Sample records for aluminum extrusion die

  1. Reducing the Surface Degradation of Aluminum Extrusion Dies During Preheating

    NASA Astrophysics Data System (ADS)

    Stratton, Paul

    2010-07-01

    Aluminum extrusion dies are usually made from H13 steel that is ferritically nitrocarburized to minimize wear and pick-up. Before being placed in the extrusion press, the dies are preheated to minimize thermal shock at the start of the extrusion cycle. During the preheating time, the nitrocarburized layer oxidizes. Some of this layer can break away during extrusion leaving marks on the product. Although inerting the preheat furnaces with nitrogen has been found to reduce the oxidation, it does not solve the problem completely. Experiments have shown that a small addition of ammonia to the preheating protective atmosphere could eliminate oxidation and prevent nitrogen loss from the surface nitride layer.

  2. Microstructure development and texture evolution of aluminum multi-port extrusion tube during the porthole die extrusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fan, X.H.

    Aluminum multi-port extrusion tube is processed by the porthole die extrusion and the internal tube walls are welded through the solid state metallurgical bonding. In order to observe the development of grains and their orientations under severe plastic deformation and solid state welding, the extrusion butt together with the die is quenched immediately after extrusion to preserve the grain structure in the processing. The forming histories of selected material points are obtained by analyzing the optical microscopy graph. The evolution of the microstructure along the forming path is characterized by electro backscattered diffraction. It is found that geometrical dynamic recrystallizationmore » happens in the process. Grains are elongated, scattered at the transition zone and shear intensive zone, and then pinched off when they are pushed out from the die orifice. The shear-type orientations are predominant at the surface layer on the longitudinal section of the tube web and have penetrated into the intermediate layer. The rolling-type orientations are formed at the central layer. Texture gradient through the thickness of the tube web is observed. And cube orientated grains are found at the seam weld region. - Highlights: •Microstructure of extrusion butt is preserved after the micro scale porthole die extrusion. •Grain morphology history along forming path is investigated. •Texture evolutions on three material flows are present. •Texture gradient exists on the longitudinal section of the internal wall of profile. •Rolling-type and cube textures are found at the solid state welding region.« less

  3. Analysis and modeling of hot extrusion die for its service life enhancement

    NASA Astrophysics Data System (ADS)

    Akhtar, Syed Sohail

    Aluminum extrusion finds extensive application in the construction, automobile and aerospace industries. High pressures, elevated temperatures, complex and intricate section geometries lead to repeated mechanical and thermal stresses in the die and affiliated tooling. Product rework and rejects can be traced back to various defects spread over the die life cycle: die design, die manufacture and heat treatment, process parameters, inprocess die maintenance/correction and, billet type and quality. Therefore, improved and efficient service life of die and related tooling used in the extrusion press is one the most important factors in maximizing productivity and minimizing cost for ensuring the economical efficiency of an aluminum extrusion plant. How often a die has to be scrapped and replaced with a new one directly contributes to the commercial viability of producing a certain profile. The focus of the current work is on three distinct yet inter-related studies pertaining to the improvement of aluminum extrusion die. Study-A (Die Failure Analysis) is an investigation of various modes and critical failure types based on industrial data (Chapter-2 ), examination of failed dies and finite element simulation for identification of critical process parameters and design features in die fatigue-life (Chapter-3). In Study-B (Die Surface Hardening Treatment), two-stage controlled gas nitriding process for H13 steel is evaluated, both experimentally and numerically, in terms of nitrided case morphology and properties (Chapter-4) followed by experimental and numerical investigation of the effects of repeated nitriding (Chapter-5), pre-nitriding surface preparation (Chapter-6) and die profile geometry (Chapter-7) on nitriding performance in regard to die service life. In Study-C (Effect of Billet Quality on Die Life), the effect of billet quality and related influencing extrusion parameters on the die service life is investigated based on industrial data and some regression

  4. 75 FR 80527 - Aluminum Extrusions From China

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-22

    ...)] Aluminum Extrusions From China AGENCY: United States International Trade Commission. ACTION: Scheduling of... of subsidized and less-than-fair-value imports from China of aluminum extrusions, primarily provided... contained in Aluminum Extrusions From the People's Republic of China: Notice of Preliminary Determination of...

  5. Extrusion die and method

    DOEpatents

    Lipp, G. Daniel

    1994-04-26

    A method and die apparatus for manufacturing a honeycomb body of rhombic cell cross-section by extrusion through an extrusion die of triangular cell discharge slot configuration, the die incorporating feedholes at selected slot intersections only, such that slot segments communicating directly with the feedholes discharge web material and slot segments not so connected do not discharge web material, whereby a rhombic cell cross-section in the extruded body is provided.

  6. 3D FEM Geometry and Material Flow Optimization of Porthole-Die Extrusion

    NASA Astrophysics Data System (ADS)

    Ceretti, Elisabetta; Mazzoni, Luca; Giardini, Claudio

    2007-05-01

    The aim of this work is to design and to improve the geometry of a porthole-die for the production of aluminum components by means of 3D FEM simulations. In fact, the use of finite element models will allow to investigate the effects of the die geometry (webs, extrusion cavity) on the material flow and on the stresses acting on the die so to reduce the die wear and to improve the tool life. The software used to perform the simulations was a commercial FEM code, Deform 3D. The technological data introduced in the FE model have been furnished by METRA S.p.A. Company, partner in this research. The results obtained have been considered valid and helpful by the Company for building a new optimized extrusion porthole-die.

  7. Etching Behavior of Aluminum Alloy Extrusions

    NASA Astrophysics Data System (ADS)

    Zhu, Hanliang

    2014-11-01

    The etching treatment is an important process step in influencing the surface quality of anodized aluminum alloy extrusions. The aim of etching is to produce a homogeneously matte surface. However, in the etching process, further surface imperfections can be generated on the extrusion surface due to uneven materials loss from different microstructural components. These surface imperfections formed prior to anodizing can significantly influence the surface quality of the final anodized extrusion products. In this article, various factors that influence the materials loss during alkaline etching of aluminum alloy extrusions are investigated. The influencing variables considered include etching process parameters, Fe-rich particles, Mg-Si precipitates, and extrusion profiles. This study provides a basis for improving the surface quality in industrial extrusion products by optimizing various process parameters.

  8. A Covering Type Extrusion Die with Twin Cavities for Semi-Hollow Al-Profiles

    NASA Astrophysics Data System (ADS)

    Deng, Rurong; Huang, Xuemei

    2018-03-01

    A new structure named covering type with twin cavities in a die for the semi-hollow aluminum profiles was present. The determination of structure parameters was introduced in detail. Mainly including the selection of the machine, the arrangement of portholes, the structure design of chamber and the selection of bearing. The method of checking the die strength was introduced. According to the extrusion results, the structure of the traditional solid die, the porthole die with single cavity and the covering type structure with twin cavities were compared. The characteristics of the latter structure were simple and easy to process. The practical application shows that the new die structure can enhance the die life, improve the production efficiency and reduce the cost. The high precision and the surface brightness of the profiles were obtained. The structure is worth promoting. The aim is to provide reliable data and reference for the further research and development of this technology on the extrusion die with multi-cavities in a die.

  9. Analyzing the extrusion mould for aluminum profile

    NASA Astrophysics Data System (ADS)

    Yun, Wang; Xu, Zhenying; Dai, Yachun; Dong, Peilong; Yuan, Guoding; Lan, Cai

    2007-12-01

    The die or mould used for extruding aluminum wallboard profile is in serious work conditions, so it is easy to appear drawbacks in the mould such as non-uniform stress and strain distributions, crack initiation and propagation, elastic warp, and even plastic distortion. As we know, the extrusion die or mould is subject to complex loads including the extrusion pressure, friction and thermal load, which make the mould complicated and hard to be designed and analyzed by using conventional analytical method. In this paper, we applied Deform-3D, FEA (Finite Element Analysis) software used frequently in all engineering fields, to simulate three-dimensional extruding process of aluminum profile. The simulation results show that the deformation increases gradually from inside to outside. Exterior deformation contour distribution is relative uniform since the influence of inner holes on deformation is small, and the contour form is regular and similar with the shape of the mould. However, the interior deformation contour is irregular as the influence of holes with basically symmetric equivalent curves. At the middle of the mould, the deformation reaches the largest, it reaches 0.633mm. The deformation of the mould can be reduced by increasing the distance between two holes or increasing thickness of the mould. Experiment result accords with simulation. The simulation process and results ensure the feasibility of finite element method, providing the support for mould design and structural optimization.

  10. 76 FR 29007 - Certain Aluminum Extrusions From China

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-19

    ... Aluminum Extrusions From China Determinations On the basis of the record \\1\\ developed in the subject...), that an industry in the United States is materially injured by reason of imports of certain aluminum... by Aluminum Extrusions Fair Trade Committee and the United Steel, Paper and Forestry, Rubber...

  11. Study on numerical simulation of asymmetric structure aluminum profile extrusion based on ALE method

    NASA Astrophysics Data System (ADS)

    Chen, Kun; Qu, Yuan; Ding, Siyi; Liu, Changhui; Yang, Fuyong

    2018-05-01

    Using the HyperXtrude module based on the Arbitrary Lagrangian-Eulerian (ALE) finite element method, the paper simulates the steady extrusion process of the asymmetric structure aluminum die successfully. A verification experiment is carried out to verify the simulation results. Having obtained and analyzed the stress-strain field, temperature field and extruded velocity of the metal, it confirms that the simulation prediction results and the experimental schemes are consistent. The scheme of the die correction and optimization are discussed at last. By adjusting the bearing length and core thickness, adopting the structure of feeder plate protection, short shunt bridge in the upper die and three-level bonding container in the lower die to control the metal flowing, the qualified aluminum profile can be obtained.

  12. The FEM simulation of continuous rotary extrusion (CRE) of aluminum alloy AA3003

    NASA Astrophysics Data System (ADS)

    Rajendran, Nijenthan; Valberg, Henry; Misiolek, Wojciech Z.

    2017-10-01

    Continuous Rotary Extrusion (CRE) process is also known in literature under Conform TM name and it is mainly used for the continuous extrusion of Aluminum and Copper alloys. CRE use a feedstock in the form of rod, powders and chips, which are fed into the groove of the rotating wheel. As the wheel rotates the feedstock moves along with it due to friction with the wheel. Once the feedstock reaches the abutment the material deforms plastically and it is extruded through the die. CRE has lot to offer when compared to other more conventional extrusion processes such as low energy input, no limit in billet length as it is a continuous process as well as improved material physical properties due to plastic deformation under constant parameters. In this work a FEM model has been developed using Deform TM 3D, to study the metal flow and state variables of AA3003 CRE extrusion. The effect of extrusion wheel velocity has been investigated. The results show that increase in wheel velocity will heat up the feedstock metal due to high shear deformation and higher friction, which significantly changes metal flow conditions at the die exit.

  13. Historical review of die drool phenomenon during plastics extrusion

    NASA Astrophysics Data System (ADS)

    Musil, Jan; Zatloukal, Martin

    2013-04-01

    Die drool phenomenon is defined as unwanted spontaneous accumulation of extruded polymer melt on open faces of extrusion die during extrusion process. Such accumulated material builds up on the die exit and frequently or continually sticks onto the extruded product and thus damages it. Since die drool appears, extrusion process must be shut down and die exit must be manually cleaned which is time and money consuming. Although die drool is complex phenomenon and its formation mechanism is not fully understood yet, variety of proposed explanations of its formation mechanism and also many ways to its elimination can be found in open literature. Our review presents in historical order breakthrough works in the field of die drool research, shows many ways to suppress it, introduces methods for its quantitative evaluation and composition analysis and summarizes theories of die drool formation mechanism which can be helpful for extrusion experts.

  14. Extrusion die and method

    DOEpatents

    Lipp, G. Daniel

    1994-05-03

    A method and die apparatus for manufacturing a honeycomb body of triangular cell cross-section and high cell density, the die having a combination of (i) feedholes feeding slot intersections and (ii) feedholes feeding slot segments not supplied from slot intersections, whereby a reduction in feedhole count is achieved while still retaining good extrusion efficiency and extrudate uniformity.

  15. 75 FR 34482 - Certain Aluminum Extrusions From China

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-17

    ...)] Certain Aluminum Extrusions From China Determinations On the basis of the record \\1\\ developed in the... reason of imports from China of certain aluminum extrusions, provided for in subheadings 7604.21, 7604.29... United States at less than fair value (LTFV) and subsidized by the Government of China. \\1\\ The record is...

  16. 75 FR 57441 - Aluminum Extrusions From the People's Republic of China: Alignment of Final Countervailing Duty...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-21

    ... DEPARTMENT OF COMMERCE International Trade Administration [C-570-968] Aluminum Extrusions From the... countervailing duty investigation of aluminum extrusions from the People's Republic of China (PRC) with the final... antidumping duty investigations on aluminum extrusions from the PRC. See Aluminum Extrusions from the People's...

  17. 75 FR 17436 - Certain Aluminum Extrusions From China

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-06

    ...)] Certain Aluminum Extrusions From China AGENCY: United States International Trade Commission. ACTION... the United States is materially retarded, by reason of imports from China of certain aluminum... States at less than fair value and alleged to be subsidized by the Government of China. Unless the...

  18. 75 FR 51243 - Aluminum Extrusions from the People's Republic of China: Postponement of Preliminary...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-19

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-570-967] Aluminum Extrusions from the... Department of Commerce (``the Department'') initiated an antidumping duty investigation on Aluminum... Aluminum Extrusions from the People's Republic of China: Initiation of Antidumping Duty Investigation, 75...

  19. 75 FR 34982 - Aluminum Extrusions from the People's Republic of China: Notice of Postponement of Preliminary...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-21

    ... DEPARTMENT OF COMMERCE International Trade Administration [C-570-968] Aluminum Extrusions from the... in the Federal Register a notice of initiation of the countervailing duty investigation of aluminum extrusions from the People's Republic of China. See Aluminum Extrusions From the People's Republic of China...

  20. 76 FR 80887 - Antidumping Order on Aluminum Extrusions from the People's Republic of China: Initiation of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-27

    ..., participated in the antidumping duty investigation of aluminum extrusions from the PRC. The Department issued its final determination for this investigation on April 4, 2011. See Aluminum Extrusions From the..., customers, suppliers, etc. Scope of the Order The merchandise covered by the order is aluminum extrusions...

  1. 76 FR 18521 - Aluminum Extrusions From the People's Republic of China: Final Affirmative Countervailing Duty...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-04

    ... People's Republic of China: Final Affirmative Countervailing Duty Determination AGENCY: Import... producers and exporters of aluminum extrusions from the People's Republic of China (the PRC). For... Aluminum Extrusions From the People's Republic of China: Preliminary Affirmative Countervailing Duty...

  2. Manufacture of gradient micro-structures of magnesium alloys using two stage extrusion dies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hwang, Yeong-Maw; Huang, Tze-Hui; Alexandrov, Sergei

    2013-12-16

    This paper aims to manufacture magnesium alloy metals with gradient micro-structures using hot extrusion process. The extrusion die was designed to have a straight channel part combined with a conical part. Materials pushed through this specially-designed die generate a non-uniform velocity distribution at cross sections inside the die and result in different strain and strain rate distributions. Accordingly, a gradient microstructure product can be obtained. Using the finite element analysis, the forming temperature, effective strain, and effective strain rate distributions at the die exit were firstly discussed for various inclination angles in the conical die. Then, hot extrusion experiments withmore » a two stage die were conducted to obtain magnesium alloy products with gradient micro-structures. The effects of the inclination angle on the grain size distribution at cross sections of the products were also discussed. Using a die of an inclination angle of 15°, gradient micro-structures of the grain size decreasing gradually from 17 μm at the center to 4 μm at the edge of product were achieved.« less

  3. 78 FR 34984 - Aluminum Extrusions From the People's Republic of China: Notice of Court Decision Not in Harmony...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-11

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-570-967; C-570-968] Aluminum... (AD) and countervailing duty (CVD) orders on aluminum extrusions,\\1\\ pursuant to the CIT's remand... Rail Kits \\2\\ and is amending its final scope ruling. \\1\\ See Aluminum Extrusions from the People's...

  4. A sustainable solid state recycling of pure aluminum by means of friction stir extrusion process (FSE)

    NASA Astrophysics Data System (ADS)

    Mehtedi, Mohamad El; Forcellese, Archimede; Simoncini, Michela; Spigarelli, Stefano

    2018-05-01

    In this research, the feasibility of solid-state recycling of pure aluminum AA1099 machining chips using FSE process is investigated. In the early stage, a FE simulation was conducted in order to optimize the die design and the process parameters in terms of plunge rotational speed and extrusion rate. The AA1099 aluminum chips were produced by turning of an as-received bar without lubrication. The chips were compacted on a MTS machine up to 150KN of load. The extruded samples were analyzed by optical and electron microscope in order to see the material flow and to characterize the microstructure. Finally, micro-hardness Vickers profiles were carried out, in both longitudinal and transversal direction of the obtained profiles, in order to investigate the homogeneity of the mechanical properties of the extrudate.

  5. Aluminum space frame technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Birch, S.

    This article examines the increased application of aluminum to the construction of automobile frames. The topics of the article include a joint venture between Audi and Alcoa, forms in which aluminum is used, new alloys and construction methods, meeting rigidity and safety levels, manufacturing techniques, the use of extrusions, die casting, joining techniques, and pollution control during manufacturing.

  6. The Prediction of Microstructure Evolution of 6005A Aluminum Alloy in a P-ECAP Extrusion Study

    NASA Astrophysics Data System (ADS)

    Lei, Shi; Jiu-Ba, Wen; Chang, Ren

    2018-05-01

    Finite element modeling (FEM) was applied for predicting the recrystallized structure in extruded 6005 aluminum alloy, and simulated results were experimentally validated. First, microstructure evolution of 6005 aluminum alloy during deformation was studied by means of isothermal compression test, where the processing parameters were chosen to reproduce the typical industrial conditions. Second, microstructure evolution was analyzed, and the obtained information was used to fit a dynamic recrystallization model implementing inside the DEFORM-3D FEM code environment. FEM of deformation of 6005 aluminum has been established and validated by microstructure comparison. Finally, the obtained dynamic recrystallization model was applied to tube extrusion by using a portholes-equal channel angular pressing die. The finite element analysis results showed that coarse DRX grains occur in the extruded tube at higher temperature and in the extruded tube at the faster speed of the stem. The test results showed material from the front end of the extruded tube has coarse grains (60 μm) and other extruded tube has finer grains (20 μm).

  7. The Prediction of Microstructure Evolution of 6005A Aluminum Alloy in a P-ECAP Extrusion Study

    NASA Astrophysics Data System (ADS)

    Lei, Shi; Jiu-Ba, Wen; Chang, Ren

    2018-04-01

    Finite element modeling (FEM) was applied for predicting the recrystallized structure in extruded 6005 aluminum alloy, and simulated results were experimentally validated. First, microstructure evolution of 6005 aluminum alloy during deformation was studied by means of isothermal compression test, where the processing parameters were chosen to reproduce the typical industrial conditions. Second, microstructure evolution was analyzed, and the obtained information was used to fit a dynamic recrystallization model implementing inside the DEFORM-3D FEM code environment. FEM of deformation of 6005 aluminum has been established and validated by microstructure comparison. Finally, the obtained dynamic recrystallization model was applied to tube extrusion by using a portholes-equal channel angular pressing die. The finite element analysis results showed that coarse DRX grains occur in the extruded tube at higher temperature and in the extruded tube at the faster speed of the stem. The test results showed material from the front end of the extruded tube has coarse grains (60 μm) and other extruded tube has finer grains (20 μm).

  8. Experimental and Numerical Study on the Strength of Aluminum Extrusion Welding.

    PubMed

    Bingöl, Sedat; Bozacı, Atilla

    2015-07-17

    The quality of extrusion welding in the extruded hollow shapes is influenced significantly by the pressure and effective stress under which the material is being joined inside the welding chamber. However, extrusion welding was not accounted for in the past by the developers of finite element software packages. In this study, the strength of hollow extrusion profile with seam weld produced at different ram speeds was investigated experimentally and numerically. The experiments were performed on an extruded hollow aluminum profile which was suitable to obtain the tensile tests specimens from its seam weld's region at both parallel to extrusion direction and perpendicular to extrusion direction. A new numerical modeling approach, which was recently proposed in literature, was used for numerical analyses of the study. The simulation results performed at different ram speeds were compared with the experimental results, and a good agreement was obtained.

  9. A Hollow Extrusion Die for Big Square Tube Profiles of Al-alloy

    NASA Astrophysics Data System (ADS)

    Huang, Xuemei; Deng, Rurong

    2018-03-01

    The factors on premature failure of the traditional extrusion die for the big square tube profiles were introduced. And the characteristics of the conventional structure were analyzed. A new type of hollow die structure for these profiles was presented. And the composition elements of the new die structure were described, including its advantages. According to the comparison conventional with new die structure in use, it was shown that the new die structure has obvious advantages, it could greatly improve the die life. This is a type of die structure which is worth promoting.

  10. Method of extruding and packaging a thin sample of reactive material including forming the extrusion die

    DOEpatents

    Lewandowski, Edward F.; Peterson, Leroy L.

    1985-01-01

    This invention teaches a method of cutting a narrow slot in an extrusion die with an electrical discharge machine by first drilling spaced holes at the ends of where the slot will be, whereby the oil can flow through the holes and slot to flush the material eroded away as the slot is being cut. The invention further teaches a method of extruding a very thin ribbon of solid highly reactive material such as lithium or sodium through the die in an inert atmosphere of nitrogen, argon or the like as in a glovebox. The invention further teaches a method of stamping out sample discs from the ribbon and of packaging each disc by sandwiching it between two aluminum sheets and cold welding the sheets together along an annular seam beyond the outer periphery of the disc. This provides a sample of high purity reactive material that can have a long shelf life.

  11. Method of extruding and packaging a thin sample of reactive material, including forming the extrusion die

    DOEpatents

    Lewandowski, E.F.; Peterson, L.L.

    1981-11-30

    This invention teaches a method of cutting a narrow slot in an extrusion die with an electrical discharge machine by first drilling spaced holes at the ends of where the slot will be, whereby the oil can flow through the holes and slot to flush the material eroded away as the slot is being cut. The invention further teaches a method of extruding a very thin ribbon of solid highly reactive material such as lithium or sodium through the die in an inert atmosphere of nitrogen, argon, or the like as in a glovebox. The invention further teaches a method of stamping out sample discs from the ribbon and of packaging each disc by sandwiching it between two aluminum sheets and cold welding the sheets together along an annular seam beyond the outer periphery of the disc. This provides a sample of high purity reactive material that can have a long shelf life.

  12. Metal flow and temperature in direct extrusion of large-size aluminum billets

    NASA Astrophysics Data System (ADS)

    Valberg, Henry; Costa, André L. M.

    2018-05-01

    FEM-analysis is used to study thermo-mechanical conditions in aluminum rod extrusion for billets with large size corresponding to that used in industrial production. In the analysis, focus is on how the metal flow and the temperature conditions in the extrusion material is affected by the extrusion velocity in terms of the ram speed used in the extrusion process. In the study, metal flow is characterized by the deformations in extrusion subjected to a perfect grid pattern, consisting of orthogonal crossing lines, added into the longitudinal mid-plane of the initial billet. The analysis shows that metal flow in extrusion conducted at a low ram speed of 1 mms-1, is predicted significantly different from that at a high speed of 5 mms-1, or above. As regards the thermal conditions in the extrusion material, they are also predicted significantly different, at the low and the high ram speed level. A likely explanation why metal flow is different at low and high ram speeds may be that flow is altered because of the concurrent change in the temperature field within the billet.

  13. Examining the Effect of the Die Angle on Tool Load and Wear in the Extrusion Process

    NASA Astrophysics Data System (ADS)

    Nowotyńska, Irena; Kut, Stanisław

    2014-04-01

    The tool durability is a crucial factor in each manufacturing process, and this also includes the extrusion process. Striving to achieve the higher product quality should be accompanied by a long-term tool life and production cost reduction. This article presents the comparative research of load and wear of die at various angles of working cone during the concurrent extrusion. The numerical calculations of a tool load during the concurrent extrusion were performed using the MSC MARC software using the finite element method (FEM). Archard model was used to determine and compare die wear. This model was implemented in the software using the FEM. The examined tool deformations and stress distribution were determined based on the performed analyses. The die wear depth at various working cone angles was determined. Properly shaped die has an effect on the extruded material properties, but also controls loads, elastic deformation, and the tool life.

  14. Improving the automated optimization of profile extrusion dies by applying appropriate optimization areas and strategies

    NASA Astrophysics Data System (ADS)

    Hopmann, Ch.; Windeck, C.; Kurth, K.; Behr, M.; Siegbert, R.; Elgeti, S.

    2014-05-01

    The rheological design of profile extrusion dies is one of the most challenging tasks in die design. As no analytical solution is available, the quality and the development time for a new design highly depend on the empirical knowledge of the die manufacturer. Usually, prior to start production several time-consuming, iterative running-in trials need to be performed to check the profile accuracy and the die geometry is reworked. An alternative are numerical flow simulations. These simulations enable to calculate the melt flow through a die so that the quality of the flow distribution can be analyzed. The objective of a current research project is to improve the automated optimization of profile extrusion dies. Special emphasis is put on choosing a convenient starting geometry and parameterization, which enable for possible deformations. In this work, three commonly used design features are examined with regard to their influence on the optimization results. Based on the results, a strategy is derived to select the most relevant areas of the flow channels for the optimization. For these characteristic areas recommendations are given concerning an efficient parameterization setup that still enables adequate deformations of the flow channel geometry. Exemplarily, this approach is applied to a L-shaped profile with different wall thicknesses. The die is optimized automatically and simulation results are qualitatively compared with experimental results. Furthermore, the strategy is applied to a complex extrusion die of a floor skirting profile to prove the universal adaptability.

  15. REFRACTORY DIE FOR EXTRUDING URANIUM

    DOEpatents

    Creutz, E.C.

    1959-08-11

    A die is presented for the extrusion of metals, said die being formed of a refractory complex oxide having the composition M/sub n/O/sub m/R/sub x/O/sub y/ where M is magnesium, zinc, manganese, or iron, R is aluminum, chromic chromium, ferric iron, or manganic manganese, and m, n, x, and y are whole numbers. Specific examples are spinel, magnesium aluminate, magnetite, magnesioferrite, chromite, and franklinite.

  16. Microstructures and properties of aluminum die casting alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    M. M. Makhlouf; D. Apelian; L. Wang

    1998-10-01

    This document provides descriptions of the microstructure of different aluminum die casting alloys and to relate the various microstructures to the alloy chemistry. It relates the microstructures of the alloys to their main engineering properties such as ultimate tensile strength, yield strength, elongation, fatigue life, impact resistance, wear resistance, hardness, thermal conductivity and electrical conductivity. Finally, it serves as a reference source for aluminum die casting alloys.

  17. 76 FR 30653 - Aluminum Extrusions From the People's Republic of China: Countervailing Duty Order

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-26

    ... Constitution Avenue, NW., Washington, DC 20230; telephone: 202/482-1009. Case History: On April 4, 2011, the... includes the aluminum extrusion components that are attached (e.g., by welding or fasteners) to form...

  18. 78 FR 34986 - Aluminum Extrusions From the People's Republic of China: Preliminary Results of Antidumping Duty...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-11

    ... Products Co., Ltd., Pingguo Asia Aluminum Co., Ltd., and Taishan City Kam Kiu Aluminum Extrusion Co., Ltd.... Co., Ltd.; (4) Isource Asia Limited and affiliates; (5) Kunshan Giant Light Metal Technology Co., Ltd.; (6) Midea Air-Conditioning Equipment Co., Ltd.; (7) Nidec Sankyo Singapore Pte. Ltd.; (8) Nidec...

  19. Tribological investigations of the applicability of surface functionalization for dry extrusion processes

    NASA Astrophysics Data System (ADS)

    Teller, Marco; Prünte, Stephan; Ross, Ingo; Temmler, André; Schneider, Jochen M.; Hirt, Gerhard

    2017-10-01

    Cold extrusion processes are characterized by large relative contact stresses combined with a severe surface enlargement of the workpiece. Under these process conditions a high risk for galling of workpiece material to the tool steel occurs especially in processing of aluminum and aluminum alloys. In order to reduce adhesive wear lubricants for separation of workpiece and tool surfaces are used. As a consequence additional process steps (e.g. preparation and cleaning of workpieces) are necessary. Thus, the realization of a dry forming process is aspired from an environmental and economic perspective. In this paper a surface functionalization with self-assembled-monolayers (SAM) of the tool steels AISI D2 (DIN 1.2379) and AISI H11 (DIN 1.2343) is evaluated by a process-oriented tribological test. The tribological experiment is able to resemble and scale the process conditions of cold extrusion related to relative contact stress and surface enlargement for the forming of pure aluminum (Al99.5). The effect of reduced relative contact stress, surface enlargement and relative velocity on adhesive wear and tool lifetime is evaluated. Similar process conditions are achievable by different die designs with decreased extrusion ratios and adjusted die angles. The effect of surface functionalization critically depends on the substrate material. The different microstructure and the resulting differences in surface chemistry of the two tested tool steels appear to affect the performance of the tool surface functionalization with SAM.

  20. 75 FR 54302 - Aluminum Extrusions From the People's Republic of China: Preliminary Affirmative Countervailing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-07

    ...- specific rates calculated for participating respondents, because to do so would require the use of program... People's Republic of China: Preliminary Affirmative Countervailing Duty Determination AGENCY: Import... producers and exporters of aluminum extrusions from the People's Republic of China (the PRC). For...

  1. Shear zone formation within the billet and metal flow through the die orifice in unlubricated axisymmetric forward and backward extrusion

    NASA Astrophysics Data System (ADS)

    Valberg, Henry; Costa, Andrè L. M.

    2017-10-01

    Metal flow inside the billet is known to be completely different in forward (FWE) and backward (BWE) Al-extrusion. A practical implication of this is that contamination near to the surface of the extrusion billet, or on the peripheral surface skin, tends to flow out of the die more readily in BWE than in FWE. It is therefore common in BWE to use a scalping operation on the billet to remove eventual sub-surface contamination that may be present. This additional working operation may be required in order to avoid surface quality problems on BWE profiles. In spite of the importance of metal flow in metals extrusion, there are still lack of knowledge about the topic. With recent progress in FEM-analysis for modelling deformation processing, however, it is now possible to perform accurate studies on metal flow phenomena by simulation on the computer. In our study, we are using the 3D FEM-program DEFORM® to model axisymmetric FWE and BWE in case of non-lubricated extrusion through a flat-faced die. Our primary focus is to consider the difference in appearance of shear zones present inside the extrusion billet for the two processes, including metal flow in the die mouth.

  2. Alcoa: Plant-Wide Energy Assessment Finds Potential Savings at Aluminum Extrusion Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2003-09-01

    Alcoa completed an energy assessment of its Engineered Products aluminum extrusion facility in Plant City, Florida, in 2001. The company identified energy conservation opportunities throughout the plant and prepared a report as an example for performing energy assessments at similar Alcoa facilities. If implemented, the cost of energy for the plant would be reduced by more than $800,000 per year by conserving 3 million kWh of electricity and 150,000 MMBtu of natural gas.

  3. The thermal fatigue resistance of H-13 Die Steel for aluminum die casting dies

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The effects of welding, five selected surface coatings, and stress relieving on the thermal fatigue resistance of H-13 Die Steel for aluminum die casting dies were studied using eleven thermal fatigue specimens. Stress relieving was conducted after each 5,000 cycle interval at 1050 F for three hours. Four thermal fatigue specimens were welded with H-13 or maraging steel welding rods at ambient and elevated temperatures and subsequently, subjected to different post-weld heat treatments. Crack patterns were examined at 5,000, 10,000, and 15,000 cycles. The thermal fatigue resistance is expressed by two crack parameters which are the average maximum crack and the average cracked area. The results indicate that a significant improvement in thermal fatigue resistance over the control was obtained from the stress-relieving treatment. Small improvements were obtained from the H-13 welded specimens and from a salt bath nitrogen and carbon-surface treatment. The other surface treatments and welded specimens either did not affect or had a detrimental influence on the thermal fatigue properties of the H-13 die steel.

  4. Modelling highly deformable metal extrusion using SPH

    NASA Astrophysics Data System (ADS)

    Prakash, Mahesh; Cleary, Paul W.

    2015-05-01

    Computational modelling is often used to reduce trial extrusions through accurate defect prediction. Traditionally, metal extrusion is modelled using mesh based finite element methods. However, large plastic deformations can lead to heavy re-meshing and numerical diffusion. Here we use the mesh-less smoothed particle hydrodynamics method since it allows simulation of large deformations without re-meshing and the tracking of history dependent properties such as plastic strain making it suitable for defect prediction. The variation in plastic strain and deformation for aluminium alloy in a cylindrical 3D geometry with extrusion ratio and die angle is evaluated. The extrusion process is found to have three distinct phases consisting of an initial sharp rise in extrusion force, a steady phase requiring constant force and terminating in a sharp decline in force as metal is completely extruded. Deformation and plastic strain increased significantly with extrusion ratio but only moderately with die angle. Extrusion force increased by 150 % as the extrusion ratio increased from 2:1 to 4:1 but had only a marginal change with die angle. A low strain zone in the centre of the extruded product was found to be a function of extrusion ratio but was persistent and did not vary with die angle. Simulation of a complex 3D building industry component showed large variations in plastic strain along the length of the product at two scales. These were due to change in metal behaviour as extrusion progressed from phase 1 to phase 2. A stagnation zone at the back of the die was predicted that could lead to the "funnel" or "pipe" defect.

  5. A FEM simulation study of the solid state hydrostatic extrusion of PMMA

    NASA Astrophysics Data System (ADS)

    Costa, André L. M.; Riffel, Douglas B.; Misiolek, Wojciech Z.; Valberg, Henry S.

    2018-05-01

    Solid state hydrostatic extrusion (SSHE) of polymers below glass transition temperature is used to obtain highly oriented structures. Experimental studies on the SSHE of polymethyl-methacrylate (PMMA) have been made since early eighties but there is no information on internal temperature, stress and strain distribution. In this work we have made 3D FEM simulations of SSHE of PMMA by using the commercial DEFORM package with experimental flow curves and thermal properties from literature. The initial temperature of tooling and workpiece was 90°C, ram speeds were 1.0 and 10.0 mm/min with extrusion ratio R = 3.0. For a comparative analysis, SSHE simulation of the AA7108 aluminum alloy at 400°C was also performed. These ranges of parameters were chosen in order to encompass the parameters found in previously mentioned experiments. The best correlation with experimental hydrostatic pressure was verified for a shear friction coefficient at the material-conical die interface m = 0.50. Force-displacement curve for PMMA presented a constitutive and thermal softening in contrast to a constant force curve for aluminum. The internal temperature in the deformation zone increased in a characteristic "owl's face" profile in contrast to quasi-constant profile of aluminum alloy. In both PMMA and aluminum the stress is hydrostatic inside the container, but the stress profiles are significantly different inside the deformation zone. As expected, the strain and strain-rate profiles are practically the same for the two materials, but the temperature profile has promoted slightly differences in material flow. The velocity gradient from center to surface is higher in PMMA than aluminum. It's supposed that during hydrostatic extrusion solid PMMA has a characteristic thermally-inducted mechanical behavior.

  6. Mathematical modeling of hydromechanical extrusion

    NASA Astrophysics Data System (ADS)

    Agapitova, O. Yu.; Byvaltsev, S. V.; Zalazinsky, A. G.

    2017-12-01

    The mathematical modeling of the hydromechanical extrusion of metals through two sequentially installed cone dies is carried out. The optimum parameters of extrusion tools are determined to minimize the extrusion force. A software system has been developed to solve problems of plastic deformation of metals and to provide an optimum design of extrusion tools.

  7. CORROSION EXPERIENCE WITH ALUMINUM POWDER PRODUCTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Draley, J.E.; Ruther, W.E.; Greenberg, S.

    1963-11-01

    Extrusions of aluminum alloy powder products were obtained from several sources and evaluated for corrosion resistance to high-temperature (260-- 350 deg C) water. Several types of tubing impact-extruded by ALCOA were tested. The stronger tabing (M655) failed very rapidly. The weaker tubing suffered extensive localized surface attack and penetration of the corrosion attack along the extrusion direction after prolonged ( approximates 3 months) exposure to 290 deg C water. A precorrosion heat treatment was effective in reducing both types of attack on the weaker tubing. Armour Research Foundation supplied several types of tubing extraded through a bridge die. All tubesmore » failed on prolonged ( approximates 8 months) corrosion in 290 deg C water at the longitudinal bond lines. These lines were formed by the rejoining of the metal streams passing over the mandrel supports in the die during extrusion. Directly extruded tubing supplied by the Torrance Brass Company also failed on extended exposure to 290 deg C water. Many experimental rod extrusions (from Armour Research Foundation and Trefimetaux) exhibited corrosion resistance to static 290 deg C water equivalent to that of wrought alloys. The Trefimetaux specimens were also tested in rapidly flowing water at 315 deg C. Under these conditions a corrosion rate significantly faster than for the wrought alloy was measured. (auth)« less

  8. Influences of die channel angles on microstructures and wear behaviors of AZ61 wrought magnesium alloy fabricated by extrusion-shear process

    NASA Astrophysics Data System (ADS)

    Hu, Hong-J.; Sun, Z.; Ou, Z.-W.

    2016-12-01

    Extrusion-shear (ES) process for magnesium alloy is a newly developed plastic deformation process, and ES process combines direct extrusion and two steps of ECAE (equal channel angular extrusion). To investigate the effects of the die channel angles on the microstructures and wear behaviors of AZ61 wrought magnesium alloy, the samples used in this study were fabricated by ES process with different die channel angles (120° and 135°). The microstructures of the samples were characterized by optical microscopy (OM), X-ray diffraction (XRD) and (SEM). The cumulative strains in the ES process were predicted by approaches of numerical simulation and theoretical calculation. To characterize the wear resistance of the samples, pin-on-disk tests under dry sliding conditions with various normal loads and reciprocating frequencies were conducted. To define the wear mechanisms of AZ61 magnesium alloy, the worn surfaces after wear tests were analyzed by SEM and energy-dispersive X-ray spectrometer (EDS). Based on the results obtained, die channel angles have significant influences on the grain refinements and wear behaviors of the samples. Decreasing channel angles of the ES die will not only refine the microstructures of magnesium alloys effectively and improve their harnesses, but also improve their wear resistance as decreasing channel angles results in higher friction coefficients and wear rates. With the increase in applied loads and frequencies, wear mechanisms change from mild wear (adhesion, abrasion and oxidation) to severe wear (delamination, plastic deformation and melting). In summary, the wear resistance of ES-processed AZ61 magnesium alloy could be improved by decreasing channel angles of ES dies.

  9. Effect of hot and cold severe deformation by extrusion on the properties of lead and aluminum alloys

    NASA Astrophysics Data System (ADS)

    Ganiev, M. M.; Shibakov, V. G.; Pankratov, D. L.; Shibakov, R. V.

    2015-07-01

    The study of the effect of severe plastic deformation (SPD) by extrusion shows that the ductility of lead after several cycles of SPD increases significantly (3-4 times) as compared to as-cast samples. An aluminum alloy after this processing is hardened by a factor of 2.3-2.5, with ductility decreasing by 2.5-2.7 times, as compared to the as-delivered state.

  10. Alcoa: Plant-Wide Energy Assessment Finds Potential Savings at Aluminum Extrusion Facility. Industrial Technologies Program, Aluminum BestPractices Plant-Wide Assessment Case Study.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2003-09-01

    Alcoa completed an energy assessment of its Engineered Products aluminum extrusion facility in Plant City, Florida, in 2001. The company identified energy conservation opportunities throughout the plant and prepared a report as an example for performing energy assessments at similar Alcoa facilities. If implemented, the cost of energy for the plant would be reduced by more than$800,000 per year by conserving 3 million kWh of electricity and 150,000 MMBtu of natural gas.

  11. Thermal and Kinetic Modelling of Elastomer Flow—Application to an Extrusion Die

    NASA Astrophysics Data System (ADS)

    Launay, J.; Allanic, N.; Mousseau, P.; Deterre, R.

    2011-05-01

    This paper reports and discusses the thermal and kinetic behaviour of elastomer flow inside an extrusion die. The reaction progress through the runner was modeled by using a particle tracking technique. The aim is to analyze viscous dissipation phenomena to control scorch arisen, improve the rubber compound curing homogeneity and reduce the heating time in the mould using the progress of the induction time. The heat and momentum equations were solved in three dimensions with Ansys Polyflow. A particle tracking technique was set up to calculate the reaction progress. Several simulations were performed to highlight the influence of process parameters and geometry modifications on the rubber compound thermal and cure homogeneity.

  12. Experimental and numerical investigation of ram extrusion of bread dough

    NASA Astrophysics Data System (ADS)

    Mohammed, M. A. P.; Wanigasooriya, L.; Charalambides, M. N.

    2016-10-01

    An experimental and numerical study on ram extrusion of bread dough was conducted. A laboratory ram extrusion rig was designed and manufactured, where dies with different angles and exit radii were employed. Rate dependent behaviour was observed from tests conducted at different extrusion speeds, and higher extrusion pressure was reported for dies with decreasing exit radius. A finite element simulation of extrusion was performed using the adaptive meshing technique in Abaqus. Simulations using a frictionless contact between the billet and die wall showed that the model underestimates the response at high entry angles. On the other hand, when the coefficient of friction value was set to 0.09 as measured from friction experiments, the dough response was overestimated, i.e. the model extrusion pressure was much higher than the experimentally measured values. When a critical shear stress limit, τmax, was used, the accuracy of the model predictions improved. The results showed that higher die angles require higher τmax values for the model and the experiments to agree.

  13. Improved design and durability of aluminum die casting horizontal shot sleeves

    NASA Astrophysics Data System (ADS)

    Birceanu, Sebastian

    The design and performance of shot sleeves is critical in meeting the engineering requirements of aluminum die cast parts. Improvement in shot sleeve materials have a major impact on dimensional stability, reproducibility and quality of the product. This investigation was undertaken in order to improve the life of aluminum die casting horizontal shot sleeves. Preliminary pin tests were run to evaluate the soldering, wash-out and thermal fatigue behavior of commercially available materials and coatings. An experimental rig was designed and constructed for shot sleeve configuration evaluation. Fabrication and testing of experimental shot sleeves was based upon preliminary results and manufacturing costs. Three shot sleeve designs and materials were compared to a reference nitrided H13 sleeve. Nitrided H13 is the preferred material for aluminum die casting shot sleeves because of wear resistance, strength and relative good soldering and wash-out resistance. The study was directed towards damage evaluation on the area under the pouring hole. This area is the most susceptible to damage because of high temperatures and impingement of molten aluminum. The results of this study showed that tungsten and molybdenum had the least amount of soldering and wash-out damage, and the best thermal fatigue resistance. Low solubility in molten aluminum and stability of intermetallic layers are main factors that determine the soldering and wash-out behavior. Thermal conductivity and thermal expansion coefficient directly influence thermal fatigue behavior. TiAlN nanolayered coating was chosen as the material with the best damage resistance among several commercial PVD coatings, because of relatively large thickness and simple deposition conditions. The results show that molybdenum thermal sprayed coating provided the best protection against damage under the pouring hole. Improved bonding is however required for life extension of the coating. TiAlN PVD coating applied on H13 nitrided

  14. Solid state recycling of aluminium alloys via a porthole die hot extrusion process: Scaling up to production

    NASA Astrophysics Data System (ADS)

    Paraskevas, Dimos; Kellens, Karel; Deng, Yelin; Dewulf, Wim; Kampen, Carlos; Duflou, Joost R.

    2017-10-01

    Whereas industrial symbiosis has led to increased energy and resource efficiency in process industries, this concept has not yet been applied in discrete product manufacturing. Metal scrap is first conventionally recycled, for which substantial energy and resource efficiency losses have been reported. Recent research has however proven the feasibility of `meltless' recycling of light metal scrap, yielding a first glimpse of potential industrial symbiosis. Various solid state recycling techniques (such as recycling via hot extrusion or Spark Plasma Sintering) have been proposed for scrap consolidation directly into bulk products or semis by physical disruption and dispersion of the oxide surface film by imposing significant plastic and shear strain. Solid State Recycling (SSR) methods can omit substantial material losses as they bypass the metallurgical recycling step. In this context the case of direct production of bulk aluminium profiles via hot extrusion at industrial scale is demonstrated within this paper. The extrusion tests were performed directly into the production line, highlighting the scaling up potentials and the industrial relevance of this research. A significant amount of machining chips were collected, chemically cleaned and cold compacted into chip based billets with ˜80% relative density. Afterwards the scrap consolidation was achieved by imposing significant plastic and shear deformation into the material during hot extrusion through a modified 2-porthole extrusion die-set. The production process sequence along with microstructural investigations and mechanical properties comparison of the cast based profile used as reference versus the chip based profile are presented.

  15. Modeling the Formation of Transverse Weld during Billet-on-Billet Extrusion

    PubMed Central

    Mahmoodkhani, Yahya; Wells, Mary; Parson, Nick; Jowett, Chris; Poole, Warren

    2014-01-01

    A comprehensive mathematical model of the hot extrusion process for aluminum alloys has been developed and validated. The plasticity module was developed using a commercial finite element package, DEFORM-2D, a transient Lagrangian model which couples the thermal and deformation phenomena. Validation of the model against industrial data indicated that it gave excellent predictions of the pressure during extrusion. The finite element predictions of the velocity fields were post-processed to calculate the thickness of the surface cladding as one billet is fed in after another through the die (i.e., the transverse weld). The mathematical model was then used to assess the effect a change in feeder dimensions would have on the shape, thickness and extent of the transverse weld during extrusion. Experimental measurements for different combinations of billet materials show that the model is able to accurately predict the transverse weld shape as well as the clad surface layer to thicknesses of 50 μm. The transverse weld is significantly affected by the feeder geometry shape, but the effects of ram speed, billet material and temperature on the transverse weld dimensions are negligible. PMID:28788629

  16. Analysis and Prediction of the Billet Butt and Transverse Weld in the Continuous Extrusion Process of a Hollow Aluminum Profile

    NASA Astrophysics Data System (ADS)

    Lou, Shumei; Wang, Yongxiao; Liu, Chuanxi; Lu, Shuai; Liu, Sujun; Su, Chunjian

    2017-08-01

    In continuous extrusions of aluminum profiles, the thickness of the billet butt and the length of the discarded extrudate containing the transverse weld play key roles in reducing material loss and improving product quality. The formation and final distribution of the billet butt and transverse weld depend entirely on the flow behavior of the billet skin material. This study examined the flow behavior of the billet skin material as well as the formation and evolution of the billet butt and the transverse weld in detail through numerical simulation and a series of experiments. In practical extrusions, even if the billet skin is removed by lathe turning shortly before extrusion, billet skin impurities are still distributed around the transverse weld and in the billet butt. The thickness of the scrap billet butt and the length of the discarded extrudate containing the transverse weld can be exactly predicted via simulation.

  17. Die Soldering in Aluminium Die Casting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Q.; Kenik, E.A.; Viswanathan, S.

    2000-03-15

    Two types of tests, dipping tests and dip-coating tests were carried out on small steel cylinders using pure aluminum and 380 alloy to investigate the mechanism of die soldering during aluminum die casting. Optical and scanning electron microscopy were used to study the morphology and composition of the phases formed during soldering. A soldering mechanism is postulated based on experimental observations. A soldering critical temperature is postulated at which iron begins to react with aluminum to form an aluminum-rich liquid phase and solid intermetallic compounds. When the temperature at the die surface is higher than this critical temperature, the aluminum-richmore » phase is liquid and joins the die with the casting during the subsequent solidification. The paper discusses the mechanism of soldering for the case of pure aluminum and 380 alloy casting in a steel mold, the factors that promote soldering, and the strength of the bond formed when soldering occurs. conditions, an aluminum-rich soldering layer may also form over the intermetallic layer. Although a significant amount of research has been conducted on the nature of these intermetallics, little is known about the conditions under which soldering occurs.« less

  18. Computer aided design of extrusion forming tools for complex geometry profiles

    NASA Astrophysics Data System (ADS)

    Goncalves, Nelson Daniel Ferreira

    In the profile extrusion, the experience of the die designer is crucial for obtaining good results. In industry, it is quite usual the need of several experimental trials for a specific extrusion die before a balanced flow distribution is obtained. This experimental based trial-and-error procedure is time and money consuming, but, it works, and most of the profile extrusion companies rely on such method. However, the competition is forcing the industry to look for more effective procedures and the design of profile extrusion dies is not an exception. For this purpose, computer aided design seems to be a good route. Nowadays, the available computational rheology numerical codes allow the simulation of complex fluid flows. This permits the die designer to evaluate and to optimize the flow channel, without the need to have a physical die and to perform real extrusion trials. In this work, a finite volume based numerical code was developed, for the simulation of non-Newtonian (inelastic) fluid and non-isothermal flows using unstructured meshes. The developed code is able to model the forming and cooling stages of profile extrusion, and can be used to aid the design of forming tools used in the production of complex profiles. For the code verification three benchmark problems were tested: flow between parallel plates, flow around a cylinder, and the lid driven cavity flow. The code was employed to design two extrusion dies to produce complex cross section profiles: a medical catheter die and a wood plastic composite profile for decking applications. The last was experimentally validated. Simple extrusion dies used to produced L and T shaped profiles were studied in detail, allowing a better understanding of the effect of the main geometry parameters on the flow distribution. To model the cooling stage a new implicit formulation was devised, which allowed the achievement of better convergence rates and thus the reduction of the computation times. Having in mind the

  19. Extrusion & Compoundierung

    NASA Astrophysics Data System (ADS)

    Collin, Heinz; Schulze, Verena

    Unter Extrusion wird das kontinuierliche Fördern von formbaren Massen verstanden. Dies können Kunststoffe, Teigwaren in der Lebensmittelindustrie oder auch keramische Massen sein. In der chemischen Industrie werden ebenfalls hochviskose (schwerfließende) Stoffe oder Pasten dosiert, gefördert und extrudiert. Früher waren vorzugsweise Kolbenstrangpressen im Einsatz, bis sich ab 1950 in steigendem Maße die Schneckenmaschinen durchgesetzt haben. Der weltweite Siegeszug der Kunststoffe ist zu einem erheblichen Teil auf die stetige technologische Weiterentwicklung im Bereich der Extrusionstechnik zurückzuführen. Der Markt der weltweit produzierten Maschinen für die Kunststoffverarbeitung erreichte im Jahr 2006 einen Wert von 20 Milliarden Euro und somit zählt dieser Bereich mittlerweile zu einem der großen Industriezweige [1].

  20. Simulation of 7050 Wrought Aluminum Alloy Wheel Die Forging and its Defects Analysis based on DEFORM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang Shiquan; Yi Youping; Zhang Yuxun

    2010-06-15

    Defects such as folding, intercrystalline cracking and flow lines outcrop are very likely to occur in the forging of aluminum alloy. Moreover, it is difficult to achieve the optimal set of process parameters just by trial and error within an industrial environment. In producing 7050 wrought aluminum alloy wheel, a rigid-plastic finite element method (FEM) analysis has been performed to optimize die forging process. Processing parameters were analyzed, focusing on the effects of punch speed, friction factor and temperature. Meanwhile, mechanism as well as the evolution with respect to the defects of the wrought wheel was studied in details. Frommore » an analysis of the results, isothermal die forging was proposed for producing 7050 aluminum alloy wheel with good mechanical properties. Finally, verification experiment was carried out on hydropress.« less

  1. Worm melt fracture and fast die build-up at high shear rates in extrusion blow molding of large drums

    NASA Astrophysics Data System (ADS)

    Inn, Yong Woo; Sukhadia, Ashish M.

    2017-05-01

    In the extrusion blow molding process of high density polyethylene (HDPE) for making of large size drums, string-like defects, which are referred to as worm melt fracture in the industry, are often observed on the extrudate surface. Such string-like defects in various shapes and sizes are observed in capillary extrusion at very high shear rates after the slip-stick transition. The HDPE resin with broader molecular weight distribution (MWD) exhibits a greater degree of worm melt fracture while the narrow MWD PE resin, which has higher slip velocity and a uniform slip layer, shows a lesser degree of worm melt fracture. It is hypothesized that the worm melt fracture is related to fast die build-up and cohesive slip layer, a failure within the polymer melts at an internal surface. If the cohesive slip layer at an internal surface emerges out from the die, it can be attached on the surface of extrudate as string-like defects, the worm melt fracture. The resin having more small chains and lower plateau modulus can be easier to have such an internal failure and consequently exhibit more "worm" defects.

  2. Tribological and Wear Performance of Nanocomposite PVD Hard Coatings Deposited on Aluminum Die Casting Tool

    PubMed Central

    Fox-Rabinovich, German; Locks Junior, Edinei; Stolf, Pietro; Matos Martins, Marcelo

    2018-01-01

    In the aluminum die casting process, erosion, corrosion, soldering, and die sticking have a significant influence on tool life and product quality. A number of coatings such as TiN, CrN, and (Cr,Al)N deposited by physical vapor deposition (PVD) have been employed to act as protective coatings due to their high hardness and chemical stability. In this study, the wear performance of two nanocomposite AlTiN and AlCrN coatings with different structures were evaluated. These coatings were deposited on aluminum die casting mold tool substrates (AISI H13 hot work steel) by PVD using pulsed cathodic arc evaporation, equipped with three lateral arc-rotating cathodes (LARC) and one central rotating cathode (CERC). The research was performed in two stages: in the first stage, the outlined coatings were characterized regarding their chemical composition, morphology, and structure using glow discharge optical emission spectroscopy (GDOES), scanning electron microscopy (SEM), and X-ray diffraction (XRD), respectively. Surface morphology and mechanical properties were evaluated by atomic force microscopy (AFM) and nanoindentation. The coating adhesion was studied using Mersedes test and scratch testing. During the second stage, industrial tests were carried out for coated die casting molds. In parallel, tribological tests were also performed in order to determine if a correlation between laboratory and industrial tests can be drawn. All of the results were compared with a benchmark monolayer AlCrN coating. The data obtained show that the best performance was achieved for the AlCrN/Si3N4 nanocomposite coating that displays an optimum combination of hardness, adhesion, soldering behavior, oxidation resistance, and stress state. These characteristics are essential for improving the die mold service life. Therefore, this coating emerges as a novelty to be used to protect aluminum die casting molds. PMID:29495620

  3. Tribological and Wear Performance of Nanocomposite PVD Hard Coatings Deposited on Aluminum Die Casting Tool.

    PubMed

    Paiva, Jose Mario; Fox-Rabinovich, German; Locks Junior, Edinei; Stolf, Pietro; Seid Ahmed, Yassmin; Matos Martins, Marcelo; Bork, Carlos; Veldhuis, Stephen

    2018-02-28

    In the aluminum die casting process, erosion, corrosion, soldering, and die sticking have a significant influence on tool life and product quality. A number of coatings such as TiN, CrN, and (Cr,Al)N deposited by physical vapor deposition (PVD) have been employed to act as protective coatings due to their high hardness and chemical stability. In this study, the wear performance of two nanocomposite AlTiN and AlCrN coatings with different structures were evaluated. These coatings were deposited on aluminum die casting mold tool substrates (AISI H13 hot work steel) by PVD using pulsed cathodic arc evaporation, equipped with three lateral arc-rotating cathodes (LARC) and one central rotating cathode (CERC). The research was performed in two stages: in the first stage, the outlined coatings were characterized regarding their chemical composition, morphology, and structure using glow discharge optical emission spectroscopy (GDOES), scanning electron microscopy (SEM), and X-ray diffraction (XRD), respectively. Surface morphology and mechanical properties were evaluated by atomic force microscopy (AFM) and nanoindentation. The coating adhesion was studied using Mersedes test and scratch testing. During the second stage, industrial tests were carried out for coated die casting molds. In parallel, tribological tests were also performed in order to determine if a correlation between laboratory and industrial tests can be drawn. All of the results were compared with a benchmark monolayer AlCrN coating. The data obtained show that the best performance was achieved for the AlCrN/Si₃N₄ nanocomposite coating that displays an optimum combination of hardness, adhesion, soldering behavior, oxidation resistance, and stress state. These characteristics are essential for improving the die mold service life. Therefore, this coating emerges as a novelty to be used to protect aluminum die casting molds.

  4. Hot-melt co-extrusion: requirements, challenges and opportunities for pharmaceutical applications.

    PubMed

    Vynckier, An-Katrien; Dierickx, Lien; Voorspoels, Jody; Gonnissen, Yves; Remon, Jean Paul; Vervaet, Chris

    2014-02-01

    Co-extrusion implies the simultaneous hot-melt extrusion of two or more materials through the same die, creating a multi-layered extrudate. It is an innovative continuous production technology that offers numerous advantages over traditional pharmaceutical processing techniques. This review provides an overview of the co-extrusion equipment, material requirements and medical and pharmaceutical applications. The co-extrusion equipment needed for pharmaceutical production has been summarized. Because the geometrical design of the die dictates the shape of the final product, different die types have been discussed. As one of the major challenges at the moment is shaping the final product in a continuous way, an overview of downstream solutions for processing co-extrudates into drug products is provided. Layer adhesion, extrusion temperature and viscosity matching are pointed out as most important requirements for material selection. Examples of medical and pharmaceutical applications are presented and some recent findings considering the production of oral drug delivery systems have been summarized. Co-extrusion provides great potential for the continuous production of fixed-dose combination products which are gaining importance in pharmaceutical industry. There are still some barriers to the implementation of co-extrusion in the pharmaceutical industry. The optimization of downstream processing remains a point of attention. © 2013 Royal Pharmaceutical Society.

  5. FORMING TUBES AND RODS OF URANIUM METAL BY EXTRUSION

    DOEpatents

    Creutz, E.C.

    1959-01-27

    A method and apparatus are presented for the extrusion of uranium metal. Since uranium is very brittle if worked in the beta phase, it is desirable to extrude it in the gamma phase. However, in the gamma temperature range thc uranium will alloy with the metal of the extrusion dic, and is readily oxidized to a great degree. According to this patent, uranium extrusion in thc ganmma phase may be safely carried out by preheating a billet of uranium in an inert atmosphere to a trmperature between 780 C and 1100 C. The heated billet is then placed in an extrusion apparatus having dies which have been maintained at an elevated temperature for a sufficient length of time to produce an oxide film, and placing a copper disc between the uranium billet and the die.

  6. Research on Extrusion of Rubber Composites Reinforced by Short Fibers Orientation Based on FEA

    NASA Astrophysics Data System (ADS)

    Zhang, Dewei; Wang, Chuansheng; Shen, Bo; Li, Shaoming; Bian, Huiguang

    2018-06-01

    In recent years, rubber composites reinforced by short fibers has been researched deeply, because of its good performances such as higher wear resistance, higher cut resistance and so on. Some research results indicated that if short fibers get orientation in rubber composites, the performances of rubber products could be promoted greatly. But how to make short fibers get orientation in rubber matrix during extrusion is still a real problem. And there are many parameters affect the short fibers orientation. So, in this paper, the effects of die structure including expansion-die and dam-expansion-die on extrusion flow field of short fiber and rubber composite material during extrusion process has been researched by Polyflow. And the FEA results about the pressure field, velocity field and the velocity vector of the rubber composites flow field indicate that, comparing with expansion-die and the dam-expansion-die, the latter one is better for the extrusion process of rubber composites and making short fibers get radial orientation in rubber matrix.

  7. Limitation of Shrinkage Porosity in Aluminum Rotor Die Casting

    NASA Astrophysics Data System (ADS)

    Kim, Young-Chan; Choi, Se-Weon; Kim, Cheol-Woo; Cho, Jae-Ik; Lee, Sung-Ho; Kang, Chang-Seog

    Aluminum rotor prone to have many casting defects especially large amount of air and shrinkage porosity, which caused eccentricity, loss and noise during motor operation. Many attempts have been made to develop methods of shrinkage porosity control, but still there are some problems to solve. In this research, the process of vacuum squeeze die casting is proposed for limitation of defects. The 6 pin point gated dies which were in capable of local squeeze at the end ring were used. Influences of filling patterns on HPDC were evaluated and the important process control parameters were high injection speed, squeeze length, venting and process conditions. By using local squeeze and vacuum during filling and solidification, air and shrinkage porosity were significantly reduced and the feeding efficiency at the upper end ring was improved 10%. As a result of controlling the defects, the dynamometer test showed improved motor efficiency by more than 4%.

  8. Numerical investigation of the effect of friction conditions to increase die life

    NASA Astrophysics Data System (ADS)

    Mutlu, M. O.; Guleryuz, C. G.; Parlar, Z.

    2017-02-01

    The standard die materials in aluminium extrusion offer good mechanical properties like high tempering resistance, high strength and ductility. On the other hand, they struggle with the problem of sliding wear. As a result, there is a growing interest in using surface treatment techniques to increase the wear resistance of extrusion dies. In this study, it is aimed to observe the effects of the different friction conditions on material flow and contact pressure in extrusion process. These friction conditions can be obtained with the application of a variety of surface treatment. In this way, it is expected to decrease the friction force on the die bearing area and to increase the homogeneity of the material flow which will result in the increase of the quality of the extrudate as well as the improvement of the process economically by extending die life. For this purpose, an extrusion process is simulated with a finite element software. A die made of 1.2344 hot work tool steel-commonly used die material for aluminium extrusion process- has been modelled and Al 1100 alloy used as billet material. Various friction factor values defined on the die surface under the same process parameters and effects of changing frictional conditions on the die and the extrusion process have been discussed.

  9. Modification of the anisotropy and strength differential effect of extruded AZ31 by extrusion-shear

    NASA Astrophysics Data System (ADS)

    Jaehnke, M.; Gensch, F.; Mueller, S.

    2018-05-01

    The extrusion of magnesium alloys results in a pronounced fiber texture in which the basal planes are mostly oriented parallel and the c-axes are oriented perpendicular to the extrusion direction. Due to this texture the Strength Differential Effect (SDE), which describes the strength difference between tensile and compression yield strength, and the elastic anisotropy in the sheet plane are obtained during extrusion. The objective of the investigation was to decrease the SDE and anisotropy through specifically influencing the microstructure and texture. To accomplish this objective, the forming processes extrusion (EX) and equal channel angular pressing (ECAP) were combined and integrated into one extrusion die. This combination is called extrusion-shear (ES). With an ES-die, billets of the magnesium alloy AZ31B were formed into a sheet with the thickness of 4 mm and the width of 70 mm. The angles of the used ECAP-applications in the ES-dies were set to 90° and 135°. The results show that the extrusion-shear process is able to decrease the anisotropy and SDE through transformation of the texture compared to conventional extrusion process. Also grain refinement could be observed. However, the outcomes seem to be very sensitive to the process parameters. Only by using the ES-die with an angle of 135° the desired effect could be accomplished.

  10. Optical Measurement Technology For Aluminium Extrusions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moe, Per Thomas; Willa-Hansen, Arnfinn; Stoeren, Sigurd

    2007-04-07

    Optical measurement techniques such as laser scanning, structured light scanning and photogrammetry can be used for accurate shape control for aluminum extrusion and downstream processes. The paper presents the fundamentals of optical shape measurement. Furthermore, it focuses on how full-field in- and off-line shape measurement during pure-bending of aluminum extrusions has been performed with stripe projection (structured light) using white light. Full field shape measurement is difficult to implement industrially, but is very useful as a laboratory tool. For example, it has been clearly shown how moderate internal air pressure (less than 5 bars) can significantly reduce undesirable cross-sectional shapemore » distortions during pure bending, and how buckling of the compressive flange occurs at an early stage. Finally, a stretch-bending set-up with adaptive shape control using internal gas pressure and optical techniques is presented.« less

  11. Effects of extrusion conditions on the extrusion responses and the quality of brown rice pasta.

    PubMed

    Wang, Li; Duan, Wei; Zhou, Sumei; Qian, Haifeng; Zhang, Hui; Qi, Xiguang

    2016-08-01

    This research investigated the effects of extrusion temperature and screw speed on the extrusion system parameters and the qualities of brown rice pasta. The die pressure and motor torque value reached a maximum at 90°C but decreased when the screw speed increased from 80 to 120rpm. The extrusion temperature and screw speed also significantly affected the cooking quality and textural properties of brown rice pasta. The pasta produced at an extrusion temperature of 120°C and screw speed of 120rpm had the best quality with a cooking loss, hardness and adhesiveness of 6.7%, 2387.2g and -7.0g⋅s, respectively, similar to those of pasta made from gluten-free flour. The results indicated that brown rice can be used to produce gluten-free pasta with improved nutrition. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. HIGH ENERGY RATE EXTRUSION OF URANIUM

    DOEpatents

    Lewis, L.

    1963-07-23

    A method of extruding uranium at a high energy rate is described. Conditions during the extrusion are such that the temperature of the metal during extrusion reaches a point above the normal alpha to beta transition, but the metal nevertheless remains in the alpha phase in accordance with the Clausius- Clapeyron equation. Upon exiting from the die, the metal automatically enters the beta phase, after which the metal is permitted to cool. (AEC)

  13. Energy Saving Melting and Revert Reduction Technology (E-SMARRT): Development of Surface Engineered Coating Systems for Aluminum Pressure Die Casting Dies: Towards a 'Smart' Die Coating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dr. John J. Moore; Dr. Jianliang Lin,

    2012-07-31

    The main objective of this research program was to design and develop an optimal coating system that extends die life by minimizing premature die failure. In high-pressure aluminum die-casting, the die, core pins and inserts must withstand severe processing conditions. Many of the dies and tools in the industry are being coated to improve wear-resistance and decrease down-time for maintenance. However, thermal fatigue in metal itself can still be a major problem, especially since it often leads to catastrophic failure (i.e. die breakage) as opposed to a wear-based failure (parts begin to go out of tolerance). Tooling costs remain themore » largest portion of production costs for many of these parts, so the ability prevent catastrophic failures would be transformative for the manufacturing industry.The technology offers energy savings through reduced energy use in the die casting process from several factors, including increased life of the tools and dies, reuse of the dies and die components, reduction/elimination of lubricants, and reduced machine down time, and reduction of Al solder sticking on the die. The use of the optimized die coating system will also reduce environmental wastes and scrap parts. Current (2012) annual energy saving estimates, based on initial dissemination to the casting industry in 2010 and market penetration of 80% by 2020, is 3.1 trillion BTU's/year. The average annual estimate of CO2 reduction per year through 2020 is 0.63 Million Metric Tons of Carbon Equivalent (MM TCE).« less

  14. The Effect of Alloying Elements on Thermal Conductivity and Casting Characteristic in High Pressure Die Casting of Aluminum Alloy

    NASA Astrophysics Data System (ADS)

    Kim, Cheol-Woo; Cho, Jae-Ik; Choi, Se-Weon; Kim, Young-Chan; Kang, Chang-Seog

    Recently, demand of aluminum alloys for use in high thermal conductivity application is increases but the most aluminum die casting alloys exhibit very lower thermal properties because of their high concentrations of alloying elements. However, those alloying elements are essential to obtain sufficient fluidity and mechanical strength. Therefore, the purpose of this study is to analyze the effect of alloying elements in die casting alloys, Si, Cu, Mg, Fe and Mn, in thermal conductivity, die casting characteristics and mechanical properties and find out the appropriate amount of each alloying element for development of heat sink component. The results showed that Mn had the most deleterious effect in thermal conductivity and Si and Fe contents were important to improve strength and limit casting defects, such as hot tearing and die soldering. The alloy with 0.2 1.0wt%Cu, 0.3 0.6wt%Fe and 1.0 2.0wt%Si showed very good combination of high thermal conductivity and good casting characteristics.

  15. Rheological properties of wood polymer composites and their role in extrusion

    NASA Astrophysics Data System (ADS)

    Duretek, I.; Schuschnigg, S.; Gooneie, A.; Langecker, G. R.; Holzer, C.

    2015-04-01

    The influence of the rheological behaviour of PP based wood plastic composites (WPC) has been investigated in this research by means of a high pressure capillary rheometer incorporating dies having different geometries. The rheological experiments were performed using slit and round dies. The influence of moisture content on the flow properties of the WPC has been investigated as well. It was observed that higher moisture contents lead to wall slippage effect. Furthermore, measured viscosity data have been used in flow simulation of an extrusion profile die. Also, the influence of different rheological models on the simulation results is demonstrated. This research work presents a theoretical and experimental study on the measurement and prediction of the die pressure in the extrusion process of wood-plastic composite (WPC).

  16. Complex deformation routes for direct recycling aluminium alloy scrap via industrial hot extrusion

    NASA Astrophysics Data System (ADS)

    Paraskevas, Dimos; Kellens, Karel; Kampen, Carlos; Mohammadi, Amirahmad; Duflou, Joost R.

    2018-05-01

    This paper presents the final results of an industrial project, aiming for direct hot extrusion of wrought aluminium alloy scrap at an industrial scale. Two types of complex deformation/extrusion routes were tested for the production of the same profile, starting from AA6060 scrap in form of machining chips. More specifically scrap-based billets were extruded through: a 2-porthole and a 4-porthole die-set, modified for enhanced scrap consolidation and grain refinement. For comparison reasons, cast billets of the same alloy were extruded through the modified 2-porthole die set. The tensile testing results as well as microstructural investigations show that the 4-porthole extrusion route further improves scrap consolidation compared to the 2-porthole die output. The successful implementation of solid state recycling, directly at industrial level, indicates the technological readiness level of this research.

  17. LINER FOR EXTRUSION BILLET CONTAINERS. Interim Technical Documentary Progress Report, May 4-August 4, 1963

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spachner, S.A.

    1964-10-31

    Rokide-process alumina and zirconia coatings and a Udimet 700 superalloy liner were evaluated by extrusion of 31/2-in. billets of Inconel 713C, Udimet 700, SAE 4340, PH15--7Mo, and TZM alloys, using rod extrusion dies of temperatures were in the 1900 to 2250 deg F and 2900 to 3600 deg F ranges. Both alumina and zirconia coatings provided adequate protection to the support tooling at temperatures to 3450 deg F. Alumina coatings showed wear at temperatures over 2900 deg F, but may be serviceable to 3450 deg F. Zirconia coatings showed erratic results. One coating did withstand extrusion at 3450 deg Fmore » without apparent wear. The Udimet 700 liner did not show wear at 2000 deg F, but did react with the TZM billet at 3600 deg F. T-section die design was modified to prevent die cracking during extrusion and reduce coating grinding costs. (auth)« less

  18. Development of a 3D Filling Model of Low-Pressure Die-Cast Aluminum Alloy Wheels

    NASA Astrophysics Data System (ADS)

    Duan, Jianglan; Maijer, Daan; Cockcroft, Steve; Reilly, Carl

    2013-12-01

    A two-phase computational fluid dynamics model of the low-pressure die-cast process for the production of A356 aluminum alloy wheels has been developed to predict the flow conditions during die filling. The filling model represents a 36-deg section of a production wheel, and was developed within the commercial finite-volume package, ANSYS CFX, assuming isothermal conditions. To fully understand the behavior of the free surface, a novel technique was developed to approximate the vent resistances as they impact on the development of a backpressure within the die cavity. The filling model was first validated against experimental data, and then was used to investigate the effects of venting conditions and pressure curves during die filling. It was found that vent resistance and vent location strongly affected die filling time, free surface topography, and air entrainment for a given pressure fill-curve. With regard to the pressure curve, the model revealed a strong relation between the pressure curve and the flow behavior in the hub, which is an area prone to defect formation.

  19. Characterisation of the wall-slip during extrusion of heavy-clay products

    NASA Astrophysics Data System (ADS)

    Kocserha, I.; Gömze, A. L.; Kulkov, S.; Kalatur, E.; Buyakova, S. P.; Géber, R.; Buzimov, A. Y.

    2017-01-01

    During extrusion through the extrusion die, heavy-clay compounds are usually show plug flow with extensive slip at the wall of the die. In this study, the viscosity and the thickness of the slip layer were investigated. For the examination a brick-clay from Malyi (Hungary) deposit was applied as a raw material. The clay was characterised by XRPD, BET, SEM and granulometry. As the slip layer consists of suspension of the fine clay fraction so the clay minerals content of the clay (d<2µm) was separated by the help of sedimentation. The viscosity of suspension with different water content was measured by means of rotational viscosimeter. The thickness of the slip layer was calculated from the measured viscosity and other data obtained from an earlier study with capillary rheometer. The calculated thickness value showed a tendency to reach a limit value by increasing the extrusion speed.

  20. Classification of longitudinal welds in an aluminum bridge deck.

    DOT National Transportation Integrated Search

    2000-01-01

    An aluminum bridge deck (called ALUMADECK) has been developed by Reynolds Metal Company and is made of extruded aluminum sections welded together at the sides to form a bridge deck. The longitudinal welds used to connect the extrusions do not match a...

  1. VIEW OF THE INSTALLATION OF AN EXTRUSION PRESS IN THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF THE INSTALLATION OF AN EXTRUSION PRESS IN THE HIGH BAY AREA OF BUILDING 865. THE EXTRUSION PRESS WAS USED TO PRODUCE CYLINDRICAL BARS, HOLLOW TUBES, AND SHAPES WITH IRREGULAR CROSS-SECTIONS BY FORCING PREHEATED METAL THROUGH A DIE ORIFICE UNDER HIGH PRESSURE. (5/22/70) - Rocky Flats Plant, Metal Research & Development Laboratory, South of Central Avenue at south end of terminus of Ninth Avenue, Golden, Jefferson County, CO

  2. Microstructural analysis of aluminum high pressure die castings

    NASA Astrophysics Data System (ADS)

    David, Maria Diana

    Microstructural analysis of aluminum high pressure die castings (HPDC) is challenging and time consuming. Automating the stereology method is an efficient way in obtaining quantitative data; however, validating the accuracy of this technique can also pose some challenges. In this research, a semi-automated algorithm to quantify microstructural features in aluminum HPDC was developed. Analysis was done near the casting surface where it exhibited fine microstructure. Optical and Secondary electron (SE) and backscatter electron (BSE) SEM images were taken to characterize the features in the casting. Image processing steps applied on SEM and optical micrographs included median and range filters, dilation, erosion, and a hole-closing function. Measurements were done on different image pixel resolutions that ranged from 3 to 35 pixel/μm. Pixel resolutions below 6 px/μm were too low for the algorithm to distinguish the phases from each other. At resolutions higher than 6 px/μm, the volume fraction of primary α-Al and the line intercept count curves plateaued. Within this range, comparable results were obtained validating the assumption that there is a range of image pixel resolution relative to the size of the casting features at which stereology measurements become independent of the image resolution. Volume fraction within this curve plateau was consistent with the manual measurements while the line intercept count was significantly higher using the computerized technique for all resolutions. This was attributed to the ragged edges of some primary α-Al; hence, the algorithm still needs some improvements. Further validation of the code using other castings or alloys with known phase amount and size may also be beneficial.

  3. Extrusion Process by Finite Volume Method Using OpenFoam Software

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matos Martins, Marcelo; Tonini Button, Sergio; Divo Bressan, Jose

    The computational codes are very important tools to solve engineering problems. In the analysis of metal forming process, such as extrusion, this is not different because the computational codes allow analyzing the process with reduced cost. Traditionally, the Finite Element Method is used to solve solid mechanic problems, however, the Finite Volume Method (FVM) have been gaining force in this field of applications. This paper presents the velocity field and friction coefficient variation results, obtained by numerical simulation using the OpenFoam Software and the FVM to solve an aluminum direct cold extrusion process.

  4. Providing plastic zone extrusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manchiraju, Venkata Kiran; Feng, Zhili; David, Stan A.

    Plastic zone extrusion may be provided. First, a compressor may generate frictional heat in stock to place the stock in a plastic zone of the stock. Then, a conveyer may receive the stock in its plastic zone from the compressor and transport the stock in its plastic zone from the compressor. Next, a die may receive the stock in its plastic zone from the conveyer and extrude the stock to form a wire.

  5. Estimation Of Rheological Law By Inverse Method From Flow And Temperature Measurements With An Extrusion Die

    NASA Astrophysics Data System (ADS)

    Pujos, Cyril; Regnier, Nicolas; Mousseau, Pierre; Defaye, Guy; Jarny, Yvon

    2007-05-01

    Simulation quality is determined by the knowledge of the parameters of the model. Yet the rheological models for polymer are often not very accurate, since the viscosity measurements are made under approximations as homogeneous temperature and empirical corrections as Bagley one. Furthermore rheological behaviors are often traduced by mathematical laws as the Cross or the Carreau-Yasuda ones, whose parameters are fitted from viscosity values, obtained with corrected experimental data, and not appropriate for each polymer. To correct these defaults, a table-like rheological model is proposed. This choice makes easier the estimation of model parameters, since each parameter has the same order of magnitude. As the mathematical shape of the model is not imposed, the estimation process is appropriate for each polymer. The proposed method consists in minimizing the quadratic norm of the difference between calculated variables and measured data. In this study an extrusion die is simulated, in order to provide us temperature along the extrusion channel, pressure and flow references. These data allow to characterize thermal transfers and flow phenomena, in which the viscosity is implied. Furthermore the different natures of data allow to estimate viscosity for a large range of shear rates. The estimated rheological model improves the agreement between measurements and simulation: for numerical cases, the error on the flow becomes less than 0.1% for non-Newtonian rheology. This method couples measurements and simulation, constitutes a very accurate mean of rheology determination, and allows to improve the prediction abilities of the model.

  6. Reduction of Ochratoxin A in Oat Flakes by Twin-Screw Extrusion Processing.

    PubMed

    Lee, Hyun Jung; Dahal, Samjhana; Perez, Enrique Garcia; Kowalski, Ryan Joseph; Ganjyal, Girish M; Ryu, Dojin

    2017-10-01

    Ochratoxin A (OTA) is one of the most important mycotoxins owing to its widespread occurrence and toxicity, including nephrotoxicity and potential carcinogenicity to humans. OTA has been detected in a wide range of agricultural commodities, including cereal grains and their processed products. In particular, oat-based products show a higher incidence and level of contamination. Extrusion cooking is widely used in the manufacturing of breakfast cereals and snacks and may reduce mycotoxins to varying degrees. Hence, the effects of extrusion cooking on the stability of OTA in spiked (100 μg/kg) oat flake was investigated by using a laboratory-scale twin-screw extruder with a central composite design. Factors examined were moisture content (20, 25, and 30% dry weight basis), temperature (140, 160, and 180°C), screw speed (150, 200, and 250 rpm), and die size (1.5, 2, and 3 mm). Both nonextruded and extruded samples were analyzed for reductions of OTA by high-performance liquid chromatography, coupled with fluorescence detection. The percentage of reductions in OTA in the contaminated oat flakes upon extrusion processing were in the range of 0 to 28%. OTA was partially stable during extrusion, with only screw speed and die size having significant effect on reduction (P < 0.005). The highest reduction of 28% was achieved at 180°C, 20% moisture, 250 rpm screw speed, and a 3-mm die with 193 kJ/kg specific mechanical energy. According to the central composite design analyses, up to 28% of OTA can be reduced by a combination of 162°C, 30% moisture, and 221 rpm, with a 3-mm die.

  7. Effects of hot extrusion and heat treatment on microstructure and properties of industrial large-scale spray-deposited 7055 aluminum alloy

    NASA Astrophysics Data System (ADS)

    Yang, Yonggang; Zhao, Yutao; Kai, Xizhou; Zhang, Zhen; Zhang, Hao; Tao, Ran; Chen, Gang; Yin, Houshang; Wang, Min

    2018-01-01

    The industrial large-scale 7055 aluminum alloy fabricated by spray forming technology was subjected to hot extrusion and heat treatment to achieve high strength and ductility. Microstructure of the as-deposited alloy indicates that higher density billets with equiaxed grains (20-40 μm) were fabricated rather than a typical dendritic microstructure of the as-cast alloy. The grains of the as-extruded alloy exhibit fibrous morphology, the original boundaries disappear and fined second phases with size about 0.5-5 μm distribute along with extrusion direction. Meanwhile, the defects could be eliminated by hot extrusion, which resulted in good strength as well as ductility. The ultimate tensile strength, yield strength and elongation of the as-extruded alloy are 345 MPa, 236 MPa and 18.5%, respectively. After heat treatment, the partial recrystallization is observed around the un-recrystallized grains and sub-grains. And the platelet/rod-shaped precipitates (MgZn2) show a uniform distribution in the matrix alloy. The alloy reaches the maximum tensile strength of 730 MPa after T6 temper treatment, associated with a fine precipitation (MgZn2). However, with further deepen aging degree (from T6 to T73 temper), the size of dominant precipitated phases (MgZn2) grows obviously, the grain boundary precipitates transform from continuous to individual ones and the width of precipitate free zone increases. The result shows that the alloy after T7X temper treatment exhibits higher electrical conductivity (>35 %IACS) and facture toughness (>25.6 MPa m1/2) although a 8%-17% reduction in strength compared with that at T6 temper.

  8. Thermal fatigue behavior of H-13 die steel for aluminum die casting with various ion sputtered coatings

    NASA Technical Reports Server (NTRS)

    Nieh, C. Y.; Wallace, J. F.

    1981-01-01

    Sputtered coatings of Mo, W, Pt, Ag, Au, Co, Cr, Ni, Ag + Cu, Mo + Pt, Si3N4, A1N, Cr3C2, Ta5Si3, and ZrO2 were applied to a 2-inch-square, 7-inch-long thermal fatigue test specimen which was then internally water cooled and alternately immersed in molten aluminum and cooled in air. After 15,000 cycles the thermal fatigue cracks at the specimen corners were measured. Results indicate that a significant improvement in thermal fatigue resistance was obtained with platinum, molybdenum, and tungsten coatings. Metallographic examination indicates that the improvement in thermal fatigue resistance resulted from protection of the surface of the die steel from oxidation. The high yield strength and ductility of molybdenum and tungsten contributed to the better thermal fatigue resistance.

  9. Metal-matrix radiation-protective composite materials based on aluminum

    NASA Astrophysics Data System (ADS)

    Cherdyntsev, V. V.; Gorshenkov, M. V.; Danilov, V. D.; Kaloshkin, S. D.; Gul'bin, V. N.

    2013-05-01

    A method of mechanical activation providing a homogeneous distribution of reinforcing boron-bearing components and tungsten nanopowder in the matrix is recommended for making an aluminum-based radiation- protective material. Joint mechanical activation and subsequent extrusion are used to produce aluminum- based composites. The structure and the physical, mechanical and tribological characteristics of the composite materials are studied.

  10. Co-extrusion of semi-finished aluminium-steel compounds

    NASA Astrophysics Data System (ADS)

    Thürer, S. E.; Uhe, J.; Golovko, O.; Bonk, C.; Bouguecha, A.; Klose, C.; Behrens, B.-A.; Maier, H. J.

    2017-10-01

    The combination of light metals and steels allows for new lightweight components with wear-resistant functional surfaces. Within the Collaborative Research Centre 1153 novel process chains are developed for the manufacture of such hybrid components. Here, the production process of a hybrid bearing bushing made of the aluminium alloy EN AW-6082 and the case-hardened steel 20MnCr5 is developed. Hybrid semi-finished products are an attractive alternative to conventional ones resulting from massive forming processes where the individual components are joined after the forming process. The actual hybrid semi-finished products were manufactured using a lateral angular co-extrusion (LACE) process. The bearing bushings are subsequently produced by die forging. In the present study, a tool concept for the LACE process is described, which renders the continuous joining of a steel rod with an aluminium tube possible. During the LACE process, the rod is fed into the extrusion die at an angle of approx. 90°. Metallographic analysis of the hybrid profile showed that the mechanical bonding between the different materials begins about 75 mm after the edge of the aluminium sheath. In order to improve the bonding strength, the steel rod is to be preheated during extrusion. Systematic investigations using a dilatometer, considering the maximum possible co-extrusion process parameters, were carried out. The variable parameters for the dilatometer experiments were determined by numerical simulation. In order to form a bond between the materials, the oxide layer needs to be disrupted during the co-extrusion process. In an attempt to better understand this effect, a modified sample geometry with chamfered steel was developed for the dilatometer experiments. The influence of the process parameters on the formation of the intermetallic phase at the interface was analysed by scanning electron microscopy and X-ray diffraction. This article, which was originally published online on 16

  11. Numerical simulation and experiment on effect of ultrasonic in polymer extrusion processing

    NASA Astrophysics Data System (ADS)

    Wan, Yue; Fu, ZhiHong; Wei, LingJiao; Zang, Gongzheng; Zhang, Lei

    2018-01-01

    The influence of ultrasonic wave on the flow field parameters and the precision of extruded products are studied. Firstly, the effect of vibration power on the average velocity of the outlet, the average viscosity of the die section, the average shear rate and the inlet pressure of the die section were studied by using the Polyflow software. Secondly, the effects of ultrasonic strength on the die temperature and the drop of die pressure were studied experimentally by different head temperature and different screw speed. Finally, the relationship between die pressure and extrusion flow rate under different ultrasonic power were studied through experiments.

  12. Method for producing through extrusion an anisotropic magnet with high energy product

    DOEpatents

    Chandhok, Vijay K.

    2004-09-07

    A method for producing an anisotropic magnet with high energy product through extrusion and, more specifically, by placing a particle charge of a composition from the which magnet is to be produced in a noncircular container, heating the container and particle charge and extruding the container and particle charge through a noncircular extrusion die in such a manner that one of the cross-sectional axes or dimension of the container and particle charge is held substantially constant during the extrusion to compact the particle charge to substantially full density by mechanical deformation produced during the extrusion to achieve a magnet with anisotropic magnetic properties along the axes or dimension thereof and, more specifically, a high energy product along the transverse of the smallest cross-sectional dimension of the extruded magnet.

  13. Characterization of ultra-fine grained aluminum produced by accumulative back extrusion (ABE)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alihosseini, H., E-mail: hamid.alihossieni@gmail.com; Materials Science and Engineering Department, Engineering School, Amirkabir University, Tehran; Faraji, G.

    2012-06-15

    In the present work, the microstructural evolutions and microhardness of AA1050 subjected to one, two and three passes of accumulative back extrusion (ABE) were investigated. The microstructural evolutions were characterized using transmission electron microscopy. The results revealed that applying three passes of accumulative back extrusion led to significant grain refinement. The initial grain size of 47 {mu}m was refined to the grains of 500 nm after three passes of ABE. Increasing the number of passes resulted in more decrease in grain size, better microstructure homogeneity and increase in the microhardness. The cross-section of ABEed specimen consisted of two different zones:more » (i) shear deformation zone, and (ii) normal deformation zone. The microhardness measurements indicated that the hardness increased from the initial value of 31 Hv to 67 Hv, verifying the significant microstructural refinement via accumulative back extrusion. - Highlights: Black-Right-Pointing-Pointer A significant grain refinement can be achieved in AA1050, Al alloy by applying ABE. Black-Right-Pointing-Pointer Microstructural homogeneity of ABEed samples increased by increasing the number of ABE cycles. Black-Right-Pointing-Pointer A substantial increase in the hardness, from 31 Hv to 67 Hv, was recorded.« less

  14. Structural centrosome aberrations sensitize polarized epithelia to basal cell extrusion.

    PubMed

    Ganier, Olivier; Schnerch, Dominik; Nigg, Erich A

    2018-06-01

    Centrosome aberrations disrupt tissue architecture and may confer invasive properties to cancer cells. Here we show that structural centrosome aberrations, induced by overexpression of either Ninein-like protein (NLP) or CEP131/AZI1, sensitize polarized mammalian epithelia to basal cell extrusion. While unperturbed epithelia typically dispose of damaged cells through apical dissemination into luminal cavities, certain oncogenic mutations cause a switch in directionality towards basal cell extrusion, raising the potential for metastatic cell dissemination. Here we report that NLP-induced centrosome aberrations trigger the preferential extrusion of damaged cells towards the basal surface of epithelial monolayers. This switch in directionality from apical to basal dissemination coincides with a profound reorganization of the microtubule cytoskeleton, which in turn prevents the contractile ring repositioning that is required to support extrusion towards the apical surface. While the basal extrusion of cells harbouring NLP-induced centrosome aberrations requires exogenously induced cell damage, structural centrosome aberrations induced by excess CEP131 trigger the spontaneous dissemination of dying cells towards the basal surface from MDCK cysts. Thus, similar to oncogenic mutations, structural centrosome aberrations can favour basal extrusion of damaged cells from polarized epithelia. Assuming that additional mutations may promote cell survival, this process could sensitize epithelia to disseminate potentially metastatic cells. © 2018 The Authors.

  15. The Cryogenic Tensile Properties of an Extruded Aluminum-Beryllium Alloy

    NASA Technical Reports Server (NTRS)

    Gamwell, W. R.

    2002-01-01

    Basic mechanical properties; i.e., ultimate tensile strength, yield strength, percent elongation, and elastic modulus, were obtained for the aluminum-beryllium alloy, AlBeMet162, at cryogenic (-195.5 C (-320 F) and -252.8 C (-423 F)) temperatures. The material evaluated was purchased to the requirements of SAE-AMS7912, "Aluminum-Beryllium Alloy, Extrusions."

  16. Characterization of Al-Cu-Li Alloy 2090 Near Net Shape Extrusion

    NASA Technical Reports Server (NTRS)

    Birt, M. J.; Domack, M. S.; Hafley, R. A.; Pollock, W. D.

    1998-01-01

    Aluminum-lithium (Al-Li) alloys near net shape extrusions are being evaluated for potential application in launch vehicle structures. The objective of this study was to determine tensile and fracture properties, corrosion resistance, and weldability of integrally stiffened panels of Al-Cu-Li alloy 2090 in the T8 temper. The microstructure was pre-dominantly unrecrystallized. Texture analyses revealed the presence of fiber components in the stiffeners and a combination of fiber and rolling components in the skin. Variations in grain morphology and texture through the extruded cross section were correlated with the tensile, fracture, and corrosion behavior. Tensile strengths at room and cryogenic temperatures of the 2090 extrusions were similar to other 2090 product forms and were higher than 2219-T87, the primary structural material in the Space Shuttle external tank; however, ductilities were lower. The fracture resistance of the 2090 extrusion was lower than 2219-T87 plate at room temperature. At cryogenic temperatures, tensile ductility and fracture behavior of the 2090 extrusion were similar to other 2090 product forms but were lower than 2219-T87 plate. The exfoliation and stress corrosion resistance of the 2090 extrusion compared favorably with the characteristics of other 2090 product forms. The weldability and weldment properties of the extrusions were similar to 2090 and 2219 plates.

  17. Improvement of Strength and Energy Absorption Properties of Porous Aluminum Alloy with Aligned Unidirectional Pores Using Equal-Channel Angular Extrusion

    NASA Astrophysics Data System (ADS)

    Yoshida, Tomonori; Muto, Daiki; Tamai, Tomoya; Suzuki, Shinsuke

    2018-04-01

    Porous aluminum alloy with aligned unidirectional pores was fabricated by dipping A1050 tubes into A6061 semi-solid slurry. The porous aluminum alloy was processed through Equal-channel Angular Extrusion (ECAE) while preventing cracking and maintaining both the pore size and porosity by setting the insert material and loading back pressure. The specific compressive yield strength of the sample aged after 13 passes of ECAE was approximately 2.5 times higher than that of the solid-solutionized sample without ECAE. Both the energy absorption E V and energy absorption efficiency η V after four passes of ECAE were approximately 1.2 times higher than that of the solid-solutionized sample without ECAE. The specific yield strength was improved via work hardening and precipitation following dynamic aging during ECAE. E V was improved by the application of high compressive stress at the beginning of the compression owing to work hardening via ECAE. η V was improved by a steep increase of stress at low compressive strain and by a gradual increase of stress in the range up to 50 pct of compressive strain. The gradual increase of stress was caused by continuous shear fracture in the metallic part, which was due to the high dislocation density and existence of unidirectional pores parallel to the compressive direction in the structure.

  18. Improvement of Strength and Energy Absorption Properties of Porous Aluminum Alloy with Aligned Unidirectional Pores Using Equal-Channel Angular Extrusion

    NASA Astrophysics Data System (ADS)

    Yoshida, Tomonori; Muto, Daiki; Tamai, Tomoya; Suzuki, Shinsuke

    2018-06-01

    Porous aluminum alloy with aligned unidirectional pores was fabricated by dipping A1050 tubes into A6061 semi-solid slurry. The porous aluminum alloy was processed through Equal-channel Angular Extrusion (ECAE) while preventing cracking and maintaining both the pore size and porosity by setting the insert material and loading back pressure. The specific compressive yield strength of the sample aged after 13 passes of ECAE was approximately 2.5 times higher than that of the solid-solutionized sample without ECAE. Both the energy absorption E V and energy absorption efficiency η V after four passes of ECAE were approximately 1.2 times higher than that of the solid-solutionized sample without ECAE. The specific yield strength was improved via work hardening and precipitation following dynamic aging during ECAE. E V was improved by the application of high compressive stress at the beginning of the compression owing to work hardening via ECAE. η V was improved by a steep increase of stress at low compressive strain and by a gradual increase of stress in the range up to 50 pct of compressive strain. The gradual increase of stress was caused by continuous shear fracture in the metallic part, which was due to the high dislocation density and existence of unidirectional pores parallel to the compressive direction in the structure.

  19. Functionality of extrusion--texturized whey proteins.

    PubMed

    Onwulata, C I; Konstance, R P; Cooke, P H; Farrell, H M

    2003-11-01

    Whey, a byproduct of the cheesemaking process, is concentrated by processors to make whey protein concentrates (WPC) and isolates (WPI). Only 50% of whey proteins are used in foods. In order to increase their usage, texturizing WPC, WPI, and whey albumin is proposed to create ingredients with new functionality. Extrusion processing texturizes globular proteins by shearing and stretching them into aligned or entangled fibrous bundles. In this study, WPC, WPI, and whey albumin were extruded in a twin screw extruder at approximately 38% moisture content (15.2 ml/min, feed rate 25 g/min) and, at different extrusion cook temperatures, at the same temperature for the last four zones before the die (35, 50, 75, and 100 degrees C, respectively). Protein solubility, gelation, foaming, and digestibility were determined in extrudates. Degree of extrusion-induced insolubility (denaturation) or texturization, determined by lack of solubility at pH 7 for WPI, increased from 30 to 60, 85, and 95% for the four temperature conditions 35, 50, 75, and 100 degrees C, respectively. Gel strength of extruded isolates increased initially 115% (35 degrees C) and 145% (50 degrees C), but gel strength was lost at 75 and 100 degrees C. Denaturation at these melt temperatures had minimal effect on foaming and digestibility. Varying extrusion cook temperature allowed a new controlled rate of denaturation, indicating that a texturized ingredient with a predetermined functionality based on degree of denaturation can be created.

  20. Hot Extrusion of A356 Aluminum Metal Matrix Composite with Carbon Nanotube/Al2O3 Hybrid Reinforcement

    NASA Astrophysics Data System (ADS)

    Kim, H. H.; Babu, J. S. S.; Kang, C. G.

    2014-05-01

    Over the years, the attention of material scientists and engineers has shifted from conventional composite materials to nanocomposite materials for the development of light weight and high-performance devices. Since the discovery of carbon nanotubes (CNTs), many researchers have tried to fabricate metal matrix composites (MMCs) with CNT reinforcements. However, CNTs exhibit low dispersibility in metal melts owing to their poor wettability and large surface-to-volume ratio. The use of an array of short fibers or hybrid reinforcements in a preform could overcome this problem and enhance the dispersion of CNTs in the matrix. In this study, multi-walled CNT/Al2O3 preform-based aluminum hybrid composites were fabricated using the infiltration method. Then, the composites were extruded to evaluate changes in its mechanical properties. In addition, the dispersion of reinforcements was investigated using a hardness test. The required extrusion pressure of hybrid MMCs increased as the Al2O3/CNT fraction increased. The deformation resistance of hybrid material was over two times that of the original A356 aluminum alloy material due to strengthening by the Al2O3/CNTs reinforcements. In addition, an unusual trend was detected; primary transition was induced by the hybrid reinforcements, as can be observed in the pressure-displacement curve. Increasing temperature of the material can help increase formability. In particular, temperatures under 623 K (350 °C) and over-incorporating reinforcements (Al2O3 20 pct, CNTs 3 pct) are not recommended owing to a significant increase in the brittleness of the hybrid material.

  1. Effects of extrusion variables on the properties of waxy hulless barley extrudates.

    PubMed

    Köksel, Hamit; Ryu, Gy-Hyung; Başman, Arzu; Demiralp, Hande; Ng, Perry K W

    2004-02-01

    The objective of this research was to investigate the extrudability of waxy hulless barley flour under various extrusion conditions. Waxy hulless barley flour was processed in a laboratory-scale corotating twin-screw extruder with different levels of feed moisture content (22.3, 26.8, and 30.7%) and die temperature (130, 150, and 170 degrees C) to develop a snack food with high beta-glucan content. The effects of extrusion condition variables (screw configuration, moisture, and temperature) on the system variables (pressure and specific mechanical energy), the extrudate physical properties (sectional expansion index, bulk density), starch gelatinization, pasting properties (cold peak viscosity, trough viscosity, and final viscosity), and beta-glucan contents were determined. Results were evaluated by using response surface methodology. Increased extrusion temperature and feed moisture content resulted in decreases in exit die pressure and specific mechanical energy values. For extrudates extruded under low shear screw configuration (LS), increased barrel temperature decreased sectional expansion index (SEI) values at both low and high moisture contents. The feed moisture seems to have an inverse relationship with SEI over the range studied. Bulk density was higher at higher moisture contents, for both low and high barrel temperatures, for samples extruded under high shear screw configuration (HS) and LS. Cold peak viscosities (CV) were observed in all samples. The CV increased with the increase in extrusion temperature and feed moisture content. Although beta-glucan contents of the LS extrudates were comparable to that of barley flour sample, HS samples had generally lower beta-glucan contents. The extrusion cooking technique seems to be promising for the production of snack foods with high beta-glucan content, especially using LS conditions.

  2. Phenomenological model of maize starches expansion by extrusion

    NASA Astrophysics Data System (ADS)

    Kristiawan, M.; Della Valle, G.; Kansou, K.; Ndiaye, A.; Vergnes, B.

    2016-10-01

    During extrusion of starchy products, the molten material is forced through a die so that the sudden abrupt pressure drop causes part of the water to vaporize giving an expanded, cellular structure. The objective of this work was to elaborate a phenomenological model of expansion and couple it with Ludovic® mechanistic model of twin screw extrusion process. From experimental results that cover a wide range of thermomechanical conditions, a concept map of influence relationships between input and output variables was built. It took into account the phenomena of bubbles nucleation, growth, coalescence, shrinkage and setting, in a viscoelastic medium. The input variables were the moisture content MC, melt temperature T, specific mechanical energy SME, shear viscosity η at the die exit, computed by Ludovic®, and the melt storage moduli E'(at T > Tg). The outputs of the model were the macrostructure (volumetric expansion index VEI, anisotropy) and cellular structure (fineness F) of solid foams. Then a general model was established: VEI = α (η/η0)n in which α and n depend on T, MC, SME and E' and the link between anisotropy and fineness was established.

  3. Effect of strain-path change on the anisotropic mechanical properties of a commercially pure aluminum

    NASA Astrophysics Data System (ADS)

    Sun, P. L.; Huang, S. J.

    2017-07-01

    Samples of commercially pure aluminum were subjected to equal channel angular extrusion (ECAE) using a 90° square die by routes A and C, where the specimens are not rotated and are rotated 180° between extrusion passes, respectively. Qualitatively similar anisotropic responses under compressive loading along the three orthogonal directions of the ECAE billet are seen in both cases. The plastic anisotropy is related to the effect of strain-path change, namely that different slip activities are induced for specimens loaded along different directions with respect to the last ECAE pass. The anisotropic mechanical behavior is more evident in the sample deformed by route C. Considering the shear patterns imposed in each ECAE route, the characteristics of dislocations introduced in ECAE should affect the mechanical response in post-ECAE loading. It is suggested that during the ECAE process, dislocations on fewer slip systems are activated in route C than in route A, and therefore, a stronger plastic anisotropy results in this sample. The as-ECAE specimens were also heat treated to achieve a recovery-annealed state. The plastic anisotropy persists in the annealed specimens to slightly reduced extent, which can be ascribed to partial annihilation of preexisting dislocations.

  4. Energy absorption in aluminum extrusions for a spaceframe chassis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Logan, R.W.; Perfect, S.A.; Parkinson, R.D.

    1994-09-19

    This work describes the design, finite-element analysis, and verifications performed by LLNL and Kaiser Aluminum for the prototype design of the CALSTART Running Chassis purpose-built electric vehicle. Component level studies, along with our previous experimental and finite-element works, provided the confidence to study the crashworthiness of a complete aluminum spaceframe. Effects of rail geometry, size, and thickness were studied in order to achieve a controlled crush of the front end structure. These included the performance of the spaceframe itself, and the additive effects of the powertrain cradle and powertrain (motor/controller in this case) as well as suspension. Various design iterationsmore » for frontal impact at moderate and high speed are explored.« less

  5. Precision forging technology for aluminum alloy

    NASA Astrophysics Data System (ADS)

    Deng, Lei; Wang, Xinyun; Jin, Junsong; Xia, Juchen

    2018-03-01

    Aluminum alloy is a preferred metal material for lightweight part manufacturing in aerospace, automobile, and weapon industries due to its good physical properties, such as low density, high specific strength, and good corrosion resistance. However, during forging processes, underfilling, folding, broken streamline, crack, coarse grain, and other macro- or microdefects are easily generated because of the deformation characteristics of aluminum alloys, including narrow forgeable temperature region, fast heat dissipation to dies, strong adhesion, high strain rate sensitivity, and large flow resistance. Thus, it is seriously restricted for the forged part to obtain precision shape and enhanced property. In this paper, progresses in precision forging technologies of aluminum alloy parts were reviewed. Several advanced precision forging technologies have been developed, including closed die forging, isothermal die forging, local loading forging, metal flow forging with relief cavity, auxiliary force or vibration loading, casting-forging hybrid forming, and stamping-forging hybrid forming. High-precision aluminum alloy parts can be realized by controlling the forging processes and parameters or combining precision forging technologies with other forming technologies. The development of these technologies is beneficial to promote the application of aluminum alloys in manufacturing of lightweight parts.

  6. The Bonding Behavior of co-extruded Aluminum-Titanium-Compounds

    NASA Astrophysics Data System (ADS)

    Striewe, Barbara; Hunkel, Martin; von Hehl, Axel; Grittner, Norbert

    The combination of aluminum and titanium enables the design of lightweight structures with tailor-made properties at global as well as local scale. In this context the co-extrusion process offers a great potential for advanced solutions for long products especially being applied in the aircraft and automobile sector. While titanium alloys show particular high mechanical strength and good corrosion resistance, aluminum alloys provide a considerable high specific bending stiffness along with lower materials costs.

  7. Aging Optimization of Aluminum-Lithium Alloy L277 for Application to Cryotank Structures

    NASA Technical Reports Server (NTRS)

    Sova, B. J.; Sankaran, K. K.; Babel, H.; Farahmand, B.; Cho, A.

    2003-01-01

    Compared with aluminum alloys such as 2219, which is widely used in space vehicle for cryogenic tanks and unpressurized structures, aluminum-lithium alloys possess attractive combinations of lower density and higher modulus along with comparable mechanical properties and improved damage tolerance. These characteristics have resulted in the successful use of the aluminum-lithium alloy 2195 for the Space Shuttle External Tank, and the consideration of newer U.S. aluminum-lithium alloys such as L277 and C458 for future space vehicles. A design of experiments aging study was conducted for plate and a limited study on extrusions. To achieve the T8 temper, Alloy L277 is typically aged at 290 F for 40 hours. In the study for plate, a two-step aging treatment was developed through a design of experiments study and the one step aging used as a control. Based on the earlier NASA studies on 2195, the first step aging temperature was varied between 220 F and 260 F. The second step aging temperatures was varied between 290 F and 310 F, which is in the range of the single-step aging temperature. For extrusions, two, single-step, and one two-step aging condition were evaluated. The results of the design of experiments used for the T8 temper as well as a smaller set of experiments for the T6 temper for plate and the results for extrusions will be presented.

  8. Illustration of cross flow of polystyrene melts through a coathanger die

    NASA Astrophysics Data System (ADS)

    Schöppner, V.; Henke, B.

    2015-05-01

    To design an optimal coathanger die with a uniform flow rate distribution and low pressure drop, it is essential to understand the flow conditions in the die. This is important because the quality of the product is influenced by the flow velocity and the flow rate distribution. In extrusion dies, cross flows also occur in addition to the main flow, which flow perpendicular to the main flow. This results in pressure gradients in the extrusion direction, which have an influence on flow distribution and pressure drop in the die. In recent decades, quantitative representation and analysis of physical flow processes have made considerable progress in predicting the weather, developing drive technologies and designing aircraft using simulation methods and lab trials. Using the flow-line method, the flow is analyzed in flat film extrusion dies with a rectangular cross-section, in particular cross flows. The simplest method to visualize the flow is based on the measurement of obstacle orientation in the flow field by adding individual particles. A near-surface flow field can be visualized by using wool or textile yarns. By sticking thin, frayed at the ends of strands of wool surface that is to be examined cross flows, near-wall profiles of the flow and vortex and separation regions can be visualized. A further possibility is to add glass fibers and analyze the fiber orientation by microscopy and x-ray analysis. In this paper the influence of process parameters (e.g. melt temperatures and throughput) on cross flow and fiber orientation is described.

  9. Extrusion foaming of protein-based thermoplastic and polyethylene blends

    NASA Astrophysics Data System (ADS)

    Gavin, Chanelle; Lay, Mark C.; Verbeek, Casparus J. R.

    2016-03-01

    Currently the extrusion foamability of Novatein® Thermoplastic Protein (NTP) is being investigated at the University of Waikato in collaboration with the Biopolymer Network Ltd (NZ). NTP has been developed from bloodmeal (>86 wt% protein), a co-product of the meat industry, by adding denaturants and plasticisers (tri-ethylene glycol and water) allowing it to be extruded and injection moulded. NTP alone does not readily foam when sodium bicarbonate is used as a chemical blowing agent as its extensional viscosity is too high. The thermoplastic properties of NTP were modified by blending it with different weight fractions of linear low density polyethylene (LLDPE) and polyethylene grafted maleic anhydride (PE-g-MAH) compatibiliser. Extrusion foaming was conducted in two ways, firstly using the existing water content in the material as the blowing agent and secondly by adding sodium bicarbonate. When processed in a twin screw extruder (L/D 25 and 10 mm die) the material readily expanded due to the internal moisture content alone, with a conditioned expansion ratio of up to ± 0.13. Cell structure was non-uniform exhibiting a broad range cell sizes at various stages of formation with some coalescence. The cell size reduced through the addition of sodium bicarbonate, overall more cells were observed and the structure was more uniform, however ruptured cells were also visible on the extrudate skin. Increasing die temperature and introducing water cooling reduced cell size, but the increased die temperature resulted in surface degradation.

  10. Single screw extrusion of apple pomace-enriched blends: Extrudate characteristics and determination of optimum processing conditions.

    PubMed

    Singha, Poonam; Muthukumarappan, Kasiviswanathan

    2018-07-01

    Response surface methodology was used to investigate the single screw extrusion of apple pomace-defatted soy flour-corn grits blends and the product properties. Five different blends at a level of 0-20% w/w apple pomace were extrusion cooked with varied barrel and die temperature (100-140℃), screw speed (100-200 rpm), and feed moisture content (14-20% wet basis). Increasing apple pomace content in the blends significantly ( P < 0.05) increased the bulk density, the total phenolic content, and the antioxidant activity of the extrudates. The expansion ratio increased with pomace inclusion level of 5% but decreased significantly ( P < 0.05) at higher levels of pomace inclusion (10-20%). Moisture content had quadratic influence on water absorption and solubility indices. Optimal extrusion cooking conditions most likely to produce apple pomace-enriched extruded snack products were at 140℃ barrel and die temperature, 20% feed moisture content, and 200 rpm screw speed. The results indicated active interaction between apple pomace and starch during expansion process.

  11. A process chain for integrating piezoelectric transducers into aluminum die castings to generate smart lightweight structures

    NASA Astrophysics Data System (ADS)

    Stein, Stefan; Wedler, Jonathan; Rhein, Sebastian; Schmidt, Michael; Körner, Carolin; Michaelis, Alexander; Gebhardt, Sylvia

    The application of piezoelectric transducers to structural body parts of machines or vehicles enables the combination of passive mechanical components with sensor and actuator functions in one single structure. According to Herold et al. [1] and Staeves [2] this approach indicates significant potential regarding smart lightweight construction. To obtain the highest yield, the piezoelectric transducers need to be integrated into the flux of forces (load path) of load bearing structures. Application in a downstream process reduces yield and process efficiency during manufacturing and operation, due to the necessity of a subsequent process step of sensor/actuator application. The die casting process offers the possibility for integration of piezoelectric transducers into metal structures. Aluminum castings are particularly favorable due to their high quality and feasibility for high unit production at low cost (Brunhuber [3], Nogowizin [4]). Such molded aluminum parts with integrated piezoelectric transducers enable functions like active vibration damping, structural health monitoring or energy harvesting resulting in significant possibilities of weight reduction, which is an increasingly important driving force of automotive and aerospace industry (Klein [5], Siebenpfeiffer [6]) due to increasingly stringent environmental protection laws. In the scope of those developments, this paper focuses on the entire process chain enabling the generation of lightweight metal structures with sensor and actuator function, starting from the manufacturing of piezoelectric modules over electrical and mechanical bonding to the integration of such modules into aluminum (Al) matrices by die casting. To achieve this challenging goal, piezoceramic sensors/actuator modules, so-called LTCC/PZT modules (LPM) were developed, since ceramic based piezoelectric modules are more likely to withstand the thermal stress of about 700 °C introduced by the casting process (Flössel et al., [7]). The

  12. Development of a simulation tool to analyze the orientation of LCPs during extrusion process

    NASA Astrophysics Data System (ADS)

    Ahmadzadegan, Arash

    In this thesis, different aspects of the rheology and directionality of the liquid crystalline polymers (LCPs) are investigated. The rheology of LCPs are modeled with different rheological models in different die geometries. The final goal in modeling the rheology and directionality of LCPs is to have a better understanding of their rheology during extrusion processing methods inside extrusion dies and eventually produce more isotropic films of LCPs. An attempt to design a die geometry that produces more isotropic films was made and it was shown that it is possible to use the inertia of the polymer to generate a more isotropic velocity profile at the lip of the die. This isotropic velocity profile can lead to alignment of directors along the streamlines and produce an isotropic film of LCP. It is shown that the rheological properties of the LCP should be altered to have a very low viscosity for this type of die to work. To be able to investigate the effect of processing on directionality of LCPs, it is essential to develop a method to simulate the directionality based on processing conditions. As a result, a user defined function (UDF) code was added to ANSYSRTM ~FLUENTRTM~ to simulate the directionality of LCPs. The rheology of the LCP is modeled using power-law fluid model and the consistency index (K) and power-law index (n) were estimated based on the experimental measurements done with capillary rheometry. Three main phenomena that affect the directionality namely effects of Franks elastic energy, the effect of shear and the effect of movement of crystals with the bulk of polymer are investigated. The results of this simulation are close to physical phenomena seen in real LCPs. To quantify the directionality of the LCPs, the order parameter of the domain were calculated and compared for different flow and fluid conditions. All polymers including LCPs are viscoelastic fluids in molten state. To understand the rheology of LCPs, a die-swell experiment was carried

  13. Process monitoring and visualization solutions for hot-melt extrusion: a review.

    PubMed

    Saerens, Lien; Vervaet, Chris; Remon, Jean Paul; De Beer, Thomas

    2014-02-01

    Hot-melt extrusion (HME) is applied as a continuous pharmaceutical manufacturing process for the production of a variety of dosage forms and formulations. To ensure the continuity of this process, the quality of the extrudates must be assessed continuously during manufacturing. The objective of this review is to provide an overview and evaluation of the available process analytical techniques which can be applied in hot-melt extrusion. Pharmaceutical extruders are equipped with traditional (univariate) process monitoring tools, observing barrel and die temperatures, throughput, screw speed, torque, drive amperage, melt pressure and melt temperature. The relevance of several spectroscopic process analytical techniques for monitoring and control of pharmaceutical HME has been explored recently. Nevertheless, many other sensors visualizing HME and measuring diverse critical product and process parameters with potential use in pharmaceutical extrusion are available, and were thoroughly studied in polymer extrusion. The implementation of process analytical tools in HME serves two purposes: (1) improving process understanding by monitoring and visualizing the material behaviour and (2) monitoring and analysing critical product and process parameters for process control, allowing to maintain a desired process state and guaranteeing the quality of the end product. This review is the first to provide an evaluation of the process analytical tools applied for pharmaceutical HME monitoring and control, and discusses techniques that have been used in polymer extrusion having potential for monitoring and control of pharmaceutical HME. © 2013 Royal Pharmaceutical Society.

  14. Analysis of Porosity Defects in Aluminum as Part Handle Motor Vehicle Lever Processed by High-pressure Die Casting

    NASA Astrophysics Data System (ADS)

    Anggraini, L.; Sugeng

    2018-05-01

    This research discusses the testing and analysis of cracking Aluminum (Al) material. Al as a handle lever was used for a braking device on a motor vehicle. Cracking of handle lever due to the part content of porosity from hydrogen gas. The existence of the H2 can be caused by the casting process and dies design that is less perfect, especially at the gate or brisket and overflow. This research is to optimize the process of making Al part handle lever, and the construction dies by following the standard. The results of these improvements were reevaluated through the chemical and mechanical testing properties stages, such as density test and tensile test on the workpiece as part handle lever. The loads on the tensile test are 25 kg and 35 kg, and the tensile test result has met the standard set by the motor vehicle company. The optimization result has the porosity defect can be reduced by 99 %. Therefore the best part handle lever can be produced.

  15. Numerical investigations on the lateral angular co-extrusion of aluminium and steel

    NASA Astrophysics Data System (ADS)

    Behrens, B.-A.; Klose, C.; Chugreev, A.; Thürer, S. E.; Uhe, J.

    2018-05-01

    In order to save weight and costs, different materials can be combined within one component. In the novel process chain being developed within the Collaborative Research Centre (CRC) 1153, joined semi-finished workpieces are used to produce hybrid solid components with locally adapted properties. Different materials are joined in an initial step before the forming process takes place. Hereby, the quality of the joining zone is improved by means of the thermo-mechanical treatment during the forming and machining processes. The lateral angular co-extrusion (LACE) approach is used to produce semi-finished workpieces because it allows for the production of coaxial semi-finished products consisting of aluminium and steel. In the further process chain, these semi-finished products are processed into hybrid bearing bushings with locally adapted properties by die forging. In the scope of this work, numerical investigations of the co-extrusion of aluminium-steel compounds were carried out using finite element (FE) simulation in order to examine the influence of the process parameters on the co-extrusion process. For this purpose, the relevant material properties of the aluminium alloy EN AW-6082 were determined experimentally and subsequently implemented in the numerical model. The obtained numerical model was used to study the impact of different ram speeds, press ratios and billet temperatures on the resulting extrusion forces and the material flow. The numerical results have been validated using force-time curves obtained from experimental extrusion tests carried out on a 2.5 MN laboratory extrusion press.

  16. Study of Microstructure and Mechanical Properties Effects on Workpiece Quality in Sheet Metal Extrusion Process

    PubMed Central

    Suriyapha, Chatkaew; Bubphachot, Bopit; Rittidech, Sampan

    2015-01-01

    Sheet metal extrusion is a metal forming process in which the movement of a punch penetrates a sheet metal surface and it flows through a die orifice; the extruded parts can be deflected to have an extrusion cavity and protrusion on the opposite side. Therefore, this process results in a narrow region of highly localized plastic deformation due to the formation and microstructure effect on the work piece. This research investigated the characteristics of the material-flow behavior during the formation and its effect on the microstructure of the extruded sheet metal using the finite element method (FEM). The actual parts and FEM simulation model were developed using a blank material made from AISI-1045 steel with a thickness of 5 mm; the material's behavior was determined subject to the punch penetration depths of 20%, 40%, 60%, and 80% of the sheet thickness. The results indicated the formation and microstructure effects on the sheet metal extrusion parts and defects. Namely, when increasing penetration, narrowing the die orifice the material flows through, the material was formed by extruding, and defects were visibility, and the microstructure of the material's grains' size was flat and very fine. Extrusion defects were not found in the control material flow. The region of highly localized plastic deformation affected the material gain and mechanical properties. The FEM simulation results agreed with the experimental results. Moreover, FEM could be investigated as a tool to decrease the cost and time in trial and error procedures. PMID:26229979

  17. Tribological behavior of CrN-coated Cr-Mo-V steels used as die materials

    NASA Astrophysics Data System (ADS)

    Çelik, Gülşah Aktaş; Polat, Şeyda; Atapek, Ş. Hakan

    2017-12-01

    DIN 1.2343 and 1.2367 steels are commonly used as die materials in aluminum extrusion, and single/duplex/multi-coatings enhance their surface properties. The design of an appropriate substrate/coating system is important for improving the tribological performance of these steels under service conditions because the load-carrying capacity of the system can be increased by decreasing the plastic deformation of the substrate. In this study, the tribological behavior of CrN-coated Cr-Mo-V steels (DIN 1.2343, 1.2367, and 1.2999 grades) was investigated using different setups and tribological pairs at room and elevated temperatures. The aim of this study was to reveal the wear resistance of a suggested system (1.2999/CrN) not yet studied and to understand both the wear and the failure characteristics of coated systems. The results showed that (i) among the steels studied, the DIN 1.2999 grade steel exhibited the lowest friction coefficient because it had the highest load-carrying capacity as a result of secondary hardening at elevated temperatures; (ii) at room temperature, both abrasive tracks and adhesive layers were observed on the worn surfaces; and (iii) a combination of chemical reactions and progressive oxidation caused aluminum adhesion on the worn surface, and the detachment of droplets and microcracking were the characteristic damage mechanisms at high temperatures.

  18. Optimization of porthole die geometrical variables by Taguchi method

    NASA Astrophysics Data System (ADS)

    Gagliardi, F.; Ciancio, C.; Ambrogio, G.; Filice, L.

    2017-10-01

    Porthole die extrusion is commonly used to manufacture hollow profiles made of lightweight alloys for numerous industrial applications. The reliability of extruded parts is affected strongly by the quality of the longitudinal and transversal seam welds. According to that, the die geometry must be designed correctly and the process parameters must be selected properly to achieve the desired product quality. In this study, numerical 3D simulations have been created and run to investigate the role of various geometrical variables on punch load and maximum pressure inside the welding chamber. These are important outputs to take into account affecting, respectively, the necessary capacity of the extrusion press and the quality of the welding lines. The Taguchi technique has been used to reduce the number of the required numerical simulations necessary for considering the influence of twelve different geometric variables. Moreover, the Analysis of variance (ANOVA) has been implemented to individually analyze the effect of each input parameter on the two responses. Then, the methodology has been utilized to determine the optimal process configuration individually optimizing the two investigated process outputs. Finally, the responses of the optimized parameters have been verified through finite element simulations approximating the predicted value closely. This study shows the feasibility of the Taguchi technique for predicting performance, optimization and therefore for improving the design of a porthole extrusion process.

  19. GRAPHITE EXTRUSIONS

    DOEpatents

    Benziger, T.M.

    1959-01-20

    A new lubricant for graphite extrusion is described. In the past, graphite extrusion mixtures have bcen composed of coke or carbon black, together with a carbonaceous binder such as coal tar pitch, and a lubricant such as petrolatum or a colloidal suspension of graphite in glycerin or oil. Sinee sueh a lubricant is not soluble in, or compatible with the biiider liquid, such mixtures were difficult to extrude, and thc formed pieees lacked strength. This patent teaches tbe use of fatty acids as graphite extrusion lubricants and definite improvemcnts are realized thereby since the fatty acids are soluble in the binder liquid.

  20. Tailoring properties of commercially pure titanium by gradation extrusion

    NASA Astrophysics Data System (ADS)

    Bergmann, Markus; Rautenstrauch, Anja; Selbmann, René; de Oliveira, Raoni Barreto; Coelho, Rodrigo Santiago; Landgrebe, Dirk

    2016-10-01

    Commercially pure titanium (CP Ti) is of great importance in medical applications due to its attractive properties, such as high biocompatibility, excellent corrosion resistance and relatively low density and suitable stiffness. Compared to the commonly used Ti-6Al-4V alloy, its lower strength has to be increased. The most attractive approach is to subject CP Ti to severe plastic deformation (SPD) processes such as Equal Channel Angular Pressing (ECAP). The resulting decreased grain size in CP Ti yields a significant increase in hardness and strength. Common SPD-processes typically provide a uniform modification of the material. Their material efficiency and productivity are critical and limiting factors. A new approach is to tailor the material properties by using Gradation Extrusion, which produces a distinct gradient in microstructure and strength. The forming process combines a regular impact extrusion process and severe plastic deformation in the lateral area of the material. This efficient process can be integrated easily into forming process chains, for instance for dental implants. This paper presents the forming process and the applied die geometry. The results of numerical simulations are used to illustrate the potential of the process to modify and strengthen the titanium material. Experiments show that the material is successfully processed by gradation extrusion. By characterizing the hardness and its distribution within the formed parts the effects of the process are investigated.

  1. Nano Precipitation and Hardening of Die-Quenched 6061 Aluminum Alloy.

    PubMed

    Utsunomiya, Hiroshi; Tada, Koki; Matsumoto, Ryo; Watanabe, Katsumi; Matsuda, Kenji

    2018-03-01

    Die quenching is applied to an age-hardenable aluminium alloys to obtain super-saturated solid solution. The application is advantageous because it can reduce number of manufacturing processes, and may increase strength by strain aging. If die quenching is realized in forging as well as sheet forming, it may widen industrial applicability further. In this study, Al-Mg-Si alloy AA6061 8 mm-thick billets were reduced 50% in height without cracks by die-quench forging. Supersaturated solid solution was successfully obtained. The die-quenched specimen shows higher hardness with nano precipitates at shorter aging time than the conventional water-quenched specimen.

  2. Extrusion cooking: Legume pulses

    USDA-ARS?s Scientific Manuscript database

    Extrusion is used commercially to produce high value breakfast and snack foods based on cereals such as wheat or corn. However, this processing method is not being commercially used for legume pulses seeds due to the perception that they do not expand well in extrusion. Extrusion cooking of pulses (...

  3. Development of Thin-Walled Magnesium Alloy Extrusions for Improved Crash Performance Based Upon Texture Control

    NASA Astrophysics Data System (ADS)

    Williams, Bruce W.; Agnew, Sean R.; Klein, Robert W.; McKinley, Jonathan

    Recent investigations suggest that it is possible to achieve dramatic modifications to both strength and ductility of magnesium alloys through a combination of alloying, grain refinement, and texture control. The current work explores the possibility of altering the texture in extruded thin-walled magnesium alloy tubes for improved ductility during axial crush in which energy is absorbed through progressive buckling. The texture evolution was predicted using the viscoplastic self-consistent (VPSC) crystal plasticity model, with strain path input from continuum-based finite element simulations of extrusion. A limited diversity of textures can be induced by altering the strain path through the extrusion die design. In some cases, such as for simple bar extrusion, the textures predicted can be connected with simple shape change. In other cases, a subtle influence of strain path involving shear-reverse-shear is predicted. The most promising textures predicted for a variety of strain paths are selected for subsequent experimental study.

  4. Casting Characteristics of High Cerium Content Aluminum Alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weiss, D; Rios, O R; Sims, Z C

    This paper compares the castability of the near eutectic aluminum-cerium alloy system to the aluminum-silicon and aluminum-copper systems. The alloys are compared based on die filling capability, feeding characteristics and tendency to hot tear in both sand cast and permanent mold applications. The castability ranking of the binary Al–Ce systems is as good as the aluminum-silicon system with some deterioration as additional alloying elements are added. In alloy systems that use cerium in combination with common aluminum alloying elements such as silicon, magnesium and/or copper, the casting characteristics are generally better than the aluminum-copper system. In general, production systems formore » melting, de-gassing and other processing of aluminum-silicon or aluminum-copper alloys can be used without modification for conventional casting of aluminum-cerium alloys.« less

  5. Experimental Damage Criterion for Static and Fatigue Life Assessment of Commercial Aluminum Alloy Die Castings

    NASA Astrophysics Data System (ADS)

    Battaglia, Eleonora; Bonollo, Franco; Ferro, Paolo

    2017-05-01

    Defects, particularly porosity and oxides, in high-pressure die casting can seriously compromise the in-service behavior and durability of products subjected to static or cyclic loadings. In this study, the influence of dimension, orientation, and position of casting defects on the mechanical properties of an AlSi12(b) (EN-AC 44100) aluminum alloy commercial component has been studied. A finite element model has been carried out in order to calculate the stress distribution induced by service loads and identify the crack initiation zones. Castings were qualitatively classified on the basis of porosities distribution detected by X-ray technique and oxides observed on fracture surfaces of specimens coming from fatigue and tensile tests. A damage criterion has been formulated which considers the influence of defects position and orientation on the mechanical strength of the components. Using the proposed damage criterion, it was possible to describe the mechanical behavior of the castings with good accuracy.

  6. A new technique for the strengthening of aluminum tungsten inert gas weld metals: using carbon nanotube/aluminum composite as a filler metal.

    PubMed

    Fattahi, M; Nabhani, N; Rashidkhani, E; Fattahi, Y; Akhavan, S; Arabian, N

    2013-01-01

    The effect of multi-walled carbon nanotube (MWCNT) on the mechanical properties of aluminum multipass weld metal prepared by the tungsten inert gas (TIG) welding process was investigated. High energy ball milling was used to disperse MWCNT in the aluminum powder. Carbon nanotube/aluminum composite filler metal was fabricated for the first time by hot extrusion of ball-milled powders. After welding, the tensile strength, microhardness and MWCNT distribution in the weld metal were investigated. The test results showed that the tensile strength and microhardness of weld metal was greatly increased when using the filler metal containing 1.5 wt.% MWCNT. Therefore, according to the results presented in this paper, it can be concluded that the filler metal containing MWCNT can serve as a super filler metal to improve the mechanical properties of TIG welds of Al and its alloys. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Investigation of multi-stage cold forward extrusion process using coupled thermo-mechanical finite element analysis

    NASA Astrophysics Data System (ADS)

    Görtan, Mehmet Okan

    2018-05-01

    Cold extrusion processes are distinguished by their low material usage as well as great efficiency in the production of mid-range and large component series. Although majority of the cold extruded parts are produced using die systems containing multiple forming stages, this subject has rarely been investigated so far. Therefore, the characteristics of multi-stage cold forward rod extrusion is studied in the current work using thermo-mechanically coupled finite element (FE) analysis. A case hardening steel, 16MnCr5 (1.7131) was used as experimental material. Its strain, strain rate and temperature dependent mechanical characteristics were determined using compression testing and modeled in FE simulations via a Johnson-Cook material model. Friction coefficients for the same material while in contact with a tool steel (1.2379) were determined dependent on temperature and contact pressure using sliding compression test (SCT) and modeled by an adaptive friction model developed by the author. In the first set of simulations, rod material with a diameter of 14.9 mm was extruded down to a diameter of 9.6 mm in a single step using three different die opening angles (2α); 20°, 40° and 60°. In the second set of investigations, the same rod was reduced first to 12 mm and then to 9.6 mm in two steps within the same forming die. Press forces, contact normal stresses between extruded material and forming die, material temperature and axial stresses are compared in these two set of simulations and the differences are discussed.

  8. 76 FR 323 - Aluminum Extrusions From the People's Republic of China: Notice of Amended Preliminary...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-04

    ... Aluminium Industries Co., Ltd., Foshan Guangcheng Aluminium Co., Ltd., Kong Ah International Company Limited, and Guang Ya Aluminium Industries (Hong Kong) Limited, (collectively, ``Guang Ya Group'') and Zhaoqing New Zhongya Aluminum Co., Ltd., Zhongya Shaped Aluminium (HK) Holding Limited, and Karlton Aluminum...

  9. Hydrostatic extrusion of Cu-Ag melt spun ribbon

    DOEpatents

    Hill, M.A.; Bingert, J.F.; Bingert, S.A.; Thoma, D.J.

    1998-09-08

    The present invention provides a method of producing high-strength and high-conductance copper and silver materials comprising the steps of combining a predetermined ratio of the copper with the silver to produce a composite material, and melt spinning the composite material to produce a ribbon of copper and silver. The ribbon of copper and silver is heated in a hydrogen atmosphere, and thereafter die pressed into a slug. The slug then is placed into a high-purity copper vessel and the vessel is sealed with an electron beam. The vessel and slug then are extruded into wire form using a cold hydrostatic extrusion process. 5 figs.

  10. Hydrostatic extrusion of Cu-Ag melt spun ribbon

    DOEpatents

    Hill, Mary Ann; Bingert, John F.; Bingert, Sherri A.; Thoma, Dan J.

    1998-01-01

    The present invention provides a method of producing high-strength and high-conductance copper and silver materials comprising the steps of combining a predetermined ratio of the copper with the silver to produce a composite material, and melt spinning the composite material to produce a ribbon of copper and silver. The ribbon of copper and silver is heated in a hydrogen atmosphere, and thereafter die pressed into a slug. The slug then is placed into a high-purity copper vessel and the vessel is sealed with an electron beam. The vessel and slug then are extruded into wire form using a cold hydrostatic extrusion process.

  11. Optimization of Composition and Heat Treating of Die Steels for Extended Lifetime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David Schwam; John F. Wallace; Quanyou Zhou

    2002-01-30

    An ''average'' die casting die costs fifty thousand dollars. A die used in making die cast aluminum engine blocks can cost well over one million dollars. These costs provide a strong incentive for extension of die life. While vacuum quenched Premium Grade H13 dies have become the most widely used in the United States, tool makers and die casters are constantly searching for new steels and heat treating procedures to extend die life. This project was undertaken to investigate the effects of composition and heat treating on die life and optimize these parameters.

  12. Turbidimetric method for the determination of particle sizes in polypropylene/clay-composites during extrusion.

    PubMed

    Becker, Wolfgang; Guschin, Viktor; Mikonsaari, Irma; Teipel, Ulrich; Kölle, Sabine; Weiss, Patrick

    2017-01-01

    Nanocomposites with polypropylene as matrix material and nanoclay as filler were produced in a double twin screw extruder. The extrusion was monitored with a spectrometer in the visible and near-infrared spectral region with a diode array spectrometer. Two probes were installed at the end at the extruder die and the transmission spectra were measured during the extrusion. After measuring the transmission spectra and converting into turbidity units, the particle distribution density was calculated via numerical linear equation system. The distribution density function shows either a bimodal or mono modal shape in dependence of the processing parameters like screw speed, dosage, and concentration of the nanoclays. The method was verified with SEM measurements which yield comparable results. The method is suitable for industrial in-line processing monitoring of particle radii and dispersion process, respectively.

  13. 75 FR 22114 - Aluminum Extrusions from the People's Republic of China: Initiation of Countervailing Duty...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-27

    ... sampling method. Section 771(4)(A) of the Act defines the ``industry'' as the producers as a whole of a... the PRC. At this time, given the unique nature of the alleged subsidy and the complex methodological... process, such as aluminum products produced by a method of casting. Cast aluminum products are properly...

  14. Evolution of microstructure and precipitates in 2xxx aluminum alloy after severe plastic deformation

    NASA Astrophysics Data System (ADS)

    Adamczyk-Cieslak, B.; Zdunek, J.; Mizera, J.

    2016-04-01

    This paper investigates the influence of precipitation on the microstructure development in a 2xxx aluminum alloy subjected to hydrostatic extrusion. A three step reduction of the diameter was performed using hydrostatic extrusion (HE) process: from 20mm (initial state) to 10 mm, 5 mm and 3 mm, which corresponds to the logarithmic deformations ɛ = 1.4, ɛ = 2.8 and ɛ = 3.8 respectively. The microstructure and precipitation analysis before and after deformation was performed using transmission electron microscope (TEM), and scanning electron microscopy (SEM). As a result of the tests, a very significant influence of precipitation on the degree of refinement and mechanism of microstructure transformation was stated.

  15. Optimized manufacture of nuclear fuel cladding tubes by FEA of hot extrusion and cold pilgering processes

    NASA Astrophysics Data System (ADS)

    Gaillac, Alexis; Ly, Céline

    2018-05-01

    Within the forming route of Zirconium alloy cladding tubes, hot extrusion is used to deform the forged billets into tube hollows, which are then cold rolled to produce the final tubes with the suitable properties for in-reactor use. The hot extrusion goals are to give the appropriate geometry for cold pilgering, without creating surface defects and microstructural heterogeneities which are detrimental for subsequent rolling. In order to ensure a good quality of the tube hollows, hot extrusion parameters have to be carefully chosen. For this purpose, finite element models are used in addition to experimental tests. These models can take into account the thermo-mechanical coupling conditions obtained in the tube and the tools during extrusion, and provide a good prediction of the extrusion load and the thermo-mechanical history of the extruded product. This last result can be used to calculate the fragmentation of the microstructure in the die and the meta-dynamic recrystallization after extrusion. To further optimize the manufacturing route, a numerical model of the cold pilgering process is also applied, taking into account the complex geometry of the tools and the pseudo-steady state rolling sequence of this incremental forming process. The strain and stress history of the tube during rolling can then be used to assess the damage risk thanks to the use of ductile damage models. Once validated vs. experimental data, both numerical models were used to optimize the manufacturing route and the quality of zirconium cladding tubes. This goal was achieved by selecting hot extrusion parameters giving better recrystallized microstructure that improves the subsequent formability. Cold pilgering parameters were also optimized in order to reduce the potential ductile damage in the cold rolled tubes.

  16. Regulation of H+ Extrusion and Cytoplasmic pH in Maize Root Tips Acclimated to a Low-Oxygen Environment.

    PubMed

    Xia, J. H.; Roberts, JKM.

    1996-05-01

    We tested the hypothesis that H+ extrusion contributes to cytoplasmic pH regulation and tolerance of anoxia in maize (Zea mays) root tips. We studied root tips of whole seedlings that were acclimated to a low-oxygen environment by pretreatment in 3% (v/v) O2. Acclimated root tips characteristically regulate cytoplasmic pH near neutrality and survive prolonged anoxia, whereas nonacclimated tips undergo severe cytoplasmic acidosis and die much more quickly. We show that the plasma membrane H+-ATPase can operate under anoxia and that net H+ extrusion increases when cytoplasmic pH falls. However, at an external pH near 6.0, H+ extrusion contributes little to cytoplasmic pH regulation. At more acidic external pH values, net H+ flux into root tips increases dramatically, leading to a decrease in cytoplasmic pH and reduced tolerance of anoxia. We present evidence that, under these conditions, H+ pumps are activated to partly offset acidosis due to H+ influx and, thereby, contribute to cytoplasmic pH regulation and tolerance of anoxia. The regulation of H+ extrusion under anoxia is discussed with respect to the acclimation response and mechanisms of intracellular pH regulation in aerobic plant cells.

  17. Study on the extrusion of nickel-based spark plug electrodes by numerical simulation

    NASA Astrophysics Data System (ADS)

    Saby, Q.; Courbon, C.; Salvatore, F.; Fabre, D.; Romeyer, F.

    2018-05-01

    Interest in metal forming simulation has grown rapidly during the last decades and is now well established even in industry. It provides a flexible and relatively cheap method to perform sensitivity analyses, getting a better insight into the forming process and use it as an optimisation tool. As far as wear is concerned, numerical simulation can be seen as a relevant approach to assess the thermomechanical loadings applied to the active die surface and therefore predict their wear behaviour. In this study, a Finite-Element (FE) based model has been developed in order to investigate the cold forming process of a nickel-based sparkplug electrode. A fully thermo-mechanically coupled implicit formulation has been used in order to model the forward extrusion step with a special emphasis on the contact conditions at the workpiece-die interface. Contact pressure, relative sliding velocity and temperature profiles have been extracted versus time and qualitatively compared to the wear phenomena observed on the worn production dies.

  18. Development and experimental assessment of a numerical modelling code to aid the design of profile extrusion cooling tools

    NASA Astrophysics Data System (ADS)

    Carneiro, O. S.; Rajkumar, A.; Fernandes, C.; Ferrás, L. L.; Habla, F.; Nóbrega, J. M.

    2017-10-01

    On the extrusion of thermoplastic profiles, upon the forming stage that takes place in the extrusion die, the profile must be cooled in a metallic calibrator. This stage must be done at a high rate, to assure increased productivity, but avoiding the development of high temperature gradients, in order to minimize the level of induced thermal residual stresses. In this work, we present a new coupled numerical solver, developed in the framework of the OpenFOAM® computational library, that computes the temperature distribution in both domains simultaneously (metallic calibrator and plastic profile), whose implementation aimed the minimization of the computational time. The new solver was experimentally assessed with an industrial case study.

  19. Advanced powder metallurgy aluminum alloys via rapid solidification technology

    NASA Technical Reports Server (NTRS)

    Ray, R.

    1984-01-01

    Aluminum alloys containing 10 to 11.5 wt. pct. of iron and 1.5 to 3 wt. pct. of chromium using the technique of rapid solidification powder metallurgy were studied. Alloys were prepared as thin ribbons (.002 inch thick) rapidly solidified at uniform rate of 10(6) C/second by the melt spinning process. The melt spun ribbons were pulverized into powders (-60 to 400 mesh) by a rotating hammer mill. The powders were consolidated by hot extrusion at a high reduction ratio of 50:1. The powder extrusion temperature was varied to determine the range of desirable processing conditions necessary to yield useful properties. Powders and consolidated alloys were characterized by SEM and optical metallography. The consolidated alloys were evaluated for (1) thermal stability, (2) tensile properties in the range, room temperature to 450 F, and (3) notch toughness in the range, room temperature to 450 F.

  20. Determining casting defects in near-net shape casting aluminum parts by computed tomography

    NASA Astrophysics Data System (ADS)

    Li, Jiehua; Oberdorfer, Bernd; Habe, Daniel; Schumacher, Peter

    2018-03-01

    Three types of near-net shape casting aluminum parts were investigated by computed tomography to determine casting defects and evaluate quality. The first, second, and third parts were produced by low-pressure die casting (Al-12Si-0.8Cu-0.5Fe-0.9Mg-0.7Ni-0.2Zn alloy), die casting (A356, Al-7Si-0.3Mg), and semi-solid casting (A356, Al-7Si-0.3Mg), respectively. Unlike die casting (second part), low-pressure die casting (first part) significantly reduced the formation of casting defects (i.e., porosity) due to its smooth filling and solidification under pressure. No significant casting defect was observed in the third part, and this absence of defects indicates that semi-solid casting could produce high-quality near-net shape casting aluminum parts. Moreover, casting defects were mostly distributed along the eutectic grain boundaries. This finding reveals that refinement of eutectic grains is necessary to optimize the distribution of casting defects and reduce their size. This investigation demonstrated that computed tomography is an efficient method to determine casting defects in near-net shape casting aluminum parts.

  1. Outgassing measurement of the aluminum alloy UHV chamber

    NASA Technical Reports Server (NTRS)

    Miyamoto, M.; Itoh, T.; Komaki, S.; Narushima, K.; Ishimaru, H.

    1986-01-01

    A large vacuum chamber (580 mm diameter) was fabricated from an aluminum alloy surface treated by a special process normally used on small chambers. The chamber was tested unbaked and baked at various temperatures, pressures, and holding periods. The chamber was filled with N2 gas, and the outgassing rate was measured after one hour. Then the ultimate pressure was measured. Outgassing rates for baked and unbaked groups were compared. It is concluded that the same surface treatment technique can be used on both large and small chambers produced by the same special extrusion process.

  2. Effect of extrusion process parameters and pregelatinized rice flour on physicochemical properties of ready-to-eat expanded snacks.

    PubMed

    Gat, Yogesh; Ananthanarayan, Laxmi

    2015-05-01

    Present study was conducted to investigate effects of pregelatinized rice flour and extrusion process parameters such as feed moisture (16-19 %), die temperature (115-145 °C) and screw speed (150-250 rpm) on physicochemical properties of ready-to-eat expanded snacks by using co-rotating twin-screw extruder. Higher die temperature increased extrudate density and WSI but reduced die pressure, torque and expansion. Increased feed moisture content resulted in extrudates with increased density, WAI and hardness but reduced die pressure, expansion and WSI. Screw speed was found to have no significant effect on expansion and hardness of extrudates, while increase in screw speed resulted in increased WAI of extrudates and reduced torque of extrudates. Effect of pregelatinized rice flour on extrudate expansion and hardness was analysed at 16 % feed moisture, 135 °C die temperature and 150 rpm screw speed. Use of pregelatinized rice flour increased expansion while it reduced hardness of extrudates.

  3. In-line solid state prediction during pharmaceutical hot-melt extrusion in a 12 mm twin screw extruder using Raman spectroscopy.

    PubMed

    Saerens, Lien; Ghanam, Dima; Raemdonck, Cedric; Francois, Kjell; Manz, Jürgen; Krüger, Rainer; Krüger, Susan; Vervaet, Chris; Remon, Jean Paul; De Beer, Thomas

    2014-08-01

    The aim of this research was to use Raman spectroscopy for the in-line monitoring of the solid state of materials during pharmaceutical hot-melt extrusion in the die head of a 12 mm (development scale) twin-screw extruder during formulation development. A full factorial (mixed) design was generated to determine the influence of variations in concentration of Celecoxib (CEL) in Eudragit® E PO, three different screw configurations and varying barrel temperature profiles on the solid state, 'melt temperature' and die pressure of continuously produced extrudates in real-time. Off-line XRD and DSC analysis were used to evaluate the suitability of Raman spectroscopy for solid state predictions. First, principal component analysis (PCA) was performed on all in-line collected Raman spectra from the experimental design. The resulting PC 1 versus PC 2 scores plot showed clustering according to solid state of the extrudates, and two classes, one class where crystalline CEL is still present and a second class where no crystalline CEL was detected, were found. Then, a soft independent modelling of class analogy (SIMCA) model was developed, by modelling these two classes separately by disjoint PCA models. These two separate PCA models were then used for the classification of new produced extrudates and allowed distinction between glassy solid solutions of CEL and crystalline dispersions of CEL. All extrudates were classified similarly by Raman spectroscopy, XRD and DSC measurements, with exception of the extrudates with a 30% CEL concentration extruded at 130 °C. The Raman spectra of these experiments showed bands which were sharper than the amorphous spectra, but broader than the crystalline spectra, indicating the presence of CEL that has dissolved into the matrix and CEL in its crystalline state. XRD and DSC measurements did not detect this. Modifications in the screw configuration did not affect the solid state and did not have an effect on the solid state prediction of

  4. Continuous Severe Plastic Deformation Processing of Aluminum Alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raghavan Srinivasan; Prabir K. Chaudhury; Balakrishna Cherukuri

    2006-06-30

    produced by SPD techniques. This combination of properties makes UFG metals produced by SPD very attractive as machining, forging or extrusion stock, both from the point of view of formability as well as energy and cost saving. However, prior to this work there had been no attempt to transfer these potential benefits observed in the laboratory scale to industrial shop floor. The primary reason for this was that the laboratory scale studies had been conducted to develop a scientific understanding of the processes that result in grain refinement during SPD. Samples that had been prepared in the laboratory scale were typically only about 10-mm diameter and 50-mm long (about 0.5-inch diameter and 2-inches long). The thrust of this project was three-fold: (i) to show that the ECAE/P process can be scaled up to produce long samples, i.e., a continuous severe plastic deformation (CSPD) process, (ii) show the process can be scaled up to produce large cross section samples that could be used as forging stock, and (iii) use the large cross-section samples to produce industrial size forgings and demonstrate the potential energy and cost savings that can be realized if SPD processed stock is adopted by the forging industry. Aluminum alloy AA-6061 was chosen to demonstrate the feasibility of the approach used. The CSPD process developed using the principles of chamber-less extrusion and drawing, and was demonstrated using rolling and wire drawing equipment that was available at Oak Ridge National Laboratory. In a parallel effort, ECAE/P dies were developed for producing 100-mm square cross section SPD billets for subsequent forging. This work was carried out at Intercontinental Manufacturing Co. (IMCO), Garland TX. Forging studies conducted with the ECAE/P billets showed that many of the potential benefits of using UFG material can be realized. In particular, the material yield can be increased, and the amount of material that is lost as scrap can be reduced by as much as 50%. Forging

  5. Extrusion and Extruded Products: Changes in Quality Attributes as Affected by Extrusion Process Parameters: A Review.

    PubMed

    Alam, M S; Kaur, Jasmeen; Khaira, Harjot; Gupta, Kalika

    2016-01-01

    Extrusion of foods is an emerging technology for the food industries to process and market a large number of products of varying size, shape, texture, and taste. Extrusion cooking technology has led to production of wide variety of products like pasta, breakfast cereals, bread crumbs, biscuits, crackers, croutons, baby foods, snack foods, confectionery items, chewing gum, texturized vegetable protein (TVP), modified starch, pet foods, dried soups, dry beverage mixes etc. The functional properties of extruded foods plays an important role for their acceptability which include water absorption, water solubility, oil absorption indexes, expansion index, bulk density and viscosity of the dough. The aim of this review is to give the detailed outlines about the potential of extrusion technology in development of different types of products and the role of extrusion-operating conditions and their effect on product development resulting in quality changes i.e physical, chemical, and nutritional, experienced during the extrusion process.

  6. Solid explosive plane-wave lenses pressed-to-shape with dies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olinger, B.

    2007-11-01

    Solid-explosive plane-wave lenses 1", 2" and 4¼" in diameter have been mass-produced from components pressed-to-shape with aluminum dies. The method used to calculate the contour between the solid plane-wave lens components pressed-to-shape with the dies is explained. The steps taken to press, machine, and assemble the lenses are described. The method of testing the lenses, the results of those tests, and the corrections to the dies are reviewed. The work on the ½", 8", and 12" diameter lenses is also discussed.

  7. Impacts of Scarification and Degermination on the Expansion Characteristics of Select Quinoa Varieties during Extrusion Processing.

    PubMed

    Aluwi, Nicole A; Gu, Bon-Jae; Dhumal, Gaurav S; Medina-Meza, Ilce G; Murphy, Kevin M; Ganjyal, Girish M

    2016-12-01

    Extrusion of 2 quinoa varieties, Cherry Vanilla and Black (scarified and unscarified) and a mixed quinoa variety, Bolivian Royal (scarified and degermed) were studied for their extrusion characteristics. A corotating twin-screw extruder with a 3 mm round die was used. Feed moisture contents of 15%, 20%, and 25% (wet basis) were studied. The extruder barrel temperature was kept constant at 140 °C and screw speeds were varied from 100, 150, and 200 revolutions per minutes. Process responses (specific mechanical energy, back pressure, and torque) and product responses (expansion ratio, unit density, and water absorption index/water solubility index) were evaluated. The degermed Bolivian Royal showed the highest expansion in comparison to all other varieties, attributed to its significantly low levels of fat, fiber, and protein. The scarified Cherry Vanilla resulted in the lowest expansion ratio. This was attributed to the increase in the protein content from the removal of the outer layer. The results indicate that all the varieties performed differently in the extrusion process due to their modification processes as well as the individual variety characteristics. © 2016 Institute of Food Technologists®.

  8. 77 FR 74466 - Aluminum Extrusions From the People's Republic of China: Notice of Court Decision Not in Harmony...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-14

    ... mandatory respondents comprise a significant portion of the Chinese extruded aluminum producers and exporters and thus are representative of the Chinese extruded aluminum industry as a whole.\\11\\ The CIT held...

  9. Antioxidant activity and polyphenolic compound stability of lentil-orange peel powder blend in an extrusion process.

    PubMed

    Rathod, Rahul P; Annapure, Uday S

    2017-03-01

    Lentil contains substantial amount of protein, carbohydrate, fibre and other nutrients and orange peels powder rich in carbohydrate and fiber content The present study was aimed to investigate the effects of extrusion processing parameter on the level of total phenolic content (TPC), total flavonoid content (TFC), total tannin content and antioxidant activity of lentil-orange peel powder blend, also to investigate the possibility of blend as a candidate for production of protein rich extruded product by using response surface methodology. It was observed that, the physicochemical properties and sensory characteristics of lentil-orange peel based extrudate were highly dependent on process variables. The blend of lentil and orange peel powder has a huge potential for extrusion to produce ready-to-eat extruded with good acceptance. The overall best quality product was optimized and obtained at 16% moisture, 150 °C die temperature and 200 rpm screw speed. Extrusion process increased nutritional value of extruded product with TPC and TFC of 70.4 and 67.62% respectively and antioxidant activity of 60.6%. It showed higher stability at 150 °C with intermediate feed moisture content and despite the use of high temperatures in the extrusion-cooking is possible to minimize the loss of bioactive compounds to achieve products. Thus, results indicated that blend of lentil and orange peel may be used as raw material for the production of extruded snacks with great nutritional value.

  10. [Process and mechanism of plants in overcoming acid soil aluminum stress].

    PubMed

    Zhao, Tian-Long; Xie, Guang-Ning; Zhang, Xiao-Xia; Qiu, Lin-Quan; Wang, Na; Zhang, Su-Zhi

    2013-10-01

    Aluminum (Al) stress is one of the most important factors affecting the plant growth on acid soil. Currently, global soil acidification further intensifies the Al stress. Plants can detoxify Al via the chelation of ionic Al and organic acids to store the ionic Al in vacuoles and extrude it from roots. The Al extrusion is mainly performed by the membrane-localized anion channel proteins Al(3+)-activated malate transporter (ALMT) and multi-drug and toxin extrusion (MATE). The genes encoding ABC transporter and zinc-finger protein conferred plant Al tolerance have also been found. The identification of these Al-resistant genes makes it possible to increase the Al resistance of crop plants and enhance their production by the biological methods such as gene transformation and mark-associated breeding. The key problems needed to be solved and the possible directions in the researches of plant Al stress resistance were proposed.

  11. How extrusion shapes food processing

    USDA-ARS?s Scientific Manuscript database

    This month's column will explore food extrusion. Extrusion is one of the most commonly used food manufacturing processes. Its versatility enables production of a diverse array of food products. This column will review the basic principles and provide an overview of applications. I would like to ...

  12. Extrusion without a motor: a new take on the loop extrusion model of genome organization

    PubMed Central

    Johnson, J.; Michieletto, D.; Morozov, A. N.; Nicodemi, M.; Cook, P. R.; Marenduzzo, D.

    2018-01-01

    ABSTRACT Chromatin loop extrusion is a popular model for the formation of CTCF loops and topological domains. Recent HiC data have revealed a strong bias in favour of a particular arrangement of the CTCF binding motifs that stabilize loops, and extrusion is the only model to date which can explain this. However, the model requires a motor to generate the loops, and although cohesin is a strong candidate for the extruding factor, a suitable motor protein (or a motor activity in cohesin itself) has yet to be found. Here we explore a new hypothesis: that there is no motor, and thermal motion within the nucleus drives extrusion. Using theoretical modelling and computer simulations we ask whether such diffusive extrusion could feasibly generate loops. Our simulations uncover an interesting ratchet effect (where an osmotic pressure promotes loop growth), and suggest, by comparison to recent in vitro and in vivo measurements, that diffusive extrusion can in principle generate loops of the size observed in the data. Extra View on : C. A. Brackley, J. Johnson, D. Michieletto, A. N. Morozov, M. Nicodemi, P. R. Cook, and D. Marenduzzo “Non-equilibrium chromosome looping via molecular slip-links”, Physical Review Letters 119 138101 (2017) PMID:29300120

  13. 76 FR 30650 - Aluminum Extrusions from the People's Republic of China: Antidumping Duty Order

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-26

    ... order, published concurrently with this notice. \\3\\ Guang Ya Aluminium Industries Co., Ltd., Foshan Guangcheng Aluminium Co., Ltd., Kong Ah International Company Limited, and Guang Ya Aluminium Industries...., Zhongya Shaped Aluminium (HK) Holding Limited and Karlton Aluminum Company Ltd. (collectively ``New...

  14. Bearing Strengths of Some Wrought-aluminum Alloys

    NASA Technical Reports Server (NTRS)

    Moore, R L; Wescoat, C

    1943-01-01

    Although a number of investigations of the bearing strength of aluminum alloys have been made, the problem remains one of considerable interest to the aircraft industry. For this reason it has seemed advisable to make additional tests of the commonly used aircraft alloys in an effort to establish a better basis for the selection of allowable bearing values. Current design practice does not recognize the effect of edge distance upon bearing strengths, and for this reason edge distance was one of the principal variables considered in this investigation. The increasing emphasis being placed upon permanent set limitations makes it essential that more information on bearing yield phenomena be obtained. The object of this investigation was to determine bearing yield and ultimate strengths of the following aluminum alloy products: 17S-T, 24S-T, Alclad 24S-T, 24S-RT, 52S-0, 52S-1/2H, 52S-H, 53S-T, and 61S-T extrusions. Ratios of these bearing properties to tensile properties were also determined.

  15. Hot-melt extrusion--basic principles and pharmaceutical applications.

    PubMed

    Lang, Bo; McGinity, James W; Williams, Robert O

    2014-09-01

    Originally adapted from the plastics industry, the use of hot-melt extrusion has gained favor in drug delivery applications both in academia and the pharmaceutical industry. Several commercial products made by hot-melt extrusion have been approved by the FDA, demonstrating its commercial feasibility for pharmaceutical processing. A significant number of research articles have reported on advances made regarding the pharmaceutical applications of the hot-melt extrusion processing; however, only limited articles have been focused on general principles regarding formulation and process development. This review provides an in-depth analysis and discussion of the formulation and processing aspects of hot-melt extrusion. The impact of physicochemical properties of drug substances and excipients on formulation development using a hot-melt extrusion process is discussed from a material science point of view. Hot-melt extrusion process development, scale-up, and the interplay of formulation and process attributes are also discussed. Finally, recent applications of hot-melt extrusion to a variety of dosage forms and drug substances have also been addressed.

  16. LINER FOR EXTRUSION BILLET CONTAINERS

    DTIC Science & Technology

    Rokide-process alumina and zirconia coatings and a Udimet 700 superalloy liner were evaluated by extrusion of 3 1/2-in. billets of Inconel 713C...One coating did with stand extrusion at 3450 F without apparent wear. The Udimet 700 liner did not show wear at 2000 F, but did react with the TZM

  17. Extrusion-formed uranium-2.4 wt. % article with decreased linear thermal expansion and method for making the same

    DOEpatents

    Anderson, Robert C.; Jones, Jack M.; Kollie, Thomas G.

    1982-01-01

    The present invention is directed to the fabrication of an article of uranium-2.4 wt. % niobium alloy in which the linear thermal expansion in the direction transverse to the extrusion direction is less than about 0.98% between 22.degree. C. and 600.degree. C. which corresponds to a value greater than the 1.04% provided by previous extrusion operations over the same temperature range. The article with the improved thermal expansion possesses a yield strength at 0.2% offset of at least 400 MPa, an ultimate tensile strength of 1050 MPa, a compressive yield strength of at least 0.2% offset of at least 675 MPa, and an elongation of at least 25% over 25.4 mm/sec. To provide this article with the improved thermal expansion, the uranium alloy billet is heated to 630.degree. C. and extruded in the alpha phase through a die with a reduction ratio of at least 8.4:1 at a ram speed no greater than 6.8 mm/sec. These critical extrusion parameters provide the article with the desired decrease in the linear thermal expansion while maintaining the selected mechanical properties without encountering crystal disruption in the article.

  18. Conservation of extrusion as an exit mechanism for Chlamydia.

    PubMed

    Zuck, Meghan; Sherrid, Ashley; Suchland, Robert; Ellis, Tisha; Hybiske, Kevin

    2016-10-01

    Chlamydiae exit via membrane-encased extrusion or through lysis of the host cell. Extrusions are novel, pathogen-containing structures that confer infectious advantages to Chlamydia, and are hypothesized to promote cell-to-cell spread, dissemination to distant tissues and facilitate immune evasion. The extrusion phenomenon has been characterized for several Chlamydia trachomatis serovars, but a thorough investigation of extrusion for additional clinically relevant C. trachomatis strains and Chlamydia species has yet to be performed. The key parameters investigated in this study were: (i) the conservation of extrusion across the Chlamydia genus, (ii) the functional requirement for candidate Chlamydia genes in extrusion formation i.e. IncA and CT228 and (iii) extrusion-mediated uptake, and consequent survival of Chlamydia inside macrophages. Inclusion morphology was characterized by live fluorescence microscopy, using an inverted GFP strategy, at early and mid-stages of infection. Enriched extrusions were used to infect bone marrow-derived macrophages, and bacterial viability was measured following macrophage engulfment. Our results demonstrate that extrusion is highly conserved across chlamydiae, including ocular, STD and LGV biovars and divergent Chlamydia species. Consequently, this exit mechanism for Chlamydia may fulfill common advantages important for pathogenesis. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. Construction of vacuum system for Tristan accumulation ring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ishimaru, H.; Horikoshi, G.; Kobayashi, M.

    1983-08-01

    An all aluminum-alloy vacuum system for the TRISTAN accumulation ring is now under construction. Aluminum and aluminum alloys are preferred materials for ultrahigh vacuum systems of large electron storage rings because of their good thermal conductivity, extremely low outgassing rate, and low residual radioactivity. Vacuum beam chambers for the dipole and quadrupole magnets are extruded using porthole dies. The aluminum alloy 6063-T6 provides superior performance in extrusion. For ultrahigh vacuum performance, a special extrusion technique is applied which, along with the outgassing procedure used, is described in detail. Aluminum alloy 3004 seamless elliptical bellows are inserted between the dipole andmore » quadrupole magnet chambers. These bellows are produced by the hydraulic forming of a seamless tube. The seamless bellows and the beam chambers are joined by fully automatic welding. The ceramic chambers for the kicker magnets, the fast bump magnets, and the slow beam intensity monitor are inserted in the aluminum alloy beam chambers. The ceramic chamber (98% alumina) and elliptical bellows are brazed with brazing sheets (4003-3003-4003) in a vacuum furnace. The brazing technique is described. The inner surface of the ceramic chamber is coated with a TiMo alloy by vacuum evaporation to permit a smooth flow of the RF wall current. Other suitable aluminum alloy components, including fittings, feedthroughs, gauges, optical windows, sputter ion pumps, turbomolecular pumps, and valves have been developed; their fabrication is described.« less

  20. Development and Demonstration of Adanced Tooling Alloys for Molds and Dies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kevin M. McHugh; Enrique J. Lavernia

    2006-01-01

    This report summarizes research results in the project Development and Demonstration of Advanced Tooling Alloys for Molds and Dies. Molds, dies and related tooling are used to manufacture most of the plastic and metal products we use every day. Conventional fabrication of molds and dies involves a multiplicity of machining, benching and heat treatment unit operations. This approach is very expensive and time consuming. Rapid Solidifcation Process (RSP) Tooling is a spray-forming technology tailored for producing molds and dies. The appraoch combines rapid solidifcation processing and net-shape materials processing in a single step. An atomized spray of a tool-forming alloy,more » typically a tool steel, is deposited onto an easy-to-form tool pattern to replicate the pattern's shape and surface features. By so doing, the approach eliminates many machining operations in conventional mold making, significantly reducing cost, lead time and energy. Moreover, rapid solidification creates unique microstructural features by suppressing carbide precipitation and growth, and creating metastable phases. This can result in unique material properties following heat treatment. Spray-formed and aged tool steel dies have exhibited extended life compared to conventional dies in many forming operations such as forging, extrusion and die casting. RSP Tooling technolocy was commercialized with the formation of RSP Tooling, LLC in Solon, Oh.« less

  1. Means of determining extrusion temperatures

    DOEpatents

    McDonald, Robert E.; Canonico, Domenic A.

    1977-01-01

    In an extrusion process comprising the steps of fabricating a metal billet, heating said billet for a predetermined time and at a selected temperature to increase its plasticity and then forcing said heated billet through a small orifice to produce a desired extruded object, the improvement comprising the steps of randomly inserting a plurality of small metallic thermal tabs at different cross sectional depths in said billet as a part of said fabricating step, and examining said extruded object at each thermal tab location for determining the crystal structure at each extruded thermal tab thus revealing the maximum temperature reached during extrusion in each respective tab location section of the extruded object, whereby the thermal profile of said extruded object during extrusion may be determined.

  2. Effect of Intensive Plastic Deformation on Microstructure and Mechanical Properties of Aluminum Alloys

    NASA Astrophysics Data System (ADS)

    Rakhadilov, Bauyrzhan; Uazyrkhanova, Gulzhaz; Myakinin, Alexandr; Uazyrkhanova, Zhuldyz

    2016-08-01

    In work it was studied the influence of intensive plastic deformation on structure and mechanical properties of aluminum alloys. Intensive plastic deformation was carried out by using equal-channel angular extrusion. It is shown that the most efficient angle of intersection of the channels is the angle of Φ=120°, which ensures defect-free parts at the highest possible level of accumulated strain (e=8). It is established that the intensive milling grain structures in aluminum alloys AMG6 and AMC occurs at ECAE-12 passes, while the intersection angle of the channels of 120°. After ECAE-12 in aluminum alloys the grain refinement reaches to the size of ∼⃒1.0-1.5 gm. It is determined that as a result of equal channel angular pressing, the microhardness of alloy AMG6 increases almost 4 times in comparison with the initial state, the microhardness of alloy AMC increases by almost 4.5 times in comparison with the initial state. It is shown that ECAE-12 mass loss is reduced to 5.4 and 5.6 mg, which shows an increase in wear-resistance of aluminum alloys AMG6 and AMC 13-14 %.

  3. Energy Saving Melting and Revert Reduction Technology: Melting Efficiency in Die Casting Operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David Schwam

    2012-12-15

    This project addressed multiple aspects of the aluminum melting and handling in die casting operations, with the objective of increasing the energy efficiency while improving the quality of the molten metal. The efficiency of melting has always played an important role in the profitability of aluminum die casting operations. Consequently, die casters need to make careful choices in selecting and operating melting equipment and procedures. The capital cost of new melting equipment with higher efficiency can sometimes be recovered relatively fast when it replaces old melting equipment with lower efficiency. Upgrades designed to improve energy efficiency of existing equipment maymore » be well justified. Energy efficiency is however not the only factor in optimizing melting operations. Melt losses and metal quality are also very important. Selection of melting equipment has to take into consideration the specific conditions at the die casting shop such as availability of floor space, average quantity of metal used as well as the ability to supply more metal during peaks in demand. In all these cases, it is essential to make informed decisions based on the best available data.« less

  4. Cradle-to-Gate Impact Assessment of a High-Pressure Die-Casting Safety-Relevant Automotive Component

    NASA Astrophysics Data System (ADS)

    Cecchel, Silvia; Cornacchia, Giovanna; Panvini, Andrea

    2016-09-01

    The mass of automotive components has a direct influence on several aspects of vehicle performance, including both fuel consumption and tailpipe emissions, but the real environmental benefit has to be evaluated considering the entire life of the products with a proper life cycle assessment. In this context, the present paper analyzes the environmental burden connected to the production of a safety-relevant aluminum high-pressure die-casting component for commercial vehicles (a suspension cross-beam) considering all the phases connected to its manufacture. The focus on aluminum high-pressure die casting reflects the current trend of the industry and its high energy consumption. This work shows a new method that deeply analyzes every single step of the component's production through the implementation of a wide database of primary data collected thanks to collaborations of some automotive supplier companies. This energy analysis shows significant environmental benefits of aluminum recycling.

  5. LINER FOR EXTRUSION BILLET CONTAINERS

    DTIC Science & Technology

    Shrink-fit assembly device for buildup of ceramic-coated liner and sleeve assemblies was tested and modified to develop desired temperatures and...preliminary evaluation of suitability for extrusion liner use. Procedures were developed for welding short, hollow ceramic cylinders of high-strength metal...carbides and borides to form a ceramic extrusion liner of suitable length. Disassembly tooling for rapid separation of shrink-fitted sleeves from a worn

  6. Cryogenic Properties of Aluminum Beryllium and Beryllium Materials

    NASA Technical Reports Server (NTRS)

    Gamwell, Wayne R.; McGill, Preston B.

    2003-01-01

    Ultimate tensile strength, yield strength, and elongation were obtained for the aluminum-beryllium alloy, AlBeMetl62 (38%Al-62%Be), at cryogenic (-195.5 C (-320 F) and (-252.8 C) (-423 F)) temperatures, and for an optical grade beryllium, O-30H (99%Be), at -252.8 C. AlBeMetl62 material was purchased to the requirements of SAE-AMS7912, "Aluminum-Beryllium Alloy, Extrusions." O-30H material was purchased to the requirements of Brush Wellman Inc. specification O-30H Optical Grade Beryllium. The ultimate tensile and yield strengths for extruded AlBeMetl62 material increased with decreasing temperature, and the percent elongation decreased with decreasing temperature. Design properties for the ultimate tensile strength, yield strength, and percent elongation for extruded AlBeMetl62 were generated. It was not possible to distinguish a difference in the room and cryogenic ultimate strength for the hot isostatically pressed (HIP'ed) O-30H material. The O30H elongation decreased with decreasing temperature.

  7. Topological defects in epithelia govern cell death and extrusion

    NASA Astrophysics Data System (ADS)

    Saw, Thuan Beng; Doostmohammadi, Amin; Nier, Vincent; Kocgozlu, Leyla; Thampi, Sumesh; Toyama, Yusuke; Marcq, Philippe; Lim, Chwee Teck; Yeomans, Julia M.; Ladoux, Benoit

    2017-04-01

    Epithelial tissues (epithelia) remove excess cells through extrusion, preventing the accumulation of unnecessary or pathological cells. The extrusion process can be triggered by apoptotic signalling, oncogenic transformation and overcrowding of cells. Despite the important linkage of cell extrusion to developmental, homeostatic and pathological processes such as cancer metastasis, its underlying mechanism and connections to the intrinsic mechanics of the epithelium are largely unexplored. We approach this problem by modelling the epithelium as an active nematic liquid crystal (that has a long range directional order), and comparing numerical simulations to strain rate and stress measurements within monolayers of MDCK (Madin Darby canine kidney) cells. Here we show that apoptotic cell extrusion is provoked by singularities in cell alignments in the form of comet-shaped topological defects. We find a universal correlation between extrusion sites and positions of nematic defects in the cell orientation field in different epithelium types. The results confirm the active nematic nature of epithelia, and demonstrate that defect-induced isotropic stresses are the primary precursors of mechanotransductive responses in cells, including YAP (Yes-associated protein) transcription factor activity, caspase-3-mediated cell death, and extrusions. Importantly, the defect-driven extrusion mechanism depends on intercellular junctions, because the weakening of cell-cell interactions in an α-catenin knockdown monolayer reduces the defect size and increases both the number of defects and extrusion rates, as is also predicted by our model. We further demonstrate the ability to control extrusion hotspots by geometrically inducing defects through microcontact printing of patterned monolayers. On the basis of these results, we propose a mechanism for apoptotic cell extrusion: spontaneously formed topological defects in epithelia govern cell fate. This will be important in predicting

  8. Fundamental studies on a novel die concept for round-point shear-clinching

    NASA Astrophysics Data System (ADS)

    Hörhold, Réjane; Müller, Martin; Merklein, Marion; Meschut, Gerson

    2016-10-01

    A newly-developed round-point shear-clinching technology could increase the use of different materials like well formable aluminium and hardly formable ultra-high-strength steels (UHSS). This innovative technology joins in a single-stage process without any pilot-hole, surface pre-treatment or auxiliary joining part. The combination of an inner and outer punch realises an indirect cutting operation of the die-sided material, whereas the punch-sided material remains unharmed. The current die-sided tool set acts as a cutting die and enables a radial extrusion of the punch-sided material after being drawn though the created hole in the UHSS. The die has a fixed die depth. After ejecting the joined components, the slug has to be removed from the top of the spring-loaded anvil. The novel die concept investigated in this paper offers the possibility to push the slug continuously through the die in the joining direction. The removed slugs remain inside the die, so manual removal is unnecessary. The one-parted tool is supposed to be more robust than the multi-parted one that is currently used. This paper represents the task to evaluate the geometry of a useful shear-clinching die concept. To reduce the experimental effort, FEM should assist the development of the most promising approach. To quantify the success, conventional shear-clinching with opening die acts as a reference. The results show the high potential and the raison d'être of shear-clinching technologies as a mechanical joining technology for future multimaterial applications especially for UHSS.

  9. Extrusion-formed uranium-2. 4 wt % article with decreased linear thermal expansion and method for making the same. [Patent application

    DOEpatents

    Anderson, R.C.; Jones, J.M.; Kollie, T.G.

    1982-05-24

    The present invention is directed to the fabrication of an article of uranium-2.4 wt % niobium alloy in which the linear thermal expansion in the direction transverse to the extrusion direction is less than about 0.98% between 22 and 600/sup 0/C which corresponds to a value greater than the 1.04% provided by previous extrusion operations over the same temperature range. The article with the improved thermal expansion possesses a yield strength at 0.2% offset of at least 400 MPa, an ultimate tensile strength of 1050 MPa, a compressive yield strength of at least 0.2% offset of at least 675 MPa, and an elongation of at least 25% over 25.4 mm/s. To provide this article with the improved thermal expansion, the uranium alloy billet is heated to 630/sup 0/C and extruded in the alpha phase through a die with a reduction ratio of at least 8.4:1 at a ram speed no greater than 6.8 mm/s. These critical extrusion parameters provide the article with a desired decrease in the linear thermal expansion while maintaining the selected mechanical properties without encountering crystal disruption in the article.

  10. Predictors of degenerative medial meniscus extrusion: radial component and knee osteoarthritis.

    PubMed

    Lee, Dae-Hee; Lee, Bum-Sik; Kim, Jong-Min; Yang, Kyung-Sook; Cha, Eun-Jong; Park, Ji-Hun; Bin, Seong-Il

    2011-02-01

    the purpose of this study was to determine the effect of a radial tear on degenerative medial meniscus posterior horn tear extrusion and to identify predictors of medial meniscus extrusion. we reviewed the records of 102 knees with medial meniscus posterior horn tears and degeneration that underwent a partial meniscectomy. Tears were classified as root (n = 17) and non-root (n = 85) tears, or as radial (n = 46) and non-radial (n = 56) tears. Groups were compared in terms of absolute and relative meniscal extrusion, and the proportion of knees with major (> 3 mm) extrusion. Multiple regression analysis was used to identify predictors of extrusion. the radial group had greater mean absolute (4 ± 1 vs. 3 ± 1 mm, P = 0.001) and relative (31 ± 11 vs. 23 ± 12%, P = 0.031) extrusion than the non-radial group. The radial group also had a greater proportion of major extrusions than the non-radial group (74% vs. 26%; P = 0.016). In contrast, the root tear and non-root tear groups were similar in terms of mean absolute (3 ± 1 vs. 3 ± 1 mm, P = n.s.) and relative (30 ± 7 vs. 26 ± 13%; P = n.s.) extrusion and in terms of proportion with major extrusions (59 vs. 55%; P = n.s.). Extrusion was found to be associated with a similar strength with both the presence of a radial component and the preoperative Kellgren-Lawrence grade. meniscal extrusion was greater and more severe in knees with a radial tear component than in knees without a radial component. The incidence and degree of major extrusion was similar in knees with root tears and non-root tears. A radial component and knee osteoarthritis severity were similarly predictive of absolute and relative extrusion. Meniscal extrusion in osteoarthritic knees was associated not only with degenerative meniscal tear but also with osteoarthritis severity. Therefore, arthroscopic meniscal procedures, especially meniscal repair, should be cautiously considered in patients with meniscal extrusion.

  11. Zr Extrusion – Direct Input for Models & Validation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cerreta, Ellen Kathleen

    As we examine differences in the high strain rate, high strain tensile response of high purity, highly textured Zr as a function of loading direction, temperature and extrusion velocity with primarily post mortem characterization techniques, we have also developed a technique for characterizing the in-situ extrusion process. This particular measurement is useful for partitioning energy of the system during the extrusion process: friction, kinetic energy, and temperature

  12. 77 FR 65671 - Aluminum Extrusions From the People's Republic of China: Notice of Partial Rescission of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-30

    ... Nanhai Hongjia Aluminum Alloy Co., Ltd. (Hongjia) and Tianjin Ganglv Nonferrous Metal Materials Co., Ltd..., ``Electrolux'') withdrew its request for review of Alnan Aluminium Co., Ltd. (Alnan), Clear Sky Inc. (Clear Sky...

  13. Development of lightweight aluminum compression panels reinforced by boron-epoxy infiltrated extrusions

    NASA Technical Reports Server (NTRS)

    Roy, P. A.; Mcelman, J. A.; Henshaw, J.

    1973-01-01

    Analytical and experimental studies were performed to evaluate the structural efficiencies afforded by the selective reinforcement of conventional aluminum compression panels with unidirectional boron epoxy composite materials. A unique approach for selective reinforcement was utilized called boron/epoxy infiltration. This technique uses extruded metal sections with preformed hollow voids into which unidirectional boron filaments are drawn and subsequently infiltrated with resin to form an integral part. Simplified analytical models were developed to investigate the behavior of stiffener webs with reinforced flanges. Theoretical results are presented demonstrating the effects of transverse shear, of the reinforcement, flange eccentricity and torsional stiffness in such construction. A series of 55 tests were conducted on boron-infiltrated rods and extruded structural sections.

  14. Factors Contributing to Pilot Valve Fuel Seal Extrusion in Orbiter PRCS Thrusters

    NASA Technical Reports Server (NTRS)

    Waller, J.M.; Saulsberry, R.L.; Albright, John D.

    2000-01-01

    Extrusion of the polytetrafluoroethylene (PTFE) pilot seal used in the monomethylhydrazine (fuel) valve of the Orbiter Primary Reaction Control System (PRCS) thrusters has been implicated in numerous on-orbit thruster failures and on-ground valve failures. Two extrusion mechanisms have been proposed, one or both may be occurring. The first mechanism is attributed to thermal expansion mismatch between adjacent PTFE and metal parts used in the fuel valve, and is referred to as thermal extrusion. The second mechanism is attributed to nitrogen tetroxide (oxidizer) leakage from the adjacent oxidizer valve on the same thruster during ground turnaround, and is referred to as oxidizer-induced extrusion. Model calculations of PTFE pilot seal in an exact pilot valve configuration show that extrusion can be caused by differential thermal expansion, without the intervening influence of oxidizer. Experimental data on semitrapped PTFE and TFM (modified PTFE) specimens simulating a fuel pilot valve configuration show that thermal extrusion 1) is incremental and irreversible, 2) increases with the size of the thermal excursion, 3) decreases with successive thermal cycling, and 4) is accompanied by gap formation. Both PTFE and TFM exhibit a higher affinity for oxidizer than fuel. The property changes associated with oxidizer uptake may explain why oxidizer seals do not exhibit extrusion. Impression replicas of fuel pilot seals removed from the Orbiter fleet show two types of extrusion: extrusion of the entire seal (loaded extrusion), or extrusion of non-sealing surface (unloaded extrusion). Both extrusion types may arise from differences in service history, rather than in failure mechanism. The plausibility oxidizer-induced extrusion was evaluated. Preliminary calculations suggest that enough energy, heat, or gas may be liberated under certain operational scenarios to cause catastrophic extrusion. However, given the lack of supporting data, conclusions implicating oxidizer leakage

  15. Analysis of Solid State Bonding in the Extrusion Process of Magnesium Alloys --Numerical Prediction and Experimental Verification

    NASA Astrophysics Data System (ADS)

    Alharthi, Nabeel H.

    The automotive industry developments focused on increasing fuel efficiency are accomplished by weight reduction of vehicles, which consequently results in less negative environmental impact. Usage of low density materials such as Magnesium alloys is an approach to replace heavier structural components. One of the challenges in deformation processing of Magnesium is its low formability attributed to the hexagonal close packed (hcp) crystal structure. The extrusion process is one of the most promising forming processes for Magnesium because it applies a hydrostatic compression state of stress during deformation resulting in improved workability. Many researchers have attempted to fully understand solid state bonding during deformation in different structural materials such as Aluminum, Copper and other metals and alloys. There is a lack of sufficient understanding of the extrusion welding in these materials as well as very limited knowledge on this subject for hollow profiles made from Magnesium alloys. The weld integrity and the characteristic of the welding microstructure are generally unknown. In this dissertation three related research projects are investigated by using different tools such as microstructure characterization, mechanical testing, thermo-mechanical physical simulation and finite element numerical modeling. Project 1: Microstructure characterization supported by mechanical testing of the extrusion welding regions in Magnesium alloy AM30 extrudate. The microstructure characterization was conducted using Light Optical Microscopy (LOM), in addition to LOM the electron backscattered diffraction (EBSD) technique was implemented to characterize in depth the deformed and welded microstructure. Project 2: Finite element numerical simulation of AM30 extrudate to model different process parameters and their influence on localized state variables such as strain, strain rate, temperature and normal pressure within the weld zone. Project 3: Physical simulation

  16. Ultrasound-Assist Extrusion Methods for the Fabrication of Polymer Nanocomposites Based on Polypropylene/Multi-Wall Carbon Nanotubes

    PubMed Central

    Ávila-Orta, Carlos A.; Quiñones-Jurado, Zoe V.; Waldo-Mendoza, Miguel A.; Rivera-Paz, Erika A.; Cruz-Delgado, Víctor J.; Mata-Padilla, José M.; González-Morones, Pablo; Ziolo, Ronald F.

    2015-01-01

    Isotactic polypropylenes (iPP) with different melt flow indexes (MFI) were used to fabricate nanocomposites (NCs) with 10 wt % loadings of multi-wall carbon nanotubes (MWCNTs) using ultrasound-assisted extrusion methods to determine their effect on the morphology, melt flow, and electrical properties of the NCs. Three different types of iPPs were used with MFIs of 2.5, 34 and 1200 g/10 min. Four different NC fabrication methods based on melt extrusion were used. In the first method melt extrusion fabrication without ultrasound assistance was used. In the second and third methods, an ultrasound probe attached to a hot chamber located at the exit of the die was used to subject the sample to fixed frequency and variable frequency, respectively. The fourth method is similar to the first method, with the difference being that the carbon nanotubes were treated in a fluidized air-bed with an ultrasound probe before being used in the fabrication of the NCs with no ultrasound assistance during extrusion. The samples were characterized by MFI, Optical microscopy (OM), Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), electrical surface resistivity, and electric charge. MFI decreases in all cases with addition of MWCNTs with the largest decrease observed for samples with the highest MFI. The surface resistivity, which ranged from 1013 to 105 Ω/sq, and electric charge, were observed to depend on the ultrasound-assisted fabrication method as well as on the melt flow index of the iPP. A relationship between agglomerate size and area ratio with electric charge was found. Several trends in the overall data were identified and are discussed in terms of MFI and the different fabrication methods. PMID:28793686

  17. Ageless Aluminum-Cerium-Based Alloys in High-Volume Die Casting for Improved Energy Efficiency

    NASA Astrophysics Data System (ADS)

    Stromme, Eric T.; Henderson, Hunter B.; Sims, Zachary C.; Kesler, Michael S.; Weiss, David; Ott, Ryan T.; Meng, Fanqiang; Kassoumeh, Sam; Evangelista, James; Begley, Gerald; Rios, Orlando

    2018-06-01

    Strong chemical reactions between Al and Ce lead to the formation of intermetallics with exceptional thermal stability. The rapid formation of intermetallics directly from the liquid phase during solidification of Al-Ce alloys leads to an ultrafine microconstituent structure that effectively strengthens as-cast alloys without further microstructural optimization via thermal processing. Die casting is a high-volume manufacturing technology that accounts for greater than 40% of all cast Al products, whereas Ce is highly overproduced as a waste product of other rare earth element (REE) mining. Reducing heat treatments would stimulate significant improvements in manufacturing energy efficiency, exceeding (megatonnes/year) per large-scale heat-treatment line. In this study, multiple compositions were evaluated with wedge mold castings to test the sensitivity of alloys to the variable solidification rate inherent in high-pressure die casting. Once a suitable composition was determined, it was successfully demonstrated at 800 lbs/h in a 600-ton die caster, after which the as-die cast parts performed similarly to ubiquitous A380 in the same geometry without requiring heat treatment. This work demonstrates the compatibility of Al REE alloys with high-volume die-casting applications with minimal heat treatments.

  18. Ageless Aluminum-Cerium-Based Alloys in High-Volume Die Casting for Improved Energy Efficiency

    NASA Astrophysics Data System (ADS)

    Stromme, Eric T.; Henderson, Hunter B.; Sims, Zachary C.; Kesler, Michael S.; Weiss, David; Ott, Ryan T.; Meng, Fanqiang; Kassoumeh, Sam; Evangelista, James; Begley, Gerald; Rios, Orlando

    2018-04-01

    Strong chemical reactions between Al and Ce lead to the formation of intermetallics with exceptional thermal stability. The rapid formation of intermetallics directly from the liquid phase during solidification of Al-Ce alloys leads to an ultrafine microconstituent structure that effectively strengthens as-cast alloys without further microstructural optimization via thermal processing. Die casting is a high-volume manufacturing technology that accounts for greater than 40% of all cast Al products, whereas Ce is highly overproduced as a waste product of other rare earth element (REE) mining. Reducing heat treatments would stimulate significant improvements in manufacturing energy efficiency, exceeding (megatonnes/year) per large-scale heat-treatment line. In this study, multiple compositions were evaluated with wedge mold castings to test the sensitivity of alloys to the variable solidification rate inherent in high-pressure die casting. Once a suitable composition was determined, it was successfully demonstrated at 800 lbs/h in a 600-ton die caster, after which the as-die cast parts performed similarly to ubiquitous A380 in the same geometry without requiring heat treatment. This work demonstrates the compatibility of Al REE alloys with high-volume die-casting applications with minimal heat treatments.

  19. Springback of aluminum alloy brazing sheet in warm forming

    NASA Astrophysics Data System (ADS)

    Han, Kyu Bin; George, Ryan; Kurukuri, Srihari; Worswick, Michael J.; Winkler, Sooky

    2017-10-01

    The use of aluminum is increasing in the automotive industry due to its high strength-to-weight ratio, recyclability and corrosion resistance. However, aluminum is prone to significant springback due to its low elastic modulus coupled with its high strength. In this paper, a warm forming process is studied to improve the springback characteristics of 0.2 mm thick brazing sheet with an AA3003 core and AA4045 clad. Warm forming decreases springback by lowering the flow stress. The parts formed have complex features and geometries that are representative of automotive heat exchangers. The key objective is to utilize warm forming to control the springback to improve the part flatness which enables the use of harder temper material with improved strength. The experiments are performed by using heated dies at several different temperatures up to 350 °C and the blanks are pre-heated in the dies. The measured springback showed a reduction in curvature and improved flatness after forming at higher temperatures, particularly for the harder temper material conditions.

  20. Ageless Aluminum-Cerium-Based Alloys in High-Volume Die Casting for Improved Energy Efficiency

    DOE PAGES

    Stromme, Eric T.; Henderson, Hunter B.; Sims, Zachary C.; ...

    2018-04-25

    Strong chemical reactions between Al and Ce lead to the formation of intermetallics with exceptional thermal stability. The rapid formation of intermetallics directly from the liquid phase during solidification of Al-Ce alloys leads to an ultrafine microconstituent structure that effectively strengthens as-cast alloys without further microstructural optimization via thermal processing. Die casting is a high-volume manufacturing technology that accounts for greater than 40% of all cast Al products, whereas Ce is highly overproduced as a waste product of other rare earth element (REE) mining. Reducing heat treatments would stimulate significant improvements in manufacturing energy efficiency, exceeding (megatonnes/year) per large-scale heat-treatmentmore » line. In this study, multiple compositions were evaluated with wedge mold castings to test the sensitivity of alloys to the variable solidification rate inherent in high-pressure die casting. Once a suitable composition was determined, it was successfully demonstrated at 800 lbs/h in a 600-ton die caster, after which the as-die cast parts performed similarly to ubiquitous A380 in the same geometry without requiring heat treatment. Furthermore, this work demonstrates the compatibility of Al REE alloys with high-volume die-casting applications with minimal heat treatments.« less

  1. Ageless Aluminum-Cerium-Based Alloys in High-Volume Die Casting for Improved Energy Efficiency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stromme, Eric T.; Henderson, Hunter B.; Sims, Zachary C.

    Strong chemical reactions between Al and Ce lead to the formation of intermetallics with exceptional thermal stability. The rapid formation of intermetallics directly from the liquid phase during solidification of Al-Ce alloys leads to an ultrafine microconstituent structure that effectively strengthens as-cast alloys without further microstructural optimization via thermal processing. Die casting is a high-volume manufacturing technology that accounts for greater than 40% of all cast Al products, whereas Ce is highly overproduced as a waste product of other rare earth element (REE) mining. Reducing heat treatments would stimulate significant improvements in manufacturing energy efficiency, exceeding (megatonnes/year) per large-scale heat-treatmentmore » line. In this study, multiple compositions were evaluated with wedge mold castings to test the sensitivity of alloys to the variable solidification rate inherent in high-pressure die casting. Once a suitable composition was determined, it was successfully demonstrated at 800 lbs/h in a 600-ton die caster, after which the as-die cast parts performed similarly to ubiquitous A380 in the same geometry without requiring heat treatment. Furthermore, this work demonstrates the compatibility of Al REE alloys with high-volume die-casting applications with minimal heat treatments.« less

  2. Micromechanics f an Extrusion in High-Cycle Fatigue With Creep

    DTIC Science & Technology

    1988-01-01

    amount referred to as the "static extrusion" ( Mughrabi et al , 1983). This E{a causes an initial compression ta, in R. As the extrusion grows under cyclic...Deformation of sin- gle crystals at elevated temperatures (Johnson, et al , 1953, 1955) also occurs by slip in pri- marily the same slip systems that...growth will cease after the extrusion has reached the static extrusion. Lin, et al ., 1988 have shown that the residual tensile stress ’tact caused by

  3. Extrusion foaming of thermoplastic cellulose acetate from renewable resources using a two-component physical blowing agent system

    NASA Astrophysics Data System (ADS)

    Hopmann, Ch.; Windeck, C.; Hendriks, S.; Zepnik, S.; Wodke, T.

    2014-05-01

    Thermoplastic cellulose acetate (CA) is a bio-based polymer with optical, mechanical and thermal properties comparable to those of polystyrene (PS). The substitution of the predominant petrol-based PS in applications like foamed food trays can lead to a more sustainable economic practice. However, CA is also suitable for more durable applications as the biodegradability rate can be controlled by adjusting the degree of substitutions. The extrusion foaming of CA still has to overcome certain challenges. CA is highly hydrophilic and can suffer from hydrolytic degradation if not dried properly. Therefore, the influence of residual moisture on the melt viscosity is rather high. Beyond, the surface quality of foam CA sheets is below those of PS due to the particular foaming behaviour. This paper presents results of a recent study on extrusion foamed CA, using a two-component physical blowing agent system compromising HFO 1234ze as blowing agent and organic solvents as co-propellant. Samples with different co-propellants are processed on a laboratory single screw extruder at IKV. Morphology and surface topography are investigated with respect to the blowing agent composition and the die pressure. In addition, relationships between foam density, foam morphology and the propellants are analysed. The choice of the co-propellant has a significant influence on melt-strength, foaming behaviour and the possible blow-up ratio of the sheet. Furthermore, a positive influence of the co-propellant on the surface quality can be observed. In addition, the focus is laid on the effect of external contact cooling of the foamed sheets after the die exit.

  4. 75 FR 73041 - Aluminum Extrusions From the People's Republic of China: Postponement of Final Determination of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-29

    ... months. On November 1, 2010, Guang Ya Aluminium Industries Co., Ltd., Foshan Guangcheng Aluminium Co., Ltd., Kong Ah International Company Limited, and Guang Ya Aluminium Industries (Hong Kong) Limited..., finding that Guang Ya Group, Zhaoqing New Zhongya Aluminum Co., Ltd., Zhongya Shaped Aluminium (HK...

  5. High-throughput method to predict extrusion pressure of ceramic pastes.

    PubMed

    Cao, Kevin; Liu, Yang; Tucker, Christopher; Baumann, Michael; Grit, Grote; Lakso, Steven

    2014-04-14

    A new method was developed to measure the rheology of extrudable ceramic pastes using a Hamilton MicroLab Star liquid handler. The Hamilton instrument, normally used for high throughput liquid processing, was expanded to function as a low pressure capillary rheometer. Diluted ceramic pastes were forced through the modified pipettes, which produced pressure drop data that was converted to standard rheology data. A known ceramic paste containing cellulose ether was made and diluted to various concentrations in water. The most dilute paste samples were tested in the Hamilton instrument and the more typical, highly concentrated, ceramic paste were tested with a hydraulic ram extruder fitted with a capillary die and pressure measurement system. The rheology data from this study indicates that the dilute high throughput method using the Hamilton instrument correlates to, and can predict, the rheology of concentrated ceramic pastes normally used in ceramic extrusion production processes.

  6. Experimental Investigation on the Joining of Aluminum Alloy Sheets Using Improved Clinching Process

    PubMed Central

    Chen, Chao; Zhao, Shengdun; Han, Xiaolan; Zhao, Xuzhe; Ishida, Tohru

    2017-01-01

    Aluminum alloy sheets have been widely used to build the thin-walled structures by mechanical clinching technology in recent years. However, there is an exterior protrusion located on the lower sheet and a pit on the upper sheet, which may restrict the application of the clinching technology in visible areas. In the present study, an improved clinched joint used to join aluminum alloy sheets was investigated by experimental method. The improved clinching process used for joining aluminum alloy evolves through four phases: (a) localized deformation; (b) drawing; (c) backward extrusion; and (d) mechanical interlock forming. A flat surface can be produced using the improved clinching process. Shearing strength, tensile strength, material flow, main geometrical parameters, and failure mode of the improved clinched joint were investigated. The sheet material was compressed to flow radially and upward using a punch, which generated a mechanical interlock by producing severe localized plastic deformation. The neck thickness and interlock of the improved clinched joint were increased by increasing the forming force, which also contributed to increase the strength of the clinched joint. The improved clinched joint can get high shearing strength and tensile strength. Three main failure modes were observed in the failure process, which were neck fracture mode, button separation mode, and mixed failure mode. The improved clinched joint has better joining quality to join aluminum alloy sheets on the thin-walled structures. PMID:28763027

  7. Experimental Investigation on the Joining of Aluminum Alloy Sheets Using Improved Clinching Process.

    PubMed

    Chen, Chao; Zhao, Shengdun; Han, Xiaolan; Zhao, Xuzhe; Ishida, Tohru

    2017-08-01

    Aluminum alloy sheets have been widely used to build the thin-walled structures by mechanical clinching technology in recent years. However, there is an exterior protrusion located on the lower sheet and a pit on the upper sheet, which may restrict the application of the clinching technology in visible areas. In the present study, an improved clinched joint used to join aluminum alloy sheets was investigated by experimental method. The improved clinching process used for joining aluminum alloy evolves through four phases: (a) localized deformation; (b) drawing; (c) backward extrusion; and (d) mechanical interlock forming. A flat surface can be produced using the improved clinching process. Shearing strength, tensile strength, material flow, main geometrical parameters, and failure mode of the improved clinched joint were investigated. The sheet material was compressed to flow radially and upward using a punch, which generated a mechanical interlock by producing severe localized plastic deformation. The neck thickness and interlock of the improved clinched joint were increased by increasing the forming force, which also contributed to increase the strength of the clinched joint. The improved clinched joint can get high shearing strength and tensile strength. Three main failure modes were observed in the failure process, which were neck fracture mode, button separation mode, and mixed failure mode. The improved clinched joint has better joining quality to join aluminum alloy sheets on the thin-walled structures.

  8. Inability to produce a model of dialysis encephalopathy in the rat by aluminum administration.

    PubMed

    Perry, T L; Yong, V W; Godolphin, W J; Sutter, M; Hansen, S; Kish, S J; Foulks, J G; Ito, M

    1987-04-01

    We attempted to produce a rat model of brain aluminum toxicity in order to explore whether or not aluminum accumulation produces the neurochemical changes observed in brains of patients who die with dialysis encephalopathy. Daily subcutaneous injection of Al(OH)3 caused marked elevation of serum aluminum concentrations, but did not increase brain aluminum contents, either in rats with normal renal function, or in rats with unilateral or 5/6 nephrectomies. LiCl pretreatment, which has been reported to cause irreversible renal failure, did not impair renal function nor aid in achieving elevated brain aluminum contents. No reductions in brain contents of gamma-aminobutyric acid (GABA) or in glutamic acid decarboxylase (GAD, E.C.4.1.1.15) and choline acetyltransferase (ChAT, E.C.2.3.1.6) activities were observed in aluminum-treated rats. We conclude that the rat is not a suitable laboratory animal to explore the role of aluminum toxicity in causing the GABA and ChAT deficits present in brains of hemodialyzed human patients.

  9. Prediction of Thermal Fatigue in Tooling for Die-casting Copper via Finite Element Analysis

    NASA Astrophysics Data System (ADS)

    Sakhuja, Amit; Brevick, Jerald R.

    2004-06-01

    Recent research by the Copper Development Association (CDA) has demonstrated the feasibility of die-casting electric motor rotors using copper. Electric motors using copper rotors are significantly more energy efficient relative to motors using aluminum rotors. However, one of the challenges in copper rotor die-casting is low tool life. Experiments have shown that the higher molten metal temperature of copper (1085 °C), as compared to aluminum (660 °C) accelerates the onset of thermal fatigue or heat checking in traditional H-13 tool steel. This happens primarily because the mechanical properties of H-13 tool steel decrease significantly above 650 °C. Potential approaches to mitigate the heat checking problem include: 1) identification of potential tool materials having better high temperature mechanical properties than H-13, and 2) reduction of the magnitude of cyclic thermal excursions experienced by the tooling by increasing the bulk die temperature. A preliminary assessment of alternative tool materials has led to the selection of nickel-based alloys Haynes 230 and Inconel 617 as potential candidates. These alloys were selected based on their elevated temperature physical and mechanical properties. Therefore, the overall objective of this research work was to predict the number of copper rotor die-casting cycles to the onset of heat checking (tool life) as a function of bulk die temperature (up to 650 °C) for Haynes 230 and Inconel 617 alloys. To achieve these goals, a 2D thermo-mechanical FEA was performed to evaluate strain ranges on selected die surfaces. The method of Universal Slopes (Strain Life Method) was then employed for thermal fatigue life predictions.

  10. Sediment Core Extrusion Method at Millimeter Resolution Using a Calibrated, Threaded-rod

    PubMed Central

    Schwing, Patrick T.; Romero, Isabel C.; Larson, Rebekka A.; O'Malley, Bryan J.; Fridrik, Erika E.; Goddard, Ethan A.; Brooks, Gregg R.; Hastings, David W.; Rosenheim, Brad E.; Hollander, David J.; Grant, Guy; Mulhollan, Jim

    2016-01-01

    Aquatic sediment core subsampling is commonly performed at cm or half-cm resolution. Depending on the sedimentation rate and depositional environment, this resolution provides records at the annual to decadal scale, at best. An extrusion method, using a calibrated, threaded-rod is presented here, which allows for millimeter-scale subsampling of aquatic sediment cores of varying diameters. Millimeter scale subsampling allows for sub-annual to monthly analysis of the sedimentary record, an order of magnitude higher than typical sampling schemes. The extruder consists of a 2 m aluminum frame and base, two core tube clamps, a threaded-rod, and a 1 m piston. The sediment core is placed above the piston and clamped to the frame. An acrylic sampling collar is affixed to the upper 5 cm of the core tube and provides a platform from which to extract sub-samples. The piston is rotated around the threaded-rod at calibrated intervals and gently pushes the sediment out the top of the core tube. The sediment is then isolated into the sampling collar and placed into an appropriate sampling vessel (e.g., jar or bag). This method also preserves the unconsolidated samples (i.e., high pore water content) at the surface, providing a consistent sampling volume. This mm scale extrusion method was applied to cores collected in the northern Gulf of Mexico following the Deepwater Horizon submarine oil release. Evidence suggests that it is necessary to sample at the mm scale to fully characterize events that occur on the monthly time-scale for continental slope sediments. PMID:27585268

  11. Sediment Core Extrusion Method at Millimeter Resolution Using a Calibrated, Threaded-rod.

    PubMed

    Schwing, Patrick T; Romero, Isabel C; Larson, Rebekka A; O'Malley, Bryan J; Fridrik, Erika E; Goddard, Ethan A; Brooks, Gregg R; Hastings, David W; Rosenheim, Brad E; Hollander, David J; Grant, Guy; Mulhollan, Jim

    2016-08-17

    Aquatic sediment core subsampling is commonly performed at cm or half-cm resolution. Depending on the sedimentation rate and depositional environment, this resolution provides records at the annual to decadal scale, at best. An extrusion method, using a calibrated, threaded-rod is presented here, which allows for millimeter-scale subsampling of aquatic sediment cores of varying diameters. Millimeter scale subsampling allows for sub-annual to monthly analysis of the sedimentary record, an order of magnitude higher than typical sampling schemes. The extruder consists of a 2 m aluminum frame and base, two core tube clamps, a threaded-rod, and a 1 m piston. The sediment core is placed above the piston and clamped to the frame. An acrylic sampling collar is affixed to the upper 5 cm of the core tube and provides a platform from which to extract sub-samples. The piston is rotated around the threaded-rod at calibrated intervals and gently pushes the sediment out the top of the core tube. The sediment is then isolated into the sampling collar and placed into an appropriate sampling vessel (e.g., jar or bag). This method also preserves the unconsolidated samples (i.e., high pore water content) at the surface, providing a consistent sampling volume. This mm scale extrusion method was applied to cores collected in the northern Gulf of Mexico following the Deepwater Horizon submarine oil release. Evidence suggests that it is necessary to sample at the mm scale to fully characterize events that occur on the monthly time-scale for continental slope sediments.

  12. FE Simulation of Ultrasonic Back Extrusion

    NASA Astrophysics Data System (ADS)

    Rosochowska, Malgorzata; Rosochowski, Andrzej

    2007-04-01

    The main benefit of using ultrasonic vibrations in metal forming arises from the reduction in the mean forming force. In order to examine mechanisms responsible for this effect FE simulations of ultrasonic back extrusion using ABAQUS/Explicit were carried out. In two analysed models, vibration of frequency of 20 kHz was imposed on the punch. In the first model, the die and the punch were defined as rigid bodies and in the second, the punch was modelled as an elastic body, this being the innovative feature of the research. The punch vibrated in a longitudinal mode. Simulations were performed for amplitude of vibrations of 8.5μm and different punch velocities for both friction and frictionless conditions. Results showed that the amplitude and the mean forming force depended on the process velocity. Further, the decrease in the mean forming force might be partly explained by the reduction in the friction force due to changes in the direction and magnitude of the frictional stress over the vibration period. A lower deflection of the elastic punch under oscillatory conditions was observed, which was an indirect evidence of the reduced forming force. It was also observed that amplitude of vibrations at the working surface of the elastic punch was smaller than the applied one.

  13. Effect of Holding Pressure on Microstructure and Mechanical Properties of A356 Aluminum Alloy

    NASA Astrophysics Data System (ADS)

    Wu, Xiaoyan; Zhang, Huarui; Ma, Zhen; Jia, Lina; Zhang, Hu

    2018-02-01

    In this study, the effect of holding pressure on microstructure and mechanical properties of low-pressure die cast A356 aluminum alloy was investigated. The results showed that the application of high holding pressure (300 kPa) generated castings with denser structure and superior mechanical properties. By increasing the holding pressure up to 300 kPa, the size of secondary dendrite arm spacing greatly reduced by 22.7% at the cooling rate of 1°C/s and decreased by 12.8% at 10°C/s. The Feret's diameter and aspect ratio of eutectic silicon particles decreased by 8.4 and 5.1% at the cooling rate of 1°C/s and decreased by 9.3 and 6.4% at 10°C/s, respectively. Meanwhile, the density of A356 aluminum alloy increased to 2.678 g/cm3 and the area fraction of porosity decreased to 0.035%. Thus, tensile properties of A356 aluminum alloy obtained at high holding pressure were enhanced, especially the ductility. All these could be associated with the better filling capability and faster cooling rate caused by high holding pressure. In the analytical range of experimental conditions, the correlation of mechanical properties with process parameters was established by statistical models to predict the ultimate tensile strength and elongation of low-pressure die cast A356 aluminum alloy.

  14. Calibrator device for the extrusion of cable coatings

    NASA Astrophysics Data System (ADS)

    Garbacz, Tomasz; Dulebová, Ľudmila; Spišák, Emil; Dulebová, Martina

    2016-05-01

    This paper presents selected results of theoretical and experimental research works on a new calibration device (calibrators) used to produce coatings of electric cables. The aim of this study is to present design solution calibration equipment and present a new calibration machine, which is an important element of the modernized technology extrusion lines for coating cables. As a result of the extrusion process of PVC modified with blowing agents, an extrudate in the form of an electrical cable was obtained. The conditions of the extrusion process were properly selected, which made it possible to obtain a product with solid external surface and cellular core.

  15. Extrusion of small-diameter, thin-wall tungsten tubing

    NASA Technical Reports Server (NTRS)

    Blankenship, C. P.; Gyorgak, C. A.

    1967-01-01

    Small-diameter, thin-wall seamless tubing of tungsten has been fabricated in lengths of up to 10 feet by hot extrusion over a floating mandrel. Extrusion of 0.50-inch-diameter tubing over 0.4-inch-diameter mandrels was accomplished at temperatures ranging from 3000 degrees to 4000 degrees F.

  16. Development of an Innovative Laser-Assisted Coating Process for Extending Lifetime of Metal Casting Dies. Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Madhav Rao Gonvindaraju

    1999-10-18

    Die casting dies used in the metal casting industry fail due to thermal fatigue cracking accompanied by the presence of residual tensile stresses, corrosion, erosion and wear of die surfaces. This phase 1 SBIR Final Report summarize Karta Technologies research involving the development of an innovative laser coating technology for metal casting dies. The process involves depositing complex protective coatings of nanocrystalline powders of TiC followed by a laser shot peening. The results indicate a significant improvement in corrosion and erosion resistance in molten aluminum for H13 die casting die steels. The laser-coated samples also showed improved surface finish, amore » homogeneous and uniform coating mircrostructure. The technology developed in this research can have a significant impact on the casting industry by saving the material costs involved in replacing dies, reducing downtime and improving the quality.« less

  17. Making Ceramic/Polymer Parts By Extrusion Stereolithography

    NASA Technical Reports Server (NTRS)

    Stuffle, Kevin; Mulligan, A.; Creegan, P.; Boulton, J. M.; Lombardi, J. L.; Calvert, P. D.

    1996-01-01

    Extrusion stereolithography developmental method of computer-controlled manufacturing of objects out of ceramic/polymer composite materials. Computer-aided design/computer-aided manufacturing (CAD/CAM) software used to create image of desired part and translate image into motion commands for combination of mechanisms moving resin dispenser. Extrusion performed in coordination with motion of dispenser so buildup of extruded material takes on size and shape of desired part. Part thermally cured after deposition.

  18. Advanced powder metallurgy aluminum alloys via rapid solidification technology, phase 2

    NASA Technical Reports Server (NTRS)

    Ray, Ranjan; Jha, Sunil C.

    1987-01-01

    Marko's rapid solidification technology was applied to processing high strength aluminum alloys. Four classes of alloys, namely, Al-Li based (class 1), 2124 type (class 2), high temperature Al-Fe-Mo (class 3), and PM X7091 type (class 4) alloy, were produced as melt-spun ribbons. The ribbons were pulverized, cold compacted, hot-degassed, and consolidated through single or double stage extrusion. The mechanical properties of all four classes of alloys were measured at room and elevated temperatures and their microstructures were investigated optically and through electron microscopy. The microstructure of class 1 Al-Li-Mg alloy was predominantly unrecrystallized due to Zr addition. Yield strengths to the order of 50 Ksi were obtained, but tensile elongation in most cases remained below 2 percent. The class 2 alloys were modified composition of 2124 aluminum alloy, through addition of 0.6 weight percent Zr and 1 weight percent Ni. Nickel addition gave rise to a fine dispersion of intermetallic particles resisting coarsening during elevated temperature exposure. The class 2 alloy showed good combination of tensile strength and ductility and retained high strength after 1000 hour exposure at 177 C. The class 3 Al-Fe-Mo alloy showed high strength and good ductility both at room and high temperatures. The yield and tensile strength of class 4 alloy exceeded those of the commercial 7075 aluminum alloy.

  19. Effect of Aluminum Addition on the Evolution of Microstructure, Crystallographic Texture and Mechanical Properties of Single Phase Hexagonal Close Packed Mg-Li Alloys

    NASA Astrophysics Data System (ADS)

    Bhagat Singh, P.; Sabat, R. K.; Kumaran, S.; Suwas, S.

    2018-02-01

    In the present investigation, an effort has been made to understand the effect of aluminum addition to α Mg-Li alloys. The corresponding composition Mg-4Li- xAl ( x = 0, 2, 4 and 6 wt.%) alloys have been prepared by stir casting route under an argon environment. Extrusion was carried out at 300 °C with the extrusion ratio of 15:1. Significant grain refinement was observed after extrusion. X-ray diffraction-based investigation of the cast and extruded alloys showed the presence of intermetallic compounds such as Mg17Al12 and AlLi in the Al-rich alloys namely, Mg-4Li- xAl ( x = 4 and 6 wt.%). These precipitates were also present in the extruded plus annealed samples, indicating the stability of the precipitates at high temperature. The bulk x-ray texture measurement revealed a crystallographic texture where the c-axis of the h.c.p crystals was perpendicular to the extrusion direction (ED) for extruded sample. A texture transition was observed on annealing. The c-axis was oriented parallel to the ED. Mechanical properties of the cast, extruded and extruded plus annealed material illustrate that the addition of Al led to enhancement in hardness, yield strength and ultimate tensile strength.

  20. Oceanic corrosion test of bare and zinc-protected aluminum alloys for seawater heat exchangers

    NASA Technical Reports Server (NTRS)

    Sasscer, D. S.; Morgan, T. O.; Rivera, C.; Ernst, R.; Scott, A. C.; Summerson, T. J.

    1982-01-01

    Bare 3004 tubes, 7072 Alclad 3004 tubes, and bare and zinc diffusion treated 3003 extrusions from a brazed aluminum, plate-fin heat exchanger were exposed to 1.8 m/sec flowing seawater aboard an open ocean test facility moored 3.4 km off the southeast coast of Puerto Rico. After six months exposure, the average corrosion rates for most varieties of aluminum materials converged to a low value of 0.015 mm/yr (0.6 mils/yr). Pitting did not occur in bare 3003 and 3004 samples during the six month test. Pitting did occur to varying degrees in the Alclad and zinc diffusion treated material, but did not penetrate to the base metal. Biofouling countermeasures (intermittent chlorination and brushing) did not affect the corrosion rates to any significant extent. Intermittent chlorination at a level of 0.5 ppm for 28 minutes daily controlled microbiofouling of the samples but did not prevent the development of a macrobiofouling community in areas of the plumbing with low flow.

  1. Comparison of apical and coronal extrusions using reciprocating and rotary instrumentation systems.

    PubMed

    Lu, Yan; Chen, Min; Qiao, Feng; Wu, Ligeng

    2015-08-07

    The aim of this study was to compare the apical and coronal extrusions by using two reciprocating and two rotary instrumentation systems. Eighty extracted human single-rooted anterior teeth were randomly assigned to four groups. Four different root canal instrumentation systems were used according to the manufacturers instructions, including two reciprocating single-file systems, Reciproc and WaveOne, and two full-sequence rotary BLX and ProTaper instruments. Debris collected from the coronal by the instruments and apical extrusions were quantified respectively. After drying the collections, the mean weight of debris collected from apical and coronal extrusions was assessed using an electronic balance and analyzed using the Kruskal-Wallis H and Mann-Whitney U tests. Statistically significant differences in the apical extrusion were observed among the four groups. Reciproc and WaveOne instruments produced significantly less debris than BLX and ProTaper instruments (P < 0.05). All of the systems produced apical extrusion of debris. However, reciprocating single-file systems produced less apical extrusion than full-sequence rotary systems. No relationship was observed between apical and coronal extrusions.

  2. Fabrication of High Strength Lightweight Metals for Armor and Structural Applications: Large Scale Equal Channel Angular Extrusion Processing of Aluminum 5083 Alloy

    DTIC Science & Technology

    2017-06-01

    ARL-TR-8047 ● JUNE 2017 US Army Research Laboratory Fabrication of High -Strength Lightweight Metals for Armor and Structural...to the originator. ARL-TR-8047 ● JUNE 2017 US Army Research Laboratory Fabrication of High -Strength Lightweight Metals for...Fabrication of High -Strength Lightweight Metals for Armor and Structural Applications: Large-Scale Equal Channel Angular Extrusion Processing of

  3. Research on Fracture of Aluminum Foil in Microscale Laser Peen Forming

    NASA Astrophysics Data System (ADS)

    Zheng, Chao; Sun, Sheng; Liu, Jing; Ji, Zhong

    2010-06-01

    A novel numerical method for dynamic fracture in microscale laser peen forming (μLPF) of aluminum foils was presented and the role of the die diameter on fracture behavior at the ultra high strain rate was investigated via both experimental and numerical methods. μLPF is a process in which the plastic deformation is generated through laser-induced shock wave and compressive residual stresses can be imparted to improve the fatigue life of micro parts. During μLPF, the pressure exerted on the target is higher than 1 GPa and the strain rate is greater than 106s-1, so the mechanical behavior of materials in this dynamic process is very different from that under static or quasi-static conditions. In the present study, the finite element method with grain and grain boundary elements was used to analyze the μLPF process of aluminum foils with a thickness of 60 μm. The onset and propagation of crack were simulated in this way that the specified nodes were tied together until the equivalent plastic strain exceeded a certain value. Under a given value of plastic strain, the influence of die diameters of 0.6, 1.0, and 1.6 mm on the fracture mode of the material was predicted. A series of experiments were carried out to verify the numerical model. The geometrical morphologies of fracture regions were observed via optical microscope and scan electron microscope. In results from both experiments and simulations, the size of the die diameter affects the location of the fracture: (I) Fracture appeared at the entrance of the die for die diameters of 0.6 and 1.0 mm. (II) Fracture occurred near the centre of the formed dome for 1.6 mm die diameter. The generation mechanism of two fracture modes was explained. This work provides a preliminary insight into the fracture behavior of materials under the ultra high strain rate and lays the ground work for more in-depth simulations in the future study.

  4. Role of E-cadherin in membrane-cortex interaction probed by nanotube extrusion.

    PubMed

    Tabdanov, Erdem; Borghi, Nicolas; Brochard-Wyart, Françoise; Dufour, Sylvie; Thiery, Jean-Paul

    2009-03-18

    This study aims to define the role of E-cadherin (Ecad) engagement in cell-cell contact during membrane-cortex interaction. As a tool, we used a hydrodynamic membrane tube extrusion technique to characterize the mechanical interaction between the plasma membrane and the underlying cortical cytoskeleton. Cells were anchored on 4.5 microm beads coated with polylysine (PL) to obtain nonspecific cell adhesion or with an antibody against Ecad to mimic specific Ecad-mediated cell adhesion. We investigated tube length dynamics L(t) over time and through successive extrusions applied to the cell at regular time intervals. A constant slow velocity was observed for the first extrusion, for PL-attached cells. Subsequent extrusions had two phases: an initial high-velocity regime followed by a low-velocity regime. Successive extrusions gradually weakened the binding of the membrane around the tube neck to the underlying cortical cytoskeleton. Cells specifically attached via Ecad first exhibited a very low extrusion velocity regime followed by a faster extrusion regime similar to nonspecific extrusion. This indicates that Ecad strengthens the membrane-cortical cytoskeleton interaction, but only in a restricted area corresponding to the site of contact between the cell and the bead. Occasional giant "cortex" tubes were extruded with specifically anchored cells, demonstrating that the cortex remained tightly bound to the membrane through Ecad-mediated adhesion at the contact site.

  5. Role of E-Cadherin in Membrane-Cortex Interaction Probed by Nanotube Extrusion

    PubMed Central

    Tabdanov, Erdem; Borghi, Nicolas; Brochard-Wyart, Françoise; Dufour, Sylvie; Thiery, Jean-Paul

    2009-01-01

    This study aims to define the role of E-cadherin (Ecad) engagement in cell-cell contact during membrane-cortex interaction. As a tool, we used a hydrodynamic membrane tube extrusion technique to characterize the mechanical interaction between the plasma membrane and the underlying cortical cytoskeleton. Cells were anchored on 4.5 μm beads coated with polylysine (PL) to obtain nonspecific cell adhesion or with an antibody against Ecad to mimic specific Ecad-mediated cell adhesion. We investigated tube length dynamics L(t) over time and through successive extrusions applied to the cell at regular time intervals. A constant slow velocity was observed for the first extrusion, for PL-attached cells. Subsequent extrusions had two phases: an initial high-velocity regime followed by a low-velocity regime. Successive extrusions gradually weakened the binding of the membrane around the tube neck to the underlying cortical cytoskeleton. Cells specifically attached via Ecad first exhibited a very low extrusion velocity regime followed by a faster extrusion regime similar to nonspecific extrusion. This indicates that Ecad strengthens the membrane-cortical cytoskeleton interaction, but only in a restricted area corresponding to the site of contact between the cell and the bead. Occasional giant “cortex” tubes were extruded with specifically anchored cells, demonstrating that the cortex remained tightly bound to the membrane through Ecad-mediated adhesion at the contact site. PMID:19289070

  6. Basics of Compounding: Hot Melt Extrusion.

    PubMed

    DePasquale, Seth

    2017-01-01

    Hot Melt Extrusion, a production process that has been around for quite some time, has the ability to produce innovative compounds not previously achievable with conventional methods. However, many variables need to be considered prior to production. The use of small-scale extruders and 3D printers provides compounders a pathway for developing new dosage forms at a minimal cost while initial research is being completed. This article discusses the uses of Hot Melt Extrusion, the equipment used, the current and future applications, and the challenges with the technology. Copyright© by International Journal of Pharmaceutical Compounding, Inc.

  7. Fatigue Crack Growth Behavior of 2099-T83 Extrusions in two Different Environments

    NASA Astrophysics Data System (ADS)

    Goma, Franck Armel Tchitembo; Larouche, Daniel; Bois-Brochu, Alexandre; Blais, Carls; Boselli, Julien; Brochu, Mathieu

    Aluminum-lithium alloy 2099-T83 is an advanced material with superior mechanical properties, as compared to traditional alloys used in structural applications, and has been selected for use in the latest generation of airplanes. While this alloy exhibits improved fatigue crack growth (FCG) performance over non-Li alloys, it is of interest to simulate the impact of fluctuating loads under variable temperature during airplane service, particularly in terms of the potential effects of material processing history. In the present paper, the FCG behavior in an Integrally Stiffened Panel (ISP) has been investigated both at room temperature and at 243 K. It has been shown that the resistance to crack growth in a cold environment was higher than in ambient laboratory air. Results of this investigation are discussed from the microfractographic point of view, with regard to the variation of the local extrusion aspect ratio, a parameter which correlates with both the crystallographic texture and the grain structure.

  8. The influence of strain rate and the effect of friction on the forging load in simple upsetting and closed die forging

    NASA Astrophysics Data System (ADS)

    Klemz, Francis B.

    Forging provides an elegant solution to the problem of producing complicated shapes from heated metal. This study attempts to relate some of the important parameters involved when considering, simple upsetting, closed die forging and extrusion forging.A literature survey showed some of the empirical graphical and statistical methods of load prediction together with analytical methods of estimating load and energy. Investigations of the effects of high strain rate and temperature on the stress-strain properties of materials are also evident.In the present study special equipment including an experimental drop hammer and various die-sets have been designed and manufactured. Instrumentation to measure load/time and displacement/time behaviour, of the deformed metal, has been incorporated and calibrated. A high speed camera was used to record the behaviour mode of test pieces used in the simple upsetting tests.Dynamic and quasi-static material properties for the test materials, lead and aluminium alloy, were measured using the drop-hammer and a compression-test machine.Analytically two separate mathematical solutions have been developed: A numerical technique using a lumped-massmodel for the analysis of simple upsetting and closed-die forging and, for extrusion forging, an analysis which equates the shear and compression energy requirements tothe work done by the forging load.Cylindrical test pieces were used for all the experiments and both dry and lubricated test conditions were investigated. The static and dynamic tests provide data on Load, Energy and the Profile of the deformed billet. In addition for the Extrusion Forging, both single ended and double ended tests were conducted. Material dependency was also examined by a further series of tests on aluminium and copper.Comparison of the experimental and theoretical results was made which shows clearly the effects of friction and high strain rate on load and energy requirements and the deformation mode of the

  9. Extrusion cast explosive

    DOEpatents

    Scribner, Kenneth J.

    1985-01-01

    Improved, multiphase, high performance, high energy, extrusion cast explosive compositions, comprising, a crystalline explosive material; an energetic liquid plasticizer; a urethane prepolymer, comprising a blend of polyvinyl formal, and polycaprolactone; a polyfunctional isocyanate; and a catalyst are disclosed. These new explosive compositions exhibit higher explosive content, a smooth detonation front, excellent stability over long periods of storage, and lower sensitivity to mechanical stimulants.

  10. Magnetic resonance imaging evidence of meniscal extrusion in medial meniscus posterior root tear.

    PubMed

    Choi, Chul-Jun; Choi, Yun-Jin; Lee, Jae-Jeong; Choi, Chong-Hyuk

    2010-12-01

    The purpose of this study was to evaluate the relation between meniscal extrusion on magnetic resonance imaging (MRI) and tearing of the posterior root of the medial meniscus, as well as to understand the relation between meniscal extrusion and chondral lesions. From January 2007 to December 2008, 387 consecutive cases of medial meniscal tears were treated arthroscopically. Of these cases, 248 (64.1%) with MRI were reviewed. Arthroscopic findings were reviewed for the type of tear and medial compartment cartilage lesion. Root tear was defined as a radial tear in the posterior horn of the medial meniscus near the tibial spine (i.e., within 5 mm of the root attachment). An MRI scan of the knee was used to evaluate the presence and extent of meniscal extrusion. Meniscal extrusion of 3 mm or greater was considered pathologic. Arthroscopic findings were compared with respect to the extent of meniscal extrusion. There were 98 male patients and 150 female patients. The mean age was 53.5 years (range, 15 to 81 years). The results showed 127 cases (51.2%) in which the medial meniscus had meniscal extrusion of 3 mm or greater. Posterior root tears were found in 66 (26.6%) of the 248 knees. The mean meniscal extrusion in patients with root tear was 3.8 ± 1.4 mm, whereas the mean extrusion of those who had no root tear was 2.7 ± 1.3 mm. We found an association between pathologic meniscal extrusion and root tear (P < .001). Meniscal extrusion showed a low positive predictive value (39%) and specificity (58%) with regard to the meniscal root tear. Meniscal extrusion was also significantly correlated with severity of chondral lesions (P < .001). Considerable extrusion (≥3 mm) can be associated with tearing of the medial meniscus root and chondral lesion of the medial femoral condyle. Level IV, therapeutic case series. Copyright © 2010 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  11. Apical extrusion of debris: a literature review of an inherent occurrence during root canal treatment.

    PubMed

    Tanalp, J; Güngör, T

    2014-03-01

    Extrusion of intracanal debris as well as irrigants is a common occurrence during root canal treatment, and no instrument or technique has thoroughly solved this problem. Because flare-ups may arise with any irritation directed towards periapical tissues, a shaping or irrigation technique should minimize the risk of apical extrusion, even though it may not be prevented. There has been a rapid evolution of root canal instruments and irrigation systems through the last decade, and many have been assessed for their debris extrusion potential. The purpose of this review was to identify publications regarding the evaluation of debris, bacteria and irrigant extrusion during root canal treatment. A PubMed, Ovid and MEDLINE search was conducted using the keywords "apical extrusion", "debris extrusion" and "endodontic treatment". The literature search extended over a period of more than 30 years up to 2012. Content of the review was limited to apical extrusion of debris and irrigants, extrusion of liquid by irrigation methods and bacterial extrusion. Issues relevant to apical extrusion were obtained by further search in the reference sections of the retrieved articles. The review provides an update on the current status of apical extrusion. © 2013 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  12. Optimization of Squeeze Casting for Aluminum Alloy Parts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David Schwam; John F. Wallace; Qingming Chang

    2002-07-30

    This study was initiated with the installation of a new production size UBE 350 Ton VSC Squeeze Casting system in the Metal Casting Laboratory at Case Western University. A Lindberg 75k W electrical melting furnace was installed alongside. The challenge of installation and operation of such industrial-size equipment in an academic environment was met successfully. Subsequently, a Sterling oil die heater and a Visi-Track shot monitoring system were added. A significant number of inserts were designed and fabricated over the span of the project, primarily for squeeze casting different configurations of test bars and plates. A spiral ''ribbon insert'' formore » evaluation of molten metal fluidity was also fabricated. These inserts were used to generate a broad range of processing conditions and determine their effect on the quality of the squeeze cast parts. This investigation has studied the influence of the various casting variables on the quality of indirect squeeze castings primarily of aluminum alloys. The variables studied include gating design, fill time and fill patter, metal pressure and die temperature variations. The quality of the die casting was assessed by an analysis of both their surface condition and internal soundness. The primary metal tested was an aluminum 356 alloy. In addition to determining the effect of these casting variables on casting quality as measured by a flat plate die of various thickness, a number of test bar inserts with different gating designs have been inserted in the squeeze casting machine. The mechanical properties of these test bars produced under different squeeze casting conditions were measured and reported. The investigation of the resulting properties also included an analysis of the microstructure of the squeeze castings and the effect of the various structural constituents on the resulting properties. The main conclusions from this investigation are as follows: The ingate size and shape are very important since it

  13. Extrusion cast explosive

    DOEpatents

    Scribner, K.J.

    1985-01-29

    Improved, multiphase, high performance, high energy, extrusion cast explosive compositions, comprising, a crystalline explosive material; an energetic liquid plasticizer; a urethane prepolymer, comprising a blend of polyvinyl formal, and polycaprolactone; a polyfunctional isocyanate; and a catalyst are disclosed. These new explosive compositions exhibit higher explosive content, a smooth detonation front, excellent stability over long periods of storage, and lower sensitivity to mechanical stimulants. 1 fig.

  14. Extrusion cast explosive

    DOEpatents

    Scribner, K.J.

    1985-11-26

    Disclosed is an improved, multiphase, high performance, high energy, extrusion cast explosive compositions, comprising, a crystalline explosive material; an energetic liquid plasticizer; a urethane prepolymer, comprising a blend of polyvinyl formal, and polycaprolactone; a polyfunctional isocyanate; and a catalyst. These new explosive compositions exhibit higher explosive content, a smooth detonation front, excellent stability over long periods of storage, and lower sensitivity to mechanical stimulants. 1 fig.

  15. A brief review of extrusion-based tissue scaffold bio-printing.

    PubMed

    Ning, Liqun; Chen, Xiongbiao

    2017-08-01

    Extrusion-based bio-printing has great potential as a technique for manipulating biomaterials and living cells to create three-dimensional (3D) scaffolds for damaged tissue repair and function restoration. Over the last two decades, advances in both engineering techniques and life sciences have evolved extrusion-based bio-printing from a simple technique to one able to create diverse tissue scaffolds from a wide range of biomaterials and cell types. However, the complexities associated with synthesis of materials for bio-printing and manipulation of multiple materials and cells in bio-printing pose many challenges for scaffold fabrication. This paper presents an overview of extrusion-based bio-printing for scaffold fabrication, focusing on the prior-printing considerations (such as scaffold design and materials/cell synthesis), working principles, comparison to other techniques, and to-date achievements. This paper also briefly reviews the recent development of strategies with regard to hydrogel synthesis, multi-materials/cells manipulation, and process-induced cell damage in extrusion-based bio-printing. The key issue and challenges for extrusion-based bio-printing are also identified and discussed along with recommendations for future, aimed at developing novel biomaterials and bio-printing systems, creating patterned vascular networks within scaffolds, and preserving the cell viability and functions in scaffold bio-printing. The address of these challenges will significantly enhance the capability of extrusion-based bio-printing. Copyright © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. PVC extrusion development and production for the NOvA neutrino experiment

    DOE PAGES

    Talaga, R. L.; Grudzinski, J. J.; Phan-Budd, S.; ...

    2017-03-08

    We have produced large and highly-reflective open-cell PVC extrusions for the NOvA neutrino oscillation experiment. The extrusions were sealed, instrumented, assembled into self-supporting detector blocks, and filled with liquid scintillator. Each Far Detector block stands 15.7 m high, is 15.7 m wide and 2.1 m thick. More than 22,000 extrusions were produced with high dimensional tolerance and robust mechanical strength. This paper provides an overview of the NOvA Far Detector, describes the preparation of the custom PVC powder, and the making of the extrusions. As a result, quality control was a key element in the production and is described inmore » detail.« less

  17. Microstructure and mechanical properties of Al-3Fe alloy processed by equal channel angular extrusion

    NASA Astrophysics Data System (ADS)

    Fuxiao, Yu; Fang, Liu; Dazhi, Zhao; Toth, Laszlo S.

    2014-08-01

    Al-Fe alloys are attractive for applications at temperatures beyond those normally associated with the conventional aluminum alloys. Under proper solidification condition, a full eutectic microstructure can be generated in Al-Fe alloys at Fe concentration well in excess of the eutectic composition of 1.8 wt.% Fe. The microstructure in this case is characterized by the metastable regular eutectic Al-Al6Fe fibers of nano-scale in diameter, instead of the equilibrium eutectic Al-Al3Fe phase. In this study, the microstructure and mechanical properties of the Al-3Fe alloy with metastable Al6Fe particles deformed by equal channel angular extrusion were investigated. Severe plastic deformation results in a microstructure consisting of submicron equiaxed Al grains with a uniform distribution of submicron Al6Fe particles on the grain boundaries. The room temperature tensile properties of the alloy with this microstructure will be presented.

  18. Cell Extrusion: A Stress-Responsive Force for Good or Evil in Epithelial Homeostasis.

    PubMed

    Ohsawa, Shizue; Vaughen, John; Igaki, Tatsushi

    2018-02-05

    Epithelial tissues robustly respond to internal and external stressors via dynamic cellular rearrangements. Cell extrusion acts as a key regulator of epithelial homeostasis by removing apoptotic cells, orchestrating morphogenesis, and mediating competitive cellular battles during tumorigenesis. Here, we delineate the diverse functions of cell extrusion during development and disease. We emphasize the expanding role for apoptotic cell extrusion in exerting morphogenetic forces, as well as the strong intersection of cell extrusion with cell competition, a homeostatic mechanism that eliminates aberrant or unfit cells. While cell competition and extrusion can exert potent, tumor-suppressive effects, dysregulation of either critical homeostatic program can fuel cancer progression. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Method of producing complex aluminum alloy parts of high temper, and products thereof

    NASA Technical Reports Server (NTRS)

    Wilson, I. J. (Inventor)

    1978-01-01

    Fully annealed aluminum sheet is first stretch formed to the complex, doubly compound shape of a previously prepared forming die, e.g., an ejection seat blowout panel of a shuttlecraft. The part is then marked with a series of grid lines for monitoring later elongation. Thereafter it is solution heat treated and refrigerated to retard hardening. While still soft, it is stretched a second time on the same die to induce a modicum of work hardening, after which it is aged to the desired stress corrosion resistant temper, preferably the T8 level, to provide the desired hardness and stress corrosion resistance.

  20. Process design and control of a twin screw hot melt extrusion for continuous pharmaceutical tamper-resistant tablet production.

    PubMed

    Baronsky-Probst, J; Möltgen, C-V; Kessler, W; Kessler, R W

    2016-05-25

    Hot melt extrusion (HME) is a well-known process within the plastic and food industries that has been utilized for the past several decades and is increasingly accepted by the pharmaceutical industry for continuous manufacturing. For tamper-resistant formulations of e.g. opioids, HME is the most efficient production technique. The focus of this study is thus to evaluate the manufacturability of the HME process for tamper-resistant formulations. Parameters such as the specific mechanical energy (SME), as well as the melt pressure and its standard deviation, are important and will be discussed in this study. In the first step, the existing process data are analyzed by means of multivariate data analysis. Key critical process parameters such as feed rate, screw speed, and the concentration of the API in the polymers are identified, and critical quality parameters of the tablet are defined. In the second step, a relationship between the critical material, product and process quality attributes are established by means of Design of Experiments (DoEs). The resulting SME and the temperature at the die are essential data points needed to indirectly qualify the degradation of the API, which should be minimal. NIR-spectroscopy is used to monitor the material during the extrusion process. In contrast to most applications in which the probe is directly integrated into the die, the optical sensor is integrated into the cooling line of the strands. This saves costs in the probe design and maintenance and increases the robustness of the chemometric models. Finally, a process measurement system is installed to monitor and control all of the critical attributes in real-time by means of first principles, DoE models, soft sensor models, and spectroscopic information. Overall, the process is very robust as long as the screw speed is kept low. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Micromechanics of an Extrusion in High-Cycle Fatigue

    DTIC Science & Technology

    1988-08-22

    length of R would be longer than the slot by an amount referred to as the "static extrusion" by Mughrabi et al . (1983). This e,,. causes an initial... Mughrabi (1980) in their studies of persistent slip bands. Extrusions and intru- sions in fatigue specimens were also observed by a number of other...interstitial dislocation dipoles, and a negative e("i by vacancy dipoles. Recently, Antoncpoulus, Brown and Winter (1976) and Mughrabi , Wang, Differt and

  2. Embedded Multimaterial Extrusion Bioprinting.

    PubMed

    Rocca, Marco; Fragasso, Alessio; Liu, Wanjun; Heinrich, Marcel A; Zhang, Yu Shrike

    2018-04-01

    Embedded extrusion bioprinting allows for the generation of complex structures that otherwise cannot be achieved with conventional layer-by-layer deposition from the bottom, by overcoming the limits imposed by gravitational force. By taking advantage of a hydrogel bath, serving as a sacrificial printing environment, it is feasible to extrude a bioink in freeform until the entire structure is deposited and crosslinked. The bioprinted structure can be subsequently released from the supporting hydrogel and used for further applications. Combining this advanced three-dimensional (3D) bioprinting technique with a multimaterial extrusion printhead setup enables the fabrication of complex volumetric structures built from multiple bioinks. The work described in this paper focuses on the optimization of the experimental setup and proposes a workflow to automate the bioprinting process, resulting in a fast and efficient conversion of a virtual 3D model into a physical, extruded structure in freeform using the multimaterial embedded bioprinting system. It is anticipated that further development of this technology will likely lead to widespread applications in areas such as tissue engineering, pharmaceutical testing, and organs-on-chips.

  3. Damage prediction of 7025 aluminum alloy during equal-channel angular pressing

    NASA Astrophysics Data System (ADS)

    Ebrahimi, M.; Attarilar, Sh.; Gode, C.; Djavanroodi, F.

    2014-10-01

    Equal-channel angular pressing (ECAP) is a prominent technique that imposes severe plastic deformation into materials to enhance their mechanical properties. In this research, experimental and numerical approaches were utilized to investigate the mechanical properties, strain behavior, and damage prediction of ECAPed 7025 aluminum alloy in various conditions, such as die channel angle, outer corner angle, and friction coefficient. Experimental results indicate that, after the first pass, the yield strength, ultimate tensile strength, and hardness magnitude are improved by approximately 95%, 28%, and 48.5%, respectively, compared with the annealed state, mainly due to grain refinement during the deformation. Finite element analysis shows that the influence of die channel angle is more important than that of outer corner angle or friction coefficient on both the strain behavior and the damage prediction. Also, surface cracks are the main cause of damage during the ECAP process for every die channel angle except for 90°; however, the cracks initiated from the neighborhood of the central regions are the possible cause of damage in the ECAPed sample with the die channel angle of 90°.

  4. Carbothermic Aluminum Production Using Scrap Aluminum As A Coolant

    DOEpatents

    LaCamera, Alfred F.

    2002-11-05

    A process for producing aluminum metal by carbothermic reduction of alumina ore. Alumina ore is heated in the presence of carbon at an elevated temperature to produce an aluminum metal body contaminated with about 10-30% by wt. aluminum carbide. Aluminum metal or aluminum alloy scrap then is added to bring the temperature to about 900-1000.degree. C. and precipitate out aluminum carbide. The precipitated aluminum carbide is filtered, decanted, or fluxed with salt to form a molten body having reduced aluminum carbide content.

  5. Carbon nanotube composites prepared by ultrasonically assisted twin screw extrusion

    NASA Astrophysics Data System (ADS)

    Lewis, Todd

    Two ultrasonic twin screw extrusion systems were designed and manufactured for the ultrasonic dispersion of multi-walled carbon nanotubes in viscous polymer matrices at residence times of the order of seconds in the ultrasonic treatment zones. The first design consisted of an ultrasonic slit die attachment in which nanocomposites were treated. A second design incorporated an ultrasonic treatment section into the barrel of the extruder to utilize the shearing of the polymer during extrusion while simultaneously applying treatment. High performance, high temperature thermoset phenylethynyl terminate imide oligomer (PETI-330) and two different polyetherether ketones (PEEK) were evaluated at CNT loadings up to 10 wt%. The effects of CNT loading and ultrasonic amplitude on the processing characteristics and rheological, mechanical, electrical, thermal and morphological properties of nanocomposites were investigated. PETI and PEEK nanocomposites showed a decrease in resistivity, an increase in modulus and strength and a decrease in strain at break and toughness with increased CNT loading. Ultrasonically treated samples showed a decrease in die pressure and extruder torque with increasing ultrasonic treatment and an increase in complex viscosity and storage modulus at certain ultrasonic treatment levels. Optical microscopy showed enhanced dispersion of the CNT bundles in ultrasonically treated samples. However, no significant improvement of mechanical properties was observed with ultrasonic treatment due to lack of adhesion between the CNT and matrix in the solid state. A curing model for PETI-330 was proposed that includes the induction and curing stages to predict the degree of cure of PETI-330 under non-isothermal conditions. Induction time parameters, rate constant and reaction order of the model were obtained based on differential scanning calorimetry (DSC) data. The model correctly predicted experimentally measured degrees of cure of compression molded plaques cured

  6. Aluminum Alloy 7050 Extrusions.

    DTIC Science & Technology

    1977-03-01

    o .rf^ofTiin (^r^mvo^TfN co^vür^ oui^o < TJ co M t> ^t fH 0\\ cDincO’T’Tco iOr-<-4vO cuo^ fio oocr--r-r--,X) a)(Dr-r-r~vü cor-r^-’O cor...toa>ooo m vo * ff» o o mvoooffiA ro c*) ^ ^ ^j H ro rn fo ^ v ^ ^ to fi ro vo vo a» o o insoot fio in«s Da<o«o mtcopotoo...AFML/LLN, Dr. V. J. Russo Wright-Patterson AFB, Ohio 45433 AFML/LLM, Dr. H. A. Lipsitt Wright-Patterson AFB, Ohio 45433 FTD/PDRR, Maj. L. A

  7. Effects of die quench forming on sheet thinning and 3-point bend testing of AA7075-T6

    NASA Astrophysics Data System (ADS)

    Kim, Samuel; Omer, Kaab; Rahmaan, Taamjeed; Butcher, Clifford; Worswick, Michael

    2017-10-01

    Lab-scaled AA7075 aluminum side impact beams were manufactured using the die quenching technique in which the sheet was solutionized and then quenched in-die during forming to a super saturated solid state. Sheet thinning measurements were taken at various locations throughout the length of the part and the effect of lubricant on surface scoring and material pick-up on the die was evaluated. The as-formed beams were subjected to a T6 aging treatment and then tested in three-point bending. Simulations were performed of the forming and mechanical testing experiments using the LS-DYNA finite element code. The thinning and mechanical response was predicted well.

  8. Consolidation of Fe16N2 Magnets Using Equal Channel Angular Extrusion

    DTIC Science & Technology

    2015-06-11

    industry such as powder metallurgy and hot deformation. The latter require treatments at high temperatures, typically around 1000 oC. In this work...have any deteriorating effects on the magnetization values (compared to the powder ). However, extrusions at temperatures ~150 oC result in a small...Extrusions at temperatures up to ~150 oC do not have any deteriorating effects on the magnetization values (compared to the powder ). However, extrusions at

  9. Evaluation of 4 Different Irrigating Systems for Apical Extrusion of Sodium Hypochlorite.

    PubMed

    Yost, Ross A; Bergeron, Brian E; Kirkpatrick, Timothy C; Roberts, Mark D; Roberts, Howard W; Himel, Van T; Sabey, Kent A

    2015-09-01

    The aim of this study was to evaluate NaOCl apical extrusion by using negative apical pressure (EndoVac), sonic agitation (EndoActivator), side-vented needle (Max-i-Probe), and photon induced photoacoustic streaming (PIPS 10 mJ and PIPS 20 mJ) laser irrigation in an in vitro gel model. Extracted mandibular and maxillary central incisors (n = 18) were prepared to size 35/.04 and 55/.04, respectively. Teeth were mounted in transparent containers with clear acrylic and suspended in a color-changing pH-sensitive gel, creating a closed system. By using a crossover design, each tooth was sequentially irrigated by using 6% NaOCl with each device following manufacturers' recommendations. Each tooth served as its own control. Pre-irrigation and post-irrigation buccal and proximal view photographs served to measure the longest distance of extrusion and were analyzed with ImageJ software. Mean results were analyzed by using Kruskal-Wallis and Dunn post hoc test (P < .05). There were no significant differences between EndoVac, EndoActivator, and the passive extrusion groups. The EndoVac and EndoActivator groups produced significantly less extrusion than PIPS irrigation. Max-i-Probe extrusion results were more variable than those of EndoActivator but had no significant difference. Across all irrigation systems, there were no significant differences with respect to apical preparation size. Under the in vitro conditions of this study, no difference was found between the 10 mJ and 20 mJ PIPS laser groups. EndoVac demonstrated significantly less potential for apical extrusion than PIPS and Max-i-Probe, whereas apical preparation size did not significantly affect extrusion of irrigant. The potential for apical extrusion of endodontic irrigants should be a consideration when selecting a system for final irrigation. Published by Elsevier Inc.

  10. Microfabrication of three-dimensional filters for liposome extrusion

    NASA Astrophysics Data System (ADS)

    Baldacchini, Tommaso; Nuñez, Vicente; LaFratta, Christopher N.; Grech, Joseph S.; Vullev, Valentine I.; Zadoyan, Ruben

    2015-03-01

    Liposomes play a relevant role in the biomedical field of drug delivery. The ability of these lipid vesicles to encapsulate and transport a variety of bioactive molecules has fostered their use in several therapeutic applications, from cancer treatments to the administration of drugs with antiviral activities. Size and uniformity are key parameters to take into consideration when preparing liposomes; these factors greatly influence their effectiveness in both in vitro and in vivo experiments. A popular technique employed to achieve the optimal liposome dimension (around 100 nm in diameter) and uniform size distribution is repetitive extrusion through a polycarbonate filter. We investigated two femtosecond laser direct writing techniques for the fabrication of three-dimensional filters within a microfluidics chip for liposomes extrusion. The miniaturization of the extrusion process in a microfluidic system is the first step toward a complete solution for lab-on-a-chip preparation of liposomes from vesicles self-assembly to optical characterization.

  11. Fracture toughness measurements of three titanium alloy extrusions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeSisto, T.S.

    1973-07-01

    Plane strain static K/sub Ic/ and dynamic Kid measurements were obtained on 3-in. dia. titanium alloy extrusions which received a 5.9: 1 reduction followed by air cooling. The alloys investigated were Ti-6Al--6V--2Sn, Ti--8Mo-- 8V--2Fe--3Al, and Ti-- 11.5Mo-6Zr-4.5Sn (Beta III). Compact tension specimens were used to obtain K/sub Ic/ measurements and precracked standard Charpy V- notched specimens were used to obtain Kid measurements. The highest K/sub Ic/ and K /sub Id/ values were obtained from the Beta III extrusion while the lowest K/sub Ic/ and K/sub Id/ values were obtained for the Ti-8Mo--8V--2Fe -- 3Al extrusion. Good agreement was found tomore » exist between K/sub Ic/ values obtained from precracked Charpy V-notch specimens and compact tension specimens. (auth)« less

  12. Spontaneous extrusion of a stainless steel glaucoma drainage implant (Ex-PRESS).

    PubMed

    Tavolato, M; Babighian, S; Galan, A

    2006-01-01

    To report a case of spontaneous extrusion of a stainless steel glaucoma drainage implant (Ex-PRESS). An Ex-PRESS was implanted under the conjunctiva in a 76-year-old man with primary open-angle glaucoma. Two years after implantation, the Ex-Press extruded spontaneously. Despite this adverse event, there was no increase in intraocular pressure. This is the first report of spontaneous extrusion of an Ex-PRESS device. Implanting the device under a scleral flap should be considered to avoid adverse events such as extrusion or conjunctival erosion.

  13. Numerical studies of temperature effect on the extrusion fracture and swell of plastic micro-pipe

    NASA Astrophysics Data System (ADS)

    Ren, Zhong; Huang, Xingyuan; Xiong, Zhihua

    2018-03-01

    Temperature is a key factor that impacts extrusion forming quality of plastic micro-pipe. In this study, the effect of temperature on extrusion fracture and swell of plastic micro-pipe was investigated by numerical method. Under a certain of the melt’s flow volume, the extrusion pattern, extrusion swelling ratio of melt are obtained under different temperatures. Results show that the extrusion swelling ratio of plastic micro-pipe decreases with increasing of temperature. In order to study the reason of temperature effect, the physical distributions of plastic micro-pipe are gotten. Numerical results show that the viscosity, pressure, stress value of melt are all decreased with the increasing of temperature, which leads to decrease the extrusion swell and fracture phenomenon for the plastic micro-pipe.

  14. Fabrication of Aluminum Tubes Filled with Aluminum Alloy Foam by Friction Welding.

    PubMed

    Hangai, Yoshihiko; Nakano, Yukiko; Koyama, Shinji; Kuwazuru, Osamu; Kitahara, Soichiro; Yoshikawa, Nobuhiro

    2015-10-23

    Aluminum foam is usually used as the core of composite materials by combining it with dense materials, such as in Al foam core sandwich panels and Al-foam-filled tubes, owing to its low tensile and bending strengths. In this study, all-Al foam-filled tubes consisting of ADC12 Al-Si-Cu die-cast aluminum alloy foam and a dense A1050 commercially pure Al tube with metal bonding were fabricated by friction welding. First, it was found that the ADC12 precursor was firmly bonded throughout the inner wall of the A1050 tube without a gap between the precursor and the tube by friction welding. No deformation of the tube or foaming of the precursor was observed during the friction welding. Next, it was shown that by heat treatment of an ADC12-precursor-bonded A1050 tube, gases generated by the decomposition of the blowing agent expand the softened ADC12 to produce the ADC12 foam interior of the dense A1050 tube. A holding time during the foaming process of approximately t H = 8.5 min with a holding temperature of 948 K was found to be suitable for obtaining a sound ADC12-foam-filled A1050 tube with sufficient foaming, almost uniform pore structures over the entire specimen, and no deformation or reduction in the thickness of the tube.

  15. Fabrication of Aluminum Tubes Filled with Aluminum Alloy Foam by Friction Welding

    PubMed Central

    Hangai, Yoshihiko; Nakano, Yukiko; Koyama, Shinji; Kuwazuru, Osamu; Kitahara, Soichiro; Yoshikawa, Nobuhiro

    2015-01-01

    Aluminum foam is usually used as the core of composite materials by combining it with dense materials, such as in Al foam core sandwich panels and Al-foam-filled tubes, owing to its low tensile and bending strengths. In this study, all-Al foam-filled tubes consisting of ADC12 Al-Si-Cu die-cast aluminum alloy foam and a dense A1050 commercially pure Al tube with metal bonding were fabricated by friction welding. First, it was found that the ADC12 precursor was firmly bonded throughout the inner wall of the A1050 tube without a gap between the precursor and the tube by friction welding. No deformation of the tube or foaming of the precursor was observed during the friction welding. Next, it was shown that by heat treatment of an ADC12-precursor-bonded A1050 tube, gases generated by the decomposition of the blowing agent expand the softened ADC12 to produce the ADC12 foam interior of the dense A1050 tube. A holding time during the foaming process of approximately tH = 8.5 min with a holding temperature of 948 K was found to be suitable for obtaining a sound ADC12-foam-filled A1050 tube with sufficient foaming, almost uniform pore structures over the entire specimen, and no deformation and minimum reduction in the thickness of the tube. PMID:28793629

  16. Extrusion conditions affect chemical composition and in vitro digestion of select food ingredients.

    PubMed

    Dust, Jolene M; Gajda, Angela M; Flickinger, Elizabeth A; Burkhalter, Toni M; Merchen, Neal R; Fahey, George C

    2004-05-19

    An experiment was conducted to determine the effects of extrusion conditions on chemical composition and in vitro hydrolytic and fermentative digestion of barley grits, cornmeal, oat bran, soybean flour, soybean hulls, and wheat bran. Extrusion conditions altered crude protein, fiber, and starch concentrations of ingredients. Organic matter disappearance (OMD) increased for extruded versus unprocessed samples of barley grits, cornmeal, and soybean flour that had been hydrolytically digested. After 8 h of fermentative digestion, OMD decreased as extrusion conditions intensified for barley grits and cornmeal but increased for oat bran, soybean hulls, and wheat bran. Total short-chain fatty acid production decreased as extrusion conditions intensified for barley grits, soybean hulls, and soybean flour. These data suggest that the effects of extrusion conditions on ingredient composition and digestion are influenced by the unique chemical characteristics of individual substrates.

  17. Hot-melt extrusion of sugar-starch-pellets.

    PubMed

    Yeung, Chi-Wah; Rein, Hubert

    2015-09-30

    Sugar-starch-pellets (syn. sugar spheres) are usually manufactured through fluidized bed granulation or wet extrusion techniques. This paper introduces hot-melt extrusion (HME) as an alternative method to manufacture sugar-starch-pellets. A twin-screw extruder coupled with a Leistritz Micro Pelletizer (LMP) cutting machine was utilized for the extrusion of different types (normal-, waxy-, and high-amlyose) of corn starch, blended with varying amounts of sucrose. Pellets were characterized for their physicochemical properties including crystallinity, particle size distribution, tensile strength, and swelling expansion. Furthermore, the influence of sugar content and humidity on the product was investigated. Both sucrose and water lowered the Tg of the starch system allowing a convenient extrusion process. Mechanical strength and swelling behavior could be associated with varying amylose and amylopectin. X-ray powder diffractometric (XRPD) peaks of increasing sucrose contents appeared above 30%. This signified the oversaturation of the extruded starch matrix system with sucrose. Otherwise, had the dissolved sucrose been embedded into the molten starch matrix, no crystalline peak could have been recognized. The replacement of starch with sucrose reduced the starch pellets' swelling effect, which resulted in less sectional expansion (SEI) and changed the surface appearance. Further, a nearly equal tensile strength could be detected for sugar spheres with more than 40% sucrose. This observation stands in good relation with the analyzed values of the commercial pellets. Both techniques (fluidized bed and HME) allowed a high yield of spherical pellets (less friability) for further layering processes. Thermal influence on the sugar-starch system is still an obstacle to be controlled. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Effect of strain and deformation route on grain boundary characteristics and recrystallization behavior of aluminum

    NASA Astrophysics Data System (ADS)

    Sakai, Tetsuo; Utsunomiya, Hiroshi; Takahashi, Yasuo

    2014-08-01

    The effect of strain and deformation route on the recrystallization behavior of aluminum sheets has been investigated using well lubricated cold rolling and continuous equal channel angular extrusion. Three different deformation routes in plane strain corresponding to (1) simple shear, (2) compression, and (3) the combination of simple shear and compression were performed on 1100 aluminum sheet. Fixed amounts of the equivalent strain of 1.28 and 1.06 were accumulated in each route. In case of the combined deformation route, the ratio of shear strain to the total equivalent strain was varied. The recrystallized grain size was finer if the combined deformation route was employed instead of the monotonic route under the same amount of equivalent strain at either strain level. The density of high angle grain boundaries that act as nucleation sites for recrystallization was higher in materials deformed by the combined route. The orientation imaging micrographs revealed that the change in deformation route is effective for introducing a larger number of new high angle grain boundaries with relatively low misorientation angle.

  19. Systematic approach to optimal design of induction heating installations for aluminum extrusion process

    NASA Astrophysics Data System (ADS)

    Zimin, L. S.; Sorokin, A. G.; Egiazaryan, A. S.; Filimonova, O. V.

    2018-03-01

    An induction heating system has a number of inherent benefits compared to traditional heating systems due to a non-contact heating process. It is widely used in vehicle manufacture, cast-rolling, forging, preheating before rolling, heat treatment, galvanizing and so on. Compared to other heating technologies, induction heating has the advantages of high efficiency, fast heating rate and easy control. The paper presents a new systematic approach to the design and operation of induction heating installations (IHI) in aluminum alloys production. The heating temperature in industrial complexes “induction heating - deformation” is not fixed in advance, but is determined in accordance with the maximization or minimization of the total economic performance during the process of metal heating and deformation. It is indicated that the energy efficient technological complex “IHI – Metal Forming (MF)” can be designed only with regard to its power supply system (PSS). So the task of designing systems of induction heating is to provide, together with the power supply system and forming equipment, the minimum energy costs for the metal retreating.

  20. Deformation and Plateau Region of Functionally Graded Aluminum Foam by Amount Combinations of Added Blowing Agent.

    PubMed

    Hangai, Yoshihiko; Utsunomiya, Takao; Kuwazuru, Osamu; Kitahara, Soichiro; Yoshikawa, Nobuhiro

    2015-10-21

    Recently, to further improve the performance of aluminum foam, functionally graded (FG) aluminum foams, whose pore structure varies with their position, have been developed. In this study, three types of FG aluminum foam of aluminum alloy die casting ADC12 with combinations of two different amounts of added blowing agent titanium(II) hydride (TiH₂) powder were fabricated by a friction stir welding (FSW) route precursor foaming method. The combinations of 1.0-0 mass %, 0.4-0 mass %, and 0.2-0 mass % TiH₂ were selected as the amounts of TiH₂ relative to the mass of the volume stirred by FSW. The static compression tests of the fabricated FG aluminum foams were carried out. The deformation and fracture of FG aluminum foams fundamentally started in the high-porosity (with TiH₂ addition) layer and shifted to the low-porosity (without TiH₂ addition) layer. The first and second plateau regions in the relationship between compressive stress and strain independently appeared with the occurrence of deformations and fractures in the high- and low-porosity layers. It was shown that FG aluminum foams, whose plateau region varies in steps by the combination of amounts of added TiH₂ ( i.e. , the combination of pore structures), can be fabricated.

  1. Orthodontic extrusion for pre-implant site enhancement: Principles and clinical guidelines.

    PubMed

    Alsahhaf, Abdulaziz; Att, Wael

    2016-07-01

    The aim of this paper is to provide a concise overview about the principles of pre-implant orthodontic extrusion, describe methods and techniques available and provide the clinicians with guidelines about its application. A number of reports describe orthodontic extrusion as a reliable method for pre-implant site enhancement. However, no standard protocols have been provided about the application of this technique. The literature database was searched for studies involving implant site enhancement by means of orthodontic extrusion. Information about the principles, indications and contraindications of this method, type of anchorage, force and time were obtained from the literature. Despite that the scarce data is largely limited to case reports and case series, implant site enhancement by means of orthodontic extrusion seems to be a promising option to improve soft and hard tissue conditions prior to implant placement. Orthodontic extrusion is being implemented as a treatment alternative to enhance hard and soft tissue prior to implant placement. While the current literature does not provide clear guidelines, the decision making for a specific approach seems to be based on the clinician's preferences. Clinical studies are needed to verify the validity of this treatment option. Copyright © 2016 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  2. Comparison of updated Lagrangian FEM with arbitrary Lagrangian Eulerian method for 3D thermo-mechanical extrusion of a tube profile

    NASA Astrophysics Data System (ADS)

    Kronsteiner, J.; Horwatitsch, D.; Zeman, K.

    2017-10-01

    Thermo-mechanical numerical modelling and simulation of extrusion processes faces several serious challenges. Large plastic deformations in combination with a strong coupling of thermal with mechanical effects leads to a high numerical demand for the solution as well as for the handling of mesh distortions. The two numerical methods presented in this paper also reflect two different ways to deal with mesh distortions. Lagrangian Finite Element Methods (FEM) tackle distorted elements by building a new mesh (called re-meshing) whereas Arbitrary Lagrangian Eulerian (ALE) methods use an "advection" step to remap the solution from the distorted to the undistorted mesh. Another difference between conventional Lagrangian and ALE methods is the separate treatment of material and mesh in ALE, allowing the definition of individual velocity fields. In theory, an ALE formulation contains the Eulerian formulation as a subset to the Lagrangian description of the material. The investigations presented in this paper were dealing with the direct extrusion of a tube profile using EN-AW 6082 aluminum alloy and a comparison of experimental with Lagrangian and ALE results. The numerical simulations cover the billet upsetting and last until one third of the billet length is extruded. A good qualitative correlation of experimental and numerical results could be found, however, major differences between Lagrangian and ALE methods concerning thermo-mechanical coupling lead to deviations in the thermal results.

  3. The Energetics and Physiological Impact of Cohesin Extrusion.

    PubMed

    Vian, Laura; Pękowska, Aleksandra; Rao, Suhas S P; Kieffer-Kwon, Kyong-Rim; Jung, Seolkyoung; Baranello, Laura; Huang, Su-Chen; El Khattabi, Laila; Dose, Marei; Pruett, Nathanael; Sanborn, Adrian L; Canela, Andres; Maman, Yaakov; Oksanen, Anna; Resch, Wolfgang; Li, Xingwang; Lee, Byoungkoo; Kovalchuk, Alexander L; Tang, Zhonghui; Nelson, Steevenson; Di Pierro, Michele; Cheng, Ryan R; Machol, Ido; St Hilaire, Brian Glenn; Durand, Neva C; Shamim, Muhammad S; Stamenova, Elena K; Onuchic, José N; Ruan, Yijun; Nussenzweig, Andre; Levens, David; Aiden, Erez Lieberman; Casellas, Rafael

    2018-05-17

    Cohesin extrusion is thought to play a central role in establishing the architecture of mammalian genomes. However, extrusion has not been visualized in vivo, and thus, its functional impact and energetics are unknown. Using ultra-deep Hi-C, we show that loop domains form by a process that requires cohesin ATPases. Once formed, however, loops and compartments are maintained for hours without energy input. Strikingly, without ATP, we observe the emergence of hundreds of CTCF-independent loops that link regulatory DNA. We also identify architectural "stripes," where a loop anchor interacts with entire domains at high frequency. Stripes often tether super-enhancers to cognate promoters, and in B cells, they facilitate Igh transcription and recombination. Stripe anchors represent major hotspots for topoisomerase-mediated lesions, which promote chromosomal translocations and cancer. In plasmacytomas, stripes can deregulate Igh-translocated oncogenes. We propose that higher organisms have coopted cohesin extrusion to enhance transcription and recombination, with implications for tumor development. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Near infrared (NIR) spectroscopy for in-line monitoring of polymer extrusion processes.

    PubMed

    Rohe, T; Becker, W; Kölle, S; Eisenreich, N; Eyerer, P

    1999-09-13

    In recent years, near infrared (NIR) spectroscopy has become an analytical tool frequently used in many chemical production processes. In particular, on-line measurements are of interest to increase process stability and to document constant product quality. Application to polymer processing e.g. polymer extrusion, could even increase product quality. Interesting parameters are composition of the processed polymer, moisture, or reaction status in reactive extrusion. For this issue a transmission sensor was developed for application of NIR spectroscopy to extrusion processes. This sensor includes fibre optic probes and a measuring cell to be adapted to various extruders for in-line measurements. In contrast to infrared sensors, it only uses optical quartz components. Extrusion processes at temperatures up to 300 degrees C and pressures up to 37 MPa have been investigated. Application of multivariate data analysis (e.g. partial least squares, PLS) demonstrated the performance of the system with respect to process monitoring: in the case of polymer blending, deviations between predicted and actual polymer composition were quite low (in the range of +/-0.25%). So the complete system is suitable for harsh industrial environments and could lead to improved polymer extrusion processes.

  5. Physico-chemical properties and extrusion behaviour of selected common bean varieties.

    PubMed

    Natabirwa, Hedwig; Muyonga, John H; Nakimbugwe, Dorothy; Lungaho, Mercy

    2018-03-01

    Extrusion processing offers the possibility of processing common beans industrially into highly nutritious and functional products. However, there is limited information on properties of extrudates from different bean varieties and their association with raw material characteristics and extrusion conditions. In this study, physico-chemical properties of raw and extruded Bishaz, K131, NABE19, Roba1 and RWR2245 common beans were determined. The relationships between bean characteristics and extrusion conditions on the extrudate properties were analysed. Extrudate physico-chemical and pasting properties varied significantly (P < 0.05) among bean varieties. Expansion ratio and water solubility decreased, while bulk density, water absorption, peak and breakdown viscosities increased as feed moisture increased. Protein exhibited significant positive correlation (P < 0.05) with water solubility index, and negative correlations (P < 0.05) with water absorption, bulk density and pasting viscosities. Iron and dietary fibre showed positive correlation while total ash exhibited negative correlation with peak viscosity, final viscosity and setback. Similar trends were observed in principal component analysis. Extrudate physico-chemical properties were found to be associated with beans protein, starch, iron, zinc and fibre contents. Therefore, bean chemical composition may serve as an indicator for beans extrusion behaviour and could be useful in selection of beans for extrusion. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  6. Extrusion cycles of dome-forming eruptions

    NASA Astrophysics Data System (ADS)

    de'Michieli Vitturi, M.; Clarke, A. B.; Neri, A.; Voight, B.

    2010-12-01

    We investigated the dynamics of magma ascent along a dome-forming conduit coupled with the formation and extrusion of a degassed plug at the top by a two-phase flow model. We treated the magma mixture as a liquid continuum with dispersed gas bubbles and crystals in thermodynamic equilibrium with the melt. A modified Poiseulle form of the viscous term for fully developed laminar flow in an elliptic conduit was assumed. During ascent, magma pressure decreases and water vapor exsolves and partially degasses from the melt as the melt simultaneously crystallizes, causing changes in mixture density and viscosity, which may eventually lead to the formation of a degassed plug sealing the conduit. The numerical model DOMEFLOW (de’ Michieli Vitturi et al., EPSL 2010) has been applied to dome-building eruptions using conditions approximately appropriate for the Soufrière Hills volcano, Montserrat, which has led to a better understanding of the role of a plug on eruption periodicity. Two mechanisms, which have been proposed to cause periodicity, have been implemented in the model and their corresponding timescales explored. The first test applies a stick-slip model in which the plug is considered as solid and static/dynamic friction, as described in Iverson et al. [Nature 2006, 444, 439-43], replaces the viscous forces in the momentum equation. This mechanism yields cycle timescales of seconds to tens of seconds with values generally depending on assumed friction coefficients. Although not all constants and parameters have been explored for this model, we suggest that a stick-slip mechanism of this type cannot explain the cycles of extrusion and explosion typically observed at Montserrat (timescales of hours). The second mechanism does not consider friction but allows enhanced permeable gas loss in the shallow conduit, possibly due to connected porosity or micro- or macro-scale fractures. Enhanced permeable gas loss may lead to formation of a dense and rheologically

  7. Deformation and Plateau Region of Functionally Graded Aluminum Foam by Amount Combinations of Added Blowing Agent

    PubMed Central

    Hangai, Yoshihiko; Utsunomiya, Takao; Kuwazuru, Osamu; Kitahara, Soichiro; Yoshikawa, Nobuhiro

    2015-01-01

    Recently, to further improve the performance of aluminum foam, functionally graded (FG) aluminum foams, whose pore structure varies with their position, have been developed. In this study, three types of FG aluminum foam of aluminum alloy die casting ADC12 with combinations of two different amounts of added blowing agent titanium(II) hydride (TiH2) powder were fabricated by a friction stir welding (FSW) route precursor foaming method. The combinations of 1.0–0 mass %, 0.4–0 mass %, and 0.2–0 mass % TiH2 were selected as the amounts of TiH2 relative to the mass of the volume stirred by FSW. The static compression tests of the fabricated FG aluminum foams were carried out. The deformation and fracture of FG aluminum foams fundamentally started in the high-porosity (with TiH2 addition) layer and shifted to the low-porosity (without TiH2 addition) layer. The first and second plateau regions in the relationship between compressive stress and strain independently appeared with the occurrence of deformations and fractures in the high- and low-porosity layers. It was shown that FG aluminum foams, whose plateau region varies in steps by the combination of amounts of added TiH2 (i.e., the combination of pore structures), can be fabricated. PMID:28793626

  8. Corrosion anisotropy of titanium deformed by the hydrostatic extrusion

    NASA Astrophysics Data System (ADS)

    Chojnacka, A.; Kawalko, J.; Koscielny, H.; Guspiel, J.; Drewienkiewicz, A.; Bieda, M.; Pachla, W.; Kulczyk, M.; Sztwiertnia, K.; Beltowska-Lehman, E.

    2017-12-01

    The corrosion behaviour of titanium rods deformed by hydrostatic extrusion (HE) in artificial saliva (Carter-Brugirard's solution of pH 7.6) was investigated using open-circuit potentials (OCPs), (DC) potentiodynamic polarisation curves and (AC) electrochemical impedance spectroscopy (EIS) techniques. Various electrochemical parameters (corrosion potential Ecorr, corrosion current (icorr), polarisation resistance Rp, charge transfer resistance Rct and oxide film resistance Rf) were analysed. Significant coherence was observed between results achieved from these procedures, i.e., all applied techniques showed the same trend for corrosion resistance. The obtained electrochemical data were then related to the microstructure parameters (crystallographic texture, grain size, grain boundary distribution and density) determined using the EBSD/SEM technique. It was found that the corrosion behaviour of titanium processed by the HE method was superior compared to the unprocessed Ti, and this was clearly dependent on the extrusion direction. The highest corrosion resistance was revealed for the HE-deformed Ti rod of the surface oriented longitudinal (parallel) to the extrusion direction.

  9. Aluminum anode for aluminum-air battery - Part I: Influence of aluminum purity

    NASA Astrophysics Data System (ADS)

    Cho, Young-Joo; Park, In-Jun; Lee, Hyeok-Jae; Kim, Jung-Gu

    2015-03-01

    2N5 commercial grade aluminum (99.5% purity) leads to the lower aluminum-air battery performances than 4N high pure grade aluminum (99.99% purity) due to impurities itself and formed impurity complex layer which contained Fe, Si, Cu and others. The impurity complex layer of 2N5 grade Al declines the battery voltage on standby status. It also depletes discharge current and battery efficiency at 1.0 V which is general operating voltage of aluminum-air battery. However, the impurity complex layer of 2N5 grade Al is dissolved with decreasing discharge voltage to 0.8 V. This phenomenon leads to improvement of discharge current density and battery efficiency by reducing self-corrosion reaction. This study demonstrates the possibility of use of 2N5 grade Al which is cheaper than 4N grade Al as the anode for aluminum-air battery.

  10. Maintaining Low Voiding Solder Die Attach for Power Die While Minimizing Die Tilt

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamm, Randy; Peterson, Kenneth A.

    2015-10-01

    This paper addresses work to minimize voiding and die tilt in solder attachment of a large power die, measuring 9.0 mm X 6.5 mm X 0.1 mm (0.354” x 0.256” x 0.004”), to a heat spreader. As demands for larger high power die continue, minimizing voiding and die tilt is of interest for improved die functionality, yield, manufacturability, and reliability. High-power die generate considerable heat, which is important to dissipate effectively through control of voiding under high thermal load areas of the die while maintaining a consistent bondline (minimizing die tilt). Voiding was measured using acoustic imaging and die tiltmore » was measured using two different optical measurement systems. 80Au-20Sn solder reflow was achieved using a batch vacuum solder system with optimized fixturing. Minimizing die tilt proved to be the more difficult of the two product requirements to meet. Process development variables included tooling, weight and solder preform thickness.« less

  11. Quantitative analysis of mechanical force required for cell extrusion in zebrafish embryonic epithelia.

    PubMed

    Yamada, Sohei; Iino, Takanori; Bessho, Yasumasa; Hosokawa, Yoichiroh; Matsui, Takaaki

    2017-10-15

    When cells in epithelial sheets are damaged by intrinsic or extrinsic causes, they are eliminated by extrusion from the sheet. Cell extrusion, which is required for maintenance of tissue integrity, is the consequence of contraction of actomyosin rings, as demonstrated by both molecular/cellular biological experimentation and numerical simulation. However, quantitative evaluation of actomyosin contraction has not been performed because of the lack of a suitable direct measurement system. In this study, we developed a new method using a femtosecond laser to quantify the contraction force of the actomyosin ring during cell extrusion in zebrafish embryonic epithelia. In this system, an epithelial cell in zebrafish embryo is first damaged by direct femtosecond laser irradiation. Next, a femtosecond laser-induced impulsive force is loaded onto the actomyosin ring, and the contraction force is quantified to be on the order of kPa as a unit of pressure. We found that cell extrusion was delayed when the contraction force was slightly attenuated, suggesting that a relatively small force is sufficient to drive cell extrusion. Thus, our method is suitable for the relative quantitative evaluation of mechanical dynamics in the process of cell extrusion, and in principle the method is applicable to similar phenomena in different tissues and organs of various species. © 2017. Published by The Company of Biologists Ltd.

  12. Analog Modeling of the Interplay between Subduction and Lateral Extrusion in the European Alps

    NASA Astrophysics Data System (ADS)

    van Gelder, I. E.; Willingshofer, E.; Sokoutis, D.

    2014-12-01

    In the European Alps lateral extrusion is traditionally viewed as a lithospheric scale process that is related to northward indentation of a weak orogenic wedge (the eastern Alps) by a rigid indenter in upper plate position (the Adriatic plate). Critical for the efficiency of the extrusion process is the presence of a 'free boundary' at high angle to the indentation direction. The 'free boundary' in the eastern Alps is the result of the eastward extending Pannonian realm synchronous to indentation. However, indentation has become debatable as recent high-resolution tomography suggests that the Adriatic mantle lithosphere subducted under the extruding Alps. These findings raise first order questions related to: (a) the partitioning of deformation between lateral extrusion of the upper plate and coeval subduction of Adria, (b) the rheology of the lower and upper plates, and (c) the rheology of the plate contact controlling the amount of extrusion on the upper plate vs. accretion on the lower plate.In this analog modeling study, we couple for the first time lateral extrusion tectonics to subduction of the lower plate; thus, extrusion taking place in the upper plate. Within the lithospheric scale models, the lithospheres of the two plates are weakly coupled along an inclined boundary and have contrasting mantle lithosphere strength (stronger in the subducting plate). The interplay of extrusion vs subduction is inferred by varying the mechanical boundary conditions, e.g. the degree of resistance at the 'unconstrained' margin, the strength contrast between the upper and the lower plates and the width of the indented region.The experimental results emphasize that extrusion in the eastern Alps is compatible with coeval subduction of the Adriatic plate. The first experimental series suggests that the following mechanical conditions play a key role in the interplay between extrusion and subduction: (a) the extruding plate is weaker than the subducting plate, (b) the plate

  13. Development of Integrated Die Casting Process for Large Thin-Wall Magnesium Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carter, Jon T.; Wang, Gerry; Luo, Alan

    improvement in tensile properties with vacuum casting. Plant trials with large castings revealed cavity fill issues attributed to cooling and partial solidification of metal in the shot sleeve while waiting for vacuum to be established in the die cavity. 6. Developed age-hardenable Mg-based alloys as potential alternatives to the AM60 and AZ91 alloys typically used in automotive applications. Mg-7%Al-based alloys having Sn or Sn+Si additions exhibited significant age hardening, but more work is needed to demonstrate significant improvement in tensile properties. Corrosion behavior of these alloys is between those of AM60 and AZ91 alloys. 7. Evaluated the die casting of magnesium directly onto either steel or aluminum tubes as a potential process to make large lightweight subassemblies. Samples were free of gross defects, but additional work is needed to increase the interfacial shear strength. Overall, the project demonstrated that an automotive door-in-white design incorporating a die cast magnesium inner panel and a stamped aluminum outer panel can achieve approximately 50% mass reduction compared to the stamped steel baseline door-in-white. This leads to reduced energy consumption when driving the vehicle, which should more than offset the increased embedded energy of manufacture associated with the lighter metals. However, additional design work would be needed in order to meet the mechanical performance required of a door. Development of high-strength, high-ductility magnesium alloy castings would help make this technology more attractive for potential use in the side doors on automobiles. Also, increased use of recycled magnesium and aluminum would reduce the embedded energy and greenhouse gas emissions associated with the manufacture of this type of lightweight door. Commercialization planning of the type of lightweight door technology addressed in this project would be contingent upon the doors meeting all technical performance requirements of the car maker. The

  14. Pharmaceutical approaches to preparing pelletized dosage forms using the extrusion-spheronization process.

    PubMed

    Trivedi, Namrata R; Rajan, Maria Gerald; Johnson, James R; Shukla, Atul J

    2007-01-01

    Pelletized dosage forms date back to the 1950s, when the first product was introduced to the market. Since then, these dosage forms have gained considerable popularity because of their distinct advantages, such as ease of capsule filling because of better flow properties of the spherical pellets; enhancement of drug dissolution; ease of coating; sustained, controlled, or site-specific delivery of the drug from coated pellets; uniform packing; even distribution in the GI tract; and less GI irritation. Pelletized dosage forms can be prepared by a number of techniques, including drug layering on nonpareil sugar or microcrystalline cellulose beads, spray drying, spray congealing, rotogranulation, hot-melt extrusion, and spheronization of low melting materials or extrusion-spheronization of a wet mass. This review discusses recent developments in the pharmaceutical approaches that have been used to prepare pelletized dosage forms using the extrusion-spheronization process over the last decade. The review is divided into three parts: the first part discusses the extrusion-spheronization process, the second part discusses the effect of varying formulation and process parameters on the properties of the pellets, and the last part discusses the different approaches that have been used to prepare pelletized dosage forms using the extrusion-spheronization process.

  15. Cervical artificial disc extrusion after a paragliding accident.

    PubMed

    Niu, Tianyi; Hoffman, Haydn; Lu, Daniel C

    2017-01-01

    Cervical total disc replacement (TDR) is an established alternative to anterior cervical discectomy and fusion (ACDF) with excellent long-term outcomes and low failure rates. Cases of implant failure and migration are scarce and primarily limited to several years postoperatively. The authors report a case of anterior extrusion of a C4-C5 ProDisc-C (DePuy Synthes, West Chester, PA, USA) cervical artificial disc (CAD) 14 months after placement due to minor trauma. A 33-year-old female who had undergone C4-C5 CAD implantation presented with neck pain and spasm after experiencing a paragliding accident. A 4 mm anterior protrusion of the CAD was seen on x-ray. She underwent removal of the CAD followed by anterior fusion. Other cases of CAD extrusion in the literature are discussed and the device's durability and testing are considered. Overall, CAD extrusion is a rare event. This case is likely the result of insufficient osseous integration. Patients undergoing cervical TDR should avoid high-risk activities to prevent trauma that could compromise the disc's placement, and future design/research should focus on how to enhance osseous integration at the interface while minimizing excessive heterotopic ossification.

  16. Extrusion-mixing compared with hand-mixing of polyether impression materials?

    PubMed

    McMahon, Caroline; Kinsella, Daniel; Fleming, Garry J P

    2010-12-01

    The hypotheses tested were two-fold (a) whether altering the base:catalyst ratio influences working time, elastic recovery and strain in compression properties of a hand-mixed polyether impression material and (b) whether an extrusion-mixed polyether impression material would have a significant advantage over a hand-mixed polyether impression material mixed to the optimum base:catalyst ratio. The polyether was hand-mixed at the optimum (manufacturers recommended) base:catalyst ratios (7:1) and further groups were made by increasing or decreasing the catalyst length by 25%. Additionally specimens were also made from an extrusion-mixed polyether impression material and compared with the optimum hand-mixed base:catalyst ratio. A penetrometer assembly was used to measure the working time (n=5). Five cylindrical specimens for each hand-mixed and extrusion mixed group investigated were employed for elastic recovery and strain in compression testing. Hand-mixing polyether impression materials with 25% more catalyst than that recommended significantly decreased the working time while hand-mixing with 25% less catalyst than that recommended significantly increased the strain in compression. The extrusion-mixed polyether impression material provided similar working time, elastic recovery and strain in compression to the hand-mixed polyether mixed at the optimum base:catalyst ratio.

  17. Effect of banana flour, screw speed and temperature on extrusion behaviour of corn extrudates.

    PubMed

    Kaur, Amritpal; Kaur, Seeratpreet; Singh, Mrinal; Singh, Narpinder; Shevkani, Khetan; Singh, Baljit

    2015-07-01

    Effect of extrusion parameters (banana flour, screw speed, extrusion temperature) on extrusion behaviour of corn grit extrudates were studied. Second order quadratic equations for extrusion properties as function of banana flour (BF), screwspeed (SS) and extrusion temperature (ET) were computed. BF had predominant effect on the Hunter color (L*, a*, b*) parameters of the extrudates. Addition of BF resulted in corn extrudates with higher L* and lower a* and b* values. Higher ET resulted in dark colored extrudates with lower L* and a* value. Higher SS enhanced the lightness of the extrudates. Expansion of the extrudates increased with increase in the level of BF and ET. WAI of the extrudates decreased with BF whereas increased with SS. However, reversed effect of BF and SS on WSI was observed. Flextural strength of the extrudates increased with increase in SS followed by BF and ET. The addition of BF and higher ET resulted in extrudates with higher oil uptake.

  18. Lateral Meniscal Allograft Transplant via a Medial Approach Leads to Less Extrusion.

    PubMed

    Choi, Nam-Hong; Choi, Jeong-Ki; Yang, Bong-Seok; Lee, Doe-Hyun; Victoroff, Brian N

    2017-10-01

    Accurate positioning of the bony bridge is crucial to prevent extrusion of meniscal allografts after transplant. However, oblique or lateralized placement of the bony bridge of the lateral meniscal allograft may occur due to technical error or a limited visual field. The patellar tendon may be an obstacle to approaching the anterior horn of the lateral meniscus, resulting in a laterally placed allograft. Therefore, lateral meniscal transplant through a medial arthrotomy would be an alternative approach. However, no report exists regarding allograft extrusion when comparing medial and lateral arthrotomy techniques in lateral meniscal transplants. Extrusion of the midbody of the allograft is less severe and the rotation of the bony bridge is less oblique in lateral meniscal allograft transplants through the medial parapatellar approach than those through the lateral approach. Cohort study; Level of evidence, 3. A bony bridge was used to perform 55 lateral meniscal transplants through either a medial or a lateral arthrotomy. Thirty-two allografts were transplanted through a medial arthrotomy and 23 were transplanted through a lateral arthrotomy, not randomly. Because correct positioning of the bony trough through the medial arthrotomy was easier than that through the lateral arthrotomy, the method of the arthrotomy was changed for the latter. The procedure for both groups was identical except for the arthrotomy technique, and rehabilitation was identical for both groups. Follow-up magnetic resonance imaging was conducted for all patients to measure the postoperative extrusion and obliquity of the bony bridge of the allograft. On the coronal view, extrusion was measured as the distance between the outer edge of the articular cartilage of the lateral tibial plateau and the outer edge of the meniscal allograft. On the axial view, a line (line B) was drawn along the longitudinal axis of the bony bridge. The posterior tibial condylar tangential line was drawn between the

  19. Fabrication process analysis and experimental verification for aluminum bipolar plates in fuel cells by vacuum die-casting

    NASA Astrophysics Data System (ADS)

    Jin, Chul Kyu; Kang, Chung Gil

    2011-10-01

    There are various methods for the fabrication of bipolar plates, but these are still limited to machining and stamping processes. High-pressure die casting (HPDC) is an ideal process for the manufacture of bipolar plates This study aims to investigate the formability of bipolar plates for polymer electrolyte membrane fuel cells (PEMFCs) fabricated by vacuum HPDC of an Al-Mg alloy (ALDC6). The cavity of the mold consisted of a thin-walled plate (200 mm × 200 mm × 0.8 mm) with a layer of serpentine channel (50 mm × 50 mm). The location and direction of the channel in the final mold design was determined by computational simulation (MAGMA soft). In addition, simulation results for different conditions of plunger stroke control were compared to those from actual die-casting experiments. Under a vacuum pressure of 35 kPa and for injection speeds of 0.3 and 2.5 m s-1 in the low and high speed regions, respectively, the samples had few casting defects. In addition, the hardness was higher and porosity in microstructure was less than those of the samples made under other injection speed conditions. In case of thin-walled plates, vacuum die casting is beneficial in terms of formability compared to conventional die casting.

  20. Processing thermally labile drugs by hot-melt extrusion: The lesson with gliclazide.

    PubMed

    Huang, Siyuan; O'Donnell, Kevin P; Delpon de Vaux, Sophie M; O'Brien, John; Stutzman, John; Williams, Robert O

    2017-10-01

    The formation of molecularly dispersed amorphous solid dispersions by the hot-melt extrusion technique relies on the thermal and mechanical energy inputs, which can cause chemical degradation of drugs and polymeric carriers. Additionally, drug degradation may be exacerbated as drugs convert from a more stable crystalline form to a higher energy amorphous form. Therefore, it is imperative to study how drug degrades and evaluate methods to minimize drug degradation during the extrusion process. In this work, gliclazide was used as a model thermally labile drug for the degradation kinetics and process optimization studies. Preformulation studies were conducted using thermal analyses, and liquid chromatography-mass spectroscopy to identify drug degradation pathways and to determine initial extrusion conditions. Formulations containing 10% drug and 90% AFFINISOL™ HPMC HME 100LV were then extruded using a twin screw extruder, and the extrudates were characterized using X-ray powder diffraction, modulated dynamic scanning calorimetry, and potency testing to evaluate physicochemical properties. The energies of activation for both amorphous gliclazide, crystalline gliclazide, and gliclazide solution were calculated using the Arrhenius equation to further guide the extrusion optimization process. Preformulation studies identify two hydrolysis degradation pathways of gliclazide at elevated temperatures. The activation energy study indicates a significantly higher degradation rate for the amorphous gliclazide compared to the crystalline form. After optimization of the hot-melt extrusion process, including improved screw designs, machine setup, and processing conditions, gliclazide amorphous solid dispersion with ∼95% drug recovery was achieved. The ability to process thermally labile drugs and polymers using hot-melt extrusion will significantly expand the possible applications of this manufacturing process. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Osmotic mechanism of the loop extrusion process

    NASA Astrophysics Data System (ADS)

    Yamamoto, Tetsuya; Schiessel, Helmut

    2017-09-01

    The loop extrusion theory assumes that protein factors, such as cohesin rings, act as molecular motors that extrude chromatin loops. However, recent single molecule experiments have shown that cohesin does not show motor activity. To predict the physical mechanism involved in loop extrusion, we here theoretically analyze the dynamics of cohesin rings on a loop, where a cohesin loader is in the middle and unloaders at the ends. Cohesin monomers bind to the loader rather frequently and cohesin dimers bind to this site only occasionally. Our theory predicts that a cohesin dimer extrudes loops by the osmotic pressure of cohesin monomers on the chromatin fiber between the two connected rings. With this mechanism, the frequency of the interactions between chromatin segments depends on the loading and unloading rates of dimers at the corresponding sites.

  2. Apical extrusion of debris in four different endodontic instrumentation systems: A meta-analysis.

    PubMed

    Western, J Sylvia; Dicksit, Daniel Devaprakash

    2017-01-01

    All endodontic instrumentation systems tested so far, promote apical extrusion of debris, which is one of the main causes of postoperative pain, flare ups, and delayed healing. Of this meta-analysis was to collect and analyze in vitro studies quantifying apically extruded debris while using Hand ProTaper (manual), ProTaper Universal (rotary), Wave One (reciprocating), and self-adjusting file (SAF; vibratory) endodontic instrumentation systems and to determine methods which produced lesser extrusion of debris apically. An extensive electronic database search was done in PubMed, Scopus, Cochrane, LILACS, and Google Scholar from inception until February 2016 using the key terms "Apical Debris Extrusion, extruded material, and manual/rotary/reciprocating/SAF systems." A systematic search strategy was followed to extract 12 potential articles from a total of 1352 articles. The overall effect size was calculated from the raw mean difference of weight of apically extruded debris. Statistically significant difference was seen in the following comparisons: SAF < Wave One, SAF < Rotary ProTaper. Apical extrusion of debris was invariably present in all the instrumentation systems analyzed. SAF system seemed to be periapical tissue friendly as it caused reduced apical extrusion compared to Rotary ProTaper and Wave One.

  3. Photoemission study of tris(8-hydroxyquinoline) aluminum/aluminum oxide/tris(8-hydroxyquinoline) aluminum interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding Huanjun; Zorba, Serkan; Gao Yongli

    2006-12-01

    The evolution of the interface electronic structure of a sandwich structure involving aluminum oxide and tris(8-hydroxyquinoline) aluminum (Alq), i.e. (Alq/AlO{sub x}/Alq), has been investigated with photoemission spectroscopy. Strong chemical reactions have been observed due to aluminum deposition onto the Alq substrate. The subsequent oxygen exposure releases some of the Alq molecules from the interaction with aluminum. Finally, the deposition of the top Alq layer leads to an asymmetry in the electronic energy level alignment with respect to the AlO{sub x} interlayer.

  4. Effects of pelleting, extrusion, or extrusion and pelleting on energy and nutrient digestibility in diets containing different levels of fiber and fed to growing pigs.

    PubMed

    Rojas, O J; Vinyeta, E; Stein, H H

    2016-05-01

    An experiment was conducted to determine effects of pelleting, extrusion, and extrusion and pelleting on energy and nutrient digestibility in diets containing low, medium, or high concentrations of fiber. Three diets were formulated: 1) the low-fiber diet contained corn and soybean meal; 2) the medium-fiber diet contained corn, soybean meal, and 25% distillers dried grains with solubles (DDGS); and 3) the high-fiber diet contained corn, soybean meal, 25% DDGS, and 20% soybean hulls. Each diet was divided into 4 batches after mixing. One batch was not further processed and was fed in a meal form, one batch was pelleted at 85°C, one batch was extruded at 115°C using a single-screw extruder, and one batch was extruded at 115°C and then pelleted at 85°C. Thus, 12 different diets were produced. Twenty-four growing pigs (26.5 ± 1.5 kg initial BW) had a T-cannula installed in the distal ileum and were allotted to the 12 diets in a split-plot design with 8 pigs allotted to the low-fiber diets, the medium-fiber diets, and the high-fiber diets, respectively. Diets were fed to the pigs during four 14-d periods. Within each type of diet, the 8 pigs were fed the diets produced using the 4 processing technologies. Therefore, there were 8 replicate pigs per diet. Pigs were adjusted to their diets for 14 d before the experiment was initiated. Each of the four 14-d periods consisted of 5 d for adaptation, 5 d of fecal collection according to the marker to marker approach, and ileal digesta were collected on d 13 and 14. Results indicated that pelleting, extrusion, or extrusion and pelleting improved ( < 0.05) the apparent ileal digestibility of starch and most indispensable AA. In most cases, there were no differences between the pelleted, the extruded, and the extruded and pelleted diets. The apparent total tract digestibility of GE was also improved ( < 0.05) by pelleting and by the combination of extrusion and pelleting. The ME of pelleted diets was greater ( < 0.05) than

  5. Development and evaluation of die and container materials. Low cost silicon solar array project

    NASA Technical Reports Server (NTRS)

    Wills, R. R.; Niesx, D. E.

    1979-01-01

    Specific compositions of high purity silicon aluminum oxynitride (Sialon) and silicon beryllium oxynitride (Sibeon) solid solutions were shown to be promising refractory materials for handling and manipulating solar grade silicon into silicon ribbon. Evaulation of the interaction of these materials in contact with molten silicon indicated that solid solutions based upon beta-Si3N4 were more stable than those based on Si2N2O. Sibeon was more resistant to molten silicon attack than Sialon. Both materials should preferably be used in an inert atmosphere rather than under vacuum conditions because removal of oxygen from the silicon melt occurs as SiO enhances the dissolution of aluminum and beryllium. The wetting angles of these materials were low enough for these materials to be considered as both die and container materials.

  6. Reactive Extrusion of Zein with Glyoxal

    USDA-ARS?s Scientific Manuscript database

    Cross-linked zein has been produced using glyoxal as the cross-linking reagent via reactive extrusion for the first time in a twin screw extruder using dilute sodium hydroxide as catalyst. Tri(ethylene glycol) was used as a plasticizer for various items. The extrudate was then ground and processed...

  7. Accurate defect die placement and nuisance defect reduction for reticle die-to-die inspections

    NASA Astrophysics Data System (ADS)

    Wen, Vincent; Huang, L. R.; Lin, C. J.; Tseng, Y. N.; Huang, W. H.; Tuo, Laurent C.; Wylie, Mark; Chen, Ellison; Wang, Elvik; Glasser, Joshua; Kelkar, Amrish; Wu, David

    2015-10-01

    Die-to-die reticle inspections are among the simplest and most sensitive reticle inspections because of the use of an identical-design neighboring-die for the reference image. However, this inspection mode can have two key disadvantages: (1) The location of the defect is indeterminate because it is unclear to the inspector whether the test or reference image is defective; and (2) nuisance and false defects from mask manufacturing noise and tool optical variation can limit the usable sensitivity. The use of a new sequencing approach for a die-to-die inspection can resolve these issues without any additional scan time, without sacrifice in sensitivity requirement, and with a manageable increase in computation load. In this paper we explore another approach for die-to-die inspections using a new method of defect processing and sequencing. Utilizing die-to-die double arbitration during defect detection has been proven through extensive testing to generate accurate placement of the defect in the correct die to ensure efficient defect disposition at the AIMS step. The use of this method maintained the required inspection sensitivity for mask quality as verified with programmed-defectmask qualification and then further validated with production masks comparing the current inspection approach to the new method. Furthermore, this approach can significantly reduce the total number of defects that need to be reviewed by essentially eliminating the nuisance and false defects that can result from a die-to-die inspection. This "double-win" will significantly reduce the effort in classifying a die-to-die inspection result and will lead to improved cycle times.

  8. Factors affecting irrigant extrusion during root canal irrigation: a systematic review.

    PubMed

    Boutsioukis, C; Psimma, Z; van der Sluis, L W M

    2013-07-01

    The aim of the present study was to conduct a systematic review and critical analysis of published data on irrigant extrusion to identify factors causing, affecting or predisposing to irrigant extrusion during root canal irrigation of human mature permanent teeth. An electronic search was conducted in Cochrane Library, LILACS, PubMed, SciELO, Scopus and Web of Knowledge using a combination of the terms 'irrigant', 'rinse', 'extrusion', 'injection', 'complication', 'accident', 'iatrogenic', 'root canal', 'tooth' and 'endodontic'. Additional studies were identified by hand-searching of six endodontic journals and the relevant chapters of four endodontic textbooks, resulting in a total of 460 titles. No language restriction was imposed. After applying screening and strict eligibility criteria by two independent reviewers, 40 case reports and 10 ex vivo studies were included in the review. A lack of clinical studies focusing on irrigant extrusion during root canal irrigation was evident. The reviewed case reports focused mainly on the clinical manifestations and management of the accidents and did not provide adequate details on the possible factors that may influence irrigant extrusion. The data from the included ex vivo studies were inconclusive due to major methodological limitations, such as not simulating the presence of periapical tissues and not assessing the validity of irrigant detection methods. The extensive variability in the protocols employed hindered quantitative synthesis. The choice of factors investigated in ex vivo studies seems not to have been driven by the available clinical evidence. These issues need to be addressed in future studies. © 2012 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  9. Cervical artificial disc extrusion after a paragliding accident

    PubMed Central

    Niu, Tianyi; Hoffman, Haydn; Lu, Daniel C.

    2017-01-01

    Background: Cervical total disc replacement (TDR) is an established alternative to anterior cervical discectomy and fusion (ACDF) with excellent long-term outcomes and low failure rates. Cases of implant failure and migration are scarce and primarily limited to several years postoperatively. The authors report a case of anterior extrusion of a C4-C5 ProDisc-C (DePuy Synthes, West Chester, PA, USA) cervical artificial disc (CAD) 14 months after placement due to minor trauma. Case Description: A 33-year-old female who had undergone C4-C5 CAD implantation presented with neck pain and spasm after experiencing a paragliding accident. A 4 mm anterior protrusion of the CAD was seen on x-ray. She underwent removal of the CAD followed by anterior fusion. Other cases of CAD extrusion in the literature are discussed and the device's durability and testing are considered. Conclusion: Overall, CAD extrusion is a rare event. This case is likely the result of insufficient osseous integration. Patients undergoing cervical TDR should avoid high-risk activities to prevent trauma that could compromise the disc's placement, and future design/research should focus on how to enhance osseous integration at the interface while minimizing excessive heterotopic ossification. PMID:28781915

  10. Improved corn protein (zein) extrusion processing

    USDA-ARS?s Scientific Manuscript database

    Melt processing using a single and twin screw extruder has been carried out on zein where extrusion temperatures were varied between 100ºC and 300ºC. In addition, melt reprocessing (up to seven times) of zein was undertaken using a single screw extruder. Differential scanning calorimetry (DSC) and t...

  11. Reduction of Fumonisin Toxicity by Extrusion and Nixtamalization (Alkaline Cooking).

    PubMed

    Voss, Kenneth; Ryu, Dojin; Jackson, Lauren; Riley, Ronald; Gelineau-van Waes, Janee

    2017-08-23

    Fumonisins are mycotoxins found in corn. They are toxic to animals and cause cancer in rodents and neural tube defects in LM/Bc mice. Reducing their concentrations in corn-based foods is therefore desirable. Chemical analysis or in vitro bioassays of food extracts might not detect toxic fumonisin reaction products that are unknown or unextractable from food matrices, thus potentially underestimating in vivo toxicity. The effectiveness of two common cooking methods, extrusion and nixtamalization (alkaline cooking), to reduce the toxicity of fumonisin-contaminated corn grits (extrusion) and whole kernel corn (nixtamalization) was shown by means of rat feeding bioassays using fumonisin-specific kidney effects as indicators of potential toxicity. A third bioassay showed that in contrast to fumonisin B 1 (FB 1 ), hydrolyzed fumonisin B 1 (HFB 1 ; formed from FB 1 during nixtamalization) did not cause neural tube defects in LM/Bc mice. The findings indicate that extrusion and nixtamalization reduce the potential toxicity of FB 1 -contaminated corn.

  12. Development of poloxamer gel formulations via hot-melt extrusion technology.

    PubMed

    Mendonsa, Nicole S; Murthy, S Narasimha; Hashemnejad, Seyed Meysam; Kundu, Santanu; Zhang, Feng; Repka, Michael A

    2018-02-15

    Poloxamer gels are conventionally prepared by the "hot" or the "cold" process. But these techniques have some disadvantages such as high energy consumption, requires expensive equipment and often have scale up issues. Therefore, the objective of this work was to develop poloxamer gels by hot-melt extrusion technology. The model drug selected was ketoprofen. The formulations developed were 30% and 40% poloxamer gels. Of these formulations, the 30% poloxamer gels were selected as ideal gels. DSC and XRD studies showed an amorphous nature of the drug after extrusion. It was observed from the permeation studies that with increasing poloxamer concentration, a decrease in drug permeation was obtained. Other studies conducted for the formulations included in-vitro release studies, texture analysis, rheological studies and pH measurements. In conclusion, the hot-melt extrusion technology could be successfully employed to develop poloxamer gels by overcoming the drawbacks associated with the conventional techniques. Published by Elsevier B.V.

  13. Apical extrusion of debris in four different endodontic instrumentation systems: A meta-analysis

    PubMed Central

    Western, J. Sylvia; Dicksit, Daniel Devaprakash

    2017-01-01

    Background: All endodontic instrumentation systems tested so far, promote apical extrusion of debris, which is one of the main causes of postoperative pain, flare ups, and delayed healing. Objectives: Of this meta-analysis was to collect and analyze in vitro studies quantifying apically extruded debris while using Hand ProTaper (manual), ProTaper Universal (rotary), Wave One (reciprocating), and self-adjusting file (SAF; vibratory) endodontic instrumentation systems and to determine methods which produced lesser extrusion of debris apically. Methodology: An extensive electronic database search was done in PubMed, Scopus, Cochrane, LILACS, and Google Scholar from inception until February 2016 using the key terms “Apical Debris Extrusion, extruded material, and manual/rotary/reciprocating/SAF systems.” A systematic search strategy was followed to extract 12 potential articles from a total of 1352 articles. The overall effect size was calculated from the raw mean difference of weight of apically extruded debris. Results: Statistically significant difference was seen in the following comparisons: SAF < Wave One, SAF < Rotary ProTaper. Conclusions: Apical extrusion of debris was invariably present in all the instrumentation systems analyzed. SAF system seemed to be periapical tissue friendly as it caused reduced apical extrusion compared to Rotary ProTaper and Wave One. PMID:28761250

  14. Technology for High Pure Aluminum Oxide Production from Aluminum Scrap

    NASA Astrophysics Data System (ADS)

    Ambaryan, G. N.; Vlaskin, M. S.; Shkolnikov, E. I.; Zhuk, A. Z.

    2017-10-01

    In this study a simple ecologically benign technology of high purity alumina production is presented. The synthesis process consists of three steps) oxidation of aluminum in water at temperature of 90 °C) calcinations of Al hydroxide in atmosphere at 1100 °C) high temperature vacuum processing of aluminum alpha oxide at 1750 °C. Oxidation of aluminum scrap was carried out under intensive mixing in water with small addition of KOH as a catalyst. It was shown that under implemented experimental conditions alkali was continuously regenerated during oxidation reaction and synergistic effect of low content alkali aqueous solution and intensive mixing worked. The product of oxidation of aluminum scrap is the powder of Al(OH)3. Then it can be preliminary granulated or directly subjected to thermal treatment deleting the impurities from the product (aluminum oxide). It was shown the possibility to produce the high-purity aluminum oxide of 5N grade (99.999 %). Aluminum oxide, synthesized by means of the proposed method, meets the requirements of industrial manufacturers of synthetic sapphire (aluminum oxide monocrystals). Obtained high pure aluminum oxide can be also used for the manufacture of implants, artificial joints, microscalpels, high-purity ceramics and other refractory shapes for manufacture of ultra-pure products.

  15. Development of an Optimization Methodology for the Aluminum Alloy Wheel Casting Process

    NASA Astrophysics Data System (ADS)

    Duan, Jianglan; Reilly, Carl; Maijer, Daan M.; Cockcroft, Steve L.; Phillion, Andre B.

    2015-08-01

    An optimization methodology has been developed for the aluminum alloy wheel casting process. The methodology is focused on improving the timing of cooling processes in a die to achieve improved casting quality. This methodology utilizes (1) a casting process model, which was developed within the commercial finite element package, ABAQUS™—ABAQUS is a trademark of Dassault Systèms; (2) a Python-based results extraction procedure; and (3) a numerical optimization module from the open-source Python library, Scipy. To achieve optimal casting quality, a set of constraints have been defined to ensure directional solidification, and an objective function, based on the solidification cooling rates, has been defined to either maximize, or target a specific, cooling rate. The methodology has been applied to a series of casting and die geometries with different cooling system configurations, including a 2-D axisymmetric wheel and die assembly generated from a full-scale prototype wheel. The results show that, with properly defined constraint and objective functions, solidification conditions can be improved and optimal cooling conditions can be achieved leading to process productivity and product quality improvements.

  16. Extrusion Processing of Raw Food Materials and by-products: A Review.

    PubMed

    Offiah, Vivian; Kontogiorgos, Vassilis; Falade, Kolawole O

    2018-05-22

    Extrusion technology has rapidly transformed the food industry with its numerous advantages over other processing methods. It offers a platform for processing different products from various food groups by modifying minor or major ingredients and processing conditions. Although cereals occupy a large portion of the extruded foods market, several other types of raw materials have been used. Extrusion processing of various food groups, including cereals and pseudo cereals, roots and tubers, pulses and oilseeds, fruits and vegetables, and animal products, as well as structural and nutritional changes in these food matrices are reviewed. Value addition by extrusion to food processing wastes and by-products from fruits and vegetables, dairy, meat and seafood, cereals and residues from starch, syrup and alcohol production, and oilseed processing are also discussed. Extrusion presents an economical technology for incorporating food processing residues and by-products back into the food stream. In contemporary scenarios, rising demand for extruded products with functional ingredients, attributed to evolving lifestyles and preferences, have led to innovations in the form, texture, color and content of extruded products. Information presented in this review would be of importance to processors and researchers as they seek to enhance nutritional quality and delivery of extruded products.

  17. Characteristics of copper-clad aluminum rods prepared by horizontal continuous casting

    NASA Astrophysics Data System (ADS)

    Zhang, Yubo; Fu, Ying; Jie, Jinchuan; Wu, Li; Svynarenko, Kateryna; Guo, Qingtao; Li, Tingju; Wang, Tongmin

    2017-11-01

    An innovative horizontal continuous casting method was developed and successfully used to prepare copper-clad aluminum (CCA) rods with a diameter of 85 mm and a sheath thickness of 16 mm. The solidification structure and element distribution near the interface of the CCA ingots were investigated by means of a scanning electron microscope, an energy dispersive spectrometer, and an electron probe X-ray microanalyzer. The results showed that the proposed process can lead to a good metallurgical bond between Cu and Al. The interface between Cu and Al was a multilayered structure with a thickness of 200 μm, consisting of Cu9Al4, CuAl2, α-Al/CuAl2 eutectic, and α-Al + α-Al/CuAl2 eutectic layers from the Cu side to the Al side. The mean tensile-shear strength of the CCA sample was 45 MPa, which fulfills the requirements for the further extrusion process. The bonding and diffusion mechanisms are also discussed in this paper.

  18. Extrusion of metal oxide superconducting wire, tube or ribbon

    DOEpatents

    Dusek, Joseph T.

    1993-10-05

    A process for extruding a superconducting metal oxide composition YBa.sub.2 Cu.sub.3 O.sub.7-x provides a wire (tube or ribbon) having a cohesive mass and a degree of flexibility together with enhanced electrical properties. Wire diameters in the range of 6-85 mils have been produced with smaller wires on the order of 10 mils in diameter exhibiting enhanced flexibility for forming braided, or multistrand, configurations for greater current carrying capacity. The composition for extrusion contains a polymeric binder to provide a cohesive mass to bind the particles together during the extrusion process with the binder subsequently removed at lower temperatures during sintering. The composition for extrusion further includes a deflocculent, an organic plasticizer and a solvent which also are subsequently removed during sintering. Electrically conductive tubing with an inner diameter of 52 mil and an outer diameter of 87-355 mil has also been produced. Flat ribbons have been produced in the range of 10-125 mil thick by 100-500 mil wide. The superconducting wire, tube or ribbon may include an outer ceramic insulating sheath co-extruded with the wire, tubing or ribbon.

  19. Extrusion of metal oxide superconducting wire, tube or ribbon

    DOEpatents

    Dusek, Joseph T.

    1993-01-01

    A process for extruding a superconducting metal oxide composition YBa.sub.2 Cu.sub.3 O.sub.7-x provides a wire (tube or ribbon) having a cohesive mass and a degree of flexibility together with enhanced electrical properties. Wire diameters in the range of 6-85 mils have been produced with smaller wires on the order of 10 mils in diameter exhibiting enhanced flexibility for forming braided, or multistrand, configurations for greater current carrying capacity. The composition for extrusion contains a polymeric binder to provide a cohesive mass to bind the particles together during the extrusion process with the binder subsequently removed at lower temperatures during sintering. The composition for extrusion further includes a deflocculent, an organic plasticizer and a solvent which also are subsequently removed during sintering. Electrically conductive tubing with an inner diameter of 52 mil and an outer diameter of 87-355 mil has also been produced. Flat ribbons have been produced in the range of 10-125 mil thick by 100-500 mil wide. The superconducting wire, tube or ribbon may include an outer ceramic insulating sheath co-extruded with the wire, tubing or ribbon.

  20. Microstructure and properties of ultrafine grain nickel 200 after hydrostatic extrusion processes

    NASA Astrophysics Data System (ADS)

    Sitek, R.; Krajewski, C.; Kamiński, J.; Spychalski, M.; Garbacz, H.; Pachla, W.; Kurzydłowski, K. J.

    2012-09-01

    This paper presents the results of the studies of the structure and properties of ultrafine grained nickel 200 obtained by hydrostatic extrusion processes. Microstructure was characterized by means of optical microscopy and electron transmission microscopy. Corrosion resistance was studied by impedance and potentiodynamic methods using an AutoLab PGSTAT 100 potentiostat in 0.1 M Na2SO4 solution and in acidified (by addition of H2SO4) 0.1 M NaCl solution at pH = 4.2 at room temperature. Microhardness tests were also performed. The results showed that hydrostatic extrusion produces a heterogeneous, ultrafine-grained microstructure in nickel 200. The corrosive resistance tests showed that the grain refinement by hydrostatic extrusion is accompanied by a decreased corrosive resistance of nickel 200.

  1. The Oxidation Products of Aluminum Hydride and Boron Aluminum Hydride Clusters

    DTIC Science & Technology

    2016-01-04

    AFRL-AFOSR-VA-TR-2016-0075 The Oxidation Products of Aluminum Hydride and Boron Aluminum Hydride Clusters KIT BOWEN JOHNS HOPKINS UNIV BALTIMORE MD...Hydride and Boron Aluminum Hydride Clusters 5a.  CONTRACT NUMBER 5b.  GRANT NUMBER FA9550-14-1-0324 5c.  PROGRAM ELEMENT NUMBER 61102F 6. AUTHOR(S) KIT...of both Aluminum Hydride Cluster Anions and Boron Aluminum Hydride Cluster Anions with Oxygen: Anionic Products The anionic products of reactions

  2. Dimensional accuracy of aluminium extrusions in mechanical calibration

    NASA Astrophysics Data System (ADS)

    Raknes, Christian Arne; Welo, Torgeir; Paulsen, Frode

    2018-05-01

    Reducing dimensional variations in the extrusion process without increasing cost is challenging due to the nature of the process itself. An alternative approach—also from a cost perspective—is using extruded profiles with standard tolerances and utilize downstream processes, and thus calibrate the part within tolerance limits that are not achievable directly from the extrusion process. In this paper, two mechanical calibration strategies for the extruded product are investigated, utilizing the forming lines of the manufacturer. The first calibration strategy is based on global, longitudinal stretching in combination with local bending, while the second strategy utilizes the principle of transversal stretching and local bending of the cross-section. An extruded U-profile is used to make a comparison between the two methods using numerical analyses. To provide response surfaces with the FEA program, ABAQUS is used in combination with Design of Experiment (DOE). DOE is conducted with a two-level fractional factorial design to collect the appropriate data. The aim is to find the main factors affecting the dimension accuracy of the final part obtained by the two calibration methods. The results show that both calibration strategies have proven to reduce cross-sectional variations effectively form standard extrusion tolerances. It is concluded that mechanical calibration is a viable, low-cost alternative for aluminium parts that demand high dimensional accuracy, e.g. due to fit-up or welding requirements.

  3. Propulsion at low Reynolds number via beam extrusion

    NASA Astrophysics Data System (ADS)

    Gosselin, Frederick; Neetzow, Paul

    2014-03-01

    We present experimental and theoretical results on the extrusion of a slender beam in a viscous fluid. We are particularly interested in the force necessary to extrude the beam as it buckles with large amplitude due to viscous friction. The problem is inspired by the propulsion of Paramecium via trichocyst extrusion. Self-propulsion in micro-organisms is mostly achieved through the beating of flagella or cilia. However, to avoid a severe aggression, unicellular Paramecium has been observed to extrude trichocysts in the direction of the aggression to burst away. These trichocysts are rod-like organelles which, upon activation, grow to about 40 μm in length in 3 milliseconds before detaching from the animal. The drag force created by these extruding rods pushing against the viscous fluid generates thrust in the opposite direction. We developed an experimental setup to measure the force required to push a steel piano wire into an aquarium filled with corn syrup. This setup offers a near-zero Reynolds number, and allows studying deployments for a range of constant extrusion speeds. The experimental results are reproduced with a numerical model coupling a large amplitude Euler-Bernoulli beam theory with a fluid load model proportional to the local beam velocity. This study was funded in part by the The Natural Sciences and Engineering Research Council of Canada.

  4. Aluminum integral foams with tailored density profile by adapted blowing agents

    NASA Astrophysics Data System (ADS)

    Hartmann, Johannes; Fiegl, Tobias; Körner, Carolin

    2014-05-01

    The goal of the present work is the variation of the structure of aluminum integral foams regarding the thickness of the integral solid skin as well as the density profile. A modified die casting process, namely integral foam molding, is used in which an aluminum melt and blowing agent particles (magnesium hydride MgH2) are injected in a permanent steel mold. The high solidification rates at the cooled walls of the mold lead to the formation of a solid skin. In the inner region, hydrogen is released by thermal decomposition of MgH2 particles. Thus, the pore formation takes place parallel to the continuing solidification of the melt. The thickness of the solid skin and the density profile of the core strongly depend on the interplay between solidification velocity and kinetics of hydrogen release. By varying the melt and blowing agent properties, the structure of integral foams can be systematically changed to meet the requirements of the desired field of application of the produced component.

  5. Formability analysis of aluminum alloys through deep drawing process

    NASA Astrophysics Data System (ADS)

    Pranavi, U.; Janaki Ramulu, Perumalla; Chandramouli, Ch; Govardhan, Dasari; Prasad, PVS. Ram

    2016-09-01

    Deep drawing process is a significant metal forming process used in the sheet metal forming operations. From this process complex shapes can be manufactured with fewer defects. Deep drawing process has different effectible process parameters from which an optimum level of parameters should be identified so that an efficient final product with required mechanical properties will be obtained. The present work is to evaluate the formability of Aluminum alloy sheets using deep drawing process. In which effects of punch radius, lubricating conditions, die radius, and blank holding forces on deep drawing process observed for AA 6061 aluminum alloy sheet of 2 mm thickness. The numerical simulations are performed for deep drawing of square cups using three levels of aforesaid parameters like lubricating conditions and blank holding forces and two levels of punch radii and die radii. For numerical simulation a commercial FEM code is used in which Hollomon's power law and Hill's 1948 yield criterions are implemented. The deep drawing setup used in the FEM code is modeled using a CAD tool by considering the modeling requirements from the literature. Two different strain paths (150x150mm and 200x200mm) are simulated. Punch forces, thickness distributions and dome heights are evaluated for all the conditions. In addition failure initiation and propagation is also observed. From the results, by increasing the coefficient of friction and blank holding force, punch force, thickness distribution and dome height variations are observed. The comparison has done and the optimistic parameters were suggested from the results. From this work one can predict the formability for different strain paths without experimentation.

  6. Pullout Fixation of Posterior Medial Meniscus Root Tears: Correlation Between Meniscus Extrusion and Midterm Clinical Results

    PubMed

    Chung, Kyu Sung; Ha, Jeong Ku; Ra, Ho Jong; Nam, Gun Woo; Kim, Jin Goo

    2017-01-01

    Medial meniscus posterior root tears (MMPRTs) lead to extrusion of the meniscus during weightbearing as well as loss of the ability of the meniscus to generate hoop stress. This loss of load-sharing ability leads to progressive arthritic changes. However, there have been no studies that correlate the correction of meniscus extrusion with clinical outcomes. Decreased meniscus extrusion is associated with better clinical and radiographic outcomes compared with increased meniscus extrusion after MMPRT pullout fixation. Case-control study; Level of evidence, 3. A total of 39 patients who underwent MMPRT pullout fixation and had been observed for more than 5 years were recruited for this study. The mean follow-up period was 69.8 months. Participants were categorized into 2 groups according to the direction of meniscus extrusion: group A (increased extrusion; 23 patients) and group B (decreased extrusion; 16 patients). Meniscus extrusion was assessed in the coronal plane on magnetic resonance imaging preoperatively and at 1 year postoperatively. The postoperative clinical outcomes (Lysholm and International Knee Documentation Committee [IKDC] scores) and radiographic results (Kellgren-Lawrence [K-L] grade and medial joint space) were compared between groups. Meniscus extrusion in group A increased significantly from a mean (±SD) of 3.5 ± 0.9 mm preoperatively to 5.1 ± 1.4 mm at 1 year postoperatively ( P < .001), whereas in group B, it decreased significantly from 4.1 ± 1.3 mm preoperatively to 3.5 ± 1.4 mm at 1 year postoperatively ( P < .001). The K-L arthritis grade (0/1/2/3/4) significantly progressed in group A (from 2/12/9/0/0 preoperatively to 0/1/14/8/0 postoperatively, respectively; P = .009) but not in group B (from 1/11/4/0/0 preoperatively to 0/6/8/2/0 postoperatively, respectively; P = .274). The mean final Lysholm and IKDC scores in group B (88.1 ± 12.1 and 79.0 ± 11.4, respectively) were significantly better than those in group A (81.0 ± 9.0 and 71

  7. Scaled-Up Fabrication of Thin-Walled ZK60 Tubing using Shear Assisted Processing and Extrusion (ShAPE)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whalen, Scott A.; Joshi, Vineet V.; Overman, Nicole R.

    Shear Assisted Processing and Extrusion (ShAPE) has been scaled-up and applied to direct extrusion of thin-walled magnesium tubing. Using ShAPE, billets of ZK60A-T5 were directly extruded into round tubes having an outer diameter of 50.8 mm and wall thickness of 1.52 mm. The severe shearing conditions inherent to ShAPE resulted in microstructural refinement with an average grain size of 3.8μm measured at the midpoint of the tube wall. Tensile testing per ATSM E-8 on specimens oriented parallel to the extrusion direction gave an ultimate tensile strength of 254.4 MPa and elongation of 20.1%. Specimens tested perpendicular to the extrusion directionmore » had an ultimate tensile strength of 297.2 MPa and elongation of 25.0%. Due to material flow effects resulting from the simultaneous linear and rotational shear intrinsic to ShAPE, ram force and electrical power consumption during extrusion were just 40 kN and 11.5 kW respectively. This represents a significant reduction in ram force and power consumption compared to conventional extrusion. As such, there is potential for ShAPE to offer a scalable, lower cost extrusion option with potentially improved bulk mechanical properties.« less

  8. Effect of extrusion conditions on the physico-chemical properties and in vitro protein digestibility of canola meal.

    PubMed

    Zhang, Bo; Liu, Guo; Ying, Danyang; Sanguansri, Luz; Augustin, Mary Ann

    2017-10-01

    Canola meal has potential as a high protein food ingredient. The extrusion-induced changes in color, pH, extractable protein and in vitro protein digestibility of canola meal under different extrusion conditions was assessed. The extrusion barrel moisture (24%, 30% or 36%) and screw kneading block length (0, 30 or 60mm) were used as independent process parameters. Extrusion at high barrel moisture (36%) favored protein aggregation resulting in lower extractable protein compared to extrusion at the lowest barrel moisture (24%). At lower barrel moisture contents (24% and 30%), a longer kneading block length increased extractable protein but this was not the case at 36% barrel moisture. Canola protein digestibility was improved upon extrusion at 30% barrel moisture but there was no significant change at lower (24%) or higher (36%) barrel moisture. The kneading block length of the screw had no significant effect on the canola protein digestibility within the same barrel moisture level. The relationship between the physico-chemical parameters and in vitro digestibility was examined. This study highlighted the complex interplay of extrusion processing variables that affect protein degradation and the interaction of components, with consequent effects on protein digestibility. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Recent Advances in Extrusion-Based 3D Printing for Biomedical Applications.

    PubMed

    Placone, Jesse K; Engler, Adam J

    2018-04-01

    Additive manufacturing, or 3D printing, has become significantly more commonplace in tissue engineering over the past decade, as a variety of new printing materials have been developed. In extrusion-based printing, materials are used for applications that range from cell free printing to cell-laden bioinks that mimic natural tissues. Beyond single tissue applications, multi-material extrusion based printing has recently been developed to manufacture scaffolds that mimic tissue interfaces. Despite these advances, some material limitations prevent wider adoption of the extrusion-based 3D printers currently available. This progress report provides an overview of this commonly used printing strategy, as well as insight into how this technique can be improved. As such, it is hoped that the prospective report guides the inclusion of more rigorous material characterization prior to printing, thereby facilitating cross-platform utilization and reproducibility. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Forward impact extrusion of surface textured steel blanks using coated tooling

    NASA Astrophysics Data System (ADS)

    Hild, Rafael; Feuerhack, Andreas; Trauth, Daniel; Arghavani, Mostafa; Kruppe, Nathan C.; Brögelmann, Tobias; Bobzin, Kirsten; Klocke, Fritz

    2017-10-01

    A method to enable dry metal forming by the means of a self-lubricating coating and surface textures was researched using an innovative Pin-On-Cylinder-Tribometer. The experimental analysis was complemented by a numerical model of the complex contact conditions between coated tools and the surface textured specimen at the micro-level. Based on the results, the explanation of the tribological interactions between surface textured specimens and the tool in dry full forward extrusion is the objective of this work. Therefore, experimental dry extrusion tests were performed using a tool system. The extruded specimens were evaluated regarding their geometry as well as by the required punch force. Thereby, the effectiveness and the feasibility of dry metal forming on the example of full forward extrusion was evaluated. Thus, one more step towards the technical realization of dry metal forming of low alloy steels under industrial conditions was realized.

  11. Reduction of fumonisin B₁ in corn grits by twin-screw extrusion.

    PubMed

    Jackson, Lauren S; Jablonski, Joseph; Bullerman, Lloyd B; Bianchini, Andreia; Hanna, Milford A; Voss, Kenneth A; Hollub, April D; Ryu, Dojin

    2011-08-01

    This study was designed to investigate the fate of fumonisins in flaking corn grits during twin-screw extrusion by measuring fumonisin B₁ (FB₁) and its analogs with a mass balance approach. Food grade corn grits and 2 batches of grits contaminated with FB₁ at 10 and 50 μg/g by Fusarium verticillioides M-2552 were processed with or without glucose supplementation (10%, w/w) with a twin-screw extruder. Extrusion reduced FB₁ in contaminated grits by 64% to 72% without glucose and 89% to 94% with added glucose. In addition, extrusion alone resulted in 26% to 73% reduction in the levels of fumonisin B₂ and fumonisin B₃, while levels of both mycotoxins were reduced by >89% in extruded corn grits containing 10% glucose. Mass balance analysis showed that 38% to 46% of the FB₁ species detected in corn extruded with glucose was N-(deoxy-D-fructos-1-yl)-FB₁, while 23% to 37% of FB₁ species detected in extruded corn grits with and without added glucose was bound to the matrix. It was also found that the hydrolyzed form of FB₁ was a minor species in extruded corn grits with or without added glucose, representing <15% of the total FB₁ species present. Less than 46% of FB₁ originally present in corn grits could be detected in the fumonisin analogues measured in this study. Research is needed to identify the reaction products resulting from extrusion processing of fumonisin-contaminated corn products. Twin-screw extrusion is widely used in food industry for its versatility. This technology may reduce the level of fumonisins in corn particularly with added glucose. Journal of Food Science © 2011 Institute of Food Technologists® No claim to original US government works.

  12. Gas Gun Studies of Interface Wear Effects

    NASA Astrophysics Data System (ADS)

    Jackson, Tyler; Kennedy, Greg; Thadhani, Naresh

    2011-06-01

    The characteristics of interface wear were studied by performing gas gun experiments at velocities up to 1 km/s. The approach involved developing coefficients of constitutive strength models for Al 6061 and OFHC-Cu, then using those to design die geometry for interface wear gas gun experiments. Taylor rod-on-anvil impact experiments were performed to obtain coefficients of the Johnson-Cook constitutive strength model by correlating experimentally obtained deformed states of impacted samples with those predicted using ANSYS AUTODYN hydrocode. Simulations were used with validated strength models to design geometry involving acceleration of Al rods through a copper concentric cylindrical angular extrusion die. Experiments were conducted using 7.62 mm and 80 mm diameter gas guns. Differences in the microstructure of the interface layer and microhardness values illustrate that stress-strain conditions produced during acceleration of Al through the hollow concentric copper die, at velocities less than 800 m/s, result in formation of a layer via solid state alloying due to severe plastic deformation, while higher velocities produce an interface layer consisting of melted and re-solidified aluminum.

  13. Simultaneous saccharification and fermentation of broken rice: an enzymatic extrusion liquefaction pretreatment for Chinese rice wine production.

    PubMed

    Li, Hongyan; Jiao, Aiquan; Xu, Xueming; Wu, Chunsen; Wei, Benxi; Hu, Xiuting; Jin, Zhengyu; Tian, Yaoqi

    2013-08-01

    Broken rice, pretreated by enzymatic extrusion liquefaction, was used to produce Chinese rice wine by simultaneous saccharification and fermentation (SSF) process in this study. The study compared the novel process and traditional process for Chinese rice wine fermentation utilizing broken rice and head rice, respectively. With the optimum extrusion parameters (barrel temperature, 98 °C; moisture content, 42% and amylase concentration, 1‰), 18% (v/v at 20 °C) alcoholic degree, 37.66% fermentation recovery and 93.63% fermentation efficiency were achieved, indicating enzymatic extrusion-processed rice wine from broken rice exhibited much higher fermentation rate and efficiency than traditional-processed rice wine from head rice during SSF. The starch molecule distribution data indicated that the alcoholic degree was related to the oligosaccharides' formation during enzymatic extrusion. Sum of amino acid (AA) in the extrusion-processed wine was 53.7% higher than that in the traditional one. These results suggest that the enzymatic extrusion pretreatment for broken rice is a feasible and alternative process in the fermentation of Chinese rice wine.

  14. Shuttle Primary Reaction Control Subsystem Thruster Fuel Valve Pilot Seal Extrusion: A Failure Correlation

    NASA Technical Reports Server (NTRS)

    Waller, Jess; Saulsberry, Regor L.

    2003-01-01

    Pilot operated valves (POVs) are used to control the flow of hypergolic propellants monomethylhydrazine (fuel) and nitrogen tetroxide (oxidizer) to the Shuttle orbiter Primary Reaction Control Subsystem (PRCS) thrusters. The POV incorporates a two-stage design: a solenoid-actuated pilot stage, which in turn controls a pressure-actuated main stage. Isolation of propellant supply from the thruster chamber is accomplished in part by a captive polytetrafluoroethylene (PTFE) pilot seal retained inside a Custom 455.1 stainless steel cavity. Extrusion of the pilot seal restricts the flow of fuel around the pilot poppet, thus impeding or preventing the main valve stage from opening. It can also prevent the main stage from staying open with adequate force margin, particularly if there is gas in the main stage actuation cavity. During thruster operation on-orbit, fuel valve pilot seal extrusion is commonly indicated by low or erratic chamber pressure or failure of the thruster to fire upon command (Fail-Off). During ground turnaround, pilot seal extrusion is commonly indicated by slow gaseous nitrogen (GN2) main valve opening times (greater than 38 ms) or slow water main valve opening response times (greater than 33 ms). Poppet lift tests and visual inspection can also detect pilot seal extrusion during ground servicing; however, direct metrology on the pilot seat assembly provides the most quantitative and accurate means of identifying extrusion. Minimizing PRCS fuel valve pilot seal extrusion has become an important issue in the effort to improve PRCS reliability and reduce associated life cycle costs.

  15. Hot melt extrusion versus spray drying: hot melt extrusion degrades albendazole.

    PubMed

    Hengsawas Surasarang, Soraya; Keen, Justin M; Huang, Siyuan; Zhang, Feng; McGinity, James W; Williams, Robert O

    2017-05-01

    The purpose of this study was to enhance the dissolution properties of albendazole (ABZ) by the use of amorphous solid dispersions. Phase diagrams of ABZ-polymer binary mixtures generated from Flory-Huggins theory were used to assess miscibility and processability. Forced degradation studies showed that ABZ degraded upon exposure to hydrogen peroxide and 1 N NaOH at 80 °C for 5 min, and the degradants were albendazole sulfoxide (ABZSX), and ABZ impurity A, respectively. ABZ was chemically stable following exposure to 1 N HCl at 80 °C for one hour. Thermal degradation profiles show that ABZ, with and without Kollidon ® VA 64, degraded at 180 °C and 140 °C, respectively, which indicated that ABZ could likely be processed by thermal processing. Following hot melt extrusion, ABZ degraded up to 97.4%, while the amorphous ABZ solid dispersion was successfully prepared by spray drying. Spray-dried ABZ formulations using various types of acids (methanesulfonic acid, sulfuric acid and hydrochloric acid) and polymers (Kollidon ® VA 64, Soluplus ® and Eudragit ® E PO) were studied. The spray-dried ABZ with methanesulfonic acid and Kollidon ® VA 64 substantially improved non-sink dissolution in acidic media as compared to bulk ABZ (8-fold), physical mixture of ABZ:Kollidon ® VA 64 (5.6-fold) and ABZ mesylate salt (1.6-fold). No degradation was observed in the spray-dried product for up to six months and less than 5% after one-year storage. In conclusion, amorphous ABZ solid dispersions in combination with an acid and polymer can be prepared by spray drying to enhance dissolution and shelf-stability, whereas those made by melt extrusion are degraded.

  16. Plasticized chitosan/polyolefin films produced by extrusion.

    PubMed

    Matet, Marie; Heuzey, Marie-Claude; Ajji, Abdellah; Sarazin, Pierre

    2015-03-06

    Plasticized chitosan and polyethylene blends were produced through a single-pass extrusion process. Using a twin-screw extruder, chitosan plasticization was achieved in the presence of an acetic acid solution and glycerol, and directly mixed with metallocene polyethylene, mPE, to produce a masterbatch. Different dilutions of the masterbatch (2, 5 and 10 wt% of plasticized chitosan), in the presence of ethylene vinyl acetate, EVA, were subsequently achieved in single screw film extrusion. Very small plasticized chitosan domains (number average diameter <5 μm) were visible in the polymeric matrix. The resulting films presented a brown color and increasing haze with chitosan plasticized content. Mechanical properties of the mPE films were affected by the presence of plasticized chitosan, but improvement was observed as a result of some compatibility between mPE and chitosan in the presence of EVA. Finally the incorporation of plasticized chitosan affected mPE water vapor permeability while oxygen permeability remained constant. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. A Comparison of Apical Bacterial Extrusion in Manual, ProTaper Rotary, and One Shape Rotary Instrumentation Techniques.

    PubMed

    Mittal, Rakesh; Singla, Meenu G; Garg, Ashima; Dhawan, Anu

    2015-12-01

    Apical extrusion of irrigants and debris is an inherent limitation associated with cleaning and shaping of root canals and has been studied extensively because of its clinical relevance as a cause of flare-ups. Many factors affect the amount of extruded intracanal materials. The purpose of this study was to assess the bacterial extrusion by using manual, multiple-file continuous rotary system (ProTaper) and single-file continuous rotary system (One Shape). Forty-two human mandibular premolars were inoculated with Enterococcus faecalis by using a bacterial extrusion model. The teeth were divided into 3 experimental groups (n = 12) and 1 control group (n = 6). The root canals of experimental groups were instrumented according to the manufacturers' instructions by using manual technique, ProTaper rotary system, or One Shape rotary system. Sterilized saline was used as an irrigant, and bacterial extrusion was quantified as colony-forming units/milliliter. The results obtained were statistically analyzed by using one-way analysis of variance for intergroup comparison and post hoc Tukey test for pair-wise comparison. The level for accepting statistical significance was set at P < .05. All the instrumentation techniques resulted in bacterial extrusion, with manual step-back technique exhibiting significantly more bacterial extrusion than the engine-driven systems. Of the 2 engine-driven systems, ProTaper rotary extruded significantly more bacteria than One Shape rotary system (P < .05). The engine-driven nickel-titanium systems were associated with less apical extrusion. The instrument design may play a role in amount of extrusion. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  18. Design, fabrication and test of a hydrogen heat pipe. [extruding and grooving 6063-T6 aluminum tubes for cryogenic heat pipes

    NASA Technical Reports Server (NTRS)

    Alario, J.

    1979-01-01

    Re-entrant groove technology was extended to hydrogen heat pipes. Parametric analyses are presented which optimize the theoretical design while considering the limitations of state-of-the-art extrusion technology. The 6063-T6 aluminum extrusion is 14.6 mm OD with a wall thickness of 1.66 mm and contains 20 axial grooves which surround a central 9.3 mm diameter vapor core. Each axial groove is 0.775 mm diameter with a 0.33 mm opening. An excess vapor reservoir is provided at the evaporator to minimize the pressure containment hazard during ambient storage. Modifications to the basic re-entrant groove profile resulted in improved overall performance. While the maximum heat transport capacity decreased slightly to 103 w-m the static wicking height increased markedly to 4.5 cm. The heat pipe became operational between 20 and 30 K after a cooldown from 77 K without any difficulty. Steady state performance data taken over a 19 to 23 K temperature range indicated: (1) maximum heat transport capacity of 5.4 w-m; (2) static wicking height of 1.42 cm; and (3) overall heat pipe conductance of 1.7 watts/deg C.

  19. Aluminum powder metallurgy processing

    NASA Astrophysics Data System (ADS)

    Flumerfelt, Joel Fredrick

    In recent years, the aluminum powder industry has expanded into non-aerospace applications. However, the alumina and aluminum hydroxide in the surface oxide film on aluminum powder require high cost powder processing routes. A driving force for this research is to broaden the knowledge base about aluminum powder metallurgy to provide ideas for fabricating low cost aluminum powder components. The objective of this dissertation is to explore the hypothesis that there is a strong linkage between gas atomization processing conditions, as-atomized aluminum powder characteristics, and the consolidation methodology required to make components from aluminum powder. The hypothesis was tested with pure aluminum powders produced by commercial air atomization commercial inert gas atomization and gas atomization reaction synthesis (GARS). The commercial atomization methods are bench marks of current aluminum powder technology. The GARS process is a laboratory scale inert gas atomization facility. A benefit of using pure aluminum powders is an unambiguous interpretation of the results without considering the effects of alloy elements. A comparison of the GARS aluminum powders with the commercial aluminum powders showed the former to exhibit superior powder characteristics. The powders were compared in terms of size and shape, bulk chemistry, surface oxide chemistry and structure, and oxide film thickness. Minimum explosive concentration measurements assessed the dependence of explosibility hazard on surface area, oxide film thickness, and gas atomization processing conditions. The GARS aluminum powders were exposed to different relative humidity levels, demonstrating the effect of atmospheric conditions on post-atomization oxidation of aluminum powder. An Al-Ti-Y GARS alloy exposed in ambient air at different temperatures revealed the effect of reactive alloy elements on post-atomization powder oxidation. The pure aluminum powders were consolidated by two different routes, a

  20. Aluminum reference electrode

    DOEpatents

    Sadoway, Donald R.

    1988-01-01

    A stable reference electrode for use in monitoring and controlling the process of electrolytic reduction of a metal. In the case of Hall cell reduction of aluminum, the reference electrode comprises a pool of molten aluminum and a solution of molten cryolite, Na.sub.3 AlF.sub.6, wherein the electrical connection to the molten aluminum does not contact the highly corrosive molten salt solution. This is accomplished by altering the density of either the aluminum (decreasing the density) or the electrolyte (increasing the density) so that the aluminum floats on top of the molten salt solution.

  1. Aluminum reference electrode

    DOEpatents

    Sadoway, D.R.

    1988-08-16

    A stable reference electrode is described for use in monitoring and controlling the process of electrolytic reduction of a metal. In the case of Hall cell reduction of aluminum, the reference electrode comprises a pool of molten aluminum and a solution of molten cryolite, Na[sub 3]AlF[sub 6], wherein the electrical connection to the molten aluminum does not contact the highly corrosive molten salt solution. This is accomplished by altering the density of either the aluminum (decreasing the density) or the electrolyte (increasing the density) so that the aluminum floats on top of the molten salt solution. 1 fig.

  2. Diffuse Parenchymal Diseases Associated With Aluminum Use and Primary Aluminum Production

    PubMed Central

    2014-01-01

    Aluminum use and primary aluminum production results in the generation of various particles, fumes, gases, and airborne materials with the potential for inducing a wide range of lung pathology. Nevertheless, the presence of diffuse parenchymal or interstitial lung disease related to these processes remains controversial. The relatively uncommon occurrence of interstitial lung diseases in aluminum-exposed workers—despite the extensive industrial use of aluminum—the potential for concurrent exposure to other fibrogenic fibers, and the previous use of inhaled aluminum powder for the prevention of silicosis without apparent adverse respiratory effects are some of the reasons for this continuing controversy. Specific aluminum-induced parenchymal diseases described in the literature, including existing evidence of interstitial lung diseases, associated with primary aluminum production are reviewed. PMID:24806728

  3. Detrital zircon provenance evidence for large-scale extrusion along the Altyn Tagh fault

    USGS Publications Warehouse

    Yue, Y.; Graham, S.A.; Ritts, B.D.; Wooden, J.L.

    2005-01-01

    The question of whether or not the Altyn Tagh fault is a large-scale extrusion boundary is critical for understanding the role of lateral extrusion in accommodating the Indo-Asian convergence and in building the Tibetan Plateau. Oligocene conglomerate clasts in the eastern Xorkol basin are low-grade slate, phyllite, sandstone, dacite and carbonate, and associated paleocurrent indicators evince sediment derivation from the opposing side of the Altyn Tagh fault. Matching these clasts with similar basement rocks in the North Qilian and Tuolainanshan terranes requires post-Oligocene left-lateral offset of 380 ?? 60 km on the eastern segment of the Altyn Tagh fault, suggesting large-scale extrusion along the fault in the Cenozoic (Yue, Y.J., Ritts, B.D., Graham, S.A., 2001b. Initiation and long-term slip history of the Altyn Tagh fault. International Geological Review 43, 1087-1094.). In order to further define this piercing point, the detrital zircon pattern of Oligocene sandstone from the Xorkol basin and the zircon ages of basement on the southern side of the fault were established by ion microprobe dating. Characterized by strong peaks between 850 and 950 Ma and the absence of Paleozoic and Mesozoic ages, the detrital zircon age pattern of the Oligocene sandstone matches the age distribution of zircon-bearing rocks of the Tuolainanshan terrane. This match requires 360 ?? 40 km of post-Oligocene left-lateral displacement on the eastern segment of the Altyn Tagh fault, supporting as well as refining the previously reported lithology-based cross-fault match. At least one of the following three extrusion scenarios must have existed to accommodate this large offset: (1) northeastward extrusion along the Altyn Tagh-Alxa-East Mongolia fault, (2) eastward extrusion along the Altyn Tagh-North Qilian-Haiyuan fault, and (3) northeastward extrusion of northern Tibet as a Himalaya-scale thrust sheet along the North Qilian-Haiyuan fault. We prefer the first scenario inasmuch as

  4. Formation of chromosomal domains in interphase by loop extrusion

    NASA Astrophysics Data System (ADS)

    Fudenberg, Geoffrey

    While genomes are often considered as one-dimensional sequences, interphase chromosomes are organized in three dimensions with an essential role for regulating gene expression. Recent studies have shown that Topologically Associating Domains (TADs) are fundamental structural and functional building blocks of human interphase chromosomes. Despite observations that architectural proteins, including CTCF, demarcate and maintain the borders of TADs, the mechanisms underlying TAD formation remain unknown. Here we propose that loop extrusion underlies the formation TADs. In this process, cis-acting loop-extruding factors, likely cohesins, form progressively larger loops, but stall at TAD boundaries due to interactions with boundary proteins, including CTCF. This process dynamically forms loops of various sizes within but not between TADs. Using polymer simulations, we find that loop extrusion can produce TADs as determined by our analyses of the highest-resolution experimental data. Moreover, we find that loop extrusion can explain many diverse experimental observations, including: the preferential orientation of CTCF motifs and enrichments of architectural proteins at TAD boundaries; TAD boundary deletion experiments; and experiments with knockdown or depletion of CTCF, cohesin, and cohesin-loading factors. Together, the emerging picture from our work is that TADs are formed by rapidly associating, growing, and dissociating loops, presenting a clear framework for understanding interphase chromosomal organization.

  5. Lateral extrusion of Tunisia : Contribution of Jeffara Fault (southern branch) and Petroleum Implications

    NASA Astrophysics Data System (ADS)

    Ghedhoui, R.; Deffontaines, B.; Rabia, M. C.

    2012-04-01

    Contrasting to the northward African plate motion toward Eurasia and due to its geographic position in the North African margin, since early cretaceous, Tunisia seems to be submitted to an eastward migration. The aim of this work is to study the southern branch of this inferred tectonic splay that may guide the Tunisian extrusion characterised to the east by the Mediterranean sea as a free eastern boundary. The Jeffara Fault zone (southern Tunisia), represent a case example of such deformation faced by Tunisia. Helped by the results of previous researchers (Bouaziz, 1995 ; Rabiaa, 1998 ; Touati et Rodgers, 1998 ; Sokoutis D. et al., 2000 ; Bouaziz et al., 2002 ; Jallouli et al., 2005 ; Deffontaines et al., 2008…), and new evidences developed in this study, we propose a geodynamic Tunisian east extrusion model, due to such the northern African plate migration to the Eurasian one. In this subject, structural geomorphology is undertaken herein based on both geomorphometric drainage network analysis (Deffontaines et al., 1990), the Digital Terrain Model photo-interpretation (SRTM) combined with photo-interpretation of detailed optical images (Landsat ETM+), and confirmed by field work and numerous seismic profiles at depth. All these informations were then integrated within a GIS (Geodatabase) (Deffontaines 1990 ; Deffontaines et al. 1994 ; Deffontaines, 2000 ; Slama, 2008 ; Deffontaines, 2008) and are coherent with the eastern extrusion of the Sahel block. We infer that the NW-SE Gafsa-Tozeur, which continue to the Jeffara major fault zone acting as a transtensive right lateral motion since early cretaceous is the southern branch of the Sahel block extrusion. Our structural analyses prove the presence of NW-SE right lateral en-echelon tension gashes, NW-SE aligned salt diapirs, numerous folds offsets, en-echelon folds, and so on that parallel this major NW-SE transtensive extrusion fault zone.These evidences confirm the fact that the NW-SE Jeffara faults correspond

  6. The formation of giant clastic extrusions at the end of the Messinian Salinity Crisis

    NASA Astrophysics Data System (ADS)

    Kirkham, Christopher; Cartwright, Joe; Hermanrud, Christian; Jebsen, Christopher

    2018-01-01

    This paper documents the discovery of five multi-km scale lensoid bodies that directly overlie the upper surface of the thick (>1 km) Messinian Evaporite sequence. They were identified through the analysis of 3D seismic data from the western Nile Cone. The convergence of the upper and lower bounding reflections of these lensoid bodies, their external and internal reflection configuration, the positive 'depositional' relief at their upper surface, and the stratal relationship with underlying and overlying deposits supports the interpretation that these are giant clastic extrusions. The interpretations combined with the stratal position of these clastic extrusions demonstrate a prior unsuspected link between periods of major environment change and basin hydrodynamics on a plate scale. All five lensoid bodies were extruded onto a single, seismically resolvable marker horizon correlatable with the end of the Messinian Salinity Crisis (Horizon M). It is argued that the source of these clastic extrusions is pre-Messinian in origin, which implies massive sediment remobilisation at depth in the pre-evaporitic succession and intrusion through the thick evaporite layer. We propose that the scale and timing of this dramatic event was primed and triggered by near-lithostatic overpressure in the pre-evaporitic sediments generated through (1) their rapid burial and loading during the Messinian Salinity Crisis and (2) catastrophic re-flooding during its immediate aftermath. The largest of these clastic extrusions has a volume of over c. 116 km3, making it amongst the largest extruded sedimentary bodies described on Earth. The findings extend the understanding of the upper scale of other analogous clastic extrusions such as mud volcanoes and sediment-hosted hydrothermal systems. Following the 2006 eruption of the Lusi sediment-hosted hydrothermal system in Indonesia, an understanding of the upper scale limit of clastic extrusions has even greater societal relevance, in order to

  7. Interaction of Two Slip Planes on Extrusion Growth in Fatigue Band

    DTIC Science & Technology

    1987-01-01

    observed under microscope in fatigue specimens as indicated by Essmann et al . [23] and Mughrabi [24]. t I 1 It I I 3 @ O.OS^ = 0 1S^ lAlONG SUP... Mughrabi , et. al . [25] have suggested a model of dislocation dipoles in a single crystal as shown in Fig. 2. The initial inelastic strain e^„ due to the...interesting question which was raised by Mughrabi , and Essmann et. al . [23] was, after the extrusion has reached the amount of static extrusion , will

  8. Extrusion-spheronization: process variables and characterization.

    PubMed

    Sinha, V R; Agrawal, M K; Agarwal, A; Singh, G; Ghai, D

    2009-01-01

    Multiparticulate systems have undergone great development in the past decade fueled by the better understanding of their multiple roles as a suitable delivery system. With the passage of time, significant advances have been made in the process of pelletization due to the incorporation of specialized techniques for their development. Extrusion-spheronization seems to be the most promising process for the optimum delivery of many potent drugs having high systemic toxicity. It also offers immense pharmaceutical applicability due to the benefits of high loading capacity of active ingredient(s), narrow size distribution, and cost-effectiveness. On application of a specific coat, these systems can also aid in site-specific delivery, thereby enhancing the bioavailability of many drugs. The current review focuses on the process of extrusion-spheronization and the operational (extruder types, screen pressure, screw speed, temperature, moisture content, spheronization load, speed and time) and formulation (excipients and drugs) variables, which may affect the quality of the final pellets. Various methods for the evaluation of the quality of the pellets with regard to the size distribution, shape, friability, granule strength, density, porosity, flow properties, and surface texture are discussed.

  9. Rheology and Extrusion of Cement-Fly Ashes Pastes

    NASA Astrophysics Data System (ADS)

    Micaelli, F.; Lanos, C.; Levita, G.

    2008-07-01

    The addition of fly ashes in cement pastes is tested to optimize the forming of cement based material by extrusion. Two sizes of fly ashes grains are examinated. The rheology of concentrated suspensions of ashes mixes is studied with a parallel plates rheometer. In stationary flow state, tested suspensions viscosities are satisfactorily described by the Krieger-Dougherty model. An "overlapped grain" suspensions model able to describe the bimodal suspensions behaviour is proposed. For higher values of solid volume fraction, Bingham viscoplastic behaviour is identified. Results showed that the plastic viscosity and plastic yield values present minimal values for the same optimal formulation of bimodal mixes. The rheological study is extended to more concentrated systems using an extruder. Finally it is observed that the addition of 30% vol. of optimized ashes mix determined a significant reduction of required extrusion load.

  10. Liner for extrusion billet containers. Interim Technical Documentary Progress Report, February 1--April 30, 1963

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spachner, S. A.

    1963-05-01

    A shrink-fit assembly device for buildup of ceramiccoated liner and sleeve assemblies was tested and modified to develop desired temperatures and suitable heat distribution in sleeves, which were heated. Nine different compositions of fiber metal reinforced ceramic compacts were produced for preliminary evaluation of suitability for extrusion liner use. Procedures were developed for welding short, hollow ceramic cylinders of high-strength metal carbides and borides to form a ceramic extrusion liner of suitable length. Dissassembly tooling for rapid separation of shrink-fitted sleeves from a worn liner was designed, fabricated, and tested. Preliminary extrusion testing of an alumina-coated liner was carried out,more » using SAE 4340 steel billets extruded to rod at 12 : 1 and 16 : 1 ratios. No coating wear was noted after extrusion of 3 billets. (auth)« less

  11. Thermal Stress Analysis for Ceramics Stalk in the Low Pressure Die Casting Machine

    NASA Astrophysics Data System (ADS)

    Noda, Nao-Aki; Hendra, Nao-Aki; Takase, Yasushi; Li, Wenbin

    Low pressure die casting (LPDC) is defined as a net shape casting technology in which the molten metal is injected at high speeds and pressure into a metallic die. The LPDC process is playing an increasingly important role in the foundry industry as a low-cost and high-efficiency precision forming technique. The LPDC process is that the permanent die and filling systems are placed over the furnace containing the molten alloy. The filling of the cavity is obtained by forcing the molten metal by means of a pressurized gas in order to rise into a ceramic tube, which connects the die to the furnace. The ceramics tube called stalk has high temperature resistance and high corrosion resistance. However, attention should be paid to the thermal stress when the stalk is dipped into the molten aluminum. It is important to develop the design of the stalk to reduce the risk of fracture because of low fracture toughness of ceramics. In this paper, therefore, the finite element method is applied to calculate the thermal stresses when the stalk is dipped into the crucible by varying the dipping speeds and dipping directions. It is found that the thermal stress can be reduced by dipping slowly if the stalk is dipped into the crucible vertically, while the thermal stress can be reduced by dipping fast if it is dipped horizontally.

  12. Two-sided friction stir riveting by extrusion: A process for joining dissimilar materials

    DOE PAGES

    Evans, William T.; Cox, Chase D.; Strauss, Alvin M.; ...

    2016-06-25

    Two-sided friction stir riveting (FSR) by extrusion is an innovative process developed to rapidly, efficiently, and securely join dissimilar materials. This process extends a previously developed one sided friction stir extrusion process to create a strong and robust joint by producing a continuous, rivet-like structure through a preformed hole in one of the materials with a simultaneous, two-sided friction stir spot weld. The two-sided FSR by extrusion process securely joins the dissimilar materials together and effectively locks them in place without the use of any separate materials or fasteners. Lastly, in this paper we demonstrate the process by joining aluminummore » to steel and illustrate its potential application to automotive and aerospace manufacturing processes.« less

  13. Friction Stir Back Extrusion of Aluminium Alloys for Automotive Applications

    NASA Astrophysics Data System (ADS)

    Xu, Zeren

    Since the invention of Friction Stir Welding in 1991 as a solid state joining technique, extensive scientific investigations have been carried out to understand fundamental aspects of material behaviors when processed by this technique, in order to optimize processing conditions as well as mechanical properties of the welds. Based on the basic principles of Friction Stir Welding, several derivatives have also been developed such as Friction Stir Processing, Friction Extrusion and Friction Stir Back Extrusion. Friction Stir Back Extrusion is a novel technique that is proposed recently and designed for fabricating tubes from lightweight alloys. Some preliminary results have been reported regarding microstructure and mechanical properties of Friction Stir Back Extrusion processed AZ31 magnesium alloy, however, systematic study and in-depth investigations are still needed to understand the materials behaviors and underlying mechanisms when subjected to Friction Stir Back Extrusion, especially for age-hardenable Al alloys. In the present study, Friction Stir Back Extrusion processed AA6063-T5 and AA7075-T6 alloys are analyzed with respect to grain structure evolution, micro-texture change, recrystallization mechanisms, precipitation sequence as well as mechanical properties. Optical Microscopy, Electron Backscatter Diffraction, Transmission Electron Microscopy, Vickers Hardness measurements and uniaxial tensile tests are carried out to characterize the microstructural change as well as micro and macro mechanical properties of the processed tubes. Special attention is paid to the micro-texture evolution across the entire tube and dynamic recrystallization mechanisms that are responsible for grain refinement. Significant grain refinement has been observed near the processing zone while the tube wall is characterized by inhomogeneous grain structure across the thickness for both alloys. Dissolution of existing precipitates is noticed under the thermal hysterias imposed by

  14. Cast Aluminum Alloys for High Temperature Applications Using Nanoparticles Al2O3 and Al3-X Compounds (X = Ti, V, Zr)

    NASA Technical Reports Server (NTRS)

    Lee, Jonathan A.

    2009-01-01

    In this paper, the effect of nanoparticles Al2O3 and Al3-X compounds (X = Ti, V, Zr) on the improvement of mechanical properties of aluminum alloys for elevated temperature applications is presented. These nanoparticles were selected based on their low cost, chemical stability and low diffusions rates in aluminum at high temperatures. The strengthening mechanism at high temperature for aluminum alloy is based on the mechanical blocking of dislocation movements by these nanoparticles. For Al2O3 nanoparticles, the test samples were prepared from special Al2O3 preforms, which were produced using ceramic injection molding process and then pressure infiltrated by molten aluminum. In another method, Al2O3 nanoparticles can also be homogeneously mixed with fine aluminum powder and consolidated into test samples through hot pressing and sintering. With the Al3-X nanoparticles, the test samples are produced as precipitates from in-situ reactions with molten aluminum using conventional permanent mold or die casting techniques. It is found that cast aluminum alloy using nanoparticles Al3-X is the most cost effective method to produce high strength aluminum alloys for high temperature applications in comparison to nanoparticles Al2O3. Furthermore, significant mechanical properties retention in high temperature environment could be achieved with Al3-X nanoparticles, resulting in tensile strength of nearly 3 times higher than most 300- series conventional cast aluminum alloys tested at 600 F.

  15. Poly(ether ester) Ionomers as Water-Soluble Polymers for Material Extrusion Additive Manufacturing Processes.

    PubMed

    Pekkanen, Allison M; Zawaski, Callie; Stevenson, André T; Dickerman, Ross; Whittington, Abby R; Williams, Christopher B; Long, Timothy E

    2017-04-12

    Water-soluble polymers as sacrificial supports for additive manufacturing (AM) facilitate complex features in printed objects. Few water-soluble polymers beyond poly(vinyl alcohol) enable material extrusion AM. In this work, charged poly(ether ester)s with tailored rheological and mechanical properties serve as novel materials for extrusion-based AM at low temperatures. Melt transesterification of poly(ethylene glycol) (PEG, 8k) and dimethyl 5-sulfoisophthalate afforded poly(ether ester)s of sufficient molecular weight to impart mechanical integrity. Quantitative ion exchange provided a library of poly(ether ester)s with varying counterions, including both monovalent and divalent cations. Dynamic mechanical and tensile analysis revealed an insignificant difference in mechanical properties for these polymers below the melting temperature, suggesting an insignificant change in final part properties. Rheological analysis, however, revealed the advantageous effect of divalent countercations (Ca 2+ , Mg 2+ , and Zn 2+ ) in the melt state and exhibited an increase in viscosity of two orders of magnitude. Furthermore, time-temperature superposition identified an elevation in modulus, melt viscosity, and flow activation energy, suggesting intramolecular interactions between polymer chains and a higher apparent molecular weight. In particular, extrusion of poly(PEG 8k -co-CaSIP) revealed vast opportunities for extrusion AM of well-defined parts. The unique melt rheological properties highlighted these poly(ether ester) ionomers as ideal candidates for low-temperature material extrusion additive manufacturing of water-soluble parts.

  16. Management of vaginal extrusion after tension-free vaginal tape procedure for urodynamic stress incontinence.

    PubMed

    Giri, Subhasis K; Sil, Debasri; Narasimhulu, Girish; Flood, Hugh D; Skehan, Mark; Drumm, John

    2007-06-01

    To report our experience in the management of vaginal extrusion after the tension-free vaginal tape (TVT) procedure for urodynamic stress incontinence. Five patients diagnosed with vaginal extrusion after a TVT procedure performed at our institution were identified. We reviewed the patients' records retrospectively. The interval from TVT placement to diagnosis, presenting symptoms and signs, duration of symptoms, diagnostic test findings, treatment, and postoperative results were recorded. Patients were followed up for at least 12 months. From January 2001 to June 2004, a total of 166 patients underwent the TVT procedure. Of these, 5 patients (3%) were diagnosed with isolated vaginal extrusion 4 to 40 months postoperatively. No cases of urethral or bladder erosion occurred in this series. The symptoms included vaginal discharge, pain, bleeding, and dyspareunia. The eroded margin of the vaginal mucosa was trimmed, mobilized, and closed over the tape with interrupted vertical mattress sutures in a single layer using 2-0 polyglactin 910 to avoid mucosal inversion. All patients remained symptom free without any evidence of defective healing or additional extrusion at a minimal follow-up of 12 months. Primary reclosure of the vaginal mucosa over the TVT tape is an effective first-line treatment option for vaginal extrusion without compromising continence. Patients undergoing the TVT procedure should be adequately counseled about the possibility of this complication and the available treatment options.

  17. Effect of extrusion rate on morphology of Kaolin/PolyEtherSulfone (PESf) membrane precursor

    NASA Astrophysics Data System (ADS)

    Misaran, M. S.; Sarbatly, R.; Bono, A.; Rahman, M. M.

    2016-11-01

    This study aims to investigate the influence of apparent viscosity induced by spinneret geometry and extrusion rate on morphology of Kaolin/PESf hollow fiber membranes. Different extrusion rates at two different rheology properties were introduced on a straight and conical spinneret resulting in various shear rates. The hollow fiber membrane precursors were spun using the wet spinning method to decouple the effect of shear and elongation stress due to gravity stretched drawing. The morphology of the spun hollow fiber was observed under Scanning Electron Microscope (SEM) and the overall porosity were measured using mercury intrusion porosimeter. Shear rate and apparent viscosity at the tip of the spinneret annulus were simulated using a computational fluid dynamics package; solidworks floworks. Simulation data shows that extrusion rate increment increases the shear rate at the spinneret wall which in turn reduce the apparent viscosity; consistent with a non Newtonian shear thinning fluid behavior. Thus, the outer finger-like region grows as the shear rate increases. Also, overall porosity of hollow fiber membrane decreases with extrusion rate increment which is caused by better molecular orientation; resulting in denser hollow fiber membrane. Thin outer finger-like region is achieved at low shear experience of 109.55 s-1 via a straight spinneret. Increasing the extrusion rate; thus shear rate will cause outer finger-like region growth which is not desirable in a separation process.

  18. High-Strength Aluminum Casting Alloy for High-Temperature Applications (MSFC Center Director's Discretionary Fund Final Project No. 97-10)

    NASA Technical Reports Server (NTRS)

    Lee, J. A.

    1998-01-01

    A new aluminum-silicon alloy has been successfully developed at Marshall Space Flight Center that has a significant improvement in tensile strength at elevated temperatures (550 to 700 F). For instance, the new alloy shows in average tensile strength of at least 90 percent higher than the current 390 aluminum piston alloy tested at 500 F. Compared to conventional aluminum alloys, automotive engines using the new piston alloy will have improved gas mileage, and may produce less air pollution in order to meet the future U.S. automotive legislative requirements for low hydrocarbon emissions. The projected cost for this alloy is less than $0.95/lb, and it readily allows the automotive components to be cast at a high production volume with a low, fully accounted cost. It is economically produced by pouring molten metal directly into conventional permanent steel molds or die casting.

  19. Plasticity mechanism for copper extrusion in through-silicon vias for three-dimensional interconnects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Tengfei; Spinella, Laura; Im, Jay

    2013-11-18

    In this paper, we demonstrated the plasticity mechanism for copper (Cu) extrusion in through-silicon via structures under thermal cycling. The local plasticity was directly observed by synchrotron x-ray micro-diffraction near the top of the via with the amount increasing with the peak temperature. The Cu extrusion was confirmed by Atomic Force Microscopy (AFM) measurements and found to be consistent with the observed Cu plasticity behavior. A simple analytical model elucidated the role of plasticity during thermal cycling, and finite element analyses were carried out to confirm the plasticity mechanism as well as the effect of the via/Si interface. The modelmore » predictions were able to account for the via extrusions observed in two types of experiments, with one representing a nearly free sliding interface and the other a strongly bonded interface. Interestingly, the AFM extrusion profiles seemed to contour with the local grain structures near the top of the via, suggesting that the grain structure not only affects the yield strength of the Cu and thus its plasticity but could also be important in controlling the pop-up behavior and the statistics for a large ensemble of vias.« less

  20. 40 CFR 468.02 - Specialized definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... rinse. (c) The term “ancillary operation” shall mean any operation associated with a primary forming... through a die or succession of dies to reduce the diameter or alter its shape. (h) The term “extrusion... immediately following extrusions for the purpose of heat treatment. (j) The term “heat treatment” shall mean...

  1. 40 CFR 468.02 - Specialized definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... rinse. (c) The term “ancillary operation” shall mean any operation associated with a primary forming... through a die or succession of dies to reduce the diameter or alter its shape. (h) The term “extrusion... immediately following extrusions for the purpose of heat treatment. (j) The term “heat treatment” shall mean...

  2. Development of expanded extrusion food products for an Advanced Life Support system.

    PubMed

    Zasypkin, D V; Lee, T C

    1999-01-01

    Extrusion processing was proposed to provide texture and to expand the variety of cereal food products in an isolated Advanced Life Support (ALS) system. Rice, wheat, and soy are the baseline crops selected for growing during long-term manned space missions. A Brabender single-screw laboratory extruder (model 2003, L/D 20:1), equipped with round nozzles of various lengths, was used as a prototype of a small-size extruder. Several concepts were tested to extend the variety and improve the quality of the products, to decrease environmental loads, and to promote processing stability. These concepts include: the blending of wheat and soybean flour, the extrusion of a coarser rice flour, separation of wheat bran, and optimization of the extruder nozzle design. An optimal nozzle length has been established for the extrusion of rice flour. Bran separating was necessary to improve the quality of wheat extrudates.

  3. Synthesis and Evaluation of Polymeric Materials

    DTIC Science & Technology

    1993-07-01

    Twin Screw Extruder Using a Blown Film Die ..................... 5 I 3. Twin Screw Extruder Using a Vertical...be done.6 They are then fed into a Twin Screw Mixer (T’SM) Extrusion Unit with either a blown film or ribbon die attached. The use of the ribbon die...width with a 0.020 inch gap)(See Figure 1). The extrusion system contained three (3) heated zones located on the twin screw barrel area

  4. Fatigue crack initiation and microcrack propagation in X7091 type aluminum P/M alloys

    NASA Astrophysics Data System (ADS)

    Hirose, S.; Fine, M. E.

    1983-06-01

    Fatigu crack initiation in extruded X7091 RSP-P/M aluminum type alloys o°Curs at grain boundaries at both low and high stresses. By a process of elimination this grain boundary embrittlement was attributed to Al2O3 particles formed mainly during atomization and segregated to some grain boundaries. It is not due to the small grain size, to Co2Al9, to η precipitates at grain boundaries, nor to a precipitate free zone. Thermomechanical processing after extrusion of X7091 with 0.8 pct Co was done by Alcoa to produce large recrystallized grains. This resulted in initiation of fatigue cracks at slip bands, and the resistance to initiation of fatigue cracks at low stresses was much greater. Microcrack growth is, however, much faster in the thermomechanically treated samples, as well as in ingot alloys, than in extruded and aged X7091.

  5. Spectrophotometric determination of irrigant extrusion using passive ultrasonic irrigation, EndoActivator, or syringe irrigation.

    PubMed

    Rodríguez-Figueroa, Carolina; McClanahan, Scott B; Bowles, Walter R

    2014-10-01

    Sodium hypochlorite (NaOCl) irrigation is critical to endodontic success, and several new methods have been developed to improve irrigation efficacy (eg, passive ultrasonic irrigation [PUI] and EndoActivator [EA]). Using a novel spectrophotometric method, this study evaluated NaOCl irrigant extrusion during canal irrigation. One hundred fourteen single-rooted extracted teeth were decoronated to leave 15 mm of the root length for each tooth. Cleaning and shaping of the teeth were completed using standardized hand and rotary instrumentation to an apical file size #40/0.04 taper. Roots were sealed (not apex), and 54 straight roots (n = 18/group) and 60 curved roots (>20° curvature, n = 20/group) were included. Teeth were irrigated with 5.25% NaOCl by 1 of 3 methods: passive irrigation with needle, PUI, or EA irrigation. Extrusion of NaOCl was evaluated using a pH indicator and a spectrophotometer. Standard curves were prepared with known amounts of irrigant to quantify amounts in unknown samples. Irrigant extrusion was minimal with all methods, with most teeth showing no NaOCl extrusion in straight or curved roots. Minor NaOCl extrusion (1-3 μL) in straight roots or curved roots occurred in 10%-11% of teeth in all 3 irrigant methods. Two teeth in both the syringe irrigation and the EA group extruded 3-10 μL of NaOCl. The spectrophotometric method used in this study proved to be very sensitive while providing quantification of the irrigant levels extruded. Using the PUI or EA tip to within 1 mm of the working length appears to be fairly safe, but apical anatomy can vary in teeth to allow extrusion of irrigant. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  6. Aluminum structural applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lucas, G.

    Extensive research by aluminum producers and automakers in the 1980s resulted in the development of technologies that enable building of aluminum cars that meet and exceed all the expectations of today`s drivers and passengers, yet weigh several hundred pounds less than their steel counterparts. The Acura NSX sports car, the Audi A8, and the Jaguar XJ220 have all been introduced. Ford has built 40 aluminum-intensive automobiles based on the Taurus/Sable for test purposes, and General Motors recently announced an aluminum-structured electric vehicle. The design flexibility that aluminum allows is shown by these examples. Each uses a somewhat different technology thatmore » is particularly suited to the vehicle and its market.« less

  7. Aluminum Hydroxide

    MedlinePlus

    Aluminum hydroxide is used for the relief of heartburn, sour stomach, and peptic ulcer pain and to ... Aluminum hydroxide comes as a capsule, a tablet, and an oral liquid and suspension. The dose and ...

  8. [Effect of extrusion on protein and starch bioavailability in corn and lima bean flour blends].

    PubMed

    Pérez-Navarrete, Cecilia; Betancur-Ancona, David; Casotto, Meris; Carmona, Andrés; Tovar, Juscelino

    2007-09-01

    Extrusion is used to produce crunchy expanded foods, such as snacks. The nutritional impact of this process has not been studied sufficiently. In this study, in vitro and in vivo protein and starch bioavailability was evaluated in both raw and extruded corn (Zea mays)(C) and lima bean (Phaseolus lunatus)(B) flour blends, prepared in 75C/25B and 50C/ 50B (p/p) proportions. These were processed with a Brabender extruder at 160 degrees C, 100 rpm and 15.5% moisture content. Proximate composition showed that in the extruded products protein and ash contents increased whereas the fat level decreased. In vitro protein digestibility was higher in the extrudates (82%) than in the raw flours (77%). Potentially available starch and resistant starch contents decreased with extrusion. The in vitro assays indicated that extrusion improved protein and starch availability in the studied blends. In vivo bioavailability was evaluated using the rice weevil (Sithophilus oryzae) as a biological model. The most descriptive biomarkers of the changes suggested by the in vivo tests were body protein content (increased by extrusion) and intestinal a-amylase activity (decreased by processing). Overall, results suggest that extrusion notably increases the nutritional quality of corn and lima bean flour blends.

  9. Coal extrusion in the plastic state

    NASA Technical Reports Server (NTRS)

    England, C.; Ryason, P. R.

    1977-01-01

    Continuous feeding of coal in a compressing screw extruder is described as a method of introducing coal into pressurized systems. The method utilizes the property of many bituminous coals of softening at temperatures from 350 to 425 C. Coal is then fed, much in the manner of common thermoplastics, using screw extruders. Data on the viscosity and extruder parameters for extrusion of Illinois No. 6 coal are presented.

  10. Bibliography of ceramic extrusion and plasticity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Janney, M.A.; Vance, M.C.; Jordan, A.C.

    A comprehensive bibliography of ceramic extrusion and plasticity has been compiled. Over 670 abstracts are included covering the period 1932 to 1984. Citations cover a wide range of interests from basic science investigations to engineering ''tips'' and include references to brick and tile, whitewares, technical ceramics, theoretical models, engineering analyses, forming, drying, and raw materials. In addition to the citations, there are numerous indices to make the bibliography easy to use.

  11. Fate of Fusarium mycotoxins in maize flour and grits during extrusion cooking.

    PubMed

    Scudamore, Keith A; Guy, Robin C E; Kelleher, Brian; MacDonald, Susan J

    2008-11-01

    Extrusion technology is used widely in the manufacture of a range of breakfast cereals and snacks for human consumption and animal feeds. To minimise consumer exposure to mycotoxins, the levels of deoxynivalenol (DON) and zearalenone (ZON) in cereals/cereal products and fumonisins B(1) and B(2) (FB(1) and FB(2)) in maize are controlled by European Union legislation. Relatively few studies, however, have examined the loss of Fusarium mycotoxins during processing. The behaviour of FB(1), FB(2) and fumonisin B(3) (FB(3)), DON and ZON during extrusion of naturally contaminated maize flour and maize grits is examined using pilot-scale equipment. DON and ZON are relatively stable during extrusion cooking but the fumonisins are lost to varying degrees. There is some loss of ZON when present in low concentrations and extruded at higher moisture contents. The presence of additives, such as reducing sugars and sodium chloride, can also affect mycotoxin levels. Moisture content of the cereal feed during extrusion is important and has a greater effect than temperature, particularly on the loss of fumonisins at the lower moistures. The effects are complex and not easy to explain, although more energy input to the extruder is required for drier materials. However, on the basis of these studies, the relationship between the concentration of Fusarium toxins in the raw and finished product is toxin- and process-dependent.

  12. Chromosomal Organization by an Interplay of Loop Extrusion and Compartment Interaction

    NASA Astrophysics Data System (ADS)

    Nuebler, Johannes; Fudenberg, Geoffrey; Imakaev, Maxim; Lu, Carolyn; Goloborodko, Anton; Abdennur, Nezar; Mirny, Leonid

    The chromatin fiber in eukaryotic nuclei is far from being simply a confined but otherwise randomly arranged polymer. Rather, it shows a high degree of spatial organization on all length scales, from individual nucleosomes up to well-segregated chromosome territories. On intermediate scales, chromosome conformation capture techniques have revealed two ubiquitous modes of organization: an alternating structure of A/B compartments, where each type preferentially associates with other base pairs of its type, and, typically on a smaller scale, the formation of topologically associating domains (TADs) with increased association within each domain but not across boundaries. The mechanisms behind this organization are only beginning to emerge. We review how the model of active loop extrusion can explain in a unified way such diverse phenomena as TAD formation and mitotic compaction and segregation, and we address in particular to what extent the interplay of active loop extrusion and compartment structure is compatible with recent experiments that interfere with the loading of the proposed loop extrusion factor cohesin. 4D Nucleome.

  13. Directing collagen fibers using counter-rotating cone extrusion.

    PubMed

    Hoogenkamp, Henk R; Bakker, Gert-Jan; Wolf, Louis; Suurs, Patricia; Dunnewind, Bertus; Barbut, Shai; Friedl, Peter; van Kuppevelt, Toin H; Daamen, Willeke F

    2015-01-01

    The bio-inspired engineering of tissue equivalents should take into account anisotropic morphology and the mechanical properties of the extracellular matrix. This especially applies to collagen fibrils, which have various, but highly defined, orientations throughout tissues and organs. There are several methods available to control the alignment of soluble collagen monomers, but the options to direct native insoluble collagen fibers are limited. Here we apply a controlled counter-rotating cone extrusion technology to engineer tubular collagen constructs with defined anisotropy. Driven by diverging inner and outer cone rotation speeds, collagen fibrils from bovine skin were extruded and precipitated onto mandrels as tubes with oriented fibers and bundles, as examined by second harmonic generation microscopy and quantitative image analysis. A clear correlation was found whereby the direction and extent of collagen fiber alignment during extrusion were a function of the shear forces caused by a combination of the cone rotation and flow direction. A gradual change in the fiber direction, spanning +50 to -40°, was observed throughout the sections of the sample, with an average decrease ranging from 2.3 to 2.6° every 10μm. By varying the cone speeds, the collagen constructs showed differences in elasticity and toughness, spanning 900-2000kPa and 19-35mJ, respectively. Rotational extrusion presents an enabling technology to create and control the (an)isotropic architecture of collagen constructs for application in tissue engineering and regenerative medicine. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  14. Comparison of apical extrusion of sodium hypochlorite using 4 different root canal irrigation techniques.

    PubMed

    İriboz, Emre; Bayraktar, Koral; Türkaydın, Dilek; Tarçın, Bilge

    2015-03-01

    We compared the apical extrusion of sodium hypochlorite delivered with a 27-G needle, self-adjusting file (SAF), passive ultrasonic irrigation, or the EndoVac system (SybronEndo, Orange, CA) during the instrumentation and final irrigation of root canals. Matched paired single-canal teeth were divided into 8 groups. The experimental groups were needle irrigation size #30 (NI30) and #50 (NI50), SAF size #30 (SAF30) and #50 (SAF50), passive ultrasonic irrigation size #30 (PUI30) and #50 (PUI50), and EndoVac size #30 (EV30) and #50 (EV50). Teeth were embedded in 0.2% agarose gel (pH = 7.4) containing 1 mL 0.1% m-Cresol purple (Sigma-Aldrich, St Louis, MO), which changes color at a pH level of 9.0. Root canals were irrigated with sodium hypochlorite and EDTA using 4 different techniques, and the amount of irrigant was controlled. Standardized digital photographs were taken 20 minutes after the first irrigant was used and were analyzed to determine the amount of extrusion (expressed as a percentage of total pixels). The amounts of apical extrusion obtained in the NI30, NI50, SAF30, SAF50, PUI30, PUI50, EV30, and EV50 groups were 30% (3/10), 50% (5/10), 20% (2/10), 70% (7/10), 40% (4/10), 40% (4/10), 10% (1/10), and 10% (1/10), respectively. The overall extrusion frequency, regardless of the apical preparation size, was 40% (8/20) for needle, 45% (9/20) for SAF, 40% (8/20) for ultrasonic irrigation, and 10% (2/20) for EndoVac. Although the SAF group showed more extrusion, the percentage of pixels was significantly higher in the needle irrigation group (P < .01). The EndoVac group showed significantly lower extrusion values than the other techniques in terms of the number of teeth and pixels (P < .05 and P < .01, respectively). The risk of apical extrusion is significantly lower with the EndoVac in comparison with the 3 other techniques. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  15. Thermomechanical treatment of 2124 PM aluminum alloys with low and high dispersoid levels

    NASA Technical Reports Server (NTRS)

    Sarkar, B.; Lisagor, W. B.

    1986-01-01

    The effects of thermomechanical treatment (TMT) on the mechanical properties and metallurgical structure of 2124 powder metallurgy aluminum alloys prepared from rapidly solidified powders were investigated. The alloys were prepared by using a standard canning/vacuum degassing/hot consolidation/extrusion sequence. Two compositions, with manganese contents of 0.5 and 1.5 percent, were investigated to examine the effects of low and high dispersoid levels. The results indicate that significant improvements in strength can be accomplished through TMT for this PM alloy system with little loss in toughness. The increase in strength observed is attributed to the presence of much finer, more homogeneous S-prime precipitation than that observed without TMT. Rolling deformation at room temperature resulted in some tendency for nonuniform (planar) deformation and resulted in slightly lower notch strength values. The lower notch strengths observed in the higher manganese composition were attributed to the coarser, more dense dispersoids observed in this material.

  16. Medial Meniscal Extrusion Relates to Cartilage Loss in Specific Femorotibial Subregions- Data from the Osteoarthritis Initiative

    PubMed Central

    Bloecker, K.; Wirth, W.; Guermazi, A.; Hunter, DJ; Resch, H.; Hochreiter, J.; Eckstein, F.

    2015-01-01

    Objective Medial meniscal extrusion is known to be related to structural progression of knee OA. However, it is unclear whether medial meniscal extrusion is more strongly associated with cartilage loss in certain medial femorotibial subregions than to others. Methods Segmentation of the medial tibial and femoral cartilage (baseline; 1-year follow-up) and the medial meniscus (baseline) was performed in 60 participants with frequent knee pain (age 61.3±9.2y, BMI 31.3±3.9 kg/m2) and with unilateral medial radiographic joint space narrowing (JSN) grade 1–3, using double echo steady state MR-images. Medial meniscal extrusion distance and extrusion area (%) between the external meniscal and tibial margin at baseline, and longitudinal medial cartilage loss in eight anatomical subregions were determined. Results A significant association (Pearson correlation coefficient) was seen between medial meniscus extrusion area in JSN knees and cartilage loss over one year throughout the entire medial femorotibial compartment. The strongest correlation was with cartilage loss in the external medial tibia (r=−0.34 [p<0.01] in JSN, and r=−0.30 [p=0.02] in noJSN knees). Conclusion Medial meniscus extrusion was associated with subsequent medial cartilage loss. The external medial tibial cartilage may be particularly vulnerable to thinning once the meniscus extrudes and its surface is “exposed” to direct, non-physiological, cartilage-cartilage contact. PMID:25988986

  17. Preparation and investigation of novel gastro-floating tablets with 3D extrusion-based printing.

    PubMed

    Li, Qijun; Guan, Xiaoying; Cui, Mengsuo; Zhu, Zhihong; Chen, Kai; Wen, Haoyang; Jia, Danyang; Hou, Jian; Xu, Wenting; Yang, Xinggang; Pan, Weisan

    2018-01-15

    Three dimensional (3D) extrusion-based printing is a paste-based rapid prototyping process, which is capable of building complex 3D structures. The aim of this study was to explore the feasibility of 3D extrusion-based printing as a pharmaceutical manufacture technique for the fabrication of gastro-floating tablets. Novel low-density lattice internal structure gastro-floating tablets of dipyridamole were developed to prolong the gastric residence time in order to improve drug release rate and consequently, improve bioavailability and therapeutic efficacy. Excipients commonly employed in the pharmaceutical study could be efficiently applied in the room temperature 3D extrusion-based printing process. The tablets were designed with three kinds of infill percentage and prepared by hydroxypropyl methylcellulose (HPMC K4M) and hydroxypropyl methylcellulose (HPMC E15) as hydrophilic matrices and microcrystalline cellulose (MCC PH101) as extrusion molding agent. In vitro evaluation of the 3D printed gastro-floating tablets was performed by determining mechanical properties, content uniformity, and weight variation. Furthermore, re-floating ability, floating duration time, and drug release behavior were also evaluated. Dissolution profiles revealed the relationship between infill percentage and drug release behavior. The results of this study revealed the potential of 3D extrusion-based printing to fabricate gastro-floating tablets with more than 8h floating process with traditional pharmaceutical excipients and lattice internal structure design. Copyright © 2017. Published by Elsevier B.V.

  18. Is the Aluminum Hypothesis Dead?

    PubMed Central

    2014-01-01

    The Aluminum Hypothesis, the idea that aluminum exposure is involved in the etiology of Alzheimer disease, dates back to a 1965 demonstration that aluminum causes neurofibrillary tangles in the brains of rabbits. Initially the focus of intensive research, the Aluminum Hypothesis has gradually been abandoned by most researchers. Yet, despite this current indifference, the Aluminum Hypothesis continues to attract the attention of a small group of scientists and aluminum continues to be viewed with concern by some of the public. This review article discusses reasons that mainstream science has largely abandoned the Aluminum Hypothesis and explores a possible reason for some in the general public continuing to view aluminum with mistrust. PMID:24806729

  19. Extent and mechanism of phase separation during the extrusion of calcium phosphate pastes.

    PubMed

    O'Neill, Rory; McCarthy, Helen O; Cunningham, Eoin; Montufar, Edgar; Ginebra, Maria-Pau; Wilson, D Ian; Lennon, Alex; Dunne, Nicholas

    2016-02-01

    The aim of this study was to increase understanding of the mechanism and dominant drivers influencing phase separation during ram extrusion of calcium phosphate (CaP) paste for orthopaedic applications. The liquid content of extrudate was determined, and the flow of liquid and powder phases within the syringe barrel during extrusion were observed, subject to various extrusion parameters. Increasing the initial liquid-to-powder mass ratio, LPR, (0.4-0.45), plunger rate (5-20 mm/min), and tapering the barrel exit (45°-90°) significantly reduced the extent of phase separation. Phase separation values ranged from (6.22 ± 0.69 to 18.94 ± 0.69 %). However altering needle geometry had no significant effect on phase separation. From powder tracing and liquid content determination, static zones of powder and a non-uniform liquid distribution was observed within the barrel. Measurements of extrudate and paste LPR within the barrel indicated that extrudate LPR remained constant during extrusion, while LPR of paste within the barrel decreased steadily. These observations indicate the mechanism of phase separation was located within the syringe barrel. Therefore phase separation can be attributed to either; (1) the liquid being forced downstream by an increase in pore pressure as a result of powder consolidation due to the pressure exerted by the plunger or (2) the liquid being drawn from paste within the barrel, due to suction, driven by dilation of the solids matrix at the barrel exit. Differentiating between these two mechanisms is difficult; however results obtained suggest that suction is the dominant phase separation mechanism occurring during extrusion of CaP paste.

  20. Aluminum-fly ash metal matrix composites for automotive parts. [Reports for April 1 to June 30, 1999, and July 1 to September 30, 1999

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weiss, David; Purgert, Robert; Rhudy, Richard

    1999-10-15

    Some highlights are: (1) During this quarter's field trials, sand mold castings of parts and permanent mold tensile testing bars, K mold bars, and ingots were made from aluminum alloy-fly ash melts. (2) Another objective was met, i.e., to use class ''F'' type precipitator fly ash consisting of particle sizes less than 100 microns. It was possible to pour the composite melt into the sand mold through a filter. (3) Trials were run to determine the required amount of the wetting agent, magnesium, to ensure appropriate mixing of the aluminum alloy and fly ash. The magnesium content required to mixmore » ''F'' fly ash was much lower compared to that required to mix hybrid ''C-F'' fly ash in similar melts. Fly ash particles of less than 100 microns were mixed in aluminum melt. Large scale field trials were undertaken at Eck Industries with the goal of standardizing procedures for producing aluminum-fly ash composite melts and to analyze the structure and properties of the resulting material. Limited testing of tensile properties has been done on pressure die cast parts, and attempts are underway to improve the distribution of fly ash in both sand cast and pressure die cast samples. Eck Industries performed radiographic, heat treatment, and tensile tests on permanent mold cast tensile test bars. After fly ash mixing experiments, the Lanxide high speed-high shear mixer (originally designed for mixing Al-SiC melts) was employed in an attempt to avoid fly ash agglomeration. It led to demixing (instead of deagglomerating) of some fly ash. However, the permanent mold tensile bars poured after high shear mixing displayed good distribution of fly ash in castings. A modified impeller design is being considered for high speed-high shear mixing of aluminum-fly ash melts.« less

  1. Structure-Property Correlations in Al-Li Alloy Integrally Stiffened Extrusions

    NASA Technical Reports Server (NTRS)

    Hales, Stephen J.; Hafley, Robert A.

    2001-01-01

    The objective of this investigation was to establish the relationship between mechanical property anisotropy, microstructure and crystallographic texture in integrally 'T'-stiffened extruded panels fabricated from the Al-Li alloys 2195, 2098 and 2096. In-plane properties were measured as a function of orientation at two locations in the panels, namely mid-way between (Skin), and directly beneath (Base), the integral 'T' stiffeners. The 2195 extrusion exhibited the best combination of strength and toughness, but was the most anisotropic. The 2098 extrusion exhibited lower strength and comparable toughness, but was more isotropic than 2195. The 2096 extrusion exhibited the lowest strength and poor toughness, but was the most isotropic. All three alloys exhibited highly elongated grain structures and similar location-dependent variations in grain morphology. The textural characteristics comprised a beta + <100> fiber texture, similar to rolled product, in the Skin regions and alpha <111> + <100> fiber texture, comparable to axisymmetric extruded product, in the Base regions. In an attempt to quantitatively correlate texture with yield strength anisotropy, the original 'full constraint' Taylor model and a variant of the 'relaxed constraint' model, explored by Wert et al., were applied to the data. A comparison of the results revealed that the Wert model was consistently more accurate than the Taylor model.

  2. Multidrug and toxin extrusion proteins as transporters of antimicrobial drugs.

    PubMed

    Nies, Anne T; Damme, Katja; Schaeffeler, Elke; Schwab, Matthias

    2012-12-01

    Antimicrobial drugs are essential in the treatment of infectious diseases. A better understanding of transport processes involved in drug disposition will improve the predictability of drug-drug interactions with consequences for drug response. Multidrug And Toxin Extrusion (MATE; SLC47A) proteins are efflux transporters mediating the excretion of several antimicrobial drugs as well as other organic compounds into bile and urine, thereby contributing to drug disposition. This review summarizes current knowledge of the structural and molecular features of human MATE transporters including their functional role in drug transport with a specific focus on antimicrobial drugs. The PubMed database was searched using the terms "MATE1," "MATE-2K," "MATE2," "SLC47A1," "SLC47A2," and "toxin extrusion protein" (up to June 2012). MATE proteins have been recognized as important transporters mediating the final excretion step of cationic drugs into bile and urine. These include the antiviral drugs acyclovir, amprenavir, and ganciclovir, the antibiotics cephalexin, cephradine and levofloxacin, as well as the antimalarial agents chloroquine and quinine. It is therefore important to enhance our understanding of the role of MATEs in drug extrusion with particular emphasis on the functional consequences of genetic variants on disposition of these antimicrobial drugs.

  3. The effect of zinc on the aluminum anode of the aluminum-air battery

    NASA Astrophysics Data System (ADS)

    Tang, Yougen; Lu, Lingbin; Roesky, Herbert W.; Wang, Laiwen; Huang, Baiyun

    Aluminum is an ideal material for batteries, due to its excellent electrochemical performance. Herein, the effect of zinc on the aluminum anode of the aluminum-air battery, as an additive for aluminum alloy and electrolytes, has been studied. The results show that zinc can decrease the anodic polarization, restrain the hydrogen evolution and increase the anodic utilization rate.

  4. Medial extrusion of the posterior segment of medial meniscus is a sensitive sign for posterior horn tears.

    PubMed

    Ohishi, Tsuyoshi; Suzuki, Daisuke; Yamamoto, Kazufumi; Banno, Tomohiro; Shimizu, Yuta; Matsuyama, Yukihiro

    2014-01-01

    To evaluate medial extrusion of the posterior segment of the medial meniscus in posterior horn tears. This study enrolled 72 patients without medial meniscal tears (group N), 72 patients with medial meniscal tears without posterior horn tears (group PH-), 44 patients with posterior horn tears of the medial meniscus (group PH+). All meniscal tears were confirmed by arthroscopy. Medial extrusion of the middle segment and the posterior segment was measured on coronal MRIs. Extrusions of both middle and posterior segments in groups PH- and PH+ (middle segment; 2.94±1.51 mm for group PH- and 3.75±1.69 mm for group PH+, posterior segment; 1.85±1.82 mm for group PH- and 4.59±2.74 mm for group PH+) were significantly larger than those in group N (middle segment; 2.04±1.20, posterior segment; 1.21±1.86). Both indicators of extrusion in group PH+ were larger than those in group PH-. In the early OA category, neither middle nor posterior segment in group PH- extruded more than in group N. However, only the posterior segment in group PH+ extruded significantly more than in group N. Multiple lineal regression analyses revealed that posterior segment extrusion was strongly correlated with the posterior horn tears (p<0.001) among groups PH- and PH+. The newly presented indicator for extrusion of the posterior segment of the medial meniscus is associated with posterior horn tears in comparison with the extrusion of the middle segment, especially in the early stages of osteoarthritis. Level II--Diagnostic Study. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Hot forging of roll-cast high aluminum content magnesium alloys

    NASA Astrophysics Data System (ADS)

    Kishi, Tomohiro; Watari, Hisaki; Suzuki, Mayumi; Haga, Toshio

    2017-10-01

    This paper reports on hot forging of high aluminum content magnesium alloy sheets manufactured using horizontal twin-roll casting. AZ111 and AZ131 were applied for twin-roll casting, and a hot-forging test was performed to manufacture high-strength magnesium alloy components economically. For twin-roll casting, the casting conditions of a thick sheet for hot forging were investigated. It was found that twin-roll casting of a 10mm-thick magnesium alloy sheet was possible at a roll speed of 2.5m/min. The grain size of the cast strip was 50 to 70µm. In the hot-forging test, blank material was obtained from as-cast strip. A servo press machine with a servo die cushion was used to investigate appropriate forging conditions (e.g., temperature, forging load, and back pressure) for twin-roll casts (TRCs) AZ111 and AZ131. It was determined that high aluminum content magnesium alloy sheets manufactured using twin-roll casting could be forged with a forging load of 150t and a back pressure of 3t at 420 to 430°C. Applying back pressure during hot forging effectively forged a pin-shaped product.

  6. High energy density aluminum battery

    DOEpatents

    Brown, Gilbert M.; Paranthaman, Mariappan Parans; Dai, Sheng; Dudney, Nancy J.; Manthiram, Arumugan; McIntyre, Timothy J.; Sun, Xiao-Guang; Liu, Hansan

    2016-10-11

    Compositions and methods of making are provided for a high energy density aluminum battery. The battery comprises an anode comprising aluminum metal. The battery further comprises a cathode comprising a material capable of intercalating aluminum or lithium ions during a discharge cycle and deintercalating the aluminum or lithium ions during a charge cycle. The battery further comprises an electrolyte capable of supporting reversible deposition and stripping of aluminum at the anode, and reversible intercalation and deintercalation of aluminum or lithium at the cathode.

  7. Extrusion of Debris from Primary Molar Root Canals following Instrumentation with Traditional and New File Systems.

    PubMed

    Thakur, Bhagyashree; Pawar, Ajinkya M; Kfir, Anda; Neelakantan, Prasanna

    2017-11-01

    To assess the amount of debris extruded apically during instrumentation of distal canals of extracted primary molars by three instrument systems [ProTaper Universal (PTU), ProTaper NEXT (PTN), and self-adjusting file (SAF)] compared with conventional stainless steel hand K-files (HF, control). Primary mandibular molars (n = 120) with a single distal canal were selected and randomly divided into four groups (n = 30) for root canal instrumentation using group I, HF (to size 0.30/0.02 taper), group II, PTU (to size F3), group III, PTN (to size X3), and group IV, SAF. Debris extruded during instrumentation was collected in preweighed Eppendorf tubes, stored in an incubator at 70°C for 5 days and then weighed. Statistical analysis was performed by one-way analysis of variance (ANOVA), followed by Turkey's post hoc test (p = 0.05). All the groups resulted in extrusion of debris. There was statistically significant difference (p < 0.001) in the debris extrusion between the three groups: HF (0.00133 ± 0.00012), PTU (0.00109 ± 0.00005), PTN (0.00052 ± 0.00008), and SAF (0.00026 ± 0.00004). Instrumentation with SAF resulted in the least debris extrusion when used for shaping root canals of primary molar teeth. Debris extrusion in primary teeth poses an adverse effect on the stem cells and may also alter the permanent dental germ. Debris extrusion is rarely reported for primary teeth and it is important for the clinician to know which endodontic instrumentation leads to less extrusion of debris.

  8. Packaged die heater

    DOEpatents

    Spielberger, Richard; Ohme, Bruce Walker; Jensen, Ronald J.

    2011-06-21

    A heater for heating packaged die for burn-in and heat testing is described. The heater may be a ceramic-type heater with a metal filament. The heater may be incorporated into the integrated circuit package as an additional ceramic layer of the package, or may be an external heater placed in contact with the package to heat the die. Many different types of integrated circuit packages may be accommodated. The method provides increased energy efficiency for heating the die while reducing temperature stresses on testing equipment. The method allows the use of multiple heaters to heat die to different temperatures. Faulty die may be heated to weaken die attach material to facilitate removal of the die. The heater filament or a separate temperature thermistor located in the package may be used to accurately measure die temperature.

  9. Does apical negative pressure prevent the apical extrusion of debris and irrigant compared with conventional irrigation? A systematic review and meta-analysis.

    PubMed

    Romualdo, Priscilla Coutinho; de Oliveira, Katharina Morant Holanda; Nemezio, Mariana Alencar; Küchler, Erika Calvano; Silva, Raquel Assed Bezerra; Nelson-Filho, Paulo; Silva, Lea Assed Bezerra

    2017-12-01

    The aim of this study was to evaluate if apical negative pressure (ANP) irrigation prevents the apical extrusion of debris and irrigant compared with conventional needle irrigation through a systematic review and meta-analysis. A computer search of dental literature was performed using four different databases. A combination of the terms 'apical negative pressure', 'endovac', 'apical extrusion', 'extrusion' and 'endodontics' was used. Studies that used extracted human teeth with a mature apex and that evaluated the apical extrusion of debris and/or irrigating solution were included. After an evaluation of the full studies according to the eligibility criteria, eight studies were critically analysed and subjected to quality assessment and risk of bias. Only four studies that evaluated extrusion of irrigant were considered as having high methodological quality and were subjected to a meta-analysis. Studies evaluating extrusion of debris did not have sufficient methodological quality to be subjected to the meta-analysis. The forest plot indicated that ANP irrigation prevents the risk of irrigant extrusion compared with conventional irrigation (OR 0.07 [95%CI 0.02-0.20]; P < 0.00001). This systematic review and meta-analysis showed that ANP prevents the apical extrusion of irrigant. There is no evidence if this type of irrigation prevents the extrusion of debris. © 2017 Australian Society of Endodontology Inc.

  10. To the Die Smartly: Heavy Ion Testing of PEMs on COTS Boards Through the Plastic

    NASA Technical Reports Server (NTRS)

    Wert, J. L.; Normand, E.; Oberg, D. L.; Stevens, L.; Blumer, J.; Fisher, E.; Wode, G.

    1999-01-01

    Seven commercial off the shelf (COTS) boards containing electronic devices (all in plastic packages, PEMS), under consideration for use in a spacecraft subsystem, were exposed to beams of very high energy ions at the National Superconducting Cyclotron Laboratory (MSU). The ion energies were high enough that an entire board could be exposed in air, and it could still penetrate through the plastic and reach the silicon die. A total of about 300 runs were made, and for each, the LET of the ion entering the silicon die had to be determined, based on the thickness of the plastic lid and the thickness of overlaying materials (e.g., aluminum degraders). Single event latchup (SEL) and functional interrupt (SEFI) were determined during each run, the SEFI by means of simple programs being continuously written to and read from the boards to monitor functionality, while each part was being exposed to the heavy ions.

  11. Orthodontic extrusion of Ellis Class VIII fracture of maxillary lateral incisor - The sling shot method.

    PubMed

    Felicita, A Sumathi

    2018-07-01

    The aim of this paper is to evaluate the efficacy of forced extrusion using the sling shot elastic. A 21 year adult patient reported with an Ellis Class VIII fracture of the maxillary right lateral incisor. Root canal treatment followed by a fiber reinforced composite post was placed and core build up was done. A metal button was bonded to the tooth. Begg brackets were placed from the second premolar on one side to the second premolar on the opposite side. 0.016″ × 0.025″ stainless steel was placed in ribbon mode. The ligature wire was placed as a sling shot from the button on the fractured tooth to the two adjacent teeth. 4 mm of extrusion was achieved and there was no evidence of root resorption. Forced extrusion was achieved in four months. The sling shot method is a very effective method of ligation. Light forces are delivered over a long duration with definitive results as compared to the inconsistent force delivery with conventional extrusion mechanics.

  12. Development of an Ointment Formulation Using Hot-Melt Extrusion Technology.

    PubMed

    Bhagurkar, Ajinkya M; Angamuthu, Muralikrishnan; Patil, Hemlata; Tiwari, Roshan V; Maurya, Abhijeet; Hashemnejad, Seyed Meysam; Kundu, Santanu; Murthy, S Narasimha; Repka, Michael A

    2016-02-01

    Ointments are generally prepared either by fusion or by levigation methods. The current study proposes the use of hot-melt extrusion (HME) processing for the preparation of a polyethylene glycol base ointment. Lidocaine was used as a model drug. A modified screw design was used in this process, and parameters such as feeding rate, barrel temperature, and screw speed were optimized to obtain a uniform product. The product characteristics were compared with an ointment of similar composition prepared by conventional fusion method. The rheological properties, drug release profile, and texture characteristics of the hot-melt extruded product were similar to the conventionally prepared product. This study demonstrates a novel application of the hot-melt extrusion process in the manufacturing of topical semi-solids.

  13. Causes and Mitigation of Fuel Pilot Operated Valve Pilot Seal Extrusion in Space Shuttle Orbiter Primary RCS Thrusters

    NASA Technical Reports Server (NTRS)

    Waller, Jess M.; Roth, Tim E.; Saulsberry, Regor L.; Haney, William A.; Kelly, Terence S; Forsyth, Bradley S.

    2004-01-01

    Extrusion of a polytetrafluoroethylene (PTFE) pilot seal located in the Space Shuttle Orbiter Primary Reaction Control Subsystem (PRCS) thruster fuel valve has been implicated in 68 ground and on-orbit fuel valve failures. A rash of six extrusion-related in-flight anomalies over a six-mission span from December 2001 to October 2002 led to heightened activity at various NASA centers, and the formation of a multidisciplinary team to solve the problem. Empirical and theoretical approaches were used. For example, thermomechanical analysis (TMA) and exposure tests showed that some extrusion is produced by thermal cycling; however, a review of thruster service histories did not reveal a strong link between thermal cycling and extrusion. Calculations showed that the amount of observed extrusion often exceeded the amount allowed by thermally-induced stress relief. Failure analysis of failed hardware also revealed the presence of fuel-oxidizer reaction product (FORP) inside the fuel valve pilot seal cavity, and differential scanning calorimetry (DSC) showed that the FORP was intimately associated with the pilot seal material. Component-level exposure tests showed that FORP of similar composition could be produced by adjacent oxidizer valve leakage in the absence of thruster firing. Specific gravity data showed that extruded fuel valve pilot seals were less dense than new pilot seals or oxidizer valve pilot seals, indicating permanent modification of the PTFE occurred during service. It is concluded that some thermally-induced extrusion is unavoidable; however, oxidizer leakage-induced extrusion is mostly avoidable and can be mitigated. Several engineering level mitigation strategies are discussed.

  14. Investigation of Methods for Selectively Reinforcing Aluminum and Aluminum-Lithium Materials

    NASA Technical Reports Server (NTRS)

    Bird, R. Keith; Alexa, Joel A.; Messick, Peter L.; Domack, Marcia S.; Wagner, John A.

    2013-01-01

    Several studies have indicated that selective reinforcement offers the potential to significantly improve the performance of metallic structures for aerospace applications. Applying high-strength, high-stiffness fibers to the high-stress regions of aluminum-based structures can increase the structural load-carrying capability and inhibit fatigue crack initiation and growth. This paper discusses an investigation into potential methods for applying reinforcing fibers onto the surface of aluminum and aluminum-lithium plate. Commercially-available alumina-fiber reinforced aluminum alloy tapes were used as the reinforcing material. Vacuum hot pressing was used to bond the reinforcing tape to aluminum alloy 2219 and aluminum-lithium alloy 2195 base plates. Static and cyclic three-point bend testing and metallurgical analysis were used to evaluate the enhancement of mechanical performance and the integrity of the bond between the tape and the base plate. The tests demonstrated an increase in specific bending stiffness. In addition, no issues with debonding of the reinforcing tape from the base plate during bend testing were observed. The increase in specific stiffness indicates that selectively-reinforced structures could be designed with the same performance capabilities as a conventional unreinforced structure but with lower mass.

  15. Development and Performance of a Highly Sensitive Model Formulation Based on Torasemide to Enhance Hot-Melt Extrusion Process Understanding and Process Development.

    PubMed

    Evans, Rachel C; Kyeremateng, Samuel O; Asmus, Lutz; Degenhardt, Matthias; Rosenberg, Joerg; Wagner, Karl G

    2018-05-01

    The aim of this work was to investigate the use of torasemide as a highly sensitive indicator substance and to develop a formulation thereof for establishing quantitative relationships between hot-melt extrusion process conditions and critical quality attributes (CQAs). Using solid-state characterization techniques and a 10 mm lab-scale co-rotating twin-screw extruder, we studied torasemide in a Soluplus® (SOL)-polyethylene glycol 1500 (PEG 1500) matrix, and developed and characterized a formulation which was used as a process indicator to study thermal- and hydrolysis-induced degradation, as well as residual crystallinity. We found that torasemide first dissolved into the matrix and then degraded. Based on this mechanism, extrudates with measurable levels of degradation and residual crystallinity were produced, depending strongly on the main barrel and die temperature and residence time applied. In addition, we found that 10% w/w PEG 1500 as plasticizer resulted in the widest operating space with the widest range of measurable residual crystallinity and degradant levels. Torasemide as an indicator substance behaves like a challenging-to-process API, only with higher sensitivity and more pronounced effects, e.g., degradation and residual crystallinity. Application of a model formulation containing torasemide will enhance the understanding of the dynamic environment inside an extruder and elucidate the cumulative thermal and hydrolysis effects of the extrusion process. The use of such a formulation will also facilitate rational process development and scaling by establishing clear links between process conditions and CQAs.

  16. Ultrafine-grained titanium for medical implants

    DOEpatents

    Zhu, Yuntian T.; Lowe, Terry C.; Valiev, Ruslan Z.; Stolyarov, Vladimir V.; Latysh, Vladimir V.; Raab, Georgy J.

    2002-01-01

    We disclose ultrafine-grained titanium. A coarse-grained titanium billet is subjected to multiple extrusions through a preheated equal channel angular extrusion (ECAE) die, with billet rotation between subsequent extrusions. The resulting billet is cold processed by cold rolling and/or cold extrusion, with optional annealing. The resulting ultrafine-grained titanium has greatly improved mechanical properties and is used to make medical implants.

  17. Degradation Mechanisms in Aluminum Matrix Composites: Alumina/Aluminum and Boron/Aluminum. Ph.D. Thesis - North Carolina State Univ. at Raleigh

    NASA Technical Reports Server (NTRS)

    Olsen, G. C.

    1981-01-01

    The effects of fabrication and long term thermal exposure (up to 10,000 hours at 590 K) on two types of aluminum matrix composites were examined. An alumina/aluminum composite, was made of continuous alpha Al2O3 fibers in a matrix of commercially pure aluminum alloyed with 2.8% lithium. The mechanical properties of the material, the effect of isothermal exposure, cyclic thermal exposure, and fatigue are presented. Two degradation mechanisms are identified. One was caused by formation of a nonstoichiometric alumina during fabrication, the other by a loss of lithium to a surface reaction during long term thermal exposure. The other composite, boron/aluminum, made of boron fibers in an aluminum matrix, was investigated using five different aluminum alloys for the matrices. The mechanical properties of each material and the effect of isothermal and cyclic thermal exposure are presented. The effects of each alloy constituent on the degradation mechanisms are discussed. The effects of several reactions between alloy constituents and boron fibers on the composite properties are discussed.

  18. PKA-regulated VASP phosphorylation promotes extrusion of transformed cells from the epithelium

    PubMed Central

    Anton, Katarzyna A.; Sinclair, John; Ohoka, Atsuko; Kajita, Mihoko; Ishikawa, Susumu; Benz, Peter M.; Renne, Thomas; Balda, Maria; Matter, Karl; Fujita, Yasuyuki

    2014-01-01

    ABSTRACT At the early stages of carcinogenesis, transformation occurs in single cells within tissues. In an epithelial monolayer, such mutated cells are recognized by their normal neighbors and are often apically extruded. The apical extrusion requires cytoskeletal reorganization and changes in cell shape, but the molecular switches involved in the regulation of these processes are poorly understood. Here, using stable isotope labeling by amino acids in cell culture (SILAC)-based quantitative mass spectrometry, we have identified proteins that are modulated in transformed cells upon their interaction with normal cells. Phosphorylation of VASP at serine 239 is specifically upregulated in RasV12-transformed cells when they are surrounded by normal cells. VASP phosphorylation is required for the cell shape changes and apical extrusion of Ras-transformed cells. Furthermore, PKA is activated in Ras-transformed cells that are surrounded by normal cells, leading to VASP phosphorylation. These results indicate that the PKA–VASP pathway is a crucial regulator of tumor cell extrusion from the epithelium, and they shed light on the events occurring at the early stage of carcinogenesis. PMID:24963131

  19. Effects of raw material extrusion and steam conditioning on feed pellet quality and nutrient digestibility of growing meat rabbits.

    PubMed

    Liao, Kuoyao; Cai, Jingyi; Shi, Zhujun; Tian, Gang; Yan, Dong; Chen, Delin

    2017-06-01

    This study was conducted to investigate the effects of raw material extrusion and steam conditioning on feed pellet quality and nutrient digestibility of growing meat rabbits, in order to determine appropriate rabbit feed processing methods and processing parameters. In Exp. 1, an orthogonal design was adopted. Barrel temperature, material moisture content and feed rate were selected as test factors, and acid detergent fiber (ADF) content was selected as an evaluation index to research the optimum extrusion parameters. In Exp. 2, a two-factor design was adopted. Four kinds of rabbit feeds were processed and raw material extrusion adopted optimum extrusion parameters of Exp. 1. A total of 40 healthy and 42-day-old rabbits with similar weight were used in a randomized design, which consisted of 4 groups and 10 replicates in each group (1 rabbits in each replicate). The adaptation period lasted for 7 d, and the digestion trial lasted for 4 d. The results showed as follows: 1) ADF was significantly affected by barrel temperature ( P  < 0.05); the optimum extrusion parameters were barrel temperature 125 °C, moisture content 16% and feed rate 9 Hz. 2) Raw material extrusion and steam conditioning both significantly decreased powder percentage, pulverization ratio and protein solubility ( P  < 0.05), significantly improved hardness and starch gelatinization degree of rabbit feed ( P  < 0.05). They both had significant interaction effects on the processing quality of rabbit feed ( P  < 0.05). 3) Extrusion significantly improved the apparent digestibility of dry matter and total energy ( P  < 0.05). Extrusion and steam conditioning both significantly improved the apparent digestibility of crude fiber (CF), ADF and NDF ( P  < 0.05), but they had no interaction effects on the apparent digestibility of rabbit feed. Thus, using extrusion and steam conditioning technology at the same time in the weaning rabbits feed processing can improve the pellet quality and

  20. Hot melt extrusion of ion-exchange resin for taste masking.

    PubMed

    Tan, David Cheng Thiam; Ong, Jeremy Jianming; Gokhale, Rajeev; Heng, Paul Wan Sia

    2018-05-30

    Taste masking is important for some unpleasant tasting bioactives in oral dosage forms. Among many methods available for taste-masking, use of ion-exchange resin (IER) holds promise. IER combined with hot melt extrusion (HME) may offer additional advantages over solvent methods. IER provides taste masking by complexing with the drug ions and preventing drug dissolution in the mouth. Drug-IER complexation approaches described in literatures are mainly based either on batch processing or column eluting. These methods of drug-IER complexation have obvious limitations such as high solvent volume requirements, multiprocessing steps and extended processing time. Thus, the objective of this study was to develop a single-step, solvent-free, continuous HME process for complexation of drug-IER. The screening study evaluated drug to IER ratio, types of IER and drug complexation methods. In the screening study, a potassium salt of a weakly acidic carboxylate-based cationic IER was found suitable for the HME method. Thereafter, optimization study was conducted by varying HME process parameters such as screw speed, extrusion temperature and drug to IER ratio. It was observed that extrusion temperature and drug to IER ratio are imperative in drug-IER complexation through HME. In summary, this study has established the feasibility of a continuous complexation method for drug to IER using HME for taste masking. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Finite Element Analysis of ECAP, TCAP, RUE and CGP Processes

    NASA Astrophysics Data System (ADS)

    Patil, Deepak C.; Kallannavar, Vinayak; Bhovi, Prabhakar M.; Kori, S. A.; Venkateswarlu, K.

    2016-02-01

    A finite element method was applied to study the various severe plastic deformation processes like, Equal Channel Angular Pressing (ECAP), Tubular Channel Angular Pressing (TCAP), Repetitive Upsetting and Extrusion (RUE) and Constrained Groove Pressing (CGP), considering aluminum AA-390 alloy as specimen material for all these processes. FEA simulation was carried out using AFDEX simulation tool. Effect of the various ECAP process parameters like, die corner angle, channel angle, and the coefficient of friction were analyzed. The die corner angles were divided into 2 equal parts for increasing the effectiveness of ECAP process, thereby increasing the channel number from 2 to 3 and further, their influence on ECAP process was investigated. A 3D simulation of TCAP was carried out for die shapes like triangular and trapezoidal, and variation of the generated stress and strain was plotted. In CGP, four cycle operation was carried out; wherein each cycle is composed of corrugating the specimen and subsequent straightening to original dimension. During RUE process, a maximum effective stress of 683.1 MPa was induced in the specimen after processing it for four complete cycles of RUE process; whereas the maximum strain induced during the same condition was 3.715.

  2. Aluminum and Young Artists.

    ERIC Educational Resources Information Center

    Anderson, Thomas

    1980-01-01

    The author suggests a variety of ways in which aluminum and aluminum foil can be used in elementary and junior high art classes: relief drawing and rubbing; printing; repousse; sculpture; mobiles; foil sculpture; and three dimensional design. Sources of aluminum supplies are suggested. (SJL)

  3. SPHERICAL DIE

    DOEpatents

    Livingston, J.P.

    1959-01-27

    A die is presented for pressing powdered materials into a hemispherical shape of uniforin density and wall thickness comprising a fcmale and male die element held in a stationary spaced relation with the space being equivalent to the wall thickness and defining the hemispherical shape, a pressing ring linearly moveable along the male die element, an inlet to fill the space with powdered materials, a guiding system for moving the pressing ring along the male die element so as to press the powdered material and a heating system for heating the male element so that the powdered material is heated while being pressed.

  4. Procyanidin content of grape seed and pomace, and total anthocyanin content of grape pomace as affected by extrusion processing.

    PubMed

    Khanal, R C; Howard, L R; Prior, R L

    2009-08-01

    Grape juice processing by-products, grape seed and pomace are a rich source of procyanidins, compounds that may afford protection against chronic disease. This study was undertaken to identify optimal extrusion conditions to enhance the contents of monomers and dimers at the expense of large molecular weight procyanidin oligomers and polymers in grape seed and pomace. Extrusion variables, temperature (160, 170, and 180 degrees C in grape seed, and 160, 170, 180, and 190 degrees C in pomace) and screw speed (100, 150, and 200 rpm in both) were tested using mixtures of grape seed as well as pomace with decorticated white sorghum flour at a ratio of 30 : 70 and moisture content of 45%. Samples of grape seed and pomace were analyzed for procyanidin composition before and after extrusion, and total anthocyanins were determined in pomace. Additionally, chromatograms from diol and normal phase high-performance liquid chromatography were compared for the separation of procyanidins. Extrusion of both grape by-products increased the biologically important monomer and dimers considerably across all temperature and screw speeds. Highest monomer content resulted when extruded at a temperature of 170 degrees C and screw speed of 200 rpm, which were 120% and 80% higher than the unextruded grape seed and pomace, respectively. Increases in monomer and dimer contents were apparently the result of reduced polymer contents, which declined by 27% to 54%, or enhanced extraction facilitated by disruption of the food matrix during extrusion. Extrusion processing reduced total anthocyanins in pomace by 18% to 53%. Extrusion processing can be used to increase procyanidin monomer and dimer contents in grape seed and pomace. Procyanidins in grape by-products have many health benefits, but most are present as large molecular weight compounds, which are poorly absorbed. Extrusion processing appears to be a promising technology to increase levels of the bioactive low molecular weight

  5. Location of the tibial tunnel aperture affects extrusion of the lateral meniscus following reconstruction of the anterior cruciate ligament.

    PubMed

    Kodama, Yuya; Furumatsu, Takayuki; Miyazawa, Shinichi; Fujii, Masataka; Tanaka, Takaaki; Inoue, Hiroto; Ozaki, Toshifumi

    2017-08-01

    The anterior root of the lateral meniscus provides functional stability to the meniscus. In this study, we evaluated the relationship between the position of the tibial tunnel and extrusion of the lateral meniscus after anterior cruciate ligament reconstruction, where extrusion provides a proxy measure of injury to the anterior root. The relationship between extrusion and tibial tunnel location was retrospectively evaluated from computed tomography and magnetic resonance images of 26 reconstructed knees, contributed by 25 patients aged 17-31 years. A measurement grid was used to localize the position of the tibial tunnel based on anatomical landmarks identified from the three-dimensional reconstruction of axial computed tomography images of the tibial plateaus. The reference point-to-tibial tunnel distance (mm) was defined as the distance from the midpoint of the lateral edge of the grid to the posterolateral aspect of the tunnel aperture. The optimal cutoff of this distance to minimize post-operative extrusion was identified using receiver operating curve analysis. Extrusion of the lateral meniscus was positively correlated to the reference point-to-tibial tunnel distance (r 2  = 0.64; p < 0.001), with a cutoff distance of 5 mm having a sensitivity to extrusion of 83% and specificity of 93%. The mean extrusion for a distance >5 mm was 0.40 ± 0.43 mm, compared to 1.40 ± 0.51 mm for a distance ≤5 mm (p < 0.001). Therefore, a posterolateral location of the tibial tunnel aperture within the footprint of the anterior cruciate ligament decreases the reference point-to-tibial tunnel distance and increases extrusion of the lateral meniscus post-reconstruction. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1625-1633, 2017. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  6. The Limits of Extrusion in the Western Himalaya

    NASA Astrophysics Data System (ADS)

    Zhang, K.; Webb, A. G.; Donaldson, D.; Johnson, S.; Elorriaga, T.

    2014-12-01

    Himalayan orogenesis is commonly explained by 1) extrusion models, involving expulsion of high-grade rocks southwards from beneath Tibet and up towards the High Himalayan orographic front, and/or 2) duplexing models, involving accretion of thrust horses from the downgoing Indian plate to the over-riding orogenic wedge. Most extrusion models predict exhumation and erosion of upper-amphibolite facies metamorphic rocks between the Main Central thrust (MCT) and a structurally higher normal fault, and therefore can be tested by determining if such high grade rocks occur between the MCT and the Indus-Yalu suture to the north. Prior qualitative studies suggest that such rocks are missing across the east Ladakh / Chamba and Kashmir regions of the western Himalaya. Here we present new quantitative and semi-quantitative results that document low peak metamorphic temperatures along a northeast-trending transect across the east Ladakh / Chamba Himalaya. We performed illite crystallinity (IC) and quartz grain boundary analyses to determine metamorphic and deformation temperatures, respectively. Calibrated IC values of structurally high samples range from 0.25 to 0.54, indicating temperatures of ~100 ˚C to ~300 ˚C. In structurally lower, muscovite +/- biotite-bearing meta-pelitic and meta-psammitic rocks, quartz grain boundaries show bulging recrystallization fabrics, corresponding to deformation temperatures of <~450 ˚C. Local exceptions occur along the southeast margin of the study region near a dome, where quartz sub-grain rotation fabrics indicate deformation temperatures between ~450 ˚C and ~550 ˚C. Our results, combined with similar IC values to the north from Girard et al. [2001, Clay Minerals v. 36, p. 237-247], demonstrate that a continuous strip of <~450 ˚C rocks extends from the MCT to the Indus-Yalu suture here. Therefore the predictions of extrusion models are not met in this portion of the Himalaya; we present alternative duplexing models.

  7. Multi-channel Spiral Twist Extrusion (MCSTE): A Novel Severe Plastic Deformation Technique for Grain Refinement

    NASA Astrophysics Data System (ADS)

    El-Garaihy, W. H.; Fouad, D. M.; Salem, H. G.

    2018-07-01

    Multi-channel Spiral Twist Extrusion (MCSTE) is introduced as a novel severe plastic deformation (SPD) technique for producing superior mechanical properties associated with ultrafine grained structure in bulk metals and alloys. The MCSTE design is based on inserting a uniform square cross-sectioned billet within stacked disks that guarantee shear strain accumulation. In an attempt to validate the technique and evaluate its plastic deformation characteristics, a series of experiments were conducted. The influence of the number of MCSTE passes on the mechanical properties and microstructural evolution of AA1100 alloy were investigated. Four passes of MCSTE, at a relatively low twisting angle of 30 deg, resulted in increasing the strength and hardness coupled with retention of ductility. Metallographic observations indicated a significant grain size reduction of 72 pct after 4 passes of MCSTE compared with the as-received (AR) condition. Moreover, the structural uniformity increased with the number of passes, which was reflected in the hardness distribution from the peripheries to the center of the extrudates. The current study showed that the MCSTE technique could be an effective, adaptable SPD die design with a promising potential for industrial applications compared to its counterparts.

  8. Multi-channel Spiral Twist Extrusion (MCSTE): A Novel Severe Plastic Deformation Technique for Grain Refinement

    NASA Astrophysics Data System (ADS)

    El-Garaihy, W. H.; Fouad, D. M.; Salem, H. G.

    2018-04-01

    Multi-channel Spiral Twist Extrusion (MCSTE) is introduced as a novel severe plastic deformation (SPD) technique for producing superior mechanical properties associated with ultrafine grained structure in bulk metals and alloys. The MCSTE design is based on inserting a uniform square cross-sectioned billet within stacked disks that guarantee shear strain accumulation. In an attempt to validate the technique and evaluate its plastic deformation characteristics, a series of experiments were conducted. The influence of the number of MCSTE passes on the mechanical properties and microstructural evolution of AA1100 alloy were investigated. Four passes of MCSTE, at a relatively low twisting angle of 30 deg, resulted in increasing the strength and hardness coupled with retention of ductility. Metallographic observations indicated a significant grain size reduction of 72 pct after 4 passes of MCSTE compared with the as-received (AR) condition. Moreover, the structural uniformity increased with the number of passes, which was reflected in the hardness distribution from the peripheries to the center of the extrudates. The current study showed that the MCSTE technique could be an effective, adaptable SPD die design with a promising potential for industrial applications compared to its counterparts.

  9. Acid precipitation and food quality: Inhibition of growth and survival in black ducks and mallards by dietary aluminum, calcium and phosphorus

    USGS Publications Warehouse

    Robbins, C.S.

    1990-01-01

    In areas impacted by acid precipitation, water chemistry of acidic ponds and streams often changes, resulting in increased mobilization of aluminum and decreased concentration of calcium carbonate. Aluminum binds with phosphorus and inhibits its uptake by organisms. Thus, invertebrate food organisms used by waterfowl may have inadequate Ca and P or elevated Al for normal growth and development. Acid rain and its effects may be one of the factors negatively impacting American black ducks (Anas rubripes) in eastern North America. One-day old mallards (A. platyrhynchos) and black ducks were placed on one of three Ca:P regimens: low:low (LL), normal:normal (NN), and low:high (LH) with each regimen divided further into three or four Al levels for 10 weeks. Forty-five % of the black ducks died on nine different diets whereas only 28% of the mallards died on three different diets. Mortality was significantly related to diet in both species. Growth rates for body weight, culmens, wings, and tarsi of both species on control diets exceeded those on many treatment diets but the differences were less apparent for mallards than for black ducks. Differences among treatments were due to both Ca:P and Al levels.

  10. Formation of macromolecules in wheat gluten/starch mixtures during twin-screw extrusion: effect of different additives.

    PubMed

    Wang, Kaiqiang; Li, Cheng; Wang, Bingzhi; Yang, Wen; Luo, Shuizhong; Zhao, Yanyan; Jiang, Shaotong; Mu, Dongdong; Zheng, Zhi

    2017-12-01

    Wheat gluten comprises a good quality and inexpensive vegetable protein with an ideal amino acid composition. To expand the potential application of wheat gluten in the food industry, the effect of different additives on the physicochemical and structural properties of wheat gluten/starch mixtures during twin-screw extrusion was investigated. Macromolecules were observed to form in wheat gluten/starch mixtures during twin-screw extrusion, which may be attributed to the formation of new disulfide bonds and non-covalent interactions, as well as Maillard reaction products. Additionally, the water retention capacity and in vitro protein digestibility of all extruded wheat gluten/starch products significantly increased, whereas the nitrogen solubility index and free sulfhydryl group (SH) content decreased, during twin-screw extrusion. Secondary structural analysis showed that α-helices disappeared with the concomitant increase of antiparallel β-sheets, demonstrating the occurrence of protein aggregation. Microstructures suggested that the irregular wheat gluten granular structure was disrupted, with additive addition favoring transformation into a more layered or fibrous structure during twin-screw extrusion. The findings of the present study demonstrate that extrusion might affect the texture and quality of extruded wheat gluten-based foods and suggest that this process might serve as a basis for the high-value application of wheat gluten products. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  11. Facile Route to Rare Heterobimetallic Aluminum-Copper and Aluminum-Zinc Selenide Clusters.

    PubMed

    Li, Bin; Li, Jiancheng; Liu, Rui; Zhu, Hongping; Roesky, Herbert W

    2017-03-20

    Heterobimetallic aluminum-copper and aluminum-zinc clusters were prepared from the reaction of LAl(SeH) 2 [1; L = HC(CMeNAr) 2 and Ar = 2,6-iPr 2 C 6 H 3 ] with (MesCu) 4 and ZnEt 2 , respectively. The resulting clusters with the core structures of Al 2 Se 4 Cu 4 and Al 2 Se 4 Zn 3 exhibit unique metal-organic frameworks. This is a novel pathway for the synthesis of aluminum-copper and aluminum-zinc selenides. The products have been characterized by spectroscopic methods and single-crystal X-ray structural characterization.

  12. The aluminum smelting process.

    PubMed

    Kvande, Halvor

    2014-05-01

    This introduction to the industrial primary aluminum production process presents a short description of the electrolytic reduction technology, the history of aluminum, and the importance of this metal and its production process to modern society. Aluminum's special qualities have enabled advances in technologies coupled with energy and cost savings. Aircraft capabilities have been greatly enhanced, and increases in size and capacity are made possible by advances in aluminum technology. The metal's flexibility for shaping and extruding has led to architectural advances in energy-saving building construction. The high strength-to-weight ratio has meant a substantial reduction in energy consumption for trucks and other vehicles. The aluminum industry is therefore a pivotal one for ecological sustainability and strategic for technological development.

  13. The Aluminum Smelting Process

    PubMed Central

    2014-01-01

    This introduction to the industrial primary aluminum production process presents a short description of the electrolytic reduction technology, the history of aluminum, and the importance of this metal and its production process to modern society. Aluminum's special qualities have enabled advances in technologies coupled with energy and cost savings. Aircraft capabilities have been greatly enhanced, and increases in size and capacity are made possible by advances in aluminum technology. The metal's flexibility for shaping and extruding has led to architectural advances in energy-saving building construction. The high strength-to-weight ratio has meant a substantial reduction in energy consumption for trucks and other vehicles. The aluminum industry is therefore a pivotal one for ecological sustainability and strategic for technological development. PMID:24806722

  14. PREPARATION OF URANIUM-ALUMINUM ALLOYS

    DOEpatents

    Moore, R.H.

    1962-09-01

    A process is given for preparing uranium--aluminum alloys from a solution of uranium halide in an about equimolar molten alkali metal halide-- aluminum halide mixture and excess aluminum. The uranium halide is reduced and the uranium is alloyed with the excess aluminum. The alloy and salt are separated from each other. (AEC)

  15. Deposition behavior of residual aluminum in drinking water distribution system: Effect of aluminum speciation.

    PubMed

    Zhang, Yue; Shi, Baoyou; Zhao, Yuanyuan; Yan, Mingquan; Lytle, Darren A; Wang, Dongsheng

    2016-04-01

    Finished drinking water usually contains some residual aluminum. The deposition of residual aluminum in distribution systems and potential release back to the drinking water could significantly influence the water quality at consumer taps. A preliminary analysis of aluminum content in cast iron pipe corrosion scales and loose deposits demonstrated that aluminum deposition on distribution pipe surfaces could be excessive for water treated by aluminum coagulants including polyaluminum chloride (PACl). In this work, the deposition features of different aluminum species in PACl were investigated by simulated coil-pipe test, batch reactor test and quartz crystal microbalance with dissipation monitoring. The deposition amount of non-polymeric aluminum species was the least, and its deposition layer was soft and hydrated, which indicated the possible formation of amorphous Al(OH)3. Al13 had the highest deposition tendency, and the deposition layer was rigid and much less hydrated, which indicated that the deposited aluminum might possess regular structure and self-aggregation of Al13 could be the main deposition mechanism. While for Al30, its deposition was relatively slower and deposited aluminum amount was relatively less compared with Al13. However, the total deposited mass of Al30 was much higher than that of Al13, which was attributed to the deposition of particulate aluminum matters with much higher hydration state. Compared with stationary condition, stirring could significantly enhance the deposition process, while the effect of pH on deposition was relatively weak in the near neutral range of 6.7 to 8.7. Copyright © 2015. Published by Elsevier B.V.

  16. Production of aluminum metal by electrolysis of aluminum sulfide

    DOEpatents

    Minh, Nguyen Q.; Loutfy, Raouf O.; Yao, Neng-Ping

    1984-01-01

    Production of metallic aluminum by the electrolysis of Al.sub.2 S.sub.3 at 700.degree.-800.degree. C. in a chloride melt composed of one or more alkali metal chlorides, and one or more alkaline earth metal chlorides and/or aluminum chloride to provide improved operating characteristics of the process.

  17. Role of the plasma membrane H(+)-ATPase in the regulation of organic acid exudation under aluminum toxicity and phosphorus deficiency.

    PubMed

    Yu, Wenqian; Kan, Qi; Zhang, Jiarong; Zeng, Bingjie; Chen, Qi

    2016-01-01

    Aluminum (Al) toxicity and phosphorus (P) deficiency are 2 major limiting factors for plant growth and crop production in acidic soils. Organic acids exuded from roots have been generally regarded as a major resistance mechanism to Al toxicity and P deficiency. The exudation of organic acids is mediated by membrane-localized OA transporters, such as ALMT (Al-activated malate transporter) and MATE (multidrug and toxic compound extrusion). Beside on up-regulation expression of organic acids transporter gene, transcriptional, translational and post-translational regulation of the plasma membrane H(+)-ATPase are also involved in organic acid release process under Al toxicity and P deficiency. This mini-review summarizes the current knowledge about this field of study on the role of the plasma membrane H(+)-ATPase in organic acid exudation under Al toxicity and P deficiency conditions.

  18. Purifying Aluminum by Vacuum Distillation

    NASA Technical Reports Server (NTRS)

    Du Fresne, E. R.

    1985-01-01

    Proposed method for purifying aluminum employs one-step vacuum distillation. Raw material for process impure aluminum produced in electrolysis of aluminum ore. Impure metal melted in vacuum. Since aluminum has much higher vapor pressure than other constituents, boils off and condenses on nearby cold surfaces in proportions much greater than those of other constituents.

  19. Effect of Extrusion Parameters on Texture and Microstructure Evolution of Extruded Mg-1 pctMn and Mg-1 pctMn-Sr Alloys

    NASA Astrophysics Data System (ADS)

    Borkar, Hemant; Pekguleryuz, Mihriban

    2015-01-01

    Three Mg alloys Mg-1 pctMn (M1), Mg-1 pctMn-1.3 pctSr, and Mg-1 pctMn-2.1 pctSr were subjected to two different extrusion temperatures and two different extrusion speeds in lab-scale extrusion. The extrusion temperatures of 573 K and 673 K (300 °C and 400 °C) and two ram speeds of 4 and 8 mm/s were used at constant extrusion ratio of 7. M1 exhibited strong basal texture after extrusion at 673 K (400 °C) at higher speed. At 573 K (300 °C), recrystallization in all alloys takes place completely or partially by continuous dynamic recrystallization mechanism, while particle stimulated nucleation (PSN) occurs in all M1-Sr alloys at both extrusion temperatures and speeds. At 673 K (400 °C), grain boundary bulging is the only recrystallization mechanism in alloy M1, while it occurs in combination with PSN in M1-Sr alloys. The effect of texture weakening by PSN is more significant in M1-Sr alloys extruded at 573 K (400 °C). The plant extrusion trials were carried out on Mg-1 pctMn, Mg-1 pctMn-0.3 pctSr, and Mg-1 pctMn-2.1 pctSr at 623 K (350 °C) with different speeds than in lab-scale extrusion. M1 alloy exhibited strong basal texture at both speeds, while Sr additions of 0.3 and 2.1 pct promoted similar amount of texture weakening.

  20. Molecularly designed lipid microdomains for solid dispersions using a polymer/inorganic carrier matrix produced by hot-melt extrusion.

    PubMed

    Adler, Camille; Schönenberger, Monica; Teleki, Alexandra; Kuentz, Martin

    2016-02-29

    Amorphous solid dispersions have for many years been a focus in oral formulations, especially in combination with a hot-melt extrusion process. The present work targets a novel approach with a system based on a fatty acid, a polymer and an inorganic carrier. It was intended to adsorb the acidic lipid by specific molecular interactions onto the solid carrier to design disorder in the alkyl chains of the lipid. Such designed lipid microdomains (DLM) were created as a new microstructure to accommodate a compound in a solid dispersion. Vibrational spectroscopy, X-ray powder diffraction, atomic force microscopy as well as electron microscopic imaging were employed to study a system of stearic acid, hydroxypropylcellulose and aluminum magnesium silicate. β-carotene was used as a poorly water-soluble model substance that is difficult to formulate with conventional solid dispersion formulations. The results indicated that the targeted molecular excipient interactions indeed led to DLMs for specific compositions. The different methods provided complementary aspects and important insights into the created microstructure. The novel delivery system appeared to be especially promising for the formulation of oral compounds that exhibit both high crystal energy and lipophilicity. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. BONDING ALUMINUM METALS

    DOEpatents

    Noland, R.A.; Walker, D.E.

    1961-06-13

    A process is given for bonding aluminum to aluminum. Silicon powder is applied to at least one of the two surfaces of the two elements to be bonded, the two elements are assembled and rubbed against each other at room temperature whereby any oxide film is ruptured by the silicon crystals in the interface; thereafter heat and pressure are applied whereby an aluminum-silicon alloy is formed, squeezed out from the interface together with any oxide film, and the elements are bonded.

  2. The extrusion test and sensory perception revisited: Some comments on generality and the effect of measurement temperature.

    PubMed

    Brenner, Tom; Tomczyńska-Mleko, Marta; Mleko, Stanisław; Nishinari, Katsuyoshi

    2017-12-01

    Relations between sensory perception, extrusion and fracture in shear, extension and compression are examined. Gelatin-based gels are perceived as less firm and less hard than expected based on their mechanical properties compared to polysaccharide gels that have the same mechanical properties at room temperature but melt well above body temperature, underlying the importance of the measurement temperature for gels that melt during mastication. Correlations between parameters from extrusion and compression, extension and shear are verified using mixed polysaccharide gels. We previously reported a high correlation between several sensory attributes and parameters from an extrusion test. The extrusion test showed the most robust correlation, and could be used to assess samples at both extremes of the texture range with respect to elasticity, for example, both samples that could not be extended as their very low elasticity led to their fracture during handling, as well as samples that could not be fractured in compression. Here, we reexamine the validity of the relations reported. We demonstrate the generality of the relations between large deformation tests and extrusion, but the findings underscore the need to take into account the measurement temperature for samples that melt during mastication when correlating instrumental parameters with sensory perception. © 2017 Wiley Periodicals, Inc.

  3. Carotenoid Stability during Dry Milling, Storage, and Extrusion Processing of Biofortified Maize Genotypes.

    PubMed

    Ortiz, Darwin; Ponrajan, Amudhan; Bonnet, Juan Pablo; Rocheford, Torbert; Ferruzzi, Mario G

    2018-05-09

    Translation of the breeding efforts designed to biofortify maize ( Z. mays) genotypes with higher levels of provitamin A carotenoid (pVAC) content for sub-Saharan Africa is dependent in part on the stability of carotenoids during postharvest through industrial and in-home food processing operations. The purpose of this study was to simulate production of commercial milled products by determining the impact of dry milling and extrusion processing on carotenoid stability in three higher pVAC maize genotypes (C17xDE3, Orange ISO, Hi27xCML328). Pericarp and germ removal of biofortified maize kernels resulted in ∼10% loss of total carotenoids. Separating out the maize flour fraction (<212 μm) resulted in an additional ∼15% loss of total carotenoids. Carotenoid degradation was similar across milled maize fractions. Dry-milled products of Orange ISO and Hi27xCML328 genotypes showed ∼28% pVAC loss after 90-days storage. Genotype C17xDE3, with highest levels of all- trans-β-carotene, showed a 68% pVAC loss after 90-day storage. Extrusion processing conditions were optimal at 35% extrusion moisture, producing fully cooked instant maize flours with high pVAC retention (70-93%). These results support the notion that postharvest losses in maize milled fractions may be dependent, in part, on genotype and that extrusion processing may provide an option for preserving biofortified maize products.

  4. Production of aluminum metal by electrolysis of aluminum sulfide

    DOEpatents

    Minh, N.Q.; Loutfy, R.O.; Yao, N.P.

    1982-04-01

    Metallic aluminum may be produced by the electrolysis of Al/sub 2/S/sub 3/ at 700 to 800/sup 0/C in a chloride melt composed of one or more alkali metal chlorides, and one or more alkaline earth metal chlorides and/or aluminum chloride to provide improved operating characteristics of the process.

  5. Dental extrusion with orthodontic miniscrew anchorage: a case report describing a modified method.

    PubMed

    Horliana, Ricardo Fidos; Horliana, Anna Carolina Ratto Tempestini; Wuo, Alexandre do Vale; Perez, Flávio Eduardo Guillin; Abrão, Jorge

    2015-01-01

    In recent years, the skeletal anchorage through miniscrews has expanded the treatment options in orthodontics (Yamaguchi et al., 2012). We hereby present a modified method for tooth extrusion for cases where crown-lengthening surgery is contraindicated for aesthetic reasons. This modified method uses three orthodontic appliances: a mini-implant, an orthodontic wire, and a bracket. The aim of this case report was to increase the length of the clinical crown of a fractured tooth (tooth 23) by means of an orthodontic extrusion with the modified method of Roth and Diedrich.

  6. Incidence of Extrusion Following Type I Polypropylene Mesh “Kit” Repairs in the Correction of Pelvic Organ Prolapse

    PubMed Central

    Lukban, James C.; Beyer, Roger D.; Moore, Robert D.

    2012-01-01

    Introduction and Hypothesis. We sought to determine the mesh extrusion (vaginal exposure) rates and subject outcomes following IntePro (Type I polypropylene) mesh “kit” repairs for vaginal prolapse. Methods. Data were pooled from two prospective multicenter studies evaluating the safety and efficacy of the Perigee and Apogee (American Medical Systems, Minnetonka, Minn, USA) to treat anterior and posterior/apical prolapses, respectively. Extrusions involving the anterior compartment (AC) or posterior compartment/apex (PC/A) were recorded. Results. Two hundred sixty women underwent mesh placement, with a total of 368 mesh units inserted (173 in the AC and 195 in the PC/A). Extrusions were noted in 13 (7.5%) of AC implants and 27 (13.8%) of PC/A implants through 12 months. No difference was seen between those with and without extrusion in regard to anatomic cure, postoperative painor quality of life at 1 year. Conclusions. Extrusion had no apparent effect on short-term outcomes. Given the unknown long-term sequellae of vaginal mesh exposure, a thorough assessment of risks and benefits of transvaginal mesh placement should be considered at the time of preoperative planning. PMID:22190952

  7. Novel fiber-rich lentil flours as snack-type functional foods: an extrusion cooking effect on bioactive compounds.

    PubMed

    Morales, P; Berrios, J De J; Varela, A; Burbano, C; Cuadrado, C; Muzquiz, M; Pedrosa, M M

    2015-09-01

    Novel snack-type functional foods based on extruded lentil flours could convey the related health benefit of their bioactive compounds, provide a gluten-free alternative to consumers, and potentially increase the consumption of pulses. Extrusion treatment promoted an increase in galactopinitol, ciceritol, raffinose, stachyose and total α-galactoside content, in most lentil flours. As α-galactosides may act as prebiotics, they could convey beneficial effects to human and monogastric animals. Conversely, extrusion significantly (p < 0.05) reduced the inositol hexaphosphate content to less phosphorylated phytates (inositol pentaphosphate and inositol tetraphosphate), which provide health effects. The gluten-free formulation (control formulation #3) presented the highest significant (p < 0.05) drop in the inositol hexaphosphate of 14.7-fold decrease, but had a large increase in inositol pentaphosphate, due to extrusion processing. These two results are desirable in the finished product. Extrusion also caused a significant (p < 0.05) reduction in the trypsin content and completely inactivated lectin, in all processed samples.

  8. Rapid production of hollow SS316 profiles by extrusion based additive manufacturing

    NASA Astrophysics Data System (ADS)

    Rane, Kedarnath; Cataldo, Salvatore; Parenti, Paolo; Sbaglia, Luca; Mussi, Valerio; Annoni, Massimiliano; Giberti, Hermes; Strano, Matteo

    2018-05-01

    Complex shaped stainless steel tubes are often required for special purpose biomedical equipment. Nevertheless, traditional manufacturing technologies, such as extrusion, lack the ability to compete in a market of customized complex components because of associated expenses towards tooling and extrusion presses. To rapid manufacture few of such components with low cost and high precision, a new Extrusion based Additive Manufacturing (EAM) process, is proposed in this paper, and as an example, short stainless steel 316L complex shaped and sectioned tubes were prepared by EAM. Several sample parts were produced using this process; the dimensional stability, surface roughness and chemical composition of sintered samples were investigated to prove process competence. The results indicate that feedstock with a 316L particle content of 92.5 wt. % can be prepared with a sigma blade mixing, whose rheological behavior is fit for EAM. The green samples have sufficient strength to handle them for subsequent treatments. The sintered samples considerably shrunk to designed dimensions and have a homogeneous microstructure to impart mechanical strength. Whereas, maintaining comparable dimensional accuracy and chemical composition which are required for biomedical equipment still need iterations, a kinematic correction and modification in debinding cycle was proposed.

  9. Processing biobased polymers using plasticizers: Numerical simulations versus experiments

    NASA Astrophysics Data System (ADS)

    Desplentere, Frederik; Cardon, Ludwig; Six, Wim; Erkoç, Mustafa

    2016-03-01

    In polymer processing, the use of biobased products shows lots of possibilities. Considering biobased materials, biodegradability is in most cases the most important issue. Next to this, bio based materials aimed at durable applications, are gaining interest. Within this research, the influence of plasticizers on the processing of the bio based material is investigated. This work is done for an extrusion grade of PLA, Natureworks PLA 2003D. Extrusion through a slit die equipped with pressure sensors is used to compare the experimental pressure values to numerical simulation results. Additional experimental data (temperature and pressure data along the extrusion screw and die are recorded) is generated on a dr. Collin Lab extruder producing a 25mm diameter tube. All these experimental data is used to indicate the appropriate functioning of the numerical simulation tool Virtual Extrusion Laboratory 6.7 for the simulation of both the industrial available extrusion grade PLA and the compound in which 15% of plasticizer is added. Adding the applied plasticizer, resulted in a 40% lower pressure drop over the extrusion die. The combination of different experiments allowed to fit the numerical simulation results closely to the experimental values. Based on this experience, it is shown that numerical simulations also can be used for modified bio based materials if appropriate material and process data are taken into account.

  10. Aluminum Nanoholes for Optical Biosensing.

    PubMed

    Barrios, Carlos Angulo; Canalejas-Tejero, Víctor; Herranz, Sonia; Urraca, Javier; Moreno-Bondi, María Cruz; Avella-Oliver, Miquel; Maquieira, Ángel; Puchades, Rosa

    2015-07-09

    Sub-wavelength diameter holes in thin metal layers can exhibit remarkable optical features that make them highly suitable for (bio)sensing applications. Either as efficient light scattering centers for surface plasmon excitation or metal-clad optical waveguides, they are able to form strongly localized optical fields that can effectively interact with biomolecules and/or nanoparticles on the nanoscale. As the metal of choice, aluminum exhibits good optical and electrical properties, is easy to manufacture and process and, unlike gold and silver, its low cost makes it very promising for commercial applications. However, aluminum has been scarcely used for biosensing purposes due to corrosion and pitting issues. In this short review, we show our recent achievements on aluminum nanohole platforms for (bio)sensing. These include a method to circumvent aluminum degradation--which has been successfully applied to the demonstration of aluminum nanohole array (NHA) immunosensors based on both, glass and polycarbonate compact discs supports--the use of aluminum nanoholes operating as optical waveguides for synthesizing submicron-sized molecularly imprinted polymers by local photopolymerization, and a technique for fabricating transferable aluminum NHAs onto flexible pressure-sensitive adhesive tapes, which could facilitate the development of a wearable technology based on aluminum NHAs.

  11. PROCESS FOR REMOVING ALUMINUM COATINGS

    DOEpatents

    Flox, J.

    1959-07-01

    A process is presented for removing aluminum jackets or cans from uranium slugs. This is accomplished by immersing the aluminum coated uranium slugs in an aqueous solution of 9 to 20% sodium hydroxide and 35 to 12% sodium nitrate to selectively dissolve the aluminum coating, the amount of solution being such as to obtain a molar ratio of sodium hydroxide to aluminum of at least

  12. SOLDERING OF ALUMINUM BASE METALS

    DOEpatents

    Erickson, G.F.

    1958-02-25

    This patent deals with the soldering of aluminum to metals of different types, such as copper, brass, and iron. This is accomplished by heating the aluminum metal to be soldered to slightly above 30 deg C, rubbing a small amount of metallic gallium into the part of the surface to be soldered, whereby an aluminum--gallium alloy forms on the surface, and then heating the aluminum piece to the melting point of lead--tin soft solder, applying lead--tin soft solder to this alloyed surface, and combining the aluminum with the other metal to which it is to be soldered.

  13. HIGH PRESSURE DIES

    DOEpatents

    Wilson, W.B.

    1960-05-31

    A press was invented for subjecting specimens of bismuth, urania, yttria, or thoria to high pressures and temperatures. The press comprises die parts enclosing a space in which is placed an electric heater thermally insulated from the die parts so as not to damage them by heat. The die parts comprise two opposed inner frustoconical parts and an outer part having a double frustoconical recess receiving the inner parts. The die space decreases in size as the inner die parts move toward one another against the outer part and the inner parts, though very hard, do not fracture because of the mode of support provided by the outer part.

  14. Methods to Prepare Aluminum Salt-Adjuvanted Vaccines.

    PubMed

    Thakkar, Sachin G; Cui, Zhengrong

    2017-01-01

    Many human vaccines contain certain insoluble aluminum salts such as aluminum oxyhydroxide and aluminum hydroxyphosphate as vaccine adjuvants to boost the immunogenicity of the vaccines. Aluminum salts have been used as vaccine adjuvants for decades and have an established, favorable safety profile. However, preparing aluminum salts and aluminum salt-adjuvanted vaccines in a consistent manner remains challenging. This chapter discusses methods to prepare aluminum salts and aluminum salt-adjuvanted vaccines, factors to consider during preparation, and methods to characterize the vaccines after preparation.

  15. Production Process of Biocompatible Magnesium Alloy Tubes Using Extrusion and Dieless Drawing Processes

    NASA Astrophysics Data System (ADS)

    Kustra, Piotr; Milenin, Andrij; Płonka, Bartłomiej; Furushima, Tsuyoshi

    2016-06-01

    Development of technological production process of biocompatible magnesium tubes for medical applications is the subject of the present paper. The technology consists of two stages—extrusion and dieless drawing process, respectively. Mg alloys for medical applications such as MgCa0.8 are characterized by low technological plasticity during deformation that is why optimization of production parameters is necessary to obtain good quality product. Thus, authors developed yield stress and ductility model for the investigated Mg alloy and then used the numerical simulations to evaluate proper manufacturing conditions. Grid Extrusion3d software developed by authors was used to determine optimum process parameters for extrusion—billet temperature 400 °C and extrusion velocity 1 mm/s. Based on those parameters the tube with external diameter 5 mm without defects was manufactured. Then, commercial Abaqus software was used for modeling dieless drawing. It was shown that the reduction in the area of 60% can be realized for MgCa0.8 magnesium alloy. Tubes with the final diameter of 3 mm were selected as a case study, to present capabilities of proposed processes.

  16. Advanced Cast Aluminum Alloys

    DTIC Science & Technology

    2009-02-01

    This production route has demonstrated that aluminum alloys with yield strengths in excess of 690 MPa with good elongation (reportedly 8%) are...series of aluminum alloys have poor-to-fair general corrosion resistance and poor-to-good stress corrosion cracking resistance. Wrought 2519...aluminum alloy has good strength, good ballistic performance, good stress corrosion cracking resistance but only fair general corrosion resistance

  17. Influence of die geometry and material selection on the behavior of protective die covers in closed-die forging

    NASA Astrophysics Data System (ADS)

    Yu, Yingyan; Rosenstock, Dirk; Wolfgarten, Martin; Hirt, Gerhard

    2016-10-01

    Due to the fact that tooling costs make up to 30% of total costs of the final forged part, the tool life is always one main research topic in closed-die forging [1]. To improve the wear resistance of forging dies, many methods like nitriding and deposition of ceramic layers have been used. However, all these methods will lose its effect after a certain time, then tool repair or exchange is needed, which requires additional time and costs. A new method, which applies an inexpensive and changeable sheet metal on the forging die to protect it from abrasive wear, was firstly proposed in [2]. According to the first investigation, the die cover is effective for decreasing thermal and mechanical loads, but there are still several challenges to overcome in this concept, like wrinkling and thinning of the die cover. Therefore, an experimental study using different geometries and die cover materials is presented within this work. The results indicate the existence of feasible application cases of this concept, since conditions are found under which a die cover made of 22MnB5 still keeps its original shape even after 7 forging cycles.

  18. Rheology and extrusion of low-grade paper and sludge

    Treesearch

    C. Tim Scott; Stefan Zauscher; Daniel J. Klingenberg

    1999-01-01

    This paper discusses efforts to characterize the rheological properties of pulps that include low-grade wastepapers and papermill sludges to determine their potential for extrusion and conversion into useful products. We investigated apparent changes in viscosity associated with the addition of typical inorganic paper fillers (calcium carbonate, kaolin clay, and...

  19. Progress in Aluminum Electrolysis Control and Future Direction for Smart Aluminum Electrolysis Plant

    NASA Astrophysics Data System (ADS)

    Zhang, Hongliang; Li, Tianshuang; Li, Jie; Yang, Shuai; Zou, Zhong

    2017-02-01

    The industrial aluminum reduction cell is an electrochemistry reactor that operates under high temperatures and highly corrosive conditions. However, these conditions have restricted the measurement of key control parameters, making the control of aluminum reduction cells a difficult problem in the industry. Because aluminum electrolysis control systems have a significant economic influence, substantial research has been conducted on control algorithms, control systems and information systems for aluminum reduction cells. This article first summarizes the development of control systems and then focuses on the progress made since 2000, including alumina concentration control, temperature control and electrolyte molecular ratio control, fault diagnosis, cell condition prediction and control system expansion. Based on these studies, the concept of a smart aluminum electrolysis plant is proposed. The frame construction, key problems and current progress are introduced. Finally, several future directions are discussed.

  20. Optimization of extrusion conditions for the production of instant grain amaranth-based porridge flour.

    PubMed

    Akande, Olamide A; Nakimbugwe, Dorothy; Mukisa, Ivan M

    2017-11-01

    Malnutrition is one of the foremost causes of death among children below 5 years in developing countries. Development of nutrient-dense food formulations using locally available crops has been proposed as a means to combat this menace. This study optimized the extrusion process for the production of a nutritious amaranth-based porridge flour. Least cost formulations containing grain amaranth, groundnut, iron-rich beans, pumpkin, orange-fleshed sweet potato, carrot, and maize were developed and evaluated by a sensory panel ( n  = 30) for acceptability using the 9-point hedonic scale. Extrusion process of the most acceptable porridge flour was optimized by response surface methodology (RSM). Barrel temperature (130-170°C) and feed moisture content (14%-20%) were the independent variables which significantly ( p  < .05) affected in vitro protein digestibility, vitamin A retention, total polyphenol, phytic content, and iron and zinc extractabilities. Optimization of the extrusion process improved the nutritional quality of the instant flour.

  1. Die Sonne.

    NASA Astrophysics Data System (ADS)

    der Time-Life Bücher, Redaktion

    Contents: 1. Das Antlitz der Sonne. Ein kosmisches Kraftwerk. 2. Erforschung des Innern. Die Beobachtung des Zentralgestirns. 3. Der unstete Nachbar. Geschenke des Sonnenlichts. 4. Ein endloser Partikelstrom. Die Kraft eines solaren Sturms.

  2. MTBE OXIDATION BY BIFUNCTIONAL ALUMINUM

    EPA Science Inventory

    Bifunctional aluminum, prepared by sulfating zero-valent aluminum with sulfuric acid, has a dual functionality of simultaneously decomposing both reductively- and oxidatively-degradable contaminants. In this work, the use of bifunctional aluminum for the degradation of methyl te...

  3. Aluminum Nanoholes for Optical Biosensing

    PubMed Central

    Barrios, Carlos Angulo; Canalejas-Tejero, Víctor; Herranz, Sonia; Urraca, Javier; Moreno-Bondi, María Cruz; Avella-Oliver, Miquel; Maquieira, Ángel; Puchades, Rosa

    2015-01-01

    Sub-wavelength diameter holes in thin metal layers can exhibit remarkable optical features that make them highly suitable for (bio)sensing applications. Either as efficient light scattering centers for surface plasmon excitation or metal-clad optical waveguides, they are able to form strongly localized optical fields that can effectively interact with biomolecules and/or nanoparticles on the nanoscale. As the metal of choice, aluminum exhibits good optical and electrical properties, is easy to manufacture and process and, unlike gold and silver, its low cost makes it very promising for commercial applications. However, aluminum has been scarcely used for biosensing purposes due to corrosion and pitting issues. In this short review, we show our recent achievements on aluminum nanohole platforms for (bio)sensing. These include a method to circumvent aluminum degradation—which has been successfully applied to the demonstration of aluminum nanohole array (NHA) immunosensors based on both, glass and polycarbonate compact discs supports—the use of aluminum nanoholes operating as optical waveguides for synthesizing submicron-sized molecularly imprinted polymers by local photopolymerization, and a technique for fabricating transferable aluminum NHAs onto flexible pressure-sensitive adhesive tapes, which could facilitate the development of a wearable technology based on aluminum NHAs. PMID:26184330

  4. Load beam unit replaceable inserts for dry coal extrusion pumps

    DOEpatents

    Saunders, Timothy; Brady, John D.

    2012-11-13

    A track assembly for a particulate material extrusion pump according to an exemplary aspect of the present disclosure includes a link assembly with a roller bearing. An insert mounted to a load beam located such that the roller bearing contacts the insert.

  5. Track with overlapping links for dry coal extrusion pumps

    DOEpatents

    Saunders, Timothy; Brady, John D

    2014-01-21

    A chain for a particulate material extrusion pump includes a plurality of links, each of the plurality of links having a link body and a link ledge, wherein each link ledge of the plurality of links at least partially overlaps the link body of an adjacent one of the plurality of links.

  6. Microstructure characterization of LAE442 magnesium alloy processed by extrusion and ECAP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Minárik, Peter; Král, Robert; Pešička, Josef

    2016-02-15

    The magnesium alloy LAE442 was processed by extrusion and equal channel angular pressing (ECAP) to achieve ultrafine grained microstructure. Detailed characterization of the microstructure was performed by scanning electron microscope, electron back scattered diffraction (EBSD) and transmission electron microscope. The initial, as-cast, microstructure consisted of large grains of ~ 1 mm. The grain refinement due to the processing by severe plastic deformation led to a decrease of the average grain size to ~ 1.7 μm after the final step of ECAP. A detailed characterization of secondary phases showed the precipitation of Al{sub 11}RE{sub 3}, Al{sub 2}Ca and Al{sub 10}RE{sub 2}Mn{submore » 7} intermetallic phases. X-ray diffraction measurements proved that Li is dissolved within the magnesium matrix in the as-cast condition. Newly formed Al{sub 3}Li phase was observed after ECAP. The texture formation due to the extrusion and ECAP was different from that in the other magnesium alloys due to the activation of non-basal slip systems as a result of the decrease of the c/a ratio. - Highlights: • Combined extrusion and equal channel angular pressing results in significant grain refinement by factor 1000 approximately. • Al{sub 11}RE{sub 3}, Al{sub 2}Ca and Al{sub 10}RE{sub 2}Mn{sub 7} secondary phases are present in the as-cast material while Li was dissolved in the Mg matrix. • Extrusion and ECAP have no effect on the composition of the secondary phases but they influence strongly their distribution. • Texture evolution is affected by decrease of c/a ratio due to the presence of Li and resulting activation of non-basal slip.« less

  7. 40 CFR 467.33 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... achievable. 467.33 Section 467.33 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ALUMINUM FORMING POINT SOURCE CATEGORY Extrusion Subcategory § 467.33....25 Aluminum 13.10 6.52 Subpart C Solution Heat Treatment Contact Cooling Water Pollutant or pollutant...

  8. Die singulation method

    DOEpatents

    Swiler, Thomas P.; Garcia, Ernest J.; Francis, Kathryn M.

    2013-06-11

    A method is disclosed for singulating die from a semiconductor substrate (e.g. a semiconductor-on-insulator substrate or a bulk silicon substrate) containing an oxide layer (e.g. silicon dioxide or a silicate glass) and one or more semiconductor layers (e.g. monocrystalline or polycrystalline silicon) located above the oxide layer. The method etches trenches through the substrate and through each semiconductor layer about the die being singulated, with the trenches being offset from each other around at least a part of the die so that the oxide layer between the trenches holds the substrate and die together. The trenches can be anisotropically etched using a Deep Reactive Ion Etching (DRIE) process. After the trenches are etched, the oxide layer between the trenches can be etched away with an HF etchant to singulate the die. A release fixture can be located near one side of the substrate to receive the singulated die.

  9. Die singulation method

    DOEpatents

    Swiler, Thomas P [Albuquerque, NM; Garcia, Ernest J [Albuquerque, NM; Francis, Kathryn M [Rio Rancho, NM

    2014-01-07

    A method is disclosed for singulating die from a semiconductor substrate (e.g. a semiconductor-on-insulator substrate or a bulk silicon substrate) containing an oxide layer (e.g. silicon dioxide or a silicate glass) and one or more semiconductor layers (e.g. monocrystalline or polycrystalline silicon) located above the oxide layer. The method etches trenches through the substrate and through each semiconductor layer about the die being singulated, with the trenches being offset from each other around at least a part of the die so that the oxide layer between the trenches holds the substrate and die together. The trenches can be anisotropically etched using a Deep Reactive Ion Etching (DRIE) process. After the trenches are etched, the oxide layer between the trenches can be etched away with a HF etchant to singulate the die. A release fixture can be located near one side of the substrate to receive the singulated die.

  10. A Taguchi approach on optimal process control parameters for HDPE pipe extrusion process

    NASA Astrophysics Data System (ADS)

    Sharma, G. V. S. S.; Rao, R. Umamaheswara; Rao, P. Srinivasa

    2017-06-01

    High-density polyethylene (HDPE) pipes find versatile applicability for transportation of water, sewage and slurry from one place to another. Hence, these pipes undergo tremendous pressure by the fluid carried. The present work entails the optimization of the withstanding pressure of the HDPE pipes using Taguchi technique. The traditional heuristic methodology stresses on a trial and error approach and relies heavily upon the accumulated experience of the process engineers for determining the optimal process control parameters. This results in setting up of less-than-optimal values. Hence, there arouse a necessity to determine optimal process control parameters for the pipe extrusion process, which can ensure robust pipe quality and process reliability. In the proposed optimization strategy, the design of experiments (DoE) are conducted wherein different control parameter combinations are analyzed by considering multiple setting levels of each control parameter. The concept of signal-to-noise ratio ( S/ N ratio) is applied and ultimately optimum values of process control parameters are obtained as: pushing zone temperature of 166 °C, Dimmer speed at 08 rpm, and Die head temperature to be 192 °C. Confirmation experimental run is also conducted to verify the analysis and research result and values proved to be in synchronization with the main experimental findings and the withstanding pressure showed a significant improvement from 0.60 to 1.004 Mpa.

  11. The Effect of Impurities on the Processing of Aluminum Alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zi-Kui Liu; Shengjun Zhang; Qingyou Han

    2007-04-23

    thermodynamic database developed in this project, thermodynamic simulations were carried out to investigate the effect of sodium on the HTE of Al-Mg alloys. The simulation results indicated that the liquid miscibility gap resulting from the dissolved sodium in the molten material plays an important role in HTE. A liquid phase forms from the solid face-centered cubic (fcc) phase (most likely at grain boundaries) during cooling, resulting in the occurrence of HTE. Comparison of the thermodynamic simulation results with experimental measurements on the high-temperature ductility of an Al-5Mg-Na alloy shows that HTE occurs in the temperature range at which the liquid phase exists. Based on this fundamental understanding of the HTE mechanism during processing of aluminum alloy, an HTE sensitive zone and a hot-rolling safe zone of the Al-Mg-Na alloys are defined as functions of processing temperature and alloy composition. The tendency of HTE was evaluated based on thermodynamic simulations of the fraction of the intergranular sodium-rich liquid phase. Methods of avoiding HTE during rolling/extrusion of Al-Mg-based alloys were suggested. Energy and environmental benefits from the results of this project could occur through a number of avenues: (1) energy benefits accruing from reduced rejection rates of the aluminum sheet and bar, (2) reduced dross formation during the remelting of the aluminum rejects, and (3) reduced CO2 emission related to the energy savings. The sheet and extruded bar quantities produced in the United States during 2000 were 10,822 and 4,546 million pounds, respectively. It is assumed that 50% of the sheet and 10% of the bar will be affected by implementing the results of this project. With the current process, the rejection rate of sheet and bar is estimated at 5%. Assuming that at least half of the 5% rejection of sheet and bar will be eliminated by using the results of this project and that 4% of the aluminum will be lost through dross (Al2O3) during remelting

  12. Apical Extrusion of Irrigants in Immature Permanent Teeth by Using EndoVac and Needle Irrigation: An In Vitro Study

    PubMed Central

    Velmurugan, N; Sooriaprakas, C; Jain, Preetham

    2014-01-01

    Objective: Immature teeth have a large apical opening and thin divergent or parallel dentinal walls; hence, with conventional needle irrigation there is a very high possibility of extrusion. This study was done to compare the apical extrusion of NaOCl in an immature root delivered using EndoVac and needle irrigation. Materials and Methods: Eighty freshly extracted maxillary central incisors were decoronated followed by access cavity preparation. Modified organotypic protocol was performed to create an open apex; then, the samples were divided into four groups (n=20): EndoVac Microcannula (group I), EndoVac Macrocannula (group II), NaviTip irrigation needle (group III) and Max-i-Probe Irrigating needle (group IV); 9.0 ml of 3% sodium hypochlorite was delivered slowly over a period of 60 seconds. Extruded irrigants were collected in a vial and analysed statistically. Results: Group I, group III and group IV showed 100% extrusion (20/20) but group II showed only 40% extrusion (8/20). The difference in this respect between group II and other groups was statistically significant (P<0.001). With regards to the volume of extrusion, group II had only 0.23 ml of extruded irrigant. Group I extruded 7.53ml of the irrigant. Group III and group IV extruded the entire volume of irrigant delivered. Conclusion: EndoVac Macrocannula resulted in the least extrusion of irrigant in immature teeth when compared to EndoVac Microcannula and conventional needle irrigation. PMID:25584055

  13. Autophagy can promote but is not required for epithelial cell extrusion in the amnioserosa of the Drosophila embryo.

    PubMed

    Cormier, Olga; Mohseni, Nilufar; Voytyuk, Iryna; Reed, Bruce H

    2012-02-01

    During Drosophila embryogenesis the majority of the extra-embryonic epithelium known as the amnioserosa (AS) undergoes programmed cell death (PCD) following the completion of the morphogenetic process of dorsal closure. Approximately ten percent of AS cells, however, are eliminated during dorsal closure by extrusion from the epithelium. Using biosensors that report autophagy and caspase activity in vivo, we demonstrate that AS cell extrusion occurs in the context of elevated autophagy and caspase activation. Furthermore, we evaluate AS extrusion rates, autophagy, and caspase activation in embryos in which caspase activity or autophagy are altered by genetic manipulation. This includes using the GAL4/UAS system to drive expression of p35, reaper, dINR (ACT) and Atg1 in the AS; we also analyze embryos lacking both maternal and zygotic expression of Atg1. Based on our results we suggest that autophagy can promote, but is not required for, epithelial extrusion and caspase activation in the amnioserosa.

  14. A novel polymer extrusion micropelletization process

    NASA Astrophysics Data System (ADS)

    Aquite, William

    Polymer micropellets provide a variety of potential applications for different processes in the polymer industry. Conventional pellets are in the size range of 2.5 mm to 5 mm, while micropellets are at least ten times smaller, in the size range of 50 μm to 1000 μm. The potential benefits to a processor using micropellets include: high surface to volume ratio, high bulk density, fast and even melting rates in extrusion, improved dry flow properties, faster injection molding cycles, and consequently lower energy consumption during processing. More specialized sintering processes that require polymer powders, such as selective sintering techniques, microporous plastics parts manufacturing, and other powder sintering methods would benefit from the production of polymer micropellets since these exhibit the advantages of pellets yet have a lower average size. This work focuses on the study of a technique developed at the Polymer Engineering Center. The technique uses a microcapillary die for the production of micropellets by causing instabilities in extruded polymer threads deformed using an air stream. Tuning of process conditions allow the development of surface disturbances that promote breakup of the threads into pellets, which are subsequently cooled and collected. Although micropellets with high sphericity and a narrow size distribution can be produced using this technique, minimal changes in process conditions also lead to the production of lenticular pellets as well as pellets, fibers and threads with a wide range of size and shape distributions. This work shows how changing processing conditions achieve a variety of shapes and sizes of micropellets, broadening its application for the production of powders from a variety of polymer resins. Different approaches were used, including dimensional analysis and numerical simulation of the micropelletization process. This research reveals the influence of non-linear viscoelastic effects on the dispersion of a polymer

  15. Air-Impregnated Nanoporous Anodic Aluminum Oxide Layers for Enhancing the Corrosion Resistance of Aluminum.

    PubMed

    Jeong, Chanyoung; Lee, Junghoon; Sheppard, Keith; Choi, Chang-Hwan

    2015-10-13

    Nanoporous anodic aluminum oxide layers were fabricated on aluminum substrates with systematically varied pore diameters (20-80 nm) and oxide thicknesses (150-500 nm) by controlling the anodizing voltage and time and subsequent pore-widening process conditions. The porous nanostructures were then coated with a thin (only a couple of nanometers thick) Teflon film to make the surface hydrophobic and trap air in the pores. The corrosion resistance of the aluminum substrate was evaluated by a potentiodynamic polarization measurement in 3.5 wt % NaCl solution (saltwater). Results showed that the hydrophobic nanoporous anodic aluminum oxide layer significantly enhanced the corrosion resistance of the aluminum substrate compared to a hydrophilic oxide layer of the same nanostructures, to bare (nonanodized) aluminum with only a natural oxide layer on top, and to the latter coated with a thin Teflon film. The hydrophobic nanoporous anodic aluminum oxide layer with the largest pore diameter and the thickest oxide layer (i.e., the maximized air fraction) resulted in the best corrosion resistance with a corrosion inhibition efficiency of up to 99% for up to 7 days. The results demonstrate that the air impregnating the hydrophobic nanopores can effectively inhibit the penetration of corrosive media into the pores, leading to a significant improvement in corrosion resistance.

  16. Effect of Different Extrusion Parameters on Dietary Fiber in Wheat Bran and Rye Bran.

    PubMed

    Andersson, Annica A M; Andersson, R; Jonsäll, Anette; Andersson, Jörgen; Fredriksson, Helena

    2017-06-01

    Wheat bran and rye bran are mostly used as animal feed today, but their high content of dietary fiber and bioactive components are beneficial to human health. Increased use of bran as food raw material could therefore be desirable. However, bran mainly contains unextractable dietary fiber and deteriorates the sensory properties of products. Processing by extrusion could increase the extractability of dietary fiber and increase the sensory qualities of bran products. Wheat bran and rye bran were therefore extruded at different levels of moisture content, screw speed and temperature, in order to find the optimal setting for increased extractability of dietary fiber and positive sensory properties. A water content of 24% for wheat bran and 30% for rye bran, a screw speed of 400 rpm, and a temperature of 130 °C resulted in the highest extractability of total dietary fiber and arabinoxylan. Arabinoxylan extractability increased from 5.8% in wheat bran to 9.0% in extruded wheat bran at those settings, and from 14.6% to 19.2% for rye bran. Total contents of dietary fiber and arabinoxylan were not affected by extrusion. Content of β-glucan was also maintained during extrusion, while its molecular weight decreased slightly and extractability increased slightly. Extrusion at these settings is therefore a suitable process for increasing the use of wheat bran and rye bran as a food raw material. © 2017 Institute of Food Technologists®.

  17. Decarbonization process for carbothermically produced aluminum

    DOEpatents

    Bruno, Marshall J.; Carkin, Gerald E.; DeYoung, David H.; Dunlap, Sr., Ronald M.

    2015-06-30

    A method of recovering aluminum is provided. An alloy melt having Al.sub.4C.sub.3 and aluminum is provided. This mixture is cooled and then a sufficient amount of a finely dispersed gas is added to the alloy melt at a temperature of about 700.degree. C. to about 900.degree. C. The aluminum recovered is a decarbonized carbothermically produced aluminum where the step of adding a sufficient amount of the finely dispersed gas effects separation of the aluminum from the Al.sub.4C.sub.3 precipitates by flotation, resulting in two phases with the Al.sub.4C.sub.3 precipitates being the upper layer and the decarbonized aluminum being the lower layer. The aluminum is then recovered from the Al.sub.4C.sub.3 precipitates through decanting.

  18. Alkaline twin-screw extrusion pretreatment for fermentable sugar production

    PubMed Central

    2013-01-01

    Background The inevitable depletion of fossil fuels has resulted in an increasing worldwide interest in exploring alternative and sustainable energy sources. Lignocellulose, which is the most abundant biomass on earth, is widely regarded as a promising raw material to produce fuel ethanol. Pretreatment is an essential step to disrupt the recalcitrance of lignocellulosic matrix for enzymatic saccharification and bioethanol production. This paper established an ATSE (alkaline twin-screw extrusion pretreatment) process using a specially designed twin-screw extruder in the presence of alkaline solution to improve the enzymatic hydrolysis efficiency of corn stover for the production of fermentable sugars. Results The ATSE pretreatment was conducted with a biomass/liquid ratio of 1/2 (w/w) at a temperature of 99°C without heating equipment. The results indicated that ATSE pretreatment is effective in improving the enzymatic digestibility of corn stover. Sodium hydroxide loading is more influential factor affecting both sugar yield and lignin degradation than heat preservation time. After ATSE pretreatment under the proper conditions (NaOH loading of 0.06 g/g biomass during ATSE and 1 hour heat preservation after extrusion), 71% lignin removal was achieved and the conversions of glucan and xylan in the pretreated biomass can reach to 83% and 89% respectively via subsequent enzymatic hydrolysis (cellulase loading of 20 FPU/g-biomass and substrate consistency of 2%). About 78% of the original polysaccharides were converted into fermentable sugars. Conclusions With the physicochemical functions in extrusion, the ATSE method can effectively overcome the recalcitrance of lignocellulose for the production of fermentable sugars from corn stover. This process can be considered as a promising pretreatment method due to its relatively low temperature (99°C), high biomass/liquid ratio (1/2) and satisfied total sugar yield (78%), despite further study is needed for process

  19. Alkaline twin-screw extrusion pretreatment for fermentable sugar production.

    PubMed

    Liu, Chao; van der Heide, Evert; Wang, Haisong; Li, Bin; Yu, Guang; Mu, Xindong

    2013-01-01

    The inevitable depletion of fossil fuels has resulted in an increasing worldwide interest in exploring alternative and sustainable energy sources. Lignocellulose, which is the most abundant biomass on earth, is widely regarded as a promising raw material to produce fuel ethanol. Pretreatment is an essential step to disrupt the recalcitrance of lignocellulosic matrix for enzymatic saccharification and bioethanol production. This paper established an ATSE (alkaline twin-screw extrusion pretreatment) process using a specially designed twin-screw extruder in the presence of alkaline solution to improve the enzymatic hydrolysis efficiency of corn stover for the production of fermentable sugars. The ATSE pretreatment was conducted with a biomass/liquid ratio of 1/2 (w/w) at a temperature of 99°C without heating equipment. The results indicated that ATSE pretreatment is effective in improving the enzymatic digestibility of corn stover. Sodium hydroxide loading is more influential factor affecting both sugar yield and lignin degradation than heat preservation time. After ATSE pretreatment under the proper conditions (NaOH loading of 0.06 g/g biomass during ATSE and 1 hour heat preservation after extrusion), 71% lignin removal was achieved and the conversions of glucan and xylan in the pretreated biomass can reach to 83% and 89% respectively via subsequent enzymatic hydrolysis (cellulase loading of 20 FPU/g-biomass and substrate consistency of 2%). About 78% of the original polysaccharides were converted into fermentable sugars. With the physicochemical functions in extrusion, the ATSE method can effectively overcome the recalcitrance of lignocellulose for the production of fermentable sugars from corn stover. This process can be considered as a promising pretreatment method due to its relatively low temperature (99°C), high biomass/liquid ratio (1/2) and satisfied total sugar yield (78%), despite further study is needed for process optimization and cost reduction.

  20. Influence of macromolecular architecture on necking in polymer extrusion film casting process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pol, Harshawardhan; Banik, Sourya; Azad, Lal Busher

    2015-05-22

    Extrusion film casting (EFC) is an important polymer processing technique that is used to produce several thousand tons of polymer films/coatings on an industrial scale. In this research, we are interested in understanding quantitatively how macromolecular chain architecture (for example long chain branching (LCB) or molecular weight distribution (MWD or PDI)) influences the necking and thickness distribution of extrusion cast films. We have used different polymer resins of linear and branched molecular architecture to produce extrusion cast films under controlled experimental conditions. The necking profiles of the films were imaged and the velocity profiles during EFC were monitored using particlemore » tracking velocimetry (PTV) technique. Additionally, the temperature profiles were captured using an IR thermography and thickness profiles were calculated. The experimental results are compared with predictions of one-dimensional flow model of Silagy et al{sup 1} wherein the polymer resin rheology is modeled using molecular constitutive equations such as the Rolie-Poly (RP) and extended Pom Pom (XPP). We demonstrate that the 1-D flow model containing the molecular constitutive equations provides new insights into the role of macromolecular chain architecture on film necking.{sup 1}D. Silagy, Y. Demay, and J-F. Agassant, Polym. Eng. Sci., 36, 2614 (1996)« less

  1. Effects of extrusion temperature and dwell time on aflatoxin levels in cottonseed.

    PubMed

    Buser, Michael D; Abbas, Hamed K

    2002-04-24

    Cottonseed is an economical source of protein and is commonly used in balancing livestock rations; however, its use is typically limited by protein, fat, gossypol, and aflatoxin contents. Whole cottonseed was extruded to determine if the temperature and dwell time (multiple stages of processing) associated with the process affected aflatoxin levels. The extrusion temperature study showed that aflatoxin levels were reduced by an additional 33% when the cottonseed was extruded at 160 degrees C as compared to 104 degrees C. Furthermore, the multiple-pass extrusion study indicated that aflatoxin levels were reduced by an additional 55% when the cottonseed was extruded four times as compared to one time. To estimate the aflatoxin reductions due to extrusion temperature and dwell time, the least mean fits obtained for the individual studies were combined. Total estimated reductions of 55% (three stages of processing at 104 degrees C), 50% (two stages of processing at 132 degrees C), and 47% (one stage of processing at 160 degrees C) were obtained from the combined equations. If the extreme conditions (four stages of processing at 160 degrees C) of the evaluation studies are applied to the combined temperature and processing equation, the resulting aflatoxin reduction would be 76%.

  2. Role of the plasma membrane H+-ATPase in the regulation of organic acid exudation under aluminum toxicity and phosphorus deficiency

    PubMed Central

    Yu, Wenqian; Kan, Qi; Zhang, Jiarong; Zeng, Bingjie; Chen, Qi

    2016-01-01

    Aluminum (Al) toxicity and phosphorus (P) deficiency are 2 major limiting factors for plant growth and crop production in acidic soils. Organic acids exuded from roots have been generally regarded as a major resistance mechanism to Al toxicity and P deficiency. The exudation of organic acids is mediated by membrane-localized OA transporters, such as ALMT (Al-activated malate transporter) and MATE (multidrug and toxic compound extrusion). Beside on up-regulation expression of organic acids transporter gene, transcriptional, translational and post-translational regulation of the plasma membrane H+-ATPase are also involved in organic acid release process under Al toxicity and P deficiency. This mini-review summarizes the current knowledge about this field of study on the role of the plasma membrane H+-ATPase in organic acid exudation under Al toxicity and P deficiency conditions. PMID:26713714

  3. Development of Co-Extrusion Technologies for Green Manufacture of Energetics

    DTIC Science & Technology

    2006-04-01

    extrusion, Cc-extruded, ETPE, TPE, Energetic thermoplastic elastomer , PDMS, Polydimethyl siloxane, Fast core propellant, Co-layered, Wall slip, Shear...first opportunity possible, the steady FEM models of SIT will need to be converted into time dependent models to allow time dependent calculations to be

  4. Microstructure evolution and mechanical properties of nano-SiCp/AZ91 composite processed by extrusion and equal channel angular pressing (ECAP)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qiao, X.G.; Ying, T.

    Nano-SiCp/AZ91 magnesium matrix composite was fabricated by stir casting. The as-cast ingots were extruded at 350 °C, then processed by equal channel angular pressing (ECAP) at various temperatures (250 °C, 300 °C and 350 °C). Grains are significantly refined after the extrusion and the ECAP. A basal fibre texture was detected by neutron diffraction after the extrusion, which inclines about 45° to the extrusion direction (ED) after the ECAP. Nano-scaled SiC particles agglomerate in the as-cast composite. After the extrusion, the agglomeration tends to form continuous or discontinuous strips along the extrusion direction. By application of the ECAP, the agglomeratedmore » SiC particles are partly dispersed and the strips formed during the extrusion tend to be thinner and broken with the increasing pass number. The yield tensile strength (YTS) and the ultimate tensile strength (UTS) of the composite are dramatically increased after the extrusion. ECAP for one pass at various temperatures further increases the strength, however, the YTS decreases with the increasing ECAP temperature and the pass number. The Orowan equations predict the maximum YTS of the composite may be up to 400 MPa providing SiC particles are homogenously distributed in the matrix. - Highlights: •Nano-scaled SiC particles were successfully added into AZ91 by stirring casting. •Agglomeration of nano-particles were improved by extrusion and ECAP. •Yield strength of the composite is 328 MPa after one pass of ECAP. •Further ECAP process with optimized parameters may fully disperse nano-particles. •Yield strength is predicted to up to 400 MPa when particles are fully dispersed.« less

  5. Processing of Aluminum-Graphite Particulate Metal Matrix Composites by Advanced Shear Technology

    NASA Astrophysics Data System (ADS)

    Barekar, N.; Tzamtzis, S.; Dhindaw, B. K.; Patel, J.; Hari Babu, N.; Fan, Z.

    2009-12-01

    To extend the possibilities of using aluminum/graphite composites as structural materials, a novel process is developed. The conventional methods often produce agglomerated structures exhibiting lower strength and ductility. To overcome the cohesive force of the agglomerates, a melt conditioned high-pressure die casting (MC-HPDC) process innovatively adapts the well-established, high-shear dispersive mixing action of a twin screw mechanism. The distribution of particles and properties of composites are quantitatively evaluated. The adopted rheo process significantly improved the distribution of the reinforcement in the matrix with a strong interfacial bond between the two. A good combination of improved ultimate tensile strength (UTS) and tensile elongation (ɛ) is obtained compared with composites produced by conventional processes.

  6. Hot-melt extrusion microencapsulation of quercetin for taste-masking.

    PubMed

    Khor, Chia Miang; Ng, Wai Kiong; Kanaujia, Parijat; Chan, Kok Ping; Dong, Yuancai

    2017-02-01

    Besides its poor dissolution rate, the bitterness of quercetin also poses a challenge for further development. Using carnauba wax, shellac or zein as the shell-forming excipient, this work aimed to microencapsulate quercetin by hot-melt extrusion for taste-masking. In comparison with non-encapsulated quercetin, the microencapsulated powders exhibited significantly reduced dissolution in the simulated salivary pH 6.8 medium indicative of their potentially good taste-masking efficiency in the order of zein > carnauba wax > shellac. In vitro bitterness analysis by electronic tongue confirmed the good taste-masking efficiency of the microencapsulated powders. In vitro digestion results showed that carnauba wax and shellac-microencapsulated powders presented comparable dissolution rate with the pure quercetin in pH 1.0 (gastric) and 6.8 (intestine) medium; while zein-microencapsulated powders exhibited a remarkably slower dissolution rate. Crystallinity of quercetin was slightly reduced after microencapsulation while its chemical structure remained unchanged. Hot-melt extrusion microencapsulation could thus be an attractive technique to produce taste-masked bioactive powders.

  7. Weld Repair of Thin Aluminum Sheet

    NASA Technical Reports Server (NTRS)

    Beuyukian, C. S.; Mitchell, M. J.

    1986-01-01

    Weld repairing of thin aluminum sheets now possible, using niobium shield and copper heat sinks. Refractory niobium shield protects aluminum adjacent to hole, while copper heat sinks help conduct heat away from repair site. Technique limits tungsten/inert-gas (TIG) welding bombardment zone to melt area, leaving surrounding areas around weld unaffected. Used successfully to repair aluminum cold plates on Space Shuttle, Commercial applications, especially in sealing fractures, dents, and holes in thin aluminum face sheets or clad brazing sheet in cold plates, heat exchangers, coolers, and Solar panels. While particularly suited to thin aluminum sheet, this process also used in thicker aluminum material to prevent surface damage near weld area.

  8. Strain transformation between tectonic extrusion and crustal thickening in the growth of the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Liu, M.; Li, Y.; Sun, Y.; Shen, X.

    2017-12-01

    The Indo-Eurasian continental collision since 50 Ma has thickened the crust to raise the Himalayan-Tibetan Plateau and driven lateral extrusion of Asian lithospheric blocks to affect Cenozoic tectonics in central and east Asia. The relative roles of crustal thickening and tectonic extrusion, and the strain partitioning between them over time and space, remain controversial. We have analyzed the strain rates using GPS velocities, and correlated the results with vertical motion derived from precise leveling. We found that tectonic extrusion largely transforms to crustal thickening near the margins of the Tibetan Plateau. Near the NW margin of the Tibetan Plateau, the shear stain transforms to compressive strain, consistent with neotectonic studies that indicate crustal shortening and uplift. Around the SE margin, shear stain largely terminates in the southern Yunnan province of China. The present-day crustal motion in SE Tibetan Plateau can be well explained by gravitational spreading without invoking plate-edge push as envisioned in the tectonic extrusion model. Using data collected from local seismic arrays, we derived receiver functions to image the lithospheric structures across the Tibetan Plateau and the Alashan block to its north and the Ordos block to its east. Our results indicate that the mantle lithosphere of these bounding Asian blocks has not been reworked by Tibetan tectonics; instead they have acted as restrictive walls to the growing Tibetan Plateau. Our finite element modeling shows that crustal deformation along the margins of the Tibetan Plateau are consistent with the notion that the east- and southeastward extrusion of the Tibetan lithosphere is largely confined to the Tibetan Plateau because of the restrictive bounding blocks of the Asian lithosphere. Thus the tectonic impact of the Indo-Eurasian collision on the Cenozoic Asian tectonics may not be as extensive as previously thought.

  9. Quantitative measures of meniscus extrusion predict incident radiographic knee osteoarthritis--data from the Osteoarthritis Initiative.

    PubMed

    Emmanuel, K; Quinn, E; Niu, J; Guermazi, A; Roemer, F; Wirth, W; Eckstein, F; Felson, D

    2016-02-01

    To test the hypothesis that quantitative measures of meniscus extrusion predict incident radiographic knee osteoarthritis (KOA), prior to the advent of radiographic disease. 206 knees with incident radiographic KOA (Kellgren Lawrence Grade (KLG) 0 or 1 at baseline, developing KLG 2 or greater with a definite osteophyte and joint space narrowing (JSN) grade ≥1 by year 4) were matched to 232 control knees not developing incident KOA. Manual segmentation of the central five slices of the medial and lateral meniscus was performed on coronal 3T DESS MRI and quantitative meniscus position was determined. Cases and controls were compared using conditional logistic regression adjusting for age, sex, BMI, race and clinical site. Sensitivity analyses of early (year [Y] 1/2) and late (Y3/4) incidence was performed. Mean medial extrusion distance was significantly greater for incident compared to non-incident knees (1.56 mean ± 1.12 mm SD vs 1.29 ± 0.99 mm; +21%, P < 0.01), so was the percent extrusion area of the medial meniscus (25.8 ± 15.8% vs 22.0 ± 13.5%; +17%, P < 0.05). This finding was consistent for knees restricted to medial incidence. No significant differences were observed for the lateral meniscus in incident medial KOA, or for the tibial plateau coverage between incident and non-incident knees. Restricting the analysis to medial incident KOA at Y1/2 differences were attenuated, but reached significance for extrusion distance, whereas no significant differences were observed at incident KOA in Y3/4. Greater medial meniscus extrusion predicts incident radiographic KOA. Early onset KOA showed greater differences for meniscus position between incident and non-incident knees than late onset KOA. Copyright © 2015 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  10. Adhesive Bonding and Corrosion Protection of a Die Cast Magnesium Automotive Door

    NASA Astrophysics Data System (ADS)

    Bretz, G. T.; Lazarz, K. A.; Hill, D. J.; Blanchard, P. J.

    It is well known that magnesium alloys, in close proximity to other alloys, are susceptible to galvanic corrosion. Combined with this fact, in automotive applications, it is rare that magnesium will be present in the absence of other alloys such as steel or aluminum. Therefore, in wet applications, where the galvanic cell is completed, it is necessary to isolate the magnesium in order to prevent accelerated corrosion. There are numerous commercial pre-treatments available for magnesium, however this paper focuses on conversion coatings in conjunction with a spray powder coat. By means of example, results for a hem flange joint on an AM50 die cast magnesium door structure will be presented. The outer door skin is an aluminum alloy hemmed around a cast magnesium flange. An adhesive is used between the inner and outer to help with stiffness and NVH (Noise, Vibration and Harshness). Results from bonded lap-shear coupon tests that have been exposed to accelerated corrosion cycles are presented. A second phase of this work considered a surrogate hem flange coupon, which was similarly exposed to the same accelerated corrosion cycle. Results from both of these tests are presented within this paper along with a discussion as to their suitability for use within automotive applications.

  11. Effect of extrusion temperature and moisture content of corn flour on crystallinity and hardness of rice analogues

    NASA Astrophysics Data System (ADS)

    Budi, Faleh Setia; Hariyadi, Purwiyatno; Budijanto, Slamet; Syah, Dahrul

    2015-12-01

    Rice analogues are food products made of broken rice and/or any other carbohydrate sources to have similar texture and shape as rice. They are usually made by hot extrusion processing. The hot extrusion process may change the crystallinity of starch and influence the characteristic of rice analogues. Therefore, this research aimed to study the effect of moisture content of incoming dough and temperature of extrusion process on the crystallinity and hardness of resulting rice analogues. The dough's were prepared by mixing of corn starch-flour with ratio 10/90 (w/w) and moisture content of 35%, 40% and 45% (w/w) and extrusion process were done at temperature of 70, 80, 90°C by using of twin screw extruder BEX-DS-2256 Berto. The analyses were done to determine the type of crystal, degree of crystallinity, and hardness of the resulting rice analogues. Our result showed that the enhancement of extrusion temperature from 70 - 90°C increased degree of crystallinity from 5.86 - 15.00% to 10.70 - 18.87% and hardness from 1.71 - 4.36 kg to 2.05 - 5.70 kg. The raising of dough moisture content from 35 - 45% decreased degree of crystallinity from 15.00 - 18.87% to 5.86 - 10.70% and hardness from 4.36 - 5.70 kg to 1.71 - 2.05 kg. The increase of degree of crystallinity correlated positively with the increase of hardness of rice analogues (r = 0.746, p = 0.05).

  12. Effect of second to first normal stress difference ratio at the die exit on neck-in phenomenon in polymeric flat film production

    NASA Astrophysics Data System (ADS)

    Barborik, Tomas; Zatloukal, Martin

    2017-05-01

    In this study, viscoelastic modeling of the extrusion film casting process, based on the lD membrane model and modified Leonov constitutive equation, was conducted and the effect of the viscoelastic stress state at the die exit (captured here via second to first normal stress difference ratio) on the unwanted neck-in phenomenon has been analyzed for wide range of Deborah numbers and materials having different level of uniaxial and planar extensional strain hardening. Relevant experimental data for LDPE and theoretical predictions based on multimode eXtended Pom-Pom model acquired from the open literature were used for the validation purposes. It was found that firstly, the predicting capabilities of both constitutive equations for given material and processing conditions are comparable even if the single mode modified Leonov model was used and secondly, the agreement between theoretical and experimental data on neck-in is fairly good. Results of the theoretical study revealed that the viscoelastic stress state at the die exit (i.e. -N2/N1 ratio) increases the level of neck-in if uniaxial extensional strain hardening, planar to uniaxial extensional viscosity ratio and Deborah number increases. It has also been revealed that there exists threshold value for Deborah number and extensional strain hardening below which the neck-in becomes independent on the die exit stress state.

  13. Serum aluminum levels in dialysis patients after sclerotherapy of internal hemorrhoids with aluminum potassium sulfate and tannic acid.

    PubMed

    Tsunoda, Akira; Nakagi, Masafumi; Kano, Nobuyasu; Mizutani, Masahiko; Yamaguchi, Kenji

    2014-12-01

    Aluminum potassium sulfate and tannic acid (ALTA) is an effective sclerosing agent for internal hemorrhoids. However, it is contraindicated for patients with chronic renal failure on dialysis, because the aluminum in ALTA can cause aluminum encephalopathy when it is not excreted effectively. We conducted this study to measure the serum aluminum concentrations and observe for symptoms relating to aluminum encephalopathy in dialysis patients after ALTA therapy. Ten dialysis patients underwent ALTA therapy for hemorrhoids. We measured their serum aluminum concentrations and observed them for possible symptoms of aluminum encephalopathy. The total injection volume of ALTA solution was 31 mL (24-37). The median serum aluminum concentration before ALTA therapy was 9 μg/L, which increased to 741, 377, and 103 μg/L, respectively, 1 h, 1 day, and 1 week after ALTA therapy. These levels decreased rapidly, to 33 μg/L by 1 month and 11 μg/L by 3 months after ALTA therapy. No patient suffered symptoms related to aluminum encephalopathy. Although the aluminum concentrations increased temporarily after ALTA therapy, dialysis patients with levels below 150 μg/L by 1 week and thereafter are considered to be at low risk of the development of aluminum encephalopathy.

  14. Formation of Acridones by Ethylene Extrusion in the Reaction of Arynes with β-Lactams and Dihydroquinolinones

    PubMed Central

    Fang, Yuesi; Rogness, Donald C.; Larock, Richard C.; Shi, Feng

    2012-01-01

    N-Unsubstituted β-lactams react with a molecule of aryne by insertion into the amide bond to form a 2,3-dihydroquinolin-4-one, which subsequently reacts with another molecule of aryne to form an acridone by extrusion of a molecule of ethylene. 2,3-Dihydroquinolin-4-ones react under the same reaction conditions to afford identical results. This is the first example of ethylene extrusion in aryne chemistry. PMID:22742883

  15. Aluminum-based metal-air batteries

    DOEpatents

    Friesen, Cody A.; Martinez, Jose Antonio Bautista

    2016-01-12

    Provided in one embodiment is an electrochemical cell, comprising: (i) a plurality of electrodes, comprising a fuel electrode that comprises aluminum and an air electrode that absorbs gaseous oxygen, the electrodes being operable in a discharge mode wherein the aluminum is oxidized at the fuel electrode and oxygen is reduced at the air electrode, and (ii) an ionically conductive medium, comprising an organic solvent; wherein during non-use of the cell, the organic solvent promotes formation of a protective interface between the aluminum of the fuel electrode and the ionically conductive medium, and wherein at an onset of the discharge mode, at least some of the protective interface is removed from the aluminum to thereafter permit oxidation of the aluminum during the discharge mode.

  16. Conductive aluminum line formation on aluminum nitride surface by infrared nanosecond laser

    NASA Astrophysics Data System (ADS)

    Kozioł, Paweł E.; Antończak, Arkadiusz J.; Szymczyk, Patrycja; Stępak, Bogusz; Abramski, Krzysztof M.

    2013-12-01

    In this paper the fabrication of conductive aluminum paths on AlN ceramic's surface due to the interaction of laser radiation Nd:YAG (1.064 μm) is presented. The metallization process produces an appropriate power value on the ceramics surface to ensure the correct temperature (2200 °C) for which aluminum and nitrogen bonds are broken. Studies have been undertaken on creating low-ohmic structures depending on the parameters such as radiation power, scanning speed, the coverage of subsequent pulses and the environmental impact of the process (air, nitrogen, argon). Furthermore, with regards to the application of this method, it was significant to determine the thickness of the functional layer. A structure of the resistivity of ρ = 0.64 × 10-6 Ω m and aluminum layer thickness of 10 μm was achieved for the process carried out on the inert gas, argon. In addition, a quantitative analysis of nitrogen and aluminum for laser-treated structures was conducted. The performed tests confirmed that the highest amount of aluminum was produced on the surface treated by laser radiation in the environment of the process gas, argon.

  17. Production of anhydrous aluminum chloride composition

    DOEpatents

    Vandergrift, G.F. III; Krumpelt, M.; Horwitz, E.P.

    1981-10-08

    A process is described for producing an anhydrous aluminum chloride composition from a water-based aluminous material such as a slurry of aluminum hydroxide in a multistage extraction process in which the aluminum ion is first extracted into an organic liquid containing an acidic extractant and then extracted from the organic phase into an alkali metal chloride or chlorides to form a melt containing a mixture of chlorides of alkali metal and aluminum. In the process, the organic liquid may be recycled. In addition, the process advantageously includes an electrolysis cell for producing metallic aluminum and the alkali metal chloride or chlorides may be recycled for extraction of the aluminum from the organic phase.

  18. Properties Data for Adhesion and Surface Chemistry of Aluminum: Sapphire-Aluminum, Single-Crystal Couple

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa; Pohlchuck, Bobby; Whitle, Neville C.; Hector, Louis G., Jr.; Adams, Jim

    1998-01-01

    An investigation was conducted to examine the adhesion and surface chemistry of single-crystal aluminum in contact with single-crystal sapphire (alumina). Pull-off force (adhesion) measurements were conducted under loads of 0. I to I mN in a vacuum of 10(exp -1) to 10(exp -9) Pa (approx. 10(exp -10) to 10(exp -11) torr) at room temperature. An Auger electron spectroscopy analyzer incorporated directly into an adhesion-measuring vacuum system was primarily used to define the chemical nature of the surfaces before and after adhesion measurements. The surfaces were cleaned by argon ion sputtering. With a clean aluminum-clean -sapphire couple the mean value and standard deviation of pull-off forces required to separate the surfaces were 3015 and 298 micro-N, respectively. With a contaminated aluminum-clean sapphire couple these values were 231 and 241 micro-N. The presence of a contaminant film on the aluminum surface reduced adhesion by a factor of 13. Therefore, surfaces cleanliness, particularly aluminum cleanliness, played an important role in the adhesion of the aluminum-sapphire couples. Pressures on the order of 10(exp -8) to 10(exp -9) Pa (approx. 10(exp -10) to 10(exp -11) torr) maintained a clean aluminum surface for only a short time (less then 1 hr) but maintained a clean sapphire surface, once it was achieved, for a much longer time.

  19. Biaxial extrusion of polyimide LARC-TPI and LARC-TPI blends

    NASA Technical Reports Server (NTRS)

    Haghighat, R. Ross; Elandjian, Lucy; Lusignea, Richard W.

    1990-01-01

    Biaxial films of polyimide LARC-TPI and LARC-TPI/liquid crystal polymer Xydar were extruded directly from the melt for the first time via an innovative extrusion technique. Three types of films, neat LARC-TPI, LARC-TPI/10 wt pct and 30 wt pct blends were processed as a part of this NASA-funded program. Processability was greatly enhanced by incorporating Xydar. The coefficient of thermal expansion was reduced from 34 ppm/C for the neat LARC-TPI to 15 ppm/C for the 10 wt pct Xydar blend and ultimately down to 1 to 3 ppm/C for the 30 wt pct blend films in the direction of extrusion. The maximum improvement in stiffness was realized by incorporating 10 wt pct Xydar (2.8 GPa up to 4.9 GPa). Tensile strength, however, experienced a drop as a result of Xydar addition, probably caused by inefficient mixing of the two phases.

  20. Obtaining ready-to-eat blue corn expanded snacks with anthocyanins using an extrusion process and response surface methodology.

    PubMed

    Escalante-Aburto, Anayansi; Ramírez-Wong, Benjamín; Torres-Chávez, Patricia Isabel; López-Cervantes, Jaime; Figueroa-Cárdenas, Juan de Dios; Barrón-Hoyos, Jesús Manuel; Morales-Rosas, Ignacio; Ponce-García, Néstor; Gutiérrez-Dorado, Roberto

    2014-12-15

    Extrusion is an alternative technology for the production of nixtamalized products. The aim of this study was to obtain an expanded nixtamalized snack with whole blue corn and using the extrusion process, to preserve the highest possible total anthocyanin content, intense blue/purple coloration (color b) and the highest expansion index. A central composite experimental design was used. The extrusion process factors were: feed moisture (FM, 15%-23%), calcium hydroxide concentration (CHC, 0%-0.25%) and final extruder temperature (T, 110-150 °C). The chemical and physical properties evaluated in the extrudates were moisture content (MC, %), total anthocyanins (TA, mg·kg(-1)), pH, color (L, a, b) and expansion index (EI). ANOVA and surface response methodology were applied to evaluate the effects of the extrusion factors. FM and T significantly affected the response variables. An optimization step was performed by overlaying three contour plots to predict the best combination region. The extrudates were obtained under the following optimum factors: FM (%) = 16.94, CHC (%) = 0.095 and T (°C) = 141.89. The predicted extrusion processing factors were highly accurate, yielding an expanded nixtamalized snack with 158.87 mg·kg(-1) TA (estimated: 160 mg·kg(-1)), an EI of 3.19 (estimated: 2.66), and color parameter b of -0.44 (estimated: 0.10).

  1. Application of hot melt extrusion for improving bioavailability of artemisinin a thermolabile drug.

    PubMed

    Kulkarni, C; Kelly, A L; Gough, T; Jadhav, V; Singh, K K; Paradkar, A

    2018-02-01

    Hot melt extrusion has been used to produce a solid dispersion of the thermolabile drug artemisinin. Formulation and process conditions were optimized prior to evaluation of dissolution and biopharmaceutical performance. Soluplus ® , a low T g amphiphilic polymer especially designed for solid dispersions enabled melt extrusion at 110 °C although some drug-polymer incompatibility was observed. Addition of 5% citric acid as a pH modifier was found to suppress the degradation. The area under plasma concentration time curve (AUC 0-24h ) and peak plasma concentration (C max ) were four times higher for the modified solid dispersion compared to that of pure artemisinin.

  2. Environmental hazards of aluminum to plants, invertebrates, fish, and wildlife

    USGS Publications Warehouse

    Sparling, D.W.; Lowe, T.P.

    1996-01-01

    Aluminum is extremely common throughout the world and is innocuous under circumneutral or alkaline conditions. However, in acidic environments, it can be a maJor limiting factor to many plants and aquatic organisms. The greatest concern for toxicity in North America occurs in areas that are affected by wet and dry acid deposition, such as eastern Canada and the northeastern U.S. Acid mine drainage, logging, and water treatment plant effluents containing alum can be other maJor sources of Al. In solution, the metal can combine with several different agents to affect toxicity. In general, Al hydroxides and monomeric Al are the most toxic forms. Dissolved organic carbons, F, PO(3)3- and SO(4)2- ameliorate toxicity by reducing bioavailability. Elevated metal levels in water and soil can cause serious problems for some plants. Algae tend to be both acid- and Al tolerant and, although some species may disappear with reduced pH, overall algae productivity and biomass are seldom affected if pH is above 3.0. Aluminum and acid toxicity tend to be additive to some algae when pH is less than 4.5. Because the metal binds with inorganic P, it may reduce P availability and reduce productivity. Forest die-backs in North America involving red spruce, Fraser fir, balsam fir, loblolly pine, slash pine, and sugar maples have been ascribed to Al toxicity, and extensive areas of European forests have died because of the combination of high soil Al and low pH. Extensive research on crops has produced Al-resistant cultivars and considerable knowledge about mechanisms of and defenses against toxicity. Very low Al levels may benefit some plants, although the metal is not recognized as an essential nutrient. Hyperaccumulator species of plants may concentrate Al to levels that are toxic to herbivores. Toxicity in aquatic invertebrates is also acid dependent. Taxa such as Ephemeroptera, Plecoptera, and Cladocera are sensitive and may perish when Al is less than 1 mg.L-1 whereas dipterans

  3. Composition and consumer acceptability of a novel extrusion-cooked salmon snack.

    PubMed

    Kong, J; Dougherty, M P; Perkins, L B; Camire, M E

    2008-04-01

    The objectives of this study were to develop a value-added jerky-style snack from salmon flesh and to minimize loss of healthful lipids during processing. Three formulations were extruded in a laboratory-scale twin-screw extruder. The base formulation included Atlantic salmon (82%, w/w), sucrose (4%), pregelatinized starch (3%), modified tapioca starch (3%), salt (2%), and teriyaki flavoring (2%). Three oil binding agents (tapioca starch, high-amylose cornstarch, oat fiber) were each studied at the 4% level. Barrel temperature, from feed to die, was 65, 155, 155, and 80 degrees C. Screw speed was 250 rpm. Feed rate was 220 g/min. Extrudates were convection-dried at 93 degrees C for 40 min. A texture analyzer was used to evaluate textural properties. Sixty-three consumers evaluated the hedonic attributes of the snacks. Extrusion cooking did not adversely affect content of omega-3 fatty acids docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) in Atlantic salmon. The oat fiber formulation had the highest lipid (17.49%) content. The other formulations had higher moisture content. A serving (28 g) of the oat formulation provides 0.6 g EPA + DHA. Snacks containing oat fiber had the highest CIE L* and b* values. Snacks containing oat fiber required greater force to bend, cut, and puncture. The oat fiber formulation had the lowest overall acceptability. This portable snack could appeal to consumers who are interested in the health benefits of fish and omega-3 fatty acids and provide salmon processors with a value-added solution for processing by-products.

  4. Synthesis and Characterization of Heterobimetallic Iridium-Aluminum and Rhodium-Aluminum Complexes.

    PubMed

    Brewster, Timothy P; Nguyen, Tan H; Li, Zhongjing; Eckenhoff, William T; Schley, Nathan D; DeYonker, Nathan J

    2018-02-05

    We demonstrate the synthesis and characterization of a new class of late-transition-metal-aluminum heterobimetallic complexes via a novel synthetic pathway. Complexes of this type are exceedingly rare. Joint experimental and theoretical data sheds light on the electronic effect of ligands containing aluminum moieties on late-transition-metal complexes.

  5. Dimensional control of die castings

    NASA Astrophysics Data System (ADS)

    Karve, Aniruddha Ajit

    The demand for net shape die castings, which require little or no machining, is steadily increasing. Stringent customer requirements are forcing die casters to deliver high quality castings in increasingly short lead times. Dimensional conformance to customer specifications is an inherent part of die casting quality. The dimensional attributes of a die casting are essentially dependent upon many factors--the quality of the die and the degree of control over the process variables being the two major sources of dimensional error in die castings. This study focused on investigating the nature and the causes of dimensional error in die castings. The two major components of dimensional error i.e., dimensional variability and die allowance were studied. The major effort of this study was to qualitatively and quantitatively study the effects of casting geometry and process variables on die casting dimensional variability and die allowance. This was accomplished by detailed dimensional data collection at production die casting sites. Robust feature characterization schemes were developed to describe complex casting geometry in quantitative terms. Empirical modeling was utilized to quantify the effects of the casting variables on dimensional variability and die allowance for die casting features. A number of casting geometry and process variables were found to affect dimensional variability in die castings. The dimensional variability was evaluated by comparisons with current published dimensional tolerance standards. The casting geometry was found to play a significant role in influencing the die allowance of the features measured. The predictive models developed for dimensional variability and die allowance were evaluated to test their effectiveness. Finally, the relative impact of all the components of dimensional error in die castings was put into perspective, and general guidelines for effective dimensional control in the die casting plant were laid out. The results of

  6. Effect of combined extrusion parameters on mechanical properties of basalt fiber-reinforced plastics based on polypropylene

    NASA Astrophysics Data System (ADS)

    Bashtannik, P. I.; Ovcharenko, V. G.; Boot, Yu. A.

    1997-11-01

    Basalt fibers are efficient reinforcing fillers for polypropylene because they increase both the mechanical and the tribotechnical properties of composites. Basalt fibers can compete with traditional fillers (glass and asbestos fibers) of polypropylene with respect to technological, economic, and toxic properties. The effect of technological parameters of producing polypropylene-based basalt fiber-reinforced plastics (BFRPs) by combined extrusion on their mechanical properties has been investigated. The extrusion temperature was found to be the main parameter determining the mechanical properties of the BFRPs. With temperature growth from 180 to 240°C, the residual length of the basalt fibers in the composite, as well as the adhesive strength of the polymer-fiber system, increased, while the composite defectiveness decreased. The tensile strength and elastic modulus increased from 35 to 42 MPa and 3.2 to 4.2 GPa, respectively. At the same time, the growth in composite solidity led to its higher brittleness. Thus, a higher temperature of extrusion allows us to produce materials which can be subjected to tensile and bending loads, while the materials produced at a lower temperature of extrusion are impact stable. The effect of the gap size between the extruder body and moving disks on the mechanical properties of the BFRPs is less significant than that of temperature. An increase of the gap size from 2 to 8 mm improves the impregnation quality of the fibers, but the extruder productivity diminishes. The possibility of controling the properties of reinforced polypropylene by varying the technological parameters of combined extrusion is shown. The polypropylene-based BFRPs produced by the proposed method surpass the properties of glass and asbestos fiber-reinforced plastics.

  7. Influence of Punch Geometry on Process Parameters in Cold Backward Extrusion

    NASA Astrophysics Data System (ADS)

    Plančak, M.; Barišić, B.; Car, Z.; Movrin, D.

    2011-01-01

    In cold extrusion of steel tools make direct contact with the metal to be extruded. Those tools are exposed to high contact stresses which, in certain cases, may be limiting factors in applying this technology. The present paper was bound to the influence of punch head design on radial stress at the container wall in the process of cold backward extrusion. Five different punch head geometries were investigated. Radial stress on the container wall was measured by pin load cell technique. Special tooling for the experimental investigation was designed and made. Process has been analyzed also by FE method. 2D models of tools were obtained by UGS NX and for FE analysis Simufact Forming GP software was used. Obtained results (experimental and obtained by FE) were compared and analyzed. Optimal punch head geometry has been suggested.

  8. Orbital fabrication of aluminum foam and apparatus therefore

    NASA Technical Reports Server (NTRS)

    Tucker, Dennis S. (Inventor)

    2010-01-01

    A process for producing foamed aluminum in space comprising the steps of: heating aluminum until it is molten; applying the force of gravity to the molten aluminum; injecting gas into the molten aluminum to produce molten foamed aluminum; and allowing the molten foamed aluminum to cool to below melting temperature. The apparatus for carrying out this invention comprises: a furnace which rotates to simulate the force of gravity and heats the aluminum until it is molten; a door on the furnace, which is opened for charging the aluminum into the furnace, closed for processing and opened again for removal of the foamed aluminum; a gas injection apparatus for injecting gas into the molten aluminum within the furnace; and an extraction apparatus adjacent the door for removing the foamed aluminum from the furnace.

  9. Graft extrusion in both the coronal and sagittal planes is greater after medial compared with lateral meniscus allograft transplantation but is unrelated to early clinical outcomes.

    PubMed

    Lee, Dae-Hee; Lee, Chang-Rack; Jeon, Jin-Ho; Kim, Kyung-Ah; Bin, Seong-Il

    2015-01-01

    Graft extrusion after meniscus allograft transplantation (MAT) may be affected by horn fixation, which differs between medial and lateral MAT. Few studies have compared graft extrusion, especially sagittal extrusion, after medial and lateral MAT. In patients undergoing medial and lateral MAT, graft extrusion is likely similar and not correlated with postoperative Lysholm scores. Cohort study; Level of evidence, 2. Meniscus graft extrusion in the coronal and sagittal planes was compared in 51 knees undergoing medial MAT and 84 undergoing lateral MAT. Distances from the anterior and posterior articular cartilage margins to the anterior (anterior cartilage meniscus distance [ACMD]) and posterior (posterior cartilage meniscus distance [PCMD]) horns, respectively, were assessed on immediate postoperative magnetic resonance imaging and compared in patients undergoing medial and lateral MAT. Correlations between coronal and sagittal graft extrusion and between extrusion and the Lysholm score were compared in the 2 groups. In the coronal plane, mean absolute (4.3 vs 2.7 mm, respectively; P<.001) and relative (39% vs 21%, respectively; P<.001) graft extrusions were significantly greater for medial than lateral MAT. In the sagittal plane, mean absolute and relative ACMD and PCMD values were significantly greater for medial than lateral MAT (P<.001 each). For both medial and lateral MAT, mean absolute and relative ACMDs were significantly larger than PCMDs (P<.001 each). Graft extrusion>3 mm in the coronal plane was significantly more frequent in the medial (78%) than in the lateral (35%) MAT group. In the sagittal plane, the frequencies of ACMDs (72% vs 39%, respectively) and PCMDs (23% vs 4%, respectively) >3 mm were also significantly greater in the medial than in the lateral MAT group. Coronal and sagittal extrusions were not correlated with postoperative Lysholm scores for both medial and lateral MAT. The amount and incidence of graft extrusion were greater after medial

  10. Mineral resource of the month: aluminum

    USGS Publications Warehouse

    Bray, E. Lee

    2012-01-01

    The article offers information on aluminum, a mineral resource which is described as the third-most abundant element in Earth's crust. According to the article, aluminum is the second-most used metal. Hans Christian Oersted, a Danish chemist, was the first to isolate aluminum in the laboratory. Aluminum is described as lightweight, corrosion-resistant and an excellent conductor of electricity and heat.

  11. Extrusion Bioprinting of Shear-Thinning Gelatin Methacryloyl Bioinks

    PubMed Central

    Liu, Wanjun; Heinrich, Marcel A.; Zhou, Yixiao; Akpek, Ali; Hu, Ning; Liu, Xiao; Guan, Xiaofei; Zhong, Zhe; Jin, Xiangyu

    2017-01-01

    Bioprinting is an emerging technique for the fabrication of three-dimensional (3D) cell-laden constructs. However, the progress for generating a 3D complex physiological microenvironment has been hampered by a lack of advanced cell-responsive bioinks that enable bioprinting with high structural fidelity, particularly in the case of extrusion-based bioprinting. Herein, we report a novel strategy to directly bioprint cell-laden constructs using bioinks made of gelatin methacryloyl (GelMA) physical gels (GPGs). Attributed to their shear-thinning and self-healing properties, the GPG bioinks could retain the shape and form integral structures after deposition, allowing for subsequent UV crosslinking for permanent stabilization. We showed the structural fidelity by bioprinting various 3D structures that are typically challenging to fabricate using conventional bioinks under extrusion modes. Moreover, the use of the GPG bioinks enabled direct bioprinting of highly porous and soft constructs at relatively low concentrations (down to 3%) of GelMA. We also demonstrated that the bioprinted constructs not only permitted cell survival but also enhanced cell proliferation as well as spreading at lower concentrations of the GPG bioinks. We believe our strategy of bioprinting will provide many opportunities in convenient fabrication of 3D cell-laden constructs for applications in tissue engineering, regenerative medicine, and pharmaceutical screening. PMID:28464555

  12. A Virtual Aluminum Reduction Cell

    NASA Astrophysics Data System (ADS)

    Zhang, Hongliang; Zhou, Chenn Q.; Wu, Bing; Li, Jie

    2013-11-01

    The most important component in the aluminum industry is the aluminum reduction cell; it has received considerable interests and resources to conduct research to improve its productivity and energy efficiency. The current study focused on the integration of numerical simulation data and virtual reality technology to create a scientifically and practically realistic virtual aluminum reduction cell by presenting complex cell structures and physical-chemical phenomena. The multiphysical field simulation models were first built and solved in ANSYS software (ANSYS Inc., Canonsburg, PA, USA). Then, the methodology of combining the simulation results with virtual reality was introduced, and a virtual aluminum reduction cell was created. The demonstration showed that a computer-based world could be created in which people who are not analysis experts can see the detailed cell structure in a context that they can understand easily. With the application of the virtual aluminum reduction cell, even people who are familiar with aluminum reduction cell operations can gain insights that make it possible to understand the root causes of observed problems and plan design changes in much less time.

  13. Assisted Dying & Disability.

    PubMed

    Riddle, Christopher A

    2017-07-01

    This article explores at least two dominant critiques of assisted dying from a disability rights perspective. In spite of these critiques, I conclude that assisted dying ought to be permissible. I arrive at the conclusion that if we respect and value people with disabilities, we ought to permit assisted dying. I do so in the following manner. First, I examine recent changes in legislation that have occurred since the Royal Society of Canada Expert Panel on End-of-Life Decision-Making report, published in this journal. I suggest that these changes are likely to only strengthen opposition to assisted dying from disability rights activists and people with disabilities. Second, I focus on respect for people with disabilities and in particular, respect for their autonomy and decision-making abilities. Third, I explore the opposition to assisted dying that focuses on risk and the vulnerability of people with disabilities. Here I suggest that this risk ought not to be of special concern. Ultimately, I conclude that upholding respect for the disabled requires the legalization of assisted dying, rather than the denial of access in a misguided effort to protect people with disabilities. © 2017 John Wiley & Sons Ltd.

  14. Electrically conductive anodized aluminum coatings

    NASA Technical Reports Server (NTRS)

    Alwitt, Robert S. (Inventor); Liu, Yanming (Inventor)

    2001-01-01

    A process for producing anodized aluminum with enhanced electrical conductivity, comprising anodic oxidation of aluminum alloy substrate, electrolytic deposition of a small amount of metal into the pores of the anodized aluminum, and electrolytic anodic deposition of an electrically conductive oxide, including manganese dioxide, into the pores containing the metal deposit; and the product produced by the process.

  15. Micromechanical die attachment surcharge

    DOEpatents

    Filter, William F.; Hohimer, John P.

    2002-01-01

    An attachment structure is disclosed for attaching a die to a supporting substrate without the use of adhesives or solder. The attachment structure, which can be formed by micromachining, functions purely mechanically in utilizing a plurality of shaped pillars (e.g. round, square or polygonal and solid, hollow or slotted) that are formed on one of the die or supporting substrate and which can be urged into contact with various types of mating structures including other pillars, a deformable layer or a plurality of receptacles that are formed on the other of the die or supporting substrate, thereby forming a friction bond that holds the die to the supporting substrate. The attachment structure can further include an alignment structure for precise positioning of the die and supporting substrate to facilitate mounting the die to the supporting substrate. The attachment structure has applications for mounting semiconductor die containing a microelectromechanical (MEM) device, a microsensor or an integrated circuit (IC), and can be used to form a multichip module. The attachment structure is particularly useful for mounting die containing released MEM devices since these devices are fragile and can otherwise be damaged or degraded by adhesive or solder mounting.

  16. Preparation of Imide Oligomers via Concurrent Reactive Extrusion

    NASA Technical Reports Server (NTRS)

    Avakian, Roger W. (Inventor); Hu, Ling (Inventor)

    2018-01-01

    Reactive extrusion can be used in a continuous, solvent-less preparation of imide oligomers involving two competing reactions among three ingredients, the first reaction between a dianhydride and a diamine and the second reaction between an endcap and the same diamine. The imide oligomer can form a composite via conventional production methods or via formation of a film from imide oligomer re-melted in an extruder before being impregnated into tape or fabric.

  17. Sputtered protective coatings for die casting dies

    NASA Technical Reports Server (NTRS)

    Mirtich, M. J.; Nieh, C.-Y.; Wallace, J. F.

    1981-01-01

    Three experimental research designs investigating candidate materials and processes involved in protective die surface coating procedures by sputter deposition, using ion beam technologies, are discussed. Various pre-test results show that none of the coatings remained completely intact for 15,000 test cycles. The longest lifetime was observed for coatings such as tungsten, platinum, and molybdenum which reduced thermal fatigue, but exhibited oxidation and suppressed crack initiation only as long as the coating did not fracture. Final test results confirmed earlier findings and coatings with Pt and W proved to be the candidate materials to be used on a die surface to increase die life. In the W-coated specimens, which remained intact on the surface after thermal fatigue testing, no oxidation was found under the coating, although a few cracks formed on the surface where the coating broke down. Further research is planned.

  18. Effects of Hot-Hydrostatic Canned Extrusion on the Stock Utilization, Microstructure and Mechanical Properties of TiBw/TC4 Composites with Quasi-Continuous Network

    PubMed Central

    Feng, Yangju; Li, Bing; Cui, Guorong; Zhang, Wencong

    2017-01-01

    In-situ TiB whisker-reinforced Ti–6Al–4V (TC4) titanium matrix composites (TiBw/TC4) with quasi-continuous networks were successfully fabricated by vacuum hot-pressing sintering. The effects of the hot-hydrostatic canned extrusion on stock utilization, microstructure and mechanical properties of the TiBw/TC4 composites were investigated. It was satisfactory that the utilization of composites could be obviously improved by canned extrusion compared to that extruded without canned extrusion. The microstructure results showed that after canned extrusion the grain was refined and the TiB whiskers were distributed from a random array state to a state in which the whiskers were distributed along the extrusion direction. The properties testing results revealed that the tensile strength, the hardness and the ductility of the composites all significantly improved after extrusion due to the grain refinement and orientation of the TiB whisker caused by extrusion. Tensile fracture results showed that when the TiB whiskers were randomly distributed only part of them played a role in strengthening the matrix during the deformation process (as-sintered composites), while when the TiB whiskers were oriented all whiskers could strengthen the matrix during the tensile testing process (as-extruded composites). PMID:29068416

  19. Effects of Hot-Hydrostatic Canned Extrusion on the Stock Utilization, Microstructure and Mechanical Properties of TiBw/TC4 Composites with Quasi-Continuous Network.

    PubMed

    Feng, Yangju; Li, Bing; Cui, Guorong; Zhang, Wencong

    2017-10-25

    In-situ TiB whisker-reinforced Ti-6Al-4V (TC4) titanium matrix composites (TiBw/TC4) with quasi-continuous networks were successfully fabricated by vacuum hot-pressing sintering. The effects of the hot-hydrostatic canned extrusion on stock utilization, microstructure and mechanical properties of the TiBw/TC4 composites were investigated. It was satisfactory that the utilization of composites could be obviously improved by canned extrusion compared to that extruded without canned extrusion. The microstructure results showed that after canned extrusion the grain was refined and the TiB whiskers were distributed from a random array state to a state in which the whiskers were distributed along the extrusion direction. The properties testing results revealed that the tensile strength, the hardness and the ductility of the composites all significantly improved after extrusion due to the grain refinement and orientation of the TiB whisker caused by extrusion. Tensile fracture results showed that when the TiB whiskers were randomly distributed only part of them played a role in strengthening the matrix during the deformation process (as-sintered composites), while when the TiB whiskers were oriented all whiskers could strengthen the matrix during the tensile testing process (as-extruded composites).

  20. Mineral of the month: aluminum

    USGS Publications Warehouse

    Plunkert, Patricia A.

    2005-01-01

    Aluminum is the second most abundant metallic element in Earth’s crust after silicon. Even so, it is a comparatively new industrial metal that has been produced in commercial quantities for little more than 100 years. Aluminum is lightweight, ductile, malleable and corrosion resistant, and is a good conductor of heat and electricity. Weighing about one-third as much as steel or copper per unit of volume, aluminum is used more than any other metal except iron. Aluminum can be fabricated into desired forms and shapes by every major metalworking technique to add to its versatility.

  1. Energy-Saving Melting and Revert Reduction Technology (E-SMARRT): Use of Laser Engineered Net Shaping for Rapid Manufacturing of Dies with Protective Coatings and Improved Thermal Management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brevick, Jerald R.

    2014-06-13

    In the high pressure die casting process, molten metal is introduced into a die cavity at high pressure and velocity, enabling castings of thin wall section and complex geometry to be obtained. Traditional die materials have been hot work die steels, commonly H13. Manufacture of the dies involves machining the desired geometry from monolithic blocks of annealed tool steel, heat treating to desired hardness and toughness, and final machining, grinding and polishing. The die is fabricated with internal water cooling passages created by drilling. These materials and fabrication methods have been used for many years, however, there are limitations. Toolmore » steels have relatively low thermal conductivity, and as a result, it takes time to remove the heat from the tool steel via the drilled internal water cooling passages. Furthermore, the low thermal conductivity generates large thermal gradients at the die cavity surfaces, which ultimately leads to thermal fatigue cracking on the surfaces of the die steel. The high die surface temperatures also promote the metallurgical bonding of the aluminum casting alloy to the surface of the die steel (soldering). In terms of process efficiency, these tooling limitations reduce the number of die castings that can be made per unit time by increasing cycle time required for cooling, and increasing downtime and cost to replace tooling which has failed either by soldering or by thermal fatigue cracking (heat checking). The objective of this research was to evaluate the feasibility of designing, fabricating, and testing high pressure die casting tooling having properties equivalent to H13 on the surface in contact with molten casting alloy - for high temperature and high velocity molten metal erosion resistance – but with the ability to conduct heat rapidly to interior water cooling passages. A layered bimetallic tool design was selected, and the design evaluated for thermal and mechanical performance via finite element analysis

  2. Intra-continental subduction and contemporaneous lateral extrusion of the upper plate: insights into Alps-Adria interactions

    NASA Astrophysics Data System (ADS)

    van Gelder, Inge; Willingshofer, Ernst; Sokoutis, Dimitrios; Cloetingh, Sierd

    2017-04-01

    A series of physical analogue experiments were performed to simulate intra-continental subduction contemporaneous with lateral extrusion of the upper plate to study the interferences between these two processes at crustal levels and in the lithospheric mantle. The lithospheric-scale models are specifically designed to represent the collision of the Adriatic microplate with the Eastern Alps, simulated by an intra-continental weak zone to initiate subduction and a weak confined margin perpendicular to the direction of convergence in order to allow for extrusion of the lithosphere. The weak confined margin is the analog for the opening of the Pannonian back-arc basin adjacent to the Eastern Alps with the direction of extension perpendicular to the strike of the orogen. The models show that intra-continental subduction and coeval lateral extrusion of the upper plate are compatible processes. The obtained deformation structures within the extruding region are similar compared to the classical setup where lateral extrusion is provoked by lithosphere-scale indentation. In the models a strong coupling across the subduction boundary allows for the transfer of abundant stresses to the upper plate, leading to laterally varying strain regimes that are characterized by crustal thickening near a confined margin and dominated by lateral displacement of material near a weak lateral confinement. During ongoing convergence the strain regimes propagate laterally, thereby creating an area of overlap characterized by transpression. In models with oblique subduction, with respect to the convergence direction, less deformation of the upper plate is observed and as a consequence the amount of lateral extrusion decreases. Additionally, strain is partitioned along the oblique plate boundary leading to less subduction in expense of right lateral displacement close to the weak lateral confinement. Both oblique and orthogonal subduction models have a strong resemblance to lateral extrusion

  3. A Positron Annihilation Study of Corrosion of Aluminum and Aluminum Alloy by NaOH

    NASA Astrophysics Data System (ADS)

    Wu, Y. C.; Zhai, T.; Coleman, P. G.

    2012-08-01

    Corrosion of fully-annealed pure aluminum and a continuous-cast AA2037 aluminum alloy (solutionized and water quenched) in a 1M NaOH solution for various periods of time were analyzed with positron beam-based Doppler broadening spectroscopy. By varying the energy of the incident positron beam, corrosion-induced defects at different depths from the surface were detected. It was found that the Doppler-broadened annihilation line-width parameter was significantly increased near the surface of pure aluminum after corrosion, probably due to the interaction between positrons and nanometer-sized voids formed near the aluminum surface during corrosion. Examination by atomic force microscopy indicated that many pits were formed on the aluminum surface after corrosion. In contrast, a significant decrease in the line-width parameter was observed in AA2037 alloy after corrosion and interpreted as being caused by copper enrichment at the metal-oxide interface during corrosion; such enrichment at large cavity sites was confirmed by energy dispersion spectrometry.

  4. Concentrations and toxicity of fumonisin B1 in fermented corn grits are reduced by extrusion cooking with glucose supplementation

    USDA-ARS?s Scientific Manuscript database

    Extrusion is a cooking method in which dough is forced under high pressure through a heated barrel using one (single-screw configuration) or two (twin-screw configuration) augers. In an earlier experiment (Voss et al., J. Food Protec. 71: 2036-2041, 2008), extrusion using the single screw configura...

  5. Disc extrusions and bulges in nonspecific low back pain and sciatica: Exploratory randomised controlled trial comparing yoga therapy and normal medical treatment.

    PubMed

    Monro, Robin; Bhardwaj, Abhishek Kumar; Gupta, Ram Kumar; Telles, Shirley; Allen, Beth; Little, Paul

    2015-01-01

    Previous trials of yoga therapy for nonspecific low back pain (nsLBP) (without sciatica) showed beneficial effects. To test effects of yoga therapy on pain and disability associated with lumbar disc extrusions and bulges. Parallel-group, randomised, controlled trial. Sixty-one adults from rural population, aged 20-45, with nsLBP or sciatica, and disc extrusions or bulges. Randomised to yoga (n=30) and control (n=31). Yoga: 3-month yoga course of group classes and home practice, designed to ensure safety for disc extrusions. normal medical care. OUTCOME MEASURES (3-4 months) Primary: Roland Morris Disability Questionnaire (RMDQ); worst pain in past two weeks. Secondary: Aberdeen Low Back Pain Scale; straight leg raise test; structural changes. Disc projections per case ranged from one bulge or one extrusion to three bulges plus two extrusions. Sixty-two percent had sciatica. Intention-to-treat analysis of the RMDQ data, adjusted for age, sex and baseline RMDQ scores, gave a Yoga Group score 3.29 points lower than Control Group (0.98, 5.61; p=0.006) at 3 months. No other significant differences in the endpoints occurred. No adverse effects of yoga were reported. Yoga therapy can be safe and beneficial for patients with nsLBP or sciatica, accompanied by disc extrusions and bulges.

  6. Effect of extrusion processing on the microstructure, mechanical properties, biocorrosion properties and antibacterial properties of Ti-Cu sintered alloys.

    PubMed

    Zhang, Erlin; Li, Shengyi; Ren, Jing; Zhang, Lan; Han, Yong

    2016-12-01

    Ti-Cu sintered alloys, Ti-Cu(S) alloy, have exhibited good anticorrosion resistance and strong antibacterial properties, but low ductility in previous study. In this paper, Ti-Cu(S) alloys were subjected to extrusion processing in order to improve the comprehensive property. The phase constitute, microstructure, mechanical property, biocorrosion property and antibacterial activity of the extruded alloys, Ti-Cu(E), were investigated in comparison with Ti-Cu(S) by X-ray diffraction (XRD), optical microscopy (OM), scanning electronic microscopy (SEM) with energy disperse spectroscopy (EDS), mechanical testing, electrochemical testing and plate-count method in order to reveal the effect of the extrusion process. XRD, OM and SEM results showed that the extrusion process did not change the phase constitute but refined the grain size and Ti2Cu particle significantly. Ti-Cu(E) alloys exhibited higher hardness and compressive yield strength than Ti-Cu(S) alloys due to the fine grain and Ti2Cu particles. With the consideration of the total compressive strain, it was suggested that the extrusion process could improve the ductility of Ti-Cu alloy(S) alloys. Electrochemical results have indicated that the extrusion process improved the corrosion resistance of Ti-Cu(S) alloys. Plate-count method displayed that both Ti-Cu(S) and Ti-Cu(E) exhibited strong antibacterial activity (>99%) against S. aureus. All these results demonstrated that hot forming processing, such as the extrusion in this study, refined the microstructure and densified the alloy, in turn improved the ductility and strength as well as anticorrosion properties without reduction in antibacterial properties. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Response surface methodology for evaluation and optimization of process parameter and antioxidant capacity of rice flour modified by enzymatic extrusion.

    PubMed

    Xu, Enbo; Pan, Xiaowei; Wu, Zhengzong; Long, Jie; Li, Jingpeng; Xu, Xueming; Jin, Zhengyu; Jiao, Aiquan

    2016-12-01

    For the purpose of investigating the effect of enzyme concentration (EC), barrel temperature (BT), moisture content (MC), and screw speed (SS) on processing parameters (product temperature, die pressure and special mechanical energy (SME)) and product responses (extent of gelatinization (GE), retention rate of total phenolic content (TPC-RR)), rice flour extruded with thermostable α-amylase was analyzed by response surface methodology. Stepwise regression models were computed to generate response surface and contour plots, revealing that both TPC-RR and GE increased as increasing MC while expressed different sensitivities to BT during enzymatic extrusion. Phenolics preservation was benefited from low SME. According to multiple-factor optimization, the conditions required to obtain the target SME (10kJ/kg), GE (100%) and TPC-RR (85%) were: EC=1.37‰, BT=93.01°C, MC=44.30%, and SS=171.66rpm, with the actual values (9.49kJ/kg, 99.96% and 87.10%, respectively) showing a good fit to the predicted values. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  8. High energy density aluminum battery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Gilbert M.; Parans Paranthaman, Mariappan; Dai, Sheng

    Compositions and methods of making are provided for a high energy density lithium-aluminum battery. The battery comprises an anode comprising aluminum metal. The battery further comprises a cathode comprising a lithium metal oxide. The battery further comprises an electrolyte capable of supporting reversible deposition and stripping of aluminum at the anode, and reversible intercalation and deintercalation of lithium at the cathode.

  9. Effects of extrusion cooking on the chemical composition and functional properties of dry common bean powders.

    PubMed

    Ai, Yongfeng; Cichy, Karen A; Harte, Janice B; Kelly, James D; Ng, Perry K W

    2016-11-15

    The impact of extrusion cooking on the chemical composition and functional properties of bean powders from four common bean varieties was investigated. The raw bean powders were extruded under eight different conditions, and the extrudates were then dried and ground (particle size⩽0.5mm). Compared with corresponding non-extruded (raw) bean powders (particle size⩽0.5mm), the extrusion treatments did not substantially change the protein and starch contents of the bean powders and showed inconsistent effects on the sucrose, raffinose and stachyose contents. The extrusion cooking did cause complete starch gelatinization and protein denaturation of the bean powders and thus changed their pasting properties and solvent-retention capacities. The starch digestibilities of the cooked non-extruded and cooked extruded bean powders were comparable. The extruded bean powders displayed functional properties similar to those of two commercial bean powders. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Non-surgical management of paraesthesia and pain associated with endodontic sealer extrusion into the mandibular canal.

    PubMed

    Froes, Fabiana Gama Benevides; Miranda, Aguida Maria Menezes Aguiar; Abad, Ernani da Costa; Riche, Fernanda Nehme; Pires, Fábio Ramôa

    2009-12-01

    The aim of this report was to present a case of endodontic sealer extrusion into the mandibular canal in a 42-year-old woman. The patient was referred to the Endodontology and Stomatology Clinics, School of Dentistry, Estácio de Sá University, complaining of 5-day duration intense spontaneous pain and paraesthesia, both arising after an endodontic intervention. Conventional radiographs and computed tomography of the mandible showed the presence of radiopacities inside the right mandibular canal. History and these radiographs confirmed extrusion of endodontic sealer. Treatment included an anti-inflammatory drug, completion of endodontic treatment and follow up. The patient reported gradual improvement, becoming asymptomatic after 2 months. Radiographs 30 months after initial examination revealed partial resorption of the foreign material. In conclusion, iatrogenic extrusion of endodontic materials should be included in differential diagnosis of endodontic pain and can sometimes be managed through non-surgical interventions in some cases.

  11. Waxy soft white wheat: extrusion characteristics and thermal and rheological properties

    USDA-ARS?s Scientific Manuscript database

    Waxy wheat flour was analyzed for its thermal and rheological properties and extruded to understand its processing characteristics. Comparisons were made with normal soft white wheat flour to identify extrusion differences under the same conditions. The thermal and rheological properties through Rap...

  12. Downstream aggradation owing to lava dome extrusion and rainfall runoff at Volcán Santiaguito, Guatemala

    USGS Publications Warehouse

    Harris, Andrew J. L.; Vallance, James W.; Kimberly, Paul; Rose, William I.; Matías, Otoniel; Bunzendahl, Elly; Flynn, Luke P.; Garbeil, Harold

    2006-01-01

    Persistent lava extrusion at the Santiaguito dome complex (Guatemala) results in continuous lahar activity and river bed aggradation downstream of the volcano. We present a simple method that uses vegetation indices extracted from Landsat Thematic Mapper (TM) data to map impacted zones. Application of this technique to a time series of 21 TM images acquired between 1987 and 2000 allow us to map, measure, and track temporal and spatial variations in the area of lahar impact and river aggradation.In the proximal zone of the fluvial system, these data show a positive correlation between extrusion rate at Santiaguito (E), aggradation area 12 months later (Aprox), and rainfall during the intervening 12 months (Rain12): Aprox=3.92+0.50 E+0.31 ln(Rain12) (r2=0.79). This describes a situation in which an increase in sediment supply (extrusion rate) and/or a means to mobilize this sediment (rainfall) results in an increase in lahar activity (aggraded area). Across the medial zone, we find a positive correlation between extrusion rate and/or area of proximal aggradation and medial aggradation area (Amed): Amed=18.84-0.05 Aprox - 6.15 Rain12 (r2=0.85). Here the correlation between rainfall and aggradation area is negative. This describes a situation in which increased sediment supply results in an increase in lahar activity but, because it is the zone of transport, an increase in rainfall serves to increase the transport efficiency of rivers flowing through this zone. Thus, increased rainfall flushes the medial zone of sediment.These quantitative data allow us to empirically define the links between sediment supply and mobilization in this fluvial system and to derive predictive relationships that use rainfall and extrusion rates to estimate aggradation area 12 months hence.

  13. Quantitative measures of meniscus extrusion predict incident radiographic knee osteoarthritis – data from the Osteoarthritis Initiative

    PubMed Central

    Emmanuel, K.; Quinn, E.; Niu, J.; Guermazi, A.; Roemer, F.; Wirth, W.; Eckstein, F.; Felson, D.

    2017-01-01

    SUMMARY Objective To test the hypothesis that quantitative measures of meniscus extrusion predict incident radiographic knee osteoarthritis (KOA), prior to the advent of radiographic disease. Methods 206 knees with incident radiographic KOA (Kellgren Lawrence Grade (KLG) 0 or 1 at baseline, developing KLG 2 or greater with a definite osteophyte and joint space narrowing (JSN) grade ≥1 by year 4) were matched to 232 control knees not developing incident KOA. Manual segmentation of the central five slices of the medial and lateral meniscus was performed on coronal 3T DESS MRI and quantitative meniscus position was determined. Cases and controls were compared using conditional logistic regression adjusting for age, sex, BMI, race and clinical site. Sensitivity analyses of early (year [Y] 1/2) and late (Y3/4) incidence was performed. Results Mean medial extrusion distance was significantly greater for incident compared to non-incident knees (1.56 mean ± 1.12 mm SD vs 1.29 ± 0.99 mm; +21%, P < 0.01), so was the percent extrusion area of the medial meniscus (25.8 ± 15.8% vs 22.0 ± 13.5%; +17%, P < 0.05). This finding was consistent for knees restricted to medial incidence. No significant differences were observed for the lateral meniscus in incident medial KOA, or for the tibial plateau coverage between incident and non-incident knees. Restricting the analysis to medial incident KOA at Y1/2 differences were attenuated, but reached significance for extrusion distance, whereas no significant differences were observed at incident KOA in Y3/4. Conclusion Greater medial meniscus extrusion predicts incident radiographic KOA. Early onset KOA showed greater differences for meniscus position between incident and non-incident knees than late onset KOA. PMID:26318658

  14. Gut: An underestimated target organ for Aluminum.

    PubMed

    Vignal, C; Desreumaux, P; Body-Malapel, M

    2016-06-01

    Since World War II, several factors such as an impressive industrial growth, an enhanced environmental bioavailability and intensified food consumption have contributed to a significant amplification of human exposure to aluminum. Aluminum is particularly present in food, beverages, some drugs and airbone dust. In our food, aluminum is superimposed via additives and cooking utensils. Therefore, the tolerable intake of aluminum is exceeded for a significant part of the world population, especially in children who are more vulnerable to toxic effects of pollutants than adults. Faced with this oral aluminum influx, intestinal tract is an essential barrier, especially as 38% of ingested aluminum accumulates at the intestinal mucosa. Although still poorly documented to date, the impact of oral exposure to aluminum in conditions relevant to real human exposure appears to be deleterious for gut homeostasis. Aluminum ingestion affects the regulation of the permeability, the microflora and the immune function of intestine. Nowadays, several arguments are consistent with an involvement of aluminum as an environmental risk factor for inflammatory bowel diseases. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  15. Extrusion of xylans extracted from corn cobs into biodegradable polymeric materials.

    PubMed

    Bahcegul, Erinc; Akinalan, Busra; Toraman, Hilal E; Erdemir, Duygu; Ozkan, Necati; Bakir, Ufuk

    2013-12-01

    Solvent casting technique, which comprises multiple energy demanding steps including the dissolution of a polymer in a solvent followed by the evaporation of the solvent from the polymer solution, is currently the main technique for the production of xylan based polymeric materials. The present study shows that sufficient water content renders arabinoglucuronoxylan (AGX) polymers extrudable, enabling the production of AGX based polymeric materials in a single step via extrusion, which is economically advantageous to solvent casting process for mass production. AGX polymers with water content of 27% were found to yield extrudates at an extrusion temperature of 90°C. The extruded strips showed very good mechanical properties with an ultimate tensile strength of 76 ± 6 MPa and elongation at break value of 35 ± 8%, which were superior to the mechanical properties of the strips obtained from polylactic acid. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Deformational Features and Microstructure Evolution of Copper Fabricated by a Single Pass of the Elliptical Cross-Section Spiral Equal-Channel Extrusion (ECSEE) Process

    NASA Astrophysics Data System (ADS)

    Wang, Chengpeng; Li, Fuguo; Liu, Juncheng

    2018-04-01

    The objectives of this work are to study the deformational feature, textures, microstructures, and dislocation configurations of ultrafine-grained copper processed by the process of elliptical cross-section spiral equal-channel extrusion (ECSEE). The deformation patterns of simple shear and pure shear in the ECSEE process were evaluated with the analytical method of geometric strain. The influence of the main technical parameters of ECSEE die on the effective strain distribution on the surface of ECSEE-fabricated samples was examined by the finite element simulation. The high friction factor could improve the effective strain accumulation of material deformation. Moreover, the pure copper sample fabricated by ECSEE ion shows a strong rotated cube shear texture. The refining mechanism of the dislocation deformation is dominant in copper processed by a single pass of ECSEE. The inhomogeneity of the micro-hardness distribution on the longitudinal section of the ECSEE-fabricated sample is consistent with the strain and microstructure distribution features.

  17. Dual-Extrusion 3D Printing of Anatomical Models for Education

    ERIC Educational Resources Information Center

    Smith, Michelle L.; Jones, James F. X.

    2018-01-01

    Two material 3D printing is becoming increasingly popular, inexpensive and accessible. In this paper, freely available printable files and dual extrusion fused deposition modelling were combined to create a number of functional anatomical models. To represent muscle and bone FilaFlex[superscript 3D] flexible filament and polylactic acid (PLA)…

  18. Study to elucidate formation pathways of selected roast-smelling odorants upon extrusion cooking.

    PubMed

    Davidek, Tomas; Festring, Daniel; Dufossé, Thierry; Novotny, Ondrej; Blank, Imre

    2013-10-30

    The formation pathways of the N-containing roast-smelling compounds 2-acetyl-1-pyrroline, 2-acetyl-1(or 3),4,5,6-tetrahydropyridine, and their structural analogues 2-propionyl-1-pyrroline and 2-propionyl-1(or 3),4,5,6-tetrahydropyridine were studied upon extrusion cooking using the CAMOLA approach. The samples were produced under moderate extrusion conditions (135 °C, 20% moisture, 400 rpm) employing a rice-based model recipe enriched with flavor precursors ([U-(13)C6]-D-glucose, D-glucose, glycine, L-proline, and L-ornithine). The obtained data indicate that the formation of these compounds upon extrusion follows pathways similar to those reported for nonsheared model systems containing D-glucose and L-proline. 2-Acetyl-1-pyrroline is formed (i) by acylation of 1-pyrroline via C2 sugar fragments (major pathway) and (ii) via ring-opening of 1-pyrroline incorporating C3 sugar fragments (minor pathway), whereas 2-propionyl-1-pyrroline incorporates exclusively C3 sugar fragments. 2-Acetyl-1(or 3),4,5,6-tetrahydropyridine and the corresponding propionyl analogue incorporate C3 and C4 sugar fragments, respectively. In addition, it has been shown that the formation of 2-acetyl-1-pyrroline in low-moisture systems depends on the pH value of the reaction mixture.

  19. Electrolyte treatment for aluminum reduction

    DOEpatents

    Brown, Craig W.; Brooks, Richard J.; Frizzle, Patrick B.; Juric, Drago D.

    2002-01-01

    A method of treating an electrolyte for use in the electrolytic reduction of alumina to aluminum employing an anode and a cathode, the alumina dissolved in the electrolyte, the treating improving wetting of the cathode with molten aluminum during electrolysis. The method comprises the steps of providing a molten electrolyte comprised of ALF.sub.3 and at least one salt selected from the group consisting of NaF, KF and LiF, and treating the electrolyte by providing therein 0.004 to 0.2 wt. % of a transition metal or transition metal compound for improved wettability of the cathode with molten aluminum during subsequent electrolysis to reduce alumina to aluminum.

  20. Process Parameter Optimization of Extrusion-Based 3D Metal Printing Utilizing PW-LDPE-SA Binder System.

    PubMed

    Ren, Luquan; Zhou, Xueli; Song, Zhengyi; Zhao, Che; Liu, Qingping; Xue, Jingze; Li, Xiujuan

    2017-03-16

    Recently, with a broadening range of available materials and alteration of feeding processes, several extrusion-based 3D printing processes for metal materials have been developed. An emerging process is applicable for the fabrication of metal parts into electronics and composites. In this paper, some critical parameters of extrusion-based 3D printing processes were optimized by a series of experiments with a melting extrusion printer. The raw materials were copper powder and a thermoplastic organic binder system and the system included paraffin wax, low density polyethylene, and stearic acid (PW-LDPE-SA). The homogeneity and rheological behaviour of the raw materials, the strength of the green samples, and the hardness of the sintered samples were investigated. Moreover, the printing and sintering parameters were optimized with an orthogonal design method. The influence factors in regard to the ultimate tensile strength of the green samples can be described as follows: infill degree > raster angle > layer thickness. As for the sintering process, the major factor on hardness is sintering temperature, followed by holding time and heating rate. The highest hardness of the sintered samples was very close to the average hardness of commercially pure copper material. Generally, the extrusion-based printing process for producing metal materials is a promising strategy because it has some advantages over traditional approaches for cost, efficiency, and simplicity.

  1. Process Parameter Optimization of Extrusion-Based 3D Metal Printing Utilizing PW–LDPE–SA Binder System

    PubMed Central

    Ren, Luquan; Zhou, Xueli; Song, Zhengyi; Zhao, Che; Liu, Qingping; Xue, Jingze; Li, Xiujuan

    2017-01-01

    Recently, with a broadening range of available materials and alteration of feeding processes, several extrusion-based 3D printing processes for metal materials have been developed. An emerging process is applicable for the fabrication of metal parts into electronics and composites. In this paper, some critical parameters of extrusion-based 3D printing processes were optimized by a series of experiments with a melting extrusion printer. The raw materials were copper powder and a thermoplastic organic binder system and the system included paraffin wax, low density polyethylene, and stearic acid (PW–LDPE–SA). The homogeneity and rheological behaviour of the raw materials, the strength of the green samples, and the hardness of the sintered samples were investigated. Moreover, the printing and sintering parameters were optimized with an orthogonal design method. The influence factors in regard to the ultimate tensile strength of the green samples can be described as follows: infill degree > raster angle > layer thickness. As for the sintering process, the major factor on hardness is sintering temperature, followed by holding time and heating rate. The highest hardness of the sintered samples was very close to the average hardness of commercially pure copper material. Generally, the extrusion-based printing process for producing metal materials is a promising strategy because it has some advantages over traditional approaches for cost, efficiency, and simplicity. PMID:28772665

  2. 40 CFR 63.5753 - How do I calculate the combined organic HAP content of aluminum wipedown solvents and aluminum...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... HAP content of aluminum wipedown solvents and aluminum recreational boat surface coatings? 63.5753... Standards for Hazardous Air Pollutants for Boat Manufacturing Standards for Aluminum Recreational Boat... wipedown solvents and aluminum recreational boat surface coatings? (a) Use equation 1 of this section to...

  3. 40 CFR 63.5753 - How do I calculate the combined organic HAP content of aluminum wipedown solvents and aluminum...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... HAP content of aluminum wipedown solvents and aluminum recreational boat surface coatings? 63.5753... Standards for Hazardous Air Pollutants for Boat Manufacturing Standards for Aluminum Recreational Boat... wipedown solvents and aluminum recreational boat surface coatings? (a) Use equation 1 of this section to...

  4. PREPARATION OF ACTINIDE-ALUMINUM ALLOYS

    DOEpatents

    Moore, R.H.

    1962-09-01

    BS>A process is given for preparing alloys of aluminum with plutonium, uranium, and/or thorium by chlorinating actinide oxide dissolved in molten alkali metal chloride with hydrochloric acid, chlorine, and/or phosgene, adding aluminum metal, and passing air and/or water vapor through the mass. Actinide metal is formed and alloyed with the aluminum. After cooling to solidification, the alloy is separated from the salt. (AEC)

  5. Earthquake induced variations in extrusion rate: A numerical modeling approach to the 2006 eruption of Merapi Volcano (Indonesia)

    NASA Astrophysics Data System (ADS)

    Carr, Brett B.; Clarke, Amanda B.; de'Michieli Vitturi, Mattia

    2018-01-01

    Extrusion rates during lava dome-building eruptions are variable and eruption sequences at these volcanoes generally have multiple phases. Merapi Volcano, Java, Indonesia, exemplifies this common style of activity. Merapi is one of Indonesia's most active volcanoes and during the 20th and early 21st centuries effusive activity has been characterized by long periods of very slow (<0.1 m3 s-1) extrusion rate interrupted every few years by short episodes of elevated extrusion rates (1-4 m3 s-1) lasting weeks to months. One such event occurred in May-July 2006, and previous research has identified multiple phases with different extrusion rates and styles of activity. Using input values established in the literature, we apply a 1D, isothermal, steady-state numerical model of magma ascent in a volcanic conduit to explain the variations and gain insight into corresponding conduit processes. The peak phase of the 2006 eruption occurred in the two weeks following the May 27 Mw 6.4 earthquake 50 km to the south. Previous work has suggested that the peak extrusion rates observed in early June were triggered by the earthquake through either dynamic stress-induced overpressure or the addition of CO2 due to decarbonation and gas escape from new fractures in the bedrock. We use the numerical model to test the feasibility of these proposed hypotheses and show that, in order to explain the observed change in extrusion rate, an increase of approximately 5-7 MPa in magma storage zone overpressure is required. We also find that the addition of ∼1000 ppm CO2 to some portion of the magma in the storage zone following the earthquake reduces water solubility such that gas exsolution is sufficient to generate the required overpressure. Thus, the proposed mechanism of CO2 addition is a viable explanation for the peak phase of the Merapi 2006 eruption. A time-series of extrusion rate shows a sudden increase three days following the earthquake. We explain this three-day delay by the

  6. Occupational exposure to aluminum and its biomonitoring in perspective.

    PubMed

    Riihimäki, Vesa; Aitio, Antero

    2012-11-01

    Exposure to aluminum at work is widespread, and people are exposed to several species of aluminum, which differ markedly as to the kinetics and toxicity. Especially welding of aluminum is widely applied and continuously expanding. Inhalation of fine particles of sparsely soluble aluminum results in the retention of deposited particles in the lungs. From the lungs, aluminum is released to the blood and distributed to bones and the brain, and excreted to urine. Soluble aluminum compounds are not accumulated in the lungs. Neurotoxicity is the critical effect of exposure to sparsely soluble aluminum compounds. Studies on workers exposed to aluminum welding fumes have revealed disturbances of cognitive processes, memory and concentration, and changes in mood and EEG. Early pulmonary effects have been observed among aluminum powder-production workers using high-resolution computed tomography. The primary objective of aluminum biomonitoring (BM) is to help prevent the formation of aluminum burden in the lungs and thereby to prevent harmful accumulation of aluminum in target organs. BM of aluminum can be effectively used for this purpose in the production/use of aluminum powders, aluminum welding, as well as plasma cutting, grinding, polishing and thermal spraying of aluminum. BM of aluminum may also be similarly useful in the smelting of aluminum and probably in the production of corundum. BM can help identify exposed individuals and roughly quantitate transient exposure but cannot predict health effects in the production/use of soluble aluminum salts. For urinary aluminum (U-Al) we propose an action limit of 3 µmol/L, corrected to a relative density of 1.021, in a sample collected preshift after two days without occupational exposure, and without use of aluminum-containing drugs. This value corresponds roughly to 2.3 µmol/g creatinine. Compliance with this limit is expected to protect the worker against the critical effect of aluminum in exposure to sparsely soluble

  7. Mechanical and Tribological Characteristics of the AMC, Prepared by P/M Route along with Thermo-Mechanical Treatment

    NASA Astrophysics Data System (ADS)

    Mohapatra, Sambit Kumar; Maity, Kalipada; Bhuyan, Subrat Kumar; Prasad Satpathy, Mantra

    2018-03-01

    Thermo mechanical treatments have the ameliorated impacts on the mechanical and tribological properties of powder metallurgy components. In this investigation an aluminium matrix composite (AMC) {Al (92) + Mg (5) + Gr (1) + Ti (2)} has been prepared by following powder metallurgy technique, with double axial compaction and ulterior sintering. Secondary thermo-mechanical treatment i.e. hot extrusion through mathematical contoured cosine profiled die was considered. The die causes minimum velocity relative differences across the extrusion exit cross-section, which provides smooth material flow. Comparative result analysis for the mechanical and tribological characteristics of the specimen before and after extrusion was concentrated. Extrusion engenders significant amount of improvements of the properties those are attributed to excellent bond strength and uniform density distribution due to high compressive stress. Oxidative and delaminated wear mechanisms were found predominating type. To furnish the suitable explanation scanning electron microscopies have been performed for the wear surfaces.

  8. Dissolution and Separation of Aluminum and Aluminosilicates

    DOE PAGES

    McFarlane, Joanna; Benker, Dennis; DePaoli, David W.; ...

    2015-12-19

    The selection of an aluminum alloy for target irradiation affects post-irradiation target dissolution and separations. Recent tests with aluminum alloy 6061 yielded greater than expected precipitation in the dissolver, forming up to 10 wt.% solids of aluminum hydroxides and aluminosilicates. Aluminosilicate dissolution presents challenges in a number of different areas, metals extraction from minerals, flyash treatment, and separations from aluminum alloys. We present experimental work that attempts to maximize dissolution of aluminum metal, along with silicon, magnesium, and copper impurities, through control of temperature, the rate of reagent addition, and incubation time. Aluminum phase transformations have been identified as amore » function of time and temperature, using X-ray diffraction. Solutions have been analyzed using wet chemical methods and X-ray fluorescence. Our data have been compared with published calculations of aluminum phase diagrams. Approaches are given to enhance the dissolution of aluminum and aluminosilicate phases in caustic solution.« less

  9. The development of poly(vinyl chloride) [PVC] extrusions for a 14,000-ton self-supporting structure for the detection of neutrinos

    DOE PAGES

    Grudzinski, James J.; Talaga, Richard L.; Pla-Dalmau, Anna; ...

    2014-12-16

    The NOvA Neutrino Experiment has built a one of a kind self-supporting plastic structure, potentially the largest ever built. The PVC structure serves as a neutrino detector and is composed of 28 individual blocks that measure 15.5 m (51 feet) high by 15.5 m (51 feet) wide by 2.1 m (7 feet) deep. The primary parts in the detector construction are 15.5m (51 foot), 15-cell PVC extrusions. These extrusions from the basis of the detector modules which are laminated together in a crossed pattern to form the individual blocks and then filled with mineral oil based liquid scintillator. The self-supportingmore » nature of the detector places important structural requirements on both the PVC formulation and the extrusions. Block assembly requirements impose narrow geometric tolerances. Due to the method of detecting neutrinos, the extrusions must possess exceptionally high reflectivity over a particular wavelength range. The requirement places additional restrictions on the components of the PVC formulation. Altogether, the PVC extrusions have to maintain important reflectivity characteristics, provide structural support to the detector, and meet relatively tight geometric requirements for assembly. In order to meet these constraints, a custom PVC formulation had to be created and extruded. Here, we describe the purpose and requirements of the NOvA detector leading to the production of our unique PVC extrusion, summarize the R&D process, and discuss the lessons learned.« less

  10. Salmonella Inactivation During Extrusion of an Oat Flour Model Food.

    PubMed

    Anderson, Nathan M; Keller, Susanne E; Mishra, Niharika; Pickens, Shannon; Gradl, Dana; Hartter, Tim; Rokey, Galen; Dohl, Christopher; Plattner, Brian; Chirtel, Stuart; Grasso-Kelley, Elizabeth M

    2017-03-01

    Little research exists on Salmonella inactivation during extrusion processing, yet many outbreaks associated with low water activity foods since 2006 were linked to extruded foods. The aim of this research was to study Salmonella inactivation during extrusion of a model cereal product. Oat flour was inoculated with Salmonella enterica serovar Agona, an outbreak strain isolated from puffed cereals, and processed using a single-screw extruder at a feed rate of 75 kg/h and a screw speed of 500 rpm. Extrudate samples were collected from the barrel outlet in sterile bags and immediately cooled in an ice-water bath. Populations were determined using standard plate count methods or a modified most probable number when populations were low. Reductions in population were determined and analyzed using a general linear model. The regression model obtained for the response surface tested was Log (N R /N O ) = 20.50 + 0.82T - 141.16a w - 0.0039T 2 + 87.91a w 2 (R 2 = 0.69). The model showed significant (p < 0.05) linear and quadratic effects of a w and temperature and enabled an assessment of critical control parameters. Reductions of 0.67 ± 0.14 to 7.34 ± 0.02 log CFU/g were observed over ranges of a w (0.72 to 0.96) and temperature (65 to 100 °C) tested. Processing conditions above 82 °C and 0.89 a w achieved on average greater than a 5-log reduction of Salmonella. Results indicate that extrusion is an effective means for reducing Salmonella as most processes commonly employed to produce cereals and other low water activity foods exceed these parameters. Thus, contamination of an extruded food product would most likely occur postprocessing as a result of environmental contamination or through the addition of coatings and flavorings. © 2017 Institute of Food Technologists®.

  11. RECOVERY OF ALUMINUM FROM FISSION PRODUCTS

    DOEpatents

    Blanco, R.E.; Higgins, I.R.

    1962-11-20

    A method is given for recovertng aluminum values from aqueous solutions containing said values together with fission products. A mixture of Fe/sub 2/O/ sub 3/ and MnO/sub 2/ is added to a solution containing aluminum and fission products. The resulting aluminum-containing supernatant is then separated from the fission product-bearing metal oxide precipitate and is contacted with a cation exchange resin. The aluminum sorbed on the resin is then eluted and recovered. (AEC)

  12. Ultrafine nanoporous palladium-aluminum film fabricated by citric acid-assisted hot-water-treatment of aluminum-palladium alloy film

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harumoto, Takashi; Tamura, Yohei; Ishiguro, Takashi, E-mail: ishiguro@rs.noda.tus.ac.jp

    Hot-water-treatment has been adapted to fabricate ultrafine nanoporous palladium-aluminum film from aluminum-palladium alloy film. Using citric acid as a chelating agent, a precipitation of boehmite (aluminum oxide hydroxide, AlOOH) on the nanoporous palladium-aluminum film was suppressed. According to cross-sectional scanning transmission electron microscopy observations, the ligament/pore sizes of the prepared nanoporous film were considerably small (on the order of 10 nm). Since this fabrication method only requires aluminum alloy film and hot-water with chelating agent, the ultrafine nanoporous film can be prepared simply and environmentally friendly.

  13. Synthetic-rubber extrusions form low cost roll-on solar collector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smay, V.E.

    1979-06-01

    Synthetic rubber extrusions composed of ethylene propylene diene monomer (EPDM) have been developed in 4.4-inch-wide mats as solar absorbers that are light weight and simple to install. The mats, which come in rolls up to 600 ft long, have 6 small tubes alternating with thin webbing. EPDM has a lifespan of 30-50 yrs and maintains its flexibility within a temperature range of -80 to 375/sup 0/F. The mats are laid over rigid insulation and covered with glazing, detailed assembly instructions are provided. EPDM is not subject to corrosion and is not damaged by freezing water, a second EPDM extrusion ismore » used for glazed solar collectors. The efficiency of the design is attributed to the greater surface-to-mass ratio, permitting more heat collection, and the smaller mass of the synthetic rubber, which allows faster heat-up. The total cost for a complete, installed solar heating system of this type, including pumps, tanks, and plumbing, is about $12/ft/sup 2/.« less

  14. Calcium citrate without aluminum antacids does not cause aluminum retention in patients with functioning kidneys

    NASA Technical Reports Server (NTRS)

    Sakhaee, K.; Wabner, C. L.; Zerwekh, J. E.; Copley, J. B.; Pak, L.; Poindexter, J. R.; Pak, C. Y.

    1993-01-01

    It has been suggested that calcium citrate might enhance aluminum absorption from food, posing a threat of aluminum toxicity even in patients with normal renal function. We therefore measured serum and urinary aluminum before and following calcium citrate therapy in patients with moderate renal failure and in normal subjects maintained on constant metabolic diets with known aluminum content (967-1034 mumol/day, or 26.1-27.9 mg/day, in patients and either 834 or 1579 mumol/day, or 22.5 and 42.6 mg/day, in normal subjects). Seven patients with moderate renal failure (endogenous creatinine clearance of 43 ml/min) took 50 mmol (2 g) calcium/day as effervescent calcium citrate with meals for 17 days. Eight normal women received 25 mmol (1 g) calcium/day as tricalcium dicitrate tablets with meals for 7 days. In patients with moderate renal failure, serum and urinary aluminum were normal before treatment at 489 +/- 293 SD nmol/l (13.2 +/- 7.9 micrograms/l) and 767 +/- 497 nmol/day (20.7 +/- 13.4 micrograms/day), respectively. They remained within normal limits and did not change significantly during calcium citrate treatment (400 +/- 148 nmol/l and 600 +/- 441 nmol/day, respectively). Similarly, no significant change in serum and urinary aluminum was detected in normal women during calcium citrate administration (271 +/- 59 vs 293 +/- 85 nmol/l and 515 +/- 138 vs 615 +/- 170 nmol/day, respectively). In addition, skeletal bone aluminum content did not change significantly in 14 osteoporotic patients (endogenous creatinine clearance of 68.5 ml/min) treated for 24 months with calcium citrate, 10 mmol calcium twice/day separately from meals (29.3 +/- 13.9 ng/mg ash bone to 27.9 +/0- 10.4, P = 0.727). In them, histomorphometric examination did not show any evidence of mineralization defect. Thus, calcium citrate given alone without aluminum-containing drugs does not pose a risk of aluminum toxicity in subjects with normal or functioning kidneys, when it is administered on an

  15. Apical extrusion of Enterococcus faecalis using three different rotary instrumentation techniques: an in vitro study.

    PubMed

    Taneja, Sonali; Kumari, Manju; Barua, Madhumita; Dudeja, Chetna; Malik, Meeta

    2015-01-01

    To compare the apical extrusion of Enterococcus faecalis after instrumentation with three different Ni-Ti rotary instruments- An in vitro study. In vitro study Methods and Material: Forty freshly extracted mandibular premolars were mounted in bacteria collection apparatus and root canals were contaminated with a suspension of Enterococcus faecalis. The contaminated teeth were divided into 4 groups of 10 teeth each according to rotary system used for instrumentation: Group1: Hyflex files, Group 2: GTX files, Group 3: Protaper files and Group 4: control group (no instrumentation). Bacteria extruded after preparations were collected into vials and microbiological samples were incubated in BHI broth for 24 hrs. The colony forming units were determined for each sample. Statistical analysis was done using one way ANOVA followed by post hoc independent " t" test. GTX files extruded least amount of bacteria followed by Hyflex files. Maximum extrusion of E. faecalis was seen in rotary Protaper group. Least amount of extrusion was seen with GTX files followed by Hyflex files and then rotary Protaper system.

  16. Application of Twin Screw Extrusion in the Manufacture of Cocrystals, Part I: Four Case Studies

    PubMed Central

    Daurio, Dominick; Medina, Cesar; Saw, Robert; Nagapudi, Karthik; Alvarez-Núñez, Fernando

    2011-01-01

    The application of twin screw extrusion (TSE) as a scalable and green process for the manufacture of cocrystals was investigated. Four model cocrystal forming systems, Caffeine-Oxalic acid, Nicotinamide-trans cinnamic acid, Carbamazepine-Saccharin, and Theophylline-Citric acid, were selected for the study. The parameters of the extrusion process that influenced cocrystal formation were examined. TSE was found to be an effective method to make cocrystals for all four systems studied. It was demonstrated that temperature and extent of mixing in the extruder were the primary process parameters that influenced extent of conversion to the cocrystal in neat TSE experiments. In addition to neat extrusion, liquid-assisted TSE was also demonstrated for the first time as a viable process for making cocrystals. Notably, the use of catalytic amount of benign solvents led to a lowering of processing temperatures required to form the cocrystal in the extruder. TSE should be considered as an efficient, scalable, and environmentally friendly process for the manufacture of cocrystals with little to no solvent requirements. PMID:24310598

  17. Lateral Compression Properties of Magnesium Alloy Tubes Fabricated via Hydrostatic Extrusion Integrated with Circular ECAP

    NASA Astrophysics Data System (ADS)

    Lv, Jiuming; Hu, Fangyi; Cao, Quoc Dinh; Yuan, Renshu; Wu, Zhilin; Cai, Hongming; Zhao, Lei; Zhang, Xinping

    2017-03-01

    Hydrostatic extrusion integrated with circular equal channel angular pressing has been previously proposed for fabricating AZ80 magnesium alloy tubes as a method to obtain high-strength tubes for industrial applications. In order to axial tensile strength, circumferential mechanical properties are also important for tubular structures. The tensile properties of AZ80 tubes have been previously studied; however, the circumferential properties have not been examined. In this work, circumferential mechanical properties of these tubes were studied using lateral compression tests. An analytical model is proposed to evaluate the circumferential elongation, which is in good agreement with finite element results. The effects of the extrusion ratio and conical mandrel angle on the circumferential elongation and lateral compression strength are discussed. The strain distribution in the sample during lateral compression testing was found to be inhomogeneous, and cracks initially appeared on the inner surface of the sample vertex. The circumferential elongation and lateral compression strength increased with the extrusion ratio and conical mandrel angle. The anisotropy of the tube's mechanical properties was insignificant when geometric effects were ignored.

  18. Extrusion of barley and oat influence the fecal microbiota and SCFA profile of growing pigs.

    PubMed

    Moen, Birgitte; Berget, Ingunn; Rud, Ida; Hole, Anastasia S; Kjos, Nils Petter; Sahlstrøm, Stefan

    2016-02-01

    The effect of extrusion of barley and oat on the fecal microbiota and the formation of SCFA was evaluated using growing pigs as model system. The pigs were fed a diet containing either whole grain barley (BU), oat groat (OU), or their respective extruded samples (BE and OE). 454 pyrosequencing showed that the fecal microbiota of growing pigs was affected by both extrusion and grain type. Extruded grain resulted in lower bacterial diversity and enrichment in operational taxonomic units (OTUs) affiliated with members of the Streptococcus, Blautia and Bulleidia genera, while untreated grain showed enrichment in OTUs affiliated with members of the Bifidobacterium and Lactobacillus genera, and the butyrate-producing bacteria Butyricicoccus, Roseburia, Coprococcus and Pseudobutyrivibrio. Untreated grain resulted in a significant increase of n-butyric, i-valeric and n-valeric acid, which correlated with an increase of Bifidobacterium and Lactobacillus. This is the first study showing that cereal extrusion affects the microbiota composition and diversity towards a state generally thought to be less beneficial for health, as well as less amounts of beneficial butyric acid.

  19. Methods for both coating a substrate with aluminum oxide and infusing the substrate with elemental aluminum

    DOEpatents

    Choi, Jung-Pyung; Weil, Kenneth Scott

    2016-11-01

    Methods of aluminizing the surface of a metal substrate. The methods of the present invention do not require establishment of a vacuum or a reducing atmosphere, as is typically necessary. Accordingly, aluminization can occur in the presence of oxygen, which greatly simplifies and reduces processing costs by allowing deposition of the aluminum coating to be performed, for example, in air. Embodiments of the present invention can be characterized by applying a slurry that includes a binder and powder granules containing aluminum to the metal substrate surface. Then, in a combined step, a portion of the aluminum is diffused into the substrate and a portion of the aluminum is oxidized by heating the slurry to a temperature greater than the melting point of the aluminum in an oxygen-containing atmosphere.

  20. Anodizing Aluminum with Frills.

    ERIC Educational Resources Information Center

    Doeltz, Anne E.; And Others

    1983-01-01

    "Anodizing Aluminum" (previously reported in this journal) describes a vivid/relevant laboratory experience for general chemistry students explaining the anodizing of aluminum in sulfuric acid and constrasting it to electroplating. Additions to this procedure and the experiment in which they are used are discussed. Reactions involved are…