Science.gov

Sample records for aluminium powder alloys

  1. Hot tearing evaluation for aluminium alloys

    NASA Astrophysics Data System (ADS)

    Brůna, Marek

    2016-06-01

    Hot tearing during solidification of aluminium alloys castings can be a serious problem. This phenomenon is well known but still insufficiently investigated. Hot tearing occurs in form of irregular cracks in metal castings that develop during solidification and cooling. The cause of hot tearing is generally attributed to the development of thermally induced tensile stresses and strains in a casting as the molten metal contracts during solidification and solid state shrinkage. Submited paper consists of two parts. The first part introduces the reader to the phenomenon of hot tearing. The second part describes newly developed method for assessing hot tearing susceptibility of aluminium alloys, and also gives the results on hot tearing for various aluminium alloys.

  2. Thermodynamic properties of uranium in gallium-aluminium based alloys

    NASA Astrophysics Data System (ADS)

    Volkovich, V. A.; Maltsev, D. S.; Yamshchikov, L. F.; Chukin, A. V.; Smolenski, V. V.; Novoselova, A. V.; Osipenko, A. G.

    2015-10-01

    Activity, activity coefficients and solubility of uranium was determined in gallium-aluminium alloys containing 1.6 (eutectic), 5 and 20 wt.% aluminium. Additionally, activity of uranium was determined in aluminium and Ga-Al alloys containing 0.014-20 wt.% Al. Experiments were performed up to 1073 K. Intermetallic compounds formed in the alloys were characterized by X-ray diffraction. Partial and excess thermodynamic functions of U in the studied alloys were calculated.

  3. Thermodynamic properties of uranium in gallium-aluminium based alloys

    NASA Astrophysics Data System (ADS)

    Volkovich, V. A.; Maltsev, D. S.; Yamshchikov, L. F.; Chukin, A. V.; Smolenski, V. V.; Novoselova, A. V.; Osipenko, A. G.

    2015-10-01

    Activity, activity coefficients and solubility of uranium was determined in gallium-aluminium alloys containing 1.6 (eutectic), 5 and 20 wt.% aluminium. Additionally, activity of uranium was determined in aluminium and Ga-Al alloys containing 0.014-20 wt.% Al. Experiments were performed up to 1073 K. Intermetallic compounds formed in the alloys were characterized by X-ray diffraction. Partial and excess thermodynamic functions of U in the studied alloys were calculated.

  4. Precipitate strengthening of nanostructured aluminium alloy.

    PubMed

    Wawer, Kinga; Lewandowska, Malgorzata; Kurzydlowski, Krzysztof J

    2012-11-01

    Grain boundaries and precipitates are the major microstructural features influencing the mechanical properties of metals and alloys. Refinement of the grain size to the nanometre scale brings about a significant increase in the mechanical strength of the materials because of the increased number of grain boundaries which act as obstacles to sliding dislocations. A similar effect is obtained if nanoscale precipitates are uniformly distributed in coarse grained matrix. The development of nanograin sized alloys raises the important question of whether or not these two mechanisms are "additive" and precipitate strengthening is effective in nanostructured materials. In the reported work, hydrostatic extrusion (HE) was used to obtain nanostructured 7475 aluminium alloy. Nanosized precipitates were obtained by post-HE annealing. It was found that such annealing at the low temperatures (100 degrees C) results in a significant increase in the microhardness (HV0.2) and strength of the nanostructured 7475 aluminium alloy. These results are discussed in terms of the interplay between the precipitation and deformation of nanocrystalline metals. PMID:23421286

  5. Deviatoric response of the aluminium alloy, 5083

    NASA Astrophysics Data System (ADS)

    Appleby-Thomas, Gareth; Hazell, Paul; Millett, Jeremy; Bourne, Neil

    2009-06-01

    Aluminium alloys such as 5083 are established light weight armour materials. As such, the shock response of these materials is of great importance. The shear strength of a material under shock loading provides an insight into its ballistic performance. In this investigation embedded manganin stress gauges have been employed to measure both the longitudinal and lateral components of stress during plate impact experiments over a range of impact stresses. In turn, these results were used to determine the shear strength and to investigate the time dependence of lateral stress behind the shock front to give an indication of material response.

  6. Melt spun aluminium alloys for moulding optics

    NASA Astrophysics Data System (ADS)

    Gubbels, G.; Tegelaers, L.; Senden, R.

    2013-09-01

    Melt spinning is a rapid quenching process that makes it possible to create materials with a very fine microstructure. Due to this very fine microstructure the melt spinning process is an enabler for diamond turning optics and moulds without the need of post-polishing. Using diamond turning of melt spun aluminium one can achieve <=2 nm Rq surface roughness. Application areas are imaging and projection optics, mirrors, moulds for contact lenses and spectacles. One of the alloys that RSP produces is RSA-905. This alloy has a solid track record as a better and cheaper concept in the application of moulds for optical components such as contact lenses. The RSA-905 is a dispersion hardened amorphous-like alloy that keeps its properties when exposed to elevated temperatures (up to 380°C). This gives the material unique features for optics moulding applications. RSA-905 moulds are cheaper and better than traditional mould concepts such as copper or brass with or without NiP plating. In addition logistics can be simplified significantly: from typical weeks-months into days-week. Lifetime is typically in the range of 100.000 - 200.000 shots. For high volume production typically ranging from several 100.000 - several 1.000.000 shots, NiP plated steel moulds are typically used. By using an appropriate optical coating concept RSA-905 can be upgraded to a competitive alternative to steel in terms of price, performance and logistics. This paper presents some recent developments for improved mould performance of such concept. Hardness, wear resistance and adhesion are topics of interest and they can be applied by special coatings such as diamond-like carbon (DLC) and chromium nitride (CrN). These coatings make the aluminium alloy suitable for moulding mass production of small as well as larger optics, such as spectacle lenses.

  7. The influence of alloy composition on residual stresses in heat treated aluminium alloys

    SciTech Connect

    Robinson, J.S.; Redington, W.

    2015-07-15

    The as quenched properties of eight different heat treatable aluminium alloys are related to residual stress magnitudes with the objective being to establish if there is a relationship between the residual stress and the as quenched alloy hardness and strength. Near surface residual stresses were assessed with X-ray diffraction using both the established sin{sup 2}ψ method and the more recent cos α technique. Through thickness residual stresses were also characterised using neutron diffraction. The alloys were chosen to encompass a wide range of strengths. The low to medium strength alloys were 6060 and 6082, medium to high strength 2618A, 2014A, 7075, 7010 and two variants of 7449, while the very high strength alloy was the powder metallurgy alloy N707. To assess the as quenched strength, dynamic hardness and tensile properties were determined from samples tested immediately after quenching to minimise the influence of precipitation hardening by natural aging. In addition, hot hardness measurements were made in situ on samples cooled to simulate quench paths. Within the experimental constraints of the investigation, the distribution of residual stress through the thickness was found to follow the same pattern for all the alloys investigated, varying from tensile in the interior to surface compression. The influence of alloy strength was manifested as a change in the observed residual stress magnitudes, and surface residual stresses were found to vary linearly with as quenched hardness and strength. - Highlights: • As quenched aluminium alloys contain high magnitude residual stresses. • Surface is compressive balance by a tensile core. • As quenched surface residual stress is linear function of alloy strength. • In situ hot hardness demonstrates rapid change in intrinsic hardness during rapid cooling.

  8. Aluminium alloys in municipal solid waste incineration bottom ash.

    PubMed

    Hu, Yanjun; Rem, Peter

    2009-05-01

    With the increasing growth of incineration of household waste, more and more aluminium is retained in municipal solid waste incinerator bottom ash. Therefore recycling of aluminium from bottom ash becomes increasingly important. Previous research suggests that aluminium from different sources is found in different size fractions resulting in different recycling rates. The purpose of this study was to develop analytical and sampling techniques to measure the particle size distribution of individual alloys in bottom ash. In particular, cast aluminium alloys were investigated. Based on the particle size distribution it was computed how well these alloys were recovered in a typical state-of-the-art treatment plant. Assessment of the cast alloy distribution was carried out by wet physical separation processes, as well as chemical methods, X-ray fluorescence analysis and electron microprobe analysis. The results from laboratory analyses showed that cast alloys tend to concentrate in the coarser fractions and therefore are better recovered in bottom ash treatment plants. PMID:19423581

  9. Modelling of micro- and macrosegregation for industrial multicomponent aluminium alloys

    NASA Astrophysics Data System (ADS)

    Ellingsen, K.; Mortensen, D.; M'Hamdi, M.

    2015-06-01

    Realistic predictions of macrosegregation formation during casting of aluminium alloys requires an accurate modeling of solute microsegregation accounting for multicomponent phase diagrams and secondary phase formation. In the present work, the stand alone Alstruc model, a microsegregation model for industrial multicomponent aluminium alloys, is coupled with the continuum model ALSIM which calculates the macroscopic transport of mass, enthalpy, momentum, and solutes as well as stresses and deformation during solidification of aluminium. Alstruc deals with multicomponent alloys accounting for temperature dependent partition coefficients, liquidus slopes and the precipitation of secondary phases. The challenge associated with computation of microsegregation for multicomponent alloys is solved in Alstruc by approximating the phase diagram data by simple, analytical expressions which allows for a CPU-time efficient coupling with the macroscopic transport model. In the present work, the coupled model has been applied in a study of macrosegregation including thermal and solutal convection, solidification shrinkage and surface exudation on an industrial DC-cast billet.

  10. Electrodeposition of aluminium, aluminium/magnesium alloys, and magnesium from organometallic electrolytes

    SciTech Connect

    Mayer, A.

    1988-01-01

    The electrodeposition of aluminum, magnesium, and the combination of these metals from nonaqueous media is discussed. Plating baths for depositing Al/Mg alloys or for plating essentially pure Mg were developed. These solutions contain alkali meal fluoride or quaternary ammonium halide/aluminium alkyl complexes and dialkyl magnesium dissolved in aromatic hydrocarbons. Alloy deposits over the whole composition range can be plated from these solutions by varying the relative quantities of the aluminium and magnesium alkyls and by changing the bath-operating parameters. 18 refs., 4 figs.

  11. Advanced powder metallurgy aluminum alloys and composites

    NASA Technical Reports Server (NTRS)

    Lisagor, W. B.; Stein, B. A.

    1982-01-01

    The differences between powder and ingot metallurgy processing of aluminum alloys are outlined. The potential payoff in the use of advanced powder metallurgy (PM) aluminum alloys in future transport aircraft is indicated. The national program to bring this technology to commercial fruition and the NASA Langley Research Center role in this program are briefly outlined. Some initial results of research in 2000-series PM alloys and composites that highlight the property improvements possible are given.

  12. Recycling of aluminium scrap for secondary Al-Si alloys.

    PubMed

    Velasco, Eulogio; Nino, Jose

    2011-07-01

    An increasing amount of recycled aluminium is going into the production of aluminium alloy used for automotive applications. In these applications, it is necessary to control and remove alloy impurities and inclusions. Cleaning and fluxing processes are widely used during processing of the alloys for removal of inclusions, hydrogen and excess of magnesium. These processes use salt fluxes based in the system NaCl-KCl, injection of chlorine or mixture of chlorine with an inert gas. The new systems include a graphite wand and a circulation device to force convection in the melt and permit the bubbling and dispersion of reactive and cleaning agents. This paper discusses the recycling of aluminium alloys in rotary and reverberatory industrial furnaces. It focuses on the removal of magnesium during the melting process. In rotary furnaces, the magnesium lost is mainly due to the oxidation process at high temperatures. The magnesium removal is carried out by the reaction between chlorine and magnesium, with its efficiency associated to kinetic factors such as concentration of magnesium, mixing, and temperature. These factors are also related to emissions generated during the demagging process. Improvements in the metallic yield can be reached in rotary furnaces if the process starts with a proper salt, with limits of addition, and avoiding long holding times. To improve throughput in reverberatories, start the charging with high magnesium content material and inject chlorine gas if the molten metal is at the right temperature. Removal of magnesium through modern technologies can be efficiently performed to prevent environmental problems. PMID:20837560

  13. Carbon treated commercial aluminium alloys as anodes for aluminium-air batteries in sodium chloride electrolyte

    NASA Astrophysics Data System (ADS)

    Pino, M.; Herranz, D.; Chacón, J.; Fatás, E.; Ocón, P.

    2016-09-01

    An easy treatment based in carbon layer deposition into aluminium alloys is presented to enhance the performance of Al-air primary batteries with neutral pH electrolyte. The jellification of aluminate in the anode surface is described and avoided by the carbon covering. Treated commercial Al alloys namely Al1085 and Al7475 are tested as anodes achieving specific capacities above 1.2 Ah g-1vs 0.5 Ah g-1 without carbon covering. The influence of the binder proportion in the treatment as well as different carbonaceous materials, Carbon Black, Graphene and Pyrolytic Graphite are evaluated as candidates for the covering. Current densities of 1-10 mA cm-2 are measured and the influence of the alloy explored. A final battery design of 4 cells in series is presented for discharges with a voltage plateau of 2 V and 1 Wh g-1 energy density.

  14. Diffusion bonding of aluminium alloy, 8090

    SciTech Connect

    Sunwoo, A. )

    1994-08-15

    Ability to diffusion bond aluminum (Al) alloys, in particular superplastic aluminum alloys, will complete the technology-base that is strongly needed to enhance the use of superplastic forming (SPF) technology. Diffusion bonding (DB) is an attractive manufacturing option for applications where the preservation of the base metal microstructure and, in turn, mechanical properties is important in the bond area. As the technology moves from the laboratory to production, the DB process has to be production-feasible and cost-effective. At the Lawrence Livermore National Laboratory, the DB study of SPF Al alloys has been initiated. This paper describes the effect of surface chemistry on the DB properties of the Al alloy, 8090 (2.4Li-1.18Cu-0.57Mg-0.14Zr-Al). The integrity of the diffusion bonds was evaluated for both interlayered and bare surfaces. Two interlayer elements, copper (Cu) and zinc (Zn), were compared. Although the eutectic temperature of Al-Cu is 548 C, a thin Cu layer in contact with 8090 has been shown to lower its eutectic temperature to [approximately]521 C. In 8090, Cu is one of the primary alloying elements but has a limited solubility in Al at the bonding temperature. Zinc, on the other hand, forms a considerably lower eutectic (380 C) with Al and is highly soluble in Al. The diffusivity of Zn in Al is much faster than that of Cu, but Zn forms a more thermodynamically stable oxide. These subtle metallurgical differences will affect the transient liquid phase (TLP) formation at the interface, which will subsequently influence the bond quality.

  15. Aluminium. II - A review of deformation properties of high purity aluminium and dilute aluminium alloys.

    NASA Technical Reports Server (NTRS)

    Reed, R. P.

    1972-01-01

    The elastic and plastic deformation behavior of high-purity aluminum and of dilute aluminum alloys is reviewed. Reliable property data, including elastic moduli, elastic coefficients, tensile, creep, fatigue, hardness, and impact are presented. Single crystal tensile results are discussed. Rather comprehensive reference lists, containing publications of the past 20 years, are included for each of the above categories. Defect structures and mechanisms responsible for mechanical behavior are presented. Strengthening techniques (alloys, cold work, irradiation, quenching, composites) and recovery are briefly reviewed.

  16. Mechanical Properties of Particulate Reinforced Aluminium Alloy Matrix Composite

    SciTech Connect

    Sayuti, M.; Sulaiman, S.; Baharudin, B. T. H. T.; Arifin, M. K. A.; Suraya, S.; Vijayaram, T. R.

    2011-01-17

    This paper discusses the mechanical properties of Titanium Carbide (TiC) particulate reinforced aluminium-silicon alloy matrix composite. TiC particulate reinforced LM6 alloy matrix composites were fabricated by carbon dioxide sand molding process with different particulate weight fraction. Tensile strength, hardness and microstructure studies were conducted to determine the maximum load, tensile strength, modulus of elasticity and fracture surface analysis have been performed to characterize the morphological aspects of the test samples after tensile testing. Hardness values are measured for the TiC reinforced LM6 alloy composites and it has been found that it gradually increases with increased addition of the reinforcement phase. The tensile strength of the composites increased with the increase percentage of TiC particulate.

  17. Compressive strength of the mineral reinforced aluminium alloy composite

    NASA Astrophysics Data System (ADS)

    Arora, Rama; Sharma, Anju; Kumar, Suresh; Singh, Gurmel; Pandey, O. P.

    2016-05-01

    This paper presents the results of quasi-static compressive strength of aluminium alloy reinforced with different concentration of rutile mineral particles. The reinforced material shows increase in compressive strength with 5wt% rutile concentration as compared to the base alloy. This increase in compressive strength of composite is attributed to direct strengthening due to transfer of load from lower stiffness matrix (LM13 alloy) to higher stiffness reinforcement (rutile particles). Indirect strengthening mechanisms like increase in dislocation density at the matrix-reinforcement interface, grain size refinement of the matrix and dispersion strengthening are also the contributing factors. The decrease in compressive strength of composite with the increased concentration of rutile concentration beyond 5 wt.% can be attributed to the increase in dislocation density due to the void formation at the matrix-reinforcement interface.

  18. Nanostructural hierarchy increases the strength of aluminium alloys.

    PubMed

    Liddicoat, Peter V; Liao, Xiao-Zhou; Zhao, Yonghao; Zhu, Yuntian; Murashkin, Maxim Y; Lavernia, Enrique J; Valiev, Ruslan Z; Ringer, Simon P

    2010-01-01

    Increasing the strength of metallic alloys while maintaining formability is an interesting challenge for enabling new generations of lightweight structures and technologies. In this paper, we engineer aluminium alloys to contain a hierarchy of nanostructures and possess mechanical properties that expand known performance boundaries-an aerospace-grade 7075 alloy exhibits a yield strength and uniform elongation approaching 1 GPa and 5%, respectively. The nanostructural architecture was observed using novel high-resolution microscopy techniques and comprises a solid solution, free of precipitation, featuring (i) a high density of dislocations, (ii) subnanometre intragranular solute clusters, (iii) two geometries of nanometre-scale intergranular solute structures and (iv) grain sizes tens of nanometres in diameter. Our results demonstrate that this novel architecture offers a design pathway towards a new generation of super-strong materials with new regimes of property-performance space. PMID:20842199

  19. Ti Multicomponent Alloy Bulks by Powder Metallurgy

    NASA Astrophysics Data System (ADS)

    Zhang, Kuibao; Wen, Guanjun; Dai, Hongchuan; Teng, Yuancheng; Li, Yuxiang

    2014-10-01

    In this study, CrCuFeMnMo0.5Ti multicomponent alloy bulks were prepared by powder metallurgy of mechanical alloying and sintering. A simple body-centered cubic (bcc) solid solution was prepared after 40 h ball milling of the raw CrCuFeMnMo0.5Ti metallic powder. Particles of the alloyed powder are in microsized structures, which are actually a soft agglomeration of lamellar grains with thicknesses less than 1 μm. Meanwhile, the lamellar granules are consisted of nanosized grains under rigid cold welding. The 80-h ball-milled powder was consolidated by cold pressing and subsequent sintering at 800°C. The observed main phase in the consolidated sample after milling for 80 h is still a bcc solid solution. The solidified sample of 80-h ball-milled powder exhibits a Vickers hardness of 468 HV, which is much higher than 171 HV of the counterpart prepared from the raw metallic powder.

  20. Determination of phosphorus in hypereutectic aluminium-silicon alloys.

    PubMed

    Mukai, K

    1972-04-01

    A reproducible method is described for determination of small amounts of phosphorus (from 0.0005% to 0.02%) in hypereutectic aluminium-silicon complex alloys. The method permits the separate determination of phosphorus in acid-soluble and acid-insoluble fractions. Phosphomolybdate is extracted with n-butanol-chloroform solvent mixture and back-extracted with a btannous chloride reducing solution. The phosphorus content of a sample cut into small pieces decreases during storage; loss of phosphorus is negligible on acid dissolution under oxidizing conditions. PMID:18961077

  1. Deviatoric Response of AN Armour-Grade Aluminium Alloy

    NASA Astrophysics Data System (ADS)

    Appleby-Thomas, G. J.; Hazell, P. J.; Millett, J.; Bourne, N. K.

    2009-12-01

    Aluminium alloys such as 5083 H32 are established light-weight armour materials. As such, the shock response of these materials is of great importance. The shear strength of a material under shock loading provides an insight into its ballistic performance. In this investigation embedded manganin stress gauges have been employed to measure both the longitudinal and lateral components of stress during plate-impact experiments over a range of impact stresses. In turn, these results were used to determine the shear strength and to investigate the time dependence of lateral stress behind the shock front to give an indication of material response.

  2. Modelling work hardening of aluminium alloys containing dispersoids

    NASA Astrophysics Data System (ADS)

    Zhao, Qinglong; Holmedal, Bjørn

    2013-08-01

    The influence of dispersoids on tensile deformation behaviour has been studied by comparison of aluminium alloys containing different dispersoid densities. It was found that a fine dispersion of non-shearable particles led to an increased work hardening at the initial plastic deformation, but the effect was opposite at higher strains. The reason has been attributed to the generation of geometrically necessary dislocations (GNDs). A new model has been proposed for the evolution of GNDs based on a balance of storage and dynamic recovery of GNDs. The model predicts a rapid saturation of GNDs and a reduced work hardening at small strains, consistent with the experimental results.

  3. The fracture of boron fibre-reinforced 6061 aluminium alloy

    NASA Technical Reports Server (NTRS)

    Wright, M. A.; Welch, D.; Jollay, J.

    1979-01-01

    The fracture of 6061 aluminium alloy reinforced with unidirectional and cross-plied 0/90 deg, 0/90/+ or - 45 deg boron fibres has been investigated. The results have been described in terms of a critical stress intensity, K(Q). Critical stress intensity factors were obtained by substituting the failure stress and the initial crack length into the appropriate expression for K(Q). Values were obtained that depended on the dimensions of the specimens. It was therefore concluded that, for the size of specimen tested, the values of K(Q) did not reflect any basic materials property.

  4. High rate constitutive modeling of aluminium alloy tube

    NASA Astrophysics Data System (ADS)

    Salisbury, C. P.; Worswick, M. J.; Mayer, R.

    2006-08-01

    As the need for fuel efficient automobiles increases, car designers are investigating light-weight materials for automotive bodies that will reduce the overall automobile weight. Aluminium alloy tube is a desirable material to use in automotive bodies due to its light weight. However, aluminium suffers from lower formability than steel and its energy absorption ability in a crash event after a forming operation is largely unknown. As part of a larger study on the relationship between crashworthiness and forming processes, constitutive models for 3mm AA5754 aluminium tube were developed. A nominal strain rate of 100/s is often used to characterize overall automobile crash events, whereas strain rates on the order of 1000/s can occur locally. Therefore, tests were performed at quasi-static rates using an Instron test fixture and at strain rates of 500/s to 1500/s using a tensile split Hopkinson bar. High rate testing was then conducted at rates of 500/s, 1000/s and 1500/s at 21circC, 150circC and 300circC. The generated data was then used to determine the constitutive parameters for the Johnson-Cook and Zerilli-Armstrong material models.

  5. Frictional conditions between alloy AA6060 aluminium and tool steel

    NASA Astrophysics Data System (ADS)

    Widerøe, Fredrik; Welo, Torgeir

    2011-05-01

    The frictional conditions in the new process of screw extrusion of aluminium have been investigated. The contact behaviour between the aluminum alloy and the tool steel in the extruder is vital for understanding the extrusion process. Using a compressive-rotational method for frictional measurements the conditions for unlubricated sticking friction between aluminum alloy AA6060 and tool steel at different combinations of temperatures and pressures have been investigated. In this method the samples in the form of disks are put under hydrostatic pressure while simultaneously being rotated at one end. Pins made from contrast material have been inserted into the samples to measure the deformation introduced. This approach along with 3D simulations form a method for determining the frictional conditions. The paper describes the test method and the results. It was found that the necessary pressure for sticking to occur between the aluminum AA6060 and the different parts of the extruder is heavily influenced by the temperature.

  6. Fabrication of superhydrophobic aluminium alloy surface with excellent corrosion resistance by a facile and environment-friendly method

    NASA Astrophysics Data System (ADS)

    Feng, Libang; Che, Yanhui; Liu, Yanhua; Qiang, Xiaohu; Wang, Yanping

    2013-10-01

    This work develops a facile and environment-friendly method for preparing the superhydrophobic aluminium alloy surface with excellent corrosion resistance. The superhydrophobic aluminium alloy surface is fabricated by the boiling water treatment and stearic acid (STA) modification. Results show that the boiling water treatment endows the aluminium alloy surface with a porous and rough structure, while STA modification chemically grafts the long hydrophobic alkyl chains onto the aluminium alloy surface. Just grounded on the micro- and nano-scale hierarchical structure along with the hydrophobic chemical composition, the superhydrophobic aluminium alloy surface is endued the excellent corrosion resistance.

  7. Thermoelectric power in low-density interstitial-free iron-aluminium alloys

    NASA Astrophysics Data System (ADS)

    Rana, Radhakanta; Liu, Cheng

    2013-09-01

    Thermoelectric power (TEP) studies on low-density interstitial-free iron-aluminium alloys reveal that the TEP decreases with increase in the aluminium content on account of the introduction of lattice dispersion centres. The TEP coefficients, determined from the Nordheim-Gorter law, for 6.8 and 8.1 wt.% aluminium additions to α-iron are found to be higher than values reported in previous literature for small aluminium additions. The grain size has a very weak effect on the TEP of these alloys.

  8. Performance of commercial aluminium alloys as anodes in gelled electrolyte aluminium-air batteries

    NASA Astrophysics Data System (ADS)

    Pino, M.; Chacón, J.; Fatás, E.; Ocón, P.

    2015-12-01

    The evaluation of commercial aluminium alloys, namely, Al2024, Al7475 and Al1085, for Al-air batteries is performed. Pure Al cladded Al2024 and Al7475 are also evaluated. Current rates from 0.8 mA cm-2 to 8.6 mA cm-2 are measured in a gel Al-air cell composed of the commercial alloy sample, a commercial air-cathode and an easily synthesizable gelled alkaline electrolyte. The influence of the alloying elements and the addition to the electrolyte of ZnO and ZnCl2, as corrosion inhibitors is studied and analysed via EDX/SEM. Specific capacities of up to 426 mAh/g are obtained with notably flat potential discharges of 1.3-1.4 V. The competition between self-corrosion and oxidation reactions is also discussed, as well as the influence of the current applied on that process. Al7475 is determined to have the best behaviour as anode in Al-air primary batteries, and cladding process is found to be an extra protection against corrosion at low current discharges. Conversely, Al1085 provided worse results because of an unfavourable metallic composition.

  9. Mackay icosahedron explaining orientation relationship of dispersoids in aluminium alloys.

    PubMed

    Muggerud, Astrid Marie F; Li, Yanjun; Holmestad, Randi; Andersen, Sigmund J

    2014-10-01

    The orientation relations (ORs) of the cubic icosahedral quasicrystal approximant phase α-Al(Fe,Mn)Si have been studied after low temperature annealing of a 3xxx wrought aluminium alloy by transmission electron microscopy. From diffraction studies it was verified that the most commonly observed OR for the α-Al(Fe,Mn)Si dispersoids is [1\\bar 11]α // [1\\bar 11]Al, (5\\bar 2\\bar 7)α // (011)Al. This orientation could be explained by assuming that the internal Mackay icosahedron (MI) in the α-phase has a fixed orientation in relation to Al, similar to that of the icosahedral quasi-crystals existing in this alloy system. It is shown that mirroring of the normal-to-high-symmetry icosahedral directions of the MI explains the alternative orientations, which are therefore likely to be caused by twinning of the fixed MI. Only one exception was found, which was related to the Bergman icosahedron internal to the T-phase of the Al-Mg-Zn system. PMID:25274523

  10. Powder and particulate production of metallic alloys

    NASA Technical Reports Server (NTRS)

    Grant, N. J.

    1982-01-01

    Developments of particulate metallurgy of alloyed materials where the final products is a fully dense body are discussed. Particulates are defined as powders, flakes, foils, silvers, ribbons and strip. Because rapid solidification is an important factor in particulate metallurgy, all of the particulates must have at least one dimension which is very fine, sometimes as fine as 10 to 50 microns, but move typically up to several hundred microns, provided that the dimension permits a minimum solidification rate of at least 100 K/s.

  11. Amorphous powders of Al-Hf prepared by mechanical alloying

    SciTech Connect

    Schwarz, R.B.; Hannigan, J.W.; Sheinberg, H.; Tiainen, T.

    1988-01-01

    We synthesized amorphous Al/sub 50/Hf/sub 50/ alloy powder by mechanically alloying an equimolar mixture of crystalline powders of Al and Hf using hexane as a dispersant. We characterized the powder as a function of mechanical-alloying time by scanning electron microscopy, x-ray diffraction, and differential scanning calorimetry. Amorphous Al/sub 50/Hf/sub 50/ powder heated at 10 K s/sup /minus/1/ crystallizes polymorphously at 1003 K into orthorhombic AlHf (CrB-type structure). During mechanical alloying, some hexane decomposes and hydrogen and carbon are incorporated into the amorphous alloy powder. The hydrogen can be removed by annealing the powder by hot pressing at a temperature approximately 30 K below the crystallization temperature. The amorphous compacts have a diamond pyramidal hardness of 1025 DPH. 24 refs., 7 figs., 1 tab.

  12. The Potential of Aluminium Metal Powder as a Fuel for Space Propulsion Systems

    NASA Astrophysics Data System (ADS)

    Ismail, A. M.; Osborne, B.; Welch, C. S.

    Metal powder propulsion systems have been addressed intermittently since the Second World War, initially in the field of underwater propulsion where research in the application of propelling torpedoes continues until this day. During the post war era, researchers attempted to utilise metal powders as a fuel for ram jet applications in missiles. The 1960's and 1970's saw additional interest in the use of `pure powder' propellants, i.e. fluidised metal fuel and oxidiser, both in solid particulate form. Again the application was for employment in space-constrained missiles where the idea was to maximise the performance of high energy density powder propellants in order to enhance the missile's flight duration. Metal powder as possible fuel was investigated for in-situ resource utilisation propulsion systems post-1980's where the emphasis was on the use of gaseous oxygen or liquid oxygen combined with aluminium metal powder for use as a ``lunar soil propellant'' or carbon dioxide and magnesium metal powder as a ``Martian propellant''.Albeit aluminium metal powder propellants are lower in performance than cryogenic and Earth storable propellants, the former does have an advantage inasmuch that the propulsion system is generic, i.e. it can be powered with chemicals mined and processed on Earth, the Moon and Mars. Thus, due to the potential refuelling capability, the lower performing aluminium metal powder propellant would effectively possess a much higher change in velocity (V) for multiple missions than the cryogenic or Earth storable propellant which is only suitable for one planet or one mission scenario, respectively.One of the principal limitations of long duration human spaceflight beyond cis-lunar orbit is the lack of refuelling capabilities on distant planets resulting in the reliance on con- ventional non-cryogenic, propellants produced on Earth. If one could develop a reliable propulsion system operating on pro- pellants derived entirely of ingredients found on

  13. Modelling of Local Necking and Fracture in Aluminium Alloys

    NASA Astrophysics Data System (ADS)

    Achani, D.; Eriksson, M.; Hopperstad, O. S.; Lademo, O.-G.

    2007-05-01

    Non-linear Finite Element simulations are extensively used in forming and crashworthiness studies of automotive components and structures in which fracture need to be controlled. For thin-walled ductile materials, the fracture-related phenomena that must be properly represented are thinning instability, ductile fracture and through-thickness shear instability. Proper representation of the fracture process relies on the accuracy of constitutive and fracture models and their parameters that need to be calibrated through well defined experiments. The present study focuses on local necking and fracture which is of high industrial importance, and uses a phenomenological criterion for modelling fracture in aluminium alloys. As an accurate description of plastic anisotropy is important, advanced phenomenological constitutive equations based on the yield criterion YLD2000/YLD2003 are used. Uniaxial tensile tests and disc compression tests are performed for identification of the constitutive model parameters. Ductile fracture is described by the Cockcroft-Latham fracture criterion and an in-plane shear tests is performed to identify the fracture parameter. The reason is that in a well designed in-plane shear test no thinning instability should occur and it thus gives more direct information about the phenomenon of ductile fracture. Numerical simulations have been performed using a user-defined material model implemented in the general-purpose non-linear FE code LS-DYNA. The applicability of the model is demonstrated by correlating the predicted and experimental response in the in-plane shear tests and additional plane strain tension tests.

  14. Modelling of Local Necking and Fracture in Aluminium Alloys

    SciTech Connect

    Achani, D.; Eriksson, M.; Hopperstad, O. S.; Lademo, O.-G.

    2007-05-17

    Non-linear Finite Element simulations are extensively used in forming and crashworthiness studies of automotive components and structures in which fracture need to be controlled. For thin-walled ductile materials, the fracture-related phenomena that must be properly represented are thinning instability, ductile fracture and through-thickness shear instability. Proper representation of the fracture process relies on the accuracy of constitutive and fracture models and their parameters that need to be calibrated through well defined experiments. The present study focuses on local necking and fracture which is of high industrial importance, and uses a phenomenological criterion for modelling fracture in aluminium alloys. As an accurate description of plastic anisotropy is important, advanced phenomenological constitutive equations based on the yield criterion YLD2000/YLD2003 are used. Uniaxial tensile tests and disc compression tests are performed for identification of the constitutive model parameters. Ductile fracture is described by the Cockcroft-Latham fracture criterion and an in-plane shear tests is performed to identify the fracture parameter. The reason is that in a well designed in-plane shear test no thinning instability should occur and it thus gives more direct information about the phenomenon of ductile fracture. Numerical simulations have been performed using a user-defined material model implemented in the general-purpose non-linear FE code LS-DYNA. The applicability of the model is demonstrated by correlating the predicted and experimental response in the in-plane shear tests and additional plane strain tension tests.

  15. Spall fracture in aluminium alloy at high strain rates

    NASA Astrophysics Data System (ADS)

    Joshi, K. D.; Rav, Amit; Sur, Amit; Kaushik, T. C.; Gupta, Satish C.

    2016-05-01

    Spall fracture strength and dynamic yield strength has been measured in 8mm thick target plates of aluminium alloy Al2024-T4 at high strain rates generated in three plate impact experiments carried out at impact velocities of 180 m/s, 370 m/s and 560m/s, respectively, using single stage gas gun facility. In each experiment, the free surface velocity history of the Al2024-T4 sample plate measured employing velocity interferometer system for any reflector (VISAR) is used to determine the spall strength and dynamic yield strength of this material. The spall strength of 1.11 GPa, 1.16 GPa and 1.43 GPa, determined from measured free surface velocity history of sample material in three experiments performed at impact velocity of 180 m/s, 370 m/s and 560 m/s, respectively, are higher than the quasi static value of 0.469 GPa and display almost linearly increasing trend with increasing impact velocity or equivalently with increasing strain rates. The average strain rates just ahead of the spall fracture are determined to be 1.9×10 4/s, 2.0×104/s and 2.5×104/s, respectively. The dynamic yield strength determined in the three experiments range from 0.383 GPa to 0.407 GPa, which is higher than the quasi static value of 0.324GPa.

  16. Nano-particle precipitation in mechanically alloyed and annealed precursor powders of legacy PM2000 ODS alloy

    NASA Astrophysics Data System (ADS)

    Dawson, Karl; Haigh, Sarah J.; Tatlock, Gordon J.; Jones, Andy R.

    2015-09-01

    The early stages of nano-particulate formation in mechanically alloyed and annealed, precursor powders used to manufacture the legacy commercial oxide dispersion strengthened alloy PM2000, formerly produced by Plansee GmbH, have been investigated. Powders were analysed in both the as-mechanically-alloyed condition and after annealing over the temperature range 923-1423 K. The nucleation and growth of coherent nano-particles in the partially recovered, fine grained, ferritic matrix of powders annealed at temperatures as low as 923 K has been confirmed. Powders annealed for 1 h at temperatures of 1123 K and 1223 K were partially recrystallised and contained high number densities (NV > 1023 m-3) of coherent 2 nm yttrium-aluminium-oxygen rich nano-particles. The identification of particle free zones in recrystallised grains, adjacent to recrystallising interfaces, plus the identical orientation relationships between nano-particles and the matrices in both unrecrystallised and recrystallised grains, indicates that the Y-Al-O nano-particles, first formed in fine grained regions, are dissolved during recrystallisation and re-precipitated subsequently in recrystallised grains.

  17. Properties of Hot Pressed Titanium Alloy Powders for Cryogenic Applications.

    NASA Technical Reports Server (NTRS)

    Friedman, G. I.; Kazaroff, J. M.

    1970-01-01

    Evaluation of strength and toughness of hot-pressed titanium alloy powders at room and at cryogenic temperatures. The purpose was to determine how the mechanical properties of solid bodies formed from powder would compare with wrought specimens of the same size and with the same chemical analysis. It was found that of five titanium powder-making processes investigated, only the Rotating Electrode Process (REP) was capable of producing ELI-grade titanium alloy powder. Blocks hot-pressed from spherical REP powders had tensile properties equivalent to or better than those obtained from wrought bar.

  18. Powder metallurgy of vanadium and its alloys (review)

    SciTech Connect

    Radomysel'skii, I.D.; Solntsev, V.P.; Evtushenko, O.V.

    1987-10-01

    This article reviews the current powder metallurgy technology of vanadium and its alloys. Data are given on sintering, compacting, electrowinning and other current production techniques, as well as on the corrosion behavior and mechanical and physical properties of alloys produced by these different methods. The use of vanadium alloys as reactor and jet engine materials is also briefly discussed.

  19. Application of thermoelectric potential measurements in chemical analysis-II Determination of aluminium in iron alloys.

    PubMed

    Krajina, A; Dolezal, J

    1967-12-01

    A method is proposed for the rapid determination of aluminium in iron alloys by means of thermoelectric potential measurement. An instrument has been modified, and a method devised for thermoelectro-analytical measurements. The thermoelectric potential of iron-germanium and iron-zinc alloys has been measured, and an attempt made at a theoretical explanation of the influence of alloying elements on the thermoelectric properties of transition metals. PMID:18960250

  20. New developments on optimizing properties of high-Zn aluminium cast alloys

    NASA Astrophysics Data System (ADS)

    Krajewski, W. K.; Buras, J.; Krajewski, P. K.; Greer, A. L.; Schumacher, P.; Haberl, K.

    2016-07-01

    Foundry alloys with Al-based matrices have a wide range of uses in today's global economy and there is a high demand for castings of Al alloys, including Al-Zn alloys. In this paper, investigations on the grain refinement of high-Zn aluminium cast alloys are presented. Aluminium alloys with relatively high zinc content have a tendency to be coarse-grained, especially in the case of castings with low cooling rates such as are found in sand moulds. The coarse-grained structure degrades the plasticity, specifically the elongation. Therefore, for aluminium alloys of high (10-30 wt.%) zinc content, inoculation is attractive, aiming to break up the primary dendrites of the a-phase solid solution of zinc in aluminium. Such dendrites are the principal microstructural component in these alloys. On the other hand, a finer grain structure usually reduces the damping (e.g. as measured by attenuation of ultrasound) in these alloys. In the present investigations, a binary sand-cast Al-20 wt.% Zn alloy was inoculated with different additions of AlTi3C0.15 (TiCAl) and ZnTi-based master alloys. The sand-cast samples were subjected to mechanical-property measurements (tensile strength and elongation), image analysis to determine grain size, and measurements of the attenuation of 1 MHz ultrasound. It is found that both of the master alloys used cause significant refinement of the a-AlZn primary dendrites and change their morphology from linear-branched to semi-globular, increase the elongation by about 40%, and decrease the attenuation coefficient by about 25% in comparison with the initial alloy without inoculation.

  1. Determination of alumina in sintered aluminium powder by activation with 14-MeV neutrons.

    PubMed

    Español, C E; Marafuschi, A M

    1970-07-01

    Fast neutrons of 14 MeV produced in the IMICAM CISE 150-kV generator by the (d, t) reaction in a tritium-titanium target, were used in the indirect determination of Al(2)O(3). The samples were irradiated for 30 sec and the total (16)N activity was determined, by counting for ten 2-sec periods and graphically integrating. The standards were a known sintered aluminium powder and nylon pieces of identical shape. The method is competitive with the chemical one, because of its quickness, sensitivity and precision. PMID:18960787

  2. Advanced powder metallurgy aluminum alloys via rapid solidification technology

    NASA Technical Reports Server (NTRS)

    Ray, R.

    1984-01-01

    Aluminum alloys containing 10 to 11.5 wt. pct. of iron and 1.5 to 3 wt. pct. of chromium using the technique of rapid solidification powder metallurgy were studied. Alloys were prepared as thin ribbons (.002 inch thick) rapidly solidified at uniform rate of 10(6) C/second by the melt spinning process. The melt spun ribbons were pulverized into powders (-60 to 400 mesh) by a rotating hammer mill. The powders were consolidated by hot extrusion at a high reduction ratio of 50:1. The powder extrusion temperature was varied to determine the range of desirable processing conditions necessary to yield useful properties. Powders and consolidated alloys were characterized by SEM and optical metallography. The consolidated alloys were evaluated for (1) thermal stability, (2) tensile properties in the range, room temperature to 450 F, and (3) notch toughness in the range, room temperature to 450 F.

  3. Self-Pierce Riveting of Three Aluminium Alloy and Mild Steel Sheets

    SciTech Connect

    Mori, K.; Abe, Y.; Sakai, S.; Kato, T.

    2010-06-15

    Three aluminium alloy and steel sheets were joined with a self-piercing rivet. Self-pierce riveting has the function of joining steel and aluminium alloys having very different melting points due to plastic joining. The requisites for joining the three sheets are the driving of the rivet leg through the middle sheet, the flaring of the rivet leg in the lower sheet and the prevention of the fracture of the lower sheet. The joinability for various combinations of the three sheets was determined. When the rivet leg is small, no driving through the middle sheet occurs, the lower sheet ruptures for a large rivet leg. In addition, 980 MPa high strength steel, mild steel and aluminium alloy sheets were joined by the self-pierce riveting.

  4. Image analysis of atmospheric corrosion of field exposure high strength aluminium alloys

    NASA Astrophysics Data System (ADS)

    Tao, Lei; Song, Shizhe; Zhang, Xiaoyun; Zhang, Zheng; Lu, Feng

    2008-08-01

    The corrosion morphology image acquisition system which can be used in the field was established. In Beijing atmospheric corrosion exposure station, the image acquisition system was used to capture the early stage corrosion morphology of five types of high strength aluminium alloy specimens. After the denoise treatment, wavelet-based image analysis method was applied to decompose the improved images and energies of sub-images were extracted as character information. Based on the variation of image energy values, the corrosion degree of aluminium alloy specimens was qualitatively and quantitatively analyzed. The conclusion was basically identical with the result based on the corrosion weight loss. This method is supposed to be effective to analysis and quantify the corrosion damage from image of field exposure aluminium alloy specimens.

  5. Microstructure and Aging of Powder-Metallurgy Al Alloys

    NASA Technical Reports Server (NTRS)

    Blackburn, L. B.

    1987-01-01

    Report describes experimental study of thermal responses and aging behaviors of three new aluminum alloys. Alloys produced from rapidly solidified powders and contain 3.20 to 5.15 percent copper, 0.24 to 1.73 percent magnesium, 0.08 to 0.92 percent iron, and smaller amounts of manganese, nickel, titanium, silicon, and zinc. Peak hardness achieved at lower aging temperatures than with standard ingot-metallurgy alloys. Alloys of interest for automobile, aircraft, and aerospace applications.

  6. Silica mesoporous thin films as containers for benzotriazole for corrosion protection of 2024 aluminium alloys

    NASA Astrophysics Data System (ADS)

    Recloux, Isaline; Mouanga, Maixent; Druart, Marie-Eve; Paint, Yoann; Olivier, Marie-Georges

    2015-08-01

    This work contributes to the development of a new environmentally friendly alternative pretreatment for 2024 aluminium alloys to replace hexavalent chromium based conversion layers in the aeronautical field. A silica mesoporous thin film, synthesized through the evaporation induced self-assembly process, was doped with benzotriazole to obtain active corrosion protection. Inhibitor loading contents were correlated with pore characteristics. The release kinetics was studied as function of pH. The application of the doped mesoporous film on 2024 aluminium alloy revealed a slowing down of corrosion processes, demonstrating its potential as an active inhibitor storage layer.

  7. Predicting the thermal conductivity of aluminium alloys in the cryogenic to room temperature range

    NASA Astrophysics Data System (ADS)

    Woodcraft, Adam L.

    2005-06-01

    Aluminium alloys are being used increasingly in cryogenic systems. However, cryogenic thermal conductivity measurements have been made on only a few of the many types in general use. This paper describes a method of predicting the thermal conductivity of any aluminium alloy between the superconducting transition temperature (approximately 1 K) and room temperature, based on a measurement of the thermal conductivity or electrical resistivity at a single temperature. Where predictions are based on low temperature measurements (approximately 4 K and below), the accuracy is generally better than 10%. Useful predictions can also be made from room temperature measurements for most alloys, but with reduced accuracy. This method permits aluminium alloys to be used in situations where the thermal conductivity is important without having to make (or find) direct measurements over the entire temperature range of interest. There is therefore greater scope to choose alloys based on mechanical properties and availability, rather than on whether cryogenic thermal conductivity measurements have been made. Recommended thermal conductivity values are presented for aluminium 6082 (based on a new measurement), and for 1000 series, and types 2014, 2024, 2219, 3003, 5052, 5083, 5086, 5154, 6061, 6063, 6082, 7039 and 7075 (based on low temperature measurements in the literature).

  8. Recovery of actinides from actinide-aluminium alloys by chlorination: Part II

    NASA Astrophysics Data System (ADS)

    Souček, P.; Cassayre, L.; Eloirdi, R.; Malmbeck, R.; Meier, R.; Nourry, C.; Claux, B.; Glatz, J.-P.

    2014-04-01

    A chlorination route is being investigated for recovery of actinides from actinide-aluminium alloys, which originate from pyrochemical recovery of actinides from spent metallic nuclear fuel by electrochemical methods in molten LiCl-KCl. In the present work, the most important steps of this route were experimentally tested using U-Pu-Al alloy prepared by electrodeposition of U and Pu on solid aluminium plate electrodes. The investigated processes were vacuum distillation for removal of the salt adhered on the electrode, chlorination of the alloy by chlorine gas and sublimation of the AlCl3 formed. The processes parameters were set on the base of a previous thermochemical study and an experimental work using pure UAl3 alloy. The present experimental results indicated high efficiency of salt distillation and chlorination steps, while the sublimation step should be further optimised.

  9. Steam assisted oxide growth on aluminium alloys using oxidative chemistries: Part II corrosion performance

    NASA Astrophysics Data System (ADS)

    Din, Rameez Ud; Jellesen, Morten Stendahl; Ambat, Rajan

    2015-11-01

    Surface treatment of aluminium alloys using steam with oxidative chemistries, namely KMnO4 and HNO3 resulted in accelerated growth of oxide on aluminium alloys. Detailed investigation of the corrosion performance of the treated surfaces was carried out using potentiodynamic polarisation and standard industrial test methods such as acetic acid salt spray (AASS) and filiform corrosion on commercial AA6060 alloy. Barrier properties of the film including adhesion were evaluated using tape test under wet and dry conditions. Electrochemical results showed reduced cathodic and anodic activity, while the protection provided by steam treatment with HNO3 was a function of the concentration of NO3- ions. The coating generated by inclusion of KMnO4 showed highest resistance to filiform corrosion. Overall, the performance of the steam treated surfaces under filiform corrosion and AASS test was a result of the local coverage of the alloy microstructure resulting from steam containing with KMnO4 and HNO3.

  10. Evaluation Of Four Welding Arc Processes Applied To 6061 Aluminium Alloy

    SciTech Connect

    Benoit, A.; Paillard, P.; Baudin, T.; Jobez, S.; Castagne, J.-F.

    2011-01-17

    At a time when greenhouse gas emissions must be reduced, the use of the aluminium alloys is expanding, in particular in the transportation industry. In order to extend the possibilities of aluminium assembly design, new Metal Inert Gas (MIG) welding processes have been conceived. They work at lower temperatures than usual arc processes (classic MIG or Tungsten Inert Gas). This study compares four arc welding processes, applied to the 6061 aluminium alloy. These four weld processes have been studied through the metallurgical analysis of the weld beads. Metallography, micro-hardness testings, X Ray radiography have been carried out on the produced weld beads. The processes are classified according to the quality of the beads like geometry of beads, size of the heat affected zone and presence of defects.

  11. [Use of powder metallurgy for development of implants of Co-Cr-Mo alloy powder].

    PubMed

    Dabrowski, J R

    2001-04-01

    This paper discusses the application of powder metallurgy for the development of porous implantation materials. Powders obtained from Co-Cr-Mo alloy with different carbon content by water spraying and grinding, have been investigated. Cold pressing and rotary re-pressing methods were used for compressing the powder. It was found that the sintered materials obtained from water spraying have the most advantageous properties. PMID:11388037

  12. Aging effects of diamond reinforced aluminium alloys submitted to deep space real conditions. Structural, chemical and electrical degradation

    NASA Astrophysics Data System (ADS)

    Korneli, Grigorov; Bouzekova-Penkova, Anna; Datcheva, Maria; Avdeev, George; Grushin, Valerii; Klimov, Stanislav

    2016-07-01

    An aluminium alloy (Al-Cu-Zn-Mg) reinforced with ultra-dispersed diamond powder and tungsten (W), has been prepared in form of 7 cm bars and 4 mm diameter. One part of them stayed 2 years on satellite exposed to outer space, where the Sun activity and the background radiation were monitored. After satellite return both batches has been studied. Structural test, mainly micro-hardness together with detailed X-rays analyses was performed. The satellite makes a tour around the Earth each two hours, the temperature difference being circa 300oC. The micro-hardness being measured with Agilent G200 nano-indentor shows a significant drop of 25%. The XRD patterns are consistent with the previous results, states defects incorporation, and crystalline cells deterioration.

  13. Property enhancement by grain refinement of zinc-aluminium foundry alloys

    NASA Astrophysics Data System (ADS)

    Krajewski, W. K.; Greer, A. L.; Piwowarski, G.; Krajewski, P. K.

    2016-03-01

    Development of cast alloys with good mechanical properties and involving less energy consumption during their melting is one of the key demands of today's industry. Zinc foundry alloys of high and medium Al content, i.e. Zn-(15-30) wt.% Al and Zn-(8-12) wt.% Al, can satisfy these requirements. The present paper summarizes the work [1-9] on improving properties of sand-cast ZnAl10 (Zn-10 wt.% Al) and ZnAl25 (Zn-25 wt. % Al) alloys by melt inoculation. Special attention was devoted to improving ductility, whilst preserving high damping properties at the same time. The composition and structural modification of medium- and high-aluminium zinc alloys influence their strength, tribological properties and structural stability. In a series of studies, Zn - (10-12) wt. % Al and Zn - (25-26) wt.% Al - (1-2.5) wt.% Cu alloys have been doped with different levels of added Ti. The melted alloys were inoculated with ZnTi-based refiners and it was observed that the dendritic structure is significantly finer already after addition of 50 - 100 ppm Ti to the melted alloys. The alloy's structure and mechanical properties have been studied using: SEM (scanning electron microscopy), LM (light microscopy), dilatometry, pin-on-disc wear, and tensile strength measurements. Grain refinement leads to significant improvement of ductility in the binary high-aluminium Zn-(25-27) Al alloys while in the medium-aluminium alloys the effect is rather weak. In the ternary alloys Zn-26Al-Cu, replacing a part of Cu with Ti allows dimensional changes to be reduced while preserving good tribological properties. Furthermore, the high initial damping properties were nearly entirely preserved after inoculation. The results obtained allow us to characterize grain refinement of the examined high-aluminium zinc alloys as a promising process leading to the improvement of their properties. At the same time, using low melting ZnTi-based master alloys makes it possible to avoid the excessive melt overheating

  14. Recovery of aluminium, nickel-copper alloys and salts from spent fluorescent lamps

    SciTech Connect

    Rabah, Mahmoud A

    2004-07-01

    This study explores a combined pyro-hydrometallurgical method to recover pure aluminium, nickel-copper alloy(s), and some valuable salts from spent fluorescent lamps (SFLs). It also examines the safe recycling of clean glass tubes for the fluorescent lamp industry. Spent lamps were decapped under water containing 35% acetone to achieve safe capture of mercury vapour. Cleaned glass tubes, if broken, were cut using a rotating diamond disc to a standard shorter length. Aluminium and copper-nickel alloys in the separated metallic parts were recovered using suitable flux to decrease metal losses going to slag. Operation variables affecting the quality of the products and the extent of recovery with the suggested method were investigated. Results revealed that total loss in the glass tube recycling operation was 2% of the SFLs. Pure aluminium meeting standard specification DIN 1712 was recovered by melting at 800 deg. C under sodium chloride/carbon flux for 20 min. Standard nickel-copper alloys with less than 0.1% tin were prepared by melting at 1250 deg. C using a sodium borate/carbon flux. De-tinning of the molten nickel-copper alloy was carried out using oxygen gas. Tin in the slag as oxide was recovered by reduction using carbon or hydrogen gas at 650-700 deg. C. Different valuable chloride salts were also obtained in good quality. Further research is recommended on the thermodynamics of nickel-copper recovery, yttrium and europium recovery, and process economics.

  15. Milling and Drilling Evaluation of Stainless Steel Powder Metallurgy Alloys

    SciTech Connect

    Lazarus, L.J.

    2001-12-10

    Near-net-shape components can be made with powder metallurgy (PM) processes. Only secondary operations such as milling and drilling are required to complete these components. In the past and currently production components are made from powder metallurgy (PM) stainless steel alloys. process engineers are unfamiliar with the difference in machining properties of wrought versus PM alloys and have had to make parts to develop the machining parameters. Design engineers are not generally aware that some PM alloy variations can be furnished with machining additives that greatly increase tool life. Specimens from a MANTEC PM alloy property study were made available. This study was undertaken to determine the machining properties of a number of stainless steel wrought and PM alloys under the same conditions so that comparisons of their machining properties could be made and relative tool life determined.

  16. Steam assisted oxide growth on aluminium alloys using oxidative chemistries: Part I Microstructural investigation

    NASA Astrophysics Data System (ADS)

    Din, Rameez Ud; Piotrowska, Kamila; Gudla, Visweswara Chakravarthy; Jellesen, Morten Stendahl; Ambat, Rajan

    2015-11-01

    The surface treatment of aluminium alloys under steam containing KMnO4 and HNO3 resulted in the formation of an oxide layer having a thickness of up to 825 nm. The use of KMnO4 and HNO3 in the steam resulted in incorporation of the respective chemical species into the oxide layer. Steam treatment with solution containing HNO3 caused dissolution of Cu and Si from the intermetallic particles in the aluminium substrate. The growth rate of oxide layer was observed to be a function of MnO4- and NO3- ions present in the aqueous solution. The NO3- ions exhibit higher affinity towards the intermetallic particles resulting in poor coverage by the steam generated oxide layer compared to the coating formed using MnO4- ions. Further, increase in the concentration of NO3- ions in the solution retards precipitation of the steam generated aluminium hydroxide layer.

  17. Electrodeposition of iron and iron-aluminium alloys in an ionic liquid and their magnetic properties.

    PubMed

    Giridhar, P; Weidenfeller, B; El Abedin, S Zein; Endres, F

    2014-05-28

    In this work we show that nanocrystalline iron and iron-aluminium alloys can be electrodeposited from the ionic liquid 1-butyl-1-methylpyrrolidinium trifluoromethylsulfonate, [Py1,4]TfO, at 100 °C. The study comprises CV, SEM, XRD, and magnetic measurements. Two different sources of iron(ii) species, Fe(TfO)2 and FeCl2, were used for the electrodeposition of iron in [Py1,4]TfO. Cyclic voltammetry was employed to evaluate the electrochemical behavior of FeCl2, Fe(TfO)2, and (FeCl2 + AlCl3) in the employed ionic liquid. Thick iron deposits were obtained from FeCl2/[Py1,4]TfO at 100 °C. Electrodeposition of iron-aluminium alloys was successful in the same ionic liquid at 100 °C. The morphology and crystallinity of the obtained deposits were investigated using SEM and XRD, respectively. XRD measurements reveal the formation of iron-aluminium alloys. First magnetic measurements of some deposits gave relatively high coercive forces and power losses in comparison to commercial iron-silicon samples due to the small grain size in the nanometer regime. The present study shows the feasibility of preparing magnetic alloys from ionic liquids. PMID:24715034

  18. Laminated composite of magnetic alloy powder and ceramic powder and process for making same

    DOEpatents

    Moorhead, A.J.; Kim, H.

    1999-08-10

    A laminated composite structure of alternating metal powder layers, and layers formed of an inorganic bonding media powder, and a method for manufacturing same are disclosed. The method includes the steps of assembling in a cavity alternating layers of a metal powder and an inorganic bonding media of a ceramic, glass, and glass-ceramic. Heat, with or without pressure, is applied to the alternating layers until the particles of the metal powder are sintered together and bonded into the laminated composite structure by the layers of sintered inorganic bonding media to form a strong composite structure. The method finds particular application in the manufacture of high performance magnets wherein the metal powder is a magnetic alloy powder. 9 figs.

  19. Laminated composite of magnetic alloy powder and ceramic powder and process for making same

    DOEpatents

    Moorhead, Arthur J.; Kim, Hyoun-Ee

    1999-01-01

    A laminated composite structure of alternating metal powder layers, and layers formed of an inorganic bonding media powder, and a method for manufacturing same are discosed. The method includes the steps of assembling in a cavity alternating layers of a metal powder and an inorganic bonding media of a ceramic, glass, and glass-ceramic. Heat, with or without pressure, is applied to the alternating layers until the particles of the metal powder are sintered together and bonded into the laminated composite structure by the layers of sintered inorganic bonding media to form a strong composite structure. The method finds particular application in the manufacture of high performance magnets wherein the metal powder is a magnetic alloy powder.

  20. Performance of AA5052 alloy anode in alkaline ethylene glycol electrolyte with dicarboxylic acids additives for aluminium-air batteries

    NASA Astrophysics Data System (ADS)

    Wang, DaPeng; Zhang, DaQuan; Lee, KangYong; Gao, LiXin

    2015-11-01

    Dicarboxylic acid compounds, i.e. succinic acid (SUA), adipic acid (ADA) and sebacic acid (SEA), are used as electrolyte additives in the alkaline ethylene glycol solution for AA5052 aluminium-air batteries. It shows that the addition of dicarboxylic acids lowers the hydrogen gas evolution rate of commercial AA5052 aluminium alloy anode. AA5052 aluminium alloy has wide potential window for electrochemical activity and better discharge performance in alkaline ethylene glycol solution containing dicarboxylic acid additives. ADA has the best inhibition effect for the self-corrosion of AA5052 anode among the three dicarboxylic acid additives. Fourier transform infrared spectroscopy (FT-IR) reveals that dicarboxylic acids and aluminium ions can form coordination complexes. Quantum chemical calculations shows that ADA has a smaller energy gap (ΔE, the energy difference between the lowest unoccupied orbital and the highest occupied orbital), indicating that ADA has the strongest interaction with aluminium ions.

  1. Aluminium Foams Fabricated by the PM Route using Nickel-coated Titanium Hydride Powders of Controlled Particle Size

    NASA Astrophysics Data System (ADS)

    Proa-Flores, Paula Mercedes

    To establish the effect of reducing the temperature mismatch between the TiH2 decomposition temperature and the aluminium melting point on the foams morphological features and their mechanical compression behavior, a nickel coating on TiH2 powders was used as a hydrogen diffusion barrier and the size of TiH2 powders was controlled to modify the hydrogen evolution temperature. The nickel diffusion barrier was produced by an electroless deposition technique and the hydrogen evolution behavior of coated powders was investigated by thermogravimetrical analysis. The effect of particle size was determined with powders of five particle size fractions along with powders of different particle size obtained from a supplier. Foamable precursors were obtained by hot pressing a mix of aluminium powders with 1 wt.% of TiH2 powders and foams were fabricated at 750 and 800 °C. The foams mechanical strength was investigated by uni-axial compression on foam cylinders with and without outer skin. Coating produced a continuous and homogeneous deposit of 96.5 wt.% nickel and reduced the initial temperature mismatch by approximately 70°C. Additionally, the coating adhesion proved to be good enough to withstand the mixing and compaction processes. Nickel-coated TiH2 powders generated foams with a more homogeneous and reproducible pore structure than foams produced with powders in the as-received and passivated condition. On the other hand, the hydrogen evolution onset of TiH2 shifted towards higher temperatures as the particle size increased. The particle size influenced the foam expansion and the porosity features. Powders of larger particle size produced foams with a more uniform pore distribution and size. Finally, compression tests on skinless foams containing nickel displayed quasi-horizontal energy regimes with longer stroke lengths than the rest, however the final energy absorption efficiencies (above 7.2 kJ·kg-1) were not remarkably increased.

  2. Powder metallurgy technology of NiTi shape memory alloy

    NASA Astrophysics Data System (ADS)

    Dutkiewicz, J. M.; Maziarz, W.; Czeppe, T.; Lityńska, L.; Nowacki, W. K.; Gadaj, S. P.; Luckner, J.; Pieczyska, E. A.

    2008-05-01

    Powder metallurgy technology was elaborated for consolidation of shape memory NiTi powders. The shape memory alloy was compacted from the prealloyed powder delivered by Memry SA. The powder shows Ms = 10°C and As = -34°C as results from DSC measurements. The samples were hot pressed in the as delivered spherical particle's state. The hot compaction was performed in a specially constructed vacuum press, at temperature of 680°C and pressure of 400 MPa. The alloy powder was encapsulated in copper capsules prior to hot pressing to avoid oxidation or carbides formation. The alloy after hot vacuum compaction at 680°C (i.e. within the B2 NiTi stability range) has shown similar transformation range as the powder. The porosity of samples compacted in the as delivered state was only 1%. The samples tested in compression up to ɛ = 0.06 have shown partial superelastic effect due to martensitic reversible transform- ation which started at the stress above 300 MPa and returned back to ɛ = 0.015 after unloading. They have shown also a high ultimate compression strength of 1600 MPa. Measurements of the samples temperature changes during the process allowed to detect the temperature increase above 12°C for the strain rate 10-2 s-1 accompanied the exothermic martensite transformation during loading and the temperature decrease related to the reverse endothermic transformation during unloading.

  3. Composite Ni-Co-fly ash coatings on 5083 aluminium alloy

    NASA Astrophysics Data System (ADS)

    Panagopoulos, C. N.; Georgiou, E. P.; Tsopani, A.; Piperi, L.

    2011-03-01

    Ni-Co-fly ash coatings were deposited on zincate treated 5083 wrought aluminium alloy substrates with the aid of the electrodeposition technique. Structural and chemical characterization of the produced composite coatings was performed with the aid of X-ray diffraction (XRD), scanning electron microscopy (SEM) and electron dispersive X-ray analysis (EDS) techniques. The Ni-Co-fly ash coatings were found to consist of a crystalline Ni-Co solid solution with dispersed fly ash particles. In addition, chemical analysis of the Ni-Co matrix showed that it consisted of 80 wt.% Ni and 20 wt.% Co. The co-deposition of fly ash particles leads to a significant increase of the microhardness of the coating. The corrosion behaviour of the Ni-Co-fly ash/zincate coated aluminium alloy, in a 0.3 M NaCl solution (pH = 3.5), was studied by means of potentiodynamic corrosion experiments.

  4. High-Rate Compaction of Aluminium Alloy Foams

    SciTech Connect

    Harrigan, J. J.; Hung, Y.-C.; Tan, P. J.; Bourne, N. K.; Withers, P. J.; Reid, S. R.; Millett, J. C. F.; Milne, A. M.

    2006-07-28

    The response of aluminium foams to impact can be categorised according to the impact velocity. Tests have been carried out at a range of impact velocities from quasi-static to velocities approaching the speed of sound in the foam. Various experimental arrangements have been employed including pneumatic launcher tests and plate impact experimants at velocities greater than 1000 m s-1. The quasi-static compression behaviour was approximately elastic, perfectly-plastic, locking. For static and dynamic compression at low impact velocities the deformation pattern was through the cumulative multiplication of discrete, non-contiguous crush bands. Selected impact tests are presented here for which the impact velocity is less than the velocity of sound, but above a certain critical impact velocity so that the plastic compression occurs in a shock-like manner and the specimens deform by progressive cell crushing. Laboratory X-ray microtomography has been employed to acquire tomographic datasets of aluminium foams before and after tests. The morphology of the underformed foam was used as the input dataset to an Eulerian code. Hydrocode simulations were then carried out on a real microstructure. These simulations provide insight to mechanisms associated with the localization of deformation.

  5. High-Rate Compaction of Aluminium Alloy Foams

    NASA Astrophysics Data System (ADS)

    Harrigan, J. J.; Millett, J. C. F.; Milne, A. M.

    2005-07-01

    The response of aluminium foams to impact can be categorised by the impact velocity. Tests are reported ranging from quasi-static to impact velocities greater than the speed of sound in the foam. The techniques used ranging from drop-hammer and pneumatic launcher tests, to plate impact at velocities greater than 1000 m s-1. The quasi-static compression behaviour was elastic, perfectly-plastic, locking. For static and dynamic compression at low impact velocities, post-impact examination of partially crushed specimens showed that deformation was through the cumulative multiplication of crush bands. If the impact velocity is less than the velocity of sound, but above a certain critical impact velocity, the plastic compression occurs in a shock-like manner and the specimens deform by progressive cell crushing. At higher impact velocities the compaction front is not preceded by an elastic wave. Laboratory X-ray microtomography has been employed to acquire tomographic datasets of aluminium foams before and after tests. The morphology of the underformed foam was input as the input dataset to an Eulerian code. Hydrocode simulations were then carried out on real microstructure. These simulations provide insight to mechanisms associated with the localization of deformation.

  6. High-Rate Compaction of Aluminium Alloy Foams

    NASA Astrophysics Data System (ADS)

    Harrigan, J. J.; Hung, Y.-C.; Tan, P. J.; Bourne, N. K.; Withers, P. J.; Reid, S. R.; Millett, J. C. F.; Milne, A. M.

    2006-07-01

    The response of aluminium foams to impact can be categorised according to the impact velocity. Tests have been carried out at a range of impact velocities from quasi-static to velocities approaching the speed of sound in the foam. Various experimental arrangements have been employed including pneumatic launcher tests and plate impact experimants at velocities greater than 1000 m s-1. The quasi-static compression behaviour was approximately elastic, perfectly-plastic, locking. For static and dynamic compression at low impact velocities the deformation pattern was through the cumulative multiplication of discrete, non-contiguous crush bands. Selected impact tests are presented here for which the impact velocity is less than the velocity of sound, but above a certain critical impact velocity so that the plastic compression occurs in a shock-like manner and the specimens deform by progressive cell crushing. Laboratory X-ray microtomography has been employed to acquire tomographic datasets of aluminium foams before and after tests. The morphology of the underformed foam was used as the input dataset to an Eulerian code. Hydrocode simulations were then carried out on a real microstructure. These simulations provide insight to mechanisms associated with the localization of deformation.

  7. Surface microhardening in a lithium implanted aluminium alloy

    SciTech Connect

    Singh, A.; Fiset, M.; Knystautas, E.J.; Lapointe, R.

    1984-09-01

    This paper describes changes observed in microhardness after implanting energetic lithium ions into pure aluminum and its 2024-T351 alloy. The addition of lithium to aluminum lowers the density and increases both the modulus of elasticity and tensile strength. Thus, these properties make such alloys attractive in aerospace applications. The authors believe that this is the first report where lithium implantation has been used to evaluate near surface changes.

  8. POWDER METALLURGY TiAl ALLOYS: MICROSTRUCTURES AND PROPERTIES

    SciTech Connect

    Hsiung, L

    2006-12-11

    The microstructures and properties of powder metallurgy TiAl alloys fabricated by hot extrusion of gas-atomized powder at different elevated temperatures were investigated. Microstructure of the alloy fabricated at 1150 C consisted of a mixture of fine ({gamma} + {alpha}{sub 2}) equiaxed grains and coarse ordered B2 grains. Particles of ordered hexagonal {omega} phase were also observed in some B2 grains. The alloy containing B2 grains displayed a low-temperature superplastic behavior: a tensile elongation of 310% was measured when the alloy was tested at 800 C under a strain rate of 2 x 10{sup -5} s{sup -1}. Microstructure of the alloy fabricated at 1250 C consisted of a mixture of fine ({gamma} + {alpha}{sub 2}) equiaxed grains, coarse {alpha}{sub 2} grains, and lamellar ({gamma} + {alpha}{sub 2}) colonies. An observation of stacking faults associated with fine {gamma} lamellae in {alpha}{sub 2} grains reveals that the stacking fault of {alpha}{sub 2} phase plays an important role in the formation of lamellar ({gamma} + {alpha}{sub 2}) colonies. Unlike the alloy fabricated at 1150{sup o}, the alloy fabricated at 1250{sup o} displayed no low-temperature superplasticity, but a tensile elongation of 260% at 1000 C was measured. Microstructure of the alloy fabricated at 1400 C consisted of fully lamellar ({gamma} + {alpha}{sub 2}) colonies with the colony size ranging between 50 {micro}m and 100 {micro}m, in which the width of {gamma} lamella is in a range between 100 nm and 350 nm, and the width of {alpha}{sub 2} lamella is in a range between 10 nm and 50 nm. Creep behavior of the ultrafine lamellar alloy and the effects of alloying addition on the creep resistance of the fully lamellar alloy are also investigated.

  9. Protection of 2024-T3 aluminium alloy by corrosion resistant phytic acid conversion coating

    NASA Astrophysics Data System (ADS)

    Shi, Hongwei; Han, En-Hou; Liu, Fuchun; Kallip, Silvar

    2013-09-01

    The corrosion protection properties of environmentally friendly phytic acid conversion coatings were studied on 2024-T3 aluminium alloy. The films were prepared under acidic conditions with various pH values and characterised by SEM, EDS, ATR-FTIR and electrochemical techniques. The results indicate that the conversion coatings obtained by immersing the alloy in phytic acid solutions at pH from 3 to 5.5 provide excellent corrosion resistance. ATR-FTIR confirms that the film is formed by deposition of reaction products between Al3+ and phosphate groups in phytic acid molecules. The conformation models of the deposition film are proposed.

  10. Structural properties of molten dilute aluminium-transition metal alloys.

    PubMed

    Pozdnyakova, I; Hennet, L; Mathiak, G; Brillo, J; Zanghi, D; Brun, J-F; Brassamin, S; Bytchkov, A; Cristiglio, V; Véron, E; Matzen, G; Geandier, G; Thiaudière, D; Moss, S C; Spaepen, F; Egry, I; Price, D L

    2006-07-19

    The short-range order in liquid binary Al-rich alloys (Al-Fe, Al-Ti) was studied by x-ray diffraction. The measurements were performed using a novel containerless technique which combines aerodynamic levitation with inductive heating. The average structure factors, S(Q), have been determined for various temperatures and compositions in the stable liquid state. From S(Q), the pair correlation functions, g(r), have been calculated. The first interatomic distance is nearly temperature-independent, whereas the first-shell coordination number decreases with increasing temperature for all the alloys investigated. For the Al-Fe alloys, room-temperature scanning electron microscropy (SEM) studies show the formation of a microstructure, namely the existence of Al(13)Fe(4) inclusions in the Al matrix. PMID:21690847

  11. Electrochemical pitting evaluation of aluminium alloy 7075 in machining coolant

    SciTech Connect

    Stanaland, V.A.; Dillon, J.J.

    1984-08-24

    The corrosion rate of aluminum alloy 7075 in Trim Sol with a Tris-Nitro biocide addition is satisfactory. Both deaeration and increasing the nitrite addition decreased the stability of the passive film. Chloride contamination below 500 ppM does not cause pitting corrosion of aluminum alloy 7075 in the Trim Sol environment. The limit for chloride contamination is between 500 and 1000 ppM. The potentiodynamic, fast-scan-rate technique is satisfactory for evaluating the pitting tendency of the aluminum alloy 7075 in a Trim Sol environment. Consequently, the potentiodynamic, fast-scan-rate technique is recommended for use in conjunction with reverse scans to evaluate the quality of in-use machining coolants, that are suspected of causing contamination.

  12. Determination of anisotropy in impact toughness of aluminium alloy 2024 T3 plate

    NASA Astrophysics Data System (ADS)

    Siddiqui, M. H.; Hashmi, F.; Junaid, A.

    The research was aimed to quantify the existence of anisotropy in fracture toughness of aluminium alloy 2024 T3 plate (used in aircraft structural members). It was further needed to establish the direction in which the fracture toughness of aluminium alloy 2024 T3 plate is maximum and minimum. This could help ascertain the structural integrity of aircraft structural components; also while designing new components, the knowledge of variation in toughness with respect to direction helps in economizing dead weight of the aircraft. In this research, pursued at the College of Aeronautical Engineering, the anisotropy in toughness of aluminium alloy 2024 T3 plate was analysed using the Charpy V-notch impact toughness test. The effect of specimen orientation on the impact toughness values of the alloy was investigated and compared with known results to verify the reliability of the work and to ascertain the extent of anisotropy in fracture toughness of the said alloy. Charpy impact tests were carried out on ASTM E 23 standard specimens machined at a reference laboratory at room temperature (23° C +/- 2° C). Four different specimen orientations analysed for the purpose of this study were L-S, L-T, T-S and T-L directions. Subsequently, the results obtained at the research centre were then analysed and correlated with morphology of microstructure of the material to establish the reliability of the experimental results. Moreover, an analysis was also done to cater for the possible errors that could affect the fracture toughness values obtained from experimental results. It was concluded that the T-S orientation of the plate had maximum toughness, whereas, minimum toughness was observed in L-T direction.

  13. Studies on aluminium leaching from cookware in tea and coffee and estimation of aluminium content in toothpaste, baking powder and paan masala.

    PubMed

    Rajwanshi, P; Singh, V; Gupta, M K; Kumari, V; Shrivastav, R; Ramanamurthy, M; Dass, S

    1997-01-30

    Studies were conducted in order to assess the level of aluminium (Al) in samples of Indian tea, coffee, toothpaste, paan masala (mouth freshener) and baking powder. Leaching of Al from cookware while preparing tea and coffee was also studied. Experiments were also conducted to study the sequential leaching of Al from cookware by preparing tea and coffee in the presence of standard size Al sheets (coupons). A small amount of Al was found to have leached from coupons during preparation of tea. Tea leaves, were found to be a rich source of Al and a maximum of 2.2% Al is extracted in tea infusions. Coffee powder on the other hand was not found to be a rich source of Al. Baking powder was found to be a rich source of Al and 1 kg of cake prepared with 1-3 teaspoon of baking powder may contain 2-12.7 mg of Al in each serving (25 g). Toothpaste also contains a significant quantity of Al, more so, when packed in Al tubes. Ingestion pattern of Al from these items by humans is also discussed. PMID:9092078

  14. Effect of Refiner Addition Level on Zirconium-Containing Aluminium Alloys

    NASA Astrophysics Data System (ADS)

    Jaradeh, M. M. R.; Carlberg, T.

    2012-01-01

    It is well known that in aluminium alloys containing Zr, grain refiner additions do not function as desired, producing an effect often referred to as nuclei poisoning. This paper investigates the structure of direct chill-cast ingots of commercial AA3003 aluminium alloys, with and without Zr, at various addition levels of Al5Ti1B master alloy. In Bridgman experiments simulating ingot solidification, Zr-containing alloys were studied after the addition of various amounts of Ti. It could be demonstrated, in both ingot casting and simulation experiments, that Zr poisoning can be compensated for by adding more Ti and/or Al5Ti1B. The results confirm better refinement behaviour with the addition of Ti + B than of only Ti. The various combinations of Zr and Ti also influenced the formation of AlFeMn phases, and the precipitation of large Al6(Mn,Fe) particles was revealed. AlZrTiSi intermetallic compounds were also detected.

  15. A hybrid aluminium alloy and its zoo of interacting nano-precipitates

    SciTech Connect

    Wenner, Sigurd; Marioara, Calin Daniel; Andersen, Sigmund Jarle; Ervik, Martin; Holmestad, Randi

    2015-08-15

    An alloy with aluminium as its base element is heat treated to form a multitude of precipitate phases known from different classes of industrial alloys: Al–Cu(–Mg), Al–Mg–Si–Cu, and Al–Zn–Mg. Nanometer-sized needle-shaped particles define the starting point of the phase nucleation, after which there is a split in the precipitation sequence into six phases of highly diverse compositions and morphologies. There are several unique effects of phases from different alloy systems being present in the same host lattice, of which we concentrate on two: the replacement of Ag by Zn on the Ω interface and the formation of combined plates of the θ′ and C phases. Using atomically resolved scanning transmission electron microscopy and energy-dispersive X-ray spectroscopy, we investigate the formation mechanisms, crystal structures and compositions of the precipitates. - Graphical abstract: Display Omitted - Highlights: • An aluminium alloy composition in-between the 2/6/7xxx systems was investigated. • Six different phases from the three systems coexist in an over-aged state. • All phases with 〈001〉{sub Al} coherencies can nucleate on 6xxx needle precipitates. • Modified theta′ and omega interfaces are observed.

  16. Dilatometer study of rapidly solidified aluminium-silicon based alloys

    NASA Astrophysics Data System (ADS)

    Varga, B.; Fazakas, E.; Hargitai, H.; Varga, L. K.

    2009-01-01

    Aluminum-Silicon alloys are sought in a large number of automotive and aerospace applications due to their low coefficient of thermal expansion and high wear resistance. The present study focused on structural transformations as a function of the temperature of rapidly solidified hypereutectic Al100-xSix (x = 12, 22 and 40) alloys. Different structures out of equilibrium have been obtained after casting in sand, graphite and copper moulds and by melt spinning. The retained Si content in supersaturated alpha Al and the precipitation of Si is discussed in the light of the dilatometer studies [1, 2, 3] complemented by metallographic microscopy, XRD and DSC [4] measurements. A Kissinger analysis was used to determine the activation energy for the precipitation of supersaturated Si content.

  17. The fatigue response of the aluminium-lithium alloy, 8090

    NASA Technical Reports Server (NTRS)

    Birt, M. J.; Beevers, C. J.

    1989-01-01

    The fatigue response of an Al-Li-Cu-Mg-Zr (8090) alloy has been studied at room temperature. The initiation and growth of small and long cracks has been examined at R = 0.1 and at a frequency of 100 Hz. Initiation was observed to occur dominantly at sub-grain boundaries. The growth of the small cracks was crystallographic in character and exhibited little evidence of retardation or arrest at the grain boundaries. The long crack data showed the alloy to have a high resistance to fatigue crack growth with underaging providing the optimum heat treatment for fatigue crack growth resistance. In general, this can be attributed to high levels of crack closure which resulted from the presence of extensive microstructurally related asperities.

  18. Surface formation in direct chill (DC) casting of 6082 aluminium alloys

    NASA Astrophysics Data System (ADS)

    Bayat, N.; Carlberg, T.

    2016-03-01

    Surface defects in aluminium billet production are a real problem for the subsequent extrusion procedure. Extrusion productivity can be influenced by the surface properties, which is defined as surface appearance, surface segregation zone depth and large Mg2Si and β-particles (Al5FeSi). In this research the surface formation during DC casting of 6082 aluminium billets produced by the air slip technology is studied. The surface microstructures of 6082 aluminium alloys with smooth and wavy surface appearances were investigated, including segregation zone depths and phase formation. The results were discussed based on the exudation of liquid metal through the mushy zone. The specific appearance of the wavy surface of 6082 alloys was correlated to how the oxide skin adheres to the underlying mushy zone and coupled to the dendritic coherency and surface tension of the skin. The occurrence of different phases at the very surface and in the layer just below was explained by variations in solidification directions and subsequent segregation patterns.

  19. Study on optimal surface property of WC-Co cutting tool for aluminium alloy cutting

    NASA Astrophysics Data System (ADS)

    Nizar, Mohd; Arimatsu, Naoya; Kawamitsu, Hiroshi; Takai, Kazuteru; Fukumoto, Masahiro

    2016-02-01

    The light weight property as well as high corrosion resistance of aluminium alloy has increased their demand especially in automobile industries. Aluminium alloy as a matter of fact has a low melting point and high ductility that severely adhere to the cutting tool surface and cause deterioration of chip evacuation. This problem often resulting in tools breakage. In this paper, in order to impart functions of anti-adhesion, we propose a technique by controlling the grinding marks micro texture on the tool surface by using the blast polishing treatment without any coating technologies. The results show that the tool which underwent polishing treatment reduces the cutting force as well as the aluminium adherence during the initial cutting process, and become worst as the process cutting continues. These results indicate that grinding mark texture improves the anti-adhesion by reducing the contact area during cutting and provide storage for the lubricant. In addition, too much polishing on the tool surface may remove these textures and resultantly worsen the tool performance.

  20. Apparatus for making environmentally stable reactive alloy powders

    DOEpatents

    Anderson, Iver E.; Lograsso, Barbara K.; Terpstra, Robert L.

    1996-12-31

    Apparatus and method for making powder from a metallic melt by atomizing the melt to form droplets and reacting the droplets downstream of the atomizing location with a reactive gas. The droplets are reacted with the gas at a temperature where a solidified exterior surface is formed thereon and where a protective refractory barrier layer (reaction layer) is formed whose penetration into the droplets is limited by the presence of the solidified surface so as to avoid selective reduction of key reactive alloyants needed to achieve desired powder end use properties. The barrier layer protects the reactive powder particles from environmental constituents such as air and water in the liquid or vapor form during subsequent fabrication of the powder to end-use shapes and during use in the intended service environment.

  1. Environmentally stable reactive alloy powders and method of making same

    DOEpatents

    Anderson, Iver E.; Lograsso, Barbara K.; Terpstra, Robert L.

    1998-09-22

    Apparatus and method for making powder from a metallic melt by atomizing the melt to form droplets and reacting the droplets downstream of the atomizing location with a reactive gas. The droplets are reacted with the gas at a temperature where a solidified exterior surface is formed thereon and where a protective refractory barrier layer (reaction layer) is formed whose penetration into the droplets is limited by the presence of the solidified surface so as to avoid selective reduction of key reactive alloyants needed to achieve desired powder end use properties. The barrier layer protects the reactive powder particles from environmental constituents such as air and water in the liquid or vapor form during subsequent fabrication of the powder to end-use shapes and during use in the intended service environment.

  2. Environmentally stable reactive alloy powders and method of making same

    DOEpatents

    Anderson, I.E.; Lograsso, B.K.; Terpstra, R.L.

    1998-09-22

    Apparatus and method are disclosed for making powder from a metallic melt by atomizing the melt to form droplets and reacting the droplets downstream of the atomizing location with a reactive gas. The droplets are reacted with the gas at a temperature where a solidified exterior surface is formed thereon and where a protective refractory barrier layer (reaction layer) is formed whose penetration into the droplets is limited by the presence of the solidified surface so as to avoid selective reduction of key reactive alloys needed to achieve desired powder end use properties. The barrier layer protects the reactive powder particles from environmental constituents such as air and water in the liquid or vapor form during subsequent fabrication of the powder to end-use shapes and during use in the intended service environment. 7 figs.

  3. Apparatus for making environmentally stable reactive alloy powders

    DOEpatents

    Anderson, I.E.; Lograsso, B.K.; Terpstra, R.L.

    1996-12-31

    Apparatus and method are disclosed for making powder from a metallic melt by atomizing the melt to form droplets and reacting the droplets downstream of the atomizing location with a reactive gas. The droplets are reacted with the gas at a temperature where a solidified exterior surface is formed thereon and where a protective refractory barrier layer (reaction layer) is formed whose penetration into the droplets is limited by the presence of the solidified surface so as to avoid selective reduction of key reactive alloyants needed to achieve desired powder end use properties. The barrier layer protects the reactive powder particles from environmental constituents such as air and water in the liquid or vapor form during subsequent fabrication of the powder to end-use shapes and during use in the intended service environment. 7 figs.

  4. Corrosion behavior of rapidly solidified magnesium-aluminium-zinc alloys

    SciTech Connect

    Daloz, D.; Michot, G.; Steinmetz, P.

    1997-12-01

    Rapidly solidified magnesium alloys with 8 at%, 15 at%, and 20 at% Al and 1 at% and 3 at% Zn were fabricated by centrifugal atomization followed by hot extrusion. Microstructure of the alloys was composed of a fine-grain magnesium matrix (0.5 {micro}m) with {beta}-Mg{sub 17}Al{sub 12} precipitates. Electrochemical and weight-loss tests were performed in borate and ASTM D 1384 solution (chloride, carbonate, and sulfate). In both media, corrosion current f the alloys decreased with increases in aluminum or zinc content. In borate solution, a passivating plateau was observed from the corrosion potential (E{sub corr}) to E{sub corr} + 1,200 mV. Current density decreased with aluminum and zinc concentrations. Electrochemical behavior of the synthesized matrix and precipitates was characterized. Zinc increased E{sub corr} of the two phases, with a corresponding decrease of corrosion current. The same trend was noticed for aluminum but with a less dramatic effect. The corrosion mechanism was suggested result from galvanic coupling of the matrix and the second phase. The galvanic corrosion, however, was reduced strongly by passivation of the matrix as a result of the surrounding precipitates. The positive influence of rapid solidification (corrosion rate decreased 1 order of magnitude) was the creation of a fine, highly homogeneous microstructure through this fabrication process.

  5. Investigation on Tool Wear Rate for Modified and Unmodified Aluminium-Silicon Casting Alloy

    NASA Astrophysics Data System (ADS)

    Haque, M. M.; Khan, A. A.; Ismail, Ahmad F.

    This study demonstrates and explains the effect of strontium modification on machinability of aluminium-silicon eutectic (LM-6 type) alloy. This alloy is known to have many favourable features including weight to strength ratio, high corrosion resistance and excellent castability. However, normal unmodified LM-6 alloy has poor machinability, which reduces its applications range. In this work, various samples of LM-6 alloy were cast using sand and metallic chill mould with and without strontium addition. Machining on each cast product, was carried out using recommended cutting parameters for Al-Si alloys. Strontium modified samples have recorded a reduction in average flank wear, an increase in shear plane angles and a reduction in chip thickness. The main reason for this improvement is the refining effect of strontium, which reduces the size of the hard silicon particles. As a result, their abrasive action on the tool face has reduced a lot. Dramatic reductions in tool wear rate were recorded when the microstructures were refined. On the other hand, when no refinement of microstructure occurs, tool wear rate becomes high. Chip analysis showed that strontium modified sample produced a thinner chip thickness with a larger shear plane angle, requiring less cutting forces. The tool wear depends not only on the phases present in the work material, but also on their sizes and distribution over entire structure. Thus, strontium modification has better effect on machinability of die cast alloy compared to that of the sand cast LM-6 alloy.

  6. Fabrication of self-healing super-hydrophobic surfaces on aluminium alloy substrates

    SciTech Connect

    Wang, Yang; Wei Liu, Xiao; Zhang, Hai Feng Zhou, Zhi Ping

    2015-04-15

    We present a method to fabricate a super-hydrophobic surface with a self-healing ability on an aluminium alloy substrate. The coatings are obtained by combining a two-step process (first, the substrate is immersed in a solution of HCl, HF and H{sub 2}O, and then in boiling water) and succeeding surface fluorination with a solution of poly(vinylidene-fluoride-co-hexafluoropropylene) and a fluoroalkyl silane. The morphological features and chemical composition were studied by scanning electron micrometry and energy-dispersive X-ray spectroscopy. The prepared super-hydrophobic aluminium surfaces showed hierarchical structures forming pores, petals and particles with a contact angle of 161° and a sliding angle of 3°.

  7. Finite Element Analysis of Warpage in Laminated Aluminium Alloy Plates for Machining of Primary Aeronautic Parts

    SciTech Connect

    Reis, A. C.; Moreira Filho, L. A.; Menezes, M. A.

    2007-04-07

    The aim of this paper consists in presenting a method of simulating the warpage in 7xxx series aluminium alloy plates. To perform this simulation finite element software MSC.Patran and MSC.Marc were used. Another result of this analysis will be the influence on material residual stresses induced on the raw material during the rolling process upon the warpage of primary aeronautic parts, fabricated through machining (milling) at Embraer. The method used to determinate the aluminium plate residual stress was Layer Removal Test. The numerical algorithm Modified Flavenot Method was used to convert layer removal and beam deflection in stress level. With such information about the level and profile of residual stresses become possible, during the step that anticipate the manufacturing to incorporate these values in the finite-element approach for modelling warpage parts. Based on that warpage parameter surely the products are manufactured with low relative vulnerability propitiating competitiveness and price.

  8. Experimental synovitis induced by aluminium phosphate in rabbits. Comparison of the changes produced in synovial tissue and in articular cartilage by aluminium phosphate, carrageenin, calcium hydrogen phosphate dihydrate, and natural diamond powder.

    PubMed

    Delongeas, J L; Netter, P; Boz, P; Faure, G; Royer, R J; Gaucher, A

    1984-01-01

    The goal of this experimental study was to examine the effect on articular tissue of tribasic aluminium phosphate (crystalline and amorphous forms) after intraarticular injection in rabbit and to compare it with that of various phlogistic compounds such as carrageenin, calcium hydrogen phosphate dihydrate and diamond powder, as a control. Synovium and cartilage were studied with light microscopy, transmission electron microscopy (TEM), scanning electron microscopy (SEM) and energy dispersive micro-analysis (EDM). Crystalline and amorphous aluminium phosphate could induce a synovitis with articular effusion in rabbits. With TEM, lysosomal inclusions of phagocytosed material were observed. Through SEM coupled with EDM, aluminium associated with phosphate was found in cellular elements. PMID:6087947

  9. Properties of experimental copper-aluminium-nickel alloys for dental post-and-core applications

    PubMed Central

    Rittapai, Apiwat; Kajornchaiyakul, Julathep; Harniratisai, Choltacha

    2014-01-01

    PURPOSE This study aimed to develop a copper-aluminium-nickel alloy which has properties comparable to that of dental alloys used for dental post and core applications with the reasonable cost. MATERIALS AND METHODS Sixteen groups of experimental copper alloys with variants of 3, 6, 9, 12 wt% Al and 0, 2, 4, 6 wt% Ni were prepared and casted. Their properties were tested and evaluated. The data of thermal, physical, and mechanical properties were analyzed using the two-way ANOVA and Tukey's test (α=0.05). The alloy toxicity was evaluated according to the ISO standard. RESULTS The solidus and liquidus points of experimental alloys ranged from 1023℃ to 1113℃ and increased as the nickel content increased. The highest ultimate tensile strength (595.9 ± 14.2 MPa) was shown in the Cu-12Al-4Ni alloy. The tensile strength was increased as the both elements increased. Alloys with 3-6 wt% Al exhibited a small amount of 0.2% proof strength. Accordingly, the Cu-9Al-2Ni and Cu-9Al-4Ni alloys not only demonstrated an appropriate modulus of elasticity (113.9 ± 8.0 and 122.8 ± 11.3 GPa, respectively), but also had a value of 0.2% proof strength (190.8 ± 4.8 and 198.2 ± 3.4 MPa, respectively), which complied with the ISO standard requirement (>180 MPa). Alloys with the highest contents of nickel (6 wt% Ni) revealed a widespread decolourisation zone (5.0-5.9 mm), which correspondingly produced the largest cell response, equating positive control. CONCLUSION The copper alloys fused with 9 wt% Al and 2-4 wt% Ni can be considered for a potential use as dental post and core applications. PMID:25006386

  10. Microstructure refinement of commercial 7xxx aluminium alloys solidified by the electromagnetic vibration technique

    NASA Astrophysics Data System (ADS)

    Li, M.; Tamura, T.; Omura, N.; Murakami, Y.; Tada, S.

    2016-03-01

    This paper examines the microstructure refinement of commercial 7xxx aluminium alloys solidified by the electromagnetic vibration technique (EMV) as a function of vibration frequency, f. The microstructure evolution reveals that at the low frequency of f = 62.5 Hz, the solidified microstructure is coarse and with the increase of vibration frequency to f = 500 Hz, the grain size becomes the finest and further increase of frequency to f = 2000 Hz results in coarsening of microstructures. The refinement mechanism is clarified when considering the significant difference in electrical resistivities of the solid and the liquid in mushy zone, in which both phases coexist and subject to vibration. The frequency-dependent refinement behaviour is revealed when the displacement of the mobile solid and sluggish liquid is taken into account during solidification. In contrast to 3xxx aluminium alloys, no giant compounds have been discerned in the present 7xxx alloy regardless of the solidification condition. The formation of crystalline twin is briefly discussed when considering the vibration condition.

  11. Bond strength of pressure sensitive adhesives for CFRP aluminium-alloy hybrid beams under impact loading

    NASA Astrophysics Data System (ADS)

    Sato, C.

    2003-09-01

    This paper discusses the impact absorbing capabilities of CFRP aluminium-alloy hybrid beams bonded with double-coated pressure sensitive adhesive tapes. Two sorts of double-coated adhesive tapes (VHB and SBT, 3M) were used in experiments. The strength and absorbed energy of the beams under impact loading were measured using an instrumented Charpy tester. Using the beams having the different adhesive tapes and the CFRP of different length, the variations of the strength and the absorbed energy were investigated. The beams bonded with VHB showed sufficient strength and absorbed energy. SBT showed also great capability of absorbing impact energy.

  12. Bending Properties of Locally Laser Heat Treated AA2024-T3 Aluminium Alloy

    NASA Astrophysics Data System (ADS)

    Mohammadi, Amirahmad; Vanhove, Hans; Van Bael, Albert; Duflou, Joost R.

    The bending properties of AA2024-T3 aluminium alloy after localized laser assisted softening have been studied and compared to untreated material. Single and multi-path laser scanning strategies are applied for achieving a predictable and minimized springback. Process parameters for softening have been chosen based on FE modeling. In order to investigate the softening, and to characterize the size of this softened region, hardness measurements were carried out. Using a triple scanning path strategy springback was reduced by about 43% without changing the bending radius.

  13. Microstructure evolution in age-hardenable aluminium alloy during processing by hydrostatic extrusion.

    PubMed

    Lewandowska, M

    2006-10-01

    In the present work, scanning and transmission electron microscopy were used to investigate the microstructural evolution occurring during the hydrostatic extrusion of an age-hardenable aluminium alloy. It was shown that processing by hydrostatic extrusion leads to grain refinement to 95 nm in equivalent diameter. Hydrostatic extrusion also influences the geometrical parameters of two different types of particle: intermetallic inclusions and precipitates. The intermetallic inclusions slightly decrease in mean equivalent diameter, but their size remains at the micrometre level. The precipitates are fragmented to nanoscale spherical particles, and their evolution delays the process of grain refinement. PMID:17100901

  14. Research of aluminium alloy aerospace structure aperture measurement based on 3D digital speckle correlation method

    NASA Astrophysics Data System (ADS)

    Bai, Lu; Wang, Hongbo; Zhou, Jiangfan; Yang, Rong; Zhang, Hui

    2014-11-01

    In this paper, the aperture change of the aluminium alloy aerospace structure under real load is researched. Static experiments are carried on which is simulated the load environment of flight course. Compared with the traditional methods, through experiments results, it's proved that 3D digital speckle correlation method has good adaptability and precision on testing aperture change, and it can satisfy measurement on non-contact,real-time 3D deformation or stress concentration. The test results of new method is compared with the traditional method.

  15. In situ creep under helium implantation of titanium aluminium alloy

    NASA Astrophysics Data System (ADS)

    Chen, J.; Jung, P.; Nazmy, M.; Hoffelner, W.

    2006-06-01

    The intermetallic alloy Ti-47Al-2W-0.5Si (at.%) has been homogeneously implanted with 4He2+ ions under uniaxial tensile stresses from 20 to 450 MPa to a maximum dose of about 0.16 dpa (1370 appm-He) with displacement damage rates of 2 × 10-6 dpa s-1 at temperatures of 573 and 773 K. Strain under implantation was determined by Linear Variable Displacement Transformer (LVDT), while changes of microstructure were investigated after implantation by Transmission Electron Microscopy (TEM). Irradiation creep strain showed a pronounced transient behaviour, virtually independent of temperature, with a stress dependence which can be approximately described by a creep compliance of 8 × 10-6 dpa-1 MPa-1 up to stresses of 350 MPa. The microstructure of the as-received material consisted of a patch-work of mainly lamellar γ/α2 colonies and equiaxed γ-grains with islands of precipitates. Only 'black dot' damage was observed after implantation at 573 K under different stresses, while implantation at 773 K yielded a dense population of bubbles and dislocation loops, mostly mutually attached.

  16. Powder-Derived High-Conductivity Coatings for Copper Alloys

    NASA Technical Reports Server (NTRS)

    Thomas-Ogbuji, Linus U.

    2003-01-01

    Makers of high-thermal-flux engines prefer copper alloys as combustion chamber liners, owing to a need to maximize heat dissipation. Since engine environments are strongly oxidizing in nature and copper alloys generally have inadequate resistance to oxidation, the liners need coatings for thermal and environmental protection; however, coatings must be chosen with great care in order to avoid significant impairment of thermal conductivity. Powder-derived chromia- and alumina- forming alloys are being studied under NASA's programs for advanced reusable launch vehicles to succeed the space shuttle fleet. NiCrAlY and Cu-Cr compositions optimized for high thermal conductivity have been tested for static and cyclic oxidation, and for susceptibility to blanching - a mode of degradation arising from oxidation-reduction cycling. The results indicate that the decision to coat the liners or not, and which coating/composition to use, depends strongly on the specific oxidative degradation mode that prevails under service conditions.

  17. Effect of Ultrasonic Treatment on the Microstructure of A201 Aluminium Alloy for Thixoforming

    SciTech Connect

    Kandemir, Sinan; Atkinson, Helen V.; Lawes, Simon D. A.

    2011-05-04

    It is known that the introduction of high intensity ultrasonic waves into liquid and solidifying metals leads to a non-dendritic and fine grain structure which is the requirement for semi-solid feedstock production. The effect of vibration time on the semi-solid microstructure of the A201 aluminium alloy billets fabricated with the ultrasonic treatment in the liquid state was studied in this paper. It was observed that the application of ultrasound technology can break up and distribute the dendrites which are present in the as-cast alloy. A suitable thixotropic microstructure with relatively rounded and fine globules could be obtained by ultrasonically treating liquid metal at 690 deg. C for a treatment time of 1 minute, cooling to room temperature and then reheating to the semi-solid state. This shows the ultrasonic treatment could be an economic and alternative route to produce A201 semi-solid feedstock for thixoforming.

  18. Physically-based constitutive modelling of residual stress development in welding of aluminium alloy 2024

    SciTech Connect

    Preston, R.V.; Shercliff, H.R. . E-mail: hrs@eng.cam.ac.uk; Withers, P.J.; Smith, S.

    2004-10-04

    A finite element model has been developed to predict the evolution of residual stress and distortion which takes into account the history-dependence of the yield stress-temperature response of heat-treatable aluminium alloys during welding. The model was applied to TIG welding of 2024-T3 aluminium alloy, and the residual strain predictions validated using high resolution X-ray synchrotron diffraction. The goal was to capture the influence of the permanent evolution of the microstructure during the thermal cycle with a straightforward numerical procedure, while retaining a sound physical basis. Hardness and resistivity measurements after isothermal hold-and-quench experiments were used to identify salient temperatures for zero, partial and full dissolution of the initial hardening precipitates, and the extent of softening - both immediately after welding, and after natural ageing. Based on these data, a numerical procedure for weld modelling was proposed for tracking the different yield responses during heating and cooling based on the peak temperature reached locally. This history-dependent model was superior to a conventional model in predicting the peak tensile strains, but otherwise the effect of temperature history was weak for 2024-T3. Predictions of the hardness profile immediately after welding compared with the post-weld naturally aged hardness provided insight into the competition between dissolution and coarsening of the precipitates in the heat-affected zone.

  19. Ceramic Inclusions In Powder Metallurgy Disk Alloys: Characterization and Modeling

    NASA Technical Reports Server (NTRS)

    Bonacuse, Pete; Kantzos, Pete; Telesman, Jack

    2002-01-01

    Powder metallurgy alloys are increasingly used in gas turbine engines, especially as the material chosen for turbine disks. Although powder metallurgy materials have many advantages over conventionally cast and wrought alloys (higher strength, higher temperature capability, etc.), they suffer from the rare occurrence of ceramic defects (inclusions) that arise from the powder atomization process. These inclusions can have potentially large detrimental effect on the durability of individual components. An inclusion in a high stress location can act as a site for premature crack initiation and thereby considerably reduce the fatigue life. Because these inclusions are exceedingly rare, they usually don't reveal themselves in the process of characterizing the material for a particular application (the cumulative volume of the test bars in a fatigue life characterization is typically on the order of a single actual component). Ceramic inclusions have, however, been found to be the root cause of a number of catastrophic engine failures. To investigate the effect of these inclusions in detail, we have undertaken a study where a known population of ceramic particles, whose composition and morphology are designed to mimic the 'natural' inclusions, are added to the precursor powder. Surface connected inclusions have been found to have a particularly large detrimental effect on fatigue life, therefore the volume of ceramic 'seeds' added is calculated to ensure that a minimum number will occur on the surface of the fatigue test bars. Because the ceramic inclusions are irregularly shaped and have a tendency to break up in the process of extrusion and forging, a method of calculating the probability of occurrence and expected intercepted surface and embedded cross-sectional areas were needed. We have developed a Monte Carlo simulation to determine the distributions of these parameters and have verified the simulated results with observations of ceramic inclusions found in macro

  20. Design and operation of an aluminium alloy tank using doped Na3AlH6 in kg scale for hydrogen storage

    NASA Astrophysics Data System (ADS)

    Urbanczyk, R.; Peinecke, K.; Meggouh, M.; Minne, P.; Peil, S.; Bathen, D.; Felderhoff, M.

    2016-08-01

    In this publication the authors present an aluminium alloy tank for hydrogen storage using 1921 g of Na3AlH6 doped with 4 mol% of TiCl3 and 8 mol% of activated carbon. The tank and the heat exchangers are manufactured by extrusion moulding of Al-Mg-Si based alloys. EN AW 6082 T6 alloy is used for the tank and a specifically developed alloy with a composition similar to EN AW 6060 T6 is used for the heat exchangers. The three heat exchangers have a corrugated profile to enhance the surface area for heat transfer. The doped complex hydride Na3AlH6 is densified to a powder density of 0.62 g cm-3. The hydrogenation experiments are carried out at 2.5 MPa. During one of the dehydrogenation experiments approximately 38 g of hydrogen is released, accounting for gravimetric hydrogen density of 2.0 mass-%. With this tank 15 hydrogenation and 16 dehydrogenation tests are carried out.

  1. Evaluation of AA5052 alloy anode in alkaline electrolyte with organic rare-earth complex additives for aluminium-air batteries

    NASA Astrophysics Data System (ADS)

    Wang, Dapeng; Li, Heshun; Liu, Jie; Zhang, Daquan; Gao, Lixin; Tong, Lin

    2015-10-01

    Behaviours of the AA5052 aluminium alloy anode of the alkaline aluminium-air battery are studied by the hydrogen evolution test, the electrochemical measurements and the surface analysis method. The combination of amino-acid and rare earth as electrolyte additives effectively retards the self-corrosion of AA5052 aluminium alloy in 4 M NaOH solution. It shows that the combination of L-cysteine and cerium nitrate has a synergistic effect owing to the formation of a complex film on AA5052 alloy surface. The organic rare-earth complex can decrease the anodic polarisation, suppress the hydrogen evolution and increase the anodic utilization rate.

  2. Properties of alloy steel powders produced by the method of diffusion impregnation (review)

    SciTech Connect

    Napara-Volgina, S.G.

    1985-06-01

    In their review of research on the properties of alloy steel powders produced by the method of diffusion impregnation, the authors systematize their data into three charts, one on the characteristics of charges and the recommended areas of use of powders, one on the chemical and particle size compositions and technological properties of the powders, and one on the fine crystalline structure of alloy powders of different compositions. The authors recommend the use of such powders, especially powder metallurgy constructional steels, produced by hot stamping and other methods providing high density.

  3. Dispersion Properties of Silicon Nitride Powder Coated with Yttrium and Aluminium Precursors.

    PubMed

    Yang; Ferreira; Weng

    1998-10-01

    A coated silicon nitride (Si3N4) powder with yttria and alumina precursors as sintering additives was prepared by a heterogeneous precipitation method. The rheological and electrophoretic properties of the suspensions obtained from the coated (CO) powder were investigated and compared with those of pure Si3N4 powder and of the mechanically mixed (MM) powders of Al2O3, Si3N4, and Y2O3. The results showed that the CO powder calcined at 500 degreesC exhibited improved dispersion properties compared with the pure Si3N4 powders. The CO powder possessed the surface character of Al2O3 and Y2O3 particles, that made it easier to process in aqueous media, yielding a higher solid loading than the pure Si3N4 powder. These improvements were attributed to a change in the resultant interaction forces between particles from attractive (pure Si3N4, and MM powders) to repulsive in the case of the CO powder. A homogeneous distribution of sintering additives in the Si3N4 matrix was obtained. Copyright 1998 Academic Press. PMID:9761653

  4. Electrochemical and DFT studies of quinoline derivatives on corrosion inhibition of AA5052 aluminium alloy in NaCl solution

    NASA Astrophysics Data System (ADS)

    Wang, Dapeng; Yang, Dong; Zhang, Daquan; Li, Kang; Gao, Lixin; Lin, Tong

    2015-12-01

    Two quinoline derivatives, 8-aminoquinoline (8-AQ) and 8-nitroquinoline (8-NQ), have been used as inhibitors to examine their corrosion protection effect on AA5052 aluminium alloy in 3% NaCl solution. The weight-loss and electrochemical measurement have indicated that 8-AQ and 8-NQ play as anodic inhibitor to retard the anodic electrochemical process. SEM/EDS analysis clearly shows that 8-AQ and 8-NQ form a protective film on the AA5052 alloy surface. Density functional theory (DFT) calculation confirmed the formation of strong hybridization between the p-orbital of reactive sites in the inhibitor molecules and the sp-orbital of the Al atom. 8-aminoquinoline and 8-nitroquinoline may be useful as effective corrosion inhibitors for aluminium alloys.

  5. Experimental characterisation and modelling of deformation- induced microstructure in an A6061 aluminium alloy

    NASA Astrophysics Data System (ADS)

    Kreyca, J. F.; Falahati, A.; Kozeschnik, E.

    2016-03-01

    For industry, the mechanical properties of a material in form of flow curves are essential input data for finite element simulations. Current practice is to obtain flow curves experimentally and to apply fitting procedures to obtain constitutive equations that describe the material response to external loading as a function of temperature and strain rate. Unfortunately, the experimental procedure for characterizing flow curves is complex and expensive, which is why the prediction of flow-curves by computer modelling becomes increasingly important. In the present work, we introduce a state parameter based model that is capable of predicting the flow curves of an A6061 aluminium alloy in different heat-treatment conditions. The model is implemented in the thermo-kinetic software package MatCalc and takes into account precipitation kinetics, subgrain formation, dynamic recovery by spontaneous annihilation and dislocation climb. To validate the simulation results, a series of compression tests is performed on the thermo-mechanical simulator Gleeble 1500.

  6. Experimental study of thermal oxidation of nanoscale alloys of aluminium and zinc (nAlZn)

    NASA Astrophysics Data System (ADS)

    Noor, Fahad; Wen, Dongsheng

    2015-10-01

    Aluminium-based alloys have wide applications but little is known about the thermal-chemical kinetics of nanoalloys. This work investigated the thermal oxidation of Zn and Al nanoalloys (nAlZn) with a BET equivalent diameter of 141 nm through the simultaneous TGA/DSC method. The thermal analysis was combined with elemental, morphology and crystalline structure analysis to elucidate the reaction mechanisms. It was found that the complete oxidation of nAlZn in air can be characterised by a three-stage process, including two endothermic and three exothermic reactions. With the help of ex-situ XRD, different reaction pathways were proposed for different stages, forming the end products of ZnO and ZnAl2O4. The reactivity comparison between Al and nAlZn suggested that different criteria should be used for different applications.

  7. Strain rate effects on mechanical properties in tension of aluminium alloys used in armour applications

    NASA Astrophysics Data System (ADS)

    Cadoni, E.; Dotta, M.; Forni, D.; Bianchi, S.; Kaufmann, H.

    2012-08-01

    The mechanical properties in tension of two aluminium alloys (AA5059-H131 and AA7039-T651) used in armour applications were determined from tests carried out over a wide range of strain-rates on round specimens. The experimental research was developed in the DynaMat laboratory of the University of Applied Sciences of Southern Switzerland. The target strain rates were set at the following four levels: 10-3, 30, 300 and 1000s-1. The quasi-static tests were performed with a universal electromechanical machine, whereas a hydro-pneumatic machine and a Split Hopkinson Tensile Bar apparatus were used for medium and high strain-rates respectively. The required parameters by the Johnson-Cook constitutive law were also determined.

  8. Microstructure of friction stir welded joints of 2017A aluminium alloy sheets.

    PubMed

    Mroczka, K; Dutkiewicz, J; Pietras, A

    2010-03-01

    The present study examines a friction stir welded 2017A aluminium alloy. Transmission electron microscope investigations of the weld nugget revealed the average grain size of 5 microm, moderate density of dislocations as well as the presence of nanometric precipitates located mostly in grains interiors. Scanning electron microscope observations of fractures showed the presence of ductile fracture in the region of the weld nugget with brittle precipitates in the lower part. The microhardness analysis performed on the cross-section of the joints showed fairly small changes; however, after the artificial ageing process an increase in hardness was observed. The change of the joint hardness subject to the ageing process indicates partial supersaturation in the material during friction stir welding and higher precipitation hardening of the joint. PMID:20500429

  9. Growth of PEO ceramic coatings on AA 2024-T3 aluminium alloy

    NASA Astrophysics Data System (ADS)

    Forero Sotomonte, S.; Blanco Pinzon, C.; García Vergara, S.

    2016-02-01

    The growth of PEO ceramic coatings on AA 2024-T3 aluminium alloy in an aqueous Na2SiO3 (10.5g/l), KOH (2.8g/l) solution at 310 and 400V for 500 and 710s, was investigated. The morphology, roughness and thickness of the coatings were determined by SEM, digital microscopy, XRD diffraction analysis and thickness measuring instrument. The results show that thicker coatings are produced with longer process times and high applied voltages. Due to the nature of the PEO process, the roughness of the surface coatings increases as the coating become thicker, due to the development of sparks. The coatings are porous, with a crater like morphology and they are mainly amorphous.

  10. Microstructures in the 6060 aluminium alloy after various severe plastic deformation treatments

    SciTech Connect

    Adamczyk-Cieslak, Boguslawa Mizera, Jaroslaw; Kurzydlowski, Krzysztof Jan

    2011-03-15

    This paper presents the results concerning the microstructural refinement of the industrial 6060 aluminium alloy processed by severe plastic deformation (SPD). The high level of plastic deformation was achieved using the three methods: hydrostatic extrusion (HE), equal channel angular extrusion (ECAE) and extrusion torsion (ET), which differed in the dynamics of the loading, intensity and homogeneity of the plastic strain field. Microstructure analyses were performed before and after SPD deformation using a transmission (TEM) and a scanning electron microscope (SEM). The refined microstructures were examined qualitatively and quantitatively by the stereological methods and computer image analyses. The microstructure of the industrial 6060 aluminium alloy after deformation was characterized by an average grain size of about 0.4 {mu}m. The results show that the precipitates strongly affect the degree of refinement and the mechanism of microstructural transformations. During the SPD, the second phase particles break apart and homogenize. The HE method generates the largest increase of the volume fraction of the small primary particles. Moreover, the HE process is most effective in reducing the primary particle size. During HE and ECAE processes the second phase precipitates dissolve partially and change their shape. - Research Highlights: {yields} SPD results in a significant increase in the density of the small primary particles. {yields} SPD homogenizes the particle size distribution. {yields} HE and ECAE processes bring nano-grains in the vicinity of the primary particles. {yields} HE and ECAE processing results in the {beta}' precipitates partial dissolutions. {yields} During HE and ECAE processes the {beta}' particles change their shape.

  11. Flow and failure of an aluminium alloy from low to high temperature and strain rate

    NASA Astrophysics Data System (ADS)

    Sancho, Rafael; Cendón, David; Gálvez, Francisco

    2015-09-01

    The mechanical behaviour of an aluminium alloy is presented in this paper. The study has been carried out to analyse the flow and failure of the aluminium alloy 7075-T73. An experimental study has been planned performing tests of un-notched and notched tensile specimens at low strain rates using a servo-hydraulic machine. High strain rate tests have been carried out using the same geometry in a Hopkinson Split Tensile Bar. The dynamic experiments at low temperature were performed using a cryogenic chamber, and the high temperature ones with a furnace, both incorporated to the Hopkinson bar. Testing temperatures ranged from - 50 ∘C to 100 ∘C and the strain rates from 10-4 s-1 to 600 s-1. The material behaviour was modelled using the Modified Johnson-Cook model and simulated using LS-DYNA. The results show that the Voce type of strain hardening is the most accurate for this material, while the traditional Johnson-Cook is not enough accurate to reproduce the necking of un-notched specimens. The failure criterion was obtained by means of the numerical simulations using the analysis of the stress triaxiality versus the strain to failure. The diameters at the failure time were measured using the images taken with an image camera, and the strain to failure was computed for un-notched and notched specimens. The numerical simulations show that the analysis of the evolution of the stress triaxiality is crucial to achieve accurate results. A material model using the Modified Johnson-Cook for flow and failure is proposed.

  12. Extrusion Die Design and Process Simulation of High Strength Aluminium Alloy

    NASA Astrophysics Data System (ADS)

    Sheu, Jinn-Jong; Chen, Yan-Hong; Su, Guan-Cheng

    2011-01-01

    Aluminium alloy 7075 is an excellent metal with the features of high strength and light weight. The solid extruded parts of AL 7075 are commonly used in the structure members of airplanes and bicycles. The seamless tubes of AL 7075 are also used, while tubes with welding line (seamed) are mainly made by the other types of aluminium alloy. This research is focused on the extrusion die design and process simulation of the rectangular seamed AL 7075 tubes. A new die design concept is proposed to increase the welding pressure in the chamber to solve the problem of poor welding ability of AL 7075. The key points of welding ability improvement are the higher welding pressure, the crucial billet temperature, and the extrusion speed. The designed extrusion die should have some features to control the material flow and achieve the higher welding pressure. In this paper, not only use the traditional die bearing and the welding chamber, but also add a conical guiding chamber (specified with chamber height and width) to improve the material flow control. Finite element method is used to simulate the extrusion process and evaluate the effect of die design parameters for a seamed rectangular 7075 tube extrusion. The die stress should be considered carefully because of increasing the welding pressure also increases the die stress. Taguchi method is used to obtain the optimum combination of die design parameters to get higher welding pressure and keep the die stress at a reasonable low level. The method proposed in this paper is able to increase the welding pressure with the cost of reasonable die stress.

  13. Ceramic Inclusions in Powder Metallurgy Disk Alloys: Characterization and Modeling

    NASA Technical Reports Server (NTRS)

    Bonacuse, Peter J.

    2001-01-01

    Powder metallurgy alloys are increasingly used in gas turbine engines, especially in turbine disk applications. Although powder metallurgy materials have many advantages over conventionally cast and wrought alloys (higher strength, higher temperature capability, etc.), they suffer from the rare occurrence of ceramic defects (inclusions) that are inherent to the powder atomization process. These inclusions can have a potentially large detrimental effect on the durability of individual components. An inclusion in a high stress location can act as a site for premature crack initiation and thereby considerably reduce the fatigue life. Because these inclusions are exceedingly rare, they typically do not reveal themselves in the process of characterizing the material for a particular application (the cumulative volume of the test bars in a fatigue life characterization is typically on the order of a single actual component). Ceramic inclusions have, however, been found to be the root cause of a number of catastrophic engine failures. To investigate the effect of these inclusions in detail, we have undertaken a study where known populations of ceramic particles, whose composition and morphology are designed to mimic the "natural" inclusions, are added to the precursor powder. Surface-connected inclusions have been found to have a particularly large detrimental effect on fatigue life; therefore, the quantity of ceramic "seeds" added is calculated to ensure that a minimum number will intersect the surface of the fatigue test bars. Because the ceramic inclusions are irregularly shaped and have a tendency to break up in the process of extrusion and forging, a method of calculating the probability of occurrence and expected intercepted surface area was needed. We have developed a Monte Carlo simulation to determine the distributions of these parameters and have verified the simulated results with observations of ceramic inclusions found in macroscopic slices from extrusions

  14. Metastable phases in mechanically alloyed aluminum germanium powders

    SciTech Connect

    Yvon, P.J.; Schwarz, R.B.

    1993-03-01

    Aluminum and germanium form a simple eutectic system with no stable intermetallic phase, and limited mutual solubility. We report the formation of a metastable rhombohedral,{gamma}{sub 1} phase by mechanically alloying aluminum and germanium powders. This phase, which appears for compositions between 20 and 50 at. % germanium, has also been observed in rapidly quenched alloys, but there is disagreement as to its composition. By measuring the heat of crystallization as a function of composition, we determined the composition of the {gamma}{sub 1} phase to be Al{sub 70}Ge{sub 30}. We also produced Al{sub 70}Ge{sub 30} by arc melting the pure elements, followed by splat-quenching at a cooling rate in the range of 10{sup 8} K s{sup {minus}1}. This method produced two metastable phases, one of which was found to be the {gamma}{sub 1} phase obtained by mechanical alloying. The other was a monoclinic phase reported earlier in the literature as {gamma}{sub 2}.

  15. Influences of post weld heat treatment on tensile properties of friction stir welded AA2519-T87 aluminium alloy joints

    NASA Astrophysics Data System (ADS)

    Sabari, S. Sree; Balasubramanian, V.; Malarvizhi, S.; Reddy, G. Madusudhan

    2015-12-01

    AA 2519-T87 is an aluminium alloy that principally contains Cu as an alloying element and is a new grade of Al-Cu alloy system. This material is a potential candidate for light combat military vehicles. Fusion welding of this alloy leads to hot cracking, porosity and alloy segregation in the weld metal region. Friction stir welding (FSW) is a solid state joining process which can overcome the above mentioned problems. However, the FSW of age hardenable aluminium alloys results in poor tensile properties in the as-welded condition (AW). Hence, post weld heat treatment (PWHT) is used to enhance deteriorated tensile properties of FSW joints. In this work, the effect of PWHT, namely artificial ageing (AA) and solution treatment (ST) followed by ageing (STA) on the microstructure, tensile properties and microhardness were systematically investigated. The microstructural features of the weld joints were characterised using an optical microscope (OM), scanning electron microscope (SEM) and transmission electron microscope (TEM). The tensile strength and microhardness of the joints were correlated with the grain size, precipitate size, shape and its distribution. From the investigation, it was found that STA treatment is beneficial in enhancing the tensile strength of the FSW joints of AA2519-T87 alloy and this is mainly due to the presence of fine and densely distributed precipitates in the stir zone.

  16. A survey of some metallographic etching reagents for restoration of obliterated engraved marks on aluminium-silicon alloy surfaces.

    PubMed

    Uli, Norjaidi; Kuppuswamy, R; Amran, Mohd Firdaus Che

    2011-05-20

    A brief survey to assess the sensitivity and efficacy of some common etching reagents for revealing obliterated engraved marks on Al-Si alloy surfaces is presented. Experimental observations have recommended use of alternate swabbing of 10% NaOH and 10% HNO(3) on the obliterated surfaces for obtaining the desired results. The NaOH etchant responsible for bringing back the original marks resulted in the deposition of some dark coating that has masked the recovered marks. The coating had been well removed by dissolving it in HNO(3) containing 10-20% acid. However, the above etching procedure was not effective on aluminium (99% purity) and Al-Zn-Mg-Cu alloy surfaces. Also the two reagents (i) immersion in 10% aq. phosphoric acid and (ii) alternate swabbing of 60% HCl and 40% NaOH suggested earlier for high strength Al-Zn-Mg-Cu alloys [23] were quite ineffective on Al-Si alloys. Thus different aluminium alloys needed different etching treatments for successfully restoring the obliterated marks. Al-Si alloys used in casting find wide applications especially in the manufacture of engine blocks of motor vehicles. Hence, the results presented in this paper are of much relevance in serial number restoration problems involving this alloy. PMID:21145675

  17. Fabrication and Characterization of High Strength Al-Cu Alloys Processed Using Laser Beam Melting in Metal Powder Bed

    NASA Astrophysics Data System (ADS)

    Ahuja, Bhrigu; Karg, Michael; Nagulin, Konstantin Yu.; Schmidt, Michael

    The proposed paper illustrates fabrication and characterization of high strength Aluminium Copper alloys processed using Laser Beam Melting process. Al-Cu alloys EN AW-2219 and EN AW-2618 are classified as wrought alloys and 2618 is typically considered difficult to weld. Laser Beam Melting (LBM) process from the family of Additive Manufacturing processes, has the unique ability to form fully dense complex 3D geometries using micro sized metallic powder in a layer by layer fabrication methodology. LBM process can most closely be associated to the conventional laser welding process, but has significant differences in terms of the typical laser intensities and scan speeds used. Due to the use of high intensities and fast scan speeds, the process induces extremely high heating and cooling rates. This property gives it a unique physical attribute and therefore its ability to process high strength Al-Cu alloys needs to be investigated. Experiments conducted during the investigations associate the induced energy density controlled by varying process parameters to the achieved relative densities of the fabricated 3D structures.

  18. High temperature oxidation of copper and copper aluminium alloys: Impact on furnace side wall cooling systems

    NASA Astrophysics Data System (ADS)

    Plascencia Barrera, Gabriel

    The high temperature oxidation behaviours of copper and dilute Cu-Al alloys were investigated. Experiments were carried out by: (i) Oxidizing under various oxygen potentials at different temperatures using a combined TG-DTA apparatus. (ii) Oxidizing in a muffle furnace (in air) at different temperatures for extended periods of time. The oxidation mechanisms were evaluated based upon the kinetic data obtained as well as by X-ray diffraction and microscopical (SEM and optical) analyses. It was found that oxidation of copper strongly depends on the temperature. Two distinct mechanisms were encountered. Between 300 and 500°C, the oxidation rate is controlled by lateral growth of the oxide on the metal surface, whereas between 600 and 1000°C oxidation is controlled by lattice diffusion of copper ions through the oxide scale. On the other hand, the partial pressure of oxygen only has a small effect on the oxidation of copper. Alloy oxidation is also dependent on the temperature. As temperature increases, more aluminium is required to protect copper from being oxidized. It was shown that if the amount of oxygen that dissolves in the alloy exceeds the solubility limit of oxygen in copper, an internal oxidation layer will develop, leading to the formation of a tarnishing scale. On the other hand if the oxygen content in the alloy lies below the solubility limit of oxygen in copper, no oxidation products will form since a tight protective alumina layer will form on the alloy surface. Surface phenomena may affect the oxidation behaviour of dilute Cu-Al alloys. Immersion tests in molten copper matte and copper converting slag, using laboratory scale cooling elements with various copper based materials, were conducted. Results from these tests showed that alloying copper with 3 to 4 wt% Al decreases the oxidation rate of pure copper by 4 orders of magnitude; however due to a significant drop in thermal conductivity, the ability to extract heat is compromised, leading to

  19. The influence of quench sensitivity on residual stresses in the aluminium alloys 7010 and 7075

    SciTech Connect

    Robinson, J.S.; Tanner, D.A.; Truman, C.E.; Paradowska, A.M.; Wimpory, R.C.

    2012-03-15

    The most critical stage in the heat treatment of high strength aluminium alloys is the rapid cooling necessary to form a supersaturated solid solution. A disadvantage of quenching is that the thermal gradients can be sufficient to cause inhomogeneous plastic deformation which in turn leads to the development of large residual stresses. Two 215 mm thick rectilinear forgings have been made from 7000 series alloys with widely different quench sensitivity to determine if solute loss in the form of precipitation during quenching can significantly affect residual stress magnitudes. The forgings were heat treated and immersion quenched using cold water to produce large magnitude residual stresses. The through thickness residual stresses were measured by neutron diffraction and incremental deep hole drilling. The distribution of residual stresses was found to be similar for both alloys varying from highly triaxial and tensile in the interior, to a state of biaxial compression in the surface. The 7010 forging exhibited larger tensile stresses in the interior. The microstructural variation from surface to centre for both forgings was determined using optical and transmission electron microscopy. These observations were used to confirm the origin of the hardness variation measured through the forging thickness. When the microstructural changes were accounted for in the through thickness lattice parameter, the residual stresses in the two forgings were found to be very similar. Solute loss in the 7075 forging appeared to have no significant effect on the residual stress magnitudes when compared to 7010. - Highlights: Black-Right-Pointing-Pointer Through thickness residual stress measurements made on large Al alloy forgings. Black-Right-Pointing-Pointer Residual stress characterised using neutron diffraction and deep hole drilling. Black-Right-Pointing-Pointer Biaxial compressive surface and triaxial subsurface residual stresses. Black-Right-Pointing-Pointer Quench sensitivity

  20. Elevated temperature crack growth in advanced powder metallurgy aluminum alloys

    NASA Technical Reports Server (NTRS)

    Porr, William C., Jr.; Gangloff, Richard P.

    1990-01-01

    Rapidly solidified Al-Fe-V-Si powder metallurgy alloy FVS0812 is among the most promising of the elevated temperature aluminum alloys developed in recent years. The ultra fine grain size and high volume fraction of thermally stable dispersoids enable the alloy to maintain tensile properties at elevated temperatures. In contrast, this alloy displays complex and potentially deleterious damage tolerant and time dependent fracture behavior that varies with temperature. J-Integral fracture mechanics were used to determine fracture toughness (K sub IC) and crack growth resistance (tearing modulus, T) of extruded FVS0812 as a function of temperature. The alloy exhibits high fracture properties at room temperature when tested in the LT orientation, due to extensive delamination of prior ribbon particle boundaries perpendicular to the crack front. Delamination results in a loss of through thickness constraint along the crack front, raising the critical stress intensity necessary for precrack initiation. The fracture toughness and tensile ductility of this alloy decrease with increasing temperature, with minima observed at 200 C. This behavior results from minima in the intrinsic toughness of the material, due to dynamic strain aging, and in the extent of prior particle boundary delaminations. At 200 C FVS0812 fails at K levels that are insufficient to cause through thickness delamination. As temperature increases beyond the minimum, strain aging is reduced and delamination returns. For the TL orientation, K (sub IC) decreased and T increased slightly with increasing temperature from 25 to 316 C. Fracture in the TL orientation is governed by prior particle boundary toughness; increased strain localization at these boundaries may result in lower toughness with increasing temperature. Preliminary results demonstrate a complex effect of loading rate on K (sub IC) and T at 175 C, and indicate that the combined effects of time dependent deformation, environment, and strain aging

  1. Pulsed laser cleaning of aluminium-magnesium alloys: effect of surface modifications on adhesion

    NASA Astrophysics Data System (ADS)

    Autric, Michel; Oltra, Roland

    2008-05-01

    Surface cleaning is a key step in many industrial processes and especially in laser surface treatments. During laser cleaning of metallic alloys using pulsed lasers, surface modification can be induced due to transient thermal effect. In ambient atmospheric conditions, an oxidation of the cleaned surface can be detected. The aim of this work was to characterize this transient oxidation that can occur below the laser energy domain leading to any phase change (melting, ablation) of the cleaned substrate. A Q-switched Nd:YAG laser (1.06 μm) with 10 ns pulse duration was used for this study. X-ray photoelectron spectroscopy and secondary ion mass spectroscopy were used for surface analysis of irradiated samples. Thermal oxidation took place on the aluminium-magnesium alloy (5000 series) during the irradiation in air (fluence range 0.6-1.4 Jcm-2). It has been demonstrated that this 10 ns laser thermal oxidation and the steady state thermal oxidation have the same mechanism. When the laser fluence reached 1 J cm -2 , the oxide formed by the thermal oxidation became in a large extent crystalline and its outer part was entirely covered by a continuous magnesium oxide layer.

  2. Powder metallurgy processing of high strength turbine disk alloys

    NASA Technical Reports Server (NTRS)

    Evans, D. J.

    1976-01-01

    Using vacuum-atomized AF2-1DA and Mar-M432 powders, full-scale gas turbine engine disks were fabricated by hot isostatically pressing (HIP) billets which were then isothermally forged using the Pratt & Whitney Aircraft GATORIZING forging process. While a sound forging was produced in the AF2-1DA, a container leak had occurred in the Mar-M432 billet during HIP. This resulted in billet cracking during forging. In-process control procedures were developed to identify such leaks. The AF2-1DA forging was heat treated and metallographic and mechanical property evaluation was performed. Mechanical properties exceeded those of Astroloy, one of the highest temperature capability turbine disk alloys presently used.

  3. A microstructure-based yield stress and work-hardening model for textured 6xxx aluminium alloys

    NASA Astrophysics Data System (ADS)

    Khadyko, M.; Myhr, O. R.; Dumoulin, S.; Hopperstad, O. S.

    2016-04-01

    The plastic properties of an aluminium alloy are defined by its microstructure. The most important factors are the presence of alloying elements in the form of solid solution and precipitates of various sizes, and the crystallographic texture. A nanoscale model that predicts the work-hardening curves of 6xxx aluminium alloys was proposed by Myhr et al. The model predicts the solid solution concentration and the particle size distributions of different types of metastable precipitates from the chemical composition and thermal history of the alloy. The yield stress and the work hardening of the alloy are then determined from dislocation mechanics. The model was largely used for non-textured materials in previous studies. In this work, a crystal plasticity-based approach is proposed for the work hardening part of the nanoscale model, which allows including the influence of the crystallographic texture. The model is evaluated by comparison with experimental data from uniaxial tensile tests on two textured 6xxx alloys in five temper conditions.

  4. Zirconium behaviour during electrorefining of actinide-zirconium alloy in molten LiCl-KCl on aluminium cathodes

    NASA Astrophysics Data System (ADS)

    Meier, R.; Souček, P.; Malmbeck, R.; Krachler, M.; Rodrigues, A.; Claux, B.; Glatz, J.-P.; Fanghänel, Th.

    2016-04-01

    A pyrochemical electrorefining process for the recovery of actinides from metallic nuclear fuel based on actinide-zirconium alloys (An-Zr) in a molten salt is being investigated. In this process actinides are group-selectively recovered on solid aluminium cathodes as An-Al alloys using a LiCl-KCl eutectic melt at a temperature of 450 °C. In the present study the electrochemical behaviour of zirconium during electrorefining was investigated. The maximum amount of actinides that can be oxidised without anodic co-dissolution of zirconium was determined at a selected constant cathodic current density. The experiment consisted of three steps to assess the different stages of the electrorefining process, each of which employing a fresh aluminium cathode. The results indicate that almost a complete dissolution of the actinides without co-dissolution of zirconium is possible under the applied experimental conditions.

  5. Ultrasonic characterization of microstructure in powder metal alloy

    NASA Technical Reports Server (NTRS)

    Tittmann, B. R.; Ahlberg, L. A.; Fertig, K.

    1986-01-01

    The ultrasonic wave propagation characteristics were measured for IN-100, a powder metallurgy alloy used for aircraft engine components. This material was as a model system for testing the feasibility of characterizing the microstructure of a variety of inhomogeneous media including powder metals, ceramics, castings and components. The data were obtained for a frequency range from about 2 to 20 MHz and were statistically averaged over numerous volume elements of the samples. Micrographical examination provided size and number distributions for grain and pore structure. The results showed that the predominant source for the ultrasonic attenuation and backscatter was a dense (approx. 100/cubic mm) distribution of small micropores (approx. 10 micron radius). Two samples with different micropore densities were studied in detail to test the feasibility of calculating from observed microstructural parameters the frequency dependence of the microstructural backscatter in the regime for which the wavelength is much larger than the size of the individual scattering centers. Excellent agreement was found between predicted and observed values so as to demonstrate the feasibility of solving the forward problem. The results suggest a way towards the nondestructive detection and characterization of anomalous distributions of micropores when conventional ultrasonic imaging is difficult. The findings are potentially significant toward the application of the early detection of porosity during the materials fabrication process and after manufacturing of potential sites for stress induced void coalescence leading to crack initiation and subsequent failure.

  6. New understanding of the role of coincidence site lattice boundaries in abnormal grain growth of aluminium alloy

    NASA Astrophysics Data System (ADS)

    Park, Chang-Soo; Park, Hyung-Ki; Shim, Hyung-Seok; Na, Tae-Wook; Han, Chan-Hee; Hwang, Nong-Moon

    2015-04-01

    The sequential microstructure evolution of abnormal grain growth (AGG) in the aluminium alloy (AA5052) was investigated to analyse the migration behaviour of coincidence site lattice (CSL) boundaries, which are known to play an important role in inducing AGG. The sequential evolution showed that CSL boundaries tend to disappear more slowly than general boundaries at the growth front of abnormally growing grains. Especially, the migration rate of Σ9 boundaries was noticeably low, which is contrary to the previous suggestions.

  7. Temperature and thermal stress fields during the pulse train of long-pulse laser irradiating aluminium alloy plate

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Jin, Guangyong; Gu, Xiu-ying

    2014-12-01

    Based on Von Mises yield criterion and elasto-plastic constitutive equations, an axisymmetric finite element model of a Gaussian laser beam irradiating a metal substrate was established. In the model of finite element, the finite difference hybrid algorithm is used to solve the problem of transient temperature field and stress field. Taking nonlinear thermal and mechanical properties into account, transient distributions of temperature field and stress fields generated by the pulse train of long-pulse laser in a piece of aluminium alloy plate were computed by the model. Moreover,distributions as well as histories of temperature and stress fields were obtained. Finite element analysis software COMSOL is used to simulate the Temperature and thermal stress fields during the pulse train of long-pulse laser irradiating 7A04 aluminium alloy plate. By the analysis of the results, it is found that Mises equivalent stress on the target surface distribute within the scope of the center of a certain radius. However, the stress is becoming smaller where far away from the center. Futhermore, the Mises equivalent stress almost does not effect on stress damage while the Mises equivalent stress is far less than the yield strength of aluminum alloy targets. Because of the good thermal conductivity of 7A04 aluminum alloy, thermal diffusion is extremely quick after laser irradiate. As a result, for the multi-pulsed laser, 7A04 aluminum alloy will not produce obvious temperature accumulation when the laser frequency is less than or equal to 10 Hz. The result of this paper provides theoretical foundation not only for research of theories of 7A04 aluminium alloy and its numerical simulation under laser radiation but also for long-pulse laser technology and widening its application scope.

  8. Reducing metal alloy powder costs for use in powder bed fusion additive manufacturing: Improving the economics for production

    NASA Astrophysics Data System (ADS)

    Medina, Fransisco

    Titanium and its associated alloys have been used in industry for over 50 years and have become more popular in the recent decades. Titanium has been most successful in areas where the high strength to weight ratio provides an advantage over aluminum and steels. Other advantages of titanium include biocompatibility and corrosion resistance. Electron Beam Melting (EBM) is an additive manufacturing (AM) technology that has been successfully applied in the manufacturing of titanium components for the aerospace and medical industry with equivalent or better mechanical properties as parts fabricated via more traditional casting and machining methods. As the demand for titanium powder continues to increase, the price also increases. Titanium spheroidized powder from different vendors has a price range from 260/kg-450/kg, other spheroidized alloys such as Niobium can cost as high as $1,200/kg. Alternative titanium powders produced from methods such as the Titanium Hydride-Dehydride (HDH) process and the Armstrong Commercially Pure Titanium (CPTi) process can be fabricated at a fraction of the cost of powders fabricated via gas atomization. The alternative powders can be spheroidized and blended. Current sectors in additive manufacturing such as the medical industry are concerned that there will not be enough spherical powder for production and are seeking other powder options. It is believed the EBM technology can use a blend of spherical and angular powder to build fully dense parts with equal mechanical properties to those produced using traditional powders. Some of the challenges with angular and irregular powders are overcoming the poor flow characteristics and the attainment of the same or better packing densities as spherical powders. The goal of this research is to demonstrate the feasibility of utilizing alternative and lower cost powders in the EBM process. As a result, reducing the cost of the raw material to reduce the overall cost of the product produced with

  9. Analysis and experiments on thermal plasma processing for ultrafine powder synthesis of aluminium nitride

    SciTech Connect

    Ahn, H.; Hur, M.; Hong, S.H.

    1996-12-31

    Plasma synthesis experiments for producing ultrafine powders of aluminum nitride (AlN) are carried out using a non-transferred dc plasma torch of which jet flame can vaporize the aluminum powders injected into it to make the chemical reaction with nitrogen gas. For predicting the optimum processing parameters (the size, injected location and velocity of Al powders, and the ratio of nitrogen to argon arc gases), the trajectory and the evaporation state of an Al particle arc found by solving momentum and heat transfer equations. In addition, equilibrium chemical compositions are analyzed by the Gibbs free-energy minimization method to know the temperatures at which AlN synthesis occurs dominantly. A synthesis system consisting of a plasma torch, a reactor and a quenching chamber has been built for synthesis and quenching process of ultrafine powders of AlN. A fully-saturated fractional factorial test is employed to determine optimum process conditions for input power to the torch and flow rates of arc, carrier and reaction gases.

  10. Stress-strain behavior and shape memory effect in powder metallurgy TiNi alloys

    SciTech Connect

    Kato, H.; Koyari, T.; Miura, S. . Dept. of Engineering Science); Tokizane, M. . Dept. of Mechanical Engineering)

    1994-04-01

    The shape memory properties of the TiNi alloy produced by a powder metallurgical method have been evaluated from tensile stress-strain curves. The contamination of the powders during atomization can be suppressed by applying the Plasma Rotating Electrode Process (P-REP), so that the compact made by Hot Isostatic Pressing (HIP) is expected to exhibit the shape memory effect identical to the typical alloy grown from melt. The fracture behavior of the P/M alloy is also studied, and the improvement of fracture strength of the P/M alloy is attempted.

  11. Modelling of liquid metal flow and oxide film defects in filling of aluminium alloy castings

    NASA Astrophysics Data System (ADS)

    Dai, X.; Jolly, M.; Yang, X.; Campbell, J.

    2012-07-01

    The liquid metal flow behaviours in different runner system designs have important effects on the mechanical strength of aluminium alloy castings. In this paper, a new model has been developed which is a two-dimensional program using a finite difference technique and the Marker and Cell (MAC) method to simulate the flow of liquid metal during filling a mould. In the program the Eulerian method has been used for the liquid metal flow, while the Oxide Film Entrainment Tracking Algorithm (OFET) method (a Lagrangian method) has been used to simulate the movement of the oxide film on the liquid metal surface or in the liquid metal flow. Several examples have been simulated and tested and the relevant results were obtained. These results were compared with measured bending strengths. It was found that the completed program was capable of simulating effectively the filling processes of different runner systems. The simulation results are consistent with the experiment. In addition, the program is capable of providing clearer images for predicting the distribution of the oxide film defects generated during filling a mould.

  12. Shock induced spall fracture in aluminium alloy "Al2014-T4"

    NASA Astrophysics Data System (ADS)

    Joshi, K. D.; Rav, Amit; Sur, Amit; Das, P. C.; Gupta, Satish C.

    2015-06-01

    The plate impact experiments have been carried out on 8mm thick target plates of aluminium alloy Al2014-T4 at impact velocities of 180 m/s, 290 m/s and 500m/s, respectively, using single stage gas gun facility. In each experiment, the of free surface velocity history of the sample plate is measured using VISAR instrument and utilized to determine the spall strength and dynamic yield strength of this material. The spall strength of 0.87 GPa, 0.97 GPa and 1.11 GPa, respectively, measured for impact velocities of 180 m/s, 290 m/s and 500 m/s with corresponding average strain rates varying from 1.36×104/s to 2.41×14/s has been found to display nearly linear dependence upon the strain rates. The dynamic yield strength with its value ranging from 0.395 GPa to 0.400 GPa, though, is higher than the quasi static value of 0.355GPa, appears to be relatively independent of impact velocities up to at least 500 m/s or equivalently strain rates up to ˜ 9.4×104/s.

  13. Influence of transport mechanisms on nucleation and grain structure formation in DC cast aluminium alloy ingots

    NASA Astrophysics Data System (ADS)

    Bedel, M.; Založnik, M.; Kumar, A.; Combeau, H.; Jarry, P.; Waz, E.

    2012-01-01

    The grain structure formation in direct chill (DC) casting is directly linked to nucleation, which is generally promoted by inoculation. Inoculation prevents defects, but also modifies the physical properties by changing the microstructure. We studied the coupling of the nucleation on inoculant particles and the grain growth in the presence of melt flow induced by thermosolutal convection and of the transport of free-floating equiaxed grains. We used a volume-averaged two-phase multiscale model with a fully coupled description of phenomena on the grain scale (nucleation on grain refiner particles and grain growth) and on the product scale (macroscopic transport). The transport of inoculant particles is also modeled, which accounts for the inhomogeneous distribution of inoculant particles in the melt. The model was applied to an industrial sized (350mm thick) DC cast aluminium alloy ingot. A discretised nuclei size distribution was defined and the impact of different macroscopic phenomena on the grain structure formation was studied: the zone and intensity of nucleation and the resulting grain size distribution. It is shown that nucleation in the presence of macroscopic transport cannot be explained only in terms of cooling rate, but variations of composition, nuclei density and grain density, all affected by transport, must be accounted for.

  14. Fatigue behaviour of laser machined 2024 T3 aeronautic aluminium alloy

    NASA Astrophysics Data System (ADS)

    Carpio, F. J.; Araújo, D.; Pacheco, F. J.; Méndez, D.; García, A. J.; Villar, M. P.; García, R.; Jiménez, D.; Rubio, L.

    2003-03-01

    High power laser applications as welding, machining and marking are widely used in several industrial sectors to take advantage of their high processing velocity, clean processing conditions, and a high versatility. However, the heat affected zone (HAZ) is expected to change the mechanical behaviour of laser processed structural elements. For aeronautic applications, this feature is of first importance because those elements suffer cyclic stress under service conditions. Indeed, the most severe requirements for further industrial implantation are the fatigue specifications. In this communication, fatigue behaviour of laser machined 2024 aluminium alloy is studied to evaluate a possible certification of laser-based machining in the aeronautic industry. For this reason, 1.6 mm thick samples laser machined were carried out using a CO 2 laser. The experimental fatigue curves are shown to lie very close to aeronautic requirement despite theoretical fatigue behaviour of the material is significantly more resistant. This is attributed to surface roughness induced by a surface melting zone shown that diminish the fatigue resistance. Fatigue behaviour and surface roughness should be improved using higher power and/or high absorption wavelength as that of YAG laser ( λ=1.06 μm).

  15. Deep surface rolling for fatigue life enhancement of laser clad aircraft aluminium alloy

    NASA Astrophysics Data System (ADS)

    Zhuang, W.; Liu, Q.; Djugum, R.; Sharp, P. K.; Paradowska, A.

    2014-11-01

    Deep surface rolling can introduce deep compressive residual stresses into the surface of aircraft metallic structure to extend its fatigue life. To develop cost-effective aircraft structural repair technologies such as laser cladding, deep surface rolling was considered as an advanced post-repair surface enhancement technology. In this study, aluminium alloy 7075-T651 specimens with a blend-out region were first repaired using laser cladding technology. The surface of the laser cladding region was then treated by deep surface rolling. Fatigue testing was subsequently conducted for the laser clad, deep surface rolled and post-heat treated laser clad specimens. It was found that deep surface rolling can significantly improve the fatigue life in comparison with the laser clad baseline repair. In addition, three dimensional residual stresses were measured using neutron diffraction techniques. The results demonstrate that beneficial compressive residual stresses induced by deep surface rolling can reach considerable depths (more than 1.0 mm) below the laser clad surface.

  16. Comparison of self-healing ionomer to aluminium-alloy bumpers for protecting spacecraft equipment from space debris impacts

    NASA Astrophysics Data System (ADS)

    Francesconi, A.; Giacomuzzo, C.; Grande, A. M.; Mudric, T.; Zaccariotto, M.; Etemadi, E.; Di Landro, L.; Galvanetto, U.

    2013-03-01

    This paper discusses the impact behavior of a self-healing ionomeric polymer and compares its protection capability against space debris impacts to that of simple aluminium-alloy bumpers. To this end, 14 impact experiments on both ionomer and Al-7075-T6 thin plates with similar surface density were made with 1.5 mm aluminium spheres at velocity between 1 and 4 km/s.First, the perforation extent in both materials was evaluated vis-à-vis the prediction of well known hole-size equations; then, attention was given to the damage potential of the cloud of fragments ejected from the rear side of the target by analysing the craters pattern and the momentum transferred to witness plates mounted on a ballistic pendulum behind the bumpers.Self-healing was completely successful in all but one ionomer samples and the primary damage on ionomeric polymers was found to be significantly lower than that on aluminium. On the other hand, aluminium plates exhibited slightly better debris fragmentation abilities, even though the protecting performance of ionomers seemed to improve at increasing impact speed.

  17. Synthesis of biodegradable Mg-Zn alloy using mechanical alloying: Effect of ball to powder weight ratio

    NASA Astrophysics Data System (ADS)

    Zuhailawati, Hussain; Salleh, Emee Marina; Ramakrishnan, Sivakumar

    2016-07-01

    The aim of this work was to study the effect of ball to powder weight ratio (BPR) on biodegradable binary magnesium-zinc (Mg-Zn) alloy synthesized using mechanical alloying. A powder mixture of Mg-5wt%Zn was milled in a planetary mill under argon atmosphere using a stainless steel container and balls. Milling process was carried out at 200 rpm for 5 hours using various BPR (i.e. 5:1, 10:1, 15:1, 20:1). Then, as milled powder was compacted under 400 MPa and sintered in a tube furnace at 300 °C in argon flow for an hour. The sintered density and microhardness of the alloy increased as BPR increased up to 15:1. However a further increasing showed a reduction in both density and microhardness which due to enlargement of crystallite and particle which resulted from the excessive internal energy during mechanical alloying.

  18. Experimental investigations of visco-plastic properties of the aluminium and tungsten alloys used in KE projectiles

    NASA Astrophysics Data System (ADS)

    Kruszka, L.; Magier, M.

    2012-08-01

    The main aim of studies on dynamic behaviour of construction materials at high strain rates is to determine the variation of mechanical properties (strength, plasticity) in function of the strain rate and temperature. On the basis of results of dynamic tests on the properties of constructional materials the constitutive models are formulated to create numerical codes applied to solve constructional problems with computer simulation methods. In the case of military applications connected with the phenomena of gunshot and terminal ballistics it's particularly important to develop a model of strength and armour penetration with KE projectile founded on reliable results of dynamic experiments and constituting the base for further analyses and optimization of projectile designs in order to achieve required penetration depth. Static and dynamic results of strength investigations of the EN AW-7012 aluminium alloy (sabot) and tungsten alloy (penetrator) are discussed in this paper. Static testing was carried out with the INSTRON testing machine. Dynamic tests have been conducted using the split Hopkinson pressure bars technique at strain rates up to 1,2 ṡ 104s-1 (for aluminium alloy) and 6 ṡ 103s-1 (for tungsten alloy).

  19. Shock ignition of pyrotechnic heat powders. [Aluminium/ferric oxide mixture

    SciTech Connect

    Hornig, H.C.; Kury, J.W.; Simpson, R.L.; Helm, F.H.; Von Holle, W.G.

    1986-05-14

    Over a dozen pyrotechnic mixtures of alloy forming elements or solid oxidizers and fuels were subjected to shock pressures of from 2 to 35 GPa. More than half of these formulations were ignited by the shock. Visible and ir time resolved radiometry experiments using one of these mixtures, aluminum/ferric oxide, showed that this shock induced ignition occurred in less than 0.1 usec. 9 refs., 15 figs., 3 tabs.

  20. Shape memory characteristics of powder metallurgy processed Ti50Ni50 alloy

    NASA Astrophysics Data System (ADS)

    Kim, Yeon-wook; Jeon, Kyung-su

    Ti50Ni50 shape memory alloy powders were prepared by inert gas atomization and the powders were consolidated by spark plasma sintering (SPS) to fabricated dense bulk samples. Martensitic transformation temperatures and microstructures of the asatomized powders and the consolidated disks were investigated. DSC and XRD analysis showed that the B2-B19' martensitic transformation occurred in the powders and the disks. The martensitic transformation start temperature (Ms) of the powders was 22.9∘ C. However, the Ms of the SPS disk was 65.9∘ C. It is considered that this increase in transformation temperature is ascribed to the microstructural change during SPS processing.

  1. In-vitro characterization of stress corrosion cracking of aluminium-free magnesium alloys for temporary bio-implant applications.

    PubMed

    Choudhary, Lokesh; Singh Raman, R K; Hofstetter, Joelle; Uggowitzer, Peter J

    2014-09-01

    The complex interaction between physiological stresses and corrosive human body fluid may cause premature failure of metallic biomaterials due to the phenomenon of stress corrosion cracking. In this study, the susceptibility to stress corrosion cracking of biodegradable and aluminium-free magnesium alloys ZX50, WZ21 and WE43 was investigated by slow strain rate tensile testing in a simulated human body fluid. Slow strain rate tensile testing results indicated that each alloy was susceptible to stress corrosion cracking, and this was confirmed by fractographic features of transgranular and/or intergranular cracking. However, the variation in alloy susceptibility to stress corrosion cracking is explained on the basis of their electrochemical and microstructural characteristics. PMID:25063163

  2. Laser surface melting of aluminium alloy 6013 for improving stress corrosion and corrosion fatigue resistance

    NASA Astrophysics Data System (ADS)

    Xu, Wen-Long

    Laser surface treatment of aluminium alloy 6013, a relatively new high strength aluminium alloy, was conducted with the aim of improving the alloy's resistance to stress corrosion cracking and corrosion fatigue. In the first phase of this research, laser surface melting (LSM) of the alloy was conducted using an excimer laser. The microstructural changes induced by the laser treatment were studied in detail and characterised. The results showed that excimer LSM produced a relatively thin, non-dentritic planar re-melted layer which is largely free of coarse constituent particles and precipitates. The planar growth phenomenon was explained using the high velocity and high temperature gradient absolute stability criteria. The structure of the oxide and/or the nitride bearing film at the outmost surface of the re-melted layer was also characterised. The results of the electrochemical tests showed that the pitting corrosion resistance of the alloy could be greatly increased by excimer laser melting, especially when the alloy was treated in nitrogen gas: the corrosion current density of the N2-treated specimen was some two orders of magnitude lower than that of the air-treated specimen which was one order of magnitude lower than that of the untreated specimen. The effect of the outer surface oxide and/or nitride bearing film per se on pitting corrosion resistance was determined. The results of a Mott - Schottky analysis strongly suggest that the outer surface film, which exhibited the nature of an n-type semiconductor was responsible for the significant improvement of the corrosion resistance of the laser-treated material. Furthermore, the corrosion response of the surface film was modelled using equivalent circuits. Based on the results of the slow strain rate tensile (SSRT) and corrosion fatigue tests, the stress corrosion cracking and pitting corrosion fatigue behaviour of the excimer laser treated material was evaluated. The results of the SSRT test showed that, in

  3. Thermogravimetric study of reduction of oxides present in oxidized nickel-base alloy powders

    NASA Technical Reports Server (NTRS)

    Herbell, T. P.

    1976-01-01

    Carbon, hydrogen, and hydrogen plus carbon reduction of three oxidized nickel-base alloy powders (a solid solution strengthened alloy both with and without the gamma prime formers aluminum and titanium and the solid solution strengthened alloy NiCrAlY) were evaluated by thermogravimetry. Hydrogen and hydrogen plus carbon were completely effective in reducing an alloy containing chromium, columbium, tantalum, molybdenum, and tungsten. However, with aluminum and titanium present the reduction was limited to a weight loss of about 81 percent. Carbon alone was not effective in reducing any of the alloys, and none of the reducing conditions were effective for use with NiCrAlY.

  4. Investigation of slective laser melting of mecanically alloyed metastable Al5Fe2 powder

    NASA Astrophysics Data System (ADS)

    Montiel, Hugo

    Selective Laser Melting (SLM), an Additive Manufacturing (AM) technology, enables the production of complex structured metal products. Aluminum alloys are used in SLM as high-strength lightweight materials for weight reduction in structural components. Previous investigations report high laser powers (300 W) and slow scanning speeds (500 mm/s) to process aluminum alloys under SLM. This research investigates the SLM processing of Al-Fe alloy by utilizing metastable Al5Fe2 powder system produced by mechanical alloying. Metastable systems are thermodynamically activated with internal energy that can generate an energy shortcut when processing under SLM. The optimum laser power, scan speeds and scan distances were investigated by test series experiments. Results indicate that metastable Al5Fe2 alloy can be processed and stabilized under a 200 W laser scanning and a relative high scanning speed of 1000 mm/s. Thus, the internal energy of metastable powder contributes in reducing laser energy for SLM process for Al alloys.

  5. Recovery and recrystallisation in mechanically alloyed and annealed, legacy, FeCrAlY ODS alloy precursor powders

    NASA Astrophysics Data System (ADS)

    Dawson, K.; Rao, A.; Tatlock, G. J.; Jones, A. R.

    2015-08-01

    This study presents findings related to the recrystallisation behaviour in Mechanically Alloyed (MA) and annealed powders of legacy commercial Oxide Dispersion Strengthened (ODS) FeCrAl alloys PM2000, MA956 and ODM751. Annealing of as-MA ODS alloy powders at temperatures ≥ 800 °C induced primary recrystallisation. The volume fraction (Vf) recrystallised increased with higher annealing temperatures in the range studied (∼800-1050 °C). However, low temperature (650 °C) recovery reduced the subsequent kinetics of recrystallisation in PM2000 alloy. Transmission Electron Microscopy (TEM) analysis of annealed PM2000 and MA956 alloy powders indicates that precipitation of nano-particulate Y-Al-O phases begins at temperatures as low as 650 °C and microstructural changes during annealing of ODS powders involved interactions between nano-particle formation and recovery/recrystallisation processes. High number densities (NV > 1023 m-3) of coherent nano-precipitates were identified in both recovered and recrystallised regions of powder particles. These formed over a range of temperatures used in the consolidation processing of ODS alloys. The orientation relationship between nano-particles and the matrix was identical in both recovered and recrystallised grains, indicating that particles were dissolved at recrystallising interfaces and subsequently reprecipitated. Examination and comparison of as-MA and annealed powder specimens suggests that nuances in the manufacturing of these three, nominally similar, alloys leads to differences in recovery/recrystallisation behaviour, which may influence microstructure and, ultimately, properties in the final product form.

  6. Influence of Hot Deformation on Mechanical Properties and Microstructure of a Twin-Roll Cast Aluminium Alloy EN AW-6082

    NASA Astrophysics Data System (ADS)

    Grydin, O.; Stolbchenko, M.; Nürnberger, F.; Schaper, M.

    2014-03-01

    Thin strips of medium- and high-strength age-hardening aluminium alloys are widely used in the automotive industry. Reducing their production costs caused by high energy consumption is an actual challenge. The implementation of the twin-roll casting technology is promising. However, mechanical properties of directly cast high-alloyed thin aluminium strips are oftentimes inadequate to standard specifications. In this work, the influence of a hot deformation following a twin-roll cast strip process on the mechanical properties and microstructure is investigated. For this study strips of age-hardening aluminium alloy EN AW-6082—manufactured at a laboratory scaled twin-roll caster—were single-pass rolled at temperatures of 420 °C and true strains of up to 0.5. The mechanical properties of the as-cast and by different strains hot deformed material in the soft-annealed and age-hardened states were characterized by tensile tests. The results reveal that the twin-roll cast material features the necessary strength properties, though it does not meet the standard requirements for ductility. Furthermore, the required minimum strain during hot rolling that is necessary to ascertain the standard specifications has been determined. Based on micrographs, the uniformity of the mechanical properties and of the microstructure as a result of recrystallization due to hot metal forming and heat treatment were determined. A fine-grain microstructure and satisfactory material ductility after prior rolling with a true strain above 0.41 for the age-hardened state T6 and above 0.1 for the soft-annealed state O have been established.

  7. Crystallization kinetics and magnetic properties of FeSiCr amorphous alloy powder cores

    NASA Astrophysics Data System (ADS)

    Xu, Hu-ping; Wang, Ru-wu; Wei, Ding; Zeng, Chun

    2015-07-01

    The crystallization kinetics of FeSiCr amorphous alloy, characterized by the crystallization activation energy, Avrami exponent and frequency factor, was studied by non-isothermal differential scanning calorimetric (DSC) measurements. The crystallization activation energy and frequency factor of amorphous alloy calculated from Augis-Bennett model were 476 kJ/mol and 5.5×1018 s-1, respectively. The Avrami exponent n was calculated to be 2.2 from the Johnson-Mehl-Avrami (JMA) equation. Toroid-shaped Fe-base amorphous powder cores were prepared from the commercial FeSiCr amorphous alloy powder and subsequent cold pressing using binder and insulation. The characteristics of FeSiCr amorphous alloy powder and the effects of compaction pressure and insulation content on the magnetic properties, i.e., effective permeability μe, quality factor Q and DC-bias properties of FeSiCr amorphous alloy powder cores, were investigated. The FeSiCr amorphous alloy powder cores exhibit a high value of quality factor and a stable permeability in the frequency range up to 1 MHz, showing superior DC-bias properties with a "percent permeability" of more than 82% at H=100 Oe.

  8. Electromagnetic Gauge Study of Laser-Induced Shock Waves in Aluminium Alloys

    NASA Astrophysics Data System (ADS)

    Peyre, P.; Fabbro, R.

    1995-12-01

    The laser-shock behaviour of three industrial aluminum alloys has been analyzed with an Electromagnetic Gauge Method (EMV) for measuring the velocity of the back free surface of thin foils submitted to plane laser irradiation. Surface pressure, shock decay in depth and Hugoniot Elastic Limits (HEL) of the materials were investigated with increasing thicknesses of foils to be shocked. First, surface peak pressures values as a function of laser power density gave a good agreement with conventional piezoelectric quartz measurements. Therefore, comparison of experimental results with computer simulations, using a 1D hydrodynamic Lagrangian finite difference code, were also in good accordance. Lastly, HEL values were compared with static and dynamic compressive tests in order to estimate the effects of a very large range of strain rates (10^{-3} s^{-1} to 10^6 s^{-1}) on the mechanical properties of the alloys. Cet article fait la synthèse d'une étude récente sur la caractérisation du comportement sous choc-laser de trois alliages d'aluminium largement utilisés dans l'industrie à travers la méthode dite de la jauge électromagnétique. Cette méthode permet de mesurer les vitesses matérielles induites en face arrière de plaques d'épaisseurs variables par un impact laser. La mise en vitesse de plaques nous a permis, premièrement, de vérifier la validité des pressions d'impact superficielles obtenues en les comparant avec des résultats antérieurs obtenus par des mesures sur capteurs quartz. Sur des plaques d'épaisseurs croissantes, nous avons caractérisé l'atténuation des ondes de choc en profondeur dans les alliages étudiés et mesuré les limites d'élasticité sous choc (pressions d'Hugoniot) des alliages. Les résultats ont été comparés avec succès à des simulations numériques grâce à un code de calcul monodimensionnel Lagrangien. Enfin, les valeurs des pressions d'Hugoniot mesurées ont permis de tracer l'évolution des contraintes d

  9. Characterization of Cu-Zn Alloy Nanocrystalline Powders Prepared by Wire Electrical Explosion

    NASA Astrophysics Data System (ADS)

    Qun, Wang; Hai-Bin, Yang; Wei-Li, Guo; Guang-Tian, Zou

    2000-02-01

    Nanocrystalline powders of Cu-Zn alloy in size ranging from 10 to 140 nm was prepared from α-Cu-Zn alloy wire containing 39.8 at.% Zn by an electrical explosion method. The particles are identified from x-ray diffraction as a mixture of the α, β, γ, and ɛ phases of Cu-Zn alloy. Most of the particles are hexagonal in shape, with only a small part being spherical and cubic. The composition of Zn in the explosion products varied from 6.9 to 45.2 at.% in different particles as determined by energy dispersive x-ray spectrometer. A possible mechanism for the formation of the alloy nanocrystalline powders is proposed, in which a redistribution process occurred caused by strong collision and diffusion between the two kinds of atoms during the powder formation.

  10. Method of making quasicrystal alloy powder, protective coatings and articles

    DOEpatents

    Shield, Jeffrey E.; Goldman, Alan I.; Anderson, Iver E.; Ellis, Timothy W.; McCallum, R. William; Sordelet, Daniel J.

    1995-07-18

    A method of making quasicrystalline alloy particulates wherein an alloy is superheated and the melt is atomized to form generally spherical alloy particulates free of mechanical fracture and exhibiting a predominantly quasicrystalline in the atomized condition structure. The particulates can be plasma sprayed to form a coating or consolidated to form an article of manufacture.

  11. Method of making quasicrystal alloy powder, protective coatings and articles

    DOEpatents

    Shield, J.E.; Goldman, A.I.; Anderson, I.E.; Ellis, T.W.; McCallum, R.W.; Sordelet, D.J.

    1995-07-18

    A method of making quasicrystalline alloy particulates is disclosed wherein an alloy is superheated and the melt is atomized to form generally spherical alloy particulates free of mechanical fracture and exhibiting a predominantly quasicrystalline in the atomized condition structure. The particulates can be plasma sprayed to form a coating or consolidated to form an article of manufacture. 3 figs.

  12. Dispersoid reinforced alloy powder and method of making

    SciTech Connect

    Anderson, Iver E.; Terpstra, Robert L.

    2012-06-12

    A method of making dispersion-strengthened alloy particles involves melting an alloy having a corrosion and/or oxidation resistance-imparting alloying element, a dispersoid-forming element, and a matrix metal wherein the dispersoid-forming element exhibits a greater tendency to react with a reactive species acquired from an atomizing gas than does the alloying element. The melted alloy is atomized with the atomizing gas including the reactive species to form atomized particles so that the reactive species is (a) dissolved in solid solution to a depth below the surface of atomized particles and/or (b) reacted with the dispersoid-forming element to form dispersoids in the atomized particles to a depth below the surface of said atomized particles. The atomized alloy particles are solidified as solidified alloy particles or as a solidified deposit of alloy particles. Bodies made from the dispersion strengthened alloy particles, deposit thereof, exhibit enhanced fatigue and creep resistance and reduced wear as well as enhanced corrosion and/or oxidation resistance at high temperatures by virtue of the presence of the corrosion and/or oxidation resistance imparting alloying element in solid solution in the particle alloy matrix.

  13. Dispersoid reinforced alloy powder and method of making

    SciTech Connect

    Anderson, Iver E.; Terpstra, Robert L.

    2010-04-20

    A method of making dispersion-strengthened alloy particles involves melting an alloy having a corrosion and/or oxidation resistance-imparting alloying element, a dispersoid-forming element, and a matrix metal wherein the dispersoid-forming element exhibits a greater tendency to react with a reactive species acquired from an atomizing gas than does the alloying element. The melted alloy is atomized with the atomizing gas including the reactive species to form atomized particles so that the reactive species is (a) dissolved in solid solution to a depth below the surface of atomized particles and/or (b) reacted with the dispersoid-forming element to form dispersoids in the atomized particles to a depth below the surface of said atomized particles. The atomized alloy particles are solidified as solidified alloy particles or as a solidified deposit of alloy particles. Bodies made from the dispersion strengthened alloy particles, deposit thereof, exhibit enhanced fatigue and creep resistance and reduced wear as well as enhanced corrosion and/or oxidation resistance at high temperatures by virtue of the presence of the corrosion and/or oxidation resistance imparting alloying element in solid solution in the particle alloy matrix.

  14. Wear Properties of Thixoformed and High Pressure Die Cast Aluminium Alloys for Connecting Rod Applications in Compressors

    NASA Astrophysics Data System (ADS)

    Birol, Yücel; Birol, Feriha

    2007-04-01

    Hypereutectic aluminium casting alloys are attractive candidates for connecting rod applications in compressors. The wear properties of these alloys are largely controlled by their microstructural features which in turn are affected by the processing route. Several hypo- and hypereutectic Al-Si alloys were produced by high pressure die casting and thixoforming in the present work. The former route produced a very fine microstructure while relatively coarser, globular α-Al matrix dominated in thixoformed grades. A modified Falex Block on Ring equipment was employed to investigate the wear properties of these alloys. Wear tests were carried out under service conditions in the lubricated state at 75°C. The superior wear properties of hypereutectic alloys produced by high pressure die casting with respect to the thixoformed variety is accounted for by the very fine microstructure with a fine dispersion of primary Si particles in the former. Of the two production routes employed, thixoforming had a favorable effect on wear properties at equal Si levels.

  15. Properties of WZ21 (%wt) alloy processed by a powder metallurgy route.

    PubMed

    Cabeza, Sandra; Garcés, Gerardo; Pérez, Pablo; Adeva, Paloma

    2015-06-01

    Microstructure, mechanical properties and corrosion behaviour of WZ21 (%wt) alloy prepared by a powder metallurgy route from rapidly solidified powders have been studied. Results were compared to those of the same alloy prepared through a conventional route of casting and extrusion. The microstructure of the extruded ingot consisted of α-Mg grains and Mg3Zn3Y2 (W-phase) and LPSO-phase particles located at grain boundaries. Moreover, stacking faults were also observed within α-Mg grains. The alloy processed by the powder metallurgy route exhibited a more homogeneous and finer microstructure, with a grain size of 2 μm. In this case W-phase and Mg24Y5 phase were identified, but not the LPSO-phase. The microstructural refinement induced by the use of rapidly solidified powders strengthened the alloy at room temperature and promoted superplasticity at higher strain rates. Corrosion behaviour in PBS medium evidenced certain physical barrier effect of the almost continuous arrangements of second phases aligned along the extrusion direction in conventionally processed WZ21 alloy, with a stable tendency around 7 mm/year. On the other hand, powder metallurgy processing promoted significant pitting corrosion, inducing accelerated corrosion rate during prolonged immersion times. PMID:25792409

  16. Effects of surface treatment of aluminium alloy 1050 on the adhesion and anticorrosion properties of the epoxy coating

    NASA Astrophysics Data System (ADS)

    Sharifi Golru, S.; Attar, M. M.; Ramezanzadeh, B.

    2015-08-01

    The objective of this work is to investigate the effects of zirconium-based (Zr) conversion coating on the adhesion properties and corrosion resistance of an epoxy/polyamide coating applied on the aluminium alloy 1050 (AA1050). Field emission scanning electron microscope (FE-SEM), energy dispersive X-ray spectrum (EDS), atomic force microscope (AFM) and contact angle measuring device were employed in order to characterize the surface characteristics of the Zr treated AA1050 samples. The epoxy/polyamide coating was applied on the untreated and Zr treated samples. The epoxy coating adhesion to the aluminium substrate was evaluated by pull-off test before and after 30 days immersion in 3.5% w/w NaCl solution. In addition, the electrochemical impedance spectroscopy (EIS) and salt spray tests were employed to characterize the corrosion protection properties of the epoxy coating applied on the AA1050 samples. Results revealed that the surface treatment of AA1050 by zirconium conversion coating resulted in the increase of surface free energy and surface roughness. The dry and recovery (adhesion strength after 30 days immersion in the 3.5 wt% NaCl solution) adhesion strengths of the coatings applied on the Zr treated aluminium samples were greater than untreated sample. In addition, the adhesion loss of the coating applied on the Zr treated aluminium substrate was lower than other samples. Also, the results obtained from EIS and salt spray test clearly revealed that the Zr conversion coating could enhance the corrosion protective performance of the epoxy coating significantly.

  17. Particle morphology influence on mechanical and biocompatibility properties of injection molded Ti alloy powder.

    PubMed

    Gülsoy, H Özkan; Gülsoy, Nagihan; Calışıcı, Rahmi

    2014-01-01

    Titanium and Titanium alloys exhibits properties that are excellent for various bio-applications. Metal injection molding is a processing route that offers reduction in costs, with the added advantage of near net-shape components. Different physical properties of Titanium alloy powders, shaped and processed via injection molding can achieve high complexity of part geometry with mechanical and bioactivity properties, similar or superior to wrought material. This study describes that the effect of particle morphology on the microstructural, mechanical and biocompatibility properties of injection molded Ti-6Al-4V (Ti64) alloy powder for biomaterials applications. Ti64 powders irregular and spherical in shape were injection molded with wax based binder. Binder debinding was performed in solvent and thermal method. After debinding the samples were sintered under high vacuum. Metallographic studies were determined to densification and the corresponding microstructural changes. Sintered samples were immersed in a simulated body fluid (SBF) with elemental concentrations that were comparable to those of human blood plasma for a total period of 15 days. Both materials were implanted in fibroblast culture for biocompatibility evaluations were carried out. The results show that spherical and irregular powder could be sintered to a maximum theoretical density. Maximum tensile strength was obtained for spherical shape powder sintered. The tensile strength of the irregular shape powder sintered at the same temperature was lower due to higher porosity. Finally, mechanical tests show that the irregular shape powder has lower mechanical properties than spherical shape powder. The sintered irregular Ti64 powder exhibited better biocompatibility than sintered spherical Ti64 powder. Results of study showed that sintered spherical and irregular Ti64 powders exhibited high mechanical properties and good biocompatibility properties. PMID:25201399

  18. Dispersoid reinforced alloy powder and method of making

    SciTech Connect

    Anderson, Iver E; Rieken, Joel

    2013-12-10

    A method of making dispersion-strengthened alloy particles involves melting an alloy having a corrosion and/or oxidation resistance-imparting alloying element, a dispersoid-forming element, and a matrix metal wherein the dispersoid-forming element exhibits a greater tendency to react with an introduced reactive species than does the alloying element and wherein one or more atomizing parameters is/are modified to controllably reduce the amount of the reactive species, such as oxygen, introduced into the atomized particles so as to reduce anneal times and improve reaction (conversion) to the desired strengthening dispersoids in the matrix. The atomized alloy particles are solidified as solidified alloy particles or as a solidified deposit of alloy particles. Bodies are made from the dispersion strengthened alloy particles, deposit thereof, exhibit enhanced fatigue and creep resistance and reduced wear as well as enhanced corrosion and/or oxidation resistance at high temperatures by virtue of the presence of the corrosion and/or oxidation resistance imparting alloying element in solid solution in the particle alloy matrix.

  19. Applications of high-temperature powder metal aluminum alloys to small gas turbines

    NASA Technical Reports Server (NTRS)

    Millan, P. P., Jr.

    1982-01-01

    A program aimed at the development of advanced powder-metallurgy (PM) aluminum alloys for high-temperature applications up to 650 F using the concepts of rapid solidification and mechanical alloying is discussed. In particular, application of rapidly solidified PM aluminum alloys to centrifugal compressor impellers, currently used in auxiliary power units for both military and commercial aircraft and potentially for advanced automotive gas turbine engines, is examined. It is shown that substitution of high-temperature aluminum for titanium alloy impellers operating in the 360-650 F range provides significant savings in material and machining costs and results in reduced component weight, and consequently, reduced rotating group inertia requirements.

  20. Non-destructive and three-dimensional measurement of local strain development during tensile deformation in an aluminium alloy

    NASA Astrophysics Data System (ADS)

    Kobayashi, M.; Miura, H.; Toda, H.

    2015-08-01

    Anisotropy of mechanical responses depending on crystallographic orientation causes inhomogeneous deformation on the mesoscopic scale (grain size scale). Investigation of the local plastic strain development is important for discussing recrystallization mechanisms, because the sites with higher local plastic strain may act as potential nucleation sites for recrystallization. Recently, high-resolution X-ray tomography, which is non-destructive inspection method, has been utilized for observation of the materials structure. In synchrotron radiation X-ray tomography, more than 10,000 microstructural features, like precipitates, dispersions, compounds and hydrogen pores, can be observed in aluminium alloys. We have proposed employing these microstructural features as marker gauges to measure local strains, and then have developed a method to calculate the three-dimensional strain distribution by tracking the microstructural features. In this study, we report the development of local plastic strain as a function of the grain microstructure in an aluminium alloy by means of this three-dimensional strain measurement technique. Strongly heterogeneous strain development was observed during tensile loading to 30%. In other words, some parts of the sample deform little whereas another deforms a lot. However, strain in the whole specimen was keeping harmony. Comparing the microstructure with the strain concentration that is obtained by this method has a potential to reveal potential nucleation sites of recrystallization.

  1. Study of twin-roll cast Aluminium alloys subjected to severe plastic deformation by equal channel angular pressing

    NASA Astrophysics Data System (ADS)

    Poková, M.; Cieslar, M.

    2014-08-01

    Aluminium alloys prepared by twin-roll casting method become widely used in industry applications. Their high solid solution supersaturation and finer grains ensure better mechanical properties when compared with the direct-chill cast ones. One of the possibilities how to enhance their thermal stability is the addition of zirconium. After heat treatment Al3Zr precipitates form and these pin moving grain boundaries when the material is exposed to higher temperatures. In the present work twin-roll cast aluminium alloys based on AA3003 with and without Zr addition were annealed for 8 hours at 450 °C to enable precipitation of Al3Zr phase. Afterwards they were subjected to severe plastic deformation by equal channel angular pressing, which led to the reduction of average grain size under 1 μm. During subsequent isochronal annealing recovery and recrystallization took place. These processes were monitored by microhardness measurements, light optical microscopy and in-situ transmission electron microscopy. The addition of Zr stabilizes the grain size and increases the recrystallization temperature by 100 °C.

  2. Powder metallurgical low-modulus Ti-Mg alloys for biomedical applications.

    PubMed

    Liu, Yong; Li, Kaiyang; Luo, Tao; Song, Min; Wu, Hong; Xiao, Jian; Tan, Yanni; Cheng, Ming; Chen, Bing; Niu, Xinrui; Hu, Rong; Li, Xiaohui; Tang, Huiping

    2015-11-01

    In this work, powder metallurgical (PM) Ti-Mg alloys were prepared using combined techniques of mechanical alloying and spark plasma sintering. The alloys mainly consist of super saturations of Mg in Ti matrix, and some laminar structured Ti- and Mg-rich phases. The PM Ti-Mg alloys contain a homogeneous mixtures of nanocrystalline Mg and Ti phases. The novel microstructures result in unconventional mechanical and biological properties. It has been shown that the PM Ti-Mg alloys have a much lower compression modulus (36-50GPa) compared to other Ti alloys, but still remain a very high compressive strength (1500-1800MPa). In addition, the PM Ti-Mg alloys show good biocompatibility and bioactivity. Mg can dissolve in the simulated body fluids, and induce the formation of the calcium phosphate layer. The compression modulus of PM Ti-Mg alloys decreases with the amount of Mg, while the bioactivity increases. Although the corrosion resistance of Ti-Mg alloys decreases with the content of Mg, the alloys still show good stability in simulated body fluid under electrochemical conditions. The indirect and direct cytotoxicity results show that PM Ti-Mg alloys have a good biocompatibility to NIH-3T3 cells. Therefore, the PM Ti-Mg alloys are promising candidates in biomedical applications. PMID:26249586

  3. NON-MELT PROCESSING OF "LOW-COST", ARMSTRONG TITANIUM AND TITANIUM ALLOY POWDERS

    SciTech Connect

    Peter, William H; Blue, Craig A; Clive, Scorey; Ernst, Bill; McKernan, John; Kiggans, Jim; Rivard, John D; Yu, Dr. Charlie

    2007-01-01

    In the last decade, a considerable effort has been made to develop new methods for producing low cost titanium and titanium powders. The Armstrong process is a new method of producing titanium powder via reducing TiCl4 vapor in molten sodium. The process is scalable, and can be used to produce pre-alloyed powders. Non-melt processing and powder metallurgy approaches are economically viable with the commercially pure powders. In this investigation, several non-melt processing technologies, including vacuum hot pressing, extrusion, roll compaction, and forging techniques, will be evaluated using the Armstrong titanium powders. The metallurgical, chemical, and mechanical properties of the processed titanium samples will be discussed.

  4. The effect of aluminium on the metallography of a nickel base removable partial denture casting alloy.

    PubMed

    Lewis, A J

    1978-12-01

    Three special nickel-chromium alloys were prepared in which the aluminum levels were adjusted both above and below that of a commercial nickel base dental casting alloy. Tensile and metallographic evaluation of representative samples of the alloys were made and the changes in the properties of the alloys are reported. PMID:285671

  5. Dispersoid reinforced alloy powder and method of making

    SciTech Connect

    Anderson, Iver E; Terpstra, Robert L

    2014-10-21

    A method of making dispersion-strengthened alloy particles involves melting an alloy having a corrosion and/or oxidation resistance-imparting alloying element, a dispersoid-forming element, and a matrix metal wherein the dispersoid-forming element exhibits a greater tendency to react with a reactive species acquired from an atomizing gas than does the alloying element. The melted alloy is atomized with the atomizing gas including the reactive species to form atomized particles so that the reactive species is (a) dissolved in solid solution to a depth below the surface of atomized particles and/or (b) reacted with the dispersoid-forming element to form dispersoids in the atomized particles to a depth below the surface of said atomized particles. Bodies made from the dispersion strengthened solidified particles exhibit enhanced fatigue and creep resistance and reduced wear as well as enhanced corrosion and/or oxidation resistance at high temperatures.

  6. Synthesis of Ti-Ta alloys with dual structure by incomplete diffusion between elemental powders.

    PubMed

    Liu, Yong; Li, Kaiyang; Wu, Hong; Song, Min; Wang, Wen; Li, Nianfeng; Tang, Huiping

    2015-11-01

    In this work, powder metallurgical (PM) Ti-Ta alloys were sintered using blended elemental powders. A dual structure, consisting of Ti-rich and Ta-rich zones, was formed due to the insufficient diffusion between Ti and Ta powders. The microstructure, mechanical properties and in vitro biological properties of the alloys were studied. Results indicated that the alloys have inhomogenous microstructures and compositions, but the grain structures were continuous from the Ti-rich zone to the Ta-rich zone. The Ta-rich zone exhibited a much finer grain size than the Ti-rich zone. The alloys had a high relative density in the range of 95-98%, with the porosity increasing with the content of Ta due to the increased difficulty in sintering and the formation of Kirkendall pores. The alloys had a good combination of low elastic modulus and high tensile strength. The strength of alloys was almost doubled compared to that of the ingot metallurgy alloys with the same compositions. The low elastic modulus was due to the residual pores and the alloying effect of Ta, while the high tensile strength resulted from the strengthening effects of solid solution, fine grain size and α phase. The alloys had a high biocompatibility due to the addition of Ta, and were suitable for the attachment of cells due to the surface porosity. It was also indicated that PM Ti-(20-30)Ta alloys are promising for biomedical applications after the evaluations of both the mechanical and the biological properties. PMID:26275506

  7. Thermal Behavior of Mechanically Alloyed Powders Used for Producing an Fe-Mn-Si-Cr-Ni Shape Memory Alloy

    NASA Astrophysics Data System (ADS)

    Pricop, B.; Söyler, U.; Lohan, N. M.; Özkal, B.; Bujoreanu, L. G.; Chicet, D.; Munteanu, C.

    2012-11-01

    In order to produce shape memory rings for constrained-recovery pipe couplings, from Fe-14 Mn-6 Si-9 Cr-5 Ni (mass%) powders, the main technological steps were (i) mechanical alloying, (ii) sintering, (iii) hot rolling, (iv) hot-shape setting, and (v) thermomechanical training. The article generally describes, within its experimental-procedure section, the last four technological steps of this process the primary purpose of which has been to accurately control both chemical composition and the grain size of shape memory rings. Details of the results obtained in the first technological step, on raw powders employed both in an initial commercial state and in a mixture state of commercial and mechanically alloyed (MA) powders, which were subjected to several heating-cooling cycles have been reported and discussed. By means of differential scanning calorimetry (DSC), scanning electron microscopy (SEM), and X-ray diffraction (XRD), the thermal behaviors of the two sample powders have been analyzed. The effects of the heating-cooling cycles, on raw commercial powders and on 50% MA powders, respectively, were argued from the point of view of specific temperatures and heat variations, of elemental diffusion after thermal cycling and of crystallographic parameters, determined by DSC, SEM, and XRD, respectively.

  8. Microstructure and Shape Memory Characteristics of Powder-Metallurgical-Processed Ti-Ni-Cu Alloys

    NASA Astrophysics Data System (ADS)

    Kim, Yeon-Wook; Chung, Young-Soo; Choi, Eunsoo; Nam, Tae-Hyun

    2012-08-01

    Even though Ti-Ni-Cu alloys have attracted a lot of attention because of their high performance in shape memory effect and decrease in thermal and stress hysteresis compared with Ti-Ni binary alloys, their poor workability restrains the practical applications of Ti-Ni-Cu shape memory alloys. Consolidation of Ti-Ni-Cu alloy powders is useful for the fabrication of bulk near-net-shape shape memory alloy. Ti50Ni30Cu20 shape memory alloy powders were prepared by gas atomization, and the sieved powders with the specific size range of 25 to 150 μm were chosen for this study. The evaluation of powder microstructures was based on a scanning electron microscope (SEM) examination of the surface and the polished and etched powder cross sections. The typical images showed cellular/dendrite morphology and high population of small shrinkage cavities at intercellular regions. Differential scanning calorimetry (DSC) and X-ray diffraction (XRD) analysis showed that a B2-B19 one-step martensitic transformation occurred in the as-atomized powders. The martensitic transformation start temperature (Ms) of powders ranging between 25 and 50 μm was 304.5 K (31.5 °C). The Ms increased with increasing powder size. However, the difference of Ms in the as-atomized powders ranging between 25 and 150 μm was only 274 K (1 °C). A dense cylindrical specimen of 10 mm diameter and 15 mm length were fabricated by spark plasma sintering (SPS) at 1073 K (800 °C) and 10 MPa for 20 minutes. Then, this bulk specimen was heat treated for 60 minutes at 1123 K (850 °C) and quenched in ice water. The Ms of the SPS specimen was 310.5 K (37.5 °C) whereas the Ms of conventionally cast ingot is found to be as high as 352.7 K (79.7 °C). It is considered that the depression of the Ms in rapidly solidified powders is ascribed to the density of dislocations and the stored energy produced by rapid solidification.

  9. LACBED characterization of dislocations in Cu-Al-Ni shape memory alloys processed by powder metallurgy

    NASA Astrophysics Data System (ADS)

    Rodriguez, P. P.; Ibarra, A.; San Jean, J.; Morniro, J. P.; No, M. L.

    2003-10-01

    Powder metallurgy Cu-AI-Ni shape memory alloys show excellent thermomechanical properties, being the fracture behavior close to the one observed in single crystals. However, the microstructural mechanisms responsible of such behavior are still under study. In this paper we present the characterization of the dislocations present in these alloys by Large Angle Convergent Beam Electron Diffraction (LACBED) in two different stages of the elaboration process: after HIP compaction and after hot rolling.

  10. The structure-property relationships of powder processed Fe-Al-Si alloys

    NASA Astrophysics Data System (ADS)

    Prichard, Paul Dehnhardt

    Iron-aluminum alloys have been extensively evaluated as semi-continuous product such as sheet and bar, but have not been evaluated by net shape PN processing techniques such as metal injection molding. The alloy compositions of iron-aluminum alloys have been optimized for room temperature ductility, but have limited high temperature strength. Hot extruded powder alloys in the Fe-Al-Si system have developed impressive mechanical properties, but the effects of sintering on mechanical properties have not been explored. This investigation evaluated three powder processed Fe-Al-Si alloys: Fe-15Al, Fe-15Al-2.8Si, Fe-15Al-5Si (atomic%). The powder alloys were produced with a high pressure gas atomization (HPGA) process to obtain a high fraction of metal injection molding (MIM) quality powder (Dsb{84} < 32μm). The powders were consolidated either by P/M hot extrusion or by vacuum sintering. The extruded materials were near full density with grain sizes ranging from 30 to 50 mum. The vacuum sintering conditions produced samples with density ranging from 87% to 99% of theoretical density, with an average grain size ranging from 26 mum to 104 mum. Mechanical property testing was conducted on both extruded and sintered material using small punch test. Tensile tests were conducted on extruded bar for comparison with the punch test data. Punch tests were conducted from 25sp°C to 550sp°C to determine the yield strength, and fracture energy for each alloy as a function of processing condition. The ductile to brittle transition temperature (DBTT) was observed to increase with an increasing silicon content. The Fe-15Al-2.8Si alloy was selected for more extensive testing due to the combination of high temperature strength and low temperature toughness due to the two phase alpha + DOsb3 structure. The extruded material developed higher yield strength at temperatures below the DBTT, but the sintered material developed higher strengths above the DBTT. The fracture energy of these

  11. Nanostructure Characterization of Bismuth Telluride-Based Powders and Extruded Alloys by Various Experimental Methods

    NASA Astrophysics Data System (ADS)

    Vasilevskiy, D.; Bourbia, O.; Gosselin, S.; Turenne, S.; Masut, R. A.

    2011-05-01

    High-resolution transmission electron microscopy (HRTEM) observations of mechanically alloyed powders and bulk extruded alloys give experimental evidence of nanosized grains in bismuth telluride-based materials. In this study we combine HRTEM observations and x-ray diffraction (XRD) measurements, of both mechanically alloyed powders and extruded samples, with mechanical spectroscopy (MS) of extruded rods. Both HRTEM and XRD show that nanostructures with an average grain size near 25 nm can be achieved within 2 h of mechanical alloying from pure elements in an attritor-type milling machine. Residual strain orthogonal to the c-axis of powder nanoparticles has been evaluated at about 1.2% by XRD peak broadening. In contrast, XRD has been found unreliable for evaluation of grain size in highly textured extruded materials for which diffraction conditions are similar to those of single crystals, while MS appears promising for study of bulk extruded samples. Nanostructured extruded alloys at room temperature exhibit an internal friction (IF) background that is one order of magnitude higher than that of conventional zone-melted material with a grain size of several millimeters. IF as a function of sample temperature gives activation energies that are also different between bulk materials having nano- and millimeter-size grains, a result that is attributed to different creep mechanisms. Nanograin size, as well as orientation and volumetric proportion, provide valuable information for optimization of technological parameters of thermoelectric alloys and should be carefully cross-examined by various independent methods.

  12. Dual-Alloy Disks are Formed by Powder Metallurgy

    NASA Technical Reports Server (NTRS)

    Harf, F. H.; Miner, R. V.; Kortovich, C. S.; Marder, J. M.

    1982-01-01

    High-performance disks have widely varying properties from hub to rim. Dual property disk is fabricated using two nickel-base alloys, AF-115 for rim and Rene 95 for hub. Dual-alloy fabrication may find applications in automobiles, earth-moving equipment, and energy conversion systems as well as aircraft powerplants. There is potential for such applications as shafts, gears, and blades.

  13. The structure-property relationships of powder processed Fe-Al-Si alloys

    SciTech Connect

    Prichard, P.D.

    1998-02-23

    Iron-aluminum alloys have been extensively evaluated as semi-continuous product such as sheet and bar, but have not been evaluated by net shape P/M processing techniques such as metal injection molding. The alloy compositions of iron-aluminum alloys have been optimized for room temperature ductility, but have limited high temperature strength. Hot extruded powder alloys in the Fe-Al-Si system have developed impressive mechanical properties, but the effects of sintering on mechanical properties have not been explored. This investigation evaluated three powder processed Fe-Al-Si alloys: Fe-15Al, Fe-15Al-2.8Si, Fe-15Al-5Si (atomic %). The powder alloys were produced with a high pressure gas atomization (HPGA) process to obtain a high fraction of metal injection molding (MIM) quality powder (D{sub 84} < 32 {micro}m). The powders were consolidated either by P/M hot extrusion or by vacuum sintering. The extruded materials were near full density with grain sizes ranging from 30 to 50 {micro}m. The vacuum sintering conditions produced samples with density ranging from 87% to 99% of theoretical density, with an average grain size ranging from 26 {micro}m to 104 {micro}m. Mechanical property testing was conducted on both extruded and sintered material using a small punch test. Tensile tests were conducted on extruded bar for comparison with the punch test data. Punch tests were conducted from 25 to 550 C to determine the yield strength, and fracture energy for each alloy as a function of processing condition. The ductile to brittle transition temperature (DBTT) was observed to increase with an increasing silicon content. The Fe-15Al-2.8Si alloy was selected for more extensive testing due to the combination of high temperature strength and low temperature toughness due to the two phase {alpha} + DO{sub 3} structure. This investigation provided a framework for understanding the effects of silicon in powder processing and mechanical property behavior of Fe-Al-Si alloys.

  14. Mechanical activation of a hard magnetic Fe-Cr-Co alloy powder charge

    NASA Astrophysics Data System (ADS)

    Alymov, M. I.; Milyaev, I. M.; Sychev, A. E.; Kovalev, D. Yu.; Korneev, V. P.; Morozov, Yu. G.; Yusupov, V. S.; Bompe, T. A.

    2014-07-01

    The mechanical activation (MA) of a charge of a hard magnetic 22Kh15KT alloy is studied by wet and dry milling in a planetary mill in a medium of argon and ethyl alcohol with addition of surface-active materials and without them. It is shown that, upon dry MA, powder alloy components are alloyed with formation of two bcc solid solutions and, upon wet MA, charge particles are only intensely dispersed. Dispersion is developed at the highest degree in the first five minutes of MA.

  15. Effect of Radio Frequency Plasma Treatment on Evaporation Behavior and Characteristics of RuCr Alloy Powder.

    PubMed

    Jung, Taek-Kyun; Lim, Sung-Chul; Kwon, Hyouk-Chon; Park, Soo-Keun; Hon, Jong-Whan; Jung, Seung-Boo; Baek, Jong-Jin; Jang, Kyu-Bong

    2015-11-01

    The evaporation behavior and characteristics of jet milled RuCr alloy powders processed by radio-frequency (RF) plasma treatment were evaluated during this study. RF plasma treatment was found to be effective in eliminating internal pores and in manufacturing spherical powder. However, the RF plasma treatment resulted in the evaporation of Cr. The degree of evaporation of Cr was significantly affected by the powder feeding rate. As a result, it was found that controlling the torch power was more effective than controlling the powder feeding rate for obtaining desirable RuCr alloy powders. PMID:26726528

  16. An investigation of wear behaviors of different Monel alloys produced by powder metallurgy

    NASA Astrophysics Data System (ADS)

    Esgin, U.; Özyürek, D.; Kaya, H.

    2016-04-01

    In the present study, wear behaviors of Monel 400, Monel 404, Monel R-405 and Monel K-500 alloys produced by Powder Metallurgy (P/M) method were investigated. These compounds prepared from elemental powders were cold-pressed (600 MPa) and then, sintered at 1150°C for 2 hours and cooled down to the room temperature in furnace environment. Monel alloys produced by the P/M method were characterized through scanning electron microscope (SEM+EDS), X-ray diffraction (XRD), hardness and density measurements. In wear tests, standard pin-on-disk type device was used. Specimens produced within four different Monel Alloys were tested under 1ms-1 sliding speed, under three different loads (20N, 30N and 40N) and five different sliding distances (400-2000 m). The results show that Monel Alloys have γ matrix and that Al0,9Ni4,22 intermetallic phase was formed in the structure. Also, the highest hardness value was measured with the Monel K-500 alloy. In wear tests, the maximum weight loss according to the sliding distance, was observed in Monel 400 and Monel 404 alloys while the minimum weight loss was achieved by the Monel K-500 alloy.

  17. Formulation of anisotropic Hill criteria for the description of an aluminium alloy behaviour during the channel die compression test

    SciTech Connect

    Gavrus, A.; Francillette, H.

    2007-04-07

    During the last years the study of the plastic deformation modes and the anisotropic mechanical behaviour of aluminium alloys have been the subject of many investigations. This paper deals with a phenomenological identification of an anisotropic Hill constitutive equation of aluminium AU4G samples using a channel die compression device at room temperature. By considering the different possible orientations of the samples in the channel die device, three initial textures, named ND (normal direction Z), LD (longitudinal direction X) and TD (transverse direction Y), were defined with the corresponding stresses {sigma}ND, {sigma}LD and {sigma}TD. To describe the anisotropy of the material, a quadratic Hill criteria is used. An Avrami type equation based on the mixture of the hardening and softening phenomena is used to describe variation of each stress component with the equivalent plastic strain. The identification of the parameters of the law is made using an identification software (OPTPAR) and a good correlation between the experimental stresses and computed ones is obtained. The variation of the Hill parameters with a proposed equivalent strain, describing the deformation history of the material, is analysed. Finally, using the expressions of F, G, H and N, the constitutive equation of the normal anisotropy in the plane XY is obtained.

  18. Small Crack Growth and Fatigue Life Predictions for High-Strength Aluminium Alloys. Part 1; Experimental and Fracture Mechanics Analysis

    NASA Technical Reports Server (NTRS)

    Wu, X. R.; Newman, J. C.; Zhao, W.; Swain, M. H.; Ding, C. F.; Phillips, E. P.

    1998-01-01

    The small crack effect was investigated in two high-strength aluminium alloys: 7075-T6 bare and LC9cs clad alloy. Both experimental and analytical investigations were conducted to study crack initiation and growth of small cracks. In the experimental program, fatigue tests, small crack and large crack tests A,ere conducted under constant amplitude and Mini-TWIST spectrum loading conditions. A pronounced small crack effect was observed in both materials, especially for the negative stress ratios. For all loading conditions, most of the fatigue life of the SENT specimens was shown to be crack propagation from initial material defects or from the cladding layer. In the analysis program, three-dimensional finite element and A weight function methods were used to determine stress intensity factors and to develop SIF equations for surface and corner cracks at the notch in the SENT specimens. A plastisity-induced crack-closure model was used to correlate small and large crack data, and to make fatigue life predictions, Predicted crack-growth rates and fatigue lives agreed well with experiments. A total fatigue life prediction method for the aluminum alloys was developed and demonstrated using the crack-closure model.

  19. Occupational lung fibrosis in an aluminium polisher.

    PubMed

    De Vuyst, P; Dumortier, P; Rickaert, F; Van de Weyer, R; Lenclud, C; Yernault, J C

    1986-02-01

    An aluminium polisher developed severe lung fibrosis complicated by bronchial carcinoma. Although he was not submitted to the exposure risks usually described in aluminium lung (bauxite smelting, use of aluminium powders, aluminium welding), he worked in a high concentration of aluminium dust. This was demonstrated by mineralogical analyses which revealed large amounts of small metallic aluminium particles (0.5 micron - 5 micron) in bronchoalveolar lavage, lung tissue and lymph nodes 5 years after the end of exposure. Aluminium polishing seems to be a potential cause of aluminium lung. PMID:3699115

  20. Mechanical properties of modified low cobalt powder metallurgy Udimet 700 type alloys

    NASA Technical Reports Server (NTRS)

    Harf, Fredric H.

    1989-01-01

    Eight superalloys derived from Udimet 700 were prepared by powder metallurgy, hot isostatically pressed, heat treated and their tensile and creep rupture properties determined. Several of these alloys displayed properties superior to those of Udimet 700 similarly prepared, in one case exceeding the creep rupture life tenfold. Filter clogging by extracted gamma prime, its measurement and significance are discussed in an appendix.

  1. The effect of cerium and lanthanum surface treatments on early stages of oxidation of A361 aluminium alloy at high temperature

    NASA Astrophysics Data System (ADS)

    Pardo, A.; Feliú, S.; Merino, M. C.; Arrabal, R.; Matykina, E.

    2007-11-01

    X-ray photoelectron spectroscopy analysis has been used to study the surface of A361 aluminium alloy after electrodeposition of cerium and lanthanum compounds followed by oxidation tests in air at 100-500 °C for 2 h. Cerium and lanthanum oxide deposits are found on the β-AlFeSi second phase particles and to a lesser extent on the eutectic Al-Si areas, while the α-Al phase is covered with a thin aluminium oxide film. This uneven deposition may be related either to a preferential nucleation and growth process on active interfaces or to the differing electrical conductivity of the phases and intermetallic compounds of the alloy. Initial stages of oxidation of A361 alloy disclosed thickening of the aluminium oxide layer and Mg enrichment at the surface, especially above 400 °C. Rare earth deposits revealed two different effects: reduced Mg diffusion and enhanced thickening of the aluminium oxide film. A distinctive behaviour of Ce oxide appears at 300-500 °C related with Ce(III) to Ce(IV) transition.

  2. Predicting the Surface Quality of Face Milled Aluminium Alloy Using a Multiple Regression Model and Numerical Optimization

    NASA Astrophysics Data System (ADS)

    Simunovic, K.; Simunovic, G.; Saric, T.

    2013-10-01

    The surface roughness is a very significant indicator of surface quality. It represents an essential exploitation requirement and influences technological time and costs, i.e. productivity. For that reason, the main objective of this paper is to analyse the influence of face milling cutting parameters (number of revolution, feed rate and depth of cut) on the surface roughness of aluminium alloy. Hence, a statistical (regression) model has been developed to predict the surface roughness by using the methodology of experimental design. Central composite design is chosen for fitting response surface. Also, numerical optimization considering two goals simultaneously (minimum propagation of error and minimum roughness) was performed throughout the experimental region. In this way, the settings of cutting parameters causing the minimum variability in response were determined for the estimated variations of the significant regression factors.

  3. Influence of dispersoids on microstructure evolution and work hardening of aluminium alloys during tension and cold rolling

    NASA Astrophysics Data System (ADS)

    Zhao, Qinglong; Holmedal, Bjørn; Li, Yanjun

    2013-08-01

    The influence of dispersoids on work hardening of aluminium during tension and cold rolling has been studied by comparing Al-Mn alloys containing similar amounts of solutes but various dispersoid densities. The microstructure evolution with deformation strain was examined in transmission and scanning electron microscopy. It is found that a high density of fine dispersoids strengthens the materials significantly, but their strengthening effect diminishes as the strain increases. From a series of Bauschinger tests, it is found that the internal stress, due to particles, increases rapidly at the initial stage of deformation, but saturates at strains larger than 5%. It is concluded that the internal stress makes a small contribution to the work hardening and contributes to less than 10% of the total flow stress during monotonic loading at strains larger than 5%. The work-hardening behaviour has been correlated to the corresponding microstructure, and the strengthening mechanisms are discussed.

  4. Effects of Welding Processes and Post-Weld Aging Treatment on Fatigue Behavior of AA2219 Aluminium Alloy Joints

    NASA Astrophysics Data System (ADS)

    Malarvizhi, S.; Balasubramanian, V.

    2011-04-01

    AA2219 aluminium alloy square butt joints without filler metal addition were fabricated using gas tungsten arc welding (GTAW), electron beam welding (EBW), and friction stir welding (FSW) processes. The fabricated joints were post-weld aged at 175 °C for 12 h. The effect of three welding processes and post-weld aging (PWA) treatment on the fatigue properties is reported. Transverse tensile properties of the welded joints were evaluated. Microstructure analysis was also carried out using optical and electron microscopes. It was found that the post-weld aged FSW joints showed superior fatigue performance compared to EBW and GTAW joints. This was mainly due to the formation of very fine, dynamically recrystallized grains and uniform distribution of fine precipitates in the weld region.

  5. Consolidation processing parameters and alternative processing methods for powder metallurgy Al-Cu-Mg-X-X alloys

    NASA Technical Reports Server (NTRS)

    Sankaran, K. K.

    1987-01-01

    The effects of varying the vacuum degassing parameters on the microstructure and properties of Al-4Cu-1Mg-X-X (X-X = 1.5Li-0.2Zr or 1.5Fe-0.75Ce) alloys processed from either prealloyed (PA) or mechanically alloyed (M) powder, and consolidated by either using sealed aluminum containers or containerless vacuum hot pressing were studied. The consolidated billets were hot extruded to evaluate microstructure and properties. The MA Li-containing alloy did not include Zr, and the MA Fe- and Ce-containing alloy was made from both elemental and partially prealloyed powder. The alloys were vacuum degassed both above and below the solution heat treatment temperature. While vacuum degassing lowered the hydrogen content of these alloys, the range over which the vacuum degassing parameters were varied was not large enough to cause significant changes in degassing efficiency, and the observed variations in the mechanical properties of the heat treated alloys were attributed to varying contributions to strengthening by the sub-structure and the dispersoids. Mechanical alloying increased the strength over that of alloys of similar composition made from PA powder. The inferior properties in the transverse orientation, especially in the Li-containing alloys, suggested deficiencies in degassing. Among all of the alloys processed for this study, the Fe- and Ce-containing alloys made from MA powder possessed better combinations of strength and toughness.

  6. New Powder Metallurgical Approach to Achieve High Fatigue Strength in Ti-6Al-4V Alloy

    NASA Astrophysics Data System (ADS)

    Cao, Fei; Ravi Chandran, K. S.; Kumar, Pankaj; Sun, Pei; Zak Fang, Z.; Koopman, Mark

    2016-05-01

    Recently, manufacturing of titanium by sintering and dehydrogenation of hydride powders has generated a great deal of interest. An overarching concern regarding powder metallurgy (PM) titanium is that critical mechanical properties, especially the high-cycle fatigue strength, are lower than those of wrought titanium alloys. It is demonstrated here that PM Ti-6Al-4V alloy with mechanical properties comparable (in fatigue strength) and exceeding (in tensile properties) those of wrought Ti-6Al-4V can be produced from titanium hydride powder, through the hydrogen sintering and phase transformation process. Tensile and fatigue behavior, as well as fatigue fracture mechanisms, have been investigated under three processing conditions. It is shown that a reduction in the size of extreme-sized pores by changing the hydride particle size distribution can lead to improved fatigue strength. Further densification by pneumatic isostatic forging leads to a fatigue strength of ~550 MPa, comparable to the best of PM Ti-6Al-4V alloys prepared by other methods and approaching the fatigue strengths of wrought Ti-6Al-4V alloys. The microstructural factors that limit fatigue strength in PM titanium have been investigated, and pathways to achieve greater fatigue strengths in PM Ti-6Al-4V alloys have been identified.

  7. Investigation of machining damage and tool wear resulting from drilling powder metal aluminum alloy

    SciTech Connect

    Fell, H.A.

    1997-05-01

    This report documents the cutting of aluminum powder metallurgy (PM) parts for the North Carolina Manufacturing Extension Partnership. The parts, an aluminum powder metal formulation, were supplied by Sinter Metals Inc., of Conover, North Carolina. The intended use of the alloy is for automotive components. Machining tests were conducted at Y-12 in the machine shop of the Skills Demonstration Center in Building 9737. Testing was done on June 2 and June 3, 1997. The powder metal alloy tested is very abrasive and tends to wear craters and produce erosion effects on the chip washed face of the drills used. It also resulted in huge amounts of flank wear and degraded performance on the part of most drills. Anti-wear coatings on drills seemed to have an effect. Drills with the coating showed less wear for the same amount of cutting. The usefulness of coolants and lubricants in reducing tool wear and chipping/breakout was not investigated.

  8. Mechanical behaviour of pressed and sintered titanium alloys obtained from prealloyed and blended elemental powders.

    PubMed

    Bolzoni, L; Esteban, P G; Ruiz-Navas, E M; Gordo, E

    2012-10-01

    The applicability of irregular prealloyed Ti-6Al-4V powder for the fabrication of titanium products by pressing and sintering and its employment as a master alloy to obtain the Ti-3Al-2.5V alloy was studied. To this end, the starting powders were characterised by dilatometry, differential thermal analysis and XRD. Green samples were obtained by cold uniaxial pressing, and the evolution of the microstructure over the sintering temperature range 900-1400°C was studied. The variation of the final density and mechanical properties with the sintering temperature was considered. Based on the study carried out, it can be stated that more reliable powders are needed to open the titanium market to new applications. A relative density of 95% and diverse microstructural features and mechanical properties equivalent to those of biomedical devices can be obtained by the pressing and sintering route. PMID:22963744

  9. Microstructural characterization of a new mechanically alloyed Ni-base ODS superalloy powder

    SciTech Connect

    Seyyed Aghamiri, S.M.; Shahverdi, H.R.; Ukai, S.; Oono, N.; Taya, K.; Miura, S.; Hayashi, S.; Okuda, T.

    2015-02-15

    The microstructure of a new Ni-base oxide dispersion strengthened superalloy powder was studied for high temperature gas turbine applications after the mechanical alloying process. In this study, an atomized powder with a composition similar to the CMSX-10 superalloy was mechanically alloyed with yttria and Hf powders. The mechanically alloyed powder included only the supersaturated solid solution γ phase without γ′ and yttria provided by severe plastic deformation, while after the 3-step aging, the γ′ phase was precipitated due to the partitioning of Al and Ta to the γ′ and Co, Cr, Re, W, and Mo to the γ phase. Mechanical alloying modified the morphology of γ′ to the new coherent γ–γ′ nanoscale lamellar structure to minimize the elastic strain energy of the precipitation, which yielded a low lattice misfit of 0.16% at high temperature. The γ′ lamellae aligned preferentially along the elastically soft [100] direction. Also, the precipitated oxide particles were refined in the γ phase by adding Hf from large incoherent YAlO{sub 3} to fine semi-coherent Y{sub 2}Hf{sub 2}O{sub 7} oxide particles with the average size of 7 nm and low interparticle spacing of 76 nm. - Highlights: • A new Ni-base ODS superalloy powder was produced by mechanical alloying. • The nanoscale γ–γ′ lamellar structure was precipitated after the aging treatment. • Fine semi-coherent Y{sub 2}Hf{sub 2}O{sub 7} oxide particles were precipitated by addition of Hf.

  10. The synthesis and characterization of Mg-Zn-Ca alloy by powder metallurgy process

    NASA Astrophysics Data System (ADS)

    Annur, Dhyah; Franciska P., L.; Erryani, Aprilia; Amal, M. Ikhlasul; Sitorus, Lyandra S.; Kartika, Ika

    2016-04-01

    Known for its biodegradation and biocompatible properties, magnesium alloys have gained many interests to be researched as implant material. In this study, Mg-3Zn-1Ca, Mg-29Zn-1Ca, and Mg-53Zn-4.3Ca (in wt%) were synthesized by means of powder metallurgy method. The compression strength and corrosion resistance of magnesium alloy were thoroughly examined. The microstructures of the alloy were characterized using optical microscopy, Scanning Electron Microscope, and also X-ray diffraction analysis. The corrosion resistance were evaluated using electrochemical analysis. The result indicated that Mg- Zn- Ca alloy could be synthesized using powder metallurgy method. This study showed that Mg-29Zn-1Ca would make the highest mechanical strength up to 159.81 MPa. Strengthening mechanism can be explained by precipitation hardening and grain refinement mechanism. Phase analysis had shown the formation of α Mg, MgO, and intermetallic phases: Mg2Zn11 and also Ca2Mg6Zn3. However, when the composition of Zn reach 53% weight, the mechanical strength will be decreasing. In addition, all of Mg-Zn-Ca alloy studied here had better corrosion resistance (Ecorr around -1.4 VSCE) than previous study of Mg. This study indicated that Mg- 29Zn- 1Ca alloy can be further analyzed to be a biodegradable implant material.

  11. Electrochemical hydrogen storage in LaNi{sub 4.25}Al{sub 0.75} alloys: A comparative study between film and powder materials

    SciTech Connect

    Wang, Z.M. Li, Chi Ying Vanessa; Zhou Huaiying; Liu Shi; Chan, S.L.I.

    2008-04-15

    A comparison is made of the electrochemical and structural properties of LaNi{sub 4.25}Al{sub 0.75} alloys in thin film and powder forms. X-ray diffraction (XRD) revealed that both the LaNi{sub 4.25}Al{sub 0.75} thin film and powder materials are crystalline. Atomic force microscopy (AFM) and focused ion beam microscopy (FIB) proved that the film appeared to have a hill-like surface morphology, but was rather dense with a thickness of about 4.2 {mu}m. Simulated battery tests indicate that both exhibit similar electrochemical behavior, possibly due to their crystal structure, as it requires a primary activation to reach its fully active state. However it took a longer activation period for the film to be activated; an apparent initial decrease of charging voltage with cycle number was observed, as were abnormal discharge processes during activation. After 30 charge/discharge cycles, small needle-shaped aluminium oxide particles were formed on both the powder and film surfaces.

  12. Influence of RE-rich phase distribution in initial alloy on anisotropy of HDDR powders

    NASA Astrophysics Data System (ADS)

    Cai, Ling-Wen; Guo, Shuai; Ding, Guang-Fei; Chen, Ren-Jie; Liu, Jian; Lee, Don; Yan, A.-Ru

    2015-09-01

    The influence of the RE-rich phase distribution in the precursor alloys on the anisotropy of the hydrogenation disproportionation desorption recombination (HDDR) processed powders is investigated. The homogenized ingot alloy and the as-cast strip casting (SC) alloy with a uniform RE-rich grain boundary phase lead to high anisotropy of the refined powders, acquiring degrees of alignment (DOA) of 0.62 and 0.54, respectively. The RE-rich phase aggregation results in a deteriorated DOA of the powders due to the drastic disproportionation rate, while a thin and uniform RE-rich phase distribution is beneficial for DOA. A reaction model of the initial particle microstructure is proposed for optimizing the HDDR powder anisotropy. Project supported by the National Natural Science Foundation of China (Grant No. 51101167), the Ningbo Natural Science Foundation, China (Grant No. 2013A610075), the Ningbo Science and Technology Project, China (Grant No. 2013B10004), the Program of International Science and Technology Cooperation of China (Grant No. 2010DFB53770), the China Postdoctoral Science Foundation (Grant No. 2012M520943), the State Key Program of the National Natural Science Foundation of China (Grant No. 2011AA03A401), and the National Key Technologies R&D Program of China (Grant No. 2012BAE01B03).

  13. Novel pre-alloyed powder processing of modified alnico 8: Correlation of microstructure and magnetic properties

    SciTech Connect

    Anderson, I. E.; Kassen, A. G.; White, E. M. H.; Zhou, L.; Tang, W.; Palasyuk, A.; Dennis, K. W.; McCallum, R. W.; Kramer, M. J.

    2015-04-13

    Progress is reviewed on development of an improved near-final bulk magnet fabrication process for alnico 8, as a non-rare earth permanent magnet with promise for sufficient energy density and coercivity for electric drive motors. This study showed that alnico bulk magnets in near-final shape can be made by simple compression molding from spherical high purity gas atomized pre-alloyed powder. Dwell time at peak sintering temperature (1250°C) greatly affected grain size of the resulting magnet alloys. This microstructure transformation was demonstrated to be useful for gaining partially aligned magnetic properties and boosting energy product. Furthermore, while a route to increased coercivity was not identified by these experiments, manufacturability of bulk alnico magnet alloys in near-final shapes was demonstrated, permitting further processing and alloy modification experiments that can target higher coercivity and better control of grain anisotropy during grain growth.

  14. Novel pre-alloyed powder processing of modified alnico 8: Correlation of microstructure and magnetic properties

    SciTech Connect

    Anderson, I. E. Kassen, A. G.; White, E. M. H.; Zhou, L.; Tang, W.; Palasyuk, A.; Dennis, K. W.; McCallum, R. W.; Kramer, M. J.

    2015-05-07

    Progress is reviewed on development of an improved near-final bulk magnet fabrication process for alnico 8, as a non-rare earth permanent magnet with promise for sufficient energy density and coercivity for electric drive motors. This study showed that alnico bulk magnets in near-final shape can be made by simple compression molding from spherical high purity gas atomized pre-alloyed powder. Dwell time at peak sintering temperature (1250 °C) greatly affected grain size of the resulting magnet alloys. This microstructure transformation was demonstrated to be useful for gaining partially aligned magnetic properties and boosting energy product. While a route to increased coercivity was not identified by these experiments, manufacturability of bulk alnico magnet alloys in near-final shapes was demonstrated, permitting further processing and alloy modification experiments that can target higher coercivity and better control of grain anisotropy during grain growth.

  15. Novel pre-alloyed powder processing of modified alnico 8: Correlation of microstructure and magnetic properties

    NASA Astrophysics Data System (ADS)

    Anderson, I. E.; Kassen, A. G.; White, E. M. H.; Zhou, L.; Tang, W.; Palasyuk, A.; Dennis, K. W.; McCallum, R. W.; Kramer, M. J.

    2015-05-01

    Progress is reviewed on development of an improved near-final bulk magnet fabrication process for alnico 8, as a non-rare earth permanent magnet with promise for sufficient energy density and coercivity for electric drive motors. This study showed that alnico bulk magnets in near-final shape can be made by simple compression molding from spherical high purity gas atomized pre-alloyed powder. Dwell time at peak sintering temperature (1250 °C) greatly affected grain size of the resulting magnet alloys. This microstructure transformation was demonstrated to be useful for gaining partially aligned magnetic properties and boosting energy product. While a route to increased coercivity was not identified by these experiments, manufacturability of bulk alnico magnet alloys in near-final shapes was demonstrated, permitting further processing and alloy modification experiments that can target higher coercivity and better control of grain anisotropy during grain growth.

  16. Novel pre-alloyed powder processing of modified alnico 8: Correlation of microstructure and magnetic properties

    DOE PAGESBeta

    Anderson, I. E.; Kassen, A. G.; White, E. M. H.; Zhou, L.; Tang, W.; Palasyuk, A.; Dennis, K. W.; McCallum, R. W.; Kramer, M. J.

    2015-04-13

    Progress is reviewed on development of an improved near-final bulk magnet fabrication process for alnico 8, as a non-rare earth permanent magnet with promise for sufficient energy density and coercivity for electric drive motors. This study showed that alnico bulk magnets in near-final shape can be made by simple compression molding from spherical high purity gas atomized pre-alloyed powder. Dwell time at peak sintering temperature (1250°C) greatly affected grain size of the resulting magnet alloys. This microstructure transformation was demonstrated to be useful for gaining partially aligned magnetic properties and boosting energy product. Furthermore, while a route to increased coercivitymore » was not identified by these experiments, manufacturability of bulk alnico magnet alloys in near-final shapes was demonstrated, permitting further processing and alloy modification experiments that can target higher coercivity and better control of grain anisotropy during grain growth.« less

  17. The effect of powder sintering method on the densification and microstructure of pewter alloys

    NASA Astrophysics Data System (ADS)

    Firdaus Ariff, Tasnim; Gabbitas, Brian; Zhang, Deliang

    2009-08-01

    Pewter alloys made from tin, copper and antimony powders were sintered using microwave and conventional vacuum sintering. Three different compositions of the pewter alloy were used; 91Sn6Cu3Sb, 94Sn4Cu2Sb and 97Sn2Cu1Sb. The effect of densification and microstructure of the pewter alloys from varying sintering time and sintering mode were examined and compared. Samples were compacted at 40kN and sintered at 220°C. Samples in the conventional furnace were sintered 60 minutes and 120 minutes, while samples in the microwave furnace were sintered for 15 and 30 minutes. Samples sintered at longer sintering times resulted in higher density for both sintering methods. Microwave sintering produced samples with slightly smaller grain size than the conventionally sintered samples resulting in a better densification. There were no new phases formed from the sintering of pewter alloy.

  18. The combination of precipitation and dispersion hardening in powder metallurgy produced Cu-Ti-Si alloy

    SciTech Connect

    Bozic, D.; Dimcic, O.; Dimcic, B. Cvijovic, I.; Rajkovic, V.

    2008-08-15

    Microstructure and microhardness properties of precipitation hardened Cu-Ti and precipitation/dispersion hardened Cu-Ti-Si alloys have been analyzed. Cu-1.2Ti and Cu-1.2Ti-3TiSi{sub 2} (wt.%) atomized powders were characterized before and after consolidation by HIP (Hot Isostatic Pressing). Rapidly solidified powders and HIP-ed compacts were subsequently subjected to thermal treatment in hydrogen at temperatures between 300 and 600 deg. C. Compared to Cu-Ti powder particles and compacts, obtained by the same procedure, the strengthening effect in Cu-1.2Ti-3TiSi{sub 2} powder particles and compacts was much greater. The binary and ternary powders both reveal properties superior to those of Cu-1.2Ti and Cu-1.2Ti-3TiSi{sub 2} compacts. Microhardness analysis as a function of the aging temperature of Cu-1.2Ti-3TiSi{sub 2} alloy shows an interaction between precipitation and dispersion hardening which offers possibilities for an application at elevated temperatures.

  19. Annealing temperature effect on microstructure, magnetic and microwave properties of Fe-based amorphous alloy powders

    NASA Astrophysics Data System (ADS)

    He, Jinghua; Wang, Wei; Wang, Aimin; Guan, Jianguo

    2012-09-01

    Fe74Ni3Si13Cr6W4 amorphous alloy powders were annealed at different temperature (T) for 1.5 h to fabricate the corresponding amorphous and nanocrystalline powders. The influences of T on the crystalline structure, morphology, magnetic and microwave electromagnetic properties of the resultant samples were investigated via X-ray diffraction, scanning electron microscopy, vibrating sample magnetometer and vector network analyzer. The results show that the powder samples obtained at T of 650 °C or more are composed of lots of ultra-fine α-Fe(Si) grains embedded in an amorphous matrix. When T increases from 350 to 750 °C, the saturated magnetization and coercivity of the as-annealed powder samples both increase monotonously whereas the relative real permittivity shows a minimal value and the relative real permeability shows a maximal value at T of 650 °C. Thus the powder samples annealed at 650 °C show optimal reflection loss under -10 dB in the whole C-band. These results here suggest that the annealing heat treatment of Fe-based amorphous alloy is an effective approach to fabricate high performance microwave absorber with reasonable permittivity and large permeability simultaneously via adjusting T.

  20. Dispersion strengthened nickel-yttria sheet alloy produced from comminuted powders

    NASA Technical Reports Server (NTRS)

    Sikora, P. F.; Quatinetz, M.

    1974-01-01

    Report on initial efforts to dispersion-strengthen nickel with Y2O3 in an attempt to replace radioactive ThO2 as the strengthening phase in dispersion-strengthened alloys. Nickel-Y2O3 powders were processed by the NASA comminution and blending (NASCAB) method and subsequently thermomechanically worked. Experimental variables included volume per cent Y2O3 (2% and 4%), powder cleaning temperature (315, 371, and 426 C), a screening step in the process, and the number (up to 23) of cold-roll-anneal cycles. Tensile strengths, determined at 1093 C, as well as some stress-rupture life data, are presented.

  1. In-situ Formation of Ti Alloys via Powder Injection Molding

    SciTech Connect

    Simmons, Kevin L.; Nyberg, Eric A.; Weil, K. Scott; Miller, Megan R.

    2005-01-01

    We have developed a unique blend of powder injection molding (PIM) feedstock materials in which only a small volume fraction of binder (< 8%) is required; the remainder of the mixture consists of the metal powder and a solid aromatic solvent. Because of the nature of the decomposition in the binder system and the relatively small amount used, the binder can be completely removed from the molded component during heat treatment. Here, we present results from an initial study on in-situ titanium alloy formation in near-net shape components manufactured by this novel PIM technique.

  2. Effects of carbon and hafnium concentrations in wrought powder-metallurgy superalloys based on NASA 2B-11 alloy

    NASA Technical Reports Server (NTRS)

    Miner, R. V., Jr.

    1976-01-01

    A candidate alloy for advanced-temperature turbine engine disks, and four modifications of that alloy with various C and Hf concentrations were produced as cross-rolled disks from prealloyed powder that was hot isostatically compacted. The mechanical properties, microstructures, and phase relations of the alloys are discussed in terms of their C and Hf concentrations. A low-C and high-Hf modification of IIB-11 had the best balance of mechanical properties for service below about 750 C. Because of their finer grain sizes, none of the powder-metallurgy alloys produced had the high-temperature rupture strength of conventionally cast and wrought IIB-11.

  3. Three-dimensional characterization of fatigue-relevant intermetallic particles in high-strength aluminium alloys using synchrotron X-ray nanotomography

    NASA Astrophysics Data System (ADS)

    Nizery, E.; Proudhon, H.; Buffiere, J.-Y.; Cloetens, P.; Morgeneyer, T. F.; Forest, S.

    2015-09-01

    Second-phase particles and small porosities are known to favour fatigue crack initiation in high-strength aluminium alloys 2050-T8 and 7050-T7451. Using high-resolution X-ray tomography (320 nm voxel size), with Paganin reconstruction algorithms, the probability that large clusters of particles contain porosities could be measured for the first time in 3D, as well as precise 3D size distributions. Additional holotomography imaging provided improved spatial resolution (50 nm voxel size), allowing to estimate the probability of finding cracked particles in the as-received material state. The extremely precise 3D shape (including cracks) as well as local chemistry of the particles has been determined. This experiment enabled unprecedented 3D identification of detrimental stress risers relevant for fatigue in as-received aluminium alloys.

  4. Oxidation behavior in reaction-bonded aluminum-silicon alloy/alumina powder compacts

    SciTech Connect

    Yokota, S.H.

    1992-12-01

    Goal of this research is to determine the feasibility of producing low-shrinkage mullite/alumina composites by applying the reaction-bonded alumina (RBAO) process to an aluminum-silicon alloy/alumina system. Mirostructural and compositional changes during heat treatment were studied by removing samples from the furnace at different steps in the heating schedule and then using optical and scanning electron microscopy, EDS and XRD to characterize the powder compacts. Results suggest that the oxidation behavior of the alloy compact is different from the model proposed for the pure Al/alumina system.

  5. Effect of Cu addition on the martensitic transformation of powder metallurgy processed Ti–Ni alloys

    SciTech Connect

    Kim, Yeon-wook; Choi, Eunsoo

    2014-10-15

    Highlights: • M{sub s} of Ti{sub 50}Ni{sub 50} powders is 22 °C, while M{sub s} of SPS-sintered porous bulk increases up to 50 °C. • M{sub s} of Ti{sub 50}Ni{sub 40}Cu{sub 20} porous bulk is only 2 °C higher than that of the powders. • Recovered stain of porous TiNi and TiNiCu alloy is more than 1.5%. - Abstract: Ti{sub 50}Ni{sub 50} and Ti{sub 50}Ni{sub 30}Cu{sub 20} powders were prepared by gas atomization and their transformation behaviors were examined by means of differential scanning calorimetry and X-ray diffraction. One-step B2–B19’ transformation occurred in Ti{sub 50}Ni{sub 50} powders, while Ti{sub 50}Ni{sub 30}Cu{sub 20} powders showed B2–B19 transformation behavior. Porous bulks with 24% porosity were fabricated by spark plasma sintering. The martensitic transformation start temperature (50 °C) of Ti{sub 50}Ni{sub 50} porous bulk is much higher than that (22 °C) of the as-solidified powders. However, the martensitic transformation start temperature (35 °C) of Ti{sub 50}Ni{sub 30}Cu{sub 20} porous bulk is almost the same as that (33 °C) of the powders. When the specimens were compressed to the strain of 8% and then unloaded, the residual strains of Ti{sub 50}Ni{sub 50} and Ti{sub 50}Ni{sub 30}Cu{sub 20} alloy bulks were 3.95 and 3.7%, respectively. However, these residual strains were recovered up to 1.7% after heating by the shape memory phenomenon.

  6. Microstructures of the silicon carbide nanowires obtained by annealing the mechanically-alloyed amorphous powders

    SciTech Connect

    Zhang, Pengfei Li, Xinli

    2015-07-15

    Silicon, graphite and boron nitride powders were mechanically alloyed for 40 h in argon. The as-milled powders were annealed at 1700 °C in nitrogen for 30 min. The annealed powders are covered by a thick layer of gray–green SiC nanowires, which are 300 nm to 1000 nm in diameter and several hundred microns in length. Trace iron in the raw powders acts as a catalyst, promoting the V–L–S process. It follows that the actual substances contributing to the growth of the SiC nanowires may be silicon, graphite and the metal impurities in the raw powders. The results from HRTEM and XRD reveal that the products contain both straight α/β-SiC nanowires and nodular α/β-SiC nanochains. It is interestingly found that 6H–SiC coexists with 3C–SiC in one nodular nanowire. This novel structure may introduce periodic potential field along the longitudinal direction of the nanowires, and may find applications in the highly integrated optoelectronic devices. - Graphical abstract: Display Omitted - Highlights: • SiC nanowires were prepared by annealing the mechanically alloyed amorphous powders. • SiC nanowires are 300 nm to 1000 nm in diameter and several hundred microns in length. • The products contain both straight α/β-SiC nanowires and nodular α/β-SiC nanochains. • Trace Fe in the raw powders acts as a catalyst, promoting the V–L–S process. • 6H–SiC coexists with 3C–SiC in one nodular SiC nanowire.

  7. Fabrication of Sn-3.5Ag Eutectic Alloy Powder by Annealing Sub-Micrometer Sn@Ag Powder Prepared by Citric Acid-Assisted Ag Immersion Plating.

    PubMed

    Chee, Sang-Soo; Choi, Eun Byeol; Lee, Jong-Hyun

    2015-11-01

    A Sn-3.5Ag eutectic alloy powder has been developed by chemically synthesizing sub-micrometer Sn@Ag powder at room temperature. This synthesis was achieved by first obtaining a sub-micrometer Sn powder for the core using a modified variant of the polyol method, and then coating this with a uniformly thin and continuous Ag layer through immersion plating in 5.20 mM citric acid. The citric acid was found to play multiple roles in the Ag coating process, acting as a chelating agent, a reducing agent and a stabilizer to ensure coating uniformity; and as such, the amount used has an immense influence on the coating quality of the Ag shells. It was later verified by transmission electron microscopy and X-ray diffraction analysis that the coated Ag layer transfers to the Sn core via diffusion to form an Ag3Sn phase at room temperature. Differential scanning calorimetry also revealed that the synthesized Sn@Ag powder is nearly transformed into Sn-3.5Ag eutectic alloy powder upon annealing three times at a temperature of up to 250 degrees C, as evidenced by a single melting peak at 220.5 degrees C. It was inferred from this that Sn-3.5Ag eutectic alloy powder can be successfully prepared through the synthesis of core Sn powders by a modified polyol method, immersion plating using citric acid, and annealing, in that order. PMID:26726525

  8. Effect of Silicon on Mechanical and Wear Properties of Aluminium-Alloyed Gray Cast Iron

    NASA Astrophysics Data System (ADS)

    Vadiraj, Aravind; Tiwari, Shashank

    2014-08-01

    Influence of Si on mechanical and wear properties of Al-alloyed gray cast iron has been investigated in this work. The Si content is varied from 1.27 to 2.1% in five different alloys with nearly 2% Al additions. Alloy with 2.1% Si and 1.9% Al shows maximum ferrite matrix with highest flake volume (17.3%). It also has the lowest hardness and strength. Rest of the alloys with Si content equal to or less than 1.7% and 2% Al content shows maximum pearlite matrix with higher hardness and strength. They have also shown a tendency for oxide formation and reduced wear during sliding probably due to higher friction heat and lower heat dissipation tendency due to lower flake volume and Al addition which reduces thermal conductivity of the matrix. The same oxide layer was not evident in alloy with 2.1% Si and 1.9% Al alloy having the highest flake volume (17.3%).

  9. Fabrication of ultrafine tungsten-based alloy powders by novel soda reduction process

    SciTech Connect

    Lee, Dong-Won; Turaev, Farkhod; Kim, Ju-Hyeong; Yang, Mingchuan

    2010-03-15

    A novel reduction method has been developed to fabricate ultrafine tungsten heavy alloy powders, with ammonium metatungstate (AMT), iron(II) chloride tetrahydrate (FeCl{sub 2}.4H{sub 2}O), nickel(II) chloride hexahydrate (NiCl{sub 2}.6H{sub 2}O) as source materials and sodium tungstate dihydrate (Na{sub 2}WO{sub 4}.2H{sub 2}O) as a reductant. In the preparation of mixtures the amounts of the source components were chosen so as to obtain alloy of 93W-5Ni-2Fe composition (wt.%). The obtained powders were characterized by X-ray diffraction, XPS, field-emission scanning microscope (FESEM), and chemical composition was analyzed by EDX.

  10. Effect of mechanical milling on Ni-TiH{sub 2} powder alloy filler metal for brazing TiAl intermetallic alloy: The microstructure and joint's properties

    SciTech Connect

    He Peng Liu Duo; Shang Erjing; Wang Ming

    2009-01-15

    A TiH{sub 2}-50 wt.% Ni powder alloy was mechanically milled in an argon gas atmosphere using milling times up to 480 min. A TiAl intermetallic alloy was joined by vacuum furnace brazing using the TiH{sub 2}-50 wt.% Ni powder alloy as the filler metal. The effect of mechanical milling on the microstructure and shear strength of the brazed joints was investigated. The results showed that the grains of TiH{sub 2}-50 wt.% Ni powder alloy were refined and the fusion temperature decreased after milling. A sound brazing seam was obtained when the sample was brazed at 1140 deg. C for 15 min using filler metal powder milled for 120 min. The interfacial zones of the specimens brazed with the milled filler powder were thinner and the shear strength of the joint was increased compared to specimens brazed with non-milled filler powder. A sample brazed at 1180 deg. C for 15 min using TiH{sub 2}-50 wt.% Ni powder alloy milled for 120 min exhibited the highest shear strength at both room and elevated temperatures.

  11. Evidence of [eta]' or ordered zone formation in aluminum alloy 7075 from differential scanning calorimetry. [Aluminium alloy 7075

    SciTech Connect

    Bartges, C.W. )

    1993-05-01

    The development of high strength levels in Al-Mg-Zn-(Cu) alloys is dependent on the decomposition of the supersaturated solid solution ([alpha][sub ss]). The equilibrium phase, [eta], and the transition phase, [eta][prime], have compositions Mg(Zn, Al, Cu)[sub 2] and the GP Zones are solute rich clusters. Several authors have presented evidence that there is another precipitate which forms between the GP Zones and [eta][prime], though there is some controversy whether it is crystallographically distinct from the matrix, [eta][prime], or an ordered GP Zone. Regardless of their structure, these particles are seldom observed and are not usually considered in the decomposition of these alloys. Most of the previous observations of these particles have been the result of involved transmission electron microscopic and X-ray scattering experiments. This report shows they may also be detected using differential scanning calorimetry (DSC). Also significant is the fact that the particles were observed in AA 7075, an important commercial alloy. Lloyd and Chaturvedi also saw indications of [eta][prime] or ordered zones using DSC, but the results reported herein are different in several important respects. DSC traces of alloys aged for various times at room temperature and 121 C have shown there is at least one phase which can form during the decomposition of aluminum alloy 7075 that is not usually stated in the decomposition reaction. The results of previous studies suggest they may be ordered GP Zones or [eta][prime].

  12. The substitution of nickel for cobalt in hot isostatically pressed powder metallurgy UDIMET 700 alloys

    NASA Technical Reports Server (NTRS)

    Harf, F. H.

    1985-01-01

    Nickel was substituted in various proportions for cobalt in a series of five hot-isostatically-pressed powder metallurgy alloys based on the UDIMET 700 composition. These alloys were given 5-step heat treatments appropriate for use in turbine engine disks. The resultant microstructures displayed three distinct sizes of gamma-prime particles in a gamma matrix. The higher cobalt-content alloys contained larger amounts of the finest gamma-prime particles, and had the lowest gamma-gamma-prime lattice mismatch. While all alloys had approximately the same tensile properties at 25 and 650 gamma C, the rupture lives at 650 and 760 C peaked in the alloys with cobalt contents between 12.7 and 4.3 pct. Minimum creep rates increased as cobalt contents were lowered, suggesting their correlation with the gamma-prime particle size distribution and the gamma-gamma-prime mismatch. It was also found that, on overaging at temperatures higher than suitable for turbine disk use, the high cobalt-content alloys were prone to sigma phase formation.

  13. The substitution of nickel for cobalt in hot isostatically pressed powder metallurgy UDIMET 700 alloys

    NASA Astrophysics Data System (ADS)

    Harf, Fredric H.

    1985-06-01

    Nickel was substituted in various proportions for cobalt in a series of five hot-isostatically-pressed powder metallurgy alloys based on the UDIMET 700 composition. These alloys were given 5-step heat treatments appropriate for use in turbine engine disks. The resultant microstructures displayed three distinct sizes of γ' particles in a γ matrix. The higher cobalt-content alloys contained larger amounts of the finest γ' particles, and had the lowest γ-γ' lattice mismatch. While all alloys had approximately the same tensile properties at 25 and 650°C, the rupture lives at 650 and 760°C peaked in the alloys with cobalt contents between 12.7 and 4.3 pct. Minimum creep rates increased as cobalt contents were lowered, suggesting their correlation with the γ' particle size distribution and the γ-γ' mismatch. It was also found that, on overaging at temperatures higher than suitable for turbine disk use, the high cobalt-content alloys were prone to sigma phase formation.

  14. Rapid Synthesis of a Near-β Titanium Alloy by Blended Elemental Powder Metallurgy (BEPM) with Induction Sintering

    NASA Astrophysics Data System (ADS)

    Jia, Mingtu; Gabbitas, Brian

    2015-10-01

    A near-β Ti-13V-11Cr-3Al alloy was produced by blended elemental powder metallurgy combining warm compaction and induction sintering. Two Ti-13V-11Cr-3Al powder compacts with different oxygen content were manufactured by mixing PREP and HDH Ti powders with Cr and AlV master alloy powders, respectively. The effect of isothermal holding time, at a sintering temperature of 1573 K (1300 °C), on pore characteristics and compositional homogeneity was investigated in this study. Pore coarsening by Ostwald ripening occurred with an increase in the isothermal holding time and Kirkendall voids were produced by a reaction between Ti and Cr. After an isothermal holding time of 10 minutes, the two sintered powder compacts had a homogeneous composition. Ti/AlV and Ti/Cr diffusion couples were used to predict the distribution of alloying elements, and the binary Ti-V, Ti-Al, and Ti-Cr interdiffusion coefficients were consistent with the distribution of alloying elements after isothermal holding. The mechanical properties of sintered powder compacts, prepared using PREP Ti powder as the raw powder, were optimized by sintered density and pore size.

  15. Aluminium/lithium alloy-CFRP hybrid laminate: Fabrication and properties

    SciTech Connect

    Freischmidt, G.; Coutts, R.S.P.; Janardhana, M.N.

    1993-12-31

    Hybrid composite laminates of aluminum and aluminum/lithium alloy sheeting with unidirectional carbon fiber/epoxy plies have been fabricated to produce sheet materials of high strength, low density and reduced fatigue crack growth rate. In an arrangement of one layer of unidirectional carbon fiber reinforced plastic (CFRP) and 2 sheets of 2090-T3 aluminum alloy was used to give a material with a density of 2.20g/cm{sup 3}. Tensile test results gave an ultimate strength of 803MPa, a modulus of 75.7GPa and a 2% offset yield strength of 497MPa. Preliminary fatigue crack growth rate determinations on single edge notch (SEN) specimens show a marked reduction compared to monolithic 2090-T3. Other hybrid laminates using 2024-T3 alloy have also been made and tested. These laminates show reduced tensile properties, however, they appear to have lower fatigue crack growth rates than when using 2090T3 in hybrid form. The fabrication of hybrid laminates included the use of unsupported adhesive film to bond the precured unidirectional carbon fiber composite plies to the aluminum sheeting. This has left a distinct interphase region between the alloy and CFRP which is thought to improve properties through an effective load transfer.

  16. Impact resistance and hardness modelling of Aluminium alloy welds using square-headed friction-stir welding tool

    NASA Astrophysics Data System (ADS)

    Sudhakar, U.; Srinivas, J., Dr.

    2016-02-01

    This paper proposes modelling and optimization issues relating to friction-stir welding process of aluminium alloys. A specially prepared SS tool of square headed pin profile with cylindrical shoulder is used with a vertical milling machine. Effects of process variables including tool rotation and tool velocity on the weld performance are studied in terms of impact strength and hardness. Three different rotational motions and three welding speeds (feeds) of tool are considered at constant axial load (depth of cut) condition and altogether nine experiments are conducted on a vertical milling machine with specially prepared fixture. Each weld sample is then tested for its impact strength (IS) and hardness independently. A model is developed to correlate the relations between the hardness/impact strength with tool rotation and weld speed using neural networks. The optimized process conditions are predicted to improvise the impact strength and hardness of the weld. Further, the morphology of the weld is studied using SEM to know the material flow characteristics.

  17. Application of powder metallurgy to an advanced-temperature nickel-base alloy, NASA-TRW 6-A

    NASA Technical Reports Server (NTRS)

    Freche, J. C.; Ashbrook, R. L.; Waters, W. J.

    1971-01-01

    Bar stock of the NASA-TRW 6-A alloy was made by prealloyed powder techniques and its properties evaluated over a range of temperatures. Room temperature ultimate tensile strength was 1894 MN/sq m (274 500 psi). The as-extruded powder product showed substantial improvements in strength over the cast alloy up to 649 C (1200 F) and superplasticity at 1093 C (2000 F). Both conventional and autoclave heat treatments were applied to the extruded powder product. The conventional heat treatment was effective in increasing rupture life at 649 and 704 C (1200 and 1300 F); the autoclave heat treatment, at 760 and 816 C (1400 and 1500 F).

  18. Influence of Powder Metallurgical Processing Routes on Phase Formations in a Multicomponent NbSi-Alloy

    NASA Astrophysics Data System (ADS)

    Seemüller, C.; Hartwig, T.; Mulser, M.; Adkins, N.; Wickins, M.; Heilmaier, M.

    2014-09-01

    Refractory metal silicide composites on the basis of Nbss-Nb5Si3 have been investigated as potential alternatives for nickel-base superalloys for years because of their low densities and good high-temperature strengths. NbSi-based composites are typically produced by arc-melting or casting. Samples in this study, however, were produced by powder metallurgy because of the potential for near net-shape component fabrication with very homogeneous microstructures. Either gas atomized powder or high-energy mechanically alloyed elemental powders were compacted by powder injection molding or hot isostatic pressing. Heat treatments were applied for phase stability evaluation. Slight compositional changes (oxygen, nitrogen, or iron) introduced by the processing route, i.e., powder production and consolidation, can affect phase formations and phase transitions during the process. Special focus is put on the distinction between different silicides (Nb5Si3 and Nb3Si) and silicide modifications (α-, β-, and γ-Nb5Si3), respectively. These were evaluated by x-ray diffraction and energy-dispersive spectroscopy measurements with the additional inclusion of thermodynamic calculations using the calculated phase diagram method.

  19. Size-dependent structure and magnetocaloric properties of Fe-based glass-forming alloy powders

    NASA Astrophysics Data System (ADS)

    Luo, Qiang; Ye, Fengxia; Huang, Changjun; Jiao, Jin; Rahman, Anisur; Yu, Peng; Li, Jie; Shen, Jun

    2016-04-01

    We investigated the influence of particle size on the microstructure and magnetocaloric effect of Fe-based alloy powders (11 μm to 100 μm in diameter). The degree of structure order varies with the powder size. The 11 μm to 18 μm powders show the largest peak magnetic entropy change (MEC). Increasing the degree of structure order tends to decrease the maximum MEC. Nevertheless, enhancement of refrigerant capacity and MEC (above 70 K) is achieved when the crystalline phase content is ˜50% (above 75 μm) in the 75 μm to 100 μm powders. Exponent n of the field dependence of MEC increases with the decrease in powder size above 22.5 K. The size dependence of the structure and properties is associated with the fact that a larger particle has a slower cooling rate and takes a longer time to form medium-to-long range ordered structures.

  20. Modifying structure and properties of nickel alloys by nanostructured composite powders

    NASA Astrophysics Data System (ADS)

    Cherepanov, A. N.; Ovcharenko, V. E.; Liu, G.; Cao, L.

    2015-01-01

    The article presents the results of an experimental study of the influence of powder nanomodifiers of refractory compounds on the mechanical properties, macro- and microstructure of heat-resistant alloys ZhS-6K and Inconel 718. It is shown that the introduction of nanomodifiers into the melt leads to the refinement of the alloy structure: the average grain size decreases 1.5-2 times, and their morphology becomes similar to equiaxial at significant reduction of the particle size in the carbide phase. The service life of ZhS-6K alloy under cyclic loading at 600°C increases 2.7 times, and at 975 °C by 40 %, and relative elongation increases more than twice. The mechanical properties of Inconel 718 significantly increase: long-term strength at 650 °C increases 1.5-2 times, and the number of cycles before the collapse at 482 °C grows more than three times. It has been found out that addition of nanomodifiers to the melt, in alloys, forms clusters of particles of refractory compounds at borders and joints of the formed grain structure that may help slowing down the processes of recrystallization (prevents the increase in the size of the contacting grains by their associations) and stabilizes the strength properties of the alloys at higher temperatures.

  1. Emission of nanoparticles during friction stir welding (FSW) of aluminium alloys.

    PubMed

    Gomes, J F; Miranda, R M; Santos, T J; Carvalho, P A

    2014-01-01

    Friction stir welding (FSW) is now well established as a welding process capable of joining some different types of metallic materials, as it was (1) found to be a reliable and economical way of producing high quality welds, and (2) considered a "clean" welding process that does not involve fusion of metal, as is the case with other traditional welding processes. The aim of this study was to determine whether the emission of particles during FSW in the nanorange of the most commonly used aluminum (Al) alloys, AA 5083 and AA 6082, originated from the Al alloy itself due to friction of the welding tool against the item that was being welded. Another goal was to measure Al alloys in the alveolar deposited surface area during FSW. Nanoparticles dimensions were predominantly in the 40- and 70-nm range. This study demonstrated that microparticles were also emitted during FSW but due to tool wear. However, the biological relevance and toxic manifestations of these microparticles remain to be determined. PMID:25072724

  2. Finite Element Modelling of the Sawing of DC Cast AA2024 Aluminium Alloy Slabs

    SciTech Connect

    Drezet, J.-M.; Ludwig, O.; Heinrich, B.

    2007-04-07

    In the semi-continuous casting of large cross-section rolling sheet ingots of high-strength aluminum alloys (2xxx and 7xxx series), the control of the residual (internal) stresses generated by the non-uniform cooling becomes a necessity. These stresses must be relieved by a thermal treatment before the head and foot of the ingot can be cut. Otherwise, the saw can be caught owing to compressive stresses or cut parts may be ejected thus injuring people or damaging equipment. These high added-value ingots need to be produced in secure conditions. Moreover, a better control of the sawing procedure could allow the suppression of the thermal treatment and therefore save time and energy. By studying the stress build-up during casting and the stress relief during sawing, key parameters for the control and optimization of the processing steps, can be derived. To do so, the direct chill (DC) casting of the AA2024 alloy is modeled with ABAQUS 6.5 with special attention to the thermo-mechanical properties of the alloy. The sawing operation is then simulated by removing mesh elements so as to reproduce the progression of the saw in the ingot. Preliminary results showing the stress relief during sawing accompanied by the risk of saw blocking due to compression or initiating a crack ahead of the saw, are analyzed with an approach based on the rate of strain energy release.

  3. Finite Element Modelling of the Sawing of DC Cast AA2024 Aluminium Alloy Slabs

    NASA Astrophysics Data System (ADS)

    Drezet, J.-M.; Ludwig, O.; Heinrich, B.

    2007-04-01

    In the semi-continuous casting of large cross-section rolling sheet ingots of high-strength aluminum alloys (2xxx and 7xxx series), the control of the residual (internal) stresses generated by the non-uniform cooling becomes a necessity. These stresses must be relieved by a thermal treatment before the head and foot of the ingot can be cut. Otherwise, the saw can be caught owing to compressive stresses or cut parts may be ejected thus injuring people or damaging equipment. These high added-value ingots need to be produced in secure conditions. Moreover, a better control of the sawing procedure could allow the suppression of the thermal treatment and therefore save time and energy. By studying the stress build-up during casting and the stress relief during sawing, key parameters for the control and optimization of the processing steps, can be derived. To do so, the direct chill (DC) casting of the AA2024 alloy is modeled with ABAQUS 6.5 with special attention to the thermo-mechanical properties of the alloy. The sawing operation is then simulated by removing mesh elements so as to reproduce the progression of the saw in the ingot. Preliminary results showing the stress relief during sawing accompanied by the risk of saw blocking due to compression or initiating a crack ahead of the saw, are analyzed with an approach based on the rate of strain energy release.

  4. Effects of porosity on corrosion resistance of Mg alloy foam produced by powder metallurgy technology

    SciTech Connect

    Aghion, E. Perez, Y.

    2014-10-15

    Magnesium alloy foams have the potential to serve as structural material for regular light-weight applications as well as for biodegradable scaffold implants. However, their main disadvantage relates to the high reactivity of magnesium and consequently their natural tendency to corrode in regular service conditions and in physiological environments. The present study aims at evaluating the effect of porosity on the corrosion resistance of MRI 201S magnesium alloy foams in 0.9% NaCl solution and in phosphate buffer saline solution as a simulated physiological electrolyte. The magnesium foams were produced by powder metallurgy technology using space-holding particles to control the porosity content. Machined chips were used as raw material for the production of Mg alloy powder by milling process. The microstructure of the foams was examined using optical and scanning electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy analysis. The corrosion behavior was evaluated by immersion test and potentiodynamic polarization analysis. The results obtained clearly demonstrate that the porosity has a significant effect on the corrosion resistance of the tested foams. Foams with 14–19% porosity have a corrosion rate of 4–10 mcd and 7–15 mcd in NaCl and phosphate buffer saline solution, respectively, compared to only 0.10 mcd for the same alloy in as cast conditions. This increased corrosion degradation of the Mg foams by more than one order of magnitude compared to the cast alloy may limit their potential application in regular and physiological environments. - Highlights: • Porosity has a detrimental effect on corrosion resistance of MRI 201S Mg foams. • 14–19% porosity increases the corrosion rate by more than one order of magnitude. • Accelerated corrosion limits the use of foams in regular/physiological environments.

  5. Structure and properties of titanium surface layers after electron beam alloying with powder mixtures containing carbon

    NASA Astrophysics Data System (ADS)

    Lenivtseva, O. G.; Bataev, I. A.; Golkovskii, M. G.; Bataev, A. A.; Samoilenko, V. V.; Plotnikova, N. V.

    2015-11-01

    The structure and tribological properties of commercially pure titanium (cp-Ti) samples after non-vacuum electron beam surface alloying with carbon were studied. Two types of powders were used to introduce carbon in surface layer of cp-Ti: titanium carbide (TiC) and mixture of pure titanium and graphite ("Ti + C"). Single layer and multilayer coatings were studied. Application of electron beam for alloying provided cladding rate of 4.5 m2/h. The thickness of the clad coatings was 1.6-2.0 mm. The main phases received after "Ti + C" powder cladding were α-titanium, TiC, and retained graphite. In the samples obtained by cladding of TiC, graphite was not observed. A factor determining the microhardness and tribological properties of the cladded layer was the volume fraction of TiC. Maximum coating microhardness of 8 GPa was obtained by cladding of single layer of TiC powder or two layers of the "Ti + C" mixture. Two types of tests were carried out to evaluate the wear resistance of the samples. In friction tests against loose abrasive particles, the wear rate of the best samples was 9.3 times lower than that of cp-Ti. In wear tests using fixed abrasive particles, the relative wear resistance of the best samples was 2.3 times higher than that of cp-Ti.

  6. Computational prediction of the refinement of oxide agglomerates in a physical conditioning process for molten aluminium alloy

    NASA Astrophysics Data System (ADS)

    Tong, M.; Jagarlapudi, S. C.; Patel, J. B.; Stone, I. C.; Fan, Z.; Browne, D. J.

    2015-06-01

    Physically conditioning molten scrap aluminium alloys using high shear processing (HSP) was recently found to be a promising technology for purification of contaminated alloys. HSP refines the solid oxide agglomerates in molten alloys, so that they can act as sites for the nucleation of Fe-rich intermetallic phases which can subsequently be removed by the downstream de-drossing process. In this paper, a computational modelling for predicting the evolution of size of oxide clusters during HSP is presented. We used CFD to predict the macroscopic flow features of the melt, and the resultant field predictions of temperature and melt shear rate were transferred to a population balance model (PBM) as its key inputs. The PBM is a macroscopic model that formulates the microscopic agglomeration and breakage of a population of a dispersed phase. Although it has been widely used to study conventional deoxidation of liquid metal, this is the first time that PBM has been used to simulate the melt conditioning process within a rotor/stator HSP device. We employed a method which discretizes the continuous profile of size of the dispersed phase into a collection of discrete bins of size, to solve the governing population balance equation for the size of agglomerates. A finite volume method was used to solve the continuity equation, the energy equation and the momentum equation. The overall computation was implemented mainly using the FLUENT module of ANSYS. The simulations showed that there is a relatively high melt shear rate between the stator and sweeping tips of the rotor blades. This high shear rate leads directly to significant fragmentation of the initially large oxide aggregates. Because the process of agglomeration is significantly slower than the breakage processes at the beginning of HSP, the mean size of oxide clusters decreases very rapidly. As the process of agglomeration gradually balances the process of breakage, the mean size of oxide clusters converges to a

  7. Ultra-High Strength and Ductile Lamellar-Structured Powder Metallurgy Binary Ti-Ta Alloys

    NASA Astrophysics Data System (ADS)

    Liu, Yong; Xu, Shenghang; Wang, Xin; Li, Kaiyang; Liu, Bin; Wu, Hong; Tang, Huiping

    2016-03-01

    Ultra-high strength and ductile powder metallurgy (PM) binary Ti-20at.%Ta alloy has been fabricated via sintering from elemental Ti and Ta powders and subsequent hot swaging and annealing. The microstructural evolution and mechanical properties in each stage were evaluated. Results show that inhomogeneous microstructures with Ti-rich and Ta-rich areas formed in the as-sintered Ti-Ta alloys due to limited diffusion of Ta. In addition, Kirkendall porosity was observed as a result of the insufficient diffusion of Ta. Annealing at 1000°C for up to 24 h failed to eliminate the pores. Hot swaging eliminated the residual sintering porosity and created a lamellar microstructure, consisting of aligned Ta-enriched and Ti-enriched phases. The hot-swaged and annealed PM Ti-20Ta alloy achieved an ultimate tensile strength of 1600 MPa and tensile elongation of more than 25%, due to its unique lamellar microstructure including the high toughness of Ta-enriched phases, the formation of α phase in the β matrix and the refined lamellae.

  8. Physical properties of a nickel-base alloy prepared by isostatic pressing and sintering of the powdered metal.

    PubMed

    Fuys, R A; Craig, R G; Asger, K

    1976-04-01

    The physical and mechanical properties of samples of a nickel-base alloy fabricated by powder metallurgy were determined. The particle sizes of the powders used to make the samples varied from -80/ +200 mesh to -325 mesh. The compaction pressure varied from 138 to 414 MN/m2 and the sintering temperature varied from 1150 to 1250 degrees C. The shrinkage during processing, the porosity, tensile strength, yield strength, elongation, and elastic modulus were used to characterize the samples. The strength of the samples generally increased with decreasing particle size of the powder and increasing compaction pressure and sintering temperatures. The porosity and strength, therefore, could be varied over a wide range by controlling the various parameters. The properties of the samples prepared by powder metallurgy were compared with those of the cast alloy and compact bone. Conditions can be selected that will yield equivalent or better properties by powder metallurgy than by casting. PMID:1066448

  9. Effect of Particle Size on Microstructure and Cold Compaction of Gas-Atomized Hypereutectic Al-Si Alloy Powder

    NASA Astrophysics Data System (ADS)

    Cai, Zhiyong; Wang, Richu; Peng, Chaoqun; Zhang, Chun

    2015-04-01

    The effect of particle size on the cold compaction behavior of rapidly solidified hypereutectic Al-27 wt pct Si alloy powder was studied by double action axial pressing at room temperature. The geometrical characteristics (morphology, size, shape, and distribution of Si reinforcing phase) and hardness of the powder as a function of the particle size were investigated. The result shows that finer powder particle size showed smaller primary Si particles and achieved a lower density at a given pressure. Whereas, the microhardness of Al matrix increases while the particle size decreases, which indicates that the supersaturation due to the high solidification rate increases the deformation resistance of the alloy powder. Furthermore, the geometrical characteristics of Si phases strongly depend on the particle size due to the suppressed growth of Si phases during atomization. This microstructural characteristic evidently affects the powder compactibility at high applied pressures.

  10. Observations on infiltration of silicon carbide compacts with an aluminium alloy

    NASA Technical Reports Server (NTRS)

    Asthana, R.; Rohatgi, P. K.

    1992-01-01

    The melt infiltration of ceramic particulates permits an opportunity to observe such fundamental materials phenomena as nucleation, dynamic wetting and growth in constrained environments. Experimental observations are presented on the infiltration behavior and matrix microstructures that form when porous compacts of platelet-shaped single crystals of alpha- (hexagonal) silicon carbide are infiltrated with a liquid 2014 Al alloy. The infiltration process involved counter gravity infiltration of suitably tamped and preheated compacts of silicon carbide platelets under an external pressure in a special pressure chamber for a set period, then by solidification of the infiltrant metal in the interstices of the bed at atmospheric pressure.

  11. Effect of nanostructured composite powders on the structure and strength properties of the high-temperature inconel 718 alloy

    NASA Astrophysics Data System (ADS)

    Cherepanov, A. N.; Ovcharenko, V. E.

    2015-12-01

    The experimental results of the effect of powder nanomodifiers of refractory compounds on the strength properties, the macro- and microstructure of the high-temperature Inconel 718 alloy have been presented. It has been shown that the introduction of powder modifiers into the melt leads to a decrease in the average grain size by a factor of 1.5-2 in the alloy. The long-term tensile strength of the alloy at 650°C increases 1.5-2 times, and the number of cycles at 482°C before fracture grows by more than three times. The effect of nanoparticles on the grain structure and strength properties of the alloy is due to an increase in the number of generated crystallization centers and the formation of nanoparticle clusters of refractory compounds at boundaries and junctions in the formed grain structure, which hinder the development of recrystallization processes in the alloy.

  12. Gas atomized precursor alloy powder for oxide dispersion strengthened ferritic stainless steel

    NASA Astrophysics Data System (ADS)

    Rieken, Joel Rodney

    Gas atomization reaction synthesis (GARS) was employed as a simplified method for producing precursor powders for oxide dispersion strengthened (ODS) ferritic stainless steels (e.g., Fe-Cr-Y-(Ti,Hf)-O), departing from the conventional mechanical alloying (MA) process. During GARS processing a reactive atomization gas (i.e., Ar-O2) was used to oxidize the powder surfaces during primary break-up and rapid solidification of the molten alloy. This resulted in envelopment of the powders by an ultra-thin (t < 150 nm) metastable Cr-enriched oxide layer that was used as a vehicle for solid-state transport of O into the consolidated microstructure. In an attempt to better understand the kinetics of this GARS reaction, theoretical cooling curves for the atomized droplets were calculated and used to establish an oxidation model for this process. Subsequent elevated temperature heat treatments, which were derived from Rhines pack measurements using an internal oxidation model, were used to promote thermodynamically driven O exchange reactions between trapped films of the initial Cr-enriched surface oxide and internal Y-enriched intermetallic precipitates. This novel microstructural evolution process resulted in the successful formation of nano-metric Y-enriched dispersoids, as confirmed using high energy X-ray diffraction and transmission electron microscopy (TEM), equivalent to conventional ODS alloys from MA powders. The thermal stability of these Y-enriched dispersoids was evaluated using high temperature (1200°C) annealing treatments ranging from 2.5 to 1,000 hrs of exposure. In a further departure from current ODS practice, replacing Ti with additions of Hf appeared to improve the Y-enriched dispersoid thermal stability by means of crystal structure modification. Additionally, the spatial distribution of the dispersoids was found to depend strongly on the original rapidly solidified microstructure. To exploit this, ODS microstructures were engineered from different

  13. Gas atomized precursor alloy powder for oxide dispersion strengthened ferritic stainless steel

    SciTech Connect

    Rieken, Joel

    2011-12-13

    Gas atomization reaction synthesis (GARS) was employed as a simplified method for producing precursor powders for oxide dispersion strengthened (ODS) ferritic stainless steels (e.g., Fe-Cr-Y-(Ti,Hf)-O), departing from the conventional mechanical alloying (MA) process. During GARS processing a reactive atomization gas (i.e., Ar-O2) was used to oxidize the powder surfaces during primary break-up and rapid solidification of the molten alloy. This resulted in envelopment of the powders by an ultra-thin (t < 150 nm) metastable Cr-enriched oxide layer that was used as a vehicle for solid-state transport of O into the consolidated microstructure. In an attempt to better understand the kinetics of this GARS reaction, theoretical cooling curves for the atomized droplets were calculated and used to establish an oxidation model for this process. Subsequent elevated temperature heat treatments, which were derived from Rhines pack measurements using an internal oxidation model, were used to promote thermodynamically driven O exchange reactions between trapped films of the initial Cr-enriched surface oxide and internal Y-enriched intermetallic precipitates. This novel microstructural evolution process resulted in the successful formation of nano-metric Y-enriched dispersoids, as confirmed using high energy X-ray diffraction and transmission electron microscopy (TEM), equivalent to conventional ODS alloys from MA powders. The thermal stability of these Y-enriched dispersoids was evaluated using high temperature (1200°C) annealing treatments ranging from 2.5 to 1,000 hrs of exposure. In a further departure from current ODS practice, replacing Ti with additions of Hf appeared to improve the Y-enriched dispersoid thermal stability by means of crystal structure modification. Additionally, the spatial distribution of the dispersoids was found to depend strongly on the original rapidly solidified microstructure. To exploit this, ODS microstructures were engineered from

  14. Development of Low Cost Gas Atomization of Precursor Powders for Simplified ODS Alloy Production

    SciTech Connect

    Anderson, Iver

    2014-08-05

    A novel gas atomization reaction synthesis (GARS) method was developed in this project to enable production (at our partner’s facility) a precursor Ni-Cr-Y-Ti powder with a surface oxide and an internal rare earth (RE) containing intermetallic compound (IMC) phase. Consolidation and heat-treatment experiments were performed at Ames Lab to promote the exchange of oxygen from the surface oxide to the RE intermetallic to form nano-metric oxide dispersoids. Alloy selection was aided by an internal oxidation and serial grinding experiments at Ames Lab and found that Hf-containing alloys may form more stable dispersoids than Ti-containing alloy, i.e., the Hf-containing system exhibited five different oxide phases and two different intermetallics compared to the two oxide phases and one intermetallic in the Ti-containing alloys. Since the simpler Ti-containing system was less complex to characterize, and make observations on the effects of processing parameters, the Ti-containing system was selected by Ames Lab for experimental atomization trials at our partner. An internal oxidation model was developed at Ames Lab and used to predict the heat treatment times necessary for dispersoid formation as a function of powder size and temperature. A new high-pressure gas atomization (HPGA) nozzle was developed at Ames Lab with the aim of promoting fine powder production at scales similar to that of the high gas-flow and melt-flow of industrial atomizers. The atomization nozzle was characterized using schlieren imaging and aspiration pressure testing at Ames Lab to determine the optimum melt delivery tip geometry and atomization pressure to promote enhanced secondary atomization mechanisms. Six atomization trials were performed at our partner to investigate the effects of: gas atomization pressure and reactive gas concentration on the particle size distribution (PSD) and the oxygen content of the resulting powder. Also, the effect on the rapidly solidified microstructure (as a

  15. Aluminium plasmonics

    SciTech Connect

    Gerard, Davy; Gray, Stephen K.

    2014-12-15

    In this study, we present an overview of 'aluminium plasmonics', i.e. the study of both fundamental and practical aspects of surface plasmon excitations in aluminium structures, in particular thin films and metal nanoparticles. After a brief introduction noting both some recent and historical contributions to aluminium plasmonics, we discuss the optical properties of aluminium and aluminium nanostructures and highlight a few selected studies in a host of areas ranging from fluorescence to data storage.

  16. ``Long-life`` aluminium brazing alloys for automotive radiators -- a ten-year retrospective

    SciTech Connect

    Scott, A.C.; Woods, R.A.

    1998-12-31

    A class of corrosion-resistant brazing sheet materials, generally referred to as ``long-life alloys,`` has been in widespread use in brazed aluminum automobile radiators for over ten years. K319 tube material was initially introduced in 1986 to address the problem of road-salt-induced, outside-in corrosion of tubes in vacuum-brazed aluminum radiators, The development history, metallurgy, and field performance of long-life radiator brazing sheet are reviewed. This material utilizes the familiar sacrificial layer concept to improve corrosion resistance; however, it is unusual in that the layer is not introduced by conventional cladding means during sheet manufacture, but rather develops in situ by metallurgical transformations which occur during the brazing cycle. The sacrificial layer, about 25 mV anodic to the core alloy, increases by an order of magnitude the time-to-perforation of radiator tube sheet tested in cyclic acidified salt spray (SWAAT), which mimics the corrosion morphology observed in the field. Radiators examined after ten years of field service show excellent corrosion resistance, as predicted by SWAAT.

  17. Process-scale modelling of microstructure in direct chill casting of aluminium alloys

    NASA Astrophysics Data System (ADS)

    Bedel, M.; Heyvaert, L.; Založnik, M.; Combeau, H.; Daloz, D.; Lesoult, G.

    2015-06-01

    The mechanical properties of an alloy being related to its microstructure, the understanding of the mechanisms responsible for the grain structure formation in direct chill casting is crucial. However, the grain size prediction by modelling is difficult since a variety of multi-scale coupled phenomena have to be considered. Nucleation and growth of the grains are interrelated, and the macroscopic transport phenomena such as the motion of grains and inoculant particles with the flow impact the nucleation-gowth competition. Thus we propose to study the grain size distribution of a 5182 alloy industrial scale slab of 510 mm thickness, both non-inoculated and inoculated with Al-3Ti-1B, for which experimental grain size measurements are available. We use a volume-averaged two-phase multi-scale model that describes nucleation from inoculant particles and grain growth, fully coupled with macroscopic transport phenomena: fluid flow induced by natural convection and solidification shrinkage, heat, mass and solute mass transport, grains and inoculant particles motion. We analyze the effect of liquid and grain motion as the effect of grain morphology on microstructure formation and we show in which extent those phenomena are responsible for the grain size distribution observed experimentally. The effect of the refiner level is also studied.

  18. Advancements in Ti Alloy Powder Production by Close-Coupled Gas Atomization

    SciTech Connect

    Heidloff, Andy; Rieken, Joel; Anderson, Iver; Byrd, David

    2011-04-01

    As the technology for titanium metal injection molding (Ti-MIM) becomes more readily available, efficient Ti alloy fine powder production methods are required. An update on a novel close-coupled gas atomization system has been given. Unique features of the melting apparatus are shown to have measurable effects on the efficiency and ability to fully melt within the induction skull melting system (ISM). The means to initiate the melt flow were also found to be dependent on melt apparatus. Starting oxygen contents of atomization feedstock are suggested based on oxygen pick up during the atomization and MIM processes and compared to a new ASTM specification. Forming of titanium by metal injection molding (Ti-MIM) has been extensively studied with regards to binders, particle shape, and size distribution and suitable de-binding methods have been discovered. As a result, the visibility of Ti-MIM has steadily increased as reviews of technology, acceptability, and availability have been released. In addition, new ASTM specification ASTM F2885-11 for Ti-MIM for biomedical implants was released in early 2011. As the general acceptance of Ti-MIM as a viable fabrication route increases, demand for economical production of high quality Ti alloy powder for the preparation of Ti-MIM feedstock correspondingly increases. The production of spherical powders from the liquid state has required extensive pre-processing into different shapes thereby increasing costs. This has prompted examination of Ti-MIM with non-spherical particle shape. These particles are produced by the hydride/de-hydride process and are equi-axed but fragmented and angular which is less than ideal. Current prices for MIM quality titanium powder range from $40-$220/kg. While it is ideal for the MIM process to utilize spherical powders within the size range of 0.5-20 {mu}m, titanium's high affinity for oxygen to date has prohibited the use of this powder size range. In order to meet oxygen requirements the top size

  19. Microstructure and mechanical properties of P/M (powder metallurgy) Fe sub 3 Al alloys

    SciTech Connect

    Knibloe, J.R.; Wright, R.N. ); Sikka, V.K. )

    1990-01-01

    Alloys based on Fe{sub 3}Al have an equilibrium DO{sub 3} structure at low temperatures and transform to a B2 structure above about 550{degree}C. The influence of different rates of quenching from the B2 region to room temperature on the microstructure and mechanical properties of powder metallurgy (P/M) alloys with two different Cr contents has been examined. By optimizing the processing to maximize the amount of B2 order, room temperature ductility approaching 20% has been achieved although the fracture mode is primarily brittle cleavage. The refined microstructure resulting from P/M processing contributes to enhanced yield strength compared to ingot processed materials with similar ductility. Increasing the Cr content from 2 to 5% has little effect on mechanical properties. 8 refs., 12 figs., 2 tabs.

  20. Microstructural Evolution of Alloy Powder for Electronic Materials with Liquid Miscibility Gap

    NASA Astrophysics Data System (ADS)

    Ohnuma, I.; Saegusa, T.; Takaku, Y.; Wang, C. P.; Liu, X. J.; Kainuma, R.; Ishida, K.

    2009-01-01

    The microstructure of powders that are applicable for electronic materials were studied for some systems in which there is a liquid miscibility gap. The characteristic morphologies of an egg-like core type and a uniform second-phase dispersion are shown in relation to the phase diagram, where thermodynamic calculations are a powerful tool for alloy design and the prediction of microstructure. Typical examples of microstructural evolution and properties of Pb-free solders and Ag-based micropowders with high electrical conductivity produced by a gas-atomizing method are presented.

  1. Improvement of Laser Deposited High Alloyed Powder Metallurgical Tool Steel by a Post-tempering Treatment

    NASA Astrophysics Data System (ADS)

    Leunda, J.; Navas, V. García; Soriano, C.; Sanz, C.

    Laser cladding process of a high alloyed powder metallurgical tool steel was studied for die repairing purposes. The low hardness obtained after the deposition process was improved by later tempering cycles, achieving crack free coatings with hardness well above 700 HV. The effect of different post tempering cycles was investigated in order to determine the optimal temperature range. The microstructure of the samples was studied using optical and scanning electron microscope and the volumetric ratio of retained austenite was determined by X-ray diffraction. The tempering effect was mainly evaluated through cross-section microhardness profiles.

  2. Accelerated Near-Threshold Fatigue Crack Growth Behavior of an Aluminum Powder Metallurgy Alloy

    NASA Technical Reports Server (NTRS)

    Piascik, Robert S.; Newman, John A.

    2002-01-01

    Fatigue crack growth (FCG) research conducted in the near threshold regime has identified a room temperature creep crack growth damage mechanism for a fine grain powder metallurgy (PM) aluminum alloy (8009). At very low DK, an abrupt acceleration in room temperature FCG rate occurs at high stress ratio (R = Kmin/Kmax). The near threshold accelerated FCG rates are exacerbated by increased levels of Kmax (Kmax less than 0.4 KIC). Detailed fractographic analysis correlates accelerated FCG with the formation of crack-tip process zone micro-void damage. Experimental results show that the near threshold and Kmax influenced accelerated crack growth is time and temperature dependent.

  3. [Comporison Sduty of Microstructure by Metallographicalk on the Polarized Light and Texture by XRD of CC 5083 and CC 5182 Aluminium Alloy after Cold Rolling and Recrystallization].

    PubMed

    Chen, Ming-biao; Li, Yong-wei; Tan, Yuan-biao; Ma, Min; Wang, Xue-min; Liu, Wen-chang

    2015-03-01

    At present the study of relation between microstructure, texture and performance of CC 5083 aluminium alloy after cold tolling and recrystallization processes is still finitude. So that the use of the CC 5083 aluminium alloy be influenced. Be cased into electrical furnace, hot up with unlimited speed followed the furnace hot up to different temperature and annealed 2h respectively, and be cased into salt-beth furnace, hot up quickly to different temperature and annealed 30 min respectively for CC 5083 and CC 5182 aluminum alloy after cold roling with 91.5% reduction. The microstructure be watched use metallographic microscope, the texture be inspected by XRD. The start temperature of recrystallization and grain grow up temperature within annealing in the electric furnace of CC 5083 aluminum alloy board is 343 degrees C, and the shap of grain after grow up with long strip (the innovation point ); The start temperature of recrystallization within annealling in the salt bath furnace of CC 5083 is 343 degrees C. The start temperature and end temperature of recrystallization within annealling of CC 5083 and CC 5182 aluminum alloy is 371 degrees C. The grain grow up outstanding of cold rooled CC 5152 aluminum alloy after annealed with 454 degrees C in the electric furnace and salt bath furnace. The start temperature of grain grow up of CC 5083 alluminurn alloy annealed in the electric furnace and salt bath furnace respectively is higher than the start temperature of grain grow up of CC 5182 alluminum alloy annealed in the electric furnace and salt bath furnace respectively. The strat temperature of recrystallization grain grow up is higher than which annealled with other three manner annealing process. The recrystallization temperature of CC 5182 annealed in the salt bath furnace is higher than which annealed in the electric furnace. The recrystallization temperature of the surface layer of CC 5083 and CC 5182 aluminum alloy is higher than the inner layer (the innovation

  4. On the melt infiltration of copper coated silicon carbide with an aluminium alloy

    NASA Technical Reports Server (NTRS)

    Asthana, R.; Rohatgi, P. K.

    1992-01-01

    Pressure-assisted infiltration of porous compacts of Cu coated and uncoated single crystals of platelet shaped alpha (hexagonal) SiC was used to study infiltration dynamics and particulate wettability with a 2014 Al alloy. The infiltration lengths were measured for a range of experimental variables which included infiltration pressure, infiltration time, and SiC size. A threshold pressure (P(th)) for flow initiation through compacts was identified from an analysis of infiltration data; P(th) decreased while penetration lengths increased with increasing SiC size (more fundamentally, due to changes in interparticle pore size) and with increasing infiltration times. Cu coated SiC led to lower P(th) and 60-80 percent larger penetration lengths compared to uncoated SiC under identical processing conditions.

  5. Fatigue properties of as-welded AA6005 and AA6082 aluminium alloys in T1 and T5 temper condition

    SciTech Connect

    Ranes, M.; Kluken, A.O.; Midling, O.T.

    1996-12-31

    The present investigation was undertaken to determine the as-welded fatigue properties of AA6005 and AA6082 aluminium alloys in the T1 and T5 temper conditions. Extruded flat bars of the base materials were welded by means of the Metal Inert Gas (MIG), Friction Stir and Plasma-keyhole techniques. The latter technique was only employed for alloy AA6005. The weldments were subsequently fatigue tested at a load ratio of 0.5. The results revealed that the friction stir welds had fatigue properties superior to both the MIG and Plasma-keyhole welds. For alloy AA6005 the fatigue properties of the friction stir weld was close to the base material properties. The shortest fatigue life was exhibited by the MIG welds. The fatigue strength of these weldments appear to be affected by the base metal temper condition. For this reason, MIG welds on alloy AA6082 should be performed in the T5 temper condition, while alloy AA6005 should be welded in the T1 temper condition. Plasma-keyhole welds should be performed on T1 tempered material rather than on T5 tempered material. Repair welding of MIG welds on the T1 tempered base material resulted in improved fatigue properties of AA6082 weldments, while the fatigue strength of AA6005 weldments remained unaffected. The fatigue properties of MIG welds in alloy AA6082 correspond well with the static strength properties.

  6. Effect of severe plastic deformation on microstructure and mechanical properties of magnesium and aluminium alloys in wide range of strain rates

    NASA Astrophysics Data System (ADS)

    Skripnyak, Vladimir; Skripnyak, Evgeniya; Skripnyak, Vladimir; Vaganova, Irina; Skripnyak, Nataliya

    2013-06-01

    Results of researches testify that a grain size have a strong influence on the mechanical behavior of metals and alloys. Ultrafine grained HCP and FCC metal alloys present higher values of the spall strength than a corresponding coarse grained counterparts. In the present study we investigate the effect of grain size distribution on the flow stress and strength under dynamic compression and tension of aluminium and magnesium alloys. Microstructure and grain size distribution in alloys were varied by carrying out severe plastic deformation during the multiple-pass equal channel angular pressing, cyclic constrained groove pressing, and surface mechanical attrition treatment. Tests were performed using a VHS-Instron servo-hydraulic machine. Ultra high speed camera Phantom V710 was used for photo registration of deformation and fracture of specimens in range of strain rates from 0,01 to 1000 1/s. In dynamic regime UFG alloys exhibit a stronger decrease in ductility compared to the coarse grained material. The plastic flow of UFG alloys with a bimodal grain size distribution was highly localized. Shear bands and shear crack nucleation and growth were recorded using high speed photography.

  7. Friction consolidation of oxide dispersion strengthened INCOLOY RTM alloy MA956 powder

    NASA Astrophysics Data System (ADS)

    Catalini, David

    INCOLOYRTM MA956 is a ferritic ODS alloy. It has very good oxidation resistance by virtue of its large chromium and aluminum concentrations and high mechanical strength and creep resistance at elevated temperatures thanks to oxide dispersion strengthening. The conventional processing route utilized to obtain this alloy involves two main multistep stages. The first (or front end) stage of the process consists of a dry, high-energy milling process which mixes very fine Y2O3 particles with elemental alloy powders by Mechanical Alloying (MA) in an attritor. The second (or back end) stage of the process consists of consolidating the mechanically alloyed powder by hot extrusion in vacuum-sealed cans at about 1000°C, or by degassing followed by hot isostatic pressing (HIP). The precipitation of a fine dispersion of yttrium-aluminum-rich oxides (Y-Al-O) during the consolidation is at the origin of the high temperature mechanical strength of this alloy. Three different thermodynamically stable oxides are known to exist for the binary Y2O3:Al 2O3 system: Y4Al2O9, YAlO 3 and Y3Al5O12. All three of them have been observed in this type of alloys when processed by the route described above. Their size ranges from just a few up to hundreds of nm. In this work, the applicability of Friction Consolidation to this ODS alloy was investigated in order to tackle the downsides of the conventional processing route (multisteps and extremely high raw material final cost). For this study, mechanically alloyed INCOLOYRTM MA956 powder was consolidated through Friction Consolidation under three different sets of processing conditions. As a result, three small compacts of low porosity have been achieved with a refined equiaxed ferritic grain structure smaller than 10 microns and the desired oxide dispersion. Two types of mixed Y-Al oxides were observed by different complementary techniques, Scanning Electron Microscopy (SEM), Electron Dispersive Spectroscopy (EDS) and X-ray diffraction (XRD

  8. Powder Metallurgy of Uranium Alloy Fuels for TRU-Burning Reactors Final Technical Report

    SciTech Connect

    McDeavitt, Sean M

    2011-04-29

    Overview Fast reactors were evaluated to enable the transmutation of transuranic isotopes generated by nuclear energy systems. The motivation for this was that TRU isotopes have high radiotoxicity and relatively long half-lives, making them unattractive for disposal in a long-term geologic repository. Fast reactors provide an efficient means to utilize the energy content of the TRUs while destroying them. An enabling technology that requires research and development is the fabrication metallic fuel containing TRU isotopes using powder metallurgy methods. This project focused upon developing a powder metallurgical fabrication method to produce U-Zr-transuranic (TRU) alloys at relatively low processing temperatures (500ºC to 600ºC) using either hot extrusion or alpha-phase sintering for charecterization. Researchers quantified the fundamental aspects of both processing methods using surrogate metals to simulate the TRU elements. The process produced novel solutions to some of the issues relating to metallic fuels, such as fuel-cladding chemical interactions, fuel swelling, volatility losses during casting, and casting mold material losses. Workscope There were two primary tasks associated with this project: 1. Hot working fabrication using mechanical alloying and extrusion • Design, fabricate, and assemble extrusion equipment • Extrusion database on DU metal • Extrusion database on U-10Zr alloys • Extrusion database on U-20xx-10Zr alloys • Evaluation and testing of tube sheath metals 2. Low-temperature sintering of U alloys • Design, fabricate, and assemble equipment • Sintering database on DU metal • Sintering database on U-10Zr alloys • Liquid assisted phase sintering on U-20xx-10Zr alloys Appendices Outline Appendix A contains a Fuel Cycle Research & Development (FCR&D) poster and contact presentation where TAMU made primary contributions. Appendix B contains MSNE theses and final defense presentations by David Garnetti and Grant Helmreich

  9. Aluminium surface treatment with ceramic phases using diode laser

    NASA Astrophysics Data System (ADS)

    Labisz, K.; Tański, T.; Brytan, Z.; Pakieła, W.; Wiśniowski, M.

    2016-07-01

    Ceramic particles powder feeding into surface layer of engineering metal alloy is a well-known and widely used technique. New approach into the topic is to obtain finely distributed nano-sized particles involved in the aluminium matrix using the traditional laser technology. In this paper are presented results of microstructure investigation of cast aluminium-silicon-copper alloys surface layer after heat treatment and alloying with ceramic carbides of WC and ZrO2 using high-power diode laser. The surface layer was specially prepared for the reason of reducing the reflectivity, which is the main problem in the up-to-date metal matrix composites production. With scanning electron microscopy, it was possible to determine the deformation process and distribution of WC and ZrO2 ceramic powder phase. Structure of the surface after laser treatment changes, revealing three zones—remelting zone, heat-affected zone and transition zone placed over the Al substrate. The structural changes of ceramic powder, its distribution and morphology as well as microstructure of the matrix material influence on functional properties, especially wear resistance and hardness of the achieved layer, were investigated.

  10. Elemental electron energy loss mapping of a precipitate in a multi-component aluminium alloy.

    PubMed

    Mørtsell, Eva A; Wenner, Sigurd; Longo, Paolo; Andersen, Sigmund J; Marioara, Calin D; Holmestad, Randi

    2016-07-01

    The elemental distribution of a precipitate cross section, situated in a lean Al-Mg-Si-Cu-Ag-Ge alloy, has been investigated in detail by electron energy loss spectroscopy (EELS) and aberration corrected high angle annular dark field scanning transmission electron microscopy (HAADF-STEM). A correlative analysis of the EELS data is connected to the results and discussed in detail. The energy loss maps for all relevant elements were recorded simultaneously. The good spatial resolution allows elemental distribution to be evaluated, such as by correlation functions, in addition to being compared with the HAADF image. The fcc-Al lattice and the hexagonal Si-network within the precipitates were resolved by EELS. The combination of EELS and HAADF-STEM demonstrated that some atomic columns consist of mixed elements, a result that would be very uncertain based on one of the techniques alone. EELS elemental mapping combined with a correlative analysis have great potential for identification and quantification of small amounts of elements at the atomic scale. PMID:27124585