Science.gov

Sample records for aluminum al matrix

  1. Aluminum Matrix Composites Strengthened with CuZrAgAl Amorphous Atomized Powder Particles

    NASA Astrophysics Data System (ADS)

    Dutkiewicz, Jan; Rogal, Łukasz; Wajda, Wojciech; Kukuła-Kurzyniec, Agata; Coddet, Christian; Dembinski, Lucas

    2015-06-01

    The Al-matrix composites were prepared by hot pressing in vacuum of an aluminum powder with 20 and 40 wt.% addition of the amorphous Cu43Zr43Ag7Al7 alloy (numbers indicate at.%) obtained using gas atomization method. The amorphous structure of the powder was confirmed using x-ray diffraction, DSC, and TEM. The average size of mostly spherical particles was 100 μm, so the powder was sieved to obtain maximum size of 60 μm. The composites were prepared using uniaxial cold pressing in vacuum and at a temperature of 400 °C. The composites of hardness from 43 to 53 HV were obtained for both additions of the amorphous phase. They reached compression strength of 150 MPa for 20% of amorphous phase and 250 MPa for the higher content. The modest hardening effect was caused by crack initiation at Al/amorphous interfaces. The amorphous phase was only partially crystallized in the hot-pressed composites, what did not cause hardness decrease. The application of nanocrystalline aluminum powders obtained by high-energy ball milling for the matrix of composites allowed obtaining nanocrystalline aluminum matrix composites of size near 150 nm, strengthened with the amorphous powders, whose compression strength was near 550 MPa for the composite containing 40% of the amorphous phase and slightly lower for the composite containing 20% of the phase. They showed much higher ductility of 23% in comparison with 7% for the composite containing 40% amorphous phase. The distribution of the strengthening phase in the nanocrystalline matrix was not homogeneous; the amorphous particles formed bands, where majority of cracks nucleated during compression test.

  2. Aluminum Metal Matrix Composites

    SciTech Connect

    Hunt, Warren; Herling, Darrell R.

    2004-02-01

    Metal matrix composites comprise a relatively wide range of materials defined by the metal matrix, reinforcement type, and reinforcement geometry. In the area of the matrix, most metallic systems have been explored for use in metal matrix composites, including Al, Be, Mg, Ti, Fe, Ni, Co, and Ag. By far, the largest usage is in aluminum matrix composites. From a reinforcement perspective, the materials used are typically ceramics since they provide a very desirable combination of stiffness, strength, and relatively low density. Candidate reinforcement materials include SiC, Al2O3, B4C, TiC, TiB2, graphite, and a number of other ceramics. In addition, there has been work on metallic materials as reinforcements, notably W and steel fibers. The morphology of the reinforcement material is another variable of importance in metal matrix composites. The three major classes of reinforcement morphology are continuous fiber, chopped fiber or whisker, and particulate. Typically, the selection of the reinforcement morphology is determined by the desired property/cost combination. Generally, continuous fiber reinforced MMCs provide the highest properties in the direction of the fiber orientation but are the most expensive. Chopped fiber and whisker reinforced materials can produce significant property improvements in the plane or direction of their orientation, at somewhat lower cost. Particulates provide a comparatively more moderate but isotropic increase in properties and are typically available at the lowest cost. By adding to the three variables of metallic matrix, reinforcement material, and reinforcement morphology the further options of reinforcement volume fraction, orientation, and matrix alloy composition and heat treatment, it is apparent that there is a very wide range of available material combinations and resultant properties. This paper will focus on how MMCs have been applied in specific application areas.

  3. Hot Extrusion of A356 Aluminum Metal Matrix Composite with Carbon Nanotube/Al2O3 Hybrid Reinforcement

    NASA Astrophysics Data System (ADS)

    Kim, H. H.; Babu, J. S. S.; Kang, C. G.

    2014-05-01

    Over the years, the attention of material scientists and engineers has shifted from conventional composite materials to nanocomposite materials for the development of light weight and high-performance devices. Since the discovery of carbon nanotubes (CNTs), many researchers have tried to fabricate metal matrix composites (MMCs) with CNT reinforcements. However, CNTs exhibit low dispersibility in metal melts owing to their poor wettability and large surface-to-volume ratio. The use of an array of short fibers or hybrid reinforcements in a preform could overcome this problem and enhance the dispersion of CNTs in the matrix. In this study, multi-walled CNT/Al2O3 preform-based aluminum hybrid composites were fabricated using the infiltration method. Then, the composites were extruded to evaluate changes in its mechanical properties. In addition, the dispersion of reinforcements was investigated using a hardness test. The required extrusion pressure of hybrid MMCs increased as the Al2O3/CNT fraction increased. The deformation resistance of hybrid material was over two times that of the original A356 aluminum alloy material due to strengthening by the Al2O3/CNTs reinforcements. In addition, an unusual trend was detected; primary transition was induced by the hybrid reinforcements, as can be observed in the pressure-displacement curve. Increasing temperature of the material can help increase formability. In particular, temperatures under 623 K (350 °C) and over-incorporating reinforcements (Al2O3 20 pct, CNTs 3 pct) are not recommended owing to a significant increase in the brittleness of the hybrid material.

  4. Tensile and Dry Sliding Wear Behavior of In-Situ Al3Zr + Al2O3-Reinforced Aluminum Metal Matrix Composites

    NASA Astrophysics Data System (ADS)

    Gautam, G.; Ghose, A. K.; Chakrabarty, I.

    2015-12-01

    In the present study, aluminum-based in-situ intermetallic Al3Zr and Al2O3-reinforced metal matrix composites have been synthesized by direct melt reaction through stir casting of zirconium oxychloride (ZrOCl2·8H2O) powder in commercially pure aluminum. The in-situ reaction produces intermetallic Al3Zr needles that change to feathery morphology with increasing ZrOCl2·8H2O, while the Al2O3 is of fine globular shape. The tensile strengths of these composites increase with increasing volume percent reinforcements, attaining a peak value with 18 pct addition. The dry sliding wear behavior of the composites was evaluated with varying parameters, viz. sliding distance, normal load, and sliding velocities. The wear mechanisms are explained based on the microstructure, the topography of the worn surface, and the interfacial strength of the matrix and reinforcement. The tensile and wear properties are compared with widely used wear resistant hypereutectic Al-17 pct Si cast alloy.

  5. Microwave combustion synthesis of in situ Al{sub 2}O{sub 3} and Al{sub 3}Zr reinforced aluminum matrix composites

    SciTech Connect

    Zhu, Heguo; Hua, Bo; Cui, Tao; Huang, Jiewen; Li, Jianliang; Xie, Zonghan

    2015-08-15

    Al{sub 2}O{sub 3} and Al{sub 3}Zr reinforced aluminum matrix composites were fabricated from Al and ZrO{sub 2} powders by SiC assisted microwave combustion synthesis. The microstructure and reaction pathways were analyzed by using differential scanning calorimetry (DSC), X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and energy dispersive spectroscopy (EDS). The results showed that the heating rate during microwave synthesis was very high and the entire process took several minutes and that the ignition temperature of the reaction was much lower than that of conventional methods. In addition, the resulting microstructure was found to be finer than that prepared by the conventional methods and no cracks can be seen in the Al{sub 3}Zr reinforcements. As such, the newly developed composites have potential for safety-critical applications where catastrophic failure is not tolerated.

  6. Spark plasma sintering of aluminum matrix composites

    NASA Astrophysics Data System (ADS)

    Yadav, Vineet

    2011-12-01

    Aluminum matrix composites make a distinct category of advanced engineering materials having superior properties over conventional aluminum alloys. Aluminum matrix composites exhibit high hardness, yield strength, and excellent wear and corrosion resistance. Due to these attractive properties, aluminum matrix composites materials have many structural applications in the automotive and the aerospace industries. In this thesis, efforts are made to process high strength aluminum matrix composites which can be useful in the applications of light weight and strong materials. Spark Plasma Sintering (SPS) is a relatively novel process where powder mixture is consolidated under the simultaneous influence of uniaxial pressure and pulsed direct current. In this work, SPS was used to process aluminum matrix composites having three different reinforcements: multi-wall carbon nanotubes (MWCNTs), silicon carbide (SiC), and iron-based metallic glass (MG). In Al-CNT composites, significant improvement in micro-hardness, nano-hardness, and compressive yield strength was observed. The Al-CNT composites further exhibited improved wear resistance and lower friction coefficient due to strengthening and self-lubricating effects of CNTs. In Al-SiC and Al-MG composites, microstructure, densification, and tribological behaviors were also studied. Reinforcing MG and SiC also resulted in increase in micro-hardness and wear resistance.

  7. Aluminum and bone: Review of new clinical circumstances associated with Al(3+) deposition in the calcified matrix of bone.

    PubMed

    Chappard, D; Bizot, P; Mabilleau, G; Hubert, L

    2016-06-01

    Several decades ago, aluminum encephalopathy associated with osteomalacia has been recognized as the major complication of chronic renal failure in dialyzed patients. Removal of aluminum from the dialysate has led to a disappearance of the disease. However, aluminum deposit occurs in the hydroxyapatite of the bone matrix in some clinical circumstances that are presented in this review. We have encountered aluminum in bone in patients with an increased intestinal permeability (coeliac disease), or in the case of prolonged administration of aluminum anti-acid drugs. A colocalisation of aluminum with iron was also noted in cases of hemochromatosis and sickle cell anemia. Aluminium was also identified in a series of patients with exostosis, a frequent benign bone tumor. Corrosion of prosthetic implants composed of grade V titanium (TA6V is an alloy containing 6% aluminum and 4% vanadium) was also observed in a series of hip or knee revisions. Aluminum can be identified in undecalcified bone matrix stained by solochrome azurine, a highly specific stain allowing the detection of 0.03 atomic %. Colocalization of aluminum and iron does not seem to be the fruit of chance but the cellular and molecular mechanisms are still poorly understood. Histochemistry is superior to spectroscopic analyses (EDS and WDS in scanning electron microscopy). PMID:26762722

  8. Coating of 6028 Aluminum Alloy Using Aluminum Piston Alloy and Al-Si Alloy-Based Nanocomposites Produced by the Addition of Al-Ti5-B1 to the Matrix Melt

    NASA Astrophysics Data System (ADS)

    El-Labban, Hashem F.; Abdelaziz, M.; Mahmoud, Essam R. I.

    2014-10-01

    The Al-12 pctSi alloy and aluminum-based composites reinforced with TiB2 and Al3Ti intermetallics exhibit good wear resistance, strength-to-weight ratio, and strength-to-cost ratio when compared to equivalent other commercial Al alloys, which make them good candidates as coating materials. In this study, structural AA 6028 alloy is used as the base material. Four different coating materials were used. The first one is Al-Si alloy that has Si content near eutectic composition. The second, third, and fourth ones are Al-6 pctSi-based reinforced with TiB2 and Al3Ti nano-particles produced by addition of Al-Ti5-B1 master alloy with different weight percentages (1, 2, and 3 pct). The coating treatment was carried out with the aid of GTAW process. The microstructures of the base and coated materials were investigated using optical microscope and scanning electron microscope equipped with EDX analyzer. Microhardness of the base material and the coated layer were evaluated using a microhardness tester. GTAW process results in almost sound coated layer on 6028 aluminum alloy with the used four coating materials. The coating materials of Al-12 pct Si alloy resulted in very fine dendritic Al-Si eutectic structure. The interface between the coated layer and the base metal was very clean. The coated layer was almost free from porosities or other defects. The coating materials of Al-6 pct Si-based mixed with Al-Ti5-B1 master alloy with different percentages (1, 2, and 3 pct), results in coated layer consisted of matrix of fine dendrite eutectic morphology structure inside ?-Al grains. Many fine in situ TiAl3 and TiB2 intermetallics were precipitated almost at the grain boundary of ?-Al grains. The amounts of these precipitates are increased by increasing the addition of Al-Ti5-B1 master alloy. The surface hardness of the 6028 aluminum alloy base metal was improved with the entire four used surface coating materials. The improvement reached to about 85 pct by the first type of coating material (Al-12 pctSi alloy), while it reached to 77, 83, and 89 pct by the coating materials of Al-6 pct Si-based mixed with Al-Ti5-B1 master alloy with different percentages 1, 2, and 3 pct, respectively.

  9. Wear Resistance of Aluminum Matrix Composites Reinforced with Al2O3 Particles After Multiple Remelting

    NASA Astrophysics Data System (ADS)

    Klasik, Adam; Pietrzak, Krystyna; Makowska, Katarzyna; Sobczak, Jerzy; Rudnik, Dariusz; Wojciechowski, Andrzej

    2016-01-01

    Based on previous results, the commercial composites of A359 (AlSi9Mg) alloy reinforced with 22 vol.% Al2O3 particles were submitted to multiple remelting by means of gravity casting and squeeze-casting procedures. The studies were focused on tribological tests, x-ray phase analyses, and microstructural examinations. More promising results were obtained for squeeze-casting method mainly because of the reduction of the negative microstructural effects such as shrinkage porosity or other microstructural defects and discontinuities. The results showed that direct remelting may be treated as economically well-founded and alternative way compared to other recycling processes. It was underlined that the multiple remelting method must be analyzed for any material separately.

  10. Recycling of aluminum matrix composites

    SciTech Connect

    Nishida, Yoshinori; Izawa, Norihisa; Kuramasu, Yukio

    1999-03-01

    Separation of matrix metals in composites was tried on alumina short fiber-reinforced aluminum and 6061 alloy composites and SiC whisker-reinforced 6061 alloy composite for recycling. It is possible to separate molten matrix metals from fibers in the composites using fluxes that are used for melt treatment to remove inclusions. About 50 vol pct of the matrix metals was separated from the alumina short fiber-reinforced composites. The separation ratio of the matrix from the SiC whisker-reinforced 6061 alloy composite was low and about 20 vol pct. The separation mechanism was discussed thermodynamically using interface free energies. Since the flux/fiber interface energy is smaller than the aluminum/fiber interface energy, the replacement of aluminum with fluxes in composites takes place easily. Gases released by the decomposition of fluxes act an important role in pushing out the molten matrix metal from the composite. The role was confirmed by the great amount cavity formed in the composite after the matrix metal flowed out.

  11. The Effect of Nanosized Pb Liquid Phase on the Damping Behavior in Aluminum Matrix Composite Based on the 2024Al-BaPbO3 System

    NASA Astrophysics Data System (ADS)

    Fan, G. H.; Geng, L.; Wu, H.; Zheng, Z. Z.; Meng, Q. C.

    2016-03-01

    An aluminum matrix composite containing nanosized Pb particles was fabricated by a powder metallurgy technique based on the 2024Al-BaPbO3 system. The composite exhibited a high and broad damping peak at the melting temperature range of nanosized Pb particles. The increase in value and breadth of the damping peak was attributed to the dislocation damping of the interfacial matrix close to the nanosized Pb liquid phase. The damping peak is expected to be enhanced by further refining the Pb particle size.

  12. Corrosion protection of aluminum metal-matrix composites

    SciTech Connect

    Greene, H.J.; Mansfeld, F.

    1997-12-01

    Corrosion protection of aluminum metal-matrix composites (MMC) by anodizing treatments was investigated. Electrochemical behavior of MMC without protection also was investigated. Electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization measurements were used to characterize the properties of protective surface layers. Materials studied were Al 6061/SiC, alloy A356/SiC, Al 2009/SiC, Al 2014/Al{sub 2}O{sub 3} and Al 6061/Al{sub 2}O{sub 3} with various reinforcement concentrations. The MMC had similar corrosion (E{sub corr}) and pitting (E{sub pit}) potentials as the matrix alloy. The cathodic current density for oxygen reduction in 0.5% N sodium chloride increased for Al 6061/SiC MMC with reinforcement concentration, which was attributed to electrochemically active interfaces between the matrix and the reinforcement particles. Anodizing and hot-water sealing were less effective for MMC than for the matrix aluminum alloys. The reinforcement particles produced a more porous structure of the anodized layer for MMC. Improved results were noted for dichromate sealing, where chromium (Cr{sup 6+}) in the pores of the outer oxide acted as an inhibitor. The effectiveness of corrosion protection methods decreased with increasing reinforcement concentration and was a function of the matrix alloy but not of the reinforcement material. The observed reduction in corrosion protection was believed to result from corrosion-susceptible interfaces formed between the reinforcement particles and the matrix.

  13. Fracture of boron filaments in an aluminum matrix.

    NASA Technical Reports Server (NTRS)

    Steele, J. H.; Herring, H. W.

    1972-01-01

    The B-Al composite specimens tested in this study were fabricated by diffusion bonding of 1230 aluminum foil and boron filaments placed in alternate layers, using an acrylic resin solution to maintain filament spacing. The specimens were put under tensile stresses parallel to the filaments, and filament fracture was monitored acoustically under loads. Fracture of specimens under loads was caused by break propagation with a characteristic wedge-type fragmentation pattern indicating its direction. The aluminum foil matrix of the specimens failed by ductile shear type fracture after the break of the filaments.

  14. Dual-nanoparticulate-reinforced aluminum matrix composite materials

    NASA Astrophysics Data System (ADS)

    Kwon, Hansang; Cho, Seungchan; Leparoux, Marc; Kawasaki, Akira

    2012-06-01

    Aluminum (Al) matrix composite materials reinforced with carbon nanotubes (CNT) and silicon carbide nanoparticles (nano-SiC) were fabricated by mechanical ball milling, followed by hot-pressing. Nano-SiC was used as an active mixing agent for dispersing the CNTs in the Al powder. The hardness of the produced composites was dramatically increased, up to eight times higher than bulk pure Al, by increasing the amount of nano-SiC particles. A small quantity of aluminum carbide (Al4C3) was observed by TEM analysis and quantified using x-ray diffraction. The composite with the highest hardness values contained some nanosized Al4C3. Along with the CNT and the nano-SiC, Al4C3 also seemed to play a role in the enhanced hardness of the composites. The high energy milling process seems to lead to a homogeneous dispersion of the high aspect ratio CNTs, and of the nearly spherical nano-SiC particles in the Al matrix. This powder metallurgical approach could also be applied to other nanoreinforced composites, such as ceramics or complex matrix materials.

  15. Dual-nanoparticulate-reinforced aluminum matrix composite materials.

    PubMed

    Kwon, Hansang; Cho, Seungchan; Leparoux, Marc; Kawasaki, Akira

    2012-06-01

    Aluminum (Al) matrix composite materials reinforced with carbon nanotubes (CNT) and silicon carbide nanoparticles (nano-SiC) were fabricated by mechanical ball milling, followed by hot-pressing. Nano-SiC was used as an active mixing agent for dispersing the CNTs in the Al powder. The hardness of the produced composites was dramatically increased, up to eight times higher than bulk pure Al, by increasing the amount of nano-SiC particles. A small quantity of aluminum carbide (Al(4)C(3)) was observed by TEM analysis and quantified using x-ray diffraction. The composite with the highest hardness values contained some nanosized Al(4)C(3). Along with the CNT and the nano-SiC, Al(4)C(3) also seemed to play a role in the enhanced hardness of the composites. The high energy milling process seems to lead to a homogeneous dispersion of the high aspect ratio CNTs, and of the nearly spherical nano-SiC particles in the Al matrix. This powder metallurgical approach could also be applied to other nanoreinforced composites, such as ceramics or complex matrix materials. PMID:22571898

  16. Electrometallurgical treatment of aluminum-matrix fuels

    SciTech Connect

    Willit, J.L.; Gay, E.C.; Miller, W.E.; McPheeters, C.C.; Laidler, J.J.

    1996-08-01

    The electrometallurgical treatment process described in this paper builds on our experience in treating spent fuel from the Experimental Breeder Reactor (EBR-II). The work is also to some degree, a spin-off from applying electrometallurgical treatment to spent fuel from the Hanford single pass reactors (SPRs) and fuel and flush salt from the Molten Salt Reactor Experiment (MSRE) in treating EBR-II fuel, we recover the actinides from a uranium-zirconium fuel by electrorefining the uranium out of the chopped fuel. With SPR fuel, uranium is electrorefined out of the aluminum cladding. Both of these processes are conducted in a LiCl-KCl molten-salt electrolyte. In the case of the MSRE, which used a fluoride salt-based fuel, uranium in this salt is recovered through a series of electrochemical reductions. Recovering high-purity uranium from an aluminum-matrix fuel is more challenging than treating SPR or EBR-II fuel because the aluminum- matrix fuel is typically -90% (volume basis) aluminum.

  17. Spin Forming of Aluminum Metal Matrix Composites

    NASA Technical Reports Server (NTRS)

    Lee, Jonathan A.; Munafo, Paul M. (Technical Monitor)

    2001-01-01

    An exploratory effort between NASA-Marshall Space Flight Center (MSFC) and SpinCraft, Inc., to experimentally spin form cylinders and concentric parts from small and thin sheets of aluminum Metal Matrix Composites (MMC), successfully yielded good microstructure data and forming parameters. MSFC and SpinCraft will collaborate on the recent technical findings and develop strategy to implement this technology for NASA's advanced propulsion and airframe applications such as pressure bulkheads, combustion liner assemblies, propellant tank domes, and nose cone assemblies.

  18. Development of a Precipitation-Strengthened Matrix for Non-quenchable Aluminum Metal Matrix Composites

    NASA Astrophysics Data System (ADS)

    Vo, Nhon Q.; Sorensen, Jim; Klier, Eric M.; Sanaty-Zadeh, Amirreza; Bayansan, Davaadorj; Seidman, David N.; Dunand, David C.

    2016-04-01

    Recent developments in metal matrix composite-encapsulated ceramic armor show promise in lightweight armor technology. The system contains ceramic tiles, such as alumina, sandwiched between unreinforced aluminum or aluminum metal matrix composite (Al-MMC), which has a better toughness compared to the ceramic tiles. The sandwich structures should not be quenched during the fabrication, as the large mismatch in the coefficients of thermal expansion between the ceramic tiles and the unreinforced aluminum or Al-MMC creates internal stresses high enough to fracture the ceramic tiles. However, slow cooling of most commercial alloys creates large precipitates making solute unavailable for the formation of fine precipitates during aging. Here, we develop a non-quenched, high-strength metal matrix utilizing dilute Al-Sc-Zr alloys. We demonstrate that the dilute Al-0.09 Sc-0.045 Zr at.% alloy and the same alloy containing 0-4 vol.% alumina short fibers do not result in precipitation upon slow cooling from a high temperature, and can thereafter be aged to increase their strength. They exhibit a moderate strength, but improved ductility and toughness as compared to common armor aluminum alloys, such as AA5083-H131, making them attractive as armor materials and hybrid armor systems.

  19. Nonequilibrium alloying of graphite-reinforced aluminum metal matrix composites

    SciTech Connect

    Schrecengost, T.R. ); Shaw, B.A. ); Wendt, R.G.; Moshier, W.C. )

    1993-10-01

    With corrosion behavior superior to pure aluminum (Al), nonequilibrium Al alloys produced by cosputter deposition have great potential for use a s matrix metals in graphite (Gr)-reinforced Al composites. These composites offer enhanced properties as a result of their low density matrix and a high modulus reinforcing fiber. Cosputter-deposited Al alloys provide a means to improve corrosion resistance of Al and to remove a conventional processing step that accelerates degradation of the composite once the Gr fibers are exposed. Additions of tungsten (W) and molybdenum (Mo) were found to enhance the localized corrosion resistance of Al. At concentrations of 19 at.% Mo or 26 at.% W breakdown potentials (E[sub b]) increased by 1,115 mV[sub sce] and 1,245 mV[sub sce] over pure Al, respectively. Heat treatment of these alloys at 400 C. for 1 h did not result in precipitation of a second phase. The alloys maintained excellent resistance to localized attack. Galvanic current diagrams predicted use of these alloys in composite structures would decrease galvanic corrosion rates by at least 2 orders of magnitude. This enhancement in galvanic corrosion resistance was a result of significant improvements in passivity which occurred with the nonequilibrium addition of Mo or W to Al. Galvanic current measurements confirmed the predicted reduction in galvanic corrosion rates.

  20. Fabrication and mechanical properties of aluminum matrix composite materials

    SciTech Connect

    Lim, T.; Kim, Y.H.; Lee, C.S.; Han, K.S. Pohang Institute of Science and Technology )

    1992-01-01

    Aluminum matrix composite materials containing different volume fractions of SiC whisker (Al/SiC) and Saffil alumina short fiber (Al/ASl2O3) were fabricated by the direct squeeze infiltration method using different processing and aging conditions, and the mechanical properties of the resulting composites were investigated to find optimal fabrication conditions. Observations of the composites' microstructures showed that good bonding and uniform distribution of reinforcements were achieved. Results of hardness tests indicated that the optimum aging conditions for the composites containing 0.25 volume fraction of reinforcements were 6 hrs at 150 C and 4 hrs at 180 C. Compared to nonreinforced matrix, the mechanical properties of composites, such as hardness, Young's modulus and tensile strength, were improved by up to 80 percent. 39 refs.

  1. Aluminum-Alloy-Matrix/Alumina-Reinforcement Composites

    NASA Technical Reports Server (NTRS)

    Kashalikar, Uday; Rozenoyer, Boris

    2004-01-01

    Isotropic composites of aluminum-alloy matrices reinforced with particulate alumina have been developed as lightweight, high-specific-strength, less-expensive alternatives to nickel-base and ferrous superalloys. These composites feature a specific gravity of about 3.45 grams per cubic centimeter and specific strengths of about 200 MPa/(grams per cubic centimeter). The room-temperature tensile strength is 100 ksi (689 MPa) and stiffness is 30 Msi (206 GPa). At 500 F (260 C), these composites have shown 80 percent retention in strength and 95 percent retention in stiffness. These materials also have excellent fatigue tolerance and tribological properties. They can be fabricated in net (or nearly net) sizes and shapes to make housings, pistons, valves, and ducts in turbomachinery, and to make structural components of such diverse systems as diesel engines, automotive brake systems, and power-generation, mining, and oil-drilling equipment. Separately, incorporation of these metal matrix composites within aluminum gravity castings for localized reinforcement has been demonstrated. A composite part of this type can be fabricated in a pressure infiltration casting process. The process begins with the placement of a mold with alumina particulate preform of net or nearly net size and shape in a crucible in a vacuum furnace. A charge of the alloy is placed in the crucible with the preform. The interior of the furnace is evacuated, then the furnace heaters are turned on to heat the alloy above its liquidus temperature. Next, the interior of the furnace is filled with argon gas at a pressure about 900 psi (approximately equal to 6.2 MPa) to force the molten alloy to infiltrate the preform. Once infiltrated, the entire contents of the crucible can be allowed to cool in place, and the composite part recovered from the mold.

  2. Active-Transient Liquid Phase (A-TLP) Bonding of Pure Aluminum Matrix Composite Reinforced with Short Alumina Fiber Using Al-12Si-xTi Foils as Active Interlayer

    NASA Astrophysics Data System (ADS)

    Zhang, Guifeng; Su, Wei; Suzumura, Akio

    2016-02-01

    To optimize both the interlayer composition design route and pressure for joining aluminum matrix composite reinforced with short alumina fiber (as-cast 30 vol pct Al2O3sf/Al), traditional transient liquid phase (TLP) bonding using Al-12Si and Cu interlayer and active-TLP (A-TLP) bonding using an active Ti-containing interlayer (Al-12Si-xTi, x = 0.1, 0.5, and 1 wt pct) under the same condition [883 K (610 °C) × 30 minutes × 1 or 0.015 MPa in flowing argon] were compared in terms of interfacial wettability, bond seam microstructure, shear strength, and fracture path. It was found that not only the Ti content but also the pressure are critical factors affecting interfacial wettability and bond seam microstructure. The improvement in wettability by adding Ti as an active element were confirmed by reduction of expulsion of liquid interlayer, elimination of interfacial gap, higher shear strength and favorable fracture path (partially through bond seam and the composite). Because of the incubation period for wetting, reducing the pressure after melting of the interlayer could further increase joint shear strength by thickening the remaining bond seam of solid-solution matrix and decreasing fraction of the in situ newly formed Al-Si-Ti IMC phase (short bar shape) within the bond seam. The maximum shear strength of 88.6 MPa (99 pct of the as-cast composite) was obtained by adding trace Ti content (0.5 Ti wt pct) addition and using low pressure (0.015 MPa). The results showed that suitable combination of Ti content and pressure pattern is required for improving both wettability and bond seam microstructure.

  3. Active-Transient Liquid Phase (A-TLP) Bonding of Pure Aluminum Matrix Composite Reinforced with Short Alumina Fiber Using Al-12Si- xTi Foils as Active Interlayer

    NASA Astrophysics Data System (ADS)

    Zhang, Guifeng; Su, Wei; Suzumura, Akio

    2016-06-01

    To optimize both the interlayer composition design route and pressure for joining aluminum matrix composite reinforced with short alumina fiber (as-cast 30 vol pct Al2O3sf/Al), traditional transient liquid phase (TLP) bonding using Al-12Si and Cu interlayer and active-TLP (A-TLP) bonding using an active Ti-containing interlayer (Al-12Si- xTi, x = 0.1, 0.5, and 1 wt pct) under the same condition [883 K (610 °C) × 30 minutes × 1 or 0.015 MPa in flowing argon] were compared in terms of interfacial wettability, bond seam microstructure, shear strength, and fracture path. It was found that not only the Ti content but also the pressure are critical factors affecting interfacial wettability and bond seam microstructure. The improvement in wettability by adding Ti as an active element were confirmed by reduction of expulsion of liquid interlayer, elimination of interfacial gap, higher shear strength and favorable fracture path (partially through bond seam and the composite). Because of the incubation period for wetting, reducing the pressure after melting of the interlayer could further increase joint shear strength by thickening the remaining bond seam of solid-solution matrix and decreasing fraction of the in situ newly formed Al-Si-Ti IMC phase (short bar shape) within the bond seam. The maximum shear strength of 88.6 MPa (99 pct of the as-cast composite) was obtained by adding trace Ti content (0.5 Ti wt pct) addition and using low pressure (0.015 MPa). The results showed that suitable combination of Ti content and pressure pattern is required for improving both wettability and bond seam microstructure.

  4. Characterization of tribological behaviour of graphitic aluminum matrix composites, grey cast iron, and aluminum silicon alloys

    NASA Astrophysics Data System (ADS)

    Riahi, Ahmad Reza

    In recent years a number of aluminum-silicon alloys and some graphitic aluminum matrix composites have been fabricated for potential tribological applications in the automotive industry, in particular for lightweight high efficiency internal combustion engines to replace conventional uses of cast iron. This study provides a systematic investigation for wear mechanisms in dry sliding of the graphitic aluminum-matrix composites (A356 Al-10%SiC-4%Gr and A356 Al-5%Al2O3-3%Gr) developed for cylinder liner applications. Two eutectic Al-Si alloys (modified with rare earth elements) developed for wear resistant engine blocks were also studied. The tribological behavior of grey cast iron (ASTM A30), which is a traditional material for engine components, was also investigated as reference. For graphitic aluminum matrix composites, a wear mapping approach has been adopted. Three main regimes: ultra mild, mild and severe wear regions were determined in the maps; additionally, a scuffing region was observed. In the ultra mild wear regime the wear resistance was primarily due to the hard particles supporting the load. It was shown that the onset of severe wear in graphitic composites occurred at considerably higher loads compared to A356 aluminum alloy and A356 Al-20% SiC composite. At the onset of severe wear, the surface temperatures and coefficient of friction of the graphitic composites was lower than that of A356 Al-20% SiC. At all testing conditions in the mild wear regime, a protective tribo-layer was formed, which by increasing the speed and load became more continuous, more compact, smoother, and harder. The tribo-layers were removed at the onset of severe wear. An experimental wear map of grey cast iron was constructed; it consisted of three wear regimes: ultra mild, mild and severe wear. In the ultra mild regime a compacted fine iron oxide powder formed on the contact. The onset of severe wear was started with local material transfer to the steel counterface, and continued by increasing the roughness of the counterface. In the mild wear regime the oxide layers on the contact surface controlled the wear. Because of the microstructure of grey cast iron, large size debris formed in the mild regimes, which could promote a transition from mild to severe wear at loading conditions close to the upper limit of the mild regime. The effects of size and morphology of hard phases in eutectic Al-Si alloys on their scuffing and wear resistance was investigated using etching techniques. Scratch tests and sliding wear tests were performed on the Al-Si samples etched to different times. At low loads, the wear rates and scuffing resistance of Al-Si alloys were a strong function of the etching time, surface roughness before etching, and the morphology of the hard phases. In the etched condition, fracture of the hard phases from the roots of the protruded portions of particles caused scuffing; while fracture of the trailing edges of the hard phases controlled the wear rate of the Al-Si alloys.

  5. A new discontinuously reinforced aluminum MMC: Al+AlB{sub 2} flakes

    SciTech Connect

    HALL,AARON C.; ECONOMY,J.

    2000-06-08

    Development of a novel metal matrix composite based on the Al-B alloy system has been undertaken. Preparation of this discontinuously reinforced material is based on the precipitation of high aspect ratio AlB{sub 2} from an Al-B alloy. This paper describes a number of efforts forced on preparing high volume fractions (> 30 v%) of AlB{sub 2} in aluminum. New insights into the behavior of the Al-B alloys system allowed this effort to be successful.

  6. Severe plastic deformation processing and high strain rate superplasticity in an aluminum matrix composite

    SciTech Connect

    Mishra, R.S.; McFadden, S.X.; Mukherjee, A.K.; Valiev, R.Z.; Islamgaliev, R.K.

    1999-04-23

    Metal matrix composites possess an attractive set of properties for structural applications. For example, reinforcement of conventional aluminum alloys with second phase ceramic particulates increases the stiffness, high temperature strength, etc. A drawback of ceramic phase reinforcement is that it makes machining of components difficult. Superplastic forming is quite attractive for hard-to-machine materials like composites. A number of aluminum matrix composites exhibit superplasticity. The most attractive feature of superplasticity in aluminum matrix composite is the high strain rate (10{sup {minus}2}--10{sup 1} s{sup {minus}1}) for optimum ductility. This is significantly higher than the optimum superplastic strain rates of 10{sup {minus}4}--10{sup {minus}3} s{sup {minus}1} in conventional fine grained alloys. The optimum superplasticity in aluminum matrix composites is influenced by the thermo-mechanical processing. In the last five years or so, a number of aluminum alloys have been processes by severe plastic deformation (SePD). Severe plastic deformation processing leads to ultrafine grained aluminum alloys with attractive superplastic properties. In this short paper the authors report on successful processing of an ultrafine grained aluminum matrix composite by severe plastic deformation technique. The SePD processes 2009 Al-SiC{sub 2} composite exhibits high strain rate superplasticity.

  7. Material damping in aluminum and metal matrix composites

    NASA Technical Reports Server (NTRS)

    Crawley, Edward F.; Van Schoor, Marthinus C.

    1987-01-01

    The material damping in beam-like specimens of aluminum and metal matrix composites was measured. A unique apparatus to determine damping by free decay while the specimens are in free fall in a vacuum was used. The specimens tested include 2024-T3 and 6061-T4 aluminum, and unidirectional graphite/metal matrix specimens with P55 and P100 fibers and 6061 Aluminum and AZ91C Magnesium as matrix materials. Tests were conducted to determine the dependence of damping on frequency and stress level. For the aluminum specimens, the material damping followed the Zener model at very low stress levels. Below the Zener relaxation frequency, a strong dependence of damping on stress was found for even moderate stress levels. Damping for the aluminum matrix materials was slightly above that predicted by the Zener model for a homogeneous bar of the matrix aluminum. For the magnesium matrix specimens, damping significantly above the Zener prediction for the homogeneous matrix material was observed.

  8. Hot extruded carbon nanotube reinforced aluminum matrix composite materials.

    PubMed

    Kwon, Hansang; Leparoux, Marc

    2012-10-19

    Carbon nanotube (CNT) reinforced aluminum (Al) matrix composite materials were successfully fabricated by mechanical ball milling followed by powder hot extrusion processes. Microstructural analysis revealed that the CNTs were well dispersed at the boundaries and were aligned with the extrusion direction in the composites obtained. Although only a small quantity of CNTs were added to the composite (1vol%), the Vickers hardness and the tensile strength were significantly enhanced, with an up to three-fold increase relative to that of pure Al. From the fractography of the extruded Al-CNT composite, several shapes were observed in the fracture surface, and this unique morphology is discussed based on the strengthening mechanism. The damage in the CNTs was investigated with Raman spectroscopy. However, the Al-CNT composite materials were not only strengthened by the addition of CNTs but also enhanced by several synergistic effects. The nanoindentation stress-strain curve was successfully constructed by setting the effective zero-load and zero-displacement points and was compared with the tensile stress-strain curve. The yield strengths of the Al-CNT composites from the nanoindentation and tensile tests were compared and discussed. We believe that the yield strength can be predicted using a simple nanoindentation stress/strain curve and that this method will be useful for materials that are difficult to machine, such as complex ceramics. PMID:23011263

  9. Degradation Mechanisms in Aluminum Matrix Composites: Alumina/Aluminum and Boron/Aluminum. Ph.D. Thesis - North Carolina State Univ. at Raleigh

    NASA Technical Reports Server (NTRS)

    Olsen, G. C.

    1981-01-01

    The effects of fabrication and long term thermal exposure (up to 10,000 hours at 590 K) on two types of aluminum matrix composites were examined. An alumina/aluminum composite, was made of continuous alpha Al2O3 fibers in a matrix of commercially pure aluminum alloyed with 2.8% lithium. The mechanical properties of the material, the effect of isothermal exposure, cyclic thermal exposure, and fatigue are presented. Two degradation mechanisms are identified. One was caused by formation of a nonstoichiometric alumina during fabrication, the other by a loss of lithium to a surface reaction during long term thermal exposure. The other composite, boron/aluminum, made of boron fibers in an aluminum matrix, was investigated using five different aluminum alloys for the matrices. The mechanical properties of each material and the effect of isothermal and cyclic thermal exposure are presented. The effects of each alloy constituent on the degradation mechanisms are discussed. The effects of several reactions between alloy constituents and boron fibers on the composite properties are discussed.

  10. Pathways to a family of low-cost, high-performance, metal matrix composites based on aluminum diboride in aluminum

    NASA Astrophysics Data System (ADS)

    Hall, Aaron Christopher

    The continued development of a new family of metal matrix composites based on the in-situ formation of AlB2 flakes in liquid aluminum is described. First, a new synthesis technique for the preparation of high aspect ratio AlB2 is demonstrated. Borax and B2O 3 were reacted with molten aluminum to prepare high aspect ratio AlB 2. The focus then shifts to further understanding the Al-B alloy system. Work on the Al-B alloy system concentrated on the Al(L) + AlB 2 → Al(L) + AlB12 peritectic transformation and the growth of AlB2 in aluminum. The equilibrium peritectic transformation temperature was redetermined and found to be 950 +/- 5°C. The kinetics of the peritectic transformation were measured and reported for the first time. Cu, Fe, and Si additions were made to the alloy, and their effect on the peritectic reaction was investigated. All three elements shorten the time required for the peritectic reaction to occur. The effect of these three elements on flake growth was also investigated. They each caused a reduction in the size of growing AlB2 flakes. Finally two samples containing more than 30v% AlB2 in aluminum were prepared. Their properties were measured. The sample containing 40v% AlB2 exhibited a flexural strength of 200 MPa. The 35v% sample exhibited a flexural strength of 150 MPa. When the 35v% sample was tested in compression, it exhibited an ultimate strength close to 200 MPa. Its modulus varied from 200--300 GPa depending on the orientation of the loading axis with respect to the flake reinforcement.

  11. Inertia-friction welding of particulate-reinforced aluminum matrix composites

    SciTech Connect

    Cola, M.J.; Baeslack, W.A. III; Kou, M.

    1994-12-31

    Aluminum metal-matrix composites (Al-MMC) are rapidly becoming materials of choice for many aerospace, automotive, recreational sports, and microelectronic applications. The attractive features of these materials include high specific strength and stiffness, a low coefficient of thermal expansion and enhanced wear characteristics relative to monolithic aluminum alloys. The effective engineering application of Al-MMC will commonly require their joining beth to themselves, to dissimilar Al-MMC, and to monolithic aluminum alloys. In the present work, dissimilar-alloy inertia-friction welds were produced between a 6061-T6 Al-MMC tube reinforced with l0 v/o Al{sub x}O{sub 3} particles (W6A.l0A-T6) and a modified A356 case MMC bar reinforced with 20 v/o SiC particles (F3S.20S), or a monolithic 6061-T6511 aluminum alloy bar. In Phase I, a fractional-factorial test matrix was statistically designed and performed to evaluate the effects of flywheel speed and axial pressure on the weld integrity, microstructure, hardness, tensile and torsion strengths and fracture behavior. In Phase 2, the effects of pre-weld machining of the solid bar on weld alignment and mechanical properties were evaluated. inertia-friction welding was shown to be effective for the joining of alumina particulate-reinforced composites to monolithic aluminum and to SiC-particulate reinforced aluminum. High-integrity joints exhibiting a defect-free joint interface with varying degrees of base alloy intermixing were produced at optimum parameter settings. Tensile and torsional strength joint efficiencies for the alumina-particulate MMC to monolithic aluminum alloy welds exceeded 80% and 75%, respectively, with tensile strength maximized with high axial pressure and flywheel speed, and torsional strength maximized at both medium and high levels of flywheel speed and axial pressure.

  12. Pressureless infiltration of aluminum metal-matrix composites

    SciTech Connect

    Kajikawa, Y.; Nukami, T.; Flemings, M.C.

    1995-08-01

    Pressureless infiltration of ceramic preforms by molten aluminum is described. The preforms are SiC with varying amounts of particulate Al, Ti, and Ni. Infiltrants employed are pure Al and Al-12.5 wt pct Si. It is shown that a pressure differential within the preform is required for infiltration, and measurements are made of pressure changes in the preforms during infiltration. Results indicate that atmospheric pressure is essential for infiltration but that capillarity may play a role as well.

  13. The role of Metal-Matrix Composite development During Friction Stir Welding of Aluminum to Brass in Weld Characteristics

    NASA Astrophysics Data System (ADS)

    Zareie Rajani, H. R.; Esmaeili, A.; Mohammadi, M.; Sharbati, M.; Givi, M. K. B.

    2012-11-01

    The present research aims to investigate the development of brass reinforced aluminum composites during dissimilar friction stir welding of brass and aluminum. Moreover, to probe the effect of such a metal matrix composite on its bed, the cross-sectional properties of joint area are studied in two aspects of corrosion behavior and hardness distribution. Microstructural investigations through optical and electron microscopy show development of lamellar composites within the top site of the stir zone and aluminum surface. The measured iso-hardness contours indicate that evolved composite structures increase the cross-sectional hardness of aluminum locally. Also, the electrochemical assessment of joint area suggests that Al/Br composite structure plays an accelerative role in deterioration of cross-sectional corrosion resistance of aluminum through obstructing passivation and forming microgalvanic cells, where cathodic brass reinforcements intensify the corrosion of anodic aluminum matrix.

  14. Plasma spray joining of Al-matrix particulate reinforced composites

    SciTech Connect

    Itsukaichi, T.; Eagar, T.W.; Unemoto, M.; Okane, I.

    1996-09-01

    Aluminum matrix composite joints have been produced on both aluminum alloy and metal matrix composite (MMC) substrates using powders containing SiC and Al{sub 2}O{sub 3} particulates. Most of the composite powders were produced by ball milling, but the most effective joints were produced using Osprey composite powders. The results of preliminary joining experiments indicate that the substrate should be preheated to 200 C and a very wide bevel angle should be provided in order to obtain the highest strength joints. Silicon alloy additions to the matrix significantly improved strength but titanium additions had no effect. Heat treatment after spraying significantly improved the bond strength and restored precipitation hardening in the matrix. Significant amounts of Mg were lost from the deposit during spraying while some free silicon was produced by pyrolysis of the SiC powder; hence, further efforts must develop powder compositions that produce the optimum matrix composition in the sprayed deposit. Hot isostatic pressing of the samples to eliminate porosity had only a small effect on the final strength of the joints. No significant amount of Al{sub 4}C{sub 3} was detected in deposits which contained SiC.

  15. Elevated-temperature deformation and forming of aluminum-matrix composites

    SciTech Connect

    Chen, Yongchin.

    1991-01-01

    Three related studies on the elevated-temperature deformation and forming of aluminum-matrix composites are made. In Part A, isothermal creep deformation of SiC whisker-reinforced 2124Al matrix composites (2124Al-SiCw) and a SiC whisker-reinforced aluminum matrix composite (CMSH A-40) are extensively studied at various applied stresses and temperatures. High stress exponents and activation energies for creep are observed to be general features of these composites creep tension. The anomalously high activation energy for creep observed in 2124Al-SiCw composite is partly attributed to the slightly higher activation energy exhibited by the matrix material. In Part B, thermal-cycling creep deformation of 2124Al-SiCw composites, an Al-Si eutectic alloy, and a CMSH A-40 composite is investigated. Thermal cycling can cause MMC's to creep at much higher strain rates and exhibit very high strain rate sensitivity exponent and very high tensile elongation at failure. Part C explores the possibility of using the unique mechanical properties, (e.g. high-strain-rate sensitivity exponent and high formability), which result from thermal cycling to form useful components from MMC's. Experimental results demonstrate that gas-pressure forming of MMC components via thermal cycling is feasible.

  16. Galvanic corrosion of aluminum-matrix composites. Technical report No. 2, 1 Mar-31 Dec 90

    SciTech Connect

    Hihara, L.H.; Latanision, R.M.

    1991-02-01

    Galvanic-corrosion rates of Al-matrix composites were high in aerated chloride-containing solutions. Oxygen reduction was found to be the primary cathodic reaction. Aluminum corroded by pitting. The type of noble constituent (i.e., graphite, SiC, or TiB{sub 2}) also affected galvanic-corrosion rates. For example, results indicated that the galvanic-corrosion rate of Al should be about 30 times greater when coupled to graphite than when coupled to SiC or TiB{sub 2}. In dearated solutions, galvanic corrosion was negligible even if chlorides were present. The galvanic-corrosion rates were determined using the zero-resistance ammeter technique and from potentiodynamic polarization diagrams of ultrapure Al, 6061-T6 Al, graphite fiber, SiC, TiB2, and a commercial graphite fiber/6061-T6 Al metal-matrix composite.

  17. In situ synthesis of TiC particulate-reinforced aluminum matrix composites

    SciTech Connect

    Nukami, Tetsuya; Flemings, M.C.

    1995-07-01

    Particulate TiC-reinforced aluminum composite specimens were processed by compacting a mixture of titanium, carbon, and aluminum powders into preforms that were infiltrated with molten aluminum and subsequently heated in a differential thermal analyzer to about 1,573 K under argon atmosphere. The onset of formation of TiC particles began at about 1,150 K by reaction of TiAl{sub 3} with Al{sub 4}C{sub 3}. Subsequent formation of TiC particles at higher temperatures to approximately 1,265 K occurred by direct reaction of carbon with TiAl{sub 3}. Above this temperature, the TiC particles coarsened with increasing temperature from an initial size of about 0.15 {mu}m. TiC particles were also produced in preforms that were not infiltrated; however, the presence of liquid aluminum in infiltrated specimens inhibited particle agglomeration and sintering. Infiltrated preforms could, therefore, serve as excellent master alloys for subsequent dilution in an aluminum melt and processing of metal-matrix composites (MMCs) reinforced with submicron TiC particulates.

  18. Aluminum-matrix composites with embedded Ni-Ti wires by ultrasonic consolidation

    NASA Astrophysics Data System (ADS)

    Hahnlen, Ryan; Dapino, Marcelo J.; Short, Matt; Graff, Karl

    2009-03-01

    [Smart Vehicle Workshop] This paper presents the development of active aluminum-matrix composites manufactured by Ultrasonic Additive Manufacturing (UAM), an emerging rapid prototyping process based on ultrasonic metal welding. Composites created through UAM experience process temperatures as low as 20°C, in contrast to current metal-matrix fabrication processes which require fusion of materials and hence reach temperatures of 500°C and above. UAM thus creates unprecedented opportunities to develop adaptive structures with seamlessly embedded smart materials and electronic components without degrading the properties that make embedding these materials and components attractive. This research focuses on three aspects of developing UAM Ni-Ti/Al composites which have not been accomplished before: (i) Characterization of the mechanical properties of the composite matrix; (ii) Investigation of Ni-Ti/Al composites as tunable stiffness materials and as strain sensors based on the shape memory effect; and (iii) Development of constitutive models for UAM Ni-Ti/Al composites. The mechanical characterization shows an increase in tensile strength of aluminum UAM builds over the parent material (Al 3003-H18), likely due to grain refinement caused by the UAM process. We demonstrate the ability to embed Ni-Ti wires up to 203 μm in diameter in an aluminum matrix, compared with only 100 μm in previous studies. The resulting Ni-Ti/Al UAM composites have cross sectional area ratios of up to 13.4% Ni-Ti. These composites exhibit a change in stiffness of 6% and a resistivity change of -3% when the Ni- Ti wires undergo martensite to austenite transformation. The Ni-Ti area ratios and associated strength of the shape memory effect are expected to increase as the UAM process becomes better understood and is perfected. The Brinson constitutive model for shape memory transformations is used to describe the stiffness and the strain sensing of Ni-Ti/Al composites in response to temperature changes.

  19. Low Cost Cast Aluminum Metal Matrix Composites Have Arrived

    SciTech Connect

    Herling, Darrell R.; Hunt, Warren

    2004-03-01

    Aluminum metal matrix composites (MMC) have found applications in many industries, from aerospace and automotive to sporting goods and electronics packaging [1-5]. Many of the primary applications have been in military components and structures, where advanced high performance materials are necessary to meet vigorous material challenges. Aluminum MMC are attractive due to their lightweight and high specific stiffness. In addition, the ceramic particle reinforcement significantly increases the wear resistance of these materials. Nevertheless, high materials costs relative to conventional aluminum alloys have been the primary limit to widespread use of such a material family. The use of particulate instead of fiber reinforcement has helped to reduce the overall material cost for those applications that do not require the additional strength obtained from fiber reinforced composites. However, for many cost sensitive industries, such as the on-highway transportation industry, widespread application of particulate reinforced MMC is still limited due to cost and availability. There are two primary components that makeup the cost of metal matrix composite feedstock material. The first is the raw material cost, which is somewhat controlled by the cost of aluminum. However, the raw material used for the reinforcement can play a significant role in the overall MMC material cost. This incurred cost can be affected through the use of alternative and less costly ceramic material options. The other source of cost is related to the compositing processes used to make the aluminum MMC materials. If the cost associated with these two aspects can be controlled and reduced, then this could enable widespread use of particle reinforced aluminum MMC materials. Metal Matrix Composites for the 21st Century (MC-21), Inc., in Carson City, Nevada, has developed a novel rapid mixing process for the production of MMC materials. This is a proprietary process, with the focus of rapidly mixing the particulate into the matrix alloy. The process claims to significantly reduce the time required for mixing, and therefore can reduce the labor and ultimately MMC material costs. In addition, it is proposed to place such a modular mixing system at the site of a foundry, producing the composite material as needed and transferring the molten material directly to the casting floor, without the need for remelting of ingot. This would potentially aid in reducing costs. Further cost savings can be realized with the use of a low cost SiC material for the reinforcement, compared to the standard F-500 grade used in the industry.

  20. Evaluation of Johnson-Cook model constants for aluminum based particulate metal matrix composites

    NASA Astrophysics Data System (ADS)

    Hilfi, H.; Brar, N. S.

    1996-05-01

    High strain rate and high temperature response of three types of aluminum based particulate metal matrix ceramic composites is investigated by performing split Hopkinson pressure bar (SHPB) experiments. The composites are: NGP-2014 (15% SiC), NGT-6061 (15% SiC), and NGU-6061 (15% Al2O3), in which all the reinforcement materials are percentage by volume. Johnson-Cook constitutive model constants are evaluated from the high strain rate/high temperature data and implemented in a two dimensional finite element computer code (EPIC-2D) to simulate the penetration of an ogive nose tungsten projectile (23 grams) at a velocity 1.17 km/sec into the base 6061-T6 aluminum alloy and the composite NGU-6061. The simulated penetrations in the composite and in 6061-T6 aluminum agree with in 2%, in both materials, with the measured values.

  1. Vacuum brazing of high volume fraction SiC particles reinforced aluminum matrix composites

    NASA Astrophysics Data System (ADS)

    Cheng, Dongfeng; Niu, Jitai; Gao, Zeng; Wang, Peng

    2015-03-01

    This experiment chooses A356 aluminum matrix composites containing 55% SiC particle reinforcing phase as the parent metal and Al-Si-Cu-Zn-Ni alloy metal as the filler metal. The brazing process is carried out in vacuum brazing furnace at the temperature of 550°C and 560°C for 3 min, respectively. The interfacial microstructures and fracture surfaces are investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and energy spectrum analysis (EDS). The result shows that adequacy of element diffusion are superior when brazing at 560°C, because of higher activity and liquidity. Dislocations and twins are observed at the interface between filler and composite due to the different expansion coefficient of the aluminum alloy matrix and SiC particles. The fracture analysis shows that the brittle fracture mainly located at interface of filler and composites.

  2. Effects of thermal cycling on density, elastic modulus, and vibrational damping in an alumina particulate reinforced aluminum metal matrix composite (Al{sub 2}O{sub 3p}/2014 Al)

    SciTech Connect

    Wolfenden, A.; Tang, H.H.; Chawla, K.; Hermel, T.

    1999-07-01

    The effects of thermal cycling on the mechanical and physical properties, namely, the density, dynamic elastic modulus and vibrational damping, were measured for a particular reinforced metal matrix composite (MMC). The material was made by Duralcan. Specimens were exposed to up thermal cycles from room temperature to 300 C. The density of the material was measured by the Archimedes technique. The dynamic Young`s Modulus and vibrational damping of the material were determined by the piezoelectric ultrasonic composite oscillator technique (PUCOT). The results showed that the density and elastic modulus of the material increased only slightly due to the thermal cycling while the damping increased significantly. An increase in dislocation concentration near the particle/matrix interfaces caused by the thermal cycling could account for the measured results.

  3. Fabrication of Metal Particles Embedded Aluminum Matrix Composite by Friction Stir Processing (FSP)

    NASA Astrophysics Data System (ADS)

    Yadav, Devinder; Bauri, Ranjit

    2011-01-01

    Conventional metal matrix composites (MMCs) suffer from the disadvantage of low ductility. In order to overcome this, reinforcing the metal matrix with metal particles can be taken as an alternative approach. However, processing such composites can pose serious challenges as the metal particles can either go in to solution or form undesirable intermetallics during processing through conventional routes. Friction stir processing (FSP) is emerging as a versatile tool for processing and modification of variety of materials. In the present study, metal particulate reinforced aluminum matrix composite was processed by incorporating nickel particles through friction stir processing (FSP) in one step. The microstructure was characterized by scanning electron microscopy (SEM), electron backscattered diffraction (EBSD) and transmission electron microscopy (TEM). SEM observations revealed that particles are uniformly dispersed in the aluminum matrix with excellent interfacial bonding. FSP also lead to grain refinement of the matrix as observed by EBSD and TEM analysis. Moreover, no harmful Al-Ni intermetallics formed in the matrix. The mechanical properties were determined by tensile tests to evaluate the effect of metal particulate reinforcement. The novel feature of the composite is that it exhibits a threefold increase in the yield stress (0.2% proof stress) while appreciable amount of ductility is retained.

  4. Strengthening behavior of chopped multi-walled carbon nanotube reinforced aluminum matrix composites

    SciTech Connect

    Shin, S.E.; Bae, D.H.

    2013-09-15

    Strengthening behavior of the aluminum composites reinforced with chopped multi-walled carbon nanotubes (MWCNTs) or aluminum carbide formed during annealing at 500 °C has been investigated. The composites were fabricated by hot-rolling the powders which were ball-milled under various conditions. During the early annealing process, aluminum atoms can cluster inside the tube due to the diffusional flow of aluminum atoms into the tube, providing an increase of the strength of the composite. Further annealing induces the formation of the aluminum carbide phase, leading to an overall drop in the strength of the composites. While the strength of the composites can be evaluated according to the rule of mixture, a particle spacing effect can be additionally imparted on the strength of the composites reinforced with the chopped MWCNTs or the corresponding carbides since the reinforcing agents are smaller than the submicron matrix grains. - Highlights: • Strengthening behavior of chopped CNT reinforced Al-based composites is investigated. • Chopped CNTs have influenced the strength and microstructures of the composites. • Chopped CNTs are created under Ar- 3% H2 atmosphere during mechanical milling. • Strength can be evaluated by the rule of the mixture and a particle spacing effect.

  5. Self-lubricating aluminum metal-matrix composites dispersed with tungsten disulfide and silicon carbide

    SciTech Connect

    Prasad, S.V.; Mecklenburg, K.R.

    1994-07-01

    This paper describes the synthesis and tribological behavior of self-lubricating aluminum alloy metal-matrix composites (MMCs). The formulations of MMCs comprised of tungsten disulfide (WS{sub 2}) and silicon carbide (SiC) particles dispersed in a commercial aluminum alloy (Al-0.40Si-0.75Mg) matrix. Composites were fabricated by a conventional powder metallurgy route involving blending, compacting and sintering. Friction and wear tests (up to a duration of one million cycles) were performed in a ball-on-disk configuration against a steel counterface. Wear scars on MMC disks and steel balls were analyzed in SEM/EDXS. In a dry nitrogen environment, the steady state friction coefficient of an Al-0.10SiC-0.03WS{sub 2}MMC was 0.05, whereas in laboratory air with relative humidity at approximately 65 percent it was 0.10. In both environments, transfer of aluminum to the steel counterface was absent. 20 refs., 12 figs., 2 tabs.

  6. Functionally Graded Al Alloy Matrix In-Situ Composites

    NASA Astrophysics Data System (ADS)

    Kumar, S.; Subramaniya Sarma, V.; Murty, B. S.

    2010-01-01

    In the present work, functionally graded (FG) aluminum alloy matrix in-situ composites (FG-AMCs) with TiB2 and TiC reinforcements were synthesized using the horizontal centrifugal casting process. A commercial Al-Si alloy (A356) and an Al-Cu alloy were used as matrices in the present study. The material parameters (such as matrix and reinforcement type) and process parameters (such as mold temperature, mold speed, and melt stirring) were found to influence the gradient in the FG-AMCs. Detailed microstructural analysis of the composites in different processing conditions revealed that the gradients in the reinforcement modify the microstructure and hardness of the Al alloy. The segregated in-situ formed TiB2 and TiC particles change the morphology of Si particles during the solidification of Al-Si alloy. A maximum of 20 vol pct of reinforcement at the surface was achieved by this process in the Al-4Cu-TiB2 system. The stirring of the melt before pouring causes the reinforcement particles to segregate at the periphery of the casting, while in the absence of such stirring, the particles are segregated at the interior of the casting.

  7. Brazeability of a 3003 Aluminum alloy with Al-Si-Cu-based filler metals

    NASA Astrophysics Data System (ADS)

    Tsao, L. C.; Weng, W. P.; Cheng, M. D.; Tsao, C. W.; Chuang, T. H.

    2002-08-01

    Al-Si-Cu-based filler metals have been used successfully for brazing 6061 aluminum alloy as reported in the authors’ previous studies. For application in heat exchangers during manufacturing, the brazeability of 3003 aluminum alloy with these filler metals is herein further evaluated. Experimental results show that even at such a low temperature as 550 °C, the 3003 alloys can be brazed with the Al-Si-Cu fillers and display bonding strengths that are higher than 77 MPa as well. An optimized 3003 joint is attained in the brazements with the innovative Al-7Si-20Cu-2Sn-1Mg filler metal at 575 °C for 30 min, which reveals a bonding strength capping the 3003 Al matrix.

  8. Microscopic characteristics of fatigue crack propagation in aluminum alloy based particulate reinforced metal matrix composites

    SciTech Connect

    Wang, Zhirui; Zhang, R.J. . Dept. of Metallurgy and Materials Science)

    1994-04-01

    Microscopic characteristics of fatigue crack propagation in two aluminum alloy (A356 and 6061) based particulate reinforced metal matrix composites (MMCs) were investigated by carrying out three point bending fatigue tests. The impedance offered by the reinforcing particles against fatigue crack propagation has been studied by plotting the nominal and actual crack lengths vs number of cycles. Surface observation shows that fatigue cracks tend to develop along the particle-matrix interface. In the case of Al (A356) MMCs, stronger interaction of fatigue crack with Si particles, as compared to SiC particles, was evident. In both MMC materials, particle debonding was more prominent as compared to particle cracking. The attempted application of Davidson's model to calculate [Delta]K[sub th] indicated that for cast MMCs the matrix grain including the surrounding reinforcing particles has to considered as a large hard particle'', and the grain boundary particles themselves behave like a hard egg-shell'' to strengthen the material.

  9. High Temperature Sliding Wear of Spray-Formed Solid-Lubricated Aluminum Matrix Composites

    NASA Astrophysics Data System (ADS)

    Kaur, Kamalpreet; Pandey, O. P.

    2013-10-01

    The present work describes the tribological study of the aluminum metal matrix composite manufactured by the spray atomization and deposition technique. The immiscible element Sn is added in the Al-Si alloy in different proportion to see its effect on wear behavior. The economical mineral zircon sand (8 vol.%) of size range 63-90 μm has been used as ceramic reinforcement. The microstructural features showed that Sn and reinforced particles were homogeneously dispersed in the matrix phase. The wear experiments were conducted at high temperature on pin-on-disk wear testing machine. The wear debris and worn surfaces are analyzed with the help of scanning electron microscope equipped with energy-dispersive spectroscopy facility. The Al-Si-10Sn/ZrSiO4 composite offers higher wear resistance as compared to base alloy and other composites irrespective of the high temperature conditions of wear tests.

  10. Spray-forming monolithic aluminum alloy and metal matrix composite strip

    SciTech Connect

    McHugh, K.M.

    1995-10-01

    Spray forming with de Laval nozzles is an advanced materials processing technology that converts a bulk liquid metal to a near-net-shape solid by depositing atomized droplets onto a suitably shaped substrate. Using this approach, aluminum alloys have been spray formed as strip, with technoeconomic advantages over conventional hot mill processing and continuous casting. The spray-formed strip had a flat profile, minimal porosity, high yield, and refined microstructure. In an adaptation to the technique, 6061 Al/SiC particulate-reinforced metal matrix composite strip was produced by codeposition of the phases.

  11. Evaluation of corrosion-protection methods for aluminum metal-matrix composites (final report). Master's thesis

    SciTech Connect

    Greene, H.J.

    1992-07-09

    Corrosion protection of Aluminum Metal Matrix Composites (MMC) using anodizing, chromate conversion coating and polymer coatings was investigated. Electrochemical Impedance Spectroscopy, DC polarization measurements, and Scanning Electron Microscopy (SEM) with Energy Dispersive X-ray Spectroscopy (EDS) were used. The materials studied included 606 1/SiC, A356/SiC, 2009/SiC, 2014/Al203 and 6061/Al203 in various reinforcement concentrations. The electrochemical behavior of the MMCs without protection was also investigated. MMCs were found to have similar corrosion and pitting potentials as the matrix alloy. The cathodic current density were found to be higher for MMCs with the current density increasing with reinforcement concentration. The increased current density is attributed to the interface between the matrix and the reinforcement particles which increases the corrosion rate. Anodizing was performed on both Al alloys and MMCS. A new model is proposed for Al alloys. Anodizing and hot water sealing on MMCs was less effective than on Al. Improved results were noted for dichromate sealing.

  12. Effect of alumina particle additions on the aging kinetics of 2014-aluminum matrix composites. Master's thesis

    SciTech Connect

    Harper, C.P.

    1991-09-01

    Differential Scanning Calorimetry (DSC) was conducted on 2014 aluminum, 2014 aluminum reinforced with 10 and 15 percent by volume of alumina particles, 2024 aluminum, and a A1/4%Cu alloy. Electrical resistivity and matrix micro-hardness measurements were conducted on the 2014 aluminum alloy and the metal matrix composites (MMC) during isothermal aging. Transmission Electron Microscopy (TEM) and DSC were used to identify the metastable phases formed in the 2014 aluminum alloy. The effect of alumina particle addition on the precipitation, growth and thermal stability of the metastability phases in the 2014 aluminum alloy and MMC were studied. Results were used to characterize the effect of the alumina reinforcement on the aging kinetics of the 2014 aluminum alloy matrix.

  13. Modulus, strength and thermal exposure studies of FP-Al2O3/aluminum and FP-Al2O3/magnesium composites

    NASA Technical Reports Server (NTRS)

    Bhatt, R. T.

    1981-01-01

    The mechanical properties of FP-Al2O3 fiber reinforced composites prepared by liquid infiltration techniques are improved. A strengthening addition, magnesium, was incorporated with the aluminum-lithium matrix alloy usually selected for these composites because of its good wetting characteristics. This ternary composite, FP-Al2O3/Al-(2-3)Li-(3-5)Mg, showed improved transverse strength compared with FP-Al2O3/Al-(2-3)Li composites. The lower axial strengths found for the FP-Al2O3/Al-(2-3)Li-(3-5)Mg composites were attributed to fabrication related defects. Another technique was the use of Ti/B coated FP-Al2O3 fibers in the composites. This coating is readily wet by molten aluminum and permitted the use of more conventional aluminum alloys in the composites. However, the anticipated improvements in the axial and transverse strengths were not obtained due to poor bonding between the fiber coating and the matrix. A third approach studied to improve the strengths of FP-Al2O3 reinforced composites was the use of magnesium alloys as matrix materials. While these alloys wet fibers satisfactorily, the result indicated that the magnesium alloy composites used offered no axial strength or modulus advantage over FP-Al2O3/Al-(2-3)Li composites.

  14. Corrosion and wear resistance of titanium- and aluminum-based metal matrix composites fabricated by direct metal laser deposition

    NASA Astrophysics Data System (ADS)

    Waldera, Benjamin L.

    Titanium- and Aluminum-based metal matrix composites (MMC) have shown favorable properties for aerospace applications such as airframes, reinforcement materials and joining elements. In this research, such coatings were developed by direct metal laser deposition with a powder-fed fiber coupled diode laser. The MMC formulations consisted of pure titanium and aluminum matrices with reinforcing powder blends of chromium carbide and tungsten carbide nickel alloy. Two powder formulations were investigated for each matrix material (Ti1, Ti2, Al1 and Al2). Titanium based composites were deposited onto a Ti6Al4V plate while aluminum composites were deposited onto AA 7075 and AA 5083 for Al1 and Al2, respectively. Microstructures of the MMCs were studied by optical and scanning electron microscopy. The hardness and reduced Young's modulus (Er) were assessed through depth-sensing instrumented nanoindentation. microhardness (Vickers) was also analyzed for each composite. The corrosion resistance of the MMCs were compared by monitoring open circuit potential (OCP), polarization resistance (Rp) and potentiodynamic polarization in 0.5 M NaCl to simulate exposure to seawater. The Ti-MMCs demonstrated improvements in hardness between 205% and 350% over Ti6Al4V. Al-MMCs showed improvements between 47% and 79% over AA 7075 and AA 5083. The MMCs showed an increase in anodic current density indicating the formation of a less protective surface oxide than the base metals.

  15. Internal Friction at Elevated Temperatures and Microplasticity of Aluminum Matrix Composites

    NASA Astrophysics Data System (ADS)

    Nishiyama, Katsuhiro; Utsumi, Shigenori; Nakamura, Takanobu; Nishiyama, Hironori

    Aluminum matrix composites (70vol%SiC/Al, 55vol%SiC/Al, 60vol%Al2O3/Al, 70vol%AlN/Al, and 30vol%SiC/Al) were prepared by the infiltration and the casting methods. The internal friction and the microplasticity of these composites were measured with a Föppel-Pertz torsion pendulum apparatus over the temperature range of 303 to 853 K and the strain range of 3×10-5 to 3×10-3. The internal friction of these composites increases with increasing temperature and increases rapidly over 600 to 800 K, while their shear modulus gradually decrease and rapidly decrease over 600 to 800 K. The internal friction of the composites at elevated temperatures is caused by relaxations due to the interfacial diffusion between a reinforcement phase and Al and due to the plastic flow at grain boundaries. The activation energy of the interfacial diffusion is 40.7-56.7 kJ/mol for SiC/Al, 62.1 kJ/mol for Al2O3/Al, and 27.7 kJ/mol for AlN/Al, respectively. The activation energy of the plastic flow is 42.3-119 kJ/mol. The internal friction of the infiltration composites remarkably depends on strain amplitude rather than that of the casting composites. The Granato-Lücke plots of the composites show a linear relationship, indicating that the increase in internal friction with increasing shear strain is caused by the vibration energy loss due to the dislocation damping mechanism. The dislocation mobility of the infiltration composites is larger than that of the casting composites. The specific damping capacity and Young's modulus of 70vol%SiC are higher than those of 70vol%AlN.

  16. Mechanical characterization of copper coated carbon nanotubes reinforced aluminum matrix composites

    SciTech Connect

    Maqbool, Adnan; Hussain, M. Asif; Khalid, F. Ahmad; Bakhsh, Nabi; Hussain, Ali; Kim, Myong Ho

    2013-12-15

    In this investigation, carbon nanotube (CNT) reinforced aluminum composites were prepared by the molecular-level mixing process using copper coated CNTs. The mixing of CNTs was accomplished by ultrasonic mixing and ball milling. Electroless Cu-coated CNTs were used to enhance the interfacial bonding between CNTs and aluminum. Scanning electron microscope analysis revealed the homogenous dispersion of Cu-coated CNTs in the composite samples compared with the uncoated CNTs. The samples were pressureless sintered under vacuum followed by hot rolling to promote the uniform microstructure and dispersion of CNTs. In 1.0 wt.% uncoated and Cu-coated CNT/Al composites, compared to pure Al, the microhardness increased by 44% and 103%, respectively. As compared to the pure Al, for 1.0 wt.% uncoated CNT/Al composite, increase in yield strength and ultimate tensile strength was estimated about 58% and 62%, respectively. However, in case of 1.0 wt.% Cu-coated CNT/Al composite, yield strength and ultimate tensile strength were increased significantly about 121% and 107%, respectively. - Graphical Abstract: Copper coated CNTs were synthesized by the electroless plating process. Optimizing the plating bath to (1:1) by wt CNTs with Cu, thickness of Cu-coated CNTs has been reduced to 100 nm. Cu-coated CNTs developed the stronger interfacial bonding with the Al matrix which resulted in the efficient transfer of load. Highlights: • Copper coated CNTs were synthesized by the electroless plating process. • Thickness of Cu-coated CNTs has been reduced to 100 nm by optimized plating bath. • In 1.0 wt.% Cu-coated CNT/Al composite, microhardness increased by 103%. • Cu-coated CNTs transfer load efficiently with stronger interfacial bonding. • In 1.0 wt.% Cu-coated CNT/Al composite, Y.S and UTS increased by 126% and 105%.

  17. Surface treatment of carbon fibers for aluminum alloy matrix composites

    SciTech Connect

    Hall, I.W.; Manrique, F.

    1995-12-15

    Fiber surface treatment is often used to alter the bonding characteristics of C fibers in polymer matrix composites (PMC`s) and, hence, to influence the mechanical properties. Fiber surface treatments for metal matrix composites (MMC`s) have received less attention. The rationales for the effect of fiber surface treatment in PMC`s cannot be applied straightforwardly to MMC`s since the temperatures used for infiltration of molten metal are very high, typically in excess of 725 C. At this temperature it is very unlikely that highly reactive Al or Mg matrices will react with -OH and -COOH groups in the same way as a typical polymer matrix. For example, a common observation in C/Al composites is the formation of Al{sub 4}C{sub 3}. The present work was undertaken in an effort to determine whether STM could assist in defining the relative importance of these effects. Surface treatment has been shown here to increase carbide formation but the total volume fraction remains small. Although Al{sub 4}C{sub 3} formation is generally undesirable, there is no evidence to demonstrate that the amount of carbide formed during a well-executed squeeze casting operation poses any threat whatsoever to the mechanical properties. At one extreme, it may be postulated that the reactive groups present on surface treated fiber surfaces promote Al-C bonding by the formation of Al{sub 4}C{sub 3}. At the other extreme it is possible that these groups are merely passive indicators that the fiber topography has been changed and that the effects on mechanical properties arise purely from effects of increased mechanical interlocking. The correct explanation is probably a combination of both of these extremes. To quantify these relative contributions, work has begun to model the effects of fiber surface roughening on mechanical properties and the present work has shown that the quantitative data available from STM/AFM will be indispensable in these efforts.

  18. 49 CFR 178.46 - Specification 3AL seamless aluminum cylinders.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Specification 3AL seamless aluminum cylinders. 178... FOR PACKAGINGS Specifications for Cylinders § 178.46 Specification 3AL seamless aluminum cylinders. (a) Size and service pressure. A DOT 3AL cylinder is a seamless aluminum cylinder with a maximum...

  19. 49 CFR 178.46 - Specification 3AL seamless aluminum cylinders.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Specification 3AL seamless aluminum cylinders. 178... FOR PACKAGINGS Specifications for Cylinders § 178.46 Specification 3AL seamless aluminum cylinders. (a) Size and service pressure. A DOT 3AL cylinder is a seamless aluminum cylinder with a maximum...

  20. 49 CFR 178.46 - Specification 3AL seamless aluminum cylinders.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Specification 3AL seamless aluminum cylinders. 178... FOR PACKAGINGS Specifications for Cylinders § 178.46 Specification 3AL seamless aluminum cylinders. (a) Size and service pressure. A DOT 3AL cylinder is a seamless aluminum cylinder with a maximum...

  1. 49 CFR 178.46 - Specification 3AL seamless aluminum cylinders.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Specification 3AL seamless aluminum cylinders. 178... FOR PACKAGINGS Specifications for Cylinders § 178.46 Specification 3AL seamless aluminum cylinders. (a) Size and service pressure. A DOT 3AL cylinder is a seamless aluminum cylinder with a maximum...

  2. 49 CFR 178.46 - Specification 3AL seamless aluminum cylinders.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Specification 3AL seamless aluminum cylinders. 178... FOR PACKAGINGS Specifications for Cylinders § 178.46 Specification 3AL seamless aluminum cylinders. (a) Size and service pressure. A DOT 3AL cylinder is a seamless aluminum cylinder with a maximum...

  3. Tailoring Microstructure and Properties of Hierarchical Aluminum Metal Matrix Composites Through Friction Stir Processing

    NASA Astrophysics Data System (ADS)

    Sohn, Y. H.; Patterson, T.; Hofmeister, C.; Kammerer, C.; Mohr, W.; van den Bergh, M.; Shaeffer, M.; Seaman, J.; Cho, K.

    2012-02-01

    The fabrication of hierarchical aluminum metal matrix composites (MMCs) begins with the cryomilling of inert gas-atomized AA5083 Al powders with B4C particles, which yields agglomerates of nanocrystalline (NC) Al grains containing a uniform dispersion of solidly bonded, submicron B4C particles. The cryomilled agglomerates are size classified, blended with coarse-grain Al (CG-Al) powders, vacuum degassed at an elevated temperature, and consolidated to form the bulk composite. This hierarchical Al MMCs have low weight and high strength/stiffness attributable to the (A) Hall-Petch strengthening from NC-Al (5083) grains, (B) Zener pinning effects from B4C particulate reinforcement and dispersoids in both the NC-Al and CG-Al, (C) the interface characteristics between the three constituents, and (D) a high dislocation density. The hierarchical Al MMCs exhibit good thermal stability and microstructural characteristics that deflect or blunt crack propagation. A significant change in the microstructure of the composite was observed after friction stir processing (FSP) in the thermomechanically affected zone (TMAZ) due to the mechanical mixing, particularly in the advancing side of the stir zone (SZ). The NC-Al grains in the TMAZ grew during FSP. Evidence of CG-Al size reduction was also documented since CG-Al domain was absent by optical observation. Given the proper control of the microstructure, FSP has demonstrated its potential to increase both strength and ductility, and to create functionally tailored hierarchical MMCs through surface modification, graded structures, and other hybrid microstructural design.

  4. Control of self-propagating high-temperature synthesis derived aluminum-titanium carbide metal matrix composites

    NASA Astrophysics Data System (ADS)

    Garrett, William

    Self-propagating High-temperature Synthesis (SHS) is a combustion process that can be used to form Metal Matrix Composite (MMC) reinforcing phases in situ. Generally, the kinetic processes in these reactions are poorly understood but are affected by reactant particle size, reactant green density, reactant stoichiometry, reaction preheat temperature, and reaction product cooling rate. These reaction parameters also affect the microstructure of the reaction products because of changes in the rate of heat evolution, reaction rate, surface area available for heterogeneous nucleation, reaction temperature, and the stable phases during and after the reaction. Post-reaction processes affecting the microstructure and properties of the SHS products include densification, melt alloying (SHS reaction products are used as a master alloy), and die casting techniques. Matrix alloy additions should be controlled to prevent unwanted reactions between the matrix and the reinforcement. In the present study, Ti + C + X → TiC + X (X = Al or TiC) is the SHS reaction system studied, with varying amounts of Al (10-50wt%) or TiC (0-20wt%) added to the reactants as a thermal diluent. Addition of these diluents decreases the reaction temperatures and decreases the TiC reinforcing particle size and interaction during particle growth. A method of direct thermal analysis of the self-heating behavior of diluted SHS reactions is developed and compared to existing methods used to measure the apparent activation energy of single step SHS reactions. The activation energies are used to determine a probable reaction path for Ti + C + Al → TiC + Al. SHS reaction products of various diluent concentrations are analyzed for TiC particle size and shape. SHS reaction products containing 55v% TiC - 45v% Al are dispersed as a master alloy in aluminum melts; reaction products containing higher concentrations of TiC particles are difficult to disperse. To show compatibility with the TiC reinforcing particles, MMCs with aluminum alloy matrices of pure aluminum, Al-4.5Mg, and Al-4.5Mg-4.5Cu-1Mn-0.25Cr are coupled with TiC particle concentrations of 0, 10, and 20v%. MMC compositions were Thixocast at VForge in Lakewood, CO and squeeze cast at CWRU in Cleveland, OH. A pure aluminum matrix MMC with 55v% TiC was densified after the SHS reaction and thixocast, though the other MMCs with pure aluminum matrices were not thixocast because they lack a semisolid matrix condition required for thixocasting. The cast MMCs are tested for tensile, hardness, wear, and ballistic properties with properties apparently dominated by agglomerated TiC particles.

  5. Elevated temperature strength, aging response and creep of aluminum matrix composites

    SciTech Connect

    Bhagat, R.B.; Amateau, M.F.; House, M.B.; Meinert, K.C.; Nisson, P. )

    1992-01-01

    The effect of reinforcement on the high-temperature performance of aluminum matrix composites was investigated using samples of 6061 aluminum alloy reinforced with planar-random graphite fibers, SiC whiskers, or alumina particles, which were aged at 150 and 200 C for up to 500 hrs. As indicated by the results of microhardness tests, all specimens exhibited accelerated aging response, with the response depending on the characteristics of the reinforcement. Both the graphite-fiber- and SiC-whisker-reinforced composites showed a substantially increased strengths over that of the wrought 6061 Al at all temperatures. The graphite-fiber- and the SiC-whisker-reinforced composites were found to retain their tensile strength and stiffness in the overaged condition of the matrix. The whisker-reinforced composite showed significant resistance to creep at temperatures between 232 and 350 C under stresses of up to 100 MPa, while the particulate composite had a moderate increase in creep resistance. 51 refs.

  6. Enhancement of Wettability of Aluminum Based Silicon Carbide Reinforced Particulate Metal Matrix Composite

    NASA Astrophysics Data System (ADS)

    Singh, V. K.; Chauhan, Sakshi; Gope, P. C.; Chaudhary, A. K.

    2015-04-01

    Lately, materials research has shifted to composite materials from monolithic, adjusting to the global need for light weight, low cost, quality, and high performance in structural materials. Every effort aims to develop a material which can be appropriate for various industry and machinery purpose. In the present study, a modest attempt has been made to develop cast aluminum based silicon carbide (SiC) particulate metal matrix composite (MMC) and worked upon to raise the wettability factor between the matrix and dispersion phase. Magnesium (Mg) is used as wetting agent. It works by scavenging the oxygen from dispersoids surface and thinning the gas layer around dispersoids and this is done by forming MgO or MgAl2O4 or both according to concentration of Magnesium added. Mg2Si is the compound responsible for strengthening. The combination of aluminum and magnesium seems to have synergetic effect on wetting and give appropriate strength. All mechanical properties obtained are well correlated with microstructure obtained by Scanning electron micrograph. Differential thermal analysis (DTA) and thermo gravimetric analysis (TGA) also justified the results obtained in present investigations.

  7. Melting and Solidification Behaviour of Bi-Pb Multiphase Alloy Nanoparticles Embedded in Aluminum Matrix.

    PubMed

    Khan, Patan Yousaf; Biswas, Krishanu

    2015-01-01

    The present investigation reports the result of the investigation on the phase transformation of biphasic Bi-Pb alloy nanoparticles embedded in the aluminum matrix. The samples are prepared by rapid solidification route involving melt spinning of Al-6 wt% (Bi55.9Pb44.1) alloy on a rotating copper wheel in an argon-filled evacuated chamber. The detailed transmission electron microscope (TEM) investigation shows presence of near cuboctahedral shaped biphasic nano-inclusions consisting of the (Bi) solid solution and β, the intermediate phase. β constitutes bulk of the nanoparticle with (Bi) forming the cap. Both the phases bear distinct orientation relationship with the matrix. The compositional analysis indicates substantial increase in solid solubilities of Pb in the (Bi) and Bi in the β-phases as compared to the as-cast sample. Differential scanning calorimetric (DSC) studies indicate substantial superheating (16.4 K) of the embedded nanoparticles with appearance of sharp melting peak. The solidification is observed to be diffused, taking place over a large temperature range (344.5 K to 332 K). The in situ heating stage experiments carried out in TEM indicate formation of core shell morphology during heating with β forming the shell around (Bi). The melting starts from Al/β/(Bi) triple point and then the liquid spreads along matrix-particle interface. The solidification occurs in eutectic manner. PMID:26328350

  8. An Al@Al2O3@SiO2/polyimide composite with multilayer coating structure fillers based on self-passivated aluminum cores

    NASA Astrophysics Data System (ADS)

    Zhou, Yongcun; Wang, Hong

    2013-04-01

    We demonstrate a capability in combining two kinds of nanosize and microsize particles of core-shell Al@Al2O3@SiO2 with aluminum cores to form multilayer coating structures as fillers in polyimide matrix for electronic applications. The core-shell Al@Al2O3@SiO2 structure can effectively adjust the relative permittivity (about 12 @1 MHz) of the composite while keeping lower dielectric loss (0.015 @1 MHz) compared to that uncoated aluminum particles. The combination of "macro" and "micro" coating can significantly improve the dielectric properties of the composites. This work provides a useful method to modify the fillers for polymer matrix nanocomposite materials.

  9. A study of the composition and microstructure of aluminum matrix composites reinforced with alumina fibers

    NASA Astrophysics Data System (ADS)

    Zolotova, D.; Serpova, V.; Prokofiev, M.; Rabinskiy, L.; Shavnev, A.

    2016-04-01

    This article presents the results of a study of the microstructure and the composition of aluminum-based metal matrix composites (MMC) reinforced with continuous alumina fibers. An Al-Mg-Cu alloy similar to that of AA 2024 was used. X-ray diffraction and X-ray fluorescence analyses were used for investigation of a probable volume fraction of a spinel phase in MMC. Scanning electron microscopy and an X-ray microanalysis were used to study a change of the elemental composition of the composites microstructure on the polished cross sections. The constant mass fractions of magnesium (0.65 wt. %) and copper (1.25 wt. %) were found in the interphase area within radius of 1 μm around fibers.

  10. 26Al-containing acidic and basic sodium aluminum phosphate preparation and use in studies of oral aluminum bioavailability from foods utilizing 26Al as an aluminum tracer

    NASA Astrophysics Data System (ADS)

    Yokel, Robert A.; Urbas, Aaron A.; Lodder, Robert A.; Selegue, John P.; Florence, Rebecca L.

    2005-04-01

    We synthesized 26Al-containing acidic and basic (alkaline) sodium aluminum phosphates (SALPs) which are FDA-approved leavening and emulsifying agents, respectively, and used them to determine the oral bioavailability of aluminum incorporated in selected foods. We selected applicable methods from published syntheses (patents) and scaled them down (∼3000- and 850-fold) to prepare ∼300-400 mg of each SALP. The 26Al was incorporated at the beginning of the syntheses to maximize 26Al and 27Al equilibration and incorporate the 26Al in the naturally-occurring Al-containing chemical species of the products. Near infrared spectroscopy (NIR) and X-ray powder diffraction (XRD) were used to characterize the two SALP samples and some intermediate samples. Multi-elemental analysis (MEA) was used to determine Na, Al and P content. Commercial products were included for comparison. Satisfactory XRD analyses, near infrared spectra and MEA results confirmed that we synthesized acidic and basic SALP, as well as some of the syntheses intermediates. The 26Al-containing acidic and basic SALPs were incorporated into a biscuit material and a processed cheese, respectively. These were used in oral bioavailability studies conducted in rats in which the 26Al present in blood after its oral absorption was quantified by accelerator mass spectrometry. The results showed oral Al bioavailability from acidic SALP in biscuit was ∼0.02% and from basic SALP in cheese ∼0.05%, lower than our previous determination of Al bioavailability from drinking water, ∼0.3%. Both food and water can appreciably contribute to the Al absorbed from typical human Al intake.

  11. Corrosion of Continuous Fiber Reinforced Aluminum Metal Matrix Composites (CF-AMCs)

    NASA Astrophysics Data System (ADS)

    Tiwari, Shruti

    The first objective of this research is to study the atmospheric corrosion behavior of continuous reinforced aluminum matrix composites (CF-AMCs). The materials used for this research were alumina (Al2O3) and nickel (Ni) coated carbon (C) fibers reinforced AMCs. The major focus is to identify the correlation between atmospheric parameters and the corrosion rates of CF-AMCs in the multitude of microclimates and environments in Hawai'i. The micro-structures of CF-AMCs were obtained to correlate the microstructures with their corrosion performances. Also electrochemical polarization experiments were conducted in the laboratory to explain the corrosion mechanism of CF-AMCs. In addition, CF-AMCs were exposed to seven different test sites for three exposure periods. The various climatic conditions like temperature (T), relative humidity (RH), rainfall (RF), time of wetness (TOW), chloride (Cl- ) and sulfate (SO42-) deposition rate, and pH were monitored for three exposure period. Likewise, mass losses of CF-AMCs at each test site for three exposure periods were determined. The microstructure of the CF-AMCS showed that Al/C/50f MMCs contained a Ni-rich phase in the matrix, indicating that the Ni coating on the C fiber dissolved in the matrix. The intermetallic phases obtained in Al-2wt% Cu/Al 2O3/50f-T6 MMC and Al-2wt%-T6 monolith were rich in Cu and Fe. The intermetallic phases obtained in Al 7075/Al2O3/50f-T6 MMC and Al 7075-T6 monolith also contained traces of Mg, Zn, Ni, and Si. Electrochemical polarization experiment indicated that the Al/Al 2O3/50f Al-2wt% Cu/Al2O3/50f-T6 and Al 7075/Al2O3/50f-T6 MMC showed similar corrosion trends as their respective monoliths pure Al, Al-2wt%-T6 and Al 7075-T6 in both aerated and deaerated condition. Al2O3 fiber, being an insulator, did not have a great effect on the polarization behavior of the composites. Al/C/50f MMCs corroded at a much faster rate as compared to pure Al monolith due to the galvanic effect between C and Al. According to the mass loss data of Al/C/50f MMCs, corrosion rate was high at marine environments (high Cl-) when compared to a tropical rainforest microclimate and low in a test site with a high SO2 and acid rain. Due to presence of conductive C fiber, the galvanic corrosion was a dominating corrosion mechanism. Due to high volume fraction of C, the corrosion phenomenon was cathodically controlled. The galvanic corrosion between C fiber and Al matrix showed a strong positive correlation with Cl - deposition rate. Lower corrosion rate at volcanic test site was attributed to dissolution of Ni rich phase, a potential cathodic site that promotes corrosion of Al/C/50f MMCs. Based on the mass loss data of Al2O3 based CF-AMCs and the monoliths showed maximum corrosion at volcanic test site when compared to any other test site. Due to the small volume fraction of intermetallic phases, the corrosion was anodically controlled. And hence the maximum anodic dissolution was found at volcanic test site (high SO2 and acid rain). The second objective of this thesis is to study the effect localized deformation on the corrosion of CF-AMCs. Corrosion initiation on Al (2 wt% Cu)/Al2O3/60f (60% fiber), Al 6061/Al2O 3/60f, and Al/Al2O3/60f CF-AMCs was studied in an aqueous environment The CF-AMCs and their monolithic alloys were deformed locally using a 1/16" diameter silicon nitride ball and 15-60 Kg load in a Rockwell hardness testing machine. Corrosion initiated at the deformed sites, and after longer exposures, spread over the entire region. Localized mechanical deformation resulted in micro-crevice formations at the fiber matrix interface. When deformed material is exposed to a corrosive solution, the crevices at the fiber matrix interface likely increased the hydrogen ion concentration lowering the pH at those regions, a process that leads to premature corrosion. The copper (Cu) rich CF-AMCs in aqueous solution resulted in dissolution of Cu rich phase and their subsequent deposition and redistribution as Cu over the deformed CF-AMCs surface. The corrosion rates of deformed CF-AMCs were higher than the non-deformed CF-AMCs.

  12. Fracture toughness of SiC/Al metal matrix composite

    NASA Technical Reports Server (NTRS)

    Flom, Yury; Parker, B. H.; Chu, H. P.

    1989-01-01

    An experimental study was conducted to evaluate fracture toughness of SiC/Al metal matrix composite (MMC). The material was a 12.7 mm thick extrusion of 6061-T6 aluminum alloy with 40 v/o SiC particulates. Specimen configuration and test procedure conformed to ASTM E399 Standard for compact specimens. It was found that special procedures were necessary to obtain fatigue cracks of controlled lengths in the preparation of precracked specimens for the MMC material. Fatigue loading with both minimum and maximum loads in compression was used to start the precrack. The initial precracking would stop by self-arrest. Afterwards, the precrack could be safely extended to the desired length by additional cyclic tensile loading. Test results met practically all the E399 criteria for the calculation of plane strain fracture toughness of the material. A valid K sub IC value of the SiC/Al composite was established as K sub IC = 8.9 MPa square root of m. The threshold stress intensity under which crack would cease to grow in the material was estimated as delta K sub th = 2MPa square root of m for R = 0.09 using the fatigue precracking data. Fractographic examinations show that failure occurred by the micromechanism involved with plastic deformation although the specimens broke by brittle fracture. The effect of precracking by cyclic loading in compression on fracture toughness is included in the discussion.

  13. Kinetic energy distributions of sputtered neutral aluminum clusters: Al--Al{sub 6}

    SciTech Connect

    Coon, S.R.; Calaway, W.F.; Pellin, M.J.; Curlee, G.A.; White, J.M.

    1992-12-01

    Neutral aluminum clusters sputtered from polycrystalline aluminum were analyzed by laser postionization time-of-flight (TOF) mass spectrometry. The kinetic energy distributions of Al through Al{sub 6} were measured by a neutrals time-of-flight technique. The interpretation of laser postionization TOF data to extract velocity and energy distributions is presented. The aluminum cluster distributions are qualitatively similar to previous copper cluster distribution measurements from our laboratory. In contrast to the steep high energy tails predicted by the single- or multiple- collision models, the measured cluster distributions have high energy power law dependences in the range of E{sup {minus}3} to E{sup {minus}4.5}. Correlated collision models may explain the substantial abundance of energetic clusters that are observed in these experiments. Possible influences of cluster fragmentation on the distributions are discussed.

  14. Kinetic energy distributions of sputtered neutral aluminum clusters: Al--Al[sub 6

    SciTech Connect

    Coon, S.R.; Calaway, W.F.; Pellin, M.J. ); Curlee, G.A. . Dept. of Physics); White, J.M. . Dept. of Chemistry and Biochemistry)

    1992-01-01

    Neutral aluminum clusters sputtered from polycrystalline aluminum were analyzed by laser postionization time-of-flight (TOF) mass spectrometry. The kinetic energy distributions of Al through Al[sub 6] were measured by a neutrals time-of-flight technique. The interpretation of laser postionization TOF data to extract velocity and energy distributions is presented. The aluminum cluster distributions are qualitatively similar to previous copper cluster distribution measurements from our laboratory. In contrast to the steep high energy tails predicted by the single- or multiple- collision models, the measured cluster distributions have high energy power law dependences in the range of E[sup [minus]3] to E[sup [minus]4.5]. Correlated collision models may explain the substantial abundance of energetic clusters that are observed in these experiments. Possible influences of cluster fragmentation on the distributions are discussed.

  15. Forging limits for an aluminum matrix composite; Part 1: Experimental results

    SciTech Connect

    Syu, D.G.C.; Ghosh, A.K. )

    1994-09-01

    Forging limits in a discontinuously reinforced aluminum (DRA) matrix composite, 2014 Al/15 vol pct Al[sub 2]O[sub 3], were determined by compressing samples of various cylindrical geometries under different conditions of temperature, strain rate, and lubrication and measuring the limit strains attained prior to incipient crack formation. In some cases, circumferential grids were machined on the sample surface to obtain the local fracture strain states. Crack formation was caused by the secondary tensile stresses; however, crack propagation was relatively slow and somewhat more severe at 300 C than at 400 C. The forging limit of the composite was found to be higher at 400 C than at 300 C and also higher at slower strain rates. The plane-strain forging limit of the composite at 300 C and a strain rate of 0.5 s[sup [minus]1] was less than 0.05, while that of the matrix was higher than 0.5. It was found that the forging limits can be influenced by the depth of the circumferential grids and can be lower than those for the smooth surface samples.

  16. Manufacturing of nanostructured Al/WCp metal- matrix composites by accumulative press bonding

    NASA Astrophysics Data System (ADS)

    Amirkhanlou, Sajjad; Ketabchi, Mostafa; Parvin, Nader; Khorsand, Shohreh; Carreño, Fernando

    2014-08-01

    The accumulative press bonding (APB) process used as a novel technique in this study provides an effective alternative method for manufacturing Al/10 vol.% WCp metal matrix composites (MMCs). The results revealed that by increasing the number of APB cycles (a) the uniformity of WC particles in aluminum matrix improved, (b) the porosity of the composite eliminated, (c) the particle free zones decreased. The X-ray diffraction results also showed that nanostructured Al/WCp composite with the average crystallite size of 58.4 nm was successfully achieved by employing 14 cycles of APB technique. The tensile strength of the composites enhanced by increasing the number of APB cycles, and reached to a maximum value of 216 MPa at the end of 14th cycle, which is 2.45 and 1.2 times higher than obtained values for annealed (raw material, 88 MPa) and 14 cycles APB-ed monolithic aluminum (180 MPa), respectively

  17. The mechanism of corrosion and corrosion control of aluminum/graphite metal matrix composites

    SciTech Connect

    Dash, L.C.

    1988-01-01

    The mechanism of corrosion and corrosion control of aluminum/graphite metal-matrix composites (MMC) were investigated. Based on the results of salt fog and immersion exposures, anodic and cathodic electrochemical polarizations, and galvanic-coupling experiments of the MMC and their constituents, the rapid disintegration of the composites was found to be unambiguously attributable to oxygen reduction on the graphite fibers. The corrosion mechanism is divided into the three following steps: Stage I-the penetration of the corrosive environment into the interior of the MMC caused by (a) pitting of the foil, (b) mechanical or processing surface defect, or (c) capillary wicking of the solution down exposed fibers; Stage II-galvanic corrosion of the aluminum at the G/Al interface driven by the reduction of oxygen on the graphite fibers; Stage III-corrosion/mechanical rupture of the MMC caused by wedging of the hydrated corrosion products (formed in Stage II) in the confined spaces of the MMC. The kinetics of oxygen reduction on fibers is decreased by silica coatings and silicon-rich surface-modified layers and increased by both copper and nickel coatings. The galvanic corrosion rate is significantly reduced by silica coatings and silicon-rich surface-modified layers on the graphite fibers.

  18. Effects of Complex Structured Anodic Oxide Dielectric Layer Grown in Pore Matrix for Aluminum Capacitor.

    PubMed

    Shin, Jin-Ha; Yun, Sook Young; Lee, Chang Hyoung; Park, Hwa-Sun; Suh, Su-Jeong

    2015-11-01

    Anodization of aluminum is generally divided up into two types of anodic aluminum oxide structures depending on electrolyte type. In this study, an anodization process was carried out in two steps to obtain high dielectric strength and break down voltage. In the first step, evaporated high purity Al on Si wafer was anodized in oxalic acidic aqueous solution at various times at a constant temperature of 5 degrees C. In the second step, citric acidic aqueous solution was used to obtain a thickly grown sub-barrier layer. During the second anodization process, the anodizing potential of various ranges was applied at room temperature. An increased thickness of the sub-barrier layer in the porous matrix was obtained according to the increment of the applied anodizing potential. The microstructures and the growth of the sub-barrier layer were then observed with an increasing anodizing potential of 40 to 300 V by using a scanning electron microscope (SEM). An impedance analyzer was used to observe the change of electrical properties, including the capacitance, dissipation factor, impedance, and equivalent series resistance (ESR) depending on the thickness increase of the sub-barrier layer. In addition, the breakdown voltage was measured. The results revealed that dielectric strength was improved with the increase of sub-barrier layer thickness. PMID:26726615

  19. Microstructure of arc brazed and diffusion bonded joints of stainless steel and SiC reinforced aluminum matrix composite

    NASA Astrophysics Data System (ADS)

    Elßner, M.; Weis, S.; Grund, T.; Wagner, G.; Habisch, S.; Mayr, P.

    2016-03-01

    Joint interfaces of aluminum and stainless steel often exhibit intermetallics of Al-Fe, which limit the joint strength. In order to reduce these brittle phases in joints of aluminum matrix composites (AMC) and stainless steel, diffusion bonding and arc brazing are used. Due to the absence of a liquid phase, diffusion welding can reduce the formation of these critical in- termetallics. For this joining technique, the influence of surface treatments and adjusted time- temperature-surface-pressure-regimes is investigated. On the other hand, arc brazing offers the advantage to combine a localized heat input with the application of a low melting filler and was conducted using the system Al-Ag-Cu. Results of the joining tests using both approaches are described and discussed with regard to the microstructure of the joints and the interfaces.

  20. The mechanical properties measurement of multiwall carbon nanotube reinforced nanocrystalline aluminum matrix composite

    SciTech Connect

    Sharma, Manjula Pal, Hemant; Sharma, Vimal

    2015-05-15

    Nanocrystalline aluminum matrix composite containing carbon nanotubes were fabricated using physical mixing method followed by cold pressing. The microstructure of the composite has been investigated using X-ray diffraction, scanning electron microscopy and energy dispersive spectroscopy techniques. These studies revealed that the carbon nanotubes were homogeneously dispersed throughout the metal matrix. The consolidated samples were pressureless sintered in inert atmosphere to further actuate a strong interface between carbon nanotubes and aluminum matrix. The nanoindentation tests carried out on considered samples showed that with the addition of 0.5 wt% carbon nanotubes, the hardness and elastic modulus of the aluminum matrix increased by 21.2 % and 2 % repectively. The scratch tests revealed a decrease in the friction coefficient of the carbon nanotubes reinforced composite due to the presence of lubricating interfacial layer. The prepared composites were promising entities to be used in the field of sporting goods, construction materials and automobile industries.

  1. The mechanical properties measurement of multiwall carbon nanotube reinforced nanocrystalline aluminum matrix composite

    NASA Astrophysics Data System (ADS)

    Sharma, Manjula; Pal, Hemant; Sharma, Vimal

    2015-05-01

    Nanocrystalline aluminum matrix composite containing carbon nanotubes were fabricated using physical mixing method followed by cold pressing. The microstructure of the composite has been investigated using X-ray diffraction, scanning electron microscopy and energy dispersive spectroscopy techniques. These studies revealed that the carbon nanotubes were homogeneously dispersed throughout the metal matrix. The consolidated samples were pressureless sintered in inert atmosphere to further actuate a strong interface between carbon nanotubes and aluminum matrix. The nanoindentation tests carried out on considered samples showed that with the addition of 0.5 wt% carbon nanotubes, the hardness and elastic modulus of the aluminum matrix increased by 21.2 % and 2 % repectively. The scratch tests revealed a decrease in the friction coefficient of the carbon nanotubes reinforced composite due to the presence of lubricating interfacial layer. The prepared composites were promising entities to be used in the field of sporting goods, construction materials and automobile industries.

  2. Carbide coated fibers in graphites-aluminum composites. [(fabrication of metal matrix composites)

    NASA Technical Reports Server (NTRS)

    Imprescia, R. J.; Levinson, L. S.; Reiswig, R. D.; Wallace, T. C.; Williams, J. M.

    1976-01-01

    Research activities are described for a NASA-supported program at the Los Alamos Scientific Laboratory to develop graphite fiber-aluminum matrix composites. A chemical vapor deposition apparatus was constructed for continuously coating graphite fibers with TiC. As much as 150 meters of continuously coated fibers were produced. Deposition temperatures were varied from 1365 K to about 1750 K, and deposition time from 6 to 150 seconds. The 6 sec deposition time corresponded to a fiber feed rate of 2.54 m/min through the coater. Thin, uniform, adherent TiC coats, with thicknesses up to approximately 0.1 micrometer were produced on the individual fibers of Thornel 50 graphite yarns without affecting fiber strength. Although coat properties were fairly uniform throughout a given batch, more work is needed to improve the batch-to-batch reproducibility. Samples of TiC-coated Thornel 50 fibers were infiltrated with an aluminum alloy and hot-pressed in vacuum to produce small composite bars for flexure testing. Strengths as high as 90% of the rule-of-mixtures strength were achieved. Results of the examination of the fracture surfaces indicate that the bonding between the aluminum and the TiC-coated fibers is better than that achieved in a similar, commercially infiltrated material made with fibers having no observable surface coats. Several samples of Al-infiltrated, TiC-coated Thornel 50 graphite yarns, together with samples of the commercially infiltrated, uncoated fibers, were heated for 100 hours at temperatures near the alloy solidus. The TiC-coated samples appear to undergo less reaction than do the uncoated samples. Photomicrographs are shown.

  3. Degradation of Al/SiCp composites produced with rice-hull ash and aluminum cans.

    PubMed

    Escalera-Lozano, R; Gutiérrez, C A; Pech-Canul, M A; Pech-Canul, M I

    2008-01-01

    The use of recycling aluminum from beverage containers and rice-hull ash (RHA) offers to be an attractive alternative for the economic production of Al/SiCp composites. However, corrosion phenomena in the composites represent technological barriers yet to be resolved before they can be exploited to their full potential. A simple methodology involving characterization by XRD, SEM, EDX, FTIR and ICP was designed in order to investigate the causes of the rapid degradation in a humid environment of Al/SiCp composites produced with RHA and aluminum cans. Results reveal that the use of RHA was beneficial to avoid degradation through the formation and subsequent hydration of the Al4C3 phase. However with condensed moisture acting as an electrolyte, localized corrosion took place with aggressive damage manifested by the disintegration of the composite into a powdery mixture. The relevant corrosion mechanism was mainly attributed to microgalvanic coupling between the Mg2Si intermetallic compound and the matrix (although other phases such as SiC, Si, MgAl2O4 could also work as microcathodes). PMID:17320370

  4. Preparation of Aluminum Metal Matrix Composite with Novel In situ Ceramic Composite Particulates, Developed from Waste Colliery Shale Material

    NASA Astrophysics Data System (ADS)

    Venkata Siva, S. B.; Sahoo, K. L.; Ganguly, R. I.; Dash, R. R.; Singh, S. K.; Satpathy, B. K.; Srinivasarao, G.

    2013-08-01

    A novel method is adapted to prepare an in situ ceramic composite from waste colliery shale (CS) material. Heat treatment of the shale material, in a plasma reactor and/or in a high temperature furnace at 1673 K (1400 °C) under high vacuum (10-6 Torr), has enabled in situ conversion of SiO2 to SiC in the vicinity of carbon and Al2O3 present in the shale material. The composite has the chemical constituents, SiC-Al2O3-C, as established by XRD/EDX analysis. Particle sizes of the composite range between 50 nm and 200 μm. The shape of the particles vary, presumably rod to spherical shape, distributed preferably in the region of grain boundaries. The CS composite so produced is added to aluminum melt to produce Al-CS composite (12 vol. pct). For comparison of properties, the aluminum metal matrix composite (AMCs) is made with Al2O3 particulates (15 vol. pct) with size <200 μm. The heat-treated Al-CS composite has shown better mechanical properties compared to the Al-Al2O3 composite. The ductility and toughness of the Al-CS composite are greater than that of the Al-Al2O3 composite. Fractographs revealed fine sheared dimples in the Al-CS composite, whereas the same of the Al-Al2O3 composite showed an appearance of cleavage-type facets. Abrasion and frictional behavior of both the composites have been compared. The findings lead to the conclusion that the in situ composite developed from the colliery shale waste material has a good future for its use in AMCs.

  5. Fabrication and Analysis of the Wear Properties of Hot-Pressed Al-Si/SiCp + Al-Si-Cu-Mg Metal Matrix Composite

    NASA Astrophysics Data System (ADS)

    Bang, Jeongil; Oak, Jeong-Jung; Park, Yong Ho

    2016-01-01

    The aim of this study was to characterize microstructures and mechanical properties of aluminum metal matrix composites (MMC's) prepared by powder metallurgy method. Consolidation of mixed powder with gas atomized Al-Si/SiCp powder and Al-14Si-2.5Cu-0.5Mg powder by hot pressing was classified according to sintering temperature and sintering time. Sintering condition was optimized using tensile properties of sintered specimens. Ultimate tensile strength of the optimized sintered specimen was 228 MPa with an elongation of 5.3% in longitudinal direction. In addition, wear properties and behaviors of the sintered aluminum-based MMC's were analyzed in accordance with vertical load and linear speed. As the linear speed and vertical load of the wear increased, change of the wear behavior occurred in order of oxidation of Al-Si matrix, formation of C-rich layer, Fe-alloying to matrix, and melting of the specimen

  6. High-Temperature Fatigue of a Hybrid Aluminum Metal Matrix Composite

    NASA Astrophysics Data System (ADS)

    Clark, J. T.; Sanders, P. G.

    2014-01-01

    An aluminum metal matrix composite (MMC) brake drum was tested in fatigue at room temperature and extreme service temperatures. At room temperature, the hybrid composite did not fail and exceeded estimated vehicle service times. At higher temperatures (62 and 73 pct of the matrix eutectic), fatigue of a hybrid particle/fiber MMC exhibited failure consistent with matrix overloading. Overaging of the A356 matrix coupled with progressive fracture of the SiC particles combined to create the matrix overload condition. No evidence of macro-fatigue crack initiation or growth was observed, and the matrix-particle interface appeared strong with no debonding, visible matrix phases, or porosity. An effective medium model was constructed to test the hypothesis that matrix overloading was the probable failure mode. The measured particle fracture rate was fit using realistic values of the SiC Weibull strength and modulus, which in turn predicted cycles to failure within the range observed in fatigue testing.

  7. Interfacial shear strength estimates of NiTi-Al matrix composites fabricated via ultrasonic additive manufacturing

    NASA Astrophysics Data System (ADS)

    Hehr, Adam; Pritchard, Joshua; Dapino, Marcelo J.

    2014-03-01

    The purpose of this study is to understand and improve the interfacial shear strength of metal matrix composites fabricated via very high power (VHP) ultrasonic additive manufacturing (UAM). VHP-UAM NiTi-Al composites have shown a dramatic decrease in thermal expansion compared to Al, yet thermal blocking stresses developed during thermal cycling have been found to degrade and eventually cause interface failure. Consequently, to improve understanding of the interface and guide the development of stronger NiTi- Al composites, the interface strength was investigated through the use of single ber pullout tests. It was found that the matrix yielded prior to the interface breaking since adhered aluminum was consistently observed on all pullout samples. Additionally, measured pullout loads were utilized as an input to a nite element model for stress and shear lag analysis, which, in turn showed that the Al matrix experienced a peak shear stress near 230 MPa. This stress is above the Al matrix's ultimate shear strength of 150-200 MPa, thus this large stress corroborates with matrix failure observed during testing. The in uence of various ber surface treatments on bond mechanisms was also studied with scanning electron microscopy and energy dispersive X-ray spectroscopy.

  8. Stir mixing and pressureless infiltration synthesis of aluminum alloy metal matrix nanocomposites

    NASA Astrophysics Data System (ADS)

    Schultz, Benjamin Franklin

    2009-12-01

    Pressureless liquid metal infiltration of suitably packed compacts of spherical shaped 47 nm size 70:30 Delta:Gamma Al2O3 mixed with a 7/2 ratio of elemental Al and Mg powders was used to study (i) the kinetics of pressureless infiltration processing of Al2O 3 nanoparticle-A206 alloy composites, (ii) the optimal processing variables to maximize material property responses, (iii) the development of multimodal microstructures in terms of feature size. The major experimental variables included: infiltration temperature (850 to 950C), infiltration time (1--5 hours), and powder composition (0--50 wt% Al2O 3). All experiments were conducted under UHP nitrogen atmosphere. Under the conditions studied, compacts with a maximum of 20 wt% nanoparticles were successfully infiltrated with A206 alloy aluminum, and the degree of infiltration measured by the percentage of residual porosity depended on infiltration time, temperature and nanoparticle content. By examining responses including percent porosity, and macrohardness, empirical models for correlating processing conditions with material properties and microstructure were developed. The addition of increasing weight percentage of Al2O3 nanoparticles resulted in a decrease in the coefficient of thermal expansion greater than that predicted by the rule of mixtures due to the mechanical constraint of the nanoparticles on the matrix. Likewise, the damping capacity of the 10 wt% and 20 wt% reinforced nanocomposites increased with increasing weight percentage up to 280% greater than the base alloy. The key microstructural observations in the pressureless infiltrated composites include: (1) a bimodal structure of micro-scale grains, exhibiting Al-Cu-Mg precipitates dispersed within the grains; (2) amorphous and crystalline interfaces between the Al-alloy grains and the nanocomposite regions; (3) infiltrated nanoparticle agglomerates having nanoscale channels forming a nanoscale substructure; (4) mixed nanoscale reinforcements of 20 nm Al2MgO4 and 2 nm Cu 4O3. Heat treatment of the pressureless infiltrated specimens was not necessary, as Al2CuMg precipitate phases were observed in solution both inside the micro-scale grains and within the composite regions. Remelted and squeeze cast specimens of A206- 1 v% nanosize spinel exhibited a 19% increase in the hardness relative to the base alloy.

  9. Developing scandium and zirconium containing aluminum boron carbide metal matrix composites for high temperature applications

    NASA Astrophysics Data System (ADS)

    Lai, Jing

    The study presented in this thesis focuses on developing castable, precipitation-strengthened Al--B4C metal matrix composites (MMCs) for high temperature applications. In the first part, B4C plates were immersed in liquid aluminum alloyed with Sc, Zr and Ti to investigate the interfacial reactions between B4C and liquid aluminum The influences of Sc, Zr and Ti on the interfacial microstructure in terms of individual and combined additions were examined. Results reveal that all three elements reacted with B4C and formed interfacial layers that acted as a diffusion barrier to limit the decomposition of B4C in liquid aluminum. The interfacial reactions and the reaction products in each system were identified. With the combined addition of Sc, Zr and Ti, most of the Ti was found to enrich at the interface, which not only offered appropriate protection of the B4C but also reduced the consumption of Sc and Zr at the interface. In the second part, Sc and Zr were introduced into Al-15vol.% B 4C composites presaturated by Ti, and eight experimental composites with different Sc and Zr levels were prepared via a conventional casting technique. It was found that Sc was involved in the interfacial reactions with B 4C that partially consume Sc. The Sc addition yielded considerable precipitation strengthening in the as-cast and peak aged conditions. To achieve an equivalent strengthening effect of Sc in binary Al-Sc alloys, approximately double the amount of Sc is required in Al-B4C composites. On the contrary, no major Zr reaction products were found at the interfaces and the major part of Zr remained in the matrix for the precipitation strengthening. The combination of Sc and Zr enhanced sthe precipitation strengthening. Two kinds of nanoscale precipitates, Al3Sc and Al3(Sc, Zr), were found in the as-cast microstructure and contributed to the increase in the matrix hardness. In the third part, all the experimental composites were isothermally aged at 300, 350, 400 and 450°C after a homogenization/solution treatment. Results demonstrate that the addition of Sc generated a considerable precipitation hardening of the matrix of the composites for all aging temperatures applied. The precipitation hardening effect increased when increasing the Sc content and decreased with increase in aging temperature. The combination of alloying Sc and Zr in Al-B4C composites produced a remarkable synergistic effect. The addition of Zr provided not only a strength increase at peak aging but also an improvement of thermal stability. The composites with a high Zr:Sc ratio (≥1) showed excellent thermal stability of the strength up to 400°C. The overaging in these materials was delayed by ˜100°C compared with the Zr-free composites at the same Sc level. The precipitate volume fraction, the average radius and the size distribution of nanoscale Al3Sc and Al3(Sc,Zr) precipitates during the aging process were measured. The Al3(Sc,Zr) precipitates generally showed a much better coarsening resistance than the Al3Sc precipitates. In the fourth part, two experimental composites with 0.4wt.% Sc and 0.4wt.% Sc plus 0.24wt.% Zr 0were selected to examine the mechanical properties during long-term exposure (2000h) at elevated temperatures from 250 to 350°C. For long-term thermal stability, the mechanical properties of the Sc and Zr containing composite were stable up to 300°C, while the composite containing only Sc exhibited a good softening resistance up to 250°C. At higher temperatures the strengths of both composites decreased with prolonged annealing time. The reduction of the composites' mechanical properties during long-time annealing at higher temperatures was dominated by the precipitate coarsening. Finally, two experimental composites with 0.58wt.% Sc and 0.58wt.% Sc plus 0.24wt.% Zr, were respectively hot-rolled to a 2 mm thick sheet with a total reduction of 93%. Results indicate that the Sc- and Zr-containing composites possessed a good hot rolling processability. (Abstract shortened by UMI.)

  10. Applicability of ultrasonic testing for the determination of volume fraction of particulates in alumina-reinforced aluminum matrix composites

    SciTech Connect

    Fang, C.K.; Fang, R.L.; Weng, W.P.; Chuang, T.H.

    1999-10-01

    An ultrasonic testing technique was employed to determine the volume fraction of alumina particulate reinforcement in 6061 aluminum matrix composites. this study was performed on various composites with Al{sub 2}O{sub 3} nominal volume fractions of 10, 15, and 20%. For comparison, other techniques were employed as well, including the Archimedes method, metallographic image analysis, X-ray diffraction, and acid dissolution. Observations indicated that ultrasonic testing and acid dissolution methods are more reliable than the other techniques, while ultrasonic testing is faster than the acid dissolution method.

  11. Comparing addition of ZrO II particles in micron and nano scale on microstructure and mechanical behavior of aluminum-matrix composites produced by vortex route

    NASA Astrophysics Data System (ADS)

    Baghchesara, M. A.; Karimi, M.; Abdizadeh, H.; Baharvandi, H. R.

    2007-07-01

    Aluminum matrix composites are important engineering materials in automotive, aerospace and other applications because of their low weight, high specific strength and better physical and mechanical properties compared to pure aluminum. ZrO II particles as reinforcement were selected to add aluminum with micron and nano size. Al/ZrO II composites were produced by direct incorporation (vortex method) in different temperatures and 5 volume percents of ZrO II particles. Microstructure of the samples was studied by scanning electron microscopy (SEM). Chemical composition of the phases was studied by XRD. Hardness, and density of these composites were also measured. The microstructure and mechanical properties tests of composites and study the effect of particle size, resulted the better properties compared to matrix aluminum. Homogeneous dispersion of the reinforcement particles in the matrix aluminum was observed. The results show enhancing the composites properties for all samples compared to the monolithic alloy. However there are some differences in results because of particle size of ceramics and therefore differences between particles surface area. Maximum volume percent that can be added to A356 aluminum alloy is 5 vol.%, for nano ZrO II particles, but it seems that is more than 5 vol.% for micron particles. Increasing of viscosity, porosities and much more defects are caused by increasing volume percents and using smaller particles. The casting processing is difficult in these conditions. Furthermore, optimum temperatures of casting for micron and nano zirconia particles are not the same.

  12. TRANSCRIPTIONAL ANALYSIS BETWEEN TWO WHEAT NEAR-ISOGENIC LINES CONTRASTING IN ALUMINUM (AL) TOLERANCE UNDER AL STRESS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To understand the mechanisms of aluminum (Al) tolerance and identify genes responsible for Al tolerance in wheat (Triticum aestivum L.), suppression subtractive hybridization (SSH) libraries were constructed from Al-stressed roots for two wheat near- isogenic lines (NILs), Chisholm-T (Al-tolerant) a...

  13. Strengthening Aluminum Alloys for High Temperature Applications Using Nanoparticles of Al203 and Al3-X Compounds (X= Ti, V, Zr)

    NASA Technical Reports Server (NTRS)

    Lee, Jonathan A.

    2007-01-01

    In this paper the effect of nanoparticles A12O3 and A13-X compounds (X= Ti, V, Zr) on the improvement of mechanical properties of aluminum alloys for elevated temperature applications is presented. These nanoparticles were selected based on their chemical stability and low diffusions rates in aluminum matrix at high temperatures. The strengthening mechanism for aluminum alloy is based on the mechanical blocking of dislocation movements by these nanoparticles. Samples were prepared from A12O3 nanoparticle preforms, which were produced using ceramic injection molding process and pressure infiltrated by molten aluminum. A12O3 nanoparticles can also be homogeneously mixed with aluminum powder and consolidated into samples through hot pressing and sintering. On the other hand, the Al3-X nanoparticles are produced as precipitates via in situ reactions with molten aluminum alloys using conventional casting techniques. The degree of alloy strengthening using nanoparticles will depend on the materials, particle size, shape, volume fraction, and mean inter-particle spacing.

  14. Resonance Raman spectroscopy of mass selected Al2 in an argon matrix.

    PubMed

    Fang, L; Davis, B L; Lu, H; Lombardi, J R

    2001-12-01

    In an excitation range of 620-760 nm, resonance Raman spectra of aluminum dimers (Al2) in an argon matrix have been obtained for the first time. Temperature annealing experiments were performed to remove Raman lines attributed site effects caused by the Al2/Ar matrix. We observe a single fundamental at 293.3 (5) cm(-1) along with a progression up to 1149 (1) cm(-1). Taking successive differences of band centers we obtain spectroscopic constants for the ground state fundamental, w(e) = 297.5 (5) cm(-1), the anharmonicity, e(e)x(e) = 1.68 (8) cm(-1). Our results are in close agreement with previous experimental results for Al2 which designate the ground state as a 3piu state, and may be considered as confirmation of this assignment. PMID:11789882

  15. Laser processing of a SiC/Al-alloy metal matrix composite

    NASA Astrophysics Data System (ADS)

    Dahotre, Narendra B.; McCay, T. Dwayne; McCay, Mary Helen

    1989-06-01

    Preliminary studies were conducted on the laser processing of SiC/A356-Al alloy metal matrix composite (MMC) for such applications as welding/joining and cutting. The SiC/A356-Al MMC was processed using several different laser specific energies. Microstructural observations after laser processing revealed that the extent of reinforced material (SiC)-matrix (A356-Al) reaction is directly proportional to the laser energy input. As energy input increased, SiC particle dissolution became greater and aluminum carbide formation increased in both size and quantity. It appears possible to control substantial change (physical and chemical) in SiC particles during processing by controlling the amount and mode of energy input.

  16. Approach to In- Situ Producing Reinforcing Phase Within an Active-Transient Liquid Phase Bond Seam for Aluminum Matrix Composite

    NASA Astrophysics Data System (ADS)

    Zhang, Guifeng; Liao, Xianjin; Chen, Bo; Zhang, Linjie; Zhang, Jianxun

    2015-06-01

    To optimize the braze composition design route for aluminum matrix composite, the feasibility of in situ producing reinforcing phase within the transient liquid phase bond seam matrix, by adding active melting point increaser (MPI, e.g., Ti) together with general melting point depressant (MPD, e.g., Cu) into the interlayer, was demonstrated. For SiC p /A356 composite, by comparing the wettability, joint microstructure, joint shear strength, and fracture path for the developed Al-19Cu-1Ti, Al-19Cu, Al-33Cu-1Ti, Al-33Cu (wt pct), and commercial Cu foils as interlayer, the feasibility of in situ producing reinforcing phase within the bond seam by adding Ti was demonstrated. Especially for Al-19Cu-1Ti active braze, small and dispersed ternary aluminide of Al-Si-Ti phase was obtained within the bond seam as in situ reinforcement, leading to a favorable fracture path within SiC p /A356, not along the initial interface or within the bond seam. For the formation mechanism of the in situ reinforcing phase of MPI-containing intermetallic compound within the bond seam, a model of repeating concentration-precipitation-termination-engulfment during isothermal solidification is proposed.

  17. In-situ deformation studies of an aluminum metal-matrix composite in a scanning electron microscope

    NASA Technical Reports Server (NTRS)

    Manoharan, M.; Lewandowski, J. J.

    1989-01-01

    Tensile specimens made of a metal-matrix composite (cast and extruded aluminum alloy-based matrix reinforced with Al2O3 particulate) were tested in situ in a scanning electron microscope equipped with a deformation stage, to directly monitor the crack propagation phenomenon. The in situ SEM observations revealed the presence of microcracks both ahead of and near the crack-tip region. The microcracks were primarily associated with cracks in the alumina particles. The results suggest that a region of intense deformation exists ahead of the crack and corresponds to the region of microcracking. As the crack progresses, a region of plastically deformed material and associated microcracks remains in the wake of the crack.

  18. Radiofluorination using aluminum-fluoride (Al18F)

    PubMed Central

    2013-01-01

    Targeted agents are increasingly used for treating cancer and other diseases, but patients may need to be carefully selected to maximize the potential for therapeutic benefit. One way to select patients is to bind an imaging radionuclide to a targeting agent of interest, so that its uptake in specific sites of disease can be visualized by positron-emission tomography (PET) or single-photon emission computed tomography. 18F is the most commonly used radionuclide for PET imaging. Its half-life of approximately 2 h is suited for same-day imaging of many compounds that clear quickly from the body to allow visualization of uptake in the intended target. A significant impediment to its use, however, is the challenging coupling of 18F to a carbon atom of the targeting agent. Because fluorine binds to aluminum, we developed a procedure where the Al18F complex could be captured by a chelate, thereby greatly simplifying the way that imaging agents can be fluorinated for PET imaging. This article reviews our experience with this technology. PMID:23651690

  19. Fabrication of carbon nanofiber-reinforced aluminum matrix composites assisted by aluminum coating formed on nanofiber surface by in situ chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Ogawa, Fumio; Masuda, Chitoshi

    2015-01-01

    The van der Waals agglomeration of carbon nanofibers (CNFs) and the weight difference and poor wettability between CNFs and aluminum hinder the fabrication of dense CNF-reinforced aluminum matrix composites with superior properties. In this study, to improve this situation, CNFs were coated with aluminum by a simple and low-cost in situ chemical vapor deposition (in situ CVD). Iodine was used to accelerate the transport of aluminum atoms. The coating layer formed by the in situ CVD was characterized using scanning electron microscopy, transmission electron microscopy, x-ray diffraction, Fourier transform-infrared spectroscopy, and x-ray photoelectron spectroscopy. The results confirmed that the CNFs were successfully coated with aluminum. The composites were fabricated to investigate the effect of the aluminum coating formed on the CNFs. The dispersion of CNFs, density, Vickers micro-hardness and thermal conductivity of the composites fabricated by powder metallurgy were improved. Pressure-less infiltration experiments were conducted to fabricate composites by casting. The results demonstrated that the wettability and infiltration were dramatically improved by the aluminum coating layer on CNFs. The aluminum coating formed by the in situ CVD technique was proved to be effective for the fabrication of CNF-reinforced aluminum matrix composites.

  20. Particle denuded zones in alumina reinforced aluminum matrix composite weldments

    SciTech Connect

    Chidambaram, A.; Bhole, S.D.

    1996-08-01

    The Welding Institute of Canada (WIC), Ontario, has been studying the weldability of different DURALCAN MMC`s. Research on alumina reinforced (20 vol.%) 6061 Al alloy GTA welds showed satisfactory tensile and yield strengths (0.2% Proof Stress) but the welds failed to pass the bend test requirements with fracture taking place in the relatively brittle heat affected zone (HAZ). Further, the welds were characterized by a region which was devoid of reinforcement particles adjacent to the fusion lines. The present study was undertaken to try and explain the formation of this particle denuded zone (PDZ) at the fusion lines.

  1. Novel Aluminum (Al)-Carbon Nanotube (CNT) Open-Cell Foams

    NASA Astrophysics Data System (ADS)

    Morsi, K.; Krommenhoek, Max; Shamma, Mohamed

    2016-06-01

    This paper presents for the first time the processing of aluminum (Al)-carbon nanotube (CNT) open-cell foams. Al-2wt pct CNT and Al foams were successfully produced using a spark plasma sintering and dissolution process. Al-CNT foams with porosity levels of ~78 pct were produced. The mechanical response of the open-cell foams reveals initial evidence of enhanced damage tolerance of Al-CNT foams over Al foams produced in this study.

  2. Novel Aluminum (Al)-Carbon Nanotube (CNT) Open-Cell Foams

    NASA Astrophysics Data System (ADS)

    Morsi, K.; Krommenhoek, Max; Shamma, Mohamed

    2016-03-01

    This paper presents for the first time the processing of aluminum (Al)-carbon nanotube (CNT) open-cell foams. Al-2wt pct CNT and Al foams were successfully produced using a spark plasma sintering and dissolution process. Al-CNT foams with porosity levels of ~78 pct were produced. The mechanical response of the open-cell foams reveals initial evidence of enhanced damage tolerance of Al-CNT foams over Al foams produced in this study.

  3. The Influence of Al4C3 Nanoparticles on the Physical and Mechanical Properties of Metal Matrix Composites at High Temperatures

    NASA Astrophysics Data System (ADS)

    Vorozhtsov, S.; Kolarik, V.; Promakhov, V.; Zhukov, I.; Vorozhtsov, A.; Kuchenreuther-Hummel, V.

    2016-03-01

    Metal matrix composites (MMC) based on aluminum and reinforced with nonmetallic particles are of great practical interest due to their potentially high physico-mechanical properties. In this work, Al-Al4C3 composites were obtained by a hot-compacting method. Introduction of nanodiamonds produced by detonation to the Al powder in an amount of 10 wt.% led to the formation of ~15 wt.% of aluminum carbide during hot compacting. It was found that composite materials with the diamond content of 10 wt.% in the initial powder mix have an average microhardness of 1550 MPa, whilst the similarly compacted aluminum powder without reinforcing particles shows a hardness of 750 MPa. The mechanical properties of an Al-Al4C3 MMC at elevated test temperatures exceeded those of commercial casting aluminum alloys such as A356.

  4. The Influence of Al4C3 Nanoparticles on the Physical and Mechanical Properties of Metal Matrix Composites at High Temperatures

    NASA Astrophysics Data System (ADS)

    Vorozhtsov, S.; Kolarik, V.; Promakhov, V.; Zhukov, I.; Vorozhtsov, A.; Kuchenreuther-Hummel, V.

    2016-05-01

    Metal matrix composites (MMC) based on aluminum and reinforced with nonmetallic particles are of great practical interest due to their potentially high physico-mechanical properties. In this work, Al-Al4C3 composites were obtained by a hot-compacting method. Introduction of nanodiamonds produced by detonation to the Al powder in an amount of 10 wt.% led to the formation of ~15 wt.% of aluminum carbide during hot compacting. It was found that composite materials with the diamond content of 10 wt.% in the initial powder mix have an average microhardness of 1550 MPa, whilst the similarly compacted aluminum powder without reinforcing particles shows a hardness of 750 MPa. The mechanical properties of an Al-Al4C3 MMC at elevated test temperatures exceeded those of commercial casting aluminum alloys such as A356.

  5. B-spline R-matrix with pseudostates calculations for electron-impact excitation and ionization of aluminum

    NASA Astrophysics Data System (ADS)

    Zatsarinny, Oleg; Bartschat, Klaus; Gedeon, Viktor; Gedeon, Sergej; Lazur, Vladimir; Nagy, Elizabeth

    2015-09-01

    A systematic study of angle-integrated cross sections for electron scattering from neutral aluminum is reported. The calculations, carried out with our B-spline R-matrix with Pseudo-States (BSRMPS) method, cover elastic scattering, ionization, and excitation of the 14 states (3s2 np) 2Po (n = 3 - 6) , (3s2 ns) 2 S (n = 4 - 6) , (3s2 nd) 2 D (n = 3 , 4) , (3 s 3p2) 4 , 2 P ,2 D ,2 S , and (3s2 4 f) 2Fo of aluminum. The sensitivity of the predictions is checked by comparing results obtained in different approximations, including a large-scale model with over 500 continuum pseudo-states in the close-coupling expansion. The current results represent an extensive, effectively complete, and highly accurate (believed to be within a few percent) set of electron collision data for neutral aluminum, which is readily suitable for modelling applications. This work was supported by the United States National Science Foundation under grants PHY-0903818 and PHY-1212450, and by the XSEDE supercomputer al- location PHY-090031.

  6. Macro-model for Development of Al-Al2O3 Metal Matrix Composite with Vacuum Moulding: Designed Experiments

    NASA Astrophysics Data System (ADS)

    Singh, R.; Singh, J.; Singh, Jagdev

    2012-10-01

    Aluminum matrix composites (AMC) have many potential engineering applications. Not much work hitherto has been reported for development of AMC with vacuum moulding (VM). In this work; Al-Al2O3, AMC has been developed with VM. The study highlights the effect of input parameters like: moulding sand, vacuum pressure and component volume on properties of AMC produced by the VM. An approach to macro-model the hardness and dimensional accuracy during development of AMC has been proposed and applied. Relationship between hardness, dimensional accuracy and other parameters have been deduced by using Taguchi technique L9 OA for industrial applications. The comparison with experimental results will also serve as a future validation of the model.

  7. Part I. Corrosion studies of continuous alumina fiber reinforced aluminum-matrix composites. Part II. Galvanic corrosion between continuous alumina fiber reinforced aluminum-matrix composites and 4340 steel

    NASA Astrophysics Data System (ADS)

    Zhu, Jun

    Part I. The corrosion performance of continuous alumina fiber reinforced aluminum-matrix composites (CF-AMCs) was investigated in both the laboratory and field environments by comparing them with their respective monolithic matrix alloys, i.e., pure Al, A1-2wt%Cu T6, and Al 6061 T6. The corrosion initiation sites were identified by monitoring the changes in the surface morphology. Corrosion current densities and pH profiles at localized corrosion sites were measured using the scanning-vibrating electrode technique and the scanning ion-selective electrode technique, respectively. The corrosion damage of the materials immersed in various electrolytes, as well as those exposed in a humidity chamber and outdoor environments, was evaluated. Potentiodynamic polarization behavior was also studied. The corrosion initiation for the composites in 3.15 wt% NaCl occurred primarily around the Fe-rich intermetallic particles, which preferentially existed around the fiber/matrix interface on the composites. The corrosion initiation sites were also caused by physical damage (e.g., localized deformation) to the composite surface. At localized corrosion sites, the buildup of acidity was enhanced by the formation of micro-crevices resulting from fibers left in relief as the matrix corroded. The composites that were tested in exposure experiments exhibited higher corrosion rates than their monolithic alloys. The composites and their monolithic alloys were subjected to pitting corrosion when anodically polarized in the 3.15 wt% NaCl, while they passivated when anodically polarized in 0.5 M Na2SO4. The experimental results indicated that the composites exhibited inferior corrosion resistance compared to their monolithic matrix alloys. Part II. Galvanic corrosion studies were conducted on CF-AMCs coupled to 4340 steel since CF-AMCs have low density and excellent mechanical properties and are being considered as potential jacketing materials for reinforcing steel gun barrels. Coupled and uncoupled coupons were immersed in various electrolytes, exposed to a humidity chamber, and exposed at outdoor test sites. Results showed that the corrosion rates of the CF-AMCs increased, while those of the 4340 steel decreased after being coupled together, in most cases. Crevice corrosion was also observed in these exposure experiments. Zero resistance ammeter (ZRA) experiments were conducted to record the galvanic-corrosion rates and potentials of the couples. The CF-AMCs were found to serve as anodes, while the steel was cathodic, in most test conditions. Galvanic performance predicted by polarization experiments was in close agreement with the ZRA results. Key words. Aluminum, metal-matrix composites, alumina fiber, pitting corrosion, galvanic corrosion.

  8. First principles predictions of intrinsic defects in aluminum arsenide, AlAs : numerical supplement.

    SciTech Connect

    Schultz, Peter Andrew

    2012-04-01

    This Report presents numerical tables summarizing properties of intrinsic defects in aluminum arsenide, AlAs, as computed by density functional theory. This Report serves as a numerical supplement to the results published in: P.A. Schultz, 'First principles predictions of intrinsic defects in Aluminum Arsenide, AlAs', Materials Research Society Symposia Proceedings 1370 (2011; SAND2011-2436C), and intended for use as reference tables for a defect physics package in device models.

  9. Molecular characterization of Atlas 66 derived wheat near-isogenic lines contrasting in Aluminum (Al) tolerance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aluminum (Al) toxicity is the major limiting factors for wheat growth in acidic soils. Genetic improvement of Al tolerance is one of the most cost-effective solutions to improve wheat productivity. The objective of this study was to identify DNA markers associated with the Al-tolerance in wheat usin...

  10. Interfacial Reactions at Elevated Temperatures in New Low-Cost AL/SiC Metal Matrix Composite

    SciTech Connect

    Grant, Glenn J.; Mccready, David E.; Herling, Darrell R.; Smith, M. T.

    2001-08-21

    The mechanical properties of Metal Matrix Composites (MMCs) are strongly affected by the quality of the bond between the matrix and the reinforcing particle. In aluminum MMCs reinforced with SiC particles, the particle/matrix interface can be degraded at high temperature by the formation of aluminum carbide and aluminum/magnesium oxides. The temperature that these reactions occur at is an important process limit during melting, casting, and eventual product recycling. Recently, lower cost Al/SiC MMCs have become available that utilize less well-graded particulate and a unique rapid-mixing technique. However, as a result of the relaxed control on the particle size fraction, a significantly larger percentage of the particulate is found in the finer size ranges. This leads to an increase in the interface area between the SiC particles and the aluminum melt, and raises the possibility that detrimental aluminum carbide and oxide reactions could occur at lower temperatures, or lower time-at-temperature, than in current commercial products. In this study, we quantify by conventional, and in-situ liquid metal XRD, the time-temperature relationship for interfacial carbide/oxide formation, and compare commercially available MMC materials to MMC material produced from less well-graded SiC particulate.

  11. Effect of microstructure and notch root radius on fracture toughness of an aluminum metal matrix composite

    NASA Technical Reports Server (NTRS)

    Manoharan, M.; Lewandowski, J. J.

    1989-01-01

    Recent results on the effects of matrix aging condition (matrix temper) and notch root radius on the measured fracture toughness of a SiC particulate reinforced aluminum alloy are reviewed. Stress intensity factors at catastrophic fracture were obtained for both underaged and overaged composites reveal. The linear relation found between apparent fracture toughness and the square root of the notch root radius implies a linear dependence of the crack opening displacement on the notch root radius. The results suggest a strain controlled fracture process, and indicate that there are differences in the fracture micromechanisms of the two aging conditions.

  12. Effect of Metal Matrix Alloying on Mechanical Strength of Diamond Particle-Reinforced Aluminum Composites

    NASA Astrophysics Data System (ADS)

    Zhang, Hailong; Wu, Jianhua; Zhang, Yang; Li, Jianwei; Wang, Xitao

    2015-06-01

    Diamond particle-reinforced Al matrix (Al/diamond) composites were produced by a gas pressure infiltration method, where 0.5-4.0 wt.% Ti was added to Al matrix. An interfacial TiC layer of about 2 μm thickness was formed between Al and diamond at 4.0 wt.% Ti addition. The mechanical properties of the Al/diamond composites were enhanced by both the formation of interfacial layer and the strengthening of the matrix. The mechanical strength increased with increasing alloying Ti content, and a tensile strength of 153 MPa was obtained at 4.0 wt.% Ti addition. The tensile flow stress of the composites was found to be in broad agreement with the prediction of the Mori-Tanaka model. The effect of interfacial layer on mechanical properties provides guideline for the production of mechanically reliable Al/diamond composites.

  13. Tribological properties of aluminum alloy matrix TiB{sub 2} composite prepared by in situ processing

    SciTech Connect

    Caracostas, C.A.; Chiou, W.A.; Fine, M.E.; Cheng, H.S.

    1997-02-01

    Due to the low weight, high strength and stiffness, and enhanced wear resistance of particulate-reinforced aluminum-based metal matrix composites (MMCs), the automotive industry has identified a number of applications for these materials. An investigation of the wear behavior, in lubricated sliding and rolling of in situ prepared TiB{sub 2} particle-reinforced 2024 T4 Al alloy matrix composites against 52100 steel and hardened pearlitic modular cast iron, respectively, was undertaken. In sliding contact, the 10 vol pct 0.3-{micro}m TiB{sub 2}-metal matrix composite (MMC) showed slightly less wear than the 10 vol pct 1.3 {micro}m TiB{sub 2}-MMC. Transmission electron microscopy of cross sections, taken normal to the wear track and parallel to the sliding direction, revealed that the TiB{sub 2} particles on the wear track were polished and particle pullout was largely absent. This was attributed to the strong interfacial bonding between the Al-alloy matrix and the TiB{sub 2} reinforcing phase. In rolling contact, the 0.3-{micro}m-size TiB{sub 2}-MMC showed 5 times higher weight loss than the 1.3-{micro}m TiB{sub 2}-MMC for the same content of reinforcement, but the weight loss of the cast iron mating surface was less for the former. For the smaller particle size, the wear of 5 and 10 vol pct TiB{sub 2}-MMCs was the same. A high density of surface cracks was present on the wear track of the 0.3-{micro}m TiB{sub 2}-MMC but not on the 1.3-{micro}m MMC. The significance of strong particle/matrix interfacial bonding and particle size effect on the wear behavior of ceramic particulate-reinforced MMCs in lubricated sliding and rolling wear is discussed.

  14. H₂O Dissociation-Induced Aluminum Oxide Growth on Oxidized Al(111) Surfaces.

    PubMed

    Liu, Qianqian; Tong, Xiao; Zhou, Guangwen

    2015-12-01

    The interaction of water vapor with amorphous aluminum oxide films on Al(111) is studied using X-ray photoelectron spectroscopy to elucidate the passivation mechanism of the oxidized Al(111) surfaces. Exposure of the aluminum oxide film to water vapor results in self-limiting Al2O3/Al(OH)3 bilayer film growth via counter-diffusion of both ions, Al outward and OH inward, where a thinner starting aluminum oxide film is more reactive toward H2O dissociation-induced oxide growth because of the thickness-dependent ionic transport in the aluminum oxide film. The aluminum oxide film exhibits reactivity toward H2O dissociation in both low-vapor pressure [p(H2O) = 1 × 10(-6) Torr] and intermediate-vapor pressure [p(H2O) = 5 Torr] regimes. Compared to the oxide film growth by exposure to a p(H2O) of 1 × 10(-6) Torr, the exposure to a p(H2O) of 5 Torr results in the formation of a more open structure of the inner Al(OH)3 layer and a more compact outer Al2O3 layer, demonstrating the vapor-pressure-dependent atomic structure in the passivating layer. PMID:26550986

  15. The effect of reinforcement stability on composition redistribution in cast aluminum metal matrix composites

    SciTech Connect

    Lucas, J.P.; Yang, N.Y.C. ); Stephens, J.J.; Greulich, F.A. )

    1990-05-01

    The microstructure has been characterized in cast Al-7Si metal matrix composites containing either SiC or B{sub 4}C particulate reinforcement. Also, particulate/matrix interfacial precipitation reactions were extensively examined in these composites. The type of reinforcement was shown to have a profound effect on interfacial precipitation, elemental composition distribution and the as-cast and solution treated and aged microstructure of the matrix alloy. The stability of SiC particulates in the A356 matrix alloy was substantially greater in comparison to highly reactive B{sub 4}C particulates. Electron microprobe (EMP), SEM, and STEM were used to identify and analyze phases associated with the bulk matrix microstructure and the particulate/matrix interfacial reaction zones. Essentially no reaction products were observed at the interface of SiC particulates. In sharp contrast, an extensive reaction products zone was observed at the interface and in regions near the B{sub 4}C reinforcement. The extensive matrix/reinforcement reactions caused selective partitioning of matrix alloying elements, thereby modifying the matrix microstructure in the composites by compositional redistribution in the matrix. Boron carbide significantly modified the matrix microstructure of the composite, whereas the matrix containing silicon carbide particulates remained essentially unchanged. 14 refs., 9 figs., 4 tabs.

  16. Mechanical Properties of Aluminum Matrix Composite Reinforced by Carbothermally Reduced of Fly Ash

    SciTech Connect

    Jamasri; Wildan, M. W.; Sulardjaka; Kusnanto

    2011-01-17

    The addition of fly ash into aluminum as reinforcement can potentially reduce the production cost and density of aluminum. However, mechanical properties of aluminum matrix composite reinforced by fly ash (MMC ALFA) have some limitations due to the characteristic of fly ash. In this study, a carbothermal reduction process of fly ash and activated carbon powder with particle size <32 {mu}m was performed prior to produce MMC ALFA.The process was carried out in a furnace at 1300 deg. C in vacuum condition under argon flow. Synthesis product was analyzed by XRD with Cu-K{sub {alpha}} radiation. From XRD analysis, it shows that the synthesis process can produce SiC powder. The synthesis product was subsequently used as reinforcement particle. Aluminum powder was mixed with 5, 10 and 15% of the synthesized powder, and then uni-axially compacted at pressure of 300 MPa. The compacted product was sintered for 2 hours in argon atmosphere at temperature variation of 550 and 600 deg. C. Flexural strength, hardness and density of MMC ALFA's product were respectively evaluated using a four point bending test method based on ASTM C1161 standard, Brinell hardness scale and Archimedes method. The result of this study shows that the increase of weight of reinforcement can significantly increase the hardness and flexural strength of MMCs. The highest hardness and flexural strength of the MMC product are 300 kg/mm{sup 2} and 107.5 MPa, respectively.

  17. Mechanical Properties of Aluminum Matrix Composite Reinforced by Carbothermally Reduced of Fly Ash

    NASA Astrophysics Data System (ADS)

    Jamasri, Wildan, M. W.; Sulardjaka, Kusnanto

    2011-01-01

    The addition of fly ash into aluminum as reinforcement can potentially reduce the production cost and density of aluminum. However, mechanical properties of aluminum matrix composite reinforced by fly ash (MMC ALFA) have some limitations due to the characteristic of fly ash. In this study, a carbothermal reduction process of fly ash and activated carbon powder with particle size <32 μm was performed prior to produce MMC ALFA. The process was carried out in a furnace at 1300° C in vacuum condition under argon flow. Synthesis product was analyzed by XRD with Cu-Kα radiation. From XRD analysis, it shows that the synthesis process can produce SiC powder. The synthesis product was subsequently used as reinforcement particle. Aluminum powder was mixed with 5, 10 and 15% of the synthesized powder, and then uni-axially compacted at pressure of 300 MPa. The compacted product was sintered for 2 hours in argon atmosphere at temperature variation of 550 and 600° C. Flexural strength, hardness and density of MMC ALFA's product were respectively evaluated using a four point bending test method based on ASTM C1161 standard, Brinell hardness scale and Archimedes method. The result of this study shows that the increase of weight of reinforcement can significantly increase the hardness and flexural strength of MMCs. The highest hardness and flexural strength of the MMC product are 300 kg/mm2 and 107.5 MPa, respectively.

  18. Friction Stir Welding of SiC/Aluminum Metal Matrix Composites

    NASA Technical Reports Server (NTRS)

    Lee, Jonathan A.

    1999-01-01

    Friction Stir Welding (FSW) is a new solid state process for joining metals by plasticizing and consolidating materials around the bond line using thermal energy producing from frictional forces. A feasibility study for FSW of Metal Matrix Composites (MMC) was investigated using aluminum 6092 alloy reinforced with 17% SiC particulates. FSW process consists of a special rotating pin tool that is positioned to plunge into the MMC surface at the bond line. As the tool rotates and move forward along the bond line, the material at the bond line is heated up and forced to flow around the rotating tip to consolidate on the tip's backside to form a solid state joint. FSW has the potential for producing sound welds with MMC because the processing temperature occurs well below the melting point of the metal matrix; thereby eliminating the reinforcement-to-matrix solidification defects, reducing the undesirable chemical reactions and porosity problems.

  19. Laser and electron beam welding of SiC[sub p] reinforced aluminum A-356 metal matrix composite

    SciTech Connect

    Lienert, T.J.; Lippold, J.C. ); Brandon, E.D. )

    1993-06-01

    This paper details the results of a comparative study of laser and electron beam welding of a cast aluminum metal-matrix composite (Al-MMC) reinforced with SiC particles (SiC[sub p]). Electron beam welding of 15% SiC[sub p] A356-MMC produces much less deleterious Al[sub 4]C[sub 3] than CO[sub 2] laser beam welding at the same input powers and travel speeds. The advantage of EB welding of 15% SiC[sub p] A356-MMC relative to laser beam welding due to the different mechanisms of energy absorption by the substrate material for the two processes. During laser beam welding, the SiC particles are dissolved into a homogeneous solution of liquid Al, Si, and C at high temperatures, and the Al[sub 4]C[sub 3] subsequently precipitates from this solution on cooling. During EB welding of SiC[sub p] Al-MMCs, neither phase preferentially absorbs the energy of the electrons, and heating is more uniform than with laser beam welding. As a result of the uniform heat transfer to each phase, dissolution and decomposition of the SiC is limited and little Al[sub 4]C[sub 3] is formed. It is recommended that sharp focus of the electron beam and high travel speeds be used to minimize Al[sub 4]C[sub 3] formation. The results of this study can be more broadly interpreted to suggest that other high melting efficiency welding processes that allow for rapid welding cycles and minimal superheating can also be used to join SiC[sub p] Al-MMCs as long as the process is compatible with the material.

  20. High temperature dynamic modulus and damping of aluminum and titanium matrix composites

    NASA Technical Reports Server (NTRS)

    Dicarlo, J. A.; Maisel, J. E.

    1979-01-01

    Dynamic modulus and damping capacity property data were measured from 20 to over 500 C for unidirectional B/Al (1100), B/Al (6061), B/SiC/Al (6061), Al2O3/Al, SiC/Ti-6Al-4V, and SiC/Ti composites. The measurements were made under vacuum by the forced vibration of composite bars at free-free flexural resonance near 2000 Hz and at amplitudes below 0.000001. Whereas little variation was observed in the dynamic moduli of specimens with approximately the same fiber content (50 percent), the damping of B/Al composites was found at all temperatures to be significantly greater than the damping of the Al2O3/Al and SiC/Ti composites. For those few situations where slight deviations from theory were observed, the dynamic data were examined for information concerning microstructural changes induced by composite fabrication and thermal treatment. The 270 C damping peak observed in B/Al (6061) composites after heat treatment above 460 C appears to be the result of a change in the 6061 aluminum alloy microstructure induced by interaction with the boron fibers. The growth characteristics of the damping peak suggest its possible value for monitoring fiber strength degration caused by excess thermal treatment during B/Al (6061) fabrication and use.

  1. Calculation-experimental study of the phase composition of Al-Zn-Mg-(Cu)-Ni-Fe aluminum alloys

    NASA Astrophysics Data System (ADS)

    Akopyan, T. K.; Belov, N. A.; Alabin, A. N.; Zlobin, G. S.

    2013-07-01

    To optimize the compositions of new high-strength aluminum ATs7NZh and ATs6N0.5Zh alloys (economically alloyed nikalins), the thermodynamic optimization of the Al-Zn-Mg-Cu-Ni-Fe system is performed via the construction of polythermal sections and the calculation of the chemical composition and volume fraction of phases at characteristic temperatures. The concentrations of the matrix elements (Zn, Mg, Cu) that determine the high level of mechanical properties are shown to be 6-7 wt % Zn, 2-3 wt % Mg, and up to 0.3 wt % Cu. The concentrations of the eutectic-forming elements (Ni, Fe) that ensure the solidification of (Al) + Al9FeNi eutectic are determined. This eutectic favors an increase in the manufacturing properties of the alloys during casting, metal forming, and welding along with a retained high level of the mechanical properties. In general, experimental results confirm the calculated data.

  2. Characterization of Al30 in commercial poly-aluminum chlorohydrate by solid-state (27)Al NMR spectroscopy.

    PubMed

    Phillips, Brian L; Vaughn, John S; Smart, Scott; Pan, Long

    2016-08-15

    Investigation of commercially produced hydrolysis salts of aluminum by solid-state (27)Al NMR spectroscopy and size-exclusion chromatography (SEC) reveals well-defined and distinct Al environments that can be related to physicochemical properties. (27)Al MAS and MQ-MAS NMR spectroscopic data show that the local structure of the solids is dominated by moieties that closely resemble the Al30 polyoxocation (Al30O8(OH)56(H2O)26(18+)), accounting for 72-85% of the total Al. These Al30-like clusters elute as several size fractions by SEC. Comparison of the SEC and NMR results indicates that the Al30-like clusters includes intact isolated clusters, moieties of larger polymers or aggregates, and possibly fragments resembling δ-Al13 Keggin clusters. The coagulation efficacy of the solids appears to correlate best with the abundance of intact Al30-like clusters and of smaller species available to promote condensation reactions. PMID:27232539

  3. Corrosion behavior of squeeze-cast-aluminum metal-matrix composites. Final report

    SciTech Connect

    Agarwala, V.S.; Fabiszewski, A.S.

    1991-12-01

    Corrosion behavior of metal matrix composites (MMC) vary greatly with the reinforcement material type, processing conditions and methods of fabrication into engineering parts. The corrosion susceptibilities for the MMC arise from the segregations of the reinforcement material during fluid flow (extrusion) and/or processing, and from the resulting compositional differences in the alloy, the matrix material. These differences sets-up galvanic cells and cause preferential corrosion. The metal matrix composites studied were Al 6061/Al2O3 and Al 356/SiC. In particular, the effects of near-net-shape processing called squeeze casting (solidification of liquid under pressure) was investigated. The results showed that regions which were clustered with SiC or (Al203)Oi were microstructurally sensitive to preferential corrosion. Electrochemical-potentiodynamic polarization and controlled potential corrosion behavior measurements were made and related to microstructural segregation through metallographic optical microscopic analysis.

  4. In-Situ Synthetic TiB2 Particulate Reinforced Metal Matrix Composite Coating on AA2024 Aluminum Alloy by Laser Cladding Technology

    NASA Astrophysics Data System (ADS)

    Xu, Jiang; Kan, Yide; Liu, Wenjin

    In order to improve the wear resistance of aluminum alloy, in-situ synthesized TiB2 and Ti3B4 peritectic composite particulate reinforced metal matrix composite, formed on a 2024 aluminum alloy by laser cladding with a powder mixture of Fe-coated Boron, Ti and Al, was successfully achieved using 3-KW CW CO2 laser. The chemical composition, microstructure and phase structure of the composite clad coating were analyzed by energy dispersive X-ray spectroscopy (EDX), SEM, AFM and XRD. The typical microstructure of the composite coating is composed of TiB2, Ti3B4, Al3Ti, Al3Fe and ?-Al. The surface hardness of cladding coating increases with the amount of added Fe-coated B and Ti powder which determines the amount of TiB2 and Ti3B4 peritectic composite particulate. The nanohardness and the elastic modulus at the interface of the TiB2 and Ti3B4 peritectic composite particulate/matrix were investigated using the nanoindentation technique. The results showed that the nanohardness and the reduced elastic modulus from the peritectic composite particulate to the matrix is a gradient distribution.

  5. Development of an electronic device quality aluminum antimonide (AlSb) semiconductor for solar cell applications

    SciTech Connect

    Sherohman, John W; Yee, Jick Hong; Combs, III, Arthur W

    2014-11-11

    Electronic device quality Aluminum Antimonide (AlSb)-based single crystals produced by controlled atmospheric annealing are utilized in various configurations for solar cell applications. Like that of a GaAs-based solar cell devices, the AlSb-based solar cell devices as disclosed herein provides direct conversion of solar energy to electrical power.

  6. Wetting and Reaction Characteristics of Al2O3/SiC Composite Refractories By Molten Aluminum and Aluminum Alloy

    SciTech Connect

    Hemrick, James Gordon; Xu, Jing; Peters, Klaus-Markus; Liu, Xingbo; Barbero, Ever J

    2007-01-01

    The reactive wetting behavior in molten aluminum (Al) and Al alloy was investigated for alumina-silicon carbide composite refractory materials using an optimized sessile drop method at 900oC in a purified Ar-4% H2 atmosphere. The time dependent behavior of the contact angle and drop geometry was monitored and the wetting kinetics were determined. The initial contact angle between the liquid Al/Al alloy and the refractory substrates was found to be greater than 90 and to gradually decrease with time. For two of the materials, it was found that the contact angles decreased to and angle less than 90 by the end of the two-hour test. For the third material, the contact angle was still greater than 90 at the conclusion of the two-hour test. The difference in wetting properties among the three types of refractories is attributed to their microstructural and compositional variations. The effect of magnesium in the molten Al alloy drops on the wetting kinetics and the reaction with the refractory substrates are also discussed. The results obtained provide important understanding of the wetting and corrosion mechanisms of alumina and silicon carbide materials in contact with molten aluminum.

  7. The effect of grain size on aluminum anodes for Al-air batteries in alkaline electrolytes

    NASA Astrophysics Data System (ADS)

    Fan, Liang; Lu, Huimin

    2015-06-01

    Aluminum is an ideal material for metallic fuel cells. In this research, different grain sizes of aluminum anodes are prepared by equal channel angular pressing (ECAP) at room temperature. Microstructure of the anodes is examined by electron backscatter diffraction (EBSD) in scanning electron microscope (SEM). Hydrogen corrosion rates of the Al anodes in 4 mol L-1 NaOH are determined by hydrogen collection method. The electrochemical properties of the aluminum anodes are investigated in the same electrolyte using electrochemical impedance spectroscopy (EIS) and polarization curves. Battery performance is also tested by constant current discharge at different current densities. Results confirm that the electrochemical properties of the aluminum anodes are related to grain size. Finer grain size anode restrains hydrogen evolution, improves electrochemical activity and increases anodic utilization rate. The proposed method is shown to effectively improve the performance of Al-air batteries.

  8. Al-Fe-Ni (Aluminum-Iron-Nickel)

    SciTech Connect

    Raghavan, V.

    1994-08-01

    [88Ray] reviewed the experimental results on the phase equilibria of this system. The reviewed results were presented as: (1) liquidus and solidus projections for Al-poor Fe-Ni alloys and for compositions near the Al-corner; (2) a reaction sequence for the solidification reactions; (3) isothermal sections at 1250, 950, 850, and 750{degrees}C for Al-poor Fe-Ni compositions; and (4) an isothermal section at 600{degrees}C near the Al-corner.

  9. On Poisson's ratio for metal matrix composite laminates. [aluminum boron composites

    NASA Technical Reports Server (NTRS)

    Herakovich, C. T.; Shuart, M. J.

    1978-01-01

    The definition of Poisson's ratio for nonlinear behavior of metal matrix composite laminates is discussed and experimental results for tensile and compressive loading of five different boron-aluminum laminates are presented. It is shown that there may be considerable difference in the value of Poisson's ratio as defined by a total strain or an incremental strain definition. It is argued that the incremental definition is more appropriate for nonlinear material behavior. Results from a (0) laminate indicate that the incremental definition provides a precursor to failure which is not evident if the total strain definition is used.

  10. Wear products that form during tribological tests of aluminum-matrix composite materials

    NASA Astrophysics Data System (ADS)

    Kalashnikov, I. E.; Bolotova, L. K.; Kobeleva, L. I.; Bykov, P. A.; Kolmakov, A. G.

    2015-04-01

    The wear products and the friction surfaces of the composite materials fabricated by reactive casting after the addition of commercial-purity aluminum AD1, titanium and nickel powders, and nanosized modifiers to a matrix melt are studied. The dispersity and the chemical composition of the wear products that form an intermediate layer between the contacting surfaces are analyzed, and the dominating wear mechanisms under experimental tribological loading conditions are determined. It is shown that the formation of such a disperse intermediate layer during lubricant-free friction of the synthesized composite materials decreases the temperature in the tribological contact and ensures a transition from weak to intense wear at higher critical loads.

  11. Cast Aluminum Alloys for High Temperature Applications Using Nanoparticles Al2O3 and Al3-X Compounds (X = Ti, V, Zr)

    NASA Technical Reports Server (NTRS)

    Lee, Jonathan A.

    2009-01-01

    In this paper, the effect of nanoparticles Al2O3 and Al3-X compounds (X = Ti, V, Zr) on the improvement of mechanical properties of aluminum alloys for elevated temperature applications is presented. These nanoparticles were selected based on their low cost, chemical stability and low diffusions rates in aluminum at high temperatures. The strengthening mechanism at high temperature for aluminum alloy is based on the mechanical blocking of dislocation movements by these nanoparticles. For Al2O3 nanoparticles, the test samples were prepared from special Al2O3 preforms, which were produced using ceramic injection molding process and then pressure infiltrated by molten aluminum. In another method, Al2O3 nanoparticles can also be homogeneously mixed with fine aluminum powder and consolidated into test samples through hot pressing and sintering. With the Al3-X nanoparticles, the test samples are produced as precipitates from in-situ reactions with molten aluminum using conventional permanent mold or die casting techniques. It is found that cast aluminum alloy using nanoparticles Al3-X is the most cost effective method to produce high strength aluminum alloys for high temperature applications in comparison to nanoparticles Al2O3. Furthermore, significant mechanical properties retention in high temperature environment could be achieved with Al3-X nanoparticles, resulting in tensile strength of nearly 3 times higher than most 300- series conventional cast aluminum alloys tested at 600 F.

  12. Formation regularities of AlOOH hollow spheres during aluminum nanopowder water oxidation

    NASA Astrophysics Data System (ADS)

    Lozhkomoev, Aleksandr S.; Glazkova, Elena A.; Svarovskaya, Natalia V.; Bakina, Olga V.; Kazantsev, Sergey O.; Lerner, Marat I.

    2015-10-01

    There described a novel environmentally friendly synthesis route of micro/nanostructured hollow spheres of AlOOH by oxidation of Al nanopowder in pure water under mild processing conditions. The reaction kinetics of the aluminum nanopowder interaction with water was studied using the method of continuous recording of suspension pH and temperature. There observed the change in Al3+ concentration in the reaction medium and the rate of hydrogen release as well as TEM investigations of the intermediate reaction products at different stages of the process were performed. It is shown that AlOOH hollow spheres are formed through the aluminum core dissolution, Al3+ ion diffusion through the surface oxide film and AlOOH nanosheets formation on the surface of the precursor oxide film.

  13. Pressureless Reaction Sintering of AlON using Aluminum Orthophosphate as a Transient Liquid Phase

    SciTech Connect

    Michael Bakas; Henry Chu

    2009-01-01

    Use of aluminum oxynitride (AlON) in transparent armor systems has been difficult due to the expense and limitations of the processing methods currently necessary to achieve transparency. Development of a pressureless processing method based on direct reaction sintering of alumina and aluminum nitride powders would reduce costs and provide a more flexible and practical manufacturing method. It may be possible to develop such a processing method using liquid phase sintering; as long as the liquid phase does not remain in the final sample. AlPO4 forms a liquid phase with Al2O3 and AlN at the temperatures required to sinter AlON, and slowly decomposes into P2O5 and alumina. Therefore, it was investigated as a possible transient liquid phase for reaction-sintered AlON. Small compacts of alumina and aluminum nitride with up to of 15wt% AlPO4 additive were pressed and sintered. It was found that AlPO4 formed the requisite transient liquid phase, and it was possible to adjust the process to produce AlON samples with good transmission and densities of 3.66-3.67 g/cc. XRD confirmed the samples formed were AlON, with no trace of any remaining phosphate phases or excess alumina or aluminum nitride. Based on the results, it was concluded that AlPO4 could be utilized as a transient liquid phase to improve the density and transmission of AlON produced by pressureless reaction sintering.

  14. Microstructure and Crystallographic Texture Variations in the Friction-Stir-Welded Al-Al2O3-B4C Metal Matrix Composite Produced by Accumulative Roll Bonding

    NASA Astrophysics Data System (ADS)

    Mohammadnezhad, Mahyar; Shamanian, Morteza; Zabolian, Azam; Taheri, Mahshid; Javaheri, Vahid; Navidpour, Amir Hossein; Nezakat, Majid; Szpunar, Jerzy A.

    2015-12-01

    In this research, ultrafine-grained sheets of aluminum matrix composite (Al-Al2O3-B4C) were produced by accumulative roll bonding ARB technique. As-received, ultrafine-grained aluminum composite sheets were joined by friction-stir welding. The microstructure, crystallographic texture, and Vickers hardness in the weld zones were investigated. Electron backscattered diffraction results revealed occurrence of dynamic recrystallization and demonstrated existence of different grain orientations within the weld nugget. Produced composite plates illustrated rotated cubic texture. Moreover, in the nugget, a well-recrystallized grain structure having characteristic strong shear texture component finally developed. However, the texture result in the heat-affected zone illustrated rotated cubic and Goss components that related to the effect of heat input. Friction-stir welding refined the grain size in the weld zone. The hardness also improved with the peak hardness being observed towards the advancing stir welding side.

  15. Fabrication and Characterization of Squeezed Cast Aluminum Matrix Composites Containing Boride Reinforcements

    NASA Astrophysics Data System (ADS)

    Olaya-Luengas, L.; Estremera-Pérez, E.; Muñoz, L.; Suárez, O. M.

    2010-12-01

    Aluminum alloys containing 2 and 4 wt.% copper reinforced with aluminum dodecaborides were successfully fabricated by squeeze casting employing pressures up to 62 MPa. The distribution of reinforcements throughout the composites was quantified, whereas the effect of pressure on the composites density and hardness was determined. In addition, the reinforcement chemical stability was examined using high-temperature x-ray diffraction which permitted to confirm the formation of AlB2 phase a result of AlB12 decomposition. The pressure effect on the squeezed composites was investigated by optical microscopy, Vickers microhardness testing, superficial Rockwell hardness testing, and differential thermal analysis. At the highest applied pressures, the castings density increased when the shrinkage porosity was practically eliminated. The composite superficial hardness improved by increasing the applied squeeze. The indirect squeeze cast technique caused Al2Cu phase segregation to upper regions of the specimens, while conversely, the AlB12 reinforcements segregated preferentially at lower regions of the casting.

  16. Identification of Aluminum Responsive Genes in Al-Tolerant Soybean Line PI 416937

    PubMed Central

    Duressa, Dechassa; Soliman, Khairy; Chen, Dongquan

    2010-01-01

    Soybean is one of the most aluminum (Al) sensitive plants. The complex inheritance of Al tolerance trait has so far undermined breeding efforts to develop Al-tolerant soybeans. Discovering the genetic factors underlying the Al tolerance mechanisms would undoubtedly accelerate the pace of such endeavor. As a first step toward this goal, we analyzed the transcriptome profile in roots of Al-tolerant soybean line PI 416937 comparing Al-treated and untreated control plants using DNA microarrays. Many genes involved in transcription activation, stress response, cell metabolism and signaling were differentially expressed. Patterns of gene expression and mechanisms of Al toxicity and tolerance suggest that Cys2His2 and ADR6 transcription activators, cell wall modifying enzymes, and phytosulfokines growth factor play role in soybean Al tolerance. Our data provide insights into the molecular mechanisms of soybean Al tolerance and will have practical value in genetic improvement of Al tolerance trait. PMID:20953355

  17. Jet Electrochemical Machining of Particle Reinforced Aluminum Matrix Composites with Different Neutral Electrolytes

    NASA Astrophysics Data System (ADS)

    Hackert-Oschätzchen, M.; Lehnert, N.; Martin, A.; Schubert, A.

    2016-03-01

    Conventional mechanical machining of particle reinforced aluminum matrix composites (AMCs) is challenging because the hard ceramic particles in the soft aluminum matrix lead to an increased tool wear. Furthermore, the mechanical and thermal impact during conventional machining affects the microstructure of the AMCs. Electrochemical machining (ECM) is an alternative method to machine AMCs. Based on anodic dissolution, ECM has a slight influence on the work piece material structure and is independent of material strength and hardness. So the microstructure of the work piece remains unaffected. One method of ECM is electrochemical machining with continuous electrolytic free jet (Jet-ECM). Hereby the electrochemical removal is localized by the geometry of the electrolyte jet. By moving the electrolyte jet micro-structures and microgeometries can be generated quickly and flexibly in metallic parts [1]. Another advantage of Jet-ECM is the low consumption of electrolyte which allows an easy and inexpensive change of electrolyte for investigations with different types of electrolyte. In this study AMCs reinforced with different amounts of SiC-particles are machined with two pH-neutral electrolytes using Jet-ECM. The results provide information about the suitability of the selected electrolytes for the machining of AMCs. In addition, the influence of the particle content on the electrochemical removal result will be evaluated.

  18. Method for embedding optical fibers in an aluminum matrix by ultrasonic consolidation

    NASA Astrophysics Data System (ADS)

    Yen Kong, Choon; Soar, Rupert

    2005-10-01

    The overall aim of the research, part of which is outlined in this paper, was to utilize the ultrasonic consolidation (UC) process for the fabrication of smart metal structures, capable of measuring an external stimulus and responding to this stimulus by adapting its structure accordingly through embedding both active and passive functional elements. This paper presents a fundamental study of embedding methods for the fabrication of optical fibers embedded within aluminum structures. The methods considered in this paper produced embedded optical fiber specimens in which large amounts of plastic flow were observed within the matrix. The matrix material deformed around the fibers, resulting in fully embedded optical fibers capable of transmitting a bright light source and without damaging the fibers. Based on light responses, a general process window was drawn to show the range at which optical fibers can be embedded within aluminum structures using the UC process. The outcomes lay down initial investigative principles for the further development of the technology for embedding or cladding of optical fiber sensors, such as fiber Bragg grating devices, within or on metal structures: for example, the cladding of large free-form metal structures or smart “skinned” metal foam or metal honeycomb structures.

  19. Effect of fiber diameter and matrix alloys on impact-resistant boron/aluminum composites

    NASA Technical Reports Server (NTRS)

    Mcdanels, D. L.; Signorelli, R. A.

    1976-01-01

    Efforts to improve the impact resistance of B/Al are reviewed and analyzed. Nonstandard thin-sheet charpy and Izod impact tests and standard full-size Charpy impact tests were conducted on composites containing unidirectional 0.10mm, 0.14mm, and 0.20mm diameter boron fibers in 1100, 2024, 5052, and 6061 Al matrices. Impact failure modes of B/Al are proposed in an attempt to describe the mechanisms involved and to provide insight for maximizing impact resistance. The impact strength of B/Al was significantly increased by proper selection of materials and processing. The use of a ductile matrix and large diameter boron fibers gave the highest impact strengths. This combination resulted in improved energy absorption through matrix shear deformation and multiple fiber breakage.

  20. In situ fabrication and properties of AlN dispersion strengthened 2024 aluminum alloy

    NASA Astrophysics Data System (ADS)

    Yang, Wei-wei; Guo, Zhi-meng; Guo, Lei-chen; Cao, Hui-qin; Luo, Ji; Ye, An-ping

    2014-12-01

    Nanoscaled aluminum nitride (AlN) dispersion strengthened 2024 aluminum alloy was fabricated using a novel approach in which Al-Mg-Cu compacts were partially nitrided in flowing nitrogen gas. The compacts were subsequently consolidated by sintering and hot extrusion. The microstructure and mechanical properties of the material were preliminarily investigated. Transmission electron microscopy and X-ray diffraction results revealed that AlN particles were generated by the nitridation of Al-Mg-Cu compacts. The material exhibited excellent mechanical properties after hot extrusion and heat treatment. The ultimate tensile and yield strengths of the extruded samples containing 8.92vol% AlN with the T6 heat treatment were 675 and 573 MPa, respectively.

  1. The influence of microstructure on the tensile behavior of an aluminum metal matrix composite

    NASA Technical Reports Server (NTRS)

    Birt, Michael J.; Johnson, W. Steven

    1990-01-01

    The relationship between tensile properties and microstructure of a powder metallurgy aluminum alloy, 2009 was examined. The alloy was investigated both unreinforced and reinforced with 15 v/o SiC whiskers or 15 v/o SiC particulate to form a discontinuous metal matrix composite (MMC). The materials were investigated in the as-fabricated condition and in three different hot-rolled sheet thicknesses of 6.35, 3.18, and 1.8 mm. Image analysis was used to characterize the morphology of the reinforcements and their distributions within the matrix alloy. Fractographic examinations revealed that failure was associated with the presence of microstructural inhomogeneities which were related to both the matrix alloy and to the reinforcement. The results from these observations together with the matrix tensile data were used to predict the strengths and moduli of the MMC's using relatively simple models. The whisker MMC could be modeled as a short fiber composite and an attempt was made to model the particulate MMC as a dispersion/dislocation hardened alloy.

  2. Effect of deformation temperature on the mechanical behavior and deformation mechanisms of Al-Al[sub 2]O[sub 3] metal matrix composites

    SciTech Connect

    Mazen, A.A. . Dept. of Engineering)

    1999-08-01

    Aluminum-alumina (Al-Al[sub 2]O[sub 3]) metal matrix composite (MMC) materials were fabricated using the powder metallurgy (PM) techniques of hot pressing followed by hot extrusion. Different reinforcement weight fractions were used, that is, 0, 2.5, 5, and 10 wt% Al[sub 2]O[sub 3]. The effect of deformation temperature was investigated through hot tensile deformation conducted at different temperatures. The microstructures of the tested specimens were also investigated to characterize the operative softening mechanisms. The yield and tensile strength of the Al-Al[sub 2]O[sub 3] were found to improve as a function of reinforcement weight fraction. With the exception of Al-10wt%Al[sub 2]O[sub 3], the MMC showed better strength and behavior at high temperatures than the unreinforced matrix. The uniform deformation range was found to decrease for the same reinforcement weight fraction, as a function of temperature. For the same deformation temperature, it increases as a function of reinforcement weight fraction. Both dynamic recovery and dynamic recrystallization were found to be operative in Al-Al[sub 2]O[sub 3] MMC as a function of deformation temperature. Dynamic recovery is dominant in the lower temperature range, while dynamic recrystallization is more dominant at the higher range. The increase in reinforcement weight fraction was found to lead to early nucleation of recrystallization. No direct relationship was established as far as the number of grains nucleated due to each reinforcement particle.

  3. The influence of reinforcement size on the microstructure and mechanical behavior of a nanostructured aluminum-based metal matrix composite

    NASA Astrophysics Data System (ADS)

    Behm, Nathan Adam

    With increased availability and growing commercial applications, aluminum-based metal matrix composites show promise as high specific strength structural materials. Before they can be implemented however, they require thorough characterization and testing. A novel nanostructured aluminum-based metal matrix composite (MMC) was characterized through a combination of microstructural analysis and mechanical testing. Two composites were studied, an aluminum MMC reinforced with 50 nm boron carbide, (B4C) and an aluminum MMC reinforced with 500 nm boron carbide. Transmission electron microscopy (TEM) analysis revealed an ultra-fine grained matrix with grains on the order of 100--300 nm. The quasi-static and dynamic response of the composites was compared with the behavior of the unreinforced aluminum alloy, and it was found that the reinforcement resulted in a 30% improvement in strength. The decrease in the reinforcement size from 500 to 50 nm activated an additional strengthening mechanism, which further improved the strength of the MMC reinforced with the 50 nm B4C. Dynamic compression tests were performed at elevated temperatures up 400°C on the composites, and it was found that they exhibited impressive strengths considering the thermal softening prevalent in aluminum. The reinforcement size was found to play an important role in the strain softening exhibited at elevated temperature, fracture mechanism, and composite strength. Models to describe the composite behavior are presented.

  4. Effects of diffusion on aluminum depletion and degradation of NiAl coatings

    NASA Technical Reports Server (NTRS)

    Smialek, J. L.; Lowell, C. E.

    1973-01-01

    Experiments were performed to critically demonstrate the effects of diffusion on the aluminum depletion and degradation of NiAl coatings on superalloys. Pack aluminized IN 100 and Mar-M200 were diffusion annealed in 0.0005 torr vacuum at 1100 C for 300 hours. Aluminum losses due to oxidation and vaporization were minimal. Metallographic and electron microprobe analyses showed considerable interdiffusion of the coating with the substrate, which caused a large decrease in the original aluminum level of the coating. Subsequent cyclic furnace oxidation tests were performed at 1100 C using 1 hour cycles on pre-diffused and as-coated specimens. The pre-diffusion treatment decreased the oxidation protection for both alloys, but more dramatically for IN 100. Identical oxidation tests of bulk NiAl, where such diffusion effects are precluded, showed no signs of degradation at twice the time needed to degrade the coated superalloys.

  5. Effects of diffusion on aluminum depletion and degradation of NiAl coatings

    NASA Technical Reports Server (NTRS)

    Smialek, J. L.; Lowell, C. E.

    1974-01-01

    Experiments were performed to critically demonstrate the effects of diffusion on the aluminum depletion and degradation of NiAl coatings on superalloys. Pack aluminized IN 100 and Mar-M200 were diffusion annealed in 5 mtorr vacuum at 1100 C for 300 hr. Aluminum losses due to oxidation and vaporization were minimal. Metallographic and electron microprobe analyses showed considerable interdiffusion of the coating with the substrate, which caused a large decrease in the original aluminum level of the coating. Subsequent cyclic furnace oxidation tests were performed at 1100 C using 1 hr cycles on prediffused and as-coated specimens. The prediffusion treatment decreased the oxidation and as-coated specimens. The prediffusion treatment decreased the oxidation protection for both alloys, but more dramatically for IN 100. Identical oxidation tests of bulk NiAl, where such diffusion effects are precluded, showed no signs of degradation at twice the time needed to degrade the coated superalloys.

  6. Effect of angleplying and matrix enhancement on impact-resistant boron/aluminum composites

    NASA Technical Reports Server (NTRS)

    Mcdanels, D. L.; Signorelli, R. A.

    1976-01-01

    Efforts to improve the impact resistance of B/Al are reviewed and analyzed. Tensile and dynamic modulus tests, thin sheet Charpy and Izod impact tests, and standard full size Charpy impact tests were conducted on 0.20 mm (8 mil) diameter-B/1100 Al matrix composites. Angleplies ranged from unidirectional to + or - 30 deg. The best compromise between reduced longitudinal properties and increased transverse properties was obtained with + or - 15 deg angleply. The pendulum impact strengths of improved B/Al were higher than that of notched titanium and appear to be enough to warrant consideration of B/Cl for application to fan blades in aircraft gas turbine engines.

  7. Processing and properties of TiNi shape memory fiber-reinforced 6061 aluminum matrix composite made by spark plasma sintering

    NASA Astrophysics Data System (ADS)

    Mizuuchi, Kiyoshi; Inoue, Kanryu; Hamada, K.; Sugioka, M.; Itami, M.; Okanda, Y.; Kawahara, M.

    2000-08-01

    Aluminum alloy matrix composite reinforced by continuous TiNi shape memory allow (SMA) fiber was fabricated by Spark Plasma Sintering (SPS) process of A1 alloy powder with 20 vol. % of the TiNi SMA fiber, and its microstructure and mechanical properties were examined. The A1 alloy powder with the TiNi fiber was readily consolidated into composite at temperatures between 633K and 873K. The relative packing density of the composite fabricated increased with increasing sintering temperature. Reaction occurred at the boundary between A1 alloy matrix and TiNi fiber and the interfacial reaction is considered to consist of three intermetallic phases, Ni3Ti (next to TiNI), Ni2Ti and Al3Ni (next to A1 matrix). The tensile yield stress of the composite deformed in tension at 373K was higher by about 40MPa than at 293K.

  8. Aluminum diffusion in Al-implanted AISI 321 stainless steel using accelerator-based characterization techniques

    NASA Astrophysics Data System (ADS)

    Noli, F.; Misaelides, P.; Bethge, K.

    1998-04-01

    The aluminum diffusion in near-surface layers of Al-implanted AISI 321 austenitic stainless steel (Fe/Cr18/Ni8/Ti) was studied using ion beam analysis techniques. The implanted samples were investigated at temperatures between 450°C and 650°C (treatment times up to 144 h in vacuum and in air). The Al-profiles were determined by the 992 keV resonance of the 27Al(p,γ) 28Si nuclear reaction as well as by 4He +-Rutherford Backscattering Spectrometry (RBS). The experimental diffusion coefficients, obtained during this study using Fick's second law, were compared with corresponding literature concerning the aluminum diffusion in other relevant metallic materials. The determination of the depth profiles contributes to the interpretation of the high temperature oxidation behavior of Al-implanted stainless steel surfaces.

  9. Aluminum incorporation efficiencies in A- and C-plane AlGaN grown by MOVPE

    NASA Astrophysics Data System (ADS)

    Dong-Yue, Han; Hui-Jie, Li; Gui-Juan, Zhao; Hong-Yuan, Wei; Shao-Yan, Yang; Lian-Shan, Wang

    2016-04-01

    The aluminum incorporation efficiencies in nonpolar A-plane and polar C-plane AlGaN films grown by metalorganic vapour phase epitaxy (MOVPE) are investigated. It is found that the aluminum content in A-plane AlGaN film is obviously higher than that in the C-plane sample when the growth temperature is above 1070 °C. The high aluminum incorporation efficiency is beneficial to fabricating deep ultraviolet optoelectronic devices. Moreover, the influences of the gas inlet ratio, the V/III ratio, and the chamber pressure on the aluminum content are studied. The results are important for growing the AlGaN films, especially nonpolar AlGaN epilayers. Project supported by the National Natural Science Foundation of China (Grant Nos. 61504128, 61504129, 61274041, and 11275228), the National Basic Research Program of China (Grant No. 2012CB619305), the National High Technology Research and Development Program of China (Grant Nos. 2014AA032603, 2014AA032609, and 2015AA010801), and the Guangdong Provincial Scientific and Technologic Planning Program, China (Grant No. 2014B010119002).

  10. Thermodynamic Assessment of the Aluminum Corner of the Al-Fe-Mn-Si System

    NASA Astrophysics Data System (ADS)

    Lacaze, Jacques; Eleno, Luiz; Sundman, Bo

    2010-09-01

    A new assessment of the aluminum corner of the quaternary Al-Fe-Mn-Si system has been made that extends beyond the COST-507 database. This assessment makes use of a recent, improved description of the ternary Al-Fe-Si system. In the present work, modeling of the Al-rich corner of the quaternary Al-Fe-Mn-Si system has been carried out by introducing Fe solubility into the so-called alpha-AlMnSi and beta-AlMnSi phases of the Al-Mn-Si system. A critical review of the data available on the quaternary system is presented and used for the extension of the description of these ternary phases into the quaternary Al-Fe-Mn-Si.

  11. Reactive Atmospheric Plasma Spraying of AlN Coatings: Influence of Aluminum Feedstock Particle Size

    NASA Astrophysics Data System (ADS)

    Shahien, Mohammed; Yamada, Motohiro; Yasui, Toshiaki; Fukumoto, Masahiro

    2011-03-01

    Feedstock powder characteristics (size distribution, morphology, shape, specific mass, and injection rate) are considered to be one of the key factors in controlling plasma-sprayed coatings microstructure and properties. The influence of feedstock powder characteristics to control the reaction and coatings microstructure in reactive plasma spraying process (RPS) is still unclear. This study, investigated the influence of feedstock particle size in RPS of aluminum nitride (AlN) coatings, through plasma nitriding of aluminum (Al) feedstock powders. It was possible to fabricate AlN-based coatings through plasma nitriding of all kinds of Al powders in atmospheric plasma spray (APS) process. The nitriding ratio was improved with decreasing the particle size of feedstock powder, due to improving the nitriding reaction during flight. However, decreasing the particle size of feedstock powder suppressed the coatings thickness. Due to the loss of the powder during the injection, the excessive vaporization of fine Al particles and the completing nitriding reaction of some fine Al particles during flight. The feedstock particle size directly affects on the nitriding, melting, flowability, and the vaporization behaviors of Al powders during spraying. It concluded that using smaller particle size powders is useful for improving the nitriding ratio and not suitable for fabrication thick AlN coatings in reactive plasma spray process. To fabricate thick AlN coatings through RPS, enhancing the nitriding reaction of Al powders with large particle size during spraying is required.

  12. On the electronic and structural properties of aluminum diboride Al 0.9B 2

    NASA Astrophysics Data System (ADS)

    Burkhardt, Ulrich; Gurin, Vladimir; Haarmann, Frank; Borrmann, Horst; Schnelle, Walter; Yaresko, Alexander; Grin, Yuri

    2004-02-01

    Single crystals of aluminum diboride (space group P6/ mmm, No. 191) a=3.0050(1) Å, c=3.2537 (8) Å; Z=1) were prepared by the aluminum flux method. Crystal structure refinement shows defects at the aluminum site and resulted in composition Al 0.894(9)B 2≈Al 0.9B 2. The defect structure model is confirmed by the measured mass density ρexp=2.9(1) g/cm 3 in comparison with a calculated value ρx=3.17 g/cm 3 for full occupancy of the aluminum position. The results of 11B NMR measurements support the defect model and are in agreement with the structure obtained by X-ray diffraction methods. Electrical resistivity measured on a single crystal parallel to its hexagonal basal plane with ρ(300 K)- ρ(2 K)=2.35 μΩ cm shows temperature dependence like a typical metal. Charge is dominantly carried by holes (Hall-coefficient R=+2×10 -11 m/C). Respective, p-type conductivity is confirmed by theoretical calculations. Chemical bonding in aluminum diboride is discussed using the electron localization function.

  13. SiC particle cracking in powder metallurgy processed aluminum matrix composite materials

    SciTech Connect

    Wang, B.; Janowski, G.M.; Patterson, B.R.

    1995-09-01

    Particle cracking is one of the key elements in the fracture process of particulate-reinforced metal-matrix composite (MMC) materials. The present study quantitatively examined the amount of new surface are created by particle cracking and the number fraction of cracked particles in a series of SiC-reinforced aluminum-matrix composite materials. These composite materials were fabricated by liquid-phase sintering and contained 9 vol pct of 23, 63, or 142 {micro}m SiC. The matrix properties were varied by heat treating to either an underaged or peak-aged condition. In general, the new surface area created by particle cracking (S{sub V}) and the number fraction of cracked particles (F{sub no}) were linearly dependent on the local strain along the tensile specimen. Multiple cracks were frequently observed in the composites containing large particles. It was found that the new surface area created by particle cracking per unit strain was higher for the case of high-strength matrices and was not systematically affected by particle size within the range studied. The number fraction of cracked particles was affected by both particle size and matrix strength. A higher number fraction of particles cracked in the composites reinforced with large particles and with high matrix yield strengths. These results are interpreted in terms of the size of the particle defects, which is a function of particle size, and the critical flaw size necessary to crack a given particle, which is a function of the stress on the particle. The new surface area created by cracking and the fraction of cracked particles were related and are in good agreement for the large and medium sized particles.

  14. Aluminum fractions in root tips of slash pine and loblolly pine families differing in Al resistance.

    PubMed

    Nowak, Jaroslaw; Friend, Alexander L

    2005-02-01

    Aluminum (Al) distribution among several cellular fractions was investigated in root tips of seedlings of one Al-resistant and one Al-sensitive family of slash pine (Pinus elliottii Engelm.) and loblolly pine (Pinus taeda L.) grown in nutrient solution containing 100 microM AlCl3 (pH 4) for 167 h. Aluminum present in 5-mm-long root tips was fractionated into cell-wall-labile (desorbed in 0.5 mM citric acid), cell-wall-bound (retained after filtering disrupted cells through 20-microm mesh) and symplasmic (filtrate following cell disruption) fractions. When averaged across both species, 12% of Al absorbed by root tips appeared in the symplasmic fraction and 88% in the apoplasmic fraction (55% as cell-wall-labile, and 33% as cell-wall-bound). On a fresh mass basis, total Al in root tips was lower in loblolly pine than in slash pine, lower in the Al-resistant slash pine family than in the Al-sensitive slash pine family, and lower in the Al-resistant families than in the Al-sensitive families across species. Although the data support the hypothesis that Al-resistant plants limit Al uptake to root apices, they do not exclude other mechanisms of Al resistance. Differential Al resistance between the species and between slash pine families may also be associated with the size of the total non-labile and cell-wall-labile Al fractions, respectively. We were unable to identify the basis for differential Al resistance in loblolly pine. PMID:15574406

  15. Internal friction in AlCu-Al{sub 2}O{sub 3} metal matrix composites

    SciTech Connect

    Parrini, L.; Schaller, R.

    1994-12-31

    In MMC`s the metal matrix is exposed to plastic deformation and damage accumulation in the region close to the reinforcements, following mechanical or thermal stress. In this connection, Al-4%Cu based MMC`s reinforced with 20% Al{sub 2}O{sub 3} fibers were characterized by internal friction (IF) measurements. IF measurements as a function of the vibration amplitude present a solid friction peak connected with interfaces loosening, while plastic deformation was associated with a high amplitude IF background. On this basis, IF measurements allowed the authors to identify the distribution of internal stresses and damage accumulation at matrix-fiber interfaces or plastic flow in the matrix in different thermomechanical conditions. Furthermore, IF measurements allowed damage accumulation consequent to mechanical fatigue to be followed.

  16. Combustion synthesis of TiAl-matrix composites in the Ti-Al-BN system

    SciTech Connect

    Mabuchi, H.; Tsuda, H.; Nakayama, Y. . Dept. of Metallurgy and Materials Science)

    1995-01-15

    The intermetallic compound TiAl has attracted much attention for its potential use as a structural high-temperature material. However, its use has been limited because of its negligible low-temperature ductility and fracture toughness and low high-temperature strength and creep. To improve these properties, recently this compound has been made as a composite material containing a secondary phase such as boride, carbide, nitride, or oxide. Recently, combustion synthesis or self-propagating, high-temperature synthesis (SHS) using powder compacts has been developed to produce intermetallics or ceramics. It is also possible to form intermetallic-intermetallic, intermetallic-ceramic, or ceramic-ceramic composites from combustion reactions between corresponding elemental constituents. It has the advantage of an in-situ forming technique compared with conventional artificial composite production approaches. In the previous studies using elemental powders, combustion reaction was carried out to form intermetallic-ceramic composites in the Ti-Al-C, or Ti-Al-N system. The compacts of Ti and Al powders with carbon powder or in gaseous nitrogen reacted exothermically, and formed a mixture product which had a fine distribution of the Ti[sub 2]AlC or Ti[sub 2]AlN particles in the matrix TiAl with a small amount of Ti[sub 3]Al. The processing technique, therefore, is of interest as a combustion reaction synthesis to make in-situ intermetallic-based composite materials. In the present work, to investigate the effect of BN addition on the reaction of Ti And Al powder mixtures, combustion synthesis of TiAl-matrix composites has been performed for the Ti-Al-BN system.

  17. Aluminum matrix composite solidification in microgravity: Effect of the reinforcing phase on nucleation

    NASA Astrophysics Data System (ADS)

    Barbieri, F.; Patuelli, C.; Giunchi, G.; Grenni, A.

    Among all the solidification processings available for metal matrix composite (MMC) fabrication, the gas pressure liquid infiltration method, recently developed, is very simple and fast. The molten aluminum can be infiltrated either in a preform made up of a three-dimensional array of fibers (SiC whiskers), or in a porous ceramic network. The resulting microstructures present rather low dislocation densities and, short solidification times can avoid interface phase formation. A series of samples with different orientations and volume fractions of the reinforcement, i.e. with different porosity, were examined in order to investigate the reinforcing phase and convection effects on the nucleation and growth of the solid nuclei in the constrained environment existing between the preform fibers.

  18. Mechanical behavior of a continuous fiber reinforced aluminum matrix composite subjected to transverse and thermal loading

    NASA Technical Reports Server (NTRS)

    Jansson, S.; Leckie, F. A.

    1991-01-01

    The transverse properties of an aluminum alloy metal matrix composite reinforced by continuous alumina fibers were investigated. The composite is subjected to both mechanical and cyclic thermal loading. The results of an experimental program indicate that the shakedown concept of structural mechanics provides a means of describing the material behavior. When the loading conditions are within the shakedown region, the material finally responds in an elastic manner after initial plastic response, and for loading conditions outside the shakedown region, the material exhibits a rapid incremental plastic strain accumulation. The failure strain varies by an order of magnitude according to the operating conditions. Hence, for high mechanical and low thermal loading, the failure strains is small; for low mechanical and high thermal loading, the failure strain is large.

  19. Characterization of the tensile and microstructural properties of an aluminum metal matrix composite

    NASA Technical Reports Server (NTRS)

    Birt, M. J.; Johnson, W. S.

    1990-01-01

    This study examines a powder metallurgy aluminum alloy in the unreinforced state and with a discontinuous reinforcement of 15 v/o or 30 v/o SiC whisker or 15 v/o SiC particulate. The materials were extruded and then hot-rolled to three plate thicknesses of 6.35, 3.18 and 1.8 mm and were investigated in the as-fabricated and peak aged conditions. The influence of mechanical working on the reinforcement morphology and distribution were examined. A comparison of the mechanical properties was made and the elastic moduli of the reinforced materials were predicted using a micromechanics model. Fractography of tensile specimens revealed that the fracture process was dominated by the presence of microstructural inhomogeneities which were related to both the matrix alloy and to the reinforcement type. An analysis of these microstructural features and a description of the micromechanics model are presented in the paper.

  20. Development and evaluation of Al-Ti-C master alloys as grain refiner for aluminum

    SciTech Connect

    Hadia, M.A.; Ghaneya, A.A.; Niazi, A.

    1996-10-01

    A series of Al-Ti-C master alloys with different amounts of titanium and carbon (Al-3.5%Ti-0.5%C, Al-3.5%Ti-0.7%C and Al-5%Ti-1%C) has been developed by adding activated graphite to molten Al-Ti binary alloys. The micro-structures of the developed alloys were investigated. The efficiency of the produced alloys as aluminum grain refiner was evaluated. The effects of the following factors were investigated: addition rate of each master alloy, the pouring temperature of the refined metal and the holding time before pouring. Also, the contact time for each refiner was studied. The results were significant and the refiner Al-5%Ti-1%C was the most effective.

  1. Thermal fatigue resistance of discontinuously reinforced cast aluminum-matrix composites

    NASA Astrophysics Data System (ADS)

    Sobczak, J.; Sobczak, N.; Darlak, P.; Slawinski, Z.; Asthana, R.; Rohatgi, P.

    2002-12-01

    The thermal fatigue resistance of AlSi alloys and discontinuously reinforced Al-matrix composites containing graphite, silicon carbide, and fly ash particulates, and short alumina (Saffil) fibers was characterized by measuring the total length of microcracks on gravity-cast and squeeze-cast test specimens as a function of number of thermal cycles (1000-5000 cycles, 270 K amplitude). In each thermal cycle, the test specimens were heated and stabilized in air at 375 °C, water quenched, and air stabilized. In all specimens, the total crack length on a specified region increased with increasing number of thermal cycles. Whereas among monolithic alloys, squeeze-cast Al-12SiCuNiMg alloy exhibited better resistance to thermal cracking than Al-25Si and Al-20SiNi alloys, among the composites, squeeze-cast Al-alumina and Al-fly ash composites exhibited the best thermal fatigue resistance. The theoretical estimates of the thermal fatigue resistance of these composites are consistent with the experimental observations.

  2. The metal-organic framework MIL-53(Al) constructed from multiple metal sources: alumina, aluminum hydroxide, and boehmite.

    PubMed

    Li, Zehua; Wu, Yi-nan; Li, Jie; Zhang, Yiming; Zou, Xin; Li, Fengting

    2015-04-27

    Three aluminum compounds, namely alumina, aluminum hydroxide, and boehmite, are probed as the metal sources for the hydrothermal synthesis of a typical metal-organic framework MIL-53(Al). The process exhibits enhanced synthetic efficiency without the generation of strongly acidic byproducts. The time-course monitoring of conversion from different aluminum sources into MIL-53(Al) is achieved by multiple characterization that reveals a similar but differentiated crystallinity, porosity, and morphology relative to typical MIL-53(Al) prepared from water-soluble aluminum salts. Moreover, the prepared MIL-53(Al) constructed with the three insoluble aluminum sources exhibit an improved thermal stability of up to nearly 600 °C and enhanced yields. Alumina and boehmite are more preferable than aluminum hydroxide in terms of product porosity, yield, and reaction time. The adsorption performances of a typical environmental endocrine disruptor, dimethyl phthalate, on the prepared MIL-53(Al) samples are also investigated. The improved structural stability of MIL-53(Al) prepared from these alternative aluminum sources enables double-enhanced adsorption performance (up to 206 mg g(-1)) relative to the conventionally obtained MIL-53(Al). PMID:25756851

  3. Low cost, SPF aluminum cryogenic tank structure for ALS

    NASA Technical Reports Server (NTRS)

    Anton, Claire E.; Rasmussen, Perry; Thompson, Curt; Latham, Richard; Hamilton, C. Howard; Ren, Ben; Gandhi, Chimata; Hardwick, Dallis

    1992-01-01

    Past production work has shown that cryogenic tank structure for the Shuttle Booster Rockets and the Titan system have very high life cycle costs for the fuel tank structure. The tanks are machined stiffener-skin combination that are subsequently formed into the required contour after machining. The material scrap rate for these configurations are usually high, and the loss of a tank panel due to forming or heat treatment problems is very costly. The idea of reducing the amount of scrap material and scrapped structural members has prompted the introduction of built-up structure for cryogenic tanks to be explored on the ALS program. A build-up structure approach that has shown improvements in life cycle cost over the conventional built-up approach is the use of superplastically formed (SPF) stiffened panels (reducing the overall part count and weight for the tank) resistance spot welded (RSW) to outer tank skin material. The stiffeners provide for general stability of the tank, while the skin material provides hoop direction continuity for the loads.

  4. Sintering Behavior of Hypereutectic Aluminum-Silicon Metal Matrix Composites Powder

    NASA Astrophysics Data System (ADS)

    Rudianto, Haris; Sun, Yang Sang; Jin, Kim Yong; Woo, Nam Ki

    Lightweight materials of Aluminum-Silicon P/M alloys offer the advantage of high-wear resistance, high strength, good temperature resistance, and a low coefficient of thermal expansion. An A359 MMC alloy was mixed together with Alumix 231 in this research. Powders were compacted with compaction pressure up to 700 MPa. Particle size and compaction pressure influenced green density. Compacted powders were sintered in a tube furnace under a flowing nitrogen gas. Sintering temperature, heating rate and sintering time were verified to determine best sintering conditions of the alloys. Chemical composition also contributed to gain higher sintered density. Precipitation strengthening method was used to improve mechanical properties of this materials.T6 heat treatment was carried out to produce fine precipitates to impede movement of dislocation. The chemical composition of this materials allow for the potential formation of several strengthening precipitates including θ (Al2Cu) and β (Mg2Si).

  5. Combustion synthesis of metal-matrix composites. Part 3: The Al-TiC-Al{sub 2}O{sub 3} system

    SciTech Connect

    Kunrath, A.O.; Strohaecker, T.R.; Moore, J.J.

    1996-01-15

    The principle of combustion synthesis to produce metal matrix composites has been outlined in earlier papers. Applying pressure either during or immediately after the reaction is completed is the most commonly used method to achieve high densification of the synthesized products. Some advanced ceramics (TiC and TiB{sub 2}) have been reported to achieve up to 95% of theoretical density using this technique. The current research is a continuation of the work on the TiC-Al{sub 2}O{sub 3}-Al system, in which an excess amount of liquid aluminum is generated by the exothermic reaction and infiltrates the pores of the ceramic matrix improving the densification of the product. The current research is aimed at synthesizing high volume fractions, i.e., > 50%, metal matrix composites using the SHS reaction. The stability of this reaction is inversely proportional to the excess amount of the metal phase added to the reactants, i.e. xAl. The excess Al acts as a diluent, taking heat from the reaction front, and making it difficult to ignite and/or sustain the reaction in pellets with stoichiometries of high volume fractions of metal. For this reason, the simultaneous combustion (thermal explosion) mode was chosen to perform the synthesis reaction and in which the whole pellet is heated to the ignition temperature.

  6. Analysis of stress-strain, fracture and ductility behavior of aluminum matrix composites containing discontinuous silicon carbide reinforcement

    NASA Technical Reports Server (NTRS)

    Mcdanels, D. L.

    1984-01-01

    Mechanical properties and stress-strain behavior for several types of commercially fabricated aluminum matrix composites, containing up to 40 vol % discontinuous SiC whisker, nodule, or particulate reinforcement were evaluated. It was found that the elastic modulus of the composites was isotropic, to be independent of type of reinforcement, and to be controlled solely by the volume percentage of SiC reinforcement present. The yield/tensile strengths and ductility were controlled primarily by the matrix alloy and temper condition. Ductility decreased with increasing reinforcement content, however, the fracture strains observed were higher than those reported in the literature for this type of composite. This increase in fracture strain is attributed to cleaner matrix powder and increased mechanical working during fabrication. Conventional aluminum and titanium structural alloys were compared and have shown that the properties of these low cost, lightweight composites have good potential for application to aerospace structures.

  7. Manufacturing of Aluminum Matrix Composites Reinforced with Iron Oxide (Fe3O4) Nanoparticles: Microstructural and Mechanical Properties

    NASA Astrophysics Data System (ADS)

    Bayraktar, Emin; Ayari, Fayza; Tan, Ming Jen; Tosun-Bayraktar, Ayse; Katundi, Dhurata

    2014-04-01

    The purpose of this paper is to demonstrate the low-cost manufacturing of aluminum matrix composites reinforced with nano iron oxide as light and efficient materials for engineering applications. It is very desirable to use reinforced aluminum matrix composites in structural applications (automotive, aeronautical, etc.) because of their outstanding stiffness-to-weight and strength-to-weight ratios. In modern industry, it is increasingly important to develop new composites as alternative materials to fabricate multifunctional pieces. Detailed information is presented on the manufacturing process of this composite, and a preliminary study was performed on the cryogenic-cycling behavior to evaluate the interface between the matrix and the reinforcement. Microindentation tests were carried out to evaluate the micromechanical properties of these materials; a simple and practical finite element model is proposed to predict certain parameters related to the composition of the composite.

  8. Composite propellant aluminum agglomeration reduction using tailored Al/PTFE particles

    NASA Astrophysics Data System (ADS)

    Sippel, Travis R.

    Micron aluminum is widely used in propellants; however, performance could be significantly improved if ignition barriers could be disrupted and combustion tailored. In solid propellants for example, aluminum increases theoretical specific impulse performance, yet theoretical levels cannot be achieved largely because of two-phase flow losses. These losses could be reduced if particles quickly ignited, more gaseous products were produced, and if particle breakup occurred during combustion. To achieve altered aluminum ignition and particle combustion, this work explores the use of low level (10-30 wt.%) fluorocarbon (polytetrafluoroethylene (PTFE) or poly(carbon monofluoride) (PMF)) inclusion inside of aluminum via low or high energy mechanical activation. Aluminum/PTFE particles are found to be amenable to use in binder based energetics, having average particle sizes ranging from 15 to 78 μm, ~2-7 m2/g, specific surface area, and combustion enthalpies as high as 20.2 kJ/g. Differential scanning calorimetry (DSC) experiments indicate high energy MA reduces both reaction and oxidation onset to ~440 °C that is far below aluminum alone. Safety testing shows these particles have high electrostatic discharge (ESD) (89.9-108 mJ), impact (> 213 cm), and friction (> 360 N) ignition thresholds. The idea of further increasing reactivity and increasing particle combustion enthalpy is explored by reducing fluorocarbon inclusion content to 10 wt.% and through the use of the strained fluorocarbon PMF. Combustion enthalpy and average particle size range from 18.9 to 28.5 kJ/g and 23.0 to 67.5 μm, respectively and depend on MA intensity, duration, and inclusion level. Specific surface areas are high (5.3 to 34.8 m2/g) and as such, Al/PMF particles are appropriate for energetic applications not requiring a curable liquid binder. Mechanical activation reduces oxidation onset (DSC) from 555 to 480 °C (70/30 wt.%). Aluminum/PMF particles are sensitive to ESD (11.5-47.5 mJ) and some can be ignited via optical flash. Propellant aluminum agglomeration is assessed through replacement of reference aluminum powders (spherical, flake, or nanoscale) with Al/PTFE (90/10 or 70/30 wt.%) particles. The effects on burning rate, pressure dependence, and aluminum ignition, combustion, and agglomeration are quantified. Microscopic imaging shows tailored particles promptly ignite at the burning surface and appear to breakup into smaller particles. Replacement of spherical aluminum with Al/PTFE 70/30 wt.% also increases the pressure exponent from 0.36 to 0.58, which results in a 50% increase in propellant burning rate at 13.8 MPa. Combustion products were quench collected using a liquid-free technique at 2.1 and 6.9 MPa. Sizing of products indicates that composite particles result in nominally 25 μm coarse products, which are smaller than the original, average particle size and are also 66% smaller in diameter (96% by volume) than the 76 μm products collected from reference spherical aluminized propellant. Smaller diameter condensed phase products and more gaseous products will likely decrease two-phase flow loss and reduce slag accumulation in solid rocket motors.

  9. Effects of diffusion on aluminum depletion and degradation of NiAl coatings

    NASA Technical Reports Server (NTRS)

    Smialek, J. L.; Lowell, C. E.

    1973-01-01

    Experimental demonstration of the effects of diffusion on aluminum depletion and degradation in NiAl coatings on superalloys. Pack aluminized IN 100 and Mar-M200 were vacuum annealed at 1100 C to allow diffusion to proceed independently of oxidation. As-coated and as-diffused coatings were compared before and after cyclic furnace oxidation at 1100 C. The extent of degradation was judged by specific weight change, metallography, and electron microprobe analyses.

  10. The aluminum electrode in AlCl3-alkali-halide melts

    NASA Technical Reports Server (NTRS)

    Holleck, G. L.; Giner, J.

    1972-01-01

    Passivation phenomena were observed upon cathodic and anodic polarization of the Al electrode in AlCl3-KCl-NaCl melts between 100 and 160 C. They are caused by formation of a solid salt layer at the electrode surface resulting from concentration changes upon current flow. The anodic limiting currents increased with temperature and with decreasing AlCl3 content of the melt. Current voltage curves obtained on a rotating aluminum disk showed a linear relationship between the anodic limiting current and 1/sq root of 2 pi (rps). Upon cathodic polarization dentrite formation occurs at the Al electrode. The activation overvoltage in AlCl3-KCl-NaCl (57.5-12.5-20 mol%) was determined by galvanostatic current step methods. An apparent exchange current density of 270 mA/cm2 at 130 C and a double layer capacity of 40 plus or minus 10 microfarad/cm2 were measured.

  11. Epitaxial growth of aluminum nitride on AlGaN by reactive sputtering at low temperature

    SciTech Connect

    Duquenne, C.; Djouadi, M. A.; Tessier, P. Y.; Jouan, P. Y.; Besland, M. P.; Brylinski, C.; Aubry, R.; Delage, S.

    2008-08-04

    We report the synthesis of 1 {mu}m thick single crystalline aluminum nitride films by dc magnetron sputtering on AlGaN/GaN layer grown on sapphire substrate at low temperature (substrate temperature <250 deg. C). The microstructure of c-axis oriented AlN films deposited on Si (100) and AlGaN <0001> substrates was studied by x-ray diffraction, selected area electron diffraction, and transmission electron microscopy. The optimization of process parameters, involving low energetic ion bombardment on film surface (20-30 eV) during the growth, leads to an increase in the surface mobility and thus promotes AlN epitaxial growth on AlGaN substrate at 250 deg. C.

  12. The aluminum electrode in AlCl3-alkali-halide melts.

    NASA Technical Reports Server (NTRS)

    Holleck, G. L.; Giner, J.

    1972-01-01

    Passivation phenomena have been observed upon cathodic and anodic polarization of the Al electrode in AlCl3-KCl-NaCl melts between 100 and 160 C. They are caused by formation of a solid salt layer at the electrode surface resulting from concentration changes upon current flow. The anodic limiting currents increased with temperature and with decreasing AlCl3 content of the melt. Current voltage curves obtained on a rotating aluminum disk showed a linear relationship between the anodic limiting current and omega to the minus 1/2 power. Upon cathodic polarization, dendrite formation occurs at the Al electrode. The activation overvoltage in AlCl3-KCl-NaCl was determined by galvanostatic current step methods. An apparent exchange current density of 270 mA/sq cm at 130 C and a double layer capacity of 40 plus or minus 10 microfarad/sq cm were measured.

  13. Hydrolysis Studies and Quantitative Determination of Aluminum Ions Using [superscript 27]Al NMR: An Undergraduate Analytical Chemistry Experiment

    ERIC Educational Resources Information Center

    Curtin, Maria A.; Ingalls, Laura R.; Campbell, Andrew; James-Pederson, Magdalena

    2008-01-01

    This article describes a novel experiment focused on metal ion hydrolysis and the equilibria related to metal ions in aqueous systems. Using [superscript 27]Al NMR, the students become familiar with NMR spectroscopy as a quantitative analytical tool for the determination of aluminum by preparing a standard calibration curve using standard aluminum

  14. Dissociation of H{sub 2} on carbon doped aluminum cluster Al{sub 6}C

    SciTech Connect

    Yang, Huihui; Zhang, Yan; Chen, Hongshan

    2014-08-14

    The dissociation of H{sub 2} molecule is the first step for chemical storage of hydrogen, and the energy barrier of the dissociation is the key factor to decide the kinetics of the regeneration of the storage material. As a light element, aluminum is an important candidate component for storage materials with high gravimetric density. This paper investigates the adsorption and dissociation of H{sub 2} on carbon doping aluminum cluster Al{sub 6}C. The study shows that doping carbon into aluminum cluster can significantly change the electronic structure and increase the stability. Al{sub 6}C has a few stable isomers with close energies and their structures are quite flexible. The molecular adsorption of H{sub 2} on Al{sub 6}C is very weak, but the H{sub 2} molecule can be dissociated easily on this cluster. The stable product of the dissociated adsorption is searched and the different paths for the dissociation are investigated. During the dissociation of H{sub 2}, the structure of the cluster adjusts accordingly, and strong orbital interaction between the hydrogen and the cluster occurs. The calculated energy barrier for the dissociation is only 0.30 eV, which means the dissociation can take place at moderate temperatures.

  15. Crack initiation and growth toughness of an aluminum metal-matrix composite

    NASA Technical Reports Server (NTRS)

    Manoharan, M.; Lewandowski, J. J.

    1990-01-01

    The effects of systematic changes in matrix microstructure on crack initiation and growth toughnesses were determined on an Al-Zn-Mg-Cu alloy containing 0, 15, 20 percent by volume of SiC particulates. Materials were heat treated to underaged (UA) and overaged (OA) conditions of equivalent matrix microhardness and flow stress. Although both the fracture initiation and growth toughnesses, as measured by JIc and tearing modulus, were similar for the unreinforced materials in the UA and OA conditions, significant effects of microstructure on both JIc and tearing modulus were observed in the composites. SEM and TEM observations of fracture paths in the two conditions are utilized to rationalize these observations in light of existing theories of ductile fracture propagation.

  16. The Interface of TiB2 and Al3Ti in Molten Aluminum

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoming; Song, Jie; Vian, Wei; Ma, Haibin; Han, Qingyou

    2015-12-01

    In the grain refinement of aluminum, Al3Ti and TiB2 particles are introduced to reduce the casting grain size down to 200 micrometer level, which makes cold working possible. The particles are brought in by the addition of Al-Ti-B-type master alloys. It is generally believed that TiB2 particles are stable and nucleate α-Al grains in solidification in the presence of titanium in solution from the dissolution of Al3Ti particles in the master alloys. The titanium in solution either forms Al3Ti layers on the surface of TiB2 particles to promote the nucleation of α-Al grains or remains as solute to restrict the growth of α-Al grains in solidification. However, a consensus on a grain refinement mechanism is still to be reached due to the lack of direct observation of the three phases in castings. This paper presents finding of the TiB2/Al3Ti interfaces in an Al-Ti-B master alloy. It demonstrates a strong epitaxial growth of Al3Ti on the surface of TiB2 particles, a sign of the formation of an Al3Ti layer on the surface of TiB2 particles in grain refinement practice. The Al3Ti layer has a crystal coherency with α-Al and hence offers a substrate for heterogeneous nucleation of α-Al grains. However, the layer must be dynamic to avoid the formation of compounded Al3Ti and TiB2 particles leading to the loss of efficiency in grain refinement.

  17. Crystallographic Texture in the Friction-Stir-Welded Metal Matrix Composite Al6061 with 10 Vol Pct Al2O3

    NASA Astrophysics Data System (ADS)

    Root, J. M.; Field, D. P.; Nelson, T. W.

    2009-09-01

    Friction stir welding (FSW) is an important, relatively new joining technology particularly for aluminum alloys and metal matrix composites (MMCs). Metal matrix composites are light weight and have good stiffness and strength—perfect for aerospace and other modern industrial applications. However, MMCs are difficult to join by traditional fusion welding processes due to welding defects and poor joint strength. To better understand the joining process in friction-stir-welded MMCs, investigation of the crystallographic texture of the weld and of the interface between the metal matrix and reinforcing particles is needed. The crystallographic texture and particle-matrix interaction of FSW Al6061-10 vol pct alumina have been studied in this article. Using electron backscatter diffraction (EBSD), the texture gradient of the FSW MMC has been shown to have similar trends to that of an unreinforced Al alloy, but with significantly larger grain size in general. Fracture and redistribution of the reinforcing alumina particles in the weld nugget were also observed.

  18. Modification Performance of WC Nanoparticles in Aluminum and an Al-Si Casting Alloy

    NASA Astrophysics Data System (ADS)

    Borodianskiy, Konstantin; Zinigrad, Michael

    2016-04-01

    The influence of a modifier based on tungsten carbide (WC) nanoparticles is investigated first using 1 kg of bulk aluminum and then in a real industrial process using a commercial Al-Si casting alloy. The modifier is prepared by two different approaches, and its influence is investigated in pure aluminum and in commercial aluminum alloy A356. Microstructural studies show that the mean grain size in pure aluminum is reduced by 11.5 pct. Such a change usually causes an improvement in the mechanical properties of metals. Accordingly, the mechanical properties of the A356 alloy modified with WC nanoparticles are determined after T6 heat treatment and compared with unmodified specimens of the same alloy. The results obtained in the modified A356 alloy reveal unusual behavior of the mechanical properties, where the elongation of the alloys improved by 32 to 64 pct, while the tensile strength and yield strength remained unchanged. This behavior is attributable to a grain-size strengthening mechanism, where strengthening occurs due to the high concentration of grain boundaries, which act as obstacles to the motion of dislocations in the lattice.

  19. Modification Performance of WC Nanoparticles in Aluminum and an Al-Si Casting Alloy

    NASA Astrophysics Data System (ADS)

    Borodianskiy, Konstantin; Zinigrad, Michael

    2016-01-01

    The influence of a modifier based on tungsten carbide (WC) nanoparticles is investigated first using 1 kg of bulk aluminum and then in a real industrial process using a commercial Al-Si casting alloy. The modifier is prepared by two different approaches, and its influence is investigated in pure aluminum and in commercial aluminum alloy A356. Microstructural studies show that the mean grain size in pure aluminum is reduced by 11.5 pct. Such a change usually causes an improvement in the mechanical properties of metals. Accordingly, the mechanical properties of the A356 alloy modified with WC nanoparticles are determined after T6 heat treatment and compared with unmodified specimens of the same alloy. The results obtained in the modified A356 alloy reveal unusual behavior of the mechanical properties, where the elongation of the alloys improved by 32 to 64 pct, while the tensile strength and yield strength remained unchanged. This behavior is attributable to a grain-size strengthening mechanism, where strengthening occurs due to the high concentration of grain boundaries, which act as obstacles to the motion of dislocations in the lattice.

  20. NC-AFM identification of different aluminum atoms on Al2O3/NiAl(110) surface

    NASA Astrophysics Data System (ADS)

    Stich, Ivan; Brndiar, Jan; Li, Yan Jun; Sugawara, Yasuhiro

    2015-03-01

    Ultrathin alumina film formed by oxidation of NiAl(110) is widely used as a system for technologically important oxide-supported catalysts. Using small amplitude NC-AFM we have obtained images of this system with unprecedented resolution, significantly surpassing the previous STM and NC-AFM images. In particular, we are able to resolve aluminum atoms with different coordination, such as five-, and four-fold coordinated Al atoms. Experiments are supported by extensive density functional theory modeling. Starting from the previous atomic model, we have been able to describe the gross image features such as the dark oxygen sites. We find that the system is strongly ionic with the oxygen sites strongly negatively charged and aluminum sites positively charged. Hence, the NC-AFM images can reliably be understood from electrostatic potentials. These finding also suggest an oxygen terminated apex. Resolving finer contrast features of the differently coordinated Al atoms required construction of better and more realistic approximants to the ultra-thin incommensurable alumina interface. Supported by APVV-0207-11 and VEGA (2/0007/12) projects.

  1. Growth of aluminum catalyzed AlGaAs nanowires on silicon substrate.

    PubMed

    Bag, R K; Mohan, P; Singh, S; Kumar, A; Tyagi, R; Pandya, D K; Singh, R

    2013-03-01

    Aluminum catalyzed AlGaAs nanowires were fabricated on Si (111) substrates using metal-organic chemical vapor deposition (MOCVD) technique at a low growth temperature of 450 degrees C. Grown structures were characterized by field emission scanning electron microscope (FE-SEM), energy-dispersive X-ray spectroscopy (EDS) and photoluminescence (PL) techniques. Nanowire clusters were observed all over the substrate. Multiprong root-grown AlGaAs nanowire clusters as well as catalyst particle terminated growth was observed. The growth is explained by Vapor-Solid-Solid (VSS) and Vapor-Solid (VS) growth mechanisms using Al-Si binary phase diagram. EDS and PL measurement confirm the formation of AlGaAs nanowires. PMID:23755616

  2. Laser direct marking applied to rasterizing miniature Data Matrix Code on aluminum alloy

    NASA Astrophysics Data System (ADS)

    Li, Xia-Shuang; He, Wei-Ping; Lei, Lei; Wang, Jian; Guo, Gai-Fang; Zhang, Teng-Yun; Yue, Ting

    2016-03-01

    Precise miniaturization of 2D Data Matrix (DM) Codes on Aluminum alloy formed by raster mode laser direct part marking is demonstrated. The characteristic edge over-burn effects, which render vector mode laser direct part marking inadequate for producing precise and readable miniature codes, are minimized with raster mode laser marking. To obtain the control mechanism for the contrast and print growth of miniature DM code by raster laser marking process, the temperature field model of long pulse laser interaction with material is established. From the experimental results, laser average power and Q frequency have an important effect on the contrast and print growth of miniature DM code, and the threshold of laser average power and Q frequency for an identifiable miniature DM code are respectively 3.6 W and 110 kHz, which matches the model well within normal operating conditions. In addition, the empirical model of correlation occurring between laser marking parameters and module size is also obtained, and the optimal processing parameter values for an identifiable miniature DM code of different but certain data size are given. It is also found that an increase of the repeat scanning number effectively improves the surface finish of bore, the appearance consistency of modules, which has benefit to reading. The reading quality of miniature DM code is greatly improved using ultrasonic cleaning in water by avoiding the interference of color speckles surrounding modules.

  3. Evaluation of the Technical-Economic Potential of Particle- Reinforced Aluminum Matrix Composites and Electrochemical Machining

    NASA Astrophysics Data System (ADS)

    Schubert, A.; Götze, U.; Hackert-Oschätzchen, M.; Lehnert, N.; Herold, F.; Meichsner, G.; Schmidt, A.

    2016-03-01

    Compared to conventional cutting, the processing of materials by electrochemical machining offers some technical advantages like high surface quality, no thermal or mechanical impact on the work piece and preservation of the microstructure of the work piece material. From the economic point of view, the possibility of process parallelization and the absence of any process-related tool wear are mentionable advantages of electrochemical machining. In this study, based on experimental results, it will be evaluated to what extent the electrochemical machining is technically and economically suitable for the finish-machining of particle- reinforced aluminum matrix composites (AMCs). Initial studies showed that electrochemical machining - in contrast to other machining processes - has the potential to fulfil demanding requirements regarding precision and surface quality of products or components especially when applied to AMCs. In addition, the investigations show that processing of AMCs by electrochemical machining requires less energy than the electrochemical machining of stainless steel. Therefore, an evaluation of electrochemically machined AMCs - compared to stainless steel - from a technical and an economic perspective will be presented in this paper. The results show the potential of electro-chemically machined AMCs and contribute to the enhancement of instruments for technical-economic evaluations as well as a comprehensive innovation control.

  4. Measurement of mercury in flue gas based on an aluminum matrix sorbent.

    PubMed

    Wang, Juan; Xu, Wei; Wang, Xiaohao; Wang, Wenhua

    2011-01-01

    The measurement of total mercury in flue gas based on an economical aluminum matrix sorbent was developed in this paper. A sorbent trap consisted of three tubes was employed to capture Hg from flue gas. Hg trapped on sorbent was transferred into solution by acid leaching and then detected by CVAAS. Hg adsorbed on sorbent was recovered completely by leaching process. The 87.7% recovery of Hg in flue gas by tube 1 and tube 2 was obtained on the equipment of coal combustion and sampling in lab. In order to evaluate the ability to recover and accurately quantify Hg(0) on the sorbent media, the analytical bias test on tube 3 spiked with Hg(0) was also performed and got the average recovery of 97.1%. Mercury measurements based on this method were conducted for three coal-fired power plants in China. The mercury in coal is distributed into bottom ash, electrostatic precipitator (ESP) ash, wet flue gas desulfurization (WFGD) reactant, and flue gas, and the relative distribution varied depending on factors such as the coal type and the operation conditions of plants. The mercury mass balances of three plants were also calculated which were 91.6%, 77.1%, and 118%, respectively. The reliability of this method was verified by the Ontario Hydro (OH) method either in lab or in field. PMID:22235178

  5. Measurement of Mercury in Flue Gas Based on an Aluminum Matrix Sorbent

    PubMed Central

    Wang, Juan; Xu, Wei; Wang, Xiaohao; Wang, Wenhua

    2011-01-01

    The measurement of total mercury in flue gas based on an economical aluminum matrix sorbent was developed in this paper. A sorbent trap consisted of three tubes was employed to capture Hg from flue gas. Hg trapped on sorbent was transferred into solution by acid leaching and then detected by CVAAS. Hg adsorbed on sorbent was recovered completely by leaching process. The 87.7% recovery of Hg in flue gas by tube 1 and tube 2 was obtained on the equipment of coal combustion and sampling in lab. In order to evaluate the ability to recover and accurately quantify Hg0 on the sorbent media, the analytical bias test on tube 3 spiked with Hg0 was also performed and got the average recovery of 97.1%. Mercury measurements based on this method were conducted for three coal-fired power plants in China. The mercury in coal is distributed into bottom ash, electrostatic precipitator (ESP) ash, wet flue gas desulfurization (WFGD) reactant, and flue gas, and the relative distribution varied depending on factors such as the coal type and the operation conditions of plants. The mercury mass balances of three plants were also calculated which were 91.6%, 77.1%, and 118%, respectively. The reliability of this method was verified by the Ontario Hydro (OH) method either in lab or in field. PMID:22235178

  6. Aluminum-activated citrate and malate transporters encoded by distinct Al tolerance genes function independently in Arabidopsis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aluminum (Al) -activated malate and citrate exudation from roots plays an important role in conferring Al tolerance to many plant species. Here, we report on the identification and characterization of AtMATE, the gene encoding an Al-activated root citrate efflux transporter that functions in Arabid...

  7. Reliability comparison of GaAlAs/GaAs and aluminum-free high-power laser diodes

    NASA Astrophysics Data System (ADS)

    Pendse, D. R.; Chin, Aland K.; Dabkowski, Ferdynand P.; Clausen, Edward M., Jr.

    1998-08-01

    Aluminum-free laser diodes are InGaAsP/GaAs devices whose epitaxial layers do not contain aluminum. Studies comparing the GaAslAs/GaAs and InGaAsP/GaAs high power laser diodes allegedly indicate that aluminum-free lasers are more reliable due to a reduction of dark-line defects, sudden failures, and gradual degradation. The improved reliability of aluminum-free lasers is presumed to result from the elimination of oxidation of the aluminum-containing epitaxial layers of the laser facets. In this presentation, the performance and reliability of GaAlAs/GaAs and InGaAsP/GaAs high power laser diodes will be reviewed and compared. The present data shows that high reliable GaAlAs/GaAs lasers can be produced with good manufacturing practices.

  8. First-principle Simulation of Magnesium-aluminum Spinel (MgAl2O4)

    NASA Astrophysics Data System (ADS)

    Zhang, W.; Seagle, C. T.; Zhou, H.; Heinz, D. L.

    2008-12-01

    11033768 First-principle Simulation of Magnesium-aluminum Spinel (MgAl2O4) Materials with the spinel crystal structure, AB2O4 are believed to be an important component of Earth's mantle and may be related to density and seismic wave velocity discontinuities at the transition zone from 400km to 660km depth. Using Ab-initio calculations, five phases are predicted to have a stability range at zero temperature: magnesium-aluminum spinel (MgAl2O4), two of its polymorphs, which are of Pbnm and Cmcm space groups, periclase (MgO) and corundum (Al2O3). Pbnm-MgAl2O4 has the calcium-ferrite structure and Cmcm-MgAl2O4 takes the calcium-titanate structure. Calculations are preformed using the PWSCF (Plane-Wave Self-Consistent Field) codes. The free energy of the compressed volume was calculated directly for each of the phases above. Based on the energy-volume results from the calculations, dissolution of MgAl2O4 into MgO + Al2O3 occurs at 12GPa and the mixture (MgO + Al2O3) is expected to recombine to form the calcium-ferrite type phase at about 27GPa. The two phase transition pressures are consistent with experimental results. Cell parameters of the five phases simulated and their bulk modulus derived from the energy-volume curve are also in good agreement with experimental work. But unlike the conclusions drawn from some previous experimental work, the calcium-ferrite type structure (Pbnm-MgAl2O4) did not transform to the calcium-titanate type structure (Cmcm-MgAl2O4) at around 40GPa, which provides the possibility that calcium-ferrite type phase may be stable to even higher pressures (up to100GPa). Derived parameters, bulk modulus and density of each phase are in good agreement with experimental results. The differences are within 4%. Compared to seismic velocity profiles of the earth, these phase transitions pressures match the discontinuity pressures at transition zone 400km (Fd3m- MgAl2O4 -> MgO + Al2O3) and 660km (MgO + Al2O3 -> Pbnm-MgAl2O4) respectively, suggesting that the spinel phase transitions may be partially responsible for the seismic discontinuity at the transition zone. Future calculations will add the energy contribution of phonons which will allow calculations at finite temperature in the first-principle simulations. This is expected to provide more accurate predictions for application to realistic mantle temperature-pressure conditions.

  9. 49 CFR Appendix C to Part 180 - Eddy Current Examination With Visual Inspection for DOT 3AL Cylinders Manufactured of Aluminum...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... for DOT 3AL Cylinders Manufactured of Aluminum Alloy 6351-T6 C Appendix C to Part 180 Transportation... Cylinders Manufactured of Aluminum Alloy 6351-T6 1. Examination Procedure. Each facility performing eddy... ring and probe for each DOT-3AL cylinder manufactured of aluminum alloy 6351-T6 to be inspected must...

  10. 49 CFR Appendix C to Part 180 - Eddy Current Examination With Visual Inspection for DOT 3AL Cylinders Manufactured of Aluminum...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... for DOT 3AL Cylinders Manufactured of Aluminum Alloy 6351-T6 C Appendix C to Part 180 Transportation... Cylinders Manufactured of Aluminum Alloy 6351-T6 1. Examination Procedure. Each facility performing eddy... ring and probe for each DOT-3AL cylinder manufactured of aluminum alloy 6351-T6 to be inspected must...

  11. 49 CFR Appendix C to Part 180 - Eddy Current Examination With Visual Inspection for DOT 3AL Cylinders Manufactured of Aluminum...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... for DOT 3AL Cylinders Manufactured of Aluminum Alloy 6351-T6 C Appendix C to Part 180 Transportation... Cylinders Manufactured of Aluminum Alloy 6351-T6 1. Examination Procedure. Each facility performing eddy... ring and probe for each DOT-3AL cylinder manufactured of aluminum alloy 6351-T6 to be inspected must...

  12. 49 CFR Appendix C to Part 180 - Eddy Current Examination With Visual Inspection for DOT 3AL Cylinders Manufactured of Aluminum...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... for DOT 3AL Cylinders Manufactured of Aluminum Alloy 6351-T6 C Appendix C to Part 180 Transportation... Cylinders Manufactured of Aluminum Alloy 6351-T6 1. Examination Procedure. Each facility performing eddy... ring and probe for each DOT-3AL cylinder manufactured of aluminum alloy 6351-T6 to be inspected must...

  13. 49 CFR Appendix C to Part 180 - Eddy Current Examination With Visual Inspection for DOT 3AL Cylinders Manufactured of Aluminum...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... for DOT 3AL Cylinders Manufactured of Aluminum Alloy 6351-T6 C Appendix C to Part 180 Transportation... Cylinders Manufactured of Aluminum Alloy 6351-T6 1. Examination Procedure. Each facility performing eddy... ring and probe for each DOT-3AL cylinder manufactured of aluminum alloy 6351-T6 to be inspected must...

  14. Fracture behavior of notched continuous fiber boron/aluminum metal matrix composite. Ph.D. Thesis

    SciTech Connect

    Hsieh, F.

    1994-01-01

    One of the most useful attribute of reinforced fibrous composites is its ability to retard crack propagation and thereby improve its overall fracture resistance. Research on the fracture behavior of continuous fiber reinforced metal matrix composites (MMC`s) is critical to assessing important engineering properties such as fatigue, impact resistance, creep and durability. The mechanism of interfacial fiber/matrix sliding and debonding in a notched fiber reinforced composite and the corresponding increasing of the overall fracture toughness have been studied in recent years. However, to the best of the authors knowledge, no direct in-situ experimental measurement of the interfacial sliding and debonding processes has been conducted so far. Although, some qualitative description and analyses have been performed by many researchers. In this research, moire interferometry, which is capable of full field surface deformation measurement, is applied to study the interfacial fracture behavior of unidirectional continuous fiber B/Al MMC at room temperature. The objectives of this research are (1) to analyze the mechanisms of interfacial fiber/matrix sliding and debonding, and (2) to investigate the failure criterion for interfacial sliding/debonding based on the measured full-strength high resolution moire fringe patterns at notch tip region. A hybrid finite element analysis is also conducted to compare and verify the experimental results. The test results indicated the existence of a critical interfacial shear strain to initiate the T-crack growth. And numerical results compared favorably with experimental results were noted.

  15. Laser fusion-brazing of aluminum alloy to galvanized steel with pure Al filler powder

    NASA Astrophysics Data System (ADS)

    Liu, Jia; Jiang, Shichun; Shi, Yan; Kuang, Yulin; Huang, Genzhe; Zhang, Hong

    2015-03-01

    The fusion-brazing connection of the dissimilar metal 5052 aluminum alloy/ST07Z steel was achieved by using the Nd:YAG laser with pure Al filler powder, and the effects of the laser power and powder feeding speed on the formation and mechanical properties of the resultant joints were investigated. The experimental results show that melting-brazing connection of 5052 aluminum alloy/galvanized steel can be successfully achieved, and the zinc plating layer has played the role of flux, assuring the brazing properties. The intermetallic compound layer was generated on the welded brazing interface. The joint exhibited a shear strength of 174 N/mm if the thickness of the intermetallic layer at the interface is about 6-7 μm.

  16. Wear and Friction Characteristics of AlN/Diamond-Like Carbon Hybrid Coatings on Aluminum Alloy

    NASA Astrophysics Data System (ADS)

    Nakamura, Masashi; Kubota, Sadayuki; Suzuki, Hideto; Haraguchi, Tadao

    2015-10-01

    The use of diamond-like carbon (DLC) coatings has the potential to greatly improve the wear resistance and friction of aluminum alloys, but practical application has so far been limited by poor adhesion due to large difference in hardness and elasticity between the two materials. This study investigates the deposition of DLC onto an Al-alloy using an intermediate AlN layer with a graded hardness to create a hybrid coating. By controlling the hardness of the AlN film, it was found that the wear life of the DLC film could be improved 80-fold compared to a DLC film deposited directly onto Al-alloy. Furthermore, it was demonstrated through finite element simulation that creating a hardness gradient in the AlN intermediate layer reduces the distribution of stress in the DLC film, while also increasing the force of adhesion between the DLC and AlN layers. Given that both the DLC and AlN films were deposited using the same unbalanced magnetron sputtering method, this process is considered to represent a simple and effective means of improving the wear resistance of Al-alloy components commonly used within the aerospace and automotive industries.

  17. Spark Plasma Sintering of Aluminum-Magnesium-Matrix Composites with Boron Carbide and Tungsten Nano-powder Inclusions: Modeling and Experimentation

    NASA Astrophysics Data System (ADS)

    Dvilis, E. S.; Khasanov, O. L.; Gulbin, V. N.; Petyukevich, M. S.; Khasanov, A. O.; Olevsky, E. A.

    2016-01-01

    Spark-plasma sintering (SPS) is used to fabricate fully-dense metal-matrix (Al/Mg) composites containing hard ceramic (boron carbide) and refractory metal (tungsten) inclusions. The study objectives include the modeling (and its experimental verification) of the process of the consolidation of the composites consisted of aluminum-magnesium alloy AMg6 (65 wt.%), B4C powder (15 wt.%), and W nano-powder (20 wt.%), as well as the optimization of the composite content and of the SPS conditions to achieve higher density. Discrete element modeling of the composite particles packing based on the particle size distribution functions of real powders is utilized for the determination of the powder compositions rendering maximum mixture packing densities. Two models: a power-law creep model of the high temperature deformation of powder materials, and an empirical logarithmic pressure-temperature-relative density relationship are successfully applied for the description of the densification of the aluminum-magnesium metal matrix powder composite subjected to spark-plasma sintering. The elastoplastic properties of the sintered composite samples are assessed by nanoindentation.

  18. Spark Plasma Sintering of Aluminum-Magnesium-Matrix Composites with Boron Carbide and Tungsten Nano-powder Inclusions: Modeling and Experimentation

    NASA Astrophysics Data System (ADS)

    Dvilis, E. S.; Khasanov, O. L.; Gulbin, V. N.; Petyukevich, M. S.; Khasanov, A. O.; Olevsky, E. A.

    2016-03-01

    Spark-plasma sintering (SPS) is used to fabricate fully-dense metal-matrix (Al/Mg) composites containing hard ceramic (boron carbide) and refractory metal (tungsten) inclusions. The study objectives include the modeling (and its experimental verification) of the process of the consolidation of the composites consisted of aluminum-magnesium alloy AMg6 (65 wt.%), B4C powder (15 wt.%), and W nano-powder (20 wt.%), as well as the optimization of the composite content and of the SPS conditions to achieve higher density. Discrete element modeling of the composite particles packing based on the particle size distribution functions of real powders is utilized for the determination of the powder compositions rendering maximum mixture packing densities. Two models: a power-law creep model of the high temperature deformation of powder materials, and an empirical logarithmic pressure-temperature-relative density relationship are successfully applied for the description of the densification of the aluminum-magnesium metal matrix powder composite subjected to spark-plasma sintering. The elastoplastic properties of the sintered composite samples are assessed by nanoindentation.

  19. Method using selected carbons to react with Al2O and Al vapors in the carbothermic production of aluminum

    DOEpatents

    Fruehan, Richard J.; Li, Yun; Carkin, Gerald

    2005-02-01

    In a method for recovering Al from an off-gas (3,4) produced during carbothermic reduction of aluminum utilizing at least one smelter (1,2), the off-gas (3,4) is directed to an enclosed reactor (5) which is fed a supply of wood charcoal (7) having a porosity of from about 50 vol. % to 85 vol. % and an average pore diameter of from about 0.05 .mu.m to about 2.00 .mu.m, where the wood charcoal (7) contacts the off-gas (3,4) to produce at least Al.sub.4 C.sub.3 (6), which is passed back to the smelter (1,2).

  20. Wear Behavior of Aluminum Alloy 6061-Based Composites Reinforced with SiC, Al2O3, and Red Mud: A Comparative Study

    NASA Astrophysics Data System (ADS)

    Singla, Yogesh Kumar; Chhibber, Rahul; Bansal, Hitesh; Kalra, Anil

    2015-09-01

    Metal-matrix composites are widely used in shipping, aerospace, automotive, and nuclear applications. Research attempts have been made in the past to reduce the cost of processing of composites, decrease the weight of the composites, and increase the desired performance characteristics. In this research article, an attempt has been made in using red mud obtained as an industrial waste during the production of aluminum from bauxite ore. This article discusses the novel findings of the experimental study on the dry sliding wear behavior of aluminum alloy 6061-based composites reinforced individually with red mud, SiC, and Al2O3. The microstructural characterization of the composites provides the further insight into the structure—wear behavior of the processed composites.

  1. Atom probe tomography study of the nanoscale heterostructure around an Al20Mn3Cu2 dispersoid in aluminum alloy 2024.

    PubMed

    Parvizi, Reza; Marceau, Ross K W; Hughes, Anthony E; Tan, Mike Y; Forsyth, Maria

    2014-12-16

    Atom probe tomography (APT) has been used to investigate the surface and sub-surface microstructures of aluminum alloy 2024 (AA2024) in the T3 condition (solution heat treated, cold worked, and naturally aged to a substantially stable condition). This study revealed surface Cu enrichment on the alloy matrix, local chemical structure around a dispersoid Al20Mn3Cu2 particle including a Cu-rich particle and S-phase particle on its external surface. Moreover, there was a significant level of hydrogen within the dispersoid, indicating that it is a hydrogen sink. These observations of the nanoscale structure around the dispersoid particle have considerable implications for understanding both corrosion and hydrogen embrittlement in high-strength aluminum alloys. PMID:25415412

  2. Al4H7? is a resilient building block for aluminum hydrogen cluster materials

    PubMed Central

    Roach, P. J.; Reber, A. C.; Woodward, W. H.; Khanna, S. N.; Castleman, A. W.

    2007-01-01

    The formation and oxygen etching of AlnHm? clusters are characterized in a flow reactor experiment with first-principles theoretical investigations to demonstrate the exceptional stability of Al4H7?. The origin of the preponderance of Al4H7? in the mass spectra of hydrogenated aluminum anions and its resistance to O2 etching are discussed. Al4H7? is shown to have the ability to bond with ionic partners to form stable hydrides through addition of an alkali atom [XAl4H7 (X = Li-Cs)]. An intuitive model that can predict the existence of stable hydrogenated cluster species is proposed. The potential synthetic utility of the superatom assemblies built on these units is addressed. PMID:17823245

  3. Chemical interactions in the aluminum-carbon and aluminum-silicon carbide systems

    NASA Technical Reports Server (NTRS)

    Maruyama, Benji; Ohuchi, Fumio S.; Rabenberg, L.

    1990-01-01

    XPS was used to investigate the influence of O2 and H2O on the formation of aluminum carbide at Al-C and Al-SiC interfaces. It was determined that dosing the interfaces with H2O catalyzed the formation of aluminum carbide in both systems. This result is consistent with the oxidation model of carbide formation (developed to understand the kinetics of aluminum carbide formation at graphite-aluminum interfaces). These results imply that the formation of aluminum carbide in graphite- and SiC-reinforced metal-matrix composites, which severely degrades the composite mechanical properties by degrading the fiber and interface strength is catalyzed.

  4. Formation of nanocrystalline h-AlN during mechanochemical decomposition of melamine in the presence of metallic aluminum

    SciTech Connect

    Rounaghi, S.A.; Kiani Rashid, A.R.; Eshghi, H.; Vahdati Khaki, J.

    2012-06-15

    Decomposition of melamine was studied by solid state reaction of melamine and aluminum powders during high energy ball-milling. The milling procedure performed for both pure melamine and melamine/Al mixed powders as the starting materials for various times up to 48 h under ambient atmosphere. The products were characterized by X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). The results revealed that Al causes melamine deammoniation at the first stages of milling and further milling process leads to the s-triazine ring degradation while nano-crystallite hexagonal aluminum nitride (h-AlN) was the main solid product. Comparison to milling process, the possibility of the reaction of melamine with Al was also investigated by thermal treatment method using differential scanning calorimeter (DSC) and thermo gravimetric analyzer (TGA). Melamine decomposition occurred by thermal treatment in the range of 270-370 Degree-Sign C, but no reaction between melamine and aluminum was observed. - Graphical Abstract: Mechanochemical reaction of melamine with Al resulted in the formation of nanocrystalline AlN after 7 h milling time Highlights: Black-Right-Pointing-Pointer High energy ball milling of melamine and aluminum results decomposition of melamine with elimination of ammonia. Black-Right-Pointing-Pointer Nano-crystalline AlN was synthesized by the mechanochemical route. Black-Right-Pointing-Pointer Milling process has no conspicuous effect on pure melamine degradation. Black-Right-Pointing-Pointer No reaction takes place by heating melamine and aluminum powder mixture in argon.

  5. Refractive index of Al3C2B48 aluminum borocarbide crystals

    NASA Astrophysics Data System (ADS)

    Shelykh, A. I.; Gurin, V. N.; Nikanorov, S. P.

    2008-07-01

    Aluminum borocarbide single crystals have been grown from an Al-based solution melt. The crystal lattice parameters have been determined, the dispersion of the refractive index in a 0.55 1.3 ?m wavelength interval has been studied, and the temperature coefficient of the refractive index in a 300 600 K range has been measured. The crystals are characterized by a high refractive index in the visible spectral range in combination with at a high hardness, which makes them of interest for jewelry, as well as for both traditional and X-ray optics.

  6. Terbium-Aluminum (TbAl2) Binary Alloy as High Magnetostrictive Material

    NASA Astrophysics Data System (ADS)

    Boghosian, Mary; Sanchez, Carlos; Bernal, Oscar; Kocharian, Armen; Cal State LA Team

    2015-03-01

    Magnetic phase diagram for the cubic intermetallic terbium-aluminum (Tb-Al) binary alloy is being investigated for the purpose of developing material with high magnetostrain properties that can be used for energy harvesting. Low temperature magnetizations, specific heat, combined with structural examinations are few of the techniques that are being used for this purpose. Preliminary DC magnetization results on as-cast material show magnetic ordering of around 109 K in zero applied fields that varies in magnitude and direction with the increase of applied magnetic field. The preliminary results will be discussed. Supported by Grant # NS-DMR1105380.

  7. Elementary surface chemistry during CuO/Al nanolaminate-thermite synthesis: copper and oxygen deposition on aluminum (111) surfaces.

    PubMed

    Lanthony, Cloé; Guiltat, Mathilde; Ducéré, Jean Marie; Verdier, Agnes; Hémeryck, Anne; Djafari-Rouhani, Mehdi; Rossi, Carole; Chabal, Yves J; Estève, Alain

    2014-09-10

    The surface chemistry associated with the synthesis of energetic nanolaminates controls the formation of the critical interfacial layers that dominate the performances of nanothermites. For instance, the interaction of Al with CuO films or CuO with Al films needs to be understood to optimize Al/CuO nanolaminates. To that end, the chemical mechanisms occurring during early stages of molecular CuO adsorption onto crystalline Al(111) surfaces are investigated using density functional theory (DFT) calculations, leading to the systematic determination of their reaction enthalpies and associated activation energies. We show that CuO undergoes dissociative chemisorption on Al(111) surfaces, whereby the Cu and O atoms tend to separate from each other. Both Cu and O atoms form islands with different properties. Copper islanding fosters Cu insertion (via surface site exchange mechanism) into the subsurface, while oxygen islands remain stable at the surface. Above a critical local oxygen coverage, aluminum atoms are extracted from the Al surface, leading to oxygen-aluminum intermixing and the formation of aluminum oxide (γ-alumina). For Cu and O co-deposition, copper promotes oxygen-aluminum interaction by oxygen segregation and separates the resulting oxide from the Al substrate by insertion into Al and stabilization below the oxide front, preventing full mixing of Al, Cu, and O species. PMID:25089744

  8. Functionalizing Aluminum Oxide by Ag Dendrite Deposition at the Anode during Simultaneous Electrochemical Oxidation of Al.

    PubMed

    Rafailović, Lidija D; Gammer, Christoph; Rentenberger, Christian; Trišović, Tomislav; Kleber, Christoph; Karnthaler, Hans Peter

    2015-11-01

    A novel synthesis strategy is presented for depositing metallic Ag at the anode during simultaneous electrochemical oxidation of Al. This unexpected result is achieved based on galvanic coupling. Metallic dendritic nanostructures well-anchored in a high surface area supporting matrix are envisioned to open up a new avenue of applications. PMID:26398487

  9. Pulse laser processing of a SiC/Al-alloy metal matrix composite

    SciTech Connect

    Dahotre, N.B.; McCay, M.H.; McCay, T.D.; Gopinathan, S. ); Allard, L.F. )

    1991-03-01

    The microstructural changes and the tensile behavior of laser processed A356-Al alloy matrix composites reinforced with 10 and 20 vol. % SiC particulates are characterized. The autogenous bead-on-plate welds were made using a pulsed CO{sub 2} laser operating at a peak power level of 3.2 kW. The pulse on-time was constant at 20 ms and the off-time was varied from 20 to 2 msec (duty cycles of 50--91%). The microstructure of the laser melted region was investigated by optical, scanning, and transmission electron microscopy, and x-ray microchemical analysis techniques. The extent of microstructural changes varied directly with duty cycle, i.e., being a maximum for the longest (91%) duty cycles. Pulsed laser processing produced partial to complete dissolution of SiC particles and sometimes resulted in the formation of aluminum carbide. The associated rapid cooling also produced a fine distribution of nonequilibrium complex precipitates. In addition, the laser energy modified the SiC surface both physically and chemically. The results of tensile tests indicated that the modified SiC and the distribution of fine nonequilibrium precipitates enhance the mechanical properties of the laser processed composites. Optimum changes in microstructure and mechanical properties were obtained in the composites processed with intermediate (67 and 74%) duty cycles; therefore pulsed processing appears to be a strong candidate for successful joining of these MMCs.

  10. Accurate, Electronic and Transport Properties of Wurtzite Aluminum Nitride (w-AlN)

    NASA Astrophysics Data System (ADS)

    Nwigboji, Ifeanyi; Malozovsky, Yuriy; Franklin, Lashounda; Ekuma, Chinedu; Bagayoko, Diola

    2015-03-01

    We present results from ab-initio, self-consistent calculations of electronic and transport properties of wurtzite aluminum nitride (w-AlN). We utilized a local density approximation (LDA) potential, the linear combination of Gaussian orbitals (LCGO), and the Bagayoko, Zhao, and Williams (BZW) method, as enhanced by Ekuma and Franklin (BZW-EF). With multiple oxidation states of Al and N, the method led to several sets of calculations with different ionic species as input. LDA requires, for the description of w-AlN, the results of the calculation leading to the lowest, occupied energies. With Al3+ and N3- as input, the binding energy was 1.5 eV larger, in magnitude, than those for other ionic inputs; hence, the description of w-AlN is provided by a calculation with these ionic species as input. Our calculated, direct band gap for w-AlN, at the ? point, is 6.28 eV, in excellent agreement with the 6.28 eV experimental value at 5 K. We discuss the bands, total and partial densities of states, and calculated electron and hole effective masses. Funded in part by the NSF and the Louisiana Board of Regents, through LASiGMA [Award Nos. EPS- 1003897, NSF (2010-15)-RII-SUBR] and NSF HRD-1002541, the US Department of Energy - NNSA (Award No. DE-NA0001861), LaSPACE, and LONI-SUBR.

  11. Effect of heat treatment on microstructure and interface of SiC particle reinforced 2124 Al matrix composite

    SciTech Connect

    Mandal, Durbadal; Viswanathan, Srinath

    2013-11-15

    The microstructure and interface between metal matrix and ceramic reinforcement of a composite play an important role in improving its properties. In the present investigation, the interface and intermetallic compound present in the samples were characterized to understand structural stability at an elevated temperature. Aluminum based 2124 alloy with 10 wt.% silicon carbide (SiC) particle reinforced composite was prepared through vortex method and the solid ingot was deformed by hot rolling for better particle distribution. Heat treatment of the composite was carried out at 575 °C with varying holding time from 1 to 48 h followed by water quenching. In this study, the microstructure and interface of the SiC particle reinforced Al based composites have been studied using optical microscopy, scanning electron microscopy (SEM) coupled with energy dispersive X-ray spectroscopy (EDS), electron probe micro-analyzer (EPMA) associated with wavelength dispersive spectroscopy (WDS) and transmission electron microscopy (TEM) to identify the precipitate and intermetallic phases that are formed during heat treatment. The SiC particles are uniformly distributed in the aluminum matrix. The microstructure analyses of Al–SiC composite after heat treatment reveal that a wide range of dispersed phases are formed at grain boundary and surrounding the SiC particles. The energy dispersive X-ray spectroscopy and wavelength dispersive spectroscopy analyses confirm that finely dispersed phases are CuAl{sub 2} and CuMgAl{sub 2} intermetallic and large spherical phases are Fe{sub 2}SiAl{sub 8} or Al{sub 15}(Fe,Mn){sub 3}Si. It is also observed that a continuous layer enriched with Cu and Mg of thickness 50–80 nm is formed at the interface in between Al and SiC particles. EDS analysis also confirms that Cu and Mg are segregated at the interface of the composite while no carbide is identified at the interface. - Highlights: • The composite was successfully heat treated at 575°C for 1-48 hrs. • A layer of 50-75 nm is formed at interface after heat treatment. • No Carbide formation and SiC dissolution is observed at this temperature. • MgAl{sub 2}O{sub 4}, CuMgAl{sub 2} phases are segregated at interface of Al-SiC composite. • Mg and Cu are also segregated at near to the grain boundary.

  12. Effect of aluminum treatment on proteomes of radicles of seeds derived from Al-treated tomato plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aluminum (Al) toxicity is a major constraint to plant growth and crop yield in acid soils. Tomato cultivars are especially susceptible to excessive A1 3+ accumulated in the root zone. In this study, tomato plants were grown in a hydroponic culture system supplemented with 50 uM AlK(SO4)2. Seeds harv...

  13. Effect of Carbon Nanotube Dispersion on Mechanical Properties of Aluminum-Silicon Alloy Matrix Composites

    NASA Astrophysics Data System (ADS)

    Chandran, Prathap; Sirimuvva, Tadepalli; Nayan, Niraj; Shukla, A. K.; Murty, S. V. S. Narayana; Pramod, S. L.; Sharma, S. C.; Bakshi, Srinivasa R.

    2014-03-01

    This study has been carried out to reinforce the commonly believed fact that the dispersion of carbon nanotubes in a composite has a profound effect on the properties of the composite. In this study, ball milling was carried out using two different parameters to obtain distinctly different degrees of dispersion of carbon nanotubes (4 wt.%) in Al-9 wt.% Si powders. Composite disks, 80 mm in diameter, having good and bad dispersions of carbon nanotubes were obtained by hot pressing. Optical micrographs and Raman spectroscopy images showed the presence of larger carbon nanotube clusters in the bad dispersion sample. Transmission electron microscopy images confirmed the presence of large clusters in the bad dispersion sample, while the good dispersion sample showed individual carbon nanotubes in the Al matrix. Nanoindentation results indicated a 41% increase in the hardness and a 27% increase in the elastic-to-plastic work ratio, while compression tests indicated a 185% increase in compression yield strength and a 109% increase in fracture strength with improvement in carbon nanotube's dispersion.

  14. Ballistic Impact Testing of Aluminum 2024 and Titanium 6Al-4V for Material Model Development

    NASA Technical Reports Server (NTRS)

    Pereira, J. Michael; Revilock, Duane M.; Ruggeri, Charles R.; Emmerling, William C.; Altobelli, Donald J.

    2012-01-01

    An experimental program is underway to develop a consistent set of material property and impact test data, and failure analysis, for a variety of materials that can be used to develop improved impact failure and deformation models. Unique features of this set of data are that all material property information and impact test results are obtained using identical materials, the test methods and procedures are extensively documented and all of the raw data is available. This report describes ballistic impact testing which has been conducted on aluminum (Al) 2024 and titanium (Ti) 6Al-4vanadium (V) sheet and plate samples of different thicknesses and with different types of projectiles, one a regular cylinder and one with a more complex geometry incorporating features representative of a jet engine fan blade.

  15. Colloidal processing of silcon carbide whiskers/aluminum oxide ceramic matrix composites

    NASA Astrophysics Data System (ADS)

    Zhang, Mingli

    By manipulating the interparticle forces of ceramic colloidal systems, suspensions of different dispersing abilities were obtained. Changing the concentration of ionic species, pH, polyelectrolyte and the solution altered the net interparticle force. The zeta potentials of single component suspensions of varying concentration of ionic species, polyelectrolyte addition, pH and solution (electrolyte, ethanol, or a mixture of electrolyte and ethanol) were measured. The stability ratio, W, which measures the effectiveness of the potential barrier in preventing the particles from coagulation, and the interaction between the components were discussed. SiC whisker reinforced Al2O 3 suspensions were slip cast at different processing conditions (SiC whisker volume fraction, solids loading, ball milling, sintering aids, polyelectrolyte and pH). Green specimens were cold-isostatically pressed and pressureless sintered in a flowing nitrogen atmosphere. Homogeneous SiCw/Al2O3 green bodies with densities of 2.55 +/- 0.07 g/cm3 (~65% theoretical density) were obtained. Bulk densities of 3.80 +/- 0.06 g/cm3 (96% theoretical density), 3.79 +/- 0.06 g/cm3 (97% theoretical density), and 3.40 +/- 0.07 g/cm3 (89% theoretical density) were obtained at 1600°C for composite samples containing 5, 10 and 20 vol% SiC whiskers, respectively. Bulk densities of the 10 vol% SiCw/Al2O3 composites were 3.79 +/- 0.06 g/cm3 at PH 11 and 3.66 +/- 0.07 g/cm3 at pH 4, respectively. pH 11 was determined to be the optimum processing pH for SiCw/Al2O3 composites with sintering aids (2 wt% Y2O3 and 0.5 wt% MgO) and 2.5 vol% polyelectrolyte (Ammonia salt of a polymeric carboxylic acid). The final microstructure revealed homogeneous and near fully densified composites. Compositions of the composites were characterized using Energy Dispersive X-ray Spectrum (EDX). The effect of the aspect ratio of SiC whisker, the Y2O 3 content and the choice of polyelectrolyte were examined. The whisker aspect ratio reduction had a more dramatic effect on achieving dense composites in 20 vol% SiC whisker when compared to 5 or 10 vol% SiC whisker composites. High densities with 10 vol% SiC whisker were attainable without aspect ratio reduction. Sintered densities increased with increasing Y2O 3 content. For 10 vol% SiCw/ Al2O3, the densities remained almost constant at Y2O3 additions greater than 0.5 wt% 2.5 vol% polyelectrolyte stabilized the suspension and resulted in high composite densities. However, further addition of polyelectrolyte, past the adsorption saturation limit, served to leave excess polyelectrolyte in suspension. This excess polyelectrolyte lowered the composite density due to depletion flocculation. Sintered densities of 10 vol% SiCw/Al 2O3 composites slip cast from a mixture of ethanol and water were only 2.92 +/- 0.08 g/cm3 (75% theoretical density). The fracture toughness of Al2O3 was remarkably improved with increasing whisker content. The fracture toughness of 20 vol% SiCw/Al2O3 composite was twice the fracture toughness of the unreinforced Al2O3 matrix.

  16. Avoidance of stress corrosion susceptibility in high strength aluminum alloys by control of grain boundary and matrix microstructure

    NASA Technical Reports Server (NTRS)

    Adler, P.; Deiasi, R.

    1974-01-01

    The relation of microstructure to the mechanical strength and stress corrosion resistance of highest strength and overaged tempers of BAR and 7050 aluminum alloys was investigated. Comparison is made with previously studied 7075 aluminum alloy. Optical microscopy, transmission electron microscopy, and differential scanning calorimetry were used to characterize the grain morphology, matrix microstructure, and grain boundary microstructure of these tempers. Grain boundary interparticle spacing was significant to stress corrosion crack propagation for all three alloys; increasing interparticle spacing led to increased resistance to crack propagation. In addition, the fire grain size in Bar and 7050 appears to enhance crack propagation. The highest strength temper of 7050 has a comparatively high resistance to crack initiation. Overall stress corrosion behavior is dependent on environment pH, and evaluation over a range of pH is recommended.

  17. Effect of Rhenium Addition on Wear Behavior of Cr-Al2O3 Metal Matrix Composites

    NASA Astrophysics Data System (ADS)

    Chmielewski, Marcin; Piątkowska, Anna

    2015-05-01

    Materials for applications in the automotive industry are required to be strong, stiff, hard, light weight, and wear resistant, which is very difficult to achieve in the case of conventional materials. To meet all these diverse requirements, it is necessary to combine various types of materials (such as metals and ceramics). In the present study, the chromium and chromium-rhenium matrices were reinforced with aluminum oxide to obtain composite materials with improved wear resistance. The composites were fabricated by a powder metallurgy method. The effects of the rhenium addition and volume fraction of aluminum oxide on the wear rate and the friction coefficient of the composites at room temperature were examined in a ball-on-surface apparatus under dry conditions. The worn surfaces and debris were studied by scanning electron microscopy. The final values of the friction coefficient were 0.9 and 0.8 for the Cr-25%Al2O3 and Cr-40%Al2O3 composites, respectively. Alloying Cr matrix with Re improved wear resistance of composite but, at the same time, it caused an increase in its coefficient of friction.

  18. Effect of aluminum on the corrosion behavior of NiTiAl thin films

    NASA Astrophysics Data System (ADS)

    Liu, K. T.; Duh, J. G.

    2007-04-01

    An electrochemical study for the evaluation of corrosion behavior using potentiodynamic and Tafel techniques was conducted in 0.9% NaCl solution on Ni-Ti and Ni-Ti-Al shape memory thin films. Atomic force microscopy (AFM) and electron probe microanalyzer (EPMA) were applied to observe morphology of the surface film and elemental distribution, respectively, prior to and after immersion in 0.9% NaCl solution. The concentration of dissolved Ni from Ni-Ti-Al thin films in the electrolyte, measured with inductively coupled plasma atomic emission spectrometer (ICP-AES), was significantly lower after immersion for 7 days, as compared to Ni-Ti thin film. This demonstrated that a better corrosion resistance and lower corrosion current density were revealed for Ni-Ti-Al thin films than that for Ni-Ti thin film. The improved corrosion performance of Ni-Ti-Al thin films would be potentially beneficial for related biological applications. This was attributed to the introduction of aluminum after exposure to an aqueous environment.

  19. A monotopic aluminum telluride with an Al=Te double bond stabilized by N-heterocyclic carbenes.

    PubMed

    Franz, Daniel; Szilvási, Tibor; Irran, Elisabeth; Inoue, Shigeyoshi

    2015-01-01

    Aluminum chalcogenides are mostly encountered in the form of bulk aluminum oxides that are structurally diverse but typically consist of networks with high lattice energy in which the chalcogen atoms bridge the metal centres. This makes their molecular congeners difficult to synthesize because of a pronounced tendency for oligomerization. Here we describe the isolation of the monotopic aluminum chalcogenide (L(Dip)N)AlTe(L(Et))2 (L(Dip)=1,3-(2,6-diisopropylphenyl)-imidazolin-2-imine, L(Et)=1,3-diethyl-4,5-dimethyl-imidazolin-2-ylidene). Unique features of (L(Dip)N)AlTe(L(Et))2 are the terminal position of the tellurium atom, the shortest aluminum-tellurium distance hitherto reported for a molecular complex and the highest bond order reported for an interaction between these elements, to the best of our knowledge. At elevated temperature (L(Dip)N)AlTe(L(Et))2 equilibrates with dimeric {(L(Dip)N)AlTe(L(Et))}2 in which the chalcogen atoms assume their common role as bridges between the metal centres. These findings demonstrate that (L(Dip)N)AlTe(L(Et))2 comprises the elusive Al=Te double bond in the form of an N-heterocyclic carbene-stabilized species. PMID:26612781

  20. Effect of aluminum on fine structure and distribution of chemical elements in high-entropy alloys Al x FeNiCoCuCr

    NASA Astrophysics Data System (ADS)

    Nadutov, V. M.; Makarenko, S. Yu.; Volosevich, P. Yu.

    2015-05-01

    Electron-microscopic and X-ray diffraction methods have been used to study the fine structure of cast high-entropy alloys (HEAs) Al x FeNiCoCuCr ( x = 1, 1.5, 1.8). Disperse precipitates with dimensions of 130-400 and 10-20 nm have been revealed, the character of distribution of which, as well as the amounts, dimensions, and shapes, change with increasing aluminum content. In the equiatomic HEA, copper-containing particles with an fcc structure have been found; in the alloy with x = 1.8, particles of bcc Al4Cu9 dominate. It has been shown that the most uniform distribution over the matrix is characteristic of Co, unlike other elements, among which Cu and Cr are distributed in the alloy extremely nonuniformly and predominantly enter into the precipitated particles and into clusters in the interparticle spaces, respectively.

  1. Effect of microstructure (particulate size and volume fraction) and counterface material on the sliding wear resistance of particulate-reinforced aluminum matrix composites

    NASA Astrophysics Data System (ADS)

    Alpas, A. T.; Zhang, J.

    1994-05-01

    The effects of microstructure (namely, particulate volume fraction and particulate size) and the counterface materials on the dry-sliding wear resistance of the aluminum matrix composites 2014A1-SiC and 6061Al-Al2O3 were studied. Experiments were performed within a load range of 0.9 to 350 N at a constant sliding velocity of 0.2 ms-1. Two types of counterface materials, SAE 52100 bearing steel and mullite, were used. At low loads, where particles act as loadbearing constituents, the wear resistance of the 2014A1 reinforced with 15.8 µm diameter SiC was superior to that of the alloy with the same volume fraction of SiC but with 2.4 µm diameter. The wear rates of the composites worn against a steel slider were lower compared with those worn against a mullite slider because of the formation of iron-rich layers that act as in situ solid lubricants in the former case. With increasing the applied load, SiC and A12O3 particles fractured and the wear rates of the composites increased to levels comparable to those of unreinforced matrix alloys. The transition to this regime was delayed to higher loads in the composites with a higher volume percentage of particles. Concurrent with particle fracture, large strains and strain gradients were generated within the aluminum layers adjacent to contact surfaces. This led to the subsurface crack growth and delamination. Because the particles and interfaces provided preferential sites for subsurface crack initiation and growth and because of the propensity of the broken particles to act as third-body abrasive elements at the contact surfaces, no improvement of the wear resistance was observed in the composites in this regime relative to unreinforced aluminum alloys. A second transition, to severe wear, occurred at higher loads when the contact surface temperature exceeded a critical value. The transition loads (and temperatures) were higher in the composites. The alloys with higher volume fraction of reinforcement provided better resistance to severe wear. Wearing the materials against a mullite counterface, which has a smaller thermal conductivity than a counterface made of steel, led to the occurrence of severe wear at lower loads.

  2. Theory and X-ray Absorption Spectroscopy for Aluminum Coordination Complexes Al K-Edge Studies of Charge and Bonding in (BDI)Al, (BDI)AlR2, and (BDI)AlX2 Complexes.

    PubMed

    Altman, Alison B; Pemmaraju, C D; Camp, Clment; Arnold, John; Minasian, Stefan G; Prendergast, David; Shuh, David K; Tyliszczak, Tolek

    2015-08-19

    Polarized aluminum K-edge X-ray absorption near edge structure (XANES) spectroscopy and first-principles calculations were used to probe electronic structure in a series of (BDI)Al, (BDI)AlX2, and (BDI)AlR2 coordination compounds (X = F, Cl, I; R = H, Me; BDI = 2,6-diisopropylphenyl-?-diketiminate). Spectral interpretations were guided by examination of the calculated transition energies and polarization-dependent oscillator strengths, which agreed well with the XANES spectroscopy measurements. Pre-edge features were assigned to transitions associated with the Al 3p orbitals involved in metal-ligand bonding. Qualitative trends in Al 1s core energy and valence orbital occupation were established through a systematic comparison of excited states derived from Al 3p orbitals with similar symmetries in a molecular orbital framework. These trends suggested that the higher transition energies observed for (BDI)AlX2 systems with more electronegative X(1-) ligands could be ascribed to a decrease in electron density around the aluminum atom, which causes an increase in the attractive potential of the Al nucleus and concomitant increase in the binding energy of the Al 1s core orbitals. For (BDI)Al and (BDI)AlH2 the experimental Al K-edge XANES spectra and spectra calculated using the eXcited electron and Core-Hole (XCH) approach had nearly identical energies for transitions to final state orbitals of similar composition and symmetry. These results implied that the charge distributions about the aluminum atoms in (BDI)Al and (BDI)AlH2 are similar relative to the (BDI)AlX2 and (BDI)AlMe2 compounds, despite having different formal oxidation states of +1 and +3, respectively. However, (BDI)Al was unique in that it exhibited a low-energy feature that was attributed to transitions into a low-lying p-orbital of b1 symmetry that is localized on Al and orthogonal to the (BDI)Al plane. The presence of this low-energy unoccupied molecular orbital on electron-rich (BDI)Al distinguishes its valence electronic structure from that of the formally trivalent compounds (BDI)AlX2 and (BDI)AlR2. The work shows that Al K-edge XANES spectroscopy can be used to provide valuable insight into electronic structure and reactivity relationships for main-group coordination compounds. PMID:26258886

  3. Friction Stir Welding for Aluminum Metal Matrix Composites (MMC's) (Center Director's Discretionary Fund, Project No. 98-09)

    NASA Technical Reports Server (NTRS)

    Lee, J. A.; Carter, R. W.; Ding, J.

    1999-01-01

    This technical memorandum describes an investigation of using friction stir welding (FSW) process for joining a variety of aluminum metal matrix composites (MMC's) reinforced with discontinuous silicon-carbide (SiC) particulate and functional gradient materials. Preliminary results show that FSW is feasible to weld aluminum MMC to MMC or to aluminum-lithium 2195 if the SiC reinforcement is <25 percent by volume fraction. However, a softening in the heat-affected zone was observed and is known to be one of the major limiting factors for joint strength. The pin tool's material is made from a low-cost steel tool H-13 material, and the pin tool's wear was excessive such that the pin tool length has to be manually adjusted for every 5 ft of weldment. Initially, boron-carbide coating was developed for pin tools, but it did not show a significant improvement in wear resistance. Basically, FSW is applicable mainly for butt joining of flat plates. Therefore, FSW of cylindrical articles such as a flange to a duct with practical diameters ranging from 2-5 in. must be fully demonstrated and compared with other proven MMC joining techniques for cylindrical articles.

  4. Laser alloyed Al-W coatings on aluminum for enhanced corrosion resistance

    NASA Astrophysics Data System (ADS)

    Rajamure, Ravi Shanker; Vora, Hitesh D.; Srinivasan, S. G.; Dahotre, Narendra B.

    2015-02-01

    A tungsten precursor deposit was spray coated on aluminum 1100 substrate and was subsequently surface alloyed using a continuous wave diode-pumped ytterbium laser at varying laser energy densities. For the laser energy input of 21-32 J/mm2 the melt depth ranged between 135 and 150 μm. Scanning electron microscopy observations indicated the formation of uniform and continuously dense laser alloyed coatings with sound interface between the modified surface and substrate along with an equi-axed grain structure with second phase precipitates in the intergranular region. X-ray diffraction analysis confirmed that laser processing has resulted in the formation of Al4W, as the major phase with retention of W in Al within the alloyed region. The corrosion resistance of laser alloyed coatings was evaluated in near natural chloride solution using ac and dc electrochemical techniques. After laser processing potential-time measurements has indicated the relatively stable and high potential values over the longer exposure times. Cyclic polarization results showed the reduction in the corrosion current density by a factor of 8, compared to untreated Al 1100. Besides, the electrochemical impedance spectroscopy confirmed the increase in the total resistance (47-70 kΩ cm2) with the increase in the laser energy density.

  5. The use of polyimide-modified aluminum nitride fillers in AlN@PI/Epoxy composites with enhanced thermal conductivity for electronic encapsulation

    PubMed Central

    Zhou, Yongcun; Yao, Yagang; Chen, Chia-Yun; Moon, Kyoungsik; Wang, Hong; Wong, Ching-ping

    2014-01-01

    Polymer modified fillers in composites has attracted the attention of numerous researchers. These fillers are composed of core-shell structures that exhibit enhanced physical and chemical properties that are associated with shell surface control and encapsulated core materials. In this study, we have described an apt method to prepare polyimide (PI)-modified aluminum nitride (AlN) fillers, AlN@PI. These fillers are used for electronic encapsulation in high performance polymer composites. Compared with that of untreated AlN composite, these AlN@PI/epoxy composites exhibit better thermal and dielectric properties. At 40 wt% of filler loading, the highest thermal conductivity of AlN@PI/epoxy composite reached 2.03 W/mK. In this way, the thermal conductivity is approximately enhanced by 10.6 times than that of the used epoxy matrix. The experimental results exhibiting the thermal conductivity of AlN@PI/epoxy composites were in good agreement with the values calculated from the parallel conduction model. This research work describes an effective pathway that modifies the surface of fillers with polymer coating. Furthermore, this novel technique improves the thermal and dielectric properties of fillers and these can be used extensively for electronic packaging applications. PMID:24759082

  6. Hydrolysis Studies and Quantitative Determination of Aluminum Ions Using [superscript 27]Al NMR: An Undergraduate Analytical Chemistry Experiment

    ERIC Educational Resources Information Center

    Curtin, Maria A.; Ingalls, Laura R.; Campbell, Andrew; James-Pederson, Magdalena

    2008-01-01

    This article describes a novel experiment focused on metal ion hydrolysis and the equilibria related to metal ions in aqueous systems. Using [superscript 27]Al NMR, the students become familiar with NMR spectroscopy as a quantitative analytical tool for the determination of aluminum by preparing a standard calibration curve using standard aluminum…

  7. CO sub 2 induced inhibition of the localized corrosion of aluminum, Al-0. 5% Cu, and Al-2% Cu in dilute HF solution

    SciTech Connect

    Scully, J.R. . Dept. of Materials Science); Peebles, D.E. )

    1991-01-01

    This study presents work on corrosion of aluminum, Al-.5% Cu, and Al-2% Cu. Electrochemical tests were performed in dilute HF solutions both with and without CO{sub 2} sparging. It is suggested that CO{sub 2} or its reaction products interact with the passive film so that exposure of Cu in the oxide-solution interface is minimized. CO{sub 2} is investigated as a corrosion inhibitor. 4 refs. (JDL)

  8. New ionic liquids based on complexation of dipropylsulfide and AlCl3 for electrochodeposition of aluminum

    DOE PAGESBeta

    Fang, Youxing; Jiang, Xueguang; Dai, Sheng; Sun, Xiao-Guang

    2015-01-01

    A new kind of ionic liquid based on complexation of dipropyl sulfide (DPS) and AlCl3 has been prepared. The equivalent concentration of AlCl3 in the ionic liquid is as high as 2.3 M. More importantly, it is highly fluidic and exhibits an ambient ionic conductivity of 1.25 x 10-4 S cm-1. This new ionic liquid can be successfully used as an electrolyte for electrodeposition of aluminum.

  9. Atomic force microscopy identification of Al-sites on ultrathin aluminum oxide film on NiAl(110)

    NASA Astrophysics Data System (ADS)

    Li, Yan Jun; Brndiar, J.; Naitoh, Y.; Sugawara, Y.; Štich, I.

    2015-12-01

    Ultrathin alumina film formed by oxidation of NiAl(110) was studied by non-contact atomic force microscopy in an ultra high vacuum at room temperature with the quest to provide the ultimate understanding of structure and bonding of this complicated interface. Using a very stiff Si cantilever with significantly improved resolution, we have obtained images of this system with unprecedented resolution, surpassing all the previous results. In particular, we were able to unambiguously resolve all the differently coordinated aluminum atoms. This is of importance as the previous images provide very different image patterns, which cannot easily be reconciled with the existing structural models. Experiments are supported by extensive density functional theory modeling. We find that the system is strongly ionic and the atomic force microscopy images can reliably be understood from the electrostatic potential which provides an image model in excellent agreement with the experiments. However, in order to resolve the finer contrast features we have proposed a more sophisticated model based on more realistic approximants to the incommensurable alumina interface.

  10. Atomic force microscopy identification of Al-sites on ultrathin aluminum oxide film on NiAl(110).

    PubMed

    Li, Yan Jun; Brndiar, J; Naitoh, Y; Sugawara, Y; tich, I

    2015-12-18

    Ultrathin alumina film formed by oxidation of NiAl(110) was studied by non-contact atomic force microscopy in an ultra high vacuum at room temperature with the quest to provide the ultimate understanding of structure and bonding of this complicated interface. Using a very stiff Si cantilever with significantly improved resolution, we have obtained images of this system with unprecedented resolution, surpassing all the previous results. In particular, we were able to unambiguously resolve all the differently coordinated aluminum atoms. This is of importance as the previous images provide very different image patterns, which cannot easily be reconciled with the existing structural models. Experiments are supported by extensive density functional theory modeling. We find that the system is strongly ionic and the atomic force microscopy images can reliably be understood from the electrostatic potential which provides an image model in excellent agreement with the experiments. However, in order to resolve the finer contrast features we have proposed a more sophisticated model based on more realistic approximants to the incommensurable alumina interface. PMID:26588437

  11. Fiber phase transformation and matrix plastic flow in a room temperature tensile strained NiTi shape memory alloy fiber reinforced 6082 aluminum matrix composite

    SciTech Connect

    Armstrong, W.D.; Lorentzen, T.

    1997-05-01

    Macroscopic tensile and in-situ neutron diffraction measurements are reported from a 20.5 volume percent, 50.7 at% Ni-Ti fiber reinforced 6082-T6 aluminum matrix composite subjected to a room temperature, 4% tensile elongation. The austenite B2(110) diffraction intensity was essentially stable until approximately 0.9% strain, beyond which, the austenite B2(110) diffraction intensity strongly decreased with increasing tensile strain. The martensite M(001) diffraction intensity strongly increased from a zero intensity intercept at approximately 2.3% strain to the conclusion of tensile straining. This report concludes that the initial decrease in austenite B2(11) diffraction intensity locates the initiation of stress induced transformations in the NiTi reinforcement, furthermore this feature corresponds with an elevated yield point region in the macroscopic tensile results. Therefore, it appears that the elevated yield point region is caused by a temporary inhibition of fiber stress induced transformations.

  12. Laser bending of Al-based metal matrix composites sheets

    SciTech Connect

    Yau, C.L.; Chan, K.C.; Lee, W.B.

    1996-12-31

    In comparison with the matrix alloy, metal matrix composites (MMC) offer considerable potential for applications in aerospace industries. This class of materials can provide light weight components, exhibiting high strength, high stiffness, good wear resistance and improved elevated temperature properties. However, achieving this potential is restricted owing to high material cost and manufacturing techniques. With the rapid growth of laser technologies, it is expected that laser forming can be used to bend MMC sheets. This process is relatively new and is able to produce deformation in sheet metal without the requirement of mechanical contact. Its basic feature is the forming by thermal stress, induced by the irradiation of a laser beam. Various metals and alloys have been bent and formed successfully by some researchers. However, laser bending of MMCs has not yet been explored. In this study, experiments are conducted using a 2000 W Nd:YAG laser(cw). MMC sheets are irradiated with the defocused beams and bent into V-shape. Processing parameters are optimized to obtain maximum bending angles without fracture.

  13. A monotopic aluminum telluride with an Al=Te double bond stabilized by N-heterocyclic carbenes

    PubMed Central

    Franz, Daniel; Szilvási, Tibor; Irran, Elisabeth; Inoue, Shigeyoshi

    2015-01-01

    Aluminum chalcogenides are mostly encountered in the form of bulk aluminum oxides that are structurally diverse but typically consist of networks with high lattice energy in which the chalcogen atoms bridge the metal centres. This makes their molecular congeners difficult to synthesize because of a pronounced tendency for oligomerization. Here we describe the isolation of the monotopic aluminum chalcogenide (LDipN)AlTe(LEt)2 (LDip=1,3-(2,6-diisopropylphenyl)-imidazolin-2-imine, LEt=1,3-diethyl-4,5-dimethyl-imidazolin-2-ylidene). Unique features of (LDipN)AlTe(LEt)2 are the terminal position of the tellurium atom, the shortest aluminum–tellurium distance hitherto reported for a molecular complex and the highest bond order reported for an interaction between these elements, to the best of our knowledge. At elevated temperature (LDipN)AlTe(LEt)2 equilibrates with dimeric {(LDipN)AlTe(LEt)}2 in which the chalcogen atoms assume their common role as bridges between the metal centres. These findings demonstrate that (LDipN)AlTe(LEt)2 comprises the elusive Al=Te double bond in the form of an N-heterocyclic carbene-stabilized species. PMID:26612781

  14. Electrical, dielectric and electrochemical measurements of bulk aluminum phthalocyanine chloride (AlPcCl)

    NASA Astrophysics Data System (ADS)

    Soliman, I. M.; El-Nahass, M. M.; Mansour, Y.

    2016-01-01

    AC conductivity and the related dielectric properties of bulk aluminum phthalocyanine chloride (AlPcCl) have been studied over a temperature range (303-403 K) and frequency range (42-106 Hz). The universal power law σac (ω)=Aωs has been used to investigate dependence of AC conductivity on frequency. The variation of the frequency exponent (s) with temperature was analyzed in terms of different conduction mechanisms; the predominant conduction mechanism was found to be the correlated barrier hopping (CBH) model. The barrier height was calculated by using (CBH) model, it was found to be 1.41 eV. Dependence of σac (ω) on temperature refers to a linear increase with increasing temperature at different frequencies. The density of states N (EF) was calculated to be equal 4.11×1019 cm-3 using Elliott model. It has been found that AC activation energy decreases with increasing frequency. Dielectric values were analyzed using complex permittivity and complex electric modulus for bulk AlPcCl at different temperatures. The obtained value of HOMO-LUMO energy gap was found to be 1.48 eV.

  15. Spectral dependence of carrier lifetime in high aluminum content AlGaN epitaxial layers

    NASA Astrophysics Data System (ADS)

    Saxena, T.; Nargelas, S.; Mickevičius, J.; Kravcov, O.; Tamulaitis, G.; Shur, M.; Shatalov, M.; Yang, J.; Gaska, R.

    2015-08-01

    The spectral dependences of the nonequilibrium carrier lifetimes obtained by using time-resolved photoluminescence (PL) spectroscopy reveal new features in the carrier dynamics in AlGaN epilayers with high aluminum content. Three decay components can be traced in the PL decay. The fast, intermediate, and slow components are attributed to the decay of the free carriers, localized carriers, and the carriers trapped in deep states, respectively. The spectral dependence of the fast component is flat with a very weak dependence on temperature. At low temperatures, the intermediate decay component has the longest effective decay times in the vicinity of the PL band peak and exhibits a decrease on both high and low energy slopes. The spectral dependence of the lifetimes flattens at elevated temperatures. To interpret the decrease in the carrier lifetime at lower energies, we suggest the modification of the double-scaled potential profile in AlGaN alloys by introducing a gradual potential decrease to the low-potential regions instead of the abrupt walls of the regions previously assumed.

  16. Coagulation characteristics of titanium (Ti) salt coagulant compared with aluminum (Al) and iron (Fe) salts.

    PubMed

    Zhao, Y X; Gao, B Y; Shon, H K; Cao, B C; Kim, J-H

    2011-01-30

    In this study, the performance of titanium tetrachloride (TiCl(4)) coagulation and flocculation is compared with commonly used coagulants such as aluminum sulfate (Al(2)(SO(4))(3)), polyaluminum chloride (PACl), iron chloride (FeCl(3)), and polyferric sulfate (PFS) in terms of water quality parameters and floc properties. TiCl(4) flocculation achieved higher removal of UV(254) (98%), dissolved organic carbon (DOC) (84%) and turbidity (93%) than other conventional coagulants. Charge neutralization and physical entrapment of colloids within coagulant precipitates and adsorption, seemed to play a significant role during TiCl(4) flocculation, while the main mechanism for conventional coagulants was bridge-aggregation and adsorption. The aggregated flocs after TiCl(4) flocculation showed the fastest growth rate compared to the other coagulants, with the largest floc size (801 μm) occurring within 8 min. The floc strength factor of PACl, Al(2)(SO(4))(3), PFS, FeCl(3) and TiCl(4) was 34, 30, 29, 26 and 29, respectively, while the floc recovery factor of the TiCl(4) coagulant was the lowest. Based on the results of the above study, it is concluded that the TiCl(4) flocculation can reduce the hydraulic retention time of slow and rapid mixing, however, careful handling of sludge is required due to the low recoverability of the aggregated floc. PMID:21075521

  17. Al2O3 fiber strength degradation in metal and intermetallic matrix composites

    NASA Technical Reports Server (NTRS)

    Draper, S. L.; Locci, I. E.

    1994-01-01

    The mechanisms for fiber damage in single crystal Al2O3 fiber-reinforced composites were investigated. Both fiber fragmentation and fiber strength degradation were observed in composites with a variety of matrix compositions. Four mechanisms that may be contributing to the fiber strength loss have been proposed and include matrix reaction, reaction with binders, residual stress-induced damage, and pressure from hot pressing. The effect of matrix reaction was separated from the other three effects by sputter-coating the matrices on cleaned fibers and annealing with a temperature profile that simulates processing conditions. These experiments revealed that Y and Cr in FeCrAlY base alloys and Zr in NiAl alloys reacted with the fiber, and grooves and adherent particles were formed on the fiber surface which were responsible for the strength loss. The effects of the matrix reaction appeared to dominate over the other possible mechanisms, although evidence for reaction with binders was also found. Ridges on the fiber surface, which reflected the grain boundaries of the matrix, were also observed. In order for single-crystal Al2O3 to be used as a fiber in MMC's and IMC's, a matrix or protective coating which minimizes matrix reaction during processing will be necessary. Of the matrices investigated, the Thermo-span(sup TM) alloy was the least damaging to fiber properties.

  18. Matrix metalloproteinases (MMPs) and their tissue inhibitors (TIMPs) in amyotrophic lateral sclerosis (ALS).

    PubMed

    Łukaszewicz-Zając, Marta; Mroczko, Barbara; Słowik, Agnieszka

    2014-11-01

    Matrix metalloproteinases (MMPs) are zinc-dependent endopeptidases, responsible for the integrity of the basement membrane (BM) via degradation of extracellular matrix and BM components. These enzymes are presented in central and peripheral nervous system. They are considered to be involved in the pathogenesis of several neurological diseases, including amyotrophic lateral sclerosis (ALS). ALS is a motor neuron disease, leading to muscle atrophy, paralysis and death within 3-5 years from diagnosis. Currently, there is no treatment that can substantially prolong life of ALS patients. Despite the fact that MMPs are not specific for ALS, there is also strong evidence that these enzymes are involved in the pathology of ALS. MMPs are able to exert direct neurotoxic effects, or may cause cell death by degrading matrix proteins. The objective of this paper is to provide an updated and comprehensive review concerning the role of MMPs and their tissue inhibitors (TIMPs) in the pathology of ALS with an emphasis on the significance of MMP-2 and MMP-9 as well as their tissue inhibitors as potential biomarkers of ALS. Numerous hypotheses have been proposed regarding the role of selected MMPs and TIMPs in ALS pathogenesis. Moreover, selective MMPs' inhibitors might be potential targets for therapeutic strategies for patients with ALS. However, future investigations are necessary before some of those non-specific for ALS enzymes could finally be used as biomarkers of this disease. PMID:25047909

  19. The 1200 C cyclic oxidation behavior of two nickel-aluminum alloys (Ni3AL and NiAl) with additions of chromium, silicon, and titanium

    NASA Technical Reports Server (NTRS)

    Lowell, C. E.; Santoro, G. J.

    1972-01-01

    The alloys Ni3Al and NiAl with and without 1 and 3 atomic percent chromium, silicon, and titanium replacing the aluminum were cyclically oxidized at 1200 C for times to 200 hours, and the results were compared with those obtained with the alloy B-1900 subjected to the same oxidation process. The evaluation was based on metal recession, specific weight change, metallography, electron microprobe analysis, and X-ray diffraction. The oxidation resistance of Ni3Al was improved by Si, unaffected by Ti, and degraded by Cr. The oxidation resistance of NiAl was slightly improved by Ti, unaffected by Si, and degraded by Cr. The oxidation resistance of Ni3Al with 1 atomic percent Si was nearly equal to that of NiAl. Alloy B-1900 exhibited oxidation resistance comparable to that of Ni3Al + Cr compositions.

  20. Computational investigation on thermal expansivity behavior of Al 6061-SiC-Gr hybrid metal matrix composites

    NASA Astrophysics Data System (ADS)

    Mohan Krishna, S. A.; Shridhar, T. N.; Krishnamurthy, L.

    2015-08-01

    Metal matrix composites (MMCs) have been regarded as one of the most principal classifications in composite materials. The thermal characterization of hybrid MMCs has been increasingly important in a wide range of applications. The coefficient of thermal expansion is one of the most important properties of MMCs. Since nearly all MMCs are used in various temperature ranges, measurement of coefficient of thermal expansion (CTE) as a function of temperature is necessary in order to know the behavior of the material. In this research paper, the evaluation of thermal expansivity has been accomplished for Al 6061, silicon carbide (SiC) and Graphite (Gr) hybrid MMCs from room temperature to 300°C. Aluminum (Al)-based composites reinforced with SiC and Gr particles have been prepared by stir casting technique. The thermal expansivity behavior of hybrid composites with different percentage compositions of reinforcements has been investigated. The results have indicated that the thermal expansivity of the different compositions of hybrid MMCs decreases by the addition of Gr with SiC and Al 6061. Few empirical models have been validated for the evaluation of thermal expansivity of composites. Using the experimental values namely modulus of elasticity, Poisson's ratio and thermal expansivity, computational investigation has been carried out to evaluate the thermal parameters namely thermal displacement, thermal strain and thermal stress.

  1. Computational investigation on thermal conductivity behavior of Al 6061-SiC-Gr hybrid metal matrix composites

    NASA Astrophysics Data System (ADS)

    Krishna, S. A. Mohan; Shridhar, T. N.; Krishnamurthy, L.

    2015-10-01

    Metal matrix composites (MMCs) are regarded to be one of the most principal classifications in composite materials. The thermal characterization of hybrid MMCs has become increasingly important in a wide range of applications. Thermal conductivity is one of the most important properties of MMCs. Since nearly all MMCs are used in various temperature ranges, measurement of thermal conductivity as a function of temperature is necessary in order to know the behavior of the material. In the present research, evaluation of thermal conductivity has been accomplished for aluminum alloy (Al) 6061, silicon carbide (SiC) and graphite (Gr) hybrid MMCs from room temperature to 300∘C. Al-based composites reinforced with SiC and Gr particles have been prepared by stir casting technique. The thermal conductivity behavior of hybrid composites with different percentage compositions of reinforcements has been investigated using laser flash technique. The results have indicated that the thermal conductivity of the different compositions of hybrid MMCs decreases by the addition of Gr with SiC and Al 6061. Few empirical models have been validated concerning with the evaluation of thermal conductivity of composites. Using the experimental values namely density, thermal conductivity, specific heat capacity and enthalpy at varying temperature ranges, computational investigation has been carried out to evaluate the thermal gradient and thermal flux.

  2. Internal friction at medium temperature in an Al matrix composite reinforced by SiC particles

    SciTech Connect

    Wang, C.; Zhu, Z.

    1998-05-12

    The aim of this paper is to present new results showing that a relaxation damping peak associated with the motion of dislocations controlled by point defects, appear at about 450 K in the 6061 Al matrix MMC. For that purpose, mechanical spectroscopy has been measured in a 6061 Al alloy matrix composite reinforced with SiC particulate at low frequencies. In this paper, the damping spectra for the MMC of 6061 Al/SiC{sub p} and unreinforced 6061 Al are presented at first. Secondly, some supplement results are presented. Finally, the origin of the differences between the damping spectra of Al/SiC{sub p} and Al alloy are discussed, and a relaxation model is proposed to explain the damping peak.

  3. Aluminum nanoscale order in amorphous Al{sub 92}Sm{sub 8} measured by fluctuation electron microscopy

    SciTech Connect

    Stratton, W.G.; Hamann, J.; Perepezko, J.H.; Voyles, P.M.; Mao, X.; Khare, S.V.

    2005-04-04

    Fluctuation electron microscopy (FEM) measurements and simulations have identified nanoscale aluminum-like medium-range order in rapidly quenched amorphous Al{sub 92}Sm{sub 8} which devitrifies by primary Al crystallization. Al{sub 92}Sm{sub 8} amorphized by plastic deformation shows neither Al nanoscale order, nor primary crystallization. Annealing the rapidly quenched material below the primary crystallization temperature reduces the degree of nanoscale Al order measured by FEM. The FEM measurements suggest that 10-20 A diameter regions with Al crystal-like order are associated with primary crystallization in amorphous Al{sub 92}Sm{sub 8}, which is consistent with the quenched-in cluster model of primary crystallization.

  4. Corrosion of graphite/aluminum metal-matrix composites. Technical report, 1 Mar-31 Dec 90

    SciTech Connect

    Buonanno, M.A.; Latanision, R.M.; Hihara, L.H.; Chiang, J.F.

    1991-02-01

    Several commercial G/Al MMCs have been studied by potentiodynamic polarization in deaerated 0.5 M Na{sub 2}SO{sub 4}. The results have been compared with those which were predicted by the mixed electrode theory. The results indicate that processing conditions, especially the cooling rate, had a strong influence on the corrosion behavior of the G/Al MMCs. Large scale G/Al model MMCs were fabricated at MIT in order to study the corrosion behavior of G/Al galvanic couples with the scanning potential microprobe (SPM). Preliminary results indicate that coating graphite with discontinuous alumina did not reduce the corrosion rate of the G/Al galvanic couple. Ion implanting the surface of G/Al model MMCs with zinc, a cathodic inhibitor, did reduce the corrosion G/Al galvanic couple; however, the protection was incomplete.

  5. Modeling of Interaction Layer Growth Between U-Mo Particles and an Al Matrix

    SciTech Connect

    Yeon Soo Kim; G. L. Hofman; Ho Jin Ryu; Jong Man Park; A. B. Robinson; D. M. Wachs

    2013-12-01

    Interaction layer growth between U-Mo alloy fuel particles and Al in a dispersion fuel is a concern due to the volume expansion and other unfavorable irradiation behavior of the interaction product. To reduce interaction layer (IL) growth, a small amount of Si is added to the Al. As a result, IL growth is affected by the Si content in the Al matrix. In order to predict IL growth during fabrication and irradiation, empirical models were developed. For IL growth prediction during fabrication and any follow-on heating process before irradiation, out-of-pile heating test data were used to develop kinetic correlations. Two out-of-pile correlations, one for the pure Al matrix and the other for the Al matrix with Si addition, respectively, were developed, which are Arrhenius equations that include temperature and time. For IL growth predictions during irradiation, the out-of-pile correlations were modified to include a fission-rate term to consider fission enhanced diffusion, and multiplication factors to incorporate the Si addition effect and the effect of the Mo content. The in-pile correlation is applicable for a pure Al matrix and an Al matrix with the Si content up to 8 wt%, for fuel temperatures up to 200 degrees C, and for Mo content in the range of 6 – 10wt%. In order to cover these ranges, in-pile data were included in modeling from various tests, such as the US RERTR-4, -5, -6, -7 and -9 tests and Korea’s KOMO-4 test, that were designed to systematically examine the effects of the fission rate, temperature, Si content in Al matrix, and Mo content in U-Mo particles. A model converting the IL thickness to the IL volume fraction in the meat was also developed.

  6. Particles and Zinc on the Absorbed Impact Energy of Gravity Cast Aluminum Matrix Composites

    NASA Astrophysics Data System (ADS)

    Corchado, Marcos; Reyes, Fernando; Suárez, Oscar Marcelo

    2014-06-01

    The effect of different amounts of boron, in the form of AlB2 particles, as well as zinc concentration in a gravity cast Al-B-Zn composite, was studied and related to the absorbed energy upon fracture during Charpy impact experiments. In addition, the authors correlated the composite Brinell hardness with the quantitative assessment of brittle and ductile fracture areas of the Charpy fractured specimens and found that increasing AlB2 particle concentration resulted in a reduction of absorbed impact energy. Although larger zinc levels produced somewhat similar results, the AlB2 effect was prevalent. The energy absorption upon impact reached a maximum when no particles were present; conversely, the lowest amount of absorbed energy corresponded to a composite with a composition of 15 wt.% Zn and 8% in volume of AlB2, i.e., the highest concentration of AlB2 and zinc studied. Raising the amount of AlB2 as well as zinc, as expected, resulted in higher Brinell hardness. A statistical analysis allowed studying of the particle size distribution, whereas values for crack tip opening displacement were subsequently calculated for the range of particle sizes found and the corresponding AlB2 particle volume percent. Higher porosity values were measured for larger AlB2 volume percent. Finally, analyses of fracture surfaces corroborated that brittle fracture was favored in composites with higher amounts of AlB2 and zinc.

  7. Effect of a solid solution on the steady-state creep behavior of an aluminum matrix composite

    NASA Astrophysics Data System (ADS)

    Pandey, A. B.; Mishra, R. S.; Mahajan, Y. R.

    1996-02-01

    The effect of an alloying element, 4 wt pct Mg, on the steady-state creep behavior of an Al-10 vol pct SiCp composite has been studied. The Al-4 wt pct Mg-10 vol pct SiCp composite has been tested under compression creep in the temperature range 573 to 673 K. The steady-state creep data of the composite show a transition in the creep behavior (regions I and II) depending on the applied stress at 623 and 673 K. The low stress range data (region I) exhibit a stress exponent of about 7 and an activation energy of 76.5 kJ mol-1. These values conform to the dislocation-climb-controlled creep model with pipe diffusion as a rate-controlling mechanism. The intermediate stress range data (region II) exhibit high and variable apparent stress exponents, 18 to 48, and activation energy, 266 kJ mol-1, at a constant stress, ? = 50 MPa, for creep of this composite. This behavior can be rationalized using a substructure-invariant model with a stress exponent of 8 and an activation energy close to the lattice self-diffusion of aluminum together with a threshold stress. The creep data of the Al-Mg-A12O3f composite reported by Dragone and Nix also conform to the substructure-invariant model. The threshold stress and the creep strength of the Al-Mg-SiCp, composite are compared with those of the Al-Mg-Al2O3f and 6061 Al-SiCp.w, composites and discussed in terms of the load-transfer mechanism. Magnesium has been found to be very effective in improving the creep resistance of the Al-SiCp composite.

  8. Microstructure and mechanical behavior of metallic glass fiber-reinforced Al alloy matrix composites.

    PubMed

    Wang, Z; Georgarakis, K; Nakayama, K S; Li, Y; Tsarkov, A A; Xie, G; Dudina, D; Louzguine-Luzgin, D V; Yavari, A R

    2016-01-01

    Metallic glass-reinforced metal matrix composites are an emerging class of composite materials. The metallic nature and the high mechanical strength of the reinforcing phase offers unique possibilities for improving the engineering performance of composites. Understanding the structure at the amorphous/crystalline interfaces and the deformation behavior of these composites is of vital importance for their further development and potential application. In the present work, Zr-based metallic glass fibers have been introduced in Al7075 alloy (Al-Zn-Mg-Cu) matrices using spark plasma sintering (SPS) producing composites with low porosity. The addition of metallic glass reinforcements in the Al-based matrix significantly improves the mechanical behavior of the composites in compression. High-resolution TEM observations at the interface reveal the formation of a thin interdiffusion layer able to provide good bonding between the reinforcing phase and the Al-based matrix. The deformation behavior of the composites was studied, indicating that local plastic deformation occurred in the matrix near the glassy reinforcements followed by the initiation and propagation of cracks mainly through the matrix. The reinforcing phase is seen to inhibit the plastic deformation and retard the crack propagation. The findings offer new insights into the mechanical behavior of metal matrix composites reinforced with metallic glasses. PMID:27067824

  9. Microstructure and mechanical behavior of metallic glass fiber-reinforced Al alloy matrix composites

    PubMed Central

    Wang, Z.; Georgarakis, K.; Nakayama, K. S.; Li, Y.; Tsarkov, A. A.; Xie, G.; Dudina, D.; Louzguine-Luzgin, D. V.; Yavari, A. R.

    2016-01-01

    Metallic glass-reinforced metal matrix composites are an emerging class of composite materials. The metallic nature and the high mechanical strength of the reinforcing phase offers unique possibilities for improving the engineering performance of composites. Understanding the structure at the amorphous/crystalline interfaces and the deformation behavior of these composites is of vital importance for their further development and potential application. In the present work, Zr-based metallic glass fibers have been introduced in Al7075 alloy (Al-Zn-Mg-Cu) matrices using spark plasma sintering (SPS) producing composites with low porosity. The addition of metallic glass reinforcements in the Al-based matrix significantly improves the mechanical behavior of the composites in compression. High-resolution TEM observations at the interface reveal the formation of a thin interdiffusion layer able to provide good bonding between the reinforcing phase and the Al-based matrix. The deformation behavior of the composites was studied, indicating that local plastic deformation occurred in the matrix near the glassy reinforcements followed by the initiation and propagation of cracks mainly through the matrix. The reinforcing phase is seen to inhibit the plastic deformation and retard the crack propagation. The findings offer new insights into the mechanical behavior of metal matrix composites reinforced with metallic glasses. PMID:27067824

  10. Microstructure and mechanical behavior of metallic glass fiber-reinforced Al alloy matrix composites

    NASA Astrophysics Data System (ADS)

    Wang, Z.; Georgarakis, K.; Nakayama, K. S.; Li, Y.; Tsarkov, A. A.; Xie, G.; Dudina, D.; Louzguine-Luzgin, D. V.; Yavari, A. R.

    2016-04-01

    Metallic glass-reinforced metal matrix composites are an emerging class of composite materials. The metallic nature and the high mechanical strength of the reinforcing phase offers unique possibilities for improving the engineering performance of composites. Understanding the structure at the amorphous/crystalline interfaces and the deformation behavior of these composites is of vital importance for their further development and potential application. In the present work, Zr-based metallic glass fibers have been introduced in Al7075 alloy (Al-Zn-Mg-Cu) matrices using spark plasma sintering (SPS) producing composites with low porosity. The addition of metallic glass reinforcements in the Al-based matrix significantly improves the mechanical behavior of the composites in compression. High-resolution TEM observations at the interface reveal the formation of a thin interdiffusion layer able to provide good bonding between the reinforcing phase and the Al-based matrix. The deformation behavior of the composites was studied, indicating that local plastic deformation occurred in the matrix near the glassy reinforcements followed by the initiation and propagation of cracks mainly through the matrix. The reinforcing phase is seen to inhibit the plastic deformation and retard the crack propagation. The findings offer new insights into the mechanical behavior of metal matrix composites reinforced with metallic glasses.

  11. Global Transcriptome Analysis Reveals Distinct Aluminum-Tolerance Pathways in the Al-Accumulating Species Hydrangea macrophylla and Marker Identification

    PubMed Central

    Chen, Haixia; Lu, Changping; Jiang, Hui; Peng, Jinhui

    2015-01-01

    Hydrangea (Hydrangea macrophylla) is a well known Al-accumulating plant, showing a high level of aluminum (Al) tolerance and accumulation. Although the physiological mechanisms for detoxification of Al and the roles of Al in blue hydrangea sepals have been reported, the molecular mechanisms of Al tolerance and accumulation are poorly understood in hydrangea. In this study, we conducted a genome-wide transcriptome analysis of Al-response genes in the roots and leaves of hydrangea by RNA sequencing (RNA-seq). The assembly of hydrangea transcriptome provides a rich source for gene identification and mining molecular markers, including single nucleotide polymorphism (SNP) and simple sequence repeat (SSR). A total of 401,215 transcripts with an average length of 810.77bp were assembled, generating 256,127 unigenes. After annotation, 4,287 genes in the roots and 730 genes in the leaves were up-regulated by Al exposure, while 236 genes in the roots and 719 genes in the leaves were down-regulated, respectively. Many transporters, including MATE and ABC families, were involved in the process of Al-citrate complex transporting from the roots in hydrangea. A plasma membrane Al uptake transporter, Nramp aluminum transporter was up-regulated in roots and leaves under Al stress, indicating it may play an important role in Al tolerance by reducing the level of toxic Al. Although the exact roles of these candidate genes remain to be examined, these results provide a platform for further functional analysis of the process of detoxification of Al in hydrangea. PMID:26660093

  12. Global Transcriptome Analysis Reveals Distinct Aluminum-Tolerance Pathways in the Al-Accumulating Species Hydrangea macrophylla and Marker Identification.

    PubMed

    Chen, Haixia; Lu, Changping; Jiang, Hui; Peng, Jinhui

    2015-01-01

    Hydrangea (Hydrangea macrophylla) is a well known Al-accumulating plant, showing a high level of aluminum (Al) tolerance and accumulation. Although the physiological mechanisms for detoxification of Al and the roles of Al in blue hydrangea sepals have been reported, the molecular mechanisms of Al tolerance and accumulation are poorly understood in hydrangea. In this study, we conducted a genome-wide transcriptome analysis of Al-response genes in the roots and leaves of hydrangea by RNA sequencing (RNA-seq). The assembly of hydrangea transcriptome provides a rich source for gene identification and mining molecular markers, including single nucleotide polymorphism (SNP) and simple sequence repeat (SSR). A total of 401,215 transcripts with an average length of 810.77bp were assembled, generating 256,127 unigenes. After annotation, 4,287 genes in the roots and 730 genes in the leaves were up-regulated by Al exposure, while 236 genes in the roots and 719 genes in the leaves were down-regulated, respectively. Many transporters, including MATE and ABC families, were involved in the process of Al-citrate complex transporting from the roots in hydrangea. A plasma membrane Al uptake transporter, Nramp aluminum transporter was up-regulated in roots and leaves under Al stress, indicating it may play an important role in Al tolerance by reducing the level of toxic Al. Although the exact roles of these candidate genes remain to be examined, these results provide a platform for further functional analysis of the process of detoxification of Al in hydrangea. PMID:26660093

  13. B -spline R -matrix-with-pseudostates calculations for electron collisions with aluminum

    NASA Astrophysics Data System (ADS)

    Gedeon, Viktor; Gedeon, Sergej; Lazur, Vladimir; Nagy, Elizabeth; Zatsarinny, Oleg; Bartschat, Klaus

    2015-11-01

    A systematic study of angle-integrated cross sections for electron scattering from neutral aluminum is presented. The calculations cover elastic scattering, excitation of the 14 states (3 s2n p ) P2o (n =3 ,4 ,5 ,6 ) , (3 s2n s ) 2S (n =4 ,5 ,6 ) , (3 s2n d ) 2D (n =3 ,4 ) , (3 s 3 p2)P,24,2D,2S , and (3 s24 f ) F2o , as well as electron impact ionization. The sensitivity of the results to changes in the theoretical model is checked by comparing predictions from a variety of approximations, including a large-scale model with over 500 continuum pseudostates. The current results are believed to be accurate at the few-percent level and should represent a sufficiently extensive set of electron collision data for most modeling applications involving neutral aluminum.

  14. Fractionation of residual Al in natural water treatment from reservoir with poly-aluminum-silicate-chloride (PASiC): effect of OH/Al, Si/Al molar ratios and initial pH.

    PubMed

    Yang, Zhonglian; Gao, Baoyu; Wang, Yan; Zhao, Yaqin; Yue, Qinyan

    2012-01-01

    An aluminum fractionation study was conducted for a surface reservoir water treatment to understand the performance of poly-aluminum-silicate-chloride (PASiC) in terms of the residual Al fractions as a function of initial pH. The coagulation performance expressed as turbidity and organic matter removal was established as supporting data. Some extra data were evaluated in terms of the residual Al ratio of the composite PASiC coagulant. The main residual Al sources were the Al fractions derived from the use of PASiC. The turbidity and organic matter removal ability was optimal at initial pH 6.00-7.00, while the concentrations of various residual Al species and the residual Al ratio of PASiC were minimal at an initial pH range of 7.00-8.00. Under the conditions of OH/Al molar ratio = 2.00 and Si/Al molar ratio = 0.05, PASiC had superior coagulation performance and comparatively low residual Al concentrations. The Al fraction in the composite PASiC coagulant seldom remained under such conditions. Experimental data also indicated that the suspended (filterable) Al fraction was the dominant species, and organic-bound or organo-Al complex Al was considered to be the major species of dissolved Al in water treated by PASiC coagulation. Additionally, the dissolved inorganic monomeric Al species dominated the dissolved monomeric Al fraction. PMID:23534222

  15. Heterointerface formation of aluminum selenide with silicon: Electronic and atomic structure of Si(111):AlSe

    NASA Astrophysics Data System (ADS)

    Adams, J. A.; Bostwick, A.; Ohta, T.; Ohuchi, Fumio S.; Olmstead, Marjorie A.

    2005-05-01

    In this paper we present a new, stable, unreconstructed surface termination of silicon, Si(111):AlSe. The structure forms the interface layer when aluminum sesquiselenide (Al2Se3) is deposited on Si(111) by molecular beam epitaxy. The atomic structure of the interface layer was investigated using angle-resolved valence and core-level photoelectron spectroscopy and diffraction. The Al2Se3/Si(111) interface forms an unreconstructed bilayer structure similar to GaSe-terminated Si, with Al directly above the top Si atom and Se over the hollow site, although the temperatures for bilayer formation and for Se re-evaporation from the film are higher for AlSe than for GaSe. In addition, the valence band structure shows that the AlSe bilayer electronically passivates the bulk Si, with all interface states lying within the bulk Si bands.

  16. Parameter optimization for controlling aluminum loss when laser depositing Ti-6Al-4V

    NASA Astrophysics Data System (ADS)

    Barclay, Richard Charles

    The ability to predict the mechanical properties of engineering materials is crucial to the manufacturing of advanced products. In the aerospace industry, Ti-6Al-4V is commonly used to build structures. Any deviation from the alloy's standard properties can prove detrimental. Thus, the compositional integrity of the material must be controlled. The ability to directly build and repair large, complicated structures directly from CAD files is highly sought after. Laser Metal Deposition (LMD) technology has the potential to deliver that ability. Before this process can gain widespread acceptance, however, a set of process parameters must be established that yield finished parts of consistent chemical composition. This research aims to establish such a set of parameters. Design of Experiments was utilized to maximize the information gained while minimizing the number of experimental trials required. A randomized, two-factor experiment was designed, performed, and replicated. Another set of experiments (nearly identical to the first) was then performed. The first set of experiments was completed in an open environment, while the second set was performed in an argon chamber. Energy Dispersive X-Ray Spectroscopy (EDS) was then used to perform a quantitative microanalysis to determine the aluminum level in each sample. Regression analysis was performed on the results to determine the factors of importance. Finally, fit plots and response surface curves were used to determine an optimal parameter set (process window). The process window was established to allow for consistent chemical composition of laser deposited Ti64 parts.

  17. Impact Testing of Aluminum 2024 and Titanium 6Al-4V for Material Model Development

    NASA Technical Reports Server (NTRS)

    Pereira, J. Michael; Revilock, Duane M.; Lerch, Bradley A.; Ruggeri, Charles R.

    2013-01-01

    One of the difficulties with developing and verifying accurate impact models is that parameters such as high strain rate material properties, failure modes, static properties, and impact test measurements are often obtained from a variety of different sources using different materials, with little control over consistency among the different sources. In addition there is often a lack of quantitative measurements in impact tests to which the models can be compared. To alleviate some of these problems, a project is underway to develop a consistent set of material property, impact test data and failure analysis for a variety of aircraft materials that can be used to develop improved impact failure and deformation models. This project is jointly funded by the NASA Glenn Research Center and the FAA William J. Hughes Technical Center. Unique features of this set of data are that all material property data and impact test data are obtained using identical material, the test methods and procedures are extensively documented and all of the raw data is available. Four parallel efforts are currently underway: Measurement of material deformation and failure response over a wide range of strain rates and temperatures and failure analysis of material property specimens and impact test articles conducted by The Ohio State University; development of improved numerical modeling techniques for deformation and failure conducted by The George Washington University; impact testing of flat panels and substructures conducted by NASA Glenn Research Center. This report describes impact testing which has been done on aluminum (Al) 2024 and titanium (Ti) 6Al-4vanadium (V) sheet and plate samples of different thicknesses and with different types of projectiles, one a regular cylinder and one with a more complex geometry incorporating features representative of a jet engine fan blade. Data from this testing will be used in validating material models developed under this program. The material tests and the material models developed in this program will be published in separate reports.

  18. Aluminum induces changes in oxidative burst scavenging enzymes in Coffea arabica L. suspension cells with differential Al tolerance.

    PubMed

    Ramírez-Benítez, José Efraín; Muñoz-Sánchez, J Armando; Becerril-Chi, Karen M; Miranda-Ham, María de Lourdes; Castro-Concha, Lizbeth A; Hernández-Sotomayor, S M Teresa

    2011-11-01

    The accumulation of reactive oxygen species (ROS) and concomitant oxidative stress have been considered deleterious consequences of aluminum toxicity. However, several lines of evidence suggest that ROS can function as important signaling molecules in the plant defense system for protection from abiotic stress and the acquisition of tolerance. The role of ROS-scavenging enzymes was assayed in two different coffee cell suspension lines. We treated L2 (Al-sensitive) and LAMt (Al-tolerant) Coffea arabica suspension cells with 100 μM AlCl(3) and observed significant differences in catalase activity between the two cell lines. However, we did not observe any differences in superoxide dismutase or glutathione reductase activity in either cell line following Al treatment. ROS production was diminished in the LAMt cell line. Taken together, these results indicate that aluminum treatment may impair the oxidative stress response in L2 cells but not in LAMt cells. We suggest a possible role for Al-induced oxidative bursts in the signaling pathways that lead to Al resistance and protection from Al toxicity. PMID:22099163

  19. Partial oxidation of dimethyl ether using the structured catalyst Rh/Al2O3/Al prepared through the anodic oxidation of aluminum.

    PubMed

    Yu, B Y; Lee, K H; Kim, K; Byun, D J; Ha, H P; Byun, J Y

    2011-07-01

    The partial oxidation of dimethyl ether (DME) was investigated using the structured catalyst Rh/Al2O3/Al. The porous Al2O3 layer was synthesized on the aluminum plate through anodic oxidation in an oxalic-acid solution. It was observed that about 20 nm nanopores were well developed in the Al2O3 layer. The thickness of Al2O3 layer can be adjusted by controlling the anodizing time and current density. After pore-widening and hot-water treatment, the Al2O3/Al plate was calcined at 500 degrees C for 3 h. The obtained delta-Al2O3 had a specific surface area of 160 m2/g, making it fit to be used as a catalyst support. A microchannel reactor was designed and fabricated to evaluate the catalytic activity of Rh/Al2O3/Al in the partial oxidation of DME. The structured catalyst showed an 86% maximum hydrogen yield at 450 degrees C. On the other hand, the maximum syngas yield by a pack-bed-type catalyst could be attained by using a more than fivefold Rh amount compared to that used in the structured Rh/Al2O3/Al catalyst. PMID:22121705

  20. Energy-Saving Melting and Revert Reduction Technology (E-SMARRT): Development of Elevated Temperature Aluminum Metal Matrix Composite (MMC) Alloy and Its Processing Technology

    SciTech Connect

    Weiss, David C.; Gegal, Gerald A.

    2014-04-15

    The objective of this project was to provide a production capable cast aluminum metal matrix composite (MMC) alloy with an operating temperature capability of 250-300°C. Important industrial sectors as well as the military now seek lightweight aluminum alloy castings that can operate in temperature ranges of 250-300°C. Current needs in this temperature range are being satisfied by the use of titanium alloy castings. These have the desired strength properties but the end components are heavier and significantly more costly. Also, the energy requirements for production of titanium alloy castings are significantly higher than those required for production of aluminum alloys and aluminum alloy castings.

  1. Studies of neutralizing properties of antacid preparations. Part 7. 27Al NMR studies of aluminum species formed during acid dissolution of some antacid preparations.

    PubMed

    Kokot, Z

    1989-12-01

    Neutralization of some aluminum containing antacid preparations with hydrochloric acid were studied by 27Al NMR spectroscopy. It has been found that the nature and composition of aluminum species produced during the acid dissolution of preparations depends upon the substance used and on the pH at which the neutralization reaction proceeds. The results are consistent with the presence of both monomeric and polymeric species in solution containing aluminum in octahedral and tetrahedral environments. PMID:2635320

  2. Data characterizing flexural properties of Al/Al2O3 syntactic foam core metal matrix sandwich

    PubMed Central

    Omar, Mohammed Yaseer; Xiang, Chongchen; Gupta, Nikhil; Strbik, Oliver M.; Cho, Kyu

    2015-01-01

    Microstructural observations and flexural property datasets are provided for aluminum alloy matrix syntactic foam core sandwich composites. The tests are conducted in three-point bending configuration. The data supplied includes methods used for conducting microscopy and mechanical testing. Raw load–displacement data, which is used to plot stress–strain graphs, obtained during the flexural test is also included. Images from a DSLR camera are stitched together to form a detailed failure sequencing video. Failure of specimens is captured in sequential images using a digital camera. These images are stitched together to develop a video for visualization of failure mechanisms. Calculations are also included for a theoretical model that is used to estimate the flexural properties of the syntactic foam core sandwich. PMID:26958610

  3. Data characterizing flexural properties of Al/Al2O3 syntactic foam core metal matrix sandwich.

    PubMed

    Omar, Mohammed Yaseer; Xiang, Chongchen; Gupta, Nikhil; Strbik, Oliver M; Cho, Kyu

    2015-12-01

    Microstructural observations and flexural property datasets are provided for aluminum alloy matrix syntactic foam core sandwich composites. The tests are conducted in three-point bending configuration. The data supplied includes methods used for conducting microscopy and mechanical testing. Raw load-displacement data, which is used to plot stress-strain graphs, obtained during the flexural test is also included. Images from a DSLR camera are stitched together to form a detailed failure sequencing video. Failure of specimens is captured in sequential images using a digital camera. These images are stitched together to develop a video for visualization of failure mechanisms. Calculations are also included for a theoretical model that is used to estimate the flexural properties of the syntactic foam core sandwich. PMID:26958610

  4. Brazing process using'al-Si filler alloy reliably bonds aluminum parts

    NASA Technical Reports Server (NTRS)

    Beuyukian, C. S.; Johnson, W. R.

    1966-01-01

    Brazing process employs an aluminum-silicon filler alloy for diffusion bonding of aluminum parts in a vacuum or inert gas atmosphere. This process is carried out at temperatures substantially below those required in conventional process and produces bonds of greater strength and reliability.

  5. Failure Modeling of Titanium-6Al-4V and 2024-T3 Aluminum with the Johnson-Cook Material Model

    SciTech Connect

    Kay, G

    2002-09-16

    A validated Johnson-Cook model could be employed to perform simulations that conform to FAA standards for evaluating aircraft and engine designs for airworthiness and containment considerations. A previous LLNL report [1] described the motivation for using the Johnson-Cook material model in simulations involving engine containment and the effect of uncontained engine debris on aircraft structures. In that report, experimental studies of the deformation and failure behavior of Ti-6Al-4V and 2024-T3 aluminum at high strain rates and large strains were conducted. The report also describes the generation of material constants for the Johnson-Cook strength model. This report describes the determination and validation of parameters for Ti-6Al-4V and 2024-T3 aluminum that can be used in the failure portion of the Johnson-Cook material.

  6. Optimal welding parameters for very high power ultrasonic additive manufacturing of smart structures with aluminum 6061 matrix

    NASA Astrophysics Data System (ADS)

    Wolcott, Paul J.; Hehr, Adam; Dapino, Marcelo J.

    2014-03-01

    Ultrasonic additive manufacturing (UAM) is a recent solid state manufacturing process that combines ad- ditive joining of thin metal tapes with subtractive milling operations to generate near net shape metallic parts. Due to the minimal heating during the process, UAM is a proven method of embedding Ni-Ti, Fe-Ga, and PVDF to create active metal matrix composites. Recently, advances in the UAM process utilizing 9 kW very high power (VHP) welding has improved bonding properties, enabling joining of high strength materials previously unweldable with 1 kW low power UAM. Consequently, a design of experiments study was conducted to optimize welding conditions for aluminum 6061 components. This understanding is critical in the design of UAM parts containing smart materials. Build parameters, including weld force, weld speed, amplitude, and temperature were varied based on a Taguchi experimental design matrix and tested for me- chanical strength. Optimal weld parameters were identi ed with statistical methods including a generalized linear model for analysis of variance (ANOVA), mean e ects plots, and interaction e ects plots.

  7. Effect of pulsed laser radiation on deformation band dynamics and discontinuous deformation in aluminum-magnesium Al-6%Mg alloy

    NASA Astrophysics Data System (ADS)

    Shibkov, A. A.; Zolotov, A. E.; Gasanov, M. F.; Zheltov, M. A.; Proskuryakov, K. A.

    2015-12-01

    The dynamics and morphology of deformation bands and the discontinuous deformation under local action of pulsed infrared fiber laser radiation on the surface of aluminum-magnesium Al-6%Mg alloy have been studied by high-speed video recording techniques. Conditions under which laser action leads to the formation of macrolocalized deformation bands and deformation jumps of several percent on the stress-strain diagram are experimentally established. A possible mechanism of this phenomenon is discussed.

  8. Mechanical Properties of In-Situ FeAl-TiB2 Intermetallic Matrix Composites

    NASA Astrophysics Data System (ADS)

    Kim, Jonghoon; Park, Bonggyu; Park, Yongho; Park, Ikmin; Lee, Heesoo

    Intermetallic matrix composites reinforced with ceramic particles have received a great deal of attention. Iron aluminide is known to be a good material for the matrix in such composites. Two processes were used to fabricate FeAl-TiB2 intermetallic matrix composites. One was liquid melt in-situ mixing, and the other was arc melting and suction casting processes. FeAl-TiB2 IMCs obtained by two different methods were investigated to elucidate the influence of TiB2 content. In both methods, the grain size in the FeAl alloy decreased with the presence of titanium diboride. The grain size of in-situ FeAl-TiB2 IMCs became smaller than that of arc FeAl-TiB2 IMCs. Significant increase in fracture stress and hardness was achieved in the composites. The in-situ process gives clean, contamination-free matrix/reinforcement interface which maintained good bonding causing high load bearing capability. This contributed to the increase in the mechanical properties of composites.

  9. The Microstructure-Processing-Property Relationships in an Al Matrix Composite System Reinforced by Al-Cu-Fe Alloy Particles

    SciTech Connect

    Fei Tang

    2004-12-19

    Metal matrix composites (MMC), especially Al matrix composites, received a lot of attention during many years of research because of their promise for the development of automotive and aerospace materials with improved properties and performance, such as lighter weight and better structural properties, improved thermal conductivity and wear resistance. In order to make the MMC materials more viable in various applications, current research efforts on the MMCs should continue to focus on two important aspects, including improving the properties of MMCs and finding more economical techniques to produce MMCs. Solid state vacuum sintering was studied in tap densified Al powder and in hot quasi-isostatically forged samples composed of commercial inert gas atomized or high purity Al powder, generated by a gas atomization reaction synthesis (GARS) technique. The GARS process results in spherical Al powder with a far thinner surface oxide. The overall results indicated the enhanced ability of GARS-processed Al and Al alloy powders for solid state sintering, which may lead to simplification of current Al powder consolidation processing methods. Elemental Al-based composites reinforced with spherical Al-Cu-Fe alloy powders were produced by quasi-isostatic forging and vacuum hot pressing (VHP) consolidation methods. Microstructures and tensile properties of AYAl-Cu-Fe composites were characterized. It was proved that spherical Al-Cu-Fe alloy powders can serve as an effective reinforcement particulate for elemental Al-based composites, because of their high hardness and a preferred type of matrix/reinforcement interfacial bonding, with reduced strain concentration around the particles. Ultimate tensile strength and yield strength of the composites were increased over the corresponding Al matrix values, far beyond typical observations. This remarkable strengthening was achieved without precipitation hardening and without severe strain hardening during consolidation because of the matrix choice (elemental Al) and the ''low shear'' consolidation methods utilized. This reinforcement effectiveness is further evidenced by elastic modulus measurements of the composites that are very close to the upper bound predictions of the rule of mixtures. The load partitioning measurements by neutron diffraction showed that composite samples made from GARS powders present significantly higher load transfer efficiency than the composites made from commercially atomized powders. Also, the composite samples made from GARS powders show a higher strengthening effect and ductility than the samples made from commercial purity powders. The higher load transfer efficiency and higher strength and ductility may result from an enhanced inter-particle bonding strength, promoted by the ''clean'' interfaces between particles. Further analysis of the load sharing measurements and the calculated values of the mismatch of coefficient of thermal expansion (CTE) and the geometrically necessary dislocation (GND) effects suggest that these strengthening mechanisms can be combined to predict accurately the strength of the composites.

  10. Crystal Structures of Al-Nd Codoped Zirconolite Derived from Glass Matrix and Powder Sintering.

    PubMed

    Liao, Chang-Zhong; Shih, Kaimin; Lee, William E

    2015-08-01

    Zirconolite is a candidate host for immobilizing long-lived radionuclides. Zirconolite-based glass-ceramics in the CaO-SiO2-Al2O3-TiO2-ZrO2-Nd2O3-Na2O matrix are a potential waste form for immobilizing actinide radionuclides and can offer double barriers to immobilize radioactive elements. However, the X-ray diffraction patterns of the zirconolite derived from the glass matrix (glass ceramic, GC) are significantly different from those prepared by powder sintering (PS). In this Article, the crystal structures of Al-Nd codoped zirconolite grown via the glass matrix route and the powder sintering route are investigated in detail. Two samples of Al-Nd codoped zirconolite were prepared: one was grown from a CaO-SiO2-Al2O3-TiO2-ZrO2-Nd2O3-Na2O glass matrix, and the other was prepared with a Ca0.75Nd0.25ZrTi1.75Al0.25O7 composition by powder sintering. The samples were then characterized using powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), transmission electron microscopy-energy dispersive X-ray spectroscopy (TEM-EDX), and selected area electron diffraction (SAED). The chemical composition of the 100-500 nm zirconolite crystals grown from a glass matrix was determined by TEM-EDX to be Ca0.83Nd0.25Zr0.85Ti1.95Al0.11O7. PXRD and SAED results showed that these two Al-Nd codoped zirconolite phases were crystallized in space group C12/c1. The HRTEM images and SAED results showed that there were heavy stacking faults in the zirconolite crystals grown from the glass matrix. In contrast, far fewer defects were found in the zirconolite crystals prepared by powder sintering. The split-atom model was adopted for the first time to construct the Al-Nd codoped zirconolite structure grown from glass during the Rietveld refinement. The isostructural method assisted by Rietveld refinement was used to resolve the Al-Nd codoped zirconolite structures prepared by different methods. The occupancies of the cation sites were identified, and the distribution behavior of Nd(3+) was further investigated. The results indicate that the heavy stacking faults may lead to substantial differences in the Al-Nd codoped zirconolite structures prepared by these two fabrication routes. PMID:26204432

  11. Synthesis and electroluminescence characterization of a new aluminum complex, [8-hydroxyquinoline] bis [2, 2'bipyridine] aluminum Al(Bpy)2q

    NASA Astrophysics Data System (ADS)

    Rahul, Kumar; Ritu, Srivastava; Punita, Singh

    2016-01-01

    We have synthesized and characterized a new electroluminescent material, [8-hydroxyquinoline] bis [2,2'bipyridine] aluminum. A solution of this material Al(Bpy)2q in toluene showed absorption maxima at 380 nm, which was attributed to the moderate energy (π-π*) transitions of the aromatic rings. The photoluminescence spectrum of Al(Bpy)2q in the toluene solution showed a peak at 518 nm. This material shows thermal stability up to 300 °C. The structure of the device is ITO/F4-TCNQ (1 nm)/α-NPD (35 nm)/Al(Bpy)2q (35 nm)/ BCP (6 nm)/Alq3 (28 nm)/LiF (1 nm)/Al (150 nm). This device exhibited a luminescence peak at 515 nm (CIE coordinates, x = 0.32, y = 0.49). The maximum luminescence of the device was 214 cd/m2 at 21 V. The maximum current efficiency of OLED was 0.12 cd/A at 13 V and the maximum power efficiency was 0.03 lm/W at 10 V.

  12. New ionic liquids based on complexation of dipropylsulfide and AlCl3 for electrochodeposition of aluminum

    SciTech Connect

    Fang, Youxing; Jiang, Xueguang; Dai, Sheng; Sun, Xiao-Guang

    2015-01-01

    A new kind of ionic liquid based on complexation of dipropyl sulfide (DPS) and AlCl3 has been prepared. The equivalent concentration of AlCl3 in the ionic liquid is as high as 2.3 M. More importantly, it is highly fluidic and exhibits an ambient ionic conductivity of 1.25 x 10-4 S cm-1. This new ionic liquid can be successfully used as an electrolyte for electrodeposition of aluminum.

  13. Stress Corrosion Cracking in Al-Zn-Mg-Cu Aluminum Alloys in Saline Environments

    NASA Astrophysics Data System (ADS)

    Holroyd, N. J. Henry; Scamans, G. M.

    2013-03-01

    Stress corrosion cracking of Al-Zn-Mg-Cu (AA7xxx) aluminum alloys exposed to saline environments at temperatures ranging from 293 K to 353 K (20 C to 80 C) has been reviewed with particular attention to the influences of alloy composition and temper, and bulk and local environmental conditions. Stress corrosion crack (SCC) growth rates at room temperature for peak- and over-aged tempers in saline environments are minimized for Al-Zn-Mg-Cu alloys containing less than ~8 wt pct Zn when Zn/Mg ratios are ranging from 2 to 3, excess magnesium levels are less than 1 wt pct, and copper content is either less than ~0.2 wt pct or ranging from 1.3 to 2 wt pct. A minimum chloride ion concentration of ~0.01 M is required for crack growth rates to exceed those in distilled water, which insures that the local solution pH in crack-tip regions can be maintained at less than 4. Crack growth rates in saline solution without other additions gradually increase with bulk chloride ion concentrations up to around 0.6 M NaCl, whereas in solutions with sufficiently low dichromate (or chromate), inhibitor additions are insensitive to the bulk chloride concentration and are typically at least double those observed without the additions. DCB specimens, fatigue pre-cracked in air before immersion in a saline environment, show an initial period with no detectible crack growth, followed by crack growth at the distilled water rate, and then transition to a higher crack growth rate typical of region 2 crack growth in the saline environment. Time spent in each stage depends on the type of pre-crack ("pop-in" vs fatigue), applied stress intensity factor, alloy chemistry, bulk environment, and, if applied, the external polarization. Apparent activation energies ( E a) for SCC growth in Al-Zn-Mg-Cu alloys exposed to 0.6 M NaCl over the temperatures ranging from 293 K to 353 K (20 C to 80 C) for under-, peak-, and over-aged low-copper-containing alloys (<0.2 wt pct) are typically ranging from 80 to 85 kJ/mol, whereas for high-copper-containing alloys (>~0.8 wt pct), they are typically ranging from 20 to 40 kJ/mol for under- and peak-aged alloys, and based on limited data, around 85 kJ/mol for over-aged tempers. This means that crack propagation in saline environments is most likely to occur by a hydrogen-related process for low-copper-containing Al-Zn-Mg-Cu alloys in under-, peak- and over-aged tempers, and for high-copper alloys in under- and peak-aged tempers. For over-aged high-copper-containing alloys, cracking is most probably under anodic dissolution control. Future stress corrosion studies should focus on understanding the factors that control crack initiation, and insuring that the next generation of higher performance Al-Zn-Mg-Cu alloys has similar longer crack initiation times and crack propagation rates to those of the incumbent alloys in an over-aged condition where crack rates are less than 1 mm/month at a high stress intensity factor.

  14. Synthesis and processing of Al{sub 2}O{sub 3}/Al composites by in situ reaction of aluminum and mullite

    SciTech Connect

    Fahrenholtz, W.G.; Ewsuk, K.G.; Loehman, R.E.; Tomsia, A.P.

    1995-02-01

    Al{sub 2}O{sub 3}/Al composites, were formed by reacting molten aluminum metal with dense mullite ceramic preforms. The composites produced by this reactive metal penetration process (RMP) have a two phase, interpenetrating microstructure in which both the ceramic and the metal are continuous in three dimensions. Scanning electron microscopy (SEM) micrographs of composites produced by RMP show a fine microstructure comprised of interlocked metal and ceramic phases, with a feature size of approximately 2 {mu}m. RMP is a relatively rapid process with metal penetration rates of nearly 5 mm/hour at 1100{degrees}C after a short incubation period. An activation energy of 92 kJ/mole was calculated from reaction rate data. Transmission electron microscopy (TEM) micrographs reveal that aluminum metal penetrates along the mullite grain boundaries before reaction with the mullite grains, indicating that diffusion along grain boundaries may be the rate limiting step for the reaction. Thermodynamic information, results of microstructure analyses, and kinetic data indicate that RMP proceeds in 4 stages: (1) Al melting and the formation of a thermodynamically stable metal/ceramic interface; (2) depletion of oxygen from the grain boundaries intersecting the ceramic/metal interface; (3) Al metal penetration into the ceramic preform along grain boundaries; and (4) Al reaction with and conversion of individual mullite grains.

  15. Pretreatment effects on the morphology and properties of aluminum oxide thermally grown on NiCoCrAlY

    NASA Technical Reports Server (NTRS)

    Prakash, S.; Budhani, R.; Doerr, H. J.; Deshpandey, C. V.; Bunshah, R. F.

    1985-01-01

    The effect of pretreatments on the morphology and properties of aluminum oxide thermally grown from NiCoCrAlY was investigated. The goal was to optimize process steps to produce a highly adherent, continuous, and insulating aluminum oxide. Two pretreatments were carried out, one in vacuum (about 0.0001 Torr) at 1350 K for 5 h, and the other consisting of deposition of a 1-micron thick Al2O3 film by activated reactive evaporation. Samples were subsequently oxidized thermally at 1000 C for 50 h at 0.5 Torr oxygen pressure. The two pretreatments were carried out on electron-beam evaporation NiCoCrAlY, about 120 microns thick, deposited on a superalloy turbine blade substrate. The results showed that the thermally grown oxide was significantly different in microstructure, surface topography and in its adherence to the NiCoCrAlY for the two pretreatments. Optimum results were obtained by combining the two pretreatments to produce an adherent, continuous, and insulating oxide film on the NiCoCrAlY-coated superalloy substrate.

  16. Homocatenation of aluminum: alkane-like structures of Li2Al2H6 and Li3Al3H8.

    PubMed

    Gish, J Tyler; Popov, Ivan A; Boldyrev, Alexander I

    2015-03-27

    A new class of aluminum homocatenated compounds (LinAlnH2n+2) is proposed based on quantum chemical calculations. In these compounds, Al abstracts an electron from Li, becoming valence isoelectronic with C, Si, and Ge, thus mimicking respective structural features of Group 14 hydrides. Using the Coalescence Kick search program coupled with density functional theory calculations, we investigated the potential energy surfaces of Li2Al2 H6 and Li3Al3H6 . Then single-point-energy coupled-cluster calculations were performed for the lowest energy structures found. Indeed, the global minima established for Li2 Al2 H6 and Li3 Al3 H6 contain the Al2 H6(2-) and Al3H6(3-) kernels, which are isostructural with ethane (C2H6), disilane (Si2H6), digermane (Ge2 H6) and propane (C3H8), trisilane (Si3H8), trigermane (Ge3H8) molecules, respectively. Structural, energetic, and electronic characteristics of the Li2 Al2 H6 and Li3 Al3 H8 compounds are presented and the viability of their synthesis is discussed. PMID:25704853

  17. PHOSPHORUS AND ALUMINUM INTERACTIONS IN SOYBEAN IN RELATION TO AL TOLERANCE: EXUDATION OF SPECIFIC ORGANIC ACIDS FROM DIFFERENT REGIONS OF THE INTACT ROOT SYSTEM

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aluminum (Al) toxicity and phosphorus (P) deficiency often coexist in acid soils to severely limit crop growth and production. Understanding the mechanisms underlying plant Al and P interactions is necessary to facilitate the development of acid tolerant crops. Here we studied the effects of Al and...

  18. Anodic Corrosion Behavior of NiFe2O4-Based Cermet in Na3AlF6-K3AlF6-AlF3 for Aluminum Electrolysis

    NASA Astrophysics Data System (ADS)

    Tian, Zhongliang; Lai, Yanqing; Yang, Shu; Li, Jie; Hwang, Jiann-Yang; Liu, Yexiang

    2015-03-01

    A (Cu,Ni)/(10NiO-NiFe2O4) cermet was tested as an inert anode for aluminum electrolysis in Na3AlF6-K3AlF6-AlF3 melt at 1173 K (900 °C), and its corrosion behavior was studied. The results show that the low-temperature Na3AlF6-K3AlF6-AlF3 bath is beneficial, improving the service conditions. With the combined effects of the electrolyte composition and the nascent oxygen during electrolysis, the metal phase (Cu,Ni) at the surface of anode will not be leached preferentially, but be transferred into the aluminates including FeAl2O4, NiAl2O4 and CuAl2O4. This is helpful for the anode to improve its corrosion resistance.

  19. Microstructure of multilayer interface in an Al matrix composite reinforced by TiNi fiber.

    PubMed

    Hu, Jie; Wu, Gaohui; Zhang, Qiang; Kang, Pengchao; Liu, Yan

    2014-09-01

    A multilayer interface was formed in the Al matrix composite which was reinforced by 30% volume fraction of TiNi fiber. The composite was fabricated by pressure infiltration process and the interface between the TiNi fiber and Al matrix was investigated by transmission electron microscopy (TEM) and energy dispersive spectroscopy (EDS). When the TiNi fiber was pre-oxidized in the air at 773 K for 1 h, three layers have been found and characterized in the interface: TiNi-B2 layer near the TiNi fiber, Ti-Al compound layer with Ti and granular TiO2 near the Al matrix, and Ti-Ni compound layer between TiNi-B2 and Ti-Al compound layers. The effect of the multilayer interface on the mechanical properties of the composite was also discussed. The result showed that the uniaxial tensile strength of the composite at room temperature was 318 MPa, which was very close to the theoretical calculation value of 326 MPa. Moreover, the composite with good ductility exhibited a typical ductile-fracture pattern. PMID:24981215

  20. Al:ZnO thin film: An efficient matrix for cholesterol detection

    NASA Astrophysics Data System (ADS)

    Batra, Neha; Tomar, Monika; Gupta, Vinay

    2012-12-01

    Al doped ZnO thin film (Al:ZnO) has been realized as a potential matrix for the development of efficient cholesterol biosensor. The correlation between the structural and electrical properties of ZnO thin film with varying Al doping concentration (1% to 5%) and their cyclic voltammetric (CV) response has been studied. 2% Al doped ZnO films were found to give the best CV response and were further utilized for immobilization of cholesterol oxidase (ChOx) to detect cholesterol. Amperometric and photometric studies reveal that the prepared bioelectrode based on 2% Al doped ZnO matrix (ChOx/Al:ZnO/Pt/glass) is highly sensitive (sensitivity = 173 μAmM-1 cm-2) to the detection of cholesterol in the wide range from 0.6-12.9 mM (25-500 mg/dl). A relatively low value of enzyme's kinetic parameter (Michaelis menten constant, 2.53 mM) indicates enhanced affinity of the immobilized ChOx toward cholesterol. The prepared bioelectrode is found to be exhibiting high shelf life (10 weeks) having negligible interference with the presence of other biomolecules in human serum indicating promising application of Al doped ZnO thin films for cholesterol biosensing.

  1. Experimental Research on Ultrasonic Vibration Milling Metal Matrix Composites SiCp/Al

    SciTech Connect

    Gao, G. F.; Zhao, B.; Xiang, D. H.; Zhao, M. L.

    2011-01-17

    Although particle reinforced metal matrix composites possess excellent physical properties, its machining performance is rather bad because of its specific structure. It is difficult to obtain good cutting effect by traditional machining method. So machining has become the bottleneck which strictly restricts its industry application. This paper mainly focuses on both wear characteristics of different tool materials and material removal mechanism in ultrasonic milling high volume fraction particle reinforced metal matrix composites SiCp/Al. An acoustic device for ultrasonic vibration milling was developed to introduce the ultrasonic vibration into the traditional machining process. Through the contrast experiment of traditional milling and ultrasonic vibration milling SiCp/Al, the mechanism of tool wear and characteristics of surface topography were analyzed. The experimental results showed that the surface integrity and tool life in the ultrasonic vibration milling SiCp/Al were improved.

  2. AlN matrix composites fabricated via an infiltration and reaction approach

    SciTech Connect

    Aghajanian, M.K.; Biel, J.P.; Smith, R.G. )

    1994-07-01

    Novel AlN-based ceramic matrix composites were produced using a two-step infiltration and reaction process. Molten Al alloy was infiltrated without pressure into preforms containing Si[sub 3]N[sub 4] particles (mixed [alpha] and [beta] phases). The resultant composites were heat-treated, causing hard phases (AlN and Si) to form by reaction of the soft Al with Si[sub 3]N[sub 4]. The ceramic content of the final composites was higher than that of the original preform due to volume changes that occurred during the reaction heat treatment. Initial characterization of mechanical properties demonstrated that the composites had hardnesses, Young's moduli, and compressive strengths that compared favorably with traditionally processed AlN. Flexural strength measurements above the melting point of Si indicated that the composites possessed an interconnected skeleton of ceramic.

  3. Effect of OH-/Al3+ and Si/Al molar ratios on the coagulation performance and residual Al speciation during surface water treatment with poly-aluminum-silicate-chloride (PASiC).

    PubMed

    Yang, Zhonglian; Gao, Baoyu; Xu, Weiying; Cao, Baichuan; Yue, Qinyan

    2011-05-15

    Coagulation performance, mechanism of poly-aluminum-silicate-chloride (PASiC) and residual Al speciation in the effluent with respect to a specific surface water treatment in China were comprehensively investigated in this study. The impact of OH(-)/Al(3+) and Si/Al molar ratios on the coagulation performance, mechanism and residual Al speciation of PASiC in surface water treatment was discussed as a function of coagulant dosage. It was intended to provide an insight into the relationship between coagulation performance and residual Al. Experimental results revealed that when OH(-)/Al(3+) molar ratio = 2.00 and Si/Al molar ratio = 0.0500 in PASiC coagulant, PASiC exhibited beneficial coagulation property and relatively lower content of residual Al. Surface bridging and entrapment was more effective compared with charge neutralization during the specific surface water treatment. The majority of residual Al in the effluent existed in the form of insoluble suspended or particulate Al. Dissolved organically bound Al was almost the major speciation in dissolved Al and dissolved inorganically bound monomeric Al was the only component in dissolved monomeric Al. Al in PASiC remained abundant at lower dosages and residual Al concentration could be effectively reduced at the dosages of 12.0-15.0mg/L as Al. PMID:21376461

  4. Assistance of Novel Artificial Intelligence in Optimization of Aluminum Matrix Nanocomposite by Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Mazahery, Ali; Shabani, Mohsen Ostad

    2012-12-01

    In this article, a genetic algorithm (GA) is used to predict the mechanical properties and to optimize the process conditions of Al nanocomposites. An artificial intelligence method is also implemented as an assisting tool for engineering tasks of GAs. The principle of the survival of the fittest is applied to produce successively superior approximations to a solution. A population of points at each iteration is generated. The population approaches an optimal solution. The next population by computations that involve random choices is selected. The optimal volume percentage of SiC, cooling rate, and temperature gradient are computed to be 2.84 pct, 283 K/s (10 °C/s), 1273 K/m (1000 °C/m), respectively.

  5. Effect of Aluminum Particle Surface Area and Morphology on the Combustion Properties of KClO4/Al Compositions

    NASA Astrophysics Data System (ADS)

    Caulder, Stanley; Mackey, Joseph; Wilkinson, John

    2009-06-01

    Compositions of KClO4/Al are used in military applications as well as the pyrotechnics industry. The reaction rate as well as the ease of initiation depends on metal particle surface area as well as particle morphology. This factor is especially important for metal fuels having a melting point higher than the melting point of the oxidizer component in the energetic composition. Aluminum powder and turnings of various particle sizes were combined with KClO4 to form an energetic composition. The explosives mixtures were combusted in a rapid scanning calorimeter device (RSD). dP/dt and dT/dt results were measured and heats of reaction were calculated. The effect of Al particle surface area and particle morphology on the combustion properties of KClO4/Al is discussed.

  6. Preparation and Wear Resistance of Aluminum Composites Reinforced with In Situ Formed TiO/Al2O3

    NASA Astrophysics Data System (ADS)

    Qin, Q. D.; Huang, B. W.; Li, W.; Zeng, Z. Y.

    2016-04-01

    An in situ TiO/Al2O3-reinforced Al composite is successfully prepared using a powder metallurgy route by the reaction of Ti2CO and Al powder. The Ti2CO powder is produced by carrying out a carbothermic reduction of titanium dioxide at 1000 °C. XRD results show that the final product is composed of Al, TiO, Al2O3, and Al3Ti. Morphology examination of the composite reveals the presence of bigger blocks of TiO and fine particles of Al2O3 and the volume fraction of reinforcement is found to range between 18 and 55%. As the volume fraction of the reinforced materials approaches 50%, the particles start to agglomerate. Dry sliding wear tests conducted using a conventional pin-on-disk testing machine show that the wear resistance of the composite is higher than that of the pure aluminum ingot. The wear rate of the composite increases almost linearly with the increase in the wear distance. The sliding wear test shows that as the volume fraction of the reinforced phase increases, the coefficient of friction decreases. The wear mechanism is also discussed.

  7. Preparation and Wear Resistance of Aluminum Composites Reinforced with In Situ Formed TiO/Al2O3

    NASA Astrophysics Data System (ADS)

    Qin, Q. D.; Huang, B. W.; Li, W.; Zeng, Z. Y.

    2016-05-01

    An in situ TiO/Al2O3-reinforced Al composite is successfully prepared using a powder metallurgy route by the reaction of Ti2CO and Al powder. The Ti2CO powder is produced by carrying out a carbothermic reduction of titanium dioxide at 1000 °C. XRD results show that the final product is composed of Al, TiO, Al2O3, and Al3Ti. Morphology examination of the composite reveals the presence of bigger blocks of TiO and fine particles of Al2O3 and the volume fraction of reinforcement is found to range between 18 and 55%. As the volume fraction of the reinforced materials approaches 50%, the particles start to agglomerate. Dry sliding wear tests conducted using a conventional pin-on-disk testing machine show that the wear resistance of the composite is higher than that of the pure aluminum ingot. The wear rate of the composite increases almost linearly with the increase in the wear distance. The sliding wear test shows that as the volume fraction of the reinforced phase increases, the coefficient of friction decreases. The wear mechanism is also discussed.

  8. High-strength powder metallurgy aluminum alloys in glass-forming Al-Ni-Ce-(Ti or Zr) systems

    SciTech Connect

    Kawamura, Y.; Inoue, A.; Sasamori, K.; Masumoto, T. )

    1993-07-15

    Powder metallurgy (P/M) aluminum alloys with high mechanical strengths have been developed by taking advantage of rapid solidification (RS). The improved strengths result from structural modifications such as reduction of segregation, refinement of grain size and increase in solid solubility limit which mainly depend on the amount of undercooling of melt. To produce crystalline alloys with a refined structure, few approaches are considered: the crystallization of an amorphous alloy, the control of cooling rate from melt and the selection of optimum composition for glass-forming alloys. However, these methods are generally attended with a disadvantage for embrittlement. Recently, it has been found that Al-based amorphous alloys exhibiting high tensile strength and good bending ductility form by liquid quenching in the Al-Ln-TM (Ln: lanthanide metal, TM: transition metal) system. Furthermore, the consolidation of the amorphous alloy powders to a bulk amorphous alloy has also been achieved by warm extrusion. The first aim of this paper is to examine the effect of alloy composition on the strength and ductility of crystalline compacts produced by extrusion of rapidly solidified powders in the Al-Ni-Ce-TM(TM:Ti, Mn, Fe, Co, Cu, Zr) systems where an amorphous phase is formed by melt spinning. The second is to investigate whether or not the structural refinement by using glass-forming alloys is useful to develop high-strength P/M aluminum alloys.

  9. Processing of Carbon Fibers Reinforced Mg Matrix Composites Via Pre-infiltration with Al

    NASA Astrophysics Data System (ADS)

    Mertens, A.; Montrieux, H.-M.; Halleux, J.; Lecomte-Beckers, J.; Delannay, F.

    2012-05-01

    Mg-C composites offer a suitable alternative to Al alloys while allowing for a significant weight reduction, but their production can be impaired by the poor wettability of C substrates by Mg. In this study, a new "liquid" processing route has been investigated. By making use of the well-known effect of a pre-treatment of the C fibers with an aqueous solution of K2ZrF6 in favoring spontaneous wetting of C with Al, C yarns have been pre-impregnated with Al and the feasibility of further using them as reinforcements in Mg matrix composites has been assessed. More particularly, it has thus been shown that the, under the thermal conditions involved in the process, C fibers did not suffer damage due to chemical reaction with Al, and also that special care should be taken to control the surface condition of the pre-infiltrated yarns.

  10. Simulation of the concomitant process of nucleation-growth-coarsening of Al2Cu particles in a 319 foundry aluminum alloy

    NASA Astrophysics Data System (ADS)

    Martinez, R.; Larouche, D.; Cailletaud, G.; Guillot, I.; Massinon, D.

    2015-06-01

    The precipitation of Al2Cu particles in a 319 T7 aluminum alloy has been modeled. A theoretical approach enables the concomitant computation of nucleation, growth and coarsening. The framework is based on an implicit scheme using the finite differences. The equation of continuity is discretized in time and space in order to obtain a matricial form. The inversion of a tridiagonal matrix gives way to determining the evolution of the size distribution of Al2Cu particles at t  +Δt. The fluxes of in-between the boundaries are computed in order to respect the conservation of the mass of the system, as well as the fluxes at the boundaries. The essential results of the model are compared to TEM measurements. Simulations provide quantitative features on the impact of the cooling rate on the size distribution of particles. They also provide results in agreement with the TEM measurements. This kind of multiscale approach allows new perspectives to be examined in the process of designing highly loaded components such as cylinder heads. It enables a more precise prediction of the microstructure and its evolution as a function of continuous cooling rates.

  11. ZrNbCuNiAl bulk metallic glass matrix composites containing dendritic bcc phase precipitates

    NASA Astrophysics Data System (ADS)

    Kühn, U.; Eckert, J.; Mattern, N.; Schultz, L.

    2002-04-01

    We report on phase formation of a multicomponent Zr66.4Nb6.4Cu10.5Ni8.7Al8 glass-forming alloy upon copper mold casting. A bcc phase embedded in a glassy matrix forms for moldcast bulk samples yielding an in-situ bulk metallic glass matrix composite upon slow cooling from the melt. Upon annealing, the first exothermic transformation of the material is related to precipitation of an icosahedral phase from the glassy matrix. The formation of the bcc phase-containing metallic glass composite is strongly governed by the alloy composition and the actual cooling rate during solidification. Room-temperature compression tests reveal significant yielding and plastic deformation before failure.

  12. Investigation of thermal conductivity and microstructure of the α-Al 2O 3 particulate reinforced aluminum composites (Al/Al 2O 3-MMC) by powder metallurgy method

    NASA Astrophysics Data System (ADS)

    Tatar, C.; Özdemir, N.

    2010-02-01

    The thermal conductivity of the α-Al 2O 3 particulate reinforced aluminum composites (Al/Al 2O 3-MMC) prepared by powder metallurgy method have been investigated. The thermal conductivity shows linear dependence on temperature in the investigated range. The increase in the thermal conductivity of the composites with decreasing Al 2O 3 particles size could be due to greater stability of the thermal conductive paths for smaller Al 2O 3 particles. In addition, when composites are heated, the heat will tend to flow through the Al particles and electric charge flows where resistance is lowest. It is seen that the thermal conductivity decrease with increasing Al 2O 3 volume fraction.

  13. Strengthening and grain refinement in an Al-6061 metal matrix composite through intense plastic straining

    SciTech Connect

    Valiev, R.Z.; Islamgaliev, R.K.; Kuzmina, N.F.; Li, Y.; Langdon, T.G.

    1998-12-04

    Intense plastic straining techniques such as torsion straining and equal channel angular (ECA) pressing are processing procedures which may be used to make beneficial changes in the properties of materials through a substantial refinement in the microstructure. Although intense plastic straining procedures have been used for grain refinement in numerous experiments reported over the last decade, there appears to have been no investigations in which these procedures were used with metal matrix composites. The present paper describes a series of experiments in which torsion straining and ECA pressing were applied to an Al-6061 metal matrix composite reinforced with 10 volume % of Al{sub 2}O{sub 3} particulates. As will be demonstrated, intense plastic straining has the potential for both reducing the grain size of the composite to the submicrometer level and increasing the strength at room temperature by a factor in the range of {approximately}2 to {approximately}3.

  14. X-ray photoelectron spectroscopy study of catalyzed aluminum carbide formation at aluminum-carbon interfaces

    NASA Technical Reports Server (NTRS)

    Rabenberg, L.; Maruyama, Benji

    1990-01-01

    Aluminum carbide may form at aluminum-graphite interfaces during the high-temperature processing of graphite fiber-reinforced aluminum metal matrix composites. The chemical interactions leading to the formation of the aluminum carbide in the solid state involve the breaking of the carbon-carbon bonds within the graphite, the transport of the carbon atoms across the interface, and the reaction with the aluminum to form Al4C3. The aluminum carbide formation process has been followed using X-ray photoelectron spectroscopy of model, thin-film, reaction couples. The overall reaction is shown to be catalyzed by the presence of water vapor. Water at the interface increases reaction kinetics by apparently weakening the bonds between the surface carbon atoms and their substrate. This result is in general agreement with what is known to occur during the oxidation of graphite in air.

  15. Metal Matrix Composites

    SciTech Connect

    Hunt, Warren; Herling, Darrell R.

    2004-02-01

    Metal matrix composites have found selected application in areas that can cost-effectively capitalize on improvements in specific stiffness, specific strength, fatigue resistance, wear resistance, and coefficient of thermal expansion. Metal matrix composites comprise a relatively wide range of materials defined by the metal matrix, reinforcement type, and reinforcement geometry. In the area of the matrix, most metallic systems have been explored, including aluminum, beryllium, magnesium, titanium, iron, nickel, cobalt, and silver. However, aluminum is by far the most preferred. For reinforcements, the materials are typically ceramics, which provide a very beneficial combination of stiffness, strength, and relatively low density. Candidate reinforcement materials include SiC, Al2O3, B4C, TiC, TiB2, graphite, and a number of other ceramics. In addition, metallic materials such as tungsten and steel fibers have been considered.

  16. Magnetoelectric and magnetic properties of aluminum borates Ho1 - x Nd x Al3(BO3)4

    NASA Astrophysics Data System (ADS)

    Volkov, N. V.; Gudim, I. A.; Demidov, A. A.; Eremin, E. V.

    2015-03-01

    The magnetoelectric and magnetic properties of substituted aluminum borates Ho1 - x Nd x Al3(BO3)4 have been studied experimentally and theoretically. A large magnetoelectric effect exceeding all known values in isostructural compounds except for HoAl3(BO3)4 has been found. The magnetoelectric polarization of Ho0.8Nd0.2Al3(BO3)4 and Ho0.5Nd0.5Al3(BO3)4 at T = 5 K in a field of 9 T is Δ P ab ( B b ) ≈ -2630 and 1380 μC/m2, respectively. A theoretical consideration based on the crystal field model for the rare-earth ion made it possible to interpret all measured properties within the unified approach. The crystal field parameters have been determined. The temperature (3-300 K) and field (up to 9 T) dependences of the magnetization and the temperature (5-100 K) and field (up to 9 T) dependences of the polarization have been described. The studied properties of Ho1 - x Nd x Al3(BO3)4 have been compared with those of HoAl3(BO3)4 demonstrating record-high polarization values.

  17. Investigation of Product Performance of Al-Metal Matrix Composites Brake Disc using Finite Element Analysis

    NASA Astrophysics Data System (ADS)

    Fatchurrohman, N.; Marini, C. D.; Suraya, S.; Iqbal, AKM Asif

    2016-02-01

    The increasing demand of fuel efficiency and light weight components in automobile sectors have led to the development of advanced material parts with improved performance. A specific class of MMCs which has gained a lot of attention due to its potential is aluminium metal matrix composites (Al-MMCs). Product performance investigation of Al- MMCs is presented in this article, where an Al-MMCs brake disc is analyzed using finite element analysis. The objective is to identify the potentiality of replacing the conventional iron brake disc with Al-MMCs brake disc. The simulation results suggested that the MMCs brake disc provided better thermal and mechanical performance as compared to the conventional cast iron brake disc. Although, the Al-MMCs brake disc dissipated higher maximum temperature compared to cast iron brake disc's maximum temperature. The Al-MMCs brake disc showed a well distributed temperature than the cast iron brake disc. The high temperature developed at the ring of the disc and heat was dissipated in circumferential direction. Moreover, better thermal dissipation and conduction at brake disc rotor surface played a major influence on the stress. As a comparison, the maximum stress and strain of Al-MMCs brake disc was lower than that induced on the cast iron brake disc.

  18. Al/sub 2/S/sub 3/ preparation and use in electrolysis process for aluminum production

    DOEpatents

    Hsu, C.C.; Loutfy, R.O.; Yao, N.P.

    A continuous process for producing aluminum sulfide and for electrolyzing the aluminum sulfide to form metallic aluminum in which the aluminum sulfide is produced from aluminum oxide and COS or CS/sub 2/ in the presence of a chloride melt which also serves as the electrolysis bath. Circulation between the reactor and electrolysis cell is carried out to maintain the desired concentration of aluminum sulfide in the bath.

  19. Development of a job-exposure matrix for exposure to total and fine particulate matter in the aluminum industry.

    PubMed

    Noth, Elizabeth M; Dixon-Ernst, Christine; Liu, Sa; Cantley, Linda; Tessier-Sherman, Baylah; Eisen, Ellen A; Cullen, Mark R; Hammond, S Katharine

    2014-01-01

    Increasing evidence indicates that exposure to particulate matter (PM) at environmental concentrations increases the risk of cardiovascular disease, particularly PM with an aerodynamic diameter of less than 2.5 μm (PM(2.5)). Despite this, the health impacts of higher occupational exposures to PM(2.5) have rarely been evaluated. In part, this research gap derives from the absence of information on PM(2.5) exposures in the workplace. To address this gap, we have developed a job-exposure matrix (JEM) to estimate exposure to two size fractions of PM in the aluminum industry. Measurements of total PM (TPM) and PM(2.5) were used to develop exposure metrics for an epidemiologic study. TPM exposures for distinct exposure groups (DEGs) in the JEM were calculated using 8385 personal TPM samples collected at 11 facilities (1980-2011). For eight of these facilities, simultaneous PM(2.5) and TPM personal monitoring was conducted from 2010 to 2011 to determine the percent of TPM that is composed of PM(2.5) (%PM(2.5)) in each DEG. The mean TPM from the JEM was then multiplied by %PM(2.5) to calculate PM(2.5) exposure concentrations in each DEG. Exposures in the smelters were substantially higher than in fabrication units; mean TPM concentrations in smelters and fabrication facilities were 3.86 and 0.76 mg/m(3), and the corresponding mean PM(2.5) concentrations were 2.03 and 0.40 mg/m(3). Observed occupational exposures in this study generally exceeded environmental PM(2.5) concentrations by an order of magnitude. PMID:24022670

  20. Development of a job-exposure matrix for exposure to total and fine particulate matter in the aluminum industry

    PubMed Central

    Noth, Elizabeth M.; Dixon-Ernst, Christine; Liu, Sa; Cantley, Linda; Tessier-Sherman, Baylah; Eisen, Ellen A.; Cullen, Mark R.; Hammond, S. Katharine

    2014-01-01

    Increasing evidence indicates that exposure to particulate matter (PM) at environmental concentrations increases the risk of cardiovascular disease, particularly PM with an aerodynamic diameter of less than 2.5μm (PM2.5). Despite this, the health impacts of higher occupational exposures to PM2.5 have rarely been evaluated. In part, this research gap derives from the absence of information on PM2.5 exposures in the workplace. To address this gap, we have developed a job-exposure matrix (JEM) to estimate exposure to two size fractions of PM in the aluminum industry. Measurements of total PM (TPM) and PM2.5 were used to develop exposure metrics for an epidemiologic study. TPM exposures for distinct exposure groups (DEGs) in the JEM were calculated using 8,385 personal TPM samples collected at 11 facilities (1980-2011). For 8 of these facilities, simultaneous PM2.5 and TPM personal monitoring was conducted from 2010-2011 to determine the percent of TPM that is composed of PM2.5 (%PM2.5) in each DEG. The mean TPM from the JEM was then multiplied by %PM2.5 to calculate PM2.5 exposure concentrations in each DEG. Exposures in the smelters were substantially higher than in fabrication units; mean TPM concentrations in smelters and fabrication facilities were 3.86 mg/m3 and 0.76 mg/m3, and the corresponding mean PM2.5 concentrations were 2.03 mg/m3 and 0.40 mg/m3. Observed occupational exposures in this study generally exceeded environmental PM2.5 concentrations by an order of magnitude. PMID:24022670

  1. The influence of reinforcement homogeneity on the deformation and fracture of a discontinuously reinforced aluminum matrix composite

    NASA Astrophysics Data System (ADS)

    Wilks, Garth Barrett

    Deformation processing (extrusion) has been used to homogenize reinforcement distribution in a discontinuously reinforced aluminum matrix composite (DRA 6092/SiC/25p). Reinforcement distribution after three conditions of varying extrusion reduction has been quantified using the homogenous length scale technique. Results indicate that deformation processing positively influences reinforcement homogeneity---increasing deformation asymptotically leads to an increasingly uniform reinforcement distribution. After heat treatment to peak age, the compressive flow behavior both along and transverse to the extrusion axis has been determined for each condition. Using chevron notch short rods, the fracture toughness behavior in several orientations has also been assessed. Variations in flow behavior with deformation processing are mainly rationalized in terms of matrix texture with the combined effect of particle alignment along the extrusion axis and reinforcement homogenization being relatively small. Regardless of orientation, toughness is shown to increase with reinforcement homogeneity; in a particular transverse orientation, chevron notch fracture toughness (KIv) demonstrates a nearly two-fold increase (10.8 MPa?m to 19.3 MPa?m) as a result of reinforcement cluster breakdown. Qualitative fractography indicates a generally ductile fracture process. Quantitative fractography indicates a strong positive relationship between fracture surface average roughness (RA---a measure of out-of-plane crack deflection) and toughness (KIv ), while a fractal technique used to characterize the fracture surface indicates a decrease in fractal dimension with increasing toughness. Using a simple model, the trend of increasing average roughness is interpreted as an increase in the fracture process length scale, while the decrease in fractal dimension is interpreted as a subtle decrease in the mean angle of crack deflection---a result expected with reinforcement homogenization. The increase in toughness is rationalized as a combined effect of decreasing crack deflection (leading to slower strain accumulation during crack blunting) in addition to a nominal improvement in plastic strain that can be supported by the interparticle ligament after reinforcement homogenization. Such a change in local ductility is qualitatively validated with SEM fractography.

  2. Effectiveness of metal matrix and ceramic matrix composites as orbital debris shield materials

    NASA Technical Reports Server (NTRS)

    Mcgill, Preston B.; Mount, Angela R.

    1992-01-01

    The effectiveness of two metal matrix composites and one ceramic matrix material in defeating hypervelocity impacts at about 3.8 km/s are evaluated to determine the potential of these composites as spacecraft shield materials. The metal matrix composites investigated consist of SiC particles (70 percent by volume) in an aluminum matrix and Al2O3 particles (50 percent by volume) in an Al matrix. The ceramic composite consists of ZrB2 platelets in a ZrC matrix. Both the metal matrix and ceramic matrix composites are found to perform as well or better than 6061-T6 aluminum, which is presently used in the Whipple type bumper shield of Space Station Freedom. Test results indicate that the composites tested may have applications as micrometeoroid/orbital debris shield materials.

  3. Effect of Inclusions' Behavior on the Microstructure in Al-Ti Deoxidized and Magnesium-Treated Steel with Different Aluminum Contents

    NASA Astrophysics Data System (ADS)

    Wu, Zhenhua; Zheng, Wan; Li, Guangqiang; Matsuura, Hiroyuki; Tsukihashi, Fumitaka

    2015-02-01

    To clarify the precipitation behavior of beneficial inclusions and mechanism of their effects on microstructure, the effect of aluminum content on inclusion's characteristics and their influence on the refinement of microstructure in Al-Ti complex deoxidized magnesium-treated steels were systematically investigated based on experiment and calculation. The results showed that due to the dual effects of Ti and Mg deoxidation, a large amount of finely dispersed Al2O3-TiO x -MgO inclusions in low aluminum steel with a complex multilayer or mosaic structure were formed, whereas a relatively smaller amount of Al2O3-MgO inclusions with the simple bundle structure were observed in high aluminum steel. The Al2O3-TiO x -MgO core oxides are more conducive to the precipitation of multiple manganese sulfides with thinner thickness on their local surfaces. Thus, the inclusion deformation, which mainly depends on the surface manganese sulfides layer, is smaller in low aluminum steel than that in high aluminum steel. Complex inclusions in low aluminum steel can pin austenite grain boundaries and induce interlocking acicular ferrite effectively. In addition to the small size and chemical composition of inclusions, the complex structure of oxides and the precipitation of multiple MnS on their surface are important to the nucleation of interlocking AFs on inclusions in Ti-deoxidized Mg-treated steel. The AFs quantity is much more, and the grain size is more uniform in low aluminum steel than that in high aluminum steel.

  4. Inter-wall bridging induced peeling of multi-walled carbon nanotubes during tensile failure in aluminum matrix composites.

    PubMed

    Chen, Biao; Li, Shufeng; Imai, Hisashi; Umeda, Junko; Takahashi, Makoto; Kondoh, Katsuyoshi

    2015-02-01

    In situ scanning electron microscopy (SEM) observation of a tensile test was performed to investigate the fracturing behavior of multi-walled carbon nanotubes (MWCNTs) in powder metallurgy Al matrix composites. A multiple peeling phenomenon during MWCNT fracturing was clearly observed. Its formation mechanism and resultant effect on the composite strength were examined. Through transition electron microscopy characterizations, it was observed that defective structures like inter-wall bridges cross-linked adjacent walls of MWCNTs. This structure was helpful to improve the inter-wall bonding conditions, leading to the effective load transfer between walls and resultant peeling behaviors of MWCNTs. These results might provide new understandings of the fracturing mechanisms of carbon nanotube reinforcements for designing high-performance nanocomposites. PMID:25437849

  5. Influence of the starting aluminum salt on the surface and acid properties of AlPO/sub 4/ catalysts precipitated with ammonium hydroxide

    SciTech Connect

    Campelo, J.M.; Garcia, A.; Luna, D.; Marinas, J.M.

    1988-05-01

    In this paper, the influence of the starting aluminum salt (chloride, nitrate, or sulfate) and the pretreatment temperature (773-1273 K) on textural properties, crystal structure, and surface acidity of AlPO/sub 4/ (Al/P = 1) catalysts was studied in order to learn how preparation conditions affect catalyst activity in organocationic reactions. The catalysts were characterized using nitrogen adsorption, X-ray diffraction, infrared spectroscopy, and thermogravimetric analyses. The surface acid properties were determined using a dynamic method that consists of determining the AlPO/sub 4/'s catalytic activity in cyclohexene skeletal isomerization (CSI), a reaction that requires the presence of strong surface acid sites. Catalytic activity (as apparent rate constants), activation energies, and selectivities to 1-methylcyclopentene (1-MCP) were calculated in terms of Bassett-Habgood's kinetic model for first-order processes in which the surface reaction is the controlling step and the partial pressure of the reactant is low. Significant differences in structure, texture, surface acidity, and catalytic activity in CSI were found, showing that the aluminum starting salt plays an important role in the final properties of AlPO/sub 4/ (Al/P molar ratio = 1) catalysts. Thus, aluminum nitrate yielded material with higher surface area and low activity for CSI while aluminum sulfate resulted in higher surface acidity, and hence catalytic activity for CSI, although the sample is highly crystalline exhibiting low surface area. Aluminum chloride produces porous catalysts although they are less acidic.

  6. Nanostructured Al-Based Metal Matrix Composite Coating Production by Pulsed Gas Dynamic Spraying Process

    NASA Astrophysics Data System (ADS)

    Yandouzi, M.; Bu, H.; Brochu, M.; Jodoin, B.

    2012-06-01

    The advantage of combining cryomilling and pulsed gas dynamic spraying (PGDS) processes in order to produce a nanostructured, dense and wear resistant coating was demonstrated. Cryomilling was successfully employed to synthesize particulate B4C reinforced Al matrix nanocomposite feedstock powders, while the PGDS process shows the ability of preserving the microstructure of the starting material. In this study, nanocrystalline and conventional Al5356 + 20%B4C composite as well as the unreinforced Al5356 alloy feedstock powders were used. The influence of the nature of the feedstock material on the microstructure and mechanical properties of the coatings was studied. The PGDS process provides an opportunity to preserve the phase of the starting material, to produce hard and dense coatings with good cohesion between deformed particles and good adhesion to the substrate. High dry sliding wear resistance was observed when cryomilled composite material was used.

  7. Dendrite-Free Aluminum Electrodeposition from AlCl3-1-Ethyl-3-Methyl-Imidazolium Chloride Ionic Liquid Electrolytes

    NASA Astrophysics Data System (ADS)

    Pradhan, Debabrata; Reddy, Ramana G.

    2012-06-01

    A novel, dendrite-free electrorefining of aluminum scrap alloys (A360) was investigated by using a low-temperature AlCl3-1-ethyl-3-methyl-imidazolium chloride (EMIC) ionic liquid electrolyte on copper/aluminum cathodes. The bulk electrodeposition of aluminum was carried out at a fixed voltage of 1.5 V, temperatures 323 K to 383 K (50 °C to 110 °C), stirring rate (0 to 120 rpm), concentration (molar ratio AlCl3:EMIC = 1.25 to 2.0), and electrode surface modification (modified/unmodified). The study investigated the effect of electrode surface modification, cathode materials, temperature, stirring rate, electrolyte concentration, and deposition time on the deposit morphology of aluminum, cathode current density, and their role in production of dendrite-free aluminum deposit, which is essential for decreasing the production cost. The deposits were characterized using scanning electron microscope (SEM), energy-dispersive spectroscopy (EDS), and X-ray diffraction (XRD). It was shown that electrode surface modification, cathode overpotential, and stirring rate play an important role in dendrite-free deposit. Modified electrodes and stirring (60 rpm) eliminate dendritic deposition by reducing cathode overpotential below critical overpotential ( η_{{crt}} ≈ - 0.53V ) for dendrite formation. Pure aluminum (>99 pct) was deposited for all experiments with a current efficiency of 84 to 99 pct and energy consumption of 4.51 to 5.32 kWh/kg Al.

  8. Comparative study of Al(x)Ga(1-x)As/GaAs photocathodes with different aluminum concentrations by surface photovoltage spectroscopy.

    PubMed

    Jiao, GangCheng; Hu, Canglu; Liu, Jian; Qian, Yunsheng

    2015-10-01

    The influence of aluminum concentration in an Al(x)Ga(1-x)As window layer on the performance of Al(x)Ga(1-x)As/GaAs photocathodes was investigated. Three types of transmission-mode photocathode materials with different aluminum concentrations were designed for the comparative research. The surface photovoltage technique was applied to prepare samples. After the Cs-O activation process, spectral response curves of Al(x)Ga(1-x)As/GaAs photocathodes were obtained. Comparative studies show that a higher aluminum composition in the window layer is beneficial to improve the response of Al(x)Ga(1-x)As/GaAs photocathodes in the shortwave region. The surface photovoltage calculation formula of photocathode materials was put forward and used to obtain key performance parameters of Al(x)Ga(1-x)As/GaAs photocathodes by fitting calculations. Through calculations, the Al(x)Ga(1-x)As/GaAs interface recombination velocity, the minority carrier diffusion length of the window layer, and the emission layer were deduced, and there is a positive correlation between the aluminum composition in the window layer and the Al(x)Ga(1-x)As/GaAs interface recombination velocity, which is negative with the performance of photocathodes. PMID:26479625

  9. Effects of pH, surface finish and thermal treatment on the corrosion of AlFeNi aluminum alloy. Characterization of oxide layers

    NASA Astrophysics Data System (ADS)

    Nabhan, D.; Kapusta, B.; Billaud, P.; Colas, K.; Hamon, D.; Dacheux, N.

    2015-02-01

    The aluminum alloy AlFeNi used as fuel cladding for the Jules Horowitz Reactor (JHR) may undergo corrosion in the reactor environment. In order to qualify the corrosion behavior of the fuel elements of the JHR in accidental conditions, several specimens of AlFeNi have been corroded at 250 °C for different durations (9-34 days) in distilled water at various pH (4.9, 5.2 and 5.6) chosen to simulate that currently considered for the JHR. On all specimens, the only crystalline corrosion product formed is boehmite (AlOOH). The corrosion film is composed of three oxide layers which show through thickness chemical composition variations. The iron-nickel precipitates pre-existing in the metal matrix are present in the inner and intermediate oxide layers though oxidized. For long corrosion times, some of the iron and nickel particles are released in the water and some precipitation is observed at the surface of the oxide layer. The effect of surface finish (as received or polished) and thermal treatment (annealed and not annealed) on the oxide growth rate has also been investigated. For durations over 25 days, pH = 5.6 appears to be more favorable than pH = 5.2 and 4.9 in terms of oxide thickness and weight gain limitation. This effect of pH is however reduced on unpolished specimens. The effect of surface finish on the corrosion behavior as measured by optical microscopy appears to be strong, especially for pH = 4.9 where polished samples exhibited an accelerated evolution of the oxide thickness and of the mass gain. This could be due to the combined effect of a strong acid solution (pH = 4.9) and of the local microstructural changes formed at the interface through polishing. The effect of thermal treatment on the behavior of unpolished AlFeNi specimens during corrosion tests in the conditions investigated was found to be small. In this study, microstructural and chemical analyses were performed on the corroded specimens in order to get a better understanding of the corrosion kinetics. The crystallographic nature of the boehmite layers investigated by X-ray diffraction is unaffected by the pH of the solution. Iron precipitates were identified on the oxide surface beyond 34 days of corrosion by Environmental Scanning Electron Microscope (ESEM). Finally, Electron Probe Micro-Analysis (EPMA) was used to determine the chemical composition of the metal matrix and of the different oxide layers and precipitates versus the pH of the solution.

  10. Deformation textures of aluminum in a multilayered Ti/Al/Nb composite severely deformed by accumulative roll bonding

    SciTech Connect

    Qu, Peng Zhou, Liming Acoff, Viola L.

    2015-09-15

    The accumulative roll bonding process was carried out to produce multilayered Ti/Al/Nb composites up to four cycles. Scanning electron microscopy, transmission electron microscopy electron backscattered diffraction and nanoindentation were employed to investigate the microstructural and texture evolution. A homogenous distribution of Ti/Nb necking layers in Al matrix was achieved after four ARB cycles. Grain refinement was observed to increase with increasing number of ARB cycles. The fraction of high-angle grain boundaries as also increased. Strong recrystallization texture appeared for high number of ARB cycles due to the adiabatic heat that occurs during ARB processing. The shear band at the Ti/Al interface reduced the intensity of the cold rolling fiber textures of Al. There was no evidence of shear component from the orientation distribution function results.

  11. The fracture behavior of SiCp/aluminum alloy composites with and without large Al-particles

    SciTech Connect

    Pandey, A.B.; Majumdar, B.S.; Miracle, D.B.

    1996-12-31

    J{sub Ic} measurements were performed on a SiCp/Al-7093 MMC with controlled heat treatments, and the damage mechanisms were evaluated to understand the influence of microstructural parameters on the fracture toughness and crack resistance behavior. The deformed materials showed widely different damage and flow localization for different matrix microstructures. In an effort to improve fracture toughness, large Al particles were incorporated into the powder-metallurgy based MMC, and extruded to obtain pancake shaped Al phases. In the extruded condition, the effect of Al particles on the crack initiation toughness was negligible. However, significant improvement in the toughness was observed when the extruded material was further rolled. These issues are discussed in the context of observed deformation and damage mechanisms.

  12. Microstructural Development in Irradiated U-7Mo/6061 Al Alloy Matrix Dispersion Fuel

    SciTech Connect

    Dennis D. Keiser, Jr.; Adam B. Robinson; Jan-Fong Jue; Pavel G. Medvedev; Daniel M. Wachs; M. Ross Finlay

    2009-09-01

    A U-7Mo alloy/6061 Al alloy matrix dispersion fuel plate was irradiated in the Advanced Test Reactor and then destructively examined using optical metallography and scanning electron microscopy to characterize the developed microstructure. Results were compared to the microstructures of as-fabricated dispersion fuel to identify changes that occurred during irradiation. The interaction layers that formed on the surface of the fuel U-7Mo particles during fuel fabrication exhibited stable irradiation performance as a result of the ~0.88 wt% Si present in the fuel meat matrix. During irradiation, the interaction layers changed very little in thickness and composition. The overall irradiation performance of the fuel plate to moderate power and burnup was considered excellent.

  13. Matrix grain characterisation by electron backscattering diffraction of powder metallurgy aluminum matrix composites reinforced with MoSi{sub 2} intermetallic particles

    SciTech Connect

    Corrochano, J. Hidalgo, P.; Lieblich, M.; Ibanez, J.

    2010-11-15

    Research highlights: Six extruded PM AA6061/MoSi{sub 2}/15p were processed with and without ball milling {yields} EBSD was used to characterise matrix grain size and grain orientation. {yields} Ball milling decreases matrix grain size to submicrometric level. {yields} Ball milling produces a more equiaxed microstructure and larger misorientation. {yields} Increasing milling time produces matrix texture randomization.

  14. Tensile flow properties of Al-based matrix composites reinforced with a random planar network of continuous metallic fibers

    SciTech Connect

    Boland, F.; Salmon, C.; Delannay, F.; Colin, C.

    1998-11-20

    Squeeze casting was used for processing two new types of composites: pure Al matrix composites reinforced with fibers of Inconel 601, and AS13 (Al-12% Si) matrix composites reinforced with fibers of Inconel 601 or stainless steel 316L. The fibers are continuous with a diameter of 12 {micro}m and their volume fraction in the composites varied from 20 to 80%. The processing conditions were such that no trace of interfacial reaction compound or of matrix precipitate resulting from the dissolution of elements of the fibers could be detected. The quality of the process was attested by Young`s modulus and electrical conductivity measurements. Tensile tests were carried out from room temperature up to 300 C. The composites with the pure Al matrix present a remarkable tensile ductility. They thus constitute convenient materials for assessing continuum plasticity models for composites. Properties of composites with the AS13 matrix are much affected by interface adhesion strength.

  15. Special Features of the Mechanical Characteristics of Al-Al2O3 Composites Produced By Explosive Compaction of Powders Under Shock-Wave Deformation

    NASA Astrophysics Data System (ADS)

    Zhukov, I. A.; Garkushin, G. V.; Vorozhtsov, S. A.; Khrustalyov, A. P.; Razorenov, S. V.; Kvetinskaya, A. V.; Promakhov, V. V.; Zhukov, A. S.

    2016-01-01

    The results obtained from investigations into the special features inherent in the mechanical characteristics (Hugoniot elastic limit and spall strength) observed under shock-wave loading of Al-Al2O3 composite samples produced by an explosive powder compaction technique are presented. Embedding 10 wt.% of aluminum oxide in the aluminum matrix has been found to increase the Hugoniot elastic limit as opposed to the commercialgrade AD1(Al 1013) aluminum alloy.

  16. An experimental and modeling investigation of the external strain, internal stress and fiber phase transformation behavior of a NiTi actuated aluminum metal matrix composite

    SciTech Connect

    Armstrong, W.D.; Lorentzen, T.; Broendsted, P.; Larsen, P.H.

    1998-06-12

    The present work reports macroscopic thermal mechanical and in-situ neutron diffraction measurements from 22.9 vol. %, 50.7 at. % Ni-Ti fiber actuated 6082-T6 aluminum matrix composite and 6082-T6 homogeneous aluminum control materials subjected to a room temperature 4% tensile elongation, a subsequent room temperature to 120 C unconstrained heating process, and a final 120 C tensile process. During the unconstrained room temperature to 120 C heating process, the composite exhibited a pronounced, non linear thermal contraction, while the homogeneous control exhibited the expected linear thermal expansion. The composite thermal contraction was clearly the result of a powerful shape memory response in the actuating NiTi fibers. The paper further presents a one-dimensional thermal strain, internal stress and fiber phase transformation composite model. Model parameters were identified from tests on extracted single fibers, calculations using these parameters quantitatively agree with experimental thermal mechanical and neutron diffraction measurements.

  17. Time exposure studies on stress corrosion cracking of aluminum 2014-T6, 2219-T87, 2014-T651, 7075-T651, and titanium 6Al-4V

    NASA Technical Reports Server (NTRS)

    Terrell, J.

    1973-01-01

    The effect of a constant applied stress in crack initiation of aluminum 2014-T6, 2219-T87, 2014-T651, 7075-T651 and titanium 6Al-4V has been investigated. Aluminum c-ring specimens (1-inch diameter) and u-band titanium samples were exposed continuously to a 3.5% NaCl solution (pH 7) and organic fluids of ethyl, methyl, and iso-propyl alcohol (reagent purity), and demineralized distilled water. Corrosive action was observed to begin during the first and second day of constant exposure as evidenced by accumulation of hydrogen bubbles on the surface of stressed aluminum samples. However, titanium stressed specimens showed no reactions to its environment. Results of this investigation seems to suggest that aluminum 2014-T6, aluminum 7075-T651 and aluminum 2014-T651 are susceptible to stress corrosion cracking in chloride solution (NaCl), while aluminum 2219-T87 seem to resist stress corrosion cracking in sodium chloride at three levels of stress (25%, 50%, and 75% Y.S.). In organic fluids of methyl, ethyl, and iso-propyl alcohol, 2014-T6 and 7075-T651 did not fail by SCC; but 2014-T651 was susceptible to SCC in methly alcohol, but resistant in ethyl alcohol, iso-propyl alcohol and demineralized distilled water.

  18. Aluminum-Centered Tetrahedron-Octahedron Transition in Advancing Al-Sb-Te Phase Change Properties

    PubMed Central

    Xia, Mengjiao; Ding, Keyuan; Rao, Feng; Li, Xianbin; Wu, Liangcai; Song, Zhitang

    2015-01-01

    Group IIIA elements, Al, Ga, or In, etc., doped Sb-Te materials have proven good phase change properties, especially the superior data retention ability over popular Ge2Sb2Te5, while their phase transition mechanisms are rarely investigated. In this paper, aiming at the phase transition of Al-Sb-Te materials, we reveal a dominant rule of local structure changes around the Al atoms based on ab initio simulations and nuclear magnetic resonance evidences. By comparing the local chemical environments around Al atoms in respective amorphous and crystalline Al-Sb-Te phases, we believe that Al-centered motifs undergo reversible tetrahedron-octahedron reconfigurations in phase transition process. Such Al-centered local structure rearrangements significantly enhance thermal stability of amorphous phase compared to that of undoped Sb-Te materials, and facilitate a low-energy amorphization due to the weak links among Al-centered and Sb-centered octahedrons. Our studies may provide a useful reference to further understand the underlying physics and optimize performances of all IIIA metal doped Sb-Te phase change materials, prompting the development of NOR/NAND Flash-like phase change memory technology. PMID:25709082

  19. Aluminum-centered tetrahedron-octahedron transition in advancing Al-Sb-Te phase change properties.

    PubMed

    Xia, Mengjiao; Ding, Keyuan; Rao, Feng; Li, Xianbin; Wu, Liangcai; Song, Zhitang

    2015-01-01

    Group IIIA elements, Al, Ga, or In, etc., doped Sb-Te materials have proven good phase change properties, especially the superior data retention ability over popular Ge2Sb2Te5, while their phase transition mechanisms are rarely investigated. In this paper, aiming at the phase transition of Al-Sb-Te materials, we reveal a dominant rule of local structure changes around the Al atoms based on ab initio simulations and nuclear magnetic resonance evidences. By comparing the local chemical environments around Al atoms in respective amorphous and crystalline Al-Sb-Te phases, we believe that Al-centered motifs undergo reversible tetrahedron-octahedron reconfigurations in phase transition process. Such Al-centered local structure rearrangements significantly enhance thermal stability of amorphous phase compared to that of undoped Sb-Te materials, and facilitate a low-energy amorphization due to the weak links among Al-centered and Sb-centered octahedrons. Our studies may provide a useful reference to further understand the underlying physics and optimize performances of all IIIA metal doped Sb-Te phase change materials, prompting the development of NOR/NAND Flash-like phase change memory technology. PMID:25709082

  20. The Development of Multicultural Counselling Competencies (MCC) Training Module Based on MCC Matrix Model by Sue et al. (1992)

    ERIC Educational Resources Information Center

    Anuar, Azad Athahiri; Rozubi, Norsayyidatina Che; Abdullah, Haslee Sharil

    2015-01-01

    The aims of this study were to develop and validate a MCC training module for trainee counselor based on MCC matrix model by Sue et al. (1992). This module encompassed five sub modules and 11 activities developed along the concepts and components of the MCC matrix model developed by Sue, Arredondo dan McDavis (1992). The design method used in this…

  1. Characterization of disk-laser dissimilar welding of titanium alloy Ti-6Al-4V to aluminum alloy 2024

    NASA Astrophysics Data System (ADS)

    Caiazzo, Fabrizia; Alfieri, Vittorio; Cardaropoli, Francesco; Corrado, Gaetano; Sergi, Vincenzo

    2013-02-01

    Both technical and economic reasons suggest to join dissimilar metals, benefiting from the specific properties of each material in order to perform flexible design. Adhesive bonding and mechanical joining have been traditionally used although adhesives fail to be effective in high-temperature environments and mechanical joining are not adequate for leak-tight joints. Friction stir welding is a valid alternative, even being difficult to perform for specific joint geometries and thin plates. The attention has therefore been shifted to laser welding. Interest has been shown in welding titanium to aluminum, especially in the aviation industry, in order to benefit from both corrosive resistance and strength properties of the former, and low weight and cost of the latter. Titanium alloy Ti-6Al-4V and aluminum alloy 2024 are considered in this work, being them among the most common ones in aerospace and automotive industries. Laser welding is thought to be particularly useful in reducing the heat affected zones and providing deep penetrative beads. Nevertheless, many challenges arise in welding dissimilar metals and the aim is further complicated considering the specific features of the alloys in exam, being them susceptible to oxidation on the upper surface and porosity formation in the fused zone. As many variables are involved, a systematic approach is used to perform the process and to characterize the beads referring to their shape and mechanical features, since a mixture of phases and structures is formed in the fused zone after recrystallization.

  2. Hybrid Effect on Whisker Orientation Dependence of Composite Strength of Aluminum Cast Alloy Reinforced by Al2O3 Whiskers and SiC Particles

    NASA Astrophysics Data System (ADS)

    Md, Rafiquzzaman; Arai, Yoshio

    The hybrid effect on the orientation dependence of the composite strength of an aluminum cast alloy reinforced by Al2O3 whiskers and SiC particles is studied experimentally and numerically. Two types of specimens are prepared for monotonic bending tests. The longitudinal specimen orientation (maximum stress direction) is parallel to or normal to randomly oriented whiskers in plane. The monotonic strength is 18% higher when the hybrid metal matrix composite (MMC) is subjected to an external load parallel to the random whisker orientation in plane than when the load is perpendicular to the whisker orientation. The whisker orientation dependence of composite strength in hybrid composite is weaker than that in whisker-reinforced composite. On the fracture surface of the specimen loaded along the direction parallel to the random whisker orientation in plane, most whiskers are broken while many de-bonded interfaces between the whiskers and matrix are observed on the fracture surface of the specimen loaded along the direction perpendicular to the whisker orientation. To characterize the hybrid effect on the whisker orientation dependence of composite strength, a three-dimensional hybrid composite unit cell model including one whisker and a few particles under a periodic boundary condition is developed using the finite element method. The hybrid composites have higher whisker stress than whisker-reinforced composite when subjected to an external load parallel to the whisker orientation if these composites have the same total volume fraction of reinforcement and the particles are distributed randomly. Under an external load perpendicular to the whisker orientation, the interface stress of hybrid composites is lower than that of whisker-reinforced composite. As a result, the strength difference for parallel and perpendicular loading conditions of the hybrid composites is smaller than that of whisker-reinforced composite. Thus, the weak whisker orientation effect in the hybrid composites is due to a change in microscopic stress distribution induced by interaction between whiskers and particles.

  3. A comparative study of ZnAl2O4 nanoparticles synthesized from different aluminum salts for use as fluorescence materials

    PubMed Central

    Wang, Shi-Fa; Sun, Guang-Zhuang; Fang, Lei-Ming; Lei, Li; Xiang, Xia; Zu, Xiao-Tao

    2015-01-01

    Three ZnAl2O4 samples were prepared via a modified polyacrylamide gel method using a citric acid solution with different aluminum salt starting materials, including AlCl3∙6H2O, Al2(SO4)3∙18H2O, and Al(NO3)3∙9H2O under identical conditions. The influence of different aluminum salts on the morphologies, phase purity, and optical and fluorescence properties of the as-prepared ZnAl2O4 nanoparticles were studied. The experimental results demonstrate that the phase purity, particle size, morphology, and optical and fluorescence properties of ZnAl2O4 nanoparticles can be manipulated by the use of different aluminum salts as starting materials. The energy bandgap (Eg) values of ZnAl2O4 nanoparticles increase with a decrease in particle size. The fluorescence spectra show that a major blue emission band around 400 nm and two weaker side bands located at 410 and 445 nm are observed when the excitation wavelength is 325 nm. The ZnAl2O4 nanoparticles prepared from Al(NO3)3∙9H2O exhibit the largest emission intensity among the three ZnAl2O4 samples, followed in turn by the ZnAl2O4 nanoparticles prepared from Al2(SO4)3∙18H2O and AlCl3∙6H2O. These differences are attributed to combinational changes in Eg and the defect types of the ZnAl2O4 nanoparticles. PMID:26238034

  4. A comparative study of ZnAl2O4 nanoparticles synthesized from different aluminum salts for use as fluorescence materials

    NASA Astrophysics Data System (ADS)

    Wang, Shi-Fa; Sun, Guang-Zhuang; Fang, Lei-Ming; Lei, Li; Xiang, Xia; Zu, Xiao-Tao

    2015-08-01

    Three ZnAl2O4 samples were prepared via a modified polyacrylamide gel method using a citric acid solution with different aluminum salt starting materials, including AlCl3•6H2O, Al2(SO4)3•18H2O, and Al(NO3)3•9H2O under identical conditions. The influence of different aluminum salts on the morphologies, phase purity, and optical and fluorescence properties of the as-prepared ZnAl2O4 nanoparticles were studied. The experimental results demonstrate that the phase purity, particle size, morphology, and optical and fluorescence properties of ZnAl2O4 nanoparticles can be manipulated by the use of different aluminum salts as starting materials. The energy bandgap (Eg) values of ZnAl2O4 nanoparticles increase with a decrease in particle size. The fluorescence spectra show that a major blue emission band around 400 nm and two weaker side bands located at 410 and 445 nm are observed when the excitation wavelength is 325 nm. The ZnAl2O4 nanoparticles prepared from Al(NO3)3•9H2O exhibit the largest emission intensity among the three ZnAl2O4 samples, followed in turn by the ZnAl2O4 nanoparticles prepared from Al2(SO4)3•18H2O and AlCl3•6H2O. These differences are attributed to combinational changes in Eg and the defect types of the ZnAl2O4 nanoparticles.

  5. Constitutive Modeling of High-Temperature Flow Behavior of Al-0.62Mg-0.73Si Aluminum Alloy

    NASA Astrophysics Data System (ADS)

    Sun, Y.; Ye, W. H.; Hu, L. X.

    2016-03-01

    The high-temperature flow behavior of an aerospace structural material Al-0.62 Mg-0.73Si aluminum alloy was researched in this work. The isothermal compression tests were carried out in the temperature range of 683-783 K and strain rate range of 0.001-1 s-1. Based on the obtained true stress-true strain curves, the constitutive relationship of the alloy was revealed by establishing the Arrhenius-type constitutive model and a modified Johnson-Cook model. It was found that the flow characteristics were closely related to deformation temperature and strain rate. The activation energy of the studied material was calculated to be approximately 174 kJ mol-1. A comparative study has been conducted on the accuracy and reliability of the proposed models using statistics analysis method. It was proved by error analysis that the Arrhenius-type model had a better performance than the modified Johnson-Cook model.

  6. Constitutive Modeling of High-Temperature Flow Behavior of Al-0.62Mg-0.73Si Aluminum Alloy

    NASA Astrophysics Data System (ADS)

    Sun, Y.; Ye, W. H.; Hu, L. X.

    2016-04-01

    The high-temperature flow behavior of an aerospace structural material Al-0.62 Mg-0.73Si aluminum alloy was researched in this work. The isothermal compression tests were carried out in the temperature range of 683-783 K and strain rate range of 0.001-1 s-1. Based on the obtained true stress-true strain curves, the constitutive relationship of the alloy was revealed by establishing the Arrhenius-type constitutive model and a modified Johnson-Cook model. It was found that the flow characteristics were closely related to deformation temperature and strain rate. The activation energy of the studied material was calculated to be approximately 174 kJ mol-1. A comparative study has been conducted on the accuracy and reliability of the proposed models using statistics analysis method. It was proved by error analysis that the Arrhenius-type model had a better performance than the modified Johnson-Cook model.

  7. 3D Epitaxy of Graphene nanostructures in the Matrix of Ag, Al and Cu

    NASA Astrophysics Data System (ADS)

    Salamanca-Riba, Lourdes; Isaacs, Romaine; Wuttig, Manfred; Lemieux, Melburne; Hu, Liangbing; Iftekhar, Jaim; Rashkeev, Sergey; Kukla, Maija; Rabin, Oded; Mansour, Azzam

    2015-03-01

    Graphene nanostructures in the form ribbons were embedded in the lattice of metals such as Ag, Cu, and Al in concentrations up to 36.4 at.%, 21.8 at% and 10.5 at.%, respectively. These materials are called covetics. Raman scattering from Ag and Al covetics indicate variations in the intensity of peaks at ~ 1,300 cm-1 and 1,600 cm-1 with position on the sample. These peaks are associated with the D (defects) and G (graphite E2g mode) peaks of graphitic carbon with sp2 bonding and reveal various degrees of imperfections in the graphene layers. First principles calculations of the dynamic matrix of Ag and Al covetics show bonding between C and the metal. EELS mapping of the C-K edge and high resolution lattice images show that the graphene-like regions form ribbons with epitaxial orientation with the metal lattice of Ag and Al. The temperature dependences of the resistivites of Ag and Cu covetics are similar to those of the pure metals with only slight increase in resistivity. Films of Cu covetic deposited by e-beam evaporation and PLD show higher transmittance and resistance to oxidation than pure metal films of the same thickness indicating that copper covetic films can be used for transparent electrodes. Funded by DARPA/ARL Grant No. W911NF-13-1-0058, and ONR Award No N000141410042.

  8. Microstructure and growth mechanism of Al{sub 2}O{sub 3}/Al ceramic matrix composite made by directed oxidation of Al alloys

    SciTech Connect

    Qin, C.D.; Lai, M.O.; Cotterell, B.; Shi, S.

    1995-10-01

    Since the Lanxide process was advanced for forming of Al{sub 2}O{sub 3} ceramic composite by directed oxidation of Al alloys, much work has been done with various mechanisms being proposed. The mechanisms have claimed that only certain dopants are essential to the growth process. Nevertheless, no united consensus has yet been reached. In the present work, Al alloy containing 5% Mg was oxidized in air for 12 hours at 1,150 C with or without surface dopants of MgO or Pd. The resultant composites showed very different microstructures. Without any surface doping, the alloy did not develop any portion of composite as the initial intimate oxide film stops further oxidation. This intimate oxide film can either be broken off by mechanical means or penetrated by reaction with surface dopants, so that the composite can grow and develop. The results show that the previously reported incubation time is not only related to reaction processes but also to the initial mechanical disturbances. Doping with Pd made the composite darker in color as the grains of the alumina ceramic matrix and inclusions of Al metal are finer. This shows that Pd may make the top oxide layer less intimate, and more nucleation sites are therefore available for oxidation. A new model is presented for oxide sustained growth based on the existence of oxygen active top surface layer and the capillary flow of molten metal around ceramic phase.

  9. Formation of layered Fe(II)-Al(III)-hydroxides during reaction of Fe(II) with aluminum oxide.

    PubMed

    Elzinga, Evert J

    2012-05-01

    The reactivity of aqueous Fe(II) with aluminum oxide in anoxic solutions was investigated with batch kinetic experiments combined with Fe K edge X-ray absorption spectroscopy measurements to characterize Fe(II) sorption products. Formation of Fe(II)-Al(III)-layered double hydroxides with an octahedral sheet structure similar to nikischerite (NaFe(II)(6) Al(3)(SO(4))(2)(OH)(18) (H(2)O)(12)) was observed within a few hours during sorption at pH 7.5 and aqueous Fe(II) concentrations of 1-3 mM. These Fe(II) phases are composed of brucite-like Fe(II)(OH)(2) sheets with partial substitution of Al(III) for Fe(II), charge balanced by anions coordinated along the basal planes. Their fast rate of formation suggests that these previously unrecognized Fe(II) phases, which are structurally and compositionally similar to green rust, may be an important sink of Fe(II) in suboxic and anoxic geochemical environments, and impact the fate of structurally compatible trace metals, such as Co(II), Ni(II), and Zn(II), as well as redox-reactive species including Cr(VI) and U(VI). Further studies are required to assess the thermodynamics, formation kinetics, and stability of these Fe(II) minerals under field conditions. PMID:22409244

  10. Density of Low-Temperature KF-AlF3 Aluminum Baths with Al2O3 and AlPO4 Additives

    NASA Astrophysics Data System (ADS)

    Vasková, Zuzana; Kontrík, Martin; Mlynáriková, Jarmila; Boča, Miroslav

    2015-02-01

    The density of the KF-AlF3 melts of various KF and AlF3 ratio with Al2O3 and AlPO4 addition has been measured using the Archimedean method. On the basis of the obtained density data the molar volumes of the melts were calculated. These molar volumes decrease with concentration of Al2O3 or AlPO4. In the system containing AlPO4, the relation between cryolite ratios (CRs) vs slopes of molar volume trend lines was identified with excellent correlation factor of R 2 = 0.9844, while in the system containing Al2O3 a discontinuity at CR = 2.5 can be observed.

  11. Analysis of electrochemical noise from metastable pitting in aluminum, aged Al-2%Cu, and AA 2024-T3

    SciTech Connect

    Pride, S.T.; Scully, J.R.; Hudson, J.L.

    1996-12-31

    The authors compare methods of analyzing electrochemical current (ECN) and potential (EPN) noise data associated with metastable pitting and the transition from metastable to stable pitting. Various analysis methods were applied to electrochemical noise data associated with metastable pit events on aluminum, aged Al-2%Cu, and AA 2024-T3 ST. Two experimental approaches were used. High-purity Al, roughly simulating copper-depleted grain boundary zones in aged Al-Cu alloys, was potentiostatically polarized so that current spikes associated with individual pitting events could be analyzed. Second, the coupling current between nominally identical galvanically coupled Al, aged Al-2%Cu, and AA 2024-T3 ST electrodes was recorded in conjunction with couple potential using a saturated calomel reference electrode. Pit stabilization occurred when individual pits exceeded a threshold of I{sub pit}/r{sub pit} > 10{sup {minus}2} A/cm at all times during pit growth as established from potentiostatic measurements. The magnitude of this ratio is linked directly to the concentration of the aggressive solution within pits. Two related statistical pit stabilization factors (I{sub rms}/r{sub pit total} from ECN data and the mean of (I{sub peak}-I{sub ox})/r{sub pit} values from each pit current spike) were obtained from galvanic ECN data containing a large number of pit current spikes. These parameters provided a better indication of the transition to stable pitting than the pitting index or noise resistance but also had shortcomings. Spectral analysis using current and potential spectral power density (SPD) data provided qualitative information on pit susceptibility. However, the transition to stable pitting could not be accurately defined because of a lack of information on pit sizes in spectral data.

  12. Aluminum nanocomposites for elevated temperature applications

    NASA Astrophysics Data System (ADS)

    Borgonovo, C.; Apelian, D.; Makhlouf, M. M.

    2011-02-01

    Aluminum casting alloys conventionally used in the automotive and aerospace industries (i.e., Al-Zn-Mg, and Al-Cu-Mg systems) are able to achieve excellent tensile strength at room temperature. At high temperatures, such alloys lose dimensional stability and their mechanical properties rapidly degrade. Aluminum-based nanocomposites show the potential for enhanced performance at high temperatures. The manufacturing process, however, is difficult; a viable and effective method for large-scale applications has not been developed. In the current study, an innovative and cost-effective approach has been adopted to manufacture Al/AlN composites. A nitrogen-bearing gas is injected into the melt and AlN particles synthesize in-situ via chemical reaction. In a preliminary stage, a model able to predict the amount of reinforcement formed has been developed. AlN dispersoids have been succesfully synthesized in the matrix and the model has been experimentally validated.

  13. Aluminum-fly ash metal matrix composites for automotive parts. [Reports for April 1 to June 30, 1999, and July 1 to September 30, 1999

    SciTech Connect

    Weiss, David; Purgert, Robert; Rhudy, Richard; Rohatgi, P.

    1999-10-15

    Some highlights are: (1) During this quarter's field trials, sand mold castings of parts and permanent mold tensile testing bars, K mold bars, and ingots were made from aluminum alloy-fly ash melts. (2) Another objective was met, i.e., to use class ''F'' type precipitator fly ash consisting of particle sizes less than 100 microns. It was possible to pour the composite melt into the sand mold through a filter. (3) Trials were run to determine the required amount of the wetting agent, magnesium, to ensure appropriate mixing of the aluminum alloy and fly ash. The magnesium content required to mix ''F'' fly ash was much lower compared to that required to mix hybrid ''C-F'' fly ash in similar melts. Fly ash particles of less than 100 microns were mixed in aluminum melt. Large scale field trials were undertaken at Eck Industries with the goal of standardizing procedures for producing aluminum-fly ash composite melts and to analyze the structure and properties of the resulting material. Limited testing of tensile properties has been done on pressure die cast parts, and attempts are underway to improve the distribution of fly ash in both sand cast and pressure die cast samples. Eck Industries performed radiographic, heat treatment, and tensile tests on permanent mold cast tensile test bars. After fly ash mixing experiments, the Lanxide high speed-high shear mixer (originally designed for mixing Al-SiC melts) was employed in an attempt to avoid fly ash agglomeration. It led to demixing (instead of deagglomerating) of some fly ash. However, the permanent mold tensile bars poured after high shear mixing displayed good distribution of fly ash in castings. A modified impeller design is being considered for high speed-high shear mixing of aluminum-fly ash melts.

  14. Magnetic field penetration depth of superconducting aluminum-substituted Ba8Si42Al4 clathrate

    NASA Astrophysics Data System (ADS)

    Li, Yang; Garcia, Jose; Franco, Giogiovanni

    2014-03-01

    During past years, efforts have been made to explore the superconductivity of Group IV clathrates with particular attention to the sp3 hybridized networks. In the study, we report on the superconductivity of Al-substituted type-I silicon clathrates. Pure phase samples of the general formula Ba8Si46-xAlx with different values of x were synthesized. The magnetic susceptibility measurements show that Ba8Si42Al4 is a bulk superconductor, with an onset at Tc =6 K. Al substitution results in a large decrease of the electronic density of states at the Fermi level, which explains the decreased superconducting critical temperature within the BCS framework. To further characterize the superconducting state, we carried out magnetic measurements showing Ba8Si42Al4 to be a type II superconductor. The critical magnetic fields were measured to be Hc1 = 77 Oe and Hc2 = 40 kOe. We deduce the London penetration depth 2900 Å and the coherence length 90 Å. Our estimate of the electron-phonon coupling reveals that Ba8Si42Al4 is a moderate phonon-mediated BCS superconductor. NASA PRSG IDEAS-ER Program(Granted No. NNX10AM80H).

  15. Critical magnetic fields of superconducting aluminum-substituted Ba8Si42Al4 clathrate

    NASA Astrophysics Data System (ADS)

    Li, Yang; Garcia, Jose; Franco, Giovanni; Lu, Junqiang; Lu, Kejie; Rong, Bo; Shafiq, Basir; Chen, Ning; Liu, Yang; Liu, Lihua; Song, Bensheng; Wei, Yuping; Johnson, Shardai S.; Luo, Zhiping; Feng, Zhaosheng

    2015-06-01

    In recent years, efforts have been made to explore the superconductivity of clathrates containing crystalline frameworks of group-IV elements. The superconducting silicon clathrate is unusual in that the structure is dominated by strong sp3 covalent bonds between silicon atoms, rather than the metallic bonding that is more typical of traditional superconductors. This paper reports on critical magnetic fields of superconducting Al-substituted silicon clathrates, which were investigated by transport, ac susceptibility, and dc magnetization measurements in magnetic fields up to 90 kOe. For the sample Ba8Si42Al4, the critical magnetic fields were measured to be HC1 = 40.2 Oe and HC2 = 66.4 kOe. The London penetration depth of 4360 Å and the coherence length 70 Å were obtained, whereas the estimated Ginzburg-Landau parameter of κ = 62 revealed that Ba8Si42Al4 is a strong type-II superconductor.

  16. Micro-strain Evolution and Toughening Mechanisms in a Trimodal Al-Based Metal Matrix Composite

    NASA Astrophysics Data System (ADS)

    Zhang, Yuzheng; Topping, Troy D.; Yang, Hanry; Lavernia, Enrique J.; Schoenung, Julie M.; Nutt, Steven R.

    2015-03-01

    A trimodal metal matrix composite (MMC) based on AA (Al alloy) 5083 (Al-4.4Mg-0.7Mn-0.15Cr wt pct) was synthesized by cryomilling powders followed by compaction of blended powders and ceramic particles using two successive dual mode dynamic forgings. The microstructure consisted of 66.5 vol pct ultrafine grain (UFG) region, 30 vol pct coarse grain (CG) region and 3.5 vol pct reinforcing boron carbide particles. The microstructure imparted high-tensile yield strength (581 MPa) compared to a conventional AA 5083 (242 MPa) and enhanced ductility compared to 100 pct UFG Al MMC. The deformation behavior of the heterogeneous structure and the effects of CG regions on crack propagation were investigated using in situ scanning electron microscopy micro-tensile tests. The micro-strain evolution measured using digital image correlation showed early plastic strain localization in CG regions. Micro-voids due to the strain mismatch at CG/UFG interfaces were responsible for crack initiation. CG region toughening was realized by plasticity-induced crack closure and zone shielding of disconnected micro-cracks. However, these toughening mechanisms did not effectively suppress its brittle behavior. Further optimization of the CG distribution (spacing and morphology) is required to achieve toughness levels required for structural applications.

  17. Multi-Objective Optimization in Hot Machining of Al/SiCp Metal Matrix Composites

    NASA Astrophysics Data System (ADS)

    Jadhav, M. R.; Dabade, U. A.

    2016-02-01

    Metal Matrix Composites (MMCs) have been found to be useful in a number of engineering applications and particle reinforced MMCs have received considerable attention due to their excellent engineering properties. These materials are generally regarded as extremely difficult to machine, because of the abrasive characteristics of the reinforced particulates. These characteristics of MMCs affect the machined surface quality and integrity. This paper presents use of Taguchi Grey Relational Analyses (GRA) for optimization of Al/SiCp/10p (220 and 600 mesh) MMCs produced by stir casting. Experiments are performed using L16 orthogonal array by using hot machining technique. The objective of this study is to identify the optimum process parameters to improve the surface integrity on Al/SiCp MMCs. The machined surface integrity has been analyzed by process parameters such as speed, feed, depth of cut and preheating temperature. The significance of the process parameters on surface integrity has been evaluated quantitatively by the analysis of variance (ANOVA) method and AOM plots. The grey relational analysis shows optimum machining conditions as 0.05 mm/rev feed, 0.4 mm depth of cut and 60 °C preheating temperature to enhance surface integrity for both Al/SiCp/10p (220 and 600 mesh) MMCs except for cutting speed 50 and 25 m/min respectively.

  18. Temperature distribution across the growth zone of sapphire (Al2O3) and yttrium-aluminum garnet (YAG) single crystal fibers

    NASA Astrophysics Data System (ADS)

    Bufetova, G. A.; Rusanov, S. Ya.; Seregin, V. F.; Pyrkov, Yu. N.; Kamynin, V. A.; Tsvetkov, V. B.

    2016-01-01

    Temperature distribution along a single crystal fiber molten zone in the laser heated pedestal growth (LHPG) process of pure sapphire (Al2O3) and yttrium-aluminum garnet (Y3Al5O12) fiber was measured for the first time. The temperature was determined from thermal radiation spectra measurements in the visible spectral range. Our measurements indicate the existence of local temperature minimum in the region of source rod melting.

  19. FORMING Al-Al2O3 NANOCOMPOSITE SURFACES USING FRICTION STIR PROCESSING

    SciTech Connect

    Qu, Jun; Xu, Hanbing; Feng, Zhili; An, Ke; Battiste, Rick; An, Linan; Heinrich, Helge

    2009-01-01

    This study presents a solid state surface engineering process to form a nanocomposite layer on aluminum surface. Friction stir processing (FSP) was used to stir and mix nano-sized Al2O3 particles into a commercially pure aluminum surface to form an Al-Al2O3 nanocomposite layer of up to several millimeters thick. Compared with a non-processed aluminum surface, a nanocomposite surface with 15 vol% nano-particles has demonstrated increased hardness (by 3X) and yield strength (by 10X), and reduced friction coefficient (by 55%) and wear rate (by 100X). Transmission electron microscopy (TEM) has revealed high matrix dislocation density in the nanocomposite surface that is believed to be largely responsible to such significant property improvements. Neutron diffraction measurements suggested tensile residual stress in the aluminum matrix. The stress was mainly induced by thermal-expansion-mismatch between aluminum and alumina.

  20. Time exposure studies on stress corrosion cracking of aluminum 2014-T6, aluminum 7075-T651, and titanium 6Al-4V

    NASA Technical Reports Server (NTRS)

    Terrell, J.

    1972-01-01

    The effect of a constant applied stress in crack initiation of aluminum 2014-T6, 7075-T651 and titanium 6A1-4V has been investigated. Aluminum c-ring specimens (1-inch diameter) and u-band titanium samples were exposed continuously to a 3.5% NaCl solution (pH 6) and organic fluids of ethyl, methyl, and iso-propyl alcohol (reagent purity). Corrosive action was observed to begin during the first and second day of constant exposure as evidenced by accumulation of hydrogen bubbles on the surface of stressed aluminum samples. However, a similar observation was not noted for titanium stressed specimens. Results of this investigation seems to suggest that aluminum 2014-T6, aluminum 7075-T651 are susceptible to stress corrosion cracking in chloride solution (NaCl); while they (both alloys) seem to resist stress corrosion cracking in methyl alcohol, ethyl alcohol, iso-propyl alcohol, and demineralized distilled water. Titanium 6A1-4V showed some evidence of susceptibility to SCC in methanol, while no such susceptibility was exhibited in ethanol, iso-propyl alcohol and demineralized distilled water.

  1. High temperature stability, interface bonding, and mechanical behavior in (beta)-NiAl and Ni3Al matrix composites with reinforcements modified by ion beam enhanced deposition

    NASA Astrophysics Data System (ADS)

    Grummon, D. S.

    1993-01-01

    Diffusion-bonded NiAl-Al2O3 and Ni3Al-Al2O3 couples were thermally fatigued at 900 C for 1500 and 3500 cycles. The fiber-matrix interface weakened after 3500 cycles for the Saphikon fibers, while the Altex, PRD-166, and FP fibers showed little, if any, degradation. Diffusion bonding of fibers to Nb matrix is being studied. Coating the fibers slightly increases the tensile strength and has a rule-of-mixtures effect on elastic modulus. Push-out tests on Sumitomo and FP fibers in Ni aluminide matrices were repeated. Al2O3 was evaporated directly from pure oxide rod onto acoustically levitated Si carbide particles, using a down-firing, rod-fed electron beam hearth; superior coatings were subsequently produced using concurrent irradiation with 200-eV argon ion-assist beam. The assist beam produced adherent films with reduced tensile stresses. In diffusion bonding in B-doped Ni3Al matrices subjected to compressive bonding at 40 MPa at 1100 C for 1 hr, the diffusion barriers failed to prevent catastrophic particle-matrix reaction, probably because of inadequate film quality. AlN coatings are currently being experimented with, produced by both reactive evaporation and by N(+)-ion enhanced deposition. A 3-kW rod-fed electron-beam-heated evaporation source has been brought into operation.

  2. Properties of sulfur sorbents containing dispersed nickel in an Al2O3 matrix

    NASA Astrophysics Data System (ADS)

    Swisher, J. H.; Jhunjhunwala, M.; Gasper-Galvin, L. D.; Gardner, T. H.; Hammerbeck, K.

    1996-04-01

    For advanced coal gasification systems, regenerable sorbents are being developed to remove sulfur (S) from the hot product gas prior to its use in gas turbines and high-temperature fuel cells. Whereas zinc (Zn) base sorbents are attractive for these applications, they have limitations in high-temperature capability and in durability. Materials containing dispersed nickel (Ni) in an Al2O3 matrix have the potential to be better in both respects. Their main limitation is that they do not reduce H2S concentrations to the low parts per million (ppm) level. Results are reported here on the second phase of a program on dispersed Ni sorbents. Included are the results of crush strength, thermogravimetric analysis, and fixed-bed reactor experiments. An important conclusion drawn from the results is that chemisorption of H2S plays a major role in reducing its concentration in gas exiting the bed below the levels expected from the Ni-Ni sulfide equilibrium.

  3. CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES: Mechanical Properties of Ni-Coated Single Graphene Sheet and Their Embedded Aluminum Matrix Composites

    NASA Astrophysics Data System (ADS)

    Song, Hai-Yang; Zha, Xin-Wei

    2010-07-01

    The effects of Ni coating on the mechanical behaviors of single graphene sheet and their embedded Al matrix composites under axial tension are investigated using molecular dynamics (MD) simulation method. The results show that the Young's moduli and tensile strength of graphene obviously decrease after Ni coating. The results also show that the mechanical properties of Al matrix can be obviously increased by embedding a single graphene sheet. From the simulation, we also find that the Young's modulus and tensile strength of the Ni-coated graphene/Al composite is obviously larger than those of the uncoated graphene/Al composite. The increased magnitude of the Young's modulus and tensile strength of graphene/Al composite are 52.27% and 32.32% at 0.01 K, respectively, due to Ni coating. By exploring the effects of temperature on the mechanical properties of single graphene sheet and their embedded Al matrix composites, it is found that the higher temperature leads to the lower critical strain and tensile strength.

  4. Synthesis and structural characterization of a new aluminum oxycarbonitride, Al{sub 5}(O, C, N){sub 4}

    SciTech Connect

    Inuzuka, Haruya; Kaga, Motoaki; Urushihara, Daisuke; Nakano, Hiromi; Asaka, Toru; Fukuda, Koichiro

    2010-11-15

    A new aluminum oxycarbonitride, Al{sub 5}(O{sub x}C{sub y}N{sub 4-x-y}) (x{approx}1.4 and y{approx}2.1), has been synthesized and characterized by X-ray powder diffraction, transmission electron microscopy and electron energy loss spectroscopy (EELS). The title compound was found to be hexagonal with space group P6{sub 3}/mmc, Z=2, and unit-cell dimensions a=0.328455(6) nm, c=2.15998(3) nm and V=0.201805(6) nm{sup 3}. The atom ratios O:C:N were determined by EELS. The final structural model, which is isomorphous with that of (Al{sub 4.4}Si{sub 0.6})(O{sub 1.0}C{sub 3.0}), showed the positional disordering of one of the three types of Al sites. The maximum-entropy method-based pattern fitting (MPF) method was used to confirm the validity of the split-atom model, in which conventional structure bias caused by assuming intensity partitioning was minimized. The reliability indices calculated from the MPF were R{sub wp}=6.94% (S=1.22), R{sub p}=5.34%, R{sub B}=1.35% and R{sub F}=0.76%. The crystal was an inversion twin. Each twin-related individual was isostructural with Al{sub 5}C{sub 3}N (space group P6{sub 3}mc, Z=2). - Graphical abstract: A new oxycarbonitride discovered in the Al-O-C-N system, Al{sub 5}(O{sub 1.4}C{sub 2.1}N{sub 0.5}). The crystal is an inversion twin, and hence the structure is represented by a split-atom model. The three-dimensional electron density distributions are determined by the maximum-entropy methods-based pattern fitting, being consistent with the disordered structural model. Display Omitted

  5. Wear mechanisms in hybrid composites of Graphite-20 Pct SiC in A356 Aluminum Alloy (Al-7 Pct Si-0.3 Pct Mg)

    NASA Astrophysics Data System (ADS)

    Ames, W.; Alpas, A. T.

    1995-01-01

    The wear behavior of A356 aluminum alloy (Al-7 Pct Si-0.3 Pct Mg) matrix composites reinforced with 20 vol Pct SiC particles and 3 or 10 vol Pct graphite was investigated. These hybrid composites represent the merging of two philosophies in tribological material design: soft-particle lubrication by graphite and hard-particle reinforcement by carbide particles. The wear tests were performed using a block-on-ring (SAE 52100 steel) wear machine under dry sliding conditions within a load range of 1 to 441 N. The microstructural and compositional changes that took place during wear were characterized using scanning electron microscopy (SEM), Auger electron spectroscopy (AES), energy-dispersive X-ray spectroscopy (EDXA), and X-ray diffractometry (XRD). The wear resistance of 3 Pct graphite-20 Pct SiC-A356 hybrid composite was comparable to 20 Pct SiC-A356 without graphite at low and medium loads. At loads below 20 N, both hybrid and 20 Pct SiC-A356 composites without graphite demonstrated wear rates up to 10 times lower than the unreinforced A356 alloy due to the load-carrying capacity of SiC particles. The wear resistance of 3 Pct graphite 20 Pct SiC-A356 was 1 to 2 times higher than 10 Pct graphite-containing hybrid composites at high loads. However, graphite addition reduced the counterface wear. The unreinforced A356 and 20 Pct SiC-A356 showed a transition from mild to severe wear at 95 N and 225 N, respectively. Hybrid composites with 3 Pct and 10 Pct graphite did not show such a transition over the entire load range, indicating that graphite improved the seizure resistance of the composites. Tribolayers, mainly consisting of a compacted mixture of graphite, iron oxides, and aluminum, were generated on the surfaces of the hybrid composites. In the hybrid composites, the elimination of the severe wear (and hence the improvement in seizure resistance) was attributed to the reduction in friction-induced surface heating due to the presence of graphite- and iron-oxide-containing tribolayers.

  6. Development of an in-situ multi-component reinforced Al-based metal matrix composite by direct metal laser sintering technique — Optimization of process parameters

    SciTech Connect

    Ghosh, Subrata Kumar; Bandyopadhyay, Kaushik; Saha, Partha

    2014-07-01

    In the present investigation, an in-situ multi-component reinforced aluminum based metal matrix composite was fabricated by the combination of self-propagating high-temperature synthesis and direct metal laser sintering process. The different mixtures of Al, TiO{sub 2} and B{sub 4}C powders were used to initiate and maintain the self-propagating high-temperature synthesis by laser during the sintering process. It was found from the X-ray diffraction analysis and scanning electron microscopy that the reinforcements like Al{sub 2}O{sub 3}, TiC, and TiB{sub 2} were formed in the composite. The scanning electron microscopy revealed the distribution of the reinforcement phases in the composite and phase identities. The variable parameters such as powder layer thickness, laser power, scanning speed, hatching distance and composition of the powder mixture were optimized for higher density, lower porosity and higher microhardness using Taguchi method. Experimental investigation shows that the density of the specimen mainly depends upon the hatching distance, composition and layer thickness. On the other hand, hatching distance, layer thickness and laser power are the significant parameters which influence the porosity. The composition, laser power and layer thickness are the key influencing parameters for microhardness. - Highlights: • The reinforcements such as Al{sub 2}O{sub 3}, TiC, and TiB{sub 2} were produced in Al-MMC through SHS. • The density is mainly influenced by the material composition and hatching distance. • Hatching distance is the major influencing parameter on porosity. • The material composition is the significant parameter to enhance the microhardness. • The SEM micrographs reveal the distribution of TiC, TiB{sub 2} and Al{sub 2}O{sub 3} in the composite.

  7. Properties of a reaction-bonded β-SiAlON ceramic doped with an FeMo alloy for application to molten aluminum environments

    NASA Astrophysics Data System (ADS)

    Li, Yan-jun; Yu, Hai-liang; Jin, Hai-yun; Shi, Zhong-qi; Qiao, Guan-jun; Jin, Zhi-hao

    2015-05-01

    An FeMo-alloy-doped β-SiAlON (FeMo/β-SiAlON) composite was fabricated via a reaction-bonding method using raw materials of Si, Al2O3, AlN, FeMo, and Sm2O3. The effects of FeMo on the microstructure and mechanical properties of the composite were investigated. Some properties of the composite, including its bending strength at 700°C and after oxidization at 700°C for 24 h in air, thermal shock resistance and corrosion resistance to molten aluminum, were also evaluated. The results show that the density, toughness, bending strength, and thermal shock resistance of the composite are obviously improved with the addition of an FeMo alloy. In addition, other properties of the composite such as its high-temperature strength and oxidized strength are also improved by the addition of FeMo alloy, and its corrosion resistance to molten aluminum is maintained. These findings indicate that the developed FeMo/β-SiAlON composite exhibits strong potential for application to molten aluminum environments.

  8. A thermodynamic prediction for microporosity formation in aluminum-rich Al-Cu alloys

    NASA Technical Reports Server (NTRS)

    Poirier, D. R.; Yeum, K.; Maples, A. L.

    1987-01-01

    A computer model is used to predict the formation and degree of microporosity in a directionally solidified Al-4.5 wt pct Cu alloy, considering the interplay between solidification shrinkage and gas porosity. Macrosegregation theory is used to determine the local pressure within the interdendritic liquid. Results show interdendritic porosity for initial hydrogen contents in the 0.03-1 ppm range, and none below contents of 0.03. An increase in either the thermal gradient or the solidification rate is show to decrease the amount of interdendritic porosity.

  9. Synthesis and characterization of lithium aluminum-doped spinel (LiAl xMn 2- xO 4) for lithium secondary battery

    NASA Astrophysics Data System (ADS)

    Lee, Yun-Sung; Kumada, Naoki; Yoshio, Masaki

    LiAl xMn 2- xO 4 has been synthesized using various aluminum starting materials, such as Al(NO 3) 3, Al(OH) 3, AlF 3 and Al 2O 3 at 600-800C for 20 h in air or oxygen atmosphere. A melt-impregnation method was used to synthesize Al-doped spinel with good battery performance in this research. The Al-doped content and the intensity ratio of (3 1 1)/(4 0 0) peaks can be important parameters in synthesizing Al-doped spinel which satisfies the requirements of high discharge capacity and good cycleability at the same time. The decrease in Mn 3+ ion by Al substitution induces a high average oxidation state of Mn ion in the LiAl xMn 2- xO 4 material. The electrochemical behavior of all samples was studied in Li/LiPF 6-EC/DMC (1:2 by volume)/LiAl xMn 2- xO 4 cells. Especially, the initial and last discharge capacity of LiAl 0.09Mn 1.97O 4 using LiOH, Mn 3O 4 and Al(OH) 3 complex were 128.7 and 115.5 mAh/g after 100 cycles. The Al substitution in LiMn 2O 4 was an excellent method of enhancing the cycleability of stoichiometric spinel during electrochemical cycling.

  10. Wear mechanisms in hybrid composites of graphite-20 pct SiC in A356 aluminum alloy (Al-7 pct Si-0. 3 pct Mg)

    SciTech Connect

    Ames, W.; Alpas, A.T. . Dept. of Mechanical Engineering)

    1995-01-01

    The wear behavior of A356 aluminum alloy (Al-7 pct Si-0.3 pct Mg) matrix composites reinforced with 20 vol pct SiC particles and 3 or 10 vol pct graphite was investigated. These hybrid composites represent the merging of two philosophies in tribological material design: soft-particle lubrication by graphite and hard-particle reinforcement by carbide particles. The wear tests were performed using a block-on-ring (SAE 52100 steel) wear machine under dry sliding conditions within a load range of 1 to 441 N. The microstructural and compositional changes that took place during wear were characterized using scanning electron microscopy (SEM), Auger electron spectroscopy (AES), energy-dispersive X-ray spectroscopy (EDXA), and X0ray diffractometry (XRD). The wear resistance of 3 pct graphite-20 pct SiC-A356 hybrid composite was comparable to 20 pct SiC-A356 without graphite at low and medium loads. At loads below 20 N, both hybrid and 20 pct SiC-A356 composites without graphite demonstrated wear rates up to 10 times lower than the unreinforced A356 alloy due to the load-carrying capacity of SiC particles. The wear resistance of 3 pct graphite 20 pct SiC-A356 was 1 to 2 times higher than 10 pct graphite-containing hybrid composites at high loads. However, graphite addition reduced the counterface wear. The unreinforced A356 and 20 pct SiC-A356 showed a transition from mild to severe wear at 95 N and 225 N, respectively. Hybrid composites with 3 pct and 10 pct graphite did not show such a transition over the entire load range, indicating that graphite improved the seizure resistance of the composites.

  11. Microstructure and mechanical properties of twin-wire arc sprayed Ni-Al composite coatings on 6061-T6 aluminum alloy sheet

    NASA Astrophysics Data System (ADS)

    Wang, Ji-xiao; Liu, Jing-shun; Zhang, Lun-yong; Sun, Jian-fei; Wang, Zhi-ping

    2014-05-01

    We have systematically studied the microstructure and mechanical properties of Ni-5wt%Al and Ni-20wt%Al composite coatings fabricated on 6061-T6 aluminum alloy sheet by twin-wire arc spraying under different experimental conditions. The abrasive wear behavior and interface diffusion behavior of the composite coatings were evaluated by dry/wet rubber wheel abrasive wear tests and heat treatment, respectively. Experimental results indicate that the composite coatings exhibit features of adhesive wear. Besides, the Vickers microhardness of NiAl and Ni3Al intermetallic compounds is relatively larger than that of the substrate, which is beneficial for enhancing the wear resistance. With the increase of annealing temperature and time, the interface diffusion area between the Ni-Al coating and the substrate gradually expands with the formation of NiAl3 and Ni2Al3 phases, and is controlled by diffusion of aluminum atoms. The grain growth exponent n of diffusion kinetics of the Ni-Al coating, calculated via a high-temperature diffusion model at 400, 480, and 550°C, is between 0.28 and 0.38. This satisfies the cubic law, which is consistent with the general theoretical relationship of high-temperature diffusion.

  12. Laminated metal matrix composites of ultra-high carbon steel-brass and Al-Al/SiC: Processing and properties. Revision 1

    SciTech Connect

    Syn, C.K.; Lesuer, D.R.; Cadwell, K.L.; Sherby, O.D.; Brown, K.R.

    1991-11-01

    We have fabricated laminated metal composites of (1) ultrahigh carbon steel (1.8%C) and brass (70Cu-30Zn), and (2) aluminum 5182 and aluminum 6061 with 25 vol.% SiCp. The laminates were prepared by hot pressing alternating layers of the component materials in an argon gas atmosphere. The steel was thermo-mechanically processed to produce a fine grained microstructure that exhibited superplasticity. The brass and aluminum materials were obtained from commercial sources and used in the as-received condition. Laminates with different numbers of layers and layer thickness were made. The compressive stress and strain rate were measured during hot pressing, and material flow behavior in the UHCS-brass laminate was found to be rate-controlled by the stronger component rather than by the softer one (brass). Material flow behavior was more complicated in the Al-laminate. Tensile and fracture behavior were determined by tensile tests and by chevron notched fracture toughness tests. Details of processing, microstructure and initial results of mechanical property tests of these laminates are discussed.

  13. Laminated metal matrix composites of ultra-high carbon steel-brass and Al-Al/SiC: Processing and properties

    SciTech Connect

    Syn, C.K.; Lesuer, D.R.; Cadwell, K.L. ); Sherby, O.D. . Dept. of Materials Science and Engineering); Brown, K.R. . Center for Technology)

    1991-11-01

    We have fabricated laminated metal composites of (1) ultrahigh carbon steel (1.8%C) and brass (70Cu-30Zn), and (2) aluminum 5182 and aluminum 6061 with 25 vol.% SiCp. The laminates were prepared by hot pressing alternating layers of the component materials in an argon gas atmosphere. The steel was thermo-mechanically processed to produce a fine grained microstructure that exhibited superplasticity. The brass and aluminum materials were obtained from commercial sources and used in the as-received condition. Laminates with different numbers of layers and layer thickness were made. The compressive stress and strain rate were measured during hot pressing, and material flow behavior in the UHCS-brass laminate was found to be rate-controlled by the stronger component rather than by the softer one (brass). Material flow behavior was more complicated in the Al-laminate. Tensile and fracture behavior were determined by tensile tests and by chevron notched fracture toughness tests. Details of processing, microstructure and initial results of mechanical property tests of these laminates are discussed.

  14. Aluminum alloy

    NASA Technical Reports Server (NTRS)

    Blackburn, Linda B. (Inventor); Starke, Edgar A., Jr. (Inventor)

    1989-01-01

    This invention relates to aluminum alloys, particularly to aluminum-copper-lithium alloys containing at least about 0.1 percent by weight of indium as an essential component, which are suitable for applications in aircraft and aerospace vehicles. At least about 0.1 percent by weight of indium is added as an essential component to an alloy which precipitates a T1 phase (Al2CuLi). This addition enhances the nucleation of the precipitate T1 phase, producing a microstructure which provides excellent strength as indicated by Rockwell hardness values and confirmed by standard tensile tests.

  15. Reactions of liquid and solid aluminum clusters with N2: the role of structure and phase in Al114 (+), Al115 (+), and Al117 (+).

    PubMed

    Cao, Baopeng; Starace, Anne K; Judd, Oscar H; Bhattacharyya, Indrani; Jarrold, Martin F

    2014-11-28

    Kinetic energy thresholds have been measured for the chemisorption of N2 onto Al114 (+), Al115 (+), and Al117 (+) as a function of the cluster's initial temperature, from around 200 K up to around 900 K. For all three clusters there is a sharp drop in the kinetic energy threshold of 0.5-0.6 eV at around 450 K, that is correlated with the structural transition identified in heat capacity measurements. The decrease in the thresholds corresponds to an increase in the reaction rate constant, k(T) at 450 K, of around 10(6)-fold. No significant change in the thresholds occurs when the clusters melt at around 600 K. This contrasts with behavior previously reported for smaller clusters where a substantial drop in the kinetic energy thresholds is correlated with the melting transition. PMID:25429939

  16. Aluminum Alloy and Article Cast Therefrom

    NASA Technical Reports Server (NTRS)

    Lee, Jonathan A. (Inventor); Chen, Po-Shou (Inventor)

    2003-01-01

    A cast article from an aluminum alloy, which has improved mechanical properties at elevated temperatures, has the following composition in weight percent: Silicon 14 - 25.0, Copper 5.5 - 8.0, Iron 0.05 - 1.2, Magnesium 0.5 - 1.5, Nickel 0.05 - 0.9, Manganese 0.05 - 1.0, Titanium 0.05 - 1.2, Zirconium 0.05 - 1.2, Vanadium 0.05 - 1.2, Zinc 0.05 - 0.9, Phosphorus 0.001 - 0.1, and the balance is Aluminum, wherein the silicon-to-magnesium ratio is 10 - 25, and the copper-to-magnesium ratio is 4 - 15. The aluminum alloy contains a simultaneous dispersion of three types of Al3X compound particles (X=Ti, V, Zr) having a LI2, crystal structure, and their lattice parameters are coherent to the aluminum matrix lattice. A process for producing this cast article is also disclosed, as well as a metal matrix composite, which includes the aluminum alloy serving as a matrix and containing up to about 60% by volume of a secondary filler material.

  17. Influence of aluminum and vanadium on the anodic dissolution of Ti-Al and Ti-V binary alloys in concentrated hydrochloric acid

    SciTech Connect

    Frayert, J.P.; Caprani, A.; Juszay, T.; Priem, F.

    1985-11-01

    To understand the combined roles of Al and V in the dissolution-passivation mechanism of the ternary T A/sub 6/ V alloy in hydrochloric acid, the roles of Al and V were investigated separately i Ti-Al and Ti-V binary alloys. The study was based on: (1) the analysis of stationary polarization curves, according to a model previously established for Ti dissolution; (2) the interpretation of corrosion morphology; and (3) the identification by x-ray diffraction of the products formed at the electrode. It was evidenced that the primary role of V and Al, as alloying elements in the active dissolution of titanium, is to modify the potential range at which Ti H/sub 2/ forms. The outstanding influence of hydride on the dissolution kinetics has already been established. Vanadium completely impedes its formation, whereas aluminum shortens its existent potential range, but activates its formation. One consequence of these effects of Ti H/sub 2/ is that the three rate-determining reactions in active dissolution are inhibited by vanadium, whereas two are activated and the third inhibited by aluminum. In passive dissolution, the efficiency of the passivating layer is reduced by aluminum and increased by vanadium.

  18. Experimental determination of the temperature range of AlO molecular emission in laser-induced aluminum plasma in air

    NASA Astrophysics Data System (ADS)

    Bai, Xueshi; Motto-Ros, Vincent; Lei, Wenqi; Zheng, Lijuan; Yu, Jin

    2014-09-01

    Measurements with laser-induced breakdown spectroscopy (LIBS) usually take place in the atmospheric air. For quantitative analysis of metallic elements, oxidation may represent an important issue which can significantly modify the stoichiometry of the plasma. Molecule formation in plasma should be therefore studied and taken into account in the LIBS practice. In this work, we experimentally investigated the temporal evolution and transformation of the plasma induced on an aluminum target by a nanosecond infrared (1064 nm) laser in the atmospheric air, in terms of its temperatures over a large interval of time from hundreds of nanoseconds to tens of microseconds. Such evolution was then correlated to the temporal evolution of the emission intensity from AlO molecules in the ablation plume. In particular, for a given ablation laser pulse energy, the appearance of the molecular emission while the plume cools down allows determining a minimal delay, ?min, which corresponds to a maximal value of the temperature, Tmax, below which the molecular emission begins to be clearly observed and to grow as a function of the delay. Such delay or such temperature indicates the longest delay or the lowest temperature for laser-induced plasma to be suitable for a correct analysis of metallic elements without significant influence of the alternation of the stoichiometry by oxidation. In our experiment, the values of ?min and Tmax have been determined for a range of ablation laser pulse energies from 5 mJ to 50 mJ. These values lie respectively in the range of 3 to 15 ?s for ?min, and 4500 K to 6600 K in terms of the molecule temperature for Tmax. Beyond the practical interest for LIBS, our results provide also insights to the kinetics of the AlO molecule formation in laser-induced plasma.

  19. Evidence of sub-10 nm aluminum-oxygen precipitates in silicon

    NASA Astrophysics Data System (ADS)

    Moutanabbir, Oussama; Isheim, Dieter; Mao, Zugang; Seidman, David N.

    2016-05-01

    In this research, ultraviolet laser-assisted atom-probe tomography (APT) was utilized to investigate precisely the behavior at the atomistic level of aluminum impurities in ultrathin epitaxial silicon layers. Aluminum atoms were incorporated in situ during the growth process. The measured average aluminum concentration in the grown layers exceeds by several orders of magnitude the equilibrium bulk solubility. Three-dimensional atom-by-atom mapping demonstrates that aluminum atoms precipitate in the silicon matrix and form nanoscopic precipitates with lateral dimensions in the 1.3 to 6.2 nm range. These precipitates were found to form only in the presence of oxygen impurity atoms, thus providing clear evidence of the long-hypothesized role of oxygen and aluminum-oxygen complexes in facilitating the precipitation of aluminum in a silicon lattice. The measured average aluminum and oxygen concentrations in the precipitates are ∼10 ± 0.5 at.% and ∼4.4 ± 0.5 at.%, respectively. This synergistic interaction is supported by first-principles calculations of the binding energies of aluminum-oxygen dimers in silicon. The calculations demonstrate that there is a strong binding between aluminum and oxygen atoms, with Al-O-Al and O-Al-Al as the energetically favorable sequences corresponding to precipitates in which the concentration of aluminum is twice as large as the oxygen concentration in agreement with APT data.

  20. The effect of sulfate on aluminum concentrations in natural waters: some stability relations in the system Al2O3-SO3-H2O at 298 K

    USGS Publications Warehouse

    Nordstrom, D.K.

    1982-01-01

    While gibbsite and kaolinite solubilities usually regulate aluminum concentrations in natural waters, the presence of sulfate can dramatically alter these solubilities under acidic conditions, where other, less soluble minerals can control the aqueous geochemistry of aluminum. The likely candidates include alunogen, Al2(SO4)3 ?? 17H2O, alunite, KAl3(SO4)2(OH)6, jurbanite, Al(SO4)(OH) ?? 5H2O, and basaluminite, Al4(SO4)(OH)10 ?? 5H2O. An examination of literature values shows that the log Ksp = -85.4 for alunite and log Ksp = -117.7 for basaluminite. In this report the log Ksp = -7.0 is estimated for alunogen and log Ksp = -17.8 is estimated for jurbanite. The solubility and stability relations among these four minerals and gibbsite are plotted as a function of pH and sulfate activity at 298 K. Alunogen is stable only at pH values too low for any natural waters (<0) and probably only forms as efflorescences from capillary films. Jurbanite is stable from pH < 0 up to the range of 3-5 depending on sulfate activity. Alunite is stable at higher pH values than jurbanite, up to 4-7 depending on sulfate activity. Above these pH limits gibbsite is the most stable phase. Basaluminite, although kinetically favored to precipitate, is metastable for all values of pH and sulfate activity. These equilibrium calculations predict that both sulfate and aluminum can be immobilized in acid waters by the precipitation of aluminum hydroxysulfate minerals. Considerable evidence supports the conclusion that the formation of insoluble aluminum hydroxy-sulfate minerals may be the cause of sulfate retention in soils and sediments, as suggested by Adams and Rawajfih (1977), instead of adsorption. ?? 1982.

  1. Effects of porous carbon on sintered Al-Si-Mg matrix composites

    SciTech Connect

    Ejiofor, J.U.; Reddy, R.G.

    1997-12-01

    The influence of microporous particulate carbon char on the mechanical, thermal, and tribological properties of wear-resistant Al-13.5Si-2.5Mg alloy composites was studied. Large increases in surface area due to the formation of micropores in coconut shell chars were achieved by high-temperature activation under CO{sub 2} gas flow. Activated char particles at 0.02 V{sub f} were used to reinforce the alloy. The composites were fabricated via a double-compaction reaction sintering technique under vacuum at a compaction pressure of 250 MPa and sintering temperature of 600 C. At more than 35% burn-off of the carbon chars at the temperature of activation, 915 C, the total surface area remained virtually unaffected. The ultimate tensile strength and hardness decreased by 23% and 6%, respectively; with increasing surface area of the reinforcement from 123 to 821 m{sup 2} g{sup {minus}1}. The yield strength and the percentage of elongation decreased by a factor of 2 and 5, respectively. No significant change in sliding wear rate was observed but the coefficient of friction increased by 13% (0.61 to 0.69). The coefficient of linear thermal expansion was reduced by 16% (11.7 {times} 10{sup {minus}6} to 9.8 {times} 10{sup {minus}6} C{sup {minus}1}), and remained unaffected at more than 35% burn-off. Energy-dispersive spectrometry of the particles of the activated chars showed that oxides of potassium and copper coated the open surfaces. Failure at the matrix-char interface was observed, and this was attributed to localized presence of oxides at the interfaces as identified by electron probe microanalysis. Poor wetting of the oxides by magnesium at the sintering conditions resulted in formation of weak matrix-char interface bonds.

  2. Action of hydrochloric acid on aluminum hydroxide-magnesium hydroxide gels and magaldrate: 27Al NMR and pH-stat studies.

    PubMed

    Wilson, G E; Falzone, C J; Johnson, R; Lee, H K

    1985-10-01

    Neutralization of mixtures of aluminum hydroxide-magnesium hydroxide gels and of magaldrate by hydrochloric acid were studied by 27Al NMR under conditions of both equilibrium and kinetic control. Under conditions where equilibrium has been attained, an aluminum NMR signal is detectable for suspensions of the mixed gels and magaldrate only after enough acid has been added to exhaust the acid-neutralizing capacity of the magnesium hydroxide. Mixed gels seem to form several soluble aluminum-containing species as neutralization proceeds. Under the conditions of the modified Beekman neutralization procedure, in which the species concentrations reflect neutralization kinetics, mixed gels show a sharp burst of the hexaaquoaluminum cation as acid is added followed by a slow loss of that cation from solution and an accompanying slow rise in pH. Magaldrate shows a steady increase in the hexaaquoaluminum cation with added acid. Differences between magaldrate and mixed gels are also apparent in pH-stat titrations in which magaldrate displays a biphasic response, contrasting to the two burst phases with an intervening lag phase observed for mixed gels. The results of the 27Al NMR and pH-stat titrations are consistent with the hypotheses that magaldrate is a homogeneous substance with a hydrotalcite-like structure and that mixed gels consist of a magnesium hydroxide core surrounded by aluminum hydroxide. PMID:4078706

  3. Cluster size dependence of double ionization energy spectra of spin-polarized aluminum and sodium clusters: All-electron spin-polarized GW+T -matrix method

    NASA Astrophysics Data System (ADS)

    Noguchi, Yoshifumi; Ohno, Kaoru; Solovyev, Igor; Sasaki, Taizo

    2010-04-01

    The double ionization energy (DIE) spectra are calculated for the spin-polarized aluminum and sodium clusters by means of the all-electron spin-polarized GW+T -matrix method based on the many-body perturbation theory. Our method using the one- and two-particle Green’s functions enables us to determine the whole spectra at once in a single calculation. The smaller is the size of the cluster, the larger the difference between the minimal double ionization energy and the twice of the ionization potential. This is because the strong Coulomb repulsion between two holes becomes dominant in small confined geometry. Due to Pauli’s exclusion principle, the parallel spin DIE is close to or smaller than the antiparallel spin DIE except for Na4 that has well-separated highest and second highest occupied molecular-orbital levels calculated by the spin-dependent GW calculation. In this paper, we compare the results calculated for aluminum and sodium clusters and discuss the spin-polarized effect and the cluster size dependence of the resulting spectra in detail.

  4. Combustion synthesis of metal-matrix composites. Part 2: The Ti-Ti{sub x}Al{sub y}-Al{sub 2}O{sub 3} system

    SciTech Connect

    Kunrath, A.O.; Strohaecker, T.R.; Moore, J.J.

    1996-01-15

    The production of high performance materials (ceramics, intermetallics and composites) by combustion synthesis is receiving considerable attention since the process offers certain advantages with respect to simplicity and a relatively low energy requirement. The methods by which combustion synthesis (or SHS) can be used to produce metal matrix composites were outlined in an earlier paper. The use of excess liquid metal in the combustion synthesis reaction has already been successfully employed to achieve low porosity products. This metallic phase may be generated by an in-situ reduction of a metal oxide or by adding an excess of some metal to the reactants. Coupling a simultaneous consolidation (pressing) process with the SHS reaction has been found to produce dense bodies. This work discussed in this paper is concerned with the synthesis of a metallic/intermetallic matrix composite reaction system which can be represented by equation. With this reaction, high volume fractions of metallic/intermetallic phases can be produced. The metal-matrix produced by this reaction is predominantly a mixture of Ti{sub 3}Al + Ti as indicated in the appropriate area of the Ti-Al phase diagram. Increasing x increases the volume fraction of Ti. TiAl was observed in only one of the four different stoichiometries studied, i.e., x = 1, as detected by XRD. Using this reaction, there is a constant amount of excess Al and a variable excess of Ti. These stoichiometries produce composites with varying Ti-Al ratios that allow the matrix composition of the composite to be varied along the concentration axis of the Ti-Al phase diagram.

  5. Comparison of the Booster Interface Temperature in Stainless Steel (SS) V-Channel Versus the Aluminum (Al) Y-Channel Primer Chamber Assemblies (PCAs). Volume 2; Appendices

    NASA Technical Reports Server (NTRS)

    Garcia, Roberto; Saulsberry, Regor L.

    2011-01-01

    NASA's Technical Fellow for Propulsion, requested a technical assessment of the performance improvement achieved by the introduction of the stainless steel (SS) V-channel compared to the aluminum (Al) Y-channel Primer Chamber Assembly (PCA) design. The SS V-channel PCA was developed for NASA's Mars Science Laboratory (MSL) Project. The principle focus of the assessment was to measure the transient temperature at the booster interface with both designs. This document contains the Appendices to the Volume I main report.

  6. Role of Al2O3 intermediate layer for improving the quality of polycrystalline-silicon film in inverted aluminum-induced layer exchange

    NASA Astrophysics Data System (ADS)

    Duan, Weiyuan; Meng, Fanying; Bian, Jiantao; Yu, Jian; Zhang, Liping; Liu, Zhengxin

    2015-02-01

    A thin Al2O3 intermediate layer prepared by atomic layer deposition was introduced into inverted aluminum-induced layer exchange (inverted-ALILE) to form high-quality polycrystalline silicon (poly-Si) thin layer. It was demonstrated that the continuity and quality of poly-Si were obviously improved by the Al2O3 layer. The fraction of (1 0 0)-oriented crystals reached 93%, and the average grain size of 28 μm with uniform surface morphology and low defect density were achieved at the optimal Al2O3 thickness of 4 nm. It was also found that an a-AlOx layer always existed at the poly-Si/Al interface after inverted-ALILE process, which is independent on the original surface states. The results suggested that the thin poly-Si layer would be a promising epitaxial template for Si based thin film solar cells.

  7. Aluminum incorporation in Ti{sub 1-x}Al{sub x}N films studied by x-ray absorption near-edge structure

    SciTech Connect

    Gago, R.; Redondo-Cubero, A.; Endrino, J. L.; Jimenez, I.; Shevchenko, N.

    2009-06-01

    The local bonding structure of titanium aluminum nitride (Ti{sub 1-x}Al{sub x}N) films grown by dc magnetron cosputtering with different AlN molar fractions (x) has been studied by x-ray absorption near-edge structure (XANES) recorded in total electron yield mode. Grazing incidence x-ray diffraction (GIXRD) shows the formation of a ternary solid solution with cubic structure (c-Ti{sub 1-x}Al{sub x}N) that shrinks with the incorporation of Al and that, above a solubility limit of xapprox0.7, segregation of w-AlN and c-Ti{sub 1-x}Al{sub x}N phases occurs. The Al incorporation in the cubic structure and lattice shrinkage can also be observed using XANES spectral features. However, contrary to GIXRD, direct evidence of w-AlN formation is not observed, suggesting a dominance and surface enrichment of cubic environments. For x>0.7, XANES shows the formation of Ti-Al bonds, which could be related to the segregation of w-AlN. This study shows the relevance of local-order information to assess the atomic structure of Ti{sub 1-x}Al{sub x}N solutions.

  8. Liquid oxygen LOX compatibility evaluations of aluminum lithium (Al-Li) alloys: Investigation of the Alcoa 2090 and MMC weldalite 049 alloys

    NASA Technical Reports Server (NTRS)

    Diwan, Ravinder M.

    1989-01-01

    The behavior of liquid oxygen (LOX) compatibility of aluminum lithium (Al-Li) alloys is investigated. Alloy systems of Alcoa 2090, vintages 1 to 3, and of Martin Marietta Corporation (MMC) Weldalite 049 were evaluated for their behavior related to the LOX compatibility employing liquid oxygen impact test conditions under ambient pressures and up to 1000 psi. The developments of these aluminum lithium alloys are of critical and significant interest because of their lower densities and higher specific strengths and improved mechanical properties at cryogenic temperatures. Of the different LOX impact tests carried out at the Marshall Space Flight Center (MSFC), it is seen that in certain test conditions at higher pressures, not all Al-Li alloys are LOX compatible. In case of any reactivity, it appears that lithium makes the material more sensitive at grain boundaries due to microstructural inhomogeneities and associated precipitate free zones (PFZ). The objectives were to identify and rationalize the microstructural mechanisms that could be relaxed to LOX compatibility behavior of the alloy system in consideration. The LOX compatibility behavior of Al-Li 2090 and Weldalite 049 is analyzed in detail using microstructural characterization techniques with light optical metallography, scanning electron microscopy (SEM), electron microprobe analysis, and surface studies using secondary ion mass spectrometry (SIMS), electron spectroscopy in chemical analysis (ESCA) and Auger electron spectroscopy (AES). Differences in the behavior of these aluminum lithium alloys are assessed and related to their chemistry, heat treatment conditions, and microstructural effects.

  9. Atomic layer deposition of Al-doped ZnO films using ozone as the oxygen source: A comparison of two methods to deliver aluminum

    SciTech Connect

    Yuan Hai; Luo Bing; Yu Dan; Cheng, An-jen; Campbell, Stephen A.; Gladfelter, Wayne L.

    2012-01-15

    Aluminum-doped ZnO films were prepared by atomic layer deposition at 250 deg. C using diethylzinc (DEZ), trimethylaluminum (TMA), and ozone as the precursors. Two deposition methods were compared to assess their impact on the composition, structural, electrical, and optical properties as a function of Al concentration. The first method controlled the Al concentration by changing the relative number of Al to Zn deposition cycles; a process reported in the literature where water was used as the oxygen source. The second method involved coinjection of the DEZ and TMA during each cycle where the partial pressures of the precursors control the aluminum concentration. Depth profiles of the film composition using Auger electron spectroscopy confirmed a layered microstructure for the films prepared by the first method, whereas the second method led to a homogeneous distribution of the aluminum throughout the ZnO film. Beneath the surface layer the carbon concentrations for all of the films were below the detection limit. Comparison of their electrical and optical properties established that films deposited by coinjection of the precursors were superior.

  10. Synthesis of carbon filament reinforced aluminum-matrix composites. Final report, September 1, 1990-December 31, 1993

    SciTech Connect

    Jones, L.E.; Piotrowski, A.

    1994-02-19

    The objective of this project was to synthesize branched (3D) carbon filaments from natural gas in a graphite tube for subsequent infiltration with aluminum. A deposition reactor was fabricated in which carbon filaments could be grown on the inside surface of net shaped parts. A vertical arrangement of the furnace was found to optimize filament growth. Palladium was found to catalyze the growth of filaments. The diameter of the filaments grown from the vapor phase was proportional to the radius of the metal catalyst particle and this had an impact on the structure of the filaments. The optimum processing route was one in which PD powder was deposited on the surface of a graphite substrate using an alcohol solution to disperse the powder.

  11. Microstructure and Grain Growth of the Matrix of SiCf/Ti-6Al-4V Composites Prepared by the Consolidation of Matrix-Coated Fibers in the α+ β Phase Field

    NASA Astrophysics Data System (ADS)

    Zhao, Guangming; Yang, Yanqing; Zhang, Wei; Luo, Xian; Huang, Bin; Chen, Yan

    2015-02-01

    Both the microstructural characteristics and the grain growth of the matrix materials in the SiCf/Ti-6Al-4V composites were investigated by means of experimental tests coupled with theoretical assessment. A very fine matrix microstructure was obtained in the SiCf/Ti-6Al-4V composites that were prepared by the consolidation of matrix-coated fiber (MCF) in the α+ β phase field. During a fabrication process through the MCF method, the matrix microstructure after consolidation processing will evolve from the columnar crystals to a fully-lamellar microstructure. The experimental results especially the grain sizes of matrix microstructure were reasonably explained based on theoretical calculations.

  12. AIN composite growth by nitridation of aluminum alloys

    SciTech Connect

    Creber, D.K.; Poste, S.D.; Aghajanian, M.K.; Claar, T.D.

    1988-08-01

    The application of the Lanxide ceramic matrix composite processing technology to the nitridation of aluminum alloys has been studied. The process involves the directed nitridation reaction of a molten aluminum alloy in a nitrogen-containing atmosphere to yield an AIN/Al matrix material. The nitridation reaction can be directed through inert ceramic filler materials to produce a wide variety of composites. By changing the reaction conditions, the progress of the reaction can be altered to tailor the microstructures and physical properties of the resulting composites. Process information and initial composite property data are presented.

  13. Aluminum composite driveshafts

    SciTech Connect

    Not Available

    1994-02-01

    This article examines the development and performance of a metal matrix composite lightweight driveshaft tube of 6061 aluminum alloy with an even dispersion of 20[percent] aluminum oxide particles. The topics of the article include evolution of the lightweight design, raw material production, tubing fabrication, driveshaft performance, and modulus testing.

  14. Accurate electron probe determination of aluminum composition in (Al, Ga)As and correlation with the photoluminescence peak

    NASA Astrophysics Data System (ADS)

    Miller, N. C.; Zemon, S.; Werber, G. P.; Powazinik, W.

    1985-01-01

    The composition of Alx Ga1-xAs has been measured with improved accuracy by electron probe microanalysis using an aluminum-copper alloy standard rather than an elemental aluminum standard. Details of the experimental procedure are given. A calibration curve, relating the photoluminescence peak energy (Ep) to aluminum concentration (x), has been obtained. A least-squares fit to the data gives Ep(eV)=1.42+1.45x-0.25x2 for 0

  15. Aluminum reference electrode

    DOEpatents

    Sadoway, Donald R.

    1988-01-01

    A stable reference electrode for use in monitoring and controlling the process of electrolytic reduction of a metal. In the case of Hall cell reduction of aluminum, the reference electrode comprises a pool of molten aluminum and a solution of molten cryolite, Na.sub.3 AlF.sub.6, wherein the electrical connection to the molten aluminum does not contact the highly corrosive molten salt solution. This is accomplished by altering the density of either the aluminum (decreasing the density) or the electrolyte (increasing the density) so that the aluminum floats on top of the molten salt solution.

  16. Aluminum reference electrode

    DOEpatents

    Sadoway, D.R.

    1988-08-16

    A stable reference electrode is described for use in monitoring and controlling the process of electrolytic reduction of a metal. In the case of Hall cell reduction of aluminum, the reference electrode comprises a pool of molten aluminum and a solution of molten cryolite, Na[sub 3]AlF[sub 6], wherein the electrical connection to the molten aluminum does not contact the highly corrosive molten salt solution. This is accomplished by altering the density of either the aluminum (decreasing the density) or the electrolyte (increasing the density) so that the aluminum floats on top of the molten salt solution. 1 fig.

  17. Fabrication of an r-Al2Ti intermetallic matrix composite reinforced with α-Al2O3 ceramic by discontinuous mechanical milling for thermite reaction

    NASA Astrophysics Data System (ADS)

    Mosleh, A.; Ehteshamzadeh, M.; Taherzadeh Mousavian, R.

    2014-10-01

    In this study, a powder mixture with an Al/TiO2 molar ratio of 10/3 was used to form an r-Al2Ti intermetallic matrix composite (IMC) reinforced with α-Al2O3 ceramic by a novel milling technique, called discontinuous mechanical milling (DMM) instead of milling and ignition of the produced thermite. The results of energy dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD) of samples with varying milling time indicate that this fabrication process requires considerable mechanical energy. It is shown that Al2Ti-Al2O3 IMC with small grain size was produced by DMM after 15 h of ball milling. Peaks for γ-TiAl as well as Al2Ti and Al2O3 are observed in XRD patterns after DMM followed by heat treatment. The microhardness of the DMM-treated composite produced after heat treatment was higher than Hv 700.

  18. Residual microstructure associated with impact crater in Ti-6Al-4V meshes reinforced 5A06Al alloy matrix composite.

    PubMed

    Guo, Q; Chen, G Q; Jiang, L T; Hussain, M; Han, X L; Sun, D L; Wu, G H

    2012-02-01

    In this paper, TC4(m)/5A06Al composite was hypervelocity impacted by 2024 aluminium projectile with the diameter of 2mm and with the impact velocity of 3.5 km/s. The residual microstructure was observed by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HREM). The TC4-Al interface before impact was composed of TiAl(3) phase and Ti(3)Al phase. Near the pithead, separation of TC4 fibers and Al matrix occurred along the impact direction. Around the middle of the crater, TC4 fibers were sheared into several sections. Near the bottom of crater, adiabatic shear band (ASB) occurred in TC4 fiber, while the angle between shear plane and cross section was 45°. The crack propagated along TC4-Ti(3)Al interface during impact and some Ti(3)Al phase at the TC4-Al interface transformed to amorphous with few nanocrystals after hypervelocity impact. PMID:21852141

  19. Formation of magnesium aluminate (spinel) in cast SiC particulate-reinforced Al(A356) metal matrix composites

    NASA Astrophysics Data System (ADS)

    Wang, Ning; Wang, Zhirui; Weatherly, George C.

    1992-05-01

    Transmission (TEM) and scanning electron microscopy (SEM) are employed to study the SiC/Al-alloy interface in a cast SiCp/Al(A356) metal matrix composite (MMC). Magnesium aluminate (spinel), MgAl2O4, was found at the interface as a reaction product after material processing. Comparisons of the crystal structure, structure factor, and interface reaction ther-modynamics between MgAl2O4 and MgO have been carried out. The results from these com-parisons confirm the experimental observation; i.e., the favored interface phase is magnesium aluminate (spinel). Based on the thermodynamic analysis, the presence of oxygen in various forms in the system during processing, such as SiO2, A12O3, and MgO, is believed to be the source which supplies the oxygen for the formation of MgAl2O4.

  20. Influence of pH modifiers and HPMC viscosity grades on nicotine-magnesium aluminum silicate complex-loaded buccal matrix tablets.

    PubMed

    Pongjanyakul, Thaned; Kanjanabat, Sopaphan

    2012-06-01

    Hydroxypropyl methylcellulose (HPMC) tablets containing nicotine-magnesium aluminum silicate (NCT-MAS) complex particles and pH modifiers, namely, sodium chloride, citric acid, and magnesium hydroxide, were prepared using the direct compression method. The effects of HPMC viscosity grades and pH modifiers on NCT release and permeation of the matrix tablets were examined. The results showed that the higher the viscosity grade of HPMC that was used in the tablets, the lower was the unidirectional NCT release rate found. The unidirectional NCT permeation was not affected by the viscosity grade of HPMC because the NCT diffusion through the mucosal membrane was the rate-limiting step of the permeation. Incorporation of magnesium hydroxide could retard NCT release, whereas the enhancement of unidirectional NCT release was found in the tablets containing citric acid. Citric acid could inhibit NCT permeation due to the formation of protonated NCT in the swollen tablets at an acidic pH. Conversely, the NCT permeation rate increased with the use of magnesium hydroxide as a result of the neutral NCT that formed at a basic microenvironmental pH. The swollen HPMC tablets, with or without pH modifiers, gave sufficient adhesion to the mucosal membrane. Furthermore, the addition of magnesium hydroxide to the matrix tablets was the major factor in controlling buccal delivery of NCT. This study suggests that the NCT-MAS complex-loaded HPMC tablets, which contained magnesium hydroxide, are potential buccal delivery systems of NCT. PMID:22552930

  1. Microstructural characterization and mechanical properties of high power ultrasonic spot welded aluminum alloy AA6111–TiAl6V4 dissimilar joints

    SciTech Connect

    Zhang, C.Q. Robson, J.D.; Ciuca, O.; Prangnell, P.B.

    2014-11-15

    Aluminum alloy AA6111 and TiAl6V4 dissimilar alloys were successfully welded by high power ultrasonic spot welding. No visible intermetallic reaction layer was detected in as-welded AA6111/TiAl6V4 welds, even when transmission electron microscopy was used. The effects of welding time and natural aging on peak load and fracture energy were investigated. The peak load and fracture energy of welds increased with an increase in welding time and then reached a plateau. The lap shear strength (peak load) can reach the same level as that of similar Al–Al joints. After natural aging, the fracture mode of welds transferred from ductile fracture of the softened aluminum to interfacial failure due to the strength recovery of AA6111. - Highlights: • Dissimilar Al/Ti welds were produced by high power ultrasonic spot welding. • No visible intermetallic reaction layer was detected on weld interface. • The lap shear strength can reach the same level as that of similar Al–Al joints. • The fracture mode becomes interfacial failure after natural aging.

  2. Effects of Al-5Ti-1B master alloy on the microstructural evaluation of a highly alloyed aluminum alloy produced by SIMA process

    SciTech Connect

    Alipour, M.; Emamy, M.; Azarbarmas, M.; Karamouz, M.

    2010-06-15

    This study was undertaken to investigate the influence of Al-5Ti-1B master alloy on the structural characteristics of Al-12Zn-3 Mg-2.5Cu aluminum alloy. The optimum amount of Ti containing master alloy for proper grain refining was selected as 6 wt.%. A modified strain-induced, melt-activated (SIMA) process for semi-solid processing of alloys was proposed. In order to examine the effectiveness of the modified SIMA process, the recrystallized microstructures of the Al alloy (Al-12Zn-3 Mg-2.5Cu) prepared by the modified SIMA processes were macroscopically. The modified SIMA process employed casting, warm multi-forging, recrystallization and partial melting instead of the conventional process. Reheating condition to obtain a fine globular microstructure was optimized. The microstructure evolution of reheated Al-12Zn-3 Mg-2.5Cu aluminum alloy was characterized by SEM (Scanning electron microscopy) and optical microscopy. In this study the relation between the induced strain with size and shape of grain size has been studied. Results indicated that with the increase of strain sphericity of particles, their size decreases and sphericity takes place in less reahiting time.

  3. Role of the dopant aluminum for the growth of sputtered ZnO:Al investigated by means of a seed layer concept

    NASA Astrophysics Data System (ADS)

    Sommer, Nicolas; Stanley, Mishael; Köhler, Florian; Mock, Jan; Hüpkes, Jürgen

    2015-07-01

    This work elucidates the effect of the dopant aluminum on the growth of magnetron-sputtered aluminum-doped zinc oxide (ZnO:Al) films by means of a seed layer concept. Thin (<100 nm), highly doped seed layers and subsequently grown thick (˜800 nm), lowly doped bulk films were deposited using a ZnO:Al2O3 target with 2 wt. % and 1 wt. % Al2O3, respectively. We investigated the effect of bulk and seed layer deposition temperature as well as seed layer thickness on electrical, optical, and structural properties of ZnO:Al films. A reduction of deposition temperature by 100 °C was achieved without deteriorating conductivity, transparency, and etching morphology which renders these low-temperature films applicable as light-scattering front contact for thin-film silicon solar cells. Lowly doped bulk layers on highly doped seed layers showed smaller grains and lower surface roughness than their counterpart without seed layer. We attributed this observation to the beneficial role of the dopant aluminum that induces an enhanced surface diffusion length via a surfactant effect. The enhanced surface diffusion length promotes 2D-growth of the highly doped seed layer, which is then adopted by the subsequently grown and lowly doped bulk layer. Furthermore, we explained the seed layer induced increase of tensile stress on the basis of the grain boundary relaxation model. The model relates the grain size reduction to the tensile stress increase within the ZnO:Al films. Finally, temperature-dependent conductivity measurements, optical fits, and etching characteristics revealed that seed layers reduced grain boundary scattering. Thus, seed layers induced optimized grain boundary morphology with the result of a higher charge carrier mobility and more suitable etching characteristics. It is particularly compelling that we observed smaller grains to correlate with an enhanced charge carrier mobility. A seed layer thickness of 5 nm was sufficient to induce the beneficial effects.

  4. Effect of re-melting on particle distribution and interface formation in SiC reinforced 2124Al matrix composite

    SciTech Connect

    Mandal, Durbadal; Viswanathan, Srinath

    2013-12-15

    The interface between metal matrix and ceramic reinforcement particles plays an important role in improving properties of the metal matrix composites. Hence, it is important to find out the interface structure of composite after re-melting. In the present investigation, the 2124Al matrix with 10 wt.% SiC particle reinforced composite was re-melted at 800 °C and 900 °C for 10 min followed by pouring into a permanent mould. The microstructures reveal that the SiC particles are distributed throughout the Al-matrix. The volume fraction of SiC particles varies from top to bottom of the composite plate and the difference increases with the decrease of re-melting temperature. The interfacial structure of re-melted 2124Al–10 wt.%SiC composite was investigated using scanning electron microscopy, an electron probe micro-analyzer, a scanning transmission electron detector fitted with scanning electron microscopy and an X-ray energy dispersive spectrometer. It is found that a thick layer of reaction product is formed at the interface of composite after re-melting. The experimental results show that the reaction products at the interface are associated with high concentration of Cu, Mg, Si and C. At re-melting temperature, liquid Al reacts with SiC to form Al{sub 4}C{sub 3} and Al–Si eutectic phase or elemental Si at the interface. High concentration of Si at the interface indicates that SiC is dissociated during re-melting. The X-ray energy dispersive spectrometer analyses confirm that Mg- and Cu-enrich phases are formed at the interface region. The Mg is segregated at the interface region and formed MgAl{sub 2}O{sub 4} in the presence of oxygen. The several elements identified at the interface region indicate that different types of interfaces are formed in between Al matrix and SiC particles. The Al–Si eutectic phase is formed around SiC particles during re-melting which restricts the SiC dissolution. - Highlights: • Re-melted composite shows homogeneous particle distribution • Thick reaction products are observed at the interface • Carbide is identified at interface due to SiC dissolution at high temperature • Reaction products are also Si enrich phase • Mg and Cu segregated and formed MgAl{sub 2}O{sub 4}, CuMgAl{sub 2} phase at grain boundary.

  5. Microstructural Characterization of U-7Mo/Al-Si Alloy Matrix Dispersion Fuel Plates Fabricated at 500°C

    SciTech Connect

    Dennis D. Keiser, Jr.; Jan-Fong Jue; Bo Yao; Emmanuel Perez; Yongho Sohn; Curtis R. Clark

    2011-05-01

    The starting microstructure of a dispersion fuel plate will impact the overall performance of the plate during irradiation. To improve the understanding of the as-fabricated microstructures of U–Mo dispersion fuel plates, particularly the interaction layers that can form between the fuel particles and the matrix, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) analyses have been performed on samples from depleted U–7Mo (U–7Mo) dispersion fuel plates with either Al–2 wt.% Si(Al–2Si) or AA4043 alloy matrix. It was observed that in the thick interaction layers, U(Al, Si)3 and U6Mo4Al43 were present, and in the thin interaction layers, (U, Mo) (Al, Si)3, U(Al, Si)4, U3Si3Al2, U3Si5, and possibly USi-type phases were observed. The U3Si3Al2 phase contained some Mo. Based on the results of this investigation, the time that a dispersion fuel plate is exposed to a relatively high temperature during fabrication will impact the nature of the interaction layers around the fuel particles. Uniformly thin, Si-rich layers will develop around the U–7Mo particles for shorter exposure times, and thicker, Si-depleted layers will develop for the longer exposure times.

  6. Functional, structural and phylogenetic analysis of domains underlying the Al sensitivity of the aluminum-activated malate/anion transporter, TaALMT1.

    PubMed

    Ligaba, Ayalew; Dreyer, Ingo; Margaryan, Armine; Schneider, David J; Kochian, Leon; Piñeros, Miguel

    2013-12-01

    Triticum aestivum aluminum-activated malate transporter (TaALMT1) is the founding member of a unique gene family of anion transporters (ALMTs) that mediate the efflux of organic acids. A small sub-group of root-localized ALMTs, including TaALMT1, is physiologically associated with in planta aluminum (Al) resistance. TaALMT1 exhibits significant enhancement of transport activity in response to extracellular Al. In this study, we integrated structure-function analyses of structurally altered TaALMT1 proteins expressed in Xenopus oocytes with phylogenic analyses of the ALMT family. Our aim is to re-examine the role of protein domains in terms of their potential involvement in the Al-dependent enhancement (i.e. Al-responsiveness) of TaALMT1 transport activity, as well as the roles of all its 43 negatively charged amino acid residues. Our results indicate that the N-domain, which is predicted to form the conductive pathway, mediates ion transport even in the absence of the C-domain. However, segments in both domains are involved in Al(3+) sensing. We identified two regions, one at the N-terminus and a hydrophobic region at the C-terminus, that jointly contribute to the Al-response phenotype. Interestingly, the characteristic motif at the N-terminus appears to be specific for Al-responsive ALMTs. Our study highlights the need to include a comprehensive phylogenetic analysis when drawing inferences from structure-function analyses, as a significant proportion of the functional changes observed for TaALMT1 are most likely the result of alterations in the overall structural integrity of ALMT family proteins rather than modifications of specific sites involved in Al(3+) sensing. PMID:24188189

  7. Preparing high- and low-aspect ratio AlB2 flakes from borax or boron oxide

    NASA Astrophysics Data System (ADS)

    Hall, A. C.; Economy, J.

    2000-02-01

    The commercial preparation of aluminum-diboride flakes in aluminum relies on relatively expensive starting materials. A new synthesis has been developed that allows AlB2 to be prepared directly from the reaction of borax (Na2B4O7·10H2O) or boron oxide (B2O3) with aluminum. Aluminum metal at temperatures higher than 900°C has been shown to reduce these boron-containing compounds, producing an Al2O3-containing slag and AlB2. A natural separation occurs, leaving AlB2 in the molten aluminum and Al2O3 as part of a slag that forms at the melt surface. Samples containing up to 10 vol.% AlB2 in an aluminum matrix have been directly prepared using this method.

  8. Identification of aluminum-responsive proteins in rice roots by a proteomic approach: cysteine synthase as a key player in Al response.

    PubMed

    Yang, Qiaosong; Wang, Yuqi; Zhang, Jianjun; Shi, Weiping; Qian, Chunmei; Peng, Xinxiang

    2007-03-01

    Aluminum (Al) toxicity is a serious limitation to worldwide crop production. Rice is one of the most Al-tolerant crops and also serves as an important monocot model plant. This study aims to identify Al-responsive proteins in rice, based on evidence that Al resistance is an inducible process. Two Al treatment systems were applied in the study: Al3+-containing simple Ca solution culture and Al3+-containing complete nutrient solution culture. Proteins prepared from rice roots were separated by 2-DE. The 2-DE patterns were compared and the differentially expressed proteins were identified by MS. A total of 17 Al-responsive proteins were identified, with 12 of those being up-regulated and 5 down-regulated. Among the up-regulated proteins are copper/zinc superoxide dismutase (Cu-Zn SOD), GST, and S-adenosylmethionine synthetase 2, which are the consistently known Al-induced enzymes previously detected at the transcriptional level in other plants. More importantly, a number of other identified proteins including cysteine synthase (CS), 1-aminocyclopropane-1-carboxylate oxidase, G protein beta subunit-like protein, abscisic acid- and stress-induced protein, putative Avr9/Cf-9 rapidly elicited protein 141, and a 33 kDa secretory protein are novel Al-induced proteins. Most of these proteins are functionally associated with signaling transduction, antioxidation, and detoxification. CS, as consistently detected in both Al stress systems, was further validated by Western blot and CS activity assays. Moreover, the metabolic products of CS catalysis, i.e. both the total glutathione pool and reduced glutathione, were also significantly increased in response to Al stress. Taken together, our results suggest that antioxidation and detoxification ultimately related to sulfur metabolism, particularly to CS, may play a functional role in Al adaptation for rice. PMID:17295357

  9. Construction of a Job Exposure Matrix to Dust, Fluoride, and Polycyclic Aromatic Hydrocarbons in the Norwegian Aluminum Industry using Prediction Models

    PubMed Central

    Søyseth, Vidar; Henneberger, Paul; Virji, Mohammed Abbas; Bakke, Berit; Kongerud, Johny

    2016-01-01

    Background The Norwegian aluminum industry developed and implemented a protocol for prospective monitoring of employees’ exposure using personal samplers. We analyzed these data to develop prediction lines to construct a job exposure matrix (JEM) for the period 1986–1995. Methods The protocol for personal monitoring of exposure was implemented in all seven Norwegian aluminum plants in 1986 and continued until 1995. Personal samplers were used to collect total dust, fluorides, and total polycyclic aromatic hydrocarbons (PAH). In addition, exposure could be categorized according to process, i.e. prebake, Søderberg, and ‘other’. We constructed four-dimensional JEMs characterized by: Plant, Job descriptor, Process, and Year. Totally 8074, 6734, and 3524 measurements were available for dust, fluorides, and PAH, respectively. The data were analyzed using linear mixed models with two-way interactions. The models were assessed using the Akaike criterion (AIC) and unadjusted R2. The significance level was set to 10% (two-sided) for retaining variables in the model. Results In 1986, the geometric mean (95% confidence interval in parentheses) for total dust, total fluorides, and PAH were 3.18 (0.46–22.2) mg m−3, 0.58 (0.085–4.00) mg m−3, and 33.9 (2.3–504) μg m−3, respectively. During 10 years of follow-up, the exposure to total dust, fluorides, and PAH decreased by 9.2, 11.7, and 14.9% per year, respectively. Each model encompassed from 49 to 72 significant components of the interaction terms. The interaction components were at least as important as the main effects, and 65 to 91% of the significant components of the interaction terms were time-dependent. Conclusion Our prediction models indicated that exposures were highly time-dependent. We expect that the time-dependent changes in exposure are of major importance for longitudinal studies of health effects in the aluminum industry. PMID:26409268

  10. The study of in vivo quantification of aluminum (Al) in human bone with a compact DD generator-based neutron activation analysis (NAA) system.

    PubMed

    Byrne, Patrick; Mostafaei, Farshad; Liu, Yingzi; Blake, Scott P; Koltick, David; Nie, Linda H

    2016-05-01

    The feasibility and methodology of using a compact DD generator-based neutron activation analysis system to measure aluminum in hand bone has been investigated. Monte Carlo simulations were used to simulate the moderator, reflector, and shielding assembly and to estimate the radiation dose. A high purity germanium (HPGe) detector was used to detect the Al gamma ray signals. The minimum detectable limit (MDL) was found to be 11.13 μg g(-1) dry bone (ppm). An additional HPGe detector would improve the MDL by a factor of 1.4, to 7.9 ppm. The equivalent dose delivered to the irradiated hand was calculated by Monte Carlo to be 11.9 mSv. In vivo bone aluminum measurement with the DD generator was found to be feasible among general population with an acceptable dose to the subject. PMID:27093035

  11. Effect of sintering temperature and time intervals on morphological and hardness behaviour of Al-20 vol% Sn matrix composites

    NASA Astrophysics Data System (ADS)

    Badarulzaman, N. A.; Karim, S. R.; Lajis, M. A.

    2015-05-01

    Aluminium (Al) alloys are widely used in various industries, such as automotive and aerospace. The production processes in these sectors create large amount of Al residues. In this paper, a new method of recycling Al chip is presented. Metal matrix composite (MMCs) of Al-20 vol% Sn was prepared by using solid state direct conversion method of recycled Al 6061 alloy. Constant pressure (10 ton) was used to implement the cold forging process. The differences of sintering temperature (200 °C, 250 °C, 300 °C and 350 °C) and time intervals (1h, 2h, 3h, 4h and 5h) were studied to obtain the optimum hardness, strength and surface integrity of Al-20 vol% Sn. The results showed that, hardness and strength of Al-20 vol% Sn was decreased by additional temperature and increase with time interval of sintering. Sintering temperature at 350 °C produces better morphology structure of Al-Sn composites.

  12. Influence of composition and processing parameters on the properties of solution-processed aluminum phosphate oxide (AlPO) thin films

    NASA Astrophysics Data System (ADS)

    Norelli, Kevin M.; Plassmeyer, Paul N.; Woods, Keenan N.; Glassy, Benjamin A.; Knutson, Christopher C.; Beekman, Matt; Page, Catherine J.

    2016-05-01

    The effects of precursor solution concentration, composition, and spin-processing parameters on the thickness and electrical properties of ultra-smooth aluminum oxide phosphate (Al2O3-3x(PO4)2x or "AlPO") thin films prepared using aqueous solutions are reported. Compositions were verified by electron probe micro-analysis and range from Al2O1.5(PO4) to AlPO4 (x = P:Al from 0.5 to 1.0). Film thicknesses were determined using X-ray reflectivity measurements and were found to depend systematically on solution concentration, P:Al ratio, and spin-speed. Metal-insulator-semiconductor devices were fabricated to determine electrical properties as a function of composition. As the P:Al ratio increased from 0.5 to 1.0, the dielectric constant decreased from 6.0 to 4.6, leakage currents increased from 0.45 to 65 nA cm-2 at 1 MV cm-1 and dielectric breakdown (defined as leakage currents >10 μA cm-2) decreased from 9.74 to 2.84 MV cm-1. These results establish composition, concentration, and spin-speed for the production of AlPO films with targeted thicknesses and electrical properties.

  13. Analysis of Microstructures and Mechanical Properties of Particle Reinforced AlSi7Mg2 Matrix Composite Materials

    NASA Astrophysics Data System (ADS)

    Sahin, Ibrahim; Akdogan Eker, Aysegul

    2011-08-01

    The present study examined the microstructures and mechanical properties (tensile and impact strength, hardness) of selected metal matrix composite materials. SiCp reinforced AlSi7Mg2 matrix composites were produced using gravity and squeeze casting methods and subsequently T6 heat treated. Some of the squeeze casted composites were shaped by extrusion. The extrusion generated an equiaxed matrix structure and SiCp caused a homogeneous distribution. The quasi absence of porosity in the squeeze casted composites led to improved mechanical properties. Whereas an increase in the SiCp ratio resulted in an increase of the tensile strength, it led to a decrease of the impact strength values. The enhancement of the mechanical properties following an applied heat treatment was better for materials shaped by extrusion.

  14. In-situ processing of aluminum nitride particle reinforced aluminum alloy composites

    NASA Astrophysics Data System (ADS)

    Zheng, Qingjun

    Discontinuously reinforced aluminum alloy composites (DRACs) have potential applications in automotive, electronic packaging, and recreation industries. Conventional processing of DRACs is by incorporation of ceramic particles/whiskers/fibers into matrix alloys. Because of the high cost of ceramic particles, DRACs are expensive. The goal of this work was to develop a low-cost route of AlN-Al DRACs processing through bubbling and reacting nitrogen and ammonia gases with aluminum alloy melt in the temperature range of 1373--1523 K. Thermodynamic analysis of AlN-Al alloy system was performed based on Gibbs energy minimization theory. AlN is stable in aluminum, Al-Mg, Al-Si, Al-Zn, and Al-Li alloys over the whole temperature range for application and processing of DRACs. Experiments were carried out to form AlN by bubbling nitrogen and ammonia gases through aluminum, Al-Mg, and Al-Si alloy melts. Products were characterized with XRD, SEM, and EDX. The results showed that in-situ processing of AlN reinforced DRACs is technically feasible. Significant AlN was synthesized by bubbling deoxidized nitrogen and ammonia gases. When nitrogen gas was used as the nitrogen precursor, the AlN particles formed in-situ are small in size, (<10 mum). The formation of AlN is strongly affected by the trace oxygen impurities in the nitrogen gas. The deleterious effect of oxygen impurities is due to their inhibition to the chemisorption of nitrogen gas at the interface. In comparison with nitrogen gas, bubbling ammonia led to formation of AlN particles in smaller size (about 2 mum or less) at a significantly higher rate. Ammonia is not stable and dissociated into nitrogen and hydrogen at reaction temperatures. The hydrogen functions as oxygen-getter at the interface and benefits chemisorption of nitrogen, thereby promoting the formation of AlN. The overall process of AlN formation was modeled using two-film model. For nitrogen bubbling gas, the whole process is controlled by chemisorption of nitrogen molecules at the gas bubble - aluminum melt interface. For ammonia precursor, the rate of the overall process is limited by the mass transfer of nitrogen atoms in the liquid boundary layer. The models agree well with the experimental results.

  15. Nondestructive evaluation of damage in SiC/Al metal matrix composite using x ray tomographic microscopy

    SciTech Connect

    Breunig, T.M.

    1992-01-01

    A fundamental understanding of damage evolution will be required before metal matrix composites (MMC) can be utilized safely for structural applications. Although macroscopic mechanical response to cyclic loading has been monitored in many mechanical and thermal test programs, little is known about the nucleation and growth of damage in MMC's. The goal of the present work is to improve the understanding of damage accumulation in SiC/Al using a new microscopic non-destructive volume-imaging technique, X-ray Tomographic Microscopy (XTM), which has resolution comparable to optical microscopy. Correlation of damage initiation and accumulation mechanisms and the macroscopic mechanical response of samples are discussed for continuous fiber SiC/Al MMC's. A series of mechanical tests were performed on a continuous, aligned fiber SiC/Al MMC, and the ensuing three-dimensional damage state was nondestructively characterized using XTM to map the x-ray absorptivity within the sample. The types of damage detected include: fiber fracture (SiC sheath, and C core), fiber-matrix interface microcracking, intra-ply matrix voids, and cracks. Quantitative three-dimensional measurements of damage are reported in as-fabricated, monotonically loaded and mechanically fatigue loaded SiC/Al. The XTM results indicate that increases in observed macroscopic structural stiffness during monotonic loading and the first few fatigue cycles of an MMC coupon correspond to elimination of processing-related matrix porosity and to displacement of the fibers from a somewhat irregular arrangement into a more nearly hexagonal array. The XTM of monotonically loaded samples also show that the carbon cores begin to fracture at or below 828 MPa, that is, at loads far less than those for fracture of the entire fiber. The fracture of the SiC sheath appears to be significantly affected by the fracture of the C cores.

  16. Comparative Study of MIL-96(Al) as Continuous Metal-Organic Frameworks Layer and Mixed-Matrix Membrane.

    PubMed

    Knebel, Alexander; Friebe, Sebastian; Bigall, Nadja Carola; Benzaqui, Marvin; Serre, Christian; Caro, Jürgen

    2016-03-23

    MIL-96(Al) layers were prepared as supported metal-organic frameworks membrane via reactive seeding using the α-alumina support as the Al source for the formation of the MIL-96(Al) seeds. Depending on the solvent mixture employed during seed formation, two different crystal morphologies, with different orientation of the transport-active channels, have been formed. This crystal orientation and habit is predefined by the seed crystals and is kept in the subsequent growth of the seeds to continuous layers. In the gas separation of an equimolar H2/CO2 mixture, the hydrogen permeability of the two supported MIL-96(Al) layers was found to be highly dependent on the crystal morphology and the accompanied channel orientation in the layer. In addition to the neat supported MIL-96(Al) membrane layers, mixed-matrix membranes (MMMs, 10 wt % filler loading) as a composite of MIL-96(Al) particles as filler in a continuous Matrimid polymer phase have been prepared. Five particle sizes of MIL-96(Al) between 3.2 μm and 55 nm were synthesized. In the preparation of the MIL-96(Al)/Matrimid MMM (10 wt % filler loading), the following preparation problems have been identified: The bigger micrometer-sized MIL-96(Al) crystals show a trend toward sedimentation during casting of the MMM, whereas for nanoparticles aggregation and recrystallization to micrometer-sized MIL-96(Al) crystals has been observed. Because of these preparation problems for MMM, the neat supported MIL-96(Al) layers show a relatively high H2/CO2 selectivity (≈9) and a hydrogen permeance approximately 2 magnitudes higher than that of the best MMM. PMID:26886432

  17. Data characterizing compressive properties of Al/Al2O3 syntactic foam core metal matrix sandwich

    PubMed Central

    Omar, Mohammed Yaseer; Xiang, Chongchen; Gupta, Nikhil; Strbik, Oliver M.; Cho, Kyu

    2015-01-01

    Microstructural observations and compressive property datasets of metal matrix syntactic foam core sandwich composite at quasi-static and high strain rate (HSR) conditions (525–845 s−1) are provided. The data supplied in this article includes sample preparation procedure prior to scanning electron and optical microscopy as well as the micrographs. The data used to construct the stress–strain curves and the derived compressive properties of all specimens in both quasi-static and HSR regions are included. Videos of quasi-static compressive failure and that obtained by a high speed image acquisition system during deformation and failure of HSR specimen are also included. PMID:26587558

  18. Data characterizing compressive properties of Al/Al2O3 syntactic foam core metal matrix sandwich.

    PubMed

    Omar, Mohammed Yaseer; Xiang, Chongchen; Gupta, Nikhil; Strbik, Oliver M; Cho, Kyu

    2015-12-01

    Microstructural observations and compressive property datasets of metal matrix syntactic foam core sandwich composite at quasi-static and high strain rate (HSR) conditions (525-845 s(-1)) are provided. The data supplied in this article includes sample preparation procedure prior to scanning electron and optical microscopy as well as the micrographs. The data used to construct the stress-strain curves and the derived compressive properties of all specimens in both quasi-static and HSR regions are included. Videos of quasi-static compressive failure and that obtained by a high speed image acquisition system during deformation and failure of HSR specimen are also included. PMID:26587558

  19. Tensile and compressive test results for metal matrix composites

    NASA Technical Reports Server (NTRS)

    Shuart, M. J.; Herakovich, C. T.

    1977-01-01

    Experimental results of the mechanical behavior of two metal matrix composite systems at room temperature are presented. Ultimate stress, ultimate strain, Poisson's ratio, and initial Young's Modulus are documented for BORSIC/Aluminum in uniaxial tension and Boron/Aluminum in uniaxial tension and compression. Poisson's ratio is used for nonlinear stress-strain behavior. A comparison of compression results for B/Al as obtained from sandwich beam compression specimens and IITRI coupon compression specimens is presented.

  20. Electronic structure and bonding in four-coordinate organometallic complexes of aluminum. Valence photoelectron spectra of BHT-H, Me sub 3 Al(PMe sub 3 ), and Me sub 2 (BHT)Al(PMe sub 3 )

    SciTech Connect

    Lichtenberger, D.L.; Hogan, R.H. ); Healy, M.D.; Barron, A.R. )

    1990-04-25

    The He I valence photoelectron spectra of the Lewis acid-base adducts Me{sub 3}Al(PMe{sub 3}) and Me{sub 2}(BHT)Al(PMe{sub 3}) (BHT{minus}H = 2,6-di-tert-butyl-4-methylphenol) have been obtained to characterize the electronic structure and bonding in four-coordinate organometallic complexes of aluminum. To aid in the assignment of the spectrum of Me{sub 2}(BHT)Al(PMe{sub 3}), the spectrum of the free alcohol, BHT-H, was also obtained. The first and second ionizations of the free BHT-H alcohol show vibrational progressions associated with the symmetric C-C phenyl ring stretching modes, consistent with the b{sub 1} and a{sub 2} {pi} ionizations, respectively, of monosubstituted phenyl rings. In the photoelectron spectrum of BHT coordinated to aluminum in Me{sub 2}(BHT)Al(PMe{sub 3}), the corresponding phenoxide a{sub 2} ionization retains the vibrational structure, but the individual vibrational components are lost in the ionization that corresponds most closely with the b{sub 1}. The loss of vibrational fine structure associated with ionization from the phenyl {pi} b{sub 1} orbital in the coordinated phenoxide shows that the phenoxide is involved in a {pi} interaction with the Me{sub 2}Al(PMe{sub 3}) portion of the molecule.

  1. AlGaN/GaN metal-insulator-semiconductor high electron mobility transistors with reduced leakage current and enhanced breakdown voltage using aluminum ion implantation

    NASA Astrophysics Data System (ADS)

    Sun, Shichuang; Fu, Kai; Yu, Guohao; Zhang, Zhili; Song, Liang; Deng, Xuguang; Qi, Zhiqiang; Li, Shuiming; Sun, Qian; Cai, Yong; Dai, Jiangnan; Chen, Changqing; Zhang, Baoshun

    2016-01-01

    This letter has studied the performance of AlGaN/GaN metal-insulator-semiconductor high electron mobility transistors on silicon substrate with GaN buffer treated by aluminum ion implantation for insulating followed by a channel regrown by metal-organic chemical vapor deposition. For samples with Al ion implantation of multiple energies of 140 keV (dose: 1.4 × 1014 cm-2) and 90 keV (dose: 1 × 1014 cm-2), the OFF-state leakage current is decreased by more than 3 orders and the breakdown voltage is enhanced by nearly 6 times compared to the samples without Al ion implantation. Besides, little degradation of electrical properties of the 2D electron gas channel is observed where the maximum drain current IDSmax at a gate voltage of 3 V was 701 mA/mm and the maximum transconductance gmmax was 83 mS/mm.

  2. In-situ scanning electron microscope studies of crack growth in an aluminum metal-matrix composite

    NASA Technical Reports Server (NTRS)

    Manoharan, M.; Lewandowski, J. J.

    1990-01-01

    Edge-notched specimens of a cast and extruded Al alloy-based, alumina particulate-reinforced composite in the annealed condition were tested in situ in a SEM apparatus equipped with a deformation stage permitting the direct observation of crack growth phenomena. Fracture in this composite is seen to proceed by initiation of microcracks ahead of the macrocrack; as deformation proceeds, the microcracks lengthen, and crack propagation occurs when the region of intense plastic straining becomes comparable to the macrocrack-microcrack distance. The sequence is then repeated.

  3. Effect of Forging Parameters on Low Cycle Fatigue Behaviour of Al/Basalt Short Fiber Metal Matrix Composites

    PubMed Central

    Karthigeyan, R.; Ranganath, G.

    2013-01-01

    This paper deals with metal matrix composites (MMCs) of Al 7075 alloy containing different weight percentage (2.5, 5, 7.5, and 10) basalt short fiber reinforcement and unreinforced matrix alloy. The samples were produced by the permanent stir casting technique. The casting ingots were cut into blanks to be forged in single stage and double stage, using MN press and graphite-based lubricant. The microstructures and fatigue properties of the matrix alloy and MMC samples were investigated in the as cast state and in the single and double stage forging operations. The microstructure results showed that the forged sample had a uniform distribution of the basalt short fiber throughout the specimens. Evaluation of the fatigue properties showed that the forged samples had higher values than those of the as cast counterparts. After forging, the enhancement of the fatigue strength of the matrix alloy was so significant and high in the case of 2.5 and 5.0 wt. percentage basalt short fiber reinforced MMC, and there was no enhancement in 7.5 and 10 weight percentages short fiber reinforced MMCs. The fracture damage was mainly due to decohesion at the matrix-fiber interface. PMID:24298207

  4. Effect of forging parameters on low cycle fatigue behaviour of Al/basalt short fiber metal matrix composites.

    PubMed

    Karthigeyan, R; Ranganath, G

    2013-01-01

    This paper deals with metal matrix composites (MMCs) of Al 7075 alloy containing different weight percentage (2.5, 5, 7.5, and 10) basalt short fiber reinforcement and unreinforced matrix alloy. The samples were produced by the permanent stir casting technique. The casting ingots were cut into blanks to be forged in single stage and double stage, using MN press and graphite-based lubricant. The microstructures and fatigue properties of the matrix alloy and MMC samples were investigated in the as cast state and in the single and double stage forging operations. The microstructure results showed that the forged sample had a uniform distribution of the basalt short fiber throughout the specimens. Evaluation of the fatigue properties showed that the forged samples had higher values than those of the as cast counterparts. After forging, the enhancement of the fatigue strength of the matrix alloy was so significant and high in the case of 2.5 and 5.0 wt. percentage basalt short fiber reinforced MMC, and there was no enhancement in 7.5 and 10 weight percentages short fiber reinforced MMCs. The fracture damage was mainly due to decohesion at the matrix-fiber interface. PMID:24298207

  5. Thermodynamics of aqueous aluminum: standard partial molar heat capacities of Al/sup 3 +/ from 10 to 55/sup 0/C

    SciTech Connect

    Hovey, J.K.; Tremaine, P.R.

    1986-03-01

    The thermodynamic properties of aqueous aluminum species are required over wide ranges of temperature in order to model mineral dissolution and transport in steam injection and combustion processes for the in situ recovery of bitumen. The same data are needed to model aqueous solutions associated with the formation of hydrothermal ore deposits, geothermal power generation, the marine chemistry of deep hydrothermal vents, hydrometallurgy, and the corrosion behavior of aluminum alloys. Apparent molar heat capacities and volumes of Al(NO/sub 3/)/sub 3/ and AlCl/sub 3/ have been measured at 25/sup 0/C in dilute aqueous acid solutions to suppress hydrolysis. Heat capacity results for AlCl/sub 3/ span the range 10-55/sup 0/C. The measurements yield standard partial molar heat capacities, anti C/sub p//sup 0/, and volumes, anti V/sup 0/, for the Al/sup 3 +/ (aq) ion: anti V/sub 298//sup 0/ (Al/sup 3 +/, aq) = -45.3 cm/sup 3/ mol/sup -1/, anti C/sub pT//sup 0/(Al/sup 3 +/, aq) = 566.2 - 1.452% - 27338/(T - 190), where T is the absolute temperature (K). Their result for anti V/sub 298//sup 0/ is consistent with published semi-empirical correlations. The result for anti C/sub p298//sup 0/ is more negative than that predicted from the entropy correspondence principle by 135 J K/sup -1/ mol/sup -1/ and casts doubt upon the correspondence method as a predictive tool. The heat capacities approach born behavior at elevated temperatures and appear to be consistent with the Helgeson-Kirkham-Flowers model for extrapolations to higher temperatures.

  6. A chronoamperometric study of anodic processes at various types of carbon anode in Al[sub 2]O[sub 3]-Na[sub 3]AlF[sub 6] melts used in the electrolytic production of aluminum

    SciTech Connect

    Djokic, S.S.; Conway, B.E. . Dept. of Chemistry); Belliveau, T.F. . Arvida Research and Development Centre)

    1994-08-01

    The performance of four graphites and glassy carbon as sensor anode materials in chronoamperometry experiments for possible determination of Al[sub 2]O[sub 3] were comparatively examined in alumina-cryolite melts at 1,010 C. With graphite anode materials, the anode process(es) is (are) not fully diffusion controlled nor are the results adequately reproducible. Only at glassy carbon is (are) the anodic process(es) diffusion controlled. Consequently, at glassy-carbon sensor anodes, the dependence of the response current function on Al[sub 2]O[sub 3] concentration is found to be approximately linear. The presence or absence of Al metal, dissolved in the melt, as arises in the practical technology of electrolytic aluminum smelting, has a significant effect on the results due mainly to background current contributions from oxidation of dissolved Al.

  7. Modeling the Break-up of Nano-particle Clusters in Aluminum- and Magnesium-Based Metal Matrix Nano-composites

    NASA Astrophysics Data System (ADS)

    Manoylov, Anton; Bojarevics, Valdis; Pericleous, Koulis

    2015-07-01

    Aluminum- and magnesium-based metal matrix nano-composites with ceramic nano-reinforcements promise low weight with high durability and superior strength, desirable properties in aerospace, automobile, and other applications. However, nano-particle agglomerations lead to adverse effects on final properties: large-size clusters no longer act as dislocation anchors, but instead become defects; the resulting particle distribution will be uneven, leading to inconsistent properties. To prevent agglomeration and to break-up clusters, ultrasonic processing is used via an immersed sonotrode, or alternatively via electromagnetic vibration. A study of the interaction forces holding the nano-particles together shows that the choice of adhesion model significantly affects estimates of break-up force and that simple Stokes drag due to stirring is insufficient to break-up the clusters. The complex interaction of flow and co-joint particles under a high frequency external field (ultrasonic, electromagnetic) is addressed in detail using a discrete-element method code to demonstrate the effect of these fields on de-agglomeration.

  8. Synthesis and Characterization of Novel Al-Matrix Composites Reinforced with Ti3SiC2 Particulates

    NASA Astrophysics Data System (ADS)

    Gupta, S.; Hammann, T.; Johnson, R.; Riyad, M. F.

    2015-02-01

    In this paper, we report for the first time, the synthesis and characterization of novel Ti3SiC2 reinforced Al-matrix composites. All the composites were cold pressed and sintered in the temperature range of 700-750 °C for 5-30 min in an inert Ar atmosphere. Microstructure analysis by scanning electron microscopy and phase analysis by x-ray diffraction confirmed that there was minimal interfacial reaction between Ti3SiC2 particles and Al. The addition of Ti3SiC2 enhanced the mechanical performance of the composites. For example, the pure Al samples had a yield strength of 97 ± 6 MPa, where as the volume fraction of Ti3SiC2 was increased to 5 and 10 vol.% in the composites, the yield strength increased significantly to 212 ± 27 and 273 ± 52 MPa, respectively. As the volume fraction of Ti3SiC2 was further increased to 20 and 35 vol.%, the yield strength mildly increased to 278 ± 48 MPa, and then decreased to 134 ± 20 MPa, respectively. The decrease in yield strength after 35 vol.% Ti3SiC2 addition in the Al matrix was attributed to the presence of higher amount of porosity in these samples. The addition of Ti3SiC2 particles also had a beneficial effect on the tribological performance of these composites against alumina substrates.

  9. Melting process of nanometer-sized in particles embedded in an Al matrix synthesized by ball milling

    SciTech Connect

    Sheng, H.W.; Xu, J.; Yu, L.G.; Sun, X.K.; Hu, Z.Q.; Lu, K.

    1996-11-01

    Dispersions of nanometer-sized In particles embedded in an Al matrix (10 wt.{percent} In) have been synthesized by ball milling of a mixture of Al and In powders. The as-milled product was characterized by using x-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive x-ray spectrometer (EDX), transmission electron microscopy (TEM), and high resolution transmission electron microscopy (HREM), respectively. It was found that In and Al are pure components immiscible with each other, with nanometer-sized In particles dispersively embedded in the Al matrix. The melting behavior of In particles was investigated by means of differential scanning calorimeter (DSC). The calorimetric measurements indicate that both the melting point and the melting enthalpy of the In nanoparticles decrease with increasing milling time, or refinement of the In particles. Compared to its bulk melting temperature, a melting point depression of 13.4 K was observed when the mean grain size of In is 15 nm, and the melting point depression of In nanoparticles is proportional to the reciprocal of the mean grain size. The melting enthalpy depression was interpreted according to the two-state concept for the nanoparticles. Melting of the interface was deduced to be an exothermal process due to its large excess energy/volume. {copyright} {ital 1996 Materials Research Society.}

  10. The behavior of ZrO2/20%Y2O3 and Al2O3 coatings deposited on aluminum alloys at high temperature regime

    NASA Astrophysics Data System (ADS)

    Pintilei, G. L.; Crismaru, V. I.; Abrudeanu, M.; Munteanu, C.; Baciu, E. R.; Istrate, B.; Basescu, N.

    2015-10-01

    Aluminum alloy present numerous advantages like lightness, high specific strength and diversity which recommend them to a high number of applications from different fields. In extreme environments the protection of aluminum alloys is difficult and requires a high number of requirements like high temperature resistance, thermal fatigue resistance, corrosion fatigue resistance and galvanic corrosion resistance. To obtain these characteristics coatings can be applied to the surfaces so they can enhance the mechanical and chemical properties of the parts. In this paper two coatings were considered for deposition on an AA2024 aluminum alloy, ZrO2/20%Y2O3 and Al2O3. To obtain a better adherence of the coating to the base material an additional bond layer of NiCr is used. Both the coatings and bond layer were deposited by atmospheric plasma spraying on the samples. The samples were subjected to a temperature of 500 °C and after that slowly cooled to room temperature. The samples were analyzed by electron microscopy and X-ray diffraction to determine the morphological and phase changes that occurred during the temperature exposure. To determine the stress level in the parts due to thermal expansion a finite element analysis was performed in the same conditions as the tests.

  11. Aqueous solution-chemical derived Nisbnd Al2O3 solar selective absorbing coatings. 2. Wetting agents and spreading of aqueous solutions on aluminum substrate

    NASA Astrophysics Data System (ADS)

    Li, Zhenxiang; Zhao, Jianxi

    2013-03-01

    Wettability of aluminum substrate by the aqueous solutions containing ethoxylated alcohol nonionic surfactants C12En- or Triton X-series was studied using dynamic contact angle measurements. The efficiency of wetting was found to strongly depend on the length of polyoxyethylene (POE) chain of C12En- or Triton X surfactants. For C12E4 that has a very short POE chain, it hardly made the aqueous solution spreading over aluminum. The others with a long POE chain were indeed very efficient in promoting the solution spreading. Moreover, all the spreading process could be completed within 10 s. The single-layer Nisbnd Al2O3 coatings were fabricated from the precursor solutions containing C12En- or Triton X surfactants and the reflectance spectra were measured by a UV/vis spectrophotometer equipped with an integrating sphere. The results indicated that the precursor solution with a long POE chain surfactant as wetting agent favored to fabricate a uniform film on the aluminum substrate and therefore to get a high solar absorptance.

  12. Chemical, mechanical, and thermal expansion properties of a carbon nanotube-reinforced aluminum nanocomposite

    NASA Astrophysics Data System (ADS)

    Sharma, Manjula; Sharma, Vimal

    2016-02-01

    In the present study, the chemical and mechanical properties and the thermal expansion of a carbon nanotube (CNT)-based crystalline nano-aluminum (nano Al) composite were reported. The properties of nanocomposites were tailored by incorporating CNTs into the nano Al matrix using a physical mixing method. The elastic moduli and the coefficient of thermal expansion (CTE) of the nanocomposites were also estimated to understand the effects of CNT reinforcement in the Al matrix. Microstructural characterization of the nanocomposite reveals that the CNTs are dispersed and embedded in the Al matrix. The experimental results indicate that the incorporation of CNTs into the nano Al matrix results in the increase in hardness and elastic modulus along with a concomitant decrease in the coefficient of thermal expansion. The hardness and elastic modulus of the nanocomposite increase by 21% and 20%, respectively, upon CNT addition. The CTE of CNT/Al nanocomposite decreases to 70% compared with that of nano Al.

  13. Thermal expansion studies of prestrained Al{sub 2}O{sub 3}/Al metal matrix composite

    SciTech Connect

    Elomari, S.; Boukhili, R.; Lloyd, D.J.

    1996-05-01

    The present study was undertaken to investigate the effect of prestraining on the coefficient of thermal expansion (CTE) of 10 and 20 volume percent (v/o) Al{sub 2}O{sub 3} particle-reinforced composite over various temperature ranges using thermal mechanical analysis (TMA). The CTE of the composite was shown to be dependent on the volume fraction of the broken particle, plastic yielding and flow, and other transformation processes occurring at elevated temperatures. The experimentally measured values of the CTE were found to be in good agreement with Schapery`s model at various values of plastic prestrain (0--10%) and with a modified Kerner`s equation, at high prestraining ({epsilon}{sub p} > 4%) for a wider temperature range.

  14. Electron Diffraction Evidence for the Ordering of Excess Nickel Atoms by Relation to Stoichiometry in Nickel-Rich Beta'-Nial Formation of a Nickel-Aluminum (Ni2al) Superlattices

    NASA Technical Reports Server (NTRS)

    Reynaud, F.

    1988-01-01

    In electron diffraction patterns of nickel-rich beta-NiAl alloys, many anomalies are observed. One of these is the appearance of diffuse intensity maxima between the reflexions of the B2 structure. This is explained by the short-range ordering of the excess nickel atoms on the simple cubic sublattice occupied only by aluminum atoms in the stoichiometric, perfectly ordered NiAl alloy. After annealing Ni 37.5 atomic percent Al and Ni 37.75 atomic percent Al for 1 week at 300 and 400 C, the diffuse intensity maxima transformed into sharp superstructure reflexions. These reflexions are explained by the formation of the four possible variants of an ordered hexagonal superstructure corresponding to the Ni2Al composition. This structure is closely related to the Ni2Al3 structure (same space group) formed by the ordering of vacancies on the nickel sublattice in aluminum-rich beta-NiAl alloys.

  15. Composite propellant combustion with low aluminum agglomeration

    NASA Astrophysics Data System (ADS)

    Mullen, Jessica Christine

    Aluminum behavior---accumulation, agglomeration and ignition---is studied in a unique, wide-distribution, ammonium perchlorate/hydroxyl-terminated polybutadiene (AP/HTPB) propellant formulation that results in low Al agglomeration, even at low pressures (1--30 atm). Variations in formulation---such as fine-AP/binder ratio, Al particle size, Al loading, coarse-AP size---are also examined. A fuel-rich, oxygenated binder matrix highly loaded with fine (2-mum) AP (FAP) at 75/25:FAP/binder (by mass) is found to have premixed flame conditions that produce minimal agglomeration (without ignition) of 15-mum Al. Coarse AP (CAP) is added to the system in the form of either particles (200 or 400 mum) or pressed-AP laminates (simulated CAP). In the 2-D laminate system the CAP/oxyfuel-matrix flame structure is seen to be similar to that previously described for non-aluminized laminates with split (diffusion) and merged (partially-premixed) flame regimes, depending on pressure and fuel-matrix thickness. Both laminate and particulate systems show that with CAP present, Al can agglomerate more extensively on CAP via lateral surface migration from fuel matrix to the CAP region. The particulate CAP system also shows that Al can accumulate/agglomerate via settling on CAP from above (in the direction of burning). Both systems, but more clearly the 2-D laminates, show that with CAP present, Al is ignited by the outer CAP/fuel-matrix canopy flames. Thus, a propellant formulation is proposed for reducing overall Al agglomeration through intrinsically reduced agglomeration in the fuel-matrix and a reduced number of CAP-particle agglomerates via higher FAP/CAP ratio.

  16. Development and Processing Improvement of Aerospace Aluminum Alloys-Development of AL-Cu-Mg-Ag Alloy (2139)

    NASA Technical Reports Server (NTRS)

    Cho, Alex; Lisagor, W. Barry; Bales, Thomas T.

    2007-01-01

    This final report supplement in presentation format describes a comprehensive multi-tasked contract study to continue the development of the silver bearing alloy now registered as aluminum alloy 2139 by the Aluminum Association. Two commercial scale ingots were processed into nominal plate gauges of two, four and six inches, and were extensively characterized in terms of metallurgical and crystallographic structure, and resulting mechanical properties. This report includes comparisons of the property combinations for this alloy and 2XXX and 7XXX alloys more widely used in high performance applications. Alloy 2139 shows dramatic improvement in all combinations of properties, moreover, the properties of this alloy are retained in all gauge thicknesses, contrary to typical reductions observed in thicker gauges of the other alloys in the comparison. The advancements achieved in this study are expected to result in rapid, widespread use of this alloy in a broad range of ground based, aircraft, and spacecraft applications.

  17. Boron-carbide-aluminum and boron-carbide-reactive metal cermets. [B/sub 4/C-Al

    DOEpatents

    Halverson, D.C.; Pyzik, A.J.; Aksay, I.A.

    1985-05-06

    Hard, tough, lighweight boron-carbide-reactive metal composites, particularly boron-carbide-aluminum composites, are produced. These composites have compositions with a plurality of phases. A method is provided, including the steps of wetting and reacting the starting materials, by which the microstructures in the resulting composites can be controllably selected. Starting compositions, reaction temperatures, reaction times, and reaction atmospheres are parameters for controlling the process and resulting compositions. The ceramic phases are homogeneously distributed in the metal phases and adhesive forces at ceramic-metal interfaces are maximized. An initial consolidated step is used to achieve fully dense composites. Microstructures of boron-carbide-aluminum cermets have been produced with modules of rupture exceeding 110 ksi and fracture toughness exceeding 12 ksi..sqrt..in. These composites and methods can be used to form a variety of structural elements.

  18. Visible photoluminescence in polycrystalline terbium doped aluminum nitride (Tb:AlN) ceramics with high thermal conductivity

    SciTech Connect

    Wieg, A. T.; Kodera, Y.; Wang, Z.; Garay, J. E.; Imai, T.; Dames, C.

    2012-09-10

    Thermal management continues to be one of the major challenges in the development of high powered light sources such as solid state lasers. In particular, the relatively low thermal conductivity of standard photoluminescent (PL) materials limits the overall power output and/or duty cycle. We present a method based on current activated pressure assisted densification for the fabrication of high thermal conductivity PL materials: rare earth doped polycrystalline bulk aluminum nitride. Specifically, the ceramics are translucent and are doped with Tb{sup 3+}, allowing for emission in the visible. Remarkably, the ceramics have a room temperature thermal conductivity of 94 W/(m K) which is almost seven times higher than that of the state of the art host material, Nd-doped yttrium aluminum garnet. These light emitting properties coupled with very high thermal conductivity should enable the development of a wide variety of more powerful light sources.

  19. Studies on synthesis of in-situ Al-TiC metal matrix composites

    NASA Astrophysics Data System (ADS)

    Rai, R. N.; Saha, S. C.; Datta, G. L.; Chakraborty, M.

    2016-03-01

    In the present research work, synthesis and characterization of in-situ Al-TiC composites reinforced with ceramic phases was carried out. The formation of undesirable TiAl3 particles could be avoided justifying the correct procedural requirement adopted while preparing Al-TiC composites. It was observed that distributions of reinforced particles were uniform along the grain boundaries. It was also observed that the average size of the TiC particles was of 0.5 μm. It was also noted that the presence of TiC particles in the composite enhances the yield strength and hardness substantially.

  20. Preparation and Characteristics of Al Matrix Composites Reinforced with ZnWO4 Coated (WO3p + ABOw) Hybrid Reinforcements

    NASA Astrophysics Data System (ADS)

    Feng, Y. C.; Cao, G. J.; Fan, G. H.; Wang, L. P.; Geng, L.

    2013-02-01

    In this article, a ZnWO4 coating was prepared successfully on the surfaces of WO3 particulates and Al18B4O33 whiskers by a chemical precipitation method. Then the Al matrix composite with coated reinforcements was fabricated by a squeeze casting technique. Scanning electronic microscope analysis shows that a thin coating is coated on the surfaces of reinforcements. Differential thermal analysis and x-ray diffraction (XRD) results show that the Zn(OH)2 decomposes at 248°C and that the ZnWO4 is produced by reaction WO3 with ZnO at 716°C. Transmission electronic microscope and XRD analysis show that the coating of ZnWO4 is effective to prevent interfacial reaction between the WO3 particle and the Al matrix. The mechanical property testing shows that the ultimate tensile strength, elastic modulus, and elongation of the hybrid composites with coated reinforcements are improved greatly by introduction of ZnWO4 coating.

  1. Metal matrix composite production by means of laser dispersing of SiC and WC powder in Al alloy

    NASA Astrophysics Data System (ADS)

    Jendrzejewski, R.; Van Acker, K.; Vanhoyweghen, D.; Śliwiński, G.

    2009-03-01

    The properties and processing parameters of the metal matrix composite (MMC) surface layers, obtained under conditions of the superposition of intense laser radiation with the kinetic effect due to gas-dynamically controlled particle injection, are investigated for the case of laser dispersing of the SiC and WC powders in the soft Al 6061 alloy. With substrate preheating above 600 K the nearly homogeneous distribution of SiC particles up to depths of about 1 mm, characterized by their content of about 35% by volume, is revealed by the scanning electron microscopes (SEM) inspection. In the microstructure the presence of the Al 4C 3 plates separated by the eutectic regions of Si-Al is observed and confirmed by the X-ray diffraction (XRD) and energy-dispersive spectrometer (XEDS) measurements. The surface layers (25 cm 2) consisting of parallel processing traces show the wear rate of about 3 × 10 -4 mm 3/N m which is markedly lower than that of the reference substrate. For WC under similar processing conditions the particle enriched layer of thickness of about 100 μm is covered by the alloy material. The experimental data confirm that laser dispersing combines the advantages of the soft matrix with these of the wear and corrosion resistant material, and results in the improvement of the properties of composite material.

  2. Fluxless aluminum brazing

    DOEpatents

    Werner, W.J.

    1974-01-01

    This invention relates to a fluxless brazing alloy for use in forming brazed composites made from members of aluminum and its alloys. The brazing alloy consists of 35-55% Al, 10--20% Si, 25-60% Ge; 65-88% Al, 2-20% Si, 2--18% In; 65--80% Al, 15-- 25% Si, 5- 15% Y. (0fficial Gazette)

  3. Maize aluminum tolerance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Maize is one of the most economically important food crops grown on acid soils, where aluminum (Al) toxicity greatly limits crop yields. Considerable variation for Al tolerance exists in maize, and this variation has been exploited for many years by plant breeders to enhance maize Al tolerance. Curr...

  4. Strength and Formability Improvement of Al-Cu-Mn Aluminum Alloy Complex Parts by Thermomechanical Treatment with Sheet Hydroforming

    NASA Astrophysics Data System (ADS)

    Chen, Yi-Zhe; Liu, Wei; Yuan, Shi-Jian

    2015-05-01

    Normally, the strength and formability of aluminum alloys can be increased largely by severe plastic deformation and heat treatment. However, many plastic deformation processes are more suitable for making raw material, not for formed parts. In this article, an experimental study of the thermomechanical treatment by using the sheet hydroforming process was developed to improve both mechanical strength and formability for aluminum alloys in forming complex parts. The limiting drawing ratio, thickness, and strain distribution of complex parts formed by sheet hydroforming were investigated to study the formability and sheet-deformation behavior. Based on the optimal formed parts, the tensile strength, microhardness, grain structure, and strengthening precipitates were analyzed to identify the strengthening effect of thermomechanical treatment. The results show that in the solution state, the limiting drawing ratio of cylindrical parts could be increased for 10.9% compared with traditional deep drawing process. The peak values of tensile stress and microhardness of formed parts are 18.0% and 12.5% higher than that in T6 state. This investigation shows that the thermomechanical treatment by sheet hydroforming is a potential method for the products manufacturing of aluminum alloy with high strength and good formability.

  5. Metal-Intermetallic Laminate Ti-Al3Ti Composites Produced by Spark Plasma Sintering of Titanium and Aluminum Foils Enclosed in Titanium Shells

    NASA Astrophysics Data System (ADS)

    Lazurenko, Daria V.; Mali, Vyacheslav I.; Bataev, Ivan A.; Thoemmes, Alexander; Bataev, Anatoly A.; Popelukh, Albert I.; Anisimov, Alexander G.; Belousova, Natalia S.

    2015-09-01

    Metal-intermetallic laminate composites are considered as promising materials for application in the aerospace industry. In this study, Ti-Al3Ti composites enclosed in titanium cases were produced by reactive spark plasma sintering. Sintering was carried out at 1103 K and 1323 K (830 °C and 1050 °C) for 10 minutes. In both cases, high-quality Ti-Al3Ti composites containing thin transition layers at the interfaces were obtained. Al2Ti, AlTi, and AlTi3 intermetallic phases and a solid solution of aluminum in titanium were observed in the transition layers by scanning and transmission electron microscopy. The material sintered at 1323 K (1050 °C) had higher strength in comparison with the composite obtained at 1103 K (830 °C). However, the hardness of the intermetallic component in the sample sintered at higher temperature decreased due to the grain growth. The impact toughness values of both materials were approximately identical.

  6. Effect of Aluminum Content on Microstructure and Mechanical Properties of Al x CoCrFeMo0.5Ni High-Entropy Alloys

    NASA Astrophysics Data System (ADS)

    Hsu, Chin-You; Juan, Chien-Chang; Sheu, Tsing-Shien; Chen, Swe-Kai; Yeh, Jien-Wei

    2013-12-01

    High-entropy alloys Al x CoCrFeMo0.5Ni with varied Al contents ( x = 0, 0.5, 1.0, 1.5, and 2.0) have been designed based on the Al x CoCrCuFeNi system to improve mechanical properties for room and elevated temperatures. They have been investigated for microstructure and mechanical properties. As the aluminum content increases, the as-cast structure evolves from face-centered cubic dendrite + minor σ-phase interdendrite at x = 0 to B2 dendrite with body-centered cubic (bcc) precipitates + bcc interdendrite with B2 precipitates at x = 2.0. This confirms the strong bcc-forming tendency of Al. The room-temperature Vickers hardness starts from the lowest, HV 220, at x = 0, attains to the maximum, HV 720, at x = 1.0, and then decreases to HV 615 at x = 2.0. Compared with the base alloy system, the current alloy system has a superior combination of hardness and fracture toughness. In addition, Al x CoCrFeMo0.5Ni alloys except x = 0 display a higher hot hardness level than those of Ni-based superalloys, including In 718 and In 718 H, up to 1273 K and show great potential in high-temperature applications.

  7. A new phase in the system lithium-aluminum: Characterization of orthorhombic Li{sub 2}Al

    SciTech Connect

    Puhakainen, Kati; Bostroem, Magnus; Groy, Thomas L.; Haeussermann, Ulrich

    2010-11-15

    Investigation of the Li rich part of the binary Li-Al system revealed the existence of a new phase, orthorhombic Li{sub 2}Al, which is isostructural to Li{sub 2}Ga and Li{sub 2}In. The crystal structure was determined from single crystal X-ray diffraction data (Cmcm, a=4.658(2) A, b=9.767(4) A, c=4.490(2) A, Z=4). Refinement of atomic position site occupancies yielded a composition Li{sub 1.92}Al{sub 1.08} (64 at% Li) indicating a small homogeneity range, Li{sub 2-x}Al{sub 1+x}. Li{sub 2}Al is the peritectic decomposition product of the stoichiometric compound Li{sub 9}Al{sub 4}, which is stable below 270{+-}2 {sup o}C. Li{sub 2}Al itself decomposes peritectically to Li{sub 3}Al{sub 2} and Li rich melt at 335{+-}2 {sup o}C. The discovery of Li{sub 2}Al (Li{sub 2-x}Al{sub 1+x}) settles a long standing inconsistency in the Li-Al phase diagram which was based on the assumption that Li{sub 9}Al{sub 4} possesses a high temperature modification. - Graphical abstract: A new phase, Li{sub 2}Al, has been discovered in the binary Li-Al system. The structure of orthorhombic Li{sub 2}Al is closely related to that of the established monoclinic phase Li{sub 9}Al{sub 4}.

  8. Study on effects of powder and flake chemistry and morphology on the properties of Al-Cu-Mg-X-X-X powder metallurgy advanced aluminum alloys

    NASA Technical Reports Server (NTRS)

    Meschter, P. J.; Lederich, R. J.; Oneal, J. E.

    1986-01-01

    A study was conducted: (1) to develop rapid solidification processed (RSP) dispersoid-containing Al-3Cu-2Li-1Mg-0.2Zr alloys as substitutes for titanium alloys and commercial 2XXX aluminum alloys for service to at least 150 C; and (2) to develop RSP Al-4Li-Cu-Mg-Zr alloys as substitutes for high-strength commercial 7XXX alloys in ambient-temperature applications. RSP Al-3Cu-2Li-1Mg-0.2Zr alloys have density-normalized yield stresses at 150 C up to 52% larger than that of 2124-T851 and up to 30% larger than that of Ti-6Al-4V. Strength at 150 C in these alloys is provided by thermally stable delta' (Al3Li), T1 (Al2LiCu), and S' (Al2CuMg) precipitates. Density-normalized yield stresses of RSP Al-3Cu-2Li-1Mg-0.2Zr alloys are up to 100% larger than that of 2124-T851 and equivalent to that of Al-8Fe-4Ce at 260 C. Strength in the RSP alloys at 260 C is provided by incoherent dispersoids and subboundary constituent particles such as T1 and S. The RSP alloys are attractive substitutes in less than or = 100-h exposures for 2xxx and Al-4Fe-Ce alloys up to 260 C and for titanium alloys up to 150 C. RSP Al-4Li-Cu-Mg-Zr alloys have ambient-temperature yield and ultimate tensile stresses similar to that of 7050-T7651, and are 14% less dense. RSP Al-4Li-0.5Cu-1.5Mg-0.2Zr has a 20% higher specific yield stress, 40% higher specific elastic modulus, and superior corrosion resistance compared to the properties of 7050-T7651. Strength in the Al-4Li-Cu-Mg-Zr alloy class is primarily provided by the substructure and delta' precipitates and is independent of Cu:Mg ratio. Improvements in fracture toughness and transverse-orientation properties in both alloy classes depend on improved melt practices to eliminate oxide inclusions which are incorporated into the consolidated forms.

  9. Tungsten wire/FeCrAlY matrix turbine blade fabrication study

    NASA Technical Reports Server (NTRS)

    Melnyk, P.; Fleck, J. N.

    1979-01-01

    The objective was to establish a viable FRS monotape technology base to fabricate a complex, advanced turbine blade. All elements of monotape fabrication were addressed. A new process for incorporation of the matrix, including bi-alloy matrices, was developed. Bonding, cleaning, cutting, sizing, and forming parameters were established. These monotapes were then used to fabricate a 48 ply solid JT9D-7F 1st stage turbine blade. Core technology was then developed and first a 12 ply and then a 7 ply shell hollow airfoil was fabricated. As the fabrication technology advanced, additional airfoils incorporated further elements of sophistication, by introducing in sequence bonded root blocks, cross-plying, bi-metallic matrix, tip cap, trailing edge slots, and impingement inserts.

  10. Studies of waste-canister compatibility. [Waste forms: Al-Si and Pb-Sn matrix alloys, FUETAP, glass, Synroc D, and waste particles coated with carbon or carbon plus SiC

    SciTech Connect

    McCoy, H.E.

    1983-01-01

    Compatibility studies were conducted between 7 waste forms and 15 potential canister structural materials. The waste forms were Al-Si and Pb-Sn matrix alloys, FUETAP, glass, Synroc D, and waste particles coated with carbon or carbon plus silicon carbide. The canister materials included carbon steel (bare and with chromium or nickel coatings), copper, Monel, Cu-35% Ni, titanium (grades 2 and 12), several Inconels, aluminum alloy 5052, and two stainless steels. Tests of either 6888 or 8821 h were conducted at 100 and 300/sup 0/C, which bracket the low and high limits expected during storage. Glass and FUETAP evolved sulfur, which reacted preferentially with copper, nickel, and alloys of these metals. The Pb-Sn matrix alloy stuck to all samples and the carbon-coated particles to most samples at 300/sup 0/C, but the extent of chemical reaction was not determined. Testing for 0.5 h at 800/sup 0/C was included because it is representative of a transportation accident and is required of casks containing nuclear materials. During these tests (1) glass and FUETAP evolved sulfur, (2) FUETAP evolved large amounts of gas, (3) Synroc stuck to titanium alloys, (4) glass was molten, and (5) both matrix alloys were molten with considerable chemical interactions with many of the canister samples. If this test condition were imposed on waste canisters, it would be design limiting in many waste storage concepts.

  11. Reaction synthesis of Ni-Al based particle composite coatings

    SciTech Connect

    SUSAN,DONALD F.; MISIOLEK,WOICECK Z.; MARDER,ARNOLD R.

    2000-02-11

    Electrodeposited metal matrix/metal particle composite (EMMC) coatings were produced with a nickel matrix and aluminum particles. By optimizing the process parameters, coatings were deposited with 20 volume percent aluminum particles. Coating morphology and composition were characterized using light optical microscopy (LOM), scanning electron microscopy (SEM), and electron probe microanalysis (EPMA). Differential thermal analysis (DTA) was employed to study reactive phase formation. The effect of heat treatment on coating phase formation was studied in the temperature range 415 to 1,000 C. Long-time exposure at low temperature results in the formation of several intermetallic phases at the Ni matrix/Al particle interfaces and concentrically around the original Al particles. Upon heating to the 500--600 C range, the aluminum particles react with the nickel matrix to form NiAl islands within the Ni matrix. When exposed to higher temperatures (600--1,000 C), diffusional reaction between NiAl and nickel produces ({gamma})Ni{sub 3}Al. The final equilibrium microstructure consists of blocks of ({gamma}{prime})Ni{sub 3}Al in a {gamma}(Ni) solid solution matrix, with small pores also present. Pore formation is explained based on local density changes during intermetallic phase formation and microstructural development is discussed with reference to reaction synthesis of bulk nickel aluminides.

  12. Fabrication and Structure Characterization of Alumina-Aluminum Interpenetrating Phase Composites

    NASA Astrophysics Data System (ADS)

    Dolata, Anna J.

    2016-01-01

    Alumina-Aluminum composites with interpenetrating networks structure belong to advanced materials with potentially better properties when compared with composites reinforced by particles or fibers. The paper presents the experimental results of fabrication and structure characterization of Al matrix composites locally reinforced via Al2O3 ceramic foam. The composites were obtained using centrifugal infiltration of porous ceramics by liquid aluminum alloy. Both scanning electron microscopy (SEM + EDS) and x-ray tomography were used to determine the structure of foams and composites especially in reinforced areas. The quality of castings, degree of pore filling in ceramic foams by Al alloy, and microstructure in area of interface were assessed.

  13. Deposition of Co nano-particles in a CoO/Al 2O 3 matrix by magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Gamino, M.; de Oliveira, J. T. D.; dos Santos, C. R.; Bohn, F.; Schelp, L. F.; Denardin, J. C.

    We have explored the use of sequential sputtering as an alternative way of growing Co clusters inside an antiferromagnetic matrix of CoO. The samples are composed of 10 bi- or tri-layers and have been deposited by direct magnetron sputtering of Co, CoO and Al 2O 3 targets. Transmission electron microscopy and impedance spectroscopy measurements show that the direct deposition of Co over CoO does not favor the Volmer-Weber tridimensional mode in the tested range of Co nominal thicknesses. In the samples where an Al 2O 3 layer is formed prior to the Co deposition, Co aggregates of nano-size are formed and retained when the empty space is filled by CoO. Some preliminary results of the magnetization as a function of temperature are presented and discussed.

  14. An investigation of WEDM process parameters on the surface roughness of Al/B4Cp metal matrix composites

    NASA Astrophysics Data System (ADS)

    Ozan, Sertan; Guleryuz, L. Feray; Kasman, Şefika; İpek, Rasim

    2012-09-01

    The purpose of this study is to define the effects of wire electrical discharge machining (WEDM) process parameters on surface roughness for Al/B4Cp metal matrix composites (MMCs) having different amounts of reinforcement particle (3, 6, and 12 wt.%). Totally nine experiments were performed according to the experimental design method conducted by Taguchi L9 orthogonal array on Al/B4Cp MMC samples to determine the effect of WEDM process parameters on the surface roughness. The particle reinforcement amount (wt.%) is the most dominant factor (60.69%) on the surface roughness and it is followed by pulse on time (36.28%) and wire feed (1.49%), respectively. The surface roughness value taken from confirmation experiments and predicted value is 5.26μm, 5.37μm respectively.

  15. Development of Ta-matrix Nb3Al Strand and Cable for High-Field Accelerator Magnet

    SciTech Connect

    Tsuchiya, K.; Ghosh, A.; Kikuchi, A.; Takeuchi, T.; Banno, N.; Iijima, Y.; Nimori, S.; Takigawa, H.; Terashima, A.; Nakamoto, T.; Kuroda, Y.; Maruyama, M.; Takao, T.; Tanaka, K.; Nakagawa, K.; Barzi, E.; Yamada, R.; Zlobin, A.

    2011-08-03

    Research and development of Nb{sub 3}Al strands and cables for a high field accelerator magnet is ongoing under the framework of the CERN-KEK collaboration. In this program, new Ta-matrix Nb{sub 3}Al strands were developed and their mechanical properties and superconducting properties were studied. The non-Cu J{sub c} values of these strands were 750 {approx} 800 A/mm{sup 2} at 15 T and 4.2 K. Using these strands, test fabrication of 27-strand Rutherford cable was carried out in collaboration with NIMS and Fermilab. The properties of the strands extracted from the cable were examined and it was found that there was no degradation of the superconducting properties of the strands. In this paper, we report the fabrication of the strands and the cable in brief and present some of the results obtained by studying their properties.

  16. High Strength Discontinuously Reinforced Aluminum For Rocket Applications

    NASA Technical Reports Server (NTRS)

    Pandey, A. B.; Shah, S. R.; Shadoan, M.

    2003-01-01

    This study presents results on the development of a new aluminum alloy with very high strength and ductility. Five compositions of Al-Mg-Sc-Gd-Zr alloy were selected for this purpose. These alloys were also reinforced with 15 volume percent silicon-carbide and boron-carbide particles to produce Discontinuously Reinforced Aluminum (DRA) materials. Matrix alloys and DRA were processed using a powder metallurgy process. The helium gas atomization produced very fine powder with cellular-dentritic microstructure. The microstructure of matrix alloys showed fine Al3Sc based precipitate which provides significant strengthening in these alloys. DRA showed uniform distribution of reinforcement in aluminum matrix. DRA materials were tested at -320 F, 75 F in air and 7S F in gaseous hydrogen environments and matrix alloys were tested at 75 F in air. DRA showed high strengths in the range of 89-111 ksi (614-697 MPa) depending on alloy compositions and test environments. Matrix alloys had a good combination of strength, 84-89 ksi (579-621 MPa) and ductility, 4.5-6.5%. The properties of these materials can further be improved by proper control of processing parameters.

  17. High Strength Aluminum Alloy For High Temperature Applications

    NASA Technical Reports Server (NTRS)

    Lee, Jonathan A. (Inventor); Chen, Po-Shou (Inventor)

    2005-01-01

    A cast article from an aluminum alloy has improved mechanical properties at elevated temperatures. The cast article has the following composition in weight percent: Silicon 6.0-25.0, Copper 5.0-8.0, Iron 0.05-1.2, Magnesium 0.5-1.5, Nickel 0.05-0.9, Manganese 0.05-1.2, Titanium 0.05-1.2, Zirconium 0.05-1.2, Vanadium 0.05-1.2, Zinc 0.05-0.9, Strontium 0.001-0.1, Phosphorus 0.001-0.1, and the balance is Aluminum, wherein the silicon-to-magnesium ratio is 10-25, and the copper-to-magnesium ratio is 4-15. The aluminum alloy contains a simultaneous dispersion of three types of Al3X compound particles (X=Ti, V, Zr) having a LI2 crystal structure, and their lattice parameters are coherent to the aluminum matrix lattice. A process for producing this cast article is also disclosed, as well as a metal matrix composite, which includes the aluminum alloy serving as a matrix containing up to about 60% by volume of a secondary filler material.

  18. Aluminum powder metallurgy processing

    NASA Astrophysics Data System (ADS)

    Flumerfelt, Joel Fredrick

    In recent years, the aluminum powder industry has expanded into non-aerospace applications. However, the alumina and aluminum hydroxide in the surface oxide film on aluminum powder require high cost powder processing routes. A driving force for this research is to broaden the knowledge base about aluminum powder metallurgy to provide ideas for fabricating low cost aluminum powder components. The objective of this dissertation is to explore the hypothesis that there is a strong linkage between gas atomization processing conditions, as-atomized aluminum powder characteristics, and the consolidation methodology required to make components from aluminum powder. The hypothesis was tested with pure aluminum powders produced by commercial air atomization commercial inert gas atomization and gas atomization reaction synthesis (GARS). The commercial atomization methods are bench marks of current aluminum powder technology. The GARS process is a laboratory scale inert gas atomization facility. A benefit of using pure aluminum powders is an unambiguous interpretation of the results without considering the effects of alloy elements. A comparison of the GARS aluminum powders with the commercial aluminum powders showed the former to exhibit superior powder characteristics. The powders were compared in terms of size and shape, bulk chemistry, surface oxide chemistry and structure, and oxide film thickness. Minimum explosive concentration measurements assessed the dependence of explosibility hazard on surface area, oxide film thickness, and gas atomization processing conditions. The GARS aluminum powders were exposed to different relative humidity levels, demonstrating the effect of atmospheric conditions on post-atomization oxidation of aluminum powder. An Al-Ti-Y GARS alloy exposed in ambient air at different temperatures revealed the effect of reactive alloy elements on post-atomization powder oxidation. The pure aluminum powders were consolidated by two different routes, a conventional consolidation process for fabricating aerospace components with aluminum powder and a proposed alternative. The consolidation procedures were compared by evaluating the consolidated microstructures and the corresponding mechanical properties. A low temperature solid state sintering experiment demonstrated that tap densified GARS aluminum powders can form sintering necks between contacting powder particles, unlike the total resistance to sintering of commercial air atomization aluminum powder.

  19. Impact loading of an aluminum/alumina composite

    SciTech Connect

    Johnson, J.N.; Hixson, R.S.; Gray, G.T. III

    1994-02-01

    The combined demands of increased strength and reduced weight in modern dynamic structural applications require improved understanding of composite materials subject to impact conditions. In order to isolate and identify individual contributions to composite material behavior under these conditions, an experimental and theoretical program was undertaken to examine dynamic behavior of an aluminum/alumina composite consisting of a 6061-T6 aluminum matrix containing elastic, spherical Al{sub 2}O{sub 3} inclusions (10 percent by volume, average diameter {approximately}25 microns). Parallel impact experiments are conducted on these composites and on pure 6061-T6 aluminum samples. This combination provides a direct and immediate qualitative picture of the effect of Al{sub 2}O{sub 3} inclusions the dynamic response of the composite in compression, release, and spallation. Additional experimental information is provided by post-shock reload tests of shock-recovered samples at quasi-static and intermediate strain rates.

  20. Effect of Amount of Aluminum on the Performance of Si-Al Codeposited Anodes for Lithium Batteries.

    PubMed

    Patil, Vaishali; Patil, Arun; Yoon, Seok-Jin; Choi, Ji-Won

    2015-11-01

    Silicon is considered one of the most promising anode materials for high-performance Li-ion batteries due to its 4000 mAh/g theoretical specific capacity, relative abundance, low cost, and environmental benignity. However, silicon experiences a dramatic volume change (-300%) during full charge/discharge cycling, leading to severe capacity decay and poor cycling stability. Here, we report Si-Al codeposited anode material for Li-ion batteries. The Si-Al thin films were deposited by co-deposition from Si and Al target on nickel substrate. The composition of Si and Al in the film is estimated by energy-dispersive spectroscopy. The XRD and SEM analysis revealed that the Si-Al thin films were amorphous in structure. The electrochemical performance of the Si-Al thin film as anode material for lithium ion battery was investigated by the charge/discharge tests. Galvanostatic half-cell electrochemical measurements were conducted in between 0 mV to 2 V using a Li counter electrode, demonstrating that the Al rich Si-Al thin film achieved a good cycleability up to 100 cycles with a high capacity retention. Si-Al sample having 11.04% Al shows capacity 825 mAh/g over the 100 cycles. PMID:26726617

  1. Influence of shear force on floc properties and residual aluminum in humic acid treatment by nano-Al??.

    PubMed

    Xu, Weiying; Gao, Baoyu; Du, Bin; Xu, Zhenghe; Zhang, Yongfang; Wei, Dong

    2014-04-30

    The impacts of various shear forces on floc sizes and structures in humic acid coagulations by polyaluminum chloride (PACl) and nano-Al13 were comparatively studied in this paper. The dynamic floc size was monitored by use of a laser diffraction particle sizing device. The floc structure was evaluated in terms of fractal dimension, analyzed by small-angle laser light scattering (SALLS). The effect of increased shear rate on residual Al of the coagulation effluents was then analyzed on the basis of different floc characteristics generated under various shear conditions. The results showed that floc size decreased with the increasing shear rate for both Al13 and PACl. Besides, floc strength and re-formation ability were also weakened by the enhanced shear force. Al13 resulted in small, strong and better recoverable flocs than PACl and moreover, in the shear range of 100-300 revolution per minute (rpm) (G=40.7-178.3s(-1)), the characteristics of HA-Al13 flocs displayed smaller scale changes than those of HA-PACl flocs. The results of residual Al measurements proved that with shear increased, the residual Al increased continuously but Al13 presented less sensitivity to the varying shear forces. PACl contributed higher residual Al than Al13 under the same shear condition. PMID:24583809

  2. Sinterability of Y2O3-Al2O3 particulate stainless steel matrix composites

    NASA Astrophysics Data System (ADS)

    Velasco, F.; Antón, N.; Torralba, J. M.; Vardavoulias, M.; Bienvenu, Y.

    1996-01-01

    P/M 316L austenitic stainless steel has been reinforced with yttria and alumina particles. In order to improve the sintering behaviour of these composite materials, chromium diboride and boron nitride were added. The sinterability of the different materials has been characterised through dilatometry and sintering curves (sintered density vs. sintering temperature). A metallographic study by SEM coupled with microprobe has also been performed. Composites materials present a good densification. Chromium diboride and boron nitride react with the matrix in different manners, but they both greatly improve the sinterability of reinforced materials. The optimum sintering temperature for these composites materials is 1250 °C.

  3. Influence of Cr and W alloying on the fiber-matrix interfacial shear strength in cast and directionally solidified sapphire NiAl composites

    NASA Technical Reports Server (NTRS)

    Asthana, R.; Tiwari, R.; Tewari, S. N.

    1995-01-01

    Sapphire-reinforced NiAl matrix composites with chromium or tungsten as alloying additions were synthesized using casting and zone directional solidification (DS) techniques and characterized by a fiber pushout test as well as by microhardness measurements. The sapphire-NiAl(Cr) specimens exhibited an interlayer of Cr rich eutectic at the fiber-matrix interface and a higher interfacial shear strength compared to unalloyed sapphire-NiAl specimens processed under identical conditions. In contrast, the sapphire-NiAl(W) specimens did not show interfacial excess of tungsten rich phases, although the interfacial shear strength was high and comparable to that of sapphire-NiAl(Cr). The postdebond sliding stress was higher in sapphire-NiAl(Cr) than in sapphire-NiAl(W) due to interface enrichment with chromium particles. The matrix microhardness progressively decreased with increasing distance from the interface in both DS NiAl and NiAl(Cr) specimens. The study highlights the potential of casting and DS techniques to improve the toughness and strength of NiAl by designing dual-phase microstructures in NiAl alloys reinforced with sapphire fibers.

  4. Effects of MoS2 and Multiwalled Carbon Nanotubes on Tribological Behavior of TiAl Matrix Composite

    NASA Astrophysics Data System (ADS)

    Yang, Kang; Shi, Xiaoliang; Zhai, Wenzheng

    2016-02-01

    The sliding velocities and applied loads are often varied to minimize friction and decrease mechanical energy dissipation in moving mechanical assemblies. In this study, TiAl matrix composites containing MoS2 and multiwalled carbon nanotubes (MWCNTs) are fabricated using spark plasma sintering. The testing conditions are chosen as 0.3 m/s-6.5 N; 0.5 m/s-11.4 N; and 0.7 m/s-16.3 N. The sliding tribological property of TiAl matrix composite containing MoS2 and MWCNTs (TMC-MM) is evaluated based on a ball-on-disk tribometer. The results show that the tribological performance of TMC-MM is excellent for the lower friction coefficient and less wear rate at 0.7 m/s-16.3 N. Massive MWCNTs are pulled out from TMC-MM at 0.7 m/s-16.3 N, and made to adhere to wear surface due to the existence of MoS2 with high adhesion property, resulting in the formation of smooth isolated island-like layer. It could protect the lubrication film formed on the worn surface, and be beneficial to the excellent tribological behavior of TMC-MM.

  5. Effects of MoS2 and Multiwalled Carbon Nanotubes on Tribological Behavior of TiAl Matrix Composite

    NASA Astrophysics Data System (ADS)

    Yang, Kang; Shi, Xiaoliang; Zhai, Wenzheng

    2016-03-01

    The sliding velocities and applied loads are often varied to minimize friction and decrease mechanical energy dissipation in moving mechanical assemblies. In this study, TiAl matrix composites containing MoS2 and multiwalled carbon nanotubes (MWCNTs) are fabricated using spark plasma sintering. The testing conditions are chosen as 0.3 m/s-6.5 N; 0.5 m/s-11.4 N; and 0.7 m/s-16.3 N. The sliding tribological property of TiAl matrix composite containing MoS2 and MWCNTs (TMC-MM) is evaluated based on a ball-on-disk tribometer. The results show that the tribological performance of TMC-MM is excellent for the lower friction coefficient and less wear rate at 0.7 m/s-16.3 N. Massive MWCNTs are pulled out from TMC-MM at 0.7 m/s-16.3 N, and made to adhere to wear surface due to the existence of MoS2 with high adhesion property, resulting in the formation of smooth isolated island-like layer. It could protect the lubrication film formed on the worn surface, and be beneficial to the excellent tribological behavior of TMC-MM.

  6. Lightweight Aluminum/Nano composites for Automotive Drive Train Applications

    SciTech Connect

    Chelluri, Bhanumathi; Knoth, Edward A.; Schumaker, Edward J.

    2012-12-14

    During Phase I, we successfully processed air atomized aluminum powders via Dynamic Magnetic Compaction (DMC) pressing and subsequent sintering to produce parts with properties similar to wrought aluminum. We have also showed for the first time that aluminum powders can be processed without lubes via press and sintering to 100 % density. This will preclude a delube cycle in sintering and promote environmentally friendly P/M processing. Processing aluminum powders via press and sintering with minimum shrinkage will enable net shape fabrication. Aluminum powders processed via a conventional powder metallurgy process produce too large a shrinkage. Because of this, sinter parts have to be machined into specific net shape. This results in increased scrap and cost. Fully sintered aluminum alloy under this Phase I project has shown good particle-to-particle bonding and mechanical properties. We have also shown the feasibility of preparing nano composite powders and processing via pressing and sintering. This was accomplished by dispersing nano silicon carbide (SiC) powders into aluminum matrix comprising micron-sized powders (<100 microns) using a proprietary process. These composite powders of Al with nano SiC were processed using DMC press and sinter process to sinter density of 85-90%. The process optimization along with sintering needs to be carried out to produce full density composites.

  7. Ultrasonic-Assisted Synthesis of Graphite-Reinforced Al Matrix Nanocomposites

    NASA Astrophysics Data System (ADS)

    Christy Roshini, P.; Nagasivamuni, B.; Raj, Baldev; Ravi, K. R.

    2015-06-01

    A novel approach to produce Al-2 vol.% graphite nanocomposites using micron-sized graphite particles has been reported using conventional stir casting technique combined with ultrasonic treatment. Microstructural observations indicate that the visible agglomerations and porosities are significantly reduced after ultrasonic treatment. Transmission electron microscopy studies of ultrasonic-treated composites reveal that the size of the graphite particles is reduced substantially and its morphology is transformed into flake type structures. The width of the graphite flakes is reduced markedly with the increase in ultrasonic processing time and it is found to be in the range of 100-120 nm with an aspect ratio of 8.83 after 5 min of ultrasonication. Added to that, considerable improvement in the hardness values are noted for ultrasonic-treated Al-2 vol.% graphite composites when compared to conventional untreated composites. The mechanism behind the significant reduction in graphite particle size and porosity, uniform distribution of graphite particles and hardness increments are discussed.

  8. Improved performance of U-Mo dispersion fuel by Si addition in Al matrix.

    SciTech Connect

    Kim, Y S; Hofman, G L

    2011-06-01

    The purpose of this report is to collect in one publication and fit together work fragments presented in many conferences in the multi-year time span starting 2002 to the present dealing with the problem of large pore formation in U-Mo/Al dispersion fuel plates first observed in 2002. Hence, this report summarizes the excerpts from papers and reports on how we interpreted the relevant results from out-of-pile and in-pile tests and how this problem was dealt with. This report also provides a refined view to explain in detail and in a quantitative manner the underlying mechanism of the role of silicon in improving the irradiation performance of U-Mo/Al.

  9. Physical and Microstructure Properties of MgAl2C2 Matrix Composite Coating on Titanium

    NASA Astrophysics Data System (ADS)

    Li, Peng

    2014-12-01

    This work is based on the dry sliding wear of the MgAl2C2-TiB2-FeSi composite coating deposited on a pure Ti using a laser cladding technique. Scanning electron microscope images indicate that the nanocrystals and amorphous phases are produced in such coating. X-ray diffraction result indicated that such coating mainly consists of MgAl2C2, Ti-B, Ti-Si, Fe-Al, Ti3SiC2, TiC and amorphous phases. The high resolution transmission electron microscope image indicated that the TiB nanorods were produced in the coating, which were surrounded by other fine precipitates, favoring the formation of a fine microstructure. With increase of the laser power from 0.85 kW to 1.00 kW, the micro-hardness decreased from 1350 1450 HV0.2 to 1200 1300 HV0.2. The wear volume loss of the laser clad coating was 1/7 of pure Ti.

  10. Aluminum powder metallurgy processing

    SciTech Connect

    Flumerfelt, J.F.

    1999-02-12

    The objective of this dissertation is to explore the hypothesis that there is a strong linkage between gas atomization processing conditions, as-atomized aluminum powder characteristics, and the consolidation methodology required to make components from aluminum powder. The hypothesis was tested with pure aluminum powders produced by commercial air atomization, commercial inert gas atomization, and gas atomization reaction synthesis (GARS). A comparison of the GARS aluminum powders with the commercial aluminum powders showed the former to exhibit superior powder characteristics. The powders were compared in terms of size and shape, bulk chemistry, surface oxide chemistry and structure, and oxide film thickness. Minimum explosive concentration measurements assessed the dependence of explosibility hazard on surface area, oxide film thickness, and gas atomization processing conditions. The GARS aluminum powders were exposed to different relative humidity levels, demonstrating the effect of atmospheric conditions on post-atomization processing conditions. The GARS aluminum powders were exposed to different relative humidity levels, demonstrating the effect of atmospheric conditions on post-atomization oxidation of aluminum powder. An Al-Ti-Y GARS alloy exposed in ambient air at different temperatures revealed the effect of reactive alloy elements on post-atomization powder oxidation. The pure aluminum powders were consolidated by two different routes, a conventional consolidation process for fabricating aerospace components with aluminum powder and a proposed alternative. The consolidation procedures were compared by evaluating the consolidated microstructures and the corresponding mechanical properties. A low temperature solid state sintering experiment demonstrated that tap densified GARS aluminum powders can form sintering necks between contacting powder particles, unlike the total resistance to sintering of commercial air atomization aluminum powder.

  11. Tailored growth of in situAl4SiC4 in laser melted aluminum melt

    NASA Astrophysics Data System (ADS)

    Chang, Fei; Gu, Dongdong

    2015-04-01

    The crystallization and growth of in situ crystals during non-equilibrium laser rapid melting/solidification process is an important research topic in the fields of both Applied Physics and Materials Science. The present paper studies the development mechanisms of in situ formed Al4SiC4 ceramic phase within the selective laser melted SiC/AlSi10Mg composites. Two different-structured Al4SiC4 having strip and particle morphologies were disclosed and their growth mechanisms were influenced by laser linear energy density (LED). An elevated LED resulted in a larger degree formation of strip-structured Al4SiC4 with the gradually coarsened crystal sizes in its length and thickness. The homogeneously dispersed particle-shaped Al4SiC4 exhibited a considerably refined nanostructure with a proper increase in LED, but showing a significant coarsening of particles at an excessive LED.

  12. Microstructure and high-temperature oxidation resistance of TiN/Ti3Al intermetallic matrix composite coatings on Ti6Al4V alloy surface by laser cladding

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaowei; Liu, Hongxi; Wang, Chuanqi; Zeng, Weihua; Jiang, Yehua

    2010-11-01

    A high-temperature oxidation resistant TiN embedded in Ti3Al intermetallic matrix composite coating was fabricated on titanium alloy Ti6Al4V surface by 6kW transverse-flow CO2 laser apparatus. The composition, morphology and microstructure of the laser clad TiN/Ti3Al intermetallic matrix composite coating were characterized by optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffraction (XRD) and energy dispersive spectrometer (EDS). In order to evaluate the high-temperature oxidation resistance of the composite coatings and the titanium alloy substrate, isothermal oxidation test was performed in a conventional high-temperature resistance furnace at 600°C and 800°C respectively. The result shows that the laser clad intermetallic composite coating has a rapidly solidified fine microstructure consisting of TiN primary phase (granular-like, flake-like, and dendrites), and uniformly distributed in the Ti3Al matrix. It indicates that a physical and chemical reaction between the Ti powder and AlN powder occurred completely under the laser irradiation. In addition, the microhardness of the TiN/Ti3Al intermetallic matrix composite coating is 844HV0.2, 3.4 times higher than that of the titanium alloy substrate. The high-temperature oxidation resistance test reveals that TiN/Ti3Al intermetallic matrix composite coating results in the better modification of high-temperature oxidation behavior than the titanium substrate. The excellent high-temperature oxidation resistance of the laser cladding layer is attributed to the formation of the reinforced phase TiN and Al2O3, TiO2 hybrid oxide. Therefore, the laser cladding TiN/Ti3Al intermetallic matrix composite coating is anticipated to be a promising oxidation resistance surface modification technique for Ti6Al4V alloy.

  13. Growth of aluminum-free porous oxide layers on titanium and its alloys Ti-6Al-4V and Ti-6Al-7Nb by micro-arc oxidation.

    PubMed

    Duarte, Laís T; Bolfarini, Claudemiro; Biaggio, Sonia R; Rocha-Filho, Romeu C; Nascente, Pedro A P

    2014-08-01

    The growth of oxides on the surfaces of pure Ti and two of its ternary alloys, Ti-6Al-4V and Ti-6Al-7Nb, by micro-arc oxidation (MAO) in a pH 5 phosphate buffer was investigated. The primary aim was to form thick, porous, and aluminum-free oxide layers, because these characteristics favor bonding between bone and metal when the latter is implanted in the human body. On Ti, Ti-6Al-4 V, and Ti-6Al-7Nb, the oxides exhibited breakdown potentials of about 200 V, 130 V, and 140 V, respectively, indicating that the oxide formed on the pure metal is the most stable. The use of the MAO procedure led to the formation of highly porous oxides, with a uniform distribution of pores; the pores varied in size, depending on the anodizing applied voltage and time. Irrespective of the material being anodized, Raman analyses allowed us to determine that the oxide films consisted mainly of the anatase phase of TiO2, and XPS results indicated that this oxide is free of Al and any other alloying element. PMID:24907769

  14. Role of the matrix precipitation and interface dislocations on the nanostability of an Al-4w%Cu-Al{sub 2}O{sub 3} fiber-reinforced composite

    SciTech Connect

    Sgobba, S.; Parrini, L.; Kuenzi, H.U.; Ilschner, B.

    1994-12-31

    In many industrial applications the elastic and dimensional stability of materials is required at a nanometric scale. High resolution laser interferometry and mechanical spectroscopy have been employed to measure low temperature creep of the short-fiber reinforced composite Al-4w%Cu-Al{sub 2}O{sub 3}. The typical strain resolution of the laser interferometer is 10{sup {minus}10}. Fiber reinforcement generally increases the dislocation density in the metal matrix; in parallel, damping is enhanced. The models relating the dislocation structures at the precipitate-matrix and fiber-matrix interfaces to the damping behavior are discussed.

  15. Effect of aluminum alloying on the structure, the phase composition, and the thermoelastic martensitic transformations in ternary Ni-Mn-Al alloys

    NASA Astrophysics Data System (ADS)

    Belosludtseva, E. S.; Kuranova, N. N.; Kourov, N. I.; Pushin, V. G.; Stukalov, V. Yu.; Uksusnikov, A. N.

    2015-07-01

    The properties, the martensitic transformation, and the structure of Ni50Mn50 - x Al x ( x = 5, 10, 18, 20, 22, 24, 25) alloys are studied by electrical resistivity measurements, transmission electron microscopy, scanning electron microscopy, and X-ray diffraction over wide temperature and composition ranges. It is found that, as the aluminum content increases, the martensite transformation temperature decreases significantly and the structure of martensite changes. Complex multilayer (10 M, 14 M) martensite phases are detected in the ternary alloys. Martensite is shown to have a predominant morphology in the form of hierarchic packets of thin coherent plates of nanoand submicrocrystalline crystallites, which have plane habit boundaries close to {110} B2 and are pairwise twinned along one of the 24 equivalent systems of twinning shear.

  16. Electrodeposition studies of aluminum on tungsten electrode from DMSO[sub 2] electrolytes: Determination of Al[sup III] species diffusion coefficients

    SciTech Connect

    Legrand, L.; Tranchant, A.; Messina, R. . Lab. d'Electrochimie Catalyse et Synthese Organique)

    1994-02-01

    DMSO[sub 2] possesses a number of attractive features that suggest technological applications as electrolyte for rechargeable cells. These features include high conductivity, good thermal stability, ability to dissolve numerous metallic salts and weak or no coordination with metallic cations. Moreover, cathode materials such as V[sub 2]O[sub 5] or MnO[sub 2] have shown to be reversibly reduced in DMSO[sub 2] based electrolytes. However, there is a lack of information about the anode compounds that can be used in the presence of DMSO[sub 2] since previous studies of this nature were limited to lithium. Aluminum electrodeposition from mixtures of AlCl[sub 3]/LiCl/DMSO[sub 2] [dimethylsulfone (CH[sub 3])[sub 2]SO[sub 2

  17. Study of structural and optical properties of ZnAlQ5 (zinc aluminum quinolate) organic phosphor for OLED applications

    NASA Astrophysics Data System (ADS)

    Nagpure, I. M.; Painuly, Deepshikha; Rabanal, Maria Eugenia

    2016-05-01

    The various composition of ZnAlQ5 such as Zn1.5A10.5Q5, Zn1Al1Q5, Zn0.5Al1.5Q5 organic phosphors were prepared via simple cost effective co-precipitation method. The FTIR, SEM, photoluminescence analysis of the prepared phosphors were reported. ZnQ2 and AlQ3 were also prepared by similar method and their properties were compared with different composition of ZnAlQ5. The structural elucidation in the form of stretching frequencies of chemical bonds of the prepared phosphor was carried out using Fourier Transform Infrared Spectroscopy (FTIR). The stretching frequency analysis confirms the formation of prepared phosphor materials. The SEM analysis shows the surface morphological behavior of prepared phosphor materials. Greenish photoluminescence were observed at 505 to 510 nm for the different composition of ZnAlQ5,in which Zn1.5Al0.5Q5 shows maximum luminescence intensity at 505 nm. PL emission of ZnQ2 was observed at 515 nm, while for AlQ3 at 520 nm. The blue shift of 10 nm was observed in Zn1.5A10.5Q5 due to modification of energy level due to presence of Zn2+ and Al3+. The enhancement in PL intensity was observed in Zn1.5A10.5Q5 compared to the other composition due to transfer of energy between Zn2+ and quinolate complex. Optical properties of the prepared materials were evaluated for possible applications in organic light emitting devices (OLED).

  18. Effect of preheat temperature on the orientation relationship of (Mn,Fe)Al{sub 6} precipitates in an AA 5182 aluminum-magnesium alloy

    SciTech Connect

    Ratchev, P.; Verlinden, B.; Van Houtte, P.

    1995-02-01

    The pressure on the automobitive industry to produce lighter cars with reduced fuel consumption causes a demand for new materials able to replace steel for car body panels. Some of the materials considered for this are aluminium alloys, especially Al-Mg alloys of the 5xxx series. The precipitation of the (Mn,Fe)Al{sub 6} phase during preheating of a commercial AA 5182 Al-Mg alloy was studied by means of scanning electron microscopy, transmission electron microscopy and selected area electron diffraction. The existence of two different morphologies with low and high aspect ratio (called here rhomboidal and platelike) was confirmed. The influence of preheating parameters on the precipitation was found to be close to the one known for Al-Mn alloys. It was found that the platelike dispersoids bear orientation relationships with the matrix of type [100]{sub m}{parallel}[{bar 2}10]{sub pp} and (0{bar 1}1){sub m}{parallel}(001){sub pp}, which are not yet reported in the literature. On the other hand it was shown that rhomboidal precipitates do not follow any orientation relationship with the matrix. The more harmful influence on recrystallization and hot ductility of the rhomboidal precipitates compared to the platelike ones is discussed.

  19. Formation of adiabatic shear band in Al-SiC{sub w} metal matrix composites

    SciTech Connect

    Cho, K.M.; Park, I.M.; Lee, S.; Choi, W.B.

    1993-12-31

    Ballistic impact accompanying high strain rate plastic deformation caused adiabatic shear bands to form in 2124 Al-SiC{sub w} composites. It is tried to interpret the formation behavior of the adiabatic shear bands in terms of microstructure of the composites including the volume fraction and distribution of SiC whiskers. Higher volume fraction of SiC whiskers prevented the formation of adiabatic shear bands more effectively. Shear bands were blocked by SiC whiskers, thereby changing their propagation path to the extrusion direction running through the whisker depleted zone. Cracks formed within the shear band induce loss of load carrying capacity and thus failure of the composites.

  20. Microstructure and wear properties of Al2O3-CeO2/Ni-base alloy composite coatings on aluminum alloys by plasma spray

    NASA Astrophysics Data System (ADS)

    He, Long; Tan, Yefa; Wang, Xiaolong; Xu, Ting; Hong, Xiang

    2014-09-01

    Al2O3 and CeO2 particles reinforced Ni-base alloy composite coatings were prepared on aluminum alloy 7005 by plasma spray. The microstructure, microhardness, fracture toughness, critical bonding force and the wear behavior and mechanisms of the composite coatings were investigated. It is found that CeO2 particles can refine crystal grains, reduce porosity and unmelted Al2O3 particles in the composite coatings. The microhardness, fracture toughness, critical bonding force and wear resistance of the composite coatings are enhanced due to synergistic strengthening effects of Al2O3 and CeO2 particles. The friction coefficients and wear losses increase as loads increase. At the loads of 3-6 N, the composite coatings experience local plastic deformation and micro-cutting wear. At the loads in the range of 9-12 N, the calculated maximum contact stress and maximum tensile stress on friction surfaces increase leading to plastic deformation induced working hardening. The wear mechanisms change into micro-brittle fracture wear and slight oxidative wear.

  1. Geochemistry of dissolved aluminum at low pH: Extent and significance of Al-Fe(III) coprecipitation below pH 4.0

    NASA Astrophysics Data System (ADS)

    Sánchez-España, Javier; Yusta, Iñaki; Gray, Jennifer; Burgos, William D.

    2016-02-01

    This work examines the geochemical behavior of dissolved aluminum in sulfate-rich acidic waters. Our observations were obtained during several years of geochemical and mineralogical research in the San Telmo acidic pit lake and other pit lakes of SW Spain. The work includes scanning and transmission electron microscopy (SEM, TEM) of suspended mineral colloids found in deep lake waters. Energy dispersive spectroscopy (EDS) coupled to scanning and high resolution transmission electron microscopy (STEM, HRTEM) revealed not only the presence and formation of discrete, sub-micron Al solids like alunite, but also the abundance and distribution of Al into Fe(III) phases typical of acid mine drainage, such as schwertmannite and jarosite, at a nanometric resolution. The main conclusion emerging from our work is that the fate and transport of Al at low pH (<4.0) can be largely influenced by adsorption on and/or coprecipitation with both schwertmannite and jarosite. Under the geochemical conditions studied (SO42- = 10-2 M, Fe(III) ∼ Al = 10-3 M), alunite formation may occur at pH > 3.3, as suggested by mineralogical observations and geochemical modelling. Below this pH, and contrary to the extended assumption, Al is not truly conservative, and in the presence of ferric iron, both metals may co-precipitate at a substantial extent to form either particles of Al-rich schwertmannite (containing up to ca. 8 at.% Al with [Fe/(Fe + Al)] = 0.77) and/or crystals of H3O+- to K+-jarosite (containing up to ca. 10 at.% Al with [Fe/(Fe + Al)] = 0.54). This Al incorporation seems to take place by adsorption on particle surfaces in schwertmannite and by atomic substitution for Fe3+ in jarosite. Alunite is also unstable at this low pH range with respect to jarosite, which may lead either to isomorphic transformation and/or to chemically zoned crystals with jarositic rims around previously formed alunite cores. As a whole, the compositional spectrum of the analyzed jarosites and alunites describes a discontinuous, coupled (Al3+-Fe3+, H3O+-K+) solid solution series with an apparent gap at intermediate compositions. However, this gap seems to follow geochemical aspects more than crystallographic factors (i.e., immiscibility). The combination of this macroscopically invisible Al incorporated into Fe(III) solids along with subordinate alunite formation may cause significant Al removal even at very low pH (e.g., 20% decrease in Al concentration in San Telmo at pH < 3.1). Furthermore, this Fe(III)-Al co-precipitation may also affect the fate of toxic trace elements like As and Pb.

  2. Interfacial characteristics of diamond/aluminum composites with high thermal conductivity fabricated by squeeze-casting method

    SciTech Connect

    Jiang, Longtao; Wang, Pingping; Xiu, Ziyang; Chen, Guoqin; Lin, Xiu; Dai, Chen; Wu, Gaohui

    2015-08-15

    In this work, aluminum matrix composites reinforced with diamond particles (diamond/aluminum composites) were fabricated by squeeze casting method. The material exhibited a thermal conductivity as high as 613 W / (m · K). The obtained composites were investigated by scanning electron microscope and transmission electron microscope in terms of the (100) and (111) facets of diamond particles. The diamond particles were observed to be homogeneously distributed in the aluminum matrix. The diamond{sub (111)}/Al interface was found to be devoid of reaction products. While at the diamond{sub (100)}/Al interface, large-sized aluminum carbides (Al{sub 4}C{sub 3}) with twin-crystal structure were identified. The interfacial characteristics were believed to be responsible for the excellent thermal conductivity of the material. - Graphical abstract: Display Omitted - Highlights: • Squeeze casting method was introduced to fabricate diamond/Al composite. • Sound interfacial bonding with excellent thermal conductivity was produced. • Diamond{sub (111)}/ aluminum interface was firstly characterized by TEM/HRTEM. • Physical combination was the controlling bonding for diamond{sub (111)}/aluminum. • The growth mechanism of Al{sub 4}C{sub 3} was analyzed by crystallography theory.

  3. High-temperature discontinuously reinforced aluminum

    NASA Astrophysics Data System (ADS)

    Zedalis, M. S.; Bryant, J. D.; Gilman, P. S.; Das, S. K.

    1991-08-01

    High-temperature discontinuously reinforced aluminum (HTDRA) composites have been developed for elevated-temperature applications by incorporating SiC particulate reinforcement into a rapidly solidified, high-temperature Al-Fe-V-Si (alloy 8009) matrix. HTDRA combines the superior elevated-temperature strength, stability and corrosion resistance of the 8009 matrix with the excellent specific stiffness and abrasion resistance of the discontinuous SiC particulate reinforcement. On a specific stiffness basis, HTDRA is competitive with Ti-6-Al-4V and 17-4 PH stainless steel to temperatures approaching 480°C. Potential aerospace applications being considered for HTDRA include aircraft wing skins, missile bodies, and miscellaneous engine, spacecraft and hypersonic vehicle components.

  4. Corrosion properties of excimer laser surface treated Al-SiC metal matrix composite

    SciTech Connect

    Zhang, X.M.; Man, H.C.; Yue, T.M.

    1996-11-01

    Indeed, the ultimate goal is to engineer and design metal matrix composites (MMCs) to have good inherent corrosion resistance, however, no significant breakthroughs have been achieved for MMCs that are prone to corrosion. Though, a significant amount of efforts have been spent to understand the corrosion behavior of MMC materials, only few studies were devoted to explore protection methods for improving corrosion resistance of MMCs. Among these, much effort was dedicated to some anodizing and chemical conversion techniques which in many respects have raised environmental concerns. Except a few, little work was found in applying the unique properties of lasers for surface modification of MMC materials with the aim to improve corrosion properties. Among these few, CO{sub 2} lasers were generally used and the unique properties of excimer lasers have not been explored. In fact, intensive research activities on surface treatment of metallic materials and ceramics using excimer laser radiation were only started a few years ago. Since, excimer lasers emit radiation in the ultraviolet (UV) range with an extremely short pulse duration in the range of nanoseconds. Under such a condition, amorphous structures are likely to form, and which by virtue of having no grain boundaries and have the likelihood of avoiding any segregation and interfacial precipitates could have a significant effect on the corrosion resistance of excimer laser treated materials.

  5. Spatial Inhomogeneity of Aluminum Content in Air-Bridged Lateral Epitaxially Grown AlGaN Ternary Alloy Films Probed by Cross-Sectional Scanning Near-Field Optical Microscopy

    NASA Astrophysics Data System (ADS)

    Ishibashi, Akihiko; Murotani, Hideaki; Yokogawa, Toshiya; Yamada, Yoichi

    2012-03-01

    We systematically studied spatial inhomogeneity of aluminum content in air-bridged lateral epitaxially grown (ABLEG) AlGaN ternary alloy films by high-resolution photoluminescence mapping probed with cross-sectional scanning near-field optical microscopy (SNOM). We observed the content changes along the vertical <0001> and the horizontal <11bar 20> growth directions in AlGaN films with four different mask widths. The spatial inhomogeneity was determined by considering the following factors: the different growth rates of the lateral and vertical directions, the aluminum and gallium adatom supplies from a gas that depend on mask width, and the aluminum and gallium adatom diffusions on the (0001) and (11bar 20) facets.

  6. Hydrothermal Transformation of the Calcium Aluminum Oxide Hydrates CaAl2O4 . 10H2O and Ca2Al2O. 8H2O to Ca3Al2(OH)12 Investigated by In Situ Synchrotron X-ray Powder Diffraction

    SciTech Connect

    Jensen,T.; Christensen, A.; Hanson, J.

    2005-01-01

    The hydrothermal transformation of calcium aluminate hydrates were investigated by in situ synchrotron X-ray powder diffraction in the temperature range 25 to 170 C. This technique allowed the study of the detailed reaction mechanism and identification of intermediate phases. The material CaAl{sub 2}O{sub 4}{center_dot}10H{sub 2}O converted to Ca{sub 3}Al{sub 2}(OH){sub 12} and amorphous aluminum hydroxide. Ca{sub 2}Al{sub 2}O{sub 5}{center_dot}8H{sub 2}O transformed via the intermediate phase Ca{sub 4}Al{sub 2}O{sub 7}{center_dot}13H{sub 2}O to Ca{sub 3}Al{sub 2}(OH){sub 12} and gibbsite, Al(OH){sub 3}. The phase Ca{sub 4}Al{sub 2}O{sub 7}{center_dot}19H{sub 2}O reacted via the same intermediate phase to Ca{sub 3}Al{sub 2}(OH){sub 12} and mainly amorphous aluminum hydroxide. The powder pattern of the intermediate phase is reported.

  7. Fabrication of Well-Aligned Al Nanowire Array Embedded in Si Matrix Using Limited Spinodal Decompositon

    NASA Astrophysics Data System (ADS)

    Fukutani, Kazuhiko; Tanji, Koichi; Saito, Tatsuya; Den, Tohru

    2008-02-01

    The morphology of a phase-separated binary film during spinodal decomposition, whose evolution is limited on the growth surface, is studied. The temporal evolution of the Cahn-Hilliard equation without the elastic energy term under frozen bulk approximation is solved to investigate the possibility of well-aligned nanostructures. The model simulation showed that the well-aligned phase pattern on the top surface can be formed when surface diffusion length was optimized and film thickness was larger than a certain value. These simulation results highly agree with the experimental observation of phase-separated Al-Si films. An additional simulation study indicated that well-aligned nanowires can be prepared from the initial growth stage when an initial phase pattern given on the substrate matched the periodicity of the phase pattern of deposited films.

  8. Crack Propagation During Sustained-Load Cracking of Al-Zn-Mg-Cu Aluminum Alloys Exposed to Moist Air or Distilled Water

    NASA Astrophysics Data System (ADS)

    Holroyd, N. J. Henry; Scamans, G. M.

    2011-12-01

    Intergranular sustained-load cracking of Al-Zn-Mg-Cu (AA7xxx series) aluminum alloys exposed to moist air or distilled water at temperatures in the range 283 K to 353 K (10 C to 80 C) has been reviewed in detail, paying particular attention to local processes occurring in the crack-tip region during crack propagation. Distinct crack-arrest markings formed on intergranular fracture faces generated under fixed-displacement loading conditions are not generated under monotonic rising-load conditions, but can form under cyclic-loading conditions if loading frequencies are sufficiently low. The observed crack-arrest markings are insensitive to applied stress intensity factor, alloy copper content and temper, but are temperature sensitive, increasing from ~150 nm at room temperature to ~400 nm at 313 K (40 C). A re-evaluation of published data reveals the apparent activation energy, E a for crack propagation in Al-Zn-Mg(-Cu) alloys is consistently ~35 kJ/mol for temperatures above ~313 K (40 C), independent of copper content or the applied stress intensity factor, unless the alloy contains a significant volume fraction of S-phase, Al2CuMg where E a is ~80 kJ/mol. For temperatures below ~313 K (40 C) E a is independent of copper content for stress intensity factors below ~14 MNm-3/2, with a value ~80 kJ/mol but is sensitive to copper content for stress intensity factors above ~14 MNm-3/2, with E a , ranging from ~35 kJ/mol for copper-free alloys to ~80 kJ/mol for alloys containing 1.5 pct Cu. The apparent activation energy for intergranular sustained-load crack initiation is consistently ~110 kJ/mol for both notched and un-notched samples. Mechanistic implications are discussed and processes controlling crack growth, as a function of temperature, alloy copper content, and loading conditions are proposed that are consistent with the calculated apparent activation energies and known characteristics of intergranular sustained-load cracking. It is suggested, depending on the circumstances, that intergranular crack propagation in humid air and distilled water can be enhanced by the generation of aluminum hydride, AlH3, ahead of a propagating crack and/or its decomposition after formation within the confines of the nanoscale volumes available after increments of crack growth, defined by the crack arrest markings on intergranular fracture surfaces.

  9. Tribological Performance of NiAl Self-lubricating Matrix Composite with Addition of Graphene at Different Loads

    NASA Astrophysics Data System (ADS)

    Xiao, Yecheng; Shi, Xiaoliang; Zhai, Wenzheng; Yao, Jie; Xu, Zengshi; Chen, Long; Zhu, Qingshuai

    2015-08-01

    This research was carried out on the beneficial effect of graphene additive in self-lubricating composites for use at different loads of tribological application. The dry friction and wear behaviors of NiAl self-lubricating matrix composite with graphene (NSMG) were investigated at different loads at room temperature. Finite element method served as aided method to analyze the stress condition of contact pair, which would provide another perspective to comprehend the relationship between tribological behaviors and different degrees of load-induced deformation. In the load range of 2-16 N, the results indicated that NSMG showed excellent tribological performance at load of 16 N due to the formation of anti-friction tribo-film on the worn surface. Moreover, suitable load would lead to the contact situation transfer from multi-point contact to area contact, which could contribute to the beneficial effect on friction behavior of NSMG.

  10. Tribological Properties of Al-SiC Metal Matrix Composites: A Comparison Between Sand Cast and Squeeze Cast Techniques

    NASA Astrophysics Data System (ADS)

    Ghosh, S.; Sahoo, P.; Sutradhar, G.

    2014-10-01

    Tribological behaviour of Al-SiC metal matrix composites prepared using two different fabrication techniques, viz. sand cast and squeeze cast techniques are studied in a multi- tribotester (TR-25, DUCOM, India) under dry sliding conditions and ambient atmosphere for varying volume fraction of reinforcement, applied load and sliding speed. Friction increases with increase in applied load and sliding speed and volume fraction of reinforcement. Wear test results show increased wear rates at higher load and speed, while increase in SiC volume fraction yields decrease in wear rate. Corrosion study conducted in 3.5 % NaCl solution shows that squeeze cast composites have better corrosion resistance than sand cast composites. Vickers's microhardness test shows improved hardness properties for squeeze cast composites compared to sand cast ones. The microstructure study of wear tracks reveals domination of abrasive wear with minor traces of adhesive wear.

  11. Aluminum carboxymethyl cellulose-rice bran microcapsules: enhancing survival of Lactobacillus reuteri KUB-AC5.

    PubMed

    Chitprasert, Pakamon; Sudsai, Polin; Rodklongtan, Akkaratch

    2012-09-01

    This research aimed to enhance the survival of Lactobacillus reuteri KUB-AC5 from heat conditioning by using microencapsulation with aluminum carboxymethyl cellulose-rice bran (AlCMC-RB) composites of different weight ratios of 1:0, 1:1, and 1:1.5. The cell/polymer suspension was crosslinked with aluminum chloride at different agitation speeds of 1200, 1500, and 2100 rpm. The AlCMC microcapsules had significantly higher encapsulation efficiency, but lower microcapsule yield than the AlCMC-RB microcapsules (p≤0.05). Scanning electron microscopy revealed the complexation between AlCMC and RB. Fourier transform infrared spectroscopy showed hydrogen bondings between AlCMC, RB, and cells. The AlCMC-RB microcapsules had significantly lower aluminum ion and moisture contents than the AlCMC ones. After heat exposure, the viability of non-encapsulated and microencapsulated cells in the AlCMC matrix dramatically declined, while that of microencapsulated cells in the AlCMC-RB matrix was about 8 log CFU/g. The results showed the promising potential of the AlCMC-RB composite microcapsules for the protection of probiotics against heat. PMID:24751013

  12. Short-term aluminum administration in the rat: reductions in bone formation without osteomalacia

    SciTech Connect

    Goodman, W.G.

    1984-05-01

    Aluminum may be a pathogenic factor in dialysis-associated osteomalacia. To study the early effects of Al on bone, cortical bone growth was measured in pair-fed rats given Al and control rats over two consecutive intervals of 28 (period I) and 16 (period II) days, respectively, using tetracycline labeling of bone. Al (2 mg elemental Al per rat) was administered intraperitoneally for 5 days each week, except for the first week of study, when an incremental dose of Al was given. Control rats received saline vehicle only. For the entire 44-day study, bone and matrix formation were reduced from control values in rats given Al. Although bone and matrix formation remained at control levels during period I in rats given Al, both measurements decreased from control values during period II. During Al exposure, bone and matrix apposition at the periosteum were reduced from control levels in period II, but not in period I. Neither osteoid width nor mineralization front width increased from control values in rats given Al. These findings indicate that Al reduces bone and matrix formation early in the course of Al exposure and prior to the development of histologic osteomalacia. Rather than acting as an inhibitor of mineralization, the early effect of Al on bone is the suppression of matrix synthesis. Our results suggest that the state of low bone formation seen in dialysis-associated osteomalacia may be the consequence of a direct toxic effect of Al on the cellular activity of osteoblasts. 29 references, 3 tables.

  13. Effects of Ultrathin Al Layer Insertion on Resistive Switching Performance in an Amorphous Aluminum Oxide Resistive Memory

    NASA Astrophysics Data System (ADS)

    Song, Jaehoon; Inamdar, Akbar I.; Jang, ByeongUk; Jeon, Kiyoung; Kim, YoungSam; Jung, Kyooho; Kim, Yongmin; Im, Hyunsik; Jung, Woong; Kim, Hyungsang; Hong, J. P.

    2010-09-01

    We prepared resistive switching Al-AlOx multilayered junctions and observed considerably improved endurance properties. The mechanism of the observed resistance switching basically reflects the filament model. The temperature dependence of the transport in each resistance state revealed additional features, that is a well-defined thermal activation behavior in the high-resistance state is not observed in the layered device and the metallic conduction in the low-resistance state is not affected. The improved endurance properties are discussed in terms of the increased effective number of active regions, where the Reset and Set processes probably occur before a permanent dielectric breakdown.

  14. Microstructure/mechanical property relationships for various thermal treatments of Al-Cu-Mg-X PM aluminum alloys

    NASA Technical Reports Server (NTRS)

    Blackburn, L. B.

    1986-01-01

    The thermal response and aging behavior of three 2XXX-series powder metallurgy aluminum alloys have been investigated, using Rockwell B hardness measurements, optical and electron microscopy, and energy-dispersive chemical analysis, in order to correlate microstructure with measured mechanical properties. Results of the thermal response study indicated that an increased solution heat treatment temperature was effective in resolutionizing large primary constituents in the alloy bearing more copper but had no apparent effect on the microconstituents of the other two. Aging studies conducted at room temperature and at 120, 150, and 180 C for times ranging up to 60 days indicated that classic aging response curves, as determined by hardness measurements, occurred at lower aging temperatures than were previously studied for these alloys, as well as at lower aging temperatures than are commonly used for ingot metallurgy alloys of similar compositions. Microstructural examination and fracture surface analysis of peak-aged tension specimens indicated that the highest tensile strengths are associated with extremely fine and homogeneous distributions of theta-prime or S-prime phases combined with low levels of both large constituent particles and dispersoids. Examination of the results suggest that refined solution heat treatments and lower aging temperatures may be necessary to achieve optimum mechanical properties for these 2XXX series alloys.

  15. Wettability of Aluminum on Alumina

    NASA Astrophysics Data System (ADS)

    Bao, Sarina; Tang, Kai; Kvithyld, Anne; Tangstad, Merete; Engh, Thorvald Abel

    2011-12-01

    The wettability of molten aluminum on solid alumina substrate has been investigated by the sessile drop technique in a 10-8 bar vacuum or under argon atmosphere in the temperature range from 1273 K to 1673 K (1000 C to 1400 C). It is shown that the reduction of oxide skin on molten aluminum is slow under normal pressures even with ultralow oxygen potential, but it is enhanced in high vacuum. To describe the wetting behavior of the Al-Al2O3 system at lower temperatures, a semiempirical calculation was employed. The calculated contact angle at 973 K (700 C) is approximately 97 deg, which indicates that aluminum does not wet alumina at aluminum casting temperatures. Thus, a priming height is required for aluminum to infiltrate a filter. Wetting in the Al-Al2O3 system increases with temperature.

  16. Characterization of tool wear and weld optimization in the friction-stir welding of cast aluminum 359+20% SiC metal-matrix composite

    SciTech Connect

    Fernandez, G.J.; Murr, L.E

    2004-03-15

    Tool wear for threaded steel pin tools declines with decreasing rotation speed and increasing traverse or weld speeds for the friction-stir welding (FSW) of Al 359+20% SiC metal-matrix composite (MMC). Less than 10% tool wear occurs when the threaded tool erodes to a self-optimized shape resembling a pseudo-hour glass at weld traverse distances in excess of 3 m. There is only a 7% reduction in the SiC mean particle size in the weld zone for self-optimized pin tools with no threads as compared with a 25% variation for threaded tools wearing significantly at the start of welding. The weld zone becomes more homogeneous for efficient welding with self-optimized tools, and there is a reduction in the weld zone grain size due to dynamic recrystallization, which facilitates the solid-state flow. Transmission electron microscopy shows little difference in the dislocation density from the base material to the weld zone, but there is a propensity of dislocation loops in the weld zone. The weld zone is observed to harden by as much as 30%, in contrast to the base material, as a consequence of the recrystallized grain size reduction and the SiC particles distributed therein.

  17. Low-temperature magnetic phase transition in aluminum borate TbAl3(BO3)4

    NASA Astrophysics Data System (ADS)

    Bedarev, V. A.; Paschenko, M. I.; Kobets, M. I.; Dergachev, K. G.; Khatsko, E. N.; Gnatchenko, S. L.; Zvyagin, A. A.; Zajarniuk, T.; Szewczyk, A.; Gutowska, M. U.; Bezmaternykh, L. N.; Temerov, V. L.

    2015-07-01

    Magnetic ordering temperature, initial splitting and effective g-factor of the ground quasi-doublet of a Tb3+ ion were determined by investigating the heat capacity and ESR in a TbAl3(BO3)4 single crystal. The parameters of the magnetic interaction were calculated.

  18. Photoemission study of tris(8-hydroxyquinoline) aluminum/aluminum oxide/tris(8-hydroxyquinoline) aluminum interface

    SciTech Connect

    Ding Huanjun; Zorba, Serkan; Gao Yongli; Ma Liping; Yang Yang

    2006-12-01

    The evolution of the interface electronic structure of a sandwich structure involving aluminum oxide and tris(8-hydroxyquinoline) aluminum (Alq), i.e. (Alq/AlO{sub x}/Alq), has been investigated with photoemission spectroscopy. Strong chemical reactions have been observed due to aluminum deposition onto the Alq substrate. The subsequent oxygen exposure releases some of the Alq molecules from the interaction with aluminum. Finally, the deposition of the top Alq layer leads to an asymmetry in the electronic energy level alignment with respect to the AlO{sub x} interlayer.

  19. Microstructure and Mechanical Properties of ɛ-Phase-Reinforced ZnAl4Y Matrix Composite Prepared by Mixed Solid-Liquid Casting

    NASA Astrophysics Data System (ADS)

    Tu, Hao; Huang, Jianfeng; Su, Xuping; Li, Tao; Jiang, Lingling; Wang, Jianhua

    2014-03-01

    ɛ-Phase-reinforced ZnAl4Y matrix composite has been fabricated by mixed solid-liquid casting method. The results show that the size of primary η-Zn phase in the composite decreases remarkably with the increase of adding amount of Cu-10wt.%Al powders till it reaches 6.0 wt.% in ZnAl4Y alloy. Besides, a large amount of small ɛ-phase particles form in ZnAl4Y matrix when the adding amount of Cu-10wt.%Al powders is in the range of 4.0-6.0 wt.% in ZnAl4Y alloy. Coarse ɛ-phase particles forms when the adding amount of Cu-10wt.%Al powders exceeds 8.0 wt.% in ZnAl4Y alloy. Compared with ZnAl4Y alloy, the composite could obtain optimal mechanical properties when the added amount of Cu-10wt.%Al powders is 6.0 wt.%.

  20. Irradiation behavior of uranium oxide-aluminum dispersion fuel

    SciTech Connect

    Hofman, G.L.; Rest, J.; Snelgrove, J.L.

    1996-12-01

    An oxide version of the DART code has been generated in order to assess the irradiation behavior of UO{sub 2}-Al dispersion fuel. The aluminum-fuel interaction models were developed based on U{sub 3}O{sub 8}-Al irradiation data. Deformation of the fuel element occurs due to fuel particle swelling driven by both solid and gaseous fission products, as well as a consequence of the interaction between the fuel particles and the aluminum matrix. The calculations show, that with the assumption that the correlations derived from U{sub 3}O{sub 8} are valid for UO{sub 2}, the LEU UO{sub 2}-Al with a 42% fuel volume loading (4 gm/cc) irradiated at fuel temperatures greater than 413 K should undergo breakaway swelling at core burnups greater than about 1.12 x 10{sup 27} fissions m{sup {minus}3} ({approximately} 63% {sup 235}U burnup).

  1. Aluminum anode for aluminum-air battery - Part I: Influence of aluminum purity

    NASA Astrophysics Data System (ADS)

    Cho, Young-Joo; Park, In-Jun; Lee, Hyeok-Jae; Kim, Jung-Gu

    2015-03-01

    2N5 commercial grade aluminum (99.5% purity) leads to the lower aluminum-air battery performances than 4N high pure grade aluminum (99.99% purity) due to impurities itself and formed impurity complex layer which contained Fe, Si, Cu and others. The impurity complex layer of 2N5 grade Al declines the battery voltage on standby status. It also depletes discharge current and battery efficiency at 1.0 V which is general operating voltage of aluminum-air battery. However, the impurity complex layer of 2N5 grade Al is dissolved with decreasing discharge voltage to 0.8 V. This phenomenon leads to improvement of discharge current density and battery efficiency by reducing self-corrosion reaction. This study demonstrates the possibility of use of 2N5 grade Al which is cheaper than 4N grade Al as the anode for aluminum-air battery.

  2. Characterization of molecular disorder in vapor-deposited thin films of aluminum tris(quinoline-8-olate) by one-dimensional 27Al NMR under magic angle spinning

    NASA Astrophysics Data System (ADS)

    Utz, Marcel; Nandagopal, Magesh; Mathai, Mathew; Papadimitrakopoulos, Fotios

    2006-01-01

    Aluminum tris (quinoline-8-olate) (Alq3) is used as an electron-transport layer in organic light-emitting diodes. The material can be obtained in a wide range of different solid phases, both crystalline and amorphous, by deposition from the vapor phase or from solution under controlled conditions. While the structure of the crystalline polymorphs of Alq3 has been investigated thoroughly by x-ray diffraction as well as solid-state NMR, very little information is currently available on the amount of structural disorder in the amorphous forms of Alq3. In the present contribution, we report the use of Al27 NMR spectroscopy in the solid state under magic angle spinning to extract such information from amorphous vapor deposits of Alq3. The NMR spectra obtained from these samples exhibit different degrees of broadening, reflecting distributions of the electric-field gradient tensor at the site of the aluminum ion. These distributions can be obtained from the NMR spectra by solving the corresponding inverse problem. From these results, the magnitude of structural disorder in terms of molecular geometry has been estimated by density-functional theory calculations. It was found that the electric-field gradient anisotropy ? follows a bimodal distribution. Its majority component is centered around ? values comparable to the meridianal ? crystal polymorph and has a width of about 10%, corresponding to distortions of the molecular geometry of a few degrees in the orientation of the ligands. Alq3 samples obtained at higher deposition rates exhibit higher degrees of disorder. The minor component, present at about 7%, has a much smaller anisotropy, suggesting that it may be due to the facial isomer of Alq3.

  3. Aluminum Hydroxide

    MedlinePlus

    Aluminum hydroxide is used for the relief of heartburn, sour stomach, and peptic ulcer pain and to ... Aluminum hydroxide comes as a capsule, a tablet, and an oral liquid and suspension. The dose and ...

  4. Trimethyl-aluminum and ozone interactions with graphite in atomic layer deposition of Al2O3

    NASA Astrophysics Data System (ADS)

    McDonnell, Stephen; Pirkle, Adam; Kim, Jiyoung; Colombo, Luigi; Wallace, Robert M.

    2012-11-01

    A study of the chemical interactions between the atomic layer deposition (ALD) Al2O3 precursors trimethlyaluminum (TMA) and ozone (TMA/O3) and sp2 carbon surfaces is presented. In-situ x-ray photoelectron spectroscopy is used to study these interactions, while ex-situ atomic force microscopy (AFM) is used to monitor the surface morphology. Ozone functionalization of the sp2 carbon surface is discussed and the dependence of TMA/O3 reactions over a range of ALD process conditions is examined. The utilization of a 6-cycle room temperature TMA/O3 ALD seed layer to nucleate the conformal growth of Al2O3 by TMA/H2O at 200 °C as well as the quality of such films is discussed. Two stages of ozone reactions are observed: first the ozone appears to remove adsorbed species from the graphite surface before reacting with the surface. The deposition of Al2O3 is found to be strongly dependant on the N2 purge time as well as the precursor pulse sequence. It is shown that the quality of these low temperature deposited films can easily be improved by removal of carbon containing species through an 300 °C anneal.

  5. Preparation of aluminum(III) (bis(amido)pyridine)(thiolate) complexes: unexpected transmetalation mediated by LiAlH4

    PubMed Central

    Badiei, Yosra M.; Jiang, Yunbo; Widger, Leland R.; Siegler, Maxime A.

    2011-01-01

    Treatment of an unsymmetrical bis(imino)pyridyl-thiolate zinc(II) complex [ZnII(LN3S)(OTf)] (1) with LiAlH4 results in the double reduction of the two imino groups in the ligand backbone, and at the same time causes a rare transmetalation reaction to occur. The products formed in this reaction are two novel aluminium(III) bis(amido)pyridyl-thiolate complexes [(R,S/S,R-[AlIII(LH2N3S)(THF)] (2a) and [(R,R/S,S-[AlIII(LH2N3S)(THF)] (2b), which are diastereomers of each other. These complexes have been characterized by single-crystal X-ray diffraction and 1H NMR spectroscopy. Single crystal X-ray structure analysis shows that the AlIII ion is bound in an almost idealized square pyramidal geometry in 2a, while being held in a more distorted square pyramidal geometry in 2b. The major difference between 2a and 2b arises in the orientation of the terminal methyl groups of the ligand backbone in relation to the AlIIIN3S plane. These two complexes are crystallized at different temperatures (room temperature vs −35 °C), allowing for their separate isolation. Structural analysis shows that these complexes are reduced by the formal addition of one hydride ion to each imino group, resulting in a deprotonated bis(amido)pyridyl-thiolate ligand. A detailed analysis of metrical parameters rules out the possibility of pure one- or two-electron reduction of the π-conjugated bis(imino)pyridine framework. 1H NMR spectra reveal a rich pattern in solution indicating that the solution state structures for 2a and 2b match those observed in the solid-state crystal structures, and reveal that both complexes are severely conformationally restricted. Direct organic synthetic methods failed to produce the reduced bis(amino)pyridyl-thiol ligand in pure form, but during the course of these efforts an unusual unsymmetrical aminopyridyl ketone, 1-(6-(1-(2,6-diisopropylphenylamino)ethyl)pyridin-2-yl)ethanone was synthesized in good yield and can be used as a possible precursor for further ligand development. PMID:22345823

  6. Aluminum-fly ash metal matrix composites for automotive parts. [Reports for October 1 to December 31, 1999, and January 1 - to March 31, 2000

    SciTech Connect

    Weiss, David; Purgert, Robert; Rhudy, Richard; Rohatgi, Pradeep

    2000-04-21

    The highlights of this report are: (1) fly ash classified by less than 100 microns in size was mixed into a 300 lb melt of alloy 535 without the need of a magnesium additive; (2) a vibratory feeder fitted with a sieve was used as the means to minimize particle clustering while introducing fly ash into the aluminum alloy 535 melt; and (3) the industrial-size field test was successful in that sand mold castings and permanent mold castings of tensile bars, K mold bars, and ingots were made from aluminum alloy 535-fly ash mix. Use of aluminum alloy 535 containing 7% magnesium precluded the need to introduce additional magnesium into the melt. The third round of sand mold castings as well as permanent mold castings produced components and ingots of alloy 535 instead of alloy 356. The ingots will be remelted and cast into parts to assess the improvement of flyash distribution which occurs through reheating and the solidification wetting process. Microstructure analysis continues on sand and permanent mold castings to study particle distribution in the components. A prototype sand cast intake manifold casting was found to be pressure tight which is a major performance requirement for this part. Another heat of pressure die cast brackets of A380-classified fly ash will be made to examine their strength and fly ash distribution. Ingots of A356-fly ash have been made at Eck for remelting at Thompson Aluminum for squeeze casting into motor mounts.

  7. MICROSTRUCTURE EVOLUTION MODELING FOR SOLUTION TREATMENT OF ALUMINUM ALLOYS

    SciTech Connect

    Yin, Hebi; Sabau, Adrian S; Skszek, Timothy; Niu, X

    2013-01-01

    The microstructure evolution during solution treatment plays an important role in mechanical properties of heat-treated aluminum alloys. In this paper, models were reviewed that can predict the microstructure evolution during the solutionizing process of the aging heat treatment of aluminum alloys. The dissolution of Mg2Si particles has been modeled as a diffusion process of Mg in the -Al matrix. The evolution of volumetric fraction of fragmented silicon as a function of time and temperature was also considered. The growth and coarsening of silicon particles during the heat treatment was considered. It was found that constitutive equations and required property data for most of the phenomena that need to be considered are available. Several model parameters that need to be obtained from material characterization were identified. Pending the availability of these model parameters, this comprehensive model can be used to describe the microstructure evolution of aluminum alloys in order to optimize the solutionizing heat treatment for energy savings.

  8. Surfactant assisted synthesis of aluminum doped SrFe{sub 10}Al{sub 2}O{sub 19} hexagonal ferrite

    SciTech Connect

    Neupane, D. Wang, L.; Mishra, S. R.; Poudyal, N.; Liu, J. P.

    2015-05-07

    M-type aluminum doped SrFe{sub 10}Al{sub 2}O{sub 19} were synthesized via co-precipitation method using cetyltrimethyl ammonium bromide (CTAB) as a surfactant. The effects of CTAB content (x = 0, 1, 3, and 9 wt. %) on the formation, structure, morphology, magnetic, and dielectric properties of the SrFe{sub 10}Al{sub 2}O{sub 19} nanoparticles were investigated. X-ray diffraction results show elimination of α-Fe{sub 2}O{sub 3} phase from samples prepared using CTAB. Morphological changes including grain and crystallite size was noticed with the increase in the CTAB content. With the increase in CTAB, powder particles grew in hexagonal plates. A linear increase in saturation magnetization, Ms, with CTAB content was observed from 56.5 emu/g at 0% CTAB to 66.4 emu/g at 9% CTAB. This is a net increase of 17.5% in Ms. The coercivity (Hc ∼ 5700 Oe) of sample reached maximum at 1% CTAB and reduced with further CTAB content reaching to a minimum value of 4488 Oe at 9% CTAB. A slight increase in Curie temperature (735 K) was also observed for samples synthesized using CTAB as compared to that of sample prepared in the absence of CTAB (729 K). Samples synthesized with CTAB show higher dielectric constants as compared to samples prepared without CTAB, while dielectric constant for all samples show decrease in value with the increase in frequency. These results imply that CTAB may act as a crystallization master, controlling the nucleation and growth of SrFe{sub 10}Al{sub 2}O{sub 19} crystal. The study delineates the scope of improving magnetic properties of ferrites without substitution of metal ions.

  9. The effect of TiB2 reinforcement on the mechanical properties of an Al-Cu-Li alloy-based metal-matrix composite

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The addition of ceramic particles to aluminum based alloys can substantially improve mechanical properties, especially Young's modulus and room and elevated temperature strengths. However, these improvements typically occur at the expense of tensile ductility. The mechanical properties are evaluated to a metal matrix composite (MMC) consisting of an ultrahigh strength aluminum lithium alloy, Weldalite (tm) 049, reinforced with TiB2 particles produced by an in situ precipitation technique called the XD (tm) process. The results are compared to the behavior of a nonreinforced Weldalite 049 variant. It is shown that both 049 and 049-TiB2 show very attractive warm temperature properties e.g., 625 MPa yield strength at 150 C after 100 h at temperature. Weldalite 049 reinforced with a nominal 4 v pct. TiB2 shows an approx. 8 pct. increase in modulus and a good combination of strength (529 MPa UTS) and ductility (6.5 pct.) in the T3 temper. And the high ductility of Weldalite 049 in the naturally aged and underaged tempers makes the alloy a good, high strength matrix for ceramic reinforcement.

  10. Development and characterization of Powder Metallurgy (PM) 2XXX series Al alloy products and Metal Matrix Composite (MMC) 2XXX Al/SiC materials for high temperature aircraft structural applications

    NASA Technical Reports Server (NTRS)

    Chellman, D. J.; Gurganus, T. B.; Walker, J. A.

    1992-01-01

    The results of a series of material studies performed by the Lockheed Aeronautical Systems Company over the time period from 1980 to 1991 are discussed. The technical objective of these evaluations was to develop and characterize advanced aluminum alloy materials with temperature capabilities extending to 350 F. An overview is given of the first five alloy development efforts under this contract. Prior work conducted during the first five modifications of the alloy development program are listed. Recent developments based on the addition of high Zr levels to an optimum Al-Cu-Mg alloy composition by powder metallurgy processing are discussed. Both reinforced and SiC or B4C ceramic reinforced alloys were explored to achieve specific target goals for high temperature aluminum alloy applications.

  11. Stress Corrosion Cracking of Al-Mg and Mg-Al Alloys

    SciTech Connect

    Jones, Russell H.; Vetrano, John S.; Windisch, Charles F.

    2004-12-01

    Aluminum and magnesium based alloys are being used for reducing the weight of automobiles. For structural applications they must have adequate stress corrosion resistance and yet, under some circumstances, stress corrosion cracking can occur in both alloy systems. Precipitation of the Mg rich Beta-phase (Al3Mg2) at grain boundaries of Al-Mg alloys and the Beta-phase (Mg17Al12) at grain boundaries of the Mg-Al alloys are critical factors in their stress corrosion performance. In Mg-Al, the Beta-phase is cathodic to the matrix while in the Al-Mg case, the Beta-phase is anodic to the matrix. These phases produce localized galvanic induced-corrosion that leads to intergranular stress corrosion cracking and cracking growth rates of 5 and 103 times faster than the solution treated condition, for Al-Mg and Mg-Al, respectively.

  12. Understanding and development of cost-effective industrial aluminum back surface field (Al-BSF) silicon solar cells

    NASA Astrophysics Data System (ADS)

    Chen, Nian

    For the long-term strategy of gradual decarbonization of the world's energy supply, high penetration of PV electricity is critical in the future world energy landscape. In order to achieve this, solar electricity with competitive cost to fossil fuel energy is necessary. To be able to obtain high efficiency solar cells, many advanced cell architectures have been developed commercially by PV industry. However, the fabrication of these cells necessitates complex processing steps and high requirements on semiconductor materials, which make it not as cost-effective as the state-of-the-art conventional Al-BSF structure. In order to keep the cost of PV cell low and improve on the efficiency with fewer processing steps, this thesis work focuses on the understanding of the conventional Al-BSF solar cell structure. The research work therefore, focuses on the (i) design, and modeling of front metal electrodes including the use of multi-bus-bar capable of decreasing the gridline resistance, (ii) fine-line printing and (iii) metal contact co-firing using high belt speed that is not common to the solar industry to achieve ~20% efficient industrial Al-BSF silicon solar cells. In order to achieve the objectives of this thesis work, firstly, the appropriate Al paste was investigated for lowest back surface recombination velocity (BSRV), which gives high open circuit voltage (Voc). Secondly, the impact of emitter sheet resistance on solar cell performance was modeled to determine the optimal sheet resistance, and the uniformity of emitter was also investigated. Thirdly, modeling on the front metal electrodes was carried out to investigate the optimal number of busbars, and determine the optimum number of gridlines and gridline geometries that would result in low series resistance (Rs), high fill factor (FF) and hence high efficiency. Fourthly, the modeled results were experimentally validated through fine-line printing and optimized contact co-firing. By combining each layer to make solar cells, Voc of ~642 mV, Jsc of ~38.5 mA/cm 2 and FF of ~80.4% led to average ~19.8% efficient cell. Based on the experimental results, other innovative front grid designs are proposed that can lead to >20% energy conversion efficiency.

  13. High temperature stability, interface bonding, and mechanical behavior in {beta}-NiAl and Ni{sub 3}Al matrix composites with reinforcements modified by ion beam enhanced deposition. Progress summary report, June 1, 1993--May 31, 1994

    SciTech Connect

    Grummon, D.S.

    1993-01-21

    Diffusion-bonded NiAl-Al{sub 2}O{sub 3} and Ni{sub 3}Al-Al{sub 2}O{sub 3} couples were thermally fatigued at 900 C for 1500 and 3500 cycles. The fiber-matrix interface weakened after 3500 cycles for the Saphikon fibers, while the Altex, PRD-166, and FP fibers showed little, if any, degradation. Diffusion bonding of fibers to Nb matrix is being studied. Coating the fibers slightly increases the tensile strength and has a rule-of-mixtures effect on elastic modulus. Push-out tests on Sumitomo and FP fibers in Ni aluminide matrices were repeated. Al{sub 2}O{sub 3} was evaporated directly from pure oxide rod onto acoustically levitated Si carbide particles, using a down-firing, rod-fed electron beam hearth; superior coatings were subsequently produced using concurrent irradiation with 200-eV argon ion-assist beam. The assist beam produced adherent films with reduced tensile stresses. In diffusion bonding in B-doped Ni{sub 3}Al matrices subjected to compressive bonding at 40 MPa at 1100 C for 1 hr, the diffusion barriers failed to prevent catastrophic particle- matrix reaction, probably because of inadequate film quality. AlN coatings are currently being experimented with, produced by both reactive evaporation and by N{sup +}-ion enhanced deposition. A 3-kW rod-fed electron-beam-heated evaporation source has been brought into operation.

  14. High temperature stability, interface bonding, and mechanical behavior in [beta]-NiAl and Ni[sub 3]Al matrix composites with reinforcements modified by ion beam enhanced deposition

    SciTech Connect

    Grummon, D.S.

    1993-01-21

    Diffusion-bonded NiAl-Al[sub 2]O[sub 3] and Ni[sub 3]Al-Al[sub 2]O[sub 3] couples were thermally fatigued at 900 C for 1500 and 3500 cycles. The fiber-matrix interface weakened after 3500 cycles for the Saphikon fibers, while the Altex, PRD-166, and FP fibers showed little, if any, degradation. Diffusion bonding of fibers to Nb matrix is being studied. Coating the fibers slightly increases the tensile strength and has a rule-of-mixtures effect on elastic modulus. Push-out tests on Sumitomo and FP fibers in Ni aluminide matrices were repeated. Al[sub 2]O[sub 3] was evaporated directly from pure oxide rod onto acoustically levitated Si carbide particles, using a down-firing, rod-fed electron beam hearth; superior coatings were subsequently produced using concurrent irradiation with 200-eV argon ion-assist beam. The assist beam produced adherent films with reduced tensile stresses. In diffusion bonding in B-doped Ni[sub 3]Al matrices subjected to compressive bonding at 40 MPa at 1100 C for 1 hr, the diffusion barriers failed to prevent catastrophic particle- matrix reaction, probably because of inadequate film quality. AlN coatings are currently being experimented with, produced by both reactive evaporation and by N[sup +]-ion enhanced deposition. A 3-kW rod-fed electron-beam-heated evaporation source has been brought into operation.

  15. Production of aluminum metal by electrolysis of aluminum sulfide

    DOEpatents

    Minh, N.Q.; Loutfy, R.O.; Yao, N.P.

    1982-04-01

    Metallic aluminum may be produced by the electrolysis of Al/sub 2/S/sub 3/ at 700 to 800/sup 0/C in a chloride melt composed of one or more alkali metal chlorides, and one or more alkaline earth metal chlorides and/or aluminum chloride to provide improved operating characteristics of the process.

  16. Production of aluminum metal by electrolysis of aluminum sulfide

    DOEpatents

    Minh, Nguyen Q.; Loutfy, Raouf O.; Yao, Neng-Ping

    1984-01-01

    Production of metallic aluminum by the electrolysis of Al.sub.2 S.sub.3 at 700.degree.-800.degree. C. in a chloride melt composed of one or more alkali metal chlorides, and one or more alkaline earth metal chlorides and/or aluminum chloride to provide improved operating characteristics of the process.

  17. Aluminum nitride as a novel aluminum-26 ion source material for accelerator mass spectrometry

    NASA Astrophysics Data System (ADS)

    Flarend, R.; Hasan, M. E.; Reed, C. S.

    2004-08-01

    A high intensity cesium sputter source was used to measure the current of secondary Al- ions from aluminum nitride (AlN), aluminum diboride (AlB2), aluminum carbide (Al4C3), aluminum powder and aluminum oxide (Al2O3). It was found that AlN produced a substantially higher beam current than Al2O3. Aluminum diboride produced about the same amount of Al- current as the oxide while Al4C3 and the aluminum powder did not perform as well as the oxide. The performance of AlN as a target material for Al- ions depended heavily upon the exposure of AlN to air before being placed in the ion source. For samples with no exposure to air, the AlN produced much less current than Al2O3. For samples with a very short exposure to air, AlN yielded a fivefold improvement in the Al- current compared to the oxide. Thus aluminum nitride shows the promise of increasing the sensitivity and precision of low-level 26Al-accelerator mass spectrometry.

  18. Aluminum alloys for ALS cryogenic tanks: Comparative measurements of cryogenic mechanical properties of Al-Li alloys and alloy 2219, February 1993

    SciTech Connect

    Reed, R.P.; Purtscher, P.T.; Simon, N.J.; McColskey, J.D.; Walsh, R.P.

    1993-02-01

    Tensile and fracture toughness were obtained at cryogenic temperatures to compare the Al-Li alloys 8090, 2090, and WL049, and alloy 2219 in various tempers and specimen orientations. The strongest alloy at very low temperatures is WL049-T851, which is about 10 percent stronger than 2090-T81. Both alloys are considerably stronger than 2219-T87. Alloy 2090-T81 is tougher (about 50 percent) than WL049-T851 at low temperatures; the higher toughness is attributed to the presence of fewer constituent particles and the tendency to delaminate at low temperatures. The delamination divides the moving crack, thus separating it into smaller regions where plane stress (rather than plane strain) conditions are conducive to increased toughness.

  19. Theoretical calculation of positron affinities of solute clusters in aluminum alloys

    NASA Astrophysics Data System (ADS)

    Mizuno, Masataka; Araki, Hideki; Shirai, Yasuharu

    2016-01-01

    We have performed theoretical calculations of positron states for solute clusters in aluminum alloys to estimate the positron affinity of solute clusters. Positron states of solute clusters in aluminum alloys were calculated under the electronic structures obtained by first- principles molecular orbital calculations using Al158-X13 clusters. We defined the positron affinity of the solute clusters by the difference in the lowest potential sensed by positrons between the solute clusters and Al bulk. With increasing atomic number of 3d metals, the annihilation fraction of the solute clusters rapidly increases at Mn and shows a maximum at Ni. A similar trend is observed for 4d metals. The localization of positron at the solute clusters mainly arises from charge transfer from Al matrix to solute clusters. The positron affinity defined in this work well represents the localization of positron at the solute clusters in aluminum alloys.

  20. Li.sub.2 O-Al.sub.2 O.sub.3 -SiO.sub.2 glass ceramic-aluminum containing austenitic stainless steel composite body and a method of producing the same

    DOEpatents

    Cassidy, Roger T.

    1990-05-01

    The present invention relates to a hermetically sealed Li.sub.2 O-Al.sub.2 O.sub.3 -SiO.sub.2 glass ceramic-aluminum containing stainless steel composite body and a method of producing the body. The composite body includes an oxide interfacial region between the glass ceramic and metal, wherein the interfacial region consists essentially of an Al.sub.2 O.sub.3 layer. The interfacial Al.sub.2 O.sub.3 region includes constituents of both the metal and glass ceramic.