and, along with such information, model-based prediction is also useful. PMID:16714062

  12. Causal connectivity alterations of cortical-subcortical circuit anchored on reduced hemodynamic response brain regions in first-episode drug-naïve major depressive disorder

    PubMed Central

    Gao, Qing; Zou, Ke; He, Zongling; Sun, Xueli; Chen, Huafu

    2016-01-01

    Some efforts were done to investigate the disruption of brain causal connectivity networks involved in major depressive disorder (MDD) using Granger causality (GC) analysis. However, the homogenous hemodynamic response function (HRF) assumption over the brain may disturb the inference of temporal precedence. Here we applied a blind deconvolution approach to examine the altered HRF shape in first-episode, drug-naïve MDD patients. The regions with abnormal HRF shape in patients were chosen as seeds to detect the GC alterations in MDD. The results demonstrated significantly decreased magnitude of spontaneous hemodynamic response of the orbital frontal cortex (OFC) and the caudate nucleus (CAU) in MDD comparing to healthy controls, suggesting MDD patients likely had alterations in neurovascular coupling and cerebrovascular physiology in these two regions. GC mapping showed increased/decreased GC in OFC-/CAU centered networks in MDD. The outgoing GC values from OFC to anterior cingulate cortex and occipital regions were positively correlated with Hamilton Depression Scale (HAMD) scores, while the incoming GC from insula, middle and superior temporal gyrus to CAU were negatively correlated with HAMD scores of MDD. The abnormalities of directional connections in the cortico-subcortico-cerebellar network may lead to unbalanced integrating the emotional-related information for MDD, and further exacerbating depressive symptoms. PMID:26911651

  13. Causal connectivity alterations of cortical-subcortical circuit anchored on reduced hemodynamic response brain regions in first-episode drug-naïve major depressive disorder.

    PubMed

    Gao, Qing; Zou, Ke; He, Zongling; Sun, Xueli; Chen, Huafu

    2016-01-01

    Some efforts were done to investigate the disruption of brain causal connectivity networks involved in major depressive disorder (MDD) using Granger causality (GC) analysis. However, the homogenous hemodynamic response function (HRF) assumption over the brain may disturb the inference of temporal precedence. Here we applied a blind deconvolution approach to examine the altered HRF shape in first-episode, drug-naïve MDD patients. The regions with abnormal HRF shape in patients were chosen as seeds to detect the GC alterations in MDD. The results demonstrated significantly decreased magnitude of spontaneous hemodynamic response of the orbital frontal cortex (OFC) and the caudate nucleus (CAU) in MDD comparing to healthy controls, suggesting MDD patients likely had alterations in neurovascular coupling and cerebrovascular physiology in these two regions. GC mapping showed increased/decreased GC in OFC-/CAU centered networks in MDD. The outgoing GC values from OFC to anterior cingulate cortex and occipital regions were positively correlated with Hamilton Depression Scale (HAMD) scores, while the incoming GC from insula, middle and superior temporal gyrus to CAU were negatively correlated with HAMD scores of MDD. The abnormalities of directional connections in the cortico-subcortico-cerebellar network may lead to unbalanced integrating the emotional-related information for MDD, and further exacerbating depressive symptoms. PMID:26911651

  14. Hydration and N-acetyl-l-cysteine alter the microstructure of human nail and bovine hoof: implications for drug delivery.

    PubMed

    Nogueiras-Nieto, L; Gómez-Amoza, J L; Delgado-Charro, M B; Otero-Espinar, F J

    2011-12-20

    This work aimed to (a) characterize the microstructure and porosity of human nail and bovine hoof by mercury intrusion porosimetry and SEM image analysis, (b) study the effects of hydration and of N-acetyl-l-cysteine treatment on the microstructure of both membranes, and (c) determine whether the microstructural modifications were associated with changes in drug penetration measured by standard diffusion studies. Bovine hoof surface is more porous than nail surface although there were no differences between the mean surface pore sizes. Hydration and N-acetyl-l-cysteine increased the roughness and apparent surface porosity, and the porosity determined by mercury intrusion porosimetry of both membranes. Pore-Cor™ was used to generate tridimensional structures having percolation characteristics comparable to nail and hooves. The modeled structures were horizontally banded having an inner less-porous area which disappeared upon treatment. Treatment increased the predicted permeability of the simulated structures. Triamcinolone permeation increased significantly for hooves treated N-acetyl-l-cysteine, i.e., the membranes for which microstructural and permeability changes were the largest. Thus, microstructural changes determined via mercury intrusion porosimetry and subsequently modeled by Pore-Cor™ were related to drug diffusion. Further refinement of the technique will allow fast screening of penetration enhancers to be used in ungual drug delivery. PMID:21906642

  15. Antidepressant drug-induced stimulation of mouse hippocampal neurogenesis is age-dependent and altered by early life stress

    PubMed Central

    Navailles, Sylvia; Hof, Patrick R.; Schmauss, Claudia

    2008-01-01

    The continuous generation of new neurons in the adult hippocampus exhibits remarkable plasticity. Decreased neurogenesis is thought to underlie depression-like behaviors, and increased neurogenesis is thought to occur following antidepressant drug treatment. Studies on different strains of mice, however, yielded contrasting results with regard to the link between behavioral modifications induced by antidepressant drugs or environmental enrichment and changes in adult hippocampal neurogenesis. Therefore, we conducted a comparative study on the inbred strains Balb/c and C57Bl/6 that differ substantially in emotionality, stress reactivity, and behavioral responses to chronic antidepressant drugs. Quantitative assessments of progenitor cell proliferation and immature neuronal differentiation in the dentate gyrus revealed that, despite significantly different basal proliferation rates between both strains, neither strain exhibited changes in adult neurogenesis after exposure to early life stress or adult chronic fluoxetine treatment. A stimulatory effect of fluoxetine on adult hippocampal neurogenesis was only detected when treatment was initiated during adolescence, and this effect was abolished in mice exposed to early life stress, a prominent risk factor for developing adult-onset depression-like behaviors. Thus, in both strains of mice, neither adult fluoxetine treatment nor adolescent fluoxetine treatment following early life stress exposure increased the proliferation and early differentiation of adult neural progenitor cells. PMID:18512685

  16. Patient-Specific Detection of Cerebral Blood Flow Alterations as Assessed by Arterial Spin Labeling in Drug-Resistant Epileptic Patients

    PubMed Central

    Boscolo Galazzo, Ilaria; Storti, Silvia Francesca; Del Felice, Alessandra; Pizzini, Francesca Benedetta; Arcaro, Chiara; Formaggio, Emanuela; Mai, Roberto; Chappell, Michael; Beltramello, Alberto; Manganotti, Paolo

    2015-01-01

    Electrophysiological and hemodynamic data can be integrated to accurately and precisely identify the generators of abnormal electrical activity in drug-resistant focal epilepsy. Arterial Spin Labeling (ASL), a magnetic resonance imaging (MRI) technique for quantitative noninvasive measurement of cerebral blood flow (CBF), can provide a direct measure of variations in cerebral perfusion associated with the epileptic focus. In this study, we aimed to confirm the ASL diagnostic value in the identification of the epileptogenic zone, as compared to electrical source imaging (ESI) results, and to apply a template-based approach to depict statistically significant CBF alterations. Standard video-electroencephalography (EEG), high-density EEG, and ASL were performed to identify clinical seizure semiology and noninvasively localize the epileptic focus in 12 drug-resistant focal epilepsy patients. The same ASL protocol was applied to a control group of 17 healthy volunteers from which a normal perfusion template was constructed using a mixed-effect approach. CBF maps of each patient were then statistically compared to the reference template to identify perfusion alterations. Significant hypo- and hyperperfused areas were identified in all cases, showing good agreement between ASL and ESI results. Interictal hypoperfusion was observed at the site of the seizure in 10/12 patients and early postictal hyperperfusion in 2/12. The epileptic focus was correctly identified within the surgical resection margins in the 5 patients who underwent lobectomy, all of which had good postsurgical outcomes. The combined use of ESI and ASL can aid in the noninvasive evaluation of drug-resistant epileptic patients. PMID:25946055

  17. Alteration of skin hydration and its barrier function by vehicle and permeation enhancers: a study using TGA, FTIR, TEWL and drug permeation as markers.

    PubMed

    Shah, D K; Khandavilli, S; Panchagnula, R

    2008-09-01

    Vehicles and permeation enhancers (PEs) used in transdermal drug delivery (TDD) of a drug can affect skin hydration, integrity and permeation of the solute administered. This investigation was designed to study the effect of the most commonly used vehicles and PEs on rat skin hydration, barrier function and permeation of an amphiphilic drug, imipramine hydrochloride (IMH). An array of well-established techniques were used to confirm the findings of the study. Thermogravimetric analysis (TGA) and Fourier transform infrared (FTIR) spectroscopy were used to determine changes in skin hydration. Alteration of the stratum corneum (SC) structure was investigated using FTIR studies. To monitor the barrier function alteration, transepidermal water loss (TEWL) measurement and permeation studies were performed. Our findings indicate that with hydration, there was an increase in the bound water content of the skin, and pseudoequilibrium of hydration (a drastic decrease in hydration rate) was achieved at around 12 h. Hydration increased the ratio between amide-I and amide-II peaks in FTIR and reduced the C-H stretching peak area. Both propylene glycol (PG) and ethanol (EtOH) dehydrated skin, with the latter showing a predominant effect. Furthermore, it was confirmed that PG and EtOH decreased the bound water content due to alteration in the protein domains and extraction of SC lipids, respectively. The effect of hydration on the SC was found to be similar to that reported for temperature. Permeation studies revealed that the dehydration caused by vehicles decreased IMH flux, whereas the flux was enhanced by PEs. The role of partition was predominant for the permeation of IMH through dehydrated skin. A synergistic effect was observed for PG and menthol in the enhancement of IMH. Further findings provided strong evidence that PG affects protein domains and EtOH extracts lipids from the bilayer. Both PG and EtOH, with or without PEs, increased TEWL. Initial TEWL was well

  18. Long-term exposure to abnormal glucose levels alters drug metabolism pathways and insulin sensitivity in primary human hepatocytes

    PubMed Central

    Davidson, Matthew D.; Ballinger, Kimberly R.; Khetani, Salman R.

    2016-01-01

    Hyperglycemia in type 2 diabetes mellitus has been linked to non-alcoholic fatty liver disease, which can progress to inflammation, fibrosis/cirrhosis, and hepatocellular carcinoma. Understanding how chronic hyperglycemia affects primary human hepatocytes (PHHs) can facilitate the development of therapeutics for these diseases. Conversely, elucidating the effects of hypoglycemia on PHHs may provide insights into how the liver adapts to fasting, adverse diabetes drug reactions, and cancer. In contrast to declining PHH monocultures, micropatterned co-cultures (MPCCs) of PHHs and 3T3-J2 murine embryonic fibroblasts maintain insulin-sensitive glucose metabolism for several weeks. Here, we exposed MPCCs to hypo-, normo- and hyperglycemic culture media for ~3 weeks. While albumin and urea secretion were not affected by glucose level, hypoglycemic MPCCs upregulated CYP3A4 enzyme activity as compared to other glycemic states. In contrast, hyperglycemic MPCCs displayed significant hepatic lipid accumulation in the presence of insulin, while also showing decreased sensitivity to insulin-mediated inhibition of glucose output relative to a normoglycemic control. In conclusion, we show for the first time that PHHs exposed to hypo- and hyperglycemia can remain highly functional, but display increased CYP3A4 activity and selective insulin resistance, respectively. In the future, MPCCs under glycemic states can aid in novel drug discovery and mechanistic investigations. PMID:27312339

  19. Mutations in the Plasmodium falciparum chloroquine resistance transporter, PfCRT, enlarge the parasite's food vacuole and alter drug sensitivities.

    PubMed

    Pulcini, Serena; Staines, Henry M; Lee, Andrew H; Shafik, Sarah H; Bouyer, Guillaume; Moore, Catherine M; Daley, Daniel A; Hoke, Matthew J; Altenhofen, Lindsey M; Painter, Heather J; Mu, Jianbing; Ferguson, David J P; Llinás, Manuel; Martin, Rowena E; Fidock, David A; Cooper, Roland A; Krishna, Sanjeev

    2015-01-01

    Mutations in the Plasmodium falciparum chloroquine resistance transporter, PfCRT, are the major determinant of chloroquine resistance in this lethal human malaria parasite. Here, we describe P. falciparum lines subjected to selection by amantadine or blasticidin that carry PfCRT mutations (C101F or L272F), causing the development of enlarged food vacuoles. These parasites also have increased sensitivity to chloroquine and some other quinoline antimalarials, but exhibit no or minimal change in sensitivity to artemisinins, when compared with parental strains. A transgenic parasite line expressing the L272F variant of PfCRT confirmed this increased chloroquine sensitivity and enlarged food vacuole phenotype. Furthermore, the introduction of the C101F or L272F mutation into a chloroquine-resistant variant of PfCRT reduced the ability of this protein to transport chloroquine by approximately 93 and 82%, respectively, when expressed in Xenopus oocytes. These data provide, at least in part, a mechanistic explanation for the increased sensitivity of the mutant parasite lines to chloroquine. Taken together, these findings provide new insights into PfCRT function and PfCRT-mediated drug resistance, as well as the food vacuole, which is an important target of many antimalarial drugs. PMID:26420308

  20. Long-term exposure to abnormal glucose levels alters drug metabolism pathways and insulin sensitivity in primary human hepatocytes.

    PubMed

    Davidson, Matthew D; Ballinger, Kimberly R; Khetani, Salman R

    2016-01-01

    Hyperglycemia in type 2 diabetes mellitus has been linked to non-alcoholic fatty liver disease, which can progress to inflammation, fibrosis/cirrhosis, and hepatocellular carcinoma. Understanding how chronic hyperglycemia affects primary human hepatocytes (PHHs) can facilitate the development of therapeutics for these diseases. Conversely, elucidating the effects of hypoglycemia on PHHs may provide insights into how the liver adapts to fasting, adverse diabetes drug reactions, and cancer. In contrast to declining PHH monocultures, micropatterned co-cultures (MPCCs) of PHHs and 3T3-J2 murine embryonic fibroblasts maintain insulin-sensitive glucose metabolism for several weeks. Here, we exposed MPCCs to hypo-, normo- and hyperglycemic culture media for ~3 weeks. While albumin and urea secretion were not affected by glucose level, hypoglycemic MPCCs upregulated CYP3A4 enzyme activity as compared to other glycemic states. In contrast, hyperglycemic MPCCs displayed significant hepatic lipid accumulation in the presence of insulin, while also showing decreased sensitivity to insulin-mediated inhibition of glucose output relative to a normoglycemic control. In conclusion, we show for the first time that PHHs exposed to hypo- and hyperglycemia can remain highly functional, but display increased CYP3A4 activity and selective insulin resistance, respectively. In the future, MPCCs under glycemic states can aid in novel drug discovery and mechanistic investigations. PMID:27312339

  1. Activation of CAR and PXR by Dietary, Environmental and Occupational Chemicals Alters Drug Metabolism, Intermediary Metabolism, and Cell Proliferation

    PubMed Central

    Hernandez, J.P.; Mota, L.C.; Baldwin, W.S.

    2010-01-01

    The constitutive androstane receptor (CAR) and the pregnane × receptor (PXR) are activated by a variety of endogenous and exogenous ligands, such as steroid hormones, bile acids, pharmaceuticals, and environmental, dietary, and occupational chemicals. In turn, they induce phase I–III detoxification enzymes and transporters that help eliminate these chemicals. Because many of the chemicals that activate CAR and PXR are environmentally-relevant (dietary and anthropogenic), studies need to address whether these chemicals or mixtures of these chemicals may increase the susceptibility to adverse drug interactions. In addition, CAR and PXR are involved in hepatic proliferation, intermediary metabolism, and protection from cholestasis. Therefore, activation of CAR and PXR may have a wide variety of implications for personalized medicine through physiological effects on metabolism and cell proliferation; some beneficial and others adverse. Identifying the chemicals that activate these promiscuous nuclear receptors and understanding how these chemicals may act in concert will help us predict adverse drug reactions (ADRs), predict cholestasis and steatosis, and regulate intermediary metabolism. This review summarizes the available data on CAR and PXR, including the environmental chemicals that activate these receptors, the genes they control, and the physiological processes that are perturbed or depend on CAR and PXR action. This knowledge contributes to a foundation that will be necessary to discern interindividual differences in the downstream biological pathways regulated by these key nuclear receptors. PMID:20871735

  2. Effect of intratumoral administration on biodistribution of 64Cu-labeled nanoshells

    PubMed Central

    Xie, Huan; Goins, Beth; Bao, Ande; Wang, Zheng Jim; Phillips, William T

    2012-01-01

    Background Gold nanoshells are excellent agents for photothermal ablation cancer therapy and are currently under clinical trial for solid tumors. Previous studies showed that passive delivery of gold nanoshells through intravenous administration resulted in limited tumor accumulation, which represents a major challenge for this therapy. In this report, the impact of direct intratumoral administration on the pharmacokinetics and biodistribution of the nanoshells was systematically investigated. Methods The gold nanoshells were labeled with the radionuclide, copper-64 (64Cu). Intratumoral infusion of 64Cu-nanoshells and two controls, ie, 64Cu-DOTA (1,4,7,10-tetraazaciclododecane- 1,4,7,10-tetraacetic acid) and 64Cu-DOTA-PEG (polyethylene glycol), as well as intravenous injection of 64Cu-nanoshells were performed in nude rats, each with a head and neck squamous cell carcinoma xenograft. The pharmacokinetics was determined by radioactive counting of serial blood samples collected from the rats at different time points post-injection. Using positron emission tomography/computed tomography imaging, the in vivo distribution of 64Cu-nanoshells and the controls was monitored at various time points after injection. Organ biodistribution in the rats at 46 hours was analyzed by radioactive counting and compared between the different groups. Results The resulting pharmacokinetic curves indicated a similar trend between the intratumorally injected agents, but a significant difference with the intravenously injected 64Cu-nanoshells. Positron emission tomography images and organ biodistribution results on rats after intratumoral administration showed higher retention of 64Cu-nanoshells in tumors and less concentration in other healthy organs, with a significant difference from the controls. It was also found that, compared with intravenous injection, tumor concentrations of 64Cu-nanoshells improved substantially and were stable at 44 hours post-injection. Conclusion There was a

  3. Are altered pharmacokinetics of non-steroidal anti-inflammatory drugs (NSAIDs) a risk factor for gastrointestinal bleeding?

    PubMed Central

    Wynne, H A; Long, A; Nicholson, E; Ward, A; Keir, D

    1998-01-01

    Aims We hypothesised that pharmacokinetic factors might go some way to explaining the risk of major gastrointestinal haemorrhage with non-steroidal anti-inflammatory drugs (NSAIDs), with bleeders exhibiting a reduced clearance of NSAIDs compared with non-bleeders and set out to investigate this. Methods Fifty patients presenting to hospital with acute gastrointestinal bleeding while taking piroxicam, indomethacin, diclofenac or naproxen and age, sex, musculoskeletal disease and drug matched community dwelling controls, up to two for each index case, who had not bled were recruited. Clinical details including duration of therapy were recorded. Bleeders discontinued the implicated NSAID at presentation, controls at least five half-lives before the study. Bleeders were contacted by letter 1 month after discharge and invited to take part and were studied after a median delay of 5 months. Subjects received an oral dose of their respective NSAID and venous blood was sampled, over a period determined by the half-life of the NSAID. Plasma concentrations were determined by high performance liquid chromatography. Results The median length of treatment for the index patients was 1 year (range 2 weeks—28 years) and for the control patients 2 years (1 month—25 years), P<0.0005. There were no significant differences in peak plasma concentration, time to peak plasma concentration or area under the plasma concentration-time curve between bleeders or controls for any of the NSAIDs studied, apart from piroxicam Cmax being lower in bleeders at 2.07 mg l−1 than in controls at 3.21 mg l−1, mean difference (95% CI) −1.14 (−1.83–−0.48), P<0.005. Conclusions The data failed to support the hypothesis that reduced clearance of NSAIDs, which results in higher plasma concentrations, is a risk factor for acute gastrointestinal haemorrhage. PMID:9578191

  4. Fluence Rate-Dependent Photobleaching of Intratumorally-Administered Pc 4 Does Not Predict Tumor Growth Delay

    PubMed Central

    Baran, Timothy M.; Foster, Thomas H.

    2012-01-01

    We examined effects of fluence rate on the photobleaching of the photosensitizer Pc 4 during photodynamic therapy (PDT) and the relationship between photobleaching and tumor response to PDT. BALB/c mice with intradermal EMT6 tumors were given 0.03 mg/kg Pc 4 by intratumor injection and irradiated at 667 nm with an irradiance of 50 or 150 mW/cm2 to a fluence of 100 J/cm2. While no cures were attained, significant tumor growth delay was demonstrated at both irradiances compared to drug-only controls. There was no significant difference in tumor responses to these two irradiances (p = 0.857). Fluorescence spectroscopy was used to monitor the bleaching of Pc 4 during irradiation, with more rapid bleaching with respect to fluence shown at the higher irradiance. No significant correlation was found between fluorescence photobleaching and tumor regrowth for the data interpreted as a whole. Within each treatment group, weak associations between photobleaching and outcome were observed. In the 50 mW/cm2 group, enhanced photobleaching was associated with prolonged growth delay (p = 0.188), while at 150 mW/cm2 this trend was reversed (p = 0.308). Thus, it appears that Pc 4 photobleaching is not a strong predictor of individual tumor response to Pc4-PDT under these treatment conditions. PMID:22582826

  5. Association between intratumoral lymphatic microvessel density (LMVD) and clinicopathologic features in endometrial cancer: a retrospective cohort study

    PubMed Central

    2010-01-01

    Background Lymph node metastasis in endometrial cancer significantly decreases survival rate. Few data on the influence of intratumoral lymphatic microvessel density (LMVD) on survival in endometrial cancer are available. Our aim was to assess the intratumoral LMVD of endometrial carcinomas and to investigate its association with classical pathological factors, lymph node metastasis and survival. Methods Fifty-seven patients with endometrial carcinoma diagnosed between 2000 and 2008 underwent complete surgical staging and evaluation of intratumoral LMVD and other histologic variables. Lymphatic microvessels were identified by immunohistochemical staining using monoclonal antibody against human podoplanin (clone D2-40) and evaluated by counting the number of immunostained lymphatic vessels in 10 hot spot areas at 400× magnification. The LMVD was expressed by the mean number of vessels in these 10 hot spot microscopic fields. We next investigated the association of LMVD with the clinicopathologic findings and prognosis. Results The mean number of lymphatic vessels counted in all cases ranged between 0 and 4.7. The median value of mean LMVD was 0.5, and defined the cut-off for low and high LMVD. We identified low intratumoral LMVD in 27 (47.4%) patients and high LMVD in 30 (52.6%) patients. High intratumoral LMVD was associated with lesser miometrial and adnaexal infiltration, lesser cervical and peritoneal involvement, and fewer fatal cases. Although there was lower lymph node involvement among cases with high LMVD, the difference did not reach significance. No association was seen between LMVD and FIGO staging, histological type, or vascular invasion. On the other hand, low intratumoral LMVD was associated with poor outcome. Seventy-five percent of deaths occurred in patients with low intratumoral LMVD. Conclusion Our results show association of high intratumoral LMVD with features related to more localized disease and better outcome. We discuss the role of

  6. Therapeutic effect of intratumoral administration of DCs with conditional expression of combination of different cytokines

    PubMed Central

    Huang, Chun; Ramakrishnan, Rupal; Trkulja, Marko; Ren, Xiubao

    2015-01-01

    In this study, we tested the effect of intratumoral administration of dendritic cells (DCs) with inducible expression of different cytokines, using the novel Rheoswitch Therapeutic System on the experimental models of renal cell cancer (RENCA) and MethA sarcoma. Intratumoral injection of DCs, engineered to express IL-12, IL-21, or IFN-α, showed potent therapeutic effect against established tumor. This effect was associated with the induction of potent tumor antigen-specific CD8+ T-cell responses, as well as the infiltration of tumors with CD4+ and CD8+ T cells but not with the cytotoxic activity of DCs. Combination of i.t. administration of DCs, producing different cytokines, did not enhance the antitumor effect of therapy with single cytokine. These results indicate that RTS can be a potent tool for conditional topical cytokine delivery, in combination with DC administration. However, combination of different cytokines may not necessarily improve the outcome of treatment. PMID:22223258

  7. ALTERATION OF AKT ACTIVITY INCREASES CHEMOTHERAPEUTIC DRUG AND HORMONAL RESISTANCE IN BREAST CANCER YET CONFERS AN ACHILLES HEEL BY SENSITIZATION TO TARGETED THERAPY

    PubMed Central

    Sokolosky, Melissa L.; Lehmann, Brian D.; Taylor, Jackson R.; Navolanic, Patrick M.; Chappell, William H.; Abrams, Stephen L.; Stadelman, Kristin M.; Wong, Ellis WT; Misaghian, Negin; Horn, Stefan; Bäsecke, Jörg; Libra, Massimo; Stivala, Franca; Ligresti, Giovanni; Tafuri, Agostino; Milella, Michele; Zarzycki, Marek; Dzugaj, Andrzej; Chiarini, Francesca; Evangelisti, Camilla; Martelli, Alberto M.; Terrian, David M.; Franklin, Richard A.; Steelman, Linda S.

    2008-01-01

    to potential therapeutic targets, mTOR and MEK. These studies indicate that activation of the Akt kinase or disruption of the normal activity of the PTEN phosphatase can have dramatic effects on activity of p70S6K and other downstream substrates and thereby altering the therapeutic sensitivity of breast cancer cells. The effects of doxorubicin and tamoxifen on induction of the Raf/MEK/ERK and PI3K/Akt survival pathways were examined in unmodified MCF-7 breast cells. Doxorubicin was a potent inducer of activated ERK and to a lesser extent Akt. Tamoxifen also induced ERK. Thus a consequence of doxorubicin and tamoxifen therapy of breast cancer is the induction of a pro-survival pathway which may contribute to the development of drug resistance. Unmodified MCF-7 cells were also sensitive to MEK and mTOR inhibitors which synergized with both tamoxifen and doxorubicin to induce death. In summary, our results point to the key interactions between the PI3K/PTEN/Akt/mTOR and Raf/MEK/ERK pathways in regulating chemotherapeutic drug resistance/sensitivity in breast cancer and indicate that targeting these pathways may prevent drug and hormonal resistance. PMID:18423407

  8. Intraoperative Intratumoral Embolization of a Complex Recurrent Hemangiopericytoma: Technical Report and Review of the Literature.

    PubMed

    Ryttlefors, Mats; Latini, Francesco; Basma, Jaafar; Krisht, Ali F

    2016-07-01

    Objective Recurrent brain tumors represent a challenge for neurosurgeons because of the extensive blood loss and the time needed for surgical resection. Only a few hemostatic agents are useful to prevent the bleeding and thus facilitate the surgical resection. Fibrin sealant can be used to achieve sealing, tissue adherence, or hemostasis when other means of hemostasis are inadequate or inappropriate. We report the feasibility and positive effects of direct intratumoral injection of fibrin sealant during resection of a recurrent hemangiopericytoma. Material and Methods The intraoperative intratumoral injection of fibrin sealant changed the tumor properties of a recurrent hemangiopericytoma of the tentorium with infra- and supratentorial extension. From a loose friable briskly bleeding tumor, this complex lesion became a nonbleeding well-demarcated soft-firm tumor that could easily be dissected off the pial surface and totally resected without extensive bleeding. Results There are several benefits of intratumoral injection of fibrin sealant in hemangiopericytomas: (1) the extensive bleeding is diminished and blood loss minimized; (2) the restriction of the surgical view by the venous oozing is diminished, making the microsurgical dissection of the tumor capsule off the pial surface easier and safer; (3) the loose consistency of the tumor becomes firmer and facilitates the manipulation of the tumor and leads to a safer resection; and (4) a shorter operating time is needed. Conclusion The use of intratumoral fibrin glue injection is a safe and useful technique that could be used for hemostasis of highly vascularized tumors to facilitate a safer resection and to reduce blood loss. PMID:26270264

  9. Metabolic alterations and drug sensitivity of tyrosine kinase inhibitor resistant leukemia cells with a FLT3/ITD mutation.

    PubMed

    Huang, Amin; Ju, Huai-Qiang; Liu, Kaiyan; Zhan, Guilian; Liu, Daolu; Wen, Shijun; Garcia-Manero, Guillermo; Huang, Peng; Hu, Yumin

    2016-07-28

    Internal tandem duplication (ITD) of the juxtamembrane region of FMS-like tyrosine kinase-3 (FLT3) receptor is a common type of mutation in adult acute myeloid leukemia (AML), and patient response to FLT3 inhibitors appears to be transient due to the emergence of drug resistance. We established two sorafenib-resistant cell lines carrying FLT3/ITD mutations, including the murine BaF3/ITD-R and human MV4-11-R cell lines. Gene expression profile analysis of the resistant and parental cells suggests that the highest ranked molecular and cellular functions of the differentially expressed genes are related to mitochondrial dysfunction. Both murine and human resistant cell lines display a longer doubling time, along with a significant inhibition of mitochondrial respiratory chain activity and substantial upregulation of glycolysis. The sorafenib-resistant cells exhibit increased expression of a majority of glycolytic enzymes, including hexokinase 2, which is also highly expressed in the mitochondrial fraction and is associated with resistance to apoptotic cell death. The sorafenib-resistant cells are collaterally sensitive to a number of glycolytic inhibitors including 2-deoxyglucose and 3-bromopyruvate propylester. Our study reveals a metabolic signature of sorafenib-resistant cells and suggests that glycolytic inhibition may override such resistance and warrant further clinical investigation. PMID:27132990

  10. Gray matter volume alterations in first-episode drug-naïve patients with deficit and nondeficit schizophrenia.

    PubMed

    Lei, Wei; Deng, Wei; Li, Mingli; He, Zongling; Han, Yuanyuan; Huang, Chaohua; Ma, Xiaohong; Wang, Qiang; Guo, Wanjun; Li, Yinfei; Jiang, Lijun; Gong, Qiyong; Hu, Xun; Zhang, Nanyin; Li, Tao

    2015-11-30

    Different patterns of gray matter volume (GMV) abnormalities have been reported between chronic patients with deficit schizophrenia (DS), relative to nondeficit schizophrenia (NDS) patients. However, it is not clear whether these differences are characteristic to the pathophysiology of DS or due to the effects of medications or illness durations. To address this issue, GMV in 88 first-episode, drug-naive patients with schizophrenia (44 DS and 44 NDS), 67 of their first-degree relatives and 84 healthy controls were assessed using voxel- based morphometry (VBM) and compared between groups. Correlations between GMV and clinical symptoms in patients were also assessed. Compared to controls, DS patients displayed more severe GMV reduction in the cerebellar culmen than NDS patients. GMV reduction in culmen was also observed in the first-degree relatives of DS (but not NDS) patients, suggesting possible different genetic risk in DS and NDS. The left insula was significantly smaller in DS patients than both NDS patients and controls, and smaller GMV of this region was associated with more severe negative symptoms in patients. Our results collectively indicate that DS might represent a distinct subtype of schizophrenia from NDS and the GMV change in left insula may be a morphological signature of DS. PMID:26409573

  11. Gray Matter Volume Alterations in First-episode Drug-naïve Patients with Deficit and Nondeficit Schizophrenia

    PubMed Central

    Li, Mingli; He, Zongling; Han, Yuanyuan; Huang, Chaohua; Ma, Xiaohong; Wang, Qiang; Guo, Wanjun; Li, Yinfei; Jiang, Lijun; Gong, Qiyong; Hu, Xun; Zhang, Nanyin; Li, Tao

    2016-01-01

    Different patterns of gray matter volume (GMV) abnormalities have been reported between chronic patients with deficit schizophrenia (DS), relative to nondeficit schizophrenia (NDS) patients. However, it is not clear whether these differences are characteristic to the pathophysiology of DS or due to the effects of medications or illness durations. To address this issue, GMV in 88 first-episode, drug-naive patients with schizophrenia (44 DS and 44 NDS), 67 of their first-degree relatives and 84 healthy controls were assessed using voxel- based morphometry (VBM) and compared between groups. Correlations between GMV and clinical symptoms in patients were also assessed. Compared to controls, DS patients displayed more severe GMV reduction in the cerebellar culmen than NDS patients. GMV reduction in culmen was also observed in the first-degree relatives of DS (but not NDS) patients, suggesting possible different genetic risk in DS and NDS. The left insula was significantly smaller in DS patients than both NDS patients and controls, and smaller GMV of this region was associated with more severe negative symptoms in patients. Our results collectively indicate that DS might represent a distinct subtype of schizophrenia from NDS and the GMV change in left insula may be a morphological signature of DS. PMID:26409573

  12. Methamphetamine decreases CD4 T cell frequency and alters pro-inflammatory cytokine production in a model of drug abuse.

    PubMed

    Mata, Mariana M; Napier, T Celeste; Graves, Steven M; Mahmood, Fareeha; Raeisi, Shohreh; Baum, Linda L

    2015-04-01

    The reason co-morbid methamphetamine use and HIV infection lead to more rapid progression to AIDS is unclear. We used a model of methamphetamine self-administration to measure the effect of methamphetamine on the systemic immune system to better understand the co-morbidity of methamphetamine and HIV. Catheters were implanted into the jugular veins of male, Sprague Dawley rats so they could self-administer methamphetamine (n=18) or be given saline (control; n=16) for 14 days. One day after the last operant session, blood and spleens were collected. We measured serum levels of pro-inflammatory cytokines, intracellular IFN-γ and TNF-α, and frequencies of CD4(+), CD8(+), CD200(+) and CD11b/c(+) lymphocytes in the spleen. Rats that self-administered methamphetamine had a lower frequency of CD4(+) T cells, but more of these cells produced IFN-γ. Methamphetamine did not alter the frequency of TNF-α-producing CD4(+) T cells. Methamphetamine using rats had a higher frequency of CD8(+) T cells, but fewer of them produced TNF-α. CD11b/c and CD200 expression were unchanged. Serum cytokine levels of IFN-γ, TNF-α and IL-6 in methamphetamine rats were unchanged. Methamphetamine lifetime dose inversely correlated with serum TNF-α levels. Our data suggest that methamphetamine abuse may exacerbate HIV disease progression by activating CD4 T cells, making them more susceptible to HIV infection, and contributing to their premature demise. Methamphetamine may also increase susceptibility to HIV infection, explaining why men who have sex with men (MSM) and frequently use methamphetamine are at the highest risk of HIV infection. PMID:25678251

  13. Intratumoral injection of Clostridium novyi-NT spores induces antitumor responses

    PubMed Central

    Rusk, Anthony W.; Tung, David; Miller, Maria; Roix, Jeffrey; Khanna, Kristen V.; Murthy, Ravi; Benjamin, Robert S.; Helgason, Thorunn; Szvalb, Ariel D.; Bird, Justin E.; Roy-Chowdhuri, Sinchita; Zhang, Halle H.; Qiao, Yuan; Karim, Baktiar; McDaniel, Jennifer; Elpiner, Amanda; Sahora, Alexandra; Lachowicz, Joshua; Phillips, Brenda; Turner, Avenelle; Klein, Mary K.; Post, Gerald; Diaz, Luis A.; Riggins, Gregory J.; Papadopoulos, Nickolas; Kinzler, Kenneth W.; Vogelstein, Bert; Bettegowda, Chetan; Huso, David L.; Varterasian, Mary

    2015-01-01

    Species of Clostridium bacteria are notable for their ability to lyse tumor cells growing in hypoxic environments. We show that an attenuated strain of Clostridium novyi (C. novyi-NT) induces a microscopically precise, tumor-localized response in a rat orthotopic brain tumor model after intratumoral injection. It is well known, however, that experimental models often do not reliably predict the responses of human patients to therapeutic agents. We therefore used naturally occurring canine tumors as a translational bridge to human trials. Canine tumors are more like those of humans because they occur in animals with heterogeneous genetic backgrounds, are of host origin, and are due to spontaneous rather than engineered mutations. We found that intratumoral injection of C. novyi-NT spores was well tolerated in companion dogs bearing spontaneous solid tumors, with the most common toxicities being the expected symptoms associated with bacterial infections. Objective responses were observed in 6 of 16 dogs (37.5%), with three complete and three partial responses. On the basis of these encouraging results, we treated a human patient who had an advanced leiomyosarcoma with an intratumoral injection of C. novyi-NT spores. This treatment reduced the tumor within and surrounding the bone. Together, these results show that C. novyi-NT can precisely eradicate neoplastic tissues and suggest that further clinical trials of this agent in selected patients are warranted. PMID:25122639

  14. Intratumoral injection of Clostridium novyi-NT spores induces antitumor responses.

    PubMed

    Roberts, Nicholas J; Zhang, Linping; Janku, Filip; Collins, Amanda; Bai, Ren-Yuan; Staedtke, Verena; Rusk, Anthony W; Tung, David; Miller, Maria; Roix, Jeffrey; Khanna, Kristen V; Murthy, Ravi; Benjamin, Robert S; Helgason, Thorunn; Szvalb, Ariel D; Bird, Justin E; Roy-Chowdhuri, Sinchita; Zhang, Halle H; Qiao, Yuan; Karim, Baktiar; McDaniel, Jennifer; Elpiner, Amanda; Sahora, Alexandra; Lachowicz, Joshua; Phillips, Brenda; Turner, Avenelle; Klein, Mary K; Post, Gerald; Diaz, Luis A; Riggins, Gregory J; Papadopoulos, Nickolas; Kinzler, Kenneth W; Vogelstein, Bert; Bettegowda, Chetan; Huso, David L; Varterasian, Mary; Saha, Saurabh; Zhou, Shibin

    2014-08-13

    Species of Clostridium bacteria are notable for their ability to lyse tumor cells growing in hypoxic environments. We show that an attenuated strain of Clostridium novyi (C. novyi-NT) induces a microscopically precise, tumor-localized response in a rat orthotopic brain tumor model after intratumoral injection. It is well known, however, that experimental models often do not reliably predict the responses of human patients to therapeutic agents. We therefore used naturally occurring canine tumors as a translational bridge to human trials. Canine tumors are more like those of humans because they occur in animals with heterogeneous genetic backgrounds, are of host origin, and are due to spontaneous rather than engineered mutations. We found that intratumoral injection of C. novyi-NT spores was well tolerated in companion dogs bearing spontaneous solid tumors, with the most common toxicities being the expected symptoms associated with bacterial infections. Objective responses were observed in 6 of 16 dogs (37.5%), with three complete and three partial responses. On the basis of these encouraging results, we treated a human patient who had an advanced leiomyosarcoma with an intratumoral injection of C. novyi-NT spores. This treatment reduced the tumor within and surrounding the bone. Together, these results show that C. novyi-NT can precisely eradicate neoplastic tissues and suggest that further clinical trials of this agent in selected patients are warranted. PMID:25122639

  15. The role of intratumoral lymphovascular density in distinguishing primary from secondary mucinous ovarian tumors

    PubMed Central

    de Lacerda Almeida, Bernardo Gomes; Bacchi, Carlos E; Carvalho, Jesus P; Ferreira, Cristiane R; Carvalho, Filomena M

    2014-01-01

    OBJECTIVE: Ovarian mucinous metastases commonly present as the first sign of the disease and are capable of simulating primary tumors. Our aim was to investigate the role of intratumoral lymphatic vascular density together with other surgical-pathological features in distinguishing primary from secondary mucinous ovarian tumors. METHODS: A total of 124 cases of mucinous tumors in the ovary (63 primary and 61 metastatic) were compared according to their clinicopathological features and immunohistochemical profiles. The intratumoral lymphatic vascular density was quantified by counting the number of vessels stained by the D2-40 antibody. RESULTS: Metastases occurred in older patients and were associated with a higher proportion of tumors smaller than 10.0 cm; bilaterality; extensive necrosis; extraovarian extension; increased expression of cytokeratin 20, CDX2, CA19.9 and MUC2; and decreased expression of cytokeratin 7, CA125 and MUC5AC. The lymphatic vascular density was increased among primary tumors. However, after multivariate analysis, the best predictors of a secondary tumor were a size of 10.0 cm or less, bilaterality and cytokeratin 7 negativity. Lack of MUC2 expression was an important factor excluding metastasis. CONCLUSIONS: The higher intratumoral lymphatic vascular density in primary tumors when compared with secondary lesions suggests differences in the microenvironment. However, considering the differential diagnosis, the best discriminator of a secondary tumor is the combination of tumor size, laterality and the pattern of expression of cytokeratin 7 and MUC2. PMID:25518016

  16. Improved Intratumoral Oxygenation Through Vascular Normalization Increases Glioma Sensitivity to Ionizing Radiation

    SciTech Connect

    McGee, Mackenzie C.; Hamner, J. Blair; Williams, Regan F.; Rosati, Shannon F.; Sims, Thomas L.; Ng, Catherine Y.; Gaber, M. Waleed; Calabrese, Christopher; Wu Jianrong; Nathwani, Amit C.; Merchant, Thomas E.; Davidoff, Andrew M.

    2010-04-15

    Purpose: Ionizing radiation, an important component of glioma therapy, is critically dependent on tumor oxygenation. However, gliomas are notable for areas of necrosis and hypoxia, which foster radioresistance. We hypothesized that pharmacologic manipulation of the typically dysfunctional tumor vasculature would improve intratumoral oxygenation and, thus, the antiglioma efficacy of ionizing radiation. Methods and Materials: Orthotopic U87 xenografts were treated with either continuous interferon-beta (IFN-beta) or bevacizumab, alone, or combined with cranial irradiation (RT). Tumor growth was assessed by quantitative bioluminescence imaging; the tumor vasculature using immunohistochemical staining, and tumor oxygenation using hypoxyprobe staining. Results: Both IFN-beta and bevaziumab profoundly affected the tumor vasculature, albeit with different cellular phenotypes. IFN-beta caused a doubling in the percentage of area of perivascular cell staining, and bevacizumab caused a rapid decrease in the percentage of area of endothelial cell staining. However, both agents increased intratumoral oxygenation, although with bevacizumab, the effect was transient, being lost by 5 days. Administration of IFN-beta or bevacizumab before RT was significantly more effective than any of the three modalities as monotherapy or when RT was administered concomitantly with IFN-beta or bevacizumab or 5 days after bevacizumab. Conclusion: Bevacizumab and continuous delivery of IFN-beta each induced significant changes in glioma vascular physiology, improving intratumoral oxygenation and enhancing the antitumor activity of ionizing radiation. Additional investigation into the use and timing of these and other agents that modify the vascular phenotype, combined with RT, is warranted to optimize cytotoxic activity.

  17. Alterations in body temperature, corticosterone, and behavior following the administration of 5-methoxy-diisopropyltryptamine ('foxy') to adult rats: a new drug of abuse.

    PubMed

    Williams, Michael T; Herring, Nicole R; Schaefer, Tori L; Skelton, Matthew R; Campbell, Nicholas G; Lipton, Jack W; McCrea, Anne E; Vorhees, Charles V

    2007-06-01

    Many drugs are used or abused in social contexts without understanding the ramifications of their use. In this study, we examined the effects of a newly popular drug, 5-methoxy-diisopropyltryptamine (5-MEO-DIPT; 'foxy' or 'foxy-methoxy'). Two experiments were performed. In the first, 5-MEO-DIPT (0, 10, or 20 mg/kg) was administered to rats four times on a single day and animals were examined 3 days later. The animals that received 5-MEO-DIPT demonstrated hypothermia during the period of drug administration and delayed mild hyperthermic rebound for at least 48 h. Corticosterone levels in plasma were elevated in a dose-dependent manner compared to saline-treated animals with minor changes in 5-HT turnover and no changes in monoamine levels. In experiment 2, rats were examined in behavioral tasks following either 0 or 20 mg/kg of 5-MEO-DIPT. The animals treated with 5-MEO-DIPT showed hypoactivity and an attenuated response to (+)-methamphetamine-induced stimulation (1 mg/kg). In a test of path integration (Cincinnati water maze), 5-MEO-DIPT-treated animals displayed deficits in performance compared to the saline-treated animals. No differences were noted in the ability of the animals to perform in the Morris water maze or on tests of novel object or place recognition. The data demonstrate that 5-MEO-DIPT alters the ability of an animal to perform certain cognitive tasks, while leaving others intact and disrupts the endocrine system. 5-MEO-DIPT may have the potential to induce untoward effects in humans. PMID:17047665

  18. Intestinal absorption of the antiepileptic drug substance vigabatrin is altered by infant formula in vitro and in vivo.

    PubMed Central

    Nøhr, Martha Kampp; Thale, Zia I; Brodin, Birger; Hansen, Steen H; Holm, René; Nielsen, Carsten Uhd

    2014-01-01

    Vigabatrin is an antiepileptic drug substance mainly used in pediatric treatment of infantile spasms. The main source of nutrition for infants is breast milk and/or infant formula. Our hypothesis was that infant formula may affect the intestinal absorption of vigabatrin. The aim was therefore to investigate the potential effect of coadministration of infant formula with vigabatrin on the oral absorption in vitro and in vivo. The effect of vigabatrin given with an infant formula on the oral uptake and transepithelial transport was investigated in vitro in Caco-2 cells. In vivo effects of infant formula and selected amino acids on the pharmacokinetic profile of vigabatrin was investigated after oral coadministration to male Sprague–Dawley rats using acetaminophen as a marker for gastric emptying. The presence of infant formula significantly reduced the uptake rate and permeability of vigabatrin in Caco-2 cells. Oral coadministration of vigabatrin and infant formula significantly reduced Cmax and prolonged tmax of vigabatrin absorption. Ligands for the proton-coupled amino acid transporter PAT1, sarcosine, and proline/l-tryptophan had similar effects on the pharmacokinetic profile of vigabatrin. The infant formula decreased the rate of gastric emptying. Here we provide experimental evidence for an in vivo role of PAT1 in the intestinal absorption of vigabatrin. The effect of infant formula on the oral absorption of vigabatrin was found to be due to delayed gastric emptying, however, it seems reasonable that infant formula may also directly affect the intestinal absorption rate of vigabatrin possibly via PAT1. PMID:25505585

  19. Naproxen, a Nonsteroidal Anti-Inflammatory Drug, Can Affect Daily Hypobaric Hypoxia-Induced Alterations of Monoamine Levels in Different Areas of the Brain in Male Rats.

    PubMed

    Goswami, Ananda Raj; Dutta, Goutam; Ghosh, Tusharkanti

    2016-06-01

    Goswami, Ananda Raj, Goutam Dutta, and Tusharkanti Ghosh. Naproxen, a nonsteroidal anti-inflammatory drug can affect daily hypobaric hypoxia-induced alterations of monoamine levels in different areas of the brain in male rats. High Alt Med Biol. 17:133-140, 2016.-The oxidative stress (OS)-induced prostaglandin (PG) release, in hypobaric hypoxic (HHc) condition, may be linked with the changes of brain monoamines. The present study intends to explore the changes of monoamines in hypothalamus (H), cerebral cortex (CC), and cerebellum (CB) along with the motor activity in rats after exposing them to simulated hypobaric condition and the role of PGs on the daily hypobaric hypoxia (DHH)-induced alteration of brain monoamines by administering, an inhibitor of PG synthesis, naproxen. The rats were exposed to a decompression chamber at 18,000 ft for 8 hours per day for 6 days after administration of vehicle or naproxen (18 mg/kg body wt.). The monoamine levels (epinephrine, E; norepinephrine, NE; dopamine, DA; and 5-hydroxytryptamine, 5-HT) in CC, CB, and H were assayed by high-performance liquid chromatography (HPLC) with electrochemical detection, and the locomotor behavior was measured by open field test. The NE and DA levels were decreased in CC, CB, and H of the rat brain in HHc condition. The E and 5-HT levels were decreased in CC, but in H and CB, they remained unaltered in HHc condition. These DHH-induced changes of monoamines in brain areas were prevented after administration of naproxen in HHc condition. The locomotor behavior remained unaltered in HHc condition and after administration of naproxen in HHc condition. The DHH-induced changes of monoamines in the brain in HHc condition are probably linked with PGs that may be induced by OS. PMID:26894935

  20. Theophylline, a methylxanthine drug induces osteopenia and alters calciotropic hormones, and prophylactic vitamin D treatment protects against these changes in rats.

    PubMed

    Pal, Subhashis; Khan, Kainat; China, Shyamsundar Pal; Mittal, Monika; Porwal, Konica; Shrivastava, Richa; Taneja, Isha; Hossain, Zakir; Mandalapu, Dhanaraju; Gayen, Jiaur R; Wahajuddin, Muhammad; Sharma, Vishnu Lal; Trivedi, Arun K; Sanyal, Sabyasachi; Bhadauria, Smrati; Godbole, Madan M; Gupta, Sushil K; Chattopadhyay, Naibedya

    2016-03-15

    The drug, theophylline is frequently used as an additive to medications for people suffering from chronic obstructive pulmonary diseases (COPD). We studied the effect of theophylline in bone cells, skeleton and parameters related to systemic calcium homeostasis. Theophylline induced osteoblast apoptosis by increasing reactive oxygen species production that was caused by increased cAMP production. Bone marrow levels of theophylline were higher than its serum levels, indicating skeletal accumulation of this drug. When adult Sprague-Dawley rats were treated with theophylline, bone regeneration at fracture site was diminished compared with control. Theophylline treatment resulted in a time-dependent (at 4- and 8 weeks) bone loss. At 8 weeks, a significant loss of bone mass and deterioration of microarchitecture occurred and the severity was comparable to methylprednisone. Theophylline caused formation of hypomineralized osteoid and increased osteoclast number and surface. Serum bone resorption and formation marker were respectively higher and lower in the theophylline group compared with control. Bone strength was reduced by theophylline treatment. After 8 weeks, serum 25-D3 and liver 25-hydroxylases were decreased in theophylline group than control. Further, theophylline treatment reduced serum 1, 25-(OH)2 vitamin D3 (1,25-D3), and increased parathyroid hormone and fibroblast growth factor-23. Theophylline treated rats had normal serum calcium and phosphate but displayed calciuria and phosphaturia. Co-administration of 25-D3 with theophylline completely abrogated theophylline-induced osteopenia and alterations in calcium homeostasis. In addition, 1,25-D3 protected osteoblasts from theophylline-induced apoptosis and the attendant oxidative stress. We conclude that theophylline has detrimental effects in bone and prophylactic vitamin D supplementation to subjects taking theophylline could be osteoprotective. PMID:26851681

  1. Deciphering intra-tumor heterogeneity of lung adenocarcinoma confirms that dominant, branching, and private gene mutations occur within individual tumor nodules.

    PubMed

    Pelosi, Giuseppe; Pellegrinelli, Alessio; Fabbri, Alessandra; Tamborini, Elena; Perrone, Federica; Settanni, Giulio; Busico, Adele; Picciani, Benedetta; Testi, Maria Adele; Militti, Lucia; Maisonneuve, Patrick; Valeri, Barbara; Sonzogni, Angelica; Proto, Claudia; Garassino, Marina; De Braud, Filippo; Pastorino, Ugo

    2016-06-01

    While pulmonary adenocarcinoma (ADC) is morphologically heterogeneous, little is known about intra-tumor gene mutation heterogeneity (ITH). We therefore subjected 20 ADC nodules, 5 mutated for EGFR and 5 for KRAS, 5 with an ALK translocation, and 5 wild type (WT) for these alterations, to unsupervised next-generation sequencing of tumor regions from diverse architectural patterns. When 2 or more different gene mutations were found in a single tumor, this fulfilled the criteria for ITH. In the 84 studied tumor regions with diverse architecture, 71 gene mutations and 34 WT profiles were found. ITH was observed in 9/15 (60 %) ADC, 3 with an EGFR, 3 with a KRAS, and 3 with an ALK aberration, as reflected in 5, 6, and 9 additional mutations, respectively, detected in these tumors. EGFR mutations were observed in 21/22 and KRAS mutations in 18/22 tumor regions, suggesting that they appear early and have a driver role (dominant or trunk mutations). Branching mutations (in EZH2, PIK3CA, TP53, and EGFR exon 18) occurred in two or more regions, while private mutations (in ABL1, ALK, BRAF, HER2, KDR, LKB1, PTEN, MET, SMAD4, SMARCB1, and SRC) were confined to unique tumor samples of individual lesions, suggesting that they occurred later on during tumor progression. Patients with a tumor showing branching mutations ran a worse clinical course, independent of confounding factors. We conclude that in ADC, ITH exists in a pattern suggesting spatial and temporal hierarchy with dominant, branching, and private mutations. This is consistent with diverse intra-tumor clonal evolution, which has potential implications for patient prognosis or development of secondary therapy resistance. PMID:27056568

  2. Altered resting state functional connectivity of anterior cingulate cortex in drug naïve adolescents at the earliest stages of anorexia nervosa

    PubMed Central

    Gaudio, Santino; Piervincenzi, Claudia; Beomonte Zobel, Bruno; Romana Montecchi, Francesca; Riva, Giuseppe; Carducci, Filippo; Cosimo Quattrocchi, Carlo

    2015-01-01

    Previous Resting-State Functional Connectivity (RSFC) studies have shown several functional alterations in adults with or recovered from long Anorexia Nervosa (AN). The aim of this paper was to investigate whole brain RSFC in adolescents with AN in the earliest stages, less than 6 months, of the disorder. Sixteen drug-naïve outpatient female adolescents with AN-restrictive type (AN-r) (mean age: 15,8; SD 1,7) were compared to 16 age-matched healthy female (mean age: 16,3; SD 1,4). Relevant resting state networks (RSNs) were identified using independent component analysis (ICA) from functional magnetic resonance imaging data; a dual regression technique was used to detect between-group differences in the RSNs. Between-group differences of the functional connectivity maps were found in the executive control network (ECN). Particularly, decreased temporal correlation was observed in AN-r patients relative to healthy controls between the ECN functional connectivity maps and the anterior cingulate cortex (p < 0.05 corrected). Our results in AN adolescents may represent an early trait-related biomarker of the disease. Considering that the above mentioned network and its area are mainly involved in cognitive control and emotional processing, our findings could explain the impaired cognitive flexibility in relation to body image and appetite in AN patients. PMID:26043139

  3. Altered resting state functional connectivity of anterior cingulate cortex in drug naïve adolescents at the earliest stages of anorexia nervosa.

    PubMed

    Gaudio, Santino; Piervincenzi, Claudia; Beomonte Zobel, Bruno; Romana Montecchi, Francesca; Riva, Giuseppe; Carducci, Filippo; Quattrocchi, Carlo Cosimo

    2015-01-01

    Previous Resting-State Functional Connectivity (RSFC) studies have shown several functional alterations in adults with or recovered from long Anorexia Nervosa (AN). The aim of this paper was to investigate whole brain RSFC in adolescents with AN in the earliest stages, less than 6 months, of the disorder. Sixteen drug-naïve outpatient female adolescents with AN-restrictive type (AN-r) (mean age: 15,8; SD 1,7) were compared to 16 age-matched healthy female (mean age: 16,3; SD 1,4). Relevant resting state networks (RSNs) were identified using independent component analysis (ICA) from functional magnetic resonance imaging data; a dual regression technique was used to detect between-group differences in the RSNs. Between-group differences of the functional connectivity maps were found in the executive control network (ECN). Particularly, decreased temporal correlation was observed in AN-r patients relative to healthy controls between the ECN functional connectivity maps and the anterior cingulate cortex (p < 0.05 corrected). Our results in AN adolescents may represent an early trait-related biomarker of the disease. Considering that the above mentioned network and its area are mainly involved in cognitive control and emotional processing, our findings could explain the impaired cognitive flexibility in relation to body image and appetite in AN patients. PMID:26043139

  4. Maternal care alterations induced by repeated ethanol leads to heightened consumption of the drug and motor impairment during adolescence: a dose-response analysis.

    PubMed

    Ponce, Luciano F; Pautassi, Ricardo Marcos; Spear, Norman E; Molina, Juan C

    2011-07-01

    Maternal ethanol exposure during lactation induces behavioral alterations in offspring, including disruptions in motor skills and heightened ethanol ingestion during adolescence. These behavioral outcomes appear to partially depend on ethanol-induced disruptions in maternal care. The present study assessed motor skills and ethanol intake in adolescent rats raised by dams that had been repeatedly given ethanol during lactation. Female rats (postpartum days [PDs] 3-13) were administered ethanol (0.5, 1.5, or 2.5 g/kg) or vehicle every other day and allowed to freely interact with their pups. During adolescence, the offspring were evaluated for motor coordination (accelerating rotarod test) and oral ethanol self administration. The lowest maternal ethanol dose (0.5 g/kg) mildly affected motor performance, whereas the higher doses (1.5 and 2.5 g/kg) resulted in motor coordination impairment and greater ethanol intake. Maternal care behavior was affected by ethanol in a dose-dependent fashion. These results indicate that early experience with ethanol during lactation, even when the drug dosage is kept relatively low, leads to long-term consequences in offspring. Dose-response effects on maternal care behavior (i.e., nest building, crouching) may underlie disruptions in motor development and greater ethanol intake resulting from these early ethanol experiences. PMID:21334354

  5. Color Doppler Ultrasound and Gamma Imaging of Intratumorally Injected 500 nm Iron-Silica Nanoshells

    PubMed Central

    Liberman, Alexander; Wu, Zhe; Barback, Christopher V.; Viveros, Robert; Blair, Sarah L.; Ellies, Lesley G.; Vera, David R.; Mattrey, Robert F.; Kummel, Andrew C.; Trogler, William C.

    2013-01-01

    Perfluoropentane gas filled iron-silica nanoshells have been developed as stationary ultrasound contrast agents for marking tumors to guide surgical resection. It is critical to establish their long term imaging efficacy, as well as biodistribution. This work shows that 500 nm Fe-SiO2 nanoshells can be imaged by color Doppler ultrasound over the course of 10 days in Py8119 tumor bearing mice. The 500 nm non-biodegradable SiO2 and biodegradable Fe-SiO2 nanoshells were functionalized with diethylenetriamine pentaacetic acid (DTPA) ligand and radiolabeled with 111In3+ for biodistribution studies in nu/nu mice. The majority of radioactivity was detected in the liver and kidneys following intravenous (IV) administration of nanoshells to healthy animals. By contrast, after nanoshells were injected intratumorally, most of the radioactivity remained at the injection site; however, some nanoshells escaped into circulation and were distributed similarly as those given intravenously. For intratumoral delivery of nanoshells and IV delivery to healthy animals, little difference was seen between the biodistribution of SiO2 and biodegradable Fe-SiO2 nanoshells. However, when nanoshells were administered IV to tumor bearing mice, a significant increase was observed in liver accumulation of SiO2 nanoshells relative to biodegradable Fe-SiO2 nanoshells. Both SiO2 and Fe-SiO2 nanoshells accumulate passively in proportion to tumor mass, during intravenous delivery of nanoshells. This is the first report of the biodistribution following intratumoral injection of any biodegradable silica particle, as well as the first report demonstrating the utility of DTPA-111In labeling for studying silica nanoparticle biodistributions. PMID:23802554

  6. Intratumoral administration of a recombinant canarypox virus expressing interleukin 12 in patients with metastatic melanoma.

    PubMed

    Triozzi, Pierre L; Strong, Theresa V; Bucy, R Pat; Allen, Karen O; Carlisle, Ronda R; Moore, Susan E; Lobuglio, Albert F; Conry, Robert M

    2005-01-01

    The aim of this study was to evaluate the tolerability and activity of intratumoral administered human interleukin 12 encoded by a vector derived from the canarypox virus (ALVAC-IL-12). Nine patients with surgically incurable metastatic melanoma who had subcutaneous nodules available for injection were enrolled. ALVAC-IL-12 was administered by intratumoral injection on days 1, 4, 8, and 11. Tumor nodules greater than 2 cm in diameter were injected with 2 x 10(6) median tissue culture infectious doses (TCID(50)), and smaller tumors were injected with 1 x 10(6) TCID(50). The total dose per patient per time point ranged from 1 x 10(6) to 4 x 10(6) TCID(50). Toxicity was mild to moderate and consisted of inflammatory reactions at the injection site and fever associated with chills, myalgia, and fatigue. No dose-limiting toxicities occurred. Increases in IL-12 mRNA, and also increases in interferon gamma mRNA, were observed in ALVAC-IL-12-injected tumors compared with saline-injected control tumors in four of the nine patients. ALVAC-IL-12-injected tumors were also characterized by T cell infiltration. Three patients demonstrated increases in serum IL-12 and in interferon gamma levels. All patients developed neutralizing IgG antibody to the canarypox vector. One patient manifested a complete response of injected subcutaneous metastases and uninjected in-transit metastases. The intratumoral injection of ALVAC-IL-12 at these dose levels and according to this schedule was well tolerated and resulted in measurable biologic response in patients with metastatic melanoma. PMID:15703492

  7. Histologic Assessment of Intratumoral Lymphoplasmacytic Infiltration Is Useful in Predicting Prognosis of Patients with Hepatocellular Carcinoma

    PubMed Central

    Hayashi, Akimasa; Shibahara, Junji; Misumi, Kento; Arita, Junichi; Sakamoto, Yoshihiro; Hasegawa, Kiyoshi; Kokudo, Norihiro; Fukayama, Masashi

    2016-01-01

    In the present study, we investigated the clinicopathologic significance of intratumoral lymphoplasmacytic infiltration in a large cohort of patients with solitary hepatocellular carcinoma (HCC). Based on examination of hematoxylin and eosin-stained sections, significant infiltration was defined as dense lymphoplasmacytic infiltration, either multifocal or diffuse, in 2 or more fields under low-power magnification. Of 544 cases, 216 (39.7%) were positive for significant infiltration (HCC-LI group), while 328 (60.3%) were negative (HCC-NLI group). There were no significant between-group differences in patient age, sex, or background etiology. The lower incidence of Child-Pugh stage B (P = 0.001) and lower level of indocyanine green retention rate at 15 minutes (P < 0.001) in the HCC-LI group indicated better liver function in this group. Histologically, tumors were significantly smaller in size in the HCC-LI group than in the HCC-NLI group (P < 0.001). In addition, prominent neutrophilic infiltration, interstitial fibrosis and tumor steatosis were significantly more frequent (P < 0.001) in the HCC-LI group, while tumor necrosis was significantly less frequent (P = 0.008). Kaplan-Meier analyses revealed that overall and recurrence-free survival were significantly better in the HCC-LI group (P < 0.001). Multivariate Cox regression analysis showed that intratumoral lymphoplasmacytic infiltration was independently prognostic of both overall and recurrence-free survival (P < 0.001), with absence of infiltration showing high Cox-hazard ratios for poor prognosis. In conclusion, intratumoral lymphoplasmacytic infiltration, as determined by assessment of hematoxylin and eosin-stained slides, was significantly associated with the clinical and pathologic features of HCC and has profound prognostic importance. PMID:27195977

  8. Pan-cancer analysis of the extent and consequences of intratumor heterogeneity | Office of Cancer Genomics

    Cancer.gov

    Intratumor heterogeneity (ITH) drives neoplastic progression and therapeutic resistance. We used the bioinformatics tools 'expanding ploidy and allele frequency on nested subpopulations' (EXPANDS) and PyClone to detect clones that are present at a ≥10% frequency in 1,165 exome sequences from tumors in The Cancer Genome Atlas. 86% of tumors across 12 cancer types had at least two clones. ITH in the morphology of nuclei was associated with genetic ITH (Spearman's correlation coefficient, ρ = 0.24-0.41; P < 0.001).

  9. Imaging Intratumoral Nanoparticle Uptake After Combining Nanoembolization with Various Ablative Therapies in Hepatic VX2 Rabbit Tumors.

    PubMed

    Tam, Alda L; Melancon, Marites P; Abdelsalam, Mohamed; Figueira, Tomas Appleton; Dixon, Katherine; McWatters, Amanda; Zhou, Min; Huang, Qian; Mawlawi, Osama; Dunner, Kenneth; Li, Chun; Gupta, Sanjay

    2016-02-01

    Combining image-guided therapy techniques for the treatment of liver cancers is a strategy that is being used to improve local tumor control rates. Here, we evaluate the intratumoral uptake of nanoparticles used in combination with radiofrequency ablation (RFA), irreversible electroporation (IRE), or laser induced thermal therapy (LITT). Eight rabbits with VX2 tumor in the liver underwent one of four treatments: (i) nanoembolization (NE) with radiolabeled, hollow gold nanoparticles loaded with doxorubicin (⁶⁴Cu-PEG-HAuNS-DOX); (ii) NE + RFA; (iii) NE + IRE; (iv) NE +LITT. Positron emission tomography/computed tomography (PET/CT) imaging was obtained 1-hr or 18-hrs after intervention. Tissue samples were collected for autoradiography and transmission electron microscopy (TEM) analysis. PET/CT imaging at 1-hr showed focal deposition of oil and nanoparticles in the tumor only after NE+ RFA but at 18-hrs, all animals had focal accumulation of oil and nanoparticles in the tumor region. Autoradiograph analysis demonstrated nanoparticle deposition in the tumor and in the ablated tissues adjacent to the tumor when NE was combined with ablation. TEM results showed the intracellular uptake of nanoparticles in tumor only after NE + IRE. Nanoparticles demonstrated a structural change, suggesting direct interaction, potentially leading to drug release, only after NE + LITT. The findings demonstrate that a combined NE and ablation treatment technique for liver tumors is feasible, resulting in deposition of nanoparticles in and around the tumor. Depending on the ablative energy applied, different effects are seen on nanoparticle localization and structure. These effects should be considered when designing nanoparticles for use in combination with ablation technologies. PMID:27305763

  10. Profile of differentially expressed intratumoral cytokines to predict the immune-polarizing side effects of tamoxifen in breast cancer treatment

    PubMed Central

    Li, Bailiang; Li, Yang; Wang, Xiao-Yu; Yan, Zi-Qiao; Liu, Huidi; Liu, Gui-Rong; Liu, Shu-Lin

    2015-01-01

    Factors within the tissue of breast cancer (BC) may shift the polarization of CD4+ T cells towards Th2 direction. This tendency can promote tumor development and be enhanced by the use of tamoxifen during the treatment. Thus, the patients with low levels of tumor-induced Th2 polarization prior to tamoxifen treatment may better endure the immune-polarizing side effects (IPSE) of tamoxifen and have better prognoses. Estimation of Th2 polarization status should help predict the IPSE among tamoxifen-treated patients and guide the use of tamoxifen among all BC patients before the tamoxifen therapy. Here, we report profiling of differentially expressed (DE) intratumoral cytokines as a signature to evaluate the IPSE of tamoxifen. The DE genes of intratumoral CD4+ T cells (CD4 DEGs) were identified by gene expression profiles of purified CD4+ T cells from BC patients and validated by profiling of cultured intratumoral CD4+ T cells. Functional enrichment analyses showed a directed Th2 polarization of intratumoral CD4+ T cells. To find the factors inducing the Th2 polarization of CD4+ T cells, we identified 995 common DE genes of bulk BC tissues (BC DEGs) by integrating five independent datasets. Five DE cytokines observed in bulk BC tissues with dysregulated receptors in the intratumoral CD4+ T cells were selected as the predictor of the IPSE of tamoxifen. The patients predicted to suffer low IPSE (low Th2 polarization) had a significantly lower distant relapse risk than the patients predicted to suffer high IPSE in independent datasets (n = 608; HR = 4.326, P = 0.000897; HR = 2.014, P = 0.0173; HR = 2.72, P = 0.04077). Patients predicted to suffer low IPSE would benefit from tamoxifen treatment (HR = 2.908, P = 0.03905). The DE intratumoral cytokines identified in this study may help predict the IPSE of tamoxifen and justify the use of tamoxifen in BC treatment. PMID:25973310

  11. Technique, pharmacokinetics, toxicity, and efficacy of intratumoral etanidazole and radiotherapy for treatment of spontaneous feline oral squamous cell carcinoma

    SciTech Connect

    Evans, S.M.; LaCreta, F.; Helfand, S.; VanWinkle, T.; Curran, W.J. Jr.; Brown, D.Q.; Hanks, G. )

    1991-04-01

    The histologic appearance, locoregional recurrence, and rate/site of metastases of spontaneous feline oral squamous cell carcinoma are similar to head and neck cancer in humans. A feasibility study of intratumoral Etanidazole, a hypoxic cell sensitizer, and radiation therapy were instituted in this model. Eleven cats with feline squamous cell carcinoma were treated with intratumoral Etanidazole and radiation therapy. Total Etanidazole doses were 1.5-24.0 gms/m2 (0.5-6.9 gms). The tumor partial response rate was 100% (11/11); the median volume regression was 70%. All cats have died as a result of tumor recurrence or tumor-related complications. Median survival was 116 days. Ten cats have been autopsied. Non-necrotic and necrotic tumor cells were identified at the treatment site in all cats. Pharmacokinetic studies were performed in six cats. Following intravenous infusion, the plasma elimination of the Etanidazole was biexponential. The systemic availability following intratumoral administration was 61.2 +/- 21.1%. Peak plasma Etanidazole levels were observed 14 minutes following intratumoral injection, after which elimination was biexponential. Thirty minutes following intratumoral Etanidazole administration, tumor Etanidazole levels were 62.8% of plasma levels. Feline squamous cell carcinoma appears to be a useful model of human head and neck cancer. Cats tolerate substantial doses of intratumoral and intravenous Etanidazole. Etanidazole and radiation therapy cause rapid regression, but not cure, of feline squamous cell carcinoma. There is a similarity between the intravenous kinetics of Etanidazole in humans and cats. Further studies in this model are planned.

  12. Combination of cyclophosphamide, rituximab, and intratumoral CpG oligodeoxynucleotide successfully eradicates established B cell lymphoma.

    PubMed

    Betting, David J; Hurvitz, Sara A; Steward, Kristopher K; Yamada, Reiko E; Kafi, Kamran; van Rooijen, Nico; Timmerman, John M

    2012-09-01

    Rituximab plus chemotherapy is standard therapy for patients with non-Hodgkin B cell lymphoma, but often complete response or cure is not achieved. Toll-like receptor 9 agonist CpG oligodeoxynucleotides (CpG) can improve antibody-dependent cellular cytotoxicity and adaptive antitumor immune responses. Using a syngeneic murine B cell lymphoma expressing human CD20 (38C13-huCD20), we previously demonstrated that rituximab plus intratumoral CpG, but not systemic CpG, could eradicate up to half of 7-day established 38C13-huCD20 tumors. However, larger 10-day established tumors could not be cured with this regimen. We thus hypothesized that cytoreduction with cyclophosphamide (Cy) before immunotherapy might permit eradication of these more advanced tumor burdens. Pretreatment with Cy resulted in tumor eradication from 83% of animals treated with rituximab/CpG, whereas Cy/CpG or Cy/rituximab treatments only cured 30% or 17%, respectively (P<0.005). Tumor eradication depended on natural killer cells, but not T cells, macrophages, or complement. Only mice treated with Cy/rituximab/CpG partially resisted rechallenge with tumor cells. Foxp3 Treg and CD11bGr1 myeloid suppressor cells persisted within lymphoid organs after therapy, possibly influencing the ability to establish adaptive tumor immunity. In conclusion, cytoreduction with Cy permitted the cure of large, established lymphomas not otherwise responsive to rituximab plus intratumoral CpG immunotherapy. PMID:22892450

  13. In vivo observing x-ray attenuation of intratumor injection of indocyanine green

    NASA Astrophysics Data System (ADS)

    Ye, Chang; Luo, Qingming; Liang, Wenxi; Lu, Jinling

    2003-12-01

    We report our experimental results of in vivo observing x-ray attenuation of intra-tumor injection of indocyanine green (ICG). An eight- to nine-week-old male BALB/c mouse weighting between 15 and 20 g is used in the experiments, which has been implanted with myeloma cell line (SP2/0) two week before. The system used to monitor the intratumor diffusion of ICG is a digital x-ray imaging system. It works at 33kVp, 0.3mAs, 4 seconds and 1.5×magnification. The objective of this research is to study the x-ray attenuation at different area, which represented by gray-scale value. Compare to the ROI in the tissue without ICG and ROI of black background in the image, there is an obvious change before and after injecting ICG in the tumor, which is the area ICG can diffuse to. It shows the feasibility of using digital x-ray imaging system to dynamically, effectively and noninterventionly monitor the diffusion of the ICG.

  14. Temporal and Seasonal Changes of Genetic Polymorphisms Associated with Altered Drug Susceptibility to Chloroquine, Lumefantrine, and Quinine in Guinea-Bissau between 2003 and 2012

    PubMed Central

    Kofoed, Poul-Erik; Rombo, Lars; Rodrigues, Amabelia; Ursing, Johan

    2014-01-01

    In 2008, artemether-lumefantrine was introduced in Guinea-Bissau, West Africa, but quinine has also been commonly prescribed for the treatment of uncomplicated Plasmodium falciparum malaria. An efficacious high-dose chloroquine treatment regimen was used previously. Temporal and seasonal changes of genetic polymorphisms associated with altered drug susceptibility to chloroquine, lumefantrine, and quinine have been described. P. falciparum chloroquine resistance transporter (pfcrt) K76T, pfmdr1 gene copy numbers, pfmdr1 polymorphisms N86Y and Y184F, and pfmdr1 sequences 1034 to 1246 were determined using PCR-based methods. Blood samples came from virtually all (n = 1,806) children <15 years of age who had uncomplicated P. falciparum monoinfection and presented at a health center in suburban Bissau (from 2003 to 2012). The pfcrt K76T and pfmdr1 N86Y frequencies were stable, and seasonal changes were not seen from 2003 to 2007. Since 2007, the mean annual frequencies increased (P < 0.001) for pfcrt 76T (24% to 57%), pfmdr1 N86 (72% to 83%), and pfcrt 76 + pfmdr1 86 TN (10% to 27%), and pfcrt 76T accumulated during the high transmission season (P = 0.001). The pfmdr1 86 + 184 NF frequency increased from 39% to 66% (from 2003 to 2011; P = 0.004). One sample had two pfmdr1 gene copies. pfcrt 76T was associated with a lower parasite density (P < 0.001). Following the discontinuation of an effective chloroquine regimen, probably highly artemether-lumefantrine-susceptible P. falciparum (with pfcrt 76T) accumulated, possibly due to suboptimal use of quinine and despite a fitness cost linked to pfcrt 76T. (The studies reported here were registered at ClinicalTrials.gov under registration no. NCT00137514 [PSB-2001-chl-amo], NCT00137566 [PSB-2004-paracetamol], NCT00426439 [PSB-2006-coartem], NCT01157689 [AL-eff 2010], and NCT01704508 [Eurartesim 2012].) PMID:25421474

  15. Repeated exposure to amphetamine during adolescence alters inhibitory tone in the medial prefrontal cortex following drug re-exposure in adulthood.

    PubMed

    Paul, Kush; Kang, Shuo; Cox, Charles L; Gulley, Joshua M

    2016-08-01

    Behavioral sensitization following repeated amphetamine (AMPH) exposure is associated with changes in GABA function in the medial prefrontal cortex (mPFC). In rats exposed to AMPH during adolescence compared to adulthood, there are unique patterns of sensitization that may reflect age-dependent differences in drug effects on prefrontal GABAergic function. In the current study, we used a sensitizing regimen of repeated AMPH exposure in adolescent and adult rats to determine if a post-withdrawal AMPH challenge would alter inhibitory transmission in the mPFC in a manner that depends on age of exposure. Male Sprague-Dawley rats were treated with saline or 3mg/kg AMPH (i.p.) during adolescence [postnatal day (P) 27-P45] or adulthood (P85- P103) and were sacrificed either at similar ages in adulthood (∼P133; experiment 1) or after similar withdrawal times (3-4 weeks; experiment 2). Spontaneous inhibitory postsynaptic currents (sIPSCs) were recorded in vitro from deep layer pyramidal cells in the mPFC using the whole-cell configuration. We found no effect of AMPH pre-exposure on baseline sIPSC frequency. Subsequent application of AMPH (25μM) produced a stable increase in sIPSC frequency in controls, suggesting that AMPH increases inhibitory tone in the mPFC. However, AMPH failed to increase sIPSCs in adolescent- or adult-exposed rats. In experiment 2, where withdrawal period was kept similar for both exposure groups, AMPH induced a suppression of sIPSC activity in adolescent-exposed rats. These results suggest that sensitizing treatment with AMPH during adolescence or adulthood dampens inhibitory influences on mPFC pyramidal cells, but potentially through different mechanisms. PMID:27085589

  16. Temporal and seasonal changes of genetic polymorphisms associated with altered drug susceptibility to chloroquine, lumefantrine, and quinine in Guinea-Bissau between 2003 and 2012.

    PubMed

    Jovel, Irina Tatiana; Kofoed, Poul-Erik; Rombo, Lars; Rodrigues, Amabelia; Ursing, Johan

    2015-02-01

    In 2008, artemether-lumefantrine was introduced in Guinea-Bissau, West Africa, but quinine has also been commonly prescribed for the treatment of uncomplicated Plasmodium falciparum malaria. An efficacious high-dose chloroquine treatment regimen was used previously. Temporal and seasonal changes of genetic polymorphisms associated with altered drug susceptibility to chloroquine, lumefantrine, and quinine have been described. P. falciparum chloroquine resistance transporter (pfcrt) K76T, pfmdr1 gene copy numbers, pfmdr1 polymorphisms N86Y and Y184F, and pfmdr1 sequences 1034 to 1246 were determined using PCR-based methods. Blood samples came from virtually all (n=1,806) children<15 years of age who had uncomplicated P. falciparum monoinfection and presented at a health center in suburban Bissau (from 2003 to 2012). The pfcrt K76T and pfmdr1 N86Y frequencies were stable, and seasonal changes were not seen from 2003 to 2007. Since 2007, the mean annual frequencies increased (P<0.001) for pfcrt 76T (24% to 57%), pfmdr1 N86 (72% to 83%), and pfcrt 76+pfmdr1 86 TN (10% to 27%), and pfcrt 76T accumulated during the high transmission season (P=0.001). The pfmdr1 86+184 NF frequency increased from 39% to 66% (from 2003 to 2011; P=0.004). One sample had two pfmdr1 gene copies. pfcrt 76T was associated with a lower parasite density (P<0.001). Following the discontinuation of an effective chloroquine regimen, probably highly artemether-lumefantrine-susceptible P. falciparum (with pfcrt 76T) accumulated, possibly due to suboptimal use of quinine and despite a fitness cost linked to pfcrt 76T. (The studies reported here were registered at ClinicalTrials.gov under registration no. NCT00137514 [PSB-2001-chl-amo], NCT00137566 [PSB-2004-paracetamol], NCT00426439 [PSB-2006-coartem], NCT01157689 [AL-eff 2010], and NCT01704508 [Eurartesim 2012].). PMID:25421474

  17. Sunitinib pretreatment improves tumor-infiltrating lymphocyte expansion by reduction in intratumoral content of myeloid-derived suppressor cells in human renal cell carcinoma.

    PubMed

    Guislain, Aurelie; Gadiot, Jules; Kaiser, Andrew; Jordanova, Ekaterina S; Broeks, Annegien; Sanders, Joyce; van Boven, Hester; de Gruijl, Tanja D; Haanen, John B A G; Bex, Axel; Blank, Christian U

    2015-10-01

    Targeted therapy with sunitinib, pazopanib or everolimus has improved treatment outcome for patients with metastatic renal cell carcinoma patients (RCC). However, despite considerable efforts in sequential or combined modalities, durable remissions are rare. Immunotherapy like cytokine therapy with interleukin-2, T cell checkpoint blockade or adoptive T cell therapies can achieve long-term benefit and even cure. This raises the question of whether combining targeted therapy with immunotherapy could also be an effective treatment option for RCC patients. Sunitinib, one of the most frequently administered therapeutics in RCC patients has been implicated in impairing T cell activation and proliferation in vitro. In this work, we addressed whether this notion holds true for expansion of tumor-infiltrating lymphocytes (TILs) in sunitinib-treated patients. We compared resected primary RCC tumor material of patients pretreated with sunitinib with resection specimen from sunitinib-naïve patients. We found improved TIL expansion from sunitinib-pretreated tumor digests. These TIL products contained more PD-1 expressing TIL, while the regulatory T cell infiltration was not altered. The improved TIL expansion was associated with reduced intratumoral myeloid-derived suppressor cell (MDSC) content. Depletion of MDSCs from sunitinib-naïve RCC tissue-digest improved TIL expansion, proving the functional relevance of the MDSC alteration by sunitinib. Our in vivo results do not support previous in vitro observations of sunitinib inhibiting T cell function, but do provide a possible rationale for the combination of sunitinib with immunotherapy. PMID:26105626

  18. Multistep, effective drug distribution within solid tumors

    PubMed Central

    Shemi, Amotz; Khvalevsky, Elina Zorde; Gabai, Rachel Malka; Domb, Abraham; Barenholz, Yechezkel

    2015-01-01

    The distribution of drugs within solid tumors presents a long-standing barrier for efficient cancer therapies. Tumors are highly resistant to diffusion, and the lack of blood and lymphatic flows suppresses convection. Prolonged, continuous intratumoral drug delivery from a miniature drug source offers an alternative to both systemic delivery and intratumoral injection. Presented here is a model of drug distribution from such a source, in a multistep process. At delivery onset the drug mainly affects the closest surroundings. Such ‘priming’ enables drug penetration to successive cell layers. Tumor ‘void volume’ (volume not occupied by cells) increases, facilitating lymphatic perfusion. The drug is then transported by hydraulic convection downstream along interstitial fluid pressure (IFP) gradients, away from the tumor core. After a week tumor cell death occurs throughout the entire tumor and IFP gradients are flattened. Then, the drug is transported mainly by ‘mixing’, powered by physiological bulk body movements. Steady state is achieved and the drug covers the entire tumor over several months. Supporting measurements are provided from the LODER™ system, releasing siRNA against mutated KRAS over months in pancreatic cancer in-vivo models. LODER™ was also successfully employed in a recent Phase 1/2 clinical trial with pancreatic cancer patients. PMID:26416413

  19. Intratumor Cellular Heterogeneity and Alterations in ras Oncogene and p53 Tumor Suppressor Gene in Human Prostate Carcinoma

    PubMed Central

    Konishi, Noboru; Hiasa, Yoshio; Matsuda, Hirofumi; Tao, Ming; Tsuzuki, Toshihide; Hayashi, Isao; Kitahori, Yoshiteru; Shiraishi, Taizo; Yatani, Ryuichi; Shimazaki, Jun; Lin, Jung-Chung

    1995-01-01

    To assess the potential role of ras oncogene activation and P53 tumor suppressor gene mutations in the development of human prostate carcinoma, nine cases of histologically heterogeneous prostate tumors obtained from total prostatectomies were probed for these specific events. Each tumor was divided into 5 to 10 areas according to different growth or histological patterns. Targeted DNA sequences coding for ras and p53 were amplified by the polymerase chain reaction, analyzed by single-strand conformational polymorphisms, and confirmed by direct DNA sequencing. Point mutations of the ras gene were found in three of the nine tumors. Two contained K-ras codon 13 and H-ras codon 61 mutations, found in only one and three areas of each lesion, respectively. The third tumor contained two different point mutations in K-ras codons 13 and 61 in different foci of the sample. Loss of heterozygosity at the polymorphic codon 72 in the p53 gene was detected in two of four informative cases (50%) showing fragment cleavage by restriction fragment length polymorphism analysis. Mutations in p53, missense transversions, single base insertions, and two base deletions were also detected in three tumors. The present results reveal mutated ras and p53 occasionally occurring in small foci of the tumor and that genetic mutations in p53, as opposed to those in ras, are more closely associated with invasive growth of heterogeneous prostate carcinoma. ImagesFigure 1Figure 2Figure 3Figure 4Figure 5 PMID:7573356

  20. Correlation of Intra-Tumor 18F-FDG Uptake Heterogeneity Indices with Perfusion CT Derived Parameters in Colorectal Cancer

    PubMed Central

    Tixier, Florent; Groves, Ashley M.; Goh, Vicky; Hatt, Mathieu; Ingrand, Pierre; Le Rest, Catherine Cheze; Visvikis, Dimitris

    2014-01-01

    Application of textural features analysis to 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography (PET) images has been used to characterize intra-tumor uptake heterogeneity and has been shown to reflect disease outcome. A current hypothesis is that 18F-FDG uptake heterogeneity may reflect the physiological tracer uptake related to tumor perfusion. The purpose of our study was to investigate the correlations between intra-tumor uptake heterogeneity and vascular parameters derived from dynamic contrast enhanced (DCE) computed tomography (CT) obtained from an integrated 18F-FDG PET/perfusion CT examination. Methods Thirty patients with proven colorectal cancer prospectively underwent integrated 18F-FDG PET/DCE-CT to assess the metabolic-flow phenotype. Both CT blood flow parametric maps and PET images were analyzed. Correlations between PET heterogeneity and perfusion CT were assessed by Spearman's rank correlation analysis. Results Blood flow visualization provided by DCE-CT images was significantly correlated with 18F-FDG PET metabolically active tumor volume as well as with uptake heterogeneity for patients with stage III/IV tumors (|ρ|:0.66 to 0.78; p-value<0.02). Conclusion The positive correlation found with tumor blood flow indicates that intra-tumor heterogeneity of 18F-FDG PET accumulation reflects to some extent tracer distribution and consequently indicates that 18F-FDG PET intra-tumor heterogeneity may be associated with physiological processes such as tumor vascularization. PMID:24926986

  1. Drug Interactions

    PubMed Central

    Tong Logan, Angela; Silverman, Andrew

    2012-01-01

    One of the most clinically significant complications related to the use of pharmacotherapy is the potential for drug-drug or drug-disease interactions. The gastrointestinal system plays a large role in the pharmacokinetic profile of most medications, and many medications utilized in gastroenterology have clinically significant drug interactions. This review will discuss the impact of alterations of intestinal pH, interactions mediated by phase I hepatic metabolism enzymes and P-glycoprotein, the impact of liver disease on drug metabolism, and interactions seen with commonly utilized gastrointestinal medications. PMID:22933873

  2. Gain-of-function mutations in the MEC-4 DEG/ENaC sensory mechanotransduction channel alter gating and drug blockade.

    PubMed

    Brown, Austin L; Fernandez-Illescas, Silvia M; Liao, Zhiwen; Goodman, Miriam B

    2007-02-01

    MEC-4 and MEC-10 are the pore-forming subunits of the sensory mechanotransduction complex that mediates touch sensation in Caenorhabditis elegans (O'Hagan, R., M. Chalfie, and M.B. Goodman. 2005. Nat. Neurosci. 8:43-50). They are members of a large family of ion channel proteins, collectively termed DEG/ENaCs, which are expressed in epithelial cells and neurons. In Xenopus oocytes, MEC-4 can assemble into homomeric channels and coassemble with MEC-10 into heteromeric channels (Goodman, M.B., G.G. Ernstrom, D.S. Chelur, R. O'Hagan, C.A. Yao, and M. Chalfie. 2002. Nature. 415:1039-1042). To gain insight into the structure-function principles that govern gating and drug block, we analyzed the effect of gain-of-function mutations using a combination of two-electrode voltage clamp, single-channel recording, and outside-out macropatches. We found that mutation of A713, the d or degeneration position, to residues larger than cysteine increased macroscopic current, open probability, and open times in homomeric channels, suggesting that bulky residues at this position stabilize open states. Wild-type MEC-10 partially suppressed the effect of such mutations on macroscopic current, suggesting that subunit-subunit interactions regulate open probability. Additional support for this idea is derived from an analysis of macroscopic currents carried by single-mutant and double-mutant heteromeric channels. We also examined blockade by the diuretic amiloride and two related compounds. We found that mutation of A713 to threonine, glycine, or aspartate decreased the affinity of homomeric channels for amiloride. Unlike the increase in open probability, this effect was not related to size of the amino acid side chain, indicating that mutation at this site alters antagonist binding by an independent mechanism. Finally, we present evidence that amiloride block is diffusion limited in DEG/ENaC channels, suggesting that variations in amiloride affinity result from variations in binding

  3. Intratumoral regulatory T cells alone or in combination with cytotoxic T cells predict prognosis of hepatocellular carcinoma after resection.

    PubMed

    Chen, Kang-jie; Zhou, Lin; Xie, Hai-yang; Ahmed, Taki-eldin; Feng, Xiao-wen; Zheng, Shu-sen

    2012-09-01

    Tumor-infiltrating lymphocytes (TILs) represent the host immune response to cancer. CD8(+) cytotoxic T cells (CTLs) have a central role in the elimination of tumors, while regulatory T cells (Tregs) can suppress the immune reaction. The aim of this study was to investigate the prognostic value of TILs, especially Tregs and CTLs, in hepatocellular carcinoma (HCC) patients after resection. CD3(+), CD4(+), CD8(+), and FoxP3(+) TILs were assessed by immunohistochemistry in tumor tissue from 141 randomly selected HCC patients. Prognostic effects of low- or high-density TIL subsets were evaluated by Kaplan-Meier and Cox regression analysis using the median values as cutoff. The density of intratumoral Tregs (P = 0.040) and peritumoral CTLs (P = 0.004) were an independent factor for overall survival (OS), but not for disease-free survival (DFS). The density of CD3(+) and CD4(+) TILs, and the prevalence of Tregs and CTLs were associated with neither OS nor DFS. The presence of low intratumoral Tregs with high intratumoral CTLs was a negative independent prognostic factor for OS (P = 0.001), while that of low intratumoral Tregs and low peritumoral CTLs independently correlated with improved DFS (P = 0.008). Moreover, the combined analysis of Tregs and CTLs displayed better prognostic performances than any of them alone. Additionally, higher density of intratumoral Tregs correlated with both the presence of liver cirrhosis (P = 0.025) and increased tumor size (P = 0.050). Tregs within tumor environment are promising prognostic parameters for HCC patients, and their combination with CTLs can predict prognosis more effectively. PMID:21678026

  4. Effects of intratumoral injection of I-125 iododeoxyuridine on Ehrlich ascites carcinoma

    SciTech Connect

    Hong, S.S.; Ford, E.H.; Alfieri, A.A.; Bravo, S. )

    1989-11-01

    Intratumoral injection of I-125 iododeoxyuridine (IUdR), saline solution, and oil suspension was investigated using Ehrlich ascites tumors in the thighs of mice. The oil suspension was more effective in tumor growth delay than was the saline solution. Single injection of the oil suspension at the dose of 12.5 microCi resulted in 21.5 days growth delay, whereas 50 microCi of the saline solution resulted in 11.5 days growth delay relative to control growth delay. At 40 days after treatment, higher radioactivities were observed in the tumor and the skin of the mice treated with the oil suspension, which represented the prolongation of I-125 IUdR oil suspension within the tumor. No normal tissue toxicities were observed.

  5. Locally disordered methylation forms the basis of intratumor methylome variation in chronic lymphocytic leukemia.

    PubMed

    Landau, Dan A; Clement, Kendell; Ziller, Michael J; Boyle, Patrick; Fan, Jean; Gu, Hongcang; Stevenson, Kristen; Sougnez, Carrie; Wang, Lili; Li, Shuqiang; Kotliar, Dylan; Zhang, Wandi; Ghandi, Mahmoud; Garraway, Levi; Fernandes, Stacey M; Livak, Kenneth J; Gabriel, Stacey; Gnirke, Andreas; Lander, Eric S; Brown, Jennifer R; Neuberg, Donna; Kharchenko, Peter V; Hacohen, Nir; Getz, Gad; Meissner, Alexander; Wu, Catherine J

    2014-12-01

    Intratumoral heterogeneity plays a critical role in tumor evolution. To define the contribution of DNA methylation to heterogeneity within tumors, we performed genome-scale bisulfite sequencing of 104 primary chronic lymphocytic leukemias (CLLs). Compared with 26 normal B cell samples, CLLs consistently displayed higher intrasample variability of DNA methylation patterns across the genome, which appears to arise from stochastically disordered methylation in malignant cells. Transcriptome analysis of bulk and single CLL cells revealed that methylation disorder was linked to low-level expression. Disordered methylation was further associated with adverse clinical outcome. We therefore propose that disordered methylation plays a similar role to that of genetic instability, enhancing the ability of cancer cells to search for superior evolutionary trajectories. PMID:25490447

  6. Management of Giant Facial Neurofibroma With Intratumoral Hematoma in Neurofibromatosis Type 1 Patient.

    PubMed

    Tak, Min Sung; Cho, Seong Eun; Kang, Sang Gue; Kim, Chul Han; Lee, Yong Seok

    2016-09-01

    Type-1 neurofibromatosis, a common autosomal dominant disease, is also known as von Recklinghausen disease. Surgical procedures to treat this condition are challenging because of the brittleness of the surrounding blood vessels and soft tissues that bring the risk of causing fatal bleeding. With improvements in neurovascular embolization procedures, some literatures have been published about the application of preoperative embolization for neurofibromatosis. This case report describes a 60-year-old female with Type-1 neurofibromatosis, who presented giant facial neurofibromas with intratumoral hemorrhage on both cheeks. This patient demonstrates that these huge and challenging lesions can be successfully treated with preoperative embolization and surgical treatment. We also discuss the timing of surgical treatment with such lesions. PMID:27603687

  7. Intra-tumor Heterogeneity in Localized Lung Adenocarcinomas Delineated by Multi-region Sequencing

    PubMed Central

    Zhang, Jianjun; Fujimoto, Junya; Zhang, Jianhua; Wedge, David C.; Song, Xingzhi; Zhang, Jiexin; Seth, Sahil; Chow, Chi-Wan; Cao, Yu; Gumbs, Curtis; Gold, Kathryn A.; Kalhor, Neda; Little, Latasha; Mahadeshwar, Harshad; Moran, Cesar; Protopopov, Alexei; Sun, Huandong; Tang, Jiabin; Wu, Xifeng; Ye, Yuanqing; William, William N.; Lee, Jack J.; Heymach, John V.; Hong, Waun Ki; Swisher, Stephen; Wistuba, Ignacio I.; Futreal, P. Andrew

    2015-01-01

    Cancers are composed of populations of cells with distinct molecular and phenotypic features, a phenomenon termed intra-tumor heterogeneity (ITH). ITH in lung cancers has not been well studied. We applied multi-region whole exome sequencing (WES) on 11 localized lung adenocarcinomas. All tumors showed clear evidence of ITH. On average, 76% of all mutations and 20/21 known cancer gene mutations were identified in all regions of individual tumors suggesting single-region sequencing may be adequate to identify the majority of known cancer gene mutations in localized lung adenocarcinomas. With a median follow-up of 21 months post-surgery, 3 patients have relapsed and all 3 patients had significantly larger fractions of subclonal mutations in their primary tumors than patients without relapse. These data indicate larger subclonal mutation fraction may be associated with increased likelihood of postsurgical relapse in patients with localized lung adenocarcinomas. PMID:25301631

  8. How to be good at being bad: centrosome amplification and mitotic propensity drive intratumoral heterogeneity

    PubMed Central

    Rida, Padmashree C. G.; Cantuaria, Guilherme; Reid, Michelle D.; Kucuk, Omer

    2016-01-01

    Cancer is truly an iconic disease—a tour de force whose multiple formidable strengths can be attributed to the bewildering heterogeneity that a tumor can manifest both spatially and temporally. A Darwinian evolutionary process is believed to undergird, at least in part, the generation of this heterogeneity that contributes to poor clinical outcomes. Risk assessment in clinical oncology is currently based on a small number of clinicopathologic factors (like stage, histological grade, receptor status, and serum tumor markers) and offers limited accuracy in predicting disease course as evidenced by the prognostic heterogeneity that persists in risk segments produced by present-day models. We posit that this insufficiency stems from the exclusion of key risk contributors from such models, especially the omission of certain factors implicated in generating intratumoral heterogeneity. The extent of centrosome amplification and the mitotic propensity inherent in a tumor are two such vital factors whose contributions to poor prognosis are presently overlooked in risk prognostication. Supernumerary centrosomes occur widely in tumors and are potent drivers of chromosomal instability that fosters intratumoral heterogeneity. The mitotic propensity of a proliferating population of tumor cells reflects the cell cycling kinetics of that population. Since frequent passage through improperly regulated mitotic divisions accelerates production of diverse genotypes, the mitotic propensity inherent in a tumor serves as a powerful beacon of risk. In this review, we highlight how centrosome amplification and error-prone mitoses contribute to poor clinical outcomes and urge the need to develop these cancer-specific traits as much-needed clinically-facile prognostic biomarkers with immense potential value for individualized cancer treatment in the clinic. PMID:26358854

  9. Lung tumor microenvironment induces specific gene expression signature in intratumoral NK cells.

    PubMed

    Gillard-Bocquet, Mélanie; Caer, Charles; Cagnard, Nicolas; Crozet, Lucile; Perez, Mikael; Fridman, Wolf Herman; Sautès-Fridman, Catherine; Cremer, Isabelle

    2013-01-01

    Natural killer (NK) cells are able to recognize and kill tumor cells, however whether they contribute to tumor immunosurveillance is still debated. Our previous studies demonstrated the presence of NK cells in human lung tumors. Their comparison with NK cells from non-tumoral lung tissues and with blood NK cells from the same individuals revealed a decreased expression of some NK receptors and impaired ex vivo cytotoxic functions occurring specifically in NK cells isolated from the tumor microenvironment. The aim of the present study was to characterize the transcriptional profile of such intratumoral NK cells, by comparative microarray analysis of sorted NK cells isolated from non-tumoral (Non-Tum-NK) and tumoral (Tum-NK) lung tissues of 12 Non-Small Cell Lung Cancer patients. Our results reveal a specific gene expression signature of Tum-NK cells particularly in activation processes and cytotoxicity, confirming that tumor environment induces modifications in NK cells biology. Indeed, intratumoral NK cells display higher expression levels of NKp44, NKG2A, Granzymes A and K, and Fas mRNA. A particular pattern of receptors involved in chemotaxis was also observed, with an overexpression of CXCR5 and CXCR6, and a lower expression of CX3CR1 and S1PR1 genes in Tum-NK as compared to Non-Tum-NK cells. The precise identification of the molecular pathways modulated in the tumor environment will help to decipher the role of NK cells in tumor immunosurveillance and will open future investigations to manipulate their antitumoral functions. PMID:23382731

  10. Neural Stem Cell-Mediated Intratumoral Delivery of Gold Nanorods Improves Photothermal Therapy

    PubMed Central

    2015-01-01

    Plasmonic photothermal therapy utilizes biologically inert gold nanorods (AuNRs) as tumor-localized antennas that convert light into heat capable of eliminating cancerous tissue. This approach has lower morbidity than surgical resection and can potentially synergize with other treatment modalities including chemotherapy and immunotherapy. Despite these advantages, it is still challenging to obtain heating of the entire tumor mass while avoiding unnecessary collateral damage to surrounding healthy tissue. It is therefore critical to identify innovative methods to distribute an effective concentration of AuNRs throughout tumors without depositing them in surrounding healthy tissue. Here we demonstrate that AuNR-loaded, tumor-tropic neural stem cells (NSCs) can be used to improve the intratumoral distribution of AuNRs. A simple UV–vis technique for measuring AuNR loading within NSCs was established. It was then confirmed that NSC viability is unimpaired following AuNR loading and that NSCs retain AuNRs long enough to migrate throughout tumors. We then demonstrate that intratumoral injections of AuNR-loaded NSCs are more efficacious than free AuNR injections, as evidenced by reduced recurrence rates of triple-negative breast cancer (MDA-MB-231) xenografts following NIR exposure. Finally, we demonstrate that the distribution of AuNRs throughout the tumors is improved when transported by NSCs, likely resulting in the improved efficacy of AuNR-loaded NSCs as compared to free AuNRs. These findings highlight the advantage of combining cellular therapies and nanotechnology to generate more effective cancer treatments. PMID:25375246

  11. Neural stem cell-mediated intratumoral delivery of gold nanorods improves photothermal therapy.

    PubMed

    Mooney, Rachael; Roma, Luella; Zhao, Donghong; Van Haute, Desiree; Garcia, Elizabeth; Kim, Seung U; Annala, Alexander J; Aboody, Karen S; Berlin, Jacob M

    2014-12-23

    Plasmonic photothermal therapy utilizes biologically inert gold nanorods (AuNRs) as tumor-localized antennas that convert light into heat capable of eliminating cancerous tissue. This approach has lower morbidity than surgical resection and can potentially synergize with other treatment modalities including chemotherapy and immunotherapy. Despite these advantages, it is still challenging to obtain heating of the entire tumor mass while avoiding unnecessary collateral damage to surrounding healthy tissue. It is therefore critical to identify innovative methods to distribute an effective concentration of AuNRs throughout tumors without depositing them in surrounding healthy tissue. Here we demonstrate that AuNR-loaded, tumor-tropic neural stem cells (NSCs) can be used to improve the intratumoral distribution of AuNRs. A simple UV-vis technique for measuring AuNR loading within NSCs was established. It was then confirmed that NSC viability is unimpaired following AuNR loading and that NSCs retain AuNRs long enough to migrate throughout tumors. We then demonstrate that intratumoral injections of AuNR-loaded NSCs are more efficacious than free AuNR injections, as evidenced by reduced recurrence rates of triple-negative breast cancer (MDA-MB-231) xenografts following NIR exposure. Finally, we demonstrate that the distribution of AuNRs throughout the tumors is improved when transported by NSCs, likely resulting in the improved efficacy of AuNR-loaded NSCs as compared to free AuNRs. These findings highlight the advantage of combining cellular therapies and nanotechnology to generate more effective cancer treatments. PMID:25375246

  12. Altered Strand Transfer Activity of a Multi-drug-resistant Human Immunodeficiency Virus Type 1 Reverse Transcriptase Mutant with a Dipeptide Fingers Domain Insertion

    PubMed Central

    Nguyen, Laura A.; Daddacha, Waaqo; Rigby, Sean; Bambara, Robert A.; Kim, Baek

    2013-01-01

    Prolonged highly active anti-retroviral therapy (HAART) with multiple nucleoside reverse transcriptase inhibitors (NRTI) for the treatment of human immunodeficiency virus type 1 (HIV-1) infected patients can induce the development of an HIV-1 RT harboring a dipeptide insertion at the RT fingers domain with a background thymidine analog mutation (TAM). This mutation renders viral resistance to multiple NRTIs. We investigated the effect of the dipeptide fingers domain insertion mutation on strand transfer activity using two clinical RT variants isolated during pre- and post-treatment of an infected patient, termed pre-drug RT without the dipeptide insertion and post-drug RT with the Ser-Gly insertion mutation, respectively. First, the post-drug RT displayed elevated strand transfer activity, compared to the pre-drug RT, with two different RNA templates. Second, the post-drug RT exhibited less RNA template degradation than the pre-drug RT, but higher polymerization-dependent RNase H activity. Third, the post-drug RT had a faster association rate for template binding (kon) and lower equilibrium binding constant KD to template, leading to the tighter template binding affinity than the pre-drug RT. The koff rates for pre-drug RT and post-drug RTs were similar. Finally, the removal of the dipeptide insertion from the post-drug RT abolished the elevated strand transfer activity and RNase H activity in addition to the loss of AZT resistance. These biochemical data suggests that the dipeptide insertion mutation elevates strand transfer activity by increasing the interaction of the RT with RNA donor template, promoting cleavage that generates more invasion site for the acceptor template during DNA synthesis. PMID:22100453

  13. Intra-tumor Genetic Heterogeneity and Mortality in Head and Neck Cancer: Analysis of Data from The Cancer Genome Atlas

    PubMed Central

    Mroz, Edmund A.; Tward, Aaron M.; Hammon, Rebecca J.; Ren, Yin; Rocco, James W.

    2015-01-01

    Background Although the involvement of intra-tumor genetic heterogeneity in tumor progression, treatment resistance, and metastasis is established, genetic heterogeneity is seldom examined in clinical trials or practice. Many studies of heterogeneity have had prespecified markers for tumor subpopulations, limiting their generalizability, or have involved massive efforts such as separate analysis of hundreds of individual cells, limiting their clinical use. We recently developed a general measure of intra-tumor genetic heterogeneity based on whole-exome sequencing (WES) of bulk tumor DNA, called mutant-allele tumor heterogeneity (MATH). Here, we examine data collected as part of a large, multi-institutional study to validate this measure and determine whether intra-tumor heterogeneity is itself related to mortality. Methods and Findings Clinical and WES data were obtained from The Cancer Genome Atlas in October 2013 for 305 patients with head and neck squamous cell carcinoma (HNSCC), from 14 institutions. Initial pathologic diagnoses were between 1992 and 2011 (median, 2008). Median time to death for 131 deceased patients was 14 mo; median follow-up of living patients was 22 mo. Tumor MATH values were calculated from WES results. Despite the multiple head and neck tumor subsites and the variety of treatments, we found in this retrospective analysis a substantial relation of high MATH values to decreased overall survival (Cox proportional hazards analysis: hazard ratio for high/low heterogeneity, 2.2; 95% CI 1.4 to 3.3). This relation of intra-tumor heterogeneity to survival was not due to intra-tumor heterogeneity’s associations with other clinical or molecular characteristics, including age, human papillomavirus status, tumor grade and TP53 mutation, and N classification. MATH improved prognostication over that provided by traditional clinical and molecular characteristics, maintained a significant relation to survival in multivariate analyses, and distinguished

  14. Characterization of a new degradation product of nifedipine formed on catalysis by atenolol: A typical case of alteration of degradation pathway of one drug by another.

    PubMed

    Handa, Tarun; Singh, Saranjit; Singh, Inder Pal

    2014-02-01

    An increasing interest is being shown throughout the world on the use of fixed-dose combinations of drugs in the therapy of select diseases, like cardiovascular diseases, due to their multiple advantages. Though the main criterion for combining drugs in a single dosage form is the rationale, but consideration like stability of formulation is equally important, due to an added aspect of drug-drug interaction. The objective of this study was to evaluate interaction among the drugs in an antihypertensive combination of nifedipine and atenolol. Nifedipine is a known light sensitive drug, which degrades via intra-molecular mechanisms to nitro- and nitroso-pyridine analogs, along with a few minor secondary products that are formed through inter-molecular interactions amongst primary degradation products and their intermediates. Atenolol is reasonably stable weakly basic drug that is mainly hydrolyzed at acetamide terminal amide moiety to its corresponding carboxylic acid. To the best of our knowledge, there is no known information on chemical compatibility among the two drugs. The present study involved subjecting of nifedipine, atenolol and their combination to a variety of accelerated and stress conditions. HPLC studies revealed formation of a new product in the mixture of two drugs (∼2%), which was also generated from nifedipine alone, but at trace levels (<0.1%). The product was isolated by preparative chromatography and subjected to indepth studies for its characterization. Ultra-violet, FT-IR, mass spectrometric and nuclear magnetic resonance spectroscopic studies highlighted that the principal photo-degradation pathway of nifedipine was modified and diverted in the presence of atenolol. To verify the same, a study was conducted employing two other β-blockers with similar structures to atenolol, and the same product was formed in relatively higher quantity therein also. The new product is postulated to be produced as a result of rearrangement of hydroxylamine

  15. The intratumoral administration of ferucarbotran conjugated with doxorubicin improved therapeutic effect by magnetic hyperthermia combined with pharmacotherapy in a hepatocellular carcinoma model

    PubMed Central

    2014-01-01

    Background Local hyperthermia of tumor in conjunction with chemotherapy is a promising strategy for cancer treatment. The aim of this study was to evaluate the efficacy of intratumoral delivery of clinically approved magnetic nanoparticles (MNPs) conjugated with doxorubicin to simultaneously induce magnetic hyperthermia and drug delivery in a hepatocellular carcinoma (HCC) model. Materials and methods HCC cells expressing luciferase were implanted into the flank of BALB/c-nu mice (n = 19). When the tumor diameter reached 7–8 mm, the animals were divided into four groups according to the injected agents: group A (normal saline, n = 4), group B (doxorubicin, n = 5), group C (MNP, n = 5), and group D (MNP/doxorubicin complex, n = 5). Animals were exposed to an alternating magnetic field (AMF) to receive magnetic hyperthermia, and intratumoral temperature changes were measured. Bioluminescence imagings (BLIs) were performed before treatment and at 3, 7, and 14 days after treatment to measure the tumoral activities. The relative signal intensity (RSI) of each tumor was calculated by dividing the BLI signal at each time point by the value measured before treatment. At day 14 post-treatment, all tumor tissues were harvested to assess the apoptosis rates by pathological examination. Results The rise in temperature of the tumors was 1.88 ± 0.21°C in group A, 0.96 ± 1.05°C in B, 7.93 ± 1.99°C in C, and 8.95 ± 1.31°C in D. The RSI of the tumors at day 14 post-treatment was significantly lower in group D (0.31 ± 0.20) than in group A (2.23 ± 1.14), B (0.94 ± 0.47), and C (1.02 ± 0.21). The apoptosis rates of the tumors were 11.52 ± 3.10% in group A, 23.0 ± 7.68% in B, 25.4 ± 3.36% in C, and 39.0 ± 13.2% in D, respectively. Conclusions The intratumoral injection of ferucarbotran conjugated with doxorubicin shows an improved therapeutic effect compared with doxorubicin or ferucarbotran alone

  16. The prognostic advantage of preoperative intratumoral injection of OK-432 for gastric cancer patients

    PubMed Central

    Gochi, A; Orita, K; Fuchimoto, S; Tanaka, N; Ogawa, N

    2001-01-01

    To investigate, by a multi-institutional randomized trial, the prognostic significance of the augmentation of tumour-infiltrating lymphocytes (TILs) by preoperative intratumoral injection of OK-432 (OK-432 it), a bacterial biological response modifier, in patients with gastric cancer. The 10-year survival and disease-free survival were examined and analysis of the factors showing survival benefit was performed. 370 patients who had undergone curative resection of gastric cancer were enrolled in this study and followed up for 10 years postoperatively. Patients were randomized into either an OK-432 it group or a control group. Ten Klinishe Einheit (KE) of OK-432 was endoscopically injected at 1 to 2 weeks before the operation in the OK-432 it group. Both groups received the same adjuvant chemoimmunotherapy consisting of a bolus injection of mitomycin C (0.4 mg kg−1i.v.) and administration of tegafur and OK-432 from postoperative day 14 up to 1 year later. Tegafur (600 mg day−1) was given orally and OK-432 (5 KE/2 weeks) was injected intradermally for a maintenance therapy. The TILs grades in resected tumour specimens and presence of metastasis and metastatic pattern in dissected lymph nodes were examined. Multivariate analysis was performed to determine the efficacy of OK-432 it on prognostic factors. All patients were followed up for 10 years. The overall 5- and 10-year survival rates and disease-free survival rates of the OK-432 it group were not significantly higher than those of the control group. However, OK-432 it significantly increased the 5- and 10-year survival rates of patients with stage IIIA + IIIB, moderate lymph node metastasis (pN2), and positive TILs. OK-432 it was most effective at prolonging the survival of patients who had both positive TILs and lymph node metastasis. The OK-432 it group with positive TILs showed a significant decrease in metastatic lymph node frequency and in the number of lymph node micro- metastatic foci when compared to

  17. Photoacoustic spectroscopic imaging of intra-tumor heterogeneity and molecular identification

    NASA Astrophysics Data System (ADS)

    Stantz, Keith M.; Liu, Bo; Cao, Minsong; Reinecke, Dan; Miller, Kathy; Kruger, Robert

    2006-02-01

    Purpose. To evaluate photoacoustic spectroscopy as a potential imaging modality capable of measuring intra-tumor heterogeneity and spectral features associated with hemoglobin and the molecular probe indocyanine green (ICG). Material and Methods. Immune deficient mice were injected with wildtype and VEGF enhanced MCF-7 breast cancer cells or SKOV3x ovarian cancer cells, which were allowed to grow to a size of 6-12 mm in diameter. Two mice were imaged alive and after euthanasia for (oxy/deoxy)-hemoglobin content. A 0.4 mL volume of 1 μg/mL concentration of ICG was injected into the tail veins of two mice prior to imaging using the photoacoustic computed tomography (PCT) spectrometer (Optosonics, Inc., Indianapolis, IN 46202) scanner. Mouse images were acquired for wavelengths spanning 700-920 nm, after which the major organs were excised, and similarly imaged. A histological study was performed by sectioning the organ and optically imaging the fluorescence distribution. Results. Calibration of PCT-spectroscopy with different samples of oxygenated blood reproduced a hemoglobin dissociation curve consistent with empirical formula with an average error of 5.6%. In vivo PCT determination of SaO II levels within the tumor vascular was measurably tracked, and spatially correlated to the periphery of the tumor. Statistical and systematic errors associated with hypoxia were estimated to be 10 and 13%, respectively. Measured ICG concentrations determined by contrast-differential PCT images in excised organs (tumor, liver) were approximately 0.8 μg/mL, consistent with fluorescent histological results. Also, the difference in the ratio of ICG concentration in the gall bladder-to-vasculature between the mice was consistent with excretion times between the two mice. Conclusion. PCT spectroscopic imaging has shown to be a noninvasive modality capable of imaging intra-tumor heterogeneity of (oxy/deoxy)-hemoglobin and ICG in vivo, with an estimated error in SaO II at 17% and in

  18. Phase 1 Study of Intratumoral Pexa-Vec (JX-594), an Oncolytic and Immunotherapeutic Vaccinia Virus, in Pediatric Cancer Patients

    PubMed Central

    Cripe, Timothy P; Ngo, Minhtran C; Geller, James I; Louis, Chrystal U; Currier, Mark A; Racadio, John M; Towbin, Alexander J; Rooney, Cliona M; Pelusio, Adina; Moon, Anne; Hwang, Tae-Ho; Burke, James M; Bell, John C; Kirn, David H; Breitbach, Caroline J

    2015-01-01

    Pexa-Vec (pexastimogene devacirepvec, JX-594) is an oncolytic and immunotherapeutic vaccinia virus designed to destroy cancer cells through viral lysis and induction of granulocyte-macrophage colony-stimulating factor (GM-CSF)-driven tumor-specific immunity. Pexa-Vec has undergone phase 1 and 2 testing alone and in combination with other therapies in adult patients, via both intratumoral and intravenous administration routes. We sought to determine the safety of intratumoral administration in pediatric patients. In a dose-escalation study using either 106 or 107 plaque-forming units per kilogram, we performed one-time injections in up to three tumor sites in five pediatric patients and two injections in one patient. Ages at study entry ranged from 4 to 21 years, and their cancer diagnoses included neuroblastoma, hepatocellular carcinoma, and Ewing sarcoma. All toxicities were ≤ grade 3. The most common side effects were sinus fever and sinus tachycardia. All three patients at the higher dose developed asymptomatic grade 1 treatment-related skin pustules that resolved within 3–4 weeks. One patient showed imaging evidence suggestive of antitumor biological activity. The two patients tested for cellular immunoreactivity to vaccinia antigens showed strong responses. Overall, our study suggests Pexa-Vec is safe to administer to pediatric patients by intratumoral administration and could be studied further in this patient population. PMID:25531693

  19. Intratumoral concentration of estrogens and clinicopathological changes in ductal carcinoma in situ following aromatase inhibitor letrozole treatment

    PubMed Central

    Takagi, K; Ishida, T; Miki, Y; Hirakawa, H; Kakugawa, Y; Amano, G; Ebata, A; Mori, N; Nakamura, Y; Watanabe, M; Amari, M; Ohuchi, N; Sasano, H; Suzuki, T

    2013-01-01

    Background: Estrogens have important roles in ductal carcinoma in situ (DCIS) of the breast. However, the significance of presurgical aromatase inhibitor treatment remains unclear. Therefore, we examined intratumoral concentration of estrogens and changes of clinicopathological factors in DCIS after letrozole treatment. Methods: Ten cases of postmenopausal oestrogen receptor (ER)-positive DCIS were examined. They received oral letrozole before the surgery, and the tumour size was evaluated by ultrasonography. Surgical specimens and corresponding biopsy samples were used for immunohistochemistry. Snap-frozen specimens were also available in a subset of cases, and used for hormone assays and microarray analysis. Results: Intratumoral oestrogen levels were significantly lower in DCIS treated with letrozole compared with that in those without the therapy. A great majority of oestrogen-induced genes showed low expression levels in DCIS treated with letrozole by microarray analysis. Moreover, letrozole treatment reduced the greatest dimension of DCIS, and significantly decreased Ki-67 and progesterone receptor immunoreactivity in DCIS tissues. Conclusion: These results suggest that estrogens are mainly produced by aromatase in DCIS tissues, and aromatase inhibitors potently inhibit oestrogen actions in postmenopausal ER-positive DCIS through rapid deprivation of intratumoral estrogens. PMID:23756858

  20. Direct intra-tumoral injection of zinc-acetate halts tumor growth in a xenograft model of prostate cancer.

    PubMed

    Shah, Maulik R; Kriedt, Christopher L; Lents, Nathan H; Hoyer, Mary K; Jamaluddin, Nimah; Klein, Claudette; Baldassare, Joseph

    2009-01-01

    Intracellular levels of zinc have shown a strong inverse correlation to growth and malignancy of prostate cancer. To date, studies of zinc supplementation in prostate cancer have been equivocal and have not accounted for bioavailability of zinc. Therefore, we hypothesized that direct intra-tumoral injection of zinc could impact prostate cancer growth. In this study, we evaluated the cytotoxic properties of the pH neutral salt zinc acetate on the prostate cancer cell lines PC3, DU145 and LNCaP. Zinc acetate killed prostate cancer cell lines in vitro, independent of androgen sensitivity, in a dose-dependent manner in a range between 200 and 600 microM. Cell death occurred rapidly with 50% cell death by six hours and maximal cell death by 18 hours. We next established a xenograft model of prostate cancer and tested an experimental treatment protocol of direct intra-tumoral injection of zinc acetate. We found that zinc treatments halted the growth of the prostate cancer tumors and substantially extended the survival of the animals, whilst causing no detectable cytoxicity to other tissues. Thus, our studies form a solid proof-of-concept that direct intra-tumoral injection of zinc acetate could be a safe and effective treatment strategy for prostate cancer. PMID:19534805

  1. Intra-Tumor Genetic Heterogeneity in Wilms Tumor: Clonal Evolution and Clinical Implications.

    PubMed

    Cresswell, George D; Apps, John R; Chagtai, Tasnim; Mifsud, Borbala; Bentley, Christopher C; Maschietto, Mariana; Popov, Sergey D; Weeks, Mark E; Olsen, Øystein E; Sebire, Neil J; Pritchard-Jones, Kathy; Luscombe, Nicholas M; Williams, Richard D; Mifsud, William

    2016-07-01

    The evolution of pediatric solid tumors is poorly understood. There is conflicting evidence of intra-tumor genetic homogeneity vs. heterogeneity (ITGH) in a small number of studies in pediatric solid tumors. A number of copy number aberrations (CNA) are proposed as prognostic biomarkers to stratify patients, for example 1q+ in Wilms tumor (WT); current clinical trials use only one sample per tumor to profile this genetic biomarker. We multisampled 20 WT cases and assessed genome-wide allele-specific CNA and loss of heterozygosity, and inferred tumor evolution, using Illumina CytoSNP12v2.1 arrays, a custom analysis pipeline, and the MEDICC algorithm. We found remarkable diversity of ITGH and evolutionary trajectories in WT. 1q+ is heterogeneous in the majority of tumors with this change, with variable evolutionary timing. We estimate that at least three samples per tumor are needed to detect >95% of cases with 1q+. In contrast, somatic 11p15 LOH is uniformly an early event in WT development. We find evidence of two separate tumor origins in unilateral disease with divergent histology, and in bilateral WT. We also show subclonal changes related to differential response to chemotherapy. Rational trial design to include biomarkers in risk stratification requires tumor multisampling and reliable delineation of ITGH and tumor evolution. PMID:27333041

  2. IL-12 Delivered Intratumorally by Multilamellar Liposomes Reactivates Memory T Cells in Human Tumor Microenvironments

    PubMed Central

    Simpson-Abelson, Michelle R.; Purohit, Vivek S.; Pang, Wing Man; Iyer, Vandana; Odunsi, Kunle; Demmy, Todd L; Yokota, Sandra J.; Loyall, Jenni L.; Kelleher, Raymond J.; Balu-Iyer, Sathy; Bankert, Richard B.

    2009-01-01

    Using a novel loading technique, IL-12 is reported here to be efficiently encapsulated within large multilamellar liposomes. The preclinical efficacy of the cytokine loaded liposomes to deliver IL-12 into human tumors and to reactive tumor-associated T cells in situ is tested using a human tumor xenograft model. IL-12 is released in vivo from these liposomes in a biologically active form when injected into tumor xenografts that are established by the subcutaneous implantation of non-disrupted pieces of human lung, breast or ovarian tumors into immunodeficient mice. The histological architecture of the original tumor tissue, including tumor-associated leukocytes, tumor cells and stromal cells is preserved anatomically and the cells remain functionally responsive to cytokines in these xenografts. The local and sustained release of IL-12 into the tumor microenvironment reactivates tumor-associated quiescent effector memory T cells to proliferate, produce and release IFN-γ resulting in the killing of tumor cells in situ. Very little IL-12 is detected in the serum of mice for up to 5 days after an intratumoral injection of the IL-12 liposomes. We conclude that IL-12 loaded large multilamellar liposomes provide a safe method for the local and sustained delivery of IL-12 to tumors and a therapeutically effective way of reactivating existing tumor-associated T cells in human solid tumor microenvironments. The potential of this local in situ T cell re-stimulation to induce a systemic anti-tumor immunity is discussed. PMID:19395317

  3. Formulation of a charcoal suspension for intratumoral injection. Study of galenical excipients.

    PubMed

    Bonhomme-Faivre, L; Mathieu, M C; Depraetere, P; Grossiord, J L; Orbach-Arbouys, S; Puisieux, F; Seiller, M

    1999-02-01

    To tattoo human breast cancer prior to chemotherapy, radiotherapy, or surgery, thus allowing a better localization of the remaining tumor by the surgeon, we developed a formulation containing 10% charcoal suspended in water for parenteral preparations. The present study concerns a new step in the development of the charcoal suspension. We sought to determine whether the addition of various excipients could improve the formulation properties and affect the labeling of tumor by the suspension. We have tested surfactants (egg lecithin, polysorbate 80, Cremophor EL, and Pluronic F68), isotonisants (sugars such as glucose and mannitol), polysaccharides (dextrans 20 and 40), and Cabosil, a pyrogenated silica. Except for glucose and mannitol, which were added at a 5% concentration, the other excipients were added at a 0.1% concentration, they were dissolved in water for parenteral injection and sterilized at 120 degrees C for 20 min. We then measured diffusion in vivo in mammary tumor. In vivo, when injected intratumorally in mice, a greater diffusion of charcoal particles was noted within the tumor (in the case of egg lecithin, polysorbate 80, dextran 20 and 40, and glucose) and sometimes in some organs (e.g., Cremophor EL and mannitol). Pluronic F68 slightly improved the stability of the suspension and did not lead to marked diffusion at the injection site, but it showed slight toxicity and cannot be used in the formulation. We concluded that the best formulation was an aqueous 10% micronized peat charcoal suspension. PMID:10065351

  4. Intratumoral IL-12 combined with CTLA-4 blockade elicits T cell–mediated glioma rejection

    PubMed Central

    vom Berg, Johannes; Vrohlings, Melissa; Haller, Sergio; Haimovici, Aladin; Kulig, Paulina; Sledzinska, Anna; Weller, Michael

    2013-01-01

    Glioblastomas (GBs) are the most aggressive form of primary brain cancer and virtually incurable. Accumulation of regulatory T (T reg) cells in GBs is thought to contribute to the dampening of antitumor immunity. Using a syngeneic mouse model for GB, we tested whether local delivery of cytokines could render the immunosuppressive GB microenvironment conducive to an antitumor immune response. IL-12 but not IL-23 reversed GB-induced immunosuppression and led to tumor clearance. In contrast to models of skin or lung cancer, IL-12–mediated glioma rejection was T cell dependent and elicited potent immunological memory. To translate these findings into a clinically relevant setting, we allowed for GB progression before initiating therapy. Combined intratumoral IL-12 application with systemic blockade of the co-inhibitory receptor CTLA-4 on T cells led to tumor eradication even at advanced disease stages where monotherapy with either IL-12 or CTLA-4 blockade failed. The combination of IL-12 and CTLA-4 blockade acts predominantly on CD4+ cells, causing a drastic decrease in FoxP3+ T reg cells and an increase in effector T (T eff) cells. Our data provide compelling preclinical findings warranting swift translation into clinical trials in GB and represent a promising approach to increase response rates of CTLA-4 blockade in solid tumors. PMID:24277150

  5. Intratumoral neutrophil granulocytes contribute to epithelial-mesenchymal transition in lung adenocarcinoma cells.

    PubMed

    Hu, Pingping; Shen, Meixiao; Zhang, Ping; Zheng, Chunlong; Pang, Zhaofei; Zhu, Linhai; Du, Jiajun

    2015-09-01

    We previously demonstrated that haemoptysis as a prognostic factor in lung adenocarcinoma and haemoptysis was associated with severe vascular invasion and high circulating white blood cell count. Epithelial-mesenchymal transition (EMT) plays an important role in tumor invasion. We hypothesized there was some relationship between tumor-associated inflammatory cells, tumor invasion, EMT, and haemoptysis. Immunohistochemistry (IHC) was used to detect CD66b and E-cadherin expression in tumor tissue. By co-culture tumor cells with polymorphonuclear neutrophils (PMNs), the expressions of EMT markers were assessed by western blotting. TGF-β1 concentrations in the supernatant and the migration activities of tumor cells were performed by ELISA and migration assays. Intratumoral CD66b(+) PMN expression was negatively associated with E-cadherin expression. Haemoptysis was significantly associated with neutrophil infiltration (OR = 4.25, 95 % CI 1.246-14.502). Neutrophils promoted EMT of tumor cells in vitro and enhanced the migration activity of tumor cells. In addition, TGF-β1 was up-regulated and Smad4 translocated into nucleus, indicating that TGF-β/Smad signaling pathway was initiated during the process. We indicated that lung adenocarcinoma with haemoptysis was associated with more PMN infiltration and PMNs promoted EMT, partly via TGF-β/Smad signal pathway. This may provide mechanistic reasons for why haemoptysis was associated with poor outcome in lung adenocarcinoma. PMID:25944163

  6. Initial assessment of a model relating intratumoral genetic heterogeneity to radiological morphology

    PubMed Central

    Noterdaeme, O; Kelly, M; Friend, P; Soonowalla, Z; Steers, G; Brady, M

    2010-01-01

    Tumour heterogeneity has major implications for tumour development and response to therapy. Tumour heterogeneity results from mutations in the genes responsible for mismatch repair or maintenance of chromosomal stability. Cells with different genetic properties may grow at different rates and exhibit different resistance to therapeutic interventions. To date, there exists no approach to non-invasively assess tumour heterogeneity. Here we present a biologically inspired model of tumour growth, which relates intratumoral genetic heterogeneity to gross morphology visible on radiological images. The model represents the development of a tumour as a set of expanding spheres, each sphere representing a distinct clonal centre, with the sprouting of new spheres corresponding to new clonal centres. Each clonal centre may possess different characteristics relating to genetic composition, growth rate and response to treatment. We present a clinical example for which the model accurately tracks tumour growth and shows the correspondence to genetic variation (as determined by array comparative genomic hybridisation). One clinical implication of our work is that the assessment of heterogeneous tumours using Response Evaluation Criteria In Solid Tumours (RECIST) or volume measurements may not accurately reflect tumour growth, stability or the response to treatment. We believe that this is the first model linking the macro-scale appearance of tumours to their genetic composition. We anticipate that our model will provide a more informative way to assess the response of heterogeneous tumours to treatment, which is of increasing importance with the development of novel targeted anti-cancer treatments. PMID:19690073

  7. VEGF Blockade Enables Oncolytic Cancer Virotherapy in Part by Modulating Intratumoral Myeloid Cells

    PubMed Central

    Currier, Mark A; Eshun, Francis K; Sholl, Allyson; Chernoguz, Artur; Crawford, Kelly; Divanovic, Senad; Boon, Louis; Goins, William F; Frischer, Jason S; Collins, Margaret H; Leddon, Jennifer L; Baird, William H; Haseley, Amy; Streby, Keri A; Wang, Pin-Yi; Hendrickson, Brett W; Brekken, Rolf A; Kaur, Balveen; Hildeman, David; Cripe, Timothy P

    2013-01-01

    Understanding the host response to oncolytic viruses is important to maximize their antitumor efficacy. Despite robust cytotoxicity and high virus production of an oncolytic herpes simplex virus (oHSV) in cultured human sarcoma cells, intratumoral (ITu) virus injection resulted in only mild antitumor effects in some xenograft models, prompting us to characterize the host inflammatory response. Virotherapy induced an acute neutrophilic infiltrate, a relative decrease of ITu macrophages, and a myeloid cell-dependent upregulation of host-derived vascular endothelial growth factor (VEGF). Anti-VEGF antibodies, bevacizumab and r84, the latter of which binds VEGF and selectively inhibits binding to VEGF receptor-2 (VEGFR2) but not VEGFR1, enhanced the antitumor effects of virotherapy, in part due to decreased angiogenesis but not increased virus production. Neither antibody affected neutrophilic infiltration but both partially mitigated virus-induced depletion of macrophages. Enhancement of virotherapy-mediated antitumor effects by anti-VEGF antibodies could largely be recapitulated by systemic depletion of CD11b+ cells. These data suggest the combined effect of oHSV virotherapy and anti-VEGF antibodies is in part due to modulation of a host inflammatory reaction to virus. Our data provide strong preclinical support for combined oHSV and anti-VEGF antibody therapy and suggest that understanding and counteracting the innate host response may help enable the full antitumor potential of oncolytic virotherapy. PMID:23481323

  8. Quantitative Computed Tomographic Descriptors Associate Tumor Shape Complexity and Intratumor Heterogeneity with Prognosis in Lung Adenocarcinoma

    PubMed Central

    Grove, Olya; Berglund, Anders E.; Schabath, Matthew B.; Aerts, Hugo J. W. L.; Dekker, Andre; Wang, Hua; Velazquez, Emmanuel Rios; Lambin, Philippe; Gu, Yuhua; Balagurunathan, Yoganand; Eikman, Edward; Gatenby, Robert A.; Eschrich, Steven; Gillies, Robert J.

    2015-01-01

    Two CT features were developed to quantitatively describe lung adenocarcinomas by scoring tumor shape complexity (feature 1: convexity) and intratumor density variation (feature 2: entropy ratio) in routinely obtained diagnostic CT scans. The developed quantitative features were analyzed in two independent cohorts (cohort 1: n = 61; cohort 2: n = 47) of patients diagnosed with primary lung adenocarcinoma, retrospectively curated to include imaging and clinical data. Preoperative chest CTs were segmented semi-automatically. Segmented tumor regions were further subdivided into core and boundary sub-regions, to quantify intensity variations across the tumor. Reproducibility of the features was evaluated in an independent test-retest dataset of 32 patients. The proposed metrics showed high degree of reproducibility in a repeated experiment (concordance, CCC≥0.897; dynamic range, DR≥0.92). Association with overall survival was evaluated by Cox proportional hazard regression, Kaplan-Meier survival curves, and the log-rank test. Both features were associated with overall survival (convexity: p = 0.008; entropy ratio: p = 0.04) in Cohort 1 but not in Cohort 2 (convexity: p = 0.7; entropy ratio: p = 0.8). In both cohorts, these features were found to be descriptive and demonstrated the link between imaging characteristics and patient survival in lung adenocarcinoma. PMID:25739030

  9. In Vitro Resistance Selections for Plasmodium falciparum Dihydroorotate Dehydrogenase Inhibitors Give Mutants with Multiple Point Mutations in the Drug-binding Site and Altered Growth*

    PubMed Central

    Ross, Leila S.; Gamo, Francisco Javier; Lafuente-Monasterio, Maria José; Singh, Onkar M. P.; Rowland, Paul; Wiegand, Roger C.; Wirth, Dyann F.

    2014-01-01

    Malaria is a preventable and treatable disease; yet half of the world's population lives at risk of infection, and an estimated 660,000 people die of malaria-related causes every year. Rising drug resistance threatens to make malaria untreatable, necessitating both the discovery of new antimalarial agents and the development of strategies to identify and suppress the emergence and spread of drug resistance. We focused on in-development dihydroorotate dehydrogenase (DHODH) inhibitors. Characterizing resistance pathways for antimalarial agents not yet in clinical use will increase our understanding of the potential for resistance. We identified resistance mechanisms of Plasmodium falciparum (Pf) DHODH inhibitors via in vitro resistance selections. We found 11 point mutations in the PfDHODH target. Target gene amplification and unknown mechanisms also contributed to resistance, albeit to a lesser extent. These mutant parasites were often hypersensitive to other PfDHODH inhibitors, which immediately suggested a novel combination therapy approach to preventing resistance. Indeed, a combination of wild-type and mutant-type selective inhibitors led to resistance far less often than either drug alone. The effects of point mutations in PfDHODH were corroborated with purified recombinant wild-type and mutant-type PfDHODH proteins, which showed the same trends in drug response as the cognate cell lines. Comparative growth assays demonstrated that two mutant parasites grew less robustly than their wild-type parent, and the purified protein of those mutants showed a decrease in catalytic efficiency, thereby suggesting a reason for the diminished growth rate. Co-crystallography of PfDHODH with three inhibitors suggested that hydrophobic interactions are important for drug binding and selectivity. PMID:24782313

  10. [Ilicit drugs frequently used by drug addicts].

    PubMed

    Cirriez, J P

    2015-03-01

    Drugs stimulate the brain causing mental and physical effects. The effects of drugs can be stimulating, narcotic or mind-altering. This article briefly discusses some commonly used illicit drugs, namely heroin, cocaine, cannabis, ecstasy, amphetamines, LSD, psilocybin mushrooms and poppers. PMID:26571792

  11. Anti-epileptic drugs and bone loss: Phenytoin reduces pro-collagen I and alters the electrophoretic mobility of osteonectin in cultured bone cells.

    PubMed

    Wilson, Emma L; Garton, Mark; Fuller, Heidi R

    2016-05-01

    Phenytoin is an antiepileptic drug used in the management of partial and tonic-clonic seizures. In previous studies we have shown that valproate, another antiepileptic drug, reduced the amount of two key bone proteins, pro-collagen I and osteonectin (SPARC, BM-40), in both skin fibroblasts and cultured osteoblast-like cells. Here we show that phenytoin also reduces pro-collagen I production in osteoblast-like cells, but does not appear to cause a decrease in osteonectin message or protein production. Instead, a 24h exposure to a clinically relevant concentration of phenytoin resulted in a dose-dependent change in electrophoretic mobility of osteonectin, which was suggestive of a change in post-translational modification status. The perturbation of these important bone proteins could be one of the mechanisms to explain the bone loss that has been reported following long-term treatment with phenytoin. PMID:26999801

  12. Knockout of P-glycoprotein does not alter antiepileptic drug efficacy in the intrahippocampal kainate model of mesial temporal lobe epilepsy in mice.

    PubMed

    Bankstahl, Marion; Klein, Sabine; Römermann, Kerstin; Löscher, Wolfgang

    2016-10-01

    Pharmacoresistance to antiepileptic drugs (AEDs) is a major challenge in epilepsy therapy, affecting at least 30% of patients. Thus, there is considerable interest in the mechanisms responsible for such pharmacoresistance, with particular attention on the specific cellular and molecular factors that lead to reduced drug sensitivity. Current hypotheses of refractory epilepsy include the multidrug transporter hypothesis, which posits that increased expression or function of drug efflux transporters, such as P-glycoprotein (Pgp), in brain capillaries reduces the local concentration of AEDs in epileptic brain regions to subtherapeutic levels. In the present study, this hypothesis was addressed by evaluating the efficacy of six AEDs in wildtype and Pgp deficient Mdr1a/b(-/-) mice in the intrahippocampal kainate model of mesial temporal lobe epilepsy. In this model, frequent focal electrographic seizures develop after an initial kainate-induced status epilepticus. These seizures are resistant to major AEDs, but the mechanisms of this resistance are unknown. In the present experiments, the focal nonconvulsive seizures were resistant to carbamazepine and phenytoin, whereas high doses of valproate and levetiracetam exerted moderate and phenobarbital and diazepam marked anti-seizure effects. All AEDs suppressed generalized convulsive seizures. No significant differences between wildtype and Pgp-deficient mice were observed in anti-seizure drug efficacies. Also, the individual responder and nonresponder rates in each experiment did not differ between mouse genotypes. This does not argue against the multidrug transporter hypothesis in general, but indicates that Pgp is not involved in the mechanisms explaining that focal electrographic seizures are resistant to some AEDs in the intrahippocampal mouse model of partial epilepsy. This was substantiated by the finding that epileptic wildtype mice do not exhibit increased Pgp expression in this model. PMID:27288003

  13. Impact of intratumoral expression levels of fluoropyrimidine-metabolizing enzymes on treatment outcomes of adjuvant S-1 therapy in gastric cancer.

    PubMed

    Kim, Ji-Yeon; Shin, Eun; Kim, Jin Won; Lee, Hye Seung; Lee, Dae-Won; Kim, Se-Hyun; Lee, Jeong-Ok; Kim, Yu Jung; Kim, Jee Hyun; Bang, Soo-Mee; Ahn, Sang-Hoon; Park, Do Joong; Lee, Jong Seok; Lee, Ju-Seog; Kim, Hyung-Ho; Lee, Keun-Wook

    2015-01-01

    We analyzed the expression levels of fluoropyrimidine-metabolizing enzymes (thymidylate synthase [TS], dihydropyrimidine dehydrogenase [DPD], thymidine phosphorylase [TP] and orotate phosphoribosyltransferase [OPRT]) to identify potential biomarkers related to treatment outcomes in gastric cancer (GC) patients receiving adjuvant S-1 chemotherapy. In this study, 184 patients who received curative gastrectomy (D2 lymph node dissection) and adjuvant S-1 were included. Immunohistochemistry and quantitative reverse transcription polymerase chain reaction were performed to measure the protein and mRNA levels of TS, DPD, TP, and OPRT in tumor tissue. In univariate analysis, low intratumoral DPD protein expression was related to poorer 5-year disease-free survival (DFS; 78% vs. 88%; P = 0.068). Low intratumoral DPD mRNA expression (1st [lowest] quartile) was also related to poorer DFS (69% vs. 90%; P < 0.001) compared to high intratumoral DPD expression (2nd to 4th quartiles). In multivariate analyses, low intratumoral DPD protein or mRNA expression was related to worse DFS (P < 0.05), irrespective of other clinical variables. TS, TP, and OPRT expression levels were not related to treatment outcomes. Severe non-hematologic toxicities (grade ≥ 3) had a trend towards more frequent development in patients with low intratumoral DPD mRNA expression (29% vs. 16%; P = 0.068). In conclusion, GC patients with high intratumoral DPD expression did not have inferior outcome following adjuvant S-1 therapy compared with those with low DPD expression. Instead, low intratumoral DPD expression was related to poor DFS. PMID:25793299

  14. Altered regional brain volumes in elderly carriers of a risk variant for drug abuse in the dopamine D2 receptor gene (DRD2)

    PubMed Central

    Roussotte, Florence F.; Jahanshad, Neda; Hibar, Derrek P.; Thompson, Paul M.

    2014-01-01

    Dopamine D2 receptors mediate the rewarding effects of many drugs of abuse. In humans, several polymorphisms in DRD2, the gene encoding these receptors, increase our genetic risk for developing addictive disorders. Here, we examined one of the most frequently studied candidate variants for addiction in DRD2 for association with brain structure. We tested whether this variant showed associations with regional brain volumes across two independent elderly cohorts, totaling 1,032 subjects. We first examined a large sample of 738 elderly participants with neuroimaging and genetic data from the Alzheimer’s Disease Neuroimaging Initiative (ADNI1). We hypothesized that this addiction-related polymorphism would be associated with structural brain differences in regions previously implicated in familial vulnerability for drug dependence. Then, we assessed the generalizability of our findings by testing this polymorphism in a non-overlapping replication sample of 294 elderly subjects from a continuation of the first ADNI project (ADNI2) to minimize the risk of reporting false positive results. In both cohorts, the minor allele – previously linked with increased risk for addiction – was associated with larger volumes in various brain regions implicated in reward processing. These findings suggest that neuroanatomical phenotypes associated with familial vulnerability for drug dependence may be partially mediated by DRD2 genotype. PMID:24634060

  15. Injectable polypeptide micelles that form radiation crosslinked hydrogels in situ for intratumoral radiotherapy.

    PubMed

    Schaal, Jeffrey L; Li, Xinghai; Mastria, Eric; Bhattacharyya, Jayanta; Zalutsky, Michael R; Chilkoti, Ashutosh; Liu, Wenge

    2016-04-28

    Intratumoral radiation therapy - 'brachytherapy' - is a highly effective treatment for solid tumors, particularly prostate cancer. Current titanium seed implants, however, are permanent and are limited in clinical application to indolent malignancies of low- to intermediate-risk. Attempts to develop polymeric alternatives, however, have been plagued by poor retention and off-target toxicity due to degradation. Herein, we report on a new approach whereby thermally sensitive micelles composed of an elastin-like polypeptide (ELP) are labeled with the radionuclide (131)I to form an in situ hydrogel that is stabilized by two independent mechanisms: first, body heat triggers the radioactive ELP micelles to rapidly phase transition into an insoluble, viscous coacervate in under 2min; second, the high energy β-emissions of (131)I further stabilize the depot by introducing crosslinks within the ELP depot over 24h. These injectable brachytherapy hydrogels were used to treat two aggressive orthotopic tumor models in athymic nude mice: a human PC-3 M-luc-C6 prostate tumor and a human BxPc3-luc2 pancreatic tumor model. The ELP depots retained greater than 52% and 70% of their radioactivity through 60days in the prostate and pancreatic tumors with no appreciable radioactive accumulation (≤0.1% ID) in off-target tissues after 72h. The (131)I-ELP depots achieved >95% tumor regression in the prostate tumors (n=8); with a median survival of more than 60days compared to 12days for control mice. For the pancreatic tumors, ELP brachytherapy (n=6) induced significant growth inhibition (p=0.001, ANOVA) and enhanced median survival to 27days over controls. PMID:26928529

  16. A Time-Based and Intratumoral Proteomic Assessment of a Recurrent Glioblastoma Multiforme.

    PubMed

    de Aquino, Priscila F; Carvalho, Paulo Costa; Nogueira, Fábio C S; da Fonseca, Clovis Orlando; de Souza Silva, Júlio Cesar Thomé; Carvalho, Maria da Gloria da Costa; Domont, Gilberto B; Zanchin, Nilson I T; Fischer, Juliana de Saldanha da Gama

    2016-01-01

    Tumors consist of cells in different stages of transformation with molecular and cellular heterogeneity. By far, heterogeneity is the hallmark of glioblastoma multiforme (GBM), the most malignant and aggressive type of glioma. Most proteomic studies aim in comparing tumors from different patients, but here we dive into exploring the intratumoral proteome diversity of a single GBM. For this, we profiled tumor fragments from the profound region of the same patient's GBM but obtained from two surgeries a year's time apart. Our analysis also included GBM's fragments from different anatomical regions. Our quantitative proteomic strategy employed 4-plex iTRAQ peptide labeling followed by a four-step strong cation chromatographic separation; each fraction was then analyzed by reversed-phase nano-chromatography coupled on-line with an Orbitrap-Velos mass spectrometer. Unsupervised clustering grouped the proteomic profiles into four major distinct groups and showed that most changes were related to the tumor's anatomical region. Nevertheless, we report differentially abundant proteins from GBM's fragments of the same region but obtained 1 year apart. We discuss several key proteins (e.g., S100A9) and enriched pathways linked with GBM such as the Ras pathway, RHO GTPases activate PKNs, and those related to apoptosis, to name a few. As far as we know, this is the only report that compares GBM fragments proteomic profiles from the same patient. Ultimately, our results fuel the forefront of scientific discussion on the importance in exploring the richness of subproteomes within a single tissue sample for a better understanding of the disease, as each tumor is unique. PMID:27597932

  17. Turning the headlights on novel cancer biomarkers: Inspection of mechanics underlying intratumor heterogeneity

    PubMed Central

    McBride, Michelle; Rida, Padmashree C.G.; Aneja, Ritu

    2016-01-01

    Although the existence of intratumoral heterogeneity (ITH) in the expression of common biomarkers has been described by pathologists since the late 1890s, we have only recently begun to fathom the staggering extent and near ubiquity of this phenomenon. From the tumor’s perspective, ITH provides a stabilizing diversity that allows for the evolution of aggressive cancer phenotypes. As the weight of the evidence correlating ITH to poor prognosis burgeons, it has become increasingly important to determine the mechanisms by which a tumor acquires ITH, find clinically-adaptable means to quantify ITH and design strategies to deal with the numerous profound clinical ramifications that ITH forces upon us. Elucidation of the drivers of ITH could enable development of novel biomarkers whose interrogation might permit quantitative evaluation of the ITH inherent in a tumor in order to predict the poor prognosis risk associated with that tumor. This review proposes centrosome amplification (CA), aided and abetted by centrosome clustering mechanisms, as a critical driver of chromosomal instability (CIN) that makes a key contribution to ITH generation. Herein we also evaluate how a tumor’s inherent mitotic propensity, which reflects the cell cycling kinetics within the tumor’s proliferative cells, functions as the indispensable engine underpinning CIN, and determines the rate of CIN. We thus expound how the forces of centrosome amplification and mitotic propensity collaborate to sculpt the genetic landscape of a tumor and spawn extensive subclonal diversity. As such, centrosome amplification and mitotic propensity profiles could serve as clinically facile and powerful prognostic biomarkers that would enable more accurate risk segmentation of patients and design of individualized therapies. PMID:26024970

  18. Intratumoral injection of taxol in vivo suppresses A549 tumor showing cytoplasmic vacuolization.

    PubMed

    Wang, Chaoyang; Chen, Tongsheng

    2012-04-01

    Based on our recent in vitro studies, this report was designed to explore the mechanism by which high concentration of taxol (70 µM) induced paraptosis-like cell death in human lung carcinoma (A549) cells, and to evaluate the therapeutic efficacy of taxol using A549 tumor-bearing mice in vivo. Exposure of cells to taxol induced time-dependent cytotoxicity and cytoplasmic vacuolization without the involvement of Bax, Bak, Mcl-1, Bcl-XL, and caspase-3. Although taxol treatment induced activating transcription factor 6 (ATF6) cleavage indicative of endoplasmic reticulum (ER) stress, silencing ATF6 by shATF6 did not prevent taxol-induced both cytotoxcity and cytoplasmic vacuolization, suggesting that taxol-induced cytoplasmic vacuolization and cell death were not due to ER stress. Moreover, taxol-treated cells did not show DNA fragmentation and loss of mitochondrial membrane potential, the typical characteristics of apoptosis. In addition, taxol-induced cytoplasmic vacuolization did not show the cellular lysis, the characteristics of oncosis, and positive of β-galactosidase, the characteristic of senescence, indicating that taxol induced paraptosis-like cell death is neither oncosis nor senescence. Moreover, our in vivo data showed that intratumoral injection of taxol (50 mg/kg) in A549 tumor xenograft mice on day 1 and day 19 potently suppressed tumor growth showing significant ER vacuolization without toxicity. In conclusion, high concentration of taxol exhibits a significant anticancer activity by inducing paraptosis-like cell death in vitro and in vivo, without significant toxicity, suggesting a promising therapeutic strategy for apoptosis-resistance cancer by inducing ER vacuolization. PMID:22134971

  19. Assessment of intra-tumoral karyotypic heterogeneity by interphase cytogenetics in paraffin wax sections

    PubMed Central

    Southern, S A; Herrington, C S

    1996-01-01

    Aim—To analyse the effect of sectioning on the assessment of karyotypic heterogeneity by interphase cytogenetics in paraffin wax embedded normal squamous epithelium and to apply the principles derived to invasive cervical carcinoma. Methods—Normal male (n = 5) and female (n = 5) squamous epithelia were hybridised with peri-centromeric repeat probes specific for chromosomes X (DXZ1) and 17 (D17Z1) individually and in combination to assess the effect of sectioning on mono-, di-, tri-, and tetrasomic populations. Section thickness, interobserver variation and variation between different areas of the epithelium were evaluated. Invasive squamous carcinomas of the cervix (n = 5) were then hybridised with the DXZ1 probe and intratumoral heterogeneity was assessed by comparison of signal distributions obtained from different areas. Results—The optimum section thickness for the assessment of normal epithelium was 6 μm. Variation in the expected signal number in the range 1-4 did not introduce artefactual heterogeneity at this section thickness. The sensitivity of this approach for the detection of minor subpopulations was calculated to be 13-16%, 17-18% and 10-11% for mono-, tri- and tetrasomic populations, respectively. Karyotypic heterogeneity was detected in two of the five tumours and, in one case where the populations where clustered morphologically, a minor population representing 18% was identified. Conclusions—Interphase cytogenetic analysis of sections from paraffin wax embedded material can be used for the detection of minor subpopulations in tumours. This approach will be of particular value in the assessment of the relation between human papillomavirus infection and tumour karyotype and in the analysis of intraepithelial neoplasia. Images PMID:16696090

  20. Inter- and intra-tumoral relationships between vasculature characteristics, GLUT1 and budding in colorectal carcinoma.

    PubMed

    Mezheyeuski, Artur; Nerovnya, Alexander; Bich, Tatjana; Tur, Gennadiy; Ostman, Arne; Portyanko, Anna

    2015-10-01

    Vascular characteristics, hypoxia and tumor budding are features that have been implied in the biology and prognosis of colorectal cancer. Internal relationships and the inter- and intra-tumoral variation of these tumor properties remain to be determined. In the current study we have characterized blood vessel status in different areas of CRC and in the peritumoral fibroblastic stroma. Analyses of these characteristics have been supplemented by characterization of budding and hypoxia. Analyses revealed significantly lower values of vessel perimeter (VP) and vessel lumen area (VL) at the invasive front and surrounding stroma as compared to the tumor center. Also, the number of vessels (VN) in the peritumoral stroma was higher than in the center. Thus, tumor center displays larger and fewer vessels as compared to the tumor periphery. GLUT1 expression was correlated directly with VN (r=0.351, p=0.028) and inversely with VL and VP (r=-0.432, p=0.006 and r=-0.484, p=0.002) at the invasive front. Moreover, GLUT1 expression, VP at the invasive front, and VN in the surrounding peritumoral stroma, were associated with budding score (r=0.574, p<0.000, r=-0.340, p=0,034 and r=-0.389, p=0.025 respectively). Furthermore, GLUT1, budding score, vessel number in peritumoral stroma, and vessel size in the invasive front, were significantly different in tumors with or without lymph node metastasis. This study reports previously unrecognized relationships between localization-specific vascular characteristics, hypoxia and tumor budding. The findings suggest potential functional relationships, which should be further explored, and also highlight the inter-tumoral variations in vasculature, which is highly relevant for ongoing efforts to identify vessel-based biomarkers. PMID:25811313

  1. A Time-Based and Intratumoral Proteomic Assessment of a Recurrent Glioblastoma Multiforme

    PubMed Central

    de Aquino, Priscila F.; Carvalho, Paulo Costa; Nogueira, Fábio C. S.; da Fonseca, Clovis Orlando; de Souza Silva, Júlio Cesar Thomé; Carvalho, Maria da Gloria da Costa; Domont, Gilberto B.; Zanchin, Nilson I. T.; Fischer, Juliana de Saldanha da Gama

    2016-01-01

    Tumors consist of cells in different stages of transformation with molecular and cellular heterogeneity. By far, heterogeneity is the hallmark of glioblastoma multiforme (GBM), the most malignant and aggressive type of glioma. Most proteomic studies aim in comparing tumors from different patients, but here we dive into exploring the intratumoral proteome diversity of a single GBM. For this, we profiled tumor fragments from the profound region of the same patient’s GBM but obtained from two surgeries a year’s time apart. Our analysis also included GBM‘s fragments from different anatomical regions. Our quantitative proteomic strategy employed 4-plex iTRAQ peptide labeling followed by a four-step strong cation chromatographic separation; each fraction was then analyzed by reversed-phase nano-chromatography coupled on-line with an Orbitrap-Velos mass spectrometer. Unsupervised clustering grouped the proteomic profiles into four major distinct groups and showed that most changes were related to the tumor’s anatomical region. Nevertheless, we report differentially abundant proteins from GBM’s fragments of the same region but obtained 1 year apart. We discuss several key proteins (e.g., S100A9) and enriched pathways linked with GBM such as the Ras pathway, RHO GTPases activate PKNs, and those related to apoptosis, to name a few. As far as we know, this is the only report that compares GBM fragments proteomic profiles from the same patient. Ultimately, our results fuel the forefront of scientific discussion on the importance in exploring the richness of subproteomes within a single tissue sample for a better understanding of the disease, as each tumor is unique. PMID:27597932

  2. Exploiting Nanotechnology to Overcome Tumor Drug Resistance: Challenges and Opportunities

    PubMed Central

    Kirtane, Ameya; Kalscheuer, Stephen; Panyam, Jayanth

    2013-01-01

    Tumor cells develop resistance to chemotherapeutic drugs through multiple mechanisms. Overexpression of efflux transporters is an important source of drug resistance. Efflux transporters such as P-glycoprotein reduce intracellular drug accumulation and compromise drug efficacy. Various nanoparticle-based approaches have been investigated to overcome efflux-mediated resistance. These include the use of formulation excipients that inhibit transporter activity and co-delivery of the anticancer drug with a specific inhibitor of transporter function or expression. However, the effectiveness of nanoparticles can be diminished by poor transport in the tumor tissue. Hence, adjunct therapies that improve the intratumoral distribution of nanoparticles may be vital to the successful application of nanotechnology to overcome tumor drug resistance. This review discusses the mechanisms of tumor drug resistance and highlights the opportunities and challenges in the use of nanoparticles to improve the efficacy of anticancer drugs against resistant tumors. PMID:24036273

  3. Mutations in the Plasmodium falciparum chloroquine resistance transporter, PfCRT, enlarge the parasite’s food vacuole and alter drug sensitivities

    PubMed Central

    Pulcini, Serena; Staines, Henry M.; Lee, Andrew H.; Shafik, Sarah H.; Bouyer, Guillaume; Moore, Catherine M.; Daley, Daniel A.; Hoke, Matthew J.; Altenhofen, Lindsey M.; Painter, Heather J.; Mu, Jianbing; Ferguson, David J. P.; Llinás, Manuel; Martin, Rowena E.; Fidock, David A.; Cooper, Roland A.; Krishna, Sanjeev

    2015-01-01

    Mutations in the Plasmodium falciparum chloroquine resistance transporter, PfCRT, are the major determinant of chloroquine resistance in this lethal human malaria parasite. Here, we describe P. falciparum lines subjected to selection by amantadine or blasticidin that carry PfCRT mutations (C101F or L272F), causing the development of enlarged food vacuoles. These parasites also have increased sensitivity to chloroquine and some other quinoline antimalarials, but exhibit no or minimal change in sensitivity to artemisinins, when compared with parental strains. A transgenic parasite line expressing the L272F variant of PfCRT confirmed this increased chloroquine sensitivity and enlarged food vacuole phenotype. Furthermore, the introduction of the C101F or L272F mutation into a chloroquine-resistant variant of PfCRT reduced the ability of this protein to transport chloroquine by approximately 93 and 82%, respectively, when expressed in Xenopus oocytes. These data provide, at least in part, a mechanistic explanation for the increased sensitivity of the mutant parasite lines to chloroquine. Taken together, these findings provide new insights into PfCRT function and PfCRT-mediated drug resistance, as well as the food vacuole, which is an important target of many antimalarial drugs. PMID:26420308

  4. Patients treated for male pattern hair with finasteride show, after discontinuation of the drug, altered levels of neuroactive steroids in cerebrospinal fluid and plasma.

    PubMed

    Caruso, Donatella; Abbiati, Federico; Giatti, Silvia; Romano, Simone; Fusco, Letizia; Cavaletti, Guido; Melcangi, Roberto Cosimo

    2015-02-01

    Observations performed in a subset of patients treated for male pattern hair loss indicate that persistent sexual side effects as well as anxious/depressive symptomatology have been reported even after discontinuation of finasteride treatment. Due to the capability of finasteride to block the metabolism of progesterone (PROG) and/or testosterone (T) we have evaluated, by liquid chromatography-tandem mass spectrometry, the levels of several neuroactive steroids in paired plasma and cerebrospinal fluid (CSF) samples obtained from post-finasteride patients and in healthy controls. At the examination, post-finasteride patients reported muscular stiffness, cramps, tremors and chronic fatigue in the absence of clinical evidence of any muscular disorder or strength reduction. Although severity of the anxious/depressive symptoms was quite variable in their frequency, overall all the subjects had a fairly complex and constant neuropsychiatric pattern. Assessment of neuroactive steroid levels in CSF showed a decrease of PROG and its metabolites, dihydroprogesterone (DHP) and tetrahydroprogesterone (THP), associated with an increase of its precursor pregnenolone (PREG). Altered levels were also observed for T and its metabolites. Thus, a significant decrease of dihydrotestosterone (DHT) associated with an increase of T as well as of 3α-diol was detected. Changes in neuroactive steroid levels also occurred in plasma. An increase of PREG, T, 3α-diol, 3β-diol and 17β-estradiol was associated with decreased levels of DHP and THP. The present observations show that altered levels of neuroactive steroids, associated with depression symptoms, are present in androgenic alopecia patients even after discontinuation of the finasteride treatment. This article is part of a Special Issue entitled 'Sex steroids and brain disorders'. PMID:24717976

  5. Intratumoral mediated immunosuppression is prognostic in genetically engineered murine models of glioma and correlates to immune therapeutic responses

    PubMed Central

    Kong, Ling-Yuan; Wu, Adam S.; Doucette, Tiffany; Wei, Jun; Priebe, Waldemar; Fuller, Gregory N.; Qiao, Wei; Sawaya, Raymond; Rao, Ganesh; Heimberger, Amy B.

    2010-01-01

    Purpose Pre-clinical murine model systems used for the assessment of therapeutics have not been predictive of human clinical responses, primarily because their clonotypic nature does not recapitulate the heterogeneous biology and immunosuppressive mechanisms of humans. Relevant model systems with mice that are immunologically competent are needed to evaluate the efficacy of therapeutic agents, especially immunotherapeutics. Experimental Design Using the RCAS/Ntv-a system, mice were engineered to co-express platelet-derived growth factor receptor (PDGF)-B + B-cell lymphoma (Bcl)-2 under the control of the glioneuronal-specific Nestin promoter. The degree and type of tumor-mediated immunosuppression was determined in these endogenously arising gliomas based upon the presence of macrophages and regulatory T cells (Tregs). The immunotherapeutic agent, WP1066, was tested in vivo to assess therapeutic efficacy and immune modulation. Results N-tva mice were injected with RCAS vectors to express PDGF-B + Bcl-2, resulting in both low- and high-grade gliomas. Consistent with observations in human high-grade gliomas, mice with high-grade gliomas also developed a marked intratumoral influx of macrophages that was influenced by tumor signal transducer and activator of transduction (STAT) 3 expression. The presence of intratumoral F4/80 macrophages was a negative prognosticator for long-term survival. In mice expressing both PDGF-B + Bcl-2 that were treated with WP1066, there was 55.5% increase in median survival time (P< 0.01), with an associated inhibition of intratumoral STAT3 and macrophages. Conclusions Although randomization is necessary for including mice in a therapeutic trial, these murine model systems are more suitable for testing therapeutics, and especially immune therapeutics, in the context of translational studies. PMID:20921210

  6. Intratumoral Agreement of High-Resolution Magic Angle Spinning Magnetic Resonance Spectroscopic Profiles in the Metabolic Characterization of Breast Cancer

    PubMed Central

    Park, Vivian Youngjean; Yoon, Dahye; Koo, Ja Seung; Kim, Eun-Kyung; Kim, Seung Il; Choi, Ji Soo; Park, Seho; Park, Hyung Seok; Kim, Suhkmann; Kim, Min Jung

    2016-01-01

    Abstract High-resolution magic angle spinning (HR-MAS) magnetic resonance (MR) spectroscopy data may serve as a biomarker for breast cancer, with only a small volume of tissue sample required for assessment. However, previous studies utilized only a single tissue sample from each patient. The aim of this study was to investigate whether intratumoral location and biospecimen type affected the metabolic characterization of breast cancer assessed by HR-MAS MR spectroscopy This prospective study was approved by the institutional review board and informed consent was obtained. Preoperative core-needle biopsies (CNBs), central, and peripheral surgical tumor specimens were prospectively collected under ultrasound (US) guidance in 31 patients with invasive breast cancer. Specimens were assessed with HR-MAS MR spectroscopy. The reliability of metabolite concentrations was evaluated and multivariate analysis was performed according to intratumoral location and biospecimen type. There was a moderate or higher agreement between the relative concentrations of 94.3% (33 of 35) of metabolites in the center and periphery, 80.0% (28 of 35) of metabolites in the CNB and central surgical specimens, and 82.9% (29 of 35) of metabolites between all 3 specimen types. However, there was no significant agreement between the concentrations of phosphocholine (PC) and phosphoethanolamine (PE) in the center and periphery. The concentrations of several metabolites (adipate, arginine, fumarate, glutamate, PC, and PE) had no significant agreement between the CNB and central surgical specimens. In conclusion, most HR-MAS MR spectroscopic data do not differ based on intratumoral location or biospecimen type. However, some metabolites may be affected by specimen-related variables, and caution is recommended in decision-making based solely on metabolite concentrations, particularly PC and PE. Further validation through future studies is needed for the clinical implementation of these biomarkers based

  7. Pilot study of intratumoral injection of recombinant heat shock protein 70 in the treatment of malignant brain tumors in children

    PubMed Central

    Shevtsov, Maxim A; Kim, Alexander V; Samochernych, Konstantin A; Romanova, Irina V; Margulis, Boris A; Guzhova, Irina V; Yakovenko, Igor V; Ischenko, Alexander M; Khachatryan, William A

    2014-01-01

    Intratumoral injections of recombinant heat shock protein (Hsp)70 were explored for feasibility in patients with brain tumors. Patients aged 4.5–14 years with untreated newly diagnosed tumors (n=12) were enrolled. After tumor resection, five injections of recombinant Hsp70 (total 2.5 mg) were administered into the resection cavity through a catheter. Before administration of Hsp70 and after the last injection, specific immune responses to the autologous tumor lysate were evaluated using the delayed-type hypersensitivity test. Further, peripheral blood was monitored to identify possible changes in lymphocyte subpopulations, cytokine levels, and the cytolytic activity of natural killer cells. The follow-up period in this trial was 12 months. Intratumoral injections of Hsp70 were well tolerated by patients. One patient had a complete clinical response documented by radiologic findings and one patient had a partial response. A positive delayed-type hypersensitivity test was observed in three patients. In peripheral blood, there was a shift from cytokines provided by Th2 cells toward cytokines of a Th1-cell-mediated response. These data corresponded to changes in lymphocyte subpopulations. Immunosuppressive T-regulatory cell levels were also reduced after injection of Hsp70, as well as production of interleukin-10. The cytolytic activity of natural killer cells was unchanged. The present study demonstrates the feasibility of intratumoral delivery of recombinant Hsp70 in patients with cancer. Further randomized clinical trials are recommended to assess the optimum dose of the chaperone, the treatment schedule, and clinical efficacy. PMID:24971017

  8. Intratumoral FoxP3 expression is associated with angiogenesis and prognosis in malignant canine mammary tumors.

    PubMed

    Carvalho, Maria Isabel; Pires, Isabel; Prada, Justina; Gregório, Hugo; Lobo, Luis; Queiroga, Felisbina L

    2016-10-01

    The activity of regulatory T cells (Tregs) is closely associated with the expression of FoxP3 transcription factor. FoxP3 regulatory T cells (FoxP3Treg) have immunosuppressive properties and can work for prevention of harmful autoimmune responses, however can also interfere with beneficial anti-tumor immunity. In human breast cancer these cells play a crucial role in tumor progression. In canine mammary tumors (CMT) this topic is not well-documented. This study included 80 malignant CMT and studied, by immunohistochemistry, the intratumoral FoxP3 expression together with microvessel density (MVD), vascular endothelial growth factor (VEGF) and several clinicopathological characteristics. Abundant FoxP3Treg cells were associated with tumor necrosis (p=0.001), high mitotic grade (p<0.001), more marked nuclear polymorphism (p=0.001), poor differentiation of tumors (p<0.001), high histological grade of malignancy (HGM) (p<0.001), presence of neoplastic intravascular emboli (p<0.001) and presence of lymph node metastasis (p<0.001). Intratumoral FoxP3 was correlated with MVD (r=0.827; p<0.001) and associated with VEGF (p=0.001). Additionally tumors with abundant FoxP3Treg cells were associated with shorter overall survival (OS) time in univariate and multivariate analysis (p<0.001 Kaplan-Meier curves and 7.97 hazard ratio, p<0.001 Cox proportional hazard model). Results suggest that Treg cells play a role in CMT progression and may contribute to increased angiogenesis and aggression in these tumors. The association of intratumoral FoxP3 expression with shorter OS in multivariate analysis suggests the usefulness of Treg cells as an independent prognostic marker. PMID:27496736

  9. Altered States of Consciousness and Alcohol.

    ERIC Educational Resources Information Center

    Jones, Ben Morgan; And Others

    This document contains the reports of research at a symposium on "Altered States of Consciousness and Alcohol." The participants primarily agreed that alcohol induces an altered state of consciousness similar to other drugs, but that this phenomenon has not been explicitly stated due to the current interest in newer and more novel drugs. The…

  10. Pharmacological modulation of lateral habenular dopamine D2 receptors alters the anxiogenic response to cocaine in a runway model of drug self-administration.

    PubMed

    Shelton, Kerisa; Bogyo, Kelsie; Schick, Tinisha; Ettenberg, Aaron

    2016-09-01

    Cocaine has long been known to produce an initial "high" followed by an aversive/anxiogenic "crash". While much is known about the neurobiology of cocaine's positive/rewarding effects, the mechanisms that give rise to the drug's negative/anxiogenic actions remain unclear. Recent research has implicated the lateral habenula (LHb) in the encoding of aversive events including the anxiogenic response to cocaine. Of particular interest in this regard are the reciprocal connections between the LHb and the ventral tegmental area (VTA). VTA-DA neurons innervate different subsets of LHb cells that in turn feedback upon and modulate VTA neuronal activity. Here we examined the impact of D2 receptor activation and inhibition on the anxiogenic response to cocaine using a runway model of self-administration that is sensitive to the dual and opposing effects of the drug. Male rats ran a straight alley for IV cocaine (1.0mg/kg) following bilateral intra-LHb infusions of the D2 receptor antagonist, cis-flupenthixol (0, 7.5 or 15μg/side) or the D2 agonist, sumanirole (0, 5 or 10μg/side). Vehicle-pretreated controls developed approach-avoidance conflict behaviors about goal-box entry reflective of the dual positive and negative effects of cocaine. These behaviors were significantly diminished during LHb-D2 receptor antagonism and increased by the LHb D2 receptor agonist. These results demonstrate that activity at the D2 receptor in the lateral habenula serves to modulate the anxiogenic response to cocaine. PMID:27155504

  11. Effects of antioxidants on drugs used against testicular cancer-induced alterations in metastasis-associated protein 1 signaling in the rat testis.

    PubMed

    Kilarkaje, Narayana; Al-Bader, Maie

    2016-01-01

    Metastasis-associated protein 1 (MTA1) is involved in tumor growth and metastasis of cancers. Being a component of nucleosome remodeling and histone deacetylase complex, the protein is also associated with DNA damage response pathway. Since the protein is involved in cancer pathology, we first investigated the effects of bleomycin, etoposide, and cisplatin (BEP) on MTA1 signaling in the testis. Second, since the antioxidants (AOs) have protective effects, we further investigated whether or not an AO cocktail modulates the effects of the drugs. Adult male Sprague Dawley rats (N = 4) were treated either with saline, or AO (α-tocopherol, l-ascorbic acid, zinc, and selenium), or therapeutic dose levels of etoposide (15 mg/kg) and cisplatin (3 mg/kg) from day 1-4 of the week and B (1.5 mg/kg) on the second day of the week, or BEP + AO. The real-time polymerase chain reaction showed that MTA1 and MTA1s (short form) gene expression was downregulated in AO (100% and 100%), BEP (86% and 71%), and BEP + AO (97% and 93%) groups. Western blotting and immunohistochemistry results showed that unnormalized MTA1 protein expression was upregulated in AO (38%) and BEP + AO (34%) groups; however, the MTA1/β-actin ratio was upregulated in all treated groups (21, 19, and 15%, respectively). In conclusion, the results indicate that both BEP and AO suppress MTA1 and MTA1s transcription, which may render the germ cells to be more prone to apoptosis. However, upregulation of MTA1 protein expression may be related to induced DNA damage. Modulation of MTA1 signaling is a novel mechanism of action of BEP and AO, which may be useful in developing newer anticancer drugs. PMID:24021429

  12. Enhancement of Intratumoral Chemotherapy with Cisplatin with or without Microwave Ablation and Lipiodol. Future Concept for Local Treatment in Lung Cancer

    PubMed Central

    Hohenforst-Schmidt, Wolfgang; Zarogoulidis, Paul; Stopek, Joshua; Kosmidis, Efstratios; Vogl, Thomas; Linsmeier, Bernd; Tsakiridis, Kosmas; Lampaki, Sofia; Lazaridis, George; Mpakas, Andreas; Browning, Robert; Papaiwannou, Antonis; Drevelegas, Antonis; Baka, Sofia; Karavasilis, Vasilis; Mpoukovinas, Ioannis; Turner, J Francis; Zarogoulidis, Konstantinos; Brachmann, Johannes

    2015-01-01

    Novel therapies for lung cancer are being explored nowadays with local therapies being the tip of the arrow. Intratumoral chemotherapy administration and local microwave ablation have been investigated in several studies. It has been previously proposed that lipiodol has the ability to modify the microenvironment matrix. In our current study we investigated this theory in BALBC mice. In total 160 BALBC mice were divided in eight groups: a) control, b) cisplatin, c) microwave, d) microwave and lipiodol, e) cisplatin and lipiodol, f) microwave and cisplatin, g) lipiodol and h) lipiodol, cisplatin and microwave. Lewis lung carcinoma cell lines (106) were injected into the right back leg of each mouse. After the 8th day, when the tumor volume was about 100mm3 the therapy application was initiated, once per week for four weeks. Magnetic resonance imaging was performed for each tumor when a mouse died or when sacrificed if they were still alive by the end of the experiment (8-Canal multifunctional spool; NORAS MRI products, Gmbh, Germany). Imaging and survival revealed efficient tumor apoptosis for the groups b,c,d,e and f. However; severe toxicity was observed in group h and no follow up was available for this group after the second week of therapy administration. Lipiodol in its current form does assist in a more efficient way the distribution of cisplatin, as the microwave apoptotic effect. Future modification of lipiodol might provide a more efficient method of therapy enhancement. Combination of drug and microwave ablation is possible and has an efficient apoptotic effect. PMID:25663938

  13. Enhancement of Intratumoral Chemotherapy with Cisplatin with or without Microwave Ablation and Lipiodol. Future Concept for Local Treatment in Lung Cancer.

    PubMed

    Hohenforst-Schmidt, Wolfgang; Zarogoulidis, Paul; Stopek, Joshua; Kosmidis, Efstratios; Vogl, Thomas; Linsmeier, Bernd; Tsakiridis, Kosmas; Lampaki, Sofia; Lazaridis, George; Mpakas, Andreas; Browning, Robert; Papaiwannou, Antonis; Drevelegas, Antonis; Baka, Sofia; Karavasilis, Vasilis; Mpoukovinas, Ioannis; Turner, J Francis; Zarogoulidis, Konstantinos; Brachmann, Johannes

    2015-01-01

    Novel therapies for lung cancer are being explored nowadays with local therapies being the tip of the arrow. Intratumoral chemotherapy administration and local microwave ablation have been investigated in several studies. It has been previously proposed that lipiodol has the ability to modify the microenvironment matrix. In our current study we investigated this theory in BALBC mice. In total 160 BALBC mice were divided in eight groups: a) control, b) cisplatin, c) microwave, d) microwave and lipiodol, e) cisplatin and lipiodol, f) microwave and cisplatin, g) lipiodol and h) lipiodol, cisplatin and microwave. Lewis lung carcinoma cell lines (10(6)) were injected into the right back leg of each mouse. After the 8th day, when the tumor volume was about 100mm(3) the therapy application was initiated, once per week for four weeks. Magnetic resonance imaging was performed for each tumor when a mouse died or when sacrificed if they were still alive by the end of the experiment (8-Canal multifunctional spool; NORAS MRI products, Gmbh, Germany). Imaging and survival revealed efficient tumor apoptosis for the groups b,c,d,e and f. However; severe toxicity was observed in group h and no follow up was available for this group after the second week of therapy administration. Lipiodol in its current form does assist in a more efficient way the distribution of cisplatin, as the microwave apoptotic effect. Future modification of lipiodol might provide a more efficient method of therapy enhancement. Combination of drug and microwave ablation is possible and has an efficient apoptotic effect. PMID:25663938

  14. Preparation of a paclitaxel-loaded cationic nanoemulsome and its biodistribution via direct intratumoral injection.

    PubMed

    Xu, Yurui; Asghar, Sajid; Li, Hongying; Chen, Minglei; Su, Zhigui; Xu, Yangfan; Ping, Qineng; Xiao, Yanyu

    2016-06-01

    In this study, a nano-preparation based on nanoemulsome (NES) modified with cetyltrimethylammonium bromide (CTAB) loading paclitaxel (PTX) was designed, and its biodistribution were explored after intratumoral (i.t.) administration on Heps tumor-bearing mice. The PTX-loaded nanoemulsome (PTX-NES) was prepared by using a solvent evaporation method and CTAB, chosen as a cationic material, was absorbed onto the surface of the NES via electrostatic interaction to yield paclitaxel-loaded cationic nanoemulsome (PTX-CTAB-NES). The MTT results exhibited that PTX-CTAB-NES (IC50: 0.50±0.035μg/mL in MCF-7 cells and 0.13±0.048μg/mL in SMMC-7721 cells) had the strongest cytotoxicity compared to Taxol (IC50: 0.88±0.054μg/mL in MCF-7 and 0.15±0.011μg/mL in SMMC-7721) and PTX-NES (IC50: 1.93±0.062μg/mL in MCF-7 and 0.32±0.027μg/mL in SMMC-7721). Body distribution of PTX revealed that the percent of PTX retained in the tumor after i.t. administration of PTX-CTAB-NES (approximately 92.99% at 0.167h and 15.35% at 48h) was higher when compared to that after i.t. injection of Taxol (approximately 58.94% at 0.167h and 0.83% at 48h) or PTX-NES (approximately 83.63% at 0.167h and 6.52% at 48h). Moreover, less PTX accumulated in liver, spleen, kidney, lung and heart after i.t. administration of PTX-CTAB-NES when compared with that after i.v. administration of PTX-CTAB-NES. In conclusion, PTX-CTAB-NES was a prospective in-situ delivery system for the therapy of tumor. PMID:26938323

  15. Mitochondria-targeted drugs enhance Nlrp3 inflammasome-dependent IL-1β secretion in association with alterations on cellular redox and energy status

    PubMed Central

    Jabaut, Joshua; Ather, Jennifer L.; Taracanova, Alexandra; Poynter, Matthew E.; Ckless, Karina

    2013-01-01

    The Nlrp3 inflammasome is activated in response to an array of environmental and endogenous molecules leading to caspase-1-dependent IL-1β processing and secretion by myeloid cells. Several identified Nlrp3 inflammasome activators also trigger reactive oxygen species (ROS) production. However, the initial concept that NADPH oxidases are the primary source of ROS production during inflammasome activation is becoming less accepted. Therefore, the importance of mitochondrial-derived ROS has been recently explored. In this study, we explore the impact of mitochondria dysfunction and ROS production on Nlrp3 inflammasome stimulation and IL-1β secretion induced by serum amyloid A (SAA) in primary mouse peritoneal macrophages. To induce mitochondrial dysfunction, we utilized antimycin A, which blocks electron flow at complex III, and carbonyl cyanide-p-trifluoromethoxyphenylhydrazone (FCCP), a mitochondrial oxidative phosphorylation uncoupler. We also utilized a superoxide dismutase (SOD) mimetic, MnTBAP, which targets the mitochondria, as well as the broad spectrum antioxidants DPI (diphenyleneiodonium chloride) and ebselen. Our findings demonstrate that SAA alone induces mitochondrial ROS in a time-dependent manner. We observed that MnTBAP and ebselen blocked IL-1β secretion caused by SAA only when added prior to stimulation, and DPI augmented IL-1β secretion. Surprisingly, these effects were not directly related to intracellular or mitochondrial ROS levels. We also found that mitochondrial-targeted drugs increased IL-1β secretion regardless of their impact on mitochondrial function and ROS levels, suggesting that mitochondrial ROS-dependent and -independent mechanisms play a role in the Nlrp3 inflammasome - IL-1β secretion axis in SAA-stimulated cells. Finally, we found that FCCP significantly sustained the association of the Nlrp3 inflammasome complex, which could explain the most robust effect among the drugs tested in enhancing IL-1β secretion in SAA

  16. Valproic acid in amygdala-kindled rats: alterations in anticonvulsant efficacy, adverse effects and drug and metabolite levels in various brain regions during chronic treatment.

    PubMed

    Löscher, W; Fisher, J E; Nau, H; Hönack, D

    1989-09-01

    Amygdala-kindled rats were treated with valproic acid (VPA; administered as its sodium salt) 3 times daily at 200 mg/kg i.p. for 6 weeks, and anticonvulsant and adverse effects during this period were studied. Groups of nonkindled rats were treated in parallel for determination of VPA and its major active metabolites in various brain regions after different durations of treatment. After the first injection of VPA, 200 mg/kg, seizure severity, seizure duration and duration of electrical afterdischarges recorded from the stimulated amygdala were reduced significantly, but only one of nine animals was protected completely from kindled seizures. At day 3 of chronic treatment, the anticonvulsant activity of VPA had increased markedly so that seven of nine animals were totally protected from seizures. However, this potent anticonvulsant effect was only transitory so that after 1 week of treatment the anticonvulsant effect of the medication was similar to that obtained after the first dosing. The effect of VPA remained at this level for the subsequent weeks, but there was a second, more permanent increase in the number of protected animals after 4 to 6 weeks. Plasma and brain levels of VPA and its metabolites remained relatively constant throughout the chronic treatment although there was a moderate accumulation of some metabolites, e.g., trans isomer of 2-propyl-2-pentenoic acid, in specific brain nuclei. The most prominent adverse effects of VPA were ataxia, muscle relaxation, wet-dog shake behavior and an increase in body temperature. Except for body temperature, tolerance developed to these adverse effects, but escape from wet-dog shake behavior occurred much more rapidly than reduction of other adverse effects. Pathohistological examination of liver sections from animals treated with VPA for 6 weeks showed no indication of any hepatotoxic effects. After drug withdrawal, kindled seizure parameters returned toward control values without evidence of significant carry

  17. Transdermal drug targeting and functional imaging of tumor blood vessels in the mouse auricle.

    PubMed

    Schröder, Hannes; Komljenovic, Dorde; Hecker, Markus; Korff, Thomas

    2016-02-01

    Subcutaneously growing tumors are widely utilized to study tumor angiogenesis and the efficacy of antiangiogenic therapies in mice. To additionally assess functional and morphologic alterations of the vasculature in the periphery of a growing tumor, we exploited the easily accessible and hierarchically organized vasculature of the mouse auricle. By site-specific subcutaneous implantation of a defined preformed mouse B16/F0 melanoma aggregate, a solid tumor nodule developed within 14 d. Growth of the tumor nodule was accompanied by a 4-fold increase in its perfusion as well as a 2- to 4-fold elevated diameter and perfusion of peripheral blood vessels that had connected to the tumor capillary microvasculature. By transdermal application of the anticancer drug bortezomib, tumor growth was significantly diminished by about 50% without provoking side effects. Moreover, perfusion and tumor microvessel diameter as well as growth and perfusion of arterial or venous blood vessels supplying or draining the tumor microvasculature were decreased under these conditions by up to 80%. Collectively, we observed that the progressive tumor growth is accompanied by the enlargement of supplying and draining extratumoral blood vessels. This process was effectively suppressed by bortezomib, thereby restricting the perfusion capacity of both extra and intratumoral blood vessels. PMID:26546130

  18. Antiretroviral drugs.

    PubMed

    De Clercq, Erik

    2010-10-01

    In October 2010, it will be exactly 25 years ago that the first antiretroviral drug, AZT (zidovudine, 3'-azido-2',3'-dideoxythymidine), was described. It was the first of 25 antiretroviral drugs that in the past 25 years have been formally licensed for clinical use. These antiretroviral drugs fall into seven categories [nucleoside reverse transcriptase inhibitors (NRTIs), nucleotide reverse transcriptase inhibitors (NtRTIs), non-nucleoside reverse transcriptase inhibitors (NNRTIs), protease inhibitors (PIs), fusion inhibitors (FIs), co-receptor inhibitors (CRIs) and integrase inhibitors (INIs). The INIs (i.e. raltegravir) represent the most recent advance in the search for effective and selective anti-HIV agents. Combination of several anti-HIV drugs [often referred to as highly active antiretroviral therapy (HAART)] has drastically altered AIDS from an almost uniformly fatal disease to a chronic manageable one. PMID:20471318

  19. Phase 1 Clinical Trial of Intratumoral Reovirus Infusion for the Treatment of Recurrent Malignant Gliomas in Adults

    PubMed Central

    Kicielinski, Kimberly P; Chiocca, E Antonio; Yu, John S; Gill, George M; Coffey, Matt; Markert, James M

    2014-01-01

    Reovirus, an oncolytic RNA virus exhibiting antiglioma activity, was shown in a previous single institution phase 1 study found that the inoculation of the virus to be well tolerated in patients with recurrent malignant glioma (MG). The goals of multicenter study reported herein were to determine the dose-limiting toxicity, maximum tolerated dose, and target lesion response rate when reovirus was administered in a novel fashion via intratumoral infusion for 72 hours in patients with recurrent malignant glioma. Fifteen adult patients were treated in a dose escalation study ranging from 1 × 108 to 1 × 1010 tissue culture infectious dose 50, tentimes the dose achieved in the previous trial. Neurological, functional examinations, and imaging studies were completed pre- and postinfusion. There was one grade 3 adverse event (convulsions) felt to be possibly related to treatment, but no grade 4 adverse events considered probably or definitely related to treatment. Dose-limiting toxicity were not identified and a maximum tolerated dose was not reached. Evidence of antiglioma activity was seen in some patients. This first report of intratumoral infusion of reovirus in patients with recurrent malignant glioma demonstrated the approach to be safe and well tolerated, warranting further studies. PMID:24553100

  20. AcrA suppressor alterations reverse the drug hypersensitivity phenotype of a TolC mutant by inducing TolC aperture opening

    PubMed Central

    Weeks, Jon W.; Celaya-Kolb, Teresa; Pecora, Sara; Misra, Rajeev

    2010-01-01

    Summary In Escherichia coli, the TolC–AcrAB complex forms a major antibiotic efflux system with broad substrate specificity. During the complex assembly, the periplasmic helices and bottom turns of TolC are thought to interact with a hairpin helix of AcrA and hairpin loops of AcrB respectively. In the present study we show that a four-residue substitution in TolC’s turn 1, which connects outer helices 3 and 4 proximal to TolC’s periplasmic aperture, confers antibiotic hypersensitivity without affecting TolC-mediated phage or colicin infection. However, despite the null-like drug sensitivity phenotype, chemical cross-linking analysis revealed no apparent defects in the ability of the mutant TolC protein to physically interact with AcrA and AcrB. A role for TolC turn 1 residues in the functional assembly of the tripartite efflux pump complex was uncovered through isolating suppressor mutations of the mutant TolC protein that mapped within acrA and by utilizing a labile AcrA protein. The data showed that AcrA-mediated suppression of antibiotic sensitivity was achieved by dilating the TolC aperture/channel in an AcrB-dependent manner. The results underscore the importance of the periplasmic turn 1 of TolC in the functional assembly of the tripartite efflux complex and AcrA in transitioning TolC from its closed to open state. PMID:20132445

  1. Proximal Roux-en-Y Gastric Bypass Alters Drug Absorption Pattern But Not Systemic Exposure of CYP3A4 and P-glycoprotein Substrates

    PubMed Central

    Chan, Lingtak-Neander; Lin, Yvonne S.; Tay-Sontheimer, Jessica C.; Trawick, Dorothy; Oelschlager, Brant K.; Flum, David R.; Patton, Kristen K.; Shen, Danny D.; Horn, John R.

    2015-01-01

    Study Objectives To evaluate the effect of Roux-en-Y gastric bypass surgery (RYGB) on the pharmacokinetics of midazolam (a CYP3A4 substrate) and digoxin (a P-glycoprotein substrate). Design Prospective, nonblinded, longitudinal, single-dose pharmacokinetic study in three phases: presurgery baseline and postoperative assessments at 3 and 12 months. Patients Twelve obese patients meeting current standards for bariatric surgery. Measurements and Main Results At each study visit, patients received a single dose of oral digoxin and midazolam at 8 a.m. Blood samples were collected at regular intervals for 24 hours after dosing. Continuous 12-lead electrocardiogram (EKG), heart rate, blood pressure, and respiratory rate were monitored, and pharmacokinetic parameters from the three visits were compared. The peak plasma concentration (Cmax) of midazolam increased by 66% and 71% at 3- and 12-month post-RYGB (p=0.017 and p=0.001, respectively), whereas the median time to peak concentration (Tmax) was reduced by 50%. The mean Cmax for 1′-hydroxymidazolam increased by 87% and 80% at 3 and 12 months (p=0.001 and p<0.001, respectively). However, neither the area under the concentration-time curve (AUC) for midazolam nor the metabolite-to-parent AUC ratio changed significantly over time. For digoxin, the median Tmax decreased from 40 minutes at baseline to 30 and 20 minutes at 3 and 12 months, respectively. The mean AUC for digoxin, heart rate, and EKG patterns were similar across the three study phases. Conclusion Contemporary proximal RYGB increases the rate of drug absorption without significantly changing the overall exposure to midazolam and digoxin. The Cmax of a CYP3A4 substrate with a high extraction ratio was substantially increased after RYGB. PMID:25757445

  2. Does thyroidectomy, radioactive iodine therapy, or antithyroid drug treatment alter reactivity of patients` T cells to epitopes of thyrotropin receptor in autoimmune thyroid diseases?

    SciTech Connect

    Soliman, M.; Kaplan, E.; Abdel-Latif, A.

    1995-08-01

    The effect of treatment on thyroid antibody production and T cell reactivity to thyroid antigens was studied in 15 patients with Graves` disease (GD) before and after thyroidectomy, 19 patients with GD before and after radioactive iodine (RAI) therapy, and 9 patients maintained euthyroid on antithyroid drugs (ATD). In GD patients, the responses of peripheral blood mononuclear cells (PBMC) and TSH receptor (TSHR)-specific T cell lines to recombinant human TSHR extracellular domain, thyroglobulin, and TSHR peptides were examined on the day of surgery or RAI therapy (day 0) and also 6-8 weeks and 3-6 months thereafter. Reactivity to TSHR peptides before surgery was heterogeneous and spanned the entire extracellular domain. Six to 8 weeks after subtotal thyroidectomy, the number of patients` PBMC responding to any peptide and the average number of recognized peptides decreased. A further decrease in the T cell reactivity to TSHR peptides was observed 3-6 months after surgery. The responses of PBMC from Graves` patients before RAI therapy were less than those in the presurgical group. Six to 8 weeks after RAI therapy, the number of patients responding to any peptide and the average number of recognized peptides increased. Three to 6 months after RAI, T cell responses to TSHR peptides were less than those 6-8 weeks after RAI therapy, but still higher than the values on day 0. Responses of PBMC from patients with GD, maintained euthyroid on ATD, were lower than those before surgery or RAI therapy. The reactivity of T cell lines in different groups reflected a pattern similar to PBMC after treatment. TSHR antibody and microsomal antibody levels decreased after surgery, but increased after RAI therapy. The difference in the number of recognized peptides by patients` PBMC before RAI and surgery may reflect the effect of long term therapy with ATD in the patients before RAI vs. the shorter period in patients before surgery. 38 refs., 2 figs., 5 tabs.

  3. DNA ALTERATIONS

    EPA Science Inventory

    The exposure of an organism to genotoxic chemicals may induce a cascade of genetic events. nitially, structural alterations to DNA are formed. ext, the DNA damage is processed and subsequently expressed in mutant gene products. inally, diseases result from the genetic damage. he ...

  4. Shades of T790M – intratumor heterogeneity in EGFR mutant lung cancer

    PubMed Central

    Ichihara, Eiki; Lovly, Christine M.

    2015-01-01

    Summary In the setting of recent exciting clinical results and numerous on-going trials, Piotrowska and colleagues explore mechanisms of acquired resistance to the mutant specific EGFR inhibitor, rociletinib, and demonstrate that loss of T790M, EGFR amplification, and small cell transformation are all clinically relevant mechanisms of drug resistance. They provide a new paradigm for using quantitative assessment of the ratio EGFR T790M/activation mutation allele frequency to prognosticate responses to rociletinib and also demonstrate that plasma based assessments of circulating tumor DNA can be used to monitor drug response and the emergence of drug resistance. PMID:26152920

  5. Locoregional cancer therapy using polymer-based drug depots.

    PubMed

    Ramazani, Farshad; van Nostrum, Cornelis F; Storm, Gert; Kiessling, Fabian; Lammers, Twan; Hennink, Wim E; Kok, Robbert J

    2016-04-01

    Locoregional delivery of anticancer drugs is an attractive approach to minimize adverse effects associated with intravenous chemotherapy. Polymer-based drug depots injected or implanted intratumorally or adjacent to the tumor can provide long-term local drug exposure. This review highlights studies in which drug-eluting depots have been applied locally in the treatment of cancer. In many cases such drug depots are used for prevention of tumor recurrence after surgery to eradicate remaining tumor cells. Clinical success has been reported for the treatment of brain cancer and liver cancer, and preclinical studies showed proof-of-concept for inhaled drug depots in lung cancer and intraperitoneally injected depots for the treatment of abdominal cancer. PMID:26969576

  6. A Threshold Level of Intratumor CD8+ T-cell PD1 Expression Dictates Therapeutic Response to Anti-PD1.

    PubMed

    Ngiow, Shin Foong; Young, Arabella; Jacquelot, Nicolas; Yamazaki, Takahiro; Enot, David; Zitvogel, Laurence; Smyth, Mark J

    2015-09-15

    Despite successes, thus far, a significant proportion of the patients treated with anti-PD1 antibodies have failed to respond. We use mouse tumor models of anti-PD1 sensitivity and resistance and flow cytometry to assess tumor-infiltrating immune cells immediately after therapy. We demonstrate that the expression levels of T-cell PD1 (PD1(lo)), myeloid, and T-cell PDL1 (PDL1(hi)) in the tumor microenvironment inversely correlate and dictate the efficacy of anti-PD1 mAb and function of intratumor CD8(+) T cells. In sensitive tumors, we reveal a threshold for PD1 downregulation on tumor-infiltrating CD8(+) T cells below which the release of adaptive immune resistance is achieved. In contrast, PD1(hi) T cells in resistant tumors fail to be rescued by anti-PD1 therapy and remain dysfunctional unless intratumor PDL1(lo) immune cells are targeted. Intratumor Tregs are partly responsible for the development of anti-PD1-resistant tumors and PD1(hi) CD8(+) T cells. Our analyses provide a framework to interrogate intratumor CD8(+) T-cell PD1 and immune PDL1 levels and response in human cancer. PMID:26208901

  7. Differentiating intratumoral melanocytes from Langerhans cells in nonmelanocytic pigmented skin tumors in vivo by label-free third-harmonic generation microscopy

    NASA Astrophysics Data System (ADS)

    Weng, Wei-Hung; Liao, Yi-Hua; Tsai, Ming-Rung; Wei, Ming-Liang; Huang, Hsin-Yi; Sun, Chi-Kuang

    2016-07-01

    Morphology and distribution of melanocytes are critical imaging information for the diagnosis of melanocytic lesions. However, how to image intratumoral melanocytes noninvasively in pigmented skin tumors is seldom investigated. Third-harmonic generation (THG) is shown to be enhanced by melanin, whereas high accuracy has been demonstrated using THG microscopy for in vivo differential diagnosis of nonmelanocytic pigmented skin tumors. It is thus desirable to investigate if label-free THG microscopy was capable to in vivo identify intratumoral melanocytes. In this study, histopathological correlations of label-free THG images with the immunohistochemical images stained with human melanoma black (HMB)-45 and cluster of differentiation 1a (CD1a) were made. The correlation results indicated that the intratumoral THG-bright dendritic-cell-like signals were endogenously derived from melanocytes rather than Langerhans cells (LCs). The consistency between THG-bright dendritic-cell-like signals and HMB-45 melanocyte staining showed a kappa coefficient of 0.807, 84.6% sensitivity, and 95% specificity. In contrast, a kappa coefficient of -0.37, 21.7% sensitivity, and 30% specificity were noted between the THG-bright dendritic-cell-like signals and CD1a staining for LCs. Our study indicates the capability of noninvasive label-free THG microscopy to differentiate intratumoral melanocytes from LCs, which is not feasible in previous in vivo label-free clinical-imaging modalities.

  8. Limited Role for Biliary Stent as Surrogate Fiducial Marker in Pancreatic Cancer: Stent and Intratumoral Fiducials Compared

    SciTech Connect

    Horst, Astrid van der; Lens, Eelco; Wognum, Silvia; Jong, Rianne de; Hooft, Jeanin E. van; Tienhoven, Geertjan van; Bel, Arjan

    2014-07-01

    Purpose: Because of low soft-tissue contrast of cone beam computed tomography (CBCT), fiducial markers are often used for radiation therapy patient setup verification. For pancreatic cancer patients, biliary stents have been suggested as surrogate fiducials. Using intratumoral fiducials as standard for tumor position, this study aims to quantify the suitability of biliary stents for measuring interfractional and respiratory-induced position variations of pancreatic tumors. Methods and Materials: Eleven pancreatic cancer patients with intratumoral fiducials and a biliary stent were included in this study. Daily CBCT scans (243 in total) were registered with a reference CT scan, based on bony anatomy, on fiducial markers, and on the biliary stent, respectively. We analyzed the differences in tumor position (ie, markers center-of-mass position) among these 3 registrations. In addition, we measured for 9 patients the magnitude of respiratory-induced motion (MM) of the markers and of the stent on 4-dimensional CT (4DCT) and determined the difference between these 2 magnitudes (ΔMM). Results: The stent indicated tumor position better than bony anatomy in 67% of fractions; the absolute difference between the markers and stent registration was >5 mm in 46% of fractions and >10 mm in 20% of fractions. Large PTV margins (superior-inferior direction, >19 mm) would be needed to account for this interfractional position variability. On 4DCT, we found in superior-inferior direction a mean ΔMM of 0.5 mm (range, –2.6 to 4.2 mm). Conclusions: For respiratory-induced motion, the mean ΔMM is small, but for individual patients the absolute difference can be >4 mm. For interfractional position variations, a stent is, on average, a better surrogate fiducial than bony anatomy, but large PTV margins would still be required. Therefore, intratumoral fiducials are recommended for online setup verification for all pancreatic patients scheduled for radiation therapy, including

  9. 21 CFR 882.5320 - Preformed alterable cranioplasty plate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Preformed alterable cranioplasty plate. 882.5320 Section 882.5320 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES..., that can be altered or reshaped at the time of surgery without changing the chemical behavior of...

  10. 21 CFR 882.5320 - Preformed alterable cranioplasty plate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Preformed alterable cranioplasty plate. 882.5320 Section 882.5320 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES..., that can be altered or reshaped at the time of surgery without changing the chemical behavior of...

  11. 21 CFR 882.5320 - Preformed alterable cranioplasty plate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Preformed alterable cranioplasty plate. 882.5320 Section 882.5320 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES..., that can be altered or reshaped at the time of surgery without changing the chemical behavior of...

  12. Cervicomedullary intramedullary peripheral primitive neuroectodermal tumor with intratumoral bleed: Report of one case and review of literature

    PubMed Central

    Sharma, Pradeep; Das, Kuntal K; Mehrotra, Anant; Srivastava, Arun K; Sahu, Rabi N; Jaiswal, Awadhesh; Pandey, Rakesh; Behari, Sanjay; Bhaisora, Kamlesh S; Sardhara, Jayesh

    2016-01-01

    Primitive neuroectodermal tumors (PNET) are highly malignant, yet relatively uncommon neoplasms of the central nervous system. Although a host of different parts of the nervous system can be affected, intramedullary location of PNET is extremely rare. Most reports on intramedullary PNET have reported central PNET (cPNET); peripheral PNET (pPNET) affecting intramedullary spinal location is extremely rare. Till now, seven such cases of intramedullary pPNET have been described in medical literature in English. Here, we report an 11-year-old boy with cervicomedullary junction intramedullary pPNET who presented with intratumoral bleed, wherein the clinical presentation and radiological features gave us no clue preoperatively about the underlying diagnosis. In this report, we additionally review certain salient aspects of this dreaded disease in light of the existing evidence. PMID:27217659

  13. Bimodality of intratumor Ki67 expression is an independent prognostic factor of overall survival in patients with invasive breast carcinoma.

    PubMed

    Laurinavicius, Arvydas; Plancoulaine, Benoit; Rasmusson, Allan; Besusparis, Justinas; Augulis, Renaldas; Meskauskas, Raimundas; Herlin, Paulette; Laurinaviciene, Aida; Abdelhadi Muftah, Abir A; Miligy, Islam; Aleskandarany, Mohammed; Rakha, Emad A; Green, Andrew R; Ellis, Ian O

    2016-04-01

    Proliferative activity, assessed by Ki67 immunohistochemistry (IHC), is an established prognostic and predictive biomarker of breast cancer (BC). However, it remains under-utilized due to lack of standardized robust measurement methodologies and significant intratumor heterogeneity of expression. A recently proposed methodology for IHC biomarker assessment in whole slide images (WSI), based on systematic subsampling of tissue information extracted by digital image analysis (DIA) into hexagonal tiling arrays, enables computation of a comprehensive set of Ki67 indicators, including intratumor variability. In this study, the tiling methodology was applied to assess Ki67 expression in WSI of 152 surgically removed Ki67-stained (on full-face sections) BC specimens and to test which, if any, Ki67 indicators can predict overall survival (OS). Visual Ki67 IHC estimates and conventional clinico-pathologic parameters were also included in the study. Analysis revealed linearly independent intrinsic factors of the Ki67 IHC variance: proliferation (level of expression), disordered texture (entropy), tumor size and Nottingham Prognostic Index, bimodality, and correlation. All visual and DIA-generated indicators of the level of Ki67 expression provided significant cutoff values as single predictors of OS. However, only bimodality indicators (Ashman's D, in particular) were independent predictors of OS in the context of hormone receptor and HER2 status. From this, we conclude that spatial heterogeneity of proliferative tumor activity, measured by DIA of Ki67 IHC expression and analyzed by the hexagonal tiling approach, can serve as an independent prognostic indicator of OS in BC patients that outperforms the prognostic power of the level of proliferative activity. PMID:26818835

  14. A histological evaluation and in vivo assessment of intratumoral near infrared photothermal nanotherapy-induced tumor regression

    PubMed Central

    Green, Hadiyah N; Crockett, Stephanie D; Martyshkin, Dmitry V; Singh, Karan P; Grizzle, William E; Rosenthal, Eben L; Mirov, Sergey B

    2014-01-01

    Purpose Nanoparticle (NP)-enabled near infrared (NIR) photothermal therapy has realized limited success in in vivo studies as a potential localized cancer therapy. This is primarily due to a lack of successful methods that can prevent NP uptake by the reticuloendothelial system, especially the liver and kidney, and deliver sufficient quantities of intravenously injected NPs to the tumor site. Histological evaluation of photothermal therapy-induced tumor regression is also neglected in the current literature. This report demonstrates and histologically evaluates the in vivo potential of NIR photothermal therapy by circumventing the challenges of intravenous NP delivery and tumor targeting found in other photothermal therapy studies. Methods Subcutaneous Cal 27 squamous cell carcinoma xenografts received photothermal nanotherapy treatments, radial injections of polyethylene glycol (PEG)-ylated gold nanorods and one NIR 785 nm laser irradiation for 10 minutes at 9.5 W/cm2. Tumor response was measured for 10–15 days, gross changes in tumor size were evaluated, and the remaining tumors or scar tissues were excised and histologically analyzed. Results The single treatment of intratumoral nanorod injections followed by a 10 minute NIR laser treatment also known as photothermal nanotherapy, resulted in ~100% tumor regression in ~90% of treated tumors, which was statistically significant in a comparison to the average of all three control groups over time (P<0.01). Conclusion Photothermal nanotherapy, or intratumoral nanorod injections followed by NIR laser irradiation of tumors and tumor margins, demonstrate the potential of NIR photothermal therapy as a viable localized treatment approach for primary and early stage tumors, and prevents NP uptake by the reticuloendothelial system. PMID:25395847

  15. PEG-rIL-10 treatment decreases FoxP3(+) Tregs despite upregulation of intratumoral IDO.

    PubMed

    Chan, Ivan H; Wu, Victoria; Bilardello, Melissa; Jorgenson, Brett; Bal, Harminder; McCauley, Scott; Van Vlasselaer, Peter; Mumm, John B

    2016-07-01

    IL-10 has been classically defined as a broad-spectrum immunosuppressant and is thought to facilitate the development of regulatory CD4(+) T cells. IL-10 is believed to represent one of the major suppressive factors secreted by IDO(+)FoxP3(+)CD4(+) Tregs. Contrary to this view, we have previously reported that PEGylated recombinant IL-10 (PEG-rIL-10) treatment of mice induces potent IFNγ and CD8(+) T-cell-dependent antitumor immunity. This hypothesis is currently being tested in clinical trials and we have reported that treatment of cancer patients with PEG-rHuIL-10 results in inhibition and regression of tumor growth as well as increased serum IFNγ. We have continued to assess PEG-rIL-10's pleiotropic effects and report that treatment of tumor-bearing mice and humans with PEG-rIL-10 increases intratumoral indoleamine 2, 3-dioxygenase (IDO) in an IFNγ-dependent manner. This should result in an increase in Tregs, but paradoxically our data illustrate that PEG-rIL-10 treatment of mice reduces intratumoral FoxP3(+)CD4(+) T cells in an IDO-independent manner. Additional investigation indicates that PEG-rIL-10 inhibits TGFβ/IL-2-dependent in vitro polarization of FoxP3(+)CD4(+) Tregs and potentiates IFNγ(+)T-bet(+)CD4(+) T cells. These data suggest that rather than acting as an immunosuppressant, PEG-rIL-10 may counteract the FoxP3(+)CD4(+) Treg suppressive milieu in tumor-bearing mice and humans, thereby further facilitating PEG-rIL-10's potent antitumor immunity. PMID:27622052

  16. Nanoparticles for Targeting Intratumoral Hypoxia: Exploiting a Potential Weakness of Glioblastoma.

    PubMed

    Aldea, Mihaela; Florian, Ioan Alexandru; Kacso, Gabriel; Craciun, Lucian; Boca, Sanda; Soritau, Olga; Florian, Ioan Stefan

    2016-09-01

    Extensive hypoxic regions are the daunting hallmark of glioblastoma, as they host aggressive stem-like cells, hinder drug delivery and shield cancer cells from the effects of radiotherapy. Nanotechnology could address most of these issues, as it employs nanoparticles (NPs) carrying drugs that selectively accumulate and achieve controlled drug release in tumor tissues. Methods overcoming the stiff interstitium and scarce vascularity within hypoxic zones include the incorporation of collagenases to degrade the collagen-rich tumor extracellular matrix, the use of multistage systems that progressively reduce NP size or of NP-loaded cells that display inherent hypoxia-targeting abilities. The unfavorable hypoxia-induced low pH could be converted into a therapeutical advantage by pH-responsive NPs or multilayer NPs, while overexpressed markers of hypoxic cells could be specifically targeted for an enhanced preferential drug delivery. Finally, promising new gene therapeutics could also be incorporated into nanovehicles, which could lead to silencing of hypoxia-specific genes that are overexpressed in cancer cells. In this review, we highlight NPs which have shown promising results in targeting cancer hypoxia and we discuss their applicability in glioblastoma, as well as possible limitations. Novel research directions in this field are also considered. PMID:27230936

  17. Phenotypic drug profiling in droplet microfluidics for better targeting of drug-resistant tumors

    PubMed Central

    Sarkar, S.; Cohen, N.; Sabhachandani, P.; Konry, T.

    2015-01-01

    Acquired drug resistance is a key factor in the failure of chemotherapy. Due to intratumoral heterogeneity, cancer cells depict variations in intracellular drug uptake and efflux at the single cell level, which may not be detectable in bulk assays. In this study we present a droplet microfluidics-based approach to assess the dynamics of drug uptake, efflux and cytotoxicity in drug-sensitive and drug-resistant breast cancer cells. An integrated droplet generation and docking microarray was utilized to encapsulate single cells as well as homotypic cell aggregates. Drug-sensitive cells showed greater death in the presence or absence of Doxorubicin (Dox) compared to the drug-resistant cells. We observed heterogeneous Dox uptake in individual drug-sensitive cells while the drug-resistant cells showed uniformly low uptake and retention. Dox-resistant cells were classified into distinct subsets based on their efflux properties. Cells that showed longer retention of extracellular reagents also demonstrated maximal death. We further observed homotypic fusion of both cell types in droplets, which resulted in increased cell survival in the presence of high doses of Dox. Our results establish the applicability of this microfluidic platform for quantitative drug screening in single cells and multicellular interactions. PMID:26456240

  18. Phenotypic drug profiling in droplet microfluidics for better targeting of drug-resistant tumors.

    PubMed

    Sarkar, S; Cohen, N; Sabhachandani, P; Konry, T

    2015-12-01

    Acquired drug resistance is a key factor in the failure of chemotherapy. Due to intratumoral heterogeneity, cancer cells depict variations in intracellular drug uptake and efflux at the single cell level, which may not be detectable in bulk assays. In this study we present a droplet microfluidics-based approach to assess the dynamics of drug uptake, efflux and cytotoxicity in drug-sensitive and drug-resistant breast cancer cells. An integrated droplet generation and docking microarray was utilized to encapsulate single cells as well as homotypic cell aggregates. Drug-sensitive cells showed greater death in the presence or absence of Doxorubicin (Dox) compared to the drug-resistant cells. We observed heterogeneous Dox uptake in individual drug-sensitive cells while the drug-resistant cells showed uniformly low uptake and retention. Dox-resistant cells were classified into distinct subsets based on their efflux properties. Cells that showed longer retention of extracellular reagents also demonstrated maximal death. We further observed homotypic fusion of both cell types in droplets, which resulted in increased cell survival in the presence of high doses of Dox. Our results establish the applicability of this microfluidic platform for quantitative drug screening in single cells and multicellular interactions. PMID:26456240

  19. Properties of myelin altered peptide ligand cyclo(87-99)(Ala91,Ala96)MBP87-99 render it a promising drug lead for immunotherapy of multiple sclerosis.

    PubMed

    Deraos, George; Rodi, Maria; Kalbacher, Hubert; Chatzantoni, Kokona; Karagiannis, Fotios; Synodinos, Loukas; Plotas, Panayiotis; Papalois, Apostolos; Dimisianos, Nikolaos; Papathanasopoulos, Panagiotis; Gatos, Dimitrios; Tselios, Theodore; Apostolopoulos, Vasso; Mouzaki, Athanasia; Matsoukas, John

    2015-08-28

    Multiple sclerosis (MS) is an inflammatory, demyelinating disease of the central nervous system, and it has been established that autoreactive T helper (Th) cells play a crucial role in its pathogenesis. Myelin basic protein (MBP) epitopes are major autoantigens in MS, and the sequence MBP87-99 is an immunodominant epitope. We have previously reported that MBP87-99 peptides with modifications at principal T-cell receptor (TCR) contact sites suppressed the induction of EAE symptoms in rats and SJL/J mice, diverted the immune response from Th1 to Th2 and generated antibodies that did not cross react with the native MBP protein. In this study, the linear and cyclic analogs of the MBP87-99 epitope, namely linear (Ala91,Ala96)MBP87-99 (P2) and cyclo(87-99)(Ala91,Ala96)MBP87-99 (P3), were evaluated for their binding to HLA-DR4, stability to lysosomal enzymes, their effect on cytokine secretion by peripheral blood mononuclear cells (PBMC) derived from MS patients or healthy subjects (controls), and their effect in rat EAE. P1 peptide (wild-type, MBP87-99) was used as control. P2 and P3 did not alter significantly the cytokine secretion by control PBMC, in contrast to P1 that induced moderate IL-10 production. In MS PBMC, P2 and P3 induced the production of IL-2 and IFN-γ, with a simultaneous decrease of IL-10, whereas P1 caused a reduction of IL-10 secretion only. The cellular response to P3 indicated that cyclization did not affect the critical TCR contact sites in MS PBMC. Interestingly, the cyclic P3 analog was found to be a stronger binder to HLA-DR4 compared to linear P2. Moreover, cyclic P3 was more stable to proteolysis compared to linear P2. Finally, both P2 and P3 suppressed EAE induced by an encephalitogenic guinea pig MBP74-85 epitope in Lewis rats whereas P1 failed to do so. In conclusion, cyclization of myelin altered peptide ligand (Ala91,Ala96)MBP87-99 improved binding affinity to HLA-DR4, resistance to proteolysis and antigen-specific immunomodulation

  20. Treatment of liver cancer in mice by the intratumoral injection of an octreotide-based temperature‑sensitive gel.

    PubMed

    Zhang, Lili; Yu, Su; Duan, Zhijun; Wang, Qiuming; Tian, Ge; Tian, Yan; Zhao, Wei; Wang, Hui; Zhang, Cuiling; Guo, Shibin; Liu, Qigui; He, Gaohong; Bian, Tengfei; Chang, Jiuyang; Jin, Xue; Cui, Dongsheng

    2014-01-01

    Octreotide (OCT) can inhibit tumor growth with few side‑effects. In this study, we hypothesized that an OCT- and poloxamer 407 (P407)-based temperature‑sensitive gel may compensate for the short half‑life of OCT, which may thus lead to the development of a novel therapy for patients with end‑stage liver cancer by intratumoral injection. The proliferation and apoptosis of mouse Hca‑F hepatocellular carcinoma cells were determined by MTT assay and Annexin V‑PI staining. A mouse model of hepatocellular carcinoma was established by the subcutaneous transplantion of Hca‑F cells and OCT‑P407 or OCT solution were injected into the tumors, followed by the detection of OCT levels by high performance liquid chromatography (HPLC) over a specific time period. OCT‑P407, ethanol, OCT, P407 or normal saline (NS) were injected into the tumors and the tumor size, weight and inhibition rate were measured 8 days later. Additionally, the expression of somatostatin receptor‑2 (SSTR‑2), vascular endothelial growth factor (VEGF) and caspase‑3 was detected by immunohistochemistry and RT‑PCR. Compared with the OCT group, the tumor inhibition rate and the apoptotic rate in the OCT‑P407 group were higher and the effects were longer. The tumor size and weight in the OCT‑P407 group were lower and the tumor inhibition rate higher compared with the OCT, P407 and NS groups, with the exception of the ethanol group. The protein and mRNA expression of SSTR‑2 and caspase‑3 in the OCT‑P407 group was higher, and that of VEFG was lower compared with the other groups, with the exception of the ethanol group. In the present study, we demonstrate that the intratumoral injection of OCT‑P407 maintains OCT local effective concentration and prolongs its action time, with a greater therapeutic effect than that of OCT on its own. Although ethanol is more effective in certain aspects, its tumor inhibitory effects are similar to OCT‑P407 and as such, OCT‑P407 may be a

  1. Evaluating dynamic contrast-enhanced and photoacoustic CT to assess intra-tumor heterogeneity in xenograft mouse models

    NASA Astrophysics Data System (ADS)

    Stantz, Keith M.; Liu, Bo; Cao, Minsong; Reinecke, Dan; Dzemidzic, Mario; Liang, Yun; Kruger, Robert

    2006-03-01

    Purpose: To evaluate photoacoustic CT spectroscopy (PCT-S) and dynamic contrast-enhanced CT (DCE-CT) ability to measure parameters - oxygen saturation and vascular physiology - associated with the intra-tumor oxygenation status. Material and Methods: Breast (VEGF165 enhance MCF-7) and ovarian (SKOV3x) cancer cells were implanted into the fat pads and flanks of immune deficient mice and allowed to grow to a diameter of 8-15 mm. CT was used to determine physiological parameters by acquiring a sequence of scans over a 10 minute period after an i.v. injection of a radio-opaque contrast agent (Isovue). These time-dependent contrast-enhanced curves were fit to a two-compartmental model determining tumor perfusion, fractional plasma volume, permeability-surface area produce, and fractional interstitial volume on a voxel-by-voxel basis. After which, the tumors were imaged using photoacoustic CT (Optosonics, Inc., Indianapolis, IN 46202). The near infrared spectra (700-910 nm) within the vasculature was fit to linear combination of measured oxy- and deoxy-hemoglobin blood samples to obtain oxygen saturation levels (SaO II). Results: The PCT-S scanner was first calibrated using different samples of oxygenated blood, from which a statistical error ranging from 2.5-6.5% was measured and a plot of the hemoglobin dissociation curve was consistent with empirical formula. In vivo determination of tumor vasculature SaO II levels were measurably tracked, and spatially correlated to the periphery of the tumor. Tumor depend variations in SaO II - 0.32 (ovarian) and 0.60 (breast) - and in vascular physiology - perfusion, 1.03 and 0.063 mL/min/mL, and fractional plasma volume, 0.20 and 0.07 - were observed. Conclusion: Combined, PCT-S and CED-CT has the potential to measure intra-tumor levels of tumor oxygen saturation and vascular physiology, key parameters associated with hypoxia.

  2. Intratumoral delivery of encapsulated IL-12, IL-18 and TNF-alpha in a model of metastatic breast cancer.

    PubMed

    Sabel, Michael S; Su, Gang; Griffith, Kent A; Chang, Alfred E

    2010-07-01

    Intratumoral (i.t.) cytokine release through the use of poly-lactic acid microspheres (PLAM) holds tremendous potential for the immunotherapy of breast cancer as it harnesses the immunologic potential of autologous tumor in a clinically feasible and minimally toxic manner. We examined the potential of combinations of i.t. IL-12, IL-18 and TNF-alpha PLAM to generate a tumor-specific immune response and improve outcome in a model of metastatic breast cancer. Balb/c mice with established 4T1 mammary carcinomas were treated with a single injection of BSA, IL-12, IL-18 or TNF-alpha-loaded PLAM alone or in combination after spontaneous metastases occurred. Combined treatment with IL-12 and TNF-alpha PLAM was superior to all other treatments, including the triple combination of IL-12, IL-18 and TNF-alpha in ablation of the primary tumor, eradicating distant disease and enhancing survival. Simultaneous delivery of IL-12 and TNF-alpha was superior to sequential delivery of IL-12 followed by TNF-alpha, but not TNF-alpha followed by IL-12. In vivo lymphocyte depletion studies established that the effects of IL-12 alone are mediated primarily by NK cells, while the combination of IL-12 and TNF-alpha is dependent upon CD8+ T-cells. Only the combination of IL-12 and TNF-alpha results in an increase in both CD4+ and CD8+ T-cells and a reduction in CD4+CD25+ cells. While there was no change in the dendritic cell population, IL-12 and TNF-alpha resulted in a dramatic increase in DC maturation and antigen presentation. Neoadjuvant immunotherapy with simultaneous intratumoral delivery of IL-12 and TNF-alpha PLAM augments DC antigen presentation and increases cytotoxic T-cells without increasing regulatory T-cells, resulting in a T-cell based anti-tumor immune response capable of eradicating disseminated disease. The addition of IL-18 did not improve the efficacy. PMID:19802695

  3. Intratumoral CD4+CD25+ regulatory T-cell-mediated suppression of infiltrating CD4+ T cells in B-cell non-Hodgkin lymphoma

    PubMed Central

    Yang, Zhi-Zhang; Novak, Anne J.; Stenson, Mary J.; Witzig, Thomas E.; Ansell, Stephen M.

    2006-01-01

    Most non-Hodgkin lymphomas (NHLs) are of B-cell origin, but the tumor tissue can be variably infiltrated with T cells. In the present study, we have identified a subset of CD4+CD25+ T cells with high levels of CTLA-4 and Foxp3 (intratumoral Treg cells) that are overrepresented in biopsy specimens of B-cell NHL (median of 17% in lymphoma biopsies, 12% in inflammatory tonsil, and 6% in tumor-free lymph nodes; P = .001). We found that these CD4+CD25+ T cells suppressed the proliferation and cytokine (IFN-γ and IL-4) production of infiltrating CD4+CD25- T cells in response to PHA stimulation. PD-1 was found to be constitutively and exclusively expressed on a subset of infiltrating CD4+CD25- T cells, and B7-H1 could be induced on intratumoral CD4+CD25+ T cells in B-cell NHL. Anti-B7-H1 antibody or PD-1 fusion protein partly restored the proliferation of infiltrating CD4+CD25- T cells when cocultured with intratumoral Treg cells. Finally, we found that CCL22 secreted by lymphoma B cells is involved in the chemotaxis and migration of intratumoral Treg cells that express CCR4, but not CCR8. Taken together, our results suggest that Treg cells are highly represented in the area of B-cell NHL and that malignant B cells are involved in the recruitment of these cells into the area of lymphoma. PMID:16403912

  4. Intratumoral hu14.18-IL-2 (IC) induces local and systemic antitumor effects that involve both activated T and NK cells as well as enhanced IC retention.

    PubMed

    Yang, Richard K; Kalogriopoulos, Nicholas A; Rakhmilevich, Alexander L; Ranheim, Erik A; Seo, Songwon; Kim, Kyungmann; Alderson, Kory L; Gan, Jacek; Reisfeld, Ralph A; Gillies, Stephen D; Hank, Jacquelyn A; Sondel, Paul M

    2012-09-01

    hu14.18-IL-2 (IC) is an immunocytokine consisting of human IL-2 linked to hu14.18 mAb, which recognizes the GD2 disialoganglioside. Phase 2 clinical trials of i.v. hu14.18-IL-2 (i.v.-IC) in neuroblastoma and melanoma are underway and have already demonstrated activity in neuroblastoma. We showed previously that intratumoral hu14.18-IL-2 (IT-IC) results in enhanced antitumor activity in mouse models compared with i.v.-IC. The studies presented in this article were designed to determine the mechanisms involved in this enhanced activity and to support the future clinical testing of intratumoral administration of immunocytokines. Improved survival and inhibition of growth of both local and distant tumors were observed in A/J mice bearing s.c. NXS2 neuroblastomas treated with IT-IC compared with those treated with i.v.-IC or control mice. The local and systemic antitumor effects of IT-IC were inhibited by depletion of NK cells or T cells. IT-IC resulted in increased NKG2D receptors on intratumoral NKG2A/C/E⁺ NKp46⁺ NK cells and NKG2A/C/E⁺ CD8⁺ T cells compared with control mice or mice treated with i.v.-IC. NKG2D levels were augmented more in tumor-infiltrating lymphocytes compared with splenocytes, supporting the localized nature of the intratumoral changes induced by IT-IC treatment. Prolonged retention of IC at the tumor site was seen with IT-IC compared with i.v.-IC. Overall, IT-IC resulted in increased numbers of activated T and NK cells within tumors, better IC retention in the tumor, enhanced inhibition of tumor growth, and improved survival compared with i.v.-IC. PMID:22844125

  5. Phase I study to evaluate toxicity and feasibility of intratumoral injection of α-gal glycolipids in patients with advanced melanoma.

    PubMed

    Albertini, Mark R; Ranheim, Erik A; Zuleger, Cindy L; Sondel, Paul M; Hank, Jacquelyn A; Bridges, Alan; Newton, Michael A; McFarland, Thomas; Collins, Jennifer; Clements, Erin; Henry, Mary Beth; Neuman, Heather B; Weber, Sharon; Whalen, Giles; Galili, Uri

    2016-08-01

    Effective uptake of tumor cell-derived antigens by antigen-presenting cells is achieved pre-clinically by in situ labeling of tumor with α-gal glycolipids that bind the naturally occurring anti-Gal antibody. We evaluated toxicity and feasibility of intratumoral injections of α-gal glycolipids as an autologous tumor antigen-targeted immunotherapy in melanoma patients (pts). Pts with unresectable metastatic melanoma, at least one cutaneous, subcutaneous, or palpable lymph node metastasis, and serum anti-Gal titer ≥1:50 were eligible for two intratumoral α-gal glycolipid injections given 4 weeks apart (cohort I: 0.1 mg/injection; cohort II: 1.0 mg/injection; cohort III: 10 mg/injection). Monitoring included blood for clinical, autoimmune, and immunological analyses and core tumor biopsies. Treatment outcome was determined 8 weeks after the first α-gal glycolipid injection. Nine pts received two intratumoral injections of α-gal glycolipids (3 pts/cohort). Injection-site toxicity was mild, and no systemic toxicity or autoimmunity could be attributed to the therapy. Two pts had stable disease by RECIST lasting 8 and 7 months. Tumor nodule biopsies revealed minimal to no change in inflammatory infiltrate between pre- and post-treatment biopsies except for 1 pt (cohort III) with a post-treatment inflammatory infiltrate. Two and four weeks post-injection, treated nodules in 5 of 9 pts exhibited tumor cell necrosis without neutrophilic or lymphocytic inflammatory response. Non-treated tumor nodules in 2 of 4 evaluable pts also showed necrosis. Repeated intratumoral injections of α-gal glycolipids are well tolerated, and tumor necrosis was seen in some tumor nodule biopsies after tumor injection with α-gal glycolipids. PMID:27207605

  6. Radiofrequency Ablation Before Intratumoral Injection of 131I-chTNT Improves the Tumor-to-Normal Tissue Ratio in Solid VX2 Tumor

    PubMed Central

    Zheng, Shu-Guang; Lu, Ming-De; Yue, Dian-Chao; Xie, Xiao-Yan; Liu, Guang-Jian

    2013-01-01

    Abstract Purpose This study was aimed to investigate whether the tumor necrosis induced by radiofrequency ablation (RFA) can improve the ratio of tumor-to-normal tissue (T/NT) after intratumoral injection of 131I-chTNT. Materials and Method Eighteen New Zealand rabbits bearing VX2 tumor on the thigh were randomly divided into two treatment groups (control group: intratumoral injection of 131I-chTNT alone; RFA group: RFA + intratumoral injection of 131I-chTNT 3 days after RFA) and each group was further divided into three subgroups I, II, and III (1–2 cm, 2–3 cm, and 3–4 cm in maximum diameter, respectively), by the tumor size. SPECT was performed to evaluate the T/NT on days 1, 8, and 15 after 131I-chTNT injection. Results After treatment, all rabbits underwent the SPECT whole-body scan and the T/NT was analyzed. The results showed that T/NT in the RFA group (55.45±41.83) was significantly higher compared with the control group (7.23±5.61) (F=18.89, p=0.001). Meanwhile, a linear ascending trend was found for T/NT in the RFA group along with the follow-up time (r=0.47, p=0.01). The tumor size or the dose of 131I-TNT injection had no significant effect on the variation of T/NT in both groups (p>0.05). Conclusion RFA before intratumoral injection of 131I-chTNT can dramatically improve T/NT, demonstrating the potential application of this combination therapy. PMID:23964639

  7. Multiwalled Nanotubes Formed by Catanionic Mixtures of Drug Amphiphiles

    PubMed Central

    2015-01-01

    Mixing of oppositely charged amphiphilic molecules (catanionic mixing) offers an attractive strategy to produce morphologies different from those formed by individual molecules. We report here on the use of catanionic mixing of anticancer drug amphiphiles to construct multiwalled nanotubes containing a fixed and high drug loading. We found that the molecular mixing ratio, the solvent composition, the overall drug concentrations, as well as the molecular design of the studied amphiphiles are all important experimental parameters contributing to the tubular morphology. We believe these results demonstrate the remarkable potential that anticancer drugs could offer to self-assemble into discrete nanostructures and also provide important insight into the formation mechanism of nanotubes by catanionic mixtures. Our preliminary animal studies reveal that the CPT nanotubes show significantly prolonged retention time in the tumor site after intratumoral injection. PMID:25415538

  8. Intratumoral application of standardized mistletoe extracts down regulates tumor weight via decreased cell proliferation, increased apoptosis and necrosis in a murine model.

    PubMed

    Beuth, J; Ko, H L; Schneider, H; Tawadros, S; Kasper, H U; Zimst, H; Schierholz, J M

    2006-01-01

    The cytotoxic in vitro activity of standardized mistletoe extracts (ME) was examined by established assays towards the human ductal breast carcinoma cell line BT474. A dose-dependent (optimum 25 mg/mL medium) and significantly (p < 0.05) enhanced cytotoxic activity towards the BT474 cells was demonstrated. In vivo experiments on the antitumor activity of ME-A and ME-M were performed in a BALB/c-mouse / BT474 ductal breast carcinoma model. ME-A and ME-M were intratumorally administered according to an application schedule which was found to be optimal concerning dosage and time of administration. Standardized intratumoral application of ME-A and ME-M induced a significantly (p < 0.05) decreased tumor weight in experimental mice. Histological investigations were performed comprising analysis of mitosis and proliferation rates (Ki67 expression), as well as necrosis and apoptosis induction (ssDNA detection). As compared to tumors of control mice with intratumoral phosphate-buffered saline (PBS) injections, tumors of the ME-A and ME-M treated groups showed a decreased cell proliferation rate, as well as an increased cell necrosis and apoptosis rate. Standardized mistletoe extracts, interfering with defined tumor cell functions, e.g., proliferation, necrosis and apoptosis, may have an impact on local cancer treatment. PMID:17201168

  9. HIF-1alpha Expression Profile in Intratumoral and Peritumoral Inflammatory Cells as a Prognostic Marker for Squamous Cell Carcinoma of the Oral Cavity

    PubMed Central

    Mendes, Suzanny Oliveira; dos Santos, Marcelo; Peterle, Gabriela Tonini; Maia, Lucas de Lima; Stur, Elaine; Agostini, Lidiane Pignaton; de Carvalho, Marcos Brasilino; Tajara, Eloiza Helena; Louro, Iúri Drumond; Trivilin, Leonardo Oliveira; da Silva-Conforti, Adriana Madeira Álvares

    2014-01-01

    The HIF-1 transcriptional complex is responsible for controlling transcription of over 100 genes involved in cell hypoxia response. HIF-1alpha subunit is stabilized in hypoxia conditions, creating the HIF-1 nuclear transcription factor. In inflammatory cells, high HIF-1alpha expression induces lymphocytic immunosuppression, decreasing tumoral antigen recognition, which promotes tumor growth. The present work investigated the relationship between HIF-1alpha expression in lymphocytes populating the intratumoral and peritumoral region of 56 patients with oral cancer. Our data indicates a prognostic value for this expression. High HIF-1alpha expression in peritumoral inflammatory cells is significantly related to worse patient outcome, whereas high expression in the intratumoral lymphoid cells correlates with a better prognosis. A risk profile indicating the chance of disease relapse and death was designed based on HIF-1alpha expression in tumoral inflammatory cells, defining low, intermediate and high risks. This risk profile was able to determine that high HIF-1alpha expression in peritumoral cells correlates with worse prognosis, independently of intratumoral expression. Low HIF-1alpha in tumor margins and high expression in the tumor was considered a low risk profile, showing no cases of disease relapse and disease related death. Intermediate risk was associated with low expression in tumor and tumor margins. Our results suggest that HIF-1alpha expression in tumor and peritumoral inflammatory cells may play an important role as prognostic tumor marker. PMID:24416312

  10. Intratumoral gene therapy versus intravenous gene therapy for distant metastasis control with 2-diethylaminoethyl-dextran methyl methacrylate copolymer non-viral vector-p53.

    PubMed

    Baliaka, A; Zarogoulidis, P; Domvri, K; Hohenforst-Schmidt, W; Sakkas, A; Huang, H; Le Pivert, P; Koliakos, G; Koliakou, E; Kouzi-Koliakos, K; Tsakiridis, K; Chioti, A; Siotou, E; Cheva, A; Zarogoulidis, K; Sakkas, L

    2014-02-01

    Lung cancer still remains to be challenged by novel treatment modalities. Novel locally targeted routes of administration are a methodology to enhance treatment and reduce side effects. Intratumoral gene therapy is a method for local treatment and could be used either in early-stage lung cancer before surgery or at advanced stages as palliative care. Novel non-viral vectors are also in demand for efficient gene transfection to target local cancer tissue and at the same time protect the normal tissue. In the current study, C57BL/6 mice were divided into three groups: (a) control, (b) intravenous and (c) intatumoral gene therapy. The novel 2-Diethylaminoethyl-Dextran Methyl Methacrylate Copolymer Non-Viral Vector (Ryujyu Science Corporation) was conjugated with plasmid pSicop53 from the company Addgene for the first time. The aim of the study was to evaluate the safety and efficacy of targeted gene therapy in a Lewis lung cancer model. Indeed, although the pharmacokinetics of the different administration modalities differs, the intratumoral administration presented increased survival and decreased distant metastasis. Intratumoral gene therapy could be considered as an efficient local therapy for lung cancer. PMID:24285215

  11. Immunotherapy with MVA-BN®-HER2 induces HER-2-specific Th1 immunity and alters the intratumoral balance of effector and regulatory T cells.

    PubMed

    Mandl, Stefanie J; Rountree, Ryan B; Dalpozzo, Katie; Do, Lisa; Lombardo, John R; Schoonmaker, Peter L; Dirmeier, Ulrike; Steigerwald, Robin; Giffon, Thierry; Laus, Reiner; Delcayre, Alain

    2012-01-01

    MVA-BN®-HER2 is a new candidate immunotherapy designed for the treatment of HER-2-positive breast cancer. Here, we demonstrate that a single treatment with MVA-BN®-HER2 exerts potent anti-tumor efficacy in a murine model of experimental pulmonary metastasis. This anti-tumor efficacy occurred despite a strong tumor-mediated immunosuppressive environment characterized by a high frequency of regulatory T cells (T(reg)) in the lungs of tumor-bearing mice. Immunogenicity studies showed that treatment with MVA-BN®-HER2 induced strongly Th1-dominated HER-2-specific antibody and T-cell responses. MVA-BN®-HER2-induced anti-tumor activity was characterized by an increased infiltration of lungs with highly activated, HER-2-specific, CD8+CD11c+ T cells accompanied by a decrease in the frequency of T(reg) cells in the lung, resulting in a significantly increased ratio of effector T cells to T(reg) cells. In contrast, administration of HER2 protein formulated in Complete Freund's Adjuvant (CFA) induced a strongly Th2-biased immune response to HER-2. However, this did not lead to significant infiltration of the tumor-bearing lungs by CD8+ T cells or the decrease in the frequency of T(reg) cells nor did it result in anti-tumor efficacy. In vivo depletion of CD8+ cells confirmed that CD8 T cells were required for the anti-tumor activity of MVA-BN®-HER2. Furthermore, depletion of CD4+ or CD25+ cells demonstrated that tumor-induced T(reg) cells promoted tumor growth and that CD4 effector cells also contribute to MVA-BN®-HER2-mediated anti-tumor efficacy. Taken together, our data demonstrate that treatment with MVA-BN®-HER2 controls tumor growth through mechanisms including the induction of Th1-biased HER-2-specific immune responses and the control of tumor-mediated immunosuppression. PMID:21822917

  12. The Biochemistry of Psychoactive Drugs.

    ERIC Educational Resources Information Center

    Abood, Leo G.

    The effect of psychochemicals on the higher central nervous system, and recent theories regarding drug addiction are discussed. The effect of drugs upon each individual is different. Many drugs have no effect on the brain because of a blood-brain barrier. However, alterations in the rate and character of one's metabolic pattern can lead to…

  13. Intratumoral expression of cyclooxygenase-2 (COX-2) is a negative prognostic marker for patients with cutaneous melanoma.

    PubMed

    Kuźbicki, Łukasz; Lange, Dariusz; Stanek-Widera, Agata; Chwirot, Barbara W

    2016-10-01

    Because of the well-known heterogeneity of melanomas, prognosis of the disease is often difficult to assess even for lesions classified in similar stages. The aim of this study was to assess the usefulness of COX-2 as a melanoma prognostic marker and to establish an optimum algorithm for analysis of COX-2 expression levels in lesions of interest. Expression of COX-2 was detected immunohistochemically in standard sections of formalin-fixed paraffin-embedded tissue samples of 85 primary melanomas, 36 lymph node metastases, and five skin metastases including 39 cases of paired primary and metastatic lesions obtained from the same patient. Enhanced expression of COX-2 in primary melanomas is an indicator of poorer prognosis. A significant correlation was found between high expression of COX-2 in primary lesions and shorter survival. The enhancement of COX-2 expression is also positively correlated with other prognostic factors such as tumor thickness and infiltration level, ulceration, high mitotic index, more invasive histologic type, vertical growth phase, and lymph node metastasis. On the whole, the results suggest that intratumoral expression of COX-2 is a strong negative prognostic marker for patients with melanoma. Moreover, our work shows that a simple and objective immunohistochemical scoring algorithm involving the determination of only a percentage fraction of positively stained cells is sufficient to obtain the prognostic information. PMID:27391144

  14. Neutralizing S1P inhibits intratumoral hypoxia, induces vascular remodelling and sensitizes to chemotherapy in prostate cancer

    PubMed Central

    Ader, Isabelle; Golzio, Muriel; Andrieu, Guillaume; Zalvidea, Santiago; Richard, Sylvain; Sabbadini, Roger A.; Malavaud, Bernard; Cuvillier, Olivier

    2015-01-01

    Hypoxia promotes neovascularization, increased tumor growth, and therapeutic resistance. The transcription factor, hypoxia-inducible factor 1α (HIF-1α), has been reported as the master driver of adaptation to hypoxia. We previously identified the sphingosine kinase 1/sphingosine 1-phosphate (SphK1/S1P) pathway as a new modulator of HIF-1α under hypoxia. Taking advantage of a monoclonal antibody neutralizing extracellular S1P (sphingomab), we report that inhibition of S1P extracellular signaling blocks HIF-1α accumulation and activity in several cancer cell models exposed to hypoxia. In an orthotopic xenograft model of prostate cancer, we show that sphingomab reduces hypoxia and modifies vessel architecture within 5 days of treatment, leading to increased intratumoral blood perfusion. Supporting the notion that a transient vascular normalization of tumor vessels is the mechanism by which sphingomab exerts its effects, we demonstrate that administration of the antibody for 5 days before chemotherapy is more effective at local tumor control and metastatic dissemination than any other treatment scheduling. These findings validate sphingomab as a potential new normalization agent that could contribute to successful sensitization of hypoxic tumors to chemotherapy. PMID:25915662

  15. Neutralizing S1P inhibits intratumoral hypoxia, induces vascular remodelling and sensitizes to chemotherapy in prostate cancer.

    PubMed

    Ader, Isabelle; Gstalder, Cécile; Bouquerel, Pierre; Golzio, Muriel; Andrieu, Guillaume; Zalvidea, Santiago; Richard, Sylvain; Sabbadini, Roger A; Malavaud, Bernard; Cuvillier, Olivier

    2015-05-30

    Hypoxia promotes neovascularization, increased tumor growth, and therapeutic resistance. The transcription factor, hypoxia-inducible factor 1α (HIF-1α), has been reported as the master driver of adaptation to hypoxia. We previously identified the sphingosine kinase 1/sphingosine 1-phosphate (SphK1/S1P) pathway as a new modulator of HIF-1α under hypoxia. Taking advantage of a monoclonal antibody neutralizing extracellular S1P (sphingomab), we report that inhibition of S1P extracellular signaling blocks HIF-1α accumulation and activity in several cancer cell models exposed to hypoxia. In an orthotopic xenograft model of prostate cancer, we show that sphingomab reduces hypoxia and modifies vessel architecture within 5 days of treatment, leading to increased intratumoral blood perfusion. Supporting the notion that a transient vascular normalization of tumor vessels is the mechanism by which sphingomab exerts its effects, we demonstrate that administration of the antibody for 5 days before chemotherapy is more effective at local tumor control and metastatic dissemination than any other treatment scheduling. These findings validate sphingomab as a potential new normalization agent that could contribute to successful sensitization of hypoxic tumors to chemotherapy. PMID:25915662

  16. Ultrasound increases nanoparticle delivery by reducing intratumoral pressure and increasing transport in epithelial and epithelial-mesenchymal transition tumors

    PubMed Central

    Watson, Katherine D.; Lai, Chun-Yen; Qin, Shengping; Kruse, Dustin E.; Lin, Yueh-Chen; Seo, Jai Woong; Cardiff, Robert D.; Mahakian, Lisa M.; Beegle, Julie; Ingham, Elizabeth S.; Curry, Fitz-Roy; Reed, Rolf K.; Ferrara, Katherine W.

    2012-01-01

    Acquisition of the epithelial-mesenchymal transition (EMT) tumor phenotype is associated with impaired chemotherapeutic delivery and a poor prognosis. In this study, we investigated the application of therapeutic ultrasound methods available in the clinic to increase nanotherapeutic particle accumulation in epithelial and EMT tumors by labeling particles with a positron emission tomography tracer. Epithelial tumors were highly vascularized with tight cell-cell junctions, compared to EMT tumors where cells displayed an irregular, elongated shape with loosened cell-cell adhesions and a reduction in E-cadherin and cytokeratins 8/18 and 19. Without ultrasound, the accumulation of liposomal nanoparticles administered to tumors in vivo was ~1.5 times greater in epithelial tumors than EMT tumors. When ultrasound was applied, both nanoaccumulation and apparent tumor permeability were increased in both settings. Notably, ultrasound effects differed with thermal and mechanical indices, such that increasing the thermal ultrasound dose increased nanoaccumulation in EMT tumors. Taken together, our results illustrate how ultrasound can be used to enhance nanoparticle accumulation in tumors by reducing their intratumoral pressure and increasing their vascular permeability. PMID:22282664

  17. A nonrandomized cohort and a randomized study of local control of large hepatocarcinoma by targeting intratumoral lactic acidosis

    PubMed Central

    Chao, Ming; Wu, Hao; Jin, Kai; Li, Bin; Wu, Jianjun; Zhang, Guangqiang; Yang, Gong; Hu, Xun

    2016-01-01

    Study design: Previous works suggested that neutralizing intratumoral lactic acidosis combined with glucose deprivation may deliver an effective approach to control tumor. We did a pilot clinical investigation, including a nonrandomized (57 patients with large HCC) and a randomized controlled (20 patients with large HCC) studies. Methods: The patients were treated with transarterial chemoembolization (TACE) with or without bicarbonate local infusion into tumor. Results: In the nonrandomized controlled study, geometric mean of viable tumor residues (VTR) in TACE with bicarbonate was 6.4-fold lower than that in TACE without bicarbonate (7.1% [95% CI: 4.6%–10.9%] vs 45.6% [28.9%–72.0%]; p<0.0001). This difference was recapitulated by a subsequent randomized controlled study. TACE combined with bicarbonate yielded a 100% objective response rate (ORR), whereas the ORR treated with TACE alone was 44.4% (nonrandomized) and 63.6% (randomized). The survival data suggested that bicarbonate may bring survival benefit. Conclusion: Bicarbonate markedly enhances the anticancer activity of TACE. Clinical trail registration: ChiCTR-IOR-14005319. DOI: http://dx.doi.org/10.7554/eLife.15691.001 PMID:27481188

  18. [A Case of Intrahepatic Cholangiocarcinoma with Invasion to the Transverse Colon and Gallbladder, Forming an Intra-Tumor Abscess].

    PubMed

    Okada, Nami; Kametaka, Hisashi; Koyama, Takashi; Seike, Kazuhiro; Makino, Hironobu; Fukada, Tadaomi; Sato, Yutaka; Miyazaki, Masaru

    2015-11-01

    An 81-year-old man was referred to our institution for evaluation of high fever and a liver tumor that had been detected by ultrasonography. Computed tomography revealed a low-density mass with peripheral ring-like enhancement in S5 of the liver. The liver mass was in contact with the gallbladder, and the boundary between the mass and the gallbladder was unclear. On the suspicion of liver abscess, percutaneous transhepatic drainage was performed. The cavity of the abscess communicated with the gallbladder. Because the cavity had no tendency to reduce in size, we performed surgical resection under a preoperative diagnosis of liver abscess or primary liver carcinoma invading to the gallbladder. Intraoperative findings revealed a liver tumor invading the transverse colon and gallbladder. Subsegmentectomy of S4a and S5 of the liver combined with gallbladder and transverse colon resection was performed. Histopathological findings indicated the growth of a mass forming type intrahepatic cholangiocarcinoma with invasion to the transverse colon and gallbladder, and the pathological stage of the tumor was pT3N0M0, fStage Ⅲ. Thus far, the patient is alive without recurrence 9 months after surgery. Here, we report an extremely rare case of intrahepatic cholangiocarcinoma that invaded other organs and was associated with an intra-tumor abscess. PMID:26805160

  19. Food-Drug Interactions

    PubMed Central

    Bushra, Rabia; Aslam, Nousheen; Khan, Arshad Yar

    2011-01-01

    The effect of drug on a person may be different than expected because that drug interacts with another drug the person is taking (drug-drug interaction), food, beverages, dietary supplements the person is consuming (drug-nutrient/food interaction) or another disease the person has (drug-disease interaction). A drug interaction is a situation in which a substance affects the activity of a drug, i.e. the effects are increased or decreased, or they produce a new effect that neither produces on its own. These interactions may occur out of accidental misuse or due to lack of knowledge about the active ingredients involved in the relevant substances. Regarding food-drug interactions physicians and pharmacists recognize that some foods and drugs, when taken simultaneously, can alter the body's ability to utilize a particular food or drug, or cause serious side effects. Clinically significant drug interactions, which pose potential harm to the patient, may result from changes in pharmaceutical, pharmacokinetic, or pharmacodynamic properties. Some may be taken advantage of, to the benefit of patients, but more commonly drug interactions result in adverse drug events. Therefore it is advisable for patients to follow the physician and doctors instructions to obtain maximum benefits with least food-drug interactions. The literature survey was conducted by extracting data from different review and original articles on general or specific drug interactions with food. This review gives information about various interactions between different foods and drugs and will help physicians and pharmacists prescribe drugs cautiously with only suitable food supplement to get maximum benefit for the patient. PMID:22043389

  20. Altered states: psychedelics and anesthetics.

    PubMed

    Icaza, Eduardo E; Mashour, George A

    2013-12-01

    The psychedelic experience has been reported since antiquity, but there is relatively little known about the underlying neural mechanisms. A recent neuroimaging study on psilocybin revealed a pattern of decreased cerebral blood flow and functional disconnections that is surprisingly similar to that caused by various anesthetics. In this article, the authors review historical examples of psychedelic experiences induced by general anesthetics and then contrast the mechanisms by which these two drug classes generate altered states of consciousness. PMID:24061599

  1. Intratumoral Morphologic and Molecular Heterogeneity of Rhabdoid Renal Cell Carcinoma: Challenges for Personalized Therapy

    PubMed Central

    Singh, Rajesh R.; Murugan, Paari; Patel, Lalit R.; Voicu, Horatiu; Yoo, Suk-Young; Majewski, Tadeusz; Mehrotra, Meenakshi; Wani, Khalida; Tannir, Nizar; Karam, Jose A.; Jonasch, Eric; Wood, Christopher G.; Creighton, Chad J.; Medeiros, L. Jeffrey; Broaddus, Russell R.; Tamboli, Pheroze; Baggerly, Keith A.; Aldape, Kenneth D.; Czerniak, Bogdan; Luthra, Rajyalakshmi; Sircar, Kanishka

    2015-01-01

    Rhabdoid histology in clear cell renal cell carcinoma is associated with a poor prognosis. The prognosis of patients with clear cell renal cell carcinoma may also be influenced by molecular alterations. The aim of this study was to evaluate the association between histologic features and salient molecular changes in rhabdoid clear cell renal cell carcinoma. We macrodissected the rhabdoid and clear cell epithelioid components from 12 cases of rhabdoid clear cell renal cell carcinoma. We assessed cancer related mutations from 8 cases using a clinical next generation exome sequencing platform. The transcriptome of rhabdoid clear cell renal cell carcinoma (n=8) and non-rhabdoid clear cell renal cell carcinoma (n=37) was assessed by RNA-seq and gene expression microarray. VHL (63%) showed identical mutations in all regions from the same tumor. BAP1 (38%) and PBRM1 (13%) mutations were identified in the rhabdoid but not the epithelioid component and were mutually exclusive in 3/3 cases and 1 case, respectively. SETD2 (63%) mutations were discordant between different histologic regions in 2/5 cases, with mutations called only in the epithelioid and rhabdoid components, respectively. The transcriptome of rhabdoid clear cell renal cell carcinoma was distinct from advanced stage and high grade clear cell renal cell carcinoma. The diverse histologic components of rhabdoid clear cell renal cell carcinoma, however, showed a similar transcriptomic program, including a similar prognostic gene expression signature. Rhabdoid clear cell renal cell carcinoma is transcriptomically distinct and shows a high rate of SETD2 and BAP1 mutations and a low rate of PBRM1 mutations. Driver mutations in clear cell renal cell carcinoma are often discordant across different morphologic regions whereas the gene expression program is relatively stable. Molecular profiling of clear cell renal cell carcinoma may improve by assessing for gene expression and sampling tumor foci from different histologic

  2. Clonotypic Diversification of Intratumoral T Cells Following Sipuleucel-T Treatment in Prostate Cancer Subjects.

    PubMed

    Sheikh, Nadeem; Cham, Jason; Zhang, Li; DeVries, Todd; Letarte, Simon; Pufnock, Jeff; Hamm, David; Trager, James; Fong, Lawrence

    2016-07-01

    Sipuleucel-T is an autologous cellular therapy for asymptomatic, or minimally symptomatic, metastatic castrate-resistant prostate cancer, designed to stimulate an immune response against prostate cancer. In a recent clinical trial (NCT00715104), we found that neoadjuvant sipuleucel-T increased the number of activated T cells within the tumor microenvironment. The current analysis examined whether sipuleucel-T altered adaptive T-cell responses by expanding pre-existing T cells or by recruiting new T cells to prostate tissue. Next-generation sequencing of the T-cell receptor (TCR) genes from blood or prostate tissue was used to quantitate and track T-cell clonotypes in these treated subjects with prostate cancer. At baseline, there was a significantly greater diversity of circulating TCR sequences in subjects with prostate cancer compared with healthy donors. Among healthy donors, circulating TCR sequence diversity remained unchanged over the same time interval. In contrast, sipuleucel-T treatment reduced circulating TCR sequence diversity versus baseline as measured by the Shannon index. Interestingly, sipuleucel-T treatment resulted in greater TCR sequence diversity in resected prostate tissue in sipuleucel-T-treated subjects versus tissue of nonsipuleucel-T-treated subjects with prostate cancer. Furthermore, sipuleucel-T increased TCR sequence commonality between blood and resected prostate tissue in treated versus untreated subjects with prostate cancer. The broadening of the TCR repertoire within the prostate tissue supports the hypothesis that sipuleucel-T treatment facilitates the recruitment of T cells into the prostate. Our results highlight the importance of assessing T-cell response to immunotherapy both in the periphery and in tumor tissue. Cancer Res; 76(13); 3711-8. ©2016 AACR. PMID:27216195

  3. Preclinical examination of clofarabine in pediatric ependymoma: Intratumoral concentrations insufficient to warrant further study

    PubMed Central

    Patel, Yogesh T.; Jacus, Megan O.; Boulos, Nidal; Dapper, Jason D.; Davis, Abigail D.; Vuppala, Pradeep K.; Freeman, Burgess B.; Mohankumar, Kumarasamypet M.; Throm, Stacy L.; Gilbertson, Richard J.; Stewart, Clinton F.

    2015-01-01

    Clofarabine, a deoxyadenosine analog, was an active anticancer drug in our in vitro high-throughput screening against mouse ependymoma neurospheres. To characterize the clofarabine disposition in mice for further preclinical efficacy studies, we evaluated the plasma and central nervous system (CNS) disposition in a mouse model of ependymoma. A plasma pharmacokinetic study of clofarabine (45 mg/kg, IP) was performed in CD1 nude mice bearing ependymoma to obtain initial plasma pharmacokinetic parameters. These estimates were used to derive D-optimal plasma sampling time-points for cerebral microdialysis studies. A simulation of clofarabine pharmacokinetics in mice and pediatric patients suggested that a dosage of 30 mg/kg, IP in mice would give exposures comparable to that in children at a dosage of 148 mg/m2. Cerebral microdialysis was performed to study the tumor extracellular fluid (ECF) disposition of clofarabine (30 mg/kg, IP) in the ependymoma cortical allografts. Plasma and tumor ECF concentration-time data were analyzed using a nonlinear mixed effects modeling approach. The median unbound fraction of clofarabine in mouse plasma was 0.79. The unbound tumor to plasma partition coefficient (Kpt,uu: ratio of tumor to plasma AUCu,0-inf) of clofarabine was 0.12±0.05. The model predicted mean tumor ECF clofarabine concentrations were below the in vitro 1-hr IC50 (407 ng/mL) for ependymoma neurospheres. Thus, our results show the clofarabine exposure reached in the tumor ECF was below that associated with an antitumor effect in our in vitro washout study. Therefore, clofarabine was de-prioritized as an agent to treat ependymoma, and further preclinical studies were not pursued. PMID:25724157

  4. Preclinical examination of clofarabine in pediatric ependymoma: intratumoral concentrations insufficient to warrant further study.

    PubMed

    Patel, Yogesh T; Jacus, Megan O; Boulos, Nidal; Dapper, Jason D; Davis, Abigail D; Vuppala, Pradeep K; Freeman, Burgess B; Mohankumar, Kumarasamypet M; Throm, Stacy L; Gilbertson, Richard J; Stewart, Clinton F

    2015-05-01

    Clofarabine, a deoxyadenosine analog, was an active anticancer drug in our in vitro high-throughput screening against mouse ependymoma neurospheres. To characterize the clofarabine disposition in mice for further preclinical efficacy studies, we evaluated the plasma and central nervous system disposition in a mouse model of ependymoma. A plasma pharmacokinetic study of clofarabine (45 mg/kg, IP) was performed in CD1 nude mice bearing ependymoma to obtain initial plasma pharmacokinetic parameters. These estimates were used to derive D-optimal plasma sampling time points for cerebral microdialysis studies. A simulation of clofarabine pharmacokinetics in mice and pediatric patients suggested that a dosage of 30 mg/kg IP in mice would give exposures comparable to that in children at a dosage of 148 mg/m(2). Cerebral microdialysis was performed to study the tumor extracellular fluid (ECF) disposition of clofarabine (30 mg/kg, IP) in the ependymoma cortical allografts. Plasma and tumor ECF concentration-time data were analyzed using a nonlinear mixed effects modeling approach. The median unbound fraction of clofarabine in mouse plasma was 0.79. The unbound tumor to plasma partition coefficient (K pt,uu: ratio of tumor to plasma AUCu,0-inf) of clofarabine was 0.12 ± 0.05. The model-predicted mean tumor ECF clofarabine concentrations were below the in vitro 1-h IC50 (407 ng/mL) for ependymoma neurospheres. Thus, our results show the clofarabine exposure reached in the tumor ECF was below that associated with an antitumor effect in our in vitro washout study. Therefore, clofarabine was de-prioritized as an agent to treat ependymoma, and further preclinical studies were not pursued. PMID:25724157

  5. Darwinian Dynamics of Intratumoral Heterogeneity: Not Solely Random Mutations but Also Variable Environmental Selection Forces.

    PubMed

    Lloyd, Mark C; Cunningham, Jessica J; Bui, Marilyn M; Gillies, Robert J; Brown, Joel S; Gatenby, Robert A

    2016-06-01

    Spatial heterogeneity in tumors is generally thought to result from branching clonal evolution driven by random mutations that accumulate during tumor development. However, this concept rests on the implicit assumption that cancer cells never evolve to a fitness maximum because they can always acquire mutations that increase proliferative capacity. In this study, we investigated the validity of this assumption. Using evolutionary game theory, we demonstrate that local cancer cell populations will rapidly converge to the fittest phenotype given a stable environment. In such settings, cellular spatial heterogeneity in a tumor will be largely governed by regional variations in environmental conditions, for example, alterations in blood flow. Model simulations specifically predict a common spatial pattern in which cancer cells at the tumor-host interface exhibit invasion-promoting, rapidly proliferating phenotypic properties, whereas cells in the tumor core maximize their population density by promoting supportive tissue infrastructures, for example, to promote angiogenesis. We tested model predictions through detailed quantitative image analysis of phenotypic spatial distribution in histologic sections of 10 patients with stage 2 invasive breast cancers. CAIX, GLUT1, and Ki67 were upregulated in the tumor edge, consistent with an acid-producing invasive, proliferative phenotype. Cells in the tumor core were 20% denser than the edge, exhibiting upregulation of CAXII, HIF-1α, and cleaved caspase-3, consistent with a more static and less proliferative phenotype. Similarly, vascularity was consistently lower in the tumor center compared with the tumor edges. Lymphocytic immune responses to tumor antigens also trended to higher level in the tumor edge, although this effect did not reach statistical significance. Like invasive species in nature, cancer cells at the leading edge of the tumor possess a different phenotype from cells in the tumor core. Our results suggest

  6. Club Drugs

    MedlinePlus

    ... Rohypnol, ketamine, as well as MDMA (ecstasy) and methamphetamine ( Drug Facts: Club Drugs , National Institute on Drug ... Club Drugs , National Institute on Drug Abuse, 2010). Methamphetamine is a powerfully addictive stimulant associated with serious ...

  7. Combined Intralesional Neodymium-Doped Yttrium Aluminium Garnet Laser and Intratumoral Ligation as Curative Treatment for Craniofacial Arteriovenous Malformations.

    PubMed

    Rojvachiranonda, Nond; Lerdlum, Sukalaya; Mahatumarat, Charan

    2016-03-01

    Craniofacial arteriovenous malformation (AVM), although very rare, has been a very difficult problem to treat especially when it is large and involves important structures. Surgical resection often results in unacceptable complications but still not curative. At our institution, treatment by combined intralesional neodymium-doped yttrium aluminium garnet laser and intratumoral ligation has been successful in venous malformation. This minimally invasive technique was then applied to more challenging AVM on the head and neck. Disease control was studied using clinical parameters and magnetic resonance imaging.Four patients with moderate-to-severe (Schobinger 2-4) craniofacial AVM were treated by this technique from 2001 to 2011. Patient age ranged from 2 to 51 years (mean: 25 years). After 2 to 4 treatments and follow-up period of 1456 days, 3 (75%) were cured. One of them was infant with huge mass and secondary pulmonary hypertension. Clinical cure was achieved after 3 treatments without residual cardiovascular compromise. The other patient (25%) had cheek mass with intraorbital involvement. The authors did not treat periorbital lesion so as to avoid triggering intraorbital spreading. The rest of the cheek lesion was clinically and radiologically cured.Laser energy setting, ablative technique, and skin cooling are the main factors determining the success. Individualized laser settings and properly set endpoints can increase treatment effectiveness in shorter period. In conclusion, this minimally invasive technique was successful in curing AVM without complication. With more clinical study and development of soft tissue monitoring tools, it is possible that intralesional laser could become the treatment of choice for all cutaneous AVM. PMID:26825744

  8. Local Control of Lung Derived Tumors by Diffusing Alpha-Emitting Atoms Released From Intratumoral Wires Loaded With Radium-224

    SciTech Connect

    Cooks, Tomer; Schmidt, Michael; Bittan, Hadas; Lazarov, Elinor; Arazi, Lior; Kelson, Itzhak; Keisari, Yona

    2009-07-01

    Purpose: Diffusing alpha-emitters radiation therapy (DART) is a new form of brachytherapy enabling the treatment of solid tumors with alpha radiation. The present study examines the antitumoral effects resulting from the release of alpha emitting radioisotopes into solid lung carcinoma (LL2, A427, and NCI-H520). Methods and Materials: An in vitro setup tested the dose-dependent killing of tumor cells exposed to alpha particles. In in vivo studies, radioactive wires (0.3 mm diameter, 5 mm long) with {sup 224}Ra activities in the range of 21-38 kBq were inserted into LL/2 tumors in C57BL/6 mice and into human-derived A427 or NCI-H520 tumors in athymic mice. The efficacy of the short-lived daughters of {sup 224}Ra to produce tumor growth retardation and prolong life was assessed, and the spread of radioisotopes inside tumors was measured using autoradiography. Results: The insertion of a single DART wire into the center of 6- to 7-mm tumors had a pronounced retardation effect on tumor growth, leading to a significant inhibition of 49% (LL2) and 93% (A427) in tumor development and prolongations of 48% (LL2) in life expectancy. In the human model, more than 80% of the treated tumors disappeared or shrunk. Autoradiographic analysis of the treated sectioned tissue revealed the intratumoral distribution of the radioisotopes, and histological analysis showed corresponding areas of necrosis. In vitro experiments demonstrated a dose-dependent killing of tumors cells exposed to alpha particles. Conclusions: Short-lived diffusing alpha-emitters produced tumor growth retardation and increased survival in mice bearing lung tumor implants. These results justify further investigations with improved dose distributions.

  9. Intratumoral injection of interferon-α and systemic delivery of agonist anti-CD137 monoclonal antibodies synergize for immunotherapy.

    PubMed

    Dubrot, Juan; Palazón, Asis; Alfaro, Carlos; Azpilikueta, Arantza; Ochoa, María Carmen; Rouzaut, Ana; Martinez-Forero, Iván; Teijeira, Alvaro; Berraondo, Pedro; Le Bon, Agnes; Hervás-Stubbs, Sandra; Melero, Ignacio

    2011-01-01

    CD137 artificial costimulation results in complete tumor rejection in several mouse models. Type I interferons (IFN) exert antitumor effects through an array of molecular functions on malignant cells, tumor stroma and immune system cells. The fact that agonist anti-CD137 mAb induce tumor regressions in mice deficient in the unique receptor for Type I IFNs (IFNAR(-/-) ) indicated potential for treatment combinations. Indeed, combination of intratumor injections of mouse IFN-α and intraperitoneal injections of anti-CD137 mAb synergized as seen on subcutaneous lesions derived from the MC38 colon carcinoma, which is resistant to each treatment if given separately. Therapeutic activity was achieved both against lesions directly injected with IFN-α and against distant concomitant tumors. Experiments in bone marrow chimeras prepared with IFNAR(-/-) and WT mice concluded that expression of the receptor for Type I interferons is mainly required on cells of the hematopoietic compartment. Synergistic effects correlated with a remarkable cellular hyperplasia of the tumor draining lymph nodes (TDLNs). Enlarged TDLNs contained more plasmacytoid and conventional dendritic cells (DC) that more readily cross-presented. Importantly, numbers of both DC subtypes inversely correlated with the tumor size. Numbers of CD8 T cells specific for a dominant tumor antigen were increased at TDLNs by each separate treatment but only with slight augments due to the combination. Combined antitumor effects of the therapeutic strategy were also seen on subcutaneous TC-1 tumors established for 24 days before treatment onset. The described strategy is realistic because (i) agents of each kind are clinically available and (ii) equivalent procedures in humans are feasible. PMID:20309938

  10. Extranodal induction of therapeutic immunity in the tumor microenvironment after intratumoral delivery of Tbet gene-modified dendritic cells

    PubMed Central

    Chen, Lu; Taylor, Jennifer L.; Sabins, Nina Chi; Lowe, Devin B.; Qu, Yanyan; You, Zhaoyang; Storkus, Walter J.

    2013-01-01

    Murine dendritic cells (DC) transduced to express the Type-1 transactivator T-bet (i.e. mDC.Tbet) and delivered intratumorally (i.t.) as a therapy are superior to control wild-type DC in slowing the growth of established subcutaneous (s.c.) MCA205 sarcomas in vivo. Optimal anti-tumor efficacy of mDC.Tbet-based gene therapy was dependent on host NK cells and CD8+ T cells, and required mDC.Tbet expression of MHC class I molecules, but was independent of the capacity of the injected mDC.Tbet to produce pro-inflammatory cytokines (IL-12 family members or IFN-γ) or to migrate to tumor-draining lymph nodes (TDLN) based on CCR7 ligand chemokine recruitment. Conditional (CD11c-DTR) or genetic (BATF3−/−) deficiency in host antigen crosspresenting DC did not diminish the therapeutic action of i.t.-delivered wild-type mDC.Tbet. Interestingly, we observed that i.t delivery of mDC.Tbet (versus control mDC.Null) promoted the acute infiltration of NK cells and naïve CD45RB+ T cells into the tumor microenvironment (TME) in association with elevated expression of NK- and T cell-recruiting chemokines by mDC.Tbet. When taken together, our data support a paradigm for extranodal (cross)priming of therapeutic Type-1 immunity in the TME after i.t. delivery of mDC.Tbet-based gene therapy. PMID:23846252

  11. SWIFT-MRI imaging and quantitative assessment of IONPs in murine tumors following intra-tumor and systemic delivery

    NASA Astrophysics Data System (ADS)

    Reeves, Russell; Petryk, Alicia A.; Kastner, Elliot J.; Zhang, Jinjin; Ring, Hattie; Garwood, Michael; Hoopes, P. Jack

    2015-03-01

    Although preliminary clinical trials are ongoing, successful the use of iron-oxide magnetic nanoparticles (IONP) for heatbased cancer treatments will depend on advancements in: 1) nanoparticle platforms, 2) delivery of a safe and effective alternating magnetic field (AMF) to the tumor, and 3) development of non-invasive, spatially accurate IONP imaging and quantification technique. This imaging technique must be able to assess tumor and normal tissue anatomy as well as IONP levels and biodistribution. Conventional CT imaging is capable of detecting and quantifying IONPs at tissue levels above 10 mg/gram; unfortunately this level is not clinically achievable in most situations. Conventional MRI is capable of imaging IONPs at tissue levels of 0.05 mg/gm or less, however this level is considered to be below the therapeutic threshold. We present here preliminary in vivo data demonstrating the ability of a novel MRI technique, Sweep Imaging with Fourier Transformation (SWIFT), to accurately image and quantify IONPs in tumor tissue in the therapeutic concentration range (0.1-1.0 mg/gm tissue). This ultra-short, T2 MRI method provides a positive Fe contrast enhancement with a reduced signal to noise ratio. Additional IONP signal enhancement techniques such as inversion recovery spectroscopy and variable flip angle (VFA) are also being studied for potential optimization of SWIFT IONP imaging. Our study demonstrates the use of SWIFT to assess IONP levels and biodistribution, in murine flank tumors, following intra-tumoral and systemic IONP administration. ICP-MS and quantitative histological techniques are used to validate the accuracy and sensitivity of SWIFT-based IONP imaging and quantification.

  12. Imaging of Intratumoral Inflammation during Oncolytic Virotherapy of Tumors by 19F-Magnetic Resonance Imaging (MRI)

    PubMed Central

    Hess, Michael; Hofmann, Elisabeth; Seubert, Carolin; Langbein-Laugwitz, Johanna; Gentschev, Ivaylo; Sturm, Volker Jörg Friedrich; Ye, Yuxiang; Kampf, Thomas; Jakob, Peter Michael; Szalay, Aladar A.

    2013-01-01

    Background Oncolytic virotherapy of tumors is an up-coming, promising therapeutic modality of cancer therapy. Unfortunately, non-invasive techniques to evaluate the inflammatory host response to treatment are rare. Here, we evaluate 19F magnetic resonance imaging (MRI) which enables the non-invasive visualization of inflammatory processes in pathological conditions by the use of perfluorocarbon nanoemulsions (PFC) for monitoring of oncolytic virotherapy. Methodology/Principal Findings The Vaccinia virus strain GLV-1h68 was used as an oncolytic agent for the treatment of different tumor models. Systemic application of PFC emulsions followed by 1H/19F MRI of mock-infected and GLV-1h68-infected tumor-bearing mice revealed a significant accumulation of the 19F signal in the tumor rim of virus-treated mice. Histological examination of tumors confirmed a similar spatial distribution of the 19F signal hot spots and CD68+-macrophages. Thereby, the CD68+-macrophages encapsulate the GFP-positive viral infection foci. In multiple tumor models, we specifically visualized early inflammatory cell recruitment in Vaccinia virus colonized tumors. Furthermore, we documented that the 19F signal correlated with the extent of viral spreading within tumors. Conclusions/Significance These results suggest 19F MRI as a non-invasive methodology to document the tumor-associated host immune response as well as the extent of intratumoral viral replication. Thus, 19F MRI represents a new platform to non-invasively investigate the role of the host immune response for therapeutic outcome of oncolytic virotherapy and individual patient response. PMID:23441176

  13. Intratumoral delivery of CpG-conjugated anti-MUC1 antibody enhances NK cell anti-tumor activity

    PubMed Central

    Schettini, Jorge; Kidiyoor, Amritha; Besmer, Dahlia M.; Tinder, Teresa L.; Roy, Lopamudra Das; Lustgarten, Joseph; Gendler, Sandra J.

    2013-01-01

    Monoclonal antibodies (mAbs) against tumor-associated antigens are useful anticancer agents. Antibody-dependent cellular cytotoxicity (ADCC) is one of the major mechanisms responsible for initiating natural killer cell (NK)-mediated killing of tumors. However, the regulation of ADCC via NK cells is poorly understood. We have investigated the cytolytic activity of NK cells against pancreatic cancer cells that were coated with an antibody directed against the human tumor antigen, Mucin-1 designated HMFG-2, either alone or conjugated to CpG oligodeoxynucleotide (CpG ODN). Conjugated antibodies were tested for their ability to elicit ADCC in vitro and in vivo against pancreatic cancer cells. NK cells cultured in the presence of immobilized CpG ODN, HMFG-2 Ab, or CpG ODN-conjugated HMFG-2 Ab were able to up-regulate perforin similarly. Interestingly, a significant higher ADCC was observed when CpG ODN-conjugated HMFG-2-coated tumor cells were co-cultured with NK cells compared to unconjugated HMFG-2 Ab or CpG ODN alone. Moreover, MyD88-deficient NK cells can perform ADCC in vitro. Furthermore, intratumoral injections of CpG ODN-conjugated HMFG-2 induced a significant reduction in tumor burden in vivo in an established model of pancreatic tumor in nude mice compared to CpG ODN or the HMFG-2 alone. Depletion of macrophages or NK cells before treatment confirmed that both cells were required for the anti-tumor response in vivo. Results also suggest that CpG ODN and HMFG-2 Ab could be sensed by NK cells on the mAb-coated tumor cells triggering enhanced ADCC in vitro and in vivo. PMID:22543528

  14. Intratumoral delivery of CpG-conjugated anti-MUC1 antibody enhances NK cell anti-tumor activity.

    PubMed

    Schettini, Jorge; Kidiyoor, Amritha; Besmer, Dahlia M; Tinder, Teresa L; Roy, Lopamudra Das; Lustgarten, Joseph; Gendler, Sandra J; Mukherjee, Pinku

    2012-11-01

    Monoclonal antibodies (mAbs) against tumor-associated antigens are useful anticancer agents. Antibody-dependent cellular cytotoxicity (ADCC) is one of the major mechanisms responsible for initiating natural killer cell (NK)-mediated killing of tumors. However, the regulation of ADCC via NK cells is poorly understood. We have investigated the cytolytic activity of NK cells against pancreatic cancer cells that were coated with an antibody directed against the human tumor antigen, Mucin-1 designated HMFG-2, either alone or conjugated to CpG oligodeoxynucleotide (CpG ODN). Conjugated antibodies were tested for their ability to elicit ADCC in vitro and in vivo against pancreatic cancer cells. NK cells cultured in the presence of immobilized CpG ODN, HMFG-2 Ab, or CpG ODN-conjugated HMFG-2 Ab were able to up-regulate perforin similarly. Interestingly, a significant higher ADCC was observed when CpG ODN-conjugated HMFG-2-coated tumor cells were co-cultured with NK cells compared to unconjugated HMFG-2 Ab or CpG ODN alone. Moreover, MyD88-deficient NK cells can perform ADCC in vitro. Furthermore, intratumoral injections of CpG ODN-conjugated HMFG-2 induced a significant reduction in tumor burden in vivo in an established model of pancreatic tumor in nude mice compared to CpG ODN or the HMFG-2 alone. Depletion of macrophages or NK cells before treatment confirmed that both cells were required for the anti-tumor response in vivo. Results also suggest that CpG ODN and HMFG-2 Ab could be sensed by NK cells on the mAb-coated tumor cells triggering enhanced ADCC in vitro and in vivo. PMID:22543528

  15. Nanocomposite liposomes containing quantum dots and anticancer drugs for bioimaging and therapeutic delivery: a comparison of cationic, PEGylated and deformable liposomes

    NASA Astrophysics Data System (ADS)

    Wen, Chih-Jen; Sung, Calvin T.; Aljuffali, Ibrahim A.; Huang, Yu-Jie; Fang, Jia-You

    2013-08-01

    Multifunctional liposomes loaded with quantum dots (QDs) and anticancer drugs were prepared for simultaneous bioimaging and drug delivery. Different formulations, including cationic, PEGylated and deformable liposomes, were compared for their theranostic efficiency. We had evaluated the physicochemical characteristics of these liposomes. The developed liposomes were examined using experimental platforms of cytotoxicity, cell migration, cellular uptake, in vivo melanoma imaging and drug accumulation in tumors. The average size of various nanocomposite liposomes was found to be 92-134 nm. Transmission electron microscopy confirmed the presence of QDs within liposomal bilayers. The incorporation of polyethylene glycol (PEG) and Span 20 into the liposomes greatly increased the fluidity of the bilayers. The liposomes provided sustained release of camptothecin and irinotecan. The cytotoxicity and cell migration assay demonstrated superior activity of cationic liposomes compared with other carriers. Cationic liposomes also showed a significant fluorescence signal in melanoma cells after internalization. The liposomes were intratumorally administered to a melanoma-bearing mouse. Cationic liposomes showed the brightest fluorescence in tumors, followed by classical liposomes. This signal could last for up to 24 h for cationic nanosystems. Intratumoral accumulation of camptothecin from free control was 35 nmol g-1 it could be increased to 50 nmol g-1 after loading with cationic liposomes. However, encapsulation of irinotecan into liposomes did not further increase intratumoral drug accumulation. Cationic liposomes were preferable to other liposomes as nanocarriers in both bioimaging and therapeutic approaches.

  16. Nanocomposite liposomes containing quantum dots and anticancer drugs for bioimaging and therapeutic delivery: a comparison of cationic, PEGylated and deformable liposomes.

    PubMed

    Wen, Chih-Jen; Sung, Calvin T; Aljuffali, Ibrahim A; Huang, Yu-Jie; Fang, Jia-You

    2013-08-16

    Multifunctional liposomes loaded with quantum dots (QDs) and anticancer drugs were prepared for simultaneous bioimaging and drug delivery. Different formulations, including cationic, PEGylated and deformable liposomes, were compared for their theranostic efficiency. We had evaluated the physicochemical characteristics of these liposomes. The developed liposomes were examined using experimental platforms of cytotoxicity, cell migration, cellular uptake, in vivo melanoma imaging and drug accumulation in tumors. The average size of various nanocomposite liposomes was found to be 92–134 nm. Transmission electron microscopy confirmed the presence of QDs within liposomal bilayers. The incorporation of polyethylene glycol (PEG) and Span 20 into the liposomes greatly increased the fluidity of the bilayers. The liposomes provided sustained release of camptothecin and irinotecan. The cytotoxicity and cell migration assay demonstrated superior activity of cationic liposomes compared with other carriers. Cationic liposomes also showed a significant fluorescence signal in melanoma cells after internalization. The liposomes were intratumorally administered to a melanoma-bearing mouse. Cationic liposomes showed the brightest fluorescence in tumors, followed by classical liposomes. This signal could last for up to 24 h for cationic nanosystems. Intratumoral accumulation of camptothecin from free control was 35 nmol g(−1); it could be increased to 50 nmol g(−1) after loading with cationic liposomes. However, encapsulation of irinotecan into liposomes did not further increase intratumoral drug accumulation. Cationic liposomes were preferable to other liposomes as nanocarriers in both bioimaging and therapeutic approaches. PMID:23867977

  17. Role of Hepatic Drug Transporters in Drug Development.

    PubMed

    Liu, Houfu; Sahi, Jasminder

    2016-07-01

    Hepatic drug transporters can play an important role in pharmacokinetics and the disposition of therapeutic drugs and endogenous substances. Altered function of hepatic drug transporters due to drug-drug interactions (DDIs), genetic polymorphisms, and disease states can often result in a change in systemic and/or tissue exposure and subsequent pharmacological/toxicological effects of their substrates. Regulatory agencies including the US Food and Drug Administration, European Medicines Agency, and Japan Pharmaceuticals and Medical Devices Agency have issued guidance for industry on drug interaction studies, which contain comprehensive recommendations on in vitro and in vivo study tools and cutoff values to evaluate the DDI potential of new molecular entities mediated by hepatic drug transporters. In this report we summarize the latest regulatory and scientific progress of hepatic drug transporters in clinical DDIs, pharmacogenetics, drug-induced liver injury (DILI), as well as methods for predicting transporter-mediated pharmacokinetics and DDIs. PMID:27385168

  18. Immune-mediated regression of established B16F10 melanoma by intratumoral injection of attenuated Toxoplasma gondii protects against rechallenge

    PubMed Central

    Baird, Jason R.; Byrne, Katelyn T.; Lizotte, Patrick H.; Toraya-Brown, Seiko; Scarlett, Uciane K.; Alexander, Matthew P.; Sheen, Mee Rie; Fox, Barbara A.; Bzik, David J.; Bosenberg, Marcus; Mullins, David W.; Turk, Mary Jo; Fiering, Steven

    2012-01-01

    Immune recognition of tumors can limit cancer development, but antitumor immune responses are often blocked by tumor-mediated immunosuppression. Since microbes or microbial constituents are powerful adjuvants to stimulate immune responses, we evaluated whether intratumoral administration of a highly immunogenic but attenuated parasite could induce rejection of an established poorly immunogenic tumor. We treated intradermal B16F10 murine melanoma by intratumoral injection of an attenuated strain of Toxoplasma gondii (cps) that cannot replicate in vivo and therefore is not infective. cps treatment stimulated a strong CD8+ T cell-mediated antitumor immune response in vivo that regressed established primary melanoma. cps monotherapy rapidly modified the tumor microenvironment, halting tumor growth, and subsequently, as tumor-reactive T cells expanded, the tumors disappeared and rarely returned. The treatment required live cps that could invade cells and also required CD8+ T cells and Natural Killer cells but did not require CD4+ T cells. Furthermore, we demonstrate that IL-12, IFN-γ and the CXCR3 stimulating cytokines are required for full treatment efficacy. The treatment developed systemic antitumor immune activity as well as antitumor immune memory and therefore might have an impact against human metastatic disease. The approach is not specific for either B16F10 or melanoma. Direct intratumoral injection of cps has efficacy against an inducible genetic melanoma model, and transplantable lung and ovarian tumors, demonstrating potential for broad clinical use. The combination of efficacy, systemic antitumor immune response and complete attenuation with no observed host toxicity demonstrates the potential value of this novel cancer therapy. PMID:23225891

  19. Immune-mediated regression of established B16F10 melanoma by intratumoral injection of attenuated Toxoplasma gondii protects against rechallenge.

    PubMed

    Baird, Jason R; Byrne, Katelyn T; Lizotte, Patrick H; Toraya-Brown, Seiko; Scarlett, Uciane K; Alexander, Matthew P; Sheen, Mee Rie; Fox, Barbara A; Bzik, David J; Bosenberg, Marcus; Mullins, David W; Turk, Mary Jo; Fiering, Steven

    2013-01-01

    Immune recognition of tumors can limit cancer development, but antitumor immune responses are often blocked by tumor-mediated immunosuppression. Because microbes or microbial constituents are powerful adjuvants to stimulate immune responses, we evaluated whether intratumoral administration of a highly immunogenic but attenuated parasite could induce rejection of an established poorly immunogenic tumor. We treated intradermal B16F10 murine melanoma by intratumoral injection of an attenuated strain of Toxoplasma gondii (cps) that cannot replicate in vivo and therefore is not infective. The cps treatment stimulated a strong CD8(+) T cell-mediated antitumor immune response in vivo that regressed established primary melanoma. The cps monotherapy rapidly modified the tumor microenvironment, halting tumor growth, and subsequently, as tumor-reactive T cells expanded, the tumors disappeared and rarely returned. The treatment required live cps that could invade cells and also required CD8(+) T cells and NK cells, but did not require CD4(+) T cells. Furthermore, we demonstrate that IL-12, IFN-γ, and the CXCR3-stimulating cytokines are required for full treatment efficacy. The treatment developed systemic antitumor immune activity as well as antitumor immune memory and therefore might have an impact against human metastatic disease. The approach is not specific for either B16F10 or melanoma. Direct intratumoral injection of cps has efficacy against an inducible genetic melanoma model and transplantable lung and ovarian tumors, demonstrating potential for broad clinical use. The combination of efficacy, systemic antitumor immune response, and complete attenuation with no observed host toxicity demonstrates the potential value of this novel cancer therapy. PMID:23225891

  20. Combination of External Beam Radiotherapy (EBRT) With Intratumoral Injection of Dendritic Cells as Neo-Adjuvant Treatment of High-Risk Soft Tissue Sarcoma Patients

    SciTech Connect

    Finkelstein, Steven E.; Iclozan, Cristina; Bui, Marilyn M.; Cotter, Matthew J.; Ramakrishnan, Rupal; Ahmed, Jamil; Noyes, David R.; Cheong, David; Gonzalez, Ricardo J.; Heysek, Randy V.; Berman, Claudia; Lenox, Brianna C.; Janssen, William; Zager, Jonathan S.; Sondak, Vernon K.; Letson, G. Douglas; Antonia, Scott J.; Gabrilovich, Dmitry I.

    2012-02-01

    Purpose: The goal of this study was to determine the effect of combination of intratumoral administration of dendritic cells (DC) and fractionated external beam radiation (EBRT) on tumor-specific immune responses in patients with soft-tissue sarcoma (STS). Methods and Material: Seventeen patients with large (>5 cm) high-grade STS were enrolled in the study. They were treated in the neoadjuvant setting with 5,040 cGy of EBRT, split into 28 fractions and delivered 5 days per week, combined with intratumoral injection of 10{sup 7} DCs followed by complete resection. DCs were injected on the second, third, and fourth Friday of the treatment cycle. Clinical evaluation and immunological assessments were performed. Results: The treatment was well tolerated. No patient had tumor-specific immune responses before combined EBRT/DC therapy; 9 patients (52.9%) developed tumor-specific immune responses, which lasted from 11 to 42 weeks. Twelve of 17 patients (70.6%) were progression free after 1 year. Treatment caused a dramatic accumulation of T cells in the tumor. The presence of CD4{sup +} T cells in the tumor positively correlated with tumor-specific immune responses that developed following combined therapy. Accumulation of myeloid-derived suppressor cells but not regulatory T cells negatively correlated with the development of tumor-specific immune responses. Experiments with {sup 111}In labeled DCs demonstrated that these antigen presenting cells need at least 48 h to start migrating from tumor site. Conclusions: Combination of intratumoral DC administration with EBRT was safe and resulted in induction of antitumor immune responses. This suggests that this therapy is promising and needs further testing in clinical trials design to assess clinical efficacy.

  1. Decreased intratumoral Foxp3 Tregs and increased dendritic cell density by neoadjuvant chemotherapy associated with favorable prognosis in advanced gastric cancer

    PubMed Central

    Hu, Min; Li, Kai; Maskey, Ninu; Xu, Zhigao; Peng, Chunwei; Wang, Bicheng; Li, Yan; Yang, Guifang

    2014-01-01

    Although neoadjuvant chemotherapy (NACT) has been increasingly used to improve the outcome of advanced gastric cancer (GC) for decades, its precise efficacy has been difficult to evaluate yet. Abundant studies have investigated the predictive factors that represent the effect of NACT on advanced GC. In the present study, the intratumoral infiltration of regulatory T cells (Tregs) and dendritic cells (DCs) response to NACT in advanced GC and their correlation with prognosis were evaluated. Infiltration of Tregs (marked by Foxp3) and DCs (marked by S-100) in 102 advanced GC specimens with or without NACT was measured using immunohistochemical method. Intratumoral infiltration of Foxp3 Tregs was significantly lower and DC density was significantly higher in NACT group than that in nNACT group (P=0.007, P=0.002, respectively). Infiltration of Foxp3 Tregs was significantly associated with tumor invasion depth (P<0.001). The DC density was significantly correlated with histopathologic type (P=0.035), invasion depth (P=0.002), TNM stage (P=0.018), and lymph node metastasis (P<0.001). There was no significant difference of patient’s OS between NACT and nNACT groups (P=0.452); however, patients treated with NACT had longer OS with lower infiltration of Foxp3 Tregs (P<0.001) and higher infiltration of DCs (P=0.010). Univariate and multivariate analyses indicated that infiltration of Foxp3 Tregs and DCs were independent prognostic factors (P=0.002, P=0.003, respectively). The results demonstrated that NACT could decrease intratumoral Foxp3 Tregs infiltration and increase DCs density, and that infiltration of Foxp3 Tregs and DCs may serve as novel prognostic biomarkers of human GC. PMID:25197340

  2. Intratumoral spread of wild-type adenovirus is limited after local injection of human xenograft tumors: virus persists and spreads systemically at late time points.

    PubMed

    Sauthoff, Harald; Hu, Jing; Maca, Cielo; Goldman, Michael; Heitner, Sheila; Yee, Herman; Pipiya, Teona; Rom, William N; Hay, John G

    2003-03-20

    Oncolytic replicating adenoviruses are a promising new modality for the treatment of cancer. Despite the assumed biologic advantage of continued viral replication and spread from infected to uninfected cancer cells, early clinical trials demonstrate that the efficacy of current vectors is limited. In xenograft tumor models using immune-incompetent mice, wild-type adenovirus is also rarely able to eradicate established tumors. This suggests that innate immune mechanisms may clear the virus or that barriers within the tumor prevent viral spread. The aim of this study was to evaluate the kinetics of viral distribution and spread after intratumoral injection of virus in a human tumor xenograft model. After intratumoral injection of wild-type virus, high levels of titratable virus persisted within the xenograft tumors for at least 8 weeks. Virus distribution within the tumors as determined by immunohistochemistry was patchy, and virus-infected cells appeared to be flanked by tumor necrosis and connective tissue. The close proximity of virus-infected cells to the tumor-supporting structure, which is of murine origin, was clearly demonstrated using a DNA probe that specifically hybridizes to the B1 murine DNA repeat. Importantly, although virus was cleared from the circulation 6 hr after intratumoral injection, after 4 weeks systemic spread of virus was detected. In addition, vessels of infected tumors were surrounded by necrosis and an advancing rim of virus-infected tumor cells, suggesting reinfection of the xenograft tumor through the vasculature. These data suggest that human adenoviral spread within tumor xenografts is impaired by murine tumor-supporting structures. In addition, there is evidence for continued viral replication within the tumor, with subsequent systemic dissemination and reinfection of tumors via the tumor vasculature. Despite the limitations of immune-incompetent models, an understanding of the interactions between the virus and the tumor

  3. Improved Tumor-Specific Drug Accumulation by Polymer Therapeutics with pH-Sensitive Drug Release Overcomes Chemotherapy Resistance.

    PubMed

    Heinrich, Anne-Kathrin; Lucas, Henrike; Schindler, Lucie; Chytil, Petr; Etrych, Tomáš; Mäder, Karsten; Mueller, Thomas

    2016-05-01

    The success of chemotherapy is limited by poor selectivity of active drugs combined with occurrence of tumor resistance. New star-like structured N-(2-hydroxypropyl) methacrylamide (HPMA) copolymer-based drug delivery systems containing doxorubicin attached via a pH-sensitive hydrazone bond were designed and investigated for their ability to overcome chemotherapy resistance. These conjugates combine two strategies to achieve a high drug concentration selectively at the tumor site: (I) high accumulation by passive tumor targeting based on enhanced permeability and retention effect and (II) pH-sensitive site-specific drug release due to an acidic tumor microenvironment. Mice bearing doxorubicin-resistant xenograft tumors were treated with doxorubicin, PBS, poly HPMA (pHPMA) precursor or pHPMA-doxorubicin conjugate at different equivalent doses of 5 mg/kg bodyweight doxorubicin up to a 7-fold total dose using different treatment schedules. Intratumoral drug accumulation was analyzed by fluorescence imaging utilizing intrinsic fluorescence of doxorubicin. Free doxorubicin induced significant toxicity but hardly any tumor-inhibiting effects. Administering at least a 3-fold dose of pHPMA-doxorubicin conjugate was necessary to induce a transient response, whereas doses of about 5- to 6-fold induced strong regressions. Tumors completely disappeared in some cases. The onset of response was differential delayed depending on the tumor model, which could be ascribed to distinct characteristics of the microenvironment. Further fluorescence imaging-based analyses regarding underlying mechanisms of the delayed response revealed a related switch to a more supporting intratumoral microenvironment for effective drug release. In conclusion, the current study demonstrates that the concept of tumor site-restricted high-dose chemotherapy is able to overcome therapy resistance. Mol Cancer Ther; 15(5); 998-1007. ©2016 AACR. PMID:26939698

  4. Intratumoral administration of anti-KITENIN shRNA-loaded PEI-alt-PEG nanoparticles suppressed colon carcinoma established subcutaneously in mice.

    PubMed

    Park, In-Kyu; Kim, Kyung Keun; Cho, Sang-Hee; Bae, Woo-Kyun; Jere, Dhananjay; Cho, Chong-Su; Chung, Ik-Joo

    2010-05-01

    Biodegradable gene carrier, termed as PEI-alt-PEG, has been synthesized based on Michael addition reaction between lower Mw PEI and poly(ethylene glycol) (PEG) diacrylate and tested its potential of anti-metastatic cancer gene therapy by using anti-KITENIN short hairpin RNA. KITENIN is known to promote invasion of mouse colon adenocarcinoma in vivo. Intratumoral administration of anti-KITENIN shRNA-loaded PEI-alt-PEG nanoparticles has shown suppressed proliferlation and enhanced apoptosis signal in tumor compared to commercial available liposome, leading to delayed tumor growth. PMID:20358939

  5. [A Case of Gastric Cancer with Diffuse Intra-Tumoral Calcifications Showing Pathological Complete Response to Chemotherapy with S-1 plus Docetaxel].

    PubMed

    Nakamura, Yuki; Yoh, Tomoaki; Nakamura, Yuya; Kato, Tatsushi; Nakayama, Hiroyuki; Okamura, Ryuji

    2016-06-01

    A 70-year-old woman was diagnosed with cStage IV gastric cancer with diffuse intra-tumoral calcifications. She underwent systemic chemotherapy with an S-1/cisplatin regimen. However, as the disease progressed after 5 courses of the regimen, a secondary S-1/docetaxel regimen was administered. The target lesions showed complete response after 6 courses of this regimen, and surgery with curative intent was planned. The patient underwent total gastrectomy because no factors that would compromise the curative intent were observed during laparotomy. Postoperatively, the disease showed pathological complete response to chemotherapy. PMID:27306817

  6. Synthesis, characterization, and magnetically guided antiproliferative activity studies of drug-loaded superparamagnetic nanovectors

    NASA Astrophysics Data System (ADS)

    Luna, Carlos; Vázquez Ortega, Salvador; Barriga-Castro, Enrique Díaz; Mendoza-Reséndez, Raquel; Gómez-Treviño, Alberto

    2015-05-01

    Commonly, the key players in anticancer therapies and, more specifically, antineoplastic drugs display poor water solubility and slow dissolution rates. As a consequence, they present low bioavailability, poor tissue distribution, and unfavorable pharmacokinetic profiles, limiting their use. To overcome these barriers and improve efficacy, various drug formulations and delivery strategies have been developed. For example, nanoparticles can be used as drug delivery vehicles and current research is encouraging. However, the intra-tumoral diffusion of functionalized nanovehicles remains to be achieved. In the present study, the anticancer drug paclitaxel was loaded into superparamagnetic nanoparticles and characterized. Novel in vitro experiments based on one or two layers of cells revealed important information about the conditions required to achieve efficient drug intra-tumoral diffusion, using these superparamagnetic nanovectors, once they have been localized by external magnetic fields. These studies indicated that ultralow concentrations of paclitaxel (i.e., tenths of ng/μl) significantly reduce the viability of neoplastic cells when they are delivered with control using these nanovectors. Moreover, we showed that a discontinuous application of a magnetic field promotes the localization of the nanoparticles in a targeted region and favors the subsequent dissemination of the nanoparticles between cellular layers.

  7. Drug allergies

    MedlinePlus

    Allergic reaction - drug (medication); Drug hypersensitivity; Medication hypersensitivity ... A drug allergy involves an immune response in the body that produces an allergic reaction to a medicine. The ...

  8. Serious drug interactions.

    PubMed

    Aronson, J

    1993-10-01

    Of the many varieties of drug interactions, which occur when the disposition or actions of one drug are changed by another, only a few are serious or potentially fatal. A representative outline of some of these illustrates the problem. Precipitant drugs are those which produce the interaction, and object drugs are those whose effects are changed. The interactions which are usually significant are those which alter the metabolism, involve renal excretion, or change the effects of the object drug, especially when the object drug has a low therapeutic index (cardiovascular drugs, anticoagulants, drugs acting on the brain, hypoglycemic drugs, hormones, and cytotoxic drugs). Warfarin toxicity, for example, is produced by aspirin, phenylbutazone, and azapropazone. The dosage requirements of warfarin are reduced by chloramphenicol, ciprofloxacin and other quinolones, erythromycin and some of the other macrolides, metronidazole and other imidazoles, tetracyclines, amiodarone, cimetidine (but not ranitidine), and fibrates. Potassium-depleting drugs can potentiate the action of digoxin, and the elimination of digoxin can be reduced by amiodarone, propafenone, quinidine, and verapamil. Combined oral contraceptives can lose effectiveness through the interaction of carbamazepine, griseofulvin, phenytoin, or rifampicin, which increase estrogen metabolism. In addition, broad-spectrum antibiotics such as ampicillin or tetracyclines also reduce contraceptive effectiveness by altering gut absorption. Even a single drink of an alcoholic beverage may be dangerous to people taking antidepressants, antihistamines, antipsychotic drugs, benzodiazepines, or lithium. Antihistamines suffer inhibited metabolism in the liver if taken in conjunction with the antifungal imidazoles and some of the macrolide antibiotics. Cardiotoxicity of antihistamines is also enhanced by drugs with similar cardiotoxic effects. Lithium potentiation is enhanced by the new serotonin-reuptake inhibitors, and lithium

  9. Clinical nutrition and drug interactions

    PubMed Central

    Ekincioğlu, Aygin Bayraktar; Demirkan, Kutay

    2013-01-01

    A drug’s plasma level, pharmacological effects or side effects, elimination, physicochemical properties or stability could be changed by interactions of drug-drug or drug-nutrition products in patients who receive enteral or parenteral nutritional support. As a result, patients might experience ineffective outcomes or unexpected effects of therapy (such as drug toxicity, embolism). Stability or incompatibility problems between parenteral nutrition admixtures and drugs might lead to alterations in expected therapeutic responses from drug and/or parenteral nutrition, occlusion in venous catheter or symptoms or mortality due to infusion of composed particles. Compatibilities between parenteral nutrition and drugs are not always guaranteed in clinical practice. Although the list of compatibility or incompatibilities of drugs are published for the use of clinicians in their practices, factors such as composition of parenteral nutrition admixture, drug concentration, contact time in catheter, temperature of the environment and exposure to light could change the status of compatibilities between drugs and nutrition admixtures. There could be substantial clinical changes occurring in the patient’s nutritional status and pharmacological effects of drugs due to interactions between enteral nutrition and drugs. Drug toxicity and ineffective nutritional support might occur as a result of those predictable interactions. Although administration of drugs via feeding tube is a complex and problematic route for drug usage, it is possible to minimise the risk of tube occlusion, decreased effects of drug and drug toxicity by using an appropriate technique. Therefore, it is important to consider pharmacological dosage forms of drugs while administering drugs via a feeding tube. In conclusion, since the pharmacists are well-experienced and more knowledgeable professionals in drugs and drug usage compared to other healthcare providers, it is suggested that provision of information

  10. A thermoresponsive bubble-generating liposomal system for triggering localized extracellular drug delivery.

    PubMed

    Chen, Ko-Jie; Liang, Hsiang-Fa; Chen, Hsin-Lung; Wang, Yucai; Cheng, Po-Yuan; Liu, Hao-Li; Xia, Younan; Sung, Hsing-Wen

    2013-01-22

    The therapeutic effectiveness of chemotherapy is optimal only when tumor cells are subjected to a maximum drug exposure. To increase the intratumoral drug concentration and thus the efficacy of chemotherapy, a thermoresponsive bubble-generating liposomal system is proposed for triggering localized extracellular drug delivery. The key component of this liposomal formulation is the encapsulated ammonium bicarbonate (ABC), which is used to create the transmembrane gradient needed for a highly efficient encapsulation of doxorubicin (DOX). At an elevated temperature (42 °C), decomposition of ABC generates CO(2) bubbles, creating permeable defects in the lipid bilayer that rapidly release DOX and instantly increase the drug concentration locally. Because the generated CO(2) bubbles are hyperechogenic, they also enhance ultrasound imaging. Consequently, this new liposomal system encapsulated with ABC may also provide an ability to monitor a temperature-controlled drug delivery process. PMID:23240550

  11. Drug-induced hyperkalemia.

    PubMed

    Ben Salem, Chaker; Badreddine, Atef; Fathallah, Neila; Slim, Raoudha; Hmouda, Houssem

    2014-09-01

    Hyperkalemia is a common clinical condition that can be defined as a serum potassium concentration exceeding 5.0 mmol/L. Drug-induced hyperkalemia is the most important cause of increased potassium levels in everyday clinical practice. Drug-induced hyperkalemia may be asymptomatic. However, it may be dramatic and life threatening, posing diagnostic and management problems. A wide range of drugs can cause hyperkalemia by a variety of mechanisms. Drugs can interfere with potassium homoeostasis either by promoting transcellular potassium shift or by impairing renal potassium excretion. Drugs may also increase potassium supply. The reduction in renal potassium excretion due to inhibition of the renin-angiotensin-aldosterone system represents the most important mechanism by which drugs are known to cause hyperkalemia. Medications that alter transmembrane potassium movement include amino acids, beta-blockers, calcium channel blockers, suxamethonium, and mannitol. Drugs that impair renal potassium excretion are mainly represented by angiotensin-converting enzyme inhibitors, angiotensin-II receptor blockers, direct renin inhibitors, nonsteroidal anti-inflammatory drugs, calcineurin inhibitors, heparin and derivatives, aldosterone antagonists, potassium-sparing diuretics, trimethoprim, and pentamidine. Potassium-containing agents represent another group of medications causing hyperkalemia. Increased awareness of drugs that can induce hyperkalemia, and monitoring and prevention are key elements for reducing the number of hospital admissions, morbidity, and mortality related to drug-induced hyperkalemia. PMID:25047526

  12. Drug-induced epistaxis?

    PubMed Central

    Watson, M G; Shenoi, P M

    1990-01-01

    To assess the aetiological contribution made to spontaneous epistaxis in adults over the age of 50 years by various groups of drugs, a controlled study was designed. Fifty-three consecutive epistaxis patients were compared with 50 controls. Significant differences were found between the groups in their consumption of warfarin, dipyridamole and non-steroidal anti-inflammatory drugs. Hypertension was equally common in the two groups, but tended to be less well controlled in the epistaxis patients compared to the controls. It is thought that the link between the use of nonsteroidal anti-inflammatory drugs and the occurrence of epistaxis may be due to alteration of platelet function. PMID:2325058

  13. Drug allergies

    MedlinePlus

    Allergic reaction - drug (medication); Drug hypersensitivity; Medication hypersensitivity ... Adverse reactions to drugs are common. (adverse means unwanted or unexpected.) Almost any drug can cause an adverse reaction. Reactions range from irritating ...

  14. Drug Safety

    MedlinePlus

    ... over-the-counter drug. The FDA evaluates the safety of a drug by looking at Side effects ... clinical trials The FDA also monitors a drug's safety after approval. For you, drug safety means buying ...

  15. Club Drugs

    MedlinePlus

    ... uses. Other uses of these drugs are abuse. Club drugs are also sometimes used as "date rape" drugs, to make someone unable to say no to or fight back against sexual assault. Abusing these drugs can ...

  16. Drug-induced renal disorders.

    PubMed

    Ghane Shahrbaf, Fatemeh; Assadi, Farahnak

    2015-01-01

    Drug-induced nephrotoxicity are more common among infants and young children and in certain clinical situations such as underlying renal dysfunction and cardiovascular disease. Drugs can cause acute renal injury, intrarenal obstruction, interstitial nephritis, nephrotic syndrome, and acid-base and fluid electrolytes disorders. Certain drugs can cause alteration in intraglomerular hemodynamics, inflammatory changes in renal tubular cells, leading to acute kidney injury (AKI), tubulointerstitial disease and renal scarring. Drug-induced nephrotoxicity tends to occur more frequently in patients with intravascular volume depletion, diabetes, congestive heart failure, chronic kidney disease, and sepsis. Therefore, early detection of drugs adverse effects is important to prevent progression to end-stage renal disease. Preventive measures requires knowledge of mechanisms of drug-induced nephrotoxicity, understanding patients and drug-related risk factors coupled with therapeutic intervention by correcting risk factors, assessing baseline renal function before initiation of therapy, adjusting the drug dosage and avoiding use of nephrotoxic drug combinations. PMID:26468475

  17. Social Problems of Drug Use and Drug Policies.

    ERIC Educational Resources Information Center

    Fort, Joel

    The social and legal policies that control or prevent the use of mind-altering drugs are the main cause of the social problems arising from their use. The existing policies are ineffective; the wrong drugs receive the most attention and laws are directed at the wrong phase of the cycle of promotion, distribution and use. The following reforms are…

  18. Comparison of intratumoral heterogeneity of HER2 expression between primary tumor and multiple organ metastases in gastric cancer: Clinicopathological study of three autopsy cases and one resected case.

    PubMed

    Saito, Takuya; Kondo, Chihiro; Shitara, Kohei; Ito, Yuichi; Saito, Noriko; Ikehara, Yuzuru; Yatabe, Yasushi; Yamamichi, Keigo; Tanaka, Hideo; Nakanishi, Hayao

    2015-06-01

    Intratumoral heterogeneity of HER2 expression in the metastatic foci of HER2-positive advanced gastric cancer remains unclear. In this study, we compared HER2 expression between primary and metastatic tumors in HER2-positive three autopsied cases and one resected case with multiple organ metastases by immunohistochemistry (IHC) and dual color in situ hybridization (DISH). All four cases judged positive (IHC3+) at the primary tumor tissues showed varying HER2 gene amplification (GA) status. One homogeneously HER2-positive autopsied case (Case 1) and one intratumorally heterogeneous positive resected case (Case 2) with high GA showed a homogeneous positive staining pattern in all the metastatic foci. One heterogeneously HER2-positive autopsied case (Case 3) with low GA showed a partially heterogeneous HER2 staining pattern in all the metastatic foci. In contrast, one heterogeneously HER2-positive autopsied case (Case 4) with equivocal GA showed a completely heterogeneous HER2 staining pattern in the metastatic foci. These results indicate that HER2-positive gastric cancers with low to high GA at the primary tumor show substantially homogeneous HER2 overexpression in the metastatic foci, whereas HER2-positive gastric cancers with equivocal GA expressed HER2 heterogeneously within the metastatic tumor, suggesting that metastatic foci of the latter HER2-positive cases would be potentially resistant to trastuzumab. PMID:25828363

  19. Radioactive 198Au-doped nanostructures with different shapes for in vivo analyses of their biodistribution, tumor uptake, and intratumoral distribution.

    PubMed

    Black, Kvar C L; Wang, Yucai; Luehmann, Hannah P; Cai, Xin; Xing, Wenxin; Pang, Bo; Zhao, Yongfeng; Cutler, Cathy S; Wang, Lihong V; Liu, Yongjian; Xia, Younan

    2014-05-27

    With Au nanocages as an example, we recently demonstrated that radioactive (198)Au could be incorporated into the crystal lattice of Au nanostructures for simple and reliable quantification of their in vivo biodistribution by measuring the γ radiation from (198)Au decay and for optical imaging by detecting the Cerenkov radiation. Here we extend the capability of this strategy to synthesize radioactive (198)Au nanostructures with a similar size but different shapes and then compare their biodistribution, tumor uptake, and intratumoral distribution using a murine EMT6 breast cancer model. Specifically, we investigated Au nanospheres, nanodisks, nanorods, and cubic nanocages. After PEGylation, an aqueous suspension of the radioactive Au nanostructures was injected into a tumor-bearing mouse intravenously, and their biodistribution was measured from the γ radiation while their tumor uptake was directly imaged using the Cerenkov radiation. Significantly higher tumor uptake was observed for the Au nanospheres and nanodisks relative to the Au nanorods and nanocages at 24 h postinjection. Furthermore, autoradiographic imaging was performed on thin slices of the tumor after excision to resolve the intratumoral distributions of the nanostructures. While both the Au nanospheres and nanodisks were only observed on the surfaces of the tumors, the Au nanorods and nanocages were distributed throughout the tumors. PMID:24766522

  20. Cycles of Transient High-Dose Cyclophosphamide Administration and Oncolytic Adenovirus Vector Intratumoral Injection for Long Term Tumor Suppression in Syrian Hamsters

    PubMed Central

    Dhar, Debanjan; Toth, Karoly; Wold, William S.M.

    2014-01-01

    Immune responses against oncolytic adenovirus (Ad) vectors are thought to limit vector anti-tumor efficacy. In Syrian hamsters, which are immunocompetent and whose tumors and normal tissues are permissive for replication of Ad5-based oncolytic Ad vectors, treating with high-dose cyclophosphamide to suppress the immune system and exert chemotherapeutic effects enhances Ad vector anti-tumor efficacy. However, long term cyclophosphamide treatment and immunosuppression can lead to anemia and vector spread to normal tissues. Here we employed three cycles of transient high-dose cyclophosphamide administration plus intratumoral injection of the oncolytic Ad vector VRX-007 followed by withdrawal from cyclophosphamide. Each cycle lasted 4-6 weeks. This protocol allowed the hamsters to remain healthy so the study could be continued for ~100 days. The tumors were very well suppressed throughout the study. With immunocompetent hamsters, the vector retarded tumor growth initially, but after 3-4 weeks the tumors resumed rapid growth and further injections of vector were ineffective. Preimmunization of the hamsters with Ad5 prevented vector spillover from the tumor to the liver yet still allowed for effective long term anti-tumor efficacy. Our results suggest that a clinical protocol might be developed with cycles of transient chemotherapy plus intratumoral vector injection to achieve significant anti-tumor efficacy while minimizing the side effects of cytostatic treatment. PMID:24722357

  1. Intratumoral administration of mRNA encoding a fusokine consisting of IFN-β and the ectodomain of the TGF-β receptor II potentiates antitumor immunity

    PubMed Central

    Van der Jeught, Kevin; Joe, Patrick Tjok; Bialkowski, Lukasz; Heirman, Carlo; Daszkiewicz, Lidia; Liechtenstein, Therese; Escors, David; Thielemans, Kris; Breckpot, Karine

    2014-01-01

    It is generally accepted that the success of immunotherapy depends on the presence of tumor-specific CD8+ cytotoxic T cells and the modulation of the tumor environment. In this study, we validated mRNA encoding soluble factors as a tool to modulate the tumor microenvironment to potentiate infiltration of tumor-specific T cells. Intratumoral delivery of mRNA encoding a fusion protein consisting of interferon-β and the ectodomain of the transforming growth factor-β receptor II, referred to as Fβ2, showed therapeutic potential. The treatment efficacy was dependent on CD8+ T cells and could be improved through blockade of PD-1/PD-L1 interactions. In vitro studies revealed that administration of Fβ2 to tumor cells resulted in a reduced proliferation and increased expression of MHC I but also PD-L1. Importantly, Fβ2 enhanced the antigen presenting capacity of dendritic cells, whilst reducing the suppressive activity of myeloid-derived suppressor cells. In conclusion, these data suggest that intratumoral delivery of mRNA encoding soluble proteins, such as Fβ2, can modulate the tumor microenvironment, leading to effective antitumor T cell responses, which can be further potentiated through combination therapy. PMID:25338019

  2. Intratumoral localization and activity of 17β-hydroxysteroid dehydrogenase type 1 in non-small cell lung cancer: a potent prognostic factor

    PubMed Central

    2013-01-01

    Background Estrogens were recently demonstrated to be synthesized in non-small cell lung carcinomas (NSCLCs) via aromatase activity and aromatase inhibitor (AI) did suppressed estrogen receptor (ER) positive NSCLC growth. However, other enzymes involved in intratumoral production and metabolism of estrogens, i.e. 17β-hydroxysteroid dehydrogenases (i.e. 17βHSD1 and 17βHSD2) and others have not been studied. Therefore, in this study, we examined the clinical/ biological significance of 17β-hydroxysteroid dehydrogenases in NSCLCs. Methodology Archival materials obtained from 103 NSCLC patients were immunohistochemically evaluated using anti-17βHSD1 and anti-17βHSD2 antibodies. The findings of immunohistochemistry were then correlated with intratumoral estrone (E1) and estradiol (E2) concentration, clinicopathological factors and overall survival of the patients. We further employed NSCLC cell lines, A549 and LK87 to study the functional significance of 17βHSD1, in vitro. Results A higher 17βHSD1 immunoreactivity tended to be positively associated with aromatase (p=0.057) and tumor stage (p=0.055) whereas a higher 17βHSD2 immunoreactivity was positively associated with a squamous cell and adenosquamous cell carcinomas subtypes (p=0.031), tumor stage (p=0.004), T factor of TNM classification (p=0.010), maximum tumor diameter (p=0.002) and tended to be associated with N factor of TMN classification (p=0.065). A higher 17βHSD1 immunoreactivity was also significantly associated with lower intratumoral E1 concentration (p=0.040) and a higher intratumoral E2/E1 concentration ratio (p=0.028). On the other hand a higher 17βHSD2 immunoreactivity was significantly associated with higher intratumoral E1 concentration (p=0.035). Results of multivariate regression analysis demonstrated an increased 17βHSD1 immunoreactivity in tumor cells as an independent negative prognostic factor (HR= 2.83, p=0.007). E1 treatment in 17βHSD1 positive NSCLC cells, A549 and LK87

  3. Enhanced localization of anticancer drug in tumor tissue using polyethylenimine-conjugated cationic liposomes

    NASA Astrophysics Data System (ADS)

    Han, Hee Dong; Byeon, Yeongseon; Jeon, Hat Nim; Shin, Byung Cheol

    2014-05-01

    Liposome-based drug delivery systems hold great potential for cancer therapy. However, to enhance the localization of payloads, an efficient method of systemic delivery of liposomes to tumor tissues is required. In this study, we developed cationic liposomes composed of polyethylenimine (PEI)-conjugated distearoylglycerophosphoethanolamine (DSPE) as an enhanced local drug delivery system. The particle size of DSPE-PEI liposomes was 130 ± 10 nm and the zeta potential of liposomes was increased from -25 to 30 mV by the incorporation of cationic PEI onto the liposomal membrane. Intracellular uptake of DSPE-PEI liposomes by tumor cells was 14-fold higher than that of DSPE liposomes. After intratumoral injection of liposomes into tumor-bearing mice, DSPE-PEI liposomes showed higher and sustained localization in tumor tissue compared to DSPE liposomes. Taken together, our findings suggest that DSPE-PEI liposomes have the potential to be used as effective drug carriers for enhanced intracellular uptake and localization of anticancer drugs in tumor tissue through intratumoral injection.

  4. Percutaneous absorption of drugs.

    PubMed

    Wester, R C; Maibach, H I

    1992-10-01

    The skin is an evolutionary masterpiece of living tissue which is the final control unit for determining the local and systemic availability of any drug which must pass into and through it. In vivo in humans, many factors will affect the absorption of drugs. These include individual biological variation and may be influenced by race. The skin site of the body will also influence percutaneous absorption. Generally, those body parts exposed to the open environment (and to cosmetics, drugs and hazardous toxic substances) are most affected. Treating patients may involve single daily drug treatment or multiple daily administration. Finally, the body will be washed (normal daily process or when there is concern about skin decontamination) and this will influence percutaneous absorption. The vehicle of a drug will affect release of drug to skin. On skin, the interrelationships of this form of administration involve drug concentration, surface area exposed, frequency and time of exposure. These interrelationships determine percutaneous absorption. Accounting for all the drug administered is desirable in controlled studies. The bioavailability of the drug then is assessed in relationship to its efficacy and toxicity in drug development. There are methods, both quantitative and qualitative, in vitro and in vivo, for studying percutaneous absorption of drugs. Animal models are substituted for humans to determine percutaneous absorption. Each of these methods thus becomes a factor in determining percutaneous absorption because they predict absorption in humans. The relevance of these predictions to humans in vivo is of intense research interest. The most relevant determination of percutaneous absorption of a drug in humans is when the drug in its approved formulation is applied in vivo to humans in the intended clinical situation. Deviation from this scenario involves the introduction of variables which may alter percutaneous absorption. PMID:1296607

  5. [Altered states of consciousness].

    PubMed

    Gora, E P

    2005-01-01

    The review of modern ideas concerning the altered states of consciousness is presented in this article. Various methods of entry into the altered states of consciousness are looked over. It is shown that the altered states of consciousness are insufficiently known, but important aspects of human being existence. The role of investigation of the altered states of consciousness for the creation of integrative scientific conception base is discussed. PMID:15810684

  6. Drugs, drugs--who has the drugs?

    PubMed

    Blair, James

    2012-01-01

    Drug diversion, although on the increase, is not the only problem involving drugs that hospital security officials should be concerned with. Growing drug shortages, offshore production, counterfeiting, and weaknesses in the drug supply chain in case of a world-wide pandemic, are even greater causes for concern, the author claims. PMID:22423518

  7. 21 CFR 211.94 - Drug product containers and closures.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 4 2010-04-01 2010-04-01 false Drug product containers and closures. 211.94... Components and Drug Product Containers and Closures § 211.94 Drug product containers and closures. (a) Drug product containers and closures shall not be reactive, additive, or absorptive so as to alter the...

  8. Drug Interactions and Antiretroviral Drug Monitoring

    PubMed Central

    Foy, Matthew; Sperati, C. John; Lucas, Gregory M.

    2014-01-01

    Due to the improved longevity afforded by combination antiretroviral therapy (cART), HIV-infected individuals are developing several non-AIDS related comorbid conditions. Consequently, medical management of the HIV-infected population is increasingly complex, with a growing list of potential drug-drug interactions (DDIs). This article reviews some of the most relevant and emerging potential interactions between antiretroviral medications and other agents. The most common DDIs are those involving protease inhibitors or non-nucleoside reverse transcriptase inhibitors which alter the cytochrome P450 enzyme system and/or drug transporters such as p-glycoprotein. Of note are the new agents for the treatment of chronic hepatitis C virus infection. These new classes of drugs and others drugs which are increasingly used in this patient population represent a significant challenge with regard to achieving the goals of effective HIV suppression and minimization of drug-related toxicities. Awareness of DDIs and a multidisciplinary approach are imperative in reaching these goals. PMID:24950731

  9. Computed Tomography Demonstration of the Production and Distribution of Oxygen Gas Following Intratumoral Injection of a New Radiosensitizer (KORTUC) for Patients with Breast Cancer—Is Intratumoral Injection Not an Ideal Approach to Solve the Major Problem of Tumor Hypoxia in Radiotherapy?

    PubMed Central

    Hayashi, Naoya; Ogawa, Yasuhiro; Kubota, Kei; Okino, Kazuhiro; Akima, Ryo; Morita-Tokuhiro, Shiho; Tsuzuki, Akira; Yaogawa, Shin; Nishioka, Akihito; Miyamura, Mitsuhiko

    2016-01-01

    We previously developed a new enzyme-targeting radiosensitization treatment named Kochi Oxydol-Radiation Therapy for Unresectable Carcinomas, Type II (KORTUC II), which contains hydrogen peroxide and sodium hyaluronate for injection into various types of tumors. For breast cancer treatment, the radiosensitization agent was injected into the tumor tissue twice a week under ultrasonographic guidance, immediately prior to each administration of radiation therapy. At approximately three hours after the second or third injection, computed tomography (CT) was performed to confirm the production and distribution of oxygen gas generated from the KORTUC radiosensitization agent by catalysis of peroxidases contained mainly in tumor tissue. The purpose of this study was to demonstrate that tumor hypoxia could be overcome by such a procedure and to evaluate the method of intratumoral injection in terms of confirming oxygen distribution in the target tumor tissue and around the tumor to be visualized on dedicated CT imaging. Three-dimensional reconstructed maximum intensity projection imaging of contrast-enhanced breast magnetic resonance imaging was used to compare the position of the tumor and that of the generated oxygen. Distributed oxygen gas was confirmed in the tumor tissue and around it in all 10 patients examined in the study. A region of oxygen gas was measured as an average value of −457.2 Hounsfield units (HU) as a region of interest. A slightly increased HU value compared to the density of air or oxygen was considered due to the presence of tumor tissue in the low-density area on 5-mm-thick reconstructed CT imaging. The results of this study showed that intratumoral oxygen was successfully produced by intratumoral KORTUC injection under ultrasonographic guidance, and that tumor hypoxia, which is considered a main cause of radioresistance in currently used Linac (linear accelerator) radiation therapy for malignant neoplasms, could be resolved by this method. PMID

  10. KINOMIC ALTERATIONS IN ATYPICAL MENINGIOMA

    PubMed Central

    Anderson, Joshua C.; Taylor, Robert B.; Fiveash, John B.; de Wijn, Rik; Gillespie, G. Yancey; Willey, Christopher D.

    2015-01-01

    Background We sought to profile Atypical Meningioma in a high-throughput manner to better understand the altered signaling within these tumors and specifically the kinases altered in recurrent atypical meningioma. Kinomic Profiles could be used to identify prognostic biomarkers for responders/non-responders to classify future patients that are unlikely to benefit from current therapies. Directly these results could be used to identify drug-actionable kinase targets as well. Methods Peptide-substrate microarray kinase activity analysis was conducted with a PamStation®12 analyzing the tyrosine kinome in each tumor kinetically against ~144 target peptides. These data were then analyzed relative to clinical outcome (e.g., tumor recurrence). Results 3 major clusters of atypical meningiomas were identified with highly variant peptides primarily being targets of EGFR family, ABL, BRK and BMX kinases. Kinomic analysis of recurrent atypical meningiomas indicated patterns of increased phosphorylation of BMX, TYRO3 and FAK substrates as compared to non-recurrent tumors. Conclusion The atypical meningiomas profiled here exhibited molecular sub-clustering that may have phenotypic corollaries predictive of outcome. Recurrent tumors had increases in kinase activity that may predict resistance to current therapies, and may guide selection of directed therapies. Taken together these data further the understanding of kinomic alteration in atypical meningioma, and the processes that may not only mediate recurrence, but additionally may identify kinase targets for intervention. PMID:27158663

  11. Adverse antibiotic drug interactions.

    PubMed

    Bint, A J; Burtt, I

    1980-07-01

    There is enormous potential for drug interactions in patients who, today, often receive many drugs. Antibiotics are prominent amongst the groups of drugs commonly prescribed. Many interactions take place at the absorption stage. Antacids and antidiarrhoeal preparations, in particular, can delay and reduce the absorption of antibiotics such as tetracyclines and clindamycin, by combining with them in the gastrointestinal tract to form chelates or complexes. Other drugs can affect gastric motility, which in turn often controls the rate at which antibiotics are absorbed. Some broad spectrum antibiotics can alter the bacterial flora of the gut which may be related to malabsorption states. The potentiation of toxic side effects of one drug by another is a common type of interaction. Antibiotics which are implicated in this type of interaction are those which themselves possess some toxicity such as aminoglycosides, some cephalosporins, tetracyclines and colistin. Some of the most important adverse interactions with antibiotics are those which involve other drugs which have a low toxicity/efficacy ratio. These include anticoagulants such as warfarin, anticonvulsants such as phenytoin and phenobarbitone and oral antidiabetic drugs like tolbutamide. Risk of interaction arises when the metabolism of these drugs is inhibited by liver microsomal enzyme inhibitors such as some sulphonamides and chloramphenicol, or is enhanced by enzyme inducers such as rifampicin. PMID:6995091

  12. Drug Facts

    MedlinePlus Videos and Cool Tools

    ... Weed, Pot) Facts Meth (Crank, Ice) Facts Pain Medicine (Oxy, Vike) Facts Other Drugs of Abuse What ... About Drugs Alcohol Cocaine Heroin Marijuana Meth Pain Medicines Tobacco Other Drugs You can call 1-800- ...

  13. Drug Reactions

    MedlinePlus

    ... problem is interactions, which may occur between Two drugs, such as aspirin and blood thinners Drugs and food, such as statins and grapefruit Drugs and supplements, such as gingko and blood thinners ...

  14. Drug Resistance

    MedlinePlus

    HIV Treatment Drug Resistance (Last updated 3/1/2016; last reviewed 3/1/2016) Key Points As HIV multiplies in the ... the risk of drug resistance. What is HIV drug resistance? Once a person becomes infected with HIV, ...

  15. Drug Disposition in Pathophysiological Conditions

    PubMed Central

    Gandhi, Adarsh; Moorthy, Bhagavatula; Ghose, Romi

    2014-01-01

    Expression and activity of several key drug metabolizing enzymes (DMEs) and transporters are altered in various pathophysiological conditions, leading to altered drug metabolism and disposition. This can have profound impact on the pharmacotherapy of widely used clinically relevant medications in terms of safety and efficacy by causing inter-individual variabilities in drug responses. This review article highlights altered drug disposition in inflammation and infectious diseases, and commonly encountered disorders such as cancer, obesity/diabetes, fatty liver diseases, cardiovascular diseases and rheumatoid arthritis. Many of the clinically relevant drugs have a narrow therapeutic index. Thus any changes in the disposition of these drugs may lead to reduced efficacy and increased toxicity. The implications of changes in DMEs and transporters on the pharmacokinetics/pharmacodynamics of clinically-relevant medications are also discussed. Inflammation-mediated release of pro-inflammatory cytokines and activation of toll-like receptors (TLRs) are known to play a major role in down-regulation of DMEs and transporters. Although the mechanism by which this occurs is unclear, several studies have shown that inflammation-associated cell-signaling pathway and its interaction with basal transcription factors and nuclear receptors in regulation of DMEs and transporters play a significant role in altered drug metabolism. Altered regulation of DMEs and transporters in a multitude of disease states will contribute towards future development of powerful in vitro and in vivo tools in predicting the drug response and opt for better drug design and development. The goal is to facilitate a better understanding of the mechanistic details underlying the regulation of DMEs and transporters in pathophysiological conditions. PMID:22746301

  16. Drug disposition in pathophysiological conditions.

    PubMed

    Gandhi, Adarsh; Moorthy, Bhagavatula; Ghose, Romi

    2012-11-01

    Expression and activity of several key drug metabolizing enzymes (DMEs) and transporters are altered in various pathophysiological conditions, leading to altered drug metabolism and disposition. This can have profound impact on the pharmacotherapy of widely used clinically relevant medications in terms of safety and efficacy by causing inter-individual variabilities in drug responses. This review article highlights altered drug disposition in inflammation and infectious diseases, and commonly encountered disorders such as cancer, obesity/diabetes, fatty liver diseases, cardiovascular diseases and rheumatoid arthritis. Many of the clinically relevant drugs have a narrow therapeutic index. Thus any changes in the disposition of these drugs may lead to reduced efficacy and increased toxicity. The implications of changes in DMEs and transporters on the pharmacokinetics/pharmacodynamics of clinically-relevant medications are also discussed. Inflammation-mediated release of pro-inflammatory cytokines and activation of toll-like receptors (TLRs) are known to play a major role in down-regulation of DMEs and transporters. Although the mechanism by which this occurs is unclear, several studies have shown that inflammation-associated cell-signaling pathway and its interaction with basal transcription factors and nuclear receptors in regulation of DMEs and transporters play a significant role in altered drug metabolism. Altered regulation of DMEs and transporters in a multitude of disease states will contribute towards future development of powerful in vitro and in vivo tools in predicting the drug response and opt for better drug design and development. The goal is to facilitate a better understanding of the mechanistic details underlying the regulation of DMEs and transporters in pathophysiological conditions. PMID:22746301

  17. Transporters and drug-drug interactions: important determinants of drug disposition and effects.

    PubMed

    König, Jörg; Müller, Fabian; Fromm, Martin F

    2013-07-01

    Uptake and efflux transporters determine plasma and tissue concentrations of a broad variety of drugs. They are localized in organs such as small intestine, liver, and kidney, which are critical for drug absorption and elimination. Moreover, they can be found in important blood-tissue barriers such as the blood-brain barrier. Inhibition or induction of drug transporters by coadministered drugs can alter pharmacokinetics and pharmacodynamics of the victim drugs. This review will summarize in particular clinically observed drug-drug interactions attributable to inhibition or induction of intestinal export transporters [P-glycoprotein (P-gp), breast cancer resistance protein (BCRP)], to inhibition of hepatic uptake transporters [organic anion transporting polypeptides (OATPs)], or to inhibition of transporter-mediated [organic anion transporters (OATs), organic cation transporter 2 (OCT2), multidrug and toxin extrusion proteins (MATEs), P-gp] renal secretion of xenobiotics. Available data on the impact of nutrition on transport processes as well as genotype-dependent, transporter-mediated drug-drug interactions will be discussed. We will also present and discuss data on the variable extent to which information on the impact of transporters on drug disposition is included in summaries of product characteristics of selected countries (SPCs). Further work is required regarding a better understanding of the role of the drug metabolism-drug transport interplay for drug-drug interactions and on the extrapolation of in vitro findings to the in vivo (human) situation. PMID:23686349

  18. Photodynamic Therapy (PDT) using intratumoral injection of the 5- aminolevulinic acid (5-ALA) for the treatment of eye cancer in cattle

    NASA Astrophysics Data System (ADS)

    Hage, Raduan; Mancilha, Geraldo; Zângaro, Renato A.; Munin, Egberto; Plapler, Hélio

    2007-02-01

    A six-year old Holstein cow with an eye cancer (ocular squamous cell carcinoma) involving the third eyelid and conjunctiva was submitted to photodynamic therapy using intratumoral 20% aminolevulinic acid (5-ALA - Aldrich Chemical Company, Milwaukee, USA) and a light emitting diode (LED - VET LED - MMOptics (R)) with wavelength between 600 and 700 nm, 2 cm diameter circular light beam, power of 150 mW, light dose of 50 J/cm2 as a source of irradiation. Fifteen days after the experimental procedure we observed about 50% tumor reduction and complete remission after 3 months. Relapse was not observed up to 12 months after the treatment. Although the study only includes one animal not allowing definite conclusions, it indicates that PDT represents a safe and technically feasible approach in the treatment of eye cancer in cattle.

  19. Distinct patterns of intratumoral immune cell infiltrates in patients with HPV-associated compared to non-virally induced head and neck squamous cell carcinoma

    PubMed Central

    Partlová, Simona; Bouček, Jan; Kloudová, Kamila; Lukešová, Eva; Zábrodský, Michal; Grega, Marek; Fučíková, Jitka; Truxová, Iva; Tachezy, Ruth; Špíšek, Radek; Fialová, Anna

    2015-01-01

    Human papillomavirus (HPV) infection is one of the most important etiologic causes of oropharyngeal head and neck squamous cell carcinoma (HNSCC). Patients with HPV-positive HNSCC were reported to have a better clinical outcome than patients with HPV-negative cancers. However, little is known about the possible causes of different clinical outcomes. In this study, we analyzed a detailed immune profile of tumor samples from HNSCC patients with respect to their HPV status. We analyzed the characteristics of immune cell infiltrates, including the frequency and distribution of antigen-presenting cells and naïve, regulatory and effector T cells and the cytokine and chemokine levels in tumor tissue. There was a profound difference in the extent and characteristics of intratumoral immune cell infiltrates in HNSCC patients based on their HPV status. In contrast to HPV-negative tumor tissues, HPV-positive tumor samples showed significantly higher numbers of infiltrating IFNγ+ CD8+ T lymphocytes, IL-17+ CD8+ T lymphocytes, myeloid dendritic cells and proinflammatory chemokines. Furthermore, HPV-positive tumors had significantly lower expression of Cox-2 mRNA and higher expression of PD1 mRNA compared to HPV-negative tumors. The presence of a high level of intratumoral immune cell infiltrates might play a crucial role in the significantly better response of HPV-positive patients to standard therapy and their favorable clinical outcome. Furthermore, characterization of the HNSCC immune profile might be a valuable prognostic tool in addition to HPV status and might help identify novel targets for therapeutic strategies, including cancer immunotherapy. PMID:25949860

  20. Expression of inhibitory receptors on intratumoral T cells modulates the activity of a T cell-bispecific antibody targeting folate receptor

    PubMed Central

    Schreiner, Jens; Thommen, Daniela S.; Herzig, Petra; Bacac, Marina; Klein, Christian; Roller, Andreas; Belousov, Anton; Levitsky, Victor; Savic, Spasenija; Moersig, Wolfgang; Uhlenbrock, Franziska; Heinzelmann-Schwarz, Viola A.; Umana, Pablo; Pisa, Pavel; Lardinois, Didier; Müller, Philipp; Karanikas, Vaios; Zippelius, Alfred

    2016-01-01

    ABSTRACT T-cell bispecific antibodies (TCBs) are a novel therapeutic tool designed to selectively recruit T-cells to tumor cells and simultaneously activate them. However, it is currently unknown whether the dysfunctional state of T-cells, embedded into the tumor microenvironment, imprints on the therapeutic activity of TCBs. We performed a comprehensive analysis of activation and effector functions of tumor-infiltrating T-cells (TILs) in different tumor types, upon stimulation by a TCB targeting folate receptor 1 and CD3 (FolR1-TCB). We observed a considerable heterogeneity in T-cell activation, cytokine production and tumor cell killing upon exposure to FolR1-TCB among different FolR1-expressing tumors. Of note, tumors presenting with a high frequency of PD-1hi TILs displayed significantly impaired tumor cell killing and T-cell function. Further characterization of additional T-cell inhibitory receptors revealed that PD-1hi TILs defined a T-cell subset with particularly high levels of multiple inhibitory receptors compared with PD-1int and PD-1neg T-cells. PD-1 blockade could restore cytokine secretion but not cytotoxicity of TILs in a subset of patients with scarce PD-1hi expressing cells; in contrast, patients with abundance of PD-1hi expressing T-cells did not benefit from PD-1 blockade. Our data highlight that FolR1-TCB is a promising novel immunotherapeutic treatment option which is capable of activating intratumoral T-cells in different carcinomas. However, its therapeutic efficacy may be substantially hampered by a pre-existing dysfunctional state of T-cells, reflected by abundance of intratumoral PD-1hi T-cells. These findings present a rationale for combinatorial approaches of TCBs with other therapeutic strategies targeting T-cell dysfunction. PMID:27057429

  1. Intratumoral expression profiling of genes involved in angiogenesis in colorectal cancer patients treated with chemotherapy plus the VEGFR inhibitor PTK787/ZK 222584 (vatalanib).

    PubMed

    Wilson, P M; Yang, D; Azuma, M; Shi, M M; Danenberg, K D; Lebwohl, D; Sherrod, A; Ladner, R D; Zhang, W; Danenberg, P V; Trarbach, T; Folprecht, G; Meinhardt, G; Lenz, H-J

    2013-10-01

    The phase III CONFIRM clinical trials demonstrated that metastatic colorectal cancer patients with elevated serum lactate dehydrogenase (LDH) had improved outcome when the vascular endothelial growth factor receptor (VEGFR) inhibitor PTK/ZK (Vatalanib) was added to FOLFOX4 chemotherapy. We investigated the hypothesis that high intratumoral expression of genes regulated by hypoxia-inducible factor-1 alpha (HIF1α), namely LDHA, glucose transporter-1 (GLUT-1), VEGFA, VEGFR1, and VEGFR2, were predictive of outcome in CONFIRM-1. Tumor tissue was isolated by laser-capture microdissection from 85 CONFIRM-1 tumor specimens; FOLFOX4/placebo n=42, FOLFOX4/PTK/ZK n=43. Gene expression was analyzed using quantitative RT-PCR. In univariate analyses, elevated mRNA expression of LDHA, GLUT-1, and VEGFR1 were associated with response to FOLFOX4/PTK/ZK. In univariate and multivariate analyses, elevated LDHA and VEGFR1 mRNA levels were associated with improved progression-free survival in FOLFOX4/PTK/ZK patients. Furthermore, increased HIF1α and VEGFR2 mRNA levels were associated with decreased survival in FOLFOX/placebo patients but not in patients who received FOLFOX4/PTK/ZK. These are the first data suggesting intratumoral mRNA expression of genes involved in angiogenesis/HIF pathway may predict outcome to VEGFR-inhibitors. Biomarkers that assist in directing VEGFR-inhibitors toward patients with an increased likelihood of benefit will improve the cost-effectiveness of these promising agents. PMID:22664478

  2. Intra-tumoral IFN-γ-producing Th22 cells correlate with TNM staging and the worst outcomes in pancreatic cancer.

    PubMed

    Niccolai, Elena; Taddei, Antonio; Ricci, Federica; Rolla, Simona; D'Elios, Mario Milco; Benagiano, Marisa; Bechi, Paolo; Bencini, Lapo; Ringressi, Maria Novella; Pini, Alessandro; Castiglione, Francesca; Giordano, Daniele; Satolli, Maria Antonietta; Coratti, Andrea; Cianchi, Fabio; Bani, Daniele; Prisco, Domenico; Novelli, Francesco; Amedei, Amedeo

    2016-02-01

    PDAC (pancreatic ductal adenocarcinoma) is the fifth leading cause of cancer-related death. The causes of this cancer remain unknown, but increasing evidence indicates a key role of the host immune response and cytokines in human carcinogenesis. Intra-tumoral IL (interleukin)-22 levels have been shown to be elevated in PDAC patients. However, little is known regarding the expression and clinical relevance of Th22 cells in human PDAC and, furthermore, which TILs (tumour-infiltrating lymphocytes) are the main producers of IL-22 is unknown. In the present study, we characterized the functional proprieties of the different subsets of IL-22-producing TILs and analysed their relationship with the TNM staging system and patient survival. We have demonstrated for the first time that, in PDAC patients, the T-cells co-producing IFN-γ (interferon γ) and exerting perforin-mediated cytotoxicity are the major intra-tumoral source of IL-22. In addition, isolated Th22 cells were able to induce apoptosis, which was antagonized by IL-22. Finally, we observed that the IL-22-producing T-cells were significantly increased in tumour tissue and that this increase was positively correlated with TNM staging of PDAC and poorer patient survival. These novel findings support the dual role of the anti-tumour immune system and that IL-22-producing cells may participate in PDAC pathogenesis. Therefore monitoring Th22 levels could be a good diagnostic parameter, and blocking IL-22 signalling may represent a viable method for anti-PDAC therapies. PMID:26590104

  3. Drugging Membrane Protein Interactions.

    PubMed

    Yin, Hang; Flynn, Aaron D

    2016-07-11

    The majority of therapeutics target membrane proteins, accessible on the surface of cells, to alter cellular signaling. Cells use membrane proteins to transduce signals into cells, transport ions and molecules, bind cells to a surface or substrate, and catalyze reactions. Newly devised technologies allow us to drug conventionally "undruggable" regions of membrane proteins, enabling modulation of protein-protein, protein-lipid, and protein-nucleic acid interactions. In this review, we survey the state of the art of high-throughput screening and rational design in drug discovery, and we evaluate the advances in biological understanding and technological capacity that will drive pharmacotherapy forward against unorthodox membrane protein targets. PMID:26863923

  4. Drug Abuse

    MedlinePlus

    ... as drugged driving, violence, stress, and child abuse. Drug abuse can lead to homelessness, crime, and missed work or problems with keeping a job. It harms unborn babies and destroys families. There are different types of treatment for drug abuse. But the best is to prevent drug ...

  5. Controlled drugs.

    PubMed

    2016-05-18

    Essential facts Controlled drugs are defined and governed by the Misuse of Drugs Act 1971 and associated regulations. Examples of controlled drugs include morphine, pethidine and methadone. Since 2012, appropriately qualified nurses and midwives can prescribe controlled drugs for medical conditions within their competence. There are some exceptions when treating addiction. PMID:27191427

  6. Bevacizumab-Induced Inhibition of Angiogenesis Promotes a More Homogeneous Intratumoral Distribution of Paclitaxel, Improving the Antitumor Response.

    PubMed

    Cesca, Marta; Morosi, Lavinia; Berndt, Alexander; Fuso Nerini, Ilaria; Frapolli, Roberta; Richter, Petra; Decio, Alessandra; Dirsch, Olaf; Micotti, Edoardo; Giordano, Silvia; D'Incalci, Maurizio; Davoli, Enrico; Zucchetti, Massimo; Giavazzi, Raffaella

    2016-01-01

    The antitumor activity of angiogenesis inhibitors is reinforced in combination with chemotherapy. It is debated whether this potentiation is related to a better drug delivery to the tumor due to the antiangiogenic effects on tumor vessel phenotype and functionality. We addressed this question by combining bevacizumab with paclitaxel on A2780-1A9 ovarian carcinoma and HT-29 colon carcinoma transplanted ectopically in the subcutis of nude mice and on A2780-1A9 and IGROV1 ovarian carcinoma transplanted orthotopically in the bursa of the mouse ovary. Paclitaxel concentrations together with its distribution by MALDI mass spectrometry imaging (MALDI MSI) were measured to determine the drug in different areas of the tumor, which was immunostained to depict vessel morphology and tumor proliferation. Bevacizumab modified the vessel bed, assessed by CD31 staining and dynamic contrast enhanced MRI (DCE-MRI), and potentiated the antitumor activity of paclitaxel in all the models. Although tumor paclitaxel concentrations were lower after bevacizumab, the drug distributed more homogeneously, particularly in vascularized, non-necrotic areas, and was cleared more slowly than controls. This happened specifically in tumor tissue, as there was no change in paclitaxel pharmacokinetics or drug distribution in normal tissues. In addition, the drug concentration and distribution were not influenced by the site of tumor growth, as A2780-1A9 and IGROV1 growing in the ovary gave results similar to the tumor growing subcutaneously. We suggest that the changes in the tumor microenvironment architecture induced by bevacizumab, together with the better distribution of paclitaxel, may explain the significant antitumor potentiation by the combination. PMID:26494857

  7. Drug diversion

    PubMed Central

    Wood, Danielle

    2015-01-01

    SUMMARY Prescription drug diversion has significant health, legal and social implications. Deaths from misuse of prescription drugs account for a significant proportion of overdose deaths. The drugs most commonly involved are analgesics, particularly opioids, and psychoactive drugs, particularly benzodiazepines. Diverted drugs are most often sourced from a family member or friend, but are also sourced from overseas pharmacies or laboratories, or bought from drug dealers. Drug diversion can be mitigated by good prescribing practices. Systems for monitoring the prescribing and dispensing of medicines are being instituted across Australia. PMID:26648654

  8. Amazing Altered Books

    ERIC Educational Resources Information Center

    Kieling, Linda W.

    2006-01-01

    Linda Kieling, an art teacher at Rosemont Ridge Middle school in West Linn, Oregon, describes an altered book art project she introduced to her students. Alteration of books is a form of recycling that started in the eleventh century when Italian monks recycled old manuscripts written on vellum by scraping off the ink and adding new text and…

  9. A phase II trial evaluating the effects and intra-tumoral penetration of bortezomib in patients with recurrent malignant gliomas.

    PubMed

    Raizer, Jeffrey J; Chandler, James P; Ferrarese, Roberto; Grimm, Sean A; Levy, Robert M; Muro, Kenji; Rosenow, Joshua; Helenowski, Irene; Rademaker, Alfred; Paton, Martin; Bredel, Markus

    2016-08-01

    One resistance mechanism in malignant gliomas (MG) involves nuclear factor-κB (NF-κB) activation. Bortezomib prevents proteasomal degradation of NF-κB inhibitor α (NFKBIA), an endogenous regulator of NF-κB signaling, thereby limiting the effects of NF-κB on tumor survival and resistance. A presurgical phase II trial of bortezomib in recurrent MG was performed to determine drug concentration in tumor tissue and effects on NFKBIA. Patients were enrolled after signing an IRB approved informed consent. Treatment was bortezomib 1.7 mg/m(2) IV on days 1, 4 and 8 and then surgery on day 8 or 9. Post-operatively, treatment was Temozolomide (TMZ) 75 mg/m(2) PO on days 1-7 and 14-21 and bortezomib 1.7 mg/m(2) on days 7 and 21 [1 cycle was (1) month]. Ten patients were enrolled (8 M and 2 F) with 9 having surgery. Median age and KPS were 50 (42-64) and 90 % (70-100). The median cycles post-operatively was 2 (0-4). The trial was stopped as no patient had a PFS-6. All patients are deceased. Paired plasma and tumor bortezomib concentration measurements revealed higher drug concentrations in tumor than in plasma; NFKBIA protein levels were similar in drug-treated vs. drug-naïve tumor specimens. Nuclear 20S proteasome was less in postoperative samples. Postoperative treatment with TMZ and bortezomib did not show clinical activity. Bortezomib appears to sequester in tumor but pharmacological effects on NFKBIA were not seen, possibly obscured due to downregulation of NFKBIA during tumor progression. Changes in nuclear 20S could be marker of bortezomib effect on tumor. PMID:27300524

  10. Polymeric micelles as a diagnostic tool for image-guided drug delivery and radiotherapy of HER2 overexpressing breast cancer

    NASA Astrophysics Data System (ADS)

    Hoang, Nu Bryan

    Block copolymer micelles have emerged as a viable formulation strategy with several drugs relying on this technology in clinical evaluation. To date, information on the tumor penetration and intratumoral distribution of block copolymer micelles (BCM) has been quite limited. Thus, there is impetus to develop a radiolabeled formulation that can be used to gain invaluable insight into the intratumoral distribution of the BCMs. This information could then be used to direct formulation strategies as a means to optimize treatment outcomes. This thesis describes the synthesis and characterization of a targeted block copolymer micelle system based on poly(ethylene glycol)-block -poly(epsilon-caprolactone) labeled with the radionuclide Indium-111 (111In). The incorporation of the imageable component, 111In permits pursuit of image-guided drug delivery for real-time monitoring of tumor localization and intratumoral distribution. Intracellular trafficking of drugs and therapies such as Auger electron emitting radionuclides to perinuclear and nuclear regions of cells is critical to realizing their full therapeutic potential. HER2 specific antibodies (trastuzumab fab fragments) and nuclear localization signal peptides were conjugated to the surface of the BCMs to direct uptake in HER2 expressing cells and subsequent localization in the cell nucleus. Cell uptake was HER2 density dependent, confirming receptor-mediated internalization of the BCMs. Importantly, conjugation of NLS resulted in a significant increase in nuclear uptake of the radionuclide 111In. Successful nuclear targeting was shown to improve the antiproliferative effect of the Auger electrons. In addition, a significant radiation enhancement effect was observed by concurrent delivery of low-dose MTX and 111In in all breast cancer cell lines evaluated. Imaging enabled the accurate quantification of the specific tumor uptake of the micelles and visualization of their degree of tumor penetration in relation to

  11. TM9SF4 is a novel V-ATPase-interacting protein that modulates tumor pH alterations associated with drug resistance and invasiveness of colon cancer cells.

    PubMed

    Lozupone, F; Borghi, M; Marzoli, F; Azzarito, T; Matarrese, P; Iessi, E; Venturi, G; Meschini, S; Canitano, A; Bona, R; Cara, A; Fais, S

    2015-10-01

    An inverted pH gradient across the cell membranes is a typical feature of malignant cancer cells that are characterized by extracellular acidosis and cytosol alkalization. These dysregulations are able to create a unique milieu that favors tumor progression, metastasis and chemo/immune-resistance traits of solid tumors. A key event mediating tumor cell pH alterations is an aberrant activation of ion channels and proton pumps such as (H+)-vacuolar-ATPase (V-ATPase). TM9SF4 is a poorly characterized transmembrane protein that we have recently shown to be related to cannibal behavior of metastatic melanoma cells. Here, we demonstrate that TM9SF4 represents a novel V-ATPase-associated protein involved in V-ATPase activation. We have observed in HCT116 and SW480 colon cancer cell lines that TM9SF4 interacts with the ATP6V1H subunit of the V-ATPase V1 sector. Suppression of TM9SF4 with small interfering RNAs strongly reduces assembly of V-ATPase V0/V1 sectors, thus reversing tumor pH gradient with a decrease of cytosolic pH, alkalization of intracellular vesicles and a reduction of extracellular acidity. Such effects are associated with a significant inhibition of the invasive behavior of colon cancer cells and with an increased sensitivity to the cytotoxic effects of 5-fluorouracil. Our study shows for the first time the important role of TM9SF4 in the aberrant constitutive activation of the V-ATPase, and the development of a malignant phenotype, supporting the potential use of TM9SF4 as a target for future anticancer therapies. PMID:25659576

  12. Emerging drugs of abuse.

    PubMed

    Nelson, Michael E; Bryant, Sean M; Aks, Steven E

    2014-02-01

    Many new emerging drugs of abuse are marketed as legal highs despite being labeled "not for human consumption" to avoid regulation. The availability of these substances over the Internet and in "head shops" has lead to a multitude of emergency department visits with severe complications including deaths worldwide. Despite recent media attention, many of the newer drugs of abuse are still largely unknown by health care providers. Slight alterations of the basic chemical structure of substances create an entirely new drug no longer regulated by current laws and an ever-changing landscape of clinical effects. The purity of each substance with exact pharmacokinetic and toxicity profiles is largely unknown. Many of these substances can be grouped by the class of drug and includes synthetic cannabinoids, synthetic cathinones, phenethylamines, as well as piperazine derivatives. Resultant effects generally include psychoactive and sympathomimetic-like symptoms. Additionally, prescription medications, performance enhancing medications, and herbal supplements are also becoming more commonly abused. Most new drugs of abuse have no specific antidote and management largely involves symptom based goal directed supportive care with benzodiazepines as a useful adjunct. This paper will focus on the history, epidemiology, clinical effects, laboratory analysis, and management strategy for many of these emerging drugs of abuse. PMID:24275167

  13. Supramolecular approaches for drug development.

    PubMed

    Kawakami, K; Ebara, M; Izawa, H; Sanchez-Ballester, N M; Hill, J P; Ariga, K

    2012-01-01

    Various supramolecular systems can be used as drug carriers to alter physicochemical and pharmacokinetic characteristics of drugs. Representative supramolecular systems that can be used for this purpose include surfactant/polymer micelles, (micro)emulsions, liposomes, layer-by-layer assemblies, and various molecular conjugates. Notably, liposomes are established supramolecular drug carriers, which have already been marketed in formulations including AmBisome(®) (for treatment of fungal infection), Doxil(®) (for Kaposi's sarcoma), and Visudyne(®) (for age-related macular degeneration and choroidal neovascularization). Microemulsions have been used oral drug delivery of poorly soluble drugs due to improvements in bioavailability and predictable of absorption behavior. Neoral(®), an immunosuppressant used after transplant operations, is one of the most famous microemulsion-based drugs. Polymer micelles are being increasingly investigated as novel drug carriers and some formulations have already been tested in clinical trials. Supramolecular systems can be functionalized by designing the constituent molecules to achieve efficient delivery of drugs to desired sites in the body. In this review, representative supramolecular drug delivery systems, that may improve usability of candidate drugs or add value to existing drugs, are introduced. PMID:22455591

  14. Drugged Driving

    MedlinePlus

    ... Infographics » Drugged Driving Drugged Driving Email Facebook Twitter Text Description of Infographic Top Right Figure : In 2009, ... crash than those who don't smoke. Bottom Text: Develop Social Strategies Offer to be a designated ...

  15. Drug Control

    ERIC Educational Resources Information Center

    Leviton, Harvey S.

    1975-01-01

    This article attempts to assemble pertinent information about the drug problem, particularily marihuana. It also focuses on the need for an educational program for drug control with the public schools as the main arena. (Author/HMV)

  16. Generic Drugs

    MedlinePlus

    ... drugs. There are a few other differences— like color, shape, size, or taste—but they do not ... different . Brand-name drugs are often advertised by color and shape. Remember the ads for the “purple ...

  17. Drug Debacle.

    PubMed

    Sorrel, Amy Lynn

    2016-01-01

    Medicaid's Vendor Drug Program is under examination by the Texas Legislature. TMA's Physicians Medicaid Congress is seizing the opportunity to call for an administrative overhaul of a drug benefit physicians describe as unnecessarily complicated and confusing. PMID:27441421

  18. Comparative study of two routes of administration of 5-aminolevulinic acid (oral and intratumoral via) and their effect on the accumulation of PpIX in tissues in murine model of breast cancer

    NASA Astrophysics Data System (ADS)

    González-Agüero, G.; Ramón-Gallegos, E.

    2012-10-01

    Protoporphyrin IX (PpIX) is a photosensitizer synthesized from 5-aminolevulinic acid (ALA) that has been used in photodynamic therapy (PDT) as a promising treatment for many types of cancer. In this work it was quantified the accumulation of PpIX in tumors and in different tissues of female mice (nu/nu) inoculated with breast cancer cells. Two routes of administration of ALA: gastric probe and intratumoral injection were used to find optimum time of accumulation and the via that induce the higher quantity of PpIX to improve the efficiency of PDT. The results show that the accumulation of PpIX using the intratumoral via is two times bigger than the oral via in tumors at 8 h of treatment. The concentrations obtained in the different tissues are not physiologically significant.

  19. Genomic profiling of malignant phyllodes tumors reveals aberrations in FGFR1 and PI-3 kinase/RAS signaling pathways and provides insights into intratumoral heterogeneity.

    PubMed

    Liu, Su-Yang; Joseph, Nancy M; Ravindranathan, Ajay; Stohr, Bradley A; Greenland, Nancy Y; Vohra, Poonam; Hosfield, Elizabeth; Yeh, Iwei; Talevich, Eric; Onodera, Courtney; Van Ziffle, Jessica A; Grenert, James P; Bastian, Boris C; Chen, Yunn-Yi; Krings, Gregor

    2016-09-01

    Malignant phyllodes tumors of the breast are poorly understood rare neoplasms with potential for aggressive behavior. Few efficacious treatment options exist for progressed or metastatic disease. The molecular features of malignant phyllodes tumors are poorly defined, and a deeper understanding of the genetics of these tumors may shed light on pathogenesis and progression and potentially identify novel treatment approaches. We sequenced 510 cancer-related genes in 10 malignant phyllodes tumors, including 5 tumors with liposarcomatous differentiation and 1 with myxoid chondrosarcoma-like differentiation. Intratumoral heterogeneity was assessed by sequencing two separate areas in 7 tumors, including non-heterologous and heterologous components of tumors with heterologous differentiation. Activating hotspot mutations in FGFR1 were identified in 2 tumors. Additional recurrently mutated genes included TERT promoter (6/10), TP53 (4/10), PIK3CA (3/10), MED12 (3/10), SETD2 (2/10) and KMT2D (2/10). Together, genomic aberrations in FGFR/EGFR PI-3 kinase and RAS pathways were identified in 8 (80%) tumors and included mutually exclusive and potentially actionable activating FGFR1, PIK3CA and BRAF V600E mutations, inactivating TSC2 mutation, EGFR amplification and PTEN loss. Seven (70%) malignant phyllodes tumors harbored TERT aberrations (six promoter mutations, one amplification). For comparison, TERT promoter mutations were identified by Sanger sequencing in 33% borderline (n=12) and no (0%, n=8) benign phyllodes tumors (P=0.391 and P=0.013 vs malignant tumors, respectively). Genetic features specific to liposarcoma, including CDK4/MDM2 amplification, were not identified. Copy number analysis revealed intratumoral heterogeneity and evidence for divergent tumor evolution in malignant phyllodes tumors with and without heterologous differentiation. Tumors with liposarcomatous differentiation revealed more chromosomal aberrations in non-heterologous components compared with

  20. Drug Survey.

    ERIC Educational Resources Information Center

    Gill, Wanda E.; And Others

    Results of a survey of student perceptions of drugs and drug use that was conducted at Bowie State College are presented. Studies that have been conducted on college students' use of alcohol, marijuana, and cocaine in the last five years are reviewed, along with additional studies relating to the general population and the following drugs:…

  1. Multiple region whole-exome sequencing reveals dramatically evolving intratumor genomic heterogeneity in esophageal squamous cell carcinoma

    PubMed Central

    Cao, W; Wu, W; Yan, M; Tian, F; Ma, C; Zhang, Q; Li, X; Han, P; Liu, Z; Gu, J; Biddle, F G

    2015-01-01

    Cancer is a disease of genome instability and genomic alterations; now, genomic heterogeneity is rapidly emerging as a defining feature of cancer, both within and between tumors. Motivation for our pilot study of tumor heterogeneity in esophageal squamous cell carcinoma (ESCC) is that it is not well studied, but the highest incidences of esophageal cancers are found in China and ESCC is the most common type. We profiled the mutations and changes in copy number that were identified by whole-exome sequencing and array-based comparative genomic hybridization in multiple regions within an ESCC from two patients. The average mutational heterogeneity rate was 90% in all regions of the individual tumors in each patient; most somatic point mutations were nonsynonymous substitutions, small Indels occurred in untranslated regions of genes, and copy number alterations varied among multiple regions of a tumor. Independent Sanger sequencing technology confirmed selected gene mutations with more than 88% concordance. Phylogenetic analysis of the somatic mutation frequency demonstrated that multiple, genomically heterogeneous divergent clones evolve and co-exist within a primary ESCC and metastatic subclones result from the dispersal and adaptation of an initially non-metastatic parental clone. Therefore, a single-region sampling will not reflect the evolving architecture of a genomically heterogeneous landscape of mutations in ESCC tumors and the divergent complexity of this genomic heterogeneity among patients will complicate any promise of a simple genetic or epigenetic diagnostic signature in ESCC. We conclude that any potential for informative biomarker discovery in ESCC and targeted personalized therapies will require a deeper understanding of the functional biology of the ontogeny and phylogeny of the tumor heterogeneity. PMID:26619400

  2. A tumor deconstruction platform identifies definitive end points in the evaluation of drug responses.

    PubMed

    Naik, R R; Singh, A K; Mali, A M; Khirade, M F; Bapat, S A

    2016-02-11

    Tumor heterogeneity and the presence of drug-sensitive and refractory populations within the same tumor are almost never assessed in the drug discovery pipeline. Such incomplete assessment of drugs arising from spatial and temporal tumor cell heterogeneity reflects on their failure in the clinic and considerable wasted costs in the drug discovery pipeline. Here we report the derivation of a flow cytometry-based tumor deconstruction platform for resolution of at least 18 discrete tumor cell fractions. This is achieved through concurrent identification, quantification and analysis of components of cancer stem cell hierarchies, genetically instable clones and differentially cycling populations within a tumor. We also demonstrate such resolution of the tumor cytotype to be a potential value addition in drug screening through definitive cell target identification. Additionally, this real-time definition of intra-tumor heterogeneity provides a convenient, incisive and analytical tool for predicting drug efficacies through profiling perturbations within discrete tumor cell subsets in response to different drugs and candidates. Consequently, possible applications in informed therapeutic monitoring and drug repositioning in personalized cancer therapy would complement rational design of new candidates besides achieving a re-evaluation of existing drugs to derive non-obvious combinations that hold better chances of achieving remission. PMID:25915841

  3. Intratumoral estrogen sulfotransferase induction contributes to the anti-breast cancer effects of the dithiocarbamate derivative TM208

    PubMed Central

    Ji, Xi-wei; Chen, Guang-ping; Song, Yan; Hua, Ming; Wang, Li-jie; Li, Liang; Yuan, Yin; Wang, Si-yuan; Zhou, Tian-yan; Lu, Wei

    2015-01-01

    Aim: Sulfotransferase-catalyzed sulfation is the most important pathway for inactivating estrogens. Thus, activation of estrogen sulfotransferase (EST) may be an alternative approach for the treatment of estrogen-dependent breast cancer. In this study we investigated the involvement of EST in anti-breast cancer effects of the dithiocarbamate derivative TM208 in vitro and in vivo. Methods: The viability of human breast cancer MCF-7 cells was determined using a SBB assay. Nude mice bearing MCF-7 cells were orally administered TM208 (50 and 150 mg·kg−1·d−1) for 18 days. The xenograft tumors and uteri were collected. The mRNA expression of EST was examined with real-time PCR. EST protein was detected with Western blot, ELISA or immunohistochemical staining assays. A radioactive assay was used to measure the EST activity. Uterotropic bioassay was used to examine the uterine estrogen responses. Results: Treatment with TM208 (10, 15 and 20 μmol/L) concentration-dependently increased EST expression in MCF-7 cells in vitro. Co-treatment with triclosan, an inhibitor of sulfonation, abolished TM208-induced cytotoxicity in MCF-7 cells. TM208 exhibited an apparent anti-estrogenic property: it exerted more potent cytotoxicity in E2-treated MCF-7 cells. In the nude mice bearing MCF-7 cells, TM208 administration time-dependently increased the expression and activity of EST, and blocked the gradual increase of E2 concentration in the xenograft tumors. Furthermore, TM208 administration blocked the estrogens-stimulated uterine enlargement. Tamoxifen, a positive control drug, produced similar effects on the expression and activity of EST in vitro and in vivo. Conclusion: The induction of EST and reduction of estrogen concentration contribute to the anti-breast cancer action of TM208 and tamoxifen. TM208 may be developed as anticancer drug for the treatment of estrogen receptor-positive breast cancer. PMID:25937633

  4. Intratumoral INF-γ triggers an antiviral state in GL261 tumor cells: a major hurdle to overcome for oncolytic vaccinia virus therapy of cancer

    PubMed Central

    Kober, Christina; Weibel, Stephanie; Rohn, Susanne; Kirscher, Lorenz; Szalay, Aladar A

    2015-01-01

    Oncolytic vaccinia virus (VACV) therapy is an alternative treatment option for glioblastoma multiforme. Here, we used a comparison of different tumor locations and different immunologic and genetic backgrounds to determine the replication efficacy and oncolytic potential of the VACV LIVP 1.1.1, an attenuated wild-type isolate of the Lister strain, in murine GL261 glioma models. With this approach, we expected to identify microenvironmental factors, which may be decisive for failure or success of oncolytic VACV therapy. We found that GL261 glioma cells implanted subcutaneously or orthotopically into Balb/c athymic, C57BL/6 athymic, or C57BL/6 wild-type mice formed individual tumors that respond to oncolytic VACV therapy with different outcomes. Surprisingly, only Balb/c athymic mice with subcutaneous tumors supported viral replication. We identified intratumoral IFN-γ expression levels that upregulate MHCII expression on GL261 cells in C57BL/6 wild-type mice associated with a non-permissive status of the tumor cells. Moreover, this IFN-γ-induced tumor cell phenotype was reversible. PMID:27119106

  5. Hypothesis: The Intratumoral Immune Response against a Cancer Progenitor Cell Impacts the Development of Well-Differentiated versus Dedifferentiated Disease in Liposarcoma

    PubMed Central

    Tseng, William W.; Chopra, Shefali; Engleman, Edgar G.; Pollock, Raphael E.

    2016-01-01

    Well-differentiated/dedifferentiated (WD/DD) liposarcoma is a rare malignancy of adipocyte origin (“fat cancer”). Tumors may be entirely WD, WD with a DD component, or rarely DD without a clear WD component. WD tumors are low grade and generally indolent, while tumors with a DD component are high grade and behave much more aggressively, with a modest potential for distant metastasis. The presence of cancer progenitor cells in WD/DD liposarcoma is suggested by clinical evidence and reported research findings. In addition, there are emerging data to support the existence of a naturally occurring, antigen-driven, and adaptive immune response within the tumor microenvironment. We hypothesize that the intratumoral immune response is directed against a cancer progenitor cell and that the outcome of this response impacts the development of WD versus DD disease. Further study will likely provide interesting insights into the disease biology of WD/DD liposarcoma that may be readily translated to other more common cancers. PMID:27376027

  6. Hypothesis: The Intratumoral Immune Response against a Cancer Progenitor Cell Impacts the Development of Well-Differentiated versus Dedifferentiated Disease in Liposarcoma.

    PubMed

    Tseng, William W; Chopra, Shefali; Engleman, Edgar G; Pollock, Raphael E

    2016-01-01

    Well-differentiated/dedifferentiated (WD/DD) liposarcoma is a rare malignancy of adipocyte origin ("fat cancer"). Tumors may be entirely WD, WD with a DD component, or rarely DD without a clear WD component. WD tumors are low grade and generally indolent, while tumors with a DD component are high grade and behave much more aggressively, with a modest potential for distant metastasis. The presence of cancer progenitor cells in WD/DD liposarcoma is suggested by clinical evidence and reported research findings. In addition, there are emerging data to support the existence of a naturally occurring, antigen-driven, and adaptive immune response within the tumor microenvironment. We hypothesize that the intratumoral immune response is directed against a cancer progenitor cell and that the outcome of this response impacts the development of WD versus DD disease. Further study will likely provide interesting insights into the disease biology of WD/DD liposarcoma that may be readily translated to other more common cancers. PMID:27376027

  7. Positive intratumoral chemokine (C-C motif) receptor 8 expression predicts high recurrence risk of post-operation clear-cell renal cell carcinoma patients

    PubMed Central

    Zhou, Lin; An, Huimin; Zhu, Yu; Xu, Le; Zhang, Weijuan; Xu, Jiejie

    2016-01-01

    Chemokine (C-C motif) receptor 8 (CCR8) could drive cancer progress through recruiting certain immune cells. Recent evidences revealed the chemotaxis of CCR8+ human malignant tumor cells towards lymph node, and a significantly increased CCR8 expression in renal carcinomas patients. To assess the clinical association between CCR8 expression and the risk of post-surgery recurrence in patients with clear-cell renal cell carcinoma (ccRCC), we detected intratumoral CCR8 expression in 472 post-nephrectomy ccRCC patients retrospectively enrolled. Positive CCR8 staining tumor cell occurred in 26.1% (123 of 472) non-metastatic ccRCC cases, and the positive expression was associated with increased risks of recurrence (Log-Rank P < 0.001). In multivariate analyses, CCR8 expression was identified as an independent prognostic factor (P = 0.008) and entered into a newly-built nomogram together with T stage, Fuhrman grade, tumor size, necrosis and lymphovascular invasion. Calibration curves showed optimal agreement between predictions and observations, while its C-index was higher than that of Leibovich score for predicting recurrence-free survival (RFS) of localised RCC patients (0.854 vs 0.836, respectively; P = 0.044). The practical prognostic nomogram model may help clinicians in decision making and design of clinical studies. PMID:26716905

  8. Periostin expression in intra-tumoral stromal cells is prognostic and predictive for colorectal carcinoma via creating a cancer-supportive niche

    PubMed Central

    Tan, Xiaojie; Ding, Yibo; Luo, Yanxin; Cai, Hui; Liu, Yan; Gao, Xianhua; Liu, Qizhi; Yu, Yongwei; Du, Yan; Wang, Hao; Ma, Liye; Wang, Jianping; Chen, Kun; Ding, Yanqing; Fu, Chuangang; Cao, Guangwen

    2016-01-01

    Periostin (POSTN) expression in cancer cells and circulation has been related to poor prognosis of colorectal carcinoma (CRC). However, the role of POSTN expressed in intra-tumoral stroma on CRC progression remains largely unknown. This study enrolled 1098 CRC patients who received surgical treatment in Shanghai and Guangzhou, Mainland China. In Shanghai cohort, immunohistochemistry score of stromal POSTN expression increased consecutively from adjacent mucosa, primary CRC tissues, to metastatic CRC tissues (P < 0.001), while medium- and high-stromal POSTN expression, rather than epithelial POSTN expression, independently predicted unfavorable prognoses of CRC, adjusted for covariates including TNM stage and postoperative chemotherapy in multivariate Cox models. The results in Shanghai cohort were faithfully replicated in Guangzhou cohort. Stromal POSTN expression dose-dependently predicted an unfavorable prognosis of stage III CRC patients with postoperative chemotherapy in both cohorts. POSTN derived from colonic fibroblasts or recombinant POSTN significantly promoted proliferation, anchorage independent growth, invasion, and chemo-resistance of CRC cells; whereas these effects were counteracted via targeting to PI3K/Akt or Wnt/β-catenin signaling pathway. CRC cell RKO-derived factor(s) significantly induced POSTN production in colonic fibroblasts and autocrine POSTN promoted proliferation, migration, and anchorage independent growth of fibroblasts. Conclusively, stromal POSTN is prognostic and predictive for CRC via creating a niche to facilitate cancer progression. Targeting POSTN-induced signaling pathways may be therapeutic options for metastatic or chemoresistant CRC. PMID:26556874

  9. An Innovative Fluorescent Semi-quantitative Methylation-specific PCR Method for the Determination of MGMT Promoter Methylation is Reflecting Intra-tumor Heterogeneity.

    PubMed

    Nguyen, Aurelia; Legrain, Michele; Noel, Georges; Coca, Andres; Meyer Ea, Nicolos; Schott, Roland; Lasthaus, Christelle; Chenard, Marie Pierrette; Gaub, Marie Pierre; Lessinger, Jean Marc; Guenot, Dominique; Entz-Werle, Natacha

    2015-01-01

    High grade gliomas (HGG) are usually associated with a very dismal prognosis, which was moderately improving in the last decade with the introduction of the alkylating agent temozolomide in their treatment. The methylation status of MGMT (O6 methylguanine DNA-methyltransferase) promoter is one of the strongest predictive and prognostic factors for the patient chemoresponse. For instance, the molecular method of assessment for MGMT promoter status is not standardized. In this background, we developed a fluorescent capillary gel electrophoresis-based methylation specific-PCR. This technique allowed a semi-quantitative estimate of the relative ratio between methylated and unmethylated alleles. The efficacy and accuracy of the technique was assessed in a retrospective cohort of 178 newly diagnosed adult HGGs, who were homogeneously treated. First, we analyzed the impact on survival of different cut-off points in the MGMT promoter methylation and, to go further, we correlated these different rates to other well-known prognostic molecular factors involved in adult HGGs. This strategy allowed to validate our technique as a very sensitive technique (detection of a low methylation percentage, < 5%), which was feasible in fresh-frozen as well as in FFPE samples and had the propensity to detect intra-tumor heterogeneity. This technique identified a new sub-group of anaplastic oligodendrogliomas or oligoastrocytomas defined by a minor methylation and a worse outcome and, therefore, will help to substratify accurately into more homogeneous subgroups of methylated tumors. PMID:26118907

  10. Downstream mediators of the intratumoral interferon response suppress antitumor immunity, induce gemcitabine resistance and associate with poor survival in human pancreatic cancer.

    PubMed

    Delitto, Daniel; Perez, Chelsey; Han, Song; Gonzalo, David H; Pham, Kien; Knowlton, Andrea E; Graves, Christina L; Behrns, Kevin E; Moldawer, Lyle L; Thomas, Ryan M; Liu, Chen; George, Thomas J; Trevino, Jose G; Wallet, Shannon M; Hughes, Steven J

    2015-12-01

    The cancer microenvironment allows tumor cells to evade immune surveillance through a variety of mechanisms. While interferon-γ (IFNγ) is central to effective antitumor immunity, its effects on the microenvironment are not as clear and have in some cancers been shown to induce immune checkpoint ligands. The heterogeneity of these responses to IFNγ remains poorly characterized in desmoplastic malignancies with minimal inflammatory cell infiltration, such as pancreatic cancer (PC). Thus, the IFNγ response within and on key cells of the PC microenvironment was evaluated. IFNγ induced expression of human leukocyte antigen (HLA) class I and II on PC cell lines, primary pancreatic cancer epithelial cells (PPCE) and patient-derived tumor-associated stroma, concomitant with an upregulation of PDL1 in the absence of CD80 and CD86 expression. As expected, IFNγ also induced high levels of CXCL10 from all cell types. In addition, significantly higher levels of CXCL10 were observed in PC specimens compared to those from chronic pancreatitis, whereby intratumoral CXCL10 concentration was an independent predictor of poor survival. Immunohistochemical analysis revealed a subset of CXCR3-positive cancer cells in over 90 % of PC specimens, as well as on a subset of cultured PC cell lines and PPCE, whereby exposure to CXCL10 induced resistance to the chemotherapeutic gemcitabine. These findings suggest that IFNγ has multiple effects on many cell types within the PC microenvironment that may lead to immune evasion, chemoresistance and shortened survival. PMID:26423423

  11. Intra-tumor AvidinOX allows efficacy of low dose systemic biotinylated Cetuximab in a model of head and neck cancer

    PubMed Central

    Anastasi, Anna Maria; Petronzelli, Fiorella; Chiapparino, Caterina; Carollo, Valeria; Roscilli, Giuseppe; Marra, Emanuele; Luberto, Laura; Aurisicchio, Luigi; Pacello, Maria Lucrezia; Spagnoli, Luigi Giusto; De Santis, Rita

    2016-01-01

    For locally advanced and metastatic head and neck squamous cell carcinoma (HNSCC), the current clinical use of Cetuximab in chemo/radiotherapy protocols is often associated to severe systemic toxicity. Here we report in vitro data in human FaDu pharynx SCC cells, showing that inactive concentrations of biotinylated Cetuximab (bCet) become active upon anchorage to AvidinOX on the surface of tumor cells. AvidinOX-anchored bCet induces apoptosis and DNA damage as well as specific inhibition of signaling, degradation and abrogation of nuclear translocation of EGFR. In the mouse model of FaDu cancer, we show that intra-tumor injection of AvidinOX allows anti-tumor activity of an otherwise inactive, intraperitoneally delivered, low dose bCet. Consistently with in vitro data, in vivo tumor inhibition is associated to induction of apoptosis, DNA damage and reduced angiogenesis. AvidinOX is under clinical investigation for delivering radioactive biotin to inoperable tumors (ClinicalTrials.gov NCT02053324) and present data support its use for the local treatment of HNSCC in combination with systemic administration of low dose bCet. PMID:26575422

  12. pH-dependent drug-drug interactions for weak base drugs: potential implications for new drug development.

    PubMed

    Zhang, L; Wu, F; Lee, S C; Zhao, H; Zhang, L

    2014-08-01

    Absorption of an orally administered drug with pH-dependent solubility may be altered when it is coadministered with a gastric acid-reducing agent (ARA). Assessing a drug's potential for pH-dependent drug-drug interactions (DDIs), considering study design elements for such DDI studies, and interpreting and communicating study results in the drug labeling to guide drug dosing are important for drug development. We collected pertinent information related to new molecular entities approved from January 2003 to May 2013 by the US Food and Drug Administration for which clinical DDI studies with ARAs were performed. On the basis of assessments of data on pH solubility and in vivo DDIs with ARAs, we proposed a conceptual framework for assessing the need for clinical pH-dependent DDI studies for weak base drugs (WBDs). Important study design considerations include selection of ARAs and timing of dosing of an ARA relative to the WBD in a DDI study. Labeling implications for drugs having DDIs with ARAs are also illustrated. PMID:24733008

  13. Substance abuse: the designer drugs.

    PubMed

    Beebe, D K; Walley, E

    1991-05-01

    Designer drugs, chemically altered compounds derived from federally controlled substances, have become a major cause of addiction and overdose deaths. These drugs include mescaline analogs, synthetic opioids, arylhexylamines, methaqualone derivatives and crack, a new form of cocaine. Sudden changes in mood, weight loss, depression, disturbed sleep patterns, deteriorating school or work performance, marital problems, and loss of interest in friends and social activities may be signs of drug addiction. Life-threatening complications of acute intoxication, such as hyperthermia, seizures, combative and psychotic behavior, and cardiorespiratory collapse, require prompt diagnosis and supportive intervention. PMID:2021104

  14. Attention Alters Perceived Attractiveness.

    PubMed

    Störmer, Viola S; Alvarez, George A

    2016-04-01

    Can attention alter the impression of a face? Previous studies showed that attention modulates the appearance of lower-level visual features. For instance, attention can make a simple stimulus appear to have higher contrast than it actually does. We tested whether attention can also alter the perception of a higher-order property-namely, facial attractiveness. We asked participants to judge the relative attractiveness of two faces after summoning their attention to one of the faces using a briefly presented visual cue. Across trials, participants judged the attended face to be more attractive than the same face when it was unattended. This effect was not due to decision or response biases, but rather was due to changes in perceptual processing of the faces. These results show that attention alters perceived facial attractiveness, and broadly demonstrate that attention can influence higher-level perception and may affect people's initial impressions of one another. PMID:26966228

  15. Smoking and Illicit Drug Use.

    ERIC Educational Resources Information Center

    Gold, Mark S., Ed.

    The biological mechanisms of nicotine dependence are described, the prevalence of tobacco dependency among those using other mood-altering drugs is examined, and the most efficacious way to address this dependency is discussed. New data on the relationship of smoking addiction to other addictions are examined. Topics include: (1) "Tobacco Smoking…

  16. COPD - control drugs

    MedlinePlus

    Chronic obstructive pulmonary disease - control drugs; Bronchodilators - COPD - control drugs; Beta agonist inhaler - COPD - control drugs; Anticholinergic inhaler - COPD - control drugs; Long-acting inhaler - COPD - control drugs; ...

  17. Drug Research

    NASA Technical Reports Server (NTRS)

    1989-01-01

    NBOD2, a program developed at Goddard Space Flight Center to solve equations of motion coupled N-body systems is used by E.I. DuPont de Nemours & Co. to model potential drugs as a series of elements. The program analyses the vibrational and static motions of independent components in drugs. Information generated from this process is used to design specific drugs to interact with enzymes in designated ways.

  18. How Misinformation Alters Memories.

    ERIC Educational Resources Information Center

    Wright, Daniel B.; Loftus, Elizabeth F.

    1998-01-01

    Notes that a multitude of studies have demonstrated that misleading postevent information affects people's memories. Contents that the fuzzy-trace theory is a positive step toward understanding the malleability of memory. Discusses fuzzy-trace theory in terms of three primary areas of study: altered response format, maximized misinformation…

  19. Immunization alters body odor.

    PubMed

    Kimball, Bruce A; Opiekun, Maryanne; Yamazaki, Kunio; Beauchamp, Gary K

    2014-04-10

    Infections have been shown to alter body odor. Because immune activation accompanies both infection and immunization, we tested the hypothesis that classical immunization might similarly result in the alteration of body odors detectable by trained biosensor mice. Using a Y-maze, we trained biosensor mice to distinguish between urine odors from rabies-vaccinated (RV) and unvaccinated control mice. RV-trained mice generalized this training to mice immunized with the equine West Nile virus (WNV) vaccine compared with urine of corresponding controls. These results suggest that there are similarities between body odors of mice immunized with these two vaccines. This conclusion was reinforced when mice could not be trained to directly discriminate between urine odors of RV- versus WNV-treated mice. Next, we trained biosensor mice to discriminate the urine odors of mice treated with lipopolysaccharide (LPS; a general elicitor of innate immunological responses) from the urine of control mice. These LPS-trained biosensors could distinguish between the odors of LPS-treated mouse urine and RV-treated mouse urine. Finally, biosensor mice trained to distinguish between the odors of RV-treated mouse urine and control mouse urine did not generalize this training to discriminate between the odors of LPS-treated mouse urine and control mouse urine. From these experiments, we conclude that: (1) immunization alters urine odor in similar ways for RV and WNV immunizations; and (2) immune activation with LPS also alters urine odor but in ways different from those of RV and WNV. PMID:24524972

  20. Drug dependence

    MedlinePlus

    ... men References American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders . 5th ed. Arlington, VA: American Psychiatric Publishing. 2013. Kowalchuk A, Reed BC. Drug abuse. In: ...

  1. Drug abuse

    MedlinePlus

    ... abuse References American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders . 5th ed. Arlington, VA: American Psychiatric Publishing. 2013. Weiss RD. Drugs of abuse. In: Goldman ...

  2. [Drug dependence and psychotropic drugs].

    PubMed

    Giraud, M J; Lemonnier, E; Bigot, T

    1994-11-01

    Although the utility of psychotropic drugs has been well demonstrated, caution must still be exercised in their use. Among their potential risks, drug dependency must be kept in mind. This risk is well accepted with regard to benzodiazepines, and it appeared useful to study the potential risk for antidepressants, neuroleptics and thymoregulatory agents. Whatever the drug, the predominant factor appears to be psychological dependency. Prevention of drug dependency is most often achieved by informing the patient, limiting the length of use of the drug, making regular reevaluation of symptoms and of drug indication, and frequently be establishing a "treatment contract". The importance of the patient-physician relationship in the prescription of such treatment must be underlined. PMID:7984941

  3. Drugs affecting the eye.

    PubMed

    Taylor, F

    1985-08-01

    cataract suspected to be induced by allopurinol; numerous additional cases have been reported to the registry since. Phenothiazine, with an estimated 3% incidence of side effects, appears to be safer than other antipsychotic drugs, but the rate of ocular effects increases with the duration of therapy. Thioridazine and chlorpromazine are known to cause lens deposits and pigmentary retinopathy. There is a significantly high prevalence of thrombophlebitis and pseudotumor cerebri among women who use OCs and thrombotic retinal vascular disease, such as retinal vein occulsion, might be linked with them. It also is probable that, because of altered hydration of the cornea, there is a decreased tolerance to contact lenses. PMID:2864912

  4. Antineoplastic Drugs

    NASA Astrophysics Data System (ADS)

    Sadée, Wolfgang; El Sayed, Yousry Mahmoud

    The limited scope of therapeutic drug-level monitoring in cancer chemotherapy results from the often complex biochemical mechanisms that contribute to antineoplastic activity and obscure the relationships among drug serum levels and therapeutic benefits. Moreover, new agents for cancer chemotherapy are being introduced at a more rapid rate than for the treatment of other diseases, although the successful application of therapeutic drug-level monitoring may require several years of intensive study of the significance of serum drug levels. However, drug level monitoring can be of considerable value during phase I clinical trials of new antineoplastic agents in order to assess drug metabolism, bioavailability, and intersubject variability; these are important parameters in the interpretation of clinical studies, but have no immediate benefit to the patient. High performance liquid chromatography (HPLC) probably represents the most versatile and easily adaptable analytical technique for drug metabolite screening (1). HPLC may therefore now be the method of choice during phase I clinical trials of antineoplastic drugs. For example, within a single week we developed an HPLC assay—using a C18 reverse-phase column, UV detection, and direct serum injection after protein precipitation—for the new radiosensitizer, misonidazole (2).

  5. Drug Reactions

    MedlinePlus

    ... using any of these products. Some types of food may also cause adverse drug reactions. For example, grapefruit and grapefruit juice, as well as alcohol and caffeine, may affect how drugs work. Every time your doctor ... interactions with any foods or beverages. What about medicines I've used ...

  6. Drug Education.

    ERIC Educational Resources Information Center

    Sardana, Raj K.

    This autoinstructional lesson deals with the study of such drugs as marijuana and LSD, with emphasis on drug abuse. It is suggested that it can be used in science classes at the middle level of school. No prerequisites are suggested. The teacher's guide lists the behavioral objectives, the equipment needed to complete the experience and suggests…

  7. Drugs affecting glycosaminoglycan metabolism.

    PubMed

    Ghiselli, Giancarlo; Maccarana, Marco

    2016-07-01

    Glycosaminoglycans (GAGs) are charged polysaccharides ubiquitously present at the cell surface and in the extracellular matrix. GAGs are crucial for cellular homeostasis, and their metabolism is altered during pathological processes. However, little consideration has been given to the regulation of the GAG milieu through pharmacological interventions. In this review, we provide a classification of small molecules affecting GAG metabolism based on their mechanism of action. Furthermore, we present evidence to show that clinically approved drugs affect GAG metabolism and that this could contribute to their therapeutic benefit. PMID:27217160

  8. Nanodiamonds: The intersection of nanotechnology, drug development, and personalized medicine

    PubMed Central

    Ho, Dean; Wang, Chung-Huei Katherine; Chow, Edward Kai-Hua

    2015-01-01

    The implementation of nanomedicine in cellular, preclinical, and clinical studies has led to exciting advances ranging from fundamental to translational, particularly in the field of cancer. Many of the current barriers in cancer treatment are being successfully addressed using nanotechnology-modified compounds. These barriers include drug resistance leading to suboptimal intratumoral retention, poor circulation times resulting in decreased efficacy, and off-target toxicity, among others. The first clinical nanomedicine advances to overcome these issues were based on monotherapy, where small-molecule and nucleic acid delivery demonstrated substantial improvements over unmodified drug administration. Recent preclinical studies have shown that combination nanotherapies, composed of either multiple classes of nanomaterials or a single nanoplatform functionalized with several therapeutic agents, can image and treat tumors with improved efficacy over single-compound delivery. Among the many promising nanomaterials that are being developed, nanodiamonds have received increasing attention because of the unique chemical-mechanical properties on their faceted surfaces. More recently, nanodiamond-based drug delivery has been included in the rational and systematic design of optimal therapeutic combinations using an implicitly de-risked drug development platform technology, termed Phenotypic Personalized Medicine–Drug Development (PPM-DD). The application of PPM-DD to rapidly identify globally optimized drug combinations successfully addressed a pervasive challenge confronting all aspects of drug development, both nano and non-nano. This review will examine various nanomaterials and the use of PPM-DD to optimize the efficacy and safety of current and future cancer treatment. How this platform can accelerate combinatorial nanomedicine and the broader pharmaceutical industry toward unprecedented clinical impact will also be discussed. PMID:26601235

  9. Polydrug Use: An Annotated Bibliography. National Clearinghouse for Drug Abuse Information Special Bibliographies, No. 3, June 1973.

    ERIC Educational Resources Information Center

    National Inst. on Drug Abuse (DHEW/PHS), Rockville, MD. National Clearinghouse for Drug Abuse Information.

    Although most discussions of mood-altering drugs and patterns of use typically focus on a single drug or particular drug class, it is a widely acknowledged fact that the majority of drug users, from the junior high school experimenter to the hard-core narcotic addict, employ more than one legal or illegal substance to alter their subjective…

  10. Drugging Membrane Protein Interactions

    PubMed Central

    Yin, Hang; Flynn, Aaron D.

    2016-01-01

    The majority of therapeutics target membrane proteins, accessible on the surface of cells, to alter cellular signaling. Cells use membrane proteins to transduce signals into cells, transport ions and molecules, bind the cell to a surface or substrate, and catalyze reactions. Newly devised technologies allow us to drug conventionally “undruggable” regions of membrane proteins, enabling modulation of protein–protein, protein–lipid, and protein–nucleic acid interactions. In this review, we survey the state of the art in high-throughput screening and rational design in drug discovery, and we evaluate the advances in biological understanding and technological capacity that will drive pharmacotherapy forward against unorthodox membrane protein targets. PMID:26863923

  11. Epigenomics and interindividual differences in drug response.

    PubMed

    Ivanov, M; Kacevska, M; Ingelman-Sundberg, M

    2012-12-01

    Epigenomics is a rapidly growing field. New developments in epigenetics, such as the recently described modified cytosine variants (e.g., 5-hydroxymethylcytosine, 5hmC) and an arsenal of novel noncoding forms of RNA, can be applied in the area of drug pharmacokinetics and pharmacodynamics. Epigenetic aberrations can affect drug treatment by modulating the expressions of key genes involved in the metabolism and distribution of drugs as well as drug targets, thereby contributing to interindividual variation in drug response. These epigenetic alterations, along with the epigenetic profiles of circulating nucleic acids, have great potential to be used as biomarkers for personalized therapy, particularly in the treatment of cancer. In this review we present an update of pharmacoepigenetics with respect to epigenetic regulation of ADME genes (genes related to drug absorption, distribution, metabolism, and excretion) and drug targets, and we illustrate how this information can be used for predicting interindividual variations in drug response. PMID:23093317

  12. Potential prostate cancer drug target: bioactivation of androstanediol by conversion to dihydrotestosterone.

    PubMed

    Mohler, James L; Titus, Mark A; Wilson, Elizabeth M

    2011-09-15

    High-affinity binding of dihydrotestosterone (DHT) to the androgen receptor (AR) initiates androgen-dependent gene activation, required for normal male sex development in utero, and contributes to prostate cancer development and progression in men. Under normal physiologic conditions, DHT is synthesized predominantly by 5α-reduction of testosterone, the major circulating androgen produced by the testis. During androgen deprivation therapy, intratumoral androgen production is sufficient for AR activation and prostate cancer growth, even though circulating testicular androgen levels are low. Recent studies indicate that the metabolism of 5α-androstane-3α, 17β-diol by 17β-hydroxysteroid dehydrogenase 6 in benign prostate and prostate cancer cells is a major biosynthetic pathway for intratumoral synthesis of DHT, which binds AR and initiates transactivation to promote prostate cancer growth during androgen deprivation therapy. Drugs that target the so-called backdoor pathway of DHT synthesis provide an opportunity to enhance clinical response to luteinizing-hormone-releasing hormone (LHRH) agonists or antagonists, AR antagonists, and inhibitors of 5α-reductase enzymes (finasteride or dutasteride), and other steroid metabolism enzyme inhibitors (ketoconazole or the recently available abiraterone acetate). PMID:21705451

  13. A divide-and-conquer strategy in tumor sampling enhances detection of intratumor heterogeneity in routine pathology: A modeling approach in clear cell renal cell carcinoma.

    PubMed

    Lopez, José I; Cortes, Jesús M

    2016-01-01

    Intratumor heterogeneity (ITH) is an inherent process in cancer development which follows for most of the cases a branched pattern of evolution, with different cell clones evolving independently in space and time across different areas of the same tumor. The determination of ITH (in both spatial and temporal domains) is nowadays critical to enhance patient treatment and prognosis. Clear cell renal cell carcinoma (CCRCC) provides a good example of ITH. Sometimes the tumor is too big to be totally analyzed for ITH detection and pathologists decide which parts must be sampled for the analysis. For such a purpose, pathologists follow internationally accepted protocols. In light of the latest findings, however, current sampling protocols seem to be insufficient for detecting ITH with significant reliability. The arrival of new targeted therapies, some of them providing promising alternatives to improve patient survival, pushes the pathologist to obtain a truly representative sampling of tumor diversity in routine practice. How large this sampling must be and how this must be performed are unanswered questions so far.  Here we present a very simple method for tumor sampling that enhances ITH detection without increasing costs. This method follows a divide-and-conquer (DAC) strategy, that is, rather than sampling a small number of large-size tumor-pieces as the routine protocol (RP) advises, we suggest sampling many small-size pieces along the tumor. We performed a computational modeling approach to show that the usefulness of the DAC strategy is twofold: first, we show that DAC outperforms RP with similar laboratory costs, and second, DAC is capable of performing similar to total tumor sampling (TTS) but, very remarkably, at a much lower cost. We thus provide new light to push forward a shift in the paradigm about how pathologists should sample tumors for achieving efficient ITH detection. PMID:27127618

  14. Intratumoral but not systemic delivery of CpG oligodeoxynucleotide augments the efficacy of anti-CD20 monoclonal antibody therapy against B cell lymphoma.

    PubMed

    Betting, David J; Yamada, Reiko E; Kafi, Kamran; Said, Jonathan; van Rooijen, Nico; Timmerman, John M

    2009-01-01

    The anti-CD20 monoclonal antibody rituximab (Rituxan) has become a mainstay in the treatment of B cell non-Hodgkin lymphomas. The mechanisms of action for rituximab include antibody-dependent cellular cytotoxicity (ADCC), complement-dependent cytotoxicity, and apoptosis induction. Combination of anti-CD20 antibodies with immunostimulatory agents may improve their efficacy via enhancement of one or more of these mechanisms. Toll-like receptor 9 agonist CpG oligodeoxynucleotides administered systemically have been studied in clinical trials with and without rituximab. However, recent data suggest that intratumoral (IT) delivery of CpG has advantages in the treatment of tumors. Using a syngeneic murine B cell lymphoma line expressing human CD20, we found that IT, but not systemically administered CpG significantly improved the efficacy of rituximab against 7-day established tumors. Rituximab plus IT CpG could eradicate tumors from 42% of mice, whereas systemically administered CpG, with or without rituximab, did not achieve tumor eradication. Both natural killer cells and complement participated in the cure of tumors by rituximab plus IT CpG, apparently by increasing tumor cell sensitivity to complement and ADCC lysis, and by augmenting the cytotoxicity of ADCC effectors. No role for T cells in mediating tumor eradication was demonstrated in this model. These results suggest that previous clinical trials in B cell lymphoma combining systemic administration of CpG with rituximab may have employed suboptimal routes of CpG delivery. Future trials combining IT CpG with anti-CD20 antibodies or the antibody-mediated targeting of CpG directly to the sites of B cell lymphoma may thus be warranted. PMID:19483647

  15. A divide-and-conquer strategy in tumor sampling enhances detection of intratumor heterogeneity in routine pathology: A modeling approach in clear cell renal cell carcinoma

    PubMed Central

    Lopez, José I.; Cortes, Jesús M.

    2016-01-01

    Intratumor heterogeneity (ITH) is an inherent process in cancer development which follows for most of the cases a branched pattern of evolution, with different cell clones evolving independently in space and time across different areas of the same tumor. The determination of ITH (in both spatial and temporal domains) is nowadays critical to enhance patient treatment and prognosis. Clear cell renal cell carcinoma (CCRCC) provides a good example of ITH. Sometimes the tumor is too big to be totally analyzed for ITH detection and pathologists decide which parts must be sampled for the analysis. For such a purpose, pathologists follow internationally accepted protocols. In light of the latest findings, however, current sampling protocols seem to be insufficient for detecting ITH with significant reliability. The arrival of new targeted therapies, some of them providing promising alternatives to improve patient survival, pushes the pathologist to obtain a truly representative sampling of tumor diversity in routine practice. How large this sampling must be and how this must be performed are unanswered questions so far.  Here we present a very simple method for tumor sampling that enhances ITH detection without increasing costs. This method follows a divide-and-conquer (DAC) strategy, that is, rather than sampling a small number of large-size tumor-pieces as the routine protocol (RP) advises, we suggest sampling many small-size pieces along the tumor. We performed a computational modeling approach to show that the usefulness of the DAC strategy is twofold: first, we show that DAC outperforms RP with similar laboratory costs, and second, DAC is capable of performing similar to total tumor sampling (TTS) but, very remarkably, at a much lower cost. We thus provide new light to push forward a shift in the paradigm about how pathologists should sample tumors for achieving efficient ITH detection. PMID:27127618

  16. Anti-CTLA-4 antibodies of IgG2a isotype enhance antitumor activity through reduction of intratumoral regulatory T cells.

    PubMed

    Selby, Mark J; Engelhardt, John J; Quigley, Michael; Henning, Karla A; Chen, Timothy; Srinivasan, Mohan; Korman, Alan J

    2013-07-01

    Antitumor activity of CTLA-4 antibody blockade is thought to be mediated by interfering with the negative regulation of T-effector cell (Teff) function resulting from CTLA-4 engagement by B7-ligands. In addition, a role for CTLA-4 on regulatory T cells (Treg), wherein CTLA-4 loss or inhibition results in reduced Treg function, may also contribute to antitumor responses by anti-CTLA-4 treatment. We have examined the role of the immunoglobulin constant region on the antitumor activity of anti-CTLA-4 to analyze in greater detail the mechanism of action of anti-CTLA-4 antibodies. Anti-CTLA-4 antibody containing the murine immunoglobulin G (IgG)2a constant region exhibits enhanced antitumor activity in subcutaneous established MC38 and CT26 colon adenocarcinoma tumor models compared with anti-CTLA-4 containing the IgG2b constant region. Interestingly, anti-CTLA-4 antibodies containing mouse IgG1 or a mutated mouse IgG1-D265A, which eliminates binding to all Fcγ receptors (FcγR), do not show antitumor activity in these models. Assessment of Teff and Treg populations at the tumor and in the periphery showed that anti-CTLA-4-IgG2a mediated a rapid and dramatic reduction of Tregs at the tumor site, whereas treatment with each of the isotypes expanded Tregs in the periphery. Expansion of CD8(+) Teffs is observed with both the IgG2a and IgG2b anti-CTLA-4 isotypes, resulting in a superior Teff to Treg ratio for the IgG2a isotype. These data suggest that anti-CTLA-4 promotes antitumor activity by a selective reduction of intratumoral Tregs along with concomitant activation of Teffs. PMID:24777248

  17. Splenectomy promotes indirect elimination of intraocular tumors by CD8+ T cells that is associated with IFNγ- and Fas/FasL-dependent activation of intratumoral macrophages.

    PubMed

    Miller, Maxine R; Mandell, Jonathan B; Beatty, Kelly M; Harvey, Stephen A K; Rizzo, Michael J; Previte, Dana M; Thorne, Stephen H; McKenna, Kyle C

    2014-12-01

    Ocular immune privilege (IP) limits the immune surveillance of intraocular tumors as certain immunogenic tumor cell lines (P815, E.G7-OVA) that are rejected when transplanted in the skin grow progressively when placed in the anterior chamber of the eye. As splenectomy (SPLNX) is known to terminate ocular IP, we characterized the immune mechanisms responsible for rejection of intraocular tumors in SPLNX mice as a first step toward identifying how to restore tumoricidal activity within the eye. CD8(+) T cells, IFNγ, and FasL, but not perforin, or TNFα were required for the elimination of intraocular E.G7-OVA tumors that culminated in destruction of the eye (ocular phthisis). IFNγ and FasL did not target tumor cells directly as the majority of SPLNX IFNγR1(-/-) mice and Fas-defective lpr mice failed to eliminate intraocular E.G7-OVA tumors that expressed Fas and IFNγR1. Bone marrow chimeras revealed that IFNγR1 and Fas expression on immune cells was most critical for rejection, and SPLNX increased the frequency of activated macrophages (Mϕ) within intraocular tumors in an IFNγ- and Fas/FasL-dependent manner, suggesting an immune cell target of IFNγ and Fas. As depletion of Mϕs limited CD8 T cell-mediated rejection of intraocular tumors in SPLNX mice, our data support a model in which IFNγ- and Fas/FasL-dependent activation of intratumoral Mϕs by CD8(+) T cells promotes severe intraocular inflammation that indirectly eliminates intraocular tumors by inducing phthisis, and suggests that immunosuppressive mechanisms that maintain ocular IP interfere with the interaction between CD8(+) T cells and Mϕs to limit the immunosurveillance of intraocular tumors. PMID:25248763

  18. Phloretin increases the anti-tumor efficacy of intratumorally delivered heat-shock protein 70 kDa (HSP70) in a murine model of melanoma.

    PubMed

    Abkin, Sergey V; Ostroumova, Olga S; Komarova, Elena Y; Meshalkina, Darya A; Shevtsov, Maxim A; Margulis, Boris A; Guzhova, Irina V

    2016-01-01

    Recombinant HSP70 chaperone exerts a profound anticancer effect when administered intratumorally. This action is based on the ability of HSP70 to penetrate tumor cells and extract its endogenous homolog. To enhance the efficacy of HSP70 cycling, we employed phloretin, a flavonoid that enhances the pore-forming activity of the chaperone on artificial membranes. Phloretin increased the efficacy of HSP70 penetration in B16 mouse melanoma cells and K-562 human erythroblasts; this was accompanied with increased transport of the endogenous HSP70 to the plasma membrane. Importantly, treatment with HSP70 combined with phloretin led to the elevation of cell sensitivity to cytotoxic lymphocytes by 16-18 % compared to treatment with the chaperone alone. The incubation of K-562 cells with biotinylated HSP70 and phloretin increased the amount of the chaperone released from cells, suggesting that chaperone cycling could trigger a specific anti-tumor response. We studied the effect of the combination of HSP70 and phloretin using B16 melanoma and a novel method of HSP70-gel application. We found that the addition of phloretin to the gel reduced tumor weight almost fivefold compared with untreated mice, while the life span of the animals extended from 25 to 39 days. The increased survival was corroborated by the activation of innate and adaptive immunity; interestingly, HSP70 was more active in induction of CD8+ cell-mediated toxicity and γIFN production while phloretin contributed largely to the CD56+ cell response. In conclusion, the combination of HSP70 with phloretin could be a novel treatment for efficient immunotherapy of intractable cancers such as skin melanoma. PMID:26646850

  19. Drug disposition in cystic fibrosis.

    PubMed

    Rey, E; Tréluyer, J M; Pons, G

    1998-10-01

    There are many pathological changes in patients with cystic fibrosis (CF) which can lead to alterations in drug disposition. Although, in patients with CF, the extent of drug absorption varies widely and the rate of absorption is slower, bioavailability is not altered. Plasma protein binding for the majority of drugs studied did not differ in patients with CF compared with control groups. The difference in volume of distribution of most drugs between patients with CF and healthy individuals vanished when corrected for lean body mass. Despite hepatic dysfunction, patients with CF have enhanced clearance of many, but not all, drugs. Phase I mixed-function oxidases are selectively affected: cytochrome P450 (CYP) 1A2 and CYP2C8 have enhanced activity, while other CYP isoforms such as CYP2C9 and CYP3A4 are unaffected. Increased phase II activities are also demonstrated: glucuronyl transferase, acetyl transferase (NAT1) and sulfotransferase. The increased hepatic clearance of drugs in the presence of CF may be the consequence of disease-specific changes in both enzyme activity and/or drug transport within the liver. The renal clearance (CLR) of many drugs in patients with CF is enhanced although there has been no pathological abnormality identified which could explain this finding: glomerular filtration rate and tubular secretion appear normal in patients with CF. The precise mechanisms for enhanced drug clearance in patients with CF remain to be elucidated. The optimisation of antibiotic therapy in patients with CF includes increasing the dose of beta-lactams by 20 to 30% and monitoring plasma concentrations of aminoglycosides. The appropriate dosage of quinolones has not been definitively established. PMID:9812180

  20. [Club drugs].

    PubMed

    Guerreiro, Diogo Frasquilho; Carmo, Ana Lisa; da Silva, Joaquim Alves; Navarro, Rita; Góis, Carlos

    2011-01-01

    Club drugs are the following substances: Methylenedioxymethamphetamine (MDMA); Methamphetamine; Lysergic Acid Diethylamide (LSD); Ketamine; Gamma-hydroxybutyrate (GHB) and Flunitrazepam. These substances are mainly used by adolescents and young adults, mostly in recreational settings like dance clubs and rave parties. These drugs have diverse psychotropic effects, are associated with several degrees of toxicity, dependence and long term adverse effects. Some have been used for several decades, while others are relatively recent substances of abuse. They have distinct pharmacodynamic and pharmacokinetic properties, are not easy to detect and, many times, the use of club drugs is under diagnosed. Although the use of these drugs is increasingly common, few health professionals feel comfortable with the diagnosis and treatment. The authors performed a systematic literature review, with the goal of synthesising the existing knowledge about club drugs, namely epidemiology, mechanism of action, detection, adverse reactions and treatment. The purpose of this article is creating in Portuguese language a knowledge data base on club drugs, that health professionals of various specialties can use as a reference when dealing with individual with this kind of drug abuse. PMID:22525626

  1. Epigenetic alterations in depression and antidepressant treatment

    PubMed Central

    Menke, Andreas; Binder, Elisabeth B.

    2014-01-01

    Epigenetic modifications control chromatin structure and function, and thus mediate changes in gene expression, ultimately influencing protein levels. Recent research indicates that environmental events can induce epigenetic changes and, by this, contribute to long-term changes in neural circuits and endocrine systems associated with altered risk for stress-related psychiatric disorders such as major depression. In this review, we describe recent approaches investigating epigenetic modifications associated with altered risk for major depression or response to antidepressant drugs, both on the candidate gene levels as well as the genome-wide level. In this review we focus on DNA methylation, as this is the most investigated epigenetic change in depression research. PMID:25364288

  2. Street Drugs and Pregnancy

    MedlinePlus

    ... drugs that are abused How can street drugs harm your pregnancy? Using street drugs can cause problems ... drugs that are abused How can street drugs harm your pregnancy? Using street drugs can cause problems ...

  3. Club Drugs

    MedlinePlus

    Skip to main content En español Researchers Medical & Health Professionals Patients & ... Cold Medicines Steroids (Anabolic) Synthetic Cannabinoids (K2/Spice) Synthetic Cathinones (Bath Salts) Tobacco/Nicotine Other Drugs ...

  4. Prescription Drugs

    MedlinePlus

    ... body, especially in brain areas involved in the perception of pain and pleasure. Prescription stimulants , such as ... of drug that causes changes in your mood, perceptions, and behavior can affect judgment and willingness to ...

  5. Drug Interactions

    MedlinePlus

    ... not be taken at the same time as antacids. WHAT CAUSES THE MOST INTERACTIONS WITH HIV MEDICATIONS? ... azole” Some antibiotics (names end in “mycin”) The antacid cimetidine (Tagamet) Some drugs that prevent convulsions, including ...

  6. Drugged Driving

    MedlinePlus

    ... Charts Emerging Trends and Alerts Alcohol Club Drugs Cocaine Hallucinogens Heroin Inhalants Marijuana MDMA (Ecstasy/Molly) Methamphetamine ... distance, and decrease coordination. Drivers who have used cocaine or methamphetamine can be aggressive and reckless when ...

  7. Genetically Altered Plant Species

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Researchers in Robert Ferl's lab at the University of Florida in Gainesville, genetically altered this Arabdopsis Thaliana (a brassica species) plant to learn how extreme environments, such as the low atmospheric pressure on Mars, affect plant genes. They inserted green fluorescent protein (GFP) near the on/off switches for anoxia and drought genes. When those genes were turned on after exposure to reduced atmospheric pressure, GFP was turned on as well, causing cells expressing those genes to glow green under a blue light. The natural fluorescence of chlorophyll accounts for the red glow.

  8. Drug delivery to solid tumors by elastin-like polypeptides

    PubMed Central

    McDaniel, Jonathan R.; Callahan, Daniel J.; Chilkoti, Ashutosh

    2010-01-01

    Thermally responsive elastin-like polypeptides (ELPs) are a promising class of recombinant biopolymers for the delivery of drugs and imaging agents to solid tumors via systemic or local administration. This article reviews four applications of ELPs to drug delivery, with each delivery mechanism designed to best exploit the relationship between the characteristic transition temperature (Tt) of the ELP and body temperature (Tb). First, when Tt >> Tb, small hydrophobic drugs can be conjugated to the C-terminus of the ELP to impart the amphiphilicity needed to mediate the self-assembly of nanoparticles. These systemically delivered ELP-drug nanoparticles preferentially localize to the tumor site via the EPR effect, resulting in reduced toxicity and enhanced treatment efficacy. The remaining three approaches take direct advantage of the thermal responsiveness of ELPs. In the second strategy, where Tb < Tt < 42 °C, an ELP-drug conjugate can be injected in conjunction with external application of mild hyperthermia to the tumor to induce ELP coacervation and an increase in concentration within the tumor vasculature. The third approach utilizes hydrophilic-hydrophobic ELP block copolymers that have been designed to assemble into nanoparticles in response to hyperthermai due to the independent thermal transition of the hydrophobic block, thus resulting in multivalent ligand display of a ligand for spatially enhanced vascular targeting. In the final strategy, ELPs with Tt < Tb are conjugated with radiotherapeutics, injtect intioa tumor where they undergo coacervation to form an injectable drug depot for intratumoral delivery. These injectable coacervate ELP-radionuclide depots display a long residence in the tumor and result in inhibition of tumor growth. PMID:20546809

  9. Polyamines and drug oxidations.

    PubMed

    Chapman, S K

    1976-01-01

    The addition of spermine or of spermidine to rat liver assay systems produced marked changes in a number of microsomal drug oxidations. The hydroxylation of aniline and the N-demethylation of ethylmorphine were both enhanced with concentrations of 1-10 mM spermine or of spermidine. The results with putrescine on ethylmorphine metabolism were less dramatic, and no effect could be observed with putrescine in studies with other drug substrates. In contrast to the enhancing effects, inhibition was observed when spermine or spermidine was added to p-nitroanisole O-demethylation assay mixtures, and no effect was observed in assays for acetanilide hydroxylation. The inhibiting and enhancing effects of the polyamines can be observed in assays containing liver preparations from both male and female rats, and those from rats pretreated with phenobarbital or 3-methylcholanthrene. In all studies, the alterations were kinetically noncompetitive. The effects were shown to be independent of the NADPH-generating system and the cation requirements, and were not mediated through an interaction with NADPH-cytochrome c reductase. The possibility is considered that the enhancing and inhibiting effects may be related to the ability of these polycations to bind to microsomal membranes and cause alterations at different sites of substrate interaction. PMID:10139

  10. Drug allergy

    PubMed Central

    Warrington, Richard

    2012-01-01

    Allergic drug reactions occur when a drug, usually a low molecular weight molecule, has the ability to stimulate an immune response. This can be done in one of two ways. The first is by binding covalently to a self-protein, to produce a haptenated molecule that can be processed and presented to the adaptive immune system to induce an immune response. Sometimes the drug itself cannot do this but a reactive breakdown product of the drug is able to bind covalently to the requisite self-protein or peptide. The second way in which drugs can stimulate an immune response is by binding non-covalently to antigen presenting or antigen recognition molecules such as the major histocompatibility complex (MHC) or the T cell receptor. This is known as the p-I or pharmacological interaction hypothesis. The drug binding in this situation is reversible and stimulation of the response may occur on first exposure, not requiring previous sensitization. There is probably a dependence on the presence of certain MHC alleles and T cell receptor structures for this type of reaction to occur. PMID:22922763

  11. Drug interactions with grapefruit juice.

    PubMed

    Ameer, B; Weintraub, R A

    1997-08-01

    Some drugs demonstrate a significantly greater (up to 3-fold) mean oral bioavailability on coadministration with grapefruit juice. With some calcium antagonists, the benzodiazepines midazolam and triazolam and the antihistamine terfenadine, changes in bioavailability are accompanied by altered drug action. Study design factors possibly contribute to the magnitude of changes in drug bioavailability; they include the source of the citrus, its intake schedule, drug formulations and individual metabolising capacity. The components of citrus juice that are responsible for clinical drug interactions have yet to be fully determined. Based on the flavonoid naringin's unique distribution in the plant kingdom, abundance in grapefruit and ability to inhibit metabolic enzymes, naringin is likely to be one of the grapefruit components influencing drug metabolism. Other components present in citrus fruit, such as furanocoumarins, may be more potent inhibitors than flavonoids and are under investigation. Conclusions drawn from clinical drug interaction studies should be considered specific to the citrus fruit products evaluated because of the variation in their natural product content. The predominant mechanism for enhanced bioavailability is presumably the inhibition of oxidative drug metabolism in the small intestine. The consistent findings across studies of diverse cytochrome P450 (CYP) 3A substrates support the mechanistic hypothesis that 1 or more grapefruit juice components inhibit CYP3A enzymes in the gastrointestinal tract. The evaluation of the need to avoid the concomitant intake of grapefruit products with drugs is best done on an individual drug basis rather than collectively by drug class. Based on the narrow therapeutic range of cyclosporin and research experience in organ transplant recipients, its interaction with grapefruit juice is likely to be clinically significant. PMID:9260034

  12. Drug-induced nail disorders.

    PubMed

    2014-07-01

    Nail disorders are defined according to their appearance and the part of the nail affected: the nail plate, the tissues that support or hold the nail plate in place, or the lunula. The consequences of most nail disorders are purely cosmetic. Other disorders, such as ingrown nails, inflammation, erythema, abscesses or tumours, cause functional impairment or pain. The appearance of the lesions is rarely indicative of their cause. Possible causes include physiological changes, local disorders or trauma, systemic conditions, toxic substances and drugs. Most drug-induced nail disorders resolve after discontinuation of the drug, although complete resolution sometimes takes several years. Drugs appear to induce nail disorders through a variety of mechanisms. Some drugs affect the nail matrix epithelium, the nail bed or the nail folds. Some alter nail colour. Other drugs induce photosensitivity. Yet others affect the blood supply to the nail unit. Nail abnormalities are common during treatment with certain cytotoxic drugs: taxanes, anthracyclines, fluorouracil, EGFR, tyrosine kinase inhibitors, etc. Some drugs are associated with a risk of serious and painful lesions, such as abscesses. When these disorders affect quality of life, the benefits of withdrawing the drug must be weighed against the severity of the condition being treated and the drug's efficacy, taking into account the harm-benefit balance of other options. Various anti-infective drugs, including tetracyclines, quinolones, clofazimine and zidovudine, cause the nail plate to detach from the nail bed after exposure to light, or cause nail discoloration. Psoralens and retinoids can also have the same effects. PMID:25162091

  13. Targeted Cancer Therapy: Correlative Light-Electron Microscopy Shows RGD-Targeted ZnO Nanoparticles Dissolve in the Intracellular Environment of Triple Negative Breast Cancer Cells and Cause Apoptosis with Intratumor Heterogeneity (Adv. Healthcare Mater. 11/2016).

    PubMed

    Othman, Basmah A; Greenwood, Christina; Abuelela, Ayman F; Bharath, Anil A; Chen, Shu; Theodorou, Ioannis; Douglas, Trevor; Uchida, Maskai; Ryan, Mary; Merzaban, Jasmeen S; Porter, Alexandra E

    2016-06-01

    On page 1310 J. S. Merzaban, A. E. Porter, and co-workers present fluorescently labeled RGD-targeted ZnO nanoparticles (NPs; green) for the targeted delivery of cytotoxic ZnO to integrin αvβ3 receptors expressed on triple negative breast cancer cells. Correlative light-electron microscopy shows that NPs dissolve into ionic Zn(2+) (blue) upon uptake and cause apoptosis (red) with intra-tumor heterogeneity, thereby providing a possible strategy for targeted breast cancer therapy. Cover design by Ivan Gromicho. PMID:27275627

  14. Drug Themes in Science Fiction. National Institute on Drug Abuse Research Issues 9.

    ERIC Educational Resources Information Center

    Silverberg, Robert

    This booklet is part of a series most of which focus on empirical research findings and major theoretical approaches in the area of drug usage. In this volume, the author has compiled a group of English-language short stories and novels which deal with the use of mind-altering drugs, all written since 1900 and falling within the literary category…

  15. Measuring Drug Metabolism Kinetics and Drug-Drug Interactions Using Self-Assembled Monolayers for Matrix-Assisted Laser Desorption-Ionization Mass Spectrometry.

    PubMed

    Anderson, Lyndsey L; Berns, Eric J; Bugga, Pradeep; George, Alfred L; Mrksich, Milan

    2016-09-01

    The competition of two drugs for the same metabolizing enzyme is a common mechanism for drug-drug interactions that can lead to altered kinetics in drug metabolism and altered elimination rates in vivo. With the prevalence of multidrug therapy, there is great potential for serious drug-drug interactions and adverse drug reactions. In an effort to prevent adverse drug reactions, the FDA mandates the evaluation of the potential for metabolic inhibition by every new chemical entity. Conventional methods for assaying drug metabolism (e.g., those based on HPLC) have been established for measuring drug-drug interactions; however, they are low-throughput. Here we describe an approach to measure the catalytic activity of CYP2C9 using the high-throughput technique self-assembled monolayers for matrix-assisted laser desorption-ionization (SAMDI) mass spectrometry. We measured the kinetics of CYP450 metabolism of the substrate, screened a set of drugs for inhibition of CYP2C9 and determined the Ki values for inhibitors. The throughput of this platform may enable drug metabolism and drug-drug interactions to be interrogated at a scale that cannot be achieved with current methods. PMID:27467208

  16. Drug misuse.

    PubMed

    Waller, T

    1992-12-01

    1. Assessment by history and examination should include: a history of all drugs taken during each day for the previous 7 days (including alcohol), length of drug use and route (including the sharing of needles or syringes), the possibility of pregnancy if female, previous psychiatric history and treatment of drug misuse, social factors (including employment, family, friends, involvement in prostitution, legal problems), medical problems, including evidence of hepatitis, injection abscesses and other infections, suicide attempts, and weight loss. 2. Notification to the Chief Medical Officer of the Drug Branch of the Home Office is a legal obligation. 3. Investigations include: liver function tests (LFTs), hepatitis B surface antigen (HBsAg), hepatitis B surface antibody (HBsAb), hepatitis C antibody, full blood count (FBC), and urine for drug screening. Consider HIV testing if at risk but it is usually better arranged at a later stage. 4. Prescribing may be considered for a variety of drugs but objectives will differ according to drug type and individual. 5. In the case of opioid users, prescribing may be useful to stabilize their lives and to promote attendance for professional help. It may reduce high risk behaviour for contracting and spreading HIV. 6. If medication is given to opioid users, methadone mixture 1 mg/ml given once a day is the prescription of choice. Dispensing should be on a daily basis and the blue prescription form FP10 (MDA) allows the chemist to dispense daily for up to 14 days. A maximum ceiling of 100 mg methadone/day should not be exceeded. The initial dose will depend on the amount of opioid consumed in the previous week.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1345155

  17. Drugs@FDA: FDA Approved Drug Products

    MedlinePlus

    ... Cosmetics Tobacco Products Drugs@FDA: FDA Approved Drug Products FDA Home Drug Databases Drugs@FDA - FAQ | Instructions | ... 6332) Contact FDA For Government For Press Combination Products Advisory Committees Science & Research Regulatory Information Safety Emergency ...

  18. Transungual drug delivery: current status.

    PubMed

    Elkeeb, Rania; AliKhan, Ali; Elkeeb, Laila; Hui, Xiaoying; Maibach, Howard I

    2010-01-15

    Topical therapy is highly desirable in treating nail disorders due to its localized effects, which results in minimal adverse systemic events and possibly improved adherence. However, the effectiveness of topical therapies is limited by minimal drug permeability through the nail plate. Current research on nail permeation that focuses on altering the nail plate barrier by means of chemical treatments, penetration enhancers as well as physical and mechanical methods is reviewed. A new method of nail sampling is examined. Finally limitations of current ungual drug permeability studies are briefly discussed. PMID:19819318

  19. Assessment of intratumor non-antibody directed iron oxide nanoparticle hyperthermia cancer therapy and antibody directed IONP uptake in murine and human cells

    PubMed Central

    Hoopes, PJ; Tate, JA; Ogden, JA; Strawbridge, RR; Fiering, SN; Petryk, AA; Cassim, SM; Giustini, AJ; Demidenko, E; Ivkov, R; Barry, S; Chinn, P; Foreman, A

    2014-01-01

    Hyperthermia, as an independent modality or in combination with standard cancer treatments such as chemotherapy and radiation, has been established in vitro and in vivo as an effective cancer treatment. However, despite efforts over the past 25 years, such therapies have never been optimized or widely-accepted clinically. Although methods continue to improve, conventionally-delivered heat (RF, ultrasound, microwave etc) can not be delivered in a tumor selective manner. The development of antibody-targeted, or even nontargeted, biocompatible iron oxide nanoparticles (IONP) now allows delivery of cytotoxic heat to individual cancer cells. Using a murine mouse mammary adenocarcinoma (MTGB) and human colon carcinoma (HT29) cells, we studied the biology and treatment of IONP hyperthermia tumor treatment. Methods Cancer cells (1 × 106) with or without iron oxide nanoparticles (IONP) were studied in culture or in vivo via implanted subcutaneously in female C3H mice, Tumors were grown to a treatment size of 150 mm3 and tumors volumes were measured using standard 3-D caliper measurement techniques. Mouse tumors were heated via delivery of an alternating magnetic field, which activated the nanoparticles, using a cooled 36 mm diameter square copper tube induction coil which provided optimal heating in 1.5 cm wide region of the coil. The IONPs were dextran coated and had a hydrodynamic radius of approximately 100 nm. For the in vivo studies, intra-tumor, peritumor and rectal (core body) temperatures were continually measured throughout the treatment period. Results Although some eddy current heating was generated in non-target tissues at the higher field strengths, our preliminary IONP hyperthermia studies show that whole mouse AMF exposure @160 KHz and 400 or 550 Oe, for a 20 minutes (heat-up and protocol heating), provides a safe and efficacious tumor treatment. Initial electron and light microscopic studies (in vitro and in vivo) showed the 100 nm used in our studies are

  20. SU-C-210-04: Considerable Pancreatic Tumor Motion During Breath-Hold Measured Using Intratumoral Fiducials On Fluoroscopic Movies

    SciTech Connect

    Lens, E; Horst, A van der; Versteijne, E; Tienhoven, G van; Bel, A

    2015-06-15

    Purpose: Using a breath hold (BH) technique during radiotherapy of pancreatic tumors is expected to reduce intra-fractional motion. The aim of this study was to evaluate the tumor motion during BH. Methods: In this pilot study, we included 8 consecutive pancreatic cancer patients. All had 2– 4 intratumoral gold fiducials. Patients were asked to perform 3 consecutive 30-second end-inhale BHs on day 5, 10 and 15 of their three-week treatment. During BH, airflow through a mouthpiece was measured using a spirometer. Any inadvertent flow of air during BH was monitored for all patients. We measured tumor motion on lateral fluoroscopic movies (57 in total) made during BH. In each movie the fiducials as a group were tracked over time in superior-inferior (SI) and anterior-posterior (AP) direction using 2-D image correlation between consecutive frames. We determined for each patient the range of intra-BH motion over all movies; we also determined the absolute means and standard deviations (SDs) for the entire patient group. Additionally, we investigated the relation between inadvertent airflow during BH and the intra-BH motion. Results: We found intra-BH tumor motion of up to 12.5 mm (range, 1.0–12.5 mm) in SI direction and up to 8.0 mm (range, 1.0–8.0 mm) in AP direction. The absolute mean motion over the patient population was 4.7 (SD: 3.0) mm and 2.8 (SD: 1.2) mm in the SI and AP direction, respectively. Patients were able to perform stable consecutive BHs; during only 20% of the movies we found very small airflows (≤ 65 ml). These were mostly stepwise in nature and could not explain the continuous tumor motions we observed. Conclusion: We found substantial (up to 12.5 mm) pancreatic tumor motion during BHs. We found minimal inadvertent airflow, seen only during a minority of BHs, and this did not explain the obtained results. This work was supported by the foundation Bergh in het Zadel through the Dutch Cancer Society (KWF Kankerbestrijding) project No. UVA 2011-5271.

  1. Sodium Iodide Symporter (NIS)-Mediated Radionuclide (131I, 188Re) Therapy of Liver Cancer After Transcriptionally Targeted Intratumoral in Vivo NIS Gene Delivery

    PubMed Central

    Klutz, Kathrin; Willhauck, Michael J.; Wunderlich, Nathalie; Zach, Christian; Anton, Martina; Senekowitsch-Schmidtke, Reingard; Göke, Burkhard

    2011-01-01

    Abstract We reported the therapeutic efficacy of 131I in hepatocellular carcinoma (HCC) cells stably expressing the sodium iodide symporter (NIS) under the control of the tumor-specific α-fetoprotein (AFP) promoter. In the current study we investigated the efficacy of adenovirus-mediated in vivo NIS gene transfer followed by 131I and 188Re administration for the treatment of HCC xenografts. We used a replication-deficient adenovirus carrying the human NIS gene linked to the mouse AFP promoter (Ad5-AFP-NIS) for in vitro and in vivo NIS gene transfer. Functional NIS expression was confirmed by in vivo γ-camera imaging, followed by analysis of NIS protein and mRNA expression. Human HCC (HepG2) cells infected with Ad5-AFP-NIS concentrated 50% of the applied activity of 125I, which was sufficiently high for a therapeutic effect in an in vitro clonogenic assay. Four days after intratumoral injection of Ad5-AFP-NIS (3×109 plaque-forming units) HepG2 xenografts accumulated 14.5% injected dose (ID)/g 123I with an effective half-life of 13 hr (tumor-absorbed dose, 318 mGy/MBq 131I). In comparison, 9.2% ID/g 188Re was accumulated in tumors with an effective half-life of 12.8 hr (tumor-absorbed dose, 545 mGy/MBq). After adenovirus-mediated NIS gene transfer in HepG2 xenografts administration of a therapeutic dose of 131I or 188Re (55.5 MBq) resulted in a significant delay in tumor growth and improved survival without a significant difference between 188Re and 131I. In conclusion, a therapeutic effect of 131I and 188Re was demonstrated in HepG2 xenografts after tumor-specific adenovirus-mediated in vivo NIS gene transfer. PMID:21488714

  2. Assessment of intratumor non-antibody directed iron oxide nanoparticle hyperthermia cancer therapy and antibody directed IONP uptake in murine and human cells

    NASA Astrophysics Data System (ADS)

    Hoopes, P. J.; Tate, J. A.; Ogden, J. A.; Strawbridge, R. R.; Fiering, S. N.; Petryk, A. A.; Cassim, S. M.; Giustini, A. J.; Demidenko, E.; Ivkov, R.; Barry, S.; Chinn, P.; Foreman, A.

    2009-02-01

    Hyperthermia, as an independent modality or in combination with standard cancer treatments such as chemotherapy and radiation, has been established in vitro and in vivo as an effective cancer treatment. However, despite efforts over the past 25 year