Science.gov

Sample records for alters mitochondrial distribution

  1. HUMMR, a hypoxia- and HIF-1α–inducible protein, alters mitochondrial distribution and transport

    PubMed Central

    Li, Yan; Lim, Seung; Hoffman, David; Aspenstrom, Pontus; Federoff, Howard J.

    2009-01-01

    Mitochondrial transport is critical for maintenance of normal neuronal function. Here, we identify a novel mitochondria protein, hypoxia up-regulated mitochondrial movement regulator (HUMMR), which is expressed in neurons and is markedly induced by hypoxia-inducible factor 1 α (HIF-1α). Interestingly, HUMMR interacts with Miro-1 and Miro-2, mitochondrial proteins that are critical for mediating mitochondrial transport. Interestingly, knockdown of HUMMR or HIF-1 function in neurons exposed to hypoxia markedly reduces mitochondrial content in axons. Because mitochondrial transport and distribution are inextricably linked, the impact of reduced HUMMR function on the direction of mitochondrial transport was also explored. Loss of HUMMR function in hypoxia diminished the percentage of motile mitochondria moving in the anterograde direction and enhanced the percentage moving in the retrograde direction. Thus, HUMMR, a novel mitochondrial protein induced by HIF-1 and hypoxia, biases mitochondria transport in the anterograde direction. These findings have broad implications for maintenance of neuronal viability and function during physiological and pathological states. PMID:19528298

  2. Mitochondrial DNA Alterations and Reduced Mitochondrial Function in Aging

    PubMed Central

    Hebert, Sadie L.; Lanza, Ian R.; Nair, K. Sreekumaran

    2010-01-01

    Oxidative damage to mitochondrial DNA increases with aging. This damage has the potential to affect mitochondrial DNA replication and transcription which could alter the abundance or functionality of mitochondrial proteins. This review describes mitochondrial DNA alterations and changes in mitochondrial function that occur with aging. Age-related alterations in mitochondrial DNA as a possible contributor to the reduction in mitochondrial function are discussed. PMID:20307565

  3. Optical Cryoimaging Reveals a Heterogeneous Distribution of Mitochondrial Redox State in ex vivo Guinea Pig Hearts and Its Alteration During Ischemia and Reperfusion.

    PubMed

    Ranji, Mahsa; Motlagh, Mohammad Masoudi; Salehpour, Fahimeh; Sepehr, Reyhaneh; Heisner, James S; Dash, Ranjan K; Camara, Amadou K S

    2016-01-01

    Oxidation of substrates to generate ATP in mitochondria is mediated by redox reactions of NADH and FADH2. Cardiac ischemia and reperfusion (IR) injury compromises mitochondrial oxidative phosphorylation. We hypothesize that IR alters the metabolic heterogeneity of mitochondrial redox state of the heart that is only evident in the 3-D optical cryoimaging of the perfused heart before, during, and after IR. The study involved four groups of hearts: time control (TC: heart perfusion without IR), global ischemia (Isch), global ischemia followed by reperfusion (IR) and TC with PCP (a mitochondrial uncoupler) perfusion. Mitochondrial NADH and FAD autofluorescence signals were recorded spectrofluorometrically online in guinea pig ex vivo-perfused hearts in the Langendorff mode. At the end of each specified protocol, hearts were rapidly removed and snap frozen in liquid N2 for later 3-D optical cryoimaging of the mitochondrial NADH, FAD, and NADH/FAD redox ratio (RR). The TC hearts revealed a heterogeneous spatial distribution of NADH, FAD, and RR. Ischemia and IR altered the spatial distribution and caused an overall increase and decrease in the RR by 55% and 64%, respectively. Uncoupling with PCP resulted in the lowest level of the RR (73% oxidation) compared with TC. The 3-D optical cryoimaging of the heart provides novel insights into the heterogeneous distribution of mitochondrial NADH, FAD, RR, and metabolism from the base to the apex during ischemia and IR. This 3-D information of the mitochondrial redox state in the normal and ischemic heart was not apparent in the dynamic spectrofluorometric data. PMID:27574574

  4. Optical Cryoimaging Reveals a Heterogeneous Distribution of Mitochondrial Redox State in ex vivo Guinea Pig Hearts and Its Alteration During Ischemia and Reperfusion

    PubMed Central

    Motlagh, Mohammad Masoudi; Salehpour, Fahimeh; Sepehr, Reyhaneh; Heisner, James S.; Dash, Ranjan K.; Camara, Amadou K. S.

    2016-01-01

    Oxidation of substrates to generate ATP in mitochondria is mediated by redox reactions of NADH and FADH2. Cardiac ischemia and reperfusion (IR) injury compromises mitochondrial oxidative phosphorylation. We hypothesize that IR alters the metabolic heterogeneity of mitochondrial redox state of the heart that is only evident in the 3-D optical cryoimaging of the perfused heart before, during, and after IR. The study involved four groups of hearts: time control (TC: heart perfusion without IR), global ischemia (Isch), global ischemia followed by reperfusion (IR) and TC with PCP (a mitochondrial uncoupler) perfusion. Mitochondrial NADH and FAD autofluorescence signals were recorded spectrofluorometrically online in guinea pig ex vivo-perfused hearts in the Langendorff mode. At the end of each specified protocol, hearts were rapidly removed and snap frozen in liquid N2 for later 3-D optical cryoimaging of the mitochondrial NADH, FAD, and NADH/FAD redox ratio (RR). The TC hearts revealed a heterogeneous spatial distribution of NADH, FAD, and RR. Ischemia and IR altered the spatial distribution and caused an overall increase and decrease in the RR by 55% and 64%, respectively. Uncoupling with PCP resulted in the lowest level of the RR (73% oxidation) compared with TC. The 3-D optical cryoimaging of the heart provides novel insights into the heterogeneous distribution of mitochondrial NADH, FAD, RR, and metabolism from the base to the apex during ischemia and IR. This 3-D information of the mitochondrial redox state in the normal and ischemic heart was not apparent in the dynamic spectrofluorometric data. PMID:27574574

  5. The HIV Protein gp120 Alters Mitochondrial Dynamics in Neurons.

    PubMed

    Avdoshina, Valeria; Fields, Jerel Adam; Castellano, Paul; Dedoni, Simona; Palchik, Guillermo; Trejo, Margarita; Adame, Anthony; Rockenstein, Edward; Eugenin, Eliseo; Masliah, Eliezer; Mocchetti, Italo

    2016-05-01

    Neurotoxicity of human immunodeficiency virus-1 (HIV) includes synaptic simplification and neuronal apoptosis. However, the mechanisms of HIV-associated neurotoxicity remain unclear, thus precluding an effective treatment of the neurological complications. The present study was undertaken to characterize novel mechanisms of HIV neurotoxicity that may explain how HIV subjects develop neuronal degeneration. Several neurodegenerative disorders are characterized by mitochondrial dysfunction; therefore, we hypothesized that HIV promotes mitochondrial damage. We first analyzed brains from HIV encephalitis (HIVE) by electron microscopy. Several sections of HIVE subjects contained enlarged and damaged mitochondria compared to brains from HIV subjects with no neurological complications. Similar pathologies were observed in mice overexpressing the HIV protein gp120, suggesting that this viral protein may be responsible for mitochondrial pathology found in HIVE. To gain more information about the cellular mechanisms of gp120 neurotoxicity, we exposed rat cortical neurons to gp120 and we determined cellular oxygen consumption rate, mitochondrial distribution, and trafficking. Our data show that gp120 evokes impairment in mitochondrial function and distribution. These data suggest that one of the mechanisms of HIV neurotoxicity includes altered mitochondrial dynamics in neurons. PMID:26936603

  6. Genetic Ablation of Calcium-independent Phospholipase A2γ Leads to Alterations in Hippocampal Cardiolipin Content and Molecular Species Distribution, Mitochondrial Degeneration, Autophagy, and Cognitive Dysfunction*

    PubMed Central

    Mancuso, David J.; Kotzbauer, Paul; Wozniak, David F.; Sims, Harold F.; Jenkins, Christopher M.; Guan, Shaoping; Han, Xianlin; Yang, Kui; Sun, Gang; Malik, Ibrahim; Conyers, Sara; Green, Karen G.; Schmidt, Robert E.; Gross, Richard W.

    2009-01-01

    Genetic ablation of calcium-independent phospholipase A2γ (iPLA2γ) results in profound alterations in hippocampal phospholipid metabolism and mitochondrial phospholipid homeostasis resulting in enlarged and degenerating mitochondria leading to autophagy and cognitive dysfunction. Shotgun lipidomics demonstrated multiple alterations in hippocampal lipid metabolism in iPLA2γ−/− mice including: 1) a markedly elevated hippocampal cardiolipin content with an altered molecular species composition characterized by a shift to shorter chain length molecular species; 2) alterations in both choline and ethanolamine glycerophospholipids, including a decreased plasmenylethanolamine content; 3) increased oxidized phosphatidylethanolamine molecular species; and 4) an increased content of ceramides. Electron microscopic examination demonstrated the presence of enlarged heteromorphic lamellar structures undergoing degeneration accompanied by the presence of ubiquitin positive spheroid inclusion bodies. Purification of these enlarged heteromorphic lamellar structures by buoyant density centrifugation and subsequent SDS-PAGE and proteomics identified them as degenerating mitochondria. Collectively, these results identify the obligatory role of iPLA2γ in neuronal mitochondrial lipid metabolism and membrane structure demonstrating that iPLA2γ loss of function results in a mitochondrial neurodegenerative disorder characterized by degenerating mitochondria, autophagy, and cognitive dysfunction. PMID:19840936

  7. Altered Cytoskeleton as a Mitochondrial Decay Signature in the Retinal Pigment Epithelium.

    PubMed

    Sripathi, Srinivas R; He, Weilue; Sylvester, O'Donnell; Neksumi, Musa; Um, Ji-Yeon; Dluya, Thagriki; Bernstein, Paul S; Jahng, Wan Jin

    2016-06-01

    Mitochondria mediate energy metabolism, apoptosis, and aging, while mitochondrial disruption leads to age-related diseases that include age-related macular degeneration. Descriptions of mitochondrial morphology have been non-systematic and qualitative, due to lack of knowledge on the molecular mechanism of mitochondrial dynamics. The current study analyzed mitochondrial size, shape, and position quantitatively in retinal pigment epithelial cells (RPE) using a systematic computational model to suggest mitochondrial trafficking under oxidative environment. Our previous proteomic study suggested that prohibitin is a mitochondrial decay biomarker in the RPE. The current study examined the prohibitin interactome map using immunoprecipitation data to determine the indirect signaling on cytoskeletal changes and transcriptional regulation by prohibitin. Immunocytochemistry and immunoprecipitation demonstrated that there is a positive correlation between mitochondrial changes and altered filaments as well as prohibitin interactions with kinesin and unknown proteins in the RPE. Specific cytoskeletal and nuclear protein-binding mechanisms may exist to regulate prohibitin-mediated reactions as key elements, including vimentin and p53, to control apoptosis in mitochondria and the nucleus. Prohibitin may regulate mitochondrial trafficking through unknown proteins that include 110 kDa protein with myosin head domain and 88 kDa protein with cadherin repeat domain. Altered cytoskeleton may represent a mitochondrial decay signature in the RPE. The current study suggests that mitochondrial dynamics and cytoskeletal changes are critical for controlling mitochondrial distribution and function. Further, imbalance of retrograde versus anterograde mitochondrial trafficking may initiate the pathogenic reaction in adult-onset neurodegenerative diseases. PMID:27029380

  8. Mitochondrial loss, dysfunction and altered dynamics in Huntington's disease

    PubMed Central

    Kim, Jinho; Moody, Jennifer P.; Edgerly, Christina K.; Bordiuk, Olivia L.; Cormier, Kerry; Smith, Karen; Beal, M. Flint; Ferrante, Robert J.

    2010-01-01

    Although a direct causative pathway from the gene mutation to the selective neostriatal neurodegeneration remains unclear in Huntington's disease (HD), one putative pathological mechanism reported to play a prominent role in the pathogenesis of this neurological disorder is mitochondrial dysfunction. We examined mitochondria in preferentially vulnerable striatal calbindin-positive neurons in moderate-to-severe grade HD patients, using antisera against mitochondrial markers of COX2, SOD2 and cytochrome c. Combined calbindin and mitochondrial marker immunofluorescence showed a significant and progressive grade-dependent reduction in the number of mitochondria in spiny striatal neurons, with marked alteration in size. Consistent with mitochondrial loss, there was a reduction in COX2 protein levels using western analysis that corresponded with disease severity. In addition, both mitochondrial transcription factor A, a regulator of mtDNA, and peroxisome proliferator-activated receptor-co-activator gamma-1 alpha, a key transcriptional regulator of energy metabolism and mitochondrial biogenesis, were also significantly reduced with increasing disease severity. Abnormalities in mitochondrial dynamics were observed, showing a significant increase in the fission protein Drp1 and a reduction in the expression of the fusion protein mitofusin 1. Lastly, mitochondrial PCR array profiling in HD caudate nucleus specimens showed increased mRNA expression of proteins involved in mitochondrial localization, membrane translocation and polarization and transport that paralleled mitochondrial derangement. These findings reveal that there are both mitochondrial loss and altered mitochondrial morphogenesis with increased mitochondrial fission and reduced fusion in HD. These findings provide further evidence that mitochondrial dysfunction plays a critical role in the pathogenesis of HD. PMID:20660112

  9. Altered Mitochondrial Dynamics and TBI Pathophysiology.

    PubMed

    Fischer, Tara D; Hylin, Michael J; Zhao, Jing; Moore, Anthony N; Waxham, M Neal; Dash, Pramod K

    2016-01-01

    Mitochondrial function is intimately linked to cellular survival, growth, and death. Mitochondria not only generate ATP from oxidative phosphorylation, but also mediate intracellular calcium buffering, generation of reactive oxygen species (ROS), and apoptosis. Electron leakage from the electron transport chain, especially from damaged or depolarized mitochondria, can generate excess free radicals that damage cellular proteins, DNA, and lipids. Furthermore, mitochondrial damage releases pro-apoptotic factors to initiate cell death. Previous studies have reported that traumatic brain injury (TBI) reduces mitochondrial respiration, enhances production of ROS, and triggers apoptotic cell death, suggesting a prominent role of mitochondria in TBI pathophysiology. Mitochondria maintain cellular energy homeostasis and health via balanced processes of fusion and fission, continuously dividing and fusing to form an interconnected network throughout the cell. An imbalance of these processes, particularly an excess of fission, can be detrimental to mitochondrial function, causing decreased respiration, ROS production, and apoptosis. Mitochondrial fission is regulated by the cytosolic GTPase, dynamin-related protein 1 (Drp1), which translocates to the mitochondrial outer membrane (MOM) to initiate fission. Aberrant Drp1 activity has been linked to excessive mitochondrial fission and neurodegeneration. Measurement of Drp1 levels in purified hippocampal mitochondria showed an increase in TBI animals as compared to sham controls. Analysis of cryo-electron micrographs of these mitochondria also showed that TBI caused an initial increase in the length of hippocampal mitochondria at 24 h post-injury, followed by a significant decrease in length at 72 h. Post-TBI administration of Mitochondrial division inhibitor-1 (Mdivi-1), a pharmacological inhibitor of Drp1, prevented this decrease in mitochondria length. Mdivi-1 treatment also reduced the loss of newborn neurons in the

  10. Altered Mitochondrial Dynamics and TBI Pathophysiology

    PubMed Central

    Fischer, Tara D.; Hylin, Michael J.; Zhao, Jing; Moore, Anthony N.; Waxham, M. Neal; Dash, Pramod K.

    2016-01-01

    Mitochondrial function is intimately linked to cellular survival, growth, and death. Mitochondria not only generate ATP from oxidative phosphorylation, but also mediate intracellular calcium buffering, generation of reactive oxygen species (ROS), and apoptosis. Electron leakage from the electron transport chain, especially from damaged or depolarized mitochondria, can generate excess free radicals that damage cellular proteins, DNA, and lipids. Furthermore, mitochondrial damage releases pro-apoptotic factors to initiate cell death. Previous studies have reported that traumatic brain injury (TBI) reduces mitochondrial respiration, enhances production of ROS, and triggers apoptotic cell death, suggesting a prominent role of mitochondria in TBI pathophysiology. Mitochondria maintain cellular energy homeostasis and health via balanced processes of fusion and fission, continuously dividing and fusing to form an interconnected network throughout the cell. An imbalance of these processes, particularly an excess of fission, can be detrimental to mitochondrial function, causing decreased respiration, ROS production, and apoptosis. Mitochondrial fission is regulated by the cytosolic GTPase, dynamin-related protein 1 (Drp1), which translocates to the mitochondrial outer membrane (MOM) to initiate fission. Aberrant Drp1 activity has been linked to excessive mitochondrial fission and neurodegeneration. Measurement of Drp1 levels in purified hippocampal mitochondria showed an increase in TBI animals as compared to sham controls. Analysis of cryo-electron micrographs of these mitochondria also showed that TBI caused an initial increase in the length of hippocampal mitochondria at 24 h post-injury, followed by a significant decrease in length at 72 h. Post-TBI administration of Mitochondrial division inhibitor-1 (Mdivi-1), a pharmacological inhibitor of Drp1, prevented this decrease in mitochondria length. Mdivi-1 treatment also reduced the loss of newborn neurons in the

  11. Alterations in Mitochondrial Quality Control in Alzheimer’s Disease

    PubMed Central

    Cai, Qian; Tammineni, Prasad

    2016-01-01

    Mitochondrial dysfunction is one of the earliest and most prominent features in the brains of Alzheimer’s disease (AD) patients. Recent studies suggest that mitochondrial dysfunction plays a pivotal role in the pathogenesis of AD. Neurons are metabolically active cells, causing them to be particularly dependent on mitochondrial function for survival and maintenance. As highly dynamic organelles, mitochondria are characterized by a balance of fusion and fission, transport, and mitophagy, all of which are essential for maintaining mitochondrial integrity and function. Mitochondrial dynamics and mitophagy can therefore be identified as key pathways in mitochondrial quality control. Tremendous progress has been made in studying changes in these key aspects of mitochondrial biology in the vulnerable neurons of AD brains and mouse models, and the potential underlying mechanisms of such changes. This review highlights recent findings on alterations in the mitochondrial dynamics and mitophagy in AD and discusses how these abnormalities impact mitochondrial quality control and thus contribute to mitochondrial dysfunction in AD. PMID:26903809

  12. Overexpression of Mitochondrial Sirtuins Alters Glycolysis and Mitochondrial Function in HEK293 Cells

    PubMed Central

    Barbi de Moura, Michelle; Uppala, Radha; Zhang, Yuxun; Van Houten, Bennett; Goetzman, Eric S.

    2014-01-01

    SIRT3, SIRT4, and SIRT5 are mitochondrial deacylases that impact multiple facets of energy metabolism and mitochondrial function. SIRT3 activates several mitochondrial enzymes, SIRT4 represses its targets, and SIRT5 has been shown to both activate and repress mitochondrial enzymes. To gain insight into the relative effects of the mitochondrial sirtuins in governing mitochondrial energy metabolism, SIRT3, SIRT4, and SIRT5 overexpressing HEK293 cells were directly compared. When grown under standard cell culture conditions (25 mM glucose) all three sirtuins induced increases in mitochondrial respiration, glycolysis, and glucose oxidation, but with no change in growth rate or in steady-state ATP concentration. Increased proton leak, as evidenced by oxygen consumption in the presence of oligomycin, appeared to explain much of the increase in basal oxygen utilization. Growth in 5 mM glucose normalized the elevations in basal oxygen consumption, proton leak, and glycolysis in all sirtuin over-expressing cells. While the above effects were common to all three mitochondrial sirtuins, some differences between the SIRT3, SIRT4, and SIRT5 expressing cells were noted. Only SIRT3 overexpression affected fatty acid metabolism, and only SIRT4 overexpression altered superoxide levels and mitochondrial membrane potential. We conclude that all three mitochondrial sirtuins can promote increased mitochondrial respiration and cellular metabolism. SIRT3, SIRT4, and SIRT5 appear to respond to excess glucose by inducing a coordinated increase of glycolysis and respiration, with the excess energy dissipated via proton leak. PMID:25165814

  13. Alteration of nucleotide metabolism: a new mechanism for mitochondrial disorders.

    PubMed

    Martí, Ramon; Nishigaki, Yutaka; Vilá, Maya R; Hirano, Michio

    2003-07-01

    Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) is an autosomal recessive disease caused by loss-of-function mutations in the gene encoding thymidine phosphorylase (TP). TP deficiency alters the metabolism of the nucleosides thymidine and deoxyuridine, which, in turn, produces abnormalities of mitochondrial DNA (mtDNA) including depletion, deletions, and point mutations. MNGIE is the best characterized of the expanding number of mitochondrial disorders caused by alterations in the metabolism of nucleosides/nucleotides. Because mitochondria contain their own machinery for nucleoside and nucleotide metabolism and have physically separate nucleotide pools, it is not surprising that disorders of these pathways cause human diseases. Other diseases in this group include mtDNA depletion syndromes caused by mutations on the nuclear genes encoding the mitochondrial thymidine kinase and deoxyguanosine kinase; autosomal dominant progressive external ophthalmoplegia with multiple deletions of mtDNA due to mutations in the genes encoding the muscle-isoform of mitochondrial ADP/ATP translocator; and mitochondrial DNA depletion due to toxicities of nucleoside analogues. Mutations in the deoxynucleotide carrier, a transporter of deoxynucleoside diphosphates, have been identified as a cause of congenital microcephaly. However, alterations of mtDNA have not yet been established in this disorder. Future studies are likely to reveal additional diseases and provide further insight into this new subject. PMID:12940507

  14. Data for mitochondrial proteomic alterations in the developing rat brain.

    PubMed

    Villeneuve, Lance M; Stauch, Kelly L; Fox, Howard S

    2014-12-01

    Mitochondria are a critical organelle involved in many cellular processes, and due to the nature of the brain, neuronal cells are almost completely reliant on these organelles for energy generation. Due to the fact that biomedical research tends to investigate disease state pathogenesis, one area of mitochondrial research commonly overlooked is homeostatic responses to energy demands. Therefore, to elucidate mitochondrial alterations occurring during the developmentally important phase of E18 to P7 in the brain, we quantified the proteins in the mitochondrial proteome as well as proteins interacting with the mitochondria. We identified a large number of significantly altered proteins involved in a variety of pathways including glycolysis, mitochondrial trafficking, mitophagy, and the unfolded protein response. These results are important because we identified alterations thought to be homeostatic in nature occurring within mitochondria, and these results may be used to identify any abnormal deviations in the mitochondrial proteome occurring during this period of brain development. A more comprehensive analysis of this data may be obtained from the article "Proteomic analysis of mitochondria from embryonic and postnatal rat brains reveals response to developmental changes in energy demands" in the Journal of Proteomics. PMID:26217684

  15. Data for mitochondrial proteomic alterations in the developing rat brain

    PubMed Central

    Villeneuve, Lance M.; Stauch, Kelly L.; Fox, Howard S.

    2014-01-01

    Mitochondria are a critical organelle involved in many cellular processes, and due to the nature of the brain, neuronal cells are almost completely reliant on these organelles for energy generation. Due to the fact that biomedical research tends to investigate disease state pathogenesis, one area of mitochondrial research commonly overlooked is homeostatic responses to energy demands. Therefore, to elucidate mitochondrial alterations occurring during the developmentally important phase of E18 to P7 in the brain, we quantified the proteins in the mitochondrial proteome as well as proteins interacting with the mitochondria. We identified a large number of significantly altered proteins involved in a variety of pathways including glycolysis, mitochondrial trafficking, mitophagy, and the unfolded protein response. These results are important because we identified alterations thought to be homeostatic in nature occurring within mitochondria, and these results may be used to identify any abnormal deviations in the mitochondrial proteome occurring during this period of brain development. A more comprehensive analysis of this data may be obtained from the article “Proteomic analysis of mitochondria from embryonic and postnatal rat brains reveals response to developmental changes in energy demands” in the Journal of Proteomics. PMID:26217684

  16. Altered Skeletal Muscle Mitochondrial Proteome As the Basis of Disruption of Mitochondrial Function in Diabetic Mice.

    PubMed

    Zabielski, Piotr; Lanza, Ian R; Gopala, Srinivas; Heppelmann, Carrie J Holtz; Bergen, H Robert; Dasari, Surendra; Nair, K Sreekumaran

    2016-03-01

    Insulin plays pivotal role in cellular fuel metabolism in skeletal muscle. Despite being the primary site of energy metabolism, the underlying mechanism on how insulin deficiency deranges skeletal muscle mitochondrial physiology remains to be fully understood. Here we report an important link between altered skeletal muscle proteome homeostasis and mitochondrial physiology during insulin deficiency. Deprivation of insulin in streptozotocin-induced diabetic mice decreased mitochondrial ATP production, reduced coupling and phosphorylation efficiency, and increased oxidant emission in skeletal muscle. Proteomic survey revealed that the mitochondrial derangements during insulin deficiency were related to increased mitochondrial protein degradation and decreased protein synthesis, resulting in reduced abundance of proteins involved in mitochondrial respiration and β-oxidation. However, a paradoxical upregulation of proteins involved in cellular uptake of fatty acids triggered an accumulation of incomplete fatty acid oxidation products in skeletal muscle. These data implicate a mismatch of β-oxidation and fatty acid uptake as a mechanism leading to increased oxidative stress in diabetes. This notion was supported by elevated oxidative stress in cultured myotubes exposed to palmitate in the presence of a β-oxidation inhibitor. Together, these results indicate that insulin deficiency alters the balance of proteins involved in fatty acid transport and oxidation in skeletal muscle, leading to impaired mitochondrial function and increased oxidative stress. PMID:26718503

  17. Data for mitochondrial proteomic alterations in the aging mouse brain

    PubMed Central

    Stauch, Kelly L.; Purnell, Phillip R.; Villeneuve, Lance M.; Fox, Howard S.

    2015-01-01

    Mitochondria are dynamic organelles critical for many cellular processes, including energy generation. Thus, mitochondrial dysfunction likely plays a role in the observed alterations in brain glucose metabolism during aging. Despite implications of mitochondrial alterations during brain aging, comprehensive quantitative proteomic studies remain limited. Therefore, to characterize the global age-associated mitochondrial proteomic changes in the brain, we analyzed mitochondria isolated from the brain of 5-, 12-, and 24-month old mice using quantitative mass spectrometry. We identified changes in the expression of proteins important for biological processes involved in the generation of precursor metabolites and energy through the breakdown of carbohydrates, lipids, and proteins. These results are significant because we identified age-associated proteomic changes suggestive of altered mitochondrial catabolic reactions during brain aging. The proteomic data described here can be found in the PRIDE Archive using the reference number PXD001370. A more comprehensive analysis of this data may be obtained from the article “Proteomic analysis and functional characterization of mouse brain mitochondria during aging reveal alterations in energy metabolism” in PROTEOMICS. PMID:26217775

  18. Altered brain energetics induces mitochondrial fission arrest in Alzheimer's Disease.

    PubMed

    Zhang, Liang; Trushin, Sergey; Christensen, Trace A; Bachmeier, Benjamin V; Gateno, Benjamin; Schroeder, Andreas; Yao, Jia; Itoh, Kie; Sesaki, Hiromi; Poon, Wayne W; Gylys, Karen H; Patterson, Emily R; Parisi, Joseph E; Diaz Brinton, Roberta; Salisbury, Jeffrey L; Trushina, Eugenia

    2016-01-01

    Altered brain metabolism is associated with progression of Alzheimer's Disease (AD). Mitochondria respond to bioenergetic changes by continuous fission and fusion. To account for three dimensional architecture of the brain tissue and organelles, we applied 3-dimensional electron microscopy (3D EM) reconstruction to visualize mitochondrial structure in the brain tissue from patients and mouse models of AD. We identified a previously unknown mitochondrial fission arrest phenotype that results in elongated interconnected organelles, "mitochondria-on-a-string" (MOAS). Our data suggest that MOAS formation may occur at the final stages of fission process and was not associated with altered translocation of activated dynamin related protein 1 (Drp1) to mitochondria but with reduced GTPase activity. Since MOAS formation was also observed in the brain tissue of wild-type mice in response to hypoxia or during chronological aging, fission arrest may represent fundamental compensatory adaptation to bioenergetic stress providing protection against mitophagy that may preserve residual mitochondrial function. The discovery of novel mitochondrial phenotype that occurs in the brain tissue in response to energetic stress accurately detected only using 3D EM reconstruction argues for a major role of mitochondrial dynamics in regulating neuronal survival. PMID:26729583

  19. Huntington's disease and mitochondrial alterations: emphasis on experimental models.

    PubMed

    Pérez-De la Cruz, Verónica; Carrillo-Mora, Paul; Santamaría, Abel

    2010-06-01

    Huntington's disease (HD) is an inheritable neurological disorder coursing with degeneration of basal ganglia and producing chorea and dementia. One common factor accounting for neurodegeneration in this disorder is mitochondrial deterioration at both morphologic and functional levels. The development of experimental models in animals or cell preparations to resemble pathologic and pathogenic conditions of this disorder has served for more than four decades to describe part of the mechanistic alterations that could be occurring in mitochondria of HD patients, and the subsequent design of therapeutic alternatives where mitochondrial alterations are the primary target. In this minireview we describe some of the most relevant studies at the experimental level, giving support to the hypothesis that mitochondria play a central role in HD pathogenesis. PMID:20524050

  20. Human Misato regulates mitochondrial distribution and morphology

    SciTech Connect

    Kimura, Masashi . E-mail: yo@gifu-u.ac.jp; Okano, Yukio

    2007-04-15

    Misato of Drosophila melanogaster and Saccharomyces cerevisiae DML1 are conserved proteins having a homologous region with a part of the GTPase family that includes eukaryotic tubulin and prokaryotic FtsZ. We characterized human Misato sharing homology with Misato of D. melanogaster and S. cerevisiae DML1. Tissue distribution of Misato exhibited ubiquitous distribution. Subcellular localization of the protein studied using anti-Misato antibody suggested that it is localized to the mitochondria. Further experiments of fractionating mitochondria revealed that Misato was localized to the outer membrane. The transfection of Misato siRNA led to growth deficiencies compared with control siRNA transfected HeLa cells, and the Misato-depleted HeLa cells showed apoptotic nuclear fragmentation resulting in cell death. After silencing of Misato, the filamentous mitochondrial network disappeared and fragmented mitochondria were observed, indicating human Misato has a role in mitochondrial fusion. To examine the effects of overexpression, COS-7 cells were transfected with cDNA encoding EGFP-Misato. Its overexpression resulted in the formation of perinuclear aggregations of mitochondria in these cells. The Misato-overexpressing cells showed low viability and had no nuclei or a small and structurally unusual ones. These results indicated that human Misato has a role(s) in mitochondrial distribution and morphology and that its unregulated expression leads to cell death.

  1. Mitochondrial DNA haplogroups modify the risk of osteoarthritis by altering mitochondrial function and intracellular mitochondrial signals.

    PubMed

    Fang, Hezhi; Zhang, Fengjiao; Li, Fengjie; Shi, Hao; Ma, Lin; Du, Miaomiao; You, Yanting; Qiu, Ruyi; Nie, Hezhongrong; Shen, Lijun; Bai, Yidong; Lyu, Jianxin

    2016-04-01

    Haplogroup G predisposes one to an increased risk of osteoarthritis (OA) occurrence, while haplogroup B4 is a protective factor against OA onset. However, the underlying mechanism is not known. Here, by using trans-mitochondrial technology, we demonstrate that the activity levels of mitochondrial respiratory chain complex I and III are higher in G cybrids than in haplogroup B4. Increased mitochondrial oxidative phosphorylation (OXPHOS) promotes mitochondrial-related ATP generation in G cybrids, thereby shifting the ATP generation from glycolysis to OXPHOS. Furthermore, we found that lower glycolysis in G cybrids decreased cell viability under hypoxia (1% O2) compared with B4 cybrids. In contrast, G cybrids have a lower NAD(+)/NADH ratio and less generation of reactive oxygen species (ROS) under both hypoxic (1% O2) and normoxic (20% O2) conditions than B4 cybrids, indicating that mitochondrial-mediated signaling pathways (retrograde signaling) differ between these cybrids. Gene expression profiling of G and B4 cybrids using next-generation sequencing technology showed that 404 of 575 differentially expressed genes (DEGs) between G and B4 cybrids are enriched in 17 pathways, of which 11 pathways participate in OA. Quantitative reverse transcription PCR (qRT-PCR) analyses confirmed that G cybrids had lower glycolysis activity than B4 cybrids. In addition, we confirmed that the rheumatoid arthritis pathway was over-activated in G cybrids, although the remaining 9 pathways were not further tested by qRT-PCR. In conclusion, our findings indicate that mtDNA haplogroup G may increase the risk of OA by shifting the metabolic profile from glycolysis to OXPHOS and by over-activating OA-related signaling pathways. PMID:26705675

  2. Intracellular clusterin causes juxtanuclear aggregate formation and mitochondrial alteration.

    PubMed

    Debure, Laure; Vayssiere, Jean-Luc; Rincheval, Vincent; Loison, Fabien; Le Drean, Yves; Michel, Denis

    2003-08-01

    Clusterin is a puzzling protein upregulated in many diseased tissues, presented as either a survival or a death protein. The role of clusterin might depend on the final maturation and localization of the protein, which can be secreted or reside inside cells, either after in situ synthesis or uptake of extracellular clusterin. We studied the biological effects of intracellular clusterin and observed that clusterin forms containing the alpha-chain region strongly accumulated in an ubiquitinated form in juxtanuclear aggregates meeting the main criterions of aggresomes and leading to profound alterations of the mitochondrial network. The viability of cells transfected by intracellular forms of clusterin was improved by overexpression of Bcl-2, and caspase inhibition was capable of rescuing cells expressing clusterin, which presented an altered mitochondrial permeability. We propose that, although it might be an inherently pro-survival and anti-apoptotic protein expressed by cells under stress in an attempt to protect themselves, clusterin can become highly cytotoxic when accumulated in the intracellular compartment. This activity might reconcile the opposite purported influences of clusterin on cell survival and explain how clusterin can be causally involved in neurodegeneration. PMID:12799419

  3. Mitochondrial Morphology and Fundamental Parameters of the Mitochondrial Respiratory Chain Are Altered in Caenorhabditis elegans Strains Deficient in Mitochondrial Dynamics and Homeostasis Processes

    PubMed Central

    Luz, Anthony L.; Rooney, John P.; Kubik, Laura L.; Gonzalez, Claudia P.; Song, Dong Hoon; Meyer, Joel N.

    2015-01-01

    Mitochondrial dysfunction has been linked to myriad human diseases and toxicant exposures, highlighting the need for assays capable of rapidly assessing mitochondrial health in vivo. Here, using the Seahorse XFe24 Analyzer and the pharmacological inhibitors dicyclohexylcarbodiimide and oligomycin (ATP-synthase inhibitors), carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone (mitochondrial uncoupler) and sodium azide (cytochrome c oxidase inhibitor), we measured the fundamental parameters of mitochondrial respiratory chain function: basal oxygen consumption, ATP-linked respiration, maximal respiratory capacity, spare respiratory capacity and proton leak in the model organism Caenhorhabditis elegans. Since mutations in mitochondrial homeostasis genes cause mitochondrial dysfunction and have been linked to human disease, we measured mitochondrial respiratory function in mitochondrial fission (drp-1)-, fusion (fzo-1)-, mitophagy (pdr-1, pink-1)-, and electron transport chain complex III (isp-1)-deficient C. elegans. All showed altered function, but the nature of the alterations varied between the tested strains. We report increased basal oxygen consumption in drp-1; reduced maximal respiration in drp-1, fzo-1, and isp-1; reduced spare respiratory capacity in drp-1 and fzo-1; reduced proton leak in fzo-1 and isp-1; and increased proton leak in pink-1 nematodes. As mitochondrial morphology can play a role in mitochondrial energetics, we also quantified the mitochondrial aspect ratio for each mutant strain using a novel method, and for the first time report increased aspect ratios in pdr-1- and pink-1-deficient nematodes. PMID:26106885

  4. Abnormal intermediate filament organization alters mitochondrial motility in giant axonal neuropathy fibroblasts

    PubMed Central

    Lowery, Jason; Jain, Nikhil; Kuczmarski, Edward R.; Mahammad, Saleemulla; Goldman, Anne; Gelfand, Vladimir I.; Opal, Puneet; Goldman, Robert D.

    2016-01-01

    Giant axonal neuropathy (GAN) is a rare disease caused by mutations in the GAN gene, which encodes gigaxonin, an E3 ligase adapter that targets intermediate filament (IF) proteins for degradation in numerous cell types, including neurons and fibroblasts. The cellular hallmark of GAN pathology is the formation of large aggregates and bundles of IFs. In this study, we show that both the distribution and motility of mitochondria are altered in GAN fibroblasts and this is attributable to their association with vimentin IF aggregates and bundles. Transient expression of wild-type gigaxonin in GAN fibroblasts reduces the number of IF aggregates and bundles, restoring mitochondrial motility. Conversely, silencing the expression of gigaxonin in control fibroblasts leads to changes in IF organization similar to that of GAN patient fibroblasts and a coincident loss of mitochondrial motility. The inhibition of mitochondrial motility in GAN fibroblasts is not due to a global inhibition of organelle translocation, as lysosome motility is normal. Our findings demonstrate that it is the pathological changes in IF organization that cause the loss of mitochondrial motility. PMID:26700320

  5. [Dysfunction of mitochondrial dynamic and distribution in Amyotrophic Lateral Sclerosis].

    PubMed

    Walczak, Jarosław; Szczepanowska, Joanna

    2015-01-01

    Amyotrophic lateral sclerosis (ALS) is a complex disease leading to degradation of motor neurons. One of the early symptoms of many neurodegenerative disorders are mitochondrial dysfunctions. Since few decades mitochondrial morphology changes have been observed in tissues of patients with ALS. Mitochondria are highly dynamic organelles which constantly undergo continuous process of fusion and fission and are actively transported within the cell. Proper functioning of mitochondrial dynamics and distribution is crucial for cell survival, especially neuronal cells that have long axons. This article summarizes the current knowledge about the role of mitochondrial dynamics and distribution in pathophysiology of familial and sporadic form of ALS. PMID:26689011

  6. Reduced Mitochondrial Function in Human Huntington Disease Lymphoblasts is Not Due to Alterations in Cardiolipin Metabolism or Mitochondrial Supercomplex Assembly.

    PubMed

    Mejia, Edgard M; Chau, Sarah; Sparagna, Genevieve C; Sipione, Simonetta; Hatch, Grant M

    2016-05-01

    Huntington's Disease (HD) is an autosomal dominant disease that occurs as a result of expansion of the trinucleotide repeat CAG (glutamine) on the HTT gene. HD patients exhibit various forms of mitochondrial dysfunction within neurons and peripheral tissues. Cardiolipin (Ptd2Gro) is a polyglycerophospholipid found exclusively in mitochondria and is important for maintaining mitochondrial function. We examined if altered Ptd2Gro metabolism was involved in the mitochondrial dysfunction associated with HD. Mitochondrial basal respiration, spare respiratory capacity, ATP coupling efficiency and rate of glycolysis were markedly diminished in Epstein-Barr virus transformed HD lymphoblasts compared to controls (CTRL). Mitochondrial supercomplex formation and Complex I activity within these supercomplexes did not vary between HD patients with different length of CAG repeats and appeared unaltered compared to CTRL. In contrast, in vitro Complex I enzyme activity in mitochondrial enriched samples was reduced in HD lymphoblasts compared to CTRL. The total cellular pool size of Ptd2Gro and its synthesis/remodeling from [(3)H]acetate/[(14)C]oleate were unaltered in HD lymphoblasts compared to CTRL. In addition, the molecular species of Ptd2Gro were essentially unaltered in HD lymphoblasts compared to CTRL. We conclude that compared to CTRL lymphoblasts, HD lymphoblasts display impaired mitochondrial basal respiration, spare respiratory capacity, ATP coupling efficiency and rate of glycolysis with any pathological CAG repeat length, but this is not due to alterations in Ptd2Gro metabolism. We suggest that HD patient lymphoblasts may be a useful model to study defective energy metabolism that does not involve alterations in Ptd2Gro metabolism. PMID:26846325

  7. Supplementation with Vitamin E and Vitamin C inversely alters mitochondrial copy number and mitochondrial protein in obese, exercising rats

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Controversy exists as to whether supplementation with the antioxidants vitamin E (VE) and vitamin C (VC) blocks adaptation to exercise. Exercise is a first-line means to treat obesity and its complications. While obesity alters mitochondrial (MT) function and induces insulin resistance (IR), no data...

  8. Fourier analysis of mitochondrial distribution in oocytes

    NASA Astrophysics Data System (ADS)

    Hollmann, Joseph L.; Brooks, Dana H.; Newmark, Judith A.; Warner, Carol M.; DiMarzio, Charles A.

    2011-03-01

    This paper describes a novel approach to quantifying mitochondrial patterns which are typically described using the qualitative terms "diffuse" "aggregated" and are potentially key indicators for an oocyte's health and survival potential post-implantation. An oocyte was isolated in a confocal image and a coarse grid was superimposed upon it. The spatial spectrum was calculated and an aggregation factor was generated. A classifier for healthy cells was developed and verified. The aggregation factor showed a clear distinction between the healthy and unhealthy oocytes. The ultimate goal is to screen oocytes for viability preimplantation, thus improving the outcome of in vitro fertilization (IVF) treatments.

  9. Muscle biopsies from human muscle diseases with myopathic pathology reveal common alterations in mitochondrial function.

    PubMed

    Sunitha, Balaraju; Gayathri, Narayanappa; Kumar, Manish; Keshava Prasad, Thottethodi Subrahmanya; Nalini, Atchayaram; Padmanabhan, Balasundaram; Srinivas Bharath, Muchukunte Mukunda

    2016-07-01

    Muscle diseases are clinically and genetically heterogeneous and manifest as dystrophic, inflammatory and myopathic pathologies, among others. Our previous study on the cardiotoxin mouse model of myodegeneration and inflammation linked muscle pathology with mitochondrial damage and oxidative stress. In this study, we investigated whether human muscle diseases display mitochondrial changes. Muscle biopsies from muscle disease patients, represented by dysferlinopathy (dysfy) (dystrophic pathology; n = 43), polymyositis (PM) (inflammatory pathology; n = 24), and distal myopathy with rimmed vacuoles (DMRV) (distal myopathy; n = 31) were analyzed. Mitochondrial damage (ragged blue and COX-deficient fibers) was revealed in dysfy, PM, and DMRV cases by enzyme histochemistry (SDH and COX-SDH), electron microscopy (vacuolation and altered cristae) and biochemical assays (significantly increased ADP/ATP ratio). Proteomic analysis of muscle mitochondria from all three muscle diseases by isobaric tag for relative and absolute quantitation labeling and liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis demonstrated down-regulation of electron transport chain (ETC) complex subunits, assembly factors and Krebs cycle enzymes. Interestingly, 80 of the under-expressed proteins were common among the three pathologies. Assay of ETC and Krebs cycle enzyme activities validated the MS data. Mitochondrial proteins from muscle pathologies also displayed higher tryptophan (Trp) oxidation and the same was corroborated in the cardiotoxin model. Molecular modeling predicted Trp oxidation to alter the local structure of mitochondrial proteins. Our data highlight mitochondrial alterations in muscle pathologies, represented by morphological changes, altered mitochondrial proteome and protein oxidation, thereby establishing the role of mitochondrial damage in human muscle diseases. We investigated whether human muscle diseases display mitochondrial changes. Muscle biopsies

  10. Clinicopathological Implications of Mitochondrial Genome Alterations in Pediatric Acute Myeloid Leukemia

    PubMed Central

    Kang, Min-Gu; Kim, Yu-Na; Lee, Jun Hyung; Szardenings, Michael; Baek, Hee-Jo; Kook, Hoon

    2016-01-01

    Background To the best of our knowledge, the association between pediatric AML and mitochondrial aberrations has not been studied. We investigated various mitochondrial aberrations in pediatric AML and evaluated their impact on clinical outcomes. Methods Sequencing, mitochondrial DNA (mtDNA) copy number determination, mtDNA 4,977-bp large deletion assessments, and gene scan analyses were performed on the bone marrow mononuclear cells of 55 pediatric AML patients and on the peripheral blood mononuclear cells of 55 normal controls. Changes in the mitochondrial mass, mitochondrial membrane potential, and intracellular reactive oxygen species (ROS) levels were also examined. Results mtDNA copy numbers were about two-fold higher in pediatric AML cells than in controls (P<0.0001). Furthermore, a close relationship was found between mtDNA copy number tertiles and the risk of pediatric AML. Intracellular ROS levels, mitochondrial mass, and mitochondrial membrane potentials were all elevated in pediatric AML. The frequency of the mtDNA 4,977-bp large deletion was significantly higher (P< 0.01) in pediatric AML cells, and pediatric AML patients harboring high amount of mtDNA 4,977-bp deletions showed shorter overall survival and event-free survival rates, albeit without statistical significance. Conclusions The present findings demonstrate an association between mitochondrial genome alterations and the risk of pediatric AML. PMID:26709256

  11. HIV alters neuronal mitochondrial fission/fusion in the brain during HIV-Associated Neurocognitive Disorders

    PubMed Central

    Fields, Jerel Adam; Serger, Elisabeth; Campos, Sofia; Divakaruni, Ajit S.; Kim, Changyoun; Smith, Kendall; Trejo, Margarita; Adame, Anthony; Spencer, Brian; Rockenstein, Edward; Murphy, Anne N.; Ellis, Ronald J.; Letendre, Scott; Grant, Igor; Masliah, Eliezer

    2015-01-01

    HIV-associated neurocognitive disorders (HAND) still occur in approximately 50% of HIV patients, and therapies to combat HAND progression are urgently needed. HIV proteins are released from infected cells and cause neuronal damage, possibly through mitochondrial abnormalities. Altered mitochondrial fission and fusion is implicated in several neurodegenerative disorders. Here, we hypothesized that mitochondrial fission/fusion may be dysregulated in neurons during HAND. We have identified decreased mitochondrial fission protein (dynamin 1-like; DNM1L) in frontal cortex tissues of HAND donors, along with enlarged and elongated mitochondria localized to the soma of damaged neurons. Similar pathology was observed in the brains of GFAP-gp120 tg mice. In vitro, recombinant gp120 decreased total and active DNM1L levels, reduced the level of Mitotracker staining, and increased extracellular acidification rate (ECAR) in primary neurons. DNM1L knockdown enhanced the effects of gp120 as measured by reduced Mitotracker signal in the treated cells. Interestingly, overexpression of DNM1L increased the level of Mitotracker staining in primary rat neurons and reduced neuroinflammation and neurodegeneration in the GFAP-gp120-tg mice. These data suggest that mitochondrial biogenesis dynamics are shifted towards mitochondrial fusion in brains of HAND patients and this may be due to gp120-induced reduction in DNM1L activity. Promoting mitochondrial fission during HIV infection of the CNS may restore mitochondrial biogenesis and prevent neurodegeneration. PMID:26611103

  12. Omega-3 supplementation alters mitochondrial membrane composition and respiration kinetics in human skeletal muscle.

    PubMed

    Herbst, E A F; Paglialunga, S; Gerling, C; Whitfield, J; Mukai, K; Chabowski, A; Heigenhauser, G J F; Spriet, L L; Holloway, G P

    2014-03-15

    Studies have shown increased incorporation of omega-3 fatty acids into whole skeletal muscle following supplementation, although little has been done to investigate the potential impact on the fatty acid composition of mitochondrial membranes and the functional consequences on mitochondrial bioenergetics. Therefore, we supplemented young healthy male subjects (n = 18) with fish oils [2 g eicosapentaenoic acid (EPA) and 1 g docosahexanoic acid (DHA) per day] for 12 weeks and skeletal muscle biopsies were taken prior to (Pre) and following (Post) supplementation for the analysis of mitochondrial membrane phospholipid composition and various assessments of mitochondrial bioenergetics. Total EPA and DHA content in mitochondrial membranes increased (P < 0.05) ∼450 and ∼320%, respectively, and displaced some omega-6 species in several phospholipid populations. Mitochondrial respiration, determined in permeabilized muscle fibres, demonstrated no change in maximal substrate-supported respiration, or in the sensitivity (apparent Km) and maximal capacity for pyruvate-supported respiration. In contrast, mitochondrial responses during ADP titrations demonstrated an enhanced ADP sensitivity (decreased apparent Km) that was independent of the creatine kinase shuttle. As the content of ANT1, ANT2, and subunits of the electron transport chain were unaltered by supplementation, these data suggest that prolonged omega-3 intake improves ADP kinetics in human skeletal muscle mitochondria through alterations in membrane structure and/or post-translational modification of ATP synthase and ANT isoforms. Omega-3 supplementation also increased the capacity for mitochondrial reactive oxygen species emission without altering the content of oxidative products, suggesting the absence of oxidative damage. The current data strongly emphasize a role for omega-3s in reorganizing the composition of mitochondrial membranes while promoting improvements in ADP sensitivity. PMID:24396061

  13. Omega-3 supplementation alters mitochondrial membrane composition and respiration kinetics in human skeletal muscle

    PubMed Central

    Herbst, E A F; Paglialunga, S; Gerling, C; Whitfield, J; Mukai, K; Chabowski, A; Heigenhauser, G J F; Spriet, L L; Holloway, G P

    2014-01-01

    Studies have shown increased incorporation of omega-3 fatty acids into whole skeletal muscle following supplementation, although little has been done to investigate the potential impact on the fatty acid composition of mitochondrial membranes and the functional consequences on mitochondrial bioenergetics. Therefore, we supplemented young healthy male subjects (n = 18) with fish oils [2 g eicosapentaenoic acid (EPA) and 1 g docosahexanoic acid (DHA) per day] for 12 weeks and skeletal muscle biopsies were taken prior to (Pre) and following (Post) supplementation for the analysis of mitochondrial membrane phospholipid composition and various assessments of mitochondrial bioenergetics. Total EPA and DHA content in mitochondrial membranes increased (P < 0.05) ∼450 and ∼320%, respectively, and displaced some omega-6 species in several phospholipid populations. Mitochondrial respiration, determined in permeabilized muscle fibres, demonstrated no change in maximal substrate-supported respiration, or in the sensitivity (apparent Km) and maximal capacity for pyruvate-supported respiration. In contrast, mitochondrial responses during ADP titrations demonstrated an enhanced ADP sensitivity (decreased apparent Km) that was independent of the creatine kinase shuttle. As the content of ANT1, ANT2, and subunits of the electron transport chain were unaltered by supplementation, these data suggest that prolonged omega-3 intake improves ADP kinetics in human skeletal muscle mitochondria through alterations in membrane structure and/or post-translational modification of ATP synthase and ANT isoforms. Omega-3 supplementation also increased the capacity for mitochondrial reactive oxygen species emission without altering the content of oxidative products, suggesting the absence of oxidative damage. The current data strongly emphasize a role for omega-3s in reorganizing the composition of mitochondrial membranes while promoting improvements in ADP sensitivity. PMID:24396061

  14. Chronic hypoxia alters mitochondrial composition in human macrophages.

    PubMed

    Fuhrmann, Dominik Christian; Wittig, Ilka; Heide, Heinrich; Dehne, Nathalie; Brüne, Bernhard

    2013-12-01

    Hypoxia inducible factors (HIFs) are important mediators of the cellular adaptive response during acute hypoxia. The role of HIF-1 and HIF-2 during prolonged periods of hypoxia, i.e. chronic hypoxia is less defined. Therefore, we used human THP-1 macrophages with a knockdown of either HIF-1α, HIF-2α, or both HIFα-subunits, incubated them for several days under hypoxia (1% O2), and analyzed responses to hypoxia using 2D-DIGE coupled to MS/MS-analysis. Chronic hypoxia was defined as a time point when the early but transient accumulation of HIFα-subunits and mRNA expression of classical HIF target genes returned towards basal levels, with a new steady state that was constant from 72h onwards. From roughly 800 spots, that were regulated comparing normoxia to chronic hypoxia, about 100 proteins were unambiguously assigned during MS/MS-analysis. Interestingly, a number of glycolytic proteins were up-regulated, while a number of inner mitochondrial membrane proteins were down-regulated independently of HIF-1α or HIF-2α. Chronic hypoxic conditions depleted the mitochondrial mass by autophagy, which occurred independently of HIF proteins. Macrophages tolerate periods of chronic hypoxia very well and adaptive responses occur, at least in part, independently of HIF-1α and/or HIF-2α and comprise mitophagy as a pathway of particular importance. PMID:24140568

  15. Renal Oxidative Stress Induced by Long-Term Hyperuricemia Alters Mitochondrial Function and Maintains Systemic Hypertension

    PubMed Central

    Cristóbal-García, Magdalena; García-Arroyo, Fernando E.; Arellano-Buendía, Abraham S.; Madero, Magdalena; Rodríguez-Iturbe, Bernardo; Pedraza-Chaverrí, José; Zazueta, Cecilia; Johnson, Richard J.; Sánchez Lozada, Laura-Gabriela

    2015-01-01

    We addressed if oxidative stress in the renal cortex plays a role in the induction of hypertension and mitochondrial alterations in hyperuricemia. A second objective was to evaluate whether the long-term treatment with the antioxidant Tempol prevents renal oxidative stress, mitochondrial alterations, and systemic hypertension in this model. Long-term (11-12 weeks) and short-term (3 weeks) effects of oxonic acid induced hyperuricemia were studied in rats (OA, 750 mg/kg BW), OA+Allopurinol (AP, 150 mg/L drinking water), OA+Tempol (T, 15 mg/kg BW), or vehicle. Systolic blood pressure, renal blood flow, and vascular resistance were measured. Tubular damage (urine N-acetyl-β-D-glucosaminidase) and oxidative stress markers (lipid and protein oxidation) along with ATP levels were determined in kidney tissue. Oxygen consumption, aconitase activity, and uric acid were evaluated in isolated mitochondria from renal cortex. Short-term hyperuricemia resulted in hypertension without demonstrable renal oxidative stress or mitochondrial dysfunction. Long-term hyperuricemia induced hypertension, renal vasoconstriction, tubular damage, renal cortex oxidative stress, and mitochondrial dysfunction and decreased ATP levels. Treatments with Tempol and allopurinol prevented these alterations. Renal oxidative stress induced by hyperuricemia promoted mitochondrial functional disturbances and decreased ATP content, which represent an additional pathogenic mechanism induced by chronic hyperuricemia. Hyperuricemia-related hypertension occurs before these changes are evident. PMID:25918583

  16. Integrity of the yeast mitochondrial genome, but not its distribution and inheritance, relies on mitochondrial fission and fusion

    PubMed Central

    Osman, Christof; Noriega, Thomas R.; Okreglak, Voytek; Fung, Jennifer C.; Walter, Peter

    2015-01-01

    Mitochondrial DNA (mtDNA) is essential for mitochondrial and cellular function. In Saccharomyces cerevisiae, mtDNA is organized in nucleoprotein structures termed nucleoids, which are distributed throughout the mitochondrial network and are faithfully inherited during the cell cycle. How the cell distributes and inherits mtDNA is incompletely understood although an involvement of mitochondrial fission and fusion has been suggested. We developed a LacO-LacI system to noninvasively image mtDNA dynamics in living cells. Using this system, we found that nucleoids are nonrandomly spaced within the mitochondrial network and observed the spatiotemporal events involved in mtDNA inheritance. Surprisingly, cells deficient in mitochondrial fusion and fission distributed and inherited mtDNA normally, pointing to alternative pathways involved in these processes. We identified such a mechanism, where we observed fission-independent, but F-actin–dependent, tip generation that was linked to the positioning of mtDNA to the newly generated tip. Although mitochondrial fusion and fission were dispensable for mtDNA distribution and inheritance, we show through a combination of genetics and next-generation sequencing that their absence leads to an accumulation of mitochondrial genomes harboring deleterious structural variations that cluster at the origins of mtDNA replication, thus revealing crucial roles for mitochondrial fusion and fission in maintaining the integrity of the mitochondrial genome. PMID:25730886

  17. Glucocorticoid-induced alterations in mitochondrial membrane properties and respiration in childhood acute lymphoblastic leukemia.

    PubMed

    Eberhart, Karin; Rainer, Johannes; Bindreither, Daniel; Ritter, Ireen; Gnaiger, Erich; Kofler, Reinhard; Oefner, Peter J; Renner, Kathrin

    2011-06-01

    Mitochondria are signal-integrating organelles involved in cell death induction. Mitochondrial alterations and reduction in energy metabolism have been previously reported in the context of glucocorticoid (GC)-triggered apoptosis, although the mechanism is not yet clarified. We analyzed mitochondrial function in a GC-sensitive precursor B-cell acute lymphoblastic leukemia (ALL) model as well as in GC-sensitive and GC-resistant T-ALL model systems. Respiratory activity was preserved in intact GC-sensitive cells up to 24h under treatment with 100 nM dexamethasone before depression of mitochondrial respiration occurred. Severe repression of mitochondrial respiratory function was observed after permeabilization of the cell membrane and provision of exogenous substrates. Several mitochondrial metabolite and protein transporters and two subunits of the ATP synthase were downregulated in the T-ALL and in the precursor B-ALL model at the gene expression level under dexamethasone treatment. These data could partly be confirmed in ALL lymphoblasts from patients, dependent on the molecular abnormality in the ALL cells. GC-resistant cell lines did not show any of these defects after dexamethasone treatment. In conclusion, in GC-sensitive ALL cells, dexamethasone induces changes in membrane properties that together with the reduced expression of mitochondrial transporters of substrates and proteins may lead to repressed mitochondrial respiratory activity and lower ATP levels that contribute to GC-induced apoptosis. PMID:21237131

  18. Nestin regulates proliferation and invasion of gastrointestinal stromal tumor cells by altering mitochondrial dynamics.

    PubMed

    Wang, J; Cai, J; Huang, Y; Ke, Q; Wu, B; Wang, S; Han, X; Wang, T; Wang, Y; Li, W; Lao, C; Song, W; Xiang, A P

    2016-06-16

    Nestin is widely expressed in numerous tumors and has become a diagnostic and prognostic indicator. However, the exact mechanism by which nestin contributes to tumor malignancy remains poorly understood. Here, we found marked upregulation of nestin expression in highly proliferative and invasive gastrointestinal stromal tumor (GIST) specimens. Nestin knockdown in GIST cells reduced the proliferative and invasive activity owing to a decrease of mitochondrial intracellular reactive oxygen species (ROS) generation. Furthermore, nestin was co-localized with mitochondria, and knockdown of nestin increased mitochondrial elongation and influenced the mitochondrial function, including oxygen consumption rates, ATP generation and mitochondrial membrane potential and so on. In exploring the underlying mechanism, we demonstrated nestin knockdown inhibited the mitochondrial recruitment of Dynamin-related protein1 and induced the change of mitochondrial dynamics. Thus, nestin may have an important role in GIST malignancy by regulating mitochondrial dynamics and altering intracellular ROS levels. The findings provide new clues to reveal mechanisms by which nestin mediates the proliferation and invasion of GISTs. PMID:26434586

  19. IL-15Rα deficiency in skeletal muscle alters respiratory function and the proteome of mitochondrial subpopulations independent of changes to the mitochondrial genome.

    PubMed

    O'Connell, Grant C; Nichols, Cody; Guo, Ge; Croston, Tara L; Thapa, Dharendra; Hollander, John M; Pistilli, Emidio E

    2015-11-01

    Interleukin-15 receptor alpha knockout (IL15RαKO) mice exhibit a greater skeletal muscle mitochondrial density with an altered mitochondrial morphology. However, the mechanism and functional impact of these changes have not been determined. In this study, we characterized the functional, proteomic, and genomic alterations in mitochondrial subpopulations isolated from the skeletal muscles of IL15RαKO mice and B6129 background control mice. State 3 respiration was greater in interfibrillar mitochondria and whole muscle ATP levels were greater in IL15RαKO mice supporting the increases in respiration rate. However, the state 3/state 4 ratio was lower, suggesting some degree of respiratory uncoupling. Proteomic analyses identified several markers independently in mitochondrial subpopulations that are associated with these functional alterations. Next Generation Sequencing of mtDNA revealed a high degree of similarity between the mitochondrial genomes of IL15RαKO mice and controls in terms of copy number, consensus coding and the presence of minor alleles, suggesting that the functional and proteomic alterations we observed occurred independent of alterations to the mitochondrial genome. These data provide additional evidence to implicate IL-15Rα as a regulator of skeletal muscle phenotypes through effects on the mitochondrion, and suggest these effects are driven by alterations to the mitochondrial proteome. PMID:26458787

  20. Alterations of mitochondrial dynamics allow retrograde propagation of locally initiated axonal insults

    PubMed Central

    Lassus, Benjamin; Magifico, Sebastien; Pignon, Sandra; Belenguer, Pascale; Miquel, Marie-Christine; Peyrin, Jean-Michel

    2016-01-01

    In chronic neurodegenerative syndromes, neurons progressively die through a generalized retraction pattern triggering retrograde axonal degeneration toward the cell bodies, which molecular mechanisms remain elusive. Recent observations suggest that direct activation of pro-apoptotic signaling in axons triggers local degenerative events associated with early alteration of axonal mitochondrial dynamics. This raises the question of the role of mitochondrial dynamics on both axonal vulnerability stress and their implication in the spreading of damages toward unchallenged parts of the neuron. Here, using microfluidic chambers, we assessed the consequences of interfering with OPA1 and DRP1 proteins on axonal degeneration induced by local application of rotenone. We found that pharmacological inhibition of mitochondrial fission prevented axonal damage induced by rotenone, in low glucose conditions. While alteration of mitochondrial dynamics per se did not lead to spontaneous axonal degeneration, it dramatically enhanced axonal vulnerability to rotenone, which had no effect in normal glucose conditions, and promoted retrograde spreading of axonal degeneration toward the cell body. Altogether, our results suggest a mitochondrial priming effect in axons as a key process of axonal degeneration. In the context of neurodegenerative diseases, like Parkinson’s and Alzheimer’s, mitochondria fragmentation could hasten neuronal death and initiate spatial dispersion of locally induced degenerative events. PMID:27604820

  1. Alterations of mitochondrial dynamics allow retrograde propagation of locally initiated axonal insults.

    PubMed

    Lassus, Benjamin; Magifico, Sebastien; Pignon, Sandra; Belenguer, Pascale; Miquel, Marie-Christine; Peyrin, Jean-Michel

    2016-01-01

    In chronic neurodegenerative syndromes, neurons progressively die through a generalized retraction pattern triggering retrograde axonal degeneration toward the cell bodies, which molecular mechanisms remain elusive. Recent observations suggest that direct activation of pro-apoptotic signaling in axons triggers local degenerative events associated with early alteration of axonal mitochondrial dynamics. This raises the question of the role of mitochondrial dynamics on both axonal vulnerability stress and their implication in the spreading of damages toward unchallenged parts of the neuron. Here, using microfluidic chambers, we assessed the consequences of interfering with OPA1 and DRP1 proteins on axonal degeneration induced by local application of rotenone. We found that pharmacological inhibition of mitochondrial fission prevented axonal damage induced by rotenone, in low glucose conditions. While alteration of mitochondrial dynamics per se did not lead to spontaneous axonal degeneration, it dramatically enhanced axonal vulnerability to rotenone, which had no effect in normal glucose conditions, and promoted retrograde spreading of axonal degeneration toward the cell body. Altogether, our results suggest a mitochondrial priming effect in axons as a key process of axonal degeneration. In the context of neurodegenerative diseases, like Parkinson's and Alzheimer's, mitochondria fragmentation could hasten neuronal death and initiate spatial dispersion of locally induced degenerative events. PMID:27604820

  2. Lost region in amyloid precursor protein (APP) through TALEN-mediated genome editing alters mitochondrial morphology

    PubMed Central

    Wang, Yajie; Wu, Fengyi; Pan, Haining; Zheng, Wenzhong; Feng, Chi; Wang, Yunfu; Deng, Zixin; Wang, Lianrong; Luo, Jie; Chen, Shi

    2016-01-01

    Alzheimer’s disease (AD) is characterized by amyloid-β (Aβ) deposition in the brain. Aβ plaques are produced through sequential β/γ cleavage of amyloid precursor protein (APP), of which there are three main APP isoforms: APP695, APP751 and APP770. KPI-APPs (APP751 and APP770) are known to be elevated in AD, but the reason remains unclear. Transcription activator-like (TAL) effector nucleases (TALENs) induce mutations with high efficiency at specific genomic loci, and it is thus possible to knock out specific regions using TALENs. In this study, we designed and expressed TALENs specific for the C-terminus of APP in HeLa cells, in which KPI-APPs are predominantly expressed. The KPI-APP mutants lack a 12-aa region that encompasses a 5-aa trans-membrane (TM) region and 7-aa juxta-membrane (JM) region. The mutated KPI-APPs exhibited decreased mitochondrial localization. In addition, mitochondrial morphology was altered, resulting in an increase in spherical mitochondria in the mutant cells through the disruption of the balance between fission and fusion. Mitochondrial dysfunction, including decreased ATP levels, disrupted mitochondrial membrane potential, increased ROS generation and impaired mitochondrial dehydrogenase activity, was also found. These results suggest that specific regions of KPI-APPs are important for mitochondrial localization and function. PMID:26924205

  3. Lost region in amyloid precursor protein (APP) through TALEN-mediated genome editing alters mitochondrial morphology.

    PubMed

    Wang, Yajie; Wu, Fengyi; Pan, Haining; Zheng, Wenzhong; Feng, Chi; Wang, Yunfu; Deng, Zixin; Wang, Lianrong; Luo, Jie; Chen, Shi

    2016-01-01

    Alzheimer's disease (AD) is characterized by amyloid-β (Aβ) deposition in the brain. Aβ plaques are produced through sequential β/γ cleavage of amyloid precursor protein (APP), of which there are three main APP isoforms: APP695, APP751 and APP770. KPI-APPs (APP751 and APP770) are known to be elevated in AD, but the reason remains unclear. Transcription activator-like (TAL) effector nucleases (TALENs) induce mutations with high efficiency at specific genomic loci, and it is thus possible to knock out specific regions using TALENs. In this study, we designed and expressed TALENs specific for the C-terminus of APP in HeLa cells, in which KPI-APPs are predominantly expressed. The KPI-APP mutants lack a 12-aa region that encompasses a 5-aa trans-membrane (TM) region and 7-aa juxta-membrane (JM) region. The mutated KPI-APPs exhibited decreased mitochondrial localization. In addition, mitochondrial morphology was altered, resulting in an increase in spherical mitochondria in the mutant cells through the disruption of the balance between fission and fusion. Mitochondrial dysfunction, including decreased ATP levels, disrupted mitochondrial membrane potential, increased ROS generation and impaired mitochondrial dehydrogenase activity, was also found. These results suggest that specific regions of KPI-APPs are important for mitochondrial localization and function. PMID:26924205

  4. Flicker-assisted localization microscopy reveals altered mitochondrial architecture in hypertension

    PubMed Central

    Chalmers, Susan; Saunter, Christopher D.; Girkin, John M.; McCarron, John G.

    2015-01-01

    Mitochondrial morphology is central to normal physiology and disease development. However, in many live cells and tissues, complex mitochondrial structures exist and morphology has been difficult to quantify. We have measured the shape of electrically-discrete mitochondria, imaging them individually to restore detail hidden in clusters and demarcate functional boundaries. Stochastic “flickers” of mitochondrial membrane potential were visualized with a rapidly-partitioning fluorophore and the pixel-by-pixel covariance of spatio-temporal fluorescence changes analyzed. This Flicker-assisted Localization Microscopy (FaLM) requires only an epifluorescence microscope and sensitive camera. In vascular myocytes, the apparent variation in mitochondrial size was partly explained by densely-packed small mitochondria. In normotensive animals, mitochondria were small spheres or rods. In hypertension, mitochondria were larger, occupied more of the cell volume and were more densely clustered. FaLM provides a convenient tool for increased discrimination of mitochondrial architecture and has revealed mitochondrial alterations that may contribute to hypertension. PMID:26593883

  5. Heterogeneous base distribution in mitochondrial DNA of Neurospora crassa.

    PubMed Central

    Terpstra, P; Holtrop, M; Kroon, A

    1977-01-01

    The mitochondrial DNA of Neurospora crassa has a heterogeneous intramolecular base distribution. A contiguous piece, representing at least 30% of the total genome, has a G+C content that is 6% lower than the overall G+C content of the DNA. The genes for both ribosomal RNAs are contained in the remaining, relatively G+C rich, part of the genome. PMID:141040

  6. Maintenance of mitochondrial genome distribution by mitochondrial AAA+ protein ClpX.

    PubMed

    Kasashima, Katsumi; Sumitani, Megumi; Endo, Hitoshi

    2012-11-01

    The segregation of mitochondrial DNA (mtDNA) is important for the maintenance and transmission of the genome between generations. Recently, we clarified that human mitochondrial transcription factor A (TFAM) is required for equal distribution and symmetric segregation of mtDNA in cultured cells; however, the molecular mechanism involved is largely unknown. ClpX is an ATPase associated with various cellular activities (AAA+) proteins that localize to the mitochondrial matrix and is suggested to associate with mtDNA. In this study, we found that RNAi-mediated knockdown of ClpX in HeLa cells resulted in enlarged mtDNA nucleoids, which is very similar to that observed in TFAM-knockdown cells in several properties. The expression of TFAM protein was not significantly reduced in ClpX-knockdown cells. However, the enlarged mtDNA nucleoids caused by ClpX-knockdown were suppressed by overexpression of recombinant TFAM and the phenotype was not observed in knockdown with ClpP, a protease subunit of ClpXP. Endogenous ClpX and TFAM exist in close vicinity, and ClpX enhanced DNA-binding activity of TFAM in vitro. These results suggest that human ClpX, a novel mtDNA regulator, maintains mtDNA nucleoid distribution through TFAM function as a chaperone rather than as a protease and its involvement in mtDNA segregation. PMID:22841477

  7. Directed alteration of Saccharomyces cerevisiae mitochondrial DNA by biolistic transformation and homologous recombination

    PubMed Central

    Bonnefoy, Nathalie; Fox, Thomas D.

    2009-01-01

    Saccharomyces cerevisiae is currently the only species in which genetic transformation of mitochondria can be used to generate a wide variety of defined alterations in mtDNA. DNA sequences can be delivered into yeast mitochondria by microprojectile bombardment (biolistic transformation) and subsequently incorporated into mtDNA by the highly active homologous recombination machinery present in the organelle. While transformation frequencies are relatively low, the availability of strong mitochondrial selectable markers for the yeast system, both natural and synthetic, makes the isolation of transformants routine. The strategies and procedures reviewed here allow the researcher to insert defined mutations into endogenous mitochondrial genes, and to insert new genes into mtDNA. These methods provide powerful in vivo tools for the study of mitochondrial biology. PMID:18314724

  8. Association between mitochondrial C-tract alteration and tobacco exposure in oral precancer cases

    PubMed Central

    Pandey, Rahul; Mehrotra, Divya; Mahdi, Abbas Ali; Sarin, Rajiv; Kowtal, Pradnya; Maurya, Shailendra S.; Parmar, Devendra

    2013-01-01

    Introduction: Tobacco exposure is a known risk factor for oral cancer. India is home to oral cancer epidemic chiefly due to the prevalent use of both smoke and smokeless tobacco. To reduce the related morbidity early detection is required. The key to this is detailing molecular events during early precancer stage. Mitochondrion is an important cellular organelle involved in cell metabolism and apoptosis. Mitochondrial dysfunction is thought to be the key event in oncogenesis. Last decade has seen a spurt of reports implicating mitochondrial mutations in oral carcinogenesis. However, there are few reports that study mitochondrial deoxyribonucleic acid (mtDNA) changes in oral precancer. This study aims to understand and link effect of tobacco exposure on mtDNA in oral precancer cases. Subjects and Methods: A total of 100 oral precancer cases of which 50 oral leukoplakia and 50 oral submucous fibrosis were recruited in the study and a detailed questionnaire were filled about the tobacco habits. Their tissue and blood samples were collected. Total genomic DNA was isolated from both sources. Mitochondrial C-tract was amplified and bidirectional sequencing was carried out. Mutations were scored over matched blood DNA. Results: There was a significant association between the presence of mitochondrial C-tract alteration and duration of tobacco exposure. The probability increased with increasing duration of tobacco consumption. The risk of having this alteration was more in chewers than in smokers. Conclusions: Tobacco in both form, chewable and smoke, is oncogenic and causes early changes in mitochondrial genome and chances increases with increasing duration of tobacco consumption. PMID:24665180

  9. Mitochondrial Alterations and Oxidative Stress in an Acute Transient Mouse Model of Muscle Degeneration

    PubMed Central

    Ramadasan-Nair, Renjini; Gayathri, Narayanappa; Mishra, Sudha; Sunitha, Balaraju; Mythri, Rajeswara Babu; Nalini, Atchayaram; Subbannayya, Yashwanth; Harsha, Hindalahalli Chandregowda; Kolthur-Seetharam, Ullas; Bharath, Muchukunte Mukunda Srinivas

    2014-01-01

    Muscular dystrophies (MDs) and inflammatory myopathies (IMs) are debilitating skeletal muscle disorders characterized by common pathological events including myodegeneration and inflammation. However, an experimental model representing both muscle pathologies and displaying most of the distinctive markers has not been characterized. We investigated the cardiotoxin (CTX)-mediated transient acute mouse model of muscle degeneration and compared the cardinal features with human MDs and IMs. The CTX model displayed degeneration, apoptosis, inflammation, loss of sarcolemmal complexes, sarcolemmal disruption, and ultrastructural changes characteristic of human MDs and IMs. Cell death caused by CTX involved calcium influx and mitochondrial damage both in murine C2C12 muscle cells and in mice. Mitochondrial proteomic analysis at the initial phase of degeneration in the model detected lowered expression of 80 mitochondrial proteins including subunits of respiratory complexes, ATP machinery, fatty acid metabolism, and Krebs cycle, which further decreased in expression during the peak degenerative phase. The mass spectrometry (MS) data were supported by enzyme assays, Western blot, and histochemistry. The CTX model also displayed markers of oxidative stress and a lowered glutathione reduced/oxidized ratio (GSH/GSSG) similar to MDs, human myopathies, and neurogenic atrophies. MS analysis identified 6 unique oxidized proteins from Duchenne muscular dystrophy samples (n = 6) (versus controls; n = 6), including two mitochondrial proteins. Interestingly, these mitochondrial proteins were down-regulated in the CTX model thereby linking oxidative stress and mitochondrial dysfunction. We conclude that mitochondrial alterations and oxidative damage significantly contribute to CTX-mediated muscle pathology with implications for human muscle diseases. PMID:24220031

  10. Over-Expressing Mitofusin-2 in Healthy Mature Mammalian Skeletal Muscle Does Not Alter Mitochondrial Bioenergetics

    PubMed Central

    Lally, James S. V.; Herbst, Eric A. F.; Matravadia, Sarthak; Maher, Amy C.; Perry, Christopher G. R.; Ventura-Clapier, Renée; Holloway, Graham P.

    2013-01-01

    The role of mitofusin-2 (MFN-2) in regulating mitochondrial dynamics has been well-characterized in lower order eukaryotic cell lines through the complete ablation of MFN-2 protein. However, to support the contractile function of mature skeletal muscle, the subcellular architecture and constituent proteins of this tissue differ substantially from simpler cellular organisms. Such differences may also impact the role of MFN-2 in mature mammalian muscle, and it is unclear if minor fluctuations in MFN-2, as observed in response to physiological perturbations, has a functional consequence. Therefore, we have transiently transfected MFN-2 cDNA into rat tibialis anterior muscle to determine the effect of physiolgically relevant increases in MFN-2 protein on mitochondrial bioenergetics. Permeabilized muscle fibres generated from muscle following MFN-2-transfection were used for functional assessments of mitochondrial bioenergetics. In addition, we have further established a novel method for selecting fibre bundles that are positively transfected, and using this approach transient transfection increased MFN-2 protein ∼2.3 fold in selected muscle fibres. However, this did not alter maximal rates of oxygen consumption or the sensitivity for ADP-stimulated respiration. In addition, MFN-2 over-expression did not alter rates of H2O2 emission. Altogether, and contrary to evidence from lower order cell lines, our results indicate that over-expressing MFN-2 in healthy muscle does not influence mitochondrial bioenergetics in mature mammalian skeletal muscle. PMID:23383258

  11. Altered Glycolysis and Mitochondrial Respiration in a Zebrafish Model of Dravet Syndrome123

    PubMed Central

    Kumar, Maneesh G.; Rowley, Shane; Fulton, Ruth; Dinday, Matthew T.; Baraban, Scott C.

    2016-01-01

    Abstract Altered metabolism is an important feature of many epileptic syndromes but has not been reported in Dravet syndrome (DS), a catastrophic childhood epilepsy associated with mutations in a voltage-activated sodium channel, Nav1.1 (SCN1A). To address this, we developed novel methodology to assess real-time changes in bioenergetics in zebrafish larvae between 4 and 6 d postfertilization (dpf). Baseline and 4-aminopyridine (4-AP) stimulated glycolytic flux and mitochondrial respiration were simultaneously assessed using a Seahorse Biosciences extracellular flux analyzer. Scn1Lab mutant zebrafish showed a decrease in baseline glycolytic rate and oxygen consumption rate (OCR) compared to controls. A ketogenic diet formulation rescued mutant zebrafish metabolism to control levels. Increasing neuronal excitability with 4-AP resulted in an immediate increase in glycolytic rates in wild-type zebrafish, whereas mitochondrial OCR increased slightly and quickly recovered to baseline values. In contrast, scn1Lab mutant zebrafish showed a significantly slower and exaggerated increase of both glycolytic rates and OCR after 4-AP. The underlying mechanism of decreased baseline OCR in scn1Lab mutants was not because of altered mitochondrial DNA content or dysfunction of enzymes in the electron transport chain or tricarboxylic acid cycle. Examination of glucose metabolism using a PCR array identified five glycolytic genes that were downregulated in scn1Lab mutant zebrafish. Our findings in scn1Lab mutant zebrafish suggest that glucose and mitochondrial hypometabolism contribute to the pathophysiology of DS. PMID:27066534

  12. Maternal Diet-Induced Obesity Alters Mitochondrial Activity and Redox Status in Mouse Oocytes and Zygotes

    PubMed Central

    Igosheva, Natalia; Abramov, Andrey Y.; Poston, Lucilla; Eckert, Judith J.; Fleming, Tom P.; Duchen, Michael R.; McConnell, Josie

    2010-01-01

    The negative impact of obesity on reproductive success is well documented but the stages at which development of the conceptus is compromised and the mechanisms responsible for the developmental failure still remain unclear. Recent findings suggest that mitochondria may be a contributing factor. However to date no studies have directly addressed the consequences of maternal obesity on mitochondria in early embryogenesis. Using an established murine model of maternal diet induced obesity and a live cell dynamic fluorescence imaging techniques coupled with molecular biology we have investigated the underlying mechanisms of obesity-induced reduced fertility. Our study is the first to show that maternal obesity prior to conception is associated with altered mitochondria in mouse oocytes and zygotes. Specifically, maternal diet-induced obesity in mice led to an increase in mitochondrial potential, mitochondrial DNA content and biogenesis. Generation of reactive oxygen species (ROS) was raised while glutathione was depleted and the redox state became more oxidised, suggestive of oxidative stress. These altered mitochondrial properties were associated with significant developmental impairment as shown by the increased number of obese mothers who failed to support blastocyst formation compared to lean dams. We propose that compromised oocyte and early embryo mitochondrial metabolism, resulting from excessive nutrient exposure prior to and during conception, may underlie poor reproductive outcomes frequently reported in obese women. PMID:20404917

  13. Altered Glycolysis and Mitochondrial Respiration in a Zebrafish Model of Dravet Syndrome.

    PubMed

    Kumar, Maneesh G; Rowley, Shane; Fulton, Ruth; Dinday, Matthew T; Baraban, Scott C; Patel, Manisha

    2016-01-01

    Altered metabolism is an important feature of many epileptic syndromes but has not been reported in Dravet syndrome (DS), a catastrophic childhood epilepsy associated with mutations in a voltage-activated sodium channel, Nav1.1 (SCN1A). To address this, we developed novel methodology to assess real-time changes in bioenergetics in zebrafish larvae between 4 and 6 d postfertilization (dpf). Baseline and 4-aminopyridine (4-AP) stimulated glycolytic flux and mitochondrial respiration were simultaneously assessed using a Seahorse Biosciences extracellular flux analyzer. Scn1Lab mutant zebrafish showed a decrease in baseline glycolytic rate and oxygen consumption rate (OCR) compared to controls. A ketogenic diet formulation rescued mutant zebrafish metabolism to control levels. Increasing neuronal excitability with 4-AP resulted in an immediate increase in glycolytic rates in wild-type zebrafish, whereas mitochondrial OCR increased slightly and quickly recovered to baseline values. In contrast, scn1Lab mutant zebrafish showed a significantly slower and exaggerated increase of both glycolytic rates and OCR after 4-AP. The underlying mechanism of decreased baseline OCR in scn1Lab mutants was not because of altered mitochondrial DNA content or dysfunction of enzymes in the electron transport chain or tricarboxylic acid cycle. Examination of glucose metabolism using a PCR array identified five glycolytic genes that were downregulated in scn1Lab mutant zebrafish. Our findings in scn1Lab mutant zebrafish suggest that glucose and mitochondrial hypometabolism contribute to the pathophysiology of DS. PMID:27066534

  14. Interleukin-15 Modulates Adipose Tissue by Altering Mitochondrial Mass and Activity

    PubMed Central

    Barra, Nicole G.; Palanivel, Rengasamy; Denou, Emmanuel; Chew, Marianne V.; Gillgrass, Amy; Walker, Tina D.; Kong, Josh; Richards, Carl D.; Jordana, Manel; Collins, Stephen M.; Trigatti, Bernardo L.; Holloway, Alison C.; Raha, Sandeep; Steinberg, Gregory R.; Ashkar, Ali A.

    2014-01-01

    Interleukin-15 (IL-15) is an immunomodulatory cytokine that affects body mass regulation independent of lymphocytes; however, the underlying mechanism(s) involved remains unknown. In an effort to investigate these mechanisms, we performed metabolic cage studies, assessed intestinal bacterial diversity and macronutrient absorption, and examined adipose mitochondrial activity in cultured adipocytes and in lean IL-15 transgenic (IL-15tg), overweight IL-15 deficient (IL-15−/−), and control C57Bl/6 (B6) mice. Here we show that differences in body weight are not the result of differential activity level, food intake, or respiratory exchange ratio. Although intestinal microbiota differences between obese and lean individuals are known to impact macronutrient absorption, differing gut bacteria profiles in these murine strains does not translate to differences in body weight in colonized germ free animals and macronutrient absorption. Due to its contribution to body weight variation, we examined mitochondrial factors and found that IL-15 treatment in cultured adipocytes resulted in increased mitochondrial membrane potential and decreased lipid deposition. Lastly, IL-15tg mice have significantly elevated mitochondrial activity and mass in adipose tissue compared to B6 and IL-15−/− mice. Altogether, these results suggest that IL-15 is involved in adipose tissue regulation and linked to altered mitochondrial function. PMID:25517731

  15. Mitochondrial (Dys)function in Adipocyte (De)differentiation and Systemic Metabolic Alterations

    PubMed Central

    De Pauw, Aurélia; Tejerina, Silvia; Raes, Martine; Keijer, Jaap; Arnould, Thierry

    2009-01-01

    In mammals, adipose tissue, composed of BAT and WAT, collaborates in energy partitioning and performs metabolic regulatory functions. It is the most flexible tissue in the body, because it is remodeled in size and shape by modifications in adipocyte cell size and/or number, depending on developmental status and energy fluxes. Although numerous reviews have focused on the differentiation program of both brown and white adipocytes as well as on the pathophysiological role of white adipose tissues, the importance of mitochondrial activity in the differentiation or the dedifferentiation programs of adipose cells and in systemic metabolic alterations has not been extensively reviewed previously. Here, we address the crucial role of mitochondrial functions during adipogenesis and in mature adipocytes and discuss the cellular responses of white adipocytes to mitochondrial activity impairment. In addition, we discuss the increase in scientific knowledge regarding mitochondrial functions in the last 10 years and the recent suspicion of mitochondrial dysfunction in several 21st century epidemics (ie, obesity and diabetes), as well as in lipodystrophy found in HIV-treated patients, which can contribute to the development of new therapeutic strategies targeting adipocyte mitochondria. PMID:19700756

  16. Suppression of cytoplasmic male sterility by nuclear genes alters expression of a novel mitochondrial gene region.

    PubMed Central

    Singh, M; Brown, G G

    1991-01-01

    To identify regions of the mitochondrial genome that potentially could specify the "Polima" (pol) cytoplasmic male sterility (CMS) of Brassica napus, transcripts of 14 mitochondrial genes from nap (male fertile), pol (male sterile), and nuclear fertility-restored pol cytoplasm plants were analyzed. Transcriptional differences among these plants were detected only with the ATPase subunit 6 (atp6) gene. Structural analysis of the atp6 gene regions of pol and nap mitochondrial DNAs showed that rearrangements in the pol mitochondrial genome occurring upstream of atp6 have generated a chimeric 224-codon open reading frame, designated orf224, that is cotranscribed with atp6. In CMS plants, most transcripts of this region are dicistronic, comprising both orf224 and atp6 sequences. Nuclear restorer genes at either of two distinct loci appear to specifically alter this transcript pattern such that monocistronic atp6 transcripts predominate. The differences in expression of this region appear to result, in part, from differential processing of a tRNA-like element comprising a tRNA pseudogene present immediately upstream of atp6 in both the sterile and fertile mitochondrial DNAs. Possible mechanisms by which expression of the orf224/atp6 locus and the Polima CMS trait may be specifically related are considered. PMID:1840901

  17. Alteration of mitochondrial function in adult rat offspring of malnourished dams

    PubMed Central

    Reusens, Brigitte; Theys, Nicolas; Remacle, Claude

    2011-01-01

    Under-nutrition as well as over-nutrition during pregnancy has been associated with the development of adult diseases such as diabetes and obesity. Both epigenetic modifications and programming of the mitochondrial function have been recently proposed to explain how altered intrauterine metabolic environment may produce such a phenotype. This review aims to report data reported in several animal models of fetal malnutrition due to maternal low protein or low calorie diet, high fat diet as well as reduction in placental blood flow. We focus our overview on the β cell. We highlight that, notwithstanding early nutritional events, mitochondrial dysfunctions resulting from different alteration by diet or gender are programmed. This may explain the higher propensity to develop obesity and diabetes in later life. PMID:21954419

  18. Compartment-dependent mitochondrial alterations in experimental ALS, the effects of mitophagy and mitochondriogenesis.

    PubMed

    Natale, Gianfranco; Lenzi, Paola; Lazzeri, Gloria; Falleni, Alessandra; Biagioni, Francesca; Ryskalin, Larisa; Fornai, Francesco

    2015-01-01

    Amyotrophic lateral sclerosis (ALS) is characterized by massive loss of motor neurons. Data from ALS patients and experimental models indicate that mitochondria are severely damaged within dying or spared motor neurons. Nonetheless, recent data indicate that mitochondrial preservation, although preventing motor neuron loss, fails to prolong lifespan. On the other hand, the damage to motor axons plays a pivotal role in determining both lethality and disease course. Thus, in the present article each motor neuron compartment (cell body, central, and peripheral axons) of G93A SOD-1 mice was studied concerning mitochondrial alterations as well as other intracellular structures. We could confirm the occurrence of ALS-related mitochondrial damage encompassing total swelling, matrix dilution and cristae derangement along with non-pathological variations of mitochondrial size and number. However, these alterations occur to a different extent depending on motor neuron compartment. Lithium, a well-known autophagy inducer, prevents most pathological changes. However, the efficacy of lithium varies depending on which motor neuron compartment is considered. Remarkably, some effects of lithium are also evident in wild type mice. Lithium is effective also in vitro, both in cell lines and primary cell cultures from the ventral spinal cord. In these latter cells autophagy inhibition within motor neurons in vitro reproduced ALS pathology which was reversed by lithium. Muscle and glial cells were analyzed as well. Cell pathology was mostly severe within peripheral axons and muscles of ALS mice. Remarkably, when analyzing motor axons of ALS mice a subtotal clogging of axoplasm was described for the first time, which was modified under the effects of lithium. The effects induced by lithium depend on several mechanisms such as direct mitochondrial protection, induction of mitophagy and mitochondriogenesis. In this study, mitochondriogenesis induced by lithium was confirmed in situ by a

  19. Compartment-dependent mitochondrial alterations in experimental ALS, the effects of mitophagy and mitochondriogenesis

    PubMed Central

    Natale, Gianfranco; Lenzi, Paola; Lazzeri, Gloria; Falleni, Alessandra; Biagioni, Francesca; Ryskalin, Larisa; Fornai, Francesco

    2015-01-01

    Amyotrophic lateral sclerosis (ALS) is characterized by massive loss of motor neurons. Data from ALS patients and experimental models indicate that mitochondria are severely damaged within dying or spared motor neurons. Nonetheless, recent data indicate that mitochondrial preservation, although preventing motor neuron loss, fails to prolong lifespan. On the other hand, the damage to motor axons plays a pivotal role in determining both lethality and disease course. Thus, in the present article each motor neuron compartment (cell body, central, and peripheral axons) of G93A SOD-1 mice was studied concerning mitochondrial alterations as well as other intracellular structures. We could confirm the occurrence of ALS-related mitochondrial damage encompassing total swelling, matrix dilution and cristae derangement along with non-pathological variations of mitochondrial size and number. However, these alterations occur to a different extent depending on motor neuron compartment. Lithium, a well-known autophagy inducer, prevents most pathological changes. However, the efficacy of lithium varies depending on which motor neuron compartment is considered. Remarkably, some effects of lithium are also evident in wild type mice. Lithium is effective also in vitro, both in cell lines and primary cell cultures from the ventral spinal cord. In these latter cells autophagy inhibition within motor neurons in vitro reproduced ALS pathology which was reversed by lithium. Muscle and glial cells were analyzed as well. Cell pathology was mostly severe within peripheral axons and muscles of ALS mice. Remarkably, when analyzing motor axons of ALS mice a subtotal clogging of axoplasm was described for the first time, which was modified under the effects of lithium. The effects induced by lithium depend on several mechanisms such as direct mitochondrial protection, induction of mitophagy and mitochondriogenesis. In this study, mitochondriogenesis induced by lithium was confirmed in situ by a

  20. Mitochondrial Morphofunctional Alterations in Smooth Muscle Cells of Aorta in Rats

    PubMed Central

    Tarán, Mariana; Llorens, Candelaria; Balceda, Ariel; Scribano, María de La Paz; Pons, Patricia; Moya, Mónica

    2014-01-01

    In an experimental model of atherogenesis induced by hyperfibrinogenemia (HF), the pharmacological response of vitamin E was studied in order to assess its antioxidant effect on the mitochondrial morphofunctional alterations in aortic smooth muscle cells. Three groups of male rats were used: (Ctr) control, (AI) atherogenesis induced for 120 days, and (AIE) atherogenesis induced for 120 days and treated with vitamin E. HF was induced by adrenalin injection (0.1 mg/day/rat) for 120 days. AIE group was treated with the administration of 3.42 mg/day/rat of vitamin E for 105 days after the first induction. Mitochondria morphology was analyzed by electronic microscopy (EM) and mitochondrial complexes (MC) by spectrophotometry. In group AI the total and mean number of mitochondria reduced significantly, the intermembranous matrix increased, and swelling was observed with respect to Ctr and AIE (P < 0.01). These damages were related to a significant decrease in the activity of citrate synthase and complexes I, II, III, and IV in group AI in comparison to Ctr (P < 0.001). Similar behavior was presented by group AI compared to AIE (P < 0.001). These results show that vitamin E produces a significative regression of inflammatory and oxidative stress process and it resolved the morphofunctional mitochondrial alterations in this experimental model of atherogenic disease. PMID:24653842

  1. Alcohol alters hepatic FoxO1, p53, and mitochondrial SIRT5 deacetylation function

    SciTech Connect

    Lieber, Charles S. Leo, Maria Anna; Wang, Xiaolei; DeCarli, Leonore M.

    2008-08-22

    Chronic alcohol consumption affects the gene expression of a NAD-dependent deacetylase Sirtuis 1 (SIRT1) and the peroxisome proliferator-activated receptor-{gamma} coactivator1{alpha} (PGC-1{alpha}). Our aim was to verify that it also alters the forkhead (FoxO1) and p53 transcription factor proteins, critical in the hepatic response to oxidative stress and regulated by SIRT1 through its deacetylating capacity. Accordingly, rats were pair-fed the Lieber-DeCarli alcohol-containing liquid diets for 28 days. Alcohol increased hepatic mRNA expression of FoxO1 (p = 0.003) and p53 (p = 0.001) while corresponding protein levels remained unchanged. However phospho-FoxO1 and phospho-Akt (protein kinase) were both decreased by alcohol consumption (p = 0.04 and p = 0.02, respectively) while hepatic p53 was found hyperacetylated (p = 0.017). Furthermore, mitochondrial SIRT5 was reduced (p = 0.0025), and PGC-1{alpha} hyperacetylated (p = 0.027), establishing their role in protein modification. Thus, alcohol consumption disrupts nuclear-mitochondrial interactions by post-translation protein modifications, which contribute to alteration of mitochondrial biogenesis through the newly discovered reduction of SIRT5.

  2. The purified and recombinant Legionella pneumophila chaperonin alters mitochondrial trafficking and microfilament organization.

    PubMed

    Chong, Audrey; Lima, Celia A; Allan, David S; Nasrallah, Gheyath K; Garduño, Rafael A

    2009-11-01

    A portion of the total cellular pool of the Legionella pneumophila chaperonin, HtpB, is found on the bacterial cell surface, where it can mediate invasion of nonphagocytic cells. HtpB continues to be abundantly produced and released by internalized L. pneumophila and may thus have postinvasion functions. We used here two functional models (protein-coated beads and expression of recombinant proteins in CHO cells) to investigate the competence of HtpB in mimicking early intracellular trafficking events of L. pneumophila, including the recruitment of mitochondria, cytoskeletal alterations, the inhibition of phagosome-lysosome fusion, and association with the endoplasmic reticulum. Microscopy and flow cytometry studies indicated that HtpB-coated beads recruited mitochondria in CHO cells and U937-derived macrophages and induced transient changes in the organization of actin microfilaments in CHO cells. Ectopic expression of HtpB in the cytoplasm of transfected CHO cells also led to modifications in actin microfilaments similar to those produced by HtpB-coated beads but did not change the distribution of mitochondria. Association of phagosomes containing HtpB-coated beads with the endoplasmic reticulum was not consistently detected by either fluorescence or electron microscopy studies, and only a modest delay in the fusion of TrOv-labeled lysosomes with phagosomes containing HtpB-coated beads was observed. HtpB is the first Legionella protein and the first chaperonin shown to, by means of our functional models, induce mitochondrial recruitment and microfilament rearrangements, two postinternalization events that typify the early trafficking of virulent L. pneumophila. PMID:19687203

  3. Mic60/mitofilin overexpression alters mitochondrial dynamics and attenuates vulnerability of dopaminergic cells to dopamine and rotenone.

    PubMed

    Van Laar, Victor S; Berman, Sarah B; Hastings, Teresa G

    2016-07-01

    Mitochondrial dysfunction has been implicated in Parkinson's disease (PD) neuropathology. Mic60, also known as mitofilin, is a protein of the inner mitochondrial membrane and a key component of the mitochondrial contact site and cristae junction organizing system (MICOS). Mic60 is critical for maintaining mitochondrial membrane structure and function. We previously demonstrated that mitochondrial Mic60 protein is susceptible to both covalent modification and loss in abundance following exposure to dopamine quinone. In this study, we utilized neuronally-differentiated SH-SY5Y and PC12 dopaminergic cell lines to examine the effects of altered Mic60 levels on mitochondrial function and cellular vulnerability in response to PD-relevant stressors. Short hairpin RNA (shRNA)-mediated knockdown of endogenous Mic60 protein in neuronal SH-SY5Y cells significantly potentiated dopamine-induced cell death, which was rescued by co-expressing shRNA-insensitive Mic60. Conversely, in PC12 and SH-SY5Y cells, Mic60 overexpression significantly attenuated both dopamine- and rotenone-induced cell death as compared to controls. Mic60 overexpression in SH-SY5Y cells was also associated with increased mitochondrial respiration, and, following rotenone exposure, increased spare respiratory capacity. Mic60 knockdown cells exhibited suppressed respiration and, following rotenone treatment, decreased spare respiratory capacity. Mic60 overexpression also affected mitochondrial fission/fusion dynamics. PC12 cells overexpressing Mic60 exhibited increased mitochondrial interconnectivity. Further, both PC12 cells and primary rat cortical neurons overexpressing Mic60 displayed suppressed mitochondrial fission and increased mitochondrial length in neurites. These results suggest that altering levels of Mic60 in dopaminergic neuronal cells significantly affects both mitochondrial homeostasis and cellular vulnerability to the PD-relevant stressors dopamine and rotenone, carrying implications for PD

  4. Carbon tetrachloride-mediated lipid peroxidation induces early mitochondrial alterations in mouse liver.

    PubMed

    Knockaert, Laetitia; Berson, Alain; Ribault, Catherine; Prost, Pierre-Emmanuel; Fautrel, Alain; Pajaud, Julie; Lepage, Sylvie; Lucas-Clerc, Catherine; Bégué, Jean-Marc; Fromenty, Bernard; Robin, Marie-Anne

    2012-03-01

    Although carbon tetrachloride (CCl(4))-induced acute and chronic hepatotoxicity have been extensively studied, little is known about the very early in vivo effects of this organic solvent on oxidative stress and mitochondrial function. In this study, mice were treated with CCl(4) (1.5 ml/kg ie 2.38 g/kg) and parameters related to liver damage, lipid peroxidation, stress/defense and mitochondria were studied 3 h later. Some CCl(4)-intoxicated mice were also pretreated with the cytochrome P450 2E1 inhibitor diethyldithiocarbamate or the antioxidants Trolox C and dehydroepiandrosterone. CCl(4) induced a moderate elevation of aminotransferases, swelling of centrilobular hepatocytes, lipid peroxidation, reduction of cytochrome P4502E1 mRNA levels and a massive increase in mRNA expression of heme oxygenase-1 and heat shock protein 70. Moreover, CCl(4) intoxication induced a severe decrease of mitochondrial respiratory chain complex IV activity, mitochondrial DNA depletion and damage as well as ultrastructural alterations. Whereas DDTC totally or partially prevented all these hepatic toxic events, both antioxidants protected only against liver lipid peroxidation and mitochondrial damage. Taken together, our results suggest that lipid peroxidation is primarily implicated in CCl(4)-induced early mitochondrial injury. However, lipid peroxidation-independent mechanisms seem to be involved in CCl(4)-induced early hepatocyte swelling and changes in expression of stress/defense-related genes. Antioxidant therapy may not be an efficient strategy to block early liver damage after CCl(4) intoxication. PMID:22157718

  5. Physical exercise improves brain cortex and cerebellum mitochondrial bioenergetics and alters apoptotic, dynamic and auto(mito)phagy markers.

    PubMed

    Marques-Aleixo, I; Santos-Alves, E; Balça, M M; Rizo-Roca, D; Moreira, P I; Oliveira, P J; Magalhães, J; Ascensão, A

    2015-08-20

    We here investigate the effects of two exercise modalities (endurance treadmill training-TM and voluntary free-wheel activity-FW) on the brain cortex and cerebellum mitochondrial bioenergetics, permeability transition pore (mPTP), oxidative stress, as well as on proteins involved in mitochondrial biogenesis, apoptosis, and quality control. Eighteen male rats were assigned to sedentary-SED, TM and FW groups. Behavioral alterations and ex vivo brain mitochondrial function endpoints were assessed. Proteins involved in oxidative phosphorylation (OXPHOS, including the adenine nucleotide translocator), oxidative stress markers and regulatory proteins (SIRT3, p66shc, UCP2, carbonyls, MDA, -SH, aconitase, Mn-SOD), as well as proteins involved in mitochondrial biogenesis (PGC1α, TFAM) were evaluated. Apoptotic signaling was measured through quantifying caspase 3, 8 and 9-like activities, Bax, Bcl2, CypD, and cofilin expression. Mitochondrial dynamics (Mfn1/2, OPA1 and DRP1) and auto(mito)phagy (LC3II, Beclin1, Pink1, Parkin, p62)-related proteins were also measured by Western blotting. Only the TM exercise group showed increased spontaneous alternation and exploratory activity. Both exercise regimens improved mitochondrial respiratory activity, increased OXPHOS complexes I, III and V subunits in both brain subareas and decreased oxidative stress markers. Increased resistance to mPTP and decreased apoptotic signaling were observed in the brain cortex from TM and in the cerebellum from TM and FW groups. Also, exercise increased the expression of proteins involved in mitochondrial biogenesis, autophagy and fusion, simultaneous with decreased expression of mitochondrial fission-related protein DRP1. In conclusion, physical exercise improves brain cortex and cerebellum mitochondrial function, decreasing oxidative stress and apoptotic related markers. It is also possible that favorable alterations in mitochondrial biogenesis, dynamics and autophagy signaling induced by exercise

  6. Targeting mitochondrial alterations to prevent type 2 diabetes--evidence from studies of dietary redox-active compounds.

    PubMed

    Cheng, Zhiyong; Schmelz, Eva M; Liu, Dongmin; Hulver, Matthew W

    2014-08-01

    As a growing epidemic, type 2 diabetes mellitus (T2DM) has significantly affected the individual's quality of life and economy of the society. Understanding the mechanisms of the disease and discovery of new therapeutic options has become more urgent than ever before. Mitochondrial alterations (e.g. functional alterations, and impaired biogenesis and dynamics) are strongly associated with the development of T2DM. Accumulation of reactive oxygen species or intermediates of incomplete fatty acid oxidation due to mitochondrial deficiency activates stress kinases and dampens insulin signaling. Redox-active compounds such as resveratrol, pyrroloquinoline quinone, and hydroxytyrosol can potently counteract reactive oxygen species, and improve mitochondrial function and biogenesis. Therefore, targeting the mitochondrial alterations with these redox-active compounds may lead to new therapeutic or preventive options for T2DM. In this article, we review the molecular mechanisms of mitochondrial alterations in T2DM, and the action of redox-active compounds to reverse mitochondrial changes and oxidative stress in T2DM. In addition, the current challenges and future directions are discussed and prospected. PMID:24668725

  7. Do Alterations in Mitochondrial DNA Play a Role in Breast Carcinogenesis?

    PubMed Central

    Rohan, Thomas E.; Wong, Lee-Jun; Wang, Tao; Haines, Jonathan; Kabat, Geoffrey C.

    2010-01-01

    A considerable body of evidence supports a role for oxidative stress in breast carcinogenesis. Due to their role in producing energy via oxidative phosphorylation, the mitochondria are a major source of production of reactive oxygen species, which may damage DNA. The mitochondrial genome may be particularly susceptible to oxidative damage leading to mitochondrial dysfunction. Genetic variants in mtDNA and nuclear DNA may also contribute to mitochondrial dysfunction. In this review, we address the role of alterations in mtDNA in the etiology of breast cancer. Several studies have shown a relatively high frequency of mtDNA mutations in breast tumor tissue in comparison with mutations in normal breast tissue. To date, several studies have examined the association of genetic variants in mtDNA and breast cancer risk. The G10398A mtDNA polymorphism has received the most attention and has been shown to be associated with increased risk in some studies. Other variants have generally been examined in only one or two studies. Genome-wide association studies may help identify new mtDNA variants which modify breast cancer risk. In addition to assessing the main effects of specific variants, gene-gene and gene-environment interactions are likely to explain a greater proportion of the variability in breast cancer risk. PMID:20628528

  8. Oxidative stress generated during monensin treatment contributes to altered Toxoplasma gondii mitochondrial function

    PubMed Central

    Charvat, Robert A.; Arrizabalaga, Gustavo

    2016-01-01

    The ionophore monensin displays potent activities against several coccidian parasites of veterinary and medical importance including the opportunistic pathogen of humans, Toxoplasma gondii. While monensin is used widely in animals, toxicity impedes its use in humans. Nonetheless, given its potency, understanding its mode of action would reveal vulnerable aspects of the parasite that can be exploited for drug development. We previously established that monensin induces Toxoplasma to undergo cell cycle arrest and an autophagy-like cell death. Interestingly, these effects are dependent on the mitochondrion-localized TgMSH-1 protein, suggesting that monensin disrupts mitochondrial function. We demonstrate that monensin treatment results in decreased mitochondrial membrane potential and altered morphology. These effects are mitigated by the antioxidant compound N-acetyl-cysteine suggesting that monensin causes an oxidative stress, which was indeed the case based on direct detection of reactive oxygen species. Moreover, over-expression of the antioxidant proteins glutaredoxin and peroxiredoxin 2 protect Toxoplasma from the deleterious effects of monensin. Thus, our studies show that the effects of monensin on Toxoplasma are due to a disruption of mitochondrial function caused by the induction of an oxidative stress and implicate parasite redox biology as a viable target for the development of drugs against Toxoplasma and related pathogenic parasites. PMID:26976749

  9. Loss of UCP2 attenuates mitochondrial dysfunction without altering ROS production and uncoupling activity.

    PubMed

    Kukat, Alexandra; Dogan, Sukru Anil; Edgar, Daniel; Mourier, Arnaud; Jacoby, Christoph; Maiti, Priyanka; Mauer, Jan; Becker, Christina; Senft, Katharina; Wibom, Rolf; Kudin, Alexei P; Hultenby, Kjell; Flögel, Ulrich; Rosenkranz, Stephan; Ricquier, Daniel; Kunz, Wolfram S; Trifunovic, Aleksandra

    2014-06-01

    Although mitochondrial dysfunction is often accompanied by excessive reactive oxygen species (ROS) production, we previously showed that an increase in random somatic mtDNA mutations does not result in increased oxidative stress. Normal levels of ROS and oxidative stress could also be a result of an active compensatory mechanism such as a mild increase in proton leak. Uncoupling protein 2 (UCP2) was proposed to play such a role in many physiological situations. However, we show that upregulation of UCP2 in mtDNA mutator mice is not associated with altered proton leak kinetics or ROS production, challenging the current view on the role of UCP2 in energy metabolism. Instead, our results argue that high UCP2 levels allow better utilization of fatty acid oxidation resulting in a beneficial effect on mitochondrial function in heart, postponing systemic lactic acidosis and resulting in longer lifespan in these mice. This study proposes a novel mechanism for an adaptive response to mitochondrial cardiomyopathy that links changes in metabolism to amelioration of respiratory chain deficiency and longer lifespan. PMID:24945157

  10. Loss of UCP2 Attenuates Mitochondrial Dysfunction without Altering ROS Production and Uncoupling Activity

    PubMed Central

    Kukat, Alexandra; Dogan, Sukru Anil; Edgar, Daniel; Mourier, Arnaud; Jacoby, Christoph; Maiti, Priyanka; Mauer, Jan; Becker, Christina; Senft, Katharina; Wibom, Rolf; Kudin, Alexei P.; Hultenby, Kjell; Flögel, Ulrich; Rosenkranz, Stephan; Ricquier, Daniel; Kunz, Wolfram S.; Trifunovic, Aleksandra

    2014-01-01

    Although mitochondrial dysfunction is often accompanied by excessive reactive oxygen species (ROS) production, we previously showed that an increase in random somatic mtDNA mutations does not result in increased oxidative stress. Normal levels of ROS and oxidative stress could also be a result of an active compensatory mechanism such as a mild increase in proton leak. Uncoupling protein 2 (UCP2) was proposed to play such a role in many physiological situations. However, we show that upregulation of UCP2 in mtDNA mutator mice is not associated with altered proton leak kinetics or ROS production, challenging the current view on the role of UCP2 in energy metabolism. Instead, our results argue that high UCP2 levels allow better utilization of fatty acid oxidation resulting in a beneficial effect on mitochondrial function in heart, postponing systemic lactic acidosis and resulting in longer lifespan in these mice. This study proposes a novel mechanism for an adaptive response to mitochondrial cardiomyopathy that links changes in metabolism to amelioration of respiratory chain deficiency and longer lifespan. PMID:24945157

  11. Oxidative stress generated during monensin treatment contributes to altered Toxoplasma gondii mitochondrial function.

    PubMed

    Charvat, Robert A; Arrizabalaga, Gustavo

    2016-01-01

    The ionophore monensin displays potent activities against several coccidian parasites of veterinary and medical importance including the opportunistic pathogen of humans, Toxoplasma gondii. While monensin is used widely in animals, toxicity impedes its use in humans. Nonetheless, given its potency, understanding its mode of action would reveal vulnerable aspects of the parasite that can be exploited for drug development. We previously established that monensin induces Toxoplasma to undergo cell cycle arrest and an autophagy-like cell death. Interestingly, these effects are dependent on the mitochondrion-localized TgMSH-1 protein, suggesting that monensin disrupts mitochondrial function. We demonstrate that monensin treatment results in decreased mitochondrial membrane potential and altered morphology. These effects are mitigated by the antioxidant compound N-acetyl-cysteine suggesting that monensin causes an oxidative stress, which was indeed the case based on direct detection of reactive oxygen species. Moreover, over-expression of the antioxidant proteins glutaredoxin and peroxiredoxin 2 protect Toxoplasma from the deleterious effects of monensin. Thus, our studies show that the effects of monensin on Toxoplasma are due to a disruption of mitochondrial function caused by the induction of an oxidative stress and implicate parasite redox biology as a viable target for the development of drugs against Toxoplasma and related pathogenic parasites. PMID:26976749

  12. Exercise mitigates mitochondrial permeability transition pore and quality control mechanisms alterations in nonalcoholic steatohepatitis.

    PubMed

    Gonçalves, Inês O; Passos, Emanuel; Diogo, Cátia V; Rocha-Rodrigues, Sílvia; Santos-Alves, Estela; Oliveira, Paulo J; Ascensão, António; Magalhães, José

    2016-03-01

    Mitochondrial quality control and apoptosis have been described as key components in the pathogenesis of nonalcoholic steatohepatitis (NASH); exercise is recognized as a nonpharmacological strategy to counteract NASH-associated consequences. We aimed to analyze the effect of voluntary physical activity (VPA) and endurance training (ET) against NASH-induced mitochondrial permeability transition pore (mPTP) opening and mitochondrial and cellular quality control deleterious alterations. Forty-eight male Sprague-Dawley rats were divided into standard-diet sedentary (SS, n = 16), standard-diet VPA (n = 8), high-fat diet sedentary (HS, n = 16), and high-fat diet VPA (n = 8). After 9 weeks of diet treatment, half of the SS and HS groups were engaged in an ET program for 8 weeks, 5 days/week, 1 h/day. Liver mPTP susceptibility through osmotic swelling, mPTP-related proteins (cyclophilin D, Sirtuin3, Cofilin-1), markers of mitochondrial biogenesis ((mitochondrial transcription factor A (Tfam) and peroxisome proliferator-activated receptor gamma co-activator protein (PGC-1α)), dynamics (Mitofusin 1 (Mfn1), Mitofusin 2 (Mfn2), Dynamin related protein 1, and Optic atrophy 1)), auto/mitophagy (Beclin-1, microtubule-associated protein 1 light chain 3, p62, PINK1, and Parkin), and apoptotic signaling (Bax, Bcl-2) and caspases-like activities were assessed. HS animals showed an increased susceptibility to mPTP, compromised expression of Tfam, Mfn1, PINK1, and Parkin and an increase in Bax content (HS vs. SS). ET and VPA improved biogenesis-related proteins (PGC-1α) and autophagy signaling (Beclin-1 and Beclin-1/Bcl-2 ratio) and decreased apoptotic signaling (caspases 8 activity, Bax content, and Bax/Bcl-2 ratio). However, only ET decreased mPTP susceptibility and positively modulated Bcl-2, Tfam, Mfn1, Mfn2, PINK1, and Parkin content. In conclusion, exercise reduces the increased susceptibility to mPTP induced by NASH and promotes the increase of auto/mitophagy and mitochondrial

  13. Altered Mitochondrial Respiration and Other Features of Mitochondrial Function in Parkin-Mutant Fibroblasts from Parkinson's Disease Patients

    PubMed Central

    Swart, Chrisna; van der Westhuizen, Francois; van Dyk, Hayley; van der Merwe, Lize; van der Merwe, Celia; Loos, Ben; Carr, Jonathan; Kinnear, Craig; Bardien, Soraya

    2016-01-01

    Mutations in the parkin gene are the most common cause of early-onset Parkinson's disease (PD). Parkin, an E3 ubiquitin ligase, is involved in respiratory chain function, mitophagy, and mitochondrial dynamics. Human cellular models with parkin null mutations are particularly valuable for investigating the mitochondrial functions of parkin. However, published results reporting on patient-derived parkin-mutant fibroblasts have been inconsistent. This study aimed to functionally compare parkin-mutant fibroblasts from PD patients with wild-type control fibroblasts using a variety of assays to gain a better understanding of the role of mitochondrial dysfunction in PD. To this end, dermal fibroblasts were obtained from three PD patients with homozygous whole exon deletions in parkin and three unaffected controls. Assays of mitochondrial respiration, mitochondrial network integrity, mitochondrial membrane potential, and cell growth were performed as informative markers of mitochondrial function. Surprisingly, it was found that mitochondrial respiratory rates were markedly higher in the parkin-mutant fibroblasts compared to control fibroblasts (p = 0.0093), while exhibiting more fragmented mitochondrial networks (p = 0.0304). Moreover, cell growth of the parkin-mutant fibroblasts was significantly higher than that of controls (p = 0.0001). These unanticipated findings are suggestive of a compensatory mechanism to preserve mitochondrial function and quality control in the absence of parkin in fibroblasts, which warrants further investigation. PMID:27034887

  14. Magnesium regulates neural stem cell proliferation in the mouse hippocampus by altering mitochondrial function.

    PubMed

    Jia, Shanshan; Mou, Chengzhi; Ma, Yihe; Han, Ruijie; Li, Xue

    2016-04-01

    In the adult brain, neural stem cells from the subgranular zone (SGZ) of the hippocampus and the subventricular zone (SVZ) of the cortex progress through the following five developmental stages: radial glia-like cells, neural progenitor cells, neuroblasts, immature neurons, and mature neurons. These developmental stages are linked to both neuronal microenvironments and energy metabolism. Neurogenesis is restricted and has been demonstrated to arise from tissue microenvironments. We determined that magnesium, a key nutrient in cellular energy metabolism, affects neural stem cell (NSC) proliferation in cells derived from the embryonic hippocampus by influencing mitochondrial function. Densities of proliferating cells and NSCs both showed their highest values at 0.8 mM [Mg(2+) ]o , whereas lower proliferation rates were observed at 0.4 and 1.4 mM [Mg(2+) ]o . The numbers and sizes of the neurospheres reached the maximum at 0.8 mM [Mg(2+) ]o and were weaker under both low (0.4 mM) and high (1.4 mM) concentrations of magnesium. In vitro experimental evidence demonstrates that extracellular magnesium regulates the number of cultured hippocampal NSCs, affecting both magnesium homeostasis and mitochondrial function. Our findings indicate that the effect of [Mg(2+) ]o on NSC proliferation may lie downstream of alterations in mitochondrial function because mitochondrial membrane potential was highest in the NSCs in the moderate [Mg(2+) ]o (0.8 mM) group and lower in both the low (0.4 mM) and high (1.4 mM) [Mg(2+) ]o groups. Overall, these findings demonstrate a new function for magnesium in the brain in the regulation of hippocampal neural stem cells: affecting their cellular energy metabolism. PMID:26634890

  15. Persistently Altered Brain Mitochondrial Bioenergetics After Apparently Successful Resuscitation From Cardiac Arrest

    PubMed Central

    Kilbaugh, Todd J; Sutton, Robert M; Karlsson, Michael; Hansson, Magnus J; Naim, Maryam Y; Morgan, Ryan W; Bratinov, George; Lampe, Joshua W; Nadkarni, Vinay M; Becker, Lance B; Margulies, Susan S; Berg, Robert A

    2015-01-01

    Background Although advances in cardiopulmonary resuscitation have improved survival from cardiac arrest (CA), neurologic injury persists and impaired mitochondrial bioenergetics may be critical for targeted neuroresuscitation. The authors sought to determine if excellent cardiopulmonary resuscitation and postresuscitation care and good traditional survival rates result in persistently disordered cerebral mitochondrial bioenergetics in a porcine pediatric model of asphyxia-associated ventricular fibrillation CA. Methods and Results After 7 minutes of asphyxia, followed by ventricular fibrillation, 5 female 1-month-old swine (4 sham) received blood pressure–targeted care: titration of compression depth to systolic blood pressure of 90 mm Hg and vasopressor administration to a coronary perfusion pressure >20 mm Hg. All animals received protocol-based vasopressor support after return of spontaneous circulation for 4 hours before they were killed. The primary outcome was integrated mitochondrial electron transport system (ETS) function. CA animals displayed significantly decreased maximal, coupled oxidative phosphorylating respiration (OXPHOSCI+CII) in cortex (P<0.02) and hippocampus (P<0.02), as well as decreased phosphorylation and coupling efficiency (cortex, P<0.05; hippocampus, P<0.05). Complex I– and complex II–driven respiration were both significantly decreased after CA (cortex: OXPHOSCI P<0.01, ETSCII P<0.05; hippocampus: OXPHOSCI P<0.03, ETSCII P<0.01). In the hippocampus, there was a significant decrease in maximal uncoupled, nonphosphorylating respiration (ETSCI+CII), as well as a 30% reduction in citrate synthase activity (P<0.04). Conclusions Mitochondria in both the cortex and hippocampus displayed significant alterations in respiratory function after CA despite excellent cardiopulmonary resuscitation and postresuscitation care in asphyxia-associated ventricular fibrillation CA. Analysis of integrated ETS function identifies mitochondrial

  16. A Hypertension-Associated tRNAAla Mutation Alters tRNA Metabolism and Mitochondrial Function.

    PubMed

    Jiang, Pingping; Wang, Meng; Xue, Ling; Xiao, Yun; Yu, Jialing; Wang, Hui; Yao, Juan; Liu, Hao; Peng, Yanyan; Liu, Hanqing; Li, Haiying; Chen, Ye; Guan, Min-Xin

    2016-07-15

    In this report, we investigated the pathophysiology of a novel hypertension-associated mitochondrial tRNA(Ala) 5655A → G (m.5655A → G) mutation. The destabilization of a highly conserved base pairing (A1-U72) at the aminoacyl acceptor stem by an m.5655A → G mutation altered the tRNA(Ala) function. An in vitro processing analysis showed that the m.5655A → G mutation reduced the efficiency of tRNA(Ala) precursor 5' end cleavage catalyzed by RNase P. By using cybrids constructed by transferring mitochondria from lymphoblastoid cell lines derived from a Chinese family into mitochondrial DNA (mtDNA)-less (ρ(o)) cells, we showed a 41% reduction in the steady-state level of tRNA(Ala) in mutant cybrids. The mutation caused an improperly aminoacylated tRNA(Ala), as suggested by aberrantly aminoacylated tRNA(Ala) and slower electrophoretic mobility of mutated tRNA. A failure in tRNA(Ala) metabolism contributed to variable reductions in six mtDNA-encoded polypeptides in mutant cells, ranging from 21% to 37.5%, with an average of a 29.1% reduction, compared to levels of the controls. The impaired translation caused reduced activities of mitochondrial respiration chains. Furthermore, marked decreases in the levels of mitochondrial ATP and membrane potential were observed in mutant cells. These caused increases in the production of reactive oxygen species in the mutant cybrids. The data provide evidence for the association of the tRNA(Ala) 5655A → G mutation with hypertension. PMID:27161322

  17. A Hypertension-Associated tRNAAla Mutation Alters tRNA Metabolism and Mitochondrial Function

    PubMed Central

    Jiang, Pingping; Wang, Meng; Xue, Ling; Xiao, Yun; Yu, Jialing; Wang, Hui; Yao, Juan; Liu, Hao; Peng, Yanyan; Liu, Hanqing; Li, Haiying; Chen, Ye

    2016-01-01

    In this report, we investigated the pathophysiology of a novel hypertension-associated mitochondrial tRNAAla 5655A → G (m.5655A → G) mutation. The destabilization of a highly conserved base pairing (A1-U72) at the aminoacyl acceptor stem by an m.5655A → G mutation altered the tRNAAla function. An in vitro processing analysis showed that the m.5655A → G mutation reduced the efficiency of tRNAAla precursor 5′ end cleavage catalyzed by RNase P. By using cybrids constructed by transferring mitochondria from lymphoblastoid cell lines derived from a Chinese family into mitochondrial DNA (mtDNA)-less (ρo) cells, we showed a 41% reduction in the steady-state level of tRNAAla in mutant cybrids. The mutation caused an improperly aminoacylated tRNAAla, as suggested by aberrantly aminoacylated tRNAAla and slower electrophoretic mobility of mutated tRNA. A failure in tRNAAla metabolism contributed to variable reductions in six mtDNA-encoded polypeptides in mutant cells, ranging from 21% to 37.5%, with an average of a 29.1% reduction, compared to levels of the controls. The impaired translation caused reduced activities of mitochondrial respiration chains. Furthermore, marked decreases in the levels of mitochondrial ATP and membrane potential were observed in mutant cells. These caused increases in the production of reactive oxygen species in the mutant cybrids. The data provide evidence for the association of the tRNAAla 5655A → G mutation with hypertension. PMID:27161322

  18. Altered mitochondrial function after acute alteration of the endogenous insulin/glucagon ratio

    SciTech Connect

    Rohweder-Dunn, G.; Aprille, J.R.

    1986-05-01

    Mannoheptulose (MH) affects pancreatic Islet cells to cause a drop in serum insulin and a rise in glucagon. This effect peaks 1 hr after injection and results in a 3-fold increase in serum glucose. Here they examined whether metabolic functions of liver mitochondria (mito) are altered by this change in hormone status. Rats fed ad lib on 12 hr light/dark cycles were given MH (2g/kg) or vehicle i.p. during the first 2 hrs of the light cycle. Liver mito were isolated 1 hr later. Acid-extracts were assayed for ATP+ADP+AMP (nmol/mg prot). Citrulline synthesis and pyruvate carboxylation rates (nmol/min/mg prot) were assayed by following H(/sup 14/C)O/sub 3//sup -/ fixation in appropriate media. State 3 and 2,4-DNP-uncoupled respiratory rates (1/2 nmol O/sub 2//min/mg prot) were assayed polarographically with succinate. The effects of MH on mito are comparable to reported effects of glucagon injection. MH evokes acute reciprocal changes in insulin and glucagon that are highly reproducible. Thus, MH offers an interesting model for studying the effect of endogenous hormones on mito functions.

  19. Decreased heat shock protein 27 expression and altered autophagy in human cells harboring A8344G mitochondrial DNA mutation.

    PubMed

    Chen, Chin-Yi; Chen, Hsueh-Fu; Gi, Siao-Jhen; Chi, Tang-Hao; Cheng, Che-Kun; Hsu, Chi-Fu; Ma, Yi-Shing; Wei, Yau-Huei; Liu, Chin-Shan; Hsieh, Mingli

    2011-09-01

    Mitochondrial DNA (mtDNA) mutations are responsible for human neuromuscular diseases caused by mitochondrial dysfunction. Myoclonus epilepsy associated with ragged-red fibers (MERRF) is a maternally inherited mitochondrial encephalomyopathy with various syndromes involving both muscular and nervous systems. The most common mutation in MERRF syndrome, A8344G mutation in mtDNA, has been associated with severe defects in protein synthesis. This defect impairs assembly of complexes in electron transport chain and results in decreased respiratory function of mitochondria. In this study, we showed a significant decrease of the heat shock protein 27 (Hsp27) in lymphoblastoid cells derived from a MERRF patient and in cybrid cells harboring MERRF A8344G mutation. However, normal cytoplasmic distributions of Hsp27 and normal heat shock responses were observed in both wild type and mutant cybrids. Furthermore, overexpression of wild type Hsp27 in mutant MERRF cybrids significantly decreased cell death under staurosporine (STS) treatment, suggesting a protective function of Hsp27 in cells harboring the A8344G mutation of mtDNA. Meanwhile, reverse transcriptase PCR showed no difference in the mRNA level between normal and mutant cybrids, indicating that alterations may occur at the protein level. Evidenced by the decreased levels of Hsp27 upon treatment with proteasome inhibitor, starvation and rapamycin and the accumulation of Hsp27 upon lysosomal inhibitor treatment; Hsp27 may be degraded by the autophagic pathway. In addition, the increased formation of LC3-II and autophagosomes was found in MERRF cybrids under the basal condition, indicating a constitutively-activated autophagic pathway. It may explain, at least partially, the faster turnover of Hsp27 in MERRF cybrids. This study provides information for us to understand that Hsp27 is degraded through the autophagic pathway and that Hsp27 may have a protective role in MERRF cells. Regulating Hsp27 and the autophagic pathway

  20. Altered carnitine homeostasis is associated with decreased mitochondrial function and altered nitric oxide signaling in lambs with pulmonary hypertension

    PubMed Central

    Sharma, Shruti; Sud, Neetu; Wiseman, Dean A.; Carter, A. Lee; Kumar, Sanjiv; Hou, Yali; Rau, Thomas; Wilham, Jason; Harmon, Cynthia; Oishi, Peter; Fineman, Jeffrey R.; Black, Stephen M.

    2008-01-01

    Utilizing aortopulmonary vascular graft placement in the fetal lamb, we have developed a model (shunt) of pulmonary hypertension that mimics congenital heart disease with increased pulmonary blood flow. Our previous studies have identified a progressive development of endothelial dysfunction in shunt lambs that is dependent, at least in part, on decreased nitric oxide (NO) signaling. The purpose of this study was to evaluate the possible role of a disruption in carnitine metabolism in shunt lambs and to determine the effect on NO signaling. Our data indicate that at 2 wk of age, shunt lambs have significantly reduced expression (P < 0.05) of the key enzymes in carnitine metabolism: carnitine palmitoyltransferases 1 and 2 as well as carnitine acetyltransferase (CrAT). In addition, we found that CrAT activity was inhibited due to increased nitration. Furthermore, free carnitine levels were significantly decreased whereas acylcarnitine levels were significantly higher in shunt lambs (P < 0.05). We also found that alterations in carnitine metabolism resulted in mitochondrial dysfunction, since shunt lambs had significantly decreased pyruvate, increased lactate, and a reduced pyruvate/lactate ratio. In pulmonary arterial endothelial cells cultured from juvenile lambs, we found that mild uncoupling of the mitochondria led to a decrease in cellular ATP levels and a reduction in both endothelial NO synthase-heat shock protein 90 (eNOS-HSP90) interactions and NO signaling. Similarly, in shunt lambs we found a loss of eNOS-HSP90 interactions that correlated with a progressive decrease in NO signaling. Our data suggest that mitochondrial dysfunction may play a role in the development of endothelial dysfunction and pulmonary hypertension and increased pulmonary blood flow. PMID:18024721

  1. Sepsis-induced brain mitochondrial dysfunction is associated with altered mitochondrial Src and PTP1B levels.

    PubMed

    Lyu, Juanjuan; Zheng, Guilang; Chen, Zhijiang; Wang, Bin; Tao, Shaohua; Xiang, Dan; Xie, Meiyan; Huang, Jinda; Liu, Cui; Zeng, Qiyi

    2015-09-16

    Sepsis-induced brain dysfunction (SIBD) is often the first manifestation of sepsis, and its pathogenesis is associated with mitochondrial dysfunction. In this study, we investigated the roles of the tyrosine kinase Src and protein tyrosine phosphatase 1B (PTP1B) in brain mitochondrial dysfunction using a rat model of lipopolysaccharide (LPS)-induced sepsis. We found that there was a gradual and significant increase of PTP1B levels in the rat brain after sepsis induction. In contrast, brain Src levels were reduced in parallel with the PTP1B increase. Sepsis led to significantly reduced tyrosine phosphorylation of mitochondrial oxidative phosphorylation (OXPHOS) complexes I, II and III. Pretreatment of mitochondrial proteins with active PTP1B significantly inhibited complexes I and III activities in vitro, whereas Src enhanced complexes I, II, and III activities. PTP1B and Src were each co-immunoprecipitated with OXPHOS complexes I and III, suggesting direct interactions between both proteins and complexes I and III. Src also directly interacted with complex II. Furthermore, pretreatment of mitochondrial proteins with active PTP1B resulted in overproduction of reactive oxygen species and decreased mitochondrial membrane potential. Pretreatment with active Src produced the opposite effect. These results suggest that brain mitochondrial dysfunction following LPS-induced sepsis in rats is partly attributed to PTP1B and Src mediated decrease in mitochondrial protein tyrosine phosphorylation. PMID:25998537

  2. Spaceflight alters immune cell function and distribution

    NASA Technical Reports Server (NTRS)

    Sonnenfeld, Gerald; Mandel, Adrian D.; Konstantinova, Irina V.; Berry, Wallace D.; Taylor, Gerald R.; Lesniak, A. T.; Fuchs, Boris B.; Rakhmilevich, Alexander L.

    1992-01-01

    Experiments are described which were performed onboard Cosmos 2044 to determine spaceflight effects on immunologically important cell function and distribution. Results indicate that bone marrow cells from flown and suspended rats exhibited a decreased response to a granulocyte/monocyte colony-stimulating factor compared with the bone marrow cells from control rats. Bone marrow cells showed an increase in the percentage of cells expressing markers for helper T-cells in the myelogenous population and increased percentages of anti-asialo granulocyte/monocyte-1-bearing interleulin-2 receptor bearing pan T- and helper T-cells in the lymphocytic population.

  3. Calorie restriction in mice overexpressing UCP3: evidence that prior mitochondrial uncoupling alters response.

    PubMed

    Estey, Carmen; Seifert, Erin L; Aguer, Céline; Moffat, Cynthia; Harper, Mary-Ellen

    2012-05-01

    Calorie restriction (CR) without malnutrition is the only intervention to consistently increase lifespan in all species tested, and lower age-related pathologies in mammals including humans. It has been suggested that uncoupling of mitochondrial oxidative phosphorylation, using chemical uncouplers, mimics CR, and that overlapping mechanisms underlie the phenotypic changes induced by uncoupling and CR. We aimed to critically assess this using a unique mouse model of skeletal muscle-targeted UCP3-induced uncoupling (UCP3Tg), and focused our studies mainly on skeletal muscle mitochondria. Compared to ad libitum fed Wt mice, skeletal muscle mitochondria from ad libitum fed UCP3Tg mice showed higher basal uncoupling and lower H(2)O(2) emission, with unchanged maximal oxidative phosphorylation, and mitochondrial content. UCP3Tg CR mice showed some tendency for differential adaptation to CR, with lowered H(+) leak conductance and evidence for higher H(2)O(2) emission from skeletal muscle mitochondria following 2 weeks CR, and failure to lower H(2)O(2) emission after 1 month CR. Differential adaptation was also apparent at the whole body level: while UCP3Tg CR mice lost as much weight as Wt CR mice, the proportion of muscle lost was higher in UCP3Tg mice. However, a striking outcome of our studies was the absence of change with CR in many of the parameters of mitochondrial function and content that we measured in mice of either genotype. Overall, our study raises the question of whether CR can consistently modify skeletal muscle mitochondria; alterations with CR may only be apparent under certain conditions such as during the 2 wk CR intervention in the UCP3Tg mice. PMID:22406134

  4. The biarylpyrazole compound AM251 alters mitochondrial physiology via proteolytic degradation of ERRα.

    PubMed

    Krzysik-Walker, Susan M; González-Mariscal, Isabel; Scheibye-Knudsen, Morten; Indig, Fred E; Bernier, Michel

    2013-01-01

    The orphan nuclear receptor estrogen-related receptor alpha (ERRα) directs the transcription of nuclear genes involved in energy homeostasis control and the regulation of mitochondrial mass and function. A crucial role for controlling ERRα-mediated target gene expression has been ascribed to the biarylpyrazole compound 1-(2,4-dichlorophenyl)-5-(4-iodophenyl)-4-methyl-N-1-piperidinyl-1H-pyrazole-3-carboxamide (AM251) through direct binding to and destabilization of ERRα protein. Here, we provide evidence that structurally related AM251 analogs also have negative impacts on ERRα protein levels in a cell-type-dependent manner while having no deleterious actions on ERRγ. We show that these off-target cellular effects of AM251 are mediated by proteasomal degradation of nuclear ERRα. Cell treatment with the nuclear export inhibitor leptomycin B did not prevent AM251-induced destabilization of ERRα protein, whereas proteasome inhibition with MG132 stabilized and maintained its DNA-binding function, indicative of ERRα being a target of nuclear proteasomal complexes. NativePAGE analysis revealed that ERRα formed a ∼220-kDa multiprotein nuclear complex that was devoid of ERRγ and the coregulator peroxisome proliferator-activated receptor γ coactivator-1. AM251 induced SUMO-2,3 incorporation in ERRα in conjunction with increased protein kinase C activity, whose activation by phorbol ester also promoted ERRα protein loss. Down-regulation of ERRα by AM251 or small interfering RNA led to increased mitochondria biogenesis while negatively impacting mitochondrial membrane potential. These results reveal a novel molecular mechanism by which AM251 and related compounds alter mitochondrial physiology through destabilization of ERRα. PMID:23066093

  5. Alterations in enterocyte mitochondrial respiratory function and enzyme activities in gastrointestinal dysfunction following brain injury

    PubMed Central

    Zhu, Ke-Jun; Huang, Hong; Chu, Hui; Yu, Hang; Zhang, Shi-Ming

    2014-01-01

    AIM: To determine the alterations in rat enterocyte mitochondrial respiratory function and enzyme activities following traumatic brain injury (TBI). METHODS: Fifty-six male SD rats were randomly divided into seven groups (8 rats in each group): a control group (rats with sham operation) and traumatic brain injury groups at 6, 12, 24 h, days 2, 3, and 7 after operation. TBI models were induced by Feendy’s free-falling method. Mitochondrial respiratory function (respiratory control ratio and ADP/O ratio) was measured with a Clark oxygen electrode. The activities of respiratory chain complex I-IV and related enzymes were determined by spectrophotometry. RESULTS: Compared with the control group, the mitochondrial respiratory control ratio (RCR) declined at 6 h and remained at a low level until day 7 after TBI (control, 5.42 ± 0.46; 6 h, 5.20 ± 0.18; 12 h, 4.55 ± 0.35; 24 h, 3.75 ± 0.22; 2 d, 4.12 ± 0.53; 3 d, 3.45 ± 0.41; 7 d, 5.23 ± 0.24, P < 0.01). The value of phosphate-to-oxygen (P/O) significantly decreased at 12, 24 h, day 2 and day 3, respectively (12 h, 3.30 ± 0.10; 24 h, 2.61 ± 0.21; 2 d, 2.95 ± 0.18; 3 d, 2.76 ± 0.09, P < 0.01) compared with the control group (3.46 ± 0.12). Two troughs of mitochondrial respiratory function were seen at 24 h and day 3 after TBI. The activities of mitochondrial complex I (6 h: 110 ± 10, 12 h: 115 ± 12, 24 h: 85 ± 9, day 2: 80 ± 15, day 3: 65 ± 16, P < 0.01) and complex II (6 h: 105 ± 8, 12 h: 110 ± 92, 24 h: 80 ± 10, day 2: 76 ± 8, day 3: 68 ± 12, P < 0.01) were increased at 6 h and 12 h following TBI, and then significantly decreased at 24 h, day 2 and day 3, respectively. However, there were no differences in complex I and II activities between the control and TBI groups. Furthermore, pyruvate dehydrogenase (PDH) activity was significantly decreased at 6 h and continued up to 7 d after TBI compared with the control group (6 h: 90 ± 8, 12 h: 85 ± 10, 24 h: 65 ± 12, day 2: 60 ± 9, day 3: 55

  6. Loss of Prohibitin Induces Mitochondrial Damages Altering β-Cell Function and Survival and Is Responsible for Gradual Diabetes Development

    PubMed Central

    Supale, Sachin; Thorel, Fabrizio; Merkwirth, Carsten; Gjinovci, Asllan; Herrera, Pedro L.; Scorrano, Luca; Meda, Paolo; Langer, Thomas; Maechler, Pierre

    2013-01-01

    Prohibitins are highly conserved proteins mainly implicated in the maintenance of mitochondrial function and architecture. Their dysfunctions are associated with aging, cancer, obesity, and inflammation. However, their possible role in pancreatic β-cells remains unknown. The current study documents the expression of prohibitins in human and rodent islets and their key role for β-cell function and survival. Ablation of Phb2 in mouse β-cells sequentially resulted in impairment of mitochondrial function and insulin secretion, loss of β-cells, progressive alteration of glucose homeostasis, and, ultimately, severe diabetes. Remarkably, these events progressed over a 3-week period of time after weaning. Defective insulin supply in β-Phb2−/− mice was contributed by both β-cell dysfunction and apoptosis, temporarily compensated by increased β-cell proliferation. At the molecular level, we observed that deletion of Phb2 caused mitochondrial abnormalities, including reduction of mitochondrial DNA copy number and respiratory chain complex IV levels, altered mitochondrial activity, cleavage of L-optic atrophy 1, and mitochondrial fragmentation. Overall, our data demonstrate that Phb2 is essential for metabolic activation of mitochondria and, as a consequence, for function and survival of β-cells. PMID:23863811

  7. Isolation of Chlamydomonas reinhardtii mutants with altered mitochondrial respiration by chlorophyll fluorescence measurement.

    PubMed

    Massoz, Simon; Larosa, Véronique; Horrion, Bastien; Matagne, René F; Remacle, Claire; Cardol, Pierre

    2015-12-10

    The unicellular green alga Chlamydomonas reinhardtii is a model organism for studying energetic metabolism. Most mitochondrial respiratory-deficient mutants characterized to date have been isolated on the basis of their reduced ability to grow in heterotrophic conditions. Mitochondrial deficiencies are usually partly compensated by adjustment of photosynthetic activity and more particularly by transition to state 2. In this work, we explored the opportunity to select mutants impaired in respiration and/or altered in dark metabolism by measuring maximum photosynthetic efficiency by chlorophyll fluorescence analyses (FV/FM). Out of about 2900 hygromycin-resistant insertional mutants generated from wild type or from a mutant strain deficient in state transitions (stt7 strain), 22 were found to grow slowly in heterotrophic conditions and 8 of them also showed a lower FV/FM value. Several disrupted coding sequences were identified, including genes coding for three different subunits of respiratory-chain complex I (NUO9, NUOA9, NUOP4) or for isocitrate lyase (ICL1). Overall, the comparison of respiratory mutants obtained in wild-type or stt7 genetic backgrounds indicated that the FV/FM value can be used to isolate mutants severely impaired in dark metabolism. PMID:26022424

  8. Wide Distribution of Mitochondrial Genome Rearrangements in Wild Strains of the Cultivated Basidiomycete Agrocybe aegerita

    PubMed Central

    Barroso, G.; Blesa, S.; Labarere, J.

    1995-01-01

    We used restriction fragment length polymorphisms to examine mitochondrial genome rearrangements in 36 wild strains of the cultivated basidiomycete Agrocybe aegerita, collected from widely distributed locations in Europe. We identified two polymorphic regions within the mitochondrial DNA which varied independently: one carrying the Cox II coding sequence and the other carrying the Cox I, ATP6, and ATP8 coding sequences. Two types of mutations were responsible for the restriction fragment length polymorphisms that we observed and, accordingly, were involved in the A. aegerita mitochondrial genome evolution: (i) point mutations, which resulted in strain-specific mitochondrial markers, and (ii) length mutations due to genome rearrangements, such as deletions, insertions, or duplications. Within each polymorphic region, the length differences defined only two mitochondrial types, suggesting that these length mutations were not randomly generated but resulted from a precise rearrangement mechanism. For each of the two polymorphic regions, the two molecular types were distributed among the 36 strains without obvious correlation with their geographic origin. On the basis of these two polymorphisms, it is possible to define four mitochondrial haplotypes. The four mitochondrial haplotypes could be the result of intermolecular recombination between allelic forms present in the population long enough to reach linkage equilibrium. All of the 36 dikaryotic strains contained only a single mitochondrial type, confirming the previously described mitochondrial sorting out after cytoplasmic mixing in basidiomycetes. PMID:16534984

  9. Chloroplast Structure and Function Is Altered in the NCS2 Maize Mitochondrial Mutant 1

    PubMed Central

    Roussell, Deborah L.; Thompson, Deborah L.; Pallardy, Steve G.; Miles, Donald; Newton, Kathleen J.

    1991-01-01

    The nonchromosomal stripe 2 (NCS2) mutant of maize (Zea mays L.) has a DNA rearrangement in the mitochondrial genome that segregates with the abnormal growth phenotype. Yet, the NCS2 characteristic phenotype includes striped sectors of pale-green tissue on the leaves. This suggests a chloroplast abnormality. To characterize the chloroplasts present in the mutant sectors, we examined the chloroplast structure by electron microscopy, chloroplast function by radiolabeled carbon dioxide fixation and fluorescence induction kinetics, and thylakoid protein composition by polyacrylamide gel electrophoresis. The data from these analyses suggest abnormal or prematurely arrested chloroplast development. Deleterious effects of the NCS2 mutant mitochondria upon the cells of the leaf include structural and functional alterations in the both the bundle sheath and mesophyll chloroplasts. ImagesFigure 1Figure 2Figure 3Figure 5Figure 6 PMID:16668157

  10. Deletion or Overexpression of Mitochondrial NAD+ Carriers in Saccharomyces cerevisiae Alters Cellular NAD and ATP Contents and Affects Mitochondrial Metabolism and the Rate of Glycolysis ▿

    PubMed Central

    Agrimi, Gennaro; Brambilla, Luca; Frascotti, Gianni; Pisano, Isabella; Porro, Danilo; Vai, Marina; Palmieri, Luigi

    2011-01-01

    The modification of enzyme cofactor concentrations can be used as a method for both studying and engineering metabolism. We varied Saccharomyces cerevisiae mitochondrial NAD levels by altering expression of its specific mitochondrial carriers. Changes in mitochondrial NAD levels affected the overall cellular concentration of this coenzyme and the cellular metabolism. In batch culture, a strain with a severe NAD depletion in mitochondria succeeded in growing, albeit at a low rate, on fully respiratory media. Although the strain increased the efficiency of its oxidative phosphorylation, the ATP concentration was low. Under the same growth conditions, a strain with a mitochondrial NAD concentration higher than that of the wild type similarly displayed a low cellular ATP level, but its growth rate was not affected. In chemostat cultures, when cellular metabolism was fully respiratory, both mutants showed low biomass yields, indicative of impaired energetic efficiency. The two mutants increased their glycolytic fluxes, and as a consequence, the Crabtree effect was triggered at lower dilution rates. Strikingly, the mutants switched from a fully respiratory metabolism to a respirofermentative one at the same specific glucose flux as that of the wild type. This result seems to indicate that the specific glucose uptake rate and/or glycolytic flux should be considered one of the most important independent variables for establishing the long-term Crabtree effect. In cells growing under oxidative conditions, bioenergetic efficiency was affected by both low and high mitochondrial NAD availability, which suggests the existence of a critical mitochondrial NAD concentration in order to achieve optimal mitochondrial functionality. PMID:21335394

  11. AB060. A4164G alteration of mitochondrial MT-ND1 gene in a Vietnamese patient group with colorectal cancer

    PubMed Central

    Bich, Pham Thi; Chang, Hoang Thi; Ha, Do Minh; Van To, Ta; Thai, Trinh Hong

    2015-01-01

    Background and objective Colorectal cancer (CRC) is one of the most common cancers which is increasing all over the world and in Vietnam. Many causes of disease have been identified, including variations in nuclear genes and mitochondrial genes. The MT-ND1 gene is located in the heavy strand of mitochondrial DNA and encodes NADH dehydrogenase 1 protein. Some mutations were detected in mitochondrial DNA of CRC patients such as T3394C, T4216C and C3497T. These mutations occur in high conservative region, thus can effect on structure and function of the NADH dehydrogenase 1. In this study, we investigated the incidence of A4164G and T4216C alterations of mitochondrial MT-ND1 gene in Vietnamese CRC patients and whether these alterations might be associated with some pathological characteristics of CRC. Methods A total of 107 Vietnamese CRC patients and 100 controls were determined for A4164G and T4216C alterations by using PCR-RFLP and sequencing methods. Relationship between the genotype and pathological characteristics of CRC patients was calculated by using χ2 test. Odds ratio and 95% confidence interval were calculated as an estimate of the relative risk. Results The results showed that there were 14.95% CRC tissue samples, 10.53% cancer blood samples and 9% blood control samples with the A4164G alteration in the MT-ND1 gene. T4216C mutation was not found in those samples. There was no difference of A4164G distribution in subgroups of age, gender, size of tumor (P>0.05), but difference in site of tumor and TNM (lymph-node-metastasis) stage (P<0.05). The A4164G alteration was only found in 22.22% blood samples of CRC patients which had A4164G alteration in the tissue samples. So A4164G alteration can be a somatic mutation in these CRC patients. Conclusions The difference of A4164G alteration between tumor tissue, adjacent tissue and blood of the same patient in some CRC cases can be considered as an evidence of somatic mutation in these CRC patients in Vietnam.

  12. Altered mitochondrial dynamics and response to insulin in cybrid cells harboring a diabetes-susceptible mitochondrial DNA haplogroup.

    PubMed

    Kuo, Hsiao-Mei; Weng, Shao-Wen; Chang, Alice Y W; Huang, Hung-Tu; Lin, Hung-Yu; Chuang, Jiin-Haur; Lin, Tsu-Kung; Liou, Chia-Wei; Tai, Ming-Hong; Lin, Ching-Yi; Wang, Pei-Wen

    2016-07-01

    The advantage of using a cytoplasmic hybrid (cybrid) model to study the genetic effects of mitochondria is that the cells have the same nuclear genomic background. We previously demonstrated the independent role of mitochondria in the pathogenesis of insulin resistance (IR) and pro-inflammation in type 2 diabetes. In this study, we compared mitochondrial dynamics and related physiological functions between cybrid cells harboring diabetes-susceptible (B4) and diabetes-protective (D4) mitochondrial haplogroups, especially the responses before and after insulin stimulation. Cybrid B4 showed a more fragmented mitochondrial network, impaired mitochondrial biogenesis and bioenergetics, increased apoptosis and ineffective mitophagy and a low expression of fusion-related molecules. Upon insulin stimulation, increases in network formation, mitochondrial DNA (mtDNA) content, and ATP production were observed only in cybrid D4. Insulin promoted a pro-fusion dynamic status in both cybrids, but the trend was greater in cybrid D4. In cybrid B4, the imbalance of mitochondrial dynamics and impaired biogenesis and bioenergetics, and increased apoptosis were significantly improved in response to antioxidant treatment. We concluded that diabetes-susceptible mtDNA variants are themselves resistant to insulin. PMID:27107769

  13. Calcium-induced alteration of mitochondrial morphology and mitochondrial-endoplasmic reticulum contacts in rat brown adipocytes.

    PubMed

    Golic, I; Velickovic, K; Markelic, M; Stancic, A; Jankovic, A; Vucetic, M; Otasevic, V; Buzadzic, B; Korac, B; Korac, A

    2014-01-01

    Mitochondria are key organelles maintaining cellular bioenergetics and integrity, and their regulation of [Ca2+]i homeostasis has been investigated in many cell types. We investigated the short-term Ca-SANDOZ® treatment on brown adipocyte mitochondria, using imaging and molecular biology techniques. Two-month-old male Wistar rats were divided into two groups: Ca-SANDOZ® drinking or tap water (control) drinking for three days. Alizarin Red S staining showed increased Ca2+ level in the brown adipocytes of treated rats, and potassium pyroantimonate staining localized electron-dense regions in the cytoplasm, mitochondria and around lipid droplets. Ca-SANDOZ® decreased mitochondrial number, but increased their size and mitochondrial cristae volume. Transmission electron microscopy revealed numerous enlarged and fusioned-like mitochondria in the Ca-SANDOZ® treated group compared to the control, and megamitochondria in some brown adipocytes. The Ca2+ diet affected mitochondrial fusion as mitofusin 1 (MFN1) and mitofusin 2 (MFN2) were increased, and mitochondrial fission as dynamin related protein 1 (DRP1) was decreased. Confocal microscopy showed a higher colocalization rate between functional mitochondria and endoplasmic reticulum (ER). The level of uncoupling protein-1 (UCP1) was elevated, which was confirmed by immunohistochemistry and Western blot analysis. These results suggest that Ca-SANDOZ® stimulates mitochondrial fusion, increases mitochondrial-ER contacts and the thermogenic capacity of brown adipocytes. PMID:25308841

  14. Physical exercise mitigates doxorubicin-induced brain cortex and cerebellum mitochondrial alterations and cellular quality control signaling.

    PubMed

    Marques-Aleixo, I; Santos-Alves, E; Balça, M M; Moreira, P I; Oliveira, P J; Magalhães, J; Ascensão, A

    2016-01-01

    Doxorubicin (DOX) is a highly effective anti-neoplastic agent, whose clinical use is limited by a dose-dependent mitochondrial toxicity in non-target tissues, including the brain. Here we analyzed the effects of distinct exercise modalities (12-week endurance treadmill-TM or voluntary free-wheel activity-FW) performed before and during sub-chronic DOX treatment on brain cortex and cerebellum mitochondrial bioenergetics, oxidative stress, permeability transition pore (mPTP), and proteins involved in mitochondrial biogenesis, apoptosis and auto(mito)phagy. Male Sprague-Dawley rats were divided into saline-sedentary (SAL+SED), DOX-sedentary (DOX+SED; 7-week DOX (2 mg · kg(-1)per week)), DOX+TM and DOX+FW. Animal behavior and post-sacrifice mitochondrial function were assessed. Oxidative phosphorylation (OXPHOS) subunits, oxidative stress markers or related proteins (SIRT3, p66shc, UCP2, carbonyls, MDA, -SH, aconitase, Mn-SOD), as well as proteins involved in mitochondrial biogenesis (PGC1α and TFAM) were evaluated. Apoptotic signaling was followed through caspases 3, 8 and 9-like activities, Bax, Bcl2, CypD, ANT and cofilin expression. Mitochondrial dynamics (Mfn1, Mfn2, OPA1 and DRP1) and auto(mito)phagy (LC3II, Beclin1, Pink1, Parkin and p62)-related proteins were measured by semi-quantitative Western blotting. DOX impaired behavioral performance, mitochondrial function, including lower resistance to mPTP and increased apoptotic signaling, decreased the content in OXPHOS complex subunits and increased oxidative stress in brain cortex and cerebellum. Molecular markers of mitochondrial biogenesis, dynamics and autophagy were also altered by DOX treatment in both brain subareas. Generally, TM and FW were able to mitigate DOX-related impairments in brain cortex and cerebellum mitochondrial activity, mPTP and apoptotic signaling. We conclude that the alterations in mitochondrial biogenesis, dynamics and autophagy markers induced by exercise performed before and during

  15. Systems biology analysis of the proteomic alterations induced by MPP+, a Parkinson's disease-related mitochondrial toxin

    PubMed Central

    Monti, Chiara; Bondi, Heather; Urbani, Andrea; Fasano, Mauro; Alberio, Tiziana

    2015-01-01

    Parkinson's disease (PD) is a complex neurodegenerative disease whose etiology has not been completely characterized. Many cellular processes have been proposed to play a role in the neuronal damage and loss: defects in the proteosomal activity, altered protein processing, increased reactive oxygen species burden. Among them, the involvement of a decreased activity and an altered disposal of mitochondria is becoming more and more evident. The mitochondrial toxin 1-methyl-4-phenylpyridinium (MPP+), an inhibitor of complex I, has been widely used to reproduce biochemical alterations linked to PD in vitro and its precursor, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine hydrochloride (MPTP), to induce a Parkinson-like syndrome in vivo. Therefore, we performed a meta-analysis of the literature of all the proteomic investigations of neuronal alterations due to MPP+ treatment and compared it with our results obtained with a mitochondrial proteomic analysis of SH-SY5Y cells treated with MPP+. By using open-source bioinformatics tools, we identified the biochemical pathways and the molecular functions mostly affected by MPP+, i.e., ATP production, the mitochondrial unfolded stress response, apoptosis, autophagy, and, most importantly, the synapse funcionality. Eventually, we generated protein networks, based on physical or functional interactions, to highlight the relationships among the molecular actors involved. In particular, we identified the mitochondrial protein HSP60 as the central hub in the protein-protein interaction network. As a whole, this analysis clarified the cellular responses to MPP+, the specific mitochondrial proteome alterations induced and how this toxic model can recapitulate some pathogenetic events of PD. PMID:25698928

  16. Low oxygen alters mitochondrial function and response to oxidative stress in human neural progenitor cells

    PubMed Central

    Lages, Yury M.; Nascimento, Juliana M.; Lemos, Gabriela A.; Galina, Antonio; Castilho, Leda R.

    2015-01-01

    Oxygen concentration should be carefully regulated in all living tissues, beginning at the early embryonic stages. Unbalances in oxygen regulation can lead to cell death and disease. However, to date, few studies have investigated the consequences of variations in oxygen levels for fetal-like cells. Therefore, in the present work, human neural progenitor cells (NPCs) derived from pluripotent stem cells grown in 3% oxygen (v/v) were compared with NPCs cultured in 21% (v/v) oxygen. Low oxygen concentrations altered the mitochondrial content and oxidative functions of the cells, which led to improved ATP production, while reducing generation of reactive oxygen species (ROS). NPCs cultured in both conditions showed no differences in proliferation and glucose metabolism. Furthermore, antioxidant enzymatic activity was not altered in NPCs cultured in 3% oxygen under normal conditions, however, when exposed to external agents known to induce oxidative stress, greater susceptibility to DNA damage was observed. Our findings indicate that the management of oxygen levels should be considered for in vitro models of neuronal development and drug screening. PMID:26713239

  17. Acute {beta}-adrenergic stimulation does not alter mitochondrial protein synthesis or markers of mitochondrial biogenesis in adult men.

    PubMed

    Robinson, Matthew M; Richards, Jennifer C; Hickey, Matthew S; Moore, Daniel R; Phillips, Stuart M; Bell, Christopher; Miller, Benjamin F

    2010-01-01

    Exercise-induced expression of peroxisome proliferator-activated receptor gamma coactivator-1alpha (PGC-1alpha) is dramatically inhibited in mice pretreated with a beta-adrenergic receptor (beta-AR) antagonist, suggesting that beta-ARs play an important role in the regulation of skeletal muscle PGC-1alpha expression, and potentially, mitochondrial biogenesis. Accordingly, we hypothesized that acute beta-AR stimulation would induce transcriptional pathways involved in skeletal muscle mitochondrial biogenesis in humans. Whole body protein turnover (WBPT), myofibrillar protein synthesis (MyPS), skeletal muscle mitochondrial protein synthesis (MiPS), and mitochondrial biogenic signaling were determined in samples of vastus lateralis obtained on two separate occasions in 10 young adult males following 1 h of continuous intravenous administration of saline (CON) or a nonspecific beta-AR agonist [isoproterenol (ISO): 12 ng.kg fat free mass(-1).min(-1)], combined with coinfusion of [1,2](13)C-leucine. beta-AR stimulation induced appreciable increases in heart rate and systolic blood pressure (both P < 0.001) but did not affect mitochondrial biogenic signaling (no change in PGC-1alpha, TFAM, NRF-1, NRF-2, COX, or NADHox expression via RT-PCR; P > 0.05). Additionally, MiPS [CON: 0.099 +/- 0.028, ISO: 0.074 +/- 0.046 (mean +/- SD); P > 0.05] and MyPS (CON: 0.059 +/- 0.008, ISO: 0.055 +/- 0.009; P > 0.05), as well as measures of WBPT were unaffected. On the basis of this investigation, we conclude that acute intravenous beta-AR stimulation does not increase mitochondrial protein synthesis or biogenesis signals in skeletal muscle. PMID:19907002

  18. Kinetics of plasma membrane and mitochondrial alterations in cells undergoing apoptosis

    SciTech Connect

    Lizard, G.; Fournel, S.; Genestier, L.; Dhedin, N.

    1995-11-01

    Programmed cell death or apoptosis is characterized by typical morphological alterations. By transmission electron microscopy, apoptotic cells are identified by condensation of the chromatin in tight apposition to the nuclear envelope, alteration of the nuclear envelope and fragmentation of the nucleus, whereas integrity of the plasma membrane and organelles is preserved. Conversely cells undergoing necrosis display and early desintegration of cytoplasmic membrane and swelling of mitochondria. In this study we assessed by flow cytometry the sequential alterations of forward angle light scatter, 90{degrees} light scatter, and fluorescence associated with fluorescein diacetate, rhodamine 123, and propidium iodide in two human B cell lines undergoing apoptosis induced by the topoisomerase II inhibitor VP-16. The kinetics of these modifications were compared to those of cells undergoing necrosis induced by the topoisomerase II inhibitor VP-16. The kinetics of these modifications were compared to those of cells undergoing necrosis induced by sodium azide. At the same time intervals, cells were examined by transmission electron microscopy and by UV microscopy after staining with Hoechst 33342. We report that sequential changes in light scatters and fluorescein diacetate are similar in cells undergoing apoptosis or necrosis, whereas apoptosis is characterized by a slightly delayed decrease of mitochondrial activity as assessed by rhodamine 123 staining. Surprisingly, a part of cells undergoing apoptosis displayed an early uptake of propidium iodide followed by a condensation and then a fragmentation of their nuclei. It is concluded that uptake of propidium iodide is a very early marker of cell death which does not discriminate between necrosis and apoptosis. Along with biochemical criteria, nuclear morphology revealed by staining with Hoechst 33342 would seem to be of the most simple and most discriminative assay of apoptosis. 33 refs., 5 figs., 1 tab.

  19. Altered signaling for mitochondrial and myofibrillar biogenesis in skeletal muscles of patients with multiple sclerosis.

    PubMed

    Hansen, Dominique; Wens, Inez; Vandenabeele, Frank; Verboven, Kenneth; Eijnde, Bert O

    2015-07-01

    Patients with multiple sclerosis (pwMS) experience muscle weakness and lowered muscle oxidative capacity. To explore the etiology for the development of such muscle phenotype we studied skeletal muscle adenosine monophosphate (AMP)-activated protein kinase phosphorylation (phospho-AMPKα, governing mitochondrial biogenesis) and mammalian target of rapamycin phosphorylation (phospho-mTOR, governing myofibrillar biogenesis) in pwMS. After assessment of body composition, muscle strength, exercise tolerance, and muscle fiber type, muscle phospho-AMPKα and phospho-mTOR were assessed in 14 pwMS and 10 healthy controls (part 1). Next, an endurance exercise bout was executed by 9 pwMS and 7 healthy subjects, with assessment of changes in muscle phospho-AMPKα and phospho-mTOR (part 2). Increased basal muscle phospho-AMPKα and phospho-mTOR were present in MS (P < 0.01) and independently related to MS. Correlations between muscle phospho-AMPKα or phospho-mTOR and whole-body fat mass, peak oxygen uptake, and expanded disability status scale (P < 0.05) were found. After endurance exercise muscle phospho-AMPKα and phospho-mTOR remained increased in pwMS (P < 0.01). Muscle signaling cascades for mitochondrial and myofibrillar biogenesis are altered in MS and related to the impairment and disability level. These findings indicate a link between muscle signaling cascades and the level of disability and impairment, and thus may open a new area for the development of novel therapies for peripheral muscle impairment in MS. PMID:25666356

  20. Mutations in nuclear genes alter post-transcriptional regulation of mitochondrial genes.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nuclear gene products are required for the expression of mitochondrial genes and elaboration of functional mitochondrial protein complexes. To better understand the roles of these nuclear genes, we exploited the mitochondrial encoded S-type of cytoplasmic male sterility (CMS-S) and developed a nove...

  1. Mitochondrial gene polymorphisms alter hepatic cellular energy metabolism and aggravate diet-induced non-alcoholic steatohepatitis

    PubMed Central

    Schröder, Torsten; Kucharczyk, David; Bär, Florian; Pagel, René; Derer, Stefanie; Jendrek, Sebastian Torben; Sünderhauf, Annika; Brethack, Ann-Kathrin; Hirose, Misa; Möller, Steffen; Künstner, Axel; Bischof, Julia; Weyers, Imke; Heeren, Jörg; Koczan, Dirk; Schmid, Sebastian Michael; Divanovic, Senad; Giles, Daniel Aaron; Adamski, Jerzy; Fellermann, Klaus; Lehnert, Hendrik; Köhl, Jörg; Ibrahim, Saleh; Sina, Christian

    2016-01-01

    Objective Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease and is associated with an enhanced risk for liver and cardiovascular diseases and mortality. NAFLD can progress from simple hepatic steatosis to non-alcoholic steatohepatitis (NASH). However, the mechanisms predisposing to this progression remain undefined. Notably, hepatic mitochondrial dysfunction is a common finding in patients with NASH. Due to a lack of appropriate experimental animal models, it has not been evaluated whether this mitochondrial dysfunction plays a causative role for the development of NASH. Methods To determine the effect of a well-defined mitochondrial dysfunction on liver physiology at baseline and during dietary challenge, C57BL/6J-mtFVB/N mice were employed. This conplastic inbred strain has been previously reported to exhibit decreased mitochondrial respiration likely linked to a non-synonymous gene variation (nt7778 G/T) of the mitochondrial ATP synthase protein 8 (mt-ATP8). Results At baseline conditions, C57BL/6J-mtFVB/N mice displayed hepatic mitochondrial dysfunction characterized by decreased ATP production and increased formation of reactive oxygen species (ROS). Moreover, genes affecting lipid metabolism were differentially expressed, hepatic triglyceride and cholesterol levels were changed in these animals, and various acyl-carnitines were altered, pointing towards an impaired mitochondrial carnitine shuttle. However, over a period of twelve months, no spontaneous hepatic steatosis or inflammation was observed. On the other hand, upon dietary challenge with either a methionine and choline deficient diet or a western-style diet, C57BL/6J-mtFVB/N mice developed aggravated steatohepatitis as characterized by lipid accumulation, ballooning of hepatocytes and infiltration of immune cells. Conclusions We observed distinct metabolic alterations in mice with a mitochondrial polymorphism associated hepatic mitochondrial dysfunction. However, a

  2. FRIENDLY Regulates Mitochondrial Distribution, Fusion, and Quality Control in Arabidopsis1[W][OPEN

    PubMed Central

    El Zawily, Amr M.; Schwarzländer, Markus; Finkemeier, Iris; Johnston, Iain G.; Benamar, Abdelilah; Cao, Yongguo; Gissot, Clémence; Meyer, Andreas J.; Wilson, Ken; Datla, Raju; Macherel, David; Jones, Nick S.; Logan, David C.

    2014-01-01

    Mitochondria are defining components of most eukaryotes. However, higher plant mitochondria differ biochemically, morphologically, and dynamically from those in other eukaryotes. FRIENDLY, a member of the CLUSTERED MITOCHONDRIA superfamily, is conserved among eukaryotes and is required for correct distribution of mitochondria within the cell. We sought to understand how disruption of FRIENDLY function in Arabidopsis (Arabidopsis thaliana) leads to mitochondrial clustering and the effects of this aberrant chondriome on cell and whole-plant physiology. We present evidence for a role of FRIENDLY in mediating intermitochondrial association, which is a necessary prelude to mitochondrial fusion. We demonstrate that disruption of mitochondrial association, motility, and chondriome structure in friendly affects mitochondrial quality control and leads to mitochondrial stress, cell death, and strong growth phenotypes. PMID:25165398

  3. The formation and functional consequences of heterogeneous mitochondrial distributions in skeletal muscle.

    PubMed

    Pathi, B; Kinsey, S T; Howdeshell, M E; Priester, C; McNeill, R S; Locke, B R

    2012-06-01

    Diffusion plays a prominent role in governing both rates of aerobic metabolic fluxes and mitochondrial organization in muscle fibers. However, there is no mechanism to explain how the non-homogeneous mitochondrial distributions that are prevalent in skeletal muscle arise. We propose that spatially variable degradation with dependence on O(2) concentration, and spatially uniform signals for biogenesis, can account for observed distributions of mitochondria in a diversity of skeletal muscle. We used light and transmission electron microscopy and stereology to examine fiber size, capillarity and mitochondrial distribution in fish red and white muscle, fish white muscle that undergoes extreme hypertrophic growth, and four fiber types in mouse muscle. The observed distributions were compared with those generated using a coupled reaction-diffusion/cellular automata (CA) mathematical model of mitochondrial function. Reaction-diffusion analysis of metabolites such as oxygen, ATP, ADP and PCr involved in energy metabolism and mitochondrial function were considered. Coupled to the reaction-diffusion approach was a CA approach governing mitochondrial life cycles in response to the metabolic state of the fiber. The model results were consistent with the experimental observations and showed higher mitochondrial densities near the capillaries because of the sometimes steep gradients in oxygen. The present study found that selective removal of mitochondria in the presence of low prevailing local oxygen concentrations is likely the primary factor dictating the spatial heterogeneity of mitochondria in a diversity of fibers. The model results also suggest decreased diffusional constraints corresponding to the heterogeneous mitochondrial distribution assessed using the effectiveness factor, defined as the ratio of the reaction rate in the system with finite rates of diffusion to that in the absence of any diffusion limitation. Thus, the non-uniform distribution benefits the muscle

  4. Alteration of Antiviral Signalling by Single Nucleotide Polymorphisms (SNPs) of Mitochondrial Antiviral Signalling Protein (MAVS)

    PubMed Central

    Xing, Fei; Matsumiya, Tomoh; Hayakari, Ryo; Yoshida, Hidemi; Kawaguchi, Shogo; Takahashi, Ippei; Nakaji, Shigeyuki; Imaizumi, Tadaatsu

    2016-01-01

    Genetic variation is associated with diseases. As a type of genetic variation occurring with certain regularity and frequency, the single nucleotide polymorphism (SNP) is attracting more and more attention because of its great value for research and real-life application. Mitochondrial antiviral signalling protein (MAVS) acts as a common adaptor molecule for retinoic acid-inducible gene-I (RIG-I)-like receptors (RLRs), which can recognize foreign RNA, including viral RNA, leading to the induction of type I interferons (IFNs). Therefore, MAVS is thought to be a crucial molecule in antiviral innate immunity. We speculated that genetic variation of MAVS may result in susceptibility to infectious diseases. To assess the risk of viral infection based on MAVS variation, we tested the effects of twelve non-synonymous MAVS coding-region SNPs from the National Center for Biotechnology Information (NCBI) database that result in amino acid substitutions. We found that five of these SNPs exhibited functional alterations. Additionally, four resulted in an inhibitory immune response, and one had the opposite effect. In total, 1,032 human genomic samples obtained from a mass examination were genotyped at these five SNPs. However, no homozygous or heterozygous variation was detected. We hypothesized that these five SNPs are not present in the Japanese population and that such MAVS variations may result in serious immune diseases. PMID:26954674

  5. Hepatic mitochondrial alterations and increased oxidative stress in nutritional diabetes-prone Psammomys obesus model.

    PubMed

    Bouderba, Saida; Sanz, M Nieves; Sánchez-Martín, Carlos; El-Mir, M Yehia; Villanueva, Gloria R; Detaille, Dominique; Koceïr, E Ahmed

    2012-01-01

    Mitochondrial dysfunction is considered to be a pivotal component of insulin resistance and associated metabolic diseases. Psammomys obesus is a relevant model of nutritional diabetes since these adult animals exhibit a state of insulin resistance when fed a standard laboratory chow, hypercaloric for them as compared to their natural food. In this context, alterations in bioenergetics were studied. Using liver mitochondria isolated from these rats fed such a diet for 18 weeks, oxygen consumption rates, activities of respiratory complexes, and content in cytochromes were examined. Levels of malondialdehyde (MDA) and gluthatione (GSH) were measured in tissue homogenates. Diabetic Psammomys showed a serious liver deterioration (hepatic mass accretion, lipids accumulation), accompanied by an enhanced oxidative stress (MDA increased, GSH depleted). On the other hand, both ADP-dependent and uncoupled respirations greatly diminished below control values, and the respiratory flux to cytochrome oxydase was mildly lowered. Furthermore, an inhibition of complexes I and III together with an activation of complex II were found. With emergence of oxidative stress, possibly related to a defect in oxidative phosphorylation, some molecular adjustments could contribute to alleviate, at least in part, the deleterious outcomes of insulin resistance in this gerbil species. PMID:22675340

  6. The defective expression of gtpbp3 related to tRNA modification alters the mitochondrial function and development of zebrafish.

    PubMed

    Chen, Danni; Li, Feng; Yang, Qingxian; Tian, Miao; Zhang, Zengming; Zhang, Qinghai; Chen, Ye; Guan, Min-Xin

    2016-08-01

    Human mitochondrial DNA (mtDNA) mutations have been associated with a wide spectrum of clinical abnormalities. However, nuclear modifier gene(s) modulate the phenotypic expression of pathogenic mtDNA mutations. In our previous investigation, we identified the human GTPBP3 related to mitochondrial tRNA modification, acting as a modifier to influence of deafness-associated mtDNA mutation. Mutations in GTPBP3 have been found to be associated with other human diseases. However, the pathophysiology of GTPBP3-associated disorders is still not fully understood. Here, we reported the generation and characterization of Gtpbp3 depletion zebrafish model using antisense morpholinos. Zebrafish gtpbp3 has three isoforms localized at mitochondria. Zebrafish gtpbp3 is expressed at various embryonic stages and in multiple tissues. In particular, the gtpbp3 was expressed more abundantly in adult zebrafish ovary and testis. The expression of zebrafish gtpbp3 can functionally restore the growth defects caused by the mss1/gtpbp3 mutation in yeast. A marked decrease of mitochondrial ATP generation accompanied by increased levels of apoptosis and reactive oxygen species were observed in gtpbp3 knockdown zebrafish embryos. The Gtpbp3 morphants exhibited defective in embryonic development including bleeding, melenin, oedema and curved tails within 5days post fertilization, as compared with uninjected controls. The co-injection of wild type gtpbp3 mRNA partially rescued these defects in Gtpbp3 morphants. These data suggest that zebrafish Gtpbp3 is a structural and functional homolog of human and yeast GTPBP3. The mitochondrial dysfunction caused by defective Gtpbp3 may alter the embryonic development in the zebrafish. In addition, this zebrafish model of mitochondrial disease may provide unique opportunities for studying defective tRNA modification, mitochondrial biogenesis, and pathophysiology of mitochondrial disorders. PMID:27184967

  7. Mitochondrial Optic Atrophy (OPA) 1 Processing Is Altered in Response to Neonatal Hypoxic-Ischemic Brain Injury

    PubMed Central

    Baburamani, Ana A.; Hurling, Chloe; Stolp, Helen; Sobotka, Kristina; Gressens, Pierre; Hagberg, Henrik; Thornton, Claire

    2015-01-01

    Perturbation of mitochondrial function and subsequent induction of cell death pathways are key hallmarks in neonatal hypoxic-ischemic (HI) injury, both in animal models and in term infants. Mitoprotective therapies therefore offer a new avenue for intervention for the babies who suffer life-long disabilities as a result of birth asphyxia. Here we show that after oxygen-glucose deprivation in primary neurons or in a mouse model of HI, mitochondrial protein homeostasis is altered, manifesting as a change in mitochondrial morphology and functional impairment. Furthermore we find that the mitochondrial fusion and cristae regulatory protein, OPA1, is aberrantly cleaved to shorter forms. OPA1 cleavage is normally regulated by a balanced action of the proteases Yme1L and Oma1. However, in primary neurons or after HI in vivo, protein expression of YmelL is also reduced, whereas no change is observed in Oma1 expression. Our data strongly suggest that alterations in mitochondria-shaping proteins are an early event in the pathogenesis of neonatal HI injury. PMID:26393574

  8. Quadriceps exercise intolerance in patients with chronic obstructive pulmonary disease: the potential role of altered skeletal muscle mitochondrial respiration.

    PubMed

    Gifford, Jayson R; Trinity, Joel D; Layec, Gwenael; Garten, Ryan S; Park, Song-Young; Rossman, Matthew J; Larsen, Steen; Dela, Flemming; Richardson, Russell S

    2015-10-15

    This study sought to determine if qualitative alterations in skeletal muscle mitochondrial respiration, associated with decreased mitochondrial efficiency, contribute to exercise intolerance in patients with chronic obstructive pulmonary disease (COPD). Using permeabilized muscle fibers from the vastus lateralis of 13 patients with COPD and 12 healthy controls, complex I (CI) and complex II (CII)-driven State 3 mitochondrial respiration were measured separately (State 3:CI and State 3:CII) and in combination (State 3:CI+CII). State 2 respiration was also measured. Exercise tolerance was assessed by knee extensor exercise (KE) time to fatigue. Per milligram of muscle, State 3:CI+CII and State 3:CI were reduced in COPD (P < 0.05), while State 3:CII and State 2 were not different between groups. To determine if this altered pattern of respiration represented qualitative changes in mitochondrial function, respiration states were examined as percentages of peak respiration (State 3:CI+CII), which revealed altered contributions from State 3:CI (Con 83.7 ± 3.4, COPD 72.1 ± 2.4%Peak, P < 0.05) and State 3:CII (Con 64.9 ± 3.2, COPD 79.5 ± 3.0%Peak, P < 0.05) respiration, but not State 2 respiration in COPD. Importantly, a diminished contribution of CI-driven respiration relative to the metabolically less-efficient CII-driven respiration (CI/CII) was also observed in COPD (Con 1.28 ± 0.09, COPD 0.81 ± 0.05, P < 0.05), which was related to exercise tolerance of the patients (r = 0.64, P < 0.05). Overall, this study indicates that COPD is associated with qualitative alterations in skeletal muscle mitochondria that affect the contribution of CI and CII-driven respiration, which potentially contributes to the exercise intolerance associated with this disease. PMID:26272320

  9. Dysregulation of the Axonal Trafficking of Nuclear-encoded Mitochondrial mRNA alters Neuronal Mitochondrial Activity and Mouse Behavior

    PubMed Central

    Kar, Amar N.; Sun, Ching-Yu; Reichard, Kathryn; Gervasi, Noreen M.; Pickel, James; Nakazawa, Kazu; Gioio, Anthony E.; Kaplan, Barry B.

    2014-01-01

    Local translation of nuclear-encoded mitochondrial mRNAs is essential for mitochondrial activity, yet there is little insight into the role that axonal trafficking of these transcripts play in neuronal function and behavior. Previously, we identified a 38 nucleotide stem-loop structure (zipcode) in the 3′ untranslated region of the Cytochrome C oxidase IV (COXIV) mRNA that directs the transport of a reporter mRNA to the axon of superior cervical ganglion neurons (SCG). Over-expression of a chimeric reporter mRNA with the COXIV zipcode competed with the axonal trafficking of endogenous COXIV mRNA, and led to attenuated axon growth in SCG neurons. Here, we show that exogenous expression of the COXIV zipcode in cultured SCG neurons also results in the reduction of local ATP levels and increases levels of reactive oxygen species (ROS) in the axon. We took advantage of this “competition” phenotype to investigate the in vivo significance of axonal transport of COXIV mRNA. Towards this end, we generated transgenic mice expressing a fluorescent reporter fused to COXIV zipcode under a forebrain-specific promoter. Immunohistological analyses and RT-PCR analyses of RNA from the transgenic mouse brain showed expression of the reporter in the deep layer neurons in the pre-frontal and frontal cortex. Consistent with the in vitro studies, we observed increased ROS levels in neurons of these transgenic animals. A battery of behavioral tests on transgenic mice expressing the COXIV zipcode revealed an “anxiety-like” behavioral phenotype, suggesting an important role for axonal trafficking of nuclear-encoded mitochondrial mRNAs in neuronal physiology and animal behavior. PMID:24151253

  10. Role of Mitochondrial DNA Copy Number Alteration in Human Renal Cell Carcinoma.

    PubMed

    Lin, Chen-Sung; Lee, Hui-Ting; Lee, Ming-Huei; Pan, Siao-Cian; Ke, Chen-Yeh; Chiu, Allen Wen-Hsiang; Wei, Yau-Huei

    2016-01-01

    We investigated the role of mitochondrial DNA (mtDNA) copy number alteration in human renal cell carcinoma (RCC). The mtDNA copy numbers of paired cancer and non-cancer parts from five resected RCC kidneys after radical nephrectomy were determined by quantitative polymerase chain reaction (Q-PCR). An RCC cell line, 786-O, was infected by lentiviral particles to knock down mitochondrial transcriptional factor A (TFAM). Null target (NT) and TFAM-knockdown (TFAM-KD) represented the control and knockdown 786-O clones, respectively. Protein or mRNA expression levels of TFAM; mtDNA-encoded NADH dehydrogenase subunit 1 (ND1), ND6 and cytochrome c oxidase subunit 2 (COX-2); nuclear DNA (nDNA)-encoded succinate dehydrogenase subunit A (SDHA); v-akt murine thymoma viral oncogene homolog 1 gene (AKT)-encoded AKT and v-myc myelocytomatosis viral oncogene homolog gene (c-MYC)-encoded MYC; glycolytic enzymes including hexokinase II (HK-II), glucose 6-phosphate isomerase (GPI), phosphofructokinase (PFK), and lactate dehydrogenase subunit A (LDHA); and hypoxia-inducible factors the HIF-1α and HIF-2α, pyruvate dehydrogenase kinase 1 (PDK1), and pyruvate dehydrogenase E1 component α subunit (PDHA1) were analyzed by Western blot or Q-PCR. Bioenergetic parameters of cellular metabolism, basal mitochondrial oxygen consumption rate (mOCRB) and basal extracellular acidification rate (ECARB), were measured by a Seahorse XF(e)-24 analyzer. Cell invasiveness was evaluated by a trans-well migration assay and vimentin expression. Doxorubicin was used as a chemotherapeutic agent. The results showed a decrease of mtDNA copy numbers in resected RCC tissues (p = 0.043). The TFAM-KD clone expressed lower mtDNA copy number (p = 0.034), lower mRNA levels of TFAM (p = 0.008), ND1 (p = 0.007), and ND6 (p = 0.017), and lower protein levels of TFAM and COX-2 than did the NT clone. By contrast, the protein levels of HIF-2α, HK-II, PFK, LDHA, AKT, MYC and vimentin; trans-well migration activity (p = 0

  11. Role of Mitochondrial DNA Copy Number Alteration in Human Renal Cell Carcinoma †

    PubMed Central

    Lin, Chen-Sung; Lee, Hui-Ting; Lee, Ming-Huei; Pan, Siao-Cian; Ke, Chen-Yeh; Chiu, Allen Wen-Hsiang; Wei, Yau-Huei

    2016-01-01

    We investigated the role of mitochondrial DNA (mtDNA) copy number alteration in human renal cell carcinoma (RCC). The mtDNA copy numbers of paired cancer and non-cancer parts from five resected RCC kidneys after radical nephrectomy were determined by quantitative polymerase chain reaction (Q-PCR). An RCC cell line, 786-O, was infected by lentiviral particles to knock down mitochondrial transcriptional factor A (TFAM). Null target (NT) and TFAM-knockdown (TFAM-KD) represented the control and knockdown 786-O clones, respectively. Protein or mRNA expression levels of TFAM; mtDNA-encoded NADH dehydrogenase subunit 1 (ND1), ND6 and cytochrome c oxidase subunit 2 (COX-2); nuclear DNA (nDNA)-encoded succinate dehydrogenase subunit A (SDHA); v-akt murine thymoma viral oncogene homolog 1 gene (AKT)-encoded AKT and v-myc myelocytomatosis viral oncogene homolog gene (c-MYC)-encoded MYC; glycolytic enzymes including hexokinase II (HK-II), glucose 6-phosphate isomerase (GPI), phosphofructokinase (PFK), and lactate dehydrogenase subunit A (LDHA); and hypoxia-inducible factors the HIF-1α and HIF-2α, pyruvate dehydrogenase kinase 1 (PDK1), and pyruvate dehydrogenase E1 component α subunit (PDHA1) were analyzed by Western blot or Q-PCR. Bioenergetic parameters of cellular metabolism, basal mitochondrial oxygen consumption rate (mOCRB) and basal extracellular acidification rate (ECARB), were measured by a Seahorse XFe-24 analyzer. Cell invasiveness was evaluated by a trans-well migration assay and vimentin expression. Doxorubicin was used as a chemotherapeutic agent. The results showed a decrease of mtDNA copy numbers in resected RCC tissues (p = 0.043). The TFAM-KD clone expressed lower mtDNA copy number (p = 0.034), lower mRNA levels of TFAM (p = 0.008), ND1 (p = 0.007), and ND6 (p = 0.017), and lower protein levels of TFAM and COX-2 than did the NT clone. By contrast, the protein levels of HIF-2α, HK-II, PFK, LDHA, AKT, MYC and vimentin; trans-well migration activity (p = 0

  12. Alterations of Mitochondrial Function and Insulin Sensitivity in Human Obesity and Diabetes Mellitus.

    PubMed

    Koliaki, Chrysi; Roden, Michael

    2016-07-17

    Mitochondrial function refers to a broad spectrum of features such as resting mitochondrial activity, (sub)maximal oxidative phosphorylation capacity (OXPHOS), and mitochondrial dynamics, turnover, and plasticity. The interaction between mitochondria and insulin sensitivity is bidirectional and varies depending on tissue, experimental model, methodological approach, and features of mitochondrial function tested. In human skeletal muscle, mitochondrial abnormalities may be inherited (e.g., lower mitochondrial content) or acquired (e.g., impaired OXPHOS capacity and plasticity). Abnormalities ultimately lead to lower mitochondrial functionality due to or resulting in insulin resistance and type 2 diabetes mellitus. Similar mechanisms can also operate in adipose tissue and heart muscle. In contrast, mitochondrial oxidative capacity is transiently upregulated in the liver of obese insulin-resistant humans with or without fatty liver, giving rise to oxidative stress and declines in advanced fatty liver disease. These data suggest a highly tissue-specific interaction between insulin sensitivity and oxidative metabolism during the course of metabolic diseases in humans. PMID:27146012

  13. Inflammation in adult women with a history of child maltreatment: The involvement of mitochondrial alterations and oxidative stress.

    PubMed

    Boeck, Christina; Koenig, Alexandra Maria; Schury, Katharina; Geiger, Martha Leonie; Karabatsiakis, Alexander; Wilker, Sarah; Waller, Christiane; Gündel, Harald; Fegert, Jörg Michael; Calzia, Enrico; Kolassa, Iris-Tatjana

    2016-09-01

    The experience of maltreatment during childhood is associated with chronic low-grade inflammation in adulthood. However, the molecular mechanisms underlying this pro-inflammatory phenotype remain unclear. Mitochondria were recently found to principally coordinate inflammatory processes via both inflammasome activation and inflammasome-independent pathways. To this end, we hypothesized that alterations in immune cell mitochondrial functioning and oxidative stress might be at the interface between the association of maltreatment experiences during childhood and inflammation. We analyzed pro-inflammatory biomarkers (levels of C-reactive protein, cytokine secretion by peripheral blood mononuclear cells (PBMC) in vitro, PBMC composition, lysophosphatidylcholine levels), serum oxidative stress levels (arginine:citrulline ratio, l-carnitine and acetylcarnitine levels) and mitochondrial functioning (respiratory activity and density of mitochondria in PBMC) in peripheral blood samples collected from 30 women (aged 22-44years) with varying degrees of maltreatment experiences in form of abuse and neglect during childhood. Exposure to maltreatment during childhood was associated with an increased ROS production, higher levels of oxidative stress and an increased mitochondrial activity in a dose-response relationship. Moreover, the increase in mitochondrial activity and ROS production were positively associated with the release of pro-inflammatory cytokines by PBMC. Decreased serum levels of lysophosphatidylcholines suggested higher inflammasome activation with increasing severity of child maltreatment experiences. Together these findings offer preliminary evidence for the association of alterations in immune cell mitochondrial functioning, oxidative stress and the pro-inflammatory phenotype observed in individuals with a history of maltreatment during childhood. The results emphasize that the early prevention of child abuse and neglect warrants more attention, as the

  14. Implications of Altered Glutathione Metabolism in Aspirin-Induced Oxidative Stress and Mitochondrial Dysfunction in HepG2 Cells

    PubMed Central

    Raza, Haider; John, Annie

    2012-01-01

    We have previously reported that acetylsalicylic acid (aspirin, ASA) induces cell cycle arrest, oxidative stress and mitochondrial dysfunction in HepG2 cells. In the present study, we have further elucidated that altered glutathione (GSH)-redox metabolism in HepG2 cells play a critical role in ASA-induced cytotoxicity. Using selected doses and time point for ASA toxicity, we have demonstrated that when GSH synthesis is inhibited in HepG2 cells by buthionine sulfoximine (BSO), prior to ASA treatment, cytotoxicity of the drug is augmented. On the other hand, when GSH-depleted cells were treated with N-acetyl cysteine (NAC), cytotoxicity/apoptosis caused by ASA was attenuated with a significant recovery in oxidative stress, GSH homeostasis, DNA fragmentation and some of the mitochondrial functions. NAC treatment, however, had no significant effects on the drug-induced inhibition of mitochondrial aconitase activity and ATP synthesis in GSH-depleted cells. Our results have confirmed that aspirin increases apoptosis by increased reactive oxygen species production, loss of mitochondrial membrane potential and inhibition of mitochondrial respiratory functions. These effects were further amplified when GSH-depleted cells were treated with ASA. We have also shown that some of the effects of aspirin might be associated with reduced GSH homeostasis, as treatment of cells with NAC attenuated the effects of BSO and aspirin. Our results strongly suggest that GSH dependent redox homeostasis in HepG2 cells is critical in preserving mitochondrial functions and preventing oxidative stress associated complications caused by aspirin treatment. PMID:22558435

  15. The relationship between altered mitochondrial DNA copy number and cancer risk: a meta-analysis.

    PubMed

    Mi, Jia; Tian, Geng; Liu, Shuang; Li, Xianglin; Ni, Tianhui; Zhang, Liwei; Wang, Bin

    2015-01-01

    Currently, a comprehensive assessment between mitochondrial DNA (mtDNA) content and cancer risk is lacking. We designed this meta-analysis to test the hypothesis that altered mtDNA copy number might influence genetic susceptibility to some specific types of cancer. The processes of literature search, eligibility appraisal and data retrieval were independently completed in duplicate. The mtDNA copy number which was dichotomized or classified into tertiles was compared between cancer cases and controls. Twenty-six articles with 38 study groups were analyzed among 6682 cases and 9923 controls. When dichotomizing mtDNA copy number at the median value, there was an 11% increased cancer risk for carriers of high mtDNA content (P = 0.320). By cancer type, high mtDNA content was associated with an increased risk for lymphoma (OR = 1.76; P = 0.023) but a reduced risk for skeleton cancer (OR = 0.39; P = 0.001). Carriers of the 2(nd) and 3(rd) tertiles of mtDNA copy number had an 1.74-fold (P = 0.010) and 2.07-fold (P = 0.021) increased risk of lymphoma, respectively. By contrast, there was correspondingly a 56% (P < 0.001) and 80% (P < 0.001) reduced risk of skeleton cancer. Our findings suggested that elevated mtDNA content was associated with a higher risk for lymphoma, but a lower risk for skeleton cancer. PMID:25952580

  16. Sexual Dimorphism in the Alterations of Cardiac Muscle Mitochondrial Bioenergetics Associated to the Ageing Process.

    PubMed

    Colom, Bartomeu; Oliver, Jordi; Garcia-Palmer, Francisco J

    2015-11-01

    The incidence of cardiac disease is age and sex dependent, but the mechanisms governing these associations remain poorly understood. Mitochondria are the organelles in charge of producing energy for the cells, and their malfunction has been linked to cardiovascular disease and heart failure. Interestingly, heart mitochondrial content and functionality are also age and sex dependent. Here we investigated the combinatory effects of age and sex in mitochondrial bioenergetics that could help to understand their role on cardiac disease. Cardiac mitochondria from 6- and 24-month-old male and female Wistar rats were isolated, and the enzymatic activities of the oxidative-phosphorylative complexes I, III, and IV and ATPase, as well as the protein levels of complex IV, β-ATPase, and mitochondrial transcription factor A (TFAM), were measured. Furthermore, heart DNA content, citrate synthase activity, mitochondrial protein content, oxygen consumption, and H2O2 generation were also determined. Results showed a reduction in heart mitochondrial mass and functionality with age that correlated with increased H2O2 generation. Moreover, sex-dependent differences were found in several of these parameters. In particular, old females exhibited a significant loss of mitochondrial function and increased relative H2O2 production compared with their male counterparts. The results demonstrate a sex dimorphism in the age-associated defects on cardiac mitochondrial function. PMID:24682352

  17. Pseudouridine synthase 1 deficient mice, a model for Mitochondrial Myopathy with Sideroblastic Anemia, exhibit muscle morphology and physiology alterations

    PubMed Central

    Mangum, Joshua E.; Hardee, Justin P.; Fix, Dennis K.; Puppa, Melissa J.; Elkes, Johnathon; Altomare, Diego; Bykhovskaya, Yelena; Campagna, Dean R.; Schmidt, Paul J.; Sendamarai, Anoop K.; Lidov, Hart G. W.; Barlow, Shayne C.; Fischel-Ghodsian, Nathan; Fleming, Mark D.; Carson, James A.; Patton, Jeffrey R.

    2016-01-01

    Mitochondrial myopathy with lactic acidosis and sideroblastic anemia (MLASA) is an oxidative phosphorylation disorder, with primary clinical manifestations of myopathic exercise intolerance and a macrocytic sideroblastic anemia. One cause of MLASA is recessive mutations in PUS1, which encodes pseudouridine (Ψ) synthase 1 (Pus1p). Here we describe a mouse model of MLASA due to mutations in PUS1. As expected, certain Ψ modifications were missing in cytoplasmic and mitochondrial tRNAs from Pus1−/− animals. Pus1−/− mice were born at the expected Mendelian frequency and were non-dysmorphic. At 14 weeks the mutants displayed reduced exercise capacity. Examination of tibialis anterior (TA) muscle morphology and histochemistry demonstrated an increase in the cross sectional area and proportion of myosin heavy chain (MHC) IIB and low succinate dehydrogenase (SDH) expressing myofibers, without a change in the size of MHC IIA positive or high SDH myofibers. Cytochrome c oxidase activity was significantly reduced in extracts from red gastrocnemius muscle from Pus1−/− mice. Transmission electron microscopy on red gastrocnemius muscle demonstrated that Pus1−/− mice also had lower intermyofibrillar mitochondrial density and smaller mitochondria. Collectively, these results suggest that alterations in muscle metabolism related to mitochondrial content and oxidative capacity may account for the reduced exercise capacity in Pus1−/− mice. PMID:27197761

  18. Pseudouridine synthase 1 deficient mice, a model for Mitochondrial Myopathy with Sideroblastic Anemia, exhibit muscle morphology and physiology alterations.

    PubMed

    Mangum, Joshua E; Hardee, Justin P; Fix, Dennis K; Puppa, Melissa J; Elkes, Johnathon; Altomare, Diego; Bykhovskaya, Yelena; Campagna, Dean R; Schmidt, Paul J; Sendamarai, Anoop K; Lidov, Hart G W; Barlow, Shayne C; Fischel-Ghodsian, Nathan; Fleming, Mark D; Carson, James A; Patton, Jeffrey R

    2016-01-01

    Mitochondrial myopathy with lactic acidosis and sideroblastic anemia (MLASA) is an oxidative phosphorylation disorder, with primary clinical manifestations of myopathic exercise intolerance and a macrocytic sideroblastic anemia. One cause of MLASA is recessive mutations in PUS1, which encodes pseudouridine (Ψ) synthase 1 (Pus1p). Here we describe a mouse model of MLASA due to mutations in PUS1. As expected, certain Ψ modifications were missing in cytoplasmic and mitochondrial tRNAs from Pus1(-/-) animals. Pus1(-/-) mice were born at the expected Mendelian frequency and were non-dysmorphic. At 14 weeks the mutants displayed reduced exercise capacity. Examination of tibialis anterior (TA) muscle morphology and histochemistry demonstrated an increase in the cross sectional area and proportion of myosin heavy chain (MHC) IIB and low succinate dehydrogenase (SDH) expressing myofibers, without a change in the size of MHC IIA positive or high SDH myofibers. Cytochrome c oxidase activity was significantly reduced in extracts from red gastrocnemius muscle from Pus1(-/-) mice. Transmission electron microscopy on red gastrocnemius muscle demonstrated that Pus1(-/-) mice also had lower intermyofibrillar mitochondrial density and smaller mitochondria. Collectively, these results suggest that alterations in muscle metabolism related to mitochondrial content and oxidative capacity may account for the reduced exercise capacity in Pus1(-/-) mice. PMID:27197761

  19. Mitochondrial and cytoskeletal alterations are involved in the pathogenesis of hydronephrosis in ICR/Mlac-hydro mice

    PubMed Central

    Isarangkul, Duangnate; Wiyakrutta, Suthep; Kengkoom, Kanchana; Reamtong, Onrapak; Ampawong, Sumate

    2015-01-01

    The pathogenesis of congenital hydronephrosis in laboratory animals has been studied for many years, yet little is known about the underlying mechanism of this disease. In this study, we investigated a MS-based comparative proteomics approach to characterize the differently expressed proteins between kidney tissue samples of ICR/Mlac-hydro and wild-type mice. Interestingly, proteomic results exhibited several mitochondrial protein alterations especially the up-regulation of 60 kDa heat shock protein (Hsp60), stress-70 protein (GRP75) dysfunction, and down-regulation of voltage-dependent anion-selective channel protein 1 (VDAC-1). The results demonstrated that mitochondrial alteration may lead to inadequate energy-supply to maintain normal water reabsorption from the renal tubule, causing hydronephrosis. Moreover, the alteration of cytoskeleton proteins in the renal tubule, in particular the up-regulation of tubulin beta-4B chain (Tb4B) and N-myc downstream-regulated gene 1 protein (Ndr-1) may also be related due to their fundamental roles in maintaining cell morphology and tissue stability. In addition, cytoskeletal alterations may consequence to the reduction of glyceraldehydes-3-phosphate dehydrogenase (GAPDH), cytoplasmic enzyme, which modulates the capacity of structural proteins. Our findings highlight a number of target proteins that may play a crucial role in congenital hydronephrosis and emphasize that the disorder of mitochondria and cytoskeleton proteins may be involved. PMID:26309577

  20. Mitochondrial proteome: toward the detection and profiling of disease associated alterations.

    PubMed

    Herrmann, Paul C; Herrmann, E Clifford

    2012-01-01

    Existing at the heart of cellular energy metabolism, the mitochondrion is uniquely positioned to have a major impact on human disease processes. Examples of mitochondrial impact on human pathology abound and include etiologies ranging from inborn errors of metabolism to the site of activity of a variety of toxic compounds. In this review, the unique aspects of the mechanisms related to the mitochondrial proteome are discussed along with an overview of the literature related to mitochondrial proteomic exploration. The review includes discussion of potential areas for exploration and advantages of applying proteomic techniques to the study of mitochondria. PMID:22081351

  1. Alteration of ROS homeostasis and decreased lifespan in S. cerevisiae elicited by deletion of the mitochondrial translocator FLX1.

    PubMed

    Giancaspero, Teresa Anna; Dipalo, Emilia; Miccolis, Angelica; Boles, Eckhard; Caselle, Michele; Barile, Maria

    2014-01-01

    This paper deals with the control exerted by the mitochondrial translocator FLX1, which catalyzes the movement of the redox cofactor FAD across the mitochondrial membrane, on the efficiency of ATP production, ROS homeostasis, and lifespan of S. cerevisiae. The deletion of the FLX1 gene resulted in respiration-deficient and small-colony phenotype accompanied by a significant ATP shortage and ROS unbalance in glycerol-grown cells. Moreover, the flx1Δ strain showed H2O2 hypersensitivity and decreased lifespan. The impaired biochemical phenotype found in the flx1Δ strain might be justified by an altered expression of the flavoprotein subunit of succinate dehydrogenase, a key enzyme in bioenergetics and cell regulation. A search for possible cis-acting consensus motifs in the regulatory region upstream SDH1-ORF revealed a dozen of upstream motifs that might respond to induced metabolic changes by altering the expression of Flx1p. Among these motifs, two are present in the regulatory region of genes encoding proteins involved in flavin homeostasis. This is the first evidence that the mitochondrial flavin cofactor status is involved in controlling the lifespan of yeasts, maybe by changing the cellular succinate level. This is not the only case in which the homeostasis of redox cofactors underlies complex phenotypical behaviours, as lifespan in yeasts. PMID:24895546

  2. Alteration of ROS Homeostasis and Decreased Lifespan in S. cerevisiae Elicited by Deletion of the Mitochondrial Translocator FLX1

    PubMed Central

    Giancaspero, Teresa Anna; Dipalo, Emilia; Miccolis, Angelica; Boles, Eckhard; Caselle, Michele; Barile, Maria

    2014-01-01

    This paper deals with the control exerted by the mitochondrial translocator FLX1, which catalyzes the movement of the redox cofactor FAD across the mitochondrial membrane, on the efficiency of ATP production, ROS homeostasis, and lifespan of S. cerevisiae. The deletion of the FLX1 gene resulted in respiration-deficient and small-colony phenotype accompanied by a significant ATP shortage and ROS unbalance in glycerol-grown cells. Moreover, the flx1Δ strain showed H2O2 hypersensitivity and decreased lifespan. The impaired biochemical phenotype found in the flx1Δ strain might be justified by an altered expression of the flavoprotein subunit of succinate dehydrogenase, a key enzyme in bioenergetics and cell regulation. A search for possible cis-acting consensus motifs in the regulatory region upstream SDH1-ORF revealed a dozen of upstream motifs that might respond to induced metabolic changes by altering the expression of Flx1p. Among these motifs, two are present in the regulatory region of genes encoding proteins involved in flavin homeostasis. This is the first evidence that the mitochondrial flavin cofactor status is involved in controlling the lifespan of yeasts, maybe by changing the cellular succinate level. This is not the only case in which the homeostasis of redox cofactors underlies complex phenotypical behaviours, as lifespan in yeasts. PMID:24895546

  3. Loss of Drp1 function alters OPA1 processing and changes mitochondrial membrane organization

    SciTech Connect

    Moepert, Kristin; Hajek, Petr; Frank, Stephan; Chen, Christiane; Kaufmann, Joerg; Santel, Ansgar

    2009-08-01

    RNAi mediated loss of Drp1 function changes mitochondrial morphology in cultured HeLa and HUVEC cells by shifting the balance of mitochondrial fission and fusion towards unopposed fusion. Over time, inhibition of Drp1 expression results in the formation of a highly branched mitochondrial network along with 'bulge'-like structures. These changes in mitochondrial morphology are accompanied by a reduction in levels of Mitofusin 1 (Mfn1) and 2 (Mfn2) and a modified proteolytic processing of OPA1 isoforms, resulting in the inhibition of cell proliferation. In addition, our data imply that bulge formation is driven by Mfn1 action along with particular proteolytic short-OPA1 (s-OPA1) variants: Loss of Mfn2 in the absence of Drp1 results in an increase of Mfn1 levels along with processed s-OPA1-isoforms, thereby enhancing continuous 'fusion' and bulge formation. Moreover, bulge formation might reflect s-OPA1 mitochondrial membrane remodeling activity, resulting in the compartmentalization of cytochrome c deposits. The proteins Yme1L and PHB2 appeared not associated with the observed enhanced OPA1 proteolysis upon RNAi of Drp1, suggesting the existence of other OPA1 processing controlling proteins. Taken together, Drp1 appears to affect the activity of the mitochondrial fusion machinery by unbalancing the protein levels of mitofusins and OPA1.

  4. Mitochondrial Alterations in Peripheral Mononuclear Blood Cells from Alzheimer's Disease and Mild Cognitive Impairment Patients

    PubMed Central

    Delbarba, A.; Abate, G.; Prandelli, C.; Marziano, M.; Buizza, L.; Arce Varas, N.; Novelli, A.; Cuetos, F.; Martinez, C.; Lanni, C.; Memo, M.; Uberti, D.

    2016-01-01

    It is well recognized that mitochondrial dysfunction contributes to neurodegeneration occurring in Alzheimer's disease (AD). However, evidences of mitochondrial defects in AD peripheral cells are still inconclusive. Here, some mitochondrial-encoded and nuclear-encoded proteins, involved in maintaining the correct mitochondria machine, were investigated in terms of protein expression and enzymatic activity in peripheral blood mononuclear cells (PBMCs) isolated from AD and Mild Cognitive Impairment (MCI) patients and healthy subjects. In addition mitochondrial DNA copy number was measured by real time PCR. We found some differences and some similarities between AD and MCI patients when compared with healthy subjects. For example, cytochrome C and cytochrome B were decreased in AD, while MCI showed only a statistical reduction of cytochrome C. On the other hand, both AD and MCI blood cells exhibited highly nitrated MnSOD, index of a prooxidant environment inside the mitochondria. TFAM, a regulator of mitochondrial genome replication and transcription, was decreased in both AD and MCI patients' blood cells. Moreover also the mitochondrial DNA amount was reduced in PBMCs from both patient groups. In conclusion these data confirmed peripheral mitochondria impairment in AD and demonstrated that TFAM and mtDNA amount reduction could be two features of early events occurring in AD pathogenesis. PMID:26881032

  5. Paraoxonase 2 Deficiency Alters Mitochondrial Function and Exacerbates the Development of Atherosclerosis

    PubMed Central

    Devarajan, Asokan; Bourquard, Noam; Hama, Susan; Navab, Mohamad; Grijalva, Victor R.; Morvardi, Susan; Clarke, Catherine F.; Vergnes, Laurent; Reue, Karen; Teiber, John F.

    2011-01-01

    Abstract Increased production of reactive oxygen species (ROS) as a result of decreased activities of mitochondrial electron transport chain (ETC) complexes plays a role in the development of many inflammatory diseases, including atherosclerosis. Our previous studies established that paraoxonase 2 (PON2) possesses antiatherogenic properties and is associated with lower ROS levels. The aim of the present study was to determine the mechanism by which PON2 modulates ROS production. In this report, we demonstrate that PON2-def mice on the hyperlipidemic apolipoprotein E−/− background (PON2-def/apolipoprotein E−/−) develop exacerbated atherosclerotic lesions with enhanced mitochondrial oxidative stress. We show that PON2 protein is localized to the inner mitochondrial membrane, where it is found associated with respiratory complex III. Employing surface-plasmon-resonance, we demonstrate that PON2 binds with high affinity to coenzyme Q10, an important component of the ETC. Enhanced mitochondrial oxidative stress in PON2-def mice was accompanied by significantly reduced ETC complex I + III activities, oxygen consumption, and adenosine triphosphate levels in PON2-def mice. In contrast, overexpression of PON2 effectively protected mitochondria from antimycin- or oligomycin-mediated mitochondrial dysfunction. Our results illustrate that the antiatherogenic effects of PON2 are, in part, mediated by the role of PON2 in mitochondrial function. Antioxid. Redox Signal. 14, 341–351. PMID:20578959

  6. Metabolism alteration in follicular niche: The nexus among intermediary metabolism, mitochondrial function, and classic polycystic ovary syndrome.

    PubMed

    Zhao, Hongcui; Zhao, Yue; Li, Tianjie; Li, Min; Li, Junsheng; Li, Rong; Liu, Ping; Yu, Yang; Qiao, Jie

    2015-09-01

    Classic polycystic ovary syndrome (PCOS) is a high-risk phenotype accompanied by increased risks of reproductive and metabolic abnormalities; however, the local metabolism characteristics of the ovaries and their effects on germ cell development are unclear. The present study used targeted metabolomics to detect alterations in the intermediate metabolites of follicular fluid from classic PCOS patients, and the results indicated that hyperandrogenism but not obesity induced the changed intermediate metabolites in classic PCOS patients. Regarding the direct contact, we identified mitochondrial function, redox potential, and oxidative stress in cumulus cells which were necessary to support oocyte growth before fertilization, and suggested dysfunction of mitochondria, imbalanced redox potential, and increased oxidative stress in cumulus cells of classic PCOS patients. Follicular fluid intermediary metabolic profiles provide signatures of classic PCOS ovary local metabolism and establish a close link with mitochondria dysfunction of cumulus cells, highlighting the role of metabolic signal and mitochondrial cross talk involved in the pathogenesis of classic PCOS. PMID:26057937

  7. Mitochondrial Bioenergetic Alterations in Mouse Neuroblastoma Cells Infected with Sindbis Virus: Implications to Viral Replication and Neuronal Death

    PubMed Central

    Silva da Costa, Leandro; Pereira da Silva, Ana Paula; Da Poian, Andrea T.; El-Bacha, Tatiana

    2012-01-01

    The metabolic resources crucial for viral replication are provided by the host. Details of the mechanisms by which viruses interact with host metabolism, altering and recruiting high free-energy molecules for their own replication, remain unknown. Sindbis virus, the prototype of and most widespread alphavirus, causes outbreaks of arthritis in humans and serves as a model for the study of the pathogenesis of neurological diseases induced by alphaviruses in mice. In this work, respirometric analysis was used to evaluate the effects of Sindbis virus infection on mitochondrial bioenergetics of a mouse neuroblastoma cell lineage, Neuro 2a. The modulation of mitochondrial functions affected cellular ATP content and this was synchronous with Sindbis virus replication cycle and cell death. At 15 h, irrespective of effects on cell viability, viral replication induced a decrease in oxygen consumption uncoupled to ATP synthesis and a 36% decrease in maximum uncoupled respiration, which led to an increase of 30% in the fraction of oxygen consumption used for ATP synthesis. Decreased proton leak associated to complex I respiration contributed to the apparent improvement of mitochondrial function. Cellular ATP content was not affected by infection. After 24 h, mitochondria dysfunction was clearly observed as maximum uncoupled respiration reduced 65%, along with a decrease in the fraction of oxygen consumption used for ATP synthesis. Suppressed respiration driven by complexes I- and II-related substrates seemed to play a role in mitochondrial dysfunction. Despite the increase in glucose uptake and glycolytic flux, these changes were followed by a 30% decrease in ATP content and neuronal death. Taken together, mitochondrial bioenergetics is modulated during Sindbis virus infection in such a way as to favor ATP synthesis required to support active viral replication. These early changes in metabolism of Neuro 2a cells may form the molecular basis of neuronal dysfunction and Sindbis

  8. Manganese suppresses ATP-dependent intercellular calcium waves in astrocyte networks through alteration of mitochondrial and endoplasmic reticulum calcium dynamics.

    PubMed

    Tjalkens, Ronald B; Zoran, Mark J; Mohl, Brianne; Barhoumi, Roula

    2006-10-01

    The neurotoxicity of manganese [Mn] is due in part to glutamate excitotoxicity. Release of ATP by astrocytes is a critical modulator of glutamatergic neurotransmission, which is regulated by calcium (Ca(2+)) waves that propagate through astrocytic networks in response to synaptic activity. It was postulated that Mn alters ATP-dependent intracellular Ca(2+) dynamics in astrocytes, thereby suppressing Ca(2+) wave activity. Confluent primary cultures of cortical astrocytes were loaded with the Ca(2+)-sensitive dye fluo-4 and examined by fluorescence microscopy for Ca(2+) wave activity following micropipet mechanical stimulation of a single cell. Mitochondrial Ca(2+) was evaluated by fluorescence microscopy following addition of ATP using the mitochondrial-specific Ca(2+) dye rhod-2-AM. Imaging studies revealed that pretreatment of astrocytes with 1-10 microM Mn significantly reduced the rate, area, and amplitude of mechanically induced Ca(2+) waves. This attenuation was not a result of inhibited mitochondrial calcium uptake because robust calcium waves were still observed following pretreatment of astrocytes with Ru360, an inhibitor of mitochondrial Ca(2+) uptake, either in coupling or uncoupling conditions. However, determination of endoplasmic reticulum (ER) Ca(2+) levels in cells using the sarco/endoplasmic reticulum Ca(2+)-ATPase inhibitor thapsigargin indicated that Mn reduced the available pool of releasable ER Ca(2+) at concentrations as low as 1 muM. Examination of ATP-stimulated changes in mitochondrial Ca(2+) indicated that, in cells pretreated with Mn, mitochondria retained high levels of Ca(2+). It is concluded that exposure of astrocytes to low concentrations of Mn(2+) results in sequestration of Ca(2+) within the mitochondria that reduces the available pool of releasable Ca(2+) within the ER, thereby inhibiting calcium wave activity. PMID:16934782

  9. Correlation between the rate of proteolysis of mitochondrial translation products and fluidity of the mitochondrial inner membrane in Saccharomyces cerevisiae yeast. Alteration of the rate of proteolysis under glucose repression.

    PubMed Central

    Luzikov, V N; Novikova, L A; Tikhonov, A N; Zubatov, A S

    1983-01-01

    Our previous results [Kalnov, Novikova, Zubatov & Luzikov (1979) FEBS Lett. 101, 355-358; Biochem. J. 182, 195-202] suggested that in yeast the mitochondrial translation products localized in the mitochondrial inner membrane are rapidly broken down by a proteolytic system inherent in the membrane. In the present work, it is demonstrated that, on glucose repression in undividing cells of Saccharomyces cerevisiae, there is no proteolysis of the mitochondrial translation products. This effect is not likely to be associated with lower activity of the proteolytic system of the mitochondrial inner membrane. Nor is the cessation of proteolysis due to qualitative changes in the composition of mitochondrial translation products. What repression does cause is a considerable alteration in the physical state (i.e. structure of the lipid bilayer) of the mitochondrial inner membrane; this was established by experiments involving lipid-soluble spin probes. The conclusion is reached that the rate of proteolysis of mitochondrial translation products in the mitochondrial inner membrane depends on the physical state of the membrane, which in its turn is controlled by the relative content of unsaturated fatty acid chains in the mitochondrial phospholipids. PMID:6354177

  10. Mitochondrial physiology and reactive oxygen species production are altered by hypoxia acclimation in killifish (Fundulus heteroclitus).

    PubMed

    Du, Sherry N N; Mahalingam, Sajeni; Borowiec, Brittney G; Scott, Graham R

    2016-04-15

    Many fish encounter hypoxia in their native environment, but the role of mitochondrial physiology in hypoxia acclimation and hypoxia tolerance is poorly understood. We investigated the effects of hypoxia acclimation on mitochondrial respiration, O2kinetics, emission of reactive oxygen species (ROS), and antioxidant capacity in the estuarine killifish ( ITALIC! Fundulus heteroclitus). Killifish were acclimated to normoxia, constant hypoxia (5 kPa O2) or intermittent diel cycles of nocturnal hypoxia (12 h:12 h normoxia:hypoxia) for 28-33 days and mitochondria were isolated from liver. Neither pattern of hypoxia acclimation affected the respiratory capacities for oxidative phosphorylation or electron transport, leak respiration, coupling control or phosphorylation efficiency. Hypoxia acclimation also had no effect on mitochondrial O2kinetics, but ITALIC! P50(the O2tension at which hypoxia inhibits respiration by 50%) was lower in the leak state than during maximal respiration, and killifish mitochondria endured anoxia-reoxygenation without any impact on mitochondrial respiration. However, both patterns of hypoxia acclimation reduced the rate of ROS emission from mitochondria when compared at a common O2tension. Hypoxia acclimation also increased the levels of protein carbonyls and the activities of superoxide dismutase and catalase in liver tissue (the latter only occurred in constant hypoxia). Our results suggest that hypoxia acclimation is associated with changes in mitochondrial physiology that decrease ROS production and may help improve hypoxia tolerance. PMID:26896545

  11. Alterations in mitochondrial respiratory functions, redox metabolism and apoptosis by oxidant 4-hydroxynonenal and antioxidants curcumin and melatonin in PC12 cells

    SciTech Connect

    Raza, Haider John, Annie; Brown, Eric M.; Benedict, Sheela; Kambal, Amr

    2008-01-15

    Cellular oxidative stress and alterations in redox metabolisms have been implicated in the etiology and pathology of many diseases including cancer. Antioxidant treatments have been proven beneficial in controlling these diseases. We have recently shown that 4-hydroxynonenal (4-HNE), a by-product of lipid peroxidation, induces oxidative stress in PC12 cells by compromising the mitochondrial redox metabolism. In this study, we have further investigated the deleterious effects of 4-HNE on mitochondrial respiratory functions and apoptosis using the same cell line. In addition, we have also compared the effects of two antioxidants, curcumin and melatonin, used as chemopreventive agents, on mitochondrial redox metabolism and respiratory functions in these cells. 4-HNE treatment has been shown to cause a reduction in glutathione (GSH) pool, an increase in reactive oxygen species (ROS), protein carbonylation and apoptosis. A marked inhibition in the activities of the mitochondrial respiratory enzymes, cytochrome c oxidase and aconitase was observed after 4-HNE treatment. Increased nuclear translocation of NF-kB/p65 protein was also observed after 4-HNE treatment. Curcumin and melatonin treatments, on the other hand, maintained the mitochondrial redox and respiratory functions without a marked effect on ROS production and cell viability. These results suggest that 4-HNE-induced cytotoxicity may be associated, at least in part, with the altered mitochondrial redox and respiratory functions. The alterations in mitochondrial energy metabolism and redox functions may therefore be critical in determining the difference between cell death and survival.

  12. Order within a mosaic distribution of mitochondrial c-type cytochrome biogenesis systems?

    PubMed

    Allen, James W A; Jackson, Andrew P; Rigden, Daniel J; Willis, Antony C; Ferguson, Stuart J; Ginger, Michael L

    2008-05-01

    Mitochondrial cytochromes c and c(1) are present in all eukaryotes that use oxygen as the terminal electron acceptor in the respiratory chain. Maturation of c-type cytochromes requires covalent attachment of the heme cofactor to the protein, and there are at least five distinct biogenesis systems that catalyze this post-translational modification in different organisms and organelles. In this study, we use biochemical data, comparative genomic and structural bioinformatics investigations to provide a holistic view of mitochondrial c-type cytochrome biogenesis and its evolution. There are three pathways for mitochondrial c-type cytochrome maturation, only one of which is present in prokaryotes. We analyze the evolutionary distribution of these biogenesis systems, which include the Ccm system (System I) and the enzyme heme lyase (System III). We conclude that heme lyase evolved once and, in many lineages, replaced the multicomponent Ccm system (present in the proto-mitochondrial endosymbiont), probably as a consequence of lateral gene transfer. We find no evidence of a System III precursor in prokaryotes, and argue that System III is incompatible with multi-heme cytochromes common to bacteria, but absent from eukaryotes. The evolution of the eukaryotic-specific protein heme lyase is strikingly unusual, given that this protein provides a function (thioether bond formation) that is also ubiquitous in prokaryotes. The absence of any known c-type cytochrome biogenesis system from the sequenced genomes of various trypanosome species indicates the presence of a third distinct mitochondrial pathway. Interestingly, this system attaches heme to mitochondrial cytochromes c that contain only one cysteine residue, rather than the usual two, within the heme-binding motif. The isolation of single-cysteine-containing mitochondrial cytochromes c from free-living kinetoplastids, Euglena and the marine flagellate Diplonema papillatum suggests that this unique form of heme attachment

  13. Prolonged exposure to (R)-bicalutamide generates a LNCaP subclone with alteration of mitochondrial genome.

    PubMed

    Pignatta, Sara; Arienti, Chiara; Zoli, Wainer; Di Donato, Marzia; Castoria, Gabriella; Gabucci, Elisa; Casadio, Valentina; Falconi, Mirella; De Giorgi, Ugo; Silvestrini, Rosella; Tesei, Anna

    2014-01-25

    Advanced prostate cancers, initially sensitive to androgen deprivation therapy, frequently progress to the castration-resistant prostate cancer phenotype (CRPC) through mechanisms not yet fully understood. In this study we investigated mitochondrial involvement in the establishment of refractoriness to hormone therapy. Two human prostate cancer cell lines were used, the parental LNCaP and the resistant LNCaP-Rbic, the latter generated after continuous exposure to 20 μM of (R)-bicalutamide, the active enantiomer of Casodex®. We observed a significant decrease in mtDNA content and a lower expression of 8 mitochondria-encoded gene transcripts involved in respiratory chain complexes in both cell lines. We also found that (R)-bicalutamide differentially modulated dynamin-related protein (Drp-1) expression in LNCaP and LNCaP-Rbic cells. These data seem to indicate that the androgen-independent phenotype in our experimental model was due, at least in part, to alterations in mitochondrial dynamics and to a breakdown in the Drp-1-mediated mitochondrial network. PMID:24397920

  14. RNS60, a charge-stabilized nanostructure saline alters Xenopus Laevis oocyte biophysical membrane properties by enhancing mitochondrial ATP production

    PubMed Central

    Choi, Soonwook; Yu, Eunah; Kim, Duk-Soo; Sugimori, Mutsuyuki; Llinás, Rodolfo R

    2015-01-01

    We have examined the effects of RNS60, a 0.9% saline containing charge-stabilized oxygen nanobubble-based structures. RNS60 is generated by subjecting normal saline to Taylor–Couette–Poiseuille (TCP) flow under elevated oxygen pressure. This study, implemented in Xenopus laevis oocytes, addresses both the electrophysiological membrane properties and parallel biological processes in the cytoplasm. Intracellular recordings from defolliculated X. laevis oocytes were implemented in: (1) air oxygenated standard Ringer's solution, (2) RNS60-based Ringer's solution, (3) RNS10.3 (TCP-modified saline without excess oxygen)-based Ringer's, and (4) ONS60 (saline containing high pressure oxygen without TCP modification)-based Ringer's. RNS60-based Ringer's solution induced membrane hyperpolarization from the resting membrane potential. This effect was prevented by: (1) ouabain (a blocker of the sodium/potassium ATPase), (2) rotenone (a mitochondrial electron transfer chain inhibitor preventing usable ATP synthesis), and (3) oligomycin A (an inhibitor of ATP synthase) indicating that RNS60 effects intracellular ATP levels. Increased intracellular ATP levels following RNS60 treatment were directly demonstrated using luciferin/luciferase photon emission. These results indicate that RNS60 alters intrinsic the electrophysiological properties of the X. laevis oocyte membrane by increasing mitochondrial-based ATP synthesis. Ultrastructural analysis of the oocyte cytoplasm demonstrated increased mitochondrial length in the presence of RNS60-based Ringer's solution. It is concluded that the biological properties of RNS60 relate to its ability to optimize ATP synthesis. PMID:25742953

  15. RNS60, a charge-stabilized nanostructure saline alters Xenopus Laevis oocyte biophysical membrane properties by enhancing mitochondrial ATP production.

    PubMed

    Choi, Soonwook; Yu, Eunah; Kim, Duk-Soo; Sugimori, Mutsuyuki; Llinás, Rodolfo R

    2015-03-01

    We have examined the effects of RNS60, a 0.9% saline containing charge-stabilized oxygen nanobubble-based structures. RNS60 is generated by subjecting normal saline to Taylor-Couette-Poiseuille (TCP) flow under elevated oxygen pressure. This study, implemented in Xenopus laevis oocytes, addresses both the electrophysiological membrane properties and parallel biological processes in the cytoplasm. Intracellular recordings from defolliculated X. laevis oocytes were implemented in: (1) air oxygenated standard Ringer's solution, (2) RNS60-based Ringer's solution, (3) RNS10.3 (TCP-modified saline without excess oxygen)-based Ringer's, and (4) ONS60 (saline containing high pressure oxygen without TCP modification)-based Ringer's. RNS60-based Ringer's solution induced membrane hyperpolarization from the resting membrane potential. This effect was prevented by: (1) ouabain (a blocker of the sodium/potassium ATPase), (2) rotenone (a mitochondrial electron transfer chain inhibitor preventing usable ATP synthesis), and (3) oligomycin A (an inhibitor of ATP synthase) indicating that RNS60 effects intracellular ATP levels. Increased intracellular ATP levels following RNS60 treatment were directly demonstrated using luciferin/luciferase photon emission. These results indicate that RNS60 alters intrinsic the electrophysiological properties of the X. laevis oocyte membrane by increasing mitochondrial-based ATP synthesis. Ultrastructural analysis of the oocyte cytoplasm demonstrated increased mitochondrial length in the presence of RNS60-based Ringer's solution. It is concluded that the biological properties of RNS60 relate to its ability to optimize ATP synthesis. PMID:25742953

  16. Naringenin Mitigates Iron-Induced Anxiety-Like Behavioral Impairment, Mitochondrial Dysfunctions, Ectonucleotidases and Acetylcholinesterase Alteration Activities in Rat Hippocampus.

    PubMed

    Chtourou, Yassine; Slima, Ahlem Ben; Gdoura, Radhouane; Fetoui, Hamadi

    2015-08-01

    Studies demonstrated that the iron chelating antioxidant restores brain dysfunction induced by iron toxicity in animals. Earlier, we found that iron overload-induced cerebral cortex apoptosis correlated with oxidative stress could be protected by naringenin (NGEN). In this respect, the present study is focused on the mechanisms associated with the protective efficacy of NGEN, natural flavonoid compound abundant in the peels of citrus fruit, on iron induced impairment of the anxiogenic-like behaviour, purinergic and cholinergic dysfunctions with oxidative stress related disorders on mitochondrial function in the rat hippocampus. Results showed that administration of NGEN (50 mg/kg/day) by gavage significantly ameliorated anxiogenic-like behaviour impairment induced by the exposure to 50 mg of Fe-dextran/kg/day intraperitoneally for 28 days in rats, decreased iron-induced reactive oxygen species formation and restored the iron-induced decrease of the acetylcholinesterase expression level, mitochondrial membrane potential and mitochondrial complexes activities in the hippocampus of rats. Moreover, NGEN was able to restore the alteration on the activity and expression of ectonucleotidases such as adenosine triphosphate diphosphohydrolase and 5'-nucleotidase, enzymes which hydrolyze and therefore control extracellular ATP and adenosine concentrations in the synaptic cleft. These results may contribute to a better understanding of the neuroprotective role of NGEN, emphasizing the influence of including this flavonoid in the diet for human health, possibly preventing brain injury associated with iron overload. PMID:26050208

  17. ALS-linked mutant superoxide dismutase 1 (SOD1) alters mitochondrial protein composition and decreases protein import.

    PubMed

    Li, Quan; Vande Velde, Christine; Israelson, Adrian; Xie, Jing; Bailey, Aaron O; Dong, Meng-Qui; Chun, Seung-Joo; Roy, Tamal; Winer, Leah; Yates, John R; Capaldi, Roderick A; Cleveland, Don W; Miller, Timothy M

    2010-12-01

    Mutations in superoxide dismutase 1 (SOD1) cause familial ALS. Mutant SOD1 preferentially associates with the cytoplasmic face of mitochondria from spinal cords of rats and mice expressing SOD1 mutations. Two-dimensional gels and multidimensional liquid chromatography, in combination with tandem mass spectrometry, revealed 33 proteins that were increased and 21 proteins that were decreased in SOD1(G93A) rat spinal cord mitochondria compared with SOD1(WT) spinal cord mitochondria. Analysis of this group of proteins revealed a higher-than-expected proportion involved in complex I and protein import pathways. Direct import assays revealed a 30% decrease in protein import only in spinal cord mitochondria, despite an increase in the mitochondrial import components TOM20, TOM22, and TOM40. Recombinant SOD1(G93A) or SOD1(G85R), but not SOD1(WT) or a Parkinson's disease-causing, misfolded α-synuclein(E46K) mutant, decreased protein import by >50% in nontransgenic mitochondria from spinal cord, but not from liver. Thus, altered mitochondrial protein content accompanied by selective decreases in protein import into spinal cord mitochondria comprises part of the mitochondrial damage arising from mutant SOD1. PMID:21078990

  18. Calcium-induced alterations in mitochondrial morphology quantified in situ with optical scatter imaging.

    PubMed Central

    Boustany, Nada N; Drezek, Rebekah; Thakor, Nitish V

    2002-01-01

    Optical scatter imaging (OSI), a technique we developed recently, was used to measure the ratio of wide-to-narrow angle scatter (OSIR) within endothelial cells subjected to calcium overload (1.6 mM) after permeabilization by ionomycin. Within a few minutes of calcium overload, the mitochondria, which started as elongated organelles, rounded up into spherically shaped particles. This change in morphology was accompanied by a statistically significant 14% increase in OSIR in the cells' cytoplasm. Mitochondrial rounding and OSIR increase were suppressed by cyclosporin A (25 microM), implying that the observed geometrical and scattering changes were directly attributable to the mitochondrial permeability transition. The angular scattering properties of a long mitochondrion rounding up were approximated by numerical simulations of light scatter from an ellipsoid rounding up into a sphere. The simulations predicted a relative increase in OSIR comparable to that measured experimentally for the case where the shape transition takes place with little or no volume increase. The simulations also suggested that mitochondrial refractive index changes could not account for the OSIR changes observed. Our data show that changes in OSIR correlate with mitochondrial morphology change in situ. OSI provides a new tool for subcellular imaging and complements other microscopy methods, such as fluorescence. PMID:12202392

  19. Letm1, the mitochondrial Ca2+/H+ antiporter, is essential for normal glucose metabolism and alters brain function in Wolf-Hirschhorn syndrome.

    PubMed

    Jiang, Dawei; Zhao, Linlin; Clish, Clary B; Clapham, David E

    2013-06-11

    Mitochondrial metabolism, respiration, and ATP production necessitate ion transport across the inner mitochondrial membrane. Leucine zipper-EF-hand containing transmembrane protein 1 (Letm1), one of the genes deleted in Wolf-Hirschhorn syndrome, encodes a putative mitochondrial Ca(2+)/H(+) antiporter. Cellular Letm1 knockdown reduced Ca(2+)mito uptake, H(+)mito extrusion and impaired mitochondrial ATP generation capacity. Homozygous deletion of Letm1 in mice resulted in embryonic lethality before day 6.5 of embryogenesis and ~50% of the heterozygotes died before day 13.5 of embryogenesis. The surviving heterozygous mice exhibited altered glucose metabolism, impaired control of brain ATP levels, and increased seizure activity. We conclude that loss of Letm1 contributes to the pathology of Wolf-Hirschhorn syndrome in humans and may contribute to seizure phenotypes by reducing glucose oxidation and other specific metabolic alterations. PMID:23716663

  20. Chronic low-level domoic acid exposure alters gene transcription and impairs mitochondrial function in the CNS

    PubMed Central

    Hiolski, Emma M; Kendrick, Preston S; Frame, Elizabeth R; Myers, Mark S; Bammler, Theo K; Beyer, Richard P; Farin, Federico M; Wilkerson, Hui-wen; Smith, Donald R; Marcinek, David J; Lefebvre, Kathi A

    2014-01-01

    Domoic acid is an algal-derived seafood toxin that functions as a glutamate agonist and exerts excitotoxicity via overstimulation of glutamate receptors (AMPA, NMDA) in the central nervous system (CNS). At high (symptomatic) doses, domoic acid is well-known to cause seizures, brain lesions and memory loss; however, a significant knowledge gap exists regarding the health impacts of repeated low-level (asymptomatic) exposure. Here, we investigated the impacts of low-level repetitive domoic acid exposure on gene transcription and mitochondrial function in the vertebrate CNS using a zebrafish model in order to: 1) identify transcriptional biomarkers of exposure; and 2) examine potential pathophysiology that may occur in the absence of overt excitotoxic symptoms. We found that transcription of genes related to neurological function and development were significantly altered, and that asymptomatic exposure impaired mitochondrial function. Interestingly, the transcriptome response was highly-variable across the exposure duration (36 weeks), with little to no overlap of specific genes across the six exposure time points (2, 6, 12, 18, 24, and 36 weeks). Moreover, there were no apparent similarities at any time point with the gene transcriptome profile exhibited by the glud1 mouse model of chronic moderate excess glutamate release. These results suggest that although the fundamental mechanisms of toxicity may be similar, gene transcriptome responses to domoic acid exposure do not extrapolate well between different exposure durations. However, the observed impairment of mitochondrial function based on respiration rates and mitochondrial protein content suggests that repetitive low-level exposure does have fundamental cellular level impacts that could contribute to chronic health consequences. PMID:25033243

  1. Alterations in voltage-sensing of the mitochondrial permeability transition pore in ANT1-deficient cells

    PubMed Central

    Doczi, Judit; Torocsik, Beata; Echaniz-Laguna, Andoni; Mousson de Camaret, Bénédicte; Starkov, Anatoly; Starkova, Natalia; Gál, Aniko; Molnár, Mária J; Kawamata, Hibiki; Manfredi, Giovanni; Adam-Vizi, Vera; Chinopoulos, Christos

    2016-01-01

    The probability of mitochondrial permeability transition (mPT) pore opening is inversely related to the magnitude of the proton electrochemical gradient. The module conferring sensitivity of the pore to this gradient has not been identified. We investigated mPT’s voltage-sensing properties elicited by calcimycin or H2O2 in human fibroblasts exhibiting partial or complete lack of ANT1 and in C2C12 myotubes with knocked-down ANT1 expression. mPT onset was assessed by measuring in situ mitochondrial volume using the ‘thinness ratio’ and the ‘cobalt-calcein’ technique. De-energization hastened calcimycin-induced swelling in control and partially-expressing ANT1 fibroblasts, but not in cells lacking ANT1, despite greater losses of mitochondrial membrane potential. Matrix Ca2+ levels measured by X-rhod-1 or mitochondrially-targeted ratiometric biosensor 4mtD3cpv, or ADP-ATP exchange rates did not differ among cell types. ANT1-null fibroblasts were also resistant to H2O2-induced mitochondrial swelling. Permeabilized C2C12 myotubes with knocked-down ANT1 exhibited higher calcium uptake capacity and voltage-thresholds of mPT opening inferred from cytochrome c release, but intact cells showed no differences in calcimycin-induced onset of mPT, irrespective of energization and ANT1 expression, albeit the number of cells undergoing mPT increased less significantly upon chemically-induced hypoxia than control cells. We conclude that ANT1 confers sensitivity of the pore to the electrochemical gradient. PMID:27221760

  2. Alterations in voltage-sensing of the mitochondrial permeability transition pore in ANT1-deficient cells.

    PubMed

    Doczi, Judit; Torocsik, Beata; Echaniz-Laguna, Andoni; Mousson de Camaret, Bénédicte; Starkov, Anatoly; Starkova, Natalia; Gál, Aniko; Molnár, Mária J; Kawamata, Hibiki; Manfredi, Giovanni; Adam-Vizi, Vera; Chinopoulos, Christos

    2016-01-01

    The probability of mitochondrial permeability transition (mPT) pore opening is inversely related to the magnitude of the proton electrochemical gradient. The module conferring sensitivity of the pore to this gradient has not been identified. We investigated mPT's voltage-sensing properties elicited by calcimycin or H2O2 in human fibroblasts exhibiting partial or complete lack of ANT1 and in C2C12 myotubes with knocked-down ANT1 expression. mPT onset was assessed by measuring in situ mitochondrial volume using the 'thinness ratio' and the 'cobalt-calcein' technique. De-energization hastened calcimycin-induced swelling in control and partially-expressing ANT1 fibroblasts, but not in cells lacking ANT1, despite greater losses of mitochondrial membrane potential. Matrix Ca(2+) levels measured by X-rhod-1 or mitochondrially-targeted ratiometric biosensor 4mtD3cpv, or ADP-ATP exchange rates did not differ among cell types. ANT1-null fibroblasts were also resistant to H2O2-induced mitochondrial swelling. Permeabilized C2C12 myotubes with knocked-down ANT1 exhibited higher calcium uptake capacity and voltage-thresholds of mPT opening inferred from cytochrome c release, but intact cells showed no differences in calcimycin-induced onset of mPT, irrespective of energization and ANT1 expression, albeit the number of cells undergoing mPT increased less significantly upon chemically-induced hypoxia than control cells. We conclude that ANT1 confers sensitivity of the pore to the electrochemical gradient. PMID:27221760

  3. Parasite altered micro-distribution of Gammarus pulex (Crustacea: Amphipoda).

    PubMed

    MacNeil, Calum; Fielding, Nina J; Hume, Kevin D; Dick, Jaimie T A; Elwood, Robert W; Hatcher, Melanie J; Dunn, Alison M

    2003-01-01

    In a river survey, Gammarus pulex amphipods both unparasitised and parasitised with the acanthocephalan Echinorhynchus truttae were distributed similarly with respect to flow regimen, tending to be more abundant in faster, shallower, riffle patches. However, there was a higher prevalence of parasitism in faster, shallower areas than in slower, deeper areas and abundance correlated with macrophyte coverage for unparasitised but not parasitised amphipods, indicating subtle differences in habitat usage. A laboratory 'patch' simulation indicated that parasitism influenced micro-distribution. There were higher proportions of unparasitised amphipods in/under stone substrates and within weed. In contrast, there were higher proportions of parasitised amphipods in the water column and at the water surface. As the experiment progressed, unparasitised but not parasitised amphipod habitat usage shifted from those micro-habitats above the substrate and in the water column to those in/under the substrates. Experiments also demonstrated that parasitised amphipods were more active and had a greater preference for illumination. Previous studies of the effects of acanthocephalan parasitism of amphipod hosts have focussed on how drift behaviour is altered, now we show that subtle differences in micro-habitat usage could translate to greatly increased vulnerability to fish predation. We discuss how aggregation of parasitised individuals within specific habitats could promote parasite transmission. PMID:12547346

  4. Alterations of motor performance and brain cortex mitochondrial function during ethanol hangover.

    PubMed

    Bustamante, Juanita; Karadayian, Analia G; Lores-Arnaiz, Silvia; Cutrera, Rodolfo A

    2012-08-01

    Ethanol has been known to affect various behavioral parameters in experimental animals, even several hours after ethanol (EtOH) is absent from blood circulation, in the period known as hangover. The aim of this study was to assess the effects of acute ethanol hangover on motor performance in association with the brain cortex energetic metabolism. Evaluation of motor performance and brain cortex mitochondrial function during alcohol hangover was performed in mice 6 hours after a high ethanol dose (hangover onset). Animals were injected i.p. either with saline (control group) or with ethanol (3.8 g/kg BW) (hangover group). Ethanol hangover group showed a bad motor performance compared with control animals (p < .05). Oxygen uptake in brain cortex mitochondria from hangover animals showed a 34% decrease in the respiratory control rate as compared with the control group. Mitochondrial complex activities were decreased being the complex I-III the less affected by the hangover condition; complex II-III was markedly decreased by ethanol hangover showing 50% less activity than controls. Complex IV was 42% decreased as compared with control animals. Hydrogen peroxide production was 51% increased in brain cortex mitochondria from the hangover group, as compared with the control animals. Quantification of the mitochondrial transmembrane potential indicated that ethanol injected animals presented 17% less ability to maintain the polarized condition as compared with controls. These results indicate that a clear decrease in proton motive force occurs in brain cortex mitochondria during hangover conditions. We can conclude that a decreased motor performance observed in the hangover group of animals could be associated with brain cortex mitochondrial dysfunction and the resulting impairment of its energetic metabolism. PMID:22608205

  5. Mitochondrial oxidative phosphorylation transcriptome alterations in human amyotrophic lateral sclerosis spinal cord and blood.

    PubMed

    Ladd, Amy C; Keeney, Paula M; Govind, Maria M; Bennett, James P

    2014-12-01

    Origins of onset and progression of motor neurodegeneration in amyotrophic lateral sclerosis (ALS) are not clearly known, but may include impairment of mitochondrial bioenergetics. We used quantitative PCR approaches to analyze the mitochondrial oxidative phosphorylation (OXPHOS) transcriptomes of spinal cord tissue and peripheral blood mononuclear cells (PBMC) from persons with sporadic ALS compared with those without neurological disease. Expression measurements of 88 different nuclear (n) and mitochondrial (mt) DNA-encoded OXPHOS genes showed mtDNA-encoded respiratory gene expression was significantly decreased in ALS spinal cord by 78-84% (ANOVA p < 0.002). We observed the same phenomenon in freshly isolated PBMC from ALS patients (reduced 24-35%, ANOVA p < 0.001) and reproduced it in a human neural stem cell model treated with 2',3'-dideoxycytidine (ddC) (reduced 52-78%, ANOVA p < 0.001). nDNA-encoded OXPHOS genes showed heterogeneously and mostly decreased expression in ALS spinal cord tissue. In contrast, ALS PBMC and ddC-treated stem cells showed no significant change in expression of nDNA OXPHOS genes compared with controls. Genes related to mitochondrial biogenesis (PGC-1α, TFAM, ERRα, NRF1, NRF2 and POLG) were queried with inconclusive results. Here, we demonstrate there is a systemic decrease in mtDNA gene expression in ALS central and peripheral tissues that support pursuit of bioenergetic-enhancing therapies. We also identified a combined nDNA and mtDNA gene set (n = 26), downregulated in spinal cord tissue that may be useful as a biomarker in the development of cell-based ALS models. PMID:25081190

  6. Single-Walled Carbon Nanotubes Alter Cytochrome C Electron Transfer and Modulate Mitochondrial Function

    PubMed Central

    Ma, Xiaowei; Zhang, Li-Hua; Wang, Li-Rong; Xue, Xue; Sun, Ji-Hong; Wu, Yan; Zou, Guozhang; Wu, Xia; Wang, Paul C.; Wamer, Wayne G.; Yin, Jun-Jie; Zheng, Kaiyuan; Liang, Xing-Jie

    2013-01-01

    Single-walled carbon nanotubes (SWCNTs) are broadly used for various biomedical applications such as drug delivery, in vivo imaging and cancer photothermal therapy due to their unique physiochemical properties. However, once they enter the cells, the effects of SWCNTs to the intracellular organelles and macromolecules are not comprehensively understood. Cytochrome c (Cyt c), as a key component of the electron transport chain in mitochondria, plays an essential role in cellular energy consumption, growth and differentiation. In this study, we found the mitochondrial membrane potential (MMP) and mitochondrial oxygen uptake were greatly decreased in human epithelial KB cells treated with SWCNTs, which accompanies the reduction of Cyt c. SWCNTs deoxidized Cyt c in a pH dependent manner as evidenced by the appearance of a 550 nm characteristic absorption peak, which intensity increased as pH increase. Circular dichroism measurement confirmed the pH-dependent conformational change, which facilitated closer association of SWCNTs with the heme pocket of Cyt c and thus expedited the reduction of Cyt c. The electron transfer of Cyt c is also disturbed by SWCNTs, as measured with electron spin resonance spectroscopy. In conclusion, the redox activity of Cyt c was affected by SWCNTs treatment due to attenuated electron transfer and conformational change of Cyt c, which consequently changed mitochondrial respiration of SWCNTs treated cells. This work is significant to SWCNTs research because it provided novel understanding to the disruption of SWCNTs to the mitochondria and has important implications for biomedical applications of SWCNTs. PMID:23171082

  7. Mitochondrial alteration in malignantly transformed human small airway epithelial cells induced by alpha particles

    PubMed Central

    Zhang, Suping; Wen, Gengyun; Huang, Sarah XL; Wang, Jianrong; Tong, Jian; Hei, Tom K.

    2012-01-01

    Human small airway epithelial cells (SAECs) immortalized with human telomerase reverse transcriptase (h-TERT) were exposed to either a single or multiple doses of α particles. Irradiated cells showed a dose-dependent cytotoxicity and progressive neoplastic transformation phenotype. These included an increase in saturation density of growth, a greater resistance to PALA, faster anchorage-independent growth, reinforced cell invasion and c-Myc expression. In addition, the transformed cells formed progressively growing tumors upon inoculation into athymic nude mice. Specifically, α-irradiation induced damage to both mitochondrial DNA (mtDNA) and mitochondrial functions in transformed cells as evidenced by increased mtDNA copy number and common deletion, decreased oxidative phosphorylation (OXPHOS) activity as measured by cytochrome C oxidase (COX) activity and oxygen consumption. There was a linear correlation between mtDNA copy number, common deletion, COX activity and cellular transformation represented by soft agar colony formation and c-Myc expression. These results suggest that mitochondria are associated with neoplastic transformation of SAEC cells induced by α particles, and that the oncogenesis process may depend not only on the genomes inside the nucleus, but also on the mitochondrial DNA outside the nucleus. PMID:22644783

  8. Altered patterns of cardiac intercellular junction distribution in hypertrophic cardiomyopathy.

    PubMed Central

    Sepp, R.; Severs, N. J.; Gourdie, R. G.

    1996-01-01

    OBJECTIVE: To examine the distribution pattern of intercellular junctions (the mechanically coupling desmosomes and the electrically coupling gap junctions) in hypertrophic cardiomyopathy (HCM) hearts showing myofibre disarray. DESIGN: Samples from six necropsied hearts were studied, representing the interventricular septum and the free walls of the left and right ventricles. Immunohistochemical labelling of desmoplakin was used as a marker for desmosomes, and of connexin43 as a marker for gap junctions, in single and double stainings. The slides were examined by confocal laser scanning microscopy. RESULTS: Marked disorganisation of intercalated discs was observed in areas featuring myofibre disarray. Besides overall derangement, localised abnormalities in desmosome organisation were evident, which included: (1) the formation of abnormally enlarged megadiscs; (2) the presence of intersecting disc structures; and (3) aberrant side to side desmosomal connections. Gap junctional abnormalities included: (1) random distribution of gap junctions over the surface of myocytes, rather than localisation to intercalated discs; (2) abundant side to side gap junction connections between adjacent myocytes; and (3) formation of abnormally shaped gap junctions. Circles of myocytes continuously interconnected by gap junctions were also observed. Regions of the diseased hearts lacking myofibre disarray, and control hearts of normal patients and patients with other cardiac diseases, did not show these alterations. CONCLUSIONS: The disorganisation of the intercellular junctions associated with myofibre disarray in HCM may play an important role in the pathophysiological manifestations of the disease. The remodelling of gap junction distribution may underlie the formation of an arrhythmogenic substrate, thereby contributing to the generation and maintenance of cardiac arrhythmias associated with HCM. Images PMID:8944586

  9. Inhibition of cyclophilin D by cyclosporin A promotes retinal ganglion cell survival by preventing mitochondrial alteration in ischemic injury

    PubMed Central

    Kim, S Y; Shim, M S; Kim, K-Y; Weinreb, R N; Wheeler, L A; Ju, W-K

    2014-01-01

    Cyclosporin A (CsA) inhibits the opening of the mitochondrial permeability transition pore (MPTP) by interacting with cyclophilin D (CypD) and ameliorates neuronal cell death in the central nervous system against ischemic injury. However, the molecular mechanisms underlying CypD/MPTP opening-mediated cell death in ischemic retinal injury induced by acute intraocular pressure (IOP) elevation remain unknown. We observed the first direct evidence that acute IOP elevation significantly upregulated CypD protein expression in ischemic retina at 12 h. However, CsA prevented the upregulation of CypD protein expression and promoted retinal ganglion cell (RGC) survival against ischemic injury. Moreover, CsA blocked apoptotic cell death by decreasing cleaved caspase-3 protein expression in ischemic retina. Of interest, although the expression level of Bcl-xL protein did not show a significant change in ischemic retina treated with vehicle or CsA at 12 h, ischemic damage induced the reduction of Bcl-xL immunoreactivity in RGCs. More importantly, CsA preserved Bcl-xL immunoreactivity in RGCs of ischemic retina. In parallel, acute IOP elevation significantly increased phosphorylated Bad (pBad) at Ser112 protein expression in ischemic retina at 12 h. However, CsA significantly preserved pBad protein expression in ischemic retina. Finally, acute IOP elevation significantly increased mitochondrial transcription factor A (Tfam) protein expression in ischemic retina at 12 h. However, CsA significantly preserved Tfam protein expression in ischemic retina. Studies on mitochondrial DNA (mtDNA) content in ischemic retina showed that there were no statistically significant differences in mtDNA content among control and ischemic groups treated with vehicle or CsA. Therefore, these results provide evidence that the activation of CypD-mediated MPTP opening is associated with the apoptotic pathway and the mitochondrial alteration in RGC death of ischemic retinal injury. On the basis

  10. Regulation of mitochondrial ceramide distribution by members of the BCL-2 family[S

    PubMed Central

    Zhang, Tejia; Barclay, Lauren; Walensky, Loren D.; Saghatelian, Alan

    2015-01-01

    Apoptosis is an intricately regulated cellular process that proceeds through different cell type- and signal-dependent pathways. In the mitochondrial apoptotic program, mitochondrial outer membrane permeabilization by BCL-2 proteins leads to the release of apoptogenic factors, caspase activation, and cell death. In addition to protein components of the mitochondrial apoptotic machinery, an interesting role for lipids and lipid metabolism in BCL-2 family-regulated apoptosis is also emerging. We used a comparative lipidomics approach to uncover alterations in lipid profile in the absence of the proapoptotic proteins BAX and BAK in mouse embryonic fibroblasts (MEFs). We detected over 1,000 ions in these experiments and found changes in an ion with an m/z of 534.49. Structural elucidation of this ion through tandem mass spectrometry revealed that this molecule is a ceramide with a 16-carbon N-acyl chain and sphingadiene backbone (d18:2/16:0 ceramide). Targeted LC/MS analysis revealed elevated levels of additional sphingadiene-containing ceramides (d18:2-Cers) in BAX, BAK-double knockout MEFs. Elevated d18:2-Cers are also found in immortalized baby mouse kidney epithelial cells lacking BAX and BAK. These results support the existence of a distinct biochemical pathway for regulating ceramides with different backbone structures and suggest that sphingadiene-containing ceramides may have functions that are distinct from the more common sphingosine-containing species. PMID:26059977

  11. Therapeutic Approaches in Mitochondrial Dysfunction, Proteolysis, and Structural Alterations of Diaphragm and Gastrocnemius in Rats With Chronic Heart Failure.

    PubMed

    Barreiro, Esther; Puig-Vilanova, Ester; Marin-Corral, Judith; Chacón-Cabrera, Alba; Salazar-Degracia, Anna; Mateu, Xavier; Puente-Maestu, Luis; García-Arumí, Elena; Andreu, Antoni L; Molina, Luis

    2016-07-01

    Patients with chronic heart failure (CHF) experience exercise intolerance, fatigue and muscle wasting, which negatively influence their survival. We hypothesized that treatment with either the antioxidant N-acetyl cysteine (NAC) or the proteasome inhibitor bortezomib of rats with monocrotaline-induced CHF may restore inspiratory and limb muscle mass, function, and structure through several molecular mechanisms involved in protein breakdown and metabolism in the diaphragm and gastrocnemius. In these muscles of CHF-cachectic rats with and without treatment with NAC or bortezomib (N = 10/group) and non-cachectic controls, proteolysis (tyrosine release, proteasome activities, ubiquitin-proteasome markers), oxidative stress, inflammation, mitochondrial function, myosin, NF-κB transcriptional activity, muscle structural abnormalities, and fiber morphometry were analyzed together with muscle and cardiac functions. In diaphragm and gastrocnemius of CHF-cachectic rats, tyrosine release, proteasome activity, protein ubiquitination, atrogin-1, MURF-1, NF-κB activity, oxidative stress, inflammation, and structural abnormalities were increased, while muscle and cardiac functions, myosin content, slow- and fast-twitch fiber sizes, and mitochondrial activity were decreased. Concomitant treatment of CHF-cachectic rats with NAC or bortezomib improved protein catabolism, oxidative stress, inflammation, muscle fiber sizes, function and damage, superoxide dismutase and myosin levels, mitochondrial function (complex I, gastrocnemius), cardiac function and decreased NF-κB transcriptional activity in both muscles. Treatment of CHF-cachectic animals with NAC or bortezomib attenuated the functional (heart, muscles), biological, and structural alterations in muscles. Nonetheless, future studies conducted in actual clinical settings are warranted in order to assess the potential beneficial effects and safety concerns of these pharmacological agents on muscle mass loss and wasting in

  12. Autophagy and mitochondrial alterations in human retinal pigment epithelial cells induced by ethanol: implications of 4-hydroxy-nonenal

    PubMed Central

    Flores-Bellver, M; Bonet-Ponce, L; Barcia, J M; Garcia-Verdugo, J M; Martinez-Gil, N; Saez-Atienzar, S; Sancho-Pelluz, J; Jordan, J; Galindo, M F; Romero, F J

    2014-01-01

    Retinal pigment epithelium has a crucial role in the physiology and pathophysiology of the retina due to its location and metabolism. Oxidative damage has been demonstrated as a pathogenic mechanism in several retinal diseases, and reactive oxygen species are certainly important by-products of ethanol (EtOH) metabolism. Autophagy has been shown to exert a protective effect in different cellular and animal models. Thus, in our model, EtOH treatment increases autophagy flux, in a concentration-dependent manner. Mitochondrial morphology seems to be clearly altered under EtOH exposure, leading to an apparent increase in mitochondrial fission. An increase in 2′,7′-dichlorofluorescein fluorescence and accumulation of lipid peroxidation products, such as 4-hydroxy-nonenal (4-HNE), among others were confirmed. The characterization of these structures confirmed their nature as aggresomes. Hence, autophagy seems to have a cytoprotective role in ARPE-19 cells under EtOH damage, by degrading fragmented mitochondria and 4-HNE aggresomes. Herein, we describe the central implication of autophagy in human retinal pigment epithelial cells upon oxidative stress induced by EtOH, with possible implications for other conditions and diseases. PMID:25032851

  13. Alteration of mitochondrial DNA and RNA level in human fibroblasts with impaired vitamin B12 coenzyme synthesis.

    PubMed

    Cantatore, P; Petruzzella, V; Nicoletti, C; Papadia, F; Fracasso, F; Rustin, P; Gadaleta, M N

    1998-08-01

    Alterations of mitochondrial (mt) nucleic acid metabolism in methylmalonic aciduria (MMA) were studied in two cell lines from skin fibroblasts of patients with mitochondrial (GM00595) or cytosolic (GM10011) defects in the biosynthesis pathways of cobalamin coenzymes. The mtDNA level increased two-fold in GM00595 cells, which carry a mt defect in the adenosylcobalamin synthesis, whereas no appreciable change was found in GM10011 cells. The content of the two rRNAs 16S and 12S mtRNAs, normalized for the mtDNA copy number, decreased by 70% and 50% in GM00595 and GM10011, respectively. The normalized content of ND1, ND2 and CO I mRNAs decreased in GM00595, but was unchanged in GM10011. Respiratory chain complex activities measured in these two cell lines were not different from control activities. These data suggest that the maintenance of the mt function is due to doubling of mtDNA and that this compensatory response takes place only in those cells in which the greater reduction of the level of rRNA might have brought the content of these transcripts below the threshold value for optimal expression of the mt genome. PMID:9720919

  14. Role of metabolic modulator Bet-CA in altering mitochondrial hyperpolarization to suppress cancer associated angiogenesis and metastasis

    PubMed Central

    Saha, Suchandrima; Ghosh, Monisankar; Dutta, Samir Kumar

    2016-01-01

    Solid tumors characteristically reflect a metabolic switching from glucose oxidation to glycolysis that plays a fundamental role in angiogenesis and metastasis to facilitate aggressive tumor outcomes. Hyperpolarized mitochondrial membrane potential is a manifestation of malignant cells that compromise the intrinsic pathways of apoptosis and confer a suitable niche to promote the cancer associated hallmark traits. We have previously reported that co-drug Bet-CA selectively targets cancer cells by inducing metabolic catastrophe without a manifest in toxicity. Here we report that the same molecule at a relatively lower concentration deregulates the cardinal phenotypes associated with angiogenesis and metastasis. In mice syngeneic 4T1 breast cancer model, Bet-CA exhibited effective abrogation of angiogenesis and concomitantly obliterated lung metastasis consistent with altered mitochondrial bioenergetics. Furthermore, Bet-CA significantly lowered vascular endothelial growth factor (VEGF) levels and obviated matrix metalloproteases (MMP-2/9) production directly to the criterion where abrogation of autocrine VEGF/VEGFR2 signalling loop was documented. In vitro studies anticipatedly documented the role of Bet-CA in inhibiting actin remodeling, lamellipodia formation and cell membrane ruffling to constitutively suppress cell motility and invasion. Results comprehensively postulate that Bet-CA, a mitochondria targeting metabolic modulator may serve as an excellent candidate for combating angiogenesis and metastasis. PMID:27003027

  15. Propionate Increases Hepatic Pyruvate Cycling and Anaplerosis and Alters Mitochondrial Metabolism.

    PubMed

    Perry, Rachel J; Borders, Candace B; Cline, Gary W; Zhang, Xian-Man; Alves, Tiago C; Petersen, Kitt Falk; Rothman, Douglas L; Kibbey, Richard G; Shulman, Gerald I

    2016-06-01

    In mammals, pyruvate kinase (PK) plays a key role in regulating the balance between glycolysis and gluconeogenesis; however, in vivo regulation of PK flux by gluconeogenic hormones and substrates is poorly understood. To this end, we developed a novel NMR-liquid chromatography/tandem-mass spectrometry (LC-MS/MS) method to directly assess pyruvate cycling relative to mitochondrial pyruvate metabolism (VPyr-Cyc/VMito) in vivo using [3-(13)C]lactate as a tracer. Using this approach, VPyr-Cyc/VMito was only 6% in overnight fasted rats. In contrast, when propionate was infused simultaneously at doses previously used as a tracer, it increased VPyr-Cyc/VMito by 20-30-fold, increased hepatic TCA metabolite concentrations 2-3-fold, and increased endogenous glucose production rates by 20-100%. The physiologic stimuli, glucagon and epinephrine, both increased hepatic glucose production, but only glucagon suppressed VPyr-Cyc/VMito These data show that under fasting conditions, when hepatic gluconeogenesis is stimulated, pyruvate recycling is relatively low in liver compared with VMito flux and that liver metabolism, in particular pyruvate cycling, is sensitive to propionate making it an unsuitable tracer to assess hepatic glycolytic, gluconeogenic, and mitochondrial metabolism in vivo. PMID:27002151

  16. Progressive dopaminergic alterations and mitochondrial abnormalities in LRRK2 G2019S knock in mice

    PubMed Central

    Yue, M.; Hinkle, K.; Davies, P.; Trushina, E.; Fiesel, F.; Christenson, T.; Schroeder, A.; Zhang, L.; Bowles, E.; Behrouz, B.; Lincoln, S.; Beevers, J.; Milnerwood, A.; Kurti, A.; McLean, P. J.; Fryer, J. D.; Springer, W.; Dickson, D.; Farrer, M.; Melrose, H.

    2015-01-01

    Mutations in the LRRK2 gene represent the most common genetic cause of late onset Parkinson’s disease. The physiological and pathological roles of LRRK2 are yet to be fully determined but evidence points towards LRRK2 mutations causing a gain in kinase function, impacting on neuronal maintenance, vesicular dynamics and neurotransmitter release. To explore the role of physiological levels of mutant LRRK2, we created knock in mice harboring the most common LRRK2 mutation G2019S in their own genome. We have performed comprehensive dopaminergic, behavioral and neuropathological analyses in this model up to 24 months of age. We find elevated kinase activity in the brain of both heterozygous and homozygous mice. Although normal at 6 months, by 12 months of age, basal and pharmacologically induced extracellular release of dopamine is impaired in both heterozygous and homozygous mice, corroborating previous findings in transgenic models over-expressing mutant LRRK2. Via in vivo microdialysis measurement of basal and drug- evoked extracellular release of dopamine and its metabolites, our findings indicate that exocytotic release from the vesicular pool is impaired. Furthermore, profound mitochondrial abnormalities are evident in the striatum of older homozygous G2019S mice, which are consistent with mitochondrial fission arrest. We anticipate the G2019S will be a useful pre-clinical model for further evaluation of early mechanistic events in LRRK2 pathogenesis and for second-hit approaches to model disease progression. PMID:25836420

  17. LRPPRC mutation suppresses cytochrome oxidase activity by altering mitochondrial RNA transcript stability in a mouse model.

    PubMed

    Xu, Fenghao; Addis, Jane B L; Cameron, Jessie M; Robinson, Brian H

    2012-01-01

    LRPPRC (leucine-rich pentatricopeptide repeat-containing) has been shown to be essential for the maturation of COX (cytochrome c oxidase), possibly by stabilizing RNA transcripts of COXI, COXII and COXIII genes encoded in mtDNA (mitochondrial DNA). We established a mouse 'gene-trap' model using ES cells (embryonic stem cells) in which the C-terminus of LRPPRC has been replaced with a β-geo construct. Mice homozygous for this modification were found to be subject to embryonic lethality, with death before 12.5 dpc (days post-coitum). Biochemical analysis of MEFs (mouse embryonic fibroblasts) isolated from homozygous mutants showed a major decrease in COX activity, with slight reductions in other respiratory chain complexes with mtDNA encoded components. Constructs of LRPPRC containing different numbers of PPRs (pentatricopeptide repeats) were expressed as recombinant proteins and tested for their ability to bind to the COXI mRNA transcript. Full binding required the first 19 PPR motifs. A specific segment of COXI mRNA was identified as the binding target for LRPPRC, encoded by mouse mtDNA nucleotides 5961-6020. These data strongly suggest that LRPPRC is involved in the maturation of COX, and is involved in stabilizing of mitochondrial mRNAs encoding COX transcripts. PMID:21880015

  18. Propionate Increases Hepatic Pyruvate Cycling and Anaplerosis and Alters Mitochondrial Metabolism*

    PubMed Central

    Perry, Rachel J.; Borders, Candace B.; Cline, Gary W.; Zhang, Xian-Man; Alves, Tiago C.; Petersen, Kitt Falk; Rothman, Douglas L.; Kibbey, Richard G.; Shulman, Gerald I.

    2016-01-01

    In mammals, pyruvate kinase (PK) plays a key role in regulating the balance between glycolysis and gluconeogenesis; however, in vivo regulation of PK flux by gluconeogenic hormones and substrates is poorly understood. To this end, we developed a novel NMR-liquid chromatography/tandem-mass spectrometry (LC-MS/MS) method to directly assess pyruvate cycling relative to mitochondrial pyruvate metabolism (VPyr-Cyc/VMito) in vivo using [3-13C]lactate as a tracer. Using this approach, VPyr-Cyc/VMito was only 6% in overnight fasted rats. In contrast, when propionate was infused simultaneously at doses previously used as a tracer, it increased VPyr-Cyc/VMito by 20–30-fold, increased hepatic TCA metabolite concentrations 2–3-fold, and increased endogenous glucose production rates by 20–100%. The physiologic stimuli, glucagon and epinephrine, both increased hepatic glucose production, but only glucagon suppressed VPyr-Cyc/VMito. These data show that under fasting conditions, when hepatic gluconeogenesis is stimulated, pyruvate recycling is relatively low in liver compared with VMito flux and that liver metabolism, in particular pyruvate cycling, is sensitive to propionate making it an unsuitable tracer to assess hepatic glycolytic, gluconeogenic, and mitochondrial metabolism in vivo. PMID:27002151

  19. Dynamin-related Protein 1 Inhibition Mitigates Bisphenol A-mediated Alterations in Mitochondrial Dynamics and Neural Stem Cell Proliferation and Differentiation.

    PubMed

    Agarwal, Swati; Yadav, Anuradha; Tiwari, Shashi Kant; Seth, Brashket; Chauhan, Lalit Kumar Singh; Khare, Puneet; Ray, Ratan Singh; Chaturvedi, Rajnish Kumar

    2016-07-29

    The regulatory dynamics of mitochondria comprises well orchestrated distribution and mitochondrial turnover to maintain the mitochondrial circuitry and homeostasis inside the cells. Several pieces of evidence suggested impaired mitochondrial dynamics and its association with the pathogenesis of neurodegenerative disorders. We found that chronic exposure of synthetic xenoestrogen bisphenol A (BPA), a component of consumer plastic products, impaired autophagy-mediated mitochondrial turnover, leading to increased oxidative stress, mitochondrial fragmentation, and apoptosis in hippocampal neural stem cells (NSCs). It also inhibited hippocampal derived NSC proliferation and differentiation, as evident by the decreased number of BrdU- and β-III tubulin-positive cells. All these effects were reversed by the inhibition of oxidative stress using N-acetyl cysteine. BPA up-regulated the levels of Drp-1 (dynamin-related protein 1) and enhanced its mitochondrial translocation, with no effect on Fis-1, Mfn-1, Mfn-2, and Opa-1 in vitro and in the hippocampus. Moreover, transmission electron microscopy studies suggested increased mitochondrial fission and accumulation of fragmented mitochondria and decreased elongated mitochondria in the hippocampus of the rat brain. Impaired mitochondrial dynamics by BPA resulted in increased reactive oxygen species and malondialdehyde levels, disruption of mitochondrial membrane potential, and ATP decline. Pharmacological (Mdivi-1) and genetic (Drp-1siRNA) inhibition of Drp-1 reversed BPA-induced mitochondrial dysfunctions, fragmentation, and apoptosis. Interestingly, BPA-mediated inhibitory effects on NSC proliferation and neuronal differentiations were also mitigated by Drp-1 inhibition. On the other hand, Drp-1 inhibition blocked BPA-mediated Drp-1 translocation, leading to decreased apoptosis of NSC. Overall, our studies implicate Drp-1 as a potential therapeutic target against BPA-mediated impaired mitochondrial dynamics and

  20. Hypobaric Hypoxia Imbalances Mitochondrial Dynamics in Rat Brain Hippocampus

    PubMed Central

    Jain, Khushbu; Prasad, Dipti; Singh, Shashi Bala; Kohli, Ekta

    2015-01-01

    Brain is predominantly susceptible to oxidative stress and mitochondrial dysfunction during hypobaric hypoxia, and therefore undergoes neurodegeneration due to energy crisis. Evidences illustrate a high degree of association for mitochondrial fusion/fission imbalance and mitochondrial dysfunction. Mitochondrial fusion/fission is a recently reported dynamic mechanism which frequently occurs among cellular mitochondrial network. Hence, the study investigated the temporal alteration and involvement of abnormal mitochondrial dynamics (fusion/fission) along with disturbed mitochondrial functionality during chronic exposure to hypobaric hypoxia (HH). The Sprague-Dawley rats were exposed to simulated high altitude equivalent to 25000 ft for 3, 7, 14, 21, and 28 days. Mitochondrial morphology, distribution within neurons, enzyme activity of respiratory complexes, Δψm, ADP: ATP, and expression of fission/fusion key proteins were determined. Results demonstrated HH induced alteration in mitochondrial morphology by damaged, small mitochondria observed in neurons with disturbance of mitochondrial functionality and reduced mitochondrial density in neuronal processes manifested by excessive mitochondrial fragmentation (fission) and decreased mitochondrial fusion as compared to unexposed rat brain hippocampus. The study suggested that imbalance in mitochondrial dynamics is one of the noteworthy mechanisms occurring in hippocampal neurons during HH insult. PMID:26236504

  1. Characterization of mitochondrial transport in neurons.

    PubMed

    Zhou, Bing; Lin, Mei-Yao; Sun, Tao; Knight, Adam L; Sheng, Zu-Hang

    2014-01-01

    Mitochondria are cellular power plants that supply ATP to power various biological activities essential for neuronal growth, survival, and function. Due to extremely varied morphological features, neurons face exceptional challenges to maintain energy homeostasis. Neurons require specialized mechanisms distributing mitochondria to distal synapses where energy is in high demand. Axons and synapses undergo activity-dependent remodeling, thereby altering mitochondrial distribution. The uniform microtubule polarity has made axons particularly useful for exploring mechanisms regulating mitochondrial transport. Mitochondria alter their motility under stress conditions or when their integrity is impaired. Therefore, research into the mechanisms regulating mitochondrial motility in healthy and diseased neurons is an important emerging frontier in neurobiology. In this chapter, we discuss the current protocols in the characterization of axonal mitochondrial transport in primary neuron cultures isolated from embryonic rats and adult mice. We also briefly discuss new procedures developed in our lab in analyzing mitochondrial motility patterns at presynaptic terminals and evaluate their impact on synaptic vesicle release. PMID:25416353

  2. Distribution of nuclear mitochondrial pseudogenes in three pollinator fig wasps associated with Ficus pumila

    NASA Astrophysics Data System (ADS)

    Chen, Yan; Liu, Min; Compton, Stephen G.; Chen, Xiao-Yong

    2014-05-01

    Nuclear mitochondrial pseudogenes (NUMTs) are nuclear sequences transferred from mitochondrial genomes. Although widespread, their distribution patterns among populations or closely related species are rarely documented. We amplified and sequenced the mitochondrial cytochrome b (Cytb) gene to check for NUMTs in three fig wasp species that pollinate Ficus pumila (Wiebesia sp. 1, 2 and 3) in Southeastern China using direct and cloned sequencing. Unambiguous sequences (332) of 487 bp in length belonging to 33 haplotypes were found by direct sequencing. Their distribution was highly concordant with those of cytochrome c oxidase subunit I (COI). Obvious signs of co-amplification of NUMTs were indicated by their uneven distribution. NUMTs were observed in all individuals of 12 populations of Wiebesia sp. 3, and 13 individuals of three northern populations of Wiebesia sp. 1. Sequencing clones of potential co-amplification products confirmed that they were NUMTs. These NUMTs either clustered as NUMT clades basal to mtDNA Cytb clades (basal NUMTs), or together with Cytb haplotypes. Basal NUMTs had either stop codons or frame-shifting mutations resulting from deletion of a 106 bp fragment. In addition, no third codon or synonymous substitutions were detected within each NUMT clade. The phylogenetic tree indicated that basal NUMTs had been inserted into nuclei before divergence of the three species. No significant pairwise differences were detected in their ratios of third codon substitutions, suggesting that these NUMTs originated from one transfer event, with duplication in the nuclear genome resulting in the coexistence of the 381 bp copy. No significant substitution differences were detected between Cytb haplotypes and NUMTs that clustered with Cytb haplotypes. However, these NUMTs coexisted with Cytb haplotypes in multiple populations, suggesting that these NUMT haplotypes were recently inserted into the nuclear genome. Both basal and recently inserted NUMTs were rare

  3. In vivo evidence of mitochondrial dysfunction and altered redox homeostasis in a genetic mouse model of propionic acidemia: Implications for the pathophysiology of this disorder.

    PubMed

    Gallego-Villar, L; Rivera-Barahona, A; Cuevas-Martín, C; Guenzel, A; Pérez, B; Barry, M A; Murphy, M P; Logan, A; Gonzalez-Quintana, A; Martín, M A; Medina, S; Gil-Izquierdo, A; Cuezva, J M; Richard, E; Desviat, L R

    2016-07-01

    Accumulation of toxic metabolites has been described to inhibit mitochondrial enzymes, thereby inducing oxidative stress in propionic acidemia (PA), an autosomal recessive metabolic disorder caused by the deficiency of mitochondrial propionyl-CoA carboxylase. PA patients exhibit neurological deficits and multiorgan complications including cardiomyopathy. To investigate the role of mitochondrial dysfunction in the development of these alterations we have used a hypomorphic mouse model of PA that mimics the biochemical and clinical hallmarks of the disease. We have studied the tissue-specific bioenergetic signature by Reverse Phase Protein Microarrays and analysed OXPHOS complex activities, mtDNA copy number, oxidative damage, superoxide anion and hydrogen peroxide levels. The results show decreased levels and/or activity of several OXPHOS complexes in different tissues of PA mice. An increase in mitochondrial mass and OXPHOS complexes was observed in brain, possibly reflecting a compensatory mechanism including metabolic reprogramming. mtDNA depletion was present in most tissues analysed. Antioxidant enzymes were also found altered. Lipid peroxidation was present along with an increase in hydrogen peroxide and superoxide anion production. These data support the hypothesis that oxidative damage may contribute to the pathophysiology of PA, opening new avenues in the identification of therapeutic targets and paving the way for in vivo evaluation of compounds targeting mitochondrial biogenesis or reactive oxygen species production. PMID:27083476

  4. HSP70 of Leishmania amazonensis alters resistance to different stresses and mitochondrial bioenergetics

    PubMed Central

    Codonho, Bárbara Santoni; Costa, Solange dos Santos; Peloso, Eduardo de Figueiredo; Joazeiro, Paulo Pinto; Gadelha, Fernanda Ramos; Giorgio, Selma

    2016-01-01

    The 70 kDa heat shock protein (HSP70) is a molecular chaperone that assists the parasite Leishmania in returning to homeostasis after being subjected to different types of stress during its life cycle. In the present study, we evaluated the effects of HSP70 transfection of L. amazonensis promastigotes (pTEX-HSP70) in terms of morphology, resistance, infectivity and mitochondrial bioenergetics. The pTEX-HSP70 promastigotes showed no ultrastructural morphological changes compared to control parasites. Interestingly, the pTEX-HSP70 promastigotes are resistant to heat shock, H2O2-induced oxidative stress and hyperbaric environments. Regarding the bioenergetics parameters, the pTEX-HSP70 parasites had higher respiratory rates and released less H2O2 than the control parasites. Nevertheless, the infectivity capacity of the parasites did not change, as verified by the infection of murine peritoneal macrophages and human macrophages, as well as the infection of BALB/c mice. Together, these results indicate that the overexpression of HSP70 protects L. amazonensis from stress, but does not interfere with its infective capacity. PMID:27304024

  5. HSP70 of Leishmania amazonensis alters resistance to different stresses and mitochondrial bioenergetics.

    PubMed

    Codonho, Bárbara Santoni; Costa, Solange Dos Santos; Peloso, Eduardo de Figueiredo; Joazeiro, Paulo Pinto; Gadelha, Fernanda Ramos; Giorgio, Selma

    2016-06-10

    The 70 kDa heat shock protein (HSP70) is a molecular chaperone that assists the parasite Leishmania in returning to homeostasis after being subjected to different types of stress during its life cycle. In the present study, we evaluated the effects of HSP70 transfection of L. amazonensis promastigotes (pTEX-HSP70) in terms of morphology, resistance, infectivity and mitochondrial bioenergetics. The pTEX-HSP70 promastigotes showed no ultrastructural morphological changes compared to control parasites. Interestingly, the pTEX-HSP70 promastigotes are resistant to heat shock, H2O2-induced oxidative stress and hyperbaric environments. Regarding the bioenergetics parameters, the pTEX-HSP70 parasites had higher respiratory rates and released less H2O2 than the control parasites. Nevertheless, the infectivity capacity of the parasites did not change, as verified by the infection of murine peritoneal macrophages and human macrophages, as well as the infection of BALB/c mice. Together, these results indicate that the overexpression of HSP70 protects L. amazonensis from stress, but does not interfere with its infective capacity. PMID:27304024

  6. Mitochondrial Dysfunction, Disruption of F-Actin Polymerization, and Transcriptomic Alterations in Zebrafish Larvae Exposed to Trichloroethylene.

    PubMed

    Wirbisky, Sara E; Damayanti, Nur P; Mahapatra, Cecon T; Sepúlveda, Maria S; Irudayaraj, Joseph; Freeman, Jennifer L

    2016-02-15

    Trichloroethylene (TCE) is primarily used as an industrial degreasing agent and has been in use since the 1940s. TCE is released into the soil, surface, and groundwater. From an environmental and regulatory standpoint, more than half of Superfund hazardous waste sites on the National Priority List are contaminated with TCE. Occupational exposure to TCE occurs primarily via inhalation, while environmental TCE exposure also occurs through ingestion of contaminated drinking water. Current literature links TCE exposure to various adverse health effects including cardiovascular toxicity. Current studies aiming to address developmental cardiovascular toxicity utilized rodent and avian models, with the majority of studies using relatively higher parts per million (mg/L) doses. In this study, to further investigate developmental cardiotoxicity of TCE, zebrafish embryos were treated with 0, 10, 100, or 500 parts per billion (ppb; μg/L) TCE during embryogenesis and/or through early larval stages. After the appropriate exposure period, angiogenesis, F-actin, and mitochondrial function were assessed. A significant dose-response decrease in angiogenesis, F-actin, and mitochondrial function was observed. To further complement this data, a transcriptomic profile of zebrafish larvae was completed to identify gene alterations associated with the 10 ppb TCE exposure. Results from the transcriptomic data revealed that embryonic TCE exposure caused significant changes in genes associated with cardiovascular disease, cancer, and organismal injury and abnormalities with a number of targets in the FAK signaling pathway. Overall, results from our study support TCE as a developmental cardiovascular toxicant, provide molecular targets and pathways for investigation in future studies, and indicate a need for continued priority for environmental regulation. PMID:26745549

  7. Modulation of Citrate Metabolism Alters Aluminum Tolerance in Yeast and Transgenic Canola Overexpressing a Mitochondrial Citrate Synthase1

    PubMed Central

    Anoop, Valar M.; Basu, Urmila; McCammon, Mark T.; McAlister-Henn, Lee; Taylor, Gregory J.

    2003-01-01

    Aluminum (Al) toxicity is a major constraint for crop production in acid soils, although crop cultivars vary in their tolerance to Al. We have investigated the potential role of citrate in mediating Al tolerance in Al-sensitive yeast (Saccharomyces cerevisiae; MMYO11) and canola (Brassica napus cv Westar). Yeast disruption mutants defective in genes encoding tricarboxylic acid cycle enzymes, both upstream (citrate synthase [CS]) and downstream (aconitase [ACO] and isocitrate dehydrogenase [IDH]) of citrate, showed altered levels of Al tolerance. A triple mutant of CS (Δcit123) showed lower levels of citrate accumulation and reduced Al tolerance, whereas Δaco1- and Δidh12-deficient mutants showed higher accumulation of citrate and increased levels of Al tolerance. Overexpression of a mitochondrial CS (CIT1) in MMYO11 resulted in a 2- to 3-fold increase in citrate levels, and the transformants showed enhanced Al tolerance. A gene for Arabidopsis mitochondrial CS was overexpressed in canola using an Agrobacterium tumefaciens-mediated system. Increased levels of CS gene expression and enhanced CS activity were observed in transgenic lines compared with the wild type. Root growth experiments revealed that transgenic lines have enhanced levels of Al tolerance. The transgenic lines showed enhanced levels of cellular shoot citrate and a 2-fold increase in citrate exudation when exposed to 150 μm Al. Our work with yeast and transgenic canola clearly suggest that modulation of different enzymes involved in citrate synthesis and turnover (malate dehydrogenase, CS, ACO, and IDH) could be considered as potential targets of gene manipulation to understand the role of citrate metabolism in mediating Al tolerance. PMID:12913175

  8. Furanodiene alters mitochondrial function in doxorubicin-resistant MCF-7 human breast cancer cells in an AMPK-dependent manner.

    PubMed

    Zhong, Zhang-Feng; Tan, Wen; Qiang, William W; Scofield, Virginia L; Tian, Ke; Wang, Chun-Ming; Qiang, Wen-An; Wang, Yi-Tao

    2016-04-26

    Furanodiene is a bioactive sesquiterpene isolated from the spice-producing Curcuma wenyujin plant (Y. H. Chen and C. Ling) (C. wenyujin), which is a commonly prescribed herb used in clinical cancer therapy by modern practitioners of traditional Chinese medicine. Previously, we have shown that furanodiene inhibits breast cancer cell growth both in vitro and in vivo, however, the mechanism for this effect is not yet known. In this study, therefore, we asked (1) whether cultured breast cancer cells made resistant to the chemotherapeutic agent doxorubicin (DOX) via serial selection protocols are susceptible to furanodiene's anticancer effect, and (2) whether AMP-activated protein kinase (AMPK), which is a regulator of cellular energy homeostasis in eukaryotic cells, participates in this effect. We show here (1) that doxorubicin-resistant MCF-7 (MCF-7/DOX(R)) cells treated with furanodiene exhibit altered mitochondrial function and reduced levels of ATP, resulting in apoptotic cell death, and (2) that AMPK is central to this effect. In these cells, furanodiene (as opposed to doxorubicin) noticeably affects the phosphorylation of AMPK and AMPK pathway intermediates, ACLY and GSK-3β, suggesting that furanodiene reduces mitochondrial function and cellular ATP levels by way of AMPK activation. Finally, we find that the cell permeable agent and AMPK inhibitor compound C (CC), abolishes furanodiene-induced anticancer activity in these MCF-7/DOX(R) cells, with regard to cell growth inhibition and AMPK activation; in contrast, AICAR (5-aminoimidazole-4-carboxamide-1-β-4-ribofuranoside, acadesine), an AMPK activator, augments furanodiene-induced anticancer activity. Furthermore, specific knockdown of AMPK in MCF-7/DOX(R) cells protects these cells from furanodiene-induced cell death. Taken together, these findings suggest that AMPK and its pathway intermediates are promising therapeutic targets for treating chemoresistant breast cancer, and that furanodiene may be an important

  9. Mitochondrial Diversity and Distribution of African Green Monkeys (Chlorocebus Gray, 1870)

    PubMed Central

    Haus, Tanja; Akom, Emmanuel; Agwanda, Bernard; Hofreiter, Michael; Roos, Christian; Zinner, Dietmar

    2013-01-01

    African green monkeys (Chlorocebus) represent a widely distributed and morphologically diverse primate genus in sub-Saharan Africa. Little attention has been paid to their genetic diversity and phylogeny. Based on morphological data, six species are currently recognized, but their taxonomy remains disputed. Here, we aim to characterize the mitochondrial (mt) DNA diversity, biogeography and phylogeny of African green monkeys. We analyzed the complete mitochondrial cytochrome b gene of 126 samples using feces from wild individuals and material from zoo and museum specimens with clear geographical provenance, including several type specimens. We found evidence for nine major mtDNA clades that reflect geographic distributions rather than taxa, implying that the mtDNA diversity of African green monkeys does not conform to existing taxonomic classifications. Phylogenetic relationships among clades could not be resolved suggesting a rapid early divergence of lineages. Several discordances between mtDNA and phenotype indicate that hybridization may have occurred in contact zones among species, including the threatened Bale monkey (Chlorocebus djamdjamensis). Our results provide both valuable data on African green monkeys’ genetic diversity and evolution and a basis for further molecular studies on this genus. Am. J. Primatol. 75:350-360, 2013. © 2013 Wiley Periodicals, Inc. PMID:23307319

  10. Human Cytochrome P450 2E1 Mutations That Alter Mitochondrial Targeting Efficiency and Susceptibility to Ethanol-induced Toxicity in Cellular Models*

    PubMed Central

    Bansal, Seema; Anandatheerthavarada, Hindupur K.; Prabu, Govindaswamy K.; Milne, Ginger L.; Martin, Martha V.; Guengerich, F. Peter; Avadhani, Narayan G.

    2013-01-01

    Human polymorphisms in the 5′-upstream regulatory regions and also protein coding regions of cytochrome P450 2E1 (CYP2E1) are known to be associated with several diseases, including cancer and alcohol liver toxicity. In this study, we report novel mutations in the N-terminal protein targeting regions of CYP2E1 that markedly affect subcellular localization of the protein. Variant W23R/W30R protein (termed W23/30R) is preferentially targeted to mitochondria but very poorly to the endoplasmic reticulum, whereas the L32N protein is preferentially targeted to the endoplasmic reticulum and poorly to mitochondria. These results explain the physiological significance of bimodal CYP targeting to the endoplasmic reticulum and mitochondria previously described. COS-7 cells and HepG2 cells stably expressing W23/30R mutations showed markedly increased alcohol toxicity in terms of increased production of reactive oxygen species, respiratory dysfunction, and loss of cytochrome c oxidase subunits and activity. Stable cells expressing the L32N variant, on the other hand, were relatively less responsive to alcohol-induced toxicity and mitochondrial dysfunction. These results further support our previous data, based on mutational studies involving altered targeting, indicating that mitochondria-targeted CYP2E1 plays an important role in alcohol liver toxicity. The results also provide an interesting new link to genetic variations affecting subcellular distribution of CYP2E1 with alcohol-induced toxicity. PMID:23471973

  11. Possible nitric oxide modulation in protective effect of FK-506 against 3-nitropropionic acid-induced behavioral, oxidative, neurochemical, and mitochondrial alterations in rat brain.

    PubMed

    Kumar, Puneet; Kalonia, Harikesh; Kumar, Anil

    2010-10-01

    FK-506 is an immunosuppressant being widely used for allograft rejection cases in the present clinical scenario. Recently, the neuroprotective effect of FK-506 has also been reported against a number of neurodegenerative diseases in rodents. This study was designed to explore the possible protective effect of FK-506 and its interaction with nitric-oxide modulators against 3-nitropropionic acid (3-NP)-induced behavioural, biochemical, neurochemical, and mitochondrial alterations in striatum, cortex, and hippocampus regions of the brain. Systemic administration of 3-nitropropionic acid produces Huntington-like symptoms in rats. 3-NP (10 mg/kg) treatment for 14 days impaired locomotor activity, grip strength, and body weight. 3-NP treatment significantly raised malondialdehyde, nitrite concentration, depleted antioxidant enzymes (SOD and catalase), and levels of bioamines (dopamine and norepinephrine) in striatum, cortex, and hippocampus areas of rat brain. Significant alterations in mitochondrial enzyme complexes (I, II, and IV) activities and mitochondrial redox activity have also been altered significantly by 3-NP. Pretreatment with FK-506 (0.5, 1, and 2 mg/kg) significantly reversed these behavioral, biochemical, and cellular alterations. L-arginine treatment with a subeffective dose FK-506 (1 mg/kg) reversed the protective effect of FK-506. However, L-NAME pretreatment with FK-506 (1 mg/kg) potentiated the protective effect of FK-506. The present study shows that FK-506 attenuates 3-NP-induced neurotoxicity and nitric-oxide modulation might be involved in its protective action. PMID:20550427

  12. Changes in mitochondrial DNA alter expression of nuclear encoded genes associated with tumorigenesis

    PubMed Central

    Jandova, Jana; Janda, Jaroslav; Sligh, James E

    2012-01-01

    We previously reported the presence of a mtDNA mutation hotspot in UV-induced premalignant and malignant skin tumors in hairless mice. We have modeled this change (9821insA) in murine cybrid cells and demonstrated that this alteration in mtDNA associated with mtBALB haplotype can alter the biochemical characteristics of cybrids and subsequently can contribute to significant changes in their behavioral capabilities. This study shows that changes in mtDNA can produce differences in expression levels of specific nuclear-encoded genes, which are capable of triggering the phenotypes such as seen in malignant cells. From a potential list of differentially expressed genes discovered by microarray analysis, we selected MMP-9 and Col1a1 for further studies. Real-time PCR confirmed up-regulation of MMP-9 and down-regulation of Col1a1 in cybrids harboring the mtDNA associated with the skin tumors. These cybrids also showed significantly increased migration and invasion abilities compared to wild type. The non-specific MMP inhibitor, GM6001, was able to inhibit migratory and invasive abilities of the 9821insA cybrids confirming a critical role of MMPs in cellular motility. Nuclear factor-κB (NF-κB) is a key transcription factor for production of MMPs. An inhibitor of NF-κB activation, Bay11-7082, was able to inhibit the expression of MMP-9 and ultimately decrease migration and invasion of mutant cybrids containing 9821insA. These studies confirm a role of NF-κB in the regulation of MMP-9 expression and through this regulation modulates the migratory and invasive capabilities of cybrids with mutant mtDNA. Enhanced migration and invasion abilities caused by up-regulated MMP-9 may contribute to the tumorigenic phenotypic characteristics of mutant cybrids. PMID:22705584

  13. Application of a Random Walk Model to Geographic Distributions of Animal Mitochondrial DNA Variation

    PubMed Central

    Neigel, J. E.; Avise, J. C.

    1993-01-01

    In rapidly evolving molecules, such as animal mitochondrial DNA, mutations that delineate specific lineages may not be dispersed at sufficient rates to attain an equilibrium between genetic drift and gene flow. Here we predict conditions that lead to nonequilibrium geographic distributions of mtDNA lineages, test the robustness of these predictions and examine mtDNA data sets for consistency with our model. Under a simple isolation by distance model, the variance of an mtDNA lineage's geographic distribution is expected be proportional to its age. Simulation results indicated that this relationship is fairly robust. Analysis of mtDNA data from natural populations revealed three qualitative distributional patterns: (1) significant departure of lineage structure from equilibrium geographic distributions, a pattern exhibited in three rodent species with limited dispersal; (2) nonsignificant departure from equilibrium expectations, exhibited by two avian and two marine fish species with potentials for relatively long-distance dispersal; and (3) a progression from nonequilibrium distributions for younger lineages to equilibrium distributions for older lineages, a condition displayed by one surveyed avian species. These results demonstrate the advantages of considering mutation and genealogy in the interpretation of mtDNA geographic variation. PMID:8307331

  14. Tracing glacial refugia of Triturus newts based on mitochondrial DNA phylogeography and species distribution modeling

    PubMed Central

    2013-01-01

    Introduction The major climatic oscillations during the Quaternary Ice Age heavily influenced the distribution of species and left their mark on intraspecific genetic diversity. Past range shifts can be reconstructed with the aid of species distribution modeling and phylogeographical analyses. We test the responses of the different members of the genus Triturus (i.e. the marbled and crested newts) as the climate shifted from the previous glacial period (the Last Glacial Maximum, ~21 Ka) to the current interglacial. Results We present the results of a dense mitochondrial DNA phylogeography (visualizing genetic diversity within and divergence among populations) and species distribution modeling (using two different climate simulations) for the nine Triturus species on composite maps. Conclusions The combined use of species distribution modeling and mitochondrial phylogeography provides insight in the glacial contraction and postglacial expansion of Triturus. The combined use of the two independent techniques yields a more complete understanding of the historical biogeography of Triturus than both approaches would on their own. Triturus newts generally conform to the ‘southern richness and northern purity’ paradigm, but we also find more intricate patterns, such as the absence of genetic variation and suitable area at the Last Glacial Maximum (T. dobrogicus), an ‘extra-Mediterranean’ refugium in the Carpathian Basin (T. cristatus), and areas where species displaced one another postglacially (e.g. T. macedonicus and western T. karelinii). We provide a biogeographical scenario for Triturus, showing the positions of glacial refugia, the regions that were postglacially colonized and the areas where species displaced one another as they shifted their ranges. PMID:23514662

  15. The enteropathogenic Escherichia coli (EPEC) Map effector is imported into the mitochondrial matrix by the TOM/Hsp70 system and alters organelle morphology.

    PubMed

    Papatheodorou, Panagiotis; Domańska, Grazyna; Oxle, Marius; Mathieu, Johannes; Selchow, Olaf; Kenny, Brendan; Rassow, Joachim

    2006-04-01

    Enteropathogenic Escherichia coli (EPEC) is a human intestinal pathogen and a major cause of diarrhoea, particularly among infants in developing countries. EPEC target the Map and EspF multifunctional effector proteins to host mitochondria - organelles that play crucial roles in regulating cellular processes such as programmed cell death (apoptosis). While both molecules interfere with the organelles ability to maintain a membrane potential, EspF plays the predominant role and is responsible for triggering cell death. To learn more about the Map-mitochondria interaction, we studied Map localization to mitochondria with purified mitochondria (from mammalian and yeast cells) and within intact yeast. This revealed that (i) Map targeting is dependent on the predicted N-terminal mitochondrial targeting sequence, (ii) the N-terminal 44 residues are sufficient to target proteins to mitochondria and (iii) Map import involves the mitochondrial outer membrane translocase (Tom22 and Tom40), the mitochondrial membrane potential, and the matrix chaperone, mtHsp70. These results are consistent with Map import into the mitochondria matrix via the classical import mechanism. As all known, Map-associated phenotypes in mammalian cells are independent of mitochondrial targeting, this may indicate that import serves as a mechanism to remove Map from the cytoplasm thereby regulating cytoplasmic function. Intriguingly, Map, but not EspF, alters mitochondrial morphology with deletion analysis revealing important roles for residues 101-152. Changes in mitochondrial morphology have been linked to alterations in the ability of these organelles to regulate cellular processes providing a possible additional role for Map import into mitochondria. PMID:16548893

  16. Hepatic mitochondrial alteration in CD1 mice associated with prenatal exposures to low doses of perfluorooctanoic acid (PFOA)

    PubMed Central

    Quist, Erin M.; Filgo, Adam J.; Cummings, Connie A.; Kissling, Grace E.; Hoenerhoff, Mark J.; Fenton, Suzanne E.

    2014-01-01

    Perfluorooctanoic acid (PFOA) is a perfluoroalkyl acid primarily used as an industrial surfactant. It persists in the environment and has been linked to potentially toxic and/or carcinogenic effects in animals and people. As a known activator of peroxisome proliferator-activated receptors (PPARs), PFOA exposure can induce defects in fatty acid oxidation, lipid transport, and inflammation. Here, pregnant CD-1 mice were orally gavaged with 0, 0.01, 0.1, 0.3 and 1 mg/kg of PFOA from gestation days (GD) 1 through 17. On postnatal day (PND) 21, histopathologic changes in the livers of offspring included hepatocellular hypertrophy and periportal inflammation that increased in severity by PND 91 in an apparent dose-dependent response. Transmission electron microscopy (TEM) of selected liver sections from PND 91 mice revealed PFOA-induced cellular damage and mitochondrial abnormalities with no evidence of peroxisome proliferation. Within hypertrophied hepatocytes, mitochondria were not only increased in number, but also exhibited altered morphologies suggestive of increased and/or uncontrolled fission and fusion reactions. These findings suggest that peroxisome proliferation is not a component of PFOA-induced hepatic toxicity in animals that are prenatally exposed to low doses of PFOA. PMID:25326589

  17. Changes in mitochondrial DNA alter expression of nuclear encoded genes associated with tumorigenesis

    SciTech Connect

    Jandova, Jana; Janda, Jaroslav; Sligh, James E

    2012-10-15

    We previously reported the presence of a mtDNA mutation hotspot in UV-induced premalignant and malignant skin tumors in hairless mice. We have modeled this change (9821insA) in murine cybrid cells and demonstrated that this alteration in mtDNA associated with mtBALB haplotype can alter the biochemical characteristics of cybrids and subsequently can contribute to significant changes in their behavioral capabilities. This study shows that changes in mtDNA can produce differences in expression levels of specific nuclear-encoded genes, which are capable of triggering the phenotypes such as seen in malignant cells. From a potential list of differentially expressed genes discovered by microarray analysis, we selected MMP-9 and Col1a1 for further studies. Real-time PCR confirmed up-regulation of MMP-9 and down-regulation of Col1a1 in cybrids harboring the mtDNA associated with the skin tumors. These cybrids also showed significantly increased migration and invasion abilities compared to wild type. The non-specific MMP inhibitor, GM6001, was able to inhibit migratory and invasive abilities of the 9821insA cybrids confirming a critical role of MMPs in cellular motility. Nuclear factor-{kappa}B (NF-{kappa}B) is a key transcription factor for production of MMPs. An inhibitor of NF-{kappa}B activation, Bay 11-7082, was able to inhibit the expression of MMP-9 and ultimately decrease migration and invasion of mutant cybrids containing 9821insA. These studies confirm a role of NF-{kappa}B in the regulation of MMP-9 expression and through this regulation modulates the migratory and invasive capabilities of cybrids with mutant mtDNA. Enhanced migration and invasion abilities caused by up-regulated MMP-9 may contribute to the tumorigenic phenotypic characteristics of mutant cybrids. -- Highlights: Black-Right-Pointing-Pointer Cybrids are useful models to study the role of mtDNA changes in cancer development. Black-Right-Pointing-Pointer mtDNA changes affect the expression of nuclear

  18. Mitochondrial alterations and oxidative stress in an acute transient mouse model of muscle degeneration: implications for muscular dystrophy and related muscle pathologies.

    PubMed

    Ramadasan-Nair, Renjini; Gayathri, Narayanappa; Mishra, Sudha; Sunitha, Balaraju; Mythri, Rajeswara Babu; Nalini, Atchayaram; Subbannayya, Yashwanth; Harsha, Hindalahalli Chandregowda; Kolthur-Seetharam, Ullas; Srinivas Bharath, Muchukunte Mukunda

    2014-01-01

    Muscular dystrophies (MDs) and inflammatory myopathies (IMs) are debilitating skeletal muscle disorders characterized by common pathological events including myodegeneration and inflammation. However, an experimental model representing both muscle pathologies and displaying most of the distinctive markers has not been characterized. We investigated the cardiotoxin (CTX)-mediated transient acute mouse model of muscle degeneration and compared the cardinal features with human MDs and IMs. The CTX model displayed degeneration, apoptosis, inflammation, loss of sarcolemmal complexes, sarcolemmal disruption, and ultrastructural changes characteristic of human MDs and IMs. Cell death caused by CTX involved calcium influx and mitochondrial damage both in murine C2C12 muscle cells and in mice. Mitochondrial proteomic analysis at the initial phase of degeneration in the model detected lowered expression of 80 mitochondrial proteins including subunits of respiratory complexes, ATP machinery, fatty acid metabolism, and Krebs cycle, which further decreased in expression during the peak degenerative phase. The mass spectrometry (MS) data were supported by enzyme assays, Western blot, and histochemistry. The CTX model also displayed markers of oxidative stress and a lowered glutathione reduced/oxidized ratio (GSH/GSSG) similar to MDs, human myopathies, and neurogenic atrophies. MS analysis identified 6 unique oxidized proteins from Duchenne muscular dystrophy samples (n = 6) (versus controls; n = 6), including two mitochondrial proteins. Interestingly, these mitochondrial proteins were down-regulated in the CTX model thereby linking oxidative stress and mitochondrial dysfunction. We conclude that mitochondrial alterations and oxidative damage significantly contribute to CTX-mediated muscle pathology with implications for human muscle diseases. PMID:24220031

  19. Sickness behavior induced by cisplatin chemotherapy and radiotherapy in a murine head and neck cancer model is associated with altered mitochondrial gene expression.

    PubMed

    Vichaya, Elisabeth G; Molkentine, Jessica M; Vermeer, Daniel W; Walker, Adam K; Feng, Rebekah; Holder, Gerard; Luu, Katherine; Mason, Ryan M; Saligan, Leo; Heijnen, Cobi J; Kavelaars, Annemieke; Mason, Kathy A; Lee, John H; Dantzer, Robert

    2016-01-15

    The present study was undertaken to explore the possible mechanisms of the behavioral alterations that develop in response to cancer and to cancer therapy. For this purpose we used a syngeneic heterotopic mouse model of human papilloma virus (HPV)-related head and neck cancer in which cancer therapy is curative. Mice implanted or not with HPV+ tumor cells were exposed to sham treatment or a regimen of cisplatin and radiotherapy (chemoradiation). Sickness was measured by body weight loss and reduced food intake. Motivation was measured by burrowing, a highly prevalent species specific behavior. Tumor-bearing mice showed a gradual decrease in burrowing over time and increased brain and liver inflammatory cytokine mRNA expression by 28 days post tumor implantation. Chemoradiation administered to healthy mice resulted in a mild decrease in burrowing, body weight, and food intake. Chemoradiation in tumor-bearing mice decreased tumor growth and abrogated liver and brain inflammation, but failed to attenuate burrowing deficits. PCR array analysis of selected hypoxia and mitochondrial genes revealed that both the tumor and chemoradiation altered the expression of genes involved in mitochondrial energy metabolism within the liver and brain and increased expression of genes related to HIF-1α signaling within the brain. The most prominent changes in brain mitochondrial genes were noted in tumor-bearing mice treated with chemoradiation. These findings indicate that targeting mitochondrial dysfunction following cancer and cancer therapy may be a strategy for prevention of cancer-related symptoms. PMID:26475509

  20. Defective mitochondrial respiration, altered dNTP pools and reduced AP endonuclease 1 activity in peripheral blood mononuclear cells of Alzheimer's disease patients

    PubMed Central

    Maynard, Scott; Hejl, Anne-Mette; Dinh, Thuan-Son T.; Keijzers, Guido; Hansen, Åse M.; Desler, Claus; Moreno-Villanueva, Maria; Bürkle, Alexander; Rasmussen, Lene J.; Waldemar, Gunhild; Bohr, Vilhelm A.

    2015-01-01

    AIMS Accurate biomarkers for early diagnosis of Alzheimer's disease (AD) are badly needed. Recent reports suggest that dysfunctional mitochondria and DNA damage are associated with AD development. In this report, we measured various cellular parameters, related to mitochondrial bioenergetics and DNA damage, in peripheral blood mononuclear cells (PBMCs) of AD and control participants, for biomarker discovery. METHODS PBMCs were isolated from 53 patients with AD of mild to moderate degree and 30 age-matched healthy controls. Tests were performed on the PBMCs from as many of these participants as possible. We measured glycolysis and mitochondrial respiration fluxes using the Seahorse Bioscience flux analyzer, mitochondrial ROS production using flow cytometry, dNTP levels by way of a DNA polymerization assay, DNA strand breaks using the Fluorometric detection of Alkaline DNA Unwinding (FADU) assay, and APE1 incision activity (in cell lysates) on a DNA substrate containing an AP site (to estimate DNA repair efficiency). RESULTS In the PBMCs of AD patients, we found reduced basal mitochondrial oxygen consumption, reduced proton leak, higher dATP level, and lower AP endonuclease 1 activity, depending on adjustments for gender and/or age. CONCLUSIONS: This study reveals impaired mitochondrial respiration, altered dNTP pools and reduced DNA repair activity in PBMCs of AD patients, thus suggesting that these biochemical activities may be useful as biomarkers for AD. PMID:26539816

  1. Altering the Mitochondrial Fatty Acid Synthesis (mtFASII) Pathway Modulates Cellular Metabolic States and Bioactive Lipid Profiles as Revealed by Metabolomic Profiling

    PubMed Central

    Clay, Hayley B.; Parl, Angelika K.; Mitchell, Sabrina L.; Singh, Larry; Bell, Lauren N.; Murdock, Deborah G.

    2016-01-01

    Despite the presence of a cytosolic fatty acid synthesis pathway, mitochondria have retained their own means of creating fatty acids via the mitochondrial fatty acid synthesis (mtFASII) pathway. The reason for its conservation has not yet been elucidated. Therefore, to better understand the role of mtFASII in the cell, we used thin layer chromatography to characterize the contribution of the mtFASII pathway to the fatty acid composition of selected mitochondrial lipids. Next, we performed metabolomic analysis on HeLa cells in which the mtFASII pathway was either hypofunctional (through knockdown of mitochondrial acyl carrier protein, ACP) or hyperfunctional (through overexpression of mitochondrial enoyl-CoA reductase, MECR). Our results indicate that the mtFASII pathway contributes little to the fatty acid composition of mitochondrial lipid species examined. Additionally, loss of mtFASII function results in changes in biochemical pathways suggesting alterations in glucose utilization and redox state. Interestingly, levels of bioactive lipids, including lysophospholipids and sphingolipids, directly correlate with mtFASII function, indicating that mtFASII may be involved in the regulation of bioactive lipid levels. Regulation of bioactive lipid levels by mtFASII implicates the pathway as a mediator of intracellular signaling. PMID:26963735

  2. Resveratrol induces mitochondrial alterations, autophagy and a cryptobiosis-like state in scuticociliates.

    PubMed

    Morais, Pedro; Lamas, Jesús; Sanmartín, Manuel L; Orallo, Francisco; Leiro, José

    2009-11-01

    The phytoalexin resveratrol (RESV), a defensive substance produced by plants in response to infection by pathogenic microorganisms, displays a wide range of biological effects in mammalian cells. In the present study, we analysed the in vitro effect of RESV on the amphizoic ciliate Philasterides dicentrarchi and demonstrated for the first time that this polyphenol causes cellular and metabolic abnormalities that generate an autophagic process and a state similar to cryptobiosis in the ciliate. At concentrations between 50 and 100 microM, RESV had a cytocidal effect when the ciliate was grown in medium with low levels of nutrients, and a cytostatic effect when the parasite was grown in culture media rich in nutrients. At these concentrations, RESV induced alterations in mitochondria, generated autophagy, provoked a reduction in the cell volume, and also drastically reduced the ciliate endocytic activity in small ciliates, generating a state compatible with cryptobiosis. The results demonstrate that RESV is a potent inducer of autophagy in the scuticociliate P. dicentrarchi. The ciliate may therefore be a good experimental organism for identifying autophagy-inducing drugs with therapeutic potential in diseases in which autophagy plays a protective role. PMID:19640787

  3. Nanoscale distribution of mitochondrial import receptor Tom20 is adjusted to cellular conditions and exhibits an inner-cellular gradient.

    PubMed

    Wurm, Christian A; Neumann, Daniel; Lauterbach, Marcel A; Harke, Benjamin; Egner, Alexander; Hell, Stefan W; Jakobs, Stefan

    2011-08-16

    The translocase of the mitochondrial outer membrane (TOM) complex is the main import pore for nuclear-encoded proteins into mitochondria, yet little is known about its spatial distribution within the outer membrane. Super-resolution stimulated emission depletion microscopy was used to determine quantitatively the nanoscale distribution of Tom20, a subunit of the TOM complex, in more than 1,000 cells. We demonstrate that Tom20 is located in clusters whose nanoscale distribution is finely adjusted to the cellular growth conditions as well as to the specific position of a cell within a microcolony. The density of the clusters correlates to the mitochondrial membrane potential. The distributions of clusters of Tom20 and of Tom22 follow an inner-cellular gradient from the perinuclear to the peripheral mitochondria. We conclude that the nanoscale distribution of the TOM complex is finely adjusted to the cellular conditions, resulting in distribution gradients both within single cells and between adjacent cells. PMID:21799113

  4. Mitochondrial evidence for panmixia despite perceived barriers to gene flow in a widely distributed waterbird.

    PubMed

    Oomen, Rebekah A; Reudink, Matthew W; Nocera, Joseph J; Somers, Christopher M; Green, M Clay; Kyle, Christopher J

    2011-01-01

    We examined the mitochondrial genetic structure of American white pelicans (Pelecanus erythrorhynchos) to: 1) verify or refute whether American white pelicans are panmictic and 2) understand if any lack of genetic structure is the result of contemporary processes or historical phenomena. Sequence analysis of mitochondrial DNA control region haplotypes of 367 individuals from 19 colonies located across their North American range revealed a lack of population genetic or phylogeographic structure. This lack of structure was unexpected because: 1) Major geographic barriers such as the North American Continental Divide are thought to limit dispersal; 2) Differences in migratory behavior are expected to promote population differentiation; and 3) Many widespread North American migratory bird species show historic patterns of differentiation resulting from having inhabited multiple glacial refugia. Further, high haplotype diversity and many rare haplotypes are maintained across the species' distribution, despite frequent local extinctions and recolonizations that are expected to decrease diversity. Our findings suggest that American white pelicans have a high effective population size and low natal philopatry. We suggest that the rangewide panmixia we observed in American white pelicans is due to high historical and contemporary gene flow, enabled by high mobility and a lack of effective physical or behavioral barriers. PMID:21705489

  5. Spatial Distributions of Red Blood Cells Significantly Alter Local Haemodynamics

    PubMed Central

    Sherwood, Joseph M.; Holmes, David; Kaliviotis, Efstathios; Balabani, Stavroula

    2014-01-01

    Although bulk changes in red blood cell concentration between vessels have been well characterised, local distributions are generally overlooked. Red blood cells aggregate, deform and migrate within vessels, forming heterogeneous distributions which have considerable effect on local haemodynamics. The present study reports data on the local distribution of human red blood cells in a sequentially bifurcating microchannel, representing the branching geometry of the microvasculature. Imaging methodologies with simple extrapolations are used to infer three dimensional, time-averaged velocity and haematocrit distributions under a range of flow conditions. Strong correlation between the bluntness of the velocity and haematocrit profiles in the parent branch of the geometry is observed and red blood cell aggregation has a notable effect on the observed trends. The two branches of the first bifurcation show similar characteristics in terms of the shapes of the profiles and the extent of plasma skimming, despite the difference in geometric configuration. In the second bifurcation, considerable asymmetry between the branches in the plasma skimming relationship is observed, and elucidated by considering individual haematocrit profiles. The results of the study highlight the importance of considering local haematocrit distributions in the analysis of blood flow and could lead to more accurate computational models of blood flow in microvascular networks. The experimental approaches developed in this work provide a foundation for further examining the characteristics of microhaemodynamics. PMID:24950214

  6. MICROBIOLOGICAL ALTERATIONS IN DISTRIBUTED WATER TREATED WITH GRANULAR ACTIVATED CARBON

    EPA Science Inventory

    The goal of this project was to examine the effect of granular activated carbon (GAC) treatment on the microbiological characteristics of potable water in distribution systems. Data was collected from both field and pilot plant studies. Field monitoring studies from two water tre...

  7. Widespread geographical distribution of mitochondrial haplotypes in rock-dwelling cichlid fishes from Lake Tanganyika.

    PubMed

    Meyer, A; Knowles, L L; Verheyen, E

    1996-06-01

    The spectacularly diverse cichlid fish species flocks of the East African Rift Lakes have elicited much debate on the potential evolutionary mechanisms responsible for the origin of these adaptive radiations. An historical perspective on population structure may offer insights into the processes driving population differentiation and possibly speciation. Here, we examine mitochondrial DNA (mtDNA) sequence variation in two endemic species of rock-dwelling cichlids, Simochromis babaulti and S. diagramma, from Lake Tanganyika. Phylogeographic analyses were used to infer what factors might have been important in the genetic structuring of Simochromis populations. Patterns of mtDNA differentiation in Simochromis were compared to those of other rock-dwelling cichlids to distinguish between competing hypotheses concerning the processes underlying their evolution. In striking contrast to previous findings, populations of Simochromis, even those separated by up to 300 km, were found to share mitochondrial DNA haplotypes. There is no correspondence between mtDNA genealogies and the geographical distribution of populations. Only S. babaulti, but not S. diagramma was found to have a significant association between genetic and geographic distance. These phylogeographic patterns suggest that the evolutionary effects of abiotic and biotic factors shaping population genetic structure may differ substantially even among closely related species of rock-dwelling cichlids. Physical events and barriers to gene flow that are believed to have had a major impact on the geographical distribution and intralacustrine speciation of Tropheus do not seem to have equally strongly affected its close relative Simochromis. These findings emphasize that no single mechanism can be responsible for the formation of population structure, speciation, and the adaptive radiation of all cichlid fishes. PMID:8688956

  8. The role of alterations in mitochondrial dynamics and PGC-1α over-expression in fast muscle atrophy following hindlimb unloading

    PubMed Central

    Cannavino, Jessica; Brocca, Lorenza; Sandri, Marco; Grassi, Bruno; Bottinelli, Roberto; Pellegrino, Maria Antonietta

    2015-01-01

    The mechanisms triggering disuse muscle atrophy remain of debate. It is becoming evident that mitochondrial dysfunction may regulate pathways controlling muscle mass. We have recently shown that mitochondrial dysfunction plays a major role in disuse atrophy of soleus, a slow, oxidative muscle. Here we tested the hypothesis that hindlimb unloading-induced atrophy could be due to mitochondrial dysfunction in fast muscles too, notwithstanding their much lower mitochondrial content. Gastrocnemius displayed atrophy following both 3 and 7 days of unloading. SOD1 and catalase up-regulation, no H2O2 accumulation and no increase of protein carbonylation suggest the antioxidant defence system efficiently reacted to redox imbalance in the early phases of disuse. A defective mitochondrial fusion (Mfn1, Mfn2 and OPA1 down-regulation) occurred together with an impairment of OXPHOS capacity. Furthermore, at 3 days of unloading higher acetyl-CoA carboxylase (ACC) phosphorylation was found, suggesting AMP-activated protein kinase (AMPK) pathway activation. To test the role of mitochondrial alterations we used Tg-mice overexpressing PGC-1α because of the known effect of PGC-1α on stimulation of Mfn2 expression. PGC-α overexpression was sufficient to prevent (i) the decrease of pro-fusion proteins (Mfn1, Mfn2 and OPA1), (ii) activation of the AMPK pathway, (iii) the inducible expression of MuRF1 and atrogin1 and of authopagic factors, and (iv) any muscle mass loss in response to disuse. As the effects of increased PGC-1α activity were sustained throughout disuse, compounds inducing PGC-1α expression could be useful to treat and prevent muscle atrophy also in fast muscles. PMID:25565653

  9. Copper deficiency alters cell bioenergetics and induces mitochondrial fusion through up-regulation of MFN2 and OPA1 in erythropoietic cells

    SciTech Connect

    Bustos, Rodrigo I.; Jensen, Erik L.; Ruiz, Lina M.; Rivera, Salvador; Ruiz, Sebastián; Simon, Felipe; Riedel, Claudia; Ferrick, David; Elorza, Alvaro A.

    2013-08-02

    Highlights: •In copper deficiency, cell proliferation is not affected. In turn, cell differentiation is impaired. •Enlarged mitochondria are due to up-regulation of MNF2 and OPA1. •Mitochondria turn off respiratory chain and ROS production. •Energy metabolism switch from mitochondria to glycolysis. -- Abstract: Copper is essential in cell physiology, participating in numerous enzyme reactions. In mitochondria, copper is a cofactor for respiratory complex IV, the cytochrome c oxidase. Low copper content is associated with anemia and the appearance of enlarged mitochondria in erythropoietic cells. These findings suggest a connection between copper metabolism and bioenergetics, mitochondrial dynamics and erythropoiesis, which has not been explored so far. Here, we describe that bathocuproine disulfonate-induced copper deficiency does not alter erythropoietic cell proliferation nor induce apoptosis. However it does impair erythroid differentiation, which is associated with a metabolic switch between the two main energy-generating pathways. That is, from mitochondrial function to glycolysis. Switching off mitochondria implies a reduction in oxygen consumption and ROS generation along with an increase in mitochondrial membrane potential. Mitochondrial fusion proteins MFN2 and OPA1 were up-regulated along with the ability of mitochondria to fuse. Morphometric analysis of mitochondria did not show changes in total mitochondrial biomass but rather bigger mitochondria because of increased fusion. Similar results were also obtained with human CD34+, which were induced to differentiate into red blood cells. In all, we have shown that adequate copper levels are important for maintaining proper mitochondrial function and for erythroid differentiation where the energy metabolic switch plus the up-regulation of fusion proteins define an adaptive response to copper deprivation to keep cells alive.

  10. Evidence that tyrphostins AG10 and AG18 are mitochondrial uncouplers that alter phosphorylation-dependent cell signaling.

    PubMed

    Soltoff, Stephen P

    2004-03-19

    Receptor agonists that initiate fluid secretion in salivary gland epithelial cells also increase protein phosphorylation. To assess contributions of tyrosine phosphorylation to secretion, changes in muscarinic receptor-initiated secretion (estimated from sodium pump-dependent increases in oxygen consumption) were measured in parotid acinar cells exposed to tyrosine kinase inhibitors. However, like the mitochondrial uncoupler carbonyl cyanide p-trifluoromethoxyphenyl hydrazone, tyrphostins AG10 and AG18 increased the rate of oxygen consumption and reduced cellular ATP by approximately 90% in the absence of the muscarinic agonist carbachol, indicating that these tyrphostins uncouple mitochondria. Exposure of isolated mitochondria to five structurally related tyrphostins demonstrated that their relative potencies as uncouplers differed from their in vitro kinase-inhibitory potencies due to different molecular requirements for the two effects. AG10 and AG18 blocked parotid phosphorylation events only at concentrations that reduced ATP content. The tyrosine kinase inhibitor genistein reduced ATP content by 15-20% and weakly uncoupled isolated mitochondria, but its inhibition of carbachol-mediated protein kinase Cdelta tyrosine phosphorylation and ERK1/2 activation appeared attributable to blocking tyrosine kinases directly. Carbachol itself rapidly reduced ATP content by 15-20%. Carbachol, 3'-O-(4-benzoyl)benzoyl adenosine 5'-triphosphate (P2X(7) receptor agonist), AG10, AG18, and carbonyl cyanide p-trifluoromethoxyphenyl hydrazone rapidly activated the fuel sensor AMP-activated protein kinase (AMPK); however, only AMPK activation by carbachol and BzATP was due to sodium pump stimulation. AG10 and AG18 also activated AMPK and/or uncoupled mitochondria in PC12, HeLa, and HEK293 cells. These studies demonstrate that some tyrosine kinase inhibitors produce cellular effects that are mechanistically different from their primary in vitro characterizations and, as do salivary

  11. Cold exposure induces alterations in porcine triiodothyronine tissue distribution

    SciTech Connect

    Quesada, M.H.; Reed, H.L.; Hesslink, R.; Licauco, G.; Castro, S.; Homer, L.; Young, B. Univ. of Alberta, Edmonton )

    1991-03-11

    Evidence suggests that thyroid hormone plays an active role in modulation of tissue metabolism in response to cold challenge. In an attempts to identify tissues that may have increased capacity for triiodothyronine (T{sub 3}) and be actively involved in the thermogenic process, the authors investigated the T{sub 3} tissue distribution in 5 month old swine exposed to cold (4C) (N = 5) for three weeks, compared with controls at a thermoneutral temperature (20C) (N = 4). Both groups were injected I.V. with ({sup 125}I)T{sub 3} three hours before sacrifice. ({sup 125}I)T{sub 3} was organically extracted from heart, kidney, thyroid gland, adrenal, brain, 4 different types of striated muscles and fat tissues and counted to determine the CPM/gm of tissue. Serum total T{sub 3} and free T{sub 3} were elevated. The bulk of the tissue/serum ratios of cold exposed swine compared with controls were unchanged. However, calculation of the T{sub 3} organ pools revealed that the majority was elevated 2 to 3 times over control. Increases in tissue distribution volume (TVD) occurred in hip fat. Body and organ weights tended to increase but not to a significant degree except for the thyroid gland, which increased 66% over the average control value. The physiological significance of the cold associated augmented organ pool and the increased TCD in hip fat needs to be explored.

  12. 4-Nitrobenzaldehyde thiosemicarbazone: a new compound derived from S-(-)-limonene that induces mitochondrial alterations in epimastigotes and trypomastigotes of Trypanosoma cruzi.

    PubMed

    Britta, Elizandra Aparecida; Scariot, Débora Botura; Falzirolli, Hugo; da Silva, Cleuza Conceição; Ueda-Nakamura, Tânia; Dias Filho, Benedito Prado; Borsali, Redouane; Nakamura, Celso Vataru

    2015-06-01

    Trypanosoma cruzi is the causative agent of Chagas' disease, a parasitic disease that remains a serious health concern with unsatisfactory treatment. Drugs that are currently used to treat Chagas' disease are partially effective in the acute phase but ineffective in the chronic phase of the disease. The aim of the present study was to evaluate the antitrypanosomal activity and morphological, ultrastructural and biochemical alterations induced by a new molecule, 4-nitrobenzaldehyde thiosemicarbazone (BZTS), derived from S-(-)-limonene against epimastigote, trypomastigote and intracellular amastigote forms of T. cruzi. BZTS inhibited the growth of epimastigotes (IC50 = 9·2 μ m), intracellular amastigotes (IC50 = 3·23 μ m) and inhibited the viability of trypomastigotes (EC50 = 1·43 μ m). BZTS had a CC50 of 37·45 μ m in LLCMK2 cells. BZTS induced rounding and distortion of the cell body and severely damaged parasite mitochondria, reflected by extensive swelling and disorganization in the inner mitochondrial membrane and the presence of concentric membrane structures inside the organelle. Cytoplasmic vacuolization, endoplasmic reticulum that surrounded organelles, the loss of mitochondrial membrane potential, and increased mitochondrial O2 •- production were also observed. Our results suggest that BZTS alters the ultrastructure and physiology of mitochondria, which could be closely related to parasite death. PMID:25711881

  13. Homeostatic effect of p-chloro-diphenyl diselenide on glucose metabolism and mitochondrial function alterations induced by monosodium glutamate administration to rats.

    PubMed

    Quines, Caroline B; Rosa, Suzan G; Chagas, Pietro M; da Rocha, Juliana T; Dobrachinski, Fernando; Carvalho, Nélson R; Soares, Félix A; da Luz, Sônia C Almeida; Nogueira, Cristina W

    2016-01-01

    The metabolic syndrome is a group of metabolic alterations considered a worldwide public health problem. Organic selenium compounds have been reported to have many different pharmacological actions, such as anti-hypercholesterolemic and anti-hyperglycemic. The aim of this study was to evaluate the effect of p-chloro-diphenyl diselenide (p-ClPhSe)2, an organic selenium compound, in a model of obesity induced by monosodium glutamate (MSG) administration in rats. The rats were treated during the first ten postnatal days with MSG and received (p-ClPhSe)2 (10 mg/kg, intragastrically) from 45th to 51 th postnatal day. Glucose, lipid and lactate levels were determined in plasma of rats. Glycogen levels and activities of tyrosine aminotransferase, hexokinase, citrate synthase and glucose-6-phosphatase (G-6-Pase) were determined in livers of rats. Renal G-6-Pase activity was also determined. The purine content [Adenosine triphosphate (ATP), adenosine diphosphate (ADP) and adenosine monophosphate] and mitochondrial functionality in the liver were also investigated. p-(ClPhSe)2 did not alter the reduction in growth performance and in the body weight caused by MSG but reduced epididymal fat deposition of rats. p-(ClPhSe)2 restored glycemia, triglycerides, cholesterol and lactate levels as well as the glucose metabolism altered in rats treated with MSG. p-(ClPhSe)2 restored hepatic mitochondrial dysfunction and the decrease in citrate synthase activity and ATP and ADP levels caused by MSG in rats. In summary, (p-ClPhSe)2 had homeostatic effects on glucose metabolism and mitochondrial function alterations induced by MSG administration to rats. PMID:26293481

  14. A Genetic Discontinuity in a Continuously Distributed Species: Mitochondrial DNA in the American Oyster, Crassostrea Virginica

    PubMed Central

    Reeb, C. A.; Avise, J. C.

    1990-01-01

    Restriction site variation in mitochondrial DNA (mtDNA) of the American oyster (Crassostrea virginica) was surveyed in continuously distributed populations sampled from the Gulf of St. Lawrence, Canada, to Brownsville, Texas. mtDNA clonal diversity was high, with 82 different haplotypes revealed among 212 oysters with 13 endonucleases. The mtDNA clones grouped into two distinct genetic arrays (estimated to differ by about 2.6% in nucleotide sequence) that characterized oysters collected north vs. south of a region on the Atlantic mid-coast of Florida. The population genetic ``break'' in mtDNA contrasts with previous reports of near uniformity of nuclear (allozyme) allele frequencies throughout the range of the species, but agrees closely with the magnitude and pattern of mtDNA differentiation reported in other estuarine species in the southeastern United States. This concordance of mtDNA phylogenetic pattern across independently evolving species provides strong evidence for vicariant biogeographic processes in initiating intraspecific population structure. The post-Miocene ecological history of the region suggests that reduced precipitation levels in an enlarged Floridian peninsula may have created discontinuities in suitable estuarine habitat for oysters during glacial periods, and that today such population separations are maintained by the combined influence of ecological gradients and oceanic currents on larval dispersal. The results are consistent with the hypothesis that historical vicariant events, in conjunction with contemporary environmental influences on gene flow, can result in genetic discontinuities in continuously distributed species with high dispersal capability. PMID:1968412

  15. Pancreatic β-Cell Dysfunction in Diet-Induced Obese Mice: Roles of AMP-Kinase, Protein Kinase Cε, Mitochondrial and Cholesterol Metabolism, and Alterations in Gene Expression

    PubMed Central

    Pepin, Émilie; Al-Mass, Anfal; Attané, Camille; Zhang, Kezhuo; Lamontagne, Julien; Lussier, Roxane; Madiraju, S. R. Murthy; Joly, Erik; Ruderman, Neil B.; Sladek, Robert; Prentki, Marc; Peyot, Marie-Line

    2016-01-01

    Diet induced obese (DIO) mice can be stratified according to their weight gain in response to high fat diet as low responders (LDR) and high responders (HDR). This allows the study of β-cell failure and the transitions to prediabetes (LDR) and early diabetes (HDR). C57BL/6N mice were fed for 8 weeks with a normal chow diet (ND) or a high fat diet and stratified as LDR and HDR. Freshly isolated islets from ND, LDR and HDR mice were studied ex-vivo for mitochondrial metabolism, AMPK activity and signalling, the expression and activity of key enzymes of energy metabolism, cholesterol synthesis, and mRNA profiling. Severely compromised glucose-induced insulin secretion in HDR islets, as compared to ND and LDR islets, was associated with suppressed AMP-kinase activity. HDR islets also showed reduced acetyl-CoA carboxylase activity and enhanced activity of 3-hydroxy-3-methylglutaryl-CoA reductase, which led respectively to elevated fatty acid oxidation and increased cholesterol biosynthesis. HDR islets also displayed mitochondrial membrane hyperpolarization and reduced ATP turnover in the presence of elevated glucose. Expression of protein kinase Cε, which reduces both lipolysis and production of signals for insulin secretion, was elevated in DIO islets. Genes whose expression increased or decreased by more than 1.2-fold were minor between LDR and ND islets (17 differentially expressed), but were prominent between HDR and ND islets (1508 differentially expressed). In HDR islets, particularly affected genes were related to cell cycle and proliferation, AMPK signaling, mitochondrial metabolism and cholesterol metabolism. In conclusion, chronically reduced AMPK activity, mitochondrial dysfunction, elevated cholesterol biosynthesis in islets, and substantial alterations in gene expression accompany β-cell failure in HDR islets. The β-cell compensation process in the prediabetic state (LDR) is largely independent of transcriptional adaptive changes, whereas the transition

  16. Pancreatic β-Cell Dysfunction in Diet-Induced Obese Mice: Roles of AMP-Kinase, Protein Kinase Cε, Mitochondrial and Cholesterol Metabolism, and Alterations in Gene Expression.

    PubMed

    Pepin, Émilie; Al-Mass, Anfal; Attané, Camille; Zhang, Kezhuo; Lamontagne, Julien; Lussier, Roxane; Madiraju, S R Murthy; Joly, Erik; Ruderman, Neil B; Sladek, Robert; Prentki, Marc; Peyot, Marie-Line

    2016-01-01

    Diet induced obese (DIO) mice can be stratified according to their weight gain in response to high fat diet as low responders (LDR) and high responders (HDR). This allows the study of β-cell failure and the transitions to prediabetes (LDR) and early diabetes (HDR). C57BL/6N mice were fed for 8 weeks with a normal chow diet (ND) or a high fat diet and stratified as LDR and HDR. Freshly isolated islets from ND, LDR and HDR mice were studied ex-vivo for mitochondrial metabolism, AMPK activity and signalling, the expression and activity of key enzymes of energy metabolism, cholesterol synthesis, and mRNA profiling. Severely compromised glucose-induced insulin secretion in HDR islets, as compared to ND and LDR islets, was associated with suppressed AMP-kinase activity. HDR islets also showed reduced acetyl-CoA carboxylase activity and enhanced activity of 3-hydroxy-3-methylglutaryl-CoA reductase, which led respectively to elevated fatty acid oxidation and increased cholesterol biosynthesis. HDR islets also displayed mitochondrial membrane hyperpolarization and reduced ATP turnover in the presence of elevated glucose. Expression of protein kinase Cε, which reduces both lipolysis and production of signals for insulin secretion, was elevated in DIO islets. Genes whose expression increased or decreased by more than 1.2-fold were minor between LDR and ND islets (17 differentially expressed), but were prominent between HDR and ND islets (1508 differentially expressed). In HDR islets, particularly affected genes were related to cell cycle and proliferation, AMPK signaling, mitochondrial metabolism and cholesterol metabolism. In conclusion, chronically reduced AMPK activity, mitochondrial dysfunction, elevated cholesterol biosynthesis in islets, and substantial alterations in gene expression accompany β-cell failure in HDR islets. The β-cell compensation process in the prediabetic state (LDR) is largely independent of transcriptional adaptive changes, whereas the transition

  17. Effects of Zidovudine Treatment on Heart mRNA Expression and Mitochondrial DNA Copy Number Associated with Alterations in Deoxynucleoside Triphosphate Composition in a Neonatal Rat Model

    PubMed Central

    Snowdin, Jacob W.; Hsiung, Chia-Heng; Kesterson, Daniel G.; Kamath, Vasudeva G.

    2015-01-01

    The prevention of mother-to-child transmission (MTCT) of HIV is a crucial component in HIV therapy. Nucleoside reverse transcriptase inhibitors (NRTIs), primarily 3′-azido-3′-thymidine (AZT [zidovudine]), have been used to treat both mothers and neonates. While AZT is being replaced with less toxic drugs in treating mothers in MTCT prevention, it is still commonly used to treat neonates. Problems related to mitochondrial toxicity and potential mutagenesis associated with AZT treatment have been reported in treated cohorts. Yet little is known concerning the metabolism and potential toxicity of AZT on embryonic and neonatal tissues, especially considering that the enzymes of nucleoside metabolism change dramatically as many tissues convert from hyperplastic to hypertrophic growth during this period. AZT is known to inhibit thymidine phosphorylation and potentially alter deoxynucleoside triphosphate (dNTP) pools in adults. This study examines the effects of AZT on dNTP pools, mRNA expression of deoxynucleoside/deoxynucleotide metabolic enzymes, and mitochondrial DNA levels in a neonatal rat model. Results show that AZT treatment dramatically altered dNTP pools in the first 7 days of life after birth, which normalized to age-matched controls in the second and third weeks. Additionally, AZT treatment dramatically increased the mRNA levels of many enzymes involved in deoxynucleotide synthesis and mitochondrial biogenesis during the first week of life, which normalized to age-matched controls by the third week. These results were correlated with depletion of mitochondrial DNA noted in the second week. Taken together, results demonstrated that AZT treatment has a powerful effect on the deoxynucleotide synthesis pathways that may be associated with toxicity and mutagenesis. PMID:26248377

  18. Mitochondrial encephalomyopathies.

    PubMed

    Lombes, A; Bonilla, E; Dimauro, S

    1989-01-01

    through the mitochondrial membrane, of substrate utilization, of Krebs' cycle, of oxidative phosphorylation and of various complexes of the respiratory chain. The clinical pictures corresponding to these defects are briefly described. The genetic aspects of these diseases are especially interesting because mitochondria have their own genome coding for thirteen proteins, all of them belonging to the respiratory chain. Genetic mitochondrial diseases may result from alterations of the nuclear genome, which are transmitted by mendelian inheritance, but they may also be due to alterations of the mitochondrial genome and transmitted by non-mandelian "maternal" heredity. A few examples are discussed, including Leber's optic atrophy and MERRF syndrome. (ABSTRACT TRUNCATED AT 400 WORDS) PMID:2682927

  19. Study of mitochondrial DNA alteration in the exhaled breath condensate of patients affected by obstructive lung diseases.

    PubMed

    Carpagnano, G E; Lacedonia, D; Carone, M; Soccio, P; Cotugno, G; Palmiotti, G A; Scioscia, G; Foschino Barbaro, M P

    2016-06-01

    Mitochondrial DNA (MtDNA) has been studied as an expression of oxidative stress in asthma, COPD, lung cancer and obstructive sleep apnea, but it has been mainly investigated systemically, although the pathogenetic mechanisms begin in the airways and only later progress to systemic circulation. The aim of this study was to investigate the MtDNA alterations in the exhaled breath condensate (EBC) of patients with asthma, COPD and asthma-COPD overlap syndrome (ACOS). In order to analyze better what happens to mitochondria, both locally and systemically, we compared MtDNA/nDNA in blood and EBC of paired patients. Thirteen (13) COPD patients, 14 asthmatics, 23 ACOS (10 according to Spanish guidelines, 13 in line with GINA guidelines) and 12 healthy subjects were enrolled. Patients underwent clinical and functional diagnostic tests as foreseen by the guidelines. They underwent blood and EBC collection. Content of MtDNA and nuclear DNA (nDNA) was measured in the blood cells and EBC of patients by Real Time PCR. The ratio between MtDNA/nDNA was calculated. For the first time we were able to detect MtDNA/nDNA in the EBC. We found higher exhaled MtDNA/nDNA in COPD, asthmatic and ACOS patients respectively compared to healthy subjects (21.9  ±  4.9 versus 6.51  ±  0.21, p  <  0.05; 7.9  ±  2.5 versus 6.51  ±  0.21, p  =  0.06; 18.3  ±  3.4 versus 6.51  ±  0.21, p  <  0.05). The level of exhaled MtDNA/nDNA was positively correlated with the plasmatic one. The levels of MtDNA/nDNA in the EBC, as expression of oxidative stress, are increased in COPD, asthmatic and ACOS patients compared to healthy subjects. These are preliminary results in a small number of well characterized patients that requires confirmation on a larger population. We support new studies directed toward the analysis of exhaled MtDNA/nDNA as a new exhaled non-invasive marker in other inflammatory/oxidative airways diseases. PMID

  20. Alterations in c-Myc phenotypes resulting from dynamin-related protein 1 (Drp1)-mediated mitochondrial fission

    PubMed Central

    Sarin, M; Wang, Y; Zhang, F; Rothermund, K; Zhang, Y; Lu, J; Sims-Lucas, S; Beer-Stolz, D; Van Houten, B E; Vockley, J; Goetzman, E S; Anthony Graves, J; Prochownik, E V

    2013-01-01

    The c-Myc (Myc) oncoprotein regulates numerous phenotypes pertaining to cell mass, survival and metabolism. Glycolysis, oxidative phosphorylation (OXPHOS) and mitochondrial biogenesis are positively controlled by Myc, with myc−/− rat fibroblasts displaying atrophic mitochondria, structural and functional defects in electron transport chain (ETC) components, compromised OXPHOS and ATP depletion. However, while Myc influences mitochondrial structure and function, it is not clear to what extent the reverse is true. To test this, we induced a state of mitochondrial hyper-fission in rat fibroblasts by de-regulating Drp1, a dynamin-like GTPase that participates in the terminal fission process. The mitochondria from these cells showed reduced mass and interconnectivity, a paucity of cristae, a marked reduction in OXPHOS and structural and functional defects in ETC Complexes I and V. High rates of abortive mitochondrial fusion were observed, likely reflecting ongoing, but ultimately futile, attempts to normalize mitochondrial mass. Cellular consequences included reduction of cell volume, ATP depletion and activation of AMP-dependent protein kinase. In response to Myc deregulation, apoptosis was significantly impaired both in the absence and presence of serum, although this could be reversed by increasing ATP levels by pharmacologic means. The current work demonstrates that enforced mitochondrial fission closely recapitulates a state of Myc deficiency and that mitochondrial integrity and function can affect Myc-regulated cellular behaviors. The low intracellular ATP levels that are frequently seen in some tumors as a result of inadequate vascular perfusion could favor tumor survival by countering the pro-apoptotic tendencies of Myc overexpression. PMID:23764851

  1. Regulation of Mitochondrial Transport in Neurons

    PubMed Central

    Lin, Mei-Yao; Sheng, Zu-Hang

    2015-01-01

    Mitochondria are cellular power plants that supply ATP to power various biological activities essential for neuronal growth, survival, and function. Due to unique morphological features, neurons face exceptional challenges to maintain ATP and Ca2+ homeostasis. Neurons require specialized mechanisms distributing mitochondria to distal areas where energy and Ca2+ buffering are in high demand, such as synapses and axonal branches. These distal compartments also undergo development- and activity-dependent remodeling, thereby altering mitochondrial trafficking and distribution. Mitochondria move bi-directionally, pause briefly, and move again, frequently changing direction. In mature neurons, only one-third of axonal mitochondria are motile. Stationary mitochondria serve as local energy sources and buffer intracellular Ca2+. The balance between motile and stationary mitochondria responds quickly to changes in axonal and synaptic physiology. Furthermore, neurons are postmitotic cells surviving for the lifetime of the organism; thus, mitochondria need to be removed when they become aged or dysfunction. Mitochondria also alter their motility under stress conditions or when their integrity is impaired. Therefore, regulation of mitochondrial transport is essential to meet altered metabolic requirements and to remove aged and damaged mitochondria or replenish healthy ones to distal terminals. Defects in mitochondrial transport and altered distribution are implicated in the pathogenesis of several major neurological disorders. Thus, research into the mechanisms regulating mitochondrial motility is an important emerging frontier in neurobiology. This short review provides an updated overview on motor-adaptor machineries that drive and regulate mitochondrial transport and docking receptors that anchor axonal mitochondria in response to the changes in synaptic activity, metabolic requirement, and altered mitochondrial integrity. The review focuses on microtubule (MT

  2. Mitochondrial cytopathies.

    PubMed

    El-Hattab, Ayman W; Scaglia, Fernando

    2016-09-01

    Mitochondria are found in all nucleated human cells and perform a variety of essential functions, including the generation of cellular energy. Most of mitochondrial proteins are encoded by the nuclear DNA (nDNA) whereas a very small fraction is encoded by the mitochondrial DNA (mtDNA). Mutations in mtDNA or mitochondria-related nDNA genes can result in mitochondrial dysfunction which leads to a wide range of cellular perturbations including aberrant calcium homeostasis, excessive reactive oxygen species production, dysregulated apoptosis, and insufficient energy generation to meet the needs of various organs, particularly those with high energy demand. Impaired mitochondrial function in various tissues and organs results in the multi-organ manifestations of mitochondrial diseases including epilepsy, intellectual disability, skeletal and cardiac myopathies, hepatopathies, endocrinopathies, and nephropathies. Defects in nDNA genes can be inherited in an autosomal or X-linked manners, whereas, mtDNA is maternally inherited. Mitochondrial diseases can result from mutations of nDNA genes encoding subunits of the electron transport chain complexes or their assembly factors, proteins associated with the mitochondrial import or networking, mitochondrial translation factors, or proteins involved in mtDNA maintenance. MtDNA defects can be either point mutations or rearrangements. The diagnosis of mitochondrial disorders can be challenging in many cases and is based on clinical recognition, biochemical screening, histopathological studies, functional studies, and molecular genetic testing. Currently, there are no satisfactory therapies available for mitochondrial disorders that significantly alter the course of the disease. Therapeutic options include symptomatic treatment, cofactor supplementation, and exercise. PMID:26996063

  3. Mild reductions in mitochondrial NAD-dependent isocitrate dehydrogenase activity result in altered nitrate assimilation and pigmentation but do not impact growth.

    PubMed

    Sienkiewicz-Porzucek, Agata; Sulpice, Ronan; Osorio, Sonia; Krahnert, Ina; Leisse, Andrea; Urbanczyk-Wochniak, Ewa; Hodges, Michael; Fernie, Alisdair R; Nunes-Nesi, Adriano

    2010-01-01

    Transgenic tomato (Solanum lycopersicum) plants were generated expressing a fragment of the mitochondrial NAD-dependent isocitrate dehydrogenase gene (SlIDH1) in the antisense orientation. The transgenic plants displayed a mild reduction in the activity of the target enzyme in the leaves but essentially no visible alteration in growth from the wild-type. Fruit size and yield were, however, reduced. These plants were characterized by relatively few changes in photosynthetic parameters, but they displayed a minor decrease in maximum photosynthetic efficiency (Fv/Fm). Furthermore, a clear reduction in flux through the tricarboxylic acid (TCA) cycle was observed in the transformants. Additionally, biochemical analyses revealed that the transgenic lines exhibited considerably altered metabolism, being characterized by slight decreases in the levels of amino acids, intermediates of the TCA cycle, photosynthetic pigments, starch, and NAD(P)H levels, but increased levels of nitrate and protein. Results from these studies show that even small changes in mitochondrial NAD-dependent isocitrate dehydrogenase activity lead to noticeable alterations in nitrate assimilation and suggest the presence of different strategies by which metabolism is reprogrammed to compensate for this deficiency. PMID:20035036

  4. Age-related alterations in oxidatively damaged proteins of mouse skeletal muscle mitochondrial electron transport chain complexes

    PubMed Central

    Choksi, Kashyap B.; Nuss, Jonathan E.; DeFord, James H.; Papaconstantinou, John

    2010-01-01

    Age-associated mitochondrial dysfunction is a major source of reactive oxygen species (ROS) and oxidative modification to proteins. Mitochondrial electron transport chain (ETC) complexes I and III are the sites of ROS production and we hypothesize that proteins of the ETC complexes are primary targets of ROS-mediated modification which impairs their structure and function. The pectoralis, primarily an aerobic red muscle, and quadriceps, primarily an anaerobic white muscle, have different rates of respiration and oxygen-carrying capacity, and hence, different rates of ROS production. This raises the question of whether these muscles exhibit different levels of oxidative protein modification. Our studies reveal that the pectoralis shows a dramatic age-related decline in almost all complex activities that correlates with increased oxidative modification. Similar complex proteins were modified in the quadriceps, at a significantly lower level with less change in enzyme and ETC coupling function. We postulate that mitochondrial ROS causes damage to specific ETC subunits which increases with age and leads to further mitochondrial dysfunction. We conclude that physiological characteristics of the pectoralis vs quadriceps may play a role in age-associated rate of mitochondrial dysfunction and in the decline in tissue function. PMID:18598756

  5. The Protective Effect of Icariin on Mitochondrial Transport and Distribution in Primary Hippocampal Neurons from 3× Tg-AD Mice

    PubMed Central

    Chen, Yijing; Han, Shuangxue; Huang, Xiuxian; Ni, Jiazuan; He, Xiaoyang

    2016-01-01

    Icariin, a pharmacologically active component isolated from the Chinese herb Epimedium, has been shown to improve spatial learning and memory abilities in Alzheimer’s disease (AD) rats through inhibition of Aβ production and tau protein hyperphosphorylation. However, the potential mechanism of icariin-induced protective effects against mitochondrial dysfunctions in AD still remains unclear. In the present study, we investigated the effect of icariin on the modulation of mitochondrial transport and distribution in primary hippocampal cultures from triple-transgenic (3× Tg) AD mice. The results showed that icariin enhanced mitochondrial motility and increased mitochondrial index and mitochondrial length and size in the diseased neurons. Additionally, the expression of the key mitochondrial enzyme, pyruvate dehydrogenase-E1α (PDHE1α), and the post synaptic density protein 95 (PSD95), was preserved in AD neurons after icariin treatment, accompanied by a downregulation of Aβ and phosphorylated tau expression in the corresponding areas. Further study showed that icariin treatment resulted in a decrease in mitochondrial fission protein dynamin-related protein 1 (Drp1) and an increase in fusion protein Mitofusin 2 (Mfn2). These data indicate that icariin can promote mitochondrial transport, protect mitochondria against fragmentation and preserve the expression of mitochondrial and synaptic functional proteins in AD neurons. Thus, icariin may be a potential therapeutic complement for AD and other mitochondrial malfunction-related neuronal degenerative diseases. PMID:26828481

  6. Mitochondrial and liver oxidative stress alterations induced by N-butyl-N-(4-hydroxybutyl)nitrosamine: relevance for hepatotoxicity.

    PubMed

    Oliveira, Maria M; Teixeira, José C; Vasconcelos-Nóbrega, Cármen; Felix, Luis M; Sardão, Vilma A; Colaço, Aura A; Oliveira, Paula A; Peixoto, Francisco P

    2013-06-01

    The most significant toxicological effect of nitrosamines like N-butyl-N-(4-hydroxybutyl)nitrosamine (BBN) is their carcinogenic activity, which may result from exposure to a single large dose or from chronic exposure to relatively small doses. However, its effects on mitochondrial liver bioenergetics were never investigated. Liver is the principal organ responsible for BBN metabolic activation, and mitochondria have a central function in cellular energy production, participating in multiple metabolic pathways. Therefore any negative effect on mitochondrial function may affect cell viability. In the present work, ICR male mice were given 0.05% of BBN in drinking water for a period of 12 weeks and were sacrificed one week later. Mitochondrial physiology was characterized in BBN- and control-treated mice. Transmembrane electric potential developed by mitochondria was significantly affected when pyruvate-malate was used, with an increase in state 4 respiration observed for pyruvate-malate (46%) and succinate (38%). A decrease in the contents of one subunit of mitochondrial complex I and in one subunit of mitochondrial complex IV was also observed. In addition, the activity of both complexes I and II was also decreased by BBN treatment. The treatment with BBN increases the susceptibility of liver mitochondria to the opening of the mitochondrial permeability transition pore. This susceptibility could be related with the increase in the production of H2 O2 by mitochondria and increased oxidative stress confirmed by augmented susceptibility to lipid peroxidation. These results lead to the conclusion that hepatic mitochondria are one primary target for BBN toxic action during liver metabolism. PMID:22095756

  7. Sodium Butyrate, a Histone Deacetylase Inhibitor, Reverses Behavioral and Mitochondrial Alterations in Animal Models of Depression Induced by Early- or Late-life Stress.

    PubMed

    Valvassori, Samira S; Resende, Wilson R; Budni, Josiane; Dal-Pont, Gustavo C; Bavaresco, Daniela V; Réus, Gislaine Z; Carvalho, André F; Gonçalves, Cinara L; Furlanetto, Camila B; Streck, Emilio L; Quevedo, João

    2015-01-01

    The aim of the present study was to evaluate the effects of sodium butyrate on depressive-like behavior and mitochondrial alteration parameters in animal models of depression induced by maternal deprivation or chronic mild stress in Wistar rats. maternal deprivation was established by separating pups from their mothers for 3 h daily from postnatal day 1 to day 10. Chronic mild stress was established by water deprivation, food deprivation, restraint stress, isolation and flashing lights. Sodium butyrate or saline was administered twice a day for 7 days before the behavioral tests. Depressive behavior was evaluated using the forced swim test. The activity of tricarboxylic acid cycle enzymes (succinate dehydrogenase and malate dehydrogenase) and of mitochondrial chain complexes (I, II, II-III and IV) was measured in the striatum of rats. From these analyses it can be observed that sodium butyrate reversed the depressive-like behavior observed in both animal models of depression. Additionally, maternal deprivation and chronic mild stress inhibited mitochondrial respiratory chain complexes and increased the activity of tricarboxylic acid cycle enzymes. Sodium butyrate treatment reversed -maternal deprivation and chronic mild stress- induced dysfunction in the striatum of rats. In conclusion, sodium butyrate showed antidepressant effects in maternal deprivation and chronic mild stress-treated rats, and this effect can be attributed to its action on the neurochemical pathways related to depression. PMID:26216027

  8. Triphenylmethylphosphonium cation distribution as a measure of hormone-induced alterations in white adipocyte membrane potential

    SciTech Connect

    Vallano, M.L.; Sonenberg, M.

    1982-01-01

    Triphenylmethylphosphonium (TPMP+) partitions into the mitochondrial and cytosolic compartments in the rat white adipocyte in a potential-dependent fashion. The relationship between (/sup 3/H)TPMP+ distribution, intracellular cAMP generation and lipolysis in response to hormones and cAMP-mimetic compounds was examined. Half-maximal (/sup 3/H)TPMP+ efflux and glycerol release were produced by 15 and 9 nM adrenocorticotropin, 170 and 110 nM 1-epinephrine, 70 and 27 microM isobutylmethylxanthine and 800 and 750 microM dibutyryl cAMP, respectively. Hormone-stimulated cAMP generation was also correlated with (/sup 3/H)TPMP+ efflux and lipolysis in terms of concentration dependency. In kinetic experiments, glycerol release and (/sup 3/H)TPMP+ efflux in response to adrenocorticotropin or cholera toxin proceeded over a similar time course, whereas an earlier rise in cAMP generation was detected. The depolarizing effect of lipolytic compounds was localized to the mitochondrial compartment. When cells were incubated in elevated-(K+)0 buffer, the stimulatory effect of dibutyryl cAMP on (/sup 3/H)TPMP+ efflux and lipolysis persisted, suggesting that maintenance of the plasma membrane potential is not critical for demonstration of these responses. When the extracellular concentration of serum albumin, which provides binding sites for free fatty acids, was increased from 1 to 3%, an increase in glycerol release and a decrease in (/sup 3/H)TPMP+ efflux was observed. We suggest that intracellular free fatty acid accumulation in response to lipolytic agents causes dissipation of the mitochondrial membrane potential and efflux of (/sup 3/H)TPMP+ from the organelle and cell.

  9. Elevation of Pollen Mitochondrial DNA Copy Number by WHIRLY2: Altered Respiration and Pollen Tube Growth in Arabidopsis.

    PubMed

    Cai, Qiang; Guo, Liang; Shen, Zhao-Rui; Wang, Dan-Yang; Zhang, Quan; Sodmergen

    2015-09-01

    In plants, the copy number of the mitochondrial DNA (mtDNA) can be much lower than the number of mitochondria. The biological significance and regulatory mechanisms of this phenomenon remain poorly understood. Here, using the pollen vegetative cell, we examined the role of the Arabidopsis (Arabidopsis thaliana) mtDNA-binding protein WHIRLY2 (AtWHY2). AtWHY2 decreases during pollen development, in parallel with the rapid degradation of mtDNA; to examine the importance of this decrease, we used the pollen vegetative cell-specific promoter Lat52 to express AtWHY2. The transgenic plants (LWHY2) had very high mtDNA levels in pollen, more than 10 times more than in the wild type (ecotype Columbia-0). LWHY2 plants were fertile, morphologically normal, and set seeds; however, reciprocal crosses with heterozygous plants showed reduced transmission of LWHY2-1 through the male and slower growth of LWHY2-1 pollen tubes. We found that LWHY2-1 pollen had significantly more reactive oxygen species and less ATP compared with the wild type, indicating an effect on mitochondrial respiration. These findings reveal that AtWHY2 affects mtDNA copy number in pollen and suggest that low mtDNA copy numbers might be the normal means by which plant cells maintain mitochondrial genetic information. PMID:26195569

  10. RE-EVALUATION OF THE GEOGRAPHIC DISTRIBUTION AND PHYLOGEOGRAPHY OF THE SIGMODON HISPIDUS COMPLEX BASED ON MITOCHONDRIAL DNA SEQUENCES

    PubMed Central

    Bradley, Robert D.; Henson, Dallas D.; Durish, Nevin D.

    2010-01-01

    Geographic distribution among members of the Sigmodon hispidus complex (Sigmodon hirsutus, S. hispidus, and S. toltecus) were examined using DNA sequences from the mitochondrial cytochrome-b gene. Geographic distribution of each taxon was defined based on DNA sequences obtained from 69 samples (19 newly obtained and 50 from previous studies) collected from North, Central, and South America. These data indicated that S. hispidus is restricted to the southern one-half of the United States and northeastern Mexico (Nuevo León and Tamaulipas), S. toltecus occupies the eastern one-third of Mexico (central Tamaulipas) to northern Honduras, and S. hirsutus is distributed from central Chiapas and southeastern Oaxaca to northern South America (Venezuela). The newly collected data extend distributions of S. hispidus from the southern United States southward into northeastern Mexico and that of S. toltecus from Chiapas, Mexico, southward to Honduras. Genetic divergence and patterns of phylogeography were examined within each taxon. PMID:20613884

  11. Altered Crossover Distribution and Frequency in Spermatocytes of Infertile Men with Azoospermia.

    PubMed

    Ren, He; Ferguson, Kyle; Kirkpatrick, Gordon; Vinning, Tanya; Chow, Victor; Ma, Sai

    2016-01-01

    During meiosis, homologous chromosomes pair to facilitate the exchange of DNA at crossover sites along the chromosomes. The frequency and distribution of crossover formation are tightly regulated to ensure the proper progression of meiosis. Using immunofluorescence techniques, our group and others have studied the meiotic proteins in spermatocytes of infertile men, showing that this population displays a reduced frequency of crossovers compared to fertile men. An insufficient number of crossovers is thought to promote chromosome missegregation, in which case the faulty cell may face meiotic arrest or contribute to the production of aneuploid sperm. Increasing evidence in model organisms has suggested that the distribution of crossovers may also be important for proper chromosome segregation. In normal males, crossovers are shown to be rare near centromeres and telomeres, while frequent in subtelomeric regions. Our study aims to characterize the crossover distribution in infertile men with non-obstructive (NOA) and obstructive azoospermia (OA) along chromosomes 13, 18 and 21. Eight of the 16 NOA men and five of the 21 OA men in our study displayed reduced crossover frequency compared to control fertile men. Seven NOA men and nine OA men showed altered crossover distributions on at least one of the chromosome arms studied compared to controls. We found that although both NOA and OA men displayed altered crossover distributions, NOA men may be at a higher risk of suffering both altered crossover frequencies and distributions compared to OA men. Our data also suggests that infertile men display an increase in crossover formation in regions where they are normally inhibited, specifically near centromeres and telomeres. Finally, we demonstrated a decrease in crossovers near subtelomeres, as well as increased average crossover distance to telomeres in infertile men. As telomere-guided mechanisms are speculated to play a role in crossover formation in subtelomeres, future

  12. Altered Crossover Distribution and Frequency in Spermatocytes of Infertile Men with Azoospermia

    PubMed Central

    Ren, He; Ferguson, Kyle; Kirkpatrick, Gordon; Vinning, Tanya; Chow, Victor; Ma, Sai

    2016-01-01

    During meiosis, homologous chromosomes pair to facilitate the exchange of DNA at crossover sites along the chromosomes. The frequency and distribution of crossover formation are tightly regulated to ensure the proper progression of meiosis. Using immunofluorescence techniques, our group and others have studied the meiotic proteins in spermatocytes of infertile men, showing that this population displays a reduced frequency of crossovers compared to fertile men. An insufficient number of crossovers is thought to promote chromosome missegregation, in which case the faulty cell may face meiotic arrest or contribute to the production of aneuploid sperm. Increasing evidence in model organisms has suggested that the distribution of crossovers may also be important for proper chromosome segregation. In normal males, crossovers are shown to be rare near centromeres and telomeres, while frequent in subtelomeric regions. Our study aims to characterize the crossover distribution in infertile men with non-obstructive (NOA) and obstructive azoospermia (OA) along chromosomes 13, 18 and 21. Eight of the 16 NOA men and five of the 21 OA men in our study displayed reduced crossover frequency compared to control fertile men. Seven NOA men and nine OA men showed altered crossover distributions on at least one of the chromosome arms studied compared to controls. We found that although both NOA and OA men displayed altered crossover distributions, NOA men may be at a higher risk of suffering both altered crossover frequencies and distributions compared to OA men. Our data also suggests that infertile men display an increase in crossover formation in regions where they are normally inhibited, specifically near centromeres and telomeres. Finally, we demonstrated a decrease in crossovers near subtelomeres, as well as increased average crossover distance to telomeres in infertile men. As telomere-guided mechanisms are speculated to play a role in crossover formation in subtelomeres, future

  13. Exercise-induced alterations in pancreatic oxidative stress and mitochondrial function in type 2 diabetic Goto-Kakizaki rats.

    PubMed

    Raza, Haider; John, Annie; Shafarin, Jasmin; Howarth, Frank C

    2016-04-01

    Progressive metabolic complications accompanied by oxidative stress are the hallmarks of type 2 diabetes. The precise molecular mechanisms of the disease complications, however, remain elusive. Exercise-induced nontherapeutic management of type 2 diabetes is the first line of choice to control hyperglycemia and diabetes associated complications. In this study, using 11-month-old type 2 Goto-Kakizaki (GK) rats, we have investigated the effects of exercise on mitochondrial metabolic and oxidative stress in the pancreas. Our results showed an increase in theNADPHoxidase enzyme activity and reactive oxygen species (ROS) production inGKrats, which was inhibited after exercise. Increased lipid peroxidation and protein carbonylation andSODactivity were also inhibited after exercise. Interestingly, glutathione (GSH) level was markedly high in the pancreas ofGKdiabetic rats even after exercise. However,GSH-peroxidase andGSH-reductase activities were significantly reduced. Exercise also induced energy metabolism as observed by increased hexokinase and glutamate dehydrogenase activities. A significant decrease in the activities of mitochondrial ComplexesII/IIIandIVwere observed in theGKrats. Exercise improved only ComplexIVactivity suggesting increased utilization of oxygen. We also observed increased activities of cytochrome P450s in the pancreas ofGKrats which was reduced significantly after exercise.SDS-PAGEresults have shown a decreased expression ofNF-κB, Glut-2, andPPAR-ϒ inGKrats which was markedly increased after exercise. These results suggest differential oxidative stress and antioxidant defense responses after exercise. Our results also suggest improved mitochondrial function and energy utilization in the pancreas of exercisingGKrats. PMID:27095835

  14. Levetiracetam Differentially Alters CD95 Expression of Neuronal Cells and the Mitochondrial Membrane Potential of Immune and Neuronal Cells in vitro.

    PubMed

    Rogers, Susannah K; Shapiro, Lee A; Tobin, Richard P; Tow, Benjamin; Zuzek, Aleksej; Mukherjee, Sanjib; Newell-Rogers, M Karen

    2014-01-01

    Epilepsy is a neurological seizure disorder that affects over 100 million people worldwide. Levetiracetam, either alone, as monotherapy, or as adjunctive treatment, is widely used to control certain types of seizures. Despite its increasing popularity as a relatively safe and effective anti-convulsive treatment option, its mechanism(s) of action are poorly understood. Studies have suggested neuronal, glial, and immune mechanisms of action. Understanding the precise mechanisms of action of levetiracetam would be extremely beneficial in helping to understand the processes involved in seizure generation and epilepsy. Moreover, a full understanding of these mechanisms would help to create more efficacious treatments while minimizing side-effects. The current study examined the effects of levetiracetam on the mitochondrial membrane potential of neuronal and non-neuronal cells, in vitro, in order to determine if levetiracetam influences metabolic processes in these cell types. In addition, this study sought to address possible immune-mediated mechanisms by determining if levetiracetam alters the expression of immune receptor-ligand pairs. The results show that levetiracetam induces expression of CD95 and CD178 on NGF-treated C17.2 neuronal cells. The results also show that levetiracetam increases mitochondrial membrane potential on C17.2 neuronal cells in the presence of nerve growth factor. In contrast, levetiracetam decreases the mitochondrial membrane potential of splenocytes and this effect was dependent on intact invariant chain, thus implicating immune cell interactions. These results suggest that both neuronal and non-neuronal anti-epileptic activities of levetiracetam involve control over energy metabolism, more specifically, mΔΨ. Future studies are needed to further investigate this potential mechanism of action. PMID:24600432

  15. Distribution of buried hydrothermal alteration deduced from high-resolution magnetic surveys in Yellowstone National Park

    NASA Astrophysics Data System (ADS)

    Bouligand, Claire; Glen, Jonathan M. G.; Blakely, Richard J.

    2014-04-01

    Yellowstone National Park (YNP) displays numerous and extensive hydrothermal features. Although hydrothermal alteration in YNP has been extensively studied, the volume, geometry, and type of rock alteration at depth remain poorly constrained. In this study, we use high-resolution airborne and ground magnetic surveys and measurements of remanent and induced magnetization of field and drill core samples to provide constraints on the geometry of hydrothermal alteration within the subsurface of three thermal areas in YNP (Firehole River, Smoke Jumper Hot Springs, and Norris Geyser Basin). We observe that hydrothermal zones from both liquid- and vapor-dominated systems coincide with magnetic lows observed in aeromagnetic surveys and with a decrease of the amplitude of short-wavelength anomalies seen in ground magnetic surveys. This suggests a strong demagnetization of both the shallow and deep substratum within these areas associated with the removal of magnetic minerals by hydrothermal alteration processes. Such demagnetization is confirmed by measurements of rock samples from hydrothermal areas which display significantly decreased total magnetization. A pronounced negative anomaly is observed over the Lone Star Geyser and suggests a significant demagnetization of the substratum associated with areas displaying large-scale fluid flow. The ground and airborne magnetic surveys are used to evaluate the distribution of magnetization in the subsurface. This study shows that significant demagnetization occurs over a thickness of at least a few hundred meters in hydrothermal areas at YNP and that the maximum degree or maximum thickness of demagnetization correlates closely with the location of hydrothermal activity and mapped alteration.

  16. PPAR-α agonism improves whole body and muscle mitochondrial fat oxidation, but does not alter intracellular fat concentrations in burn trauma children in a randomized controlled trial

    PubMed Central

    Cree, Melanie G; Newcomer, Bradley R; Herndon, David N; Qian, Ting; Sun, Dayoung; Morio, Beatrice; Zwetsloot, Jennifer J; Dohm, G Lynis; Fram, Ricki Y; Mlcak, Ronald P; Aarsland, Asle; Wolfe, Robert R

    2007-01-01

    Background Insulin resistance is often associated with increased levels of intracellular triglycerides, diacylglycerol and decreased fat β-oxidation. It was unknown if this relationship was present in patients with acute insulin resistance induced by trauma. Methods A double blind placebo controlled trial was conducted in 18 children with severe burn injury. Metabolic studies to assess whole body palmitate oxidation and insulin sensitivity, muscle biopsies for mitochondrial palmitate oxidation, diacylglycerol, fatty acyl Co-A and fatty acyl carnitine concentrations, and magnetic resonance spectroscopy for muscle and liver triglycerides were compared before and after two weeks of placebo or PPAR-α agonist treatment. Results Insulin sensitivity and basal whole body palmitate oxidation as measured with an isotope tracer increased significantly (P = 0.003 and P = 0.004, respectively) after PPAR-α agonist treatment compared to placebo. Mitochondrial palmitate oxidation rates in muscle samples increased significantly after PPAR-α treatment (P = 0.002). However, the concentrations of muscle triglyceride, diacylglycerol, fatty acyl CoA, fatty acyl carnitine, and liver triglycerides did not change with either treatment. PKC-θ activation during hyper-insulinemia decreased significantly following PPAR-α treatment. Conclusion PPAR-α agonist treatment increases palmitate oxidation and decreases PKC activity along with reduced insulin sensitivity in acute trauma, However, a direct link between these responses cannot be attributed to alterations in intracellular lipid concentrations. PMID:17451602

  17. Transcranial laser therapy alters amyloid precursor protein processing and improves mitochondrial function in a mouse model of Alzheimer's disease

    NASA Astrophysics Data System (ADS)

    McCarthy, Thomas; Yu, Jin; El-Amouri, Salim; Gattoni-Celli, Sebastiano; Richieri, Steve; De Taboada, Luis; Streeter, Jackson; Kindy, Mark S.

    2011-03-01

    Transcranial laser therapy (TLT) using a near-infrared energy laser system was tested in the 2x Tg amyloid precursor protein (APP) mouse model of Alzheimer's Disease (AD). TLT was administered 3 times/week at escalating doses, starting at 3 months of age, and was compared to a control group which received no laser treatment. Treatment sessions were continued for a total of six months. The brains were examined for amyloid plaque burden, Aβ peptides (Aβ1-40 and Aβ1-42 ), APP cleavage products (sAPPα, CTFβ) and mitochondrial activity. Administration of TLT was associated with a significant, dose-dependent reduction in amyloid load as indicated by the numbers of Aβ plaques. Levels of Aβ1-40 and Aβ1-42 levels were likewise reduced in a dose-dependent fashion. All TLT doses produced an increase in brain sAPPα and a decrease in CTFβ levels consistent with an increase in α-secretase activity and a decrease in β-secretase activity. In addition, TLT increased ATP levels and oxygen utilization in treated animals suggesting improved mitochondrial function. These studies suggest that TLT is a potential candidate for treatment of AD.

  18. [Distribution of a deletion-insertion polymorphism in intergenic region V of mitochondrial DNA among the aboriginal population of Tuva].

    PubMed

    Golubenko, M V; Puzyrev, V P; Saliukov, V B; Kucher, A N; Sanchat, N O

    2000-03-01

    Mitochondrial DNA region V deletion-insertion polymorphism was examined in three Tuvinian populations inhabiting western, northeastern, and southeastern parts of the republic. The 9-bp deletion was characterized by nonrandom distribution across the Tuva territory: its frequency in the western population (13.37%) was statistically significantly higher than that in the northeastern (4.62%), and southeastern populations, as well as in Mongols, who are territorially and ethnically close to Tuvinians. The insertion mutation in the region V was detected with a frequency of about 3% in two out of the three populations tested. PMID:10779913

  19. Distribution of the PBC-specific- (M2) and the naturally-occurring mitochondrial antigen- (NOMAg) systems in plants.

    PubMed Central

    Lang, P; Klein, R; Becker, E W; Berg, P A

    1992-01-01

    In previous studies it was demonstrated that antibodies in sera from patients with primary biliary cirrhosis (PBC) and their relatives can recognize two different antigen systems in the ATPase fraction prepared from beef heart mitochondria, namely the PBC-related M2- and the naturally occurring mitochondrial antigen (NOMAg)-related epitopes. Since separation of these two antigen systems could not be achieved using mammalian mitochondria, mitochondria from a wide spectrum of plants were analysed with respect to the presence of mitochondrial antigens. Mitochondria from 29 species of plants were prepared and tested by ELISA and Western blot using marker sera from patients with PBC reacting in the Western blot with M2a,b,c,d (alpha-ketoacid-dehydrogenase complex) and NOMAg-specific sera recognizing the three major epitopes epsilon, zeta, and eta at 65, 61 and 58 kD. Naturally occurring mitochondrial antibody (NOMA)-positive marker sera reacted in the ELISA with mitochondria from all plants, and the zeta/eta positive sera gave also a positive reaction at 61/58 kD in the Western blot while the epsilon epitope could not be visualized by this method. In contrast, the M2 antigen was detected preferentially in lower plants such as algae, fungi, and ferns. Analysing these data with respect to the evolution of proteins one would have to assume that the M2 antigen was lost in most higher plants or underwent some structural alterations. Furthermore, considering the fact that the M2- and the NOMAg-related epitopes could be only partially separated, i.e. there were no plant mitochondria showing only M2 but no NOMAg, one could speculate that anti-M2 antibodies are derived from the pool of naturally occurring antibodies. Images Fig. 2 PMID:1281057

  20. Dynamics of Mitochondrial Transport in Axons

    PubMed Central

    Niescier, Robert F.; Kwak, Sang Kyu; Joo, Se Hun; Chang, Karen T.; Min, Kyung-Tai

    2016-01-01

    The polarized structure and long neurites of neurons pose a unique challenge for proper mitochondrial distribution. It is widely accepted that mitochondria move from the cell body to axon ends and vice versa; however, we have found that mitochondria originating from the axon ends moving in the retrograde direction never reach to the cell body, and only a limited number of mitochondria moving in the anterograde direction from the cell body arrive at the axon ends of mouse hippocampal neurons. Furthermore, we have derived a mathematical formula using the Fokker-Planck equation to characterize features of mitochondrial transport, and the equation could determine altered mitochondrial transport in axons overexpressing parkin. Our analysis will provide new insights into the dynamics of mitochondrial transport in axons of normal and unhealthy neurons. PMID:27242435

  1. Dynamics of Mitochondrial Transport in Axons.

    PubMed

    Niescier, Robert F; Kwak, Sang Kyu; Joo, Se Hun; Chang, Karen T; Min, Kyung-Tai

    2016-01-01

    The polarized structure and long neurites of neurons pose a unique challenge for proper mitochondrial distribution. It is widely accepted that mitochondria move from the cell body to axon ends and vice versa; however, we have found that mitochondria originating from the axon ends moving in the retrograde direction never reach to the cell body, and only a limited number of mitochondria moving in the anterograde direction from the cell body arrive at the axon ends of mouse hippocampal neurons. Furthermore, we have derived a mathematical formula using the Fokker-Planck equation to characterize features of mitochondrial transport, and the equation could determine altered mitochondrial transport in axons overexpressing parkin. Our analysis will provide new insights into the dynamics of mitochondrial transport in axons of normal and unhealthy neurons. PMID:27242435

  2. Altered interaction and distribution of glycosaminoglycans and growth factors in mucopolysaccharidosis type I bone disease.

    PubMed

    Kingma, Sandra D K; Wagemans, Tom; IJlst, Lodewijk; Bronckers, Antonius L J J; van Kuppevelt, Toin H; Everts, Vincent; Wijburg, Frits A; van Vlies, Naomi

    2016-07-01

    The mucopolysaccharidoses (MPSs) comprise a group of lysosomal storage disorders characterized by deficient degradation and subsequent accumulation of glycosaminoglycans (GAGs). Progressive bone and joint disease are a major cause of morbidity, and current therapeutic strategies have limited effect on these symptoms. By elucidating pathophysiological mechanisms underlying bone disease, new therapeutic targets may be identified. Longitudinal growth is regulated by interaction between GAGs and growth factors. Because GAGs accumulate in the MPSs, we hypothesized that altered interaction between growth factors and GAGs contribute to the pathogenesis of MPS bone disease. In this study, binding between GAGs from MPS I chondrocytes and fibroblast growth factor 2 (FGF2) was not significantly different from binding of FGF2 to GAGs from control chondrocytes. FGF2 signaling, however, was increased in MPS I chondrocytes after incubation with FGF2, as compared to control chondrocytes. Using bone cultures, we demonstrated decreased growth of WT mouse bones after incubation with FGF2, but no effect on MPS I bone growth. However, MPS I bones showed decreased growth in the presence of GAGs from MPS I chondrocytes. Finally, we demonstrate altered GAG distribution in MPS I chondrocytes, and altered GAG, FGF2 and Indian hedgehog distribution in growth plates from MPS I mice. In summary, our results suggest that altered interaction and distribution of growth factors and accumulated GAGs may contribute to the pathogenesis of MPS bone disease. In the future, targeting growth factor regulation or the interaction between in growth factors and GAGs might be a promising therapeutic strategy for MPS bone disease. PMID:27105565

  3. Administration of Harmine and Imipramine Alters Creatine Kinase and Mitochondrial Respiratory Chain Activities in the Rat Brain

    PubMed Central

    Réus, Gislaine Z.; Stringari, Roberto B.; Gonçalves, Cinara L.; Scaini, Giselli; Carvalho-Silva, Milena; Jeremias, Gabriela C.; Jeremias, Isabela C.; Ferreira, Gabriela K.; Streck, Emílio L.; Hallak, Jaime E.; Zuardi, Antônio W.; Crippa, José A.; Quevedo, João

    2012-01-01

    The present study evaluated mitochondrial respiratory chain and creatine kinase activities after administration of harmine (5, 10, and 15 mg/kg) and imipramine (10, 20, and 30 mg/kg) in rat brain. After acute treatment occurred an increase of creatine kinase in the prefrontal with imipramine (20 and 30 mg/kg) and harmine in all doses, in the striatum with imipramine (20 and 30 mg/kg) and harmine (5 and 10 mg/kg); harmine (15 mg/kg) decreased creatine kinase. In the chronic treatment occurred an increase of creatine kinase with imipramine (20 mg/kg), harmine (5 mg/kg) in the prefrontal with imipramine (20 and 30 mg/kg) and harmine (5 and 10 mg/kg) in the striatum. In the acute treatment, the complex I increased in the prefrontal with harmine (15 mg/kg) and in the striatum with harmine (10 mg/kg); the complex II decreased with imipramine (20 and 30 mg/kg) in the striatum; the complex IV increased with imipramine (30 mg/kg) in the striatum. In the chronic treatment, the complex I increased with harmine (5 mg/kg) in the prefrontal; the complex II increased with imipramine (20 mg/kg) in the prefrontal; the complex IV increased with harmine (5 mg/kg) in the striatum. Finally, these findings further support the hypothesis that harmine and imipramine could be involved in mitochondrial function. PMID:21969912

  4. Altered levels of mitochondrial DNA are associated with female age, aneuploidy, and provide an independent measure of embryonic implantation potential.

    PubMed

    Fragouli, Elpida; Spath, Katharina; Alfarawati, Samer; Kaper, Fiona; Craig, Andrew; Michel, Claude-Edouard; Kokocinski, Felix; Cohen, Jacques; Munne, Santiago; Wells, Dagan

    2015-06-01

    Mitochondria play a vital role in embryo development. They are the principal site of energy production and have various other critical cellular functions. Despite the importance of this organelle, little is known about the extent of variation in mitochondrial DNA (mtDNA) between individual human embryos prior to implantation. This study investigated the biological and clinical relevance of the quantity of mtDNA in 379 embryos. These were examined via a combination of microarray comparative genomic hybridisation (aCGH), quantitative PCR and next generation sequencing (NGS), providing information on chromosomal status, amount of mtDNA, and presence of mutations in the mitochondrial genome. The quantity of mtDNA was significantly higher in embryos from older women (P=0.003). Additionally, mtDNA levels were elevated in aneuploid embryos, independent of age (P=0.025). Assessment of clinical outcomes after transfer of euploid embryos to the uterus revealed that blastocysts that successfully implanted tended to contain lower mtDNA quantities than those failing to implant (P=0.007). Importantly, an mtDNA quantity threshold was established, above which implantation was never observed. Subsequently, the predictive value of this threshold was confirmed in an independent blinded prospective study, indicating that abnormal mtDNA levels are present in 30% of non-implanting euploid embryos, but are not seen in embryos forming a viable pregnancy. NGS did not reveal any increase in mutation in blastocysts with elevated mtDNA levels. The results of this study suggest that increased mtDNA may be related to elevated metabolism and are associated with reduced viability, a possibility consistent with the 'quiet embryo' hypothesis. Importantly, the findings suggest a potential role for mitochondria in female reproductive aging and the genesis of aneuploidy. Of clinical significance, we propose that mtDNA content represents a novel biomarker with potential value for in vitro fertilisation

  5. Glacial history of the European marine mussels Mytilus, inferred from distribution of mitochondrial DNA lineages.

    PubMed

    Smietanka, B; Burzyński, A; Hummel, H; Wenne, R

    2014-09-01

    Mussels of the genus Mytilus have been used to assess the circumglacial phylogeography of the intertidal zone. These mussels are representative components of the intertidal zone and have rapidly evolving mitochondrial DNA, suitable for high resolution phylogeographic analyses. In Europe, the three Mytilus species currently share mitochondrial haplotypes, owing to the cases of extensive genetic introgression. Genetic diversity of Mytilus edulis, Mytilus trossulus and Mytilus galloprovincialis was studied using a 900-bp long part of the most variable fragment of the control region from one of their two mitochondrial genomes. To this end, 985 specimens were sampled along the European coasts, at sites ranging from the Black Sea to the White Sea. The relevant DNA fragments were amplified, sequenced and analyzed. Contrary to the earlier findings, our coalescence and nested cladistics results show that only a single M. edulis glacial refugium existed in the Atlantic. Despite that, the species survived the glaciation retaining much of its diversity. Unsurprisingly, M. galloprovincialis survived in the Mediterranean Sea. In a relatively short time period, around the climatic optimum at 10 ky ago, the species underwent rapid expansion coupled with population differentiation. Following the expansion, further contemporary gene flow between populations was limited. PMID:24619178

  6. Glacial history of the European marine mussels Mytilus, inferred from distribution of mitochondrial DNA lineages

    PubMed Central

    Śmietanka, B; Burzyński, A; Hummel, H; Wenne, R

    2014-01-01

    Mussels of the genus Mytilus have been used to assess the circumglacial phylogeography of the intertidal zone. These mussels are representative components of the intertidal zone and have rapidly evolving mitochondrial DNA, suitable for high resolution phylogeographic analyses. In Europe, the three Mytilus species currently share mitochondrial haplotypes, owing to the cases of extensive genetic introgression. Genetic diversity of Mytilus edulis, Mytilus trossulus and Mytilus galloprovincialis was studied using a 900-bp long part of the most variable fragment of the control region from one of their two mitochondrial genomes. To this end, 985 specimens were sampled along the European coasts, at sites ranging from the Black Sea to the White Sea. The relevant DNA fragments were amplified, sequenced and analyzed. Contrary to the earlier findings, our coalescence and nested cladistics results show that only a single M. edulis glacial refugium existed in the Atlantic. Despite that, the species survived the glaciation retaining much of its diversity. Unsurprisingly, M. galloprovincialis survived in the Mediterranean Sea. In a relatively short time period, around the climatic optimum at 10 ky ago, the species underwent rapid expansion coupled with population differentiation. Following the expansion, further contemporary gene flow between populations was limited. PMID:24619178

  7. Demyelination increases axonal stationary mitochondrial size and the speed of axonal mitochondrial transport

    PubMed Central

    Kiryu-Seo, Sumiko; Ohno, Nobuhiko; Kidd, Grahame J.; Komuro, Hitoshi; Trapp, Bruce D.

    2010-01-01

    Axonal degeneration contributes to permanent neurological disability in inherited and acquired diseases of myelin. Mitochondrial dysfunction has been proposed as a major contributor to this axonal degeneration. It remains to be determined, however, if myelination, demyelination or remyelination alter the size and distribution of axonal mitochondrial stationary sites or the rates of axonal mitochondrial transport. Using live myelinated rat dorsal root ganglion (DRG) cultures, we investigated whether myelination and lysolecithin-induced demyelination affect axonal mitochondria. Myelination increased the size of axonal stationary mitochondrial sites by 2.3 fold. Following demyelination, the size of axonal stationary mitochondrial sites was increased by an additional 2.2 fold and the transport velocity of motile mitochondria was increased by 47%. These measures returned to the levels of myelinated axons following remyelination. Demyelination induced activating transcription factor (ATF) 3 in DRG neurons. Knockdown of neuronal ATF3 by shRNA abolished the demyelination-induced increase in axonal mitochondrial transport and increased nitrotyrosine immunoreactivity in axonal mitochondria, suggesting that neuronal ATF3 expression and increased mitochondrial transport protect demyelinated axons from oxidative damage. In response to insufficient ATP production, demyelinated axons increase the size of stationary mitochondrial sites and thereby balance ATP production with the increased energy needs of nerve conduction. PMID:20463228

  8. Role and Treatment of Mitochondrial DNA-Related Mitochondrial Dysfunction in Sporadic Neurodegenerative Diseases

    PubMed Central

    Swerdlow, Russell H.

    2012-01-01

    Several sporadic neurodegenerative diseases display phenomena that directly or indirectly relate to mitochondrial function. Data suggesting altered mitochondrial function in these diseases could arise from mitochondrial DNA (mtDNA) are reviewed. Approaches for manipulating mitochondrial function and minimizing the downstream consequences of mitochondrial dysfunction are discussed. PMID:21902672

  9. Caenorhabditis elegans par2.1/mtssb-1 is essential for mitochondrial DNA replication and its defect causes comprehensive transcriptional alterations including a hypoxia response

    SciTech Connect

    Sugimoto, Tomoko; Mori, Chihiro; Takanami, Takako; Sasagawa, Yohei; Saito, Rumiko; Ichiishi, Eiichiro; Higashitani, Atsushi

    2008-01-01

    DNA polymerase {gamma} and mtSSB are key components of the mtDNA replication machinery. To study the biological influences of defects in mtDNA replication, we used RNAi to deplete the gene for a putative mtSSB, par2.1, in Caenorhabditis elegans. In previous systematic RNAi screens, downregulation of this gene has not caused any clearly defective phenotypes. Here, we continuously fed a dsRNA targeting par2.1 to C. elegans over generations. Seventy-nine percent of F1 progeny produced 60-72 h after feeding grew to adulthood but were completely sterile, with an arrest of germline cell proliferation. Analyses of mtDNA copy number and cell cytology indicated that the sterile hermaphrodites had fewer mitochondria. These results indicated that par2.1 essentially functions for germline cell proliferation through mtDNA replication; we therefore termed it mtssb-1. Comprehensive transcriptional alterations including hypoxia response induction dependent on and independent of hif-1 function, occurred by RNAi depletion of mtssb-1. Treatment with ethidium bromide, which impairs mtDNA replication and transcription, caused similar transcriptional alterations. In addition, the frequency of apoptosis in the germline cells was reduced in fertile progeny with a partial RNAi effect. These suggest that RNAi depletion of C. elegans mtssb-1 is useful as a model system of mitochondrial dysfunction.

  10. The human ΔNp53 isoform triggers metabolic and gene expression changes that activate mTOR and alter mitochondrial function.

    PubMed

    Lin, Shih-Chieh; Karoly, Edward D; Taatjes, Dylan J

    2013-10-01

    A naturally occurring p53 isoform that lacks 39 residues at the N-terminus (denoted ΔNp53), when expressed with wild-type p53 (WTp53), forms mixed ΔNp53:WTp53 tetramers and causes accelerated aging in mice. Cellular alterations specific to ΔNp53:WTp53 have been difficult to assess because ΔNp53 and WTp53 coexpression results in tetramer heterogeneity, including formation of contaminating WTp53 tetramers. Based on the p53 tetramer structure, we expressed ΔNp53 and WTp53 as a single transcript that maintained tetramer architecture, ensuring a 2:2 ΔNp53:WTp53 stoichiometry. As expected, ΔNp53:WTp53 tetramers were stable and transcriptionally active in vitro and in cells, largely mimicking the function of WTp53 tetramers. Microarray analyses, however, revealed about 80 genes whose expression was altered twofold or more in ΔNp53:WTp53 cells. Moreover, global metabolomic profiling quantitated hundreds of biochemicals across different experiments (WTp53, ΔNp53:WTp53, plus controls). When evaluated collectively, these data suggested altered mTOR signaling and mitochondrial function-each canonical regulators of longevity-in cells expressing ΔNp53:WTp53 vs. WTp53. Increased levels of free amino acids, increased expression of IRS-1, and decreased expression of INPP5D/SHIP-1 suggested activated mTOR signaling in ΔNp53:WTp53 cells; this was confirmed upon comparative analyses of several mTOR pathway intermediates. We also observed changes in mitochondrial function in ΔNp53:WTp53 cells, which correlated with increased MARS2 expression and increased levels of carnitine, acetyl CoA, ATP, and Krebs cycle intermediates. Finally, increased levels of succinate and 2-hydroxyglutarate indicate potential epigenetic means to propagate ΔNp53:WTp53-induced gene expression changes to cell progeny. This may be especially important for aging, as biological effects manifest over time. PMID:23734707

  11. Multifractal magnetic susceptibility distribution models of hydrothermally altered rocks in the Needle Creek Igneous Center of the Absaroka Mountains, Wyoming

    USGS Publications Warehouse

    Gettings, M.E.

    2005-01-01

    Magnetic susceptibility was measured for 700 samples of drill core from thirteen drill holes in the porphyry copper-molybdenum deposit of the Stinkingwater mining district in the Absaroka Mountains, Wyoming. The magnetic susceptibility measurements, chemical analyses, and alteration class provided a database for study of magnetic susceptibility in these altered rocks. The distribution of the magnetic susceptibilities for all samples is multi-modal, with overlapping peaked distributions for samples in the propylitic and phyllic alteration class, a tail of higher susceptibilities for potassic alteration, and an approximately uniform distribution over a narrow range at the highest susceptibilities for unaltered rocks. Samples from all alteration and mineralization classes show susceptibilities across a wide range of values. Samples with secondary (supergene) alteration due to oxidation or enrichment show lower susceptibilities than primary (hypogene) alteration rock. Observed magnetic susceptibility variations and the monolithological character of the host rock suggest that the variations are due to varying degrees of alteration of blocks of rock between fractures that conducted hydrothermal fluids. Alteration of rock from the fractures inward progressively reduces the bulk magnetic susceptibility of the rock. The model introduced in this paper consists of a simulation of the fracture pattern and a simulation of the alteration of the rock between fractures. A multifractal model generated from multiplicative cascades with unequal ratios produces distributions statistically similar to the observed distributions. The reduction in susceptibility in the altered rocks was modelled as a diffusion process operating on the fracture distribution support. The average magnetic susceptibility was then computed for each block. For the purpose of comparing the model results with observation, the simulated magnetic susceptibilities were then averaged over the same interval as the

  12. Alteration of gallium-67 distribution in tumor-bearing mice following treatment with methotrexate: concise communiction

    SciTech Connect

    Chilton, H.M.; Witcofski, R.L.; Watson, N.E.; Heise, C.M.

    1981-12-01

    The effect of methotrexate (MTX) treatment upon Ga-67 distribution was investigated. Tumor bearing mice were injected with Ga-67 citrate at varying time intervals following MTX treatment administered either as a single dose or in multiple doses. Altered Ga-67 distribution was observed following MTX therapy, the general pattern showing decreased levels in blood and increased uptake in bone. MTX therapy decreased Ga-67 uptake in liver, tumor, and muscle. The effects of MTX are related to the dose and time interval between the administrations of MTX and Ga-67. The serum of MTX-treated mice had lower unsaturated iron-binding capacities and higher levels of unbound Ga-67. Serum iron and iron binding in rats determined 20 hr after MTX therapy showed significantly higher levels of serum iron and lower levels of Ga-67 in blood, and the percent transferrin saturation was approximately 95%. These observations suggest that MTX inhibition of erythropoiesis elevates serum iron levels and decreases the availability of gallium-binding sites in serum, resulting in altered Ga-67 tissue distribution.

  13. Alteration of gallium-67 distribution in tumor-bearing mice following treatment with methotrexate: concise communication

    SciTech Connect

    Chilton, H.M.; Witcofski, R.L.; Watson, N.E. Jr.; Heise, C.M.

    1981-12-01

    The effect of methotrexate (MTX) treatment upon 67Ga distribution was investigated. Tumor bearing mice were injected with 67Ga citrate at varying time intervals following MTX treatment administered either as a single dose or in multiple doses. Altered 67Ga distribution was observed following MTX therapy, the general pattern showing decreased levels in blood and increased uptake in bone. MTX therapy decreased 67Ga uptake in liver, tumor, and muscle. The effects of MTX are related to the dose and time interval between the administrations of MTX and 67Ga. The serum of MTX-treated mice had lower unsaturated iron-binding capacities and higher levels of unbound 67Ga. Serum iron and iron binding in rats determined 20 hr after MTX therapy showed significantly higher levels of serum iron and lower levels of 67Ga in blood, and the percent transferrin saturation was approximately 95%. These observations suggest that MTX inhibition of erythropoiesis elevates serum iron levels and decreases the availability of gallium-binding sites in serum, resulting in altered 67Ga tissue distribution.

  14. Desmodium gangeticum (Linn.) DC. exhibits antihypertrophic effect in isoproterenol-induced cardiomyoblasts via amelioration of oxidative stress and mitochondrial alterations.

    PubMed

    Sankar, Vandana; Pangayarselvi, Balasubramaniam; Prathapan, Ayyappan; Raghu, Kozhiparambil Gopalan

    2013-01-01

    Cardiac hypertrophy occurs in response to increased workload, such as hypertension or valvular heart disease. Oxidative stress has been implicated in cardiac hypertrophy and in its transition to heart failure. This study was taken up with the objective to evaluate the role of oxidative stress in cardiomyoblast hypertrophy and its modulation by Desmodium gangeticum (DG) that has been traditionally used in Ayurveda, an Indian system of medicine. The methanolic root extract was analyzed for total phenolic content and tested for antioxidant potential. Hypertrophy was induced by exposing H9c2 cell line to β-adrenergic receptor agonist, isoproterenol (ISO), for 96 hours. Analyses of reactive oxygen species (ROS) generation, mitochondrial transmembrane potential ([INCREMENT]Ψm), and integrity of permeability transition were performed in ISO as well as Desmodium and ISO-cotreated cells. The results demonstrated potent free radical scavenging activity of DG. Cell line studies showed significant increase in ROS generation, dissipation of [INCREMENT]Ψm, and permeability transition pore opening in ISO-treated cells. Desmodium was found to attenuate ISO-induced hypertrophy by reduction of ROS generation, restoration of [INCREMENT]Ψm, and prevention of permeability transition pore opening. This study is the first documentation of the modulatory effect of DG on cardiac hypertrophy. PMID:23052030

  15. The CDP-Ethanolamine Pathway Regulates Skeletal Muscle Diacylglycerol Content and Mitochondrial Biogenesis without Altering Insulin Sensitivity.

    PubMed

    Selathurai, Ahrathy; Kowalski, Greg M; Burch, Micah L; Sepulveda, Patricio; Risis, Steve; Lee-Young, Robert S; Lamon, Severine; Meikle, Peter J; Genders, Amanda J; McGee, Sean L; Watt, Matthew J; Russell, Aaron P; Frank, Matthew; Jackowski, Suzanne; Febbraio, Mark A; Bruce, Clinton R

    2015-05-01

    Accumulation of diacylglycerol (DG) in muscle is thought to cause insulin resistance. DG is a precursor for phospholipids, thus phospholipid synthesis could be involved in regulating muscle DG. Little is known about the interaction between phospholipid and DG in muscle; therefore, we examined whether disrupting muscle phospholipid synthesis, specifically phosphatidylethanolamine (PtdEtn), would influence muscle DG content and insulin sensitivity. Muscle PtdEtn synthesis was disrupted by deleting CTP:phosphoethanolamine cytidylyltransferase (ECT), the rate-limiting enzyme in the CDP-ethanolamine pathway, a major route for PtdEtn production. While PtdEtn was reduced in muscle-specific ECT knockout mice, intramyocellular and membrane-associated DG was markedly increased. Importantly, however, this was not associated with insulin resistance. Unexpectedly, mitochondrial biogenesis and muscle oxidative capacity were increased in muscle-specific ECT knockout mice and were accompanied by enhanced exercise performance. These findings highlight the importance of the CDP-ethanolamine pathway in regulating muscle DG content and challenge the DG-induced insulin resistance hypothesis. PMID:25955207

  16. Negative regulation of mitochondrial transcription by mitochondrial topoisomerase I

    PubMed Central

    Sobek, Stefan; Dalla Rosa, Ilaria; Pommier, Yves; Bornholz, Beatrice; Kalfalah, Faiza; Zhang, Hongliang; Wiesner, Rudolf J.; von Kleist-Retzow, Jürgen-Christoph; Hillebrand, Frank; Schaal, Heiner; Mielke, Christian; Christensen, Morten O.; Boege, Fritz

    2013-01-01

    Mitochondrial topoisomerase I is a genetically distinct mitochondria-dedicated enzyme with a crucial but so far unknown role in the homeostasis of mitochondrial DNA metabolism. Here, we present data suggesting a negative regulatory function in mitochondrial transcription or transcript stability. Deficiency or depletion of mitochondrial topoisomerase I increased mitochondrial transcripts, whereas overexpression lowered mitochondrial transcripts, depleted respiratory complexes I, III and IV, decreased cell respiration and raised superoxide levels. Acute depletion of mitochondrial topoisomerase I triggered neither a nuclear mito-biogenic stress response nor compensatory topoisomerase IIβ upregulation, suggesting the concomitant increase in mitochondrial transcripts was due to release of a local inhibitory effect. Mitochondrial topoisomerase I was co-immunoprecipitated with mitochondrial RNA polymerase. It selectively accumulated and rapidly exchanged at a subset of nucleoids distinguished by the presence of newly synthesized RNA and/or mitochondrial RNA polymerase. The inactive Y559F-mutant behaved similarly without affecting mitochondrial transcripts. In conclusion, mitochondrial topoisomerase I dampens mitochondrial transcription and thereby alters respiratory capacity. The mechanism involves selective association of the active enzyme with transcriptionally active nucleoids and a direct interaction with mitochondrial RNA polymerase. The inhibitory role of topoisomerase I in mitochondrial transcription is strikingly different from the stimulatory role of topoisomerase I in nuclear transcription. PMID:23982517

  17. Role of mitochondrial dysfunction in cancer progression.

    PubMed

    Hsu, Chia-Chi; Tseng, Ling-Ming; Lee, Hsin-Chen

    2016-06-01

    Deregulated cellular energetics was one of the cancer hallmarks. Several underlying mechanisms of deregulated cellular energetics are associated with mitochondrial dysfunction caused by mitochondrial DNA mutations, mitochondrial enzyme defects, or altered oncogenes/tumor suppressors. In this review, we summarize the current understanding about the role of mitochondrial dysfunction in cancer progression. Point mutations and copy number changes are the two most common mitochondrial DNA alterations in cancers, and mitochondrial dysfunction induced by chemical depletion of mitochondrial DNA or impairment of mitochondrial respiratory chain in cancer cells promotes cancer progression to a chemoresistance or invasive phenotype. Moreover, defects in mitochondrial enzymes, such as succinate dehydrogenase, fumarate hydratase, and isocitrate dehydrogenase, are associated with both familial and sporadic forms of cancer. Deregulated mitochondrial deacetylase sirtuin 3 might modulate cancer progression by regulating cellular metabolism and oxidative stress. These mitochondrial defects during oncogenesis and tumor progression activate cytosolic signaling pathways that ultimately alter nuclear gene expression, a process called retrograde signaling. Changes in the intracellular level of reactive oxygen species, Ca(2+), or oncometabolites are important in the mitochondrial retrograde signaling for neoplastic transformation and cancer progression. In addition, altered oncogenes/tumor suppressors including hypoxia-inducible factor 1 and tumor suppressor p53 regulate mitochondrial respiration and cellular metabolism by modulating the expression of their target genes. We thus suggest that mitochondrial dysfunction plays a critical role in cancer progression and that targeting mitochondrial alterations and mitochondrial retrograde signaling might be a promising strategy for the development of selective anticancer therapy. PMID:27022139

  18. Alterations in Glutathione Redox Metabolism, Oxidative Stress, and Mitochondrial Function in the Left Ventricle of Elderly Zucker Diabetic Fatty Rat Heart

    PubMed Central

    Raza, Haider; John, Annie; Howarth, Frank C.

    2012-01-01

    The Zucker diabetic fatty (ZDF) rat is a genetic model in which the homozygous (FA/FA) male animals develop obesity and type 2 diabetes. Morbidity and mortality from cardiovascular complications, due to increased oxidative stress and inflammatory signals, are the hallmarks of type 2 diabetes. The precise molecular mechanism of contractile dysfunction and disease progression remains to be clarified. Therefore, we have investigated molecular and metabolic targets in male ZDF (30–34 weeks old) rat heart compared to age matched Zucker lean (ZL) controls. Hyperglycemia was confirmed by a 4-fold elevation in non-fasting blood glucose (478.43 ± 29.22 mg/dL in ZDF vs. 108.22 ± 2.52 mg/dL in ZL rats). An increase in reactive oxygen species production, lipid peroxidation and oxidative protein carbonylation was observed in ZDF rats. A significant increase in CYP4502E1 activity accompanied by increased protein expression was also observed in diabetic rat heart. Increased expression of other oxidative stress marker proteins, HO-1 and iNOS was also observed. GSH concentration and activities of GSH-dependent enzymes, glutathione S-transferase and GSH reductase, were, however, significantly increased in ZDF heart tissue suggesting a compensatory defense mechanism. The activities of mitochondrial respiratory enzymes, Complex I and Complex IV were significantly reduced in the heart ventricle of ZDF rats in comparison to ZL rats. Western blot analysis has also suggested a decreased expression of IκB-α and phosphorylated-JNK in diabetic heart tissue. Our results have suggested that mitochondrial dysfunction and increased oxidative stress in ZDF rats might be associated, at least in part, with altered NF-κB/JNK dependent redox cell signaling. These results might have implications in the elucidation of the mechanism of disease progression and designing strategies for diabetes prevention. PMID:23203193

  19. Mitochondrial Ryanodine Receptors and Other Mitochondrial Ca2+ Permeable Channels

    PubMed Central

    Ryu, Shin-Young; Beutner, Gisela; Dirksen, Robert T.; Kinnally, Kathleen W.; Sheu, Shey-Shing

    2010-01-01

    Ca2+ channels that underlie mitochondrial Ca2+ transport first reported decades ago have now just recently been precisely characterized electrophysiologically. Numerous data indicate that mitochondrial Ca2+ uptake via these channels regulates multiple intracellular processes by shaping cytosolic and mitochondrial Ca2+ transients, as well as altering the cellular metabolic and redox state. On the other hand, mitochondrial Ca2+ overload also initiates a cascade of events that leads to cell death. Thus, characterization of mitochondrial Ca2+ channels is central to a comprehensive understanding of cell signaling. Here, we discuss recent progresses in the biophysical and electrophysiological characterization of several distinct mitochondrial Ca2+ channels. PMID:20096690

  20. Volitional regulation of emotions produces distributed alterations in connectivity between visual, attention control, and default networks.

    PubMed

    Sripada, Chandra; Angstadt, Michael; Kessler, Daniel; Phan, K Luan; Liberzon, Israel; Evans, Gary W; Welsh, Robert C; Kim, Pilyoung; Swain, James E

    2014-04-01

    The ability to volitionally regulate emotions is critical to health and well-being. While patterns of neural activation during emotion regulation have been well characterized, patterns of connectivity between regions remain less explored. It is increasingly recognized that the human brain is organized into large-scale intrinsic connectivity networks (ICNs) whose interrelationships are altered in characteristic ways during psychological tasks. In this fMRI study of 54 healthy individuals, we investigated alterations in connectivity within and between ICNs produced by the emotion regulation strategy of reappraisal. In order to gain a comprehensive picture of connectivity changes, we utilized connectomic psychophysiological interactions (PPI), a whole-brain generalization of standard single-seed PPI methods. In particular, we quantified PPI connectivity pair-wise across 837 ROIs placed throughout the cortex. We found that compared to maintaining one's emotional responses, engaging in reappraisal produced robust and distributed alterations in functional connections involving visual, dorsal attention, frontoparietal, and default networks. Visual network in particular increased connectivity with multiple ICNs including dorsal attention and default networks. We interpret these findings in terms of the role of these networks in mediating critical constituent processes in emotion regulation, including visual processing, stimulus salience, attention control, and interpretation and contextualization of stimuli. Our results add a new network perspective to our understanding of the neural underpinnings of emotion regulation, and highlight that connectomic methods can play a valuable role in comprehensively investigating modulation of connectivity across task conditions. PMID:24246489

  1. Loss of Mitochondrial Malate Dehydrogenase Activity Alters Seed Metabolism Impairing Seed Maturation and Post-Germination Growth in Arabidopsis.

    PubMed

    Sew, Yun Shin; Ströher, Elke; Fenske, Ricarda; Millar, A Harvey

    2016-06-01

    Mitochondrial malate dehydrogenase (mMDH; EC 1.1.1.37) has multiple roles; the most commonly described is its catalysis of the interconversion of malate and oxaloacetate in the tricarboxylic acid cycle. The roles of mMDH in Arabidopsis (Arabidopsis thaliana) seed development and germination were investigated in mMDH1 and mMDH2 double knockout plants. A significant proportion of mmdh1mmdh2 seeds were nonviable and developed only to torpedo-shaped embryos, indicative of arrested seed embryo growth during embryogenesis. The viable mmdh1mmdh2 seeds had an impaired maturation process that led to slow germination rates as well as retarded post-germination growth, shorter root length, and decreased root biomass. During seed development, mmdh1mmdh2 showed a paler green phenotype than the wild type and exhibited deficiencies in reserve accumulation and reduced final seed biomass. The respiration rate of mmdh1mmdh2 seeds was significantly elevated throughout their maturation, consistent with the previously reported higher respiration rate in mmdh1mmdh2 leaves. Mutant seeds showed a consistently higher content of free amino acids (branched-chain amino acids, alanine, serine, glycine, proline, and threonine), differences in sugar and sugar phosphate levels, and lower content of 2-oxoglutarate. Seed-aging assays showed that quiescent mmdh1mmdh2 seeds lost viability more than 3 times faster than wild-type seeds. Together, these data show the important role of mMDH in the earliest phases of the life cycle of Arabidopsis. PMID:27208265

  2. Altered distribution of mitochondria in rat soleus muscle fibers after spaceflight

    NASA Technical Reports Server (NTRS)

    Bell, Gordon J.; Martin, Thomas P.; Il'ina-Kakueva, E. I.; Oganov, V. S.; Edgerton, V. R.

    1992-01-01

    The effect of an exposure to microgravity on the distribution of the succinate dehydrogenase (SDH) activity throughout the soleus muscle fibers was investigated by measuring SDH activity throughout the cross section of 20-30 fibers each of the slow-twitch oxidative and fast-twitch oxidative-glycolytic types of fibers in rats exposed to 12.5 days in space aboard Cosmos 1887. It was found that, after the spaceflight, the entire regional distribution of SDH activity was significantly altered (as compared to ground controls) in the slow-twitch oxidative fibers, whereas the fast-twitch oxidative-glycolytic fibers from muscles of flown rats exhibited a significantly lower SDH activity only in their subsarcolemmal region.

  3. Element distribution is altered in a zone surrounding human glioblastoma multiforme.

    PubMed

    Dehnhardt, Markus; Zoriy, Myroslav V; Khan, Zahidul; Reifenberger, Guido; Ekström, Tomas J; Sabine Becker, J; Zilles, Karl; Bauer, Andreas

    2008-01-01

    Recent data indicate that A(1) adenosine receptor (A(1)AR) density is increased in a zone surrounding human and experimental gliomas. On the contrary, tumor tissue and adjacent brain tissue show low to intermediate A(1)AR densities. In order to assess whether changes in A(1)AR expression are indicating further processes of a chemical reorganization of the peritumoral zone, we investigated element concentrations and distribution patterns of copper and zinc in six human glioblastoma multiforme (GBM) specimens by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS). Uranium and lead were used as external standards. Copper and zinc levels were increased in a peritumoral zone corresponding to the region of elevated A(1)AR density. They showed a lower density in the solid tumor in comparison to surrounding brain tissue, although the cellular density was higher within GBM. Our findings suggest that the immediate vicinity of GBM is characterized by increased levels of copper and zinc supporting the view that higher A(1)AR density surrounding GBM is not an isolated alteration of peritumoral tissue but an indicator of complex changes in the vicinity of infiltrative tumors. Further research is needed to explore the pathophysiological consequences of altered peritumoral element distribution. PMID:18319136

  4. Molecular Identification of Paramecium bursaria Syngens and Studies on Geographic Distribution using Mitochondrial Cytochrome C Oxidase Subunit I (COI).

    PubMed

    Zagata, Patrycja; Greczek-Stachura, Magdalena; Tarcz, Sebastian; Rautian, Maria

    2015-01-01

    Paramecium bursaria is composed of five syngens that are morphologically indistinguishable but sexually isolated. The aim of the present study was to confirm by molecular methods (analyses of mitochondrial COI) the identification of P. bursaria syngens originating from different geographical locations. Phylograms constructed using both the neighbor-joining and maximum-likelihood methods based on a comparison of 34 sequences of P. bursaria strains and P. multimicronucleatum, P. caudatum and P.calkinsi strains used as outgroups revealed five clusters which correspond to results obtained previously by mating reaction. Our analysis shows the existence of 24 haplotypes for the COI gene sequence in the studied strains. The interspecies haplotype diversity was Hd = 0.967. We confirmed genetic differentiation between strains of P. bursaria and the occurrence of a correlation between geographical distribution and the correspondent syngen. PMID:26103689

  5. Mitochondrial DNA mutation-elicited oxidative stress, oxidative damage, and altered gene expression in cultured cells of patients with MERRF syndrome.

    PubMed

    Wu, Shi-Bei; Ma, Yi-Shing; Wu, Yu-Ting; Chen, Yin-Chiu; Wei, Yau-Huei

    2010-06-01

    Myoclonic epilepsy and ragged-red fibers (MERRF) syndrome is a rare disorder characterized by myoclonus, muscle weakness, cerebellar ataxia, heart conduction block, and dementia. It has been documented that 80-90% of the patients with MERRF syndrome are caused by the A8344G mutation in the tRNA(Lys) gene of mitochondrial DNA (mtDNA). We and other investigators have reported that the mtDNA mutation results in not only inefficient generation of adenosine triphosphate but also increased production of reactive oxygen species (ROS) in cultured cells harboring A8344G mutation of mtDNA. In addition, we found an imbalance in the gene expression of antioxidant enzymes in the skin fibroblasts of MERRF patients. The mRNA, protein, and enzyme activity levels of manganese-superoxide dismutase were increased, but those of Cu,Zn-SOD, catalase, and glutathione peroxidase did not show significant changes. Recently, we showed that the excess ROS could damage voltage-dependent anion channel, prohibitin, Lon protease, and aconitase in the MERRF cells. Moreover, there was a dramatic increase in the gene expression and activity of matrix metalloproteinase 1, which may contribute to the cytoskeleton remodeling involved in the weakness and atrophy of muscle commonly seen in MERRF patients. Taken together, we suggest that mtDNA mutation-elicited oxidative stress, oxidative damage, and altered gene expression are involved in the pathogenesis and progression of MERRF syndrome. PMID:20411357

  6. Mitochondrial carbonic anhydrase VA deficiency resulting from CA5A alterations presents with hyperammonemia in early childhood.

    PubMed

    van Karnebeek, Clara D; Sly, William S; Ross, Colin J; Salvarinova, Ramona; Yaplito-Lee, Joy; Santra, Saikat; Shyr, Casper; Horvath, Gabriella A; Eydoux, Patrice; Lehman, Anna M; Bernard, Virginie; Newlove, Theresa; Ukpeh, Henry; Chakrapani, Anupam; Preece, Mary Anne; Ball, Sarah; Pitt, James; Vallance, Hilary D; Coulter-Mackie, Marion; Nguyen, Hien; Zhang, Lin-Hua; Bhavsar, Amit P; Sinclair, Graham; Waheed, Abdul; Wasserman, Wyeth W; Stockler-Ipsiroglu, Sylvia

    2014-03-01

    Four children in three unrelated families (one consanguineous) presented with lethargy, hyperlactatemia, and hyperammonemia of unexplained origin during the neonatal period and early childhood. We identified and validated three different CA5A alterations, including a homozygous missense mutation (c.697T>C) in two siblings, a homozygous splice site mutation (c.555G>A) leading to skipping of exon 4, and a homozygous 4 kb deletion of exon 6. The deleterious nature of the homozygous mutation c.697T>C (p.Ser233Pro) was demonstrated by reduced enzymatic activity and increased temperature sensitivity. Carbonic anhydrase VA (CA-VA) was absent in liver in the child with the homozygous exon 6 deletion. The metabolite profiles in the affected individuals fit CA-VA deficiency, showing evidence of impaired provision of bicarbonate to the four enzymes that participate in key pathways in intermediary metabolism: carbamoylphosphate synthetase 1 (urea cycle), pyruvate carboxylase (anaplerosis, gluconeogenesis), propionyl-CoA carboxylase, and 3-methylcrotonyl-CoA carboxylase (branched chain amino acids catabolism). In the three children who were administered carglumic acid, hyperammonemia resolved. CA-VA deficiency should therefore be added to urea cycle defects, organic acidurias, and pyruvate carboxylase deficiency as a treatable condition in the differential diagnosis of hyperammonemia in the neonate and young child. PMID:24530203

  7. Mitochondrial Carbonic Anhydrase VA Deficiency Resulting from CA5A Alterations Presents with Hyperammonemia in Early Childhood

    PubMed Central

    van Karnebeek, Clara D.; Sly, William S.; Ross, Colin J.; Salvarinova, Ramona; Yaplito-Lee, Joy; Santra, Saikat; Shyr, Casper; Horvath, Gabriella A.; Eydoux, Patrice; Lehman, Anna M.; Bernard, Virginie; Newlove, Theresa; Ukpeh, Henry; Chakrapani, Anupam; Preece, Mary Anne; Ball, Sarah; Pitt, James; Vallance, Hilary D.; Coulter-Mackie, Marion; Nguyen, Hien; Zhang, Lin-Hua; Bhavsar, Amit P.; Sinclair, Graham; Waheed, Abdul; Wasserman, Wyeth W.; Stockler-Ipsiroglu, Sylvia

    2014-01-01

    Four children in three unrelated families (one consanguineous) presented with lethargy, hyperlactatemia, and hyperammonemia of unexplained origin during the neonatal period and early childhood. We identified and validated three different CA5A alterations, including a homozygous missense mutation (c.697T>C) in two siblings, a homozygous splice site mutation (c.555G>A) leading to skipping of exon 4, and a homozygous 4 kb deletion of exon 6. The deleterious nature of the homozygous mutation c.697T>C (p.Ser233Pro) was demonstrated by reduced enzymatic activity and increased temperature sensitivity. Carbonic anhydrase VA (CA-VA) was absent in liver in the child with the homozygous exon 6 deletion. The metabolite profiles in the affected individuals fit CA-VA deficiency, showing evidence of impaired provision of bicarbonate to the four enzymes that participate in key pathways in intermediary metabolism: carbamoylphosphate synthetase 1 (urea cycle), pyruvate carboxylase (anaplerosis, gluconeogenesis), propionyl-CoA carboxylase, and 3-methylcrotonyl-CoA carboxylase (branched chain amino acids catabolism). In the three children who were administered carglumic acid, hyperammonemia resolved. CA-VA deficiency should therefore be added to urea cycle defects, organic acidurias, and pyruvate carboxylase deficiency as a treatable condition in the differential diagnosis of hyperammonemia in the neonate and young child. PMID:24530203

  8. PVALB diminishes [Ca2+] and alters mitochondrial features in follicular thyroid carcinoma cells through AKT/GSK3β pathway.

    PubMed

    Mendes, Thais Biude; Nozima, Bruno Heidi; Budu, Alexandre; de Souza, Rodrigo Barbosa; Braga Catroxo, Marcia Helena; Delcelo, Rosana; Gazarini, Marcos Leoni; Cerutti, Janete Maria

    2016-09-01

    We have identified previously a panel of markers (C1orf24, ITM1 and PVALB) that can help to discriminate benign from malignant thyroid lesions. C1orf24 and ITM1 are specifically helpful for detecting a wide range of thyroid carcinomas, and PVALB is particularly valuable for detecting the benign Hürthle cell adenoma. Although these markers may ultimately help patient care, the current understanding of their biological functions remains largely unknown. In this article, we investigated whether PVALB is critical for the acquisition of Hürthle cell features and explored the molecular mechanism underlying the phenotypic changes. Through ectopic expression of PVALB in thyroid carcinoma cell lines (FTC-133 and WRO), we demonstrated that PVALB sequesters free cytoplasmic Ca(2+), which ultimately lowers calcium levels and precludes endoplasmic reticulum (ER) Ca(2+) refilling. These results were accompanied by induced expression of PERK, an ER stress marker. Additionally, forced expression of PVALB reduces Ca(2+) inflow in the mitochondria, which can in turn cause changes in mitochondria morphology, increase mitochondria number and alter subcellular localization. These findings share striking similarity to those observed in Hürthle cell tumors. Moreover, PVALB inhibits cell growth and induces cell death, most likely through the AKT/GSK-3β. Finally, PVALB expression coincides with Ca(2+) deposits in HCA tissues. Our data support the hypothesis that the loss of PVALB plays a role in the pathogenesis of thyroid tumors. PMID:27458244

  9. Alteration by phosphatidyl serine of tension responses and 45Ca distribution in aortic smooth muscle.

    PubMed

    Goodman, F R; Weiss, G B; Goth, A

    1976-07-01

    The effects of phosphatidyl serine (PS) on 45Ca distribution, 45Ca movements and contractions were examined in rabbit aortic smooth muscle. Contractile responses to submaximal concentrations of norepinephrine and histamine were potentiated by prior exposure to PS, but equivalent responses to potassium were unaffected. Addition of PS to the incubation solution decreased 45Ca uptake; exposure of aortic strips to PS during washout of either 45Ca or promethium (147Pm) resulted in maintained increases in efflux. These PS-induced alterations in net loss of 45Ca or 147Pm can be attributed to a decreased membrane reuptake and/or rebinding. However, the presence of PS during the washout significantly reduced the increases in 45Ca efflux rate elicited with either 0.05 mM concentrations of Ca++ or ethylenediamine tetraacetic acid. Thus, in rabbit aortic smooth muscle, exogenous PS can alter the availability and/or exchangeability of a membrane-bound Ca++ fraction. By specifically increasing the affinity for Ca++ at relevant membrane sites or stores. PS may enhance the ability of vascular smooth muscle to respond to stimulatory agents that mobilize Ca++ from these sites and, in this manner, potentiate contractile responses. PMID:933004

  10. Altered Arachidonate Distribution in Macrophages from Caveolin-1 Null Mice Leading to Reduced Eicosanoid Synthesis*

    PubMed Central

    Astudillo, Alma M.; Pérez-Chacón, Gema; Meana, Clara; Balgoma, David; Pol, Albert; del Pozo, Miguel A.; Balboa, María A.; Balsinde, Jesús

    2011-01-01

    In this work we have studied the effect of caveolin-1 deficiency on the mechanisms that regulate free arachidonic acid (AA) availability. The results presented here demonstrate that macrophages from caveolin-1-deficient mice exhibit elevated fatty acid incorporation and remodeling and a constitutively increased CoA-independent transacylase activity. Mass spectrometry-based lipidomic analyses reveal stable alterations in the profile of AA distribution among phospholipids, manifested by reduced levels of AA in choline glycerophospholipids but elevated levels in ethanolamine glycerophospholipids and phosphatidylinositol. Furthermore, macrophages from caveolin-1 null mice show decreased AA mobilization and prostaglandin E2 and LTB4 production upon cell stimulation. Collectively, these results provide insight into the role of caveolin-1 in AA homeostasis and suggest an important role for this protein in the eicosanoid biosynthetic response. PMID:21852231